Synthesis and solid state characterization of actinide cyanometallates and actinide benzimidazole compounds by Branson A. Maynard A disertation submited to the Graduate Faculty of Auburn University in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Copyright 2014 by Branson Alen Maynard Approved by Anne Gorden, Chair, Asociate Profesor, Department of Chemistry and Biochemistry David Stanbury, J. Milton Harris Profesor, Department of Chemistry and Biochemistry Michael McKe, Profesor, Department of Chemistry and Biochemistry Curtis Shannon, Andrew T. Hunt Profesor, Department of Chemistry and Biochemistry ii Abstract The square-planar cyanometalate anions alow for the unique columnar structural feature in the solid state, termed in the literature as pseudo 1-D M ? M interactions in the Pt analogs. The distance betwen metal sites has been coined, R, and can be tuned by many physical and chemical proceses. While the akali and alkaline earth metal tetracyanoplatinates have been known for two centuries, few compounds have been reported in the actinide square planar cyanometalate clas of compounds, An x [M(CN) 4 ] y . Utilizing this structural feature provides a new means for probing the chemistry of the 5f elements. Described here is the synthesis, emision spectroscopy, Raman spectroscopy, computation analysis, and structural characterization using smal molecule X-ray single crystal difraction of the recently reported actinide cyanometalates, general formula An x [M(CN) 4 ] y . iii Acknowledgements First, I wil make the acknowledgement that I wil forget to mention someone, or funding agency, that has provided support for this work. My parents, Mark and Sharon, played the principal role in facilitating an environment where pursuit of higher education was important. Along these lines, the research I performed under the supervision of Dr. Richard Sykora at the University of South Alabama was paramount to starting a path in structural elucidation of solid state f-block coordination compounds. Further, I have been lucky enough to receive several outside funding sources that provided learning opportunities that were not possible on the campus of Auburn University. These include a trip to Oak Ridge National Laboratory to learn neutron difraction techniques (Funding: Oak Ridge National Laboratory and Argonne National Laboratory) and a summer felowship to Los Alamos National Laboratory to learn computational analysis (Funding: Seaborg Institute). Also the local section of the American Chemical Society and the Auburn University Graduate School have provided funding to diseminate my research at local and national metings. Research asistance has been provided through DTRA. Certainly other names should be included as during one point or another of this graduate study I received valuable insight into a problem: John Gorden, Mohan Bharara, Brian Litle, iv Kushan Weirasairi, Mike Devore, Walter Casper, Nick Klann, Phong Ngo and the many other graduate and undergraduate students. Undoubtedly I would be remis if I did not acknowledge Dr. Anne Gorden. During my time at Auburn University she has provided advice, leadership, and mentoring in the proper doses. I wil be forever grateful that Dr. Gorden was my primary investigator. Additionaly I would like to thank Dr. Gorden and Dr. Ortiz for continuing my funding during the time I was in the hospital and recovering. Also I would like to thank my commite members for proofreading this text. Last but, certainly not least; I wil forever be indebted to my wife, Amanda Maynard, for her support through the toughest times of this doctoral work. The reason why this text exists is, in large part, due to her understanding that it may not ever be writen, or I would not be able to write it. Amanda provided this understanding at the time I needed it most and it helped serve as motivation to make sure it was writen. v Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments ........................................................................................................................ iii List of Tables .............................................................................................................................. vi List of Illustrations ..................................................................................................................... vii List of Abbreviations ................................................................................................................... xi Chapter 1 Introduction ................................................................................................................ 1 A Brief History of a 5f Element, Uranium ........................................................................ 1 5f Coordination Compounds ............................................................................................ 6 References Cited ............................................................................................................ 24 Chapter 2 Solid State Structural Elucidation of the Th IV , UO 2 VI , and U IV Cyanometalates ..... 27 5f-Cyanometalate Coordination Complexes .................................................................. 33 Crystalographic Overview ............................................................................................. 53 References Cited ............................................................................................................. 56 Chapter 3 Emision and Raman Spectroscopy of the Actinide Tetracyanometalates .............. 59 Excitation and Emision ................................................................................................. 60 Raman Spectroscopy ....................................................................................................... 66 vi DFT analysis ................................................................................................................... 71 Discussion ....................................................................................................................... 74 Conclusions ..................................................................................................................... 80 References Cited ............................................................................................................. 86 Chapter 4 Synergistic Thorium Mediated Synthesis of 2,3-Diaminophenazine ......................... 89 Conclusions ..................................................................................................................... 94 References Cited ............................................................................................................. 98 Chapter 5 Synthesis, Isolation, Structural Characterization and Emision Spectroscopy of Salzine Compounds ..................................................................................................................... 99 X-ray difraction ........................................................................................................... 102 CRAIC Microspectrophotometer .................................................................................. 105 References Cited ........................................................................................................... 110 Chapter 6 Conclusions and Future Work .................................................................................. 111 Future Work .................................................................................................................. 112 Appendix 1: Crystalographic Tables ..................................................................................... 119 vii List of Tables Table 1 ORTEP projections of solid state actinide complexed ligands ........................................ 5 Table 2 Crystalographic information for Th1, Th2, and U3 ...................................................... 50 Table 3 Crystalographic information for U4, Th5, and U6 ....................................................... 51 Table 4 Crystalographic information for Th7 and Th8 .............................................................. 52 Table 5 Cyanide vibrational stretches of the cyanometalate salts ............................................. 67 Table 6 Single point energy calculations performed .................................................................. 72 Table 7 Cyanide vibrational stretches of Th1, Th2, U3, U4, Th5, and U6 ................................. 76 Table 8 Vibrational modes calculated by the unrestricted B3LYP functional ........................... 80 Table 9 Tabulated results from the oxidation of OPD ................................................................ 96 vii List of Illustrations Figure 1 Thermal elipsoid projection of [UO 2 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4- amino-1-butanol)] ............................................................................................................ 6 Figure 2 Thermal elipsoid projection of [UO 2 (N?,N?-bis(2-hydroxy-3-methoxy-5-(propen-2- yl)benzyl-N-(2-aminoethyl)morpholine) 2 ]?2CH 3 CN ..................................................... 8 Figure 3 Thermal elipsoid projection of {UO 2 (? 2 -ReO 4 )(ReO 4 )(TBPO) 2 ] 2 ............................... 9 Figure 4 Thermal elipsoid projection of [UO 2 (3-(2-Hydroxybenzylideneamino)propane-1,2- diol)] 2 ?C 3 H 7 NO ........................................................................................................... 11 Figure 5 Thermal elipsoid projection of UO 2 (2-quinoxilinol) .................................................. 12 Figure 6 Thermal elipsoid projection of [Cyclo[6]pyrrole (UO 2 )] ........................................... 15 Figure 7 The bal and stick projection of [NpO 2 ([18]crown-6)] + .............................................. 17 Figure 8 Projection of [Pu(5LIO(Me-3,2-HOPO) 2 )] .................................................................. 19 Figure 9 Projection of PuI 2 ( Ar acnac) 2 ......................................................................................... 22 Figure 10 Asymmetric unit of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) ........................................... 33 Figure 11 Packing diagram of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) .......................................... 34 Figure 12 Projection of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) ........................................... 35 Figure 13 Packing diagram of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) .................................. 36 Figure 14 Packing diagram of K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3) ........................ 37 ix Figure 15 Projection of {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U3) .............................................. 40 Figure 16 Packing diagram of {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4) ................................... 42 Figure 17 Projection of {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O (Th5) ........................................ 43 Figure 18 Extension of the one-dimensional structure of {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} ................................................................... 45 Figure 19 Projection of the ionic structure of [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7) .............. 47 Figure 20 Projection of the structure of [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 (Th8) .......................... 48 Figure 21 Single crystal sample of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?H 2 O (TH1) ......................................... 60 Figure 22 Emision spectra of starting materials, Th1, Th2 and U3 .......................................... 61 Figure 23 Excitation spectrum of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (TH1) ....................................... 63 Figure 24 Excitation spectrum of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) ............................. 64 Figure 25 Emision spectra of the K + salts of the d 8 tetracyanometalates ................................. 65 Figure 26 Raman spectra of the K + salts of the d 8 tetracyanometalates .................................... 66 Figure 27 Raman data of Th1 and Th2 ....................................................................................... 68 Figure 28 Raman spectra of Th5 ................................................................................................ 69 Figure 29 Raman spectrum of U4 ............................................................................................... 70 Figure 30 Projections of the atom positions from jobs run in Gaussian ..................................... 74 Scheme 1 Oxidation of ortho-phenylenediamine to 2,3-diaminobenzene .................................. 89 Figure 31 Scater plot depicting the data from OPD oxidation reactions ................................. 90 Figure 32 Projection of the asymmetric unit of (C 12 H 10 N 4 ) 2 ?7H 2 O ............................................ 93 Figure 33 Projection of the 2-quinoxolinol salen molecule ........................................................ 99 Figure 34 Projection of the asymetric unit of the salzine molecule .......................................... 103 Scheme 2 Proposed reaction scheme for the salzine synthesis. ................................................ 102 x Figure 35 Projection of the asymetric unit of tbut-salzine ........................................................ 103 Figure 36 Projection of the asymmetric unit of salzine-UO 2 .................................................... 104 Figure 37 Transmision and emision spectra of the salzine compound .................................. 105 Figure 38 Transmision and emision spectra of the salzine-UO 2 complex ............................. 106 Figure 39 Transmision and emision spectra of the tbut-salzine ............................................ 107 Figure 40 Transmision and emision spectra of 2-quinoxalinol salen .................................... 108 Scheme 3 Reaction of 2,3-diaminophenazine with glycine to form the phenazineimidazole product ............................................................................................................. 115 Scheme 4 Starting with the phenazineimidazole starting material. .......................................... 116 Figure 41 Possible 2:1 salzine metal complex. ......................................................................... 117 Figure 42 Possible 1:1 phenezeneimidazole metal complex. ................................................... 117 xi List of Abbreviations BTBP Bis-triazinyl bipyridine CIF Crystalographic Information file Cp Cyclopentadienyl ligand CP* Pentamethylcyclopentadienyl ligand DAP 2,3-diaminophenazine DFE Desferrioxamine E DMA Dimethyacetamide DMF Dimethylformamide DMSO Dimethylsulfoxide mWe million wats of electric capacity OPD ortho-phenylenediamine SMMs Single molecule magnets TBP Tributyl Phosphate TCNi Tetracyanonickelate TCPd Tetracyanopaladate TCPt Tetracyanoplatinate xii TPTZ Tripyridyl triazine UV Ultraviolet XRD X-ray difraction xii Reference format follows the format of the Journal of the American Chemical Society Crystalographic projections were generated in Olex2.1 Figures or tables are made by Microsoft Word or Microsoft Excel Portions of this disertation are from published articles: Chapter 1: Introduction Gorden, A. E. V.; DeVore, M. A.; Maynard, B. A. Inorganic Chemistry 2013, 52, 3445. Chapter 2 Maynard, B. A.; Sykora, R. E.; Mague, J. T.; Gorden, A. E. V. Chemical Communications 2010, 46, 4944. Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. Journal of Radioanalytical and Nuclear Chemistry 2013, 296, 453. Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. Inorganic Chemistry 2013, 52, 4880. Chapter 3 Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. Inorganic Chemistry 2013, 52, 4880. 1 Chapter 1: Introduction The existence of the 5f actinide elements, thorium and uranium, has been known for roughly 200 years (185 and 225 years respectively). 1 Uranium is important from a historical standpoint, as it is one of two elements that stopped World War II by the detonation of nuclear fission bombs over the cities of Hiroshima and Nagasaki. The history of uranium is important to mention in the context of how and why it has been released into the environment. Following the brief historical recap of uranium is an overview of the last decade of actinide-containing solid state structures. This highlights the structure-function relationship and the importance of establishing bonding parameters in the 5f series. This leads the way for the main text, which discusses the solid state structural elucidation and properties of two new classes of actinide containing compounds: actinide cyanometallates and actinide benzimidazoles. A Brief History of a 5f Element, Uranium Martin Heinrich Klaproth is credited to first identifying the element uranium, found in a heterogeneous oxide ore commonly known as pitchblende, in 1789. 1 Enrico Fermi first reported the bombarding of uranium with neutrons and incorrectly concluded the nuclear absorption of the neutron and subsequent nuclear decay yielded elements with 93 and 94 protons, essentially claiming the discovery of the elements that would later be 2 named neptunium and plutonium. 2 Ida Noddack may have been the first, publicly, to suggest that the uranium nucleus may break up into several large fragments when bombarded by a neutron. 3 We know this now to be induced nuclear fission, but the term fission was only used in reference to the process in cell biology at the time. Her description of the process "it is conceivable that the nucleus breaks up into several large fragments, which would of course be isotopes of known elements, but would not be neighbors of the irradiated element." Otto Frisch and Lise Meitner were both more famously credited with discovering fission during an excursion; Frisch was skiing and Meitner was walking, and reportedly keeping pace with Frisch, through the countryside. Their conversation centered on a letter Otto Hahn had sent Meitner describing that the neutron bombardment product of uranium contains barium. Frisch and Meitner worked out the calculations on a fallen tree trunk. Their idea was that the incoming/bombarding neutron perturbed the nucleus enough to produce two large fragments, explaining the appearance of barium. 4 This is understood more easily, if the nucleus is considered as a liquid drop. Two forces are present; the weak force can be understood as surface tension and the electromagnetic force, which is due to the positively charged protons repelling themselves. 4 If the number of neutrons and protons in the nucleus is sufficiently high, then the surface tension of the liquid drop is just enough to counterbalance the repulsive force of the protons. If a bombarding neutron finds the liquid drop nucleus of 235 U, it can rupture the liquid drop into two more stable fragments. The now excess nuclear binding energy of the two fragments is released and the amount of energy can be found if the 3 daughter products are known from Einstein?s E=mc 2 . 4,5 From these early observations, it could be deduced that large sums of energy could be realized from a fission incident. Nowadays, world energy consumption is expected to increase by 47% from 2010 to 2035. This increased energy consumption is proportional to the flourishing economies outside of the Organisation for Economic Co-operation and Development. 6 The United States used coal to provide over 1,700 billion kilowatt hours of electricity in 2009 alone, accounting for almost half of the total electricity produced, 2 but growing environmental concern over the release of greenhouse gases, in particular carbon dioxide from fossil fuels, has caused investigation into incorporating the use of other energy sources. 7 Nuclear energy can help meet these growing demands and offers energy production in a cleaner fashion with lower atmospheric emission. The first full-scale nuclear power plant began operation in 1957 in Shippingport, Pennsylvania, marking the United States entry into the civilian nuclear power industry. 4 The United States has adopted a once-through fuel cycle, where nuclear fuel rods are made from naturally occurring sources and all used nuclear fuel is disposed of after a single use. For this type of fuel cycle, enriched uranium fuel or thorium-uranium fuel are the only fuels that can be used in order to create a sustainable fission chain reaction without a large input of an external neutron source. 7 Today, there are over 400 nuclear power plants worldwide, generating about 12% of civilian electricity use. 5 In fact, nuclear power already provides 70 percent of carbon- free electricity in the United States. The energy density of nuclear fuel is another desirable quality; the amount of energy in a single uranium fuel pellet is equal to that of 149 gallons of oil or 1,780 pounds of coal. 6 4 The relatively recent discovery of the 5f elements coupled with these elements? ability to undergo natural fission, manmade fission, and manmade fusion leading to high sums of energy sets the foundation for understanding their chemistry. 4,5 At the first publicly accepted report of fission, researchers were primarily interested with harvesting the energy released from a fission incident. Notoriously, the end of World War II was brought on by the release of two atomic bombs (Little Boy = 141 pounds of fissile mass, Fat Man 56 pounds of fissile mass) on the cities of Hiroshima and Nagasaki in 1945. 8 This release of roughly 200 pounds of fissile material, along with other fissile material releases in the last 70 years has spurred the fundamental and applied chemistry in attempt to be able to understand and ultimately control these atoms in our environment. 8,9 What follows is an overview of the past decade of solid state actinide coordination compounds and how these coordination compounds have been related to waste remediation. 5 6 5f Coordination Compounds Currently 3936 of the 4165 (94.5%) structures containing a 5f element reported to the Cambridge Crystallographic Data Centre, CCDC, are composed of structures containing Th and U, while 1869 of the 4165 (44.5%) structures contain the UO 2 2+ ion. 10 One reason that the overwhelming majority of the reported actinide structures contain the Th or U atoms is because these atoms provide long lived radioisotopes with lower radioactive emissions. 9 The ligands described below have been looked at for liquid- liquid extraction of trivalent lanthanides and actinides of different oxidation states. Generally, multidentate ligands that contains soft donors, such as nitrogen and sulfur, are used for such separations. Why? Because the behavior of the 5f -elements has been studied much less, it is a challenging task to predict what ligands would have optimum efficiency and selectivity in separations and provide the optimal coordination environment for these 5f metal ions in the solid state. 11 Figure 1 Thermal ellipsoid projection of ammonium type [UO 2 (N,N-bis(2-hydroxy-3,5- dimethylbenzyl)-4-amino-1-butanol) 2 ]. The carbon atoms are depicted as gray, the oxygen red, the nitrogen blue, the central uranium atoms green, and the hydrogen atom are omitted for clarity. 12 7 In 2006 and 2007, uranyl complexes coordinated to a series aminoalcoholbis(phenolate) ligands were reported. These ligands provide three hard oxygen donors in the form of 2 phenol and one alkyl chain alcohol; the amine group provides a hard nitrogen donor. The ultimate goal of these ligands was to be used as chelation therapy for overexposure to uranium. These ligands contain an [O,N,O,O?] binding pocket and were studied for their chelating effects. Figure 1 shows the [UO 2 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) 2 ] complex. The two aminoalcoholbis(phenolate) ligands bind the uranyl metal centers in a bidentate fashion with the ligand forming the equatorial plane. The coordination number of these complexes is 6 and is best described as octahedral, with the ?yl oxygens binding at the axial positions and the remaining equatorial sites filled by the oxo- donors of the aminoalcoholbis(phenolate) ligands, the amine groups are protonated and do not bind the uranyl center. 12,13 In the continuation of research, uranyl complexes coordinated with a series of diaminobisphenolates were reported. 14,15 Two types of structures are reported, a 1:1 and a 2:1 ligand to metal ratio. In the 1:1 complexes, the coordination number around the uranium center is 7 and is best described as pentagonal bipyramid polyhedron. The two ? yl oxygens are found at the axial positions and the equatorial plane is defined by two different pentagons depending on whether the central nitrogen in the ligand is an amine or an ammonium. In the amine type ligands, one site is the amine, and four coordination sites are filled by oxygens, two from the ligand and two from a bidentate nitrate. In the ammonium type ligands, the nitrogen uranium bond is replaced by a water molecule. The difference between the amine and ammonium type ligand is the protonation of the central 8 nitrogen atom. In the 2:1 complexes the coordination number around the uranium center is 6 and is best described as octahedral. Figure 2 shows the 2:1 ligand to metal complex of [UO 2 (N?,N?-bis(2-hydroxy-3-methoxy-5-(propen-2-yl)benzyl-N-(2- aminoethyl)morpholine) 2 ] . 2CH 3 CN. The two ?yl oxygens are found at the axial positions and the equatorial plane is defined by four oxygens, two from each ligand. 15 Figure 2 Thermal ellipsoid projection of the ammonium type [UO 2 (N?,N?-bis(2-hydroxy- 3-methoxy-5-(propen-2-yl)benzyl-N-(2-aminoethyl)morpholine) 2 ] . 2CH 3 CN. The carbon atoms are depicted as gray, the oxygen red, the nitrogen blue, the central uranium atoms green, and the hydrogen atoms are omitted for clarity. 15 9 In 2007, it was reported that derivatives of the ligand (Figure 3), tributyl phosphate (TBP), used in the PUREX process formed coordination structures with uranyl, UO 2 2+ , and perrhenate, RhO 4 - . 16 The perrhenate ion is of interest because it has been shown to be a suitable mimic for pertechnetate (TcO 4 - ), another potentially hazardous fission product that is also a  -emitter and readily transportable in aqueous media. 17 The two complexes reported are similar, with the difference being the TBP ligand derivative. In both structures, the coordination number of the uranium is seven and best described as a pentagonal bipyramid polyhedron. The ?yl oxygens are found at the two axial positions. Three sites of the equatorial pentagon are occupied by oxygens from the perrhenate anions. The remaining two sites are occupied by the oxygens of the TBP derivative ligand. 16 Figure 3 Thermal ellipsoid projection of {UO 2 (? 2 -ReO 4 )(ReO 4 )(TBPO) 2 ] 2 . The carbon atoms are depicted as gray, the oxygen red, the rhenium metallic blue, the phosphorus metallic purple and the central uranium atoms green. 16 10 The first 5f-BTBP, bis-triazinyl bipyridine, complex was reported in 2008. 18 This report also contains three mononuclear and a dinuclear UO 2 -BTBP complex and also a dinuclear UO 2 -TPTZ, tripyridyl triazine, complex. In all five of these structures, the coordination number around the uranium site is seven and is best described by a pentagonal bipyramid polyhedron with the ?yl oxygens found at the two axial positions. In the four BTBP complexes, the BTBP ligand coordinates the uranium center in a tetradentate fashion that defines the equatorial plane. 18 Schnaars and coworkers, reported three complexes, AnX 2 ( Ar acnac) 2 where Ar acnac = (ArNC(Ph)CHC(Ph)O - ) (Ar = 3,5-tBu 2 C 6 H 3 ), containing U and Pu in 2011. 11 Among the interesting features of this report is that both the U and Pu metals in the +4 oxidation state were used to prepare complexes and the authors prepared a detailed, comprehensive look at that oxidation state. 11 Two of the isostructural complexes contain U(IV) with the difference being the halides, Cl or I, bonded to the metal center. The Pu(IV) structure will be discusseGEHORZ7KH -ketoiminate ligand, containing a hard and soft donor, was used because of its ability to stabilize weak Lewis acids, UO 2 2+ , and thus was thought to be able to coordinate to the stronger Lewis acids, An(IV). The coordination number around the uranium center is six and is best described as a distorted octahedral polyhedron. The halides are found at the axial positions and the Ar acnac ligands are found in the equatorial plane and are trans to each other, as seen in the isostructual PuI 2 ( Ar acnac) 2 shown in figure 9. The differing halides do not affect the bonding parameters of the Ar acnac ligand. 11 11 Figure 4 Thermal ellipsoid projection of [UO 2 (3-(2-hydroxybenzylideneamino)propane- 1,2-diol)] 2 ?DMF. The carbon atoms are depicted as gray, the hydrogen atoms white, the oxygen red, the nitrogen blue, the central uranium atoms green. 19 Salen-type and Schiff base-UO 2 2+ structures were reported by our group previously. 19-21 The coordination number of the uranium center, in both the salen-type and Schiff base systems, is seven and is best described by a pentagonal bipyramid polyhedron, as seen in Figure 4. 19 The salen-type ligands -called the salen quinoxalinols or salqu ligands, were designed with a quinoxaline backbone to enable the readily distinguishable properties either by fluorescence or UV-Vis between different metal complexes. In the UO 2 2+ structures, the ?yl oxygens sit at the axial positions while the two oxo- and two aza-coordination sites of the ligand occupy four of the positions in the pentagon. The remaining site of the pentagon is occupied by a solvent molecule. In both 12 the Schiff base-UO 2 (Figure 4) and salen-UO 2 (Figure 5) compounds the ligand must twist from a planar conformation to accommodate the uranyl ion. This results in a large change in the overlap of the ? -bonds in the conjugated back bone, and consequently, a large change in the spectroscopy. 20 Figure 5 Thermal ellipsoid projection of UO 2 (2-quinaxilinol). The carbon atoms are depicted as gray, the hydrogen atoms white, the oxygen red, the nitrogen blue, the central uranium atom green. 20 In the asymmetric Schiff-base structures, the ?yl oxygens sit at the axial positions while the equatorial pentagonal coordination is very different. Two ligands bind two metals and exclude the solvent molecule, forming a dinuclear U 2 O 2 species. This U 2 O 2 13 species is composed of two uranium sites, bridged by an alkoxyl and hydroxyl oxygen. This U 2 O 2 core is reported as stable to hydrolysis and transamination and could potentially be used to remediate waste stored under alkaline conditions. The shape of this species forms a diamond with each vertex alternating between uranium atom and oxygen atom. (See example with ligand (E)-3-((2-hydroxybenzylidene)amino)propane-1,2-diol - Figure 4) The coordinating pentagon around the metal ion is composed of a phenolic oxygen, imine nitrogen, bridging alkoxyl and hydroxyl group with the remaining site of the pentagon occupied by a solvent molecule. 19 These ligand systems offer the U ? U interaction found at 3.8794 ? in Figure 4 of [UO 2 (3-(2- hydroxybenzylideneamino)propane-1,2-diol)] 2 ?C 3 H 7 NO. In the series of these complexes, prepared with different substituents on the aryl backbone, the resultant complexes were always dinuclear 2:2 metal:ligand complexes. Simple extraction studies proved that they could be effective for removing uranyl from aqueous solutions (up to 99% in 24 hours); however, the presence of iron or copper in mixed solutions would later demonstrate complications to selective extractions. Hydrolysis of this extraction agent does occur, but at extreme pH, conditions (i.e. 1-3 and 13-14); this is important as nuclear waste is found at high and low pH and a one ligand processing system will need a stable ligand over a wide pH range. 19,22,23 With additional bridged structures, an attempt was made to limit the formation of dinuclear complexes to prepare a 1:1 ligand to metal complex with the preparation of a 2,2'-((1E,1'E)-((2-hydroxypropane-1,3- diyl)bis(azanylylidene))bis(methanylylidene))diphenol ligand. 23 In resulting complexation structures, the coordination number of the uranium site is seven and is best 14 described as a pentagonal bipyramid polyhedron. The ?yl oxygens sit at the axial positions while the equatorial pentagonal coordination is different. The 1:2 ligand to metal pentagon is composed of a phenolic oxygen, imine nitrogen, bridging alkoxyl and hydroxyl group with the remaining site of the pentagon occupied by a solvent molecule. The 2:2 ligand to metal pentagonal geometry is the same as the 2:1, in that the coordination bite angles and bond distances are very similar, but one bridging hydroxyl group has been replaced by a coordinating solvent molecule the bridging hydroxyl group in the 2:1 system. Coordinated to uranyl, these Schiff base complexes are very stable - in particular as compared to their transition metal counterparts, and may be useful in the alkaline nuclear waste solutions. 19,22,23 This still may be of use as a final back extraction polishing step in that the ligand could be used to retain uranium in organic solutions after adjusting to a basic pH which would release complexed transition metals. 24,25 15 Figure 6 Thermal ellipsoid projection of [cyclo[6]pyrrole (UO 2 )]. The carbon atoms are depicted as gray, the hydrogen white, the oxygen red, the nitrogen blue, the central uranium atoms green. 26 The all aza [cyclo[6]pyrrole(UO 2 )] coordination complex was reported in 2007. 26 The ligand was first noted in the synthesis of cyclo[8]pyrrole. 27 The authors held that the cyclo[6]pyrrole would bind uranyl more readily than the earlier reported cyclo[8]pyrrole because of its cavity size and favorable donor number. The coordination number of the uranium site is 8 and is best described as a hexagonal bipyramid, as seen in Figure 6. The ?yl oxygens are found at the axial position, and the nitrogen atoms from the ligand define 16 the hexagonal equatorial plane. This is the first metal complex of the cyclo[N]pyrrole series of expanded porphyrins. 26 In 2009 and 2010, uranyl structures of the bis(Me-3,2-HOPO), 3-hydroxy-N- methylpyridin-2-one, ligand derivatives were reported. 28,29 The uranium sites in the reported structures have a coordination number of seven and are best described as bicapped pentagonal polyhedra. This ligand architecture coordinates the uranyl unit in a tetradentate fashion, through the four hydroxypyridonate oxygens, leaving one site open for coordination through another ligand or a solvent. In 2011, two uranyl structures of a MeTAM - methyl terephlalamide - ligand were reported. 30 Previous studies have demonstrated that the MeTAM ligand can act as a decorporation agent, and it was found to be more efficient in reducing the [UO 2 2+ ] in the kidneys and deposited bone than the hydroxypyridonate ligands. 31,32 17 Figure 7 The ball and stick projection of [NpO 2 ([18]crown-6)] + . The perchlorate anion and the hydrogen atoms have been omitted for clarity. The carbon atoms are depicted as gray, the oxygen red, the central neptunium atom green. 33 Coordination structures that contain neptunium have been few and far between. The first transuranic ether inclusion complex, [NpO 2 ([18]crown-6)][X] (where X = ClO 4 - or CF 3 SO 3 - ), with single crystal diffraction data, was reported by Clark and coworkers in 1998 (See Figure 7). The NpO 2 + ion is of particular interest because of the problems associated with extracting it from high level nuclear waste, stemming from the low positive charge and relatively high solubility in aqueous media of the neptunyl ion. 33 This also makes neptunyl of great potential environmental and health consequence, 18 because it could be easily transported in ground water or introduced into the food chain after a waste spill. 34,35 The Np=O bond length of 1.800 (5) ? is unusually short for an NpO 2 + ion; it is found at a distance that is 0.05 ? shorter in the [NpO 2 (H 2 O) 5 ] + ion. 33 The [18]crown-6 ligand completely encapsulates the NpO 2 + ion. The Np(V) center is best described by an approximate hexagonal bipyramid. The short ?yl oxygens are found at the axial positions and the ligands O ether coordinate forming the equatorial hexagonal plane. A neptunium v -hexaphyrin expanded porphyrin type complex was reported in 2001. 36 The neptunium(V) center has a coordination number of 8 and is best described as a hexagonal bipyramidal polyhedron. The ?yl oxygens are found at the axial positions, with the remaining six coordination sites filled by nitrogen donors from the ligand. The hexaphyrin ligand does have a slight twist when bound to the NpO 2 + center, but the distortion is not as pronounced as in the uranyl hexaphyrin structure described in the same paper. The authors reason that the larger ionic radius of the NpO 2 + is a better fit for the hexaphyrin ligand as opposed to the uranyl unit. 36 It was later characterized with substituted versions of this ring to determine how this distortion affects coordination. 37 This was the first reported all aza- coordinating system for neptunium, and its selectivity for actinides and intense color were characterized in potential sensing applications. 38-41 Of the actinide structures reported in the CCDC, the 134 neptunium and 77 plutonium-containing crystal structures represent 3.2 and only 1.8% of the actinide compounds reported respectively (CCDC database search). The remaining 0.5% of the actinides structures reported are the rest of the actinides besides those previously described (i.e. not U, Th, Pu, or Np). This is a problem as the fundamental bonding 19 parameters and coordination chemistry behavior need to be better understood to be able to intelligently design ligands for separations, perform detailed calculations, and ultimately to formulate new processes using these ligands. Figure 8 Projection of [Pu(5LIO(Me-3,2-HOPO)) 2 ], one ligand shown as a ball and stick and the other as tube, lacking non hydrogen bonding hydrogens for clarity. The carbon atoms are depicted as gray, the oxygen red, the nitrogen blue, and the central plutonium atom green. 42 In 2000 the first structure reported of an organic extraction agent with a plutonium metal resolved by single crystal analysis was [Pu(1) 2 (NO 3 ) 2 ][(NO 3 ) 2 ], where 1 is the trifunctional ligand 2,6-[(C 6 H 5 ) 2 P(O)CH 2 ] 2 C 5 H 3 NO and can also be abbreviated to NOPOPO. 42 The coordination number around the plutonium center is 10 and is best 20 described as a distorted bicapped square antiprism. All ten of the inner sphere coordinating atoms are oxygens. Two of the ligands bind the plutonium center in a tridentate fashion, each ligand binds once through the O pyridine N-Oxide and twice through the O phosphoryl sites. The M-O ligand bond distances of the Pu(IV) structure are shorter than the Th(IV) complex. While the actinide contraction is not as linear as the lanthanide contraction, it still exists and these systems are evidence of this. 43 Typically, a ligand that forms complexes with the lighter actinides forms shorter bonds with the heavier actinides. 42 Later, the compound [Pu(2) 2 (NO 3 ) 3 + ][Pu(NO 3 ) 6 2- ] 0.5 was reported, where 2 is the bifunctional 2-[(C 6 H 5 ) 2 P(O)CH 2 ]C 5 H 4 NO. 44 The coordination number of this complex is 10 and is best described as an average of a bicapped antiprism and a sphenocorona. There are two idealized 10 vertex polyhedra; one is a bicapped antiprism, and the other is a sphenocorona. The complex is not described by either of these polyhedra, rather it is better described as a combination of the two. These complexes are examples of and could lead to the further development of phosphinopyridine ligands in separations of nuclear waste. 44 Linear and cyclic hydroxamates containing the building block 1-amino-5- hydroxamino-pentane as a building block have been found in the naturally occurring compounds known as siderophores, that bacteria have as a way to sequester naturally occurring iron. 45 These complexes were of interest because they are potentially useful in medical treatments as chelators for iron and aluminum overload. 31,45-49 The first plutonium-siderophore complex to be structurally characterized was [Al(H 2 O) 6 ][Pu(DFE)(H 2 O) 3 ] 2 (CF 3 SO 3 ) 5 . 14H 2 O, where DFE is an abbreviation for desferrioxamine E. The coordination number around the plutonium metal center is 9, and 21 can be best described as a distorted tricapped trigonal prism. The ligand coordinates the metal center through six oxygens, three from O carbonyl and three from the O oximate . Three water molecules complete the coordination sphere. This compound is the first discrete molecule structurally characterized with a plutonium(IV) ion that is 9 coordinate. 50 These siderophore type complexes are interesting, as they biologically function to separate a metal from the environment, transport it across an organic layer, and release the metal under the desired conditions. 50 The DFE ligand undergoes the same conformational changes when binding Pu IV as Fe III ions. This fact coupled with the known recruitment of iron from the environment into a cell is via DFE leads to the hypothesis that the Pu(DFE) complex could cross the cell membrane with relative ease as compared to the relatively aqueous insoluble Pu IV (OH) 4 and Pu IV O 2 species. The first structure of a plutonium IV hydroxypyridonate (HOPO) was reported in 2005. The complex is modeled after coordination systems found in siderophores with two N-methyl-3-hydroxy-2-pyridinone groups linked by a 5-membered ether linker. The coordination number of the plutonium atom is 8 and best described as a bicapped trigonal prism. The metal complex is formed by two of the 5LIO(Me-3,2-HOPO) ligands with one plutonium atom. The 5LIO(Me-3,2-HOPO) ligand contains two types of oxygens, the phenolic and amide nitrogen oxygens. Four oxygens from each ligand bind the plutonium metal in a sandwich type complex, as seen in figure 8. In part because of the flexible geometry allowed by the Pu ion, this is the first structure to have two different chiralities of metal complex in one unit cell. 51 This structure was later followed by other related 1,2-HOPO Pu(IV) and Pu(IV)-maltol structures, which were reported with the comparable Ce(IV) structures for comparison. There was a remarkable difference 22 between these structures which had very dissimilar geometries although they had similar size metal ions, and it points to a significant concern about the viability of Ce(IV) as a model for Pu(IV). 52,53 Figure 9 Projection of PuI 2 ( Ar acnac) 2 , model shown as a ball and stick projection, lacking hydrogens for clarity. The carbon atoms are depicted in gray, the oxygen atoms red, the nitrogen atoms blue, the iodine atoms as purple and the central plutonium atom is in green. 11 As described above, three isostructural compounds with the general formula AnX 2 ( Ar acnac) 2 were reported. The PuI 2 ( Ar acnac) 2 comples is shown in figure 9. The starting material for the Pu isostructure was Pu 0 , partially because of the lack of suitable Pu(IV) starting materials. 11 This structure reported is the first example of a Pu-I bond. The actinide contraction and ionic bonding models alone are not enough to explain the 23 difference in the An-O and An-N bond lengths of the PuI 2 ( Ar acnac) 2 and the UI 2 ( Ar acnac) 2 isostructures. The Ar acnac ligand may be a useful probe in elucidating an all enclusive comparative bonding study of the actinides because it is not limited by cavity size or sterics. The solid state plutonium structures reported within have one common feature, excluding PuI 2 ( Ar acnac) 2 ; this feature is that the metal center is completely bound by oxygen atoms. 11 In general soft donors are preferred for separations purposes, yet, with the majority of reported structures, hard donors appear favored for the isolation of single crystals suitable for X-ray diffraction. One reason for the lack of plutonium containing coordination structures reported is the lack of readily available starting materials. This is complicated by the fact that materials must be carefully handled and that plutonium can have up to five oxidation states in aqueous solutions. Thus, preparing solutions containing ions in a single oxidation state for use in metal complexes requires additional preparation. 9 Because of these facts regarding the complications of working with plutonium no reactions containing plutonium were completed in my research career. The majority of this text is devoted to structural elucidation of thorium and uranium containing coordination compounds and how these structural characterizations are related to the observed optical properties. The hope is that this research has broadened the scope of the solid state actinide containing coordination compounds and that these new insights may lead to long term, solid state, waste remediation solutions. 24 References Cited (1) Weeks, M. E. Discovery of the Elements; Kessinger Pulishing Co., 2003. (2) Fermi, E. Nature (London, U. K.) 1934, 133, 898. (3) Noddack, I. Angew. Chem. 1934, 47, 653. (4) Meitner, L.; Frisch, O. R. Nature (London, U. K.) 1939, 143, 239. (5) Einstein, A. Ann. Phys-Berlin 1905, 18, 639. (6) Conti, J. J.; Holtberg, P. D.; Beamon, J. A.; Napolitano, J. A.; Schaal, S. A.; Turnure, J. T. Annual Energy Outlook 2012 with Projections to 2035, 2012. (7) DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 8798. (8) Coster-Mullen, J. Atom bombs: the top secret inside story of Little Boy and Fat Man; J. Coster-Mullen: United States, 2008. (9) The Chemistry of the Actinide and Transuranic Elements; 3rd ed.; Morss, L.; Edelstein; Fuger, J.; Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, 2006. (10) Cambridge Structural Database. Actinide Structure Search. Published Online: 2012. (Accessed 04-13-2012). (11) Schnaars, D. D.; Batista, E. R.; Gaunt, A. J.; Hayton, T. W.; May, I.; Reilly, S. D.; Scott, B. L.; Wu, G. Chem. Commun. (Camb) 2011, 47, 7647. (12) Sopo, H.; Sviili, J.; Valkonen, A.; Sillanpaeae, R. Polyhedron 2006, 25, 1223. (13) Sopo, H.; Vaeisaenen, A.; Sillanpaeae, R. Polyhedron 2007, 26, 184. (14) Sopo, H.; Lehtonen, A.; Sillanpaa, R. Polyhedron 2008, 27, 95. (15) Wichmann, O.; Ahonen, K.; Sillanpaa, R. Polyhedron 2011, 30, 477. (16) John, G. H.; May, I.; Sarsfield, M. J.; Collison, D.; Helliwell, M. Dalton T. 2007, 1603. (17) Sutton, A. D.; John, G. H.; Sarsfield, M. J.; Renshaw, J. C.; May, L.; Martin, L. R.; Selvage, A. J.; Collison, D.; Helliwell, M. Inorg. Chem. 2004, 43, 5480. (18) Berthet, J. C.; Thuery, P.; Foreman, M. R. S.; Ephritikhine, M. Radiochim. Acta 2008, 96, 189. (19) Bharara, M. S.; Strawbridge, K.; Vilsek, J. Z.; Bray, T. H.; Gorden, A. E. V. Inorg. Chem. 2007, 46, 8309. 25 (20) Wu, X. H.; Bharara, M. S.; Bray, T. H.; Tate, B. K.; Gorden, A. E. V. Inorg. Chim. Acta 2009, 362, 1847. (21) Wu, X. G.; Hubbard, H. K.; Tate, B. K.; Gorden, A. E. V. Polyhedron 2009, 28, 360. (22) Bharara, M. S.; Heflin, K.; Tonks, S.; Strawbridge, K. L.; Gorden, A. E. V. Dalton Trans. 2008, 2966. (23) Bharara, M. S.; Tonks, S. A.; Gorden, A. E. V. Chem. Commun. 2007, 4006. (24) Joshi, J. M.; Pathak, P. N.; Manchanda, V. K. Solvent Extr. Ion Exch. 2005, 23, 663. (25) May, I.; Taylor, R. J.; Wallwork, A. L.; Hastings, J. J.; Fedorov, Y. S.; Zilberman, B. Y.; Mishin, E. N.; Arkhipov, S. A.; Blazheva, I. V.; Poverkova, L. Y.; Livens, F. R.; Charnock, J. M. Radiochim. Acta 2000, 88, 283. (26) Melfi, P. J.; Kim, S. K.; Lee, J. T.; Bolze, F.; Seidel, D.; Lynch, V. M.; Veauthier, J. M.; Gaunt, A. J.; Neu, M. P.; Ou, Z.; Kadish, K. M.; Fukuzumi, S.; Ohkubo, K.; Sessler, J. L. Inorg. Chem. (Washington, DC, U. S.) 2007, 46, 5143. (27) Seidel, D.; Lynch, V.; Sessler, J. L. Angew. Chem. Int. Ed. 2002, 41, 1422. (28) Szigethy, G.; Raymond, K. N. Inorg. Chem. 2009, 48, 11489. (29) Szigethy, G.; Raymond, K. N. Inorg. Chem. 2010, 49, 6755. (30) Ni, C. B.; Shuh, D. K.; Raymond, K. N. Chem. Commun. 2011, 47, 6392. (31) Gorden, A. E. V.; Xu, J. D.; Raymond, K. N.; Durbin, P. Chem. Rev. 2003, 103, 4207. (32) Durbin, P. W.; Kullgren, B.; Ebbe, S. N.; Xu, J. D.; Raymond, K. N. Health Phys. 2000, 78, 511. (33) Clark, D. L.; Keogh, D. W.; Palmer, P. D.; Scott, B. L.; Tait, C. D. Angew. Chem. Int. Ed. 1998, 37, 164. (34) Prosser, S. L.; Popplewell, D. S.; Lloyd, N. C. J. Environ. Radioactiv. 1994, 23, 123. (35) Capdevila, H.; Vitorge, P. Radiochim. Acta 1995, 68, 51. (36) Sessler, J. L.; Seidel, D.; Vivian, A. E.; Lynch, V.; Scott, B. L.; Keogh, D. W. Angew. Chem. Int. Ed. 2001, 40, 591. 26 (37) Sessler, J. L.; Melfi, P. J.; Lynch, V. M. J. Porphyr. Phthalocya. 2007, 11, 287. (38) Sessler, J. L.; Melfi, P. J.; Seidel, D.; Gorden, A. E. V.; Ford, D. K.; Palmer, P. D.; Tait, C. D. Tetrahedron 2004, 60, 11089. (39) Hayes, N. W.; Tremlett, C. J.; Melfi, P. J.; Sessler, J. D.; Shaw, A. M. Analyst 2008, 133, 616. (40) Iordache, A.; Melfi, P.; Bucher, C.; Buda, M.; Moutet, J. C.; Sessler, J. L. Org. Lett. 2008, 10, 425. (41) Melfi, P. J.; Camiolo, S.; Lee, J. T.; Ali, M. F.; McDevitt, J. T.; Lynch, V. M.; Sessler, J. L. Dalton Trans. 2008, 1538. (42) Bond, E. M.; Duesler, E. N.; Paine, R. T.; Neu, M. P.; Matonic, J. H.; Scott, B. L. Inorg. Chem. 2000, 39, 4152. (43) Huheey, J. E.; Huheey, C. L. J. Chem. Educ. 1972, 49, 227. (44) Matonic, J. H.; Neu, M. P.; Enriquez, A. E.; Paine, R. T.; Scott, B. L. J. Chem. Soc., Dalton Trans. 2002, 2328. (45) Stintzi, A.; Barnes, C.; Xu, L.; Raymond, K. N. P. Natl. Acad. Sci. USA 2000, 97, 10691. (46) John, S. G.; Ruggiero, C. E.; Hersman, L. E.; Tung, C. S.; Neu, M. P. Environ. Sci. Technol. 2001, 35, 2942. (47) Stintzi, A.; Raymond, K. N. J. Biol. Inorg. Chem. 2000, 5, 57. (48) Turcot, I.; Stintzi, A.; Xu, J. D.; Raymond, K. N. J. Biol. Inorg. Chem. 2000, 5, 634. (49) Jurchen, K. M. C.; Raymond, K. N. J. Coord. Chem. 2005, 58, 55. (50) Neu, M. P.; Matonic, J. H.; Ruggiero, C. E.; Scott, B. L. Angew. Chem. Int. Ed. 2000, 39, 1442. (51) Gorden, A. E. V.; Shuh, D. K.; Tiedemann, B. E. F.; Wilson, R. E.; Xu, J. D.; Raymond, K. N. Chem. Eur. J. 2005, 11, 2842. (52) Gorden, A. E. V.; Xu, J.; Szigethy, G.; Oliver, A.; Shuh, D. K.; Raymond, K. N. J. Am. Chem. Soc. 2007, 129, 6674. (53) Szigethy, G.; Xu, J.; Gorden, A. E. V.; Teat, S. J.; Shuh, D. K.; Raymond, K. N. Eur. J. Inorg. Chem. 2008, 2143. 27 Chapter 2: Solid state structural elucidation of the Th IV , UO 2 VI , and U IV cyanometallates 5f-Cyanometallate Coordination Complexes Increasing the use of nuclear energy is one alternative to generate significant amounts of energy with low atmospheric emissions; 1 however, the extraction and use of uranium for nuclear fuel leads to many environmental concerns including long term storage and remediation. 2-6 In the United States nuclear power plants each 100 million watts of electric capacity (mWe) produced required 0.18 metric tons of uranium metal. 10 Thorium is also being used increasingly in the design of new reactor systems, and thorium is estimated to be four times more abundant than uranium. 11 One strategy in the development of improved methods of uranium processing is to continue to further our understanding of actinide chemistry with detailed characterization of actinide coordination complexes. 11 For these reasons, the fundamental chemistry of actinide complexes has become of broad interest. 9,12-18 Metal complex salts containing tetracyanoplatinate (TCPt) anions have been investigated for roughly 200 years. 19 Initial interest was in the differing colors of the complexes. The optical properties of these complexes could be altered by simply changing the cation in the solid state; the clear, colorless aqueous solutions were not as optically elegant. 19 These compounds have been reported in some alluring applications: they have been suggested for use in polymer electrolyte membrane fuel cells, 20 as catalyst precursors, 21 and in vapochromic sensing. 22 Prussian blue and Berlin blue analogs contain 28 identical cyanide linkages between metal centers as the TCPt complexes. These cyano- bridged metal, M-N-C-M?, compounds have been shown to demonstrate intriguing magnetic behavior. 23-26 In the mid-1980s, Gliemann and Yersin reviewed the properties of 36 solid state TCPt compounds known at that time? ranging from lithium as the lightest to thulium as the heaviest cation in the Li 2 [Pt(CN) 4 ]?4H 2 O and Tm 2 [Pt(CN) 4 ] 3 ?21H 2 O compounds respectively. 19 This review outlined several structural features and parameters inherent to the TCPt class of compounds all relating to the quasi one-dimensional Pt chains observed in the solid-state structures. Quasi one-dimensional chains are formed in the solid state; platinophilic interactions may guide the square planar TCPt anions tendency to stack. These parallel columns are thus thought to be responsible for the optical properties of this class of compounds. 19 The distance, R, between adjacent Pt atoms in these chains is considered critical in determining the characteristic emission properties. A simple equation has been derived to relate observed emission to the distance, R, between Pt atoms. 27 It has been noted that this distance can be altered by pressure, temperature, choice of cation, or magnetic fields. 19 These early solid state TCPt compounds were noteworthy because of their striking optical features in the visible range. 19 Since this review was written, more than 30 years ago, the TCPt class of compounds has been expanded. 27-30 The pseudo one- dimensional Pt ? Pt structural feature was allowed in the initial work, because the solvent used for these compounds, primarily, was H 2 O. Since the early work in aqueous chemistry, several other polar solvents have successfully been used such as dimethyl sulfoxide, N,N-dimethyl acetamide, and N,N-dimethyl formamide; 28 however, solvation 29 of the cation with larger solvent molecules tends to preclude the formation of the pseudo one-dimensional Pt ? Pt interactions and subsequent visible emission. Further extension of this class continued with the addition of aromatic ligands coordinating to the cationic metal center allowing for subsequent tuning of R in the TCPt chains. This also aided in the characterization of internal energy processes with the sensitization of weakly emitting lanthanide cations. 29 Work in this field after the Gliemann and Yersin review has focused on solvent and ancillary ligand effects and not incorporated actinide metal ions. 9 Recent research on TCPt systems has involved the incorporation of lanthanides into novel TCPt systems. 27,29,31-33 The complexation of the lanthanides with transition metal cyanides have resulted in new compounds with a CN ? bridging the d and 4f metal centers. As expected, the optical properties of these compounds are of interest as the LnTCPt systems have been shown to undergo intramolecular energy transfer processes that can either enhance 29,34 or weaken 32 the lanthanide emission. 30,35 The discovery of transition metal cyanide complexes with interesting magnetic behavior coupled with a report demonstrating strong ferromagnetic coupling between an actinide ion and transition metals has sparked our interest in exploring the magnetic properties of the f orbitals by bridging the 5d and 5f metals with a CN ? ligand. 31,33 These reports support the idea of enhanced magnetic properties with the possibility of forming discrete molecules exhibiting slow magnetic relaxation, known as single-molecule magnets (SMMs). 33 At present, the magnetic properties of cyanoplatinate-based lanthanide systems have not been described. As compared to the 5f orbitals of the actinides, the radial extension of the 4f orbitals of the lanthanides are smaller and therefore these latter orbitals are more ionic in nature. The essential lack of covalency by the 4f orbitals is thought to not allow 30 strong enough orbital overlap to provide magnetic coupling in the 4f?5d CN bridged compounds. Cyanide metallocenes 31 and cyanide bridged bimetallic 3d-5f complexes 36 have been reported recently, with evidence to support increased covalent character in the An-C cyanide bond of the metallocenes. Our interest lies in the actinides and their 5f orbitals, rather than the 4f orbitals, because the radial extension of these orbitals may provide enough overlap to significantly raise the relaxation barrier height and thus increase the possibility of cyano bridged 5d-5f SMMs. Compounds containing the tetracyanoplatinate anion have been characterized by their one dimensional Pt-Pt chains, 37 and a simple equation has been derived to determine the Pt-Pt spacing using UV-visible bands. 27 The TCPt anion also offers the ability of the terminal nitrogens to bind metals in low and high oxidation states, with multiple binding modes. 29-31,34,35 Here, we report on the first 5f-element TCPt compounds, Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1), Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2), K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3), {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4), {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O (Th5), {(UO 2 ) 2 (C 2 H 6 SO) 4 (OH) 2 [Ni(CN) 4 ]} (U6), [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7), and [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 (Th8) of the actinide tetracyanometallate, An x [M(CN) 4 ] y , class of compounds. They have been characterized by confocal Raman spectroscopy and single crystal X-ray diffraction. It was remarkable that the thorium compounds, Th1 and Th2, emitted while the uranyl compound, U3, lacked any observed emission. 9 These compounds contain unique structures illustrating dimeric actinide species. The absence of any significant charge transfer emission in the visible range as 31 compared to the platinum starting material for {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O is unusual because of the presence of pseudo one-dimensional Pt ? Pt chains in this compound. Confocal Raman spectroscopy of the cyanide stretching region provides insight into the binding domain (mono- bi- tri- tetradentate) of the tetracyanometallates in these novel structures. The synthesis for compounds Th1, Th2, U3, U4, Th5, U6, Th7, and Th8 can be found below. 32 Synthesis of Actinide Cyanometallates Caution! The Th(NO 3 ) 4 ?6H 2 O UO 2 (NO 3 ) 2 ?6H 2 O and UCl 4 used in this study contained depleted uranium, standard precautions for handling radioactive materials or heavy metals, such as uranyl nitrate and thorium nitrate, were followed. Potassium tetracyanonickelate (II) hydrate (99.9%, Strem), potassium tetracyanopalladate(II) hydrate (98%, Strem), and potassium tetracyanoplatinate(II) hydrate (98%, Strem), UO 2 (NO 3 ) 2 ?6H 2 O (98%, J. T. Baker), Th(NO 3 ) 4 ?6H 2 O (99%, Fluka), and DMSO (99.9%, ACROS), ortho-phenylendediamine (98%, Acros), 2,3- diaminophenazine (90%, Aldrich) were used as received without further purification. Deionized H 2 2 0 FP ZDVREWDLQHGDQGXVHGRQVLWH8&O 4 was synthesized by the reaction of U 3 O 8 with hexachloropropene reported by Hashimoto, et al. 1 General Synthesis: Complexes Th1 and Th2 were synthesized by weighing out a roughly equimolar amount of Th(NO 3 ) 4 . 6H 2 O and K 2 [Pt(CN) 4 ] . 3H 2 O and dissolving in H 2 O. The addition of dilute HNO 3 was used to synthesize complex 1. Complex 3 was synthesized in the same fashion, an equimolar amount of UO 2 (NO 3 ) 2 . 6H 2 O and K 2 [Pt(CN) 4 ] . 3H 2 O were dissolved in H 2 O. Crystals suitable for X-ray diffraction were observed within 2-4 weeks, and yields were found to be 85, 80 and 56% for Th1, Th2, and U3 respectively. 30 Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) was prepared by dissolving 0.0250 g (0.04 mmol) of Th(NO 3 ) 4 . 6H 2 O and 0.0235 g (0.06 mmol) of K 2 [Pt(CN) 4 ] . xH 2 O in 3 mL of H 2 O in a test tube. The pH was brought to 2.5 with a small amount of 0.01 M KOH. The test tube was placed in a slow evaporation chamber, after 29 days green-yellow plates suitable for single crystal X-ray diffraction were observed. Th 2 (H 2 O) 10 (OH)[Pt(CN) 4 ]?5H 2 O (Th2) was prepared out by dissolving 0.0246 g (0.04 mmol) of Th(NO 3 ) 4 . 6H 2 O and 0.0237 g ( 0.06 mmol) of K 2 [Pt(CN) 4 ] . 3H 2 O in 3 mL of H 2 O in a test tube. The test tube was placed in a slow evaporation chamber, after 14 days green-yellow plates suitable for single crystal X-ray diffraction were observed. K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3) was prepared dissolving 0.0248 g (0.05 mmol) of UO 2 (NO 3 ) 2 . 6H 2 O and 0.0190 g (.05 mmol)of K 2 [Pt(CN) 4 ] . xH 2 O in 3 mL of H 2 O. The test tube was placed in a slow evaporation chamber, after 20 days yellow plates suitable for single crystal X-ray diffraction were observed. {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O Complex U4 was synthesized in an inert atmosphere, employing Schlenk techniques to avoid the inclusion of O 2 into the system. Nitrogen gas was bubbled through H 2 O contained in a Schlenk flask to exchange the dissolved O 2 gas with N 2 gas. The H 2 O was cycled three times using a freeze-pump-thaw method to completely degas the H 2 O. A portion of 0.0216 g (0.0569 mmol) of UCl 4 was weighed out inside an argon atmosphere glove box and placed into a 200 mL Schlenk flask. Slightly less than 1 equivalent, 0.0207 g (0.0549 mmol) of K 2 [Pt(CN) 4 ]?3H 2 O, was 31 weighed out and placed into a 50 mL Schlenk flask. With all three Schlenk flasks connected to the Schlenk line, a cannula was used to transfer the deoxygenated H 2 O to the Schlenk flasks containing the starting materials. The solutions were stirred to allow the solids to dissolve. The K 2 [Pt(CN) 4 ]?3H 2 O solution was then transferred by cannula into the Schlenk flask containing the UCl 4 solution. A small amount of precipitate that formed was removed by filtration. The mother liquor was placed in a ?19 qC freezer where crystals suitable for single crystal X-ray diffraction (XRD) were observed to have formed after 6 days. Crystalline yield was not determined as the air sensitivity of the sample is significant and therefore, cannot be accurately weighed on the bench. The presence of H 2 O precluded sample manipulation or weighing in the Ar inert atmosphere glove box. {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O Complex Th5 was synthesized by weighing out 0.0200 g (0.0387 mmol) of Th(NO 3 ) 4 ?6H 2 O and 0.0146 (0.0506 mmol) of K 2 [Pd(CN) 4 ]?xH 2 O. Each was dissolved in a minimal amount of H 2 O. The K 2 [Pd(CN) 4 ?xH 2 O solution was layered onto the Th(NO 3 ) 4 solution in a 5 mL test tube. The test tube was exposed to atmospheric conditions in a slow evaporation chamber where crystals suitable for single crystal XRD were observed to have formed after 27 days. Crystalline yield of 0.0148 g (67%). {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} Complex U6 was synthesized by weighing out 0.0251 g (0.0500 mmol) of UO 2 (NO 3 ) 2 ?6H 2 O and 0.0140 g (0.0581 mmol) of K 2 [Ni(CN) 4 ]?xH 2 O. Each was dissolved in a minimal amount of H 2 O. The 32 K 2 [Ni(CN) 4 ?xH 2 O solution was layered onto the UO 2 (NO 3 ) 2 ?H 2 O solution in a 5 mL test tube. The test tube was exposed to atmospheric conditions where crystals suitable for single crystal XRD were observed to have formed after 32 days. Crystalline yield of 0.0118 g (45%). [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O Complex Th7 was synthesized by weighing out 0.0200 grams (0.0387 mmol) of Th(NO 3 ) 4 . 6H 2 O and 0.0146 grams (0.0387 mmol) of K 2 [Pt(CN) 4 ] . 3H 2 O. Each was dissolved in the smallest amount of DMSO neccessary to produce a clear solution. Solutions were heated to aid the dissolution. The K 2 [Pt(CN) 4 ] . 3H 2 O solution was transferred to the Th(NO 3 ) 4 . 6H 2 O solution via pipette. The solution was allowed to mix and it remained clear and colorless immediately after transfer. The solution was allowed to cool at room temperature and left open to air. Suitable crystals for single crystal XRD were observed after 10 days. [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 Complex Th8 was synthesized by weighing out 0.0200 grams (0.0387 mmol) of Th(NO 3 ) 4 . 6H 2 O and 0.0143 grams (0.0387 mmol) of K 3 [Fe(CN) 6 ] . 3H 2 O. Each was dissolved in a minimal amount of DMSO. In addition to heating, the K 4 [Fe(CN) 6 ] . 3H 2 O solution was filtered twice through glass wool before added to the Th(NO 3 ) 4 . 6H 2 O solution via pipette. The solution was allowed to mix and remained clear and colorless immediately after transfer. The solution was allowed to cool at room temperature and left open to air. Suitable crystals for single crystal XRD were collected after 12 days. 33 5f-Cyanometallate Coordination Complexes Th(H 2 O) 7 [Pt(CN) 4 ] 2 . 10H 2 O (Th1) The structure of Th1 (Figure 10) is molecular and consists of [Th(H 2 O) 7 (Pt(CN) 4 ) 2 ] monomers. The Th metal center is coordinated by two nitrogens from the tetracyanoplatinate anions and seven oxygens from water molecules. The overall coordination environment of the Th site is nine, which is best described as a tricapped trigonal prism. The Th-O bonds range from 2.420(4) to 2.494(4) and the two Th-N bonds are significantly longer at 2.552(5) and 2.571(4) ?. The Th-O bonds correlate well with reported Th-OH 2 data. 38 The Th-N bonds are longer than reported Th-N bonds; 39,40 however these complexes are the first reported N bonded cyanide complexes coordinated Figure 10 Asymmetric unit of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1). Atoms as shown are labeled: Th in green, O in red, N in blue, C in grey, and Pt in metallic blue. 9 34 to thorium The packing diagram of Th1 (Figure 11) shows the extension of quasi one dimensional linear chains with non-equidistant Pt-Pt distances at 3.371 and 3.351 ?. These distances are ~0.1 ? longer and consistent with the shorter wavelength emission (~50 nm shorter) relative to that compound. These interactions are formed by the interaction of monomers between two tetracyanoplatinate anions. Figure 11 Packing diagram of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1). Atoms as shown are labeled: Th in green, O in red, N in blue, C in grey, and Pt in metallic blue. 9 35 Th 2 (H 2 O) 10 (OH)[Pt(CN) 4 ]?5H 2 O (Th2) The structure of Th2 (Figure 12) consists of one-dimensional [Th 2 (H 2 O) 10 (OH) 2 (Pt(CN) 4 ) 3 ] chains. Th dimers are formed by linking each Th site with hydroxyls at the bridging oxygen position as seen in figure 12. The Th metal centers are each coordinated by five water molecules. The overall coordination environment of the Th site is nine, and the coordination geometry about the metal center is best described as a tricapped trigonal prism. The Th-O and Th-1ERQGVUDQJHIURP  ?  DQG   ?  ? repectively. The Th-O bonds correlate with the Th-OH 2 data, with Figure 12 Projection of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) showing the extension of the 1 dimensional chain and the Th-O-Th units. Atoms as shown are labeled: Th in green, O in red, N in blue, C in black, and Pt in magenta. 9 36 the Th-OH being slightly truncated at 2.348(4) ?. 38 The Th-N bonds are longer than Figure 13 Packing diagram of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2). Atoms as shown are labeled: Th in green, O in red, N in blue, C in grey, and Pt in magenta. 9 reported bonds and probably better described as a dative interaction. 39,41 The elongation of the one dimensional structure is visualized in Figure 12 through the Th-O-Th-TCPt- Th-O-Th-TCPt-Th-O-Th chain. The packing diagram of 2 (Figure 13) shows the extension of quasi one dimensional chains with equal Pt-Pt distances at 3.272 ? representing an equidistant linear chain. These interactions are formed by the interaction of dimers between two tetracyanoplatinate anions. 37 K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3) The structure of U3 (Figure 14) consists of a complex three dimensional lattice made from units of [UO 2 (OH)(Pt(CN) 4 ) 4 ]. The lattice in 3 consists of layers of cubes with Figure 14 Packing diagram of K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3) viewed along the c axis. K + , (NO 3 ) - , waters of hydration and hydrogen atoms omitted for clarity. Atoms as shown are labeled: U in yellow, O in red, N in blue, C in black, and Pt in purple. 9 38 TCPt anions at the eight vertices. In turn, these layers are bridged by hydroxyl units between uranyl units. The uranium sites are cis bridged within each respective cube and are found at the midpoint of each edge of the cube. The overall coordination environment of the U site is seven, which is best described as a pentagonal bipyramid. Three oxygens coordinate the U center. The ?-\O?R[\JHQGLVWDQFHV8?2DQG8?2DUHVLJQLILFDQWO\ shorter at 1.774(12) and 1.720(12) ?, forming a O?U?O angle of 179.1(5)?; this confirms the retention of the uranyl subunit. The third oxygen, a hydroxyl group, coordinates the uranium at a distance of 2.310(6) ?. The four U-N bonds range from 2.482(12) to 2.531(14) ?. The packing of U3 in the structure does not result in quasi one dimensional chains as seen in Th1 and Th2. Instead, in the structure of U3, dimeric Pt?Pt interactions are observed at 3.2214(15) ?. These interactions are found between the layers of cube vertices giving the spacing between layers. The Pt?Pt distances are shorter in complex U3 as compared to complexes Th1 and Th2, and the expected emission should be blue shifted relative to these; however, the lack of emission from U3, as observed in the emission spectra (Chapter 3), may be caused by the missing quasi one dimensional Pt-Pt chains. While the nature of the energy sink is not definitely known at this time, we believe that the source is most likely due to its open-framework nature. Within the channels of the structure there is a large amount of thermal motion of the potassium and nitrate ions as well as the hydrate water molecules. This is seen in the large thermal parameters found in the anisotropic refinement of these nitrate ions and water molecules. These large thermal parameters could be explained in at least two different ways. First, it would be probable that within this metal framework of U3 that the charge balance nitrate 39 ions and waters of hydration are weakly structurally ordered. This weak ordering allows the atom positions of the nitrate and water molecules to ?drift? from one unit cell compared to another. This positional disorder would lead to elongated thermal parameters. Second, it is plausible that an energy transfer mechanism exists in the compound that results in the lack of visible emission of both the uranyl and TCPt portions, but rather results in non-radiative vibrational relaxation of the channel components. Further studies, such as low-temperature emission, are needed to support this hypothesis. 40 {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4) The structure of U4 has two dimensional, bonding interactions, contains U(IV) as the actinide metal cation, and consists of [U(H 2 O) 5 (O)(Pt(CN) 4 )] units. Three tetracyanoplatinate anions and five water molecules coordinate the U(IV) metal center. One additional oxygen bridges two uranium sites to complete the coordination sphere as shown in Figure 15. The U(1)-O(1) bond distance at Figure 15 Projection of {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O with lattice vectors shown. Hydration water molecules and hydrogens have been removed for clarity. 7 41 2.0706(7) ? and the U-O-U bond angle of 180? corresponds well with another U-O oxo -U bridged species. 17 The overall coordination environment of the U(IV) site is nine, and this is best described geometrically as a tricapped trigonal prism. There are two distinct crystallographic tetracyanoplatinate anions in this structure. The structure is extended in two dimensions by the tetracyanoplatinate anions containing Pt1, which are tridentate and bridge three U sites, and the oxo bridge which links together two U sites as shown in Figure 16. The second tetracyanoplatinate anion containing Pt2 does not coordinate uranium, but is present for charge balance and is involved in the formation of the pseudo one-dimensional stacks. Each uranium center is coordinated by three tetracyanoplatinate anions and in turn, each tridentate tetracyanoplatinate anion coordinates three U(IV) centers. An oxo bridge spans the U(IV) centers on the ladder structural features, thus forming the second dimension of the sheet. This forms a series of parallel ridges and furrows in conjunction with a macrostructure like a corrugated sheet. This structure does contain pseudo one- dimensional tetracyanoplatinate chains, as shown in Figure 16, which is common with square planar cyanometallate complexes. In the pseudo one-dimensional chains, there are two crystallographically independent Pt ? Pt distances, 3.266(1) and 3.493(1) ?. These chains are described in the earlier literature as linear and non-equidistant with Pt 42 atoms forming a x-y-y-x type structure. In this structure, x = a free Pt(CN) 4 2- anion and y = a complexed Pt(CN) 4 2- anion. 19 This type of chain structure is also described previously as linear non-equidistant, and it is often associated with partially oxidized systems. 19 The coordinating tetracyanoplatinate anions coordinate the uranium centers through three different U-1A&E ond angles 172.3(15), 165.2(12), and 155.3(12)?. The U-OH 2 bonds range from 2.456(1) to 2.514(1) ?. The U-O oxo bond is 2.0706(7) ? and the three U-N bonds range from 2.543(1) to 2.565(1) ?. Figure 16 Packing diagram of (U4) showing the 2-D structural motif and the one- dimensional linear nonequidistant Pt ... Pt chains along the c axis. 7 43 {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O (Th5) The key feature of the structure of Th5 is a series of one-dimensional chains of {Th 2 (OH) 2 (H 2 O)(Pd(CN) 4 ) 3 }. There is one crystallographically independent Th 4+ center with a coordination number of nine, and it is best described geometrically as a tricapped trigonal prism. Three monodentate tetracyanopalladate anions and six oxygens coordinate the Th 4+ metal center. Five of the coordinating oxygens are from water molecules, and the other two are from bridging hydroxides. Two hydroxide ions link the two Th 4+ sites together, and do not form bonds of equal length. The inversion symmetry is shown in two unique Th-OH bond distances of 2.337(3) and 2.371(3) ?. Two Th 4+ ions sit Figure 17 Projection of {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O (Th5) showing the pseudo-one dimensional Pd ? Pd interactions, along the b axis, with the unit cell superimposed. Thorium atoms are labeled in green, oxygen atoms in red, nitrogen atoms in blue and palladium atoms in metallic blue. 7 44 3.9858(4) ? apart from each other, which is a shorter distance than the sum of the Van der Waals radii. The tetracyanopalladate anion bound to the Th 4+ site extends the chain by binding to another asymmetric unit in a cis fashion. The pseudo one-dimensional Pd ? Pd chains are present and can be visualized in Figure 17. Again, chains like these are described in the earlier literature as linear and non-equidistant. The two crystallographically independent Pd ? Pd distances are found at 3.2512(5) and 3.4960(9) ?. At first glance, the structure of Th2 and Th5 appear very similar as both are described as one-dimensional. 9 Upon closer observation the structure of Th2 can be described as a polymeric structure consisting of [-TCPt-Th-(OH) 2 -Th-] +4 monomers. Inspection of Th5 reveals that the polymeric structure is composed of [-(OH)-Th- (TCPd) 2 -Th-(OH)-] +2 monomers and is not isostructural with Th2. 45 {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} (U6) The structure of {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} (U6) has one-dimensional bonding interactions and consists of extended chains made up of {UO 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} units. There is one crystallographically independent UO 2 2+ site. It has a coordination number of seven and is best described as a pentagonal bipyramid. Each UO 2 2+ site is coordinated by six oxygen atoms and one tetracyanonickelate anion. Two oxygens are from the uranyl oxygen atoms and are found at distances of 1.776(4) and 1.779(4) ? from the metal ion. The second pair of coordinating oxygens are from the DMSO solvent molecule, and these are found at 2.380(4) and 2.391(4) ?. The third pair of coordinating oxygens are from the bridging hydroxides and have bond distances of 2.321(4) and 2.334(4) ?. One nitrogen from a cis bridging tetracyanonickelate anion also coordinates the UO 2 2+ site. The structure is extended by two structural features along the one- Figure 18 Extension of the one-dimensional structure of {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} (U6) with the unit cell superimposed. Uranium atoms are labeled in green, oxygen atoms in red, nitrogen atoms in blue and platinum atoms in blue metal. Hydrogen atoms are not shown for clarity. 7 46 dimensional chain; two bridging hydroxides connect uranyl sites and the cis bridging tetracyanonickelate anion connects these uranyl sites extending the chain indefinitely. As compared to Th2 and Th5 only a single TCNi unit bonds each UO 2 2+ center. The polymeric structure of U6 is clearly seen in Figure 18 consisting of [-(OH)-UO 2 -TCNi- UO 2 -(OH)-] monomers. The monomer of U6 resembles the monomer of Th5. In contrast, 3d metallophilicity is not observed, because the one-dimensional chains do not pack in such a way that Ni ? Ni interactions are observed. The central reason for this is the small, hard 3d Ni 2+ ions do not readily allow for metallophilic interactions. In addition, the inclusion of DMSO prohibits the stacking of TCNi, while by comparison, in Th5, the inclusion of H 2 O allows for the TCPd anions to form the pseudo one-dimensional chains. 47 [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7) The structure of [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7) is ionic in nature. The structure is formed by anions of [Pt(CN) 4 ] 2- and cations of [Th(C 2 H 6 SO) 8 ] 4+ . The Th 4+ site is coordinated in a bicapped trigonal prismatic fashion by eight monodentate DMSO molecules. The structure is completed by two uncoordinated tetracyanoplatinate anions and four H 2 O molecules. As shown in Figure 19, columns of tetracyanoplatinate ions do form but the Pt spacing between tetracyanoplatinate anions are found to be 8.696 ?, too long to be considered pseudo one dimensional Pt chains. Figure 19 Projection of the ionic structure of [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7). Thorium atoms are labeled in green, oxygen atoms in red, nitrogen atoms in blue and platinum atoms in blue metal. Hydrogen atoms are not shown for clarity. 8 48 [Th(C 2 H 6 SO)][Fe(CN) 6 ]?NO 3 (Th8) The structure of [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] . NO 3 (Th8) is molecular in nature. It is composed of a unit of [Fe(CN) 6 ] -3 and a unit of [Th(C 2 H 6 SO) 8 ] +4 to form the [(Th(C 2 H 6 SO) 8 )(Fe(CN) 6 ] + cation. The structure is charge balanced by the presence of a nitrate anion which is not shown in figure 20. The Th 4+ site is coordinated in a tricapped trigonal prismatic fashion by one nitrogen from the hexacyanoferrate anion and eight monodentate DMSO molecules. Because the hexacyanoferrate molecular geometry is octahedral and not square planar it does not allow the formation of Fe ? Fe pseudo one dimensional chains as in other compounds in this class. As shown in Figure 20, a Figure 20 Projection of the structure of [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 (Th8). Thorium atoms are labeled in green, oxygen atoms in red, nitrogen atoms in blue and iron atoms in blue metal. Hydrogen atoms and nitrate anions are not shown for clarity. 8 49 nitrogen from the hexacyanoferrate ion covalently binds the thorium center with a bond length of 2.674 ? which is probably better described as a dative interaction. 39,41 50 Table 2 Formula Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O Th1 Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O Th2 K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O U3 Formula mass 1136.65 1665.85 2517.15 Color Yellow Green Yellow Green Yellow Crystal system Orthorhombic Monoclinic Tetragonal Space group Pbca C2/c P4/mbm a (?) 13.2464(6) 16.4915(4) 22.1073(2) b (?) 20.5599(10) 12.1941(4) 22.1073(2) c (?) 22.4536(11 19.5380(5) 12.6202(2) . ? 90 90 90  ? 90 114.016(4) 90  ? 90 90 90 V (? 3 ) 6115.1(5) 3588.9(2) 6167.9(1) Z 8 4 4 T (K) 193 (2) 295 (2) 290 (2)  c 0.71073 0.71073 0.71073  PP -1 ) 14.053 19.989 19.75 Reflections collected 59819 32269 26733 Unique reflections 7574 5166 3423 Rint 0.0737 0.0281 0.0564 R 1 >,!1 , @ 0.0301 0.0141 0.0522 wR 2 (all data) 0.0781 0.0244 0.01562 51 Table 3 Formula {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O U4 {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O Th5 {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} U6 Formula mass 1613.57 1415.52 2094.72 Color Emerald green Colorless Yellow Crystal system Triclinic Triclinic Monoclinic Space group P? P? C2/c a (?) 9.716 (4) 9.6141 (6) 21.5224(11) b (?) 9.823 (4) 9.9479 (6) 10.2531(5) c (?) 9.926 (4) 11.1360 (7) 13.3170(6) . ? 74.191 (7) 73.7480 (10) 90  ? 70.734 (7) 78.0950 (10) 111.9430(10)  ? 67.242 (7) 68.6530 (10) 90 V (? 3 ) 813.2 (6) 945.82 (10) 2725.8(2) Z 1 1 2 T (K) 183 (2) 183 (2) 183 (2)  c 0.71073 0.71073 0.71073  PP -1 ) 22.857 9.315 2.552 Reflections collected 7998 9619 10040 Unique reflections 3940 4604 3358 Rint 0.0582 0.0270 0.0292 R 1 >,!1 , @ 0.0669 0.0282 0.0298 wR 2 (all data) 0.1681 0.0715 0.0746 52 Table 4 Formula [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O Th7 [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 Th8 Formula mass 3066.60 1131.13 Color colorless colorless Crystal system Triclinic Monoclinic Space group P? P2 1 n a (?) 12.4199(6) 11.9796(9) b (?) 20.3265(10) 17.7389(13) c (?) 21.1132(10) 20.0389(15) . ? 102.080(1) 90  ? 98.2710(1) 90.117(2)  ? 96.694(01) 90 V (? 3 ) 5098.25(4) 4258.4(6) Z 4 4 T (K) 183 (2) 183 (2)  c 0.71073 0.71073  PP -1 ) 8.803 4.276 Reflections collected 25422 10600 Unique reflections 15375 8144 Rint 0.0579 0.0690 R 1 >,!1 , @ 0.0585 0.0840 wR 2 (all data) 0.1402 0.2164 53 Crystallographic Overview A brief review of the structural characteristics of these complexes is presented here in an attempt to aid in the discussion of all eight compounds (Th1, Th2, U3, U4, Th5, U6, Th7, and Th8) in the following chapters. Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) is composed of monomers, [Th(H 2 O) 7 (Pt(CN) 4 ) 2 ]. The Th 4+ metal center is bound by two monodentate tetracyanoplatinate anions. These monomers are not covalently bonded to another monomer, subsequently, the structural motif is best described as zero- dimensional. The formation of pseudo one-dimensional Pt ? Pt chains is observed from the stacking of the monomers. There are two Pt ? Pt R values found at 3.3712(2) and 3.3515(2) ?. Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) is composed of [Th 2 (H 2 O) 10 (OH) 2 (Pt(CN) 4 ) 3 ] chains, and is best described as one-dimensional. Each Th 4+ metal center is bound by two tetracyanoplatinate anions via two different modes of coordination, mono- and bidentate. The bidentate tetracyanoplatinate anion covalently extends the global structure in chains along one dimension. These chains pack in a way that formation of pseudo one-dimensional Pt ? Pt chains is observed. The Pt atoms in the pseudo one-dimensional chains are spaced equidistant at 3.272(2) ?. The three- dimensional structure of (U3) is composed of [UO 2 (OH)(Pt(CN) 4 ) 4 ] units. Each UO 2 2+ is bound by four tetradentate tetracyanoplatinate anions. The tetradentate tetracyanoplatinate anions extend the global structure in all three dimensions. The packing of this structure only allows the formation of Pt ? Pt dimers, found at 3.221(1) ?. 9 The two dimensional structure of {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4) is composed of [U(H 2 O) 5 (O)(Pt(CN) 4 )] units. The structure contains two crystallographically independent types of tetracyanometallate anions: one form binds three U IV centers and 54 the other form is incorporated into the structure for charge balance. Pt ? Pt interactions are found in this structure at 3.266(1) and 3.493(1) ?. The one dimensional structure of {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O (Th5) is composed of one-dimensional chains of {Th 2 (OH) 2 (H 2 O)(Pd(CN) 4 ) 3 }. These one dimensional chains line up so that the tetracyanopalladate ions form Pd ? Pd interactions found at 3.2512(5) and 3.4960(9) ?. The one dimensional structure of {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} (U6) is composed {UO 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} units. The structure is extended by two structural features along the one-dimensional chain; two bridging hydroxides connect uranyl sites and the cis bridging tetracyanonickelate anion connects these uranyl sites extending the chain indefinitely. The ionic structure of [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O (Th7) is zero dimensional and the simplest and possible least interesting in regards to the structural properties of all eight of these compounds. A thorium center is coordinated by eight monodentate DMSO molecules bound through the oxygen atom and the tetrapositive charge on the thorium atom is charge balanced by two tetracyanoplatinate anions. Chemically it is interesting to note that the DMSO molecules must have a higher affinity to the thorium center than the cyanide group from the tetracyanoplatinate. The ionic structure of [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ]?NO 3 (Th8) is zero dimensional in nature and composed of the simple hexacyanoferrate bound via one cyanide group to the hepta DMSO coordinated thorium metal with a nitrate ion included for charge balance. In summary, eight cyano bridged 5d-5f complexes Th1, Th2, U3, U4, Th5, U6, Th7, and Th8 have been synthesized. These complexes represent the first d 8 metal cyanides coordinated to actinide metals. The thorough structure elucidation and analysis starts to establish An-N-C bonding parameters. Complexes Th1 and Th2 contain long 55 range Pt-Pt interactions manifested in the quasi one dimensional chains, while complex U3 lacks this long range order. Incorporation of the solvent DMSO into the structures negatively impacts the formation of the square planar d 8 metal interactions. The synthesis of Th1, Th2, and Th5 provides a readily available way to access the Th-N bond without having to prepare the thorium starting material as the halide salt, or as an organometallic starting material Cp, or Cp*. 39-43 7KH FRPELQHG SUHSDUDWLRQ VLPSOLFLW\ 7K?1 ERQG accessibility at bench top conditions, ambient atmospheric conditions, and in the presence of H 2 O is unique in the field of actinide chemistry. 56 References Cited (1) Nuclear Technology Review 2010, International Atomic Energy Agency, 2010. (2) Albright, D.; Berkhout, F.; Walker, W. Plutonium and Highly Enriched Uranium 1996: World Inventories, Capabilities, and Policies; Stockholm International Peace Research Institute: Oxford University Press: New York, 1997. (3) Gorden, A. E.; Xu, J.; Raymond, K. N.; Durbin, P. Chem. Rev. 2003, 103, 4207. (4) Nuclear Energy Advisory Committee Nuclear Energy: Policies and Technology for the 21st Century, 2008. (5) United States Energy Administration Annual Energy Review 2010, U. S. Department of Energy, 2011 (6) MIT Nuclear Fuel Cycle Study Advisory Committee The Future of the Nuclear Fuel Cycle: An Interdisciplinary Study, Massachussetts Institute of Technology (MIT), 2011. (7) Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. Inorg. Chem. 2013, 52, 4880. (8) Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. J. Radioanal. Nucl. Chem. 2013, 296, 453. (9) Maynard, B. A.; Sykora, R. E.; Mague, J. T.; Gorden, A. E. Chem. Commun. (Camb) 2010, 46, 4944. (10) Forty Years of Uranium Resources, Production and Demand in Perspective "The Red Bood Retrospective.", Organisation for Economic Co-operatioin and Development Nuclear Energy Agency, 2006. (11) Britt, P.; Forsberg, C.; Herring, S. Technology and Applied R&D Needs for Nuclear Fuel Resources, 2010. (12) Cantat, T.; Graves, C. R.; Scott, B. L.; Kiplinger, J. L. Angew. Chem., Int. Ed. 2009, 48, 3681. (13) DeVore, M. A.; Gorden, A. E. V. Polyhedron 2012, 42, 271. (14) Melfi, P. J.; Kim, S. K.; Lee, J. T.; Bolze, F.; Seidel, D.; Lynch, V. M.; Veauthier, J. M.; Gaunt, A. J.; Neu, M. P.; Ou, Z.; Kadish, K. M.; Fukuzumi, S.; Ohkubo, K.; Sessler, J. L. Inorg. Chem. (Washington, DC, U. S.) 2007, 46, 5143. 57 (15) Pasquale, S.; Sattin, S.; Escudero-Adan, E. C.; Martinez-Belmonte, M.; de, M. J. Nat. Commun. 2012, 3, 1793/1. (16) Schnaars, D. D.; Batista, E. R.; Gaunt, A. J.; Hayton, T. W.; May, I.; Reilly, S. D.; Scott, B. L.; Wu, G. Chem Commun (Camb) 2011, 47, 7647. (17) Daly, S. R.; Ephritikhine, M.; Girolami, G. S. Polyhedron 2012, 33, 41. (18) Monreal, M. J.; Thomson, R. K.; Cantat, T.; Travia, N. E.; Scott, B. L.; Kiplinger, J. L. Organometallics 2011, 30, 2031. (19) Gliemann, G.; Yersin, H. Struct. Bond. 1985, 62, 87. (20) Di, N. V.; Negro, E.; Vezzu, K.; Toniolo, L.; Pace, G. Electrochim. Acta 2011, 57, 257. (21) Ding, E.; Sturgeon, M. R.; Rath, A.; Chen, X.; Keane, M. A.; Shore, S. G. Inorg. Chem. (Washington, DC, U. S.) 2009, 48, 325. (22) Cich, M. J.; Hill, I. M.; Lackner, A. D.; Martinez, R. J.; Ruthenburg, T. C.; Takeshita, Y.; Young, A. J.; Drew, S. M.; Buss, C. E.; Mann, K. R. Sens. Actuators, B 2010, B149, 199. (23) Perrier, M.; Long, J.; Paz, F. A. A.; Guari, Y.; Larionova, J. Inorg. Chem. (Washington, DC, U. S.) 2012, 51, 6425. (24) Dumont, M. F.; Knowles, E. S.; Guiet, A.; Pajerowski, D. M.; Gomez, A.; Kycia, S. W.; Meisel, M. W.; Talham, D. R. Inorg. Chem. (Washington, DC, U. S.) 2011, 50, 4295. (25) Le, B. R.; Tsunobuchi, Y.; Mathoniere, C.; Tokoro, H.; Ohkoshi, S.-i.; Ould-Moussa, N.; Molnar, G.; Bousseksou, A.; Letard, J.-F. Inorg. Chem. (Washington, DC, U. S.) 2012, 51, 2852. (26) Mizuno, Y.; Okubo, M.; Kagesawa, K.; Asakura, D.; Kudo, T.; Zhou, H.; Oh-ishi, K.; Okazawa, A.; Kojima, N. Inorg. Chem. (Washington, DC, U. S.), Ahead of Print. (27) Loosli, A.; Wermuth, M.; Gudel, H. U.; Capelli, S.; Hauser, J.; Burgi, H. B. Inorg. Chem. 2000, 39, 2289. (28) Du, B.; Meyers, E. A.; Shore, S. G. Inorg. Chem. 2001, 40, 4353. (29) Maynard, B. A.; Kalachnikova, K.; Whitehead, K.; Assefa, Z.; Sykora, R. E. Inorg. Chem. (Washington, DC, U. S.) 2008, 47, 1895. (30) Maynard, B. A.; Sykora, R. E. Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, E64, m138. 58 (31) Maynadie, J.; Berthet, J.-C.; Thuery, P.; Ephritikhine, M. Organometallics 2007, 26, 2623. (32) Zhu, X.; Wong, W.-K.; Guo, J.; Wong, W.-Y.; Zhang, J.-P. Eur. J. Inorg. Chem. 2008, 3515. (33) Rinehart, J. D.; Harris, T. D.; Kozimor, S. A.; Bartlett, B. M.; Long, J. R. Inorg. Chem. 2009, 48, 3382. (34) Maynard, B. A.; Smith, P. A.; Ladner, L.; Jaleel, A.; Beedoe, N.; Crawford, C.; Assefa, Z.; Sykora, R. E. Inorg. Chem. (Washington, DC, U. S.) 2009, 48, 6425. (35) Maynard, B. A.; Smith, P. A.; Sykora, R. E. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65, m1132. (36) Zhang, L.-P.; Tanner, P. A.; Mak, T. C. W. Eur. J. Inorg. Chem. 2006, 1543. (37) Holzapfel, W.; Yersin, H.; Gliemann, G. Z. Kristallogr. 1981, 157, 47. (38) Wilson, R. E.; Skanthakumar, S.; Burns, P. C.; Soderholm, L. Angew. Chem., Int. Ed. 2007, 46, 8043. (39) Schelter, E. J.; Morris, D. E.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2007, 1029. (40) Pool, J. A.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2005, 2591. (41) Drew, M. G. B.; Willey, G. R. J. Chem. Soc., Dalton Trans. 1984, 727. (42) Cantat, T.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2010, 46, 919. (43) Jantunen, K. C.; Burns, C. J.; Castro-Rodriguez, I.; Da, R. R. E.; Golden, J. T.; Morris, D. E.; Scott, B. L.; Taw, F. L.; Kiplinger, J. L. Organometallics 2004, 23, 4682. 59 Chapter 3: Emission and Raman Spectroscopy of the Actinide Tetracyanometallates In chapter 2, the solid state structural elucidation of the actinide tetracyanoplatinate compounds was discussed in detail. Figures from chapter 2 have been included along with the spectra to help coordinate the features observed in the spectra with the structural features. As with any coordination compound, the structural features found from the single crystal x-ray diffraction experiment dictate what can be observed via other solid state experimental methods (i.e. photoluminescence and Raman spectroscopy). Chapter 3 will focus on these two experimentation methods with an emphasis of pointing out why the observations can be made when considering the structural features. 60 Excitation and Emission CRAIC Microspectrophotometer As shown in Figure 21 the single crystal samples of Th1 are luminescent when excited with ultraviolet radiation. This was first observed on the bench top using a standard ultraviolet (UV) lamp (425 nm). The CRAIC microspectrophotometer now allows for a single crystal sample to be used for fluorescence and UV experiments. A single crystal sample can be mounted on a goniometer head to undergo a structural analysis via X-ray diffraction, with the same mounted crystal later placed on a sample slide for observation under the microspectrophotometer and then the Raman spectrophotometer. This experimental configuration allows for exact determination of Figure 21 Single crystal sample of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (TH1), on the left the sample is viewed under a magnification of x10. The same single crystal sample is viewed on the right under a magnification of x10 and 365 nm excitation with the CRAIC microspectrophotometer. 61 the structural features and one to one correspondence with the observed spectral features. Thermo NanoDrop Fluorimeter At first, the emission characterization was done on a Thermo NanoDrop Fluorimeter. The emission spectra of Th1 (Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O), Th2 (Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O), U3 (K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O) and starting materials (K 2 [Pt(CN) 4 ]?3H 2 O,UO 2 (NO 3 ) 2 ?6H 2 O and Th(NO 3 ) 4 ?6H 2 O) are shown in Figure 22. The emission of U3 and the Th(NO 3 ) 4 ?6H 2 O are on the same order of magnitude as the background. The UO 2 (NO 3 ) 2 ?6H 2 O emission spectrum is characteristic of that salt. 1 The emission of the K 2 [Pt(CN) 4 ] ?3H 2 O starting material shows a broad peak centered at 440 nm; 2 however, both Th1 and Th2 fluoresce further into the visible region. Both thorium compounds have broad-band emission, red shifted by about 40 nm for Th1 0 50000 100000 150000 200000 250000 411 461 511 561 611 661 Wavelength (nm) R el ati v e F l u o r es cen ce U n i ts (R F U ) UO2(NO3)2.6H2O Th(NO3)4.6H2O K2[Pt(CN)4].3H2O Th1 Th2 U3 Figure 22 Emission spectra of starting materials, Th1, Th2 and U3 excited at 400 nm. The emission of U3 and thorium nitrate are so weak as to be at background levels, as seen by the inset in the upper right hand corner which is presented with a y-axis magnification of x2000. 62 and 90 nm for Th2, relative to K 2 [Pt(CN) 4 ]?3H 2 O. Since Th 4+ is a known non-emitting ion, we can assign the broad band emission from Th1 and Th2 as originating from the TCPt portions of the structures. 3 The dominant electronic form of thorium is the tetrapositive Th 4+ species which contains a 5f 0 configuration. 4 All of the electrons are spin paired in this electronic state and emission is not expected. The broad emission features in both Th1 and Th2 are very unusual for a Th 4+ complex and can be assigned to a charge transfer state within the tetracyanoplatinate ion since the Th 4+ ion is non- fluorescent. On the other hand, the complete lack of observed emission in U3 is rather intriguing since both of the starting materials, K 2 [Pt(CN) 4 ]?3H 2 O and UO 2 (NO 3 ) 2 ?6H 2 O, have strong emission when excited at 400 nm. Photon Technology International spectrometer The photoluminescence spectra were collected using a Photon Technology International spectrometer (model QM-7/SE). The system uses a high intensity xenon source for excitation. Selection of excitation and emission wavelengths are conducted by means of computer controlled, autocalibrated ?QuadraScopic? monochromators and are equipped with aberration corrected emission and excitation optics. Signal detection is accomplished with a photomultiplier tube detector (Hamamatsu model 928) that can work either in analog or digital (photon counting) modes. The instrument operation, data collection, and handling were all controlled using the FeliX32 fluorescence spectroscopic package. UV-vis absorption data was acquired using a Craic Technologies 20/20 PV UV- visible microspectrophotometer. All of the spectroscopic experiments were conducted on neat crystalline samples held in sealed quartz capillary tubes at room temperature. 63 To try to further extend our characterization of these actinide tetracyanoplatinate compounds, photoluminescence measurements were performed to give insight into the excitation species. Th1 and Th2 have the most compelling absorption/emission properties. An example of the contrast upon excitation of the neat, solid samples with ambient or 365 nm radiation is shown in Figure 21. The excitation spectra of K 2 [Pt(CN) 4 ]?3H 2 O can be characterized by the large band at 385 nm which corresponds to a charge transfer state, on the TCPt anion, and the broadband emission feature at 425 nm is the relaxation of this excited charge transfer state. 5 Broad band excitation features are found in all three spectra; however, since it is known that the dominant form of thorium will be the Th 4+ species, and thus, all electrons will be spin paired in the electronic ground state, the excitation spectrum does not originate from the Th 4+ site. 6 This broad band excitation can be attributed to the charge transfer state on the [Pt(CN) 4 ] 2- 250 300 350 400 450 500 550 R e l at i ve F l u or e s c e n c e U n i t s Wavelength (nm) Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O Emission Excitation Figure 23 Excitation spectrum of Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O in blue was monitored at a wavelength of 487 nm and the emission spectrum in pink was excited at 370 nm. 64 anion, which is what would be expected from the tetracyanoplatinate class of compounds featuring the Pt ? Pt one-dimensional columns. Of note in a compound that contains a filled valence shell are the low energy features found at 400, 425 and 440 nm in the excitation spectrum of Th1 (Figure 23). It is likely that these features can be attributed to vibronic coupling as only one electronic transition is reported for Th 4+ in this energy range, the 6d to 7s transition around 432 nm, 6 which does not match with these observed bands. Figure 24 Excitation spectrum of Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O in blue was monitored at a wavelength of 480 nm and the emission spectrum in red was excited at 370 nm. A correlation has been described in previous works that the separation of the Pt sites in the pseudo one-dimensional chains directly corresponds to the emission wavelength. 7 It states that the shorter the distance, R, between the Pt ? Pt sites within the 250 300 350 400 450 500 550 R e l at i ve F l u or e s c e n c e U n i t s Wavelength (nm) Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O Excitation Emission 65 chain, the lower the energy emission. The Th1 and Th2 compounds appear to follow this trend. The shortest Pt ? Pt spacings in Th1 and Th2 are 3.3515(2) and 3.272(2) ? UHVSHFWLYHO\ZLWKWKH max of Th2 UHGVKLIWHGE\aQPDVFRPSDUHGWRWKH max of Th1; 8 however, since Th 4+ should not have excitation, and thus should not be emissive, the thorium sites of Th1 and Th2 seem to only function to adjust the Pt ? Pt distance in these compounds. While there is a difference between the excitation profiles of the starting material, K 2 [Pt(CN) 4 ]?3H 2 O, as compared to Th1 and Th2, the emission profiles can be characterized as the same and resultant of the relaxation of the charge transfer state. Spectral features are also observed in the emission spectra (Figure 25) of U4 at 435, 485, 544, 583, 611, and 707 nm. These features are weaker in intensity and sharper, as can be surmised with emission originating from the U(IV) site, 9,10 as opposed Figure 25 Emission spectra of the K + salts of the d 8 tetracyanometallates and the complexes U4, Th5, and U6. 66 to the charge transfer state on the TCPt anion that has broad intense emission features as seen in Figure 23, 24, and 25. Raman Spectroscopy The square planar tetracyanometallate anions are able to adopt several coordination modes (i.e. monodentate, trans- or cis-bridging, tri and even tetradentate K 2 [Ni(CN) 4 ] . xH 2 O K 2 [Pd(CN) 4 ] . xH 2 O K 2 [Pt(CN) 4 ] . 3H 2 O Figure 26 Raman spectra of the K + salts of the d 8 tetracyanometallates in the CN ? stretching region. 67 bridging) and uncoordinated tetracyanometallate anions can also be incorporated into the structure. For the simple potassium salts, A 1g and B 1g are the two CN vibrational modes expected in the cyanide stretching region between 2100 and 2300 cm -1 . The A 1g is more intense and has a larger Raman shift as compared to the B 1g . Our values correlate well with data reported as seen in Table 5. 11-13 The assignment of the observed Raman shifts in our compounds is made easier if the square planar cyanometallates are considered as maintaining D 4h symmetry in the solid state. In this report, we have chosen to focus on the cyanide region. Raman spectroscopy was performed using the 514 nm line (20 mW) from an air-cooled Argon ion laser (model 163-C42, Spectra-Physics Lasers, Inc.) as the excitation source. Raman spectra were collected and analyzed using a Renishaw inVia Raman microscope system. All of the spectroscopic experiments were conducted on neat crystalline samples held in sealed quartz capillary tubes at room temperature. Table 5 Vibrational modes of the d 8 cyanometallate K + salts given in cm -1 . Assignment K 2 [Ni(CN) 4 ]?H 2 O K 2 [Pd(CN) 4 ]?H 2 O K 2 [Pt(CN) 4 ]?3H 2 O v(CN)A 1g 2132 (2132) 13 2159 (2150) 12 2164 (2168) 11 v(CN)B 1g 2125 (2128) 13 2146 (2139) 12 2143 (2149) 11 68 Little has been reported previously about thorium compounds and identifiable features of Raman spectroscopy, and we wanted to further characterize these using the Raman features of these compounds. The compound Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) has two unique cyanide environments. One cyanide environment is only coordinated to the Pt center and the other cyanide environment is coordinated to both the platinum and thorium metal center. As compared to the starting material, the peak height ratio of the A 1g and B 1g is altered, and the Raman shifts are larger. The B 1g band blue shifts ~13 cm -1 while the A 1g band blue shifts ~20 cm -1 . Although the Th-N bonds in the Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O compound, (2.552(5) and 2.571(4) ?) are longer than other reported Th-N bonds, 14,15 the blue shift in the A 1g and B 1g bands of Figure 27 indicate electron density withdrawal from the N lone pair. 16,17 Th1 Th2 K 2 [Pt(CN) 4 ] . 3H 2 O Figure 27 Raman data of Th x [Pt(CN) 4 ] y compounds and the K 2 [Pt(CN) 4 ]?3H 2 O starting material. 69 In the next thorium cyanoplatinate compound, Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2), there are two cyanide environments. One cyanide environment is coordinated to only the platinum center, while the other center is linked to both the platinum center and thorium center. This second environment is located trans to another such environment. As compared to Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1), the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) Raman spectra have more features, and the features are blue shifted to a greater degree. The B 1g band appears at 2160 cm -1 , this peak blue shifts roughly ~17 cm -1 as compared to the starting material, K 2 [Pt(CN) 4 ]?3H 2 O. We believe the A 1g vibration has been blue shifted ~26 cm -1 in agreement with the notion that the Th 4+ withdraws electron density from the N lone pair. Three other spectral bands are seen at roughly 2145, 2173, and 2209 cm -1 respectively. Th5 K 2 [Pd(CN) 4 ] . xH 2 O Figure 28 Raman spectra of Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O and K 2 [Pd(CN) 4 ]?xH 2 O. 70 In the first Th[Pd(CN) 4 ] structure reported, Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O, like Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O, there are two cyanide environments. One cyanide environment is coordinated to only the palladium center, while the other environment is linked to both the palladium center and the thorium center. This second environment is located cis to another such environment. In good agreement with the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O compound a total of five spectral features are seen (Figure 28) with the same peak trends. The B 1g band appears at 2162 cm -1 , this peak blue shifts roughly ~16 cm -1 as compared to the K 2 [Pt(CN) 4 ] starting material. We believe the A 1g vibration has been blue shifted ~32 cm -1 , found at 2191 cm -1 , and this would be in agreement with the notion that the Th 4+ withdraws electron density from the N lone pair. Three other spectral bands are seen at roughly 2147, 2174, and 2210 cm -1 , respectively. U4 K 2 [Pt(CN) 4 ] . 3H 2 O Figure 29 Raman spectrum of {U 2 (H 2 O) 10 (O)][Pt(CN) 4 ] 3 }?4H 2 O. 71 In the first U(IV)[Pt(CN) 4 ] structure reported,({U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O) (U6) there are three cyanide environments. The first cyanide environment is coordinated to only the platinum atom, the second cyanide environment is coordinated to both the platinum atom and the uranium (IV) center and is trans to another identical environment, and the third cyanide environment is coordinated to both the platinum and the uranium (IV) center and is trans to the cyanide environment coordinated to only the platinum metal. DFT Analysis Eletronic structure calculations were perfomed, to give insight into the vibrational frequencies resulting from the An-NC-M bonding interactions in these actinide cyanometallate compounds, using the unrestricted B3LYP hybrid density functional theory (DFT) 18,19 in the Gaussian 09 code. 20 The Th and U were modeled with the Stuttgart relativistic effective core potential and basis set 21-23 with the C and H atoms modeled using a Pople style double-9 6-31++G* basis set with polarization function optimized for heavy atoms. 24,25 The proper f electron configurations, based on experimental results, were used for the appropriate ion. For calculations involving the Th 4+ and the UO 2 2+ ion this corresponds to a f 0 electron configuration. For calculations involving the U +4 ion a f 2 electron configuration was employed. Calculations were carried out using the spin-XQUHVWULFWHGIRUPDOLVPZLWK.VSLQVLQH[FHVVRIVSLQV7 he simplest, full unit was assembled using the crystallographic information files from the reported Th1, Th2, U3, and U4 compounds. 26,27 It is important to note that the CIF files for structure Th1, Th2, U3, and U4 were manipulated and the calculated structure is a pruned version of the CIF file. These pruned versions of the molecules were used to 72 simplify the gas phase calculations. For example the U4 structure contains a U(IV) center coordinated by 8 water molecules and a single nitrogen from a tetracyanoplatinate anion as compared to the solid state structure that is coordinated by 6 water molecules and 3 nitrogens from 3 tetracyanoplatinate anions. Using the lowest calculated energy from different multiplicities a geometry optimization was performed to alleviate any solid state crystallographic strain in the molecule. Table 6 Single point energy calculations performed using the unrestricted B3LYP functional in Gaussian09 revB.01. Energy given in Hartree-Fock units. Job Multiplicity E (HF) ?( +) Th1 1 -2688.102335 0.000000 Th1 3 -2688.044021 -0.000778712 Th1 5 -2687.945887 -4.979E-09 Th1 7 -2687.629621 0.000307 Th1 9 -2757.039314 -2.24973E-06 U(Th1) 1 -2757.262479 -4.00424E-05 U(Th1) 3 -2757.327569 -0.000074 U(Th1) 5 -2757.318271 -0.000030 U(Th1) 7 -2757.219955 -1.65928E-06 U1(Th1) 9 -2757.039314 -0.000002 Th2 1 -3586.11963 -2.32893E-06 Th2 3 -3585.775907 -2.8973E-06 Th2 5 -3585.726351 -3.22697E-06 73 Th2 7 -3585.581883 1.12344E-07 Th2 9 -3585.412239 -0.000004 U(Th2) 1 -3724.119042 -0.000216 U(Th2) 3 -3585.775907 -6.94523E-07 U(Th2) 5 -3585.726452 -0.000014 U(Th2) 7 -3585.581837 0.000002 U(Th2) 9 -3585.412239 -0.000003 U3 1 -1500.363653 -2.60991E-06 U3 3 -1500.332201 -0.000002 U3 5 -1500.211464 -4.00184E-06 U3 7 -1500.030710 -9.11421E-07 U3 9 -1499.797249 -0.000012 U4 1 -1578.415620 -0.000062 U4 3 -1578.495487 -0.000002 U4 5 -1578.490605 -0.000006 U4 7 -1578.334771 -0.000050 U4 9 -1578.132857 -0.000002 Th(U4) 1 -1509.244857 -3.9408E-08 Th(U4) 3 -1509.217155 -6.00242E-07 Th(U4) 5 -1509.073826 -9.28127E-06 Th(U4) 7 -1508.856842 -4.39347E-07 74 Th(U4) 9 -1508.639400 -0.000215098 Figure 30 Projections of the atom positions from jobs run in Gaussian. The crystallographic information files were used as a starting point for atom positions. Discussion Emission An earlier paper reports (Capelin 1970) the luminescent detection of metal ions including the limit of detection, 20 ppm, for the Th 4+ metal ion. 28 The mode of characterization is described as ultraviolet examination with the emission characterization results for the white Th 4+ precipitate given as green. The precipitate is formed under 75 basic conditions by the addition of NH 3 . The ThTCPt compounds that we reported formed greenish-yellow crystals, and when irradiated with UV light gave a green emission (Figure 21). We attempted to grow ThTCPt crystals at higher pH, but the formation of Th(OH) 4 prevented this. For these reasons, we do not believe that the compounds we reported and the compounds from this much earlier report are the same. 28 The lack of intense charge transfer emission in both the uranyl compound previously characterized, K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O (U3), 8 and the U(IV) compound reported here, {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4), is curious. The pseudo one-dimensional Pt ? Pt chains are not present in U3, only dimeric interactions are found at 3.2214(15) ?. Both the K 2 [Pt(CN) 4 ]?3H 2 O and UO 2 (NO 3 ) 2 ?6H 2 O starting materials emit in the visible range, and it is odd that the product of these two materials is not emissive. Because U3 lacks the long range Pt ? Pt interactions, the lack of intense charge transfer emission seen from U4 may be of more interest as it contains the pseudo one- dimension chains with R spacings of 3.266(1) and 3.493(1) ? Further, any electronic energy transfer quenching should be forbidden as the TCPt does not change its multiplicity upon going from the ground state to the lowest excited state. 29 The lack of emission in Th5 and U6 is expected. The Pd ? Pd pseudo one- dimensional structural feature is not linked to the same metal-to-ligand charge transfer visible emission as its 5d Pt ? Pt counterpart. The formation of pseudo one dimensional Ni ? Ni interactions in the covalently bound TCNi class of compounds does not appear previously in the literature. However these structural interactions do exist in the ionic compounds with longer Ni?Ni interactions found at 3.567(2), 3.804(1), and 3.733(1) for the strontium, rubidium, and sodium [Ni(CN) 4 ] 2- salts. 30 The inclusion of DMSO may 76 play a role in the lack of Ni???Ni interactions, but it is not solely responsible. The lack of these interactions is probably due to the smaller, harder nature of the 3d Ni atom as compared to the larger, softer nature of the corresponding 4d and 5d Pd and Pt atoms. Raman Spectroscopy Table 7 Few reports exist with Raman spectroscopy and structural data to accompany it involving TCNi interested in the mode of bridging of the TCNi anion. 31-35 Within these reports, only one structure is characterized as a cis or trans bridging structure 31 , and the rest involve the square planar TCNi that is either unbound or all nitrogens bind a metal and the D 4h symmetry is roughly preserved. In all of these reports, only a single A 1g and B 1g vibration are reported in the cyanide region. We report all the peaks present in the &1UHJLRQRIWKH5DPDQVSHFWUDDQGEHOLHYHWKH y correlate to the mode of binding of the d 8 tetracyanometallate, thus originating from the binding of the actinide metal. To our knowledge, there are no single crystal structural reports containing covalently bound metals to TCPd or TCPt with Raman data to accompany it, making comparing assignments with other work a moot point. This is not to say that structural elucidation of the tetracyanometallate ions, and their ionic complexes, have not been reported previously, or that Raman spectroscopy has not been performed in separate reports. 11-13 Compound B 1g A 1g Mode Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O 2146vw 2156w 2185s monodentate Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O 2141w 2160m 2173w 2189m 2209m bidentate K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O 2143s 2164s tetradentate {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O 2146w 2167m 2191s uncoordinated tridentate {Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 }?8H 2 O 2142w 2161m 2174w 2189s 2210m uncoordinated bidentate {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} 2138w 2161m bidentate 77 However, the blue shift of the Raman bands does correlate well with other cyanide bridged 4f and 5f and transition metal complexes. 16,17 At first glance, the different actinide metal ions (Th 4+ , U(IV), and UO 2 VI ) appear to affect the cyanide region of the Raman data in different ways. The UO 2 2+ has little to no effect on shifting the vibrational modes in the cyanide region. When a [Pt(CN) 4 ] 2- coordinates to a tetra positive uranium site, the cyanide region of the Raman spectrum displays a peak at 2192 cm -1 , roughly 28 cm -1 higher in energy than the A 1g vibration in the starting material. The largest difference occurs when a tetracyanometallate anion coordinates to a thorium. This is most likely a structural restriction, but this is hard to confirm, as an isostructural series has not as yet been characterized. In the three compounds containing U, as either UO 2 2+ or U 4+ , there are not any structural trends that correspond with the features seen in the Raman spectra. This makes the spectral features hard to elucidate. Upon closer inspection, it seems that it is the binding modes, (uncoordinated, mono- bi- tri- and tetradentate) in which the tetracyanometallate anions are incorporated, that are responsible for the spectrum in the cyanide region. A monodentate tetracyanometallate, found in Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O, gives rise to three peaks, the two typical A 1g and B 1g peaks are still observed, but a significant third vibration also appears at lower frequency. When the tetracyanometallate coordinates the tetra positve thorium metal in a bridging, cis or trans, fashion as in, Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O and {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O, five peaks are seen in the cyanide region of the spectrum. Again, the typical A 1g and B 1g vibrations are found, but three other vibrations are observed at lower frequency. The tridentate bridging species 78 {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O gives three vibrations in the cyanide stretching region, again the A 1g and B 1g vibrations similar to the potassium salt are found, but a third vibration is found at lower frequency. In the compounds containing Th 4+ , the similarity of the Raman features in the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O and Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O structures is remarkable. In the spectrum of each, there are five spectral features. Assigning the first two spectral features to the B 1g and A 1g vibrations, respectively, would indicate backbonding from the Th metal. Instead, the B 1g and A 1g vibrations are assigned to more blue shifted spectral features in accordance with a bound metal withdrawing electron density form the N lone pair. The same spectral features are not observed in the Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O compound (Th1). One possible explanation for this is the bridging features of the cyanometallate anion observed in the compounds. In both the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) and Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O (Th5) structures, the cyanometallates coordinate the Th 4+ centers in a bidentate bridging fashion DQG ILYH VSHFWUDO IHDWXUHV DUH REVHUYHG LQ WKH &1 UHJLRQ 7KLV LV LQ FRQWUDVW WR WKH Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) structure in which the coordinating cyanometallate only binds iQDPRQRGHQWDWHIDVKLRQDQGWKUHHVSHFWUDOIHDWXUHVDUHREVHUYHGLQWKH&1 region. The tetradentate species found in K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O shows only the A 1g and B 1g vibrations. Interesting is that the bridging cyanometallate species in {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} show a similar spectrum as K 2 [Ni(CN) 4 ]?xH 2 O, but the A 1g and B 1g vibrations are at lower frequency. The Q1 (UO 2 ) 2+ symmetric stretching vibration is observed at 826 cm -1 and correlates well with 79 previous reports. 36,37 A weakness in characterizing these compounds by Raman spectroscopy alone is if the solid state structure contains more than one type of tetracyanometallate binding. With Raman data alone in the cyanide region of the spectrum you could only classify the tetracyanometallate mode of binding as tetradentate, monodentate-tridentate, and bidentate. Computational Analysis In the tetracyanoplatinate free anion the A 1g vibration corresponds to all four cyanide groups stretching and compressing in phase. The B 1g corresponds to two trans cyanide groups stretching while the other two trans cyanide groups are compressing. Experimental data has shown that there are two stretches in the CN region that correspond to the A 1g (2164 cm -1 exp , 2225 cm -1 cal ) and B 1g (2143cm -1 exp 2202.05 cm -1 cal ) vibrational modes in the square planar tetracyanoplatinate molecule. The difference between the experimental and calculated A 1g and B 1g vibrational frequencies seem to correlate (A 1g -B 1gexp = 21cm -1 , and A 1g -B 1gcal = 23 cm ?1 ). When the symmetry of the free tetracyanoplatinate anion is disturbed by binding a 5f center, more spectral features are observed in the experimental data. This can be visualized if each individual cyanide bond has its own environment. As seen in Table 8 additional vibrational modes are calculated when the smallest whole unit is used. The smallest whole unit is different than the crystallographic asymentric unit as symmetry operations are not considered. Because the D 4h symmetry is broken with the binding of an actinide metal, confirmed by the structural elucidation in chapter 2, this computational data aligns with the observed 80 experimental data. Additional support is given by the calculation of the lone, uncoordinated tetracyanoplatinate anion giving only two vibrations. Table 8 Vibrational modes calculated by the unrestricted B3LYP functional. Frequency Raman Activity Frequency Raman Activity Frequency Raman Activity U4 2103.74 101759.0311 Th1 2177.27 1534.8014 U(Th1) 2151.37 53458.0379 2222.04 2599.8266 2191.58 426.6418 2164.68 420128.9835 2527.76 9165.9218 2206.36 37.671 2311.63 10164.5883 2585.19 13900.2591 2207.63 447.2925 2356.1 40649.9583 Th(U4) 2036.35 23747.7646 2216.27 1431.607 2387.14 7106.9728 2352.23 17668.2092 2224.88 939.9632 2455.58 6568.2785 2572.09 16816.6473 2244.67 1115.5023 2462.23 372429.9 2634.19 25849.0315 2245.95 2597.1117 Conclusions A thorough characterization of the actinide cyanometallates has been presented here. In general, the An[CM] class of compounds synthesized and structurally characterized during the course of research represents the first time these type of complexes with the 5f elements have been reported in the literature. 26,27 Solid state characterization illustrates the structural novelty of this class of compounds. The most outstanding example of this is the Th-NC bond found in Th1, Th2, Th5,and Th8 represent the total known Th-NC linkages in the Cambridge Crystallographic Database. 38 Also interesting are the oxygen (hydroxyl and oxo) bridging species observed in Th2, U4, Th5, and U6 are not observed in the analogous 4f, Ln[CM] literature. 39-42 81 Further experimental techniques were employed to investigate the electronics of these An[CN] compounds. Of note, only the thorium containing compounds (Th1 and Th2) gave observable emission in the visible region of the spectra. 27 Again, this is an interesting aspect of these compounds as the Th 4+ has a completely empty O electron shell, thus no electrons are able to be excited and subsequent emission should not be observed (CATE Vol. 1, pg 59). 6 It is important to note that this research does not make the claim that the emission from Th1 and Th2 originates from the thorium sites. Instead, the broad band in the excitation spectra of these compounds is attributed to the ligand to metal charge transfer band from the cyanide groups bound to the platinum atoms. 5 The packing structure of these compounds in the solid state leads to the observed differences in emission between Th1 and Th2. The observed Pt ? Pt distances in Th1 are 3.371 and 3.351 ?, and a single Pt ? Pt distance is observed in Th2 at 3.272 ?. The Pt ? Pt distances in Th1 and Th2 differ by roughly 0.010 ? and, correspondingly, WKH max of Th2 is red VKLIWHGE\aQPDVFRPSDUHGWRWKH max of Th1. Effectively, the thorium atoms are placeholders, they directly affect the Pt ? Pt spacings in these two compounds, which results in the difference of observed emission in the solid state. 8 While there is a difference between the excitation profiles of the starting material, K 2 [Pt(CN) 4 ]?3H 2 O, as compared to Th1 and Th2, the emission profiles can be characterized as the same feature and resultant of the relaxation of the charge transfer state. The lack of observable intense charge transfer bands in the uranyl, U3, containing compound and the U(IV), U4, containing compound is confounding at first. Upon looking at the solid state structural features of U3 it is apparent that only dimeric Pt ? Pt interactions found at 3.2214(15) ? are observed. Effectively, the lack of overlap from 82 ?infinite? d z 2 orbitals in the Pt?Pt chains quenches the emission from metal to ligand charge transfer bands seen in Th1, Th2, and other previously reported tetracyanoplatinate compounds. The lack of intense charge transfer emission seen from U4 may be of more interest as it contains the pseudo one-dimension chains with R spacings of 3.266(1) and 3.493(1) ?. Any electronic energy transfer quenching should be forbidden, because the TCPt does not change its multiplicity upon going from the ground state to the lowest excited state. 29 The lack of emission in Th5, U6, Th7, and Th8 is expected as the actinide metal centers have an empty O electronic shell. 6 The Pd ? Pd pseudo one- dimensional structural feature is not linked in the literature to the same metal-to-ligand charge transfer visible emission as its 5d Pt ? Pt counterpart. 43 When a covalent bond is formed between a cyanide group of a tetracyanonickelate and another metal the formation of pseudo one dimensional Ni ? Ni interactions in the TCNi class of compounds has not been observed previously in the literature. The inclusion of DMSO may play a role in the lack of Ni???Ni interactions in U6 and the lack of Pt?Pt interactions in Th7, but it is not solely responsible. The lack of these interactions is probably due to the smaller, harder nature of the 3d Ni atom as compared to the larger, softer nature of the corresponding 4d and 5d Pd and Pt atoms. The octahedral molecular structure of the hexacyanoferrate anion forbids packing interaction of Fe ? Fe atoms. Vibrational spectra of the actinide cyanometallates were observed with a confocal Raman Microscope. For the simple potassium tetracyanoplatinate salt, the A 1g and B 1g are the two CN vibrational modes expected in the cyanide stretching region between 2100 and 2300 cm -1 . The cyanide region of the spectrum provides the most information regarding the solid state structure of these compounds. Previous reports of other 83 cyanometallates 31-35 only reported two stretches in this region. In our spectra, we were able to observe multiple stretches in this cyanide region. It seems that it is the binding modes, (uncoordinated, mono- bi- tri- and tetradentate) in which the tetracyanometallate anion is incorporated, that are responsible for distinct changes in the spectrum in the cyanide region. A monodentate tetracyanometallate, found in Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O, gives rise to three peaks, the two typical A 1g and B 1g peaks are still observed, but a significant third vibration also appears at lower frequency. 26 When the tetracyanometallate coordinates the tetra positve thorium metal in a bridging, cis or trans, fashion as in, Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O and {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O, five peaks are seen in the cyanide region of the spectrum. Again, the typical A 1g and B 1g vibrations are found, but three other vibrations are observed at lower frequency. The tridentate bridging species {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O gives three vibrations in the cyanide stretching region, again the A 1g and B 1g vibrations similar to the potassium salt are found, but a third vibration is found at lower frequency. Of note in the compounds containing Th 4+ are the similarity of the Raman features in the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O and Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O structures. In the spectrum of each, there are five spectral features. Assigning the first two spectral features to the B 1g and A 1g vibrations, respectively, would indicate backbonding from the Th metal. Instead, the B 1g and A 1g vibrations are assigned to more blue shifted spectral features in accordance with a bound metal withdrawing electron density form the N lone pair. The same spectral features are not observed in the Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O compound (Th1). One possible explanation for this is the 84 bridging features of the cyanometallate anion observed in the compounds. In both the Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O (Th2) and Th 2 (OH) 2 (H 2 O) 10 [Pd(CN) 4 ] 3 ?8H 2 O (Th5) structures, the cyanometallates coordinate the Th 4+ centers in a bidentate bridging fashion DQG ILYH VSHFWUDO IHDWXUHV DUH REVHUYHG LQ WKH &1 UHJLRQ 7KLV LV LQ FRQWUDVW WR WKH Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O (Th1) structure in which the coordinating cyanometallate only binds in a monodentate fashion and three sSHFWUDOIHDWXUHVDUHREVHUYHGLQWKH&1 region. The tetradentate species found in K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O shows only the A 1g and B 1g vibrations. Interesting is that the bridging cyanometallate species in {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]} show a similar spectrum as K 2 [Ni(CN) 4 ]?xH 2 O, but the A 1g and B 1g vibrations are at lower frequency. The Q1 (UO 2 ) 2+ symmetric stretching vibration is observed at 826 cm -1 and correlates well with previous reports. 36,37 A weakness in characterizing these compounds by Raman spectroscopy alone is if the solid state structure contains more than one type of tetracyanometallate binding. With Raman data alone in the cyanide region of the spectrum, you could only classify the tetracyanometallate mode of binding as tetradentate-anionic, monodentate-tridentate, and bidentate. The computational analysis of the compounds was done using DFT methods with the unrestricted B3LYP hybrid functional. In the actinide cyanometallates, the interesting structural features that give rise to the observed electronic properties, arise from the long- range packing interactions of the Pt ? Pt interactions. This is unfortunate because defining enough heavy atoms in a calculation was computationally time consuming and not practically possible to be carried out during my time at Los Alamos National 85 Laboratory. What was able to be calculated were the Raman vibrations of the simplest actinide cyanometallates. These calculations involved the appropriate actinide unit, including the oxo bridged species, and the full metal cyanides coordinating these units along with the coordinated and uncoordinated solvent molecules. The coordinates of the atoms for these calculations were directly taken from the crystallographic information files of the appropriate compounds (Th1, Th2, U3, U4, Th5 U6). These computational analysis provided insight into the growth of vibrational bands in the Raman spectrum. Additional bands were seen in the calculated structures as compared to the experimental work. Each of these bands seen in the calculated vibrational spectra corresponds to a breaking of the idealized D 4h symmetry square planar geometry of the anions. It can be clearly seen in the crystallographic description that the symmetry is broken, however, neither earlier reports nor our experimental work were able to observe all of the bands predicted by the calculations. 86 References Cited (1) Pant, D. D.; Khandelwal, D. P.; Bist, H. D. Curr. Sci. 1959, 28, 483. (2) Baril-Robert, F.; Guo, Z.; Patterson, H. H. Chem. Phys. Lett. 2009, 471, 258. (3) Gliemann, G.; Yersin, H. Struct. Bond. 1985, 62, 87. (4) The Chemistry of the Actinide and Transuranic Elements; 3rd ed.; Morss, L.; Edelstein; Fuger, J.; Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, 2006. (5) Cowman, C. D.; Gray, H. B. Inorg. Chem. 1976, 15, 2823. (6) Morss, L.; Edelstein, N. M.; Fuger, J. The Chemistry of the Actinide and Transactinide Elements Springer, 2006; Vol. 1. (7) Loosli, A.; Wermuth, M.; Guedel, H.-U.; Capelli, S.; Hauser, J.; Buergi, H.-B. Inorg. Chem. 2000, 39, 2289. (8) Maynard, B. A.; Sykora, R. E.; Mague, J. T.; Gorden, A. E. Chem Commun (Camb) 2010, 46, 4944. (9) Simoni, E.; Hubert, S.; Genet, M. J. Phys. (Paris) 1988, 49, 1425. (10) Godbole, S. V.; Page, A. G.; Sangeeta; Sabharwal, S. C.; Gesland, J. Y.; Sastry, M. D. J. Lumin. 2001, 93, 213. (11) Benner, R. E.; Von, R. K. U.; Lee, K. C.; Owen, J. F.; Chang, R. K.; Laube, B. L. Chem. Phys. Lett. 1983, 96, 65. (12) Gans, P.; Gill, J. B.; Johnson, L. H. J. Chem. Soc. Dalton. 1993, 345. (13) McCullough, R. L.; Jones, L. H.; Crosby, G. A. Spectrochim. Acta 1960, 16, 929. (14) Pool, J. A.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2005, 2591. (15) Schelter, E. J.; Morris, D. E.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2007, 1029. (16) Assefa, Z.; Haire, R. G.; Sykora, R. E. J. Solid State Chem. 2008, 181, 382. (17) Assefa, Z.; Kalachnikova, K.; Haire, R. G.; Sykora, R. E. J. Solid State Chem. 2007, 180, 3121. (18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. 87 (19) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785. (20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O. A., A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. 2009. (21) Feller, D. J. Comput. Chem. 1996, 17, 1571. (22) Kuechle, W.; Dolg, M.; Stoll, H.; Preuss, H. Mol. Phys. 1991, 74, 1245. (23) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045. (24) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193. (25) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081. (26) Maynard, B. A.; Lynn, K. S.; Sykora, R. E.; Gorden, A. E. V. Inorg. Chem. 2013, 52, 4880. (27) Maynard, B. A.; Sykora, R. E.; Mague, J. T.; Gorden, A. E. V. Chem. Commun. (Cambridge, U. K.) 2010, 46, 4944. (28) Capelin, B. C.; Ingram, G. Talanta 1970, 17, 187. (29) Matsushi.R; Fujimori, H.; Sakuraba, S. J. Chem. Soc. Farad. T 1 1974, 70, 1702. (30) Fronczek, F. R.; Delord, T. J.; Watkins, S. F.; Gueorguieva, P.; Stanley, G. G.; Zizza, A. S.; Cornelius, J. B.; Mantz, Y. A.; Musselman, R. L. Inorg. Chem. 2003, 42, 7026. (31) Kuerkcueoglu, G. S.; Hoekelek, T.; Aksel, M.; Yesilel, O. Z.; Dal, H. J. Inorg. Organomet. Polym. Mater. 2011, 21, 602. 88 (32) Kurkcuoglu, G. S.; Yesilel, O. Z.; Kavlak, I.; Buyukgungor, O. Struct. Chem. 2008, 19, 879. (33) Agusti, G.; Cobo, S.; Gaspar, A. B.; Molnar, G.; Moussa, N. O.; Szilagyi, P. A.; Palfi, V.; Vieu, C.; Munoz, M. C.; Real, J. A.; Bousseksou, A. Chem. Mater. 2008, 20, 6721. (34) Lemus-Santana, A. A.; Rodriguez-Hernandez, J.; del, C. L. F.; Basterrechea, M.; Reguera, E. J. Solid State Chem. 2009, 182, 757. (35) Kurkcuoglu, G. S.; Yesilel, O. Z.; Cayli, I.; Buyukgungor, O. J. Mol. Struct. 2011, 994, 39. (36) Frost, R. L.; Cejka, J.; Weier, M. L.; Martens, W. J. Raman Spectrosc. 2006, 37, 538. (37) Frost, R. L.; Cejka, J.; Dickfos, M. J. J. Raman Spectrosc. 2009, 40, 38. (38) Cambridge Structural Database, Actinide Structure Search Pulished Online: 2012, (Accessed 04-13-2012). (39) Maynard, B. A.; Smith, P. A.; Ladner, L.; Jaleel, A.; Beedoe, N.; Crawford, C.; Assefa, Z.; Sykora, R. E. Inorg. Chem. 2009, 48, 6425. (40) Maynard, B. A.; Smith, P. A.; Sykora, R. E. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65, m1132. (41) Maynard, B. A.; Kalachnikova, K.; Whitehead, K.; Assefa, Z.; Sykora, R. E. Inorg. Chem. 2008, 47, 1895. (42) Maynard, B. A.; Sykora, R. E. Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, 64, m138. (43) Stojanovic, M.; Robinson, N. J.; Assefa, Z.; Sykora, R. E. Inorg. Chim. Acta 2011, 376, 414. 89 Chapter 4: Synergistic Thorium Mediated Synthesis of 2,3-diaminophenazine Scheme 1 Oxidation of ortho-phenylenediamine to 2,3-diaminophenazine. In the last decade, reports detailing metal mediated synthetic methods 1-4 or catalysis 5-8 incorporating the use of actinide metals have become more common. The focal point of this research is typically an actinide metal center saddled with sterically hindered ligands (such as cyclopentadiene, pentamethylcyclopentadienyl, 7,9 and N-ethylmethylamine). 7,9 Ultimately, the ligand and the metal are bound covalently, to some degree, and the electronics of these ligand-actinide complexes and their subsequent reactivity have not been clearly explained. 7,9 . The heterocycle 2,3-diaminophenazine is thought to play a role in iron- sequestration in some bacteria, and is of interest for the self-assembly of nanobelts and ?green? fluorescence sensitive assays. 10 2,3-diaminophenazine is produced via H 2 O 2 catalysis by horseradish peroxidase and fungal laccase enzymes; 11 non-biological synthetic pathways are known including catalysis by Cu(II) and Fe(III). 10,12,13 We wanted to observe the metal mediation of the unencumbered actinide cations. Here, we report the thorium nitrate, uranyl nitate, and oxygen mediated synthesis of 2,3- diaminophenazine. 90 Figure 31 Chart depicting the data from table 1. As seen in Figure 31, dioxygen alone oxidizes ortho-phenylenediamine to 2,3- diaminophenazine. Figure 31 also shows that incorporating the simple actinide nitrate salts [Th(NO 3 ) 4 and UO 2 (NO 3 ) 4 ] enhances the oxidation of ortho-diaminobenzene to 2,3- diaminophenazine in the presence of dioxygen. While this oxidation occurs at order of magnitudes slower than the simple FeCl 3 salt, 10 we wanted to investigate this oxidation reaction because simple, sterically unencumbered actinide centers are not unusual. The results of the actinide containing reactions are of interest. It is evident that the addition of actinide ions (Th +4 and UO 2 2+ ) to the aqueous solution provide metal mediation for the oxidative generation of 2,3-diaminophenazine. Increasing the Th 4+ concentration by a factor of 2 increases the formation of the 2,3-diaminophenazine product as seen in Figure 91 31 (Th and Th run 2). This data appears to indicate that including the actinide (Th +4 or UO 2 +2 ) ions in the presence of dioxygen examples a synergistic behavior, as the sum of the ?O 2 ? and degassed ?actinide salt? reactions are less than the isolated product in the ?Th +4 + O 2 ? reaction alone. To better understand the influence of dioxygen in the mechanism of the oxidation reaction, two reactions were set up to run seven days; the first reaction Schlenk flask was degassed to remove as much dioxygen as possible and contained Th(NO 3 ) 4 as the actinide source, the second reaction Schlenk flask was also degassed to remove as much dioxygen as possible and contained UO 2 (NO 3 ) 2 as the actinide source. After 7 days, no observable precipitate was present in the reaction flask containing Th +4 , and the solution appeared to be the same color as at time 0. No phenazine was detected.The reaction flask with UO 2 +2 as the actinide source was found to contain 0.0230 grams of isolable 2,3- diaminophenazine. This result appears to indicate that in the presence of oxygen, in the form of terminal oxo?s of the uranyl subunit, are needed for the oxidation to occur and that the oxo?s from the actinyl units may also be a useful oxygen source in this reaction pathway. 9 A third reaction was started to determine whether oxygen was important in the role of the reaction scheme. A Schlenk flask was set up with only a stir bar in an aqueous solution of ortho-phenylenediamine. Argon was bubbled through the solution for two hours, and then put through three cycles of freeze-pump-thaw in an effort to remove all possible traces of O 2 . Two reaction attempts have been made to rid the Schlenk flask of O 2 , in both instances a 25% yield of 2,3-diaminophenazine has been observed. If these results are found to remain accurate it would give evidence that any 92 oxygen donor will mediate the reaction as this reaction would require the oxygen from H 2 O to serve as the oxidant. Interestingly, as this reaction contained only H 2 O and ortho-phenylenediamine, a literature search was unable to find any information on the temperature induced oxidation of ortho-phenylenediamine in an inert atmosphere. Previous reports in the literature of phenazines prepared in this fashion feature metals that are able to go through one electron oxidations (Cu(II) 13 and Co(II) 14 ) and SURSRVHG PHFKDQLVPV KDYH LQYROYHG  -dioxygen with hydrogen peroxide evolution. This mechanism would be highly unlikely, for either the Th +4 or the UO 2 +2 ions, as both metal centers contain complete electronic shells K, L, M and N; also neither ion possess paired or unpaired electrons in the O shell. 15 Further observation of the data in the chart of Figure 31 may give some insight into how the reaction proceeds. If the data were examined then the trace of the Th +4 (exponential) as compared to the trace of the UO 2 +2 (stepwise) data appear to follow different paths. This may be rationalized if the reaction proceeds in two different pathways. 93 Single crystals of X-ray diffraction quality 2,3-diaminophenazine were grown directly from the reaction flasks. After a reaction had been heated, it was set aside undisturbed to cool for two days. While the structure of 2,3-diaminophenazine is known, this structure crystal structure (C 12 H 10 N 4 ) 2  7H 2 O differs from other known reports by the number of waters of hydration in the lattice as can be seen in figure 32. As would be H[SHFWHG? ? ?VWDFNLQJLQWHUDFWLRQVDUHIRXQGDWc$OVRLQWHUHVWLQJLQWKHFU\VWDO structure is the seven member ring formed by the hydrogen bonding of the terminal amine groups and a water of hydration. This may give some insight into how the mechanism of the reaction proceeds. Figure 32 Projection of the asymmetric unit of (C 12 H 10 N 4 ) 2 ?7H 2 O. 94 Conclusions Fundamentally, these observations engage the idea of using the depleted actinide reserve, especially depleted 238 U, as a source for new routes of metal mediation. In future research we plan to monitor these reactions using a UV-vis spectrometer to more precisely document the concentrations of both the ortho-phenylenediamine starting material and the 2,3-diaminophenazine product. We plan on investigating the electronic role of these actinide centers, UO 2 2+ and Th 4+ , and also if the Np 5+ and PuO 2 2+ can mediate this reaction. It would be very unlikely that these actinide ions go through one electron oxidations that have been proposed for other metal centers as this would lead to removal of a single electron from a filled shell. If these metal units go though one electron oxidations or reductions then a signal would be evident from the corresponding unpaired electron in an electron paramagnetic resonance experiment. It is tough to argue that incorporating actinide ions into reaction pathways can result in green chemistry following the principles established by Anastas and Warner. Yet, these reaction conditions do abide by several principles of green chemistry including: mild reaction conditions, safer solvents, and catalysis. Synthesis Typical Reaction: 0.0040 moles of ortho-phenylenediamine was heated at 80? C in a 100 ml round bottom flask charged with a stir bar and 100 ml of deionized H 2 2:KHQWKH - phenylenediamine dissolved the appropriate volume of a stock actinide starting material solution was added to the mixture to allow a 1:100 stoichiometric ratio. The reaction was 95 allowed to stir and heat at 80? C for the duration of the experiment. When the experiment time had lapsed; the solution was filtered, the solid was washed with hexanes, and dried in a vacuum oven. The dried material was then scraped from the filter paper and weighed. Mass spectrometry analysis was perfomed on the dried material and a mass of 211.0961 (M+1) was obtained. 96 Table 9 Experiments were run with Th(NO 3 ) 4 and UO 2 (NO 3 ) as the metal mediator. Ortho-phenylenediamine has been abbreviated OPD. 2,3-diaminophenazine has been abbreviated DAP. Temp Time OPD mmol Th(NO 3 ) 4 mmol UO 2 (NO 3 ) 2 mmol DAP mmol % yield DAP/Metal mmol ratio Th 80 24 3.997 0.03953 0.03223 1.613 101.1 80 50 4.005 0.03973 0.56730 28.33 100.8 80 71 4.002 0.03953 0.68057 34.01 101.2 80 93 4.003 0.03973 0.81754 40.85 100.8 80 122 4.005 0.03953 0.89242 44.57 101.3 80 142 3.991 0.04128 0.99763 49.99 96.68 80 166 4.003 0.04109 1.15261 57.59 97.43 80 24 8.597 0.08973 0.91137 21.20 95.82 80 48 8.580 0.09070 1.62085 37.78 94.60 80 72 8.591 0.09070 3.25687 75.81 94.72 80 96 8.495 0.08857 4.11991 96.99 95.91 80 120 8.550 0.09244 3.41517 79.88 92.49 80 144 8.537 0.08857 3.92986 92.06 96.39 Th Degassed 80 168 3.990 0.04070 Trace Amount 98.04 UO 2 80 25 3.949 0.03953 0.02844 1.440 99.90 80 43 3.949 0.03953 0.01137 0.5761 99.90 80 66 3.949 0.03953 0.29147 14.76 99.90 80 91 3.949 0.03953 0.31659 16.034 99.90 97 80 116 3.949 0.03953 0.28531 14.45 99.90 80 139 3.949 0.03953 0.94550 47.89 99.90 80 168 3.949 0.03953 0.92891 47.05 99.90 UO 2 Degassed 80 166 3.990 0.03952 0.10284 5.155 100.0 No Metal 80 24 3.987 0.02275 1.141 80 48 3.987 0.06019 3.019 80 71 3.987 0.08768 4.400 80 96 3.987 0.29573 14.83 80 119 3.987 0.22749 11.41 80 168 3.987 0.64218 32.21 Degassed 80 165 3.989 0.49905 25.02 98 References Cited (1) Schelter, E. J.; Morris, D. E.; Scott, B. L.; Kiplinger, J. L. Chem. Commun. (Cambridge, U. K.) 2007, 1029. (2) Weiss, C. J.; Marks, T. J. Dalton Trans. 2010, 39, 6576. (3) Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29, 6308. (4) Kiplinger, J. L.; Pool, J. A.; Schelter, E. J.; Thompson, J. D.; Scott, B. L.; Morris, D. E. Angew. Chem., Int. Ed. 2006, 45, 2036. (5) Hayes, C. E.; Platel, R. H.; Schafer, L. L.; Leznoff, D. B. Organometallics 2012, 31, 6732. (6) Wobser, S. D.; Marks, T. J. Organometallics 2013, 32, 2517. (7) Barnea, E.; Moradove, D.; Berthet, J.-C.; Ephritikhine, M.; Eisen, M. S. Organometallics 2006, 25, 320. (8) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 4253. (9) Andrea, T.; Barnea, E.; Eisen, M. S. J. Am. Chem. Soc. 2008, 130, 2454. (10) He, D.; Wu, Y.; Xu, B.-Q. Eur. Polym. J. 2007, 43, 3703. (11) Zhou, P.; Liu, H.; Chen, S.; Lucia, L.; Zhan, H.; Fu, S. Molbank 2011, M730. (12) Nemeth, S.; Simandi, L. I.; Argay, G.; Kalman, A. Inorg. Chim. Acta 1989, 166, 31. (13) Peng, S. M.; Liaw, D. S. Inorg. Chim. Acta 1986, 113, L11. (14) Rosso, N. D.; Szpoganicz, B.; Martell, A. E. Inorg. Chim. Acta 1999, 287, 193. (15) Morss, L.; Edelstein, N. M.; Fuger, J. The Chemistry of the Actinide and Transactinide Elements Springer, 2006; Vol. 1. ! 99! Chapter 5: Synthesis, Isolation, Structural Characterization and Emision Spectroscopy of Salzine Compounds One new 2-(1H-imidazo[4,5-b] phenazin-2-yl)phenol (salzine) derivative has been synthesized and the structural elucidation of three novel solid state structures are reported in this chapter. The salzine clas of molecules were reported first in 2011 with the several diferent substituents on the benzene ring (X= H, CH 3 O, CH 2 OH, Br, and Cl). 1 In this report only the synthesis via a Mn III mediated reaction and the solution phase UV and fluorescence spectra were reported. These salzine derivatives offer the common five atom ligand geometry (N-C-C-C-O) found in chapter 1 to bind actinide atoms and have solid state structural characterization. 2 ! Figure 3 Projection of the 2-quinoxalinol salen molecule.!!Atoms as shown are labeled: H in white, O in red, N in blue, and C in grey. ! 100! The 2-quinoxolinol salen ligand (salqu) was first synthesized in the Gorden group in 2007, and this report included the synthesis of the ligand and other related ligands. 3 This ligand system contains two (N-C-C-C-O) structural motifs per molecule. Yet, only structures with a bound uranyl ion have been reported with this 2-quinoxalinol salen ligand system. Until now, the free 2-quinoxalinol salen ligand has only been characterized in the solution phase. The quinoxolinol salen ligand features an (O-N-N- O) tetradentate binding pocket, as shown in Figure 33, which can be used in metal coordination. The O32-N3 distance is 2.596(4), the N3-N2 distance is 2.737(6), the N2- O31 distance is 2.568(4), and the O31-O32 distance is 4.037(5) ?. Several metals have been shown to coordinate to the ligand including; Cu(II), Mn(II), Co(II), Ni 2+ , and UO 2 2+ . 4 The 2-quinoxalinol salen-Cu(II) complexes have been shown to be active towards C-H activation and oxidation. The tetradentate O-N-N-O binding pocket of the 2-quinoxalinol salen ligand coordinates UO 2 +2 and several solid state structural reports were made of this solid state structure with diferent solvents incorporated into the crystal lattice. 5 It was thought that increasing the conjugation of the 2-quinoxalinol with two additional aromatic rings, formed from condensation with salicylaldehyde, would increase the emision properties of the ligand metal complexes. Exploring along these same lines, it was thought that increasing the conjugation of the backbone by starting with 2,3-diaminophenazine, then subsequent condensation with salicyaldehyde derivatives, would provide a larger aromatic scafold system with a O-N-N-O pocket for metal binding. ! 101! Synthesis of the benzeimidazole ligands C 19 H 12 N 4 O Compound Salzine was synthesized by disolving 0.05052 grams of 2,3-diaminophenazine in 20 ml of salicylaldehyde in a round bottom flask, charged with a stir bar. The reaction was heated at 80 ?C for 24 hours. The solution changes color during the heating phase from red to very dark red/black. The reaction solution was then filtered and washed with ethanol leaving the crude yelow product. C 27 H 28 N 4 O Compound t-butsalzine was synthesized by disolving 0.2371 grams of 2,3-diaminophenazine in 25 ml of pyridine in a round bottome flask, charged with a stir bar. The reaction was heated at 110 ?C for until al the 2,3-diaminophenazine had disolved, then 0.2630 grams of 3,4-ditertbutyl-2-hydroxy benzaldehyde was added. The reaction was heated at 110 ?C for 24 hours. The reaction solution was then filtered and washed with hexane, leaving the crude brown product. This brown product was pased thorugh a silica gel column during column chromatography using ethyl acetate as the mobile phase. The yelow fractions were collected and rotovapped to drynes to recover the pure product. [UO 2 (C 19 H 11 N 4 O)(DMSO)]?DMSO complex Usalzine was synthesized by disolving 0.0201 grams of salzine in 1 ml of DMSO in a test tube. This solution was then layered with a ethanol solution containing 0.0117 grams of UO 2 (NO 3 ) 2 . This test tube was set up for crystal growth in a slow difusion 20 dram vial with hexanes as the difusion solvent. After 4 days quality single crystals were observed and used for X-ray difraction. ! 102! X-ray Difraction ! Scheme 2 Shows the starting materials, 2,3-diaminophenazine and salicyaldehyde the product [2-(1H-imidazo[4,5-b]phenazin-2-yl)phenol], and a possible Schif base intermediate. Figure 34 of the salzine [2-(1H-imidazo[4,5-b]phenazin-2-yl)phenol] molecule shows that a diferent condensation result is observed for the 2,3-diaminophenazine starting material as opposed to the 2-quinoxolinol. As sen in the hyposthesized scheme 2, during a condensation event betwen the aldehyde and the amine functional group of 2- quinoxalinol, a single condensation occurs forming a Schif base. This leaves the second amine site on the 2-quinoxolinol available for another condensation with an aldehyde. Figure 33 shows that the reaction does not lead down the same pathway when 2,3- diaminophenazine provides the amine source. Instead, it is postulated, that the aldehyde and an amine go through a second condensation resulting in the evolution of H 2 O, then the lone pair on the remaining amine atacks the imine, forming an imidazole in this proces. Two representative structures were synthesized and isolated as shown in Figure 34 and Figure 35. As sen in Figure 35, the O1-N2 distance is found at 2.5866 (19) ?. In comparison to the two O-N distances of the 2-quinoxolinol salen compound found at 2.596(4) and 2.568(4) ? the distance is shorter betwen these two atoms. ! 103! ! Figure 34 Projection of the asymetric unit of the salzine molecule. Atoms as shown are labeled: H in white, O in red, N in blue, and C in grey. ! Figure 15 Projection of the asymetric unit of tbut-salzine. Atoms as shown are labeled: H in white, O in red, N in blue, and C in grey. As sen in Figure 35, the O1-N2 distance is found at 2.5569(18) ? in comparison to the two O-N distances of the 2-quinoxolinol salen compound found at 2.596(4) and 2.568(4) ? the distance is shorter betwen these two atoms. ! 104! ! Figure 36 Projection of the asymmetric unit of salzine-UO 2 . The non-coordinating solvent DMSO molecule has been removed for clarity. Atoms as shown are labeled: H in white, O in red, N in blue, C in grey, and sulfur in yelow. ! As sen in Figure 36, the O3-N1 distance is found at 2.767(9) ? in comparison to the O- N distance of the salzine ligand found at 2.5866(19) ?. Clearly, upon binding of this bidentate O-N binding site, the O-N distance expands to acommodate the metal. The uranium center is seven coordinate and shown to have a beautiful symmetrical pentagonal bipyramidal geometry. These seven sites are coordinated by six oxygen atoms and one nitrogen atom. Two terminal oxo atoms of the UO 2 +2 unit acount for two of the six oxygen atoms. Three addition oxygen atoms can be acounted for by the coordination of a DMSO solvent molecule and an acetate anion. The remaining oxygen and nitrogen atoms that fil the coordination sphere of the uranium are from the salzine ligand. The U-N distance is observed at 2.558(6) ?. The U-O distance is found at 2.220(6) ?. ! 105! CRAIC Microspectrophotometer ! ! Figure 37 Transmision and emision spectra of the salzine ligand. The image in the upper right corner is at a magnification of x10 and shows the sample this data was taken from. The transmision and emision spectra of the salzine ligand were obtained by taking the single crystal used in the structural elucidation and directly putting it onto a quartz slide for further characterization with the CRAIC microspectrophotometer. As sen in Figure 37 there are two dominate spectral features sen in the emision spectra of the salzine compound. The emision resulting from an excitation at 280 nm results in a featureles spectrum. The emision resulting from an excitation wavelength of 365 nm results in a broad band feature centering around 605 nm. The emision resulting from an excitation wavelength of 546 nm results in a shoulder centered around the same 605 nm region. 200 300 400 500 600 700 800 R e l ati ve U n i ts Wavelength (nm) Transmission 280 nm 365 nm 546 nm ! 106! ! Figure 38 Transmision and emision spectra of the salzine-UO 2 complex. The transmision and emision spectra of the salzine-UO 2 complex were obtained by taking the single crystal used in the structural elucidation and directly putting it onto a quartz slide for further characterization with the CRAIC microspectrophotometer. As sen in Figure 38, and in comparison to Figure 38, there are two dominate spectral features sen in the emision spectra of the salpen-UO 2 complex. In contrast to just the salzine ligand, a spectral feature is observed from the 280 nm excitation at 362 nm with a shoulder observed at 328 nm. The emision resulting from an excitation wavelength of 365 nm results in a broad shoulder feature around 365 nm. The emision resulting from an excitation wavelength of 546 nm results is featureles. The growth of spectral features in the salzine-UO 2 complex in both the transmision and 280 nm excitation spectra are ways to tel if the ligand has bound the UO 2 center in the solid state. Curious 200 300 400 500 600 700 800 R e l ati ve U n i ts Wavelength nm transmission 280 nm 365 nm 546 nm ! 107! is the loss of the large, broad band excitation feature found in the 365 nm emision spectrum of the salzine ligand. ! Figure 39 Transmision and emision spectra of the tbut-salzine. The image in the upper right corner is at a magnification of x10 and shows the sample this data was taken from. The transmision and emision spectra of the tbut-salzine ligand were obtained by taking the single crystal used in the structural elucidation and directly putting it onto a quartz slide for further characterization with the CRAIC microspectrophotometer. There are no spectral features sen in the emision spectra of the salpen compound. This is a result worth investigating further as comparison with salzine in Figure 37 some emision features would be expected. Unfortunately, a metal complex with the tbutyl- salzine ligand has not been isolated yet so no comparison can be made in the solid state of the electronic properties. ! 108! ! Figure 40 Transmision and emision spectra of 2-quinoxalinol salen. The image in the upper right corner is at a magnification of x10 and shows the sample this data was taken from. ! ! The transmision and emision spectra of the 2-quinoxalinol ligand were obtained by taking the single crystal used in the structural elucidation and directly putting it onto a quartz slide for further characterization with the CRAIC microspectrophotometer. As sen in Figure 40 there are no spectral features sen in the emision spectra of the 2- quinoxalinol salen compound. This is a result worth further investigation in comparison with the solution phase UV-vis data of just the 2-quinoxalinol salen ligand and the 2- quinoxalinol salen-UO 2 complex. 200 300 400 500 600 700 800 R e l ati ve U n i ts Wavelength nm transmission 256 nm 365 nm 546 nm ! 109! Synthesizing additional ligands with this common five atom (N-C-C-C-O) ligand geometry is worthy of note as several other solid state structures over the last decade have included the structural motif when coordinating to an actinide center. 2 Also, in future work, the 2-quinoxalinol salen-UO 2 single crystal should be regrown. Comparing the solid state spectra of the 2-quinoxolinol salen ligand with that of the UO 2 complexed 2-quinoxalinol structure with the CRAIC microspectrophotometer may give valuable insight into the electronics of the metal-ligand interactions. ! ! ! ! ! ! 110! References Cited (1) Lei, Y.; Li, D.; Ouyang, J.; Shi, J. Adv. Mater. Res. (Durnten-Zurich, Switz.) 2011, 311-313, 1286. (2) Gorden, A. E. V.; DeVore, M. A.; Maynard, B. A. Inorg. Chem. (Washington, DC, U. S.), Ahead of Print. (3) Wu, X.; Gorden, A. E. V. J. Comb. Chem. 2007, 9, 601. (4) Wu, X. G.; Hubbard, H. K.; Tate, B. K.; Gorden, A. E. V. Polyhedron 2009, 28, 360. (5) Wu, X. H.; Bharara, M. S.; Bray, T. H.; Tate, B. K.; Gorden, A. E. V. Inorg. Chim. Acta 2009, 362, 1847. ! ! 111! Chapter 6: Conclusions and Future Work Actinide Cyanometallates The ThTCPt compounds, Th1 and Th2, are unique among the reported thorium literature, because we believe they are the first reported Th(IV) containing compounds to have both emision and structural work reported. The metal cation acts as a placeholder that tunes the R-value betwen Pt centers in the pseudo one-dimensional chains. Th5 extends the set of reported, solid state thorium isocyanide complexes to a total of three. Mono- bi- and tridentate bridging TCM?s, where M = Pt or Pd, has been shown in the solid state to give a fingerprint in the CN region of the Raman spectrum. The computational analysis performed using the unrestricted b3lyp functional gave valuable insight into the vibrational frequencies observed in the Raman spectrum of these compounds. This work lends support to the hypothesis that the spectral features sen in the experimental work are related to the incorporation mode of the tetracyanoplatinate anion (un-, mono-, bi-, tri-, and/or ter-dentate); however, when more than one tetracyanoplatinate anion binds a 5f center, asigning the spectral features become les clear. A reasonable conclusion from this computational analysis is that coordination of an actinide metal center breaks the symmetry of the D 4h cyanometalate anion and this leads to an increased number of vibrational stretches in the cyanide region. These vibrational modes may not have been observed in the experimental work because the sensitivity of the instrument. Unfortunately, we were unable to synthesize an An x [Ni(CN) 4 ] y analog in aqueous solution, and the DMSO incorporated into U6 prohibits ! 112! the formation of more peaks in the cyanide region of the Raman spectrum. Previous literature has only reported two vibrations, A 1g and B 1g , in the 2000 cm -1 region. We report on one molecular unit and three bridging compounds that have more than two vibrations in this region of the Raman spectrum. This wil provide valuable structural information when single crystal XRD analysis is not possible. Future Work Actinide cyanometallates Furthering the work in the actinide cyanometalate clas of compounds wil require synthesizing new compounds, containing transuranic elements. Multiple reactions have been atempted using an aqueous solution of Np(V)O 2 Cl and these atempts resulted in the formation of a black non-crystaline solid precipitate probably a result of the reduction potential of Pt(II) [Pt II + 2e - > Pt (s) , E o = +1.18 V]. 1 Two possible avenues to further pursue with the transuranic elements are available; first would be to use a cyanometalate with a lower reduction potential, K 2 [Ni(CN) 4 ] or K 2 [Pd(CN) 4 ], and second would be to use a diferent solvent (DMSO, DMF, DMA, ?) to reduce the possibility of reducing the metal from the cyanometalate. Also, transition metal cyanides were purchased to be studied in these complexes (Zn(CN) 2 , Pt(II)(CN) 2 , Cu(I)CN, K 3 [Co(CN) 6 ], K 3 [Fe(CN) 6 ], and K 4 [Fe(CN) 6 ]). In aqueous solution they precipitated out as microcrystaline products and were never characterized. Using a polar organic solvent (such as DMSO, DMA, or DMF) may provide the environment needed ! 113! to properly crystalize the material in X-ray difraction quality samples. The most interesting compounds may come from the solvent DMA. DMA is a planar, polar, organic solvent which may alow for platinophilic stacking interactions to be observed. Oxidation of ortho-phenylenediamine A flaw in the reporting of the isolated yield of the oxidation of ortho- phenylenediamine is the method in which it is obtained. Difering amounts of product are lost in the filtering steps for each reaction, making the results qualitative, but hardly quantitative. To improve these results UV-vis should be employed to get acurate measurements of the concentration of ortho-phenylendiamine when the reaction starts and when the reaction has completed. Further, it should be sen if the reaction can go to completion and what the most eficient mediation loading could be. Dioxygen is thought to play an important role in the reaction pathway, to explore this the dioxygen presure can be increased using a Parr bomb. Future eforts should also focus on atempting to use other benzene derivatives, with ortho amine and alcohol functional groups, to prepare larger ring systems from diferent starting materials. Two examples of these starting materials would be 2-aminophenol and 1,2-dihydroxybenzene. Simple combinatorial enumeration [possible molecules = 2 N ] would need to be done to figure amount the number of possible product molecules available when N number of diferent starting materials are available. ! 114! Salzine The salzine project has a huge potential for expansion by a future researcher. The most important facet of synthesizing these reactions is that the salicylaldehyde needs to be soluble in the reaction solvent. Pyridine sems to be an optimum solvent for the reaction, les optimal for the researcher considering the health implications by acidental exposure. When 2,3-diaminophenazine is used as the starting backbone, so far, only the monosubstituted imidazole has been observed, as sen in chapter 5. One aspect of a more careful synthetic researcher would be to try to isolate the disubstituted compound. This may not be possible under the current reaction conditions. Also, using diferent benzaldehyde starting materials can increase the number of diferent salzine molecules. A search of commericialy available materials shows several options: 2-hydroxy-5-nitro- benzaldehyde, 3-tert-butyl-2-hydroxybenzaldehyde, 5-chloro-2-hydroxybenzaldehyde, 3- bromo-5-chloro-2-hydroxybenzaldehyde, 2,4,6-trihydroxybenzaldehyde, 2,3- dihydroxybenzaldehyde, and 2-hydroxy-5-methylbenzaldehyde. One metal complex has been isolated, salpen-UO 2 . Further salzine complexes need to be synthesized, isolated, and characterized. Several other metals can be used for example: VO 2+ , Cu (I), Cu (II), Cu (III), Ce(IV), Gd 3+ , Th+4, U(IV), U(VI), NpO 2 + , and PuO 2 2+ . Using these newly synthesized salzine molecules, synthesized from the hydroxybenzaldehydes listed above, and the metals available it should be a possibility to isolate these metal complexes. When the complexes have been isolated it should be atempted to grow single crystals. The most succesful method to this point in crystalizing out the salen/salzine complexes has been slow difusion. Slow evaporation has been useful in obtaining single crystals from a pure source of ligand. When single ! 115! crystals have been isolated structure elucidation using the X-ray difractometer should be used. The single crystals can then be put through a series of spectrometer methods using the Craic microspectrophotometer to understand the electronic properties. Further, the electrochemical properties should be characterized using cyclic voltametry. This will give insight into the bonding interaction betwen the ligand and the metal. Phenazineimidazole Another possible avenue for exploration is reaction of 2,3-diaminophenazine with glycine under 4 N HCl at reflux. This has been reported to give a glycine benzimidazole in previous work with ortho-phenylenediamine. 2 This reaction should produce the glycine phenazineimidazole, as sen in scheme 3, with the amine group available for condensation with a dicarboxylic acid to produce a new series of molecules with large sections of aromaticity and several hard and soft donor binding sites. This proposed molecule can be sen in the following reaction scheme 4. It may be just as interesting to start with the 2-quinoxalinol diamine, make the imidazole via addition of 4 N HCl and follow with the condensation with 2,6-pyridinedicarboxylic acid. The reason why this Scheme 3 Reaction of 2,3-diaminophenazine with glycine under 4 N HCl conditions and reflux should produce the phenazineimidazole product which can be used in further synthetic steps. ! 116! may be more interesting is that the 2-quinoxalinol has orders of magnitude higher emision when excited via a simple UV lamp. Scheme 4 Starting with the phenazineimidazole starting material. ! The same synthetic methods can be employed as with the salzine project. Al the amino acids can be used as starting material in place of glycine. This creates a large array of ligands possible for coordination with the typical metals: VO 2+ , Cu (I), Cu (II), Cu (III), Ce(IV ) , Gd 3+ , Th 4+ , U(IV), UO 2 2+ , U VI , NpO 2 + , and PuO 2 2+ . Using these newly synthesized salzine molecules, synthesized from the hydroxybenzaldehydes listed above, and the phenazineimidazoles and the metals available it should be a possibility to isolate these metal complexes. Also the stoichiometry betwen the metal and the salzine ligands should be explored as a 2:1 salzine metal complex would be expected and can be visualized in Figure 41 and Figure 42. When the complexes have been isolated it should be atempted to grow single crystals. The most succesful method to this point in crystalizing out the salen/salzine complexes has been slow difusion. Slow evaporation has been useful in obtaining single crystals from a pure source of ligand. When single crystals have been isolated structure elucidation using the X-ray difractometer should be ! 117! used. The single crystals can then be put through a series of spectrometer methods using the Craic microspectrophotometer to understand the electrochemical properties. Further, the electrochemical properties should be characterized using cyclic voltametry. This wil give insight into the bonding interaction betwen the ligand and the metal. ! ! Figure 41 Possible 2:1 salzine metal complex. ! Figure 42 Possible 1:1 phenezeneimidazole metal complex. ! ! ! ! 118! ! References Cited ! (1)! Housecroft,!C.;!Sharpe,!A.!Inorganic)Chemistry;!Pearson!Education! Limited,!207;!Vol.!3.!Pg.!1022.! ! (2)! Tyagi,!N.;!Mathur,!P.!Spectrochim.)Acta,)Part)A!2012,!96,!759.! ! ! 119! Appendix 1: Crystalographic Tables Crystallographic Data Collection for Th1, Th2, and U3 Crystals of compounds 2 and 3 were obtained in good yield from slow evaporation in water at room temperature. Crystals of 1 were obtained by slow evaporation of a water solution with a pH of 2.5. X-ray difraction data for 1 were collected at -80 ?C on a Bruker SMART APEX CCD X-ray difractometer unit using Mo K? radiation from crystals mounted in Paratone-N oil on glas fibers. SMART (v 5.624) was used for preliminary determination of cel constants and data collection control. Determination of integrated intensities and global cel refinement were performed with the Bruker SAINT Software package using a narrow-frame integration algorithm. X-ray data for 2 and 3 were collected using a Varian Oxford Xcalibur E single-crystal X-ray difractometer. Intensity measurements were performed using Mo K? radiation, from a sealed-tube Enhance X-ray source, and an Eos area detector. CrysAlis R1 was used for preliminary determination of the cel constants, data collection strategy, and for data collection control. Following data collection, CrysAlis was also used to integrate the reflection intensities, apply an absorption correction to the data, and perform a global cel refinement. The program suite SHELXTL (v 5.1) was used for space group determination, structure solution, and refinement. 1 Refinement was performed against F 2 by weighted full-matrix least square, and empirical absorption correction (SADABS 2 ) was applied. H atoms were found from the diference fourier maps. ! 129! U4, Th5, U6, Th7, Th8, salzine, Usalzine, and t-butsalzine The X-ray difraction datasets were collected at 183 K, on a Bruker SMART APEX CCD X-ray difractometer unit using Mo K? radiation, from crystals mounted in Paratone-N oil on glas fibers. SMART (v 5.624) was used for preliminary determination of cel constants and data collection control. Determination of integrated intensities and global cel refinement were performed with the Bruker SAINT software package using a narrow-frame integration algorithm. The program suite SHELXTL (v 5.1) was used for space group determination, structure solution, and refinement. 3 Refinement was performed against F 2 by weighted full-matrix least squares, and empirical absorption correction (SADABS) was applied. Hydrogen atoms for U6 were found from the diference fourier maps. Projections were generated in the Olex2.1-1 graphics program. 4 Table 1 contains key results of the X-ray experiments and additional crystalographic information is included as Supporting Information. ! 130! Crystallographic Table 1. Crystal data and structure refinement for Th1, Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O. Identification code Th1 Empirical Formula C 8 H 34 N 8 O 17 Pt 2 Th Formula weight 1136.65 Temperature 193(2) K Wavelength 0.71071 Crystal System Orthorhombic Spacegroup Pbca Unit cel dimensions a = 13.2464(6) ? ? = 90.0 ? b = 20.5599(10) ? ? = 90.0 ? c = 22.4536(11) ? ? = 90.0 ? Volume 6115.1(5) ? 3 Z 8 Calculated density 2.469 Mg/m 3 Absorption coeficient 14.053 mm -1 F(000) 4160 Crystal size 0.80 x 0.80 x 0.09 mm Theta range for data collection 1.81 to 28.27 ? Limiting indices -17<=h<=17,-27<=k<=2729<=l<=29 Reflections collected / unique 59819 / 7574 [R(int) = 0.0737] Completenes to theta = 28.27 99.9 % Absorption correction Analytical Max. and min. transmision 0.3710 and 0.0314 Refinement method Full-matrix least squares on F 2 Data / restraints / parameters 7574 / 0 / 313 Goodnes-of-fit on F 2 0.999 Final R indices [I>2sigma(I)] R1 = 0.0301, wR2 = 0.0766 R indices (al data) R1 = 0.0373, wR2 = 0.0781 Largest dif. peak and hole 2.154 and -3.034 e. ? -3 ! 131! Crystallographic Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ Th(1) 3617(1) 3956(1) 8669(1) 14(1) Pt(1) 3747(1) 6259(1) 7345(1) 16(1) O(1) 2519(3) 3947(2) 7783(2) 28(1) N(1) 3683(3) 5121(2) 8278(2) 22(1) C(1) 3711(4) 5557(2) 7954(2) 18(1) O(2) 4947(3) 3941(2) 7922(2) 25(1) Pt(2) 3733(1) 1421(1) 7668(1) 15(1) N(2) 1312(3) 2367(3) 8310(3) 33(1) C(2) 3733(4) 6956(3) 7957(3) 21(1) O(3) 2275(3) 3225(2) 9036(2) 23(1) N(3) 6121(4) 2301(2) 8688(2) 31(1) C(3) 3809(4) 6923(3) 6703(3) 24(1) O(4) 2058(3) 4602(2) 8865(2) 25(1) N(4) 3619(4) 5162(3) 6382(2) 35(1) C(4) 3683(4) 5561(3) 6732(3) 26(1) O(5) 5104(3) 4559(2) 9052(2) 25(1) N(5) 3705(3) 2874(2) 8098(2) 18(1) C(5) 3725(4) 2356(3) 7925(2) 18(1) O(6) 4743(3) 3181(2) 9197(2) 24(1) N(6) 3954(4) 1798(3) 6321(2) 33(1) C(6) 3872(4) 1663(3) 6813(3) 22(1) O(7) 3459(3) 4136(2) 9730(2) 27(1) C(7) 3567(4) 1168(3) 8520(3) 20(1) N(7) 3449(4) 1006(2) 9002(2) 31(1) O(8) 127(3) 4252(2) 8998(2) 32(1) N(8) 6239(3) 4929(3) 7635(2) 28(1) C(8) 3755(4) 487(3) 7462(2) 21(1) O(9) 4100(4) 2602(2) 10200(2) 36(1) O(10) 4764(3) 3339(2) 6865(2) 30(1) O(11) 4819(3) 1362(2) 9962(2) 38(1) ! 132! O(12) 6790(3) 3788(2) 177(2) 35(1) O(13) 2101(3) 4223(2) 5978(2) 32(1) O(14) 5082(3) 5813(2) 9419(2) 28(1) O(15) 2691(3) 3258(2) 6760(2) 30(1) O(16) 2020(4) 2537(2) 10071(2) 38(1) O(17) 1751(4) 4061(3) 10301(3) 74(2) ! 133! Crystallographic Table 3. Bond lengths [?] and angles [?] for Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O. _____________________________________________________ Th(1)-O(7) 2.420(4) Th(1)-O(2) 2.434(4) Th(1)-O(1) 2.464(4) Th(1)-O(3) 2.469(4) Th(1)-O(5) 2.481(4) Th(1)-O(6) 2.485(4) Th(1)-O(4) 2.494(4) Th(1)-N(1) 2.552(5) Th(1)-N(5) 2.570(4) Pt(1)-C(2) 1.985(6) Pt(1)-C(3) 1.986(6) Pt(1)-C(1) 1.990(6) Pt(1)-C(4) 1.991(6) N(1)-C(1) 1.155(7) Pt(2)-C(8) 1.975(6) Pt(2)-C(6) 1.991(6) Pt(2)-C(7) 1.995(6) Pt(2)-C(5) 2.007(6) N(2)-C(2)#1 1.160(8) C(2)-N(2)#2 1.160(8) N(3)-C(3)#3 1.176(8) C(3)-N(3)#4 1.176(8) N(4)-C(4) 1.139(8) N(5)-C(5) 1.135(7) N(6)-C(6) 1.146(7) C(7)-N(7) 1.142(8) N(8)-C(8)#4 1.168(8) C(8)-N(8)#3 1.168(8) O(7)-Th(1)-O(2) 138.02(13) O(7)-Th(1)-O(1) 138.15(13) O(2)-Th(1)-O(1) 82.58(15) O(7)-Th(1)-O(3) 72.68(13) ! 134! O(2)-Th(1)-O(3) 138.01(13) O(1)-Th(1)-O(3) 80.77(13) O(7)-Th(1)-O(5) 69.61(14) O(2)-Th(1)-O(5) 70.74(14) O(1)-Th(1)-O(5) 138.78(14) O(3)-Th(1)-O(5) 139.48(14) O(7)-Th(1)-O(6) 71.35(13) O(2)-Th(1)-O(6) 83.43(13) O(1)-Th(1)-O(6) 137.26(12) O(3)-Th(1)-O(6) 83.24(13) O(5)-Th(1)-O(6) 71.25(13) O(7)-Th(1)-O(4) 70.93(13) O(2)-Th(1)-O(4) 136.75(13) O(1)-Th(1)-O(4) 70.01(13) O(3)-Th(1)-O(4) 70.69(12) O(5)-Th(1)-O(4) 109.29(13) O(6)-Th(1)-O(4) 138.98(13) O(7)-Th(1)-N(1) 101.46(15) O(2)-Th(1)-N(1) 75.52(14) O(1)-Th(1)-N(1) 75.52(14) O(3)-Th(1)-N(1) 135.31(13) O(5)-Th(1)-N(1) 67.86(14) O(6)-Th(1)-N(1) 138.21(13) O(4)-Th(1)-N(1) 65.79(13) O(7)-Th(1)-N(5) 128.82(15) O(2)-Th(1)-N(5) 67.17(13) O(1)-Th(1)-N(5) 67.51(13) O(3)-Th(1)-N(5) 70.85(13) O(5)-Th(1)-N(5) 124.67(13) O(6)-Th(1)-N(5) 69.82(13) O(4)-Th(1)-N(5) 125.91(13) N(1)-Th(1)-N(5) 129.71(15) C(2)-Pt(1)-C(3) 90.4(2) C(2)-Pt(1)-C(1) 92.6(2) C(3)-Pt(1)-C(1) 176.8(2) C(2)-Pt(1)-C(4) 177.0(2) ! 135! C(3)-Pt(1)-C(4) 89.8(2) C(1)-Pt(1)-C(4) 87.2(2) C(1)-N(1)-Th(1) 161.2(4) N(1)-C(1)-Pt(1) 175.5(5) C(8)-Pt(2)-C(6) 90.9(2) C(8)-Pt(2)-C(7) 88.5(2) C(6)-Pt(2)-C(7) 178.8(2) C(8)-Pt(2)-C(5) 176.8(2) C(6)-Pt(2)-C(5) 92.2(2) C(7)-Pt(2)-C(5) 88.5(2) N(2)#2-C(2)-Pt(1) 177.5(5) N(3)#4-C(3)-Pt(1) 177.1(5) N(4)-C(4)-Pt(1) 178.1(5) C(5)-N(5)-Th(1) 170.1(4) N(5)-C(5)-Pt(2) 176.4(5) N(6)-C(6)-Pt(2) 179.5(6) N(7)-C(7)-Pt(2) 177.6(5) N(8)#3-C(8)-Pt(2) 177.1(5) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y-1/2,z #2 -x+1/2,y+1/2,z #3 -x+1,y-1/2,-z+3/2 #4 -x+1,y+1/2,-z+3/2 ! 136! Crystallographic Table 4. Anisotropic displacement parameters (? 2 x 10 3 ) for Th(H 2 O) 7 [Pt(CN) 4 ] 2 ?10H 2 O. The anisotropic displacement factor exponent takes the form: -2? 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] ________________________________________________________________________ U 11 U 22 U 33 U 23 U 13 U 12 ________________________________________________________________________ Th(1) 18(1) 14(1) 10(1) 0(1) 0(1) 0(1) Pt(1) 19(1) 16(1) 14(1) 2(1) 1(1) 0(1) O(1) 38(2) 26(2) 19(2) -3(2) -8(2) 6(2) N(1) 27(3) 18(2) 20(3) 2(2) -2(2) -1(2) C(1) 24(3) 16(3) 14(3) -4(2) 0(2) 0(2) O(2) 36(2) 24(2) 16(2) -2(2) 10(2) -3(2) Pt(2) 19(1) 15(1) 13(1) -2(1) 1(1) 0(1) N(2) 31(3) 30(3) 38(3) -8(3) 3(2) -1(2) C(2) 21(3) 19(3) 23(3) -1(2) 0(2) -1(2) O(3) 24(2) 24(2) 19(2) -1(2) 3(2) -6(2) N(3) 35(3) 30(3) 29(3) -9(2) 3(2) 0(2) C(3) 25(3) 21(3) 25(3) -1(2) 0(2) 0(2) O(4) 23(2) 24(2) 27(2) 2(2) 5(2) 5(2) N(4) 47(3) 36(3) 21(3) -7(2) -4(2) 0(2) C(4) 35(3) 26(3) 16(3) 9(2) 0(2) -1(2) O(5) 26(2) 27(2) 23(2) -3(2) -6(2) -3(2) N(5) 26(2) 15(2) 13(2) -2(2) 2(2) -1(2) C(5) 16(3) 25(3) 13(3) 4(2) 1(2) 0(2) O(6) 31(2) 24(2) 16(2) 1(2) -1(2) 6(2) N(6) 40(3) 39(3) 21(3) 0(2) 3(3) -4(2) C(6) 24(3) 23(3) 18(3) -6(2) 0(2) 0(2) O(7) 26(2) 42(2) 12(2) -3(2) 2(2) -1(2) C(7) 22(3) 18(3) 19(3) -4(2) 1(2) -3(2) N(7) 43(3) 27(3) 24(3) 2(2) 3(2) -6(2) O(8) 31(2) 31(2) 35(3) -2(2) -1(2) -1(2) N(8) 32(3) 20(3) 32(3) 4(2) 5(2) -1(2) C(8) 28(3) 23(3) 11(3) -3(2) 4(2) 0(2) O(9) 56(3) 35(2) 16(2) 1(2) 4(2) -1(2) O(10) 37(2) 32(2) 21(2) -2(2) 0(2) 1(2) O(11) 45(3) 41(3) 28(3) -1(2) -6(2) 4(2) ! 137! O(12) 36(2) 40(3) 28(3) 1(2) 0(2) 4(2) O(13) 30(2) 36(2) 29(3) -3(2) -4(2) -2(2) O(14) 37(2) 29(2) 18(2) -6(2) -4(2) -3(2) O(15) 39(2) 30(2) 21(2) -2(2) -3(2) -1(2) O(16) 58(3) 36(2) 20(2) 7(2) 6(2) -1(2) O(17) 44(3) 139(6) 40(3) -45(4) 17(3) -24(3) ________________________________________________________________________ ! 138! Crystallographic Table 5. Crystal data and structure refinement for (Th2), Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O. Identification code Th2 Empirical formula C 12 H 32 N 12 O 17 Pt 3 Th 2 Formula weight 1665.85 Temperature 295(2) K Wavelength 0.71073 ? Crystal system Monoclinic Space group C2/c Unit cel dimensions a = 16.4915(4) ? ? = 90?. b = 12.1941(4) ? ? = 114.016(4)?. c = 19.5380(5) ? ? = 90?. Volume 3588.9(2) ? 3 Z 4 Density (calculated) 3.083 Mg/m 3 Absorption coeficient 19.989 mm -1 F(000) 2952 Crystal size 0.29 x 0.03 x 0.03 mm 3 Theta range for data collection 3.34 to 30.61?. Index ranges -22<=h<=23, -16<=k<=17, -27<=l<=27 Reflections collected 32269 Independent reflections 5166 [R(int) = 0.0281] Completenes to theta = 29.00? 99.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmision 1.0 and 0.30 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 5166 / 0 / 211 Goodnes-of-fit on F 2 0.918 Final R indices [I>2sigma(I)] R1 = 0.0141, wR2 = 0.0239 R indices (al data) R1 = 0.0211, wR2 = 0.0244 Extinction coeficient 0.000167(4) Largest dif. peak and hole 0.652 and -0.703 e.? -3 ! 139! Crystallographic Table 6. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ Th(1) 1439(1) 1950(1) 149(1) 15(1) Pt(1) -838(1) 2711(1) 1667(1) 19(1) Pt(2) 2500 -2500 0 19(1) O(1) 2912(1) 1674(1) 321(1) 21(1) O(2) 327(1) 3347(2) -470(1) 39(1) O(3) 2138(1) 1128(2) 1407(1) 36(1) O(4) 978(1) 1541(2) -1193(1) 32(1) O(5) 1993(2) 3462(2) 1087(1) 41(1) O(6) -40(1) 1005(2) -412(1) 31(1) O(7) 0 2667(3) -2500 48(1) O(8) 1252(2) -571(2) 1772(1) 52(1) O(9) -1371(2) 6087(2) 2690(1) 51(1) C(1) -39(2) 2306(2) 1173(2) 25(1) C(2) -1040(2) 1152(2) 1838(2) 30(1) C(3) -1609(2) 3159(2) 2176(2) 28(1) C(4) -705(2) 4284(2) 1463(2) 30(1) C(5) 1985(2) -1034(2) 46(1) 22(1) C(6) 1855(2) -3191(2) 550(2) 32(1) N(1) 429(2) 2110(2) 888(1) 30(1) N(2) -1182(2) 261(2) 1927(2) 53(1) N(3) -2028(2) 3433(2) 2486(2) 47(1) N(4) -661(2) 5176(2) 1329(2) 49(1) N(5) 1694(2) -181(2) 51(1) 27(1) N(6) 1490(2) -3589(3) 873(2) 63(1) _______________________________________________________________________ ! 140! Crystallographic Table 7. Bond lengths [?] and angles [?] for Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O. ________________________________________________________________________ Th(1)-O(1) 2.3369(17) Th(1)-O(1)#1 2.3675(17) Th(1)-O(2) 2.4342(18) Th(1)-O(3) 2.4631(18) Th(1)-O(4) 2.4650(18) Th(1)-O(5) 2.4962(19) Th(1)-O(6) 2.5113(18) Th(1)-N(1) 2.619(2) Th(1)-N(5) 2.651(2) Th(1)-Th(1)#1 4.0045(2) Pt(1)-C(2) 1.982(3) Pt(1)-C(3) 1.982(3) Pt(1)-C(1) 1.987(3) Pt(1)-C(4) 1.988(3) Pt(2)-C(6)#2 1.982(3) Pt(2)-C(6) 1.982(3) Pt(2)-C(5)#2 1.997(3) Pt(2)-C(5) 1.997(3) O(1)-Th(1)#1 2.3675(17) O(1)-H(1A) 0.8501 O(2)-H(2A) 0.8500 O(2)-H(2B) 0.8499 O(3)-H(3A) 0.8500 O(3)-H(3B) 0.8501 O(4)-H(4A) 0.8500 O(4)-H(4B) 0.8500 O(5)-H(5A) 0.8500 O(5)-H(5B) 0.8500 O(6)-H(6A) 0.8500 O(6)-H(6B) 0.8501 O(7)-H(7) 0.8501 O(8)-H(8A) 0.8499 ! 141! O(8)-H(8B) 0.8500 O(9)-H(9A) 0.8500 O(9)-H(9B) 0.8500 C(1)-N(1) 1.145(3) C(2)-N(2) 1.140(4) C(3)-N(3) 1.139(4) C(4)-N(4) 1.129(4) C(5)-N(5) 1.147(3) C(6)-N(6) 1.141(4) O(1)-Th(1)-O(1)#1 63.31(7) O(1)-Th(1)-O(2) 134.55(6) O(1)#1-Th(1)-O(2) 71.29(6) O(1)-Th(1)-O(3) 76.19(6) O(1)#1-Th(1)-O(3) 125.04(6) O(2)-Th(1)-O(3) 137.08(7) O(1)-Th(1)-O(4) 88.66(7) O(1)#1-Th(1)-O(4) 73.94(6) O(2)-Th(1)-O(4) 76.67(7) O(3)-Th(1)-O(4) 142.68(7) O(1)-Th(1)-O(5) 87.31(7) O(1)#1-Th(1)-O(5) 70.95(6) O(2)-Th(1)-O(5) 79.88(8) O(3)-Th(1)-O(5) 71.65(7) O(4)-Th(1)-O(5) 142.45(6) O(1)-Th(1)-O(6) 139.91(6) O(1)#1-Th(1)-O(6) 131.91(6) O(2)-Th(1)-O(6) 72.66(7) O(3)-Th(1)-O(6) 103.04(6) O(4)-Th(1)-O(6) 67.57(6) O(5)-Th(1)-O(6) 131.24(7) O(1)-Th(1)-N(1) 142.06(7) O(1)#1-Th(1)-N(1) 130.56(7) O(2)-Th(1)-N(1) 72.63(7) O(3)-Th(1)-N(1) 67.93(7) O(4)-Th(1)-N(1) 127.69(7) O(5)-Th(1)-N(1) 70.37(7) ! 142! O(6)-Th(1)-N(1) 63.37(7) O(1)-Th(1)-N(5) 71.54(6) O(1)#1-Th(1)-N(5) 123.85(7) O(2)-Th(1)-N(5) 139.42(7) O(3)-Th(1)-N(5) 69.49(7) O(4)-Th(1)-N(5) 73.40(6) O(5)-Th(1)-N(5) 139.08(7) O(6)-Th(1)-N(5) 70.93(7) N(1)-Th(1)-N(5) 105.55(7) O(1)-Th(1)-Th(1)#1 31.89(4) O(1)#1-Th(1)-Th(1)#1 31.43(4) O(2)-Th(1)-Th(1)#1 102.69(5) O(3)-Th(1)-Th(1)#1 101.54(5) O(4)-Th(1)-Th(1)#1 79.79(5) O(5)-Th(1)-Th(1)#1 77.27(5) O(6)-Th(1)-Th(1)#1 147.28(4) N(1)-Th(1)-Th(1)#1 147.64(5) N(5)-Th(1)-Th(1)#1 98.31(5) C(2)-Pt(1)-C(3) 89.65(11) C(2)-Pt(1)-C(1) 91.90(11) C(3)-Pt(1)-C(1) 178.04(11) C(2)-Pt(1)-C(4) 176.96(12) C(3)-Pt(1)-C(4) 88.88(12) C(1)-Pt(1)-C(4) 89.63(11) C(6)#2-Pt(2)-C(6) 180.00(19) C(6)#2-Pt(2)-C(5)#2 91.37(11) C(6)-Pt(2)-C(5)#2 88.63(11) C(6)#2-Pt(2)-C(5) 88.63(11) C(6)-Pt(2)-C(5) 91.37(11) C(5)#2-Pt(2)-C(5) 180.00(15) Th(1)-O(1)-Th(1)#1 116.69(7) Th(1)-O(1)-H(1A) 121.4 Th(1)#1-O(1)-H(1A) 121.1 Th(1)-O(2)-H(2A) 118.3 Th(1)-O(2)-H(2B) 119.7 H(2A)-O(2)-H(2B) 120.5 ! 143! Th(1)-O(3)-H(3A) 123.6 Th(1)-O(3)-H(3B) 120.5 H(3A)-O(3)-H(3B) 115.6 Th(1)-O(4)-H(4A) 124.4 Th(1)-O(4)-H(4B) 124.7 H(4A)-O(4)-H(4B) 110.7 Th(1)-O(5)-H(5A) 109.8 Th(1)-O(5)-H(5B) 128.6 H(5A)-O(5)-H(5B) 121.4 Th(1)-O(6)-H(6A) 129.4 Th(1)-O(6)-H(6B) 112.5 H(6A)-O(6)-H(6B) 112.0 H(8A)-O(8)-H(8B) 104.9 H(9A)-O(9)-H(9B) 108.9 N(1)-C(1)-Pt(1) 177.6(3) N(2)-C(2)-Pt(1) 177.9(3) N(3)-C(3)-Pt(1) 177.7(3) N(4)-C(4)-Pt(1) 177.5(3) N(5)-C(5)-Pt(2) 177.6(3) N(6)-C(6)-Pt(2) 179.4(3) C(1)-N(1)-Th(1) 171.5(2) C(5)-N(5)-Th(1) 165.5(2) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z #2 -x+1/2,-y-1/2,-z ! 144! Crystallographic Table 8. Anisotropic displacement parameters (? 2 x 10 3 ) for Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O. The anisotropic displacement factor exponent takes the form: -2? 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] ________________________________________________________________________ U 11 U 22 U 33 U 23 U 13 U 12 ________________________________________________________________________ Th(1) 15(1) 15(1) 18(1) 1(1) 10(1) 1(1) Pt(1) 21(1) 21(1) 19(1) 1(1) 12(1) 2(1) Pt(2) 16(1) 16(1) 24(1) 0(1) 9(1) 2(1) O(1) 19(1) 17(1) 33(1) 9(1) 15(1) 5(1) O(2) 24(1) 38(1) 61(1) 26(1) 24(1) 11(1) O(3) 32(1) 48(1) 25(1) 10(1) 8(1) -2(1) O(4) 44(1) 29(1) 23(1) 0(1) 13(1) 5(1) O(5) 61(2) 39(1) 34(1) -15(1) 32(1) -23(1) O(6) 23(1) 43(1) 29(1) -3(1) 13(1) -9(1) O(7) 61(2) 42(2) 39(2) 0 18(2) 0 O(8) 41(1) 80(2) 32(1) -5(1) 12(1) 9(1) O(9) 45(2) 66(2) 36(1) -4(1) 11(1) 6(1) C(1) 23(1) 28(2) 23(1) -1(1) 10(1) -2(1) C(2) 39(2) 30(2) 27(2) -3(1) 20(1) 4(1) C(3) 33(2) 27(2) 27(1) 6(1) 17(1) 6(1) C(4) 29(2) 34(2) 28(2) 3(1) 15(1) 1(1) C(5) 17(1) 23(1) 25(1) -1(1) 7(1) -2(1) C(6) 22(1) 36(2) 37(2) 7(1) 13(1) 4(1) N(1) 27(1) 41(2) 29(1) -3(1) 18(1) -1(1) N(2) 90(2) 28(2) 55(2) -1(1) 42(2) -2(2) N(3) 57(2) 55(2) 45(2) 11(1) 36(2) 23(2) N(4) 57(2) 31(2) 60(2) 14(1) 25(2) 0(1) N(5) 26(1) 20(1) 33(1) -2(1) 11(1) 2(1) N(6) 35(2) 97(3) 64(2) 31(2) 28(2) 6(2) ________________________________________________________________________ ! 145! Crystallographic Table 9. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (? 2 x 10 3 ) for Th 2 (H 2 O) 10 (OH) 2 [Pt(CN) 4 ] 3 ?5H 2 O. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H(1A) 3224 1161 599 32 H(2A) -179 3287 -455 58 H(2B) 404 3789 -774 58 H(3A) 2634 1337 1739 54 H(3B) 1864 649 1548 54 H(4A) 1123 964 -1361 48 H(4B) 686 1975 -1548 48 H(5A) 2123 4017 890 61 H(5B) 2032 3478 1535 61 H(6A) -392 931 -870 47 H(6B) -316 1026 -127 47 H(7) -404 3069 -2467 72 H(8A) 1693 -1006 1930 78 H(8B) 1195 -358 2164 78 H(9A) -1049 5514 2794 76 H(9B) -1483 6254 3064 76 ! 146! Crystallographic Table 10 Crystal data and structure refinement for U3, K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O. Identification code U3 Empirical formula C 16 H 5 K 3 N 17 O 14.50 Pt 4 U 4 Formula weight 2517.15 Temperature 290(2) K Wavelength 0.71073 ? Crystal system, space group Tetragonal, P 4/m b m Unit cel dimensions a = 22.1073(2) ? ? = 90 ?. b = 22.1073(2) ? ? = 90 ?. c = 12.6202(2) ? ? = 90 ?. Volume 6167.90(13) ? 3 Z, Calculated density 4, 2.711 Mg/m 3 Absorption coeficient 19.750 mm -1 F(000) 4292 Crystal size 0.344 x 0.174 x 0.096 mm Theta range for data collection 2.91 to 26.37 ?. Limiting indices -27<=h<=27, -25<=k<=26, -15<=l<=15 Reflections collected / unique 6733 / 3423 [R(int) = 0.0564] Completenes to theta = 26.37 99.7 % Absorption correction Semi-empirical from equivalents Max. and min. transmision 1.00 and 0.31193 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3423 / 55 / 146 Goodnes-of-fit on F 2 1.058 Final R indices [I>2sigma(I)] R1 = 0.0522, wR2 = 0.1500 R indices (al data) R1 = 0.0687, wR2 = 0.1562 Largest dif. peak and hole 4.241 and -9.542 e. ? -3 ! 147! Crystallographic Table 11. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ K(1) 607(3) 5607(3) 0 51(2) K(2) 3617(7) 3695(7) -5000 152 U(1) 2379(1) 5072(1) -1713(1) 19(1) Pt(1) 1464(1) 6464(1) -5000 22(1) Pt(2) 1234(1) 3766(1) -5000 22(1) Pt(3) 2432(1) 2568(1) -1276(1) 15(1) C(1) 1902(7) 6004(6) -3904(11) 22(3) C(2) 1676(8) 4216(7) -3896(12) 26(3) C(3) 2423(7) 3463(7) -1306(12) 24(3) C(4) 3325(6) 2575(7) -1294(11) 20(3) N(1) 2118(7) 5718(6) -3255(11) 39(3) N(2) 1937(7) 4471(7) -3235(11) 39(3) N(3) 2409(7) 3985(6) -1344(11) 39(3) N(4) 2579(7) 6157(6) -1344(11) 38(3) N(5) 0 5000 -2660(20) 74(11) O(1) 1634(5) 5159(5) -1214(9) 36(2) O(2) 3103(5) 5001(5) -2198(9) 33(2) O(3) 2746(8) 5044(7) 0 29(3) O(4) 0 5000 -1682(19) 55(5) O(5) 326(12) 5326(12) -3270(30) 210(20) O(6) 728(10) 4272(10) 0 63(6) O(7) 0 0 5000 56(12) ! 148! Crystallographic Table 12. Bond lengths [?] and angles [?] for K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O. _____________________________________________________ K(1)-O(4) 2.848(19) K(1)-O(4)#1 2.848(19) K(1)-O(1)#2 2.912(12) K(1)-O(1)#3 2.912(12) K(1)-O(1) 2.912(12) K(1)-O(1)#4 2.912(12) K(1)-O(6)#1 2.96(3) K(1)-O(6) 2.96(3) K(1)-K(1)#1 3.80(2) U(1)-O(2) 1.720(12) U(1)-O(1) 1.774(12) U(1)-O(3) 2.310(6) U(1)-N(3) 2.449(14) U(1)-N(1) 2.482(13) U(1)-N(4) 2.483(14) U(1)-N(2) 2.531(14) Pt(1)-C(1)#5 1.971(15) Pt(1)-C(1)#4 1.971(15) Pt(1)-C(1) 1.971(15) Pt(1)-C(1)#6 1.971(15) Pt(2)-C(2)#7 1.971(15) Pt(2)-C(2) 1.971(15) Pt(2)-C(2)#8 1.971(15) Pt(2)-C(2)#6 1.971(15) Pt(3)-C(4) 1.975(14) Pt(3)-C(4)#8 1.975(14) Pt(3)-C(3) 1.978(15) Pt(3)-C(3)#8 1.978(15) Pt(3)-Pt(3)#2 3.2214(15) C(1)-N(1) 1.139(19) C(2)-N(2) 1.16(2) C(3)-N(3) 1.16(2) ! 149! C(4)-N(4)#9 1.15(2) N(4)-C(4)#10 1.15(2) N(5)-O(4) 1.238(18) N(5)-O(5)#11 1.279(18) N(5)-O(5) 1.279(18) O(3)-U(1)#2 2.310(6) O(4)-K(1)#1 2.848(19) O(6)-K(1)#1 2.96(3) O(4)-K(1)-O(4)#1 96.4(7) O(4)-K(1)-O(1)#2 126.8(3) O(4)#1-K(1)-O(1)#2 79.3(3) O(4)-K(1)-O(1)#3 126.8(3) O(4)#1-K(1)-O(1)#3 79.3(3) O(1)#2-K(1)-O(1)#3 104.7(5) O(4)-K(1)-O(1) 79.3(3) O(4)#1-K(1)-O(1) 126.8(3) O(1)#2-K(1)-O(1) 63.5(5) O(1)#3-K(1)-O(1) 143.8(6) O(4)-K(1)-O(1)#4 79.3(3) O(4)#1-K(1)-O(1)#4 126.8(3) O(1)#2-K(1)-O(1)#4 143.8(6) O(1)#3-K(1)-O(1)#4 63.5(5) O(1)-K(1)-O(1)#4 104.7(5) O(4)-K(1)-O(6)#1 64.7(3) O(4)#1-K(1)-O(6)#1 64.7(3) O(1)#2-K(1)-O(6)#1 143.8(3) O(1)#3-K(1)-O(6)#1 65.9(4) O(1)-K(1)-O(6)#1 143.8(3) O(1)#4-K(1)-O(6)#1 65.9(4) O(4)-K(1)-O(6) 64.7(3) O(4)#1-K(1)-O(6) 64.7(3) O(1)#2-K(1)-O(6) 65.9(4) O(1)#3-K(1)-O(6) 143.8(3) O(1)-K(1)-O(6) 65.9(4) O(1)#4-K(1)-O(6) 143.8(3) ! 150! O(6)#1-K(1)-O(6) 100.3(9) O(4)-K(1)-K(1)#1 48.2(4) O(4)#1-K(1)-K(1)#1 48.2(4) O(1)#2-K(1)-K(1)#1 108.1(3) O(1)#3-K(1)-K(1)#1 108.1(3) O(1)-K(1)-K(1)#1 108.1(3) O(1)#4-K(1)-K(1)#1 108.1(3) O(6)#1-K(1)-K(1)#1 50.1(4) O(6)-K(1)-K(1)#1 50.1(4) O(2)-U(1)-O(1) 179.1(5) O(2)-U(1)-O(3) 90.2(5) O(1)-U(1)-O(3) 89.8(5) O(2)-U(1)-N(3) 87.3(5) O(1)-U(1)-N(3) 93.7(5) O(3)-U(1)-N(3) 77.6(5) O(2)-U(1)-N(1) 89.4(5) O(1)-U(1)-N(1) 90.0(5) O(3)-U(1)-N(1) 146.2(5) N(3)-U(1)-N(1) 136.1(5) O(2)-U(1)-N(4) 89.4(5) O(1)-U(1)-N(4) 89.7(5) O(3)-U(1)-N(4) 77.8(5) N(3)-U(1)-N(4) 155.1(5) N(1)-U(1)-N(4) 68.5(5) O(2)-U(1)-N(2) 92.3(5) O(1)-U(1)-N(2) 88.2(5) O(3)-U(1)-N(2) 146.2(5) N(3)-U(1)-N(2) 68.9(5) N(1)-U(1)-N(2) 67.5(5) N(4)-U(1)-N(2) 135.9(5) C(1)#5-Pt(1)-C(1)#4 89.1(8) C(1)#5-Pt(1)-C(1) 178.0(9) C(1)#4-Pt(1)-C(1) 90.8(8) C(1)#5-Pt(1)-C(1)#6 90.8(8) C(1)#4-Pt(1)-C(1)#6 178.0(9) C(1)-Pt(1)-C(1)#6 89.1(8) ! 151! C(2)#7-Pt(2)-C(2) 179.3(10) C(2)#7-Pt(2)-C(2)#8 90.0(8) C(2)-Pt(2)-C(2)#8 90.0(8) C(2)#7-Pt(2)-C(2)#6 90.0(8) C(2)-Pt(2)-C(2)#6 90.0(8) C(2)#8-Pt(2)-C(2)#6 179.3(10) C(4)-Pt(3)-C(4)#8 90.8(9) C(4)-Pt(3)-C(3) 90.1(6) C(4)#8-Pt(3)-C(3) 178.0(6) C(4)-Pt(3)-C(3)#8 178.0(6) C(4)#8-Pt(3)-C(3)#8 90.1(6) C(3)-Pt(3)-C(3)#8 88.9(9) C(4)-Pt(3)-Pt(3)#2 90.6(4) C(4)#8-Pt(3)-Pt(3)#2 90.6(4) C(3)-Pt(3)-Pt(3)#2 91.1(4) C(3)#8-Pt(3)-Pt(3)#2 91.1(4) N(1)-C(1)-Pt(1) 175.3(15) N(2)-C(2)-Pt(2) 178.8(15) N(3)-C(3)-Pt(3) 178.3(15) N(4)#9-C(4)-Pt(3) 177.5(13) C(1)-N(1)-U(1) 168.5(15) C(2)-N(2)-U(1) 172.8(15) C(3)-N(3)-U(1) 171.4(13) C(4)#10-N(4)-U(1) 166.7(13) O(4)-N(5)-O(5)#11 127(2) O(4)-N(5)-O(5) 127(2) O(5)#11-N(5)-O(5) 106(5) U(1)-O(1)-K(1) 161.3(6) U(1)-O(3)-U(1)#2 138.7(8) N(5)-O(4)-K(1) 138.2(4) N(5)-O(4)-K(1)#1 138.2(4) K(1)-O(4)-K(1)#1 83.6(7) K(1)-O(6)-K(1)#1 79.7(9) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z #2 x,y,-z #3 y-1/2,x+1/2,-z ! 152! #4 y-1/2,x+1/2,z #5 y-1/2,x+1/2,-z-1 #6 x,y,-z-1 #7 -y+1/2,-x+1/2,-z-1 #8 -y+1/2,-x+1/2,z #9 -y+1,x,z #10 y,-x+1,z #11 -x,-y+1,z ! 153! Crystallographic Table 13. Anisotropic displacement parameters (? 2 x 10 3 ) for K 3 [(UO 2 ) 2 (OH)(Pt(CN) 4 ) 2 ] 2 ?NO 3 ?1.5H 2 O. The anisotropic displacement factor exponent takes the form: -2? 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] ________________________________________________________________________ U 11 U 22 U 33 U 23 U 13 U 12 _______________________________________________________________________ K(1) 50(3) 50(3) 53(5) 0 0 5(4) U(1) 27(1) 11(1) 18(1) 0(1) -2(1) -1(1) Pt(1) 25(1) 25(1) 14(1) 0 0 5(1) Pt(2) 25(1) 25(1) 15(1) 0 0 -8(1) Pt(3) 11(1) 11(1) 23(1) 0(1) 0(1) 0(1) C(1) 36(9) 13(7) 17(6) -5(5) 0(6) -1(6) C(2) 36(9) 22(8) 21(7) 4(6) 2(6) -12(7) C(3) 24(8) 16(5) 33(8) -8(6) 1(7) 2(6) C(4) 9(6) 27(8) 24(7) 4(6) -5(5) -1(5) N(1) 55(10) 29(7) 33(6) 9(5) -12(6) 0(7) N(2) 53(9) 32(7) 30(6) -2(5) -11(6) -13(7) N(3) 58(10) 20(4) 39(7) 2(5) -10(7) 2(5) N(4) 55(10) 22(5) 36(7) 2(5) -8(7) -8(6) N(5) 86(17) 86(17) 48(10) 0 0 20(20) O(1) 31(5) 37(6) 41(6) -4(5) 1(4) 0(4) O(2) 34(5) 31(6) 35(5) 1(5) 1(4) 0(4) O(3) 36(8) 29(8) 22(5) 0 0 -3(7) O(4) 61(8) 61(8) 45(10) 0 0 -8(12) O(5) 240(30) 240(30) 140(30) 100(20) 100(20) 20(40) O(6) 54(8) 54(8) 83(18) 0 0 -16(10) O(7) 72(19) 72(19) 22(17) 0 0 0 ________________________________________________________________________ ! 154! Crystallographic Table 14. Crystal data and structure refinement for {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O (U4) . Identification code U4 Empirical formula C 12 N 12 O 15 Pt 3 U 2 Formula weight 1613.57 Temperature 183(2) K Wavelength 0.71073 ? Crystal system, space group Triclinic, P-1 Unit cel dimensions a = 9.716(4) ? ? = 74.191(7) ? b = 9.823(4) ? ? = 70.734(7) ? c = 9.926(4) ? ? = 67.242(7) ? Volume 813.2(6) ? 3 Z, Calculated density 1, 3.295 Mg/m 3 Absorption coeficient 22.857 mm -1 F(000) 694 Crystal size 0.10 x 0.10 x 0.10 mm Theta range for data collection 2.28 to 28.31 deg. Limiting indices -12<=h<=12, -13<=k<=13, -13<=l<=13 Reflections collected / unique 7998 / 3940 [R(int) = 0.0582] Completenes to theta = 28.31 97.7 % Absorption correction Numerical Max. and min. transmision 0.2083 and 0.2083 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3940 / 0 / 184 Goodnes-of-fit on F 2 1.103 Final R indices [I>2sigma(I)] R1 = 0.0669, wR2 = 0.1618 R indices (al data) R1 = 0.0781, wR2 = 0.1681 Largest dif. peak and hole 3.760 and -4.888 e. ? -3 ! 155! Crystallographic Table 15. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ U(1) 3933(1) -6003(1) 4254(1) 18(1) N(1) -3216(15) 2390(15) 3598(15) 27(3) N(2) 2717(15) -3189(14) 3459(16) 26(3) N(3) 1899(12) 1804(13) 2245(13) 17(1) N(4) -2136(13) -2455(13) 4513(13) 17(1) N(5) -1730(20) 3471(18) 9774(19) 45(4) N(6) -3250(20) -370(20) 11280(20) 58(5) Pt(1) -140(1) -286(1) 3396(1) 17(1) Pt(2) 0 0 10000 24(1) C(1) -2092(16) 1456(14) 3509(16) 18(3) C(2) 1741(18) -2101(16) 3400(18) 24(3) C(3) 1085(15) 1104(15) 2659(16) 17(1) C(4) -1371(17) -1665(16) 4100(18) 26(3) C(5) -1080(20) 2204(19) 9828(19) 38(5) C(6) -2063(19) -330(20) 10779(19) 32(4) O(1) 5000 -5000 5000 28(4) O(2) 5195(14) -5176(13) 1741(13) 36(3) O(3) 4603(16) -7770(15) 6431(14) 40(3) O(4) 4464(16) -8043(18) 2930(19) 55(4) O(5) 1764(15) -4828(15) 6247(16) 45(3) O(6) 1874(16) -5401(15) 2975(17) 45(3) O(7) 5120(20) -2350(20) 600(20) 85(6) O(8) 1570(30) -5930(20) 9090(20) 89(7) ________________________________________________________________ ! 156! Crystallographic Table 16. Bond lengths [?] and angles [?] for {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O. _____________________________________________________________ U(1)-O(1) 2.0706(7) U(1)-O(2) 2.456(12) U(1)-O(3) 2.473(12) U(1)-O(4) 2.489(13) U(1)-O(5) 2.509(12) U(1)-O(6) 2.514(13) U(1)-N(4)#1 2.543(12) U(1)-N(2) 2.561(13) U(1)-N(1)#2 2.565(13) N(1)-C(1) 1.117(18) N(1)-U(1)#3 2.565(13) N(2)-C(2) 1.125(19) N(3)-C(3) 1.148(19) N(4)-C(4) 1.18(2) N(4)-U(1)#1 2.543(12) N(5)-C(5) 1.15(2) N(6)-C(6) 1.11(2) Pt(1)-C(4) 1.985(18) Pt(1)-C(3) 1.989(14) Pt(1)-C(1) 1.997(13) Pt(1)-C(2) 2.000(15) Pt(1)-Pt(2) 6.685(3) Pt(2)-C(5)#4 1.995(17) Pt(2)-C(5) 1.995(17) Pt(2)-C(6) 2.014(18) Pt(2)-C(6)#4 2.014(18) O(1)-U(1)#5 2.0706(7) O(1)-U(1)-O(2) 90.5(3) O(1)-U(1)-O(3) 75.9(3) O(2)-U(1)-O(3) 139.6(4) O(1)-U(1)-O(4) 142.7(3) O(2)-U(1)-O(4) 74.7(5) O(3)-U(1)-O(4) 93.3(6) O(1)-U(1)-O(5) 78.9(3) O(2)-U(1)-O(5) 137.0(4) O(3)-U(1)-O(5) 78.2(5) O(4)-U(1)-O(5) 134.5(5) O(1)-U(1)-O(6) 142.0(3) O(2)-U(1)-O(6) 77.9(5) O(3)-U(1)-O(6) 134.2(5) ! 157! O(4)-U(1)-O(6) 68.9(5) O(5)-U(1)-O(6) 85.4(5) O(1)-U(1)-N(4)#1 134.0(3) O(2)-U(1)-N(4)#1 135.5(4) O(3)-U(1)-N(4)#1 66.8(4) O(4)-U(1)-N(4)#1 67.6(4) O(5)-U(1)-N(4)#1 68.1(4) O(6)-U(1)-N(4)#1 67.4(4) O(1)-U(1)-N(2) 75.1(3) O(2)-U(1)-N(2) 68.5(4) O(3)-U(1)-N(2) 139.2(5) O(4)-U(1)-N(2) 126.8(5) O(5)-U(1)-N(2) 68.5(5) O(6)-U(1)-N(2) 66.9(4) N(4)#1-U(1)-N(2) 117.8(4) O(1)-U(1)-N(1)#2 76.7(3) O(2)-U(1)-N(1)#2 69.1(4) O(3)-U(1)-N(1)#2 70.7(5) O(4)-U(1)-N(1)#2 66.0(5) O(5)-U(1)-N(1)#2 144.2(5) O(6)-U(1)-N(1)#2 129.3(5) N(4)#1-U(1)-N(1)#2 113.2(4) N(2)-U(1)-N(1)#2 128.1(5) C(1)-N(1)-U(1)#3 164.9(13) C(2)-N(2)-U(1) 155.2(13) C(4)-N(4)-U(1)#1 171.5(12) C(4)-Pt(1)-C(3) 179.1(6) C(4)-Pt(1)-C(1) 89.5(6) C(3)-Pt(1)-C(1) 90.2(6) C(4)-Pt(1)-C(2) 87.4(6) C(3)-Pt(1)-C(2) 92.9(6) C(1)-Pt(1)-C(2) 176.2(6) C(4)-Pt(1)-Pt(2) 94.7(5) C(3)-Pt(1)-Pt(2) 86.2(4) C(1)-Pt(1)-Pt(2) 90.8(4) C(2)-Pt(1)-Pt(2) 87.2(5) C(5)#4-Pt(2)-C(5) 180.000(3) C(5)#4-Pt(2)-C(6) 90.7(8) C(5)-Pt(2)-C(6) 89.3(8) C(5)#4-Pt(2)-C(6)#4 89.3(8) C(5)-Pt(2)-C(6)#4 90.7(8) C(6)-Pt(2)-C(6)#4 180.0(4) C(5)#4-Pt(2)-Pt(1) 86.0(5) C(5)-Pt(2)-Pt(1) 94.0(5) C(6)-Pt(2)-Pt(1) 88.5(5) C(6)#4-Pt(2)-Pt(1) 91.5(5) ! 158! N(1)-C(1)-Pt(1) 177.2(14) N(2)-C(2)-Pt(1) 174.2(14) N(3)-C(3)-Pt(1) 174.3(11) N(4)-C(4)-Pt(1) 178.3(12) N(5)-C(5)-Pt(2) 177.9(17) N(6)-C(6)-Pt(2) 172.0(19) U(1)-O(1)-U(1)#5 180.000(18) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+2 #2 x-1,y+1,z #3 -x,-y-1,-z+1 #4 x+1,y-1,z #5 -x+1,-y-1,-z+1 ! 159! Crystallographic Table 17. Anisotropic displacement parameters (? 2 x 10 3 ) for {U 2 (H 2 O) 10 (O)[Pt(CN) 4 ] 3 }?4H 2 O. The anisotropic displacement factor exponent takes the form: -2 ?^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]. _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ U(1) 12(1) 14(1) 28(1) -7(1) -3(1) -2(1) N(1) 27(7) 20(6) 32(7) -14(5) -7(6) 2(5) N(2) 22(6) 19(6) 37(8) -4(6) - 10(6) -6(5) N(3) 11(1) 14(1) 25(1) -6(1) -3(1) -1(1) N(4) 11(1) 14(1) 25(1) -6(1) -3(1) -1(1) N(5) 53(10) 29(8) 42(10) -7(7) -10(8) -2(8) N(6) 38(10) 66(13) 55(12) 3(10) 0(9) -21(9) Pt(1) 11(1) 14(1) 25(1) -6(1) -3(1) -1(1) Pt(2) 22(1) 23(1) 22(1) -6(1) -2(1) -4(1) C(1) 20(7) 11(6) 22(7) -2(5) -6(6) -4(5) C(2) 24(7) 20(7) 30(9) -9(6) -3(7) -9(6) C(3) 11(1) 14(1) 25(1) -6(1) -3(1) -1(1) C(4) 18(7) 18(7) 32(9) -6(6) -13(7) 9(6) C(5) 44(10) 25(8) 30(9) -8(7) -9(8) 6(8) C(6) 24(8) 36(9) 28(9) -4(7) -1(7) -7(7) O(1) 17(7) 11(6) 49(11) -4(7) -8(7) 2(6) O(2) 36(7) 29(6) 32(7) -3(5) -2(6) -4(5) O(3) 46(8) 48(8) 37(8) 14(6) -21(6) -32(7) O(4) 33(7) 63(9) 80(11) -53(9) 5(7) -16(7) O(5) 36(7) 39(7) 50(9) -17(6) 9(6) -12(6) O(6) 43(8) 36(7) 66(10) 1(7) -34(7) -14(6) O(7) 72(13) 86(14) 102(16) 29(12) -40(12) -44(11) O(8) 125(18) 83(14) 61(12) -33(11) -3(12) -41(13) _______________________________________________________________________ ! 160! Crystallographic Table 18. Crystal data and structure refinement for {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 ? . 8H 2 O, Th5. Identification code Th5 Empirical formula C 12 N 12 O 20 Pd 3 Th 2 Formula weight 1415.52 Temperature 183(2) K Wavelength 0.71073 ? Crystal system, space group Triclinic, P-1 Unit cel dimensions a = 9.6141(6) ? ? = 73.7480(10) ? b = 9.9479(6) ? ? = 78.0950(10) ? c= 11.1360(7) ? ? = 68.6530(10) ? Volume 945.82(10) ? 3 Z, Calculated density 1, 2.485 Mg/m 3 Absorption coeficient 9.315 mm 1 F(000) 634 Crystal size 0.10 x 0.10 x 0.10 mm Theta range for data collection 1.92 to 28.30 deg. Limiting indices -12<=h<=11, -13<=k<=13, -14<=l<=14 Reflections collected / unique 9619 / 4604 [R(int) = 0.0270] Completenes to theta = 28.30 98.0 % Absorption correction None Max. and min. transmision 0.4560 and 0.4560 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4604 / 0 / 223 Goodnes-of-fit on F 2 1.055 Final R indices [I>2sigma(I)] R1 = 0.0282, wR2 = 0.0705 R indices (al data) R1 = 0.0307, wR2 = 0.0715 Largest dif. peak and hole 1.971 and -1.153 e. ? -3 ! 161! Crystallographic Table 19. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ Th(1) 14489(1) 4502(1) 3568(1) 14(1) Pd(1) 10269(1) 6655(1) -29(1) 15(1) Pd(2) 10000 10000 0 19(1) C(1) 11742(6) 5874(5) 1220(5) 19(1) C(2) 11950(6) 6406(6) -1433(5) 19(1) C(3) 8729(6) 7455(6) -1214(5) 22(1) C(4) 8649(6) 6816(5) 1402(5) 20(1) C(5) 12223(6) 9136(6) -235(5) 23(1) C(6) 10053(6) 9469(6) 1838(5) 25(1) N(1) 12559(5) 5457(5) 1968(5) 26(1) N(2) 12946(5) 6228(5) -2209(5) 23(1) N(3) 7840(6) 7917(6) -1900(5) 35(1) N(4) 7757(6) 6832(6) 2270(5) 32(1) N(5) 13498(6) 8561(6) -337(5) 32(1) N(6) 10063(6) 9136(6) 2920(5) 35(1) O(1) 15863(4) 5615(4) 4239(3) 15(1) O(2) 14684(4) 2638(4) 2358(4) 24(1) O(3) 12531(4) 3314(4) 4517(4) 25(1) O(4) 15960(5) 1979(4) 4598(4) 30(1) O(6) 12295(4) 6616(4) 4095(4) 29(1) O(7) 14774(5) 6731(4) 1867(4) 33(1) O(8) 6790(5) 9365(4) 3782(4) 30(1) O(9) 10241(5) 6175(5) 6143(4) 35(1) O(10) 4255(7) 9248(5) 2909(5) 51(1) O(11) 9840(50) 9160(20) 5551(16) 460(20) ________________________________________________________________ ! 162! Crystallographic Table 20. Bond lengths [?] and angles [?] for {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O. _____________________________________________________________ Th(1)-O(1) 2.337(3) Th(1)-O(1)#1 2.371(3) Th(1)-O(4) 2.468(4) Th(1)-O(3) 2.482(4) Th(1)-O(6) 2.484(4) Th(1)-O(2) 2.516(3) Th(1)-O(7) 2.541(4) Th(1)-N(1) 2.579(5) Th(1)-N(2)#2 2.582(5) Th(1)-Th(1)#1 3.9858(4) Pd(1)-C(3) 1.981(5) Pd(1)-C(4) 1.982(5) Pd(1)-C(1) 1.988(5) Pd(1)-C(2) 2.000(5) Pd(1)-Pd(2) 3.2511(4) Pd(2)-C(6) 1.973(6) Pd(2)-C(6)#3 1.973(6) Pd(2)-C(5) 1.983(6) Pd(2)-C(5)#3 1.983(6) Pd(2)-Pd(1)#3 3.2511(4) C(1)-N(1) 1.150(7) C(2)-N(2) 1.147(7) C(3)-N(3) 1.146(7) C(4)-N(4) 1.152(7) C(5)-N(5) 1.145(7) C(6)-N(6) 1.157(8) N(2)-Th(1)#2 2.582(4) O(1)-Th(1)#1 2.371(3) O(1)-Th(1)-O(1)#1 64.30(13) O(1)-Th(1)-O(4) 93.27(13) O(1)#1-Th(1)-O(4) 72.64(13) O(1)-Th(1)-O(3) 137.15(12) O(1)#1-Th(1)-O(3) 73.01(12) O(4)-Th(1)-O(3) 77.08(14) O(1)-Th(1)-O(6) 84.07(13) O(1)#1-Th(1)-O(6) 69.66(12) O(4)-Th(1)-O(6) 139.25(14) ! 163! O(3)-Th(1)-O(6) 77.70(13) O(1)-Th(1)-O(2) 144.27(12) O(1)#1-Th(1)-O(2) 131.48(12) O(4)-Th(1)-O(2) 68.76(13) O(3)-Th(1)-O(2) 70.67(13) O(6)-Th(1)-O(2) 129.88(13) O(1)-Th(1)-O(7) 70.53(12) O(1)#1-Th(1)-O(7) 124.53(12) O(4)-Th(1)-O(7) 141.48(15) O(3)-Th(1)-O(7) 138.16(13) O(6)-Th(1)-O(7) 75.43(14) O(2)-Th(1)-O(7) 103.99(14) O(1)-Th(1)-N(1) 133.45(13) O(1)#1-Th(1)-N(1) 130.54(14) O(4)-Th(1)-N(1) 132.15(14) O(3)-Th(1)-N(1) 73.74(14) O(6)-Th(1)-N(1) 68.24(14) O(2)-Th(1)-N(1) 66.17(13) O(7)-Th(1)-N(1) 66.76(14) O(1)-Th(1)-N(2)#2 77.45(13) O(1)#1-Th(1)-N(2)#2 125.54(13) O(4)-Th(1)-N(2)#2 72.47(15) O(3)-Th(1)-N(2)#2 135.05(14) O(6)-Th(1)-N(2)#2 144.56(14) O(2)-Th(1)-N(2)#2 67.87(13) O(7)-Th(1)-N(2)#2 70.00(15) N(1)-Th(1)-N(2)#2 103.85(15) O(1)-Th(1)-Th(1)#1 32.41(8) O(1)#1-Th(1)-Th(1)#1 31.90(8) O(4)-Th(1)-Th(1)#1 81.72(10) O(3)-Th(1)-Th(1)#1 104.84(9) O(6)-Th(1)-Th(1)#1 74.50(10) O(2)-Th(1)-Th(1)#1 150.45(9) O(7)-Th(1)-Th(1)#1 98.15(9) N(1)-Th(1)-Th(1)#1 142.17(10) N(2)#2-Th(1)-Th(1)#1 102.61(10) C(3)-Pd(1)-C(4) 89.6(2) C(3)-Pd(1)-C(1) 177.5(2) C(4)-Pd(1)-C(1) 87.9(2) C(3)-Pd(1)-C(2) 92.1(2) C(4)-Pd(1)-C(2) 177.6(2) C(1)-Pd(1)-C(2) 90.4(2) C(3)-Pd(1)-Pd(2) 90.37(15) C(4)-Pd(1)-Pd(2) 85.76(14) C(1)-Pd(1)-Pd(2) 89.07(14) ! 164! C(2)-Pd(1)-Pd(2) 95.97(14) C(6)-Pd(2)-C(6)#3 180.00(9) C(6)-Pd(2)-C(5) 89.3(2) C(6)#3-Pd(2)-C(5) 90.7(2) C(6)-Pd(2)-C(5)#3 90.7(2) C(6)#3-Pd(2)-C(5)#3 89.3(2) C(5)-Pd(2)-C(5)#3 180.00(16) C(6)-Pd(2)-Pd(1) 91.79(16) C(6)#3-Pd(2)-Pd(1) 88.21(16) C(5)-Pd(2)-Pd(1) 81.32(15) C(5)#3-Pd(2)-Pd(1) 98.68(15) C(6)-Pd(2)-Pd(1)#3 88.21(16) C(6)#3-Pd(2)-Pd(1)#3 91.79(16) C(5)-Pd(2)-Pd(1)#3 98.68(15) C(5)#3-Pd(2)-Pd(1)#3 81.32(15) Pd(1)-Pd(2)-Pd(1)#3 180.0 N(1)-C(1)-Pd(1) 177.5(5) N(2)-C(2)-Pd(1) 177.6(5) N(3)-C(3)-Pd(1) 179.9(7) N(4)-C(4)-Pd(1) 176.1(5) N(5)-C(5)-Pd(2) 176.1(5) N(6)-C(6)-Pd(2) 178.3(5) C(1)-N(1)-Th(1) 177.5(5) C(2)-N(2)-Th(1)#2 168.0(4) Th(1)-O(1)-Th(1)#1 115.70(13) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+3,-y+1,-z+1 #2 -x+3,-y+1,-z #3 -x+2,-y+2,-z ! 165! Crystallographic Table 21. Anisotropic displacement parameters (A 2 x 10 3 ) for {Th 2 (H 2 O) 10 (OH) 2 [Pd(CN) 4 ] 3 }?8H 2 O. The anisotropic displacement factor exponent takes the form: -2 ? 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ Th(1) 11(1) 18(1) 11(1) -3(1) -1(1) -4(1) Pd(1) 11(1) 19(1) 13(1) -4(1) -1(1) -4(1) Pd(2) 18(1) 17(1) 19(1) -3(1) -3(1) -3(1) C(1) 18(2) 19(2) 19(2) -3(2) -3(2) -7(2) C(2) 14(2) 25(2) 19(3) -4(2) -3(2) -8(2) C(3) 20(3) 25(2) 24(3) -9(2) -2(2) -8(2) C(4) 17(2) 21(2) 23(3) -4(2) 0(2) -7(2) C(5) 26(3) 24(2) 18(3) -6(2) -2(2) -7(2) C(6) 23(3) 26(2) 24(3) -6(2) -4(2) -6(2) N(1) 25(2) 27(2) 23(2) -2(2) -9(2) -6(2) N(2) 17(2) 28(2) 27(2) -12(2) 1(2) -8(2) N(3) 34(3) 31(3) 40(3) -7(2) -17(3) -5(2) N(4) 32(3) 35(3) 29(3) -11(2) 10(2) -17(2) N(5) 22(3) 36(3) 34(3) -10(2) -1(2) -3(2) N(6) 33(3) 39(3) 27(3) -3(2) -7(2) -5(2) O(1) 15(2) 22(2) 12(2) -3(1) -1(1) -10(1) O(2) 19(2) 28(2) 30(2) -17(2) -3(2) -5(2) O(3) 22(2) 29(2) 23(2) 1(2) -4(2) -13(2) O(4) 36(2) 18(2) 26(2) -2(2) -9(2) 1(2) O(6) 18(2) 32(2) 23(2) -3(2) 1(2) 4(2) O(7) 42(3) 32(2) 26(2) 10(2) -19(2) -18(2) O(8) 32(2) 25(2) 28(2) -4(2) 0(2) -8(2) O(9) 22(2) 55(3) 27(2) -8(2) -2(2) -12(2) O(10) 65(4) 34(2) 57(3) -7(2) -32(3) -7(2) O(11) 1090(80) 260(20) 119(14) -52(15) 50(30) -360(40) _______________________________________________________________________ ! 166! Crystallographic Table 22 Crystal data and structure refinement for U6,{(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]}. Identification code U6 Empirical formula C 24 H 48 N 8 Ni 2 O 20 S 8 U 4 Formula weight 2094.72 Temperature 183(2) K Wavelength 0.71073 ? Crystal system, space group Monoclinic, C 2/c Unit cel dimensions a = 21.5224(11) ? ? = 90 ? b = 10.2531(5) ? ? = 111.9430(10)? c = 13.3170(6) ? ? = 90 ? Volume 2725.8(2) ? 3 Z, Calculated density 2, 2.552 Mg/m 3 Absorption coeficient 2.892 mm -1 F(000) 1920 Crystal size 0.10 x 0.10 x 0.10 mm Theta range for data collection 2.04 to 28.32 ? Limiting indices -28<=h<=25, -13<=k<=13, -12<=l<=17 Reflections collected / unique 10040 / 3358 [R(int) = 0.0292] Completenes to theta = 28.32 98.9 % Absorption correction Empirical Max. and min. transmision 0.3588 and 0.3588 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3358 / 0 / 146 Goodnes-of-fit on F 2 1.057 Final R indices [I>2sigma(I)] R1 = 0.0298, wR2 = 0.0724 R indices (al data) R1 = 0.0346, wR2 = 0.0746 Largest dif. peak and hole 1.937 and -1.110 e. ? -3 ! 167! Crystallographic Table 23. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]}. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ Ni(1) 5000 7183(1) 2500 21(1) U(1) 3110(1) 11034(1) 503(1) 20(1) O(1) 3164(2) 11299(4) 1851(3) 27(1) O(2) 3113(2) 10683(4) -803(3) 32(1) O(3) 2997(2) 13276(3) 186(4) 29(1) O(5) 2493(2) 9073(3) 374(3) 27(1) O(6) 4224(2) 11862(4) 1002(4) 34(1) C(1) 4375(3) 8440(5) 1758(5) 26(1) C(2) 4373(3) 5883(5) 1834(6) 32(1) C(3) 1886(3) 9276(6) 1750(6) 39(2) C(4) 2834(3) 7466(6) 2013(5) 37(1) C(5) 5472(6) 11375(11) 1315(10) 86(3) C(6) 4797(6) 13323(11) 17(10) 86(3) S(1) 2159(1) 8211(1) 953(1) 29(1) S(2) 4682(1) 11754(2) 354(1) 40(1) N(1) 3979(2) 9209(4) 1294(4) 30(1) N(2) 3995(3) 5090(5) 1436(6) 49(2) ________________________________________________________________ ! 168! Crystallographic Table 24. Bond lengths [?] and angles [?] for {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]}. _____________________________________________________________ Ni(1)-C(1)#1 1.858(5) Ni(1)-C(1) 1.858(5) Ni(1)-C(2) 1.868(6) Ni(1)-C(2)#1 1.868(6) U(1)-O(1) 1.776(4) U(1)-O(2) 1.779(4) U(1)-O(3)#2 2.321(4) U(1)-O(3) 2.334(4) U(1)-O(5) 2.380(4) U(1)-O(6) 2.391(4) U(1)-N(1) 2.577(5) U(1)-U(1)#2 3.8853(4) O(3)-U(1)#2 2.321(4) O(5)-S(1) 1.520(4) O(6)-S(2) 1.538(5) C(1)-N(1) 1.156(7) C(2)-N(2) 1.132(7) C(3)-S(1) 1.769(7) C(4)-S(1) 1.776(6) C(5)-S(2) 1.748(12) C(6)-S(2) 1.712(11) C(1)#1-Ni(1)-C(1) 92.2(3) C(1)#1-Ni(1)-C(2) 176.6(3) C(1)-Ni(1)-C(2) 89.5(2) C(1)#1-Ni(1)-C(2)#1 89.5(2) C(1)-Ni(1)-C(2)#1 176.6(3) C(2)-Ni(1)-C(2)#1 89.0(3) O(1)-U(1)-O(2) 175.37(18) O(1)-U(1)-O(3)#2 91.29(17) O(2)-U(1)-O(3)#2 93.06(18) O(1)-U(1)-O(3) 89.74(17) O(2)-U(1)-O(3) 93.45(18) O(3)#2-U(1)-O(3) 66.83(15) O(1)-U(1)-O(5) 91.51(17) O(2)-U(1)-O(5) 87.94(17) O(3)#2-U(1)-O(5) 76.46(13) O(3)-U(1)-O(5) 143.29(13) O(1)-U(1)-O(6) 89.15(17) O(2)-U(1)-O(6) 88.49(18) O(3)#2-U(1)-O(6) 140.94(14) O(3)-U(1)-O(6) 74.12(13) ! 169! O(5)-U(1)-O(6) 142.58(14) O(1)-U(1)-N(1) 86.29(18) O(2)-U(1)-N(1) 89.14(19) O(3)#2-U(1)-N(1) 149.80(14) O(3)-U(1)-N(1) 143.13(14) O(5)-U(1)-N(1) 73.52(14) O(6)-U(1)-N(1) 69.19(14) O(1)-U(1)-U(1)#2 90.61(13) O(2)-U(1)-U(1)#2 93.90(14) O(3)#2-U(1)-U(1)#2 33.52(9) O(3)-U(1)-U(1)#2 33.32(9) O(5)-U(1)-U(1)#2 109.98(9) O(6)-U(1)-U(1)#2 107.43(10) N(1)-U(1)-U(1)#2 175.42(11) U(1)#2-O(3)-U(1) 113.17(15) S(1)-O(5)-U(1) 144.3(3) S(2)-O(6)-U(1) 127.2(3) N(1)-C(1)-Ni(1) 179.0(5) N(2)-C(2)-Ni(1) 179.5(7) O(5)-S(1)-C(3) 105.8(3) O(5)-S(1)-C(4) 104.6(3) C(3)-S(1)-C(4) 98.3(3) O(6)-S(2)-C(6) 105.4(4) O(6)-S(2)-C(5) 104.9(4) C(6)-S(2)-C(5) 101.7(6) C(1)-N(1)-U(1) 172.5(5) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 #2 -x+1/2,-y+5/2,-z ! 170! Crystallographic Table 25. Anisotropic displacement parameters (? 2 x 10 3 ) for {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]}. The anisotropic displacement factor exponent takes the form: -2 ? 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ Ni(1) 14(1) 12(1) 29(1) 0 -1(1) 0 U(1) 17(1) 16(1) 24(1) 3(1) 2(1) 2(1) O(1) 23(2) 33(2) 23(2) -4(2) 7(2) 1(2) O(2) 38(2) 32(2) 23(2) 3(2) 7(2) 0(2) O(3) 17(2) 15(2) 47(2) 6(2) 2(2) -1(1) O(5) 27(2) 19(2) 33(2) 2(2) 9(2) -2(1) O(6) 23(2) 28(2) 46(3) 5(2) 9(2) -1(2) C(1) 19(2) 19(2) 34(3) 0(2) 4(2) -5(2) C(2) 22(3) 17(2) 47(4) -2(2) 2(2) 4(2) C(3) 40(4) 33(3) 48(4) -1(3) 21(3) 7(3) C(4) 42(4) 33(3) 41(4) 14(3) 22(3) 14(3) C(5) 89(6) 80(5) 113(7) 34(5) 65(5) 28(4) C(6) 89(6) 80(5) 113(7) 34(5) 65(5) 28(4) S(1) 28(1) 20(1) 40(1) -3(1) 13(1) -4(1) S(2) 29(1) 50(1) 38(1) 1(1) 10(1) 2(1) N(1) 25(2) 19(2) 42(3) 3(2) 5(2) 4(2) N(2) 25(3) 25(3) 82(5) -15(3) 2(3) -5(2) _______________________________________________________________________ ! 171! Crystallographic Table 26. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (? 2 x 10 3 ) for {(UO 2 ) 2 (DMSO) 4 (OH) 2 [Ni(CN) 4 ]}. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(3A) 1501 9781 1279 59 H(3B) 2250 9870 2152 59 H(3C) 1754 8765 2261 59 H(4A) 3051 6824 1707 55 H(4B) 2663 7028 2512 55 H(4C) 3160 8134 2406 55 H(5A) 5448 10551 1671 129 H(5B) 5618 12072 1856 129 H(5C) 5793 11289 956 129 H(6A) 4364 13702 -430 129 H(6B) 5095 13323 -389 129 H(6C) 5000 13841 679 129 ________________________________________________________________ ! 172! Crystallographic Table 27. Crystal data and structure refinement for [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] ?NO 3, Th8. Identification code Th8 Empirical formula C 22 H 48 Fe N 7 O 11 S 8 Th Formula weight 1131.08 Temperature 183(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P2 1 /n Unit cel dimensions a = 11.9796(9) ? ? = 90 ? b = 17.7389(13) ? ? = 90.117(2) ? c = 20.0389(15) ? ? = 90 ? Volume 4258.4(5) ? 3 Z, Calculated density 4, 3.446 Mg/m 3 Absorption coeficient 4.276 mm -1 F(000) 3920 Crystal size 0.10 x 0.10 x 0.10 mm Theta range for data collection 1.53 to 28.31 deg. Limiting indices -15<=h<=15, -23<=k<=23, -26<=l<=26 Reflections collected / unique 43457 / 10579 [R(int) = 0.0690] Completenes to theta = 28.31 99.8 % Absorption correction None Max. and min. transmision 0.2261 and 0.2261 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 10579 / 0 / 452 Goodnes-of-fit on F^2 1.111 Final R indices [I>2sigma(I)] R1 = 0.0840, wR2 = 0.2100 R indices (al data) R1 = 0.1029, wR2 = 0.2164 Largest dif. peak and hole 9.836 and -2.858 e.? -3 ! 173! Crystallographic Table 28. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] . NO 3 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ Th(1) 7548(1) 2367(1) 935(1) 19(1) Fe(1) 7372(2) 878(1) -1612(1) 23(1) S(1) 6844(3) 384(2) 1220(2) 29(1) O(1) 7600(8) 1011(5) 965(5) 29(2) C(1) 5757(11) 955(8) -1711(7) 30(3) N(1) 4803(11) 1001(8) -1775(7) 46(3) N(2) 7303(10) 1761(6) -278(5) 31(2) N(3) 9921(10) 747(9) -1586(8) 53(4) N(4) 7463(11) -2(7) -2944(6) 41(3) N(5) 7662(12) 2377(8) -2404(8) 54(4) N(6) 7200(13) -623(8) -805(6) 47(3) N(7) 7335(18) 6041(9) 709(9) 62(4) S(2) 4765(3) 2705(2) 348(2) 37(1) O(2) 5582(7) 2180(6) 722(5) 35(2) C(2) 7315(10) 1441(7) -777(6) 25(2) O(3) 7174(10) 3327(6) 135(5) 40(2) C(3) 8999(12) 815(8) -1587(7) 37(3) S(3) 7015(6) 3602(4) -567(3) 83(2) O(4) 6541(9) 3381(6) 1494(5) 40(2) C(4) 7424(11) 322(7) -2447(6) 28(3) S(4) 6707(3) 4228(2) 1459(2) 37(1) O(5) 6595(9) 1903(6) 1936(5) 42(3) C(5) 7512(11) 1826(8) -2095(6) 28(3) S(5) 5443(3) 2130(2) 2197(2) 37(1) O(6) 8968(9) 2030(6) 1739(6) 46(3) C(6) 7254(12) -69(8) -1110(7) 34(3) S(6) 9180(4) 1467(2) 2287(2) 44(1) O(7) 9306(9) 2256(6) 357(6) 44(3) C(7) 7511(11) -457(7) 964(7) 27(2) S(7) 9791(5) 1865(3) -244(3) 67(1) O(8) 8746(8) 3454(6) 1220(6) 47(3) C(8) 5714(12) 362(9) 631(8) 39(3) S(8) 9816(4) 3787(2) 955(2) 49(1) C(9) 4242(14) 2116(11) -294(7) 47(4) ! 174! O(9) 7583(17) 5917(8) 1287(8) 87(5) C(10) 3544(14) 2720(12) 858(9) 56(5) O(10) 8020(20) 6089(12) 281(12) 118(7) C(11) 9290(20) 2069(14) 3016(9) 75(6) O(11) 6360(16) 6028(10) 504(9) 88(5) C(12) 10630(14) 1223(11) 2209(10) 57(5) C(13) 5717(17) 2375(12) 3038(8) 58(5) C(14) 4737(15) 1248(9) 2303(9) 48(4) C(15) 6890(30) 4591(13) -487(11) 130(15) C(16) 7950(30) 3679(17) -620(20) 280(40) C(17) 5311(17) 4589(12) 1499(12) 68(6) C(18) 7198(18) 4501(10) 2275(8) 54(5) C(19) 10883(15) 3416(10) 1451(10) 54(4) C(20) 9860(18) 4696(11) 1283(16) 98(10) C(21) 9920(20) 884(11) 84(17) 108(12) C(22) 11165(13) 2077(10) -260(9) 50(4) ________________________________________________________________ ! 175! Crystallographic Table 29. Bond lengths [?] and angles [?] for, [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] . NO 3 . _____________________________________________________________ Th(1)-O(3) 2.379(10) Th(1)-O(1) 2.407(9) Th(1)-O(7) 2.413(10) Th(1)-O(2) 2.415(9) Th(1)-O(6) 2.416(10) Th(1)-O(4) 2.439(9) Th(1)-O(5) 2.453(10) Th(1)-O(8) 2.470(10) Th(1)-N(2) 2.674(11) Fe(1)-C(4) 1.944(13) Fe(1)-C(5) 1.947(13) Fe(1)-C(1) 1.950(14) Fe(1)-C(2) 1.950(12) Fe(1)-C(3) 1.952(15) Fe(1)-C(6) 1.964(15) S(1)-O(1) 1.523(9) S(1)-C(7) 1.770(12) S(1)-C(8) 1.795(14) C(1)-N(1) 1.152(18) N(2)-C(2) 1.149(16) N(3)-C(3) 1.111(18) N(4)-C(4) 1.150(17) N(5)-C(5) 1.172(19) N(6)-C(6) 1.158(19) N(7)-O(10) 1.19(2) N(7)-O(9) 1.22(2) N(7)-O(11) 1.24(2) S(2)-O(2) 1.544(10) S(2)-C(9) 1.771(15) S(2)-C(10) 1.787(17) O(3)-S(3) 1.502(11) O(3)-C(16) 1.88(4) S(3)-C(16) 1.14(3) S(3)-C(15) 1.77(2) O(4)-S(4) 1.517(11) S(4)-C(17) 1.792(19) S(4)-C(18) 1.802(16) O(5)-S(5) 1.530(11) S(5)-C(13) 1.770(16) S(5)-C(14) 1.793(16) O(6)-S(6) 1.506(11) ! 176! S(6)-C(12) 1.797(17) S(6)-C(11) 1.81(2) O(7)-S(7) 1.508(12) S(7)-C(22) 1.689(17) S(7)-C(21) 1.87(2) O(8)-S(8) 1.509(12) S(8)-C(20) 1.742(19) S(8)-C(19) 1.747(17) O(3)-Th(1)-O(1) 137.4(3) O(3)-Th(1)-O(7) 84.2(4) O(1)-Th(1)-O(7) 84.7(3) O(3)-Th(1)-O(2) 78.3(4) O(1)-Th(1)-O(2) 83.8(3) O(7)-Th(1)-O(2) 139.1(4) O(3)-Th(1)-O(6) 139.3(4) O(1)-Th(1)-O(6) 73.6(3) O(7)-Th(1)-O(6) 71.7(4) O(2)-Th(1)-O(6) 140.2(4) O(3)-Th(1)-O(4) 71.9(3) O(1)-Th(1)-O(4) 137.5(3) O(7)-Th(1)-O(4) 135.5(4) O(2)-Th(1)-O(4) 72.5(3) O(6)-Th(1)-O(4) 103.0(4) O(3)-Th(1)-O(5) 134.7(4) O(1)-Th(1)-O(5) 69.9(3) O(7)-Th(1)-O(5) 140.6(4) O(2)-Th(1)-O(5) 69.1(4) O(6)-Th(1)-O(5) 72.5(4) O(4)-Th(1)-O(5) 68.9(3) O(3)-Th(1)-O(8) 72.9(4) O(1)-Th(1)-O(8) 139.4(3) O(7)-Th(1)-O(8) 70.6(4) O(2)-Th(1)-O(8) 135.6(3) O(6)-Th(1)-O(8) 68.3(4) O(4)-Th(1)-O(8) 66.8(3) O(5)-Th(1)-O(8) 110.1(4) O(3)-Th(1)-N(2) 69.9(3) O(1)-Th(1)-N(2) 67.9(3) O(7)-Th(1)-N(2) 68.0(4) O(2)-Th(1)-N(2) 71.3(3) O(6)-Th(1)-N(2) 125.7(4) O(4)-Th(1)-N(2) 131.3(4) O(5)-Th(1)-N(2) 123.9(4) O(8)-Th(1)-N(2) 126.0(4) C(4)-Fe(1)-C(5) 90.4(5) ! 177! C(4)-Fe(1)-C(1) 88.9(5) C(5)-Fe(1)-C(1) 88.6(6) C(4)-Fe(1)-C(2) 179.6(6) C(5)-Fe(1)-C(2) 89.3(5) C(1)-Fe(1)-C(2) 90.9(5) C(4)-Fe(1)-C(3) 87.7(5) C(5)-Fe(1)-C(3) 88.6(6) C(1)-Fe(1)-C(3) 175.6(6) C(2)-Fe(1)-C(3) 92.5(5) C(4)-Fe(1)-C(6) 90.5(6) C(5)-Fe(1)-C(6) 178.8(6) C(1)-Fe(1)-C(6) 92.2(6) C(2)-Fe(1)-C(6) 89.8(5) C(3)-Fe(1)-C(6) 90.6(6) O(1)-S(1)-C(7) 104.4(6) O(1)-S(1)-C(8) 104.1(6) C(7)-S(1)-C(8) 97.5(7) S(1)-O(1)-Th(1) 136.2(5) N(1)-C(1)-Fe(1) 179.4(14) C(2)-N(2)-Th(1) 170.9(11) O(10)-N(7)-O(9) 122(2) O(10)-N(7)-O(11) 114(2) O(9)-N(7)-O(11) 123(2) O(2)-S(2)-C(9) 102.7(7) O(2)-S(2)-C(10) 104.5(7) C(9)-S(2)-C(10) 97.8(9) S(2)-O(2)-Th(1) 128.3(6) N(2)-C(2)-Fe(1) 178.2(12) S(3)-O(3)-C(16) 37.2(6) S(3)-O(3)-Th(1) 152.5(6) C(16)-O(3)-Th(1) 133.1(12) N(3)-C(3)-Fe(1) 176.8(14) C(16)-S(3)-O(3) 89.7(17) C(16)-S(3)-C(15) 88(2) O(3)-S(3)-C(15) 104.4(9) S(4)-O(4)-Th(1) 130.1(6) N(4)-C(4)-Fe(1) 179.2(14) O(4)-S(4)-C(17) 103.3(8) O(4)-S(4)-C(18) 105.5(7) C(17)-S(4)-C(18) 99.6(10) S(5)-O(5)-Th(1) 127.8(6) N(5)-C(5)-Fe(1) 175.4(13) O(5)-S(5)-C(13) 103.0(8) O(5)-S(5)-C(14) 103.7(7) C(13)-S(5)-C(14) 100.9(9) S(6)-O(6)-Th(1) 140.2(7) ! 178! N(6)-C(6)-Fe(1) 178.7(14) O(6)-S(6)-C(12) 105.0(8) O(6)-S(6)-C(11) 102.0(9) C(12)-S(6)-C(11) 98.4(11) S(7)-O(7)-Th(1) 139.4(7) O(7)-S(7)-C(22) 106.9(8) O(7)-S(7)-C(21) 100.3(10) C(22)-S(7)-C(21) 97.8(10) S(8)-O(8)-Th(1) 135.9(7) O(8)-S(8)-C(20) 104.7(11) O(8)-S(8)-C(19) 105.8(8) C(20)-S(8)-C(19) 96.4(9) S(3)-C(16)-O(3) 53.0(18) _____________________________________________________________ ! 179! Crystallographic Table 30. Anisotropic displacement parameters (A 2 x 10 3 ) for [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] . NO 3 . The anisotropic displacement factor exponent takes the form: -2 ?^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ Th(1) 20(1) 19(1) 18(1) -2(1) 1(1) 0(1) Fe(1) 27(1) 24(1) 18(1) -3(1) 1(1) 0(1) S(1) 30(2) 28(2) 27(2) 0(1) 3(1) 2(1) O(1) 34(5) 21(4) 32(5) -3(4) 5(4) 0(4) C(1) 30(7) 33(7) 28(6) -2(5) 0(5) -3(5) N(1) 34(7) 52(8) 52(8) 7(6) -6(6) -7(6) N(2) 42(7) 28(6) 23(5) -3(4) 2(5) -3(5) N(3) 24(6) 71(10) 65(10) -13(8) -2(6) 3(6) N(4) 51(8) 40(7) 32(6) -11(5) 0(6) 9(6) N(5) 48(8) 37(7) 76(10) 10(7) -23(7) -1(6) N(6) 70(10) 35(7) 36(7) -1(6) -1(6) 2(7) N(7) 99(14) 34(8) 52(10) -6(7) 12(10) 11(8) S(2) 29(2) 39(2) 42(2) -2(2) -1(1) 1(1) O(2) 21(4) 43(6) 42(5) -5(4) -3(4) -2(4) C(2) 31(6) 26(6) 19(6) 4(5) 3(5) 1(5) O(3) 66(7) 31(5) 22(4) 2(4) 6(5) 3(5) C(3) 41(8) 39(8) 30(7) -14(6) -8(6) 15(6) S(3) 111(5) 93(5) 45(3) 16(3) 20(3) 17(4) O(4) 44(6) 32(5) 44(6) -9(4) 23(5) -1(4) C(4) 27(6) 30(7) 27(6) -2(5) -5(5) 3(5) S(4) 48(2) 31(2) 33(2) -2(1) 9(2) 4(2) O(5) 55(7) 40(6) 31(5) 0(4) 20(5) -1(5) C(5) 30(6) 31(7) 22(6) 4(5) 3(5) 0(5) S(5) 39(2) 38(2) 35(2) 5(2) 12(2) 4(2) O(6) 46(6) 44(6) 49(6) 3(5) -24(5) -1(5) C(6) 39(8) 36(8) 26(6) -3(6) 5(5) 2(6) S(6) 50(2) 41(2) 40(2) 7(2) -7(2) -12(2) O(7) 33(5) 46(7) 51(6) -5(5) 15(5) 2(5) C(7) 28(6) 18(6) 34(6) -3(5) 4(5) 1(5) S(7) 63(3) 66(3) 71(3) -3(3) 5(3) 3(3) O(8) 30(5) 29(5) 80(8) -12(5) -5(5) -1(4) C(8) 28(7) 38(8) 50(9) 10(7) -11(6) -1(6) S(8) 41(2) 46(2) 60(3) 6(2) -5(2) -13(2) C(9) 48(9) 67(11) 27(7) -8(7) -13(6) 4(8) O(9) 143(16) 51(9) 68(10) 2(7) 32(10) 13(9) C(10) 38(8) 88(14) 42(9) -10(9) 5(7) 15(9) O(10) 140(19) 92(14) 121(17) 31(12) 34(15) -6(13) ! 180! C(11) 108(18) 87(16) 31(9) -2(9) 2(10) -2(14) O(11) 89(12) 90(12) 84(11) -6(9) -13(10) 29(10) C(12) 37(9) 58(11) 76(13) 11(10) 1(8) 4(8) C(13) 62(11) 83(14) 29(7) -11(8) -6(7) 10(10) C(14) 52(10) 35(8) 57(10) 3(7) 19(8) -4(7) C(15) 270(40) 66(15) 57(13) 35(12) 70(20) 80(20) C(16) 200(30) 180(30) 460(60) 280(40) -320(40) -190(30) C(17) 65(13) 54(12) 86(15) -4(11) 8(11) 19(10) C(18) 93(14) 41(9) 29(8) 0(7) -6(8) 6(9) C(19) 51(10) 46(10) 64(11) -2(8) -14(9) 2(8) C(20) 63(13) 36(10) 200(30) -30(14) -73(16) 6(9) C(21) 81(15) 33(10) 210(30) 2(14) 97(19) -7(10) C(22) 38(8) 51(10) 62(11) -4(8) 18(8) 1(7) _______________________________________________________________________ ! 181! Crystallographic Table 31. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (A 2 x 10 3 ) for [Th(C 2 H 6 SO) 8 ][Fe(CN) 6 ] . NO 3 . ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(7A) 8180 -540 1237 40 H(7B) 7726 -414 494 40 H(7C) 6998 -883 1019 40 H(8A) 5228 798 703 58 H(8B) 5283 -103 692 58 H(8C) 6014 377 177 58 H(9A) 4820 2041 -633 71 H(9B) 3587 2353 -500 71 H(9C) 4028 1627 -105 71 H(10A) 3687 3026 1257 84 H(10B) 3353 2205 992 84 H(10C) 2922 2939 605 84 H(11A) 8544 2260 3133 113 H(11B) 9782 2495 2918 113 H(11C) 9590 1780 3391 113 H(12A) 10730 891 1823 85 H(12B) 10878 961 2614 85 H(12C) 11073 1682 2148 85 H(13A) 6106 2861 3053 87 H(13B) 6185 1987 3244 87 H(13C) 5011 2414 3281 87 H(14A) 4530 1045 1865 72 H(14B) 4062 1324 2570 72 H(14C) 5232 891 2531 72 H(15A) 6199 4712 -249 195 H(15B) 6871 4821 -932 195 H(15C) 7530 4787 -237 195 H(16A) 8305 3191 -703 424 H(16B) 8253 3890 -200 424 H(16C) 8113 4025 -985 424 H(17A) 4927 4490 1076 103 H(17B) 5335 5134 1580 103 H(17C) 4909 4341 1864 103 H(18A) 7976 4341 2329 81 H(18B) 6737 4260 2617 81 H(18C) 7149 5050 2321 81 H(19A) 11002 2886 1334 81 ! 182! H(19B) 10673 3454 1922 81 H(19C) 11573 3701 1374 81 H(20A) 9299 5010 1060 148 H(20B) 10603 4912 1212 148 H(20C) 9702 4677 1763 148 H(21A) 9172 666 137 163 H(21B) 10298 894 517 163 H(21C) 10350 578 -230 163 H(22A) 11267 2582 -449 76 H(22B) 11560 1707 -536 76 H(22C) 11466 2065 195 76 ________________________________________________________________ ! 183! Crystallographic Table 32. Crystal data and structure refinement for [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O, Th7. Identification code Th7 Empirical formula C 40 H 96 N 8 O 16 Pt 4 S 16 Th 2 Formula weight 2702.65 Temperature 293(2) K Wavelength 0.71073 A Crystal system, space group Triclinic, P-1 Unit cel dimensions a = 12.4199(6) A ? = 102.0800(10) b = 20.3265(10) A ? = 98.2710(10) c = 21.1132(10) A ? = 96.6940(10) Volume 5098.3(4) A 3 Z, Calculated density 2, 1.761 Mg/m 3 Absorption coeficient 8.745 mm -1 F(000) 2536 Crystal size 0.01 x 0.01 x 0.01 mm Theta range for data collection 1.00 to 28.32 deg. Limiting indices -16<=h<=16, -27<=k<=21, -28<=l<=28 Reflections collected / unique 43789 / 23889 [R(int) = 0.0646] Completenes to theta = 28.32 94.0 % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 23889 / 0 / 1031 Goodnes-of-fit on F^2 0.975 Final R indices [I>2sigma(I)] R1 = 0.0582, wR2 = 0.1214 R indices (al data) R1 = 0.1013, wR2 = 0.1447 Largest dif. peak and hole 2.651 and -1.963 e.A -3 ! 184! Crystallographic Table 33. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ Th(1) 4891(1) 7335(1) 2610(1) 24(1) Pt(1) 3634(1) 396(1) 917(1) 32(1) O(1) 4232(5) 7950(4) 3604(4) 32(2) N(1) 9648(10) 7162(7) 757(7) 67(4) O(1W) 56(12) 5711(10) 3913(8) 105(7) Th(2) 9886(1) 2346(1) 2368(1) 22(1) Pt(2) 1326(1) 9159(1) 4251(1) 37(1) O(2) 5334(6) 6876(4) 3568(4) 33(2) N(2) 7300(10) 4264(7) 771(7) 67(4) O(2W) 4386(16) 3360(9) 1226(11) 132(9) Pt(3) 6097(1) 4069(1) 4141(1) 32(1) O(3) 5944(5) 8476(4) 3101(4) 35(2) N(3) 5681(10) 379(6) 1956(6) 64(4) O(3W) 4970(30) 730(20) 3738(18) 131(19) Pt(4) 8438(1) 5726(1) 756(1) 34(1) O(4) 5738(6) 7669(4) 1734(4) 40(2) O(4W) 9070(30) 8505(16) 1388(17) 75(14) O(5) 6910(6) 7282(4) 2838(3) 33(2) O(6) 5299(6) 6201(4) 2189(4) 34(2) S(7) 6035(2) 6360(1) 3766(1) 31(1) O(7) 3717(5) 6791(4) 1538(3) 27(2) S(8) 7618(2) 6902(2) 2393(2) 44(1) O(8) 3204(6) 6695(4) 2746(3) 34(2) S(9) 2812(2) 6599(2) 3377(1) 31(1) O(9) 3614(6) 8075(4) 2304(3) 31(2) S(10) 10915(2) 1435(1) 3576(1) 28(1) C(10) 7110(10) 6877(6) 4389(6) 47(3) S(11) 5391(2) 7770(2) 1045(2) 38(1) O(11) 11782(5) 2199(4) 2639(3) 30(2) C(11) 5262(9) 5992(6) 4262(5) 39(3) S(12) 9335(2) 582(1) 1549(1) 31(1) O(12) 10892(5) 3193(4) 1914(3) 28(2) C(12) 2362(9) 7085(6) 609(5) 34(3) S(13) 8167(2) 3672(2) 2697(2) 36(1) O(13) 10523(5) 1828(4) 1328(3) 27(2) ! 185! C(13) 2251(9) 5725(5) 3178(6) 34(3) S(14) 4985(2) 8248(2) 4255(2) 38(1) O(14) 10463(6) 3355(4) 3269(3) 33(2) S(15) 10318(2) 2093(2) 711(1) 30(1) O(15) 10249(5) 1984(4) 3404(3) 25(2) S(16) 2476(2) 6754(1) 1331(1) 30(1) O(16) 8225(5) 2216(4) 2828(3) 30(2) S(17) 7112(2) 8791(2) 3083(2) 37(1) O(17) 8410(5) 1916(4) 1449(4) 34(2) S(18) 4701(2) 5569(1) 1683(1) 33(1) O(18) 8750(5) 3252(4) 2207(3) 28(2) S(19) 2834(3) 8495(2) 2635(2) 43(1) O(19) 9641(6) 1121(4) 2203(4) 32(2) S(20) 10837(2) 3941(1) 1912(2) 34(1) S(21) 7855(2) 1806(2) 3320(2) 35(1) S(25) 7164(2) 1890(2) 1292(1) 30(1) S(31) 12662(2) 1940(2) 2246(2) 41(1) N(41) -274(9) 7880(7) 4318(6) 63(4) C(51) 7195(9) 3844(6) 4814(6) 35(3) C(52) 5004(10) 3272(7) 4160(5) 37(3) N(52) 4356(10) 2825(6) 4144(6) 62(3) C(55) 7708(9) 4798(7) 756(6) 38(3) C(56) 7318(10) 5781(6) -3(7) 42(3) C(59) 2364(9) 347(6) 196(6) 35(3) N(59) 1631(9) 356(6) -187(6) 58(3) C(60) 7171(9) 4858(7) 4145(6) 38(3) C(61) 5021(9) 4324(6) 3484(6) 35(3) N(61) 4378(9) 1917(6) 905(6) 58(3) N(62) 2934(10) -1152(6) 850(5) 57(3) C(62) 2216(10) 9138(7) 5108(7) 47(3) N(63) 6687(9) 5831(6) -430(5) 46(3) C(63) 302(10) 8326(7) 4270(6) 41(3) C(64) 9225(10) 6635(8) 739(7) 54(4) N(65) 7830(9) 5318(6) 4140(6) 57(3) C(65) 3176(10) -562(7) 896(5) 39(3) N(66) 4341(8) 4484(5) 3135(5) 45(3) C(66) 4095(10) 1368(7) 919(7) 46(3) N(67) 7821(9) 3730(6) 5224(5) 57(3) C(67) 4921(9) 395(6) 1584(6) 33(3) C(68) 2339(11) 9951(8) 4213(6) 50(4) N(68) 2729(9) 9140(6) 5592(5) 57(3) N(69) 2985(10) 10454(7) 4216(8) 75(4) C(70) 10028(9) 932(6) 3944(6) 43(3) C(71) 11645(8) 2219(7) 492(6) 43(3) C(80) 2012(10) 5902(6) 935(5) 40(3) C(81) 1558(9) 6947(6) 3351(7) 45(3) ! 186! C(82) 5149(10) 5656(6) 949(5) 41(3) C(84) 6724(9) 1063(6) 789(6) 41(3) C(85) 9734(10) 1344(6) 83(6) 46(3) C(86) 11868(9) 1870(6) 4295(6) 42(3) C(87) 6752(9) 3504(7) 2314(7) 58(4) C(88) 6984(9) 2363(6) 678(6) 45(3) C(89) 8238(10) 2388(7) 4112(5) 48(3) C(90) 6417(9) 1796(7) 3214(6) 50(4) S(99) 11012(3) 3568(2) 3986(1) 38(1) N(100) -68(10) 9246(6) 2919(6) 61(3) N(101) 10196(10) 5616(6) 1932(6) 64(3) C(201) 9543(10) 5683(6) 1512(6) 40(3) C(202) 448(11) 9202(7) 3400(8) 53(4) C(301) 8780(10) 7496(7) 2431(6) 52(4) C(302) 7810(9) 8920(7) 3891(6) 46(3) C(303) 4823(10) 9115(6) 4448(6) 46(3) C(304) 12178(9) 4254(6) 1838(7) 47(3) C(305) 10540(9) 191(6) 1511(7) 48(3) C(306) 5464(10) 4925(6) 1864(7) 52(4) C(307) 10149(10) 3925(7) 1112(6) 50(3) C(308) 3392(13) 9337(6) 2668(6) 63(4) C(309) 6996(10) 9641(6) 3069(7) 55(4) C(310) 8437(11) 4514(6) 2599(7) 57(4) C(311) 13671(10) 2652(7) 2354(6) 59(4) C(312) 1673(10) 8400(8) 1998(7) 65(4) C(313) 13381(10) 1466(7) 2738(6) 52(4) C(314) 4240(13) 7961(7) 4843(7) 65(4) C(315) 5704(13) 8648(7) 1109(9) 81(5) C(316) 6462(15) 7515(10) 641(7) 99(7) C(317) 12242(11) 4057(9) 4000(8) 80(5) C(318) 10330(12) 4235(10) 4323(9) 110(8) C(319) 8457(10) -62(6) 1756(6) 43(3) C(501) 8292(12) 6420(8) 2876(6) 68(5) ________________________________________________________________ ! 187! Crystallographic Table 34. Bond lengths [A] and angles [?] for [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O. _____________________________________________________________ Th(1)-O(2) 2.420(7) Th(1)-O(8) 2.421(7) Th(1)-O(9) 2.422(6) Th(1)-O(6) 2.429(7) Th(1)-O(4) 2.429(8) Th(1)-O(3) 2.462(7) Th(1)-O(7) 2.469(7) Th(1)-O(1) 2.504(7) Th(1)-O(5) 2.504(7) Pt(1)-C(65) 1.954(13) Pt(1)-C(67) 1.973(12) Pt(1)-C(66) 1.992(14) Pt(1)-C(59) 2.006(11) O(1)-S(14) 1.511(8) N(1)-C(64) 1.128(17) Th(2)-O(17) 2.404(7) Th(2)-O(11) 2.412(6) Th(2)-O(16) 2.414(7) Th(2)-O(19) 2.417(7) Th(2)-O(12) 2.446(7) Th(2)-O(14) 2.445(7) Th(2)-O(15) 2.450(6) Th(2)-O(18) 2.495(6) Th(2)-O(13) 2.505(7) Pt(2)-C(68) 1.947(17) Pt(2)-C(202) 1.986(14) Pt(2)-C(62) 1.992(12) Pt(2)-C(63) 2.008(14) O(2)-S(7) 1.524(7) N(2)-C(55) 1.152(15) Pt(3)-C(60) 1.960(13) Pt(3)-C(61) 1.977(12) Pt(3)-C(51) 1.987(13) Pt(3)-C(52) 2.000(14) O(3)-S(17) 1.526(7) N(3)-C(67) 1.146(14) Pt(4)-C(201) 1.974(12) Pt(4)-C(56) 1.996(13) Pt(4)-C(55) 1.996(14) Pt(4)-C(64) 1.997(16) O(4)-S(11) 1.521(8) ! 188! O(5)-S(8) 1.532(7) O(6)-S(18) 1.522(8) S(7)-C(11) 1.741(11) S(7)-C(10) 1.791(10) O(7)-S(16) 1.529(7) S(8)-C(301) 1.751(13) S(8)-C(501) 1.750(13) O(8)-S(9) 1.524(7) S(9)-C(13) 1.771(11) S(9)-C(81) 1.782(10) O(9)-S(19) 1.515(7) S(10)-O(15) 1.536(7) S(10)-C(86) 1.780(11) S(10)-C(70) 1.783(12) S(11)-C(315) 1.754(14) S(11)-C(316) 1.752(14) O(11)-S(31) 1.540(7) S(12)-O(19) 1.539(8) S(12)-C(319) 1.772(12) S(12)-C(305) 1.779(11) O(12)-S(20) 1.531(7) C(12)-S(16) 1.784(10) S(13)-O(18) 1.522(7) S(13)-C(310) 1.766(12) S(13)-C(87) 1.787(11) O(13)-S(15) 1.512(7) S(14)-C(303) 1.767(12) S(14)-C(314) 1.800(14) O(14)-S(99) 1.517(7) S(15)-C(71) 1.778(10) S(15)-C(85) 1.795(11) S(16)-C(80) 1.748(12) O(16)-S(21) 1.547(7) S(17)-C(302) 1.751(11) S(17)-C(309) 1.756(13) O(17)-S(25) 1.528(7) S(18)-C(82) 1.755(10) S(18)-C(306) 1.775(10) S(19)-C(308) 1.755(14) S(19)-C(312) 1.786(13) S(20)-C(304) 1.754(11) S(20)-C(307) 1.772(12) S(21)-C(90) 1.766(11) S(21)-C(89) 1.799(12) S(25)-C(84) 1.767(12) S(25)-C(88) 1.773(11) ! 189! S(31)-C(311) 1.752(13) S(31)-C(313) 1.778(12) N(41)-C(63) 1.118(15) C(51)-N(67) 1.158(14) C(52)-N(52) 1.133(15) C(56)-N(63) 1.135(14) C(59)-N(59) 1.132(14) C(60)-N(65) 1.172(15) C(61)-N(66) 1.160(14) N(61)-C(66) 1.137(15) N(62)-C(65) 1.182(15) C(62)-N(68) 1.123(15) C(68)-N(69) 1.221(18) S(99)-C(317) 1.717(14) S(99)-C(318) 1.760(16) N(100)-C(202) 1.147(16) N(101)-C(201) 1.153(14) O(2)-Th(1)-O(8) 73.2(2) O(2)-Th(1)-O(9) 134.4(2) O(8)-Th(1)-O(9) 81.1(2) O(2)-Th(1)-O(6) 74.7(2) O(8)-Th(1)-O(6) 82.2(3) O(9)-Th(1)-O(6) 138.4(2) O(2)-Th(1)-O(4) 140.4(2) O(8)-Th(1)-O(4) 139.0(2) O(9)-Th(1)-O(4) 81.8(2) O(6)-Th(1)-O(4) 86.5(3) O(2)-Th(1)-O(3) 95.7(3) O(8)-Th(1)-O(3) 136.0(3) O(9)-Th(1)-O(3) 77.5(2) O(6)-Th(1)-O(3) 136.9(2) O(4)-Th(1)-O(3) 74.6(3) O(2)-Th(1)-O(7) 129.6(3) O(8)-Th(1)-O(7) 68.6(2) O(9)-Th(1)-O(7) 69.7(2) O(6)-Th(1)-O(7) 68.8(2) O(4)-Th(1)-O(7) 70.5(2) O(3)-Th(1)-O(7) 134.7(2) O(2)-Th(1)-O(1) 66.6(2) O(8)-Th(1)-O(1) 70.4(2) O(9)-Th(1)-O(1) 69.6(2) O(6)-Th(1)-O(1) 137.3(2) O(4)-Th(1)-O(1) 135.3(3) O(3)-Th(1)-O(1) 66.3(2) O(7)-Th(1)-O(1) 125.4(2) ! 190! O(2)-Th(1)-O(5) 69.7(2) O(8)-Th(1)-O(5) 137.1(2) O(9)-Th(1)-O(5) 141.3(3) O(6)-Th(1)-O(5) 68.1(2) O(4)-Th(1)-O(5) 71.1(2) O(3)-Th(1)-O(5) 69.1(2) O(7)-Th(1)-O(5) 122.8(2) O(1)-Th(1)-O(5) 111.8(2) C(65)-Pt(1)-C(67) 88.6(5) C(65)-Pt(1)-C(66) 178.9(5) C(67)-Pt(1)-C(66) 92.2(5) C(65)-Pt(1)-C(59) 89.4(5) C(67)-Pt(1)-C(59) 176.1(4) C(66)-Pt(1)-C(59) 89.7(5) S(14)-O(1)-Th(1) 122.9(4) O(17)-Th(2)-O(11) 136.4(2) O(17)-Th(2)-O(16) 73.9(2) O(11)-Th(2)-O(16) 137.5(2) O(17)-Th(2)-O(19) 74.1(2) O(11)-Th(2)-O(19) 80.9(2) O(16)-Th(2)-O(19) 82.5(2) O(17)-Th(2)-O(12) 98.0(2) O(11)-Th(2)-O(12) 76.2(2) O(16)-Th(2)-O(12) 137.8(2) O(19)-Th(2)-O(12) 136.2(2) O(17)-Th(2)-O(14) 138.5(2) O(11)-Th(2)-O(14) 82.2(2) O(16)-Th(2)-O(14) 85.2(3) O(19)-Th(2)-O(14) 138.8(2) O(12)-Th(2)-O(14) 74.0(2) O(17)-Th(2)-O(15) 129.4(2) O(11)-Th(2)-O(15) 68.1(2) O(16)-Th(2)-O(15) 69.4(2) O(19)-Th(2)-O(15) 67.7(2) O(12)-Th(2)-O(15) 132.5(2) O(14)-Th(2)-O(15) 71.1(2) O(17)-Th(2)-O(18) 69.6(2) O(11)-Th(2)-O(18) 140.4(2) O(16)-Th(2)-O(18) 68.6(2) O(19)-Th(2)-O(18) 138.4(2) O(12)-Th(2)-O(18) 69.8(2) O(14)-Th(2)-O(18) 69.5(2) O(15)-Th(2)-O(18) 123.6(2) O(17)-Th(2)-O(13) 66.6(2) O(11)-Th(2)-O(13) 71.6(2) O(16)-Th(2)-O(13) 136.5(2) ! 191! O(19)-Th(2)-O(13) 70.1(2) O(12)-Th(2)-O(13) 67.4(2) O(14)-Th(2)-O(13) 137.3(2) O(15)-Th(2)-O(13) 124.9(2) O(18)-Th(2)-O(13) 111.5(2) C(68)-Pt(2)-C(202) 89.7(5) C(68)-Pt(2)-C(62) 89.2(5) C(202)-Pt(2)-C(62) 178.8(6) C(68)-Pt(2)-C(63) 178.3(5) C(202)-Pt(2)-C(63) 90.0(5) C(62)-Pt(2)-C(63) 91.1(5) S(7)-O(2)-Th(1) 137.1(4) C(60)-Pt(3)-C(61) 90.9(5) C(60)-Pt(3)-C(51) 87.6(5) C(61)-Pt(3)-C(51) 178.1(5) C(60)-Pt(3)-C(52) 178.6(5) C(61)-Pt(3)-C(52) 89.9(5) C(51)-Pt(3)-C(52) 91.6(5) S(17)-O(3)-Th(1) 132.2(4) C(201)-Pt(4)-C(56) 179.3(5) C(201)-Pt(4)-C(55) 89.2(5) C(56)-Pt(4)-C(55) 91.2(5) C(201)-Pt(4)-C(64) 90.0(5) C(56)-Pt(4)-C(64) 89.6(5) C(55)-Pt(4)-C(64) 177.3(5) S(11)-O(4)-Th(1) 138.8(4) S(8)-O(5)-Th(1) 128.8(4) S(18)-O(6)-Th(1) 135.5(4) O(2)-S(7)-C(11) 102.3(5) O(2)-S(7)-C(10) 103.1(5) C(11)-S(7)-C(10) 99.2(6) S(16)-O(7)-Th(1) 129.1(4) O(5)-S(8)-C(301) 105.2(5) O(5)-S(8)-C(501) 104.4(5) C(301)-S(8)-C(501) 95.8(7) S(9)-O(8)-Th(1) 129.2(4) O(8)-S(9)-C(13) 102.6(5) O(8)-S(9)-C(81) 103.8(5) C(13)-S(9)-C(81) 98.5(6) S(19)-O(9)-Th(1) 136.6(4) O(15)-S(10)-C(86) 103.9(5) O(15)-S(10)-C(70) 104.6(4) C(86)-S(10)-C(70) 98.7(6) O(4)-S(11)-C(315) 105.5(7) O(4)-S(11)-C(316) 103.2(6) C(315)-S(11)-C(316) 97.9(8) ! 192! S(31)-O(11)-Th(2) 135.3(4) O(19)-S(12)-C(319) 102.3(5) O(19)-S(12)-C(305) 102.9(5) C(319)-S(12)-C(305) 100.1(6) S(20)-O(12)-Th(2) 134.5(4) O(18)-S(13)-C(310) 105.4(6) O(18)-S(13)-C(87) 104.6(6) C(310)-S(13)-C(87) 97.0(6) S(15)-O(13)-Th(2) 122.6(4) O(1)-S(14)-C(303) 104.9(5) O(1)-S(14)-C(314) 103.7(6) C(303)-S(14)-C(314) 98.6(6) S(99)-O(14)-Th(2) 141.3(4) O(13)-S(15)-C(71) 103.8(5) O(13)-S(15)-C(85) 103.7(5) C(71)-S(15)-C(85) 98.5(6) S(10)-O(15)-Th(2) 129.6(4) O(7)-S(16)-C(80) 104.7(5) O(7)-S(16)-C(12) 103.7(5) C(80)-S(16)-C(12) 96.8(5) S(21)-O(16)-Th(2) 133.3(4) O(3)-S(17)-C(302) 104.6(5) O(3)-S(17)-C(309) 103.8(5) C(302)-S(17)-C(309) 98.7(7) S(25)-O(17)-Th(2) 138.6(4) O(6)-S(18)-C(82) 104.2(5) O(6)-S(18)-C(306) 102.7(5) C(82)-S(18)-C(306) 99.1(6) S(13)-O(18)-Th(2) 128.8(4) O(9)-S(19)-C(308) 103.9(6) O(9)-S(19)-C(312) 103.7(6) C(308)-S(19)-C(312) 98.9(7) S(12)-O(19)-Th(2) 128.1(4) O(12)-S(20)-C(304) 103.2(5) O(12)-S(20)-C(307) 104.6(5) C(304)-S(20)-C(307) 99.2(6) O(16)-S(21)-C(90) 103.7(5) O(16)-S(21)-C(89) 104.9(5) C(90)-S(21)-C(89) 98.9(6) O(17)-S(25)-C(84) 102.7(5) O(17)-S(25)-C(88) 103.9(5) C(84)-S(25)-C(88) 98.8(6) O(11)-S(31)-C(311) 105.1(6) O(11)-S(31)-C(313) 104.5(5) C(311)-S(31)-C(313) 99.9(7) N(67)-C(51)-Pt(3) 177.5(11) ! 193! N(52)-C(52)-Pt(3) 176.7(12) N(2)-C(55)-Pt(4) 178.5(12) N(63)-C(56)-Pt(4) 178.2(12) N(59)-C(59)-Pt(1) 175.6(11) N(65)-C(60)-Pt(3) 178.2(12) N(66)-C(61)-Pt(3) 174.8(10) N(68)-C(62)-Pt(2) 178.4(13) N(41)-C(63)-Pt(2) 175.9(13) N(1)-C(64)-Pt(4) 176.5(15) N(62)-C(65)-Pt(1) 175.6(11) N(61)-C(66)-Pt(1) 177.7(13) N(3)-C(67)-Pt(1) 177.7(12) N(69)-C(68)-Pt(2) 177.5(12) O(14)-S(99)-C(317) 105.8(6) O(14)-S(99)-C(318) 103.9(6) C(317)-S(99)-C(318) 97.2(8) N(101)-C(201)-Pt(4) 175.6(12) N(100)-C(202)-Pt(2) 177.7(13) _____________________________________________________________ ! 194! Crystallographic Table 35. Anisotropic displacement parameters (A 2 x 10 3 ) for [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O. The anisotropic displacement factor exponent takes the form: -2 ? 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ Th(1) 27(1) 24(1) 21(1) 4(1) 7(1) 8(1) Pt(1) 37(1) 32(1) 28(1) 5(1) 8(1) 9(1) O(1) 30(4) 35(4) 32(4) 10(4) 10(3) 4(3) N(1) 69(9) 51(8) 86(10) 28(8) 1(7) 18(7) O(1W) 77(11) 129(17) 91(14) 5(12) 10(9) -11(10) Th(2) 23(1) 23(1) 21(1) 3(1) 5(1) 7(1) Pt(2) 38(1) 40(1) 36(1) 9(1) 11(1) 18(1) O(2) 42(4) 42(5) 24(4) 15(4) 13(3) 18(4) N(2) 67(8) 53(8) 85(10) 25(8) 20(7) 9(6) O(2W) 158(19) 86(15) 150(20) 46(14) -7(14) 32(12) Pt(3) 34(1) 34(1) 26(1) 3(1) 7(1) 7(1) O(3) 25(4) 35(5) 39(5) 1(4) 8(3) -6(3) N(3) 69(8) 64(9) 63(9) 33(7) 1(7) 6(6) O(3W) 110(30) 170(40) 120(30) 90(30) -10(20) 10(20) Pt(4) 36(1) 39(1) 29(1) 6(1) 7(1) 14(1) O(4) 36(4) 47(5) 35(5) 5(4) 6(4) 3(4) O(4W) 100(30) 50(20) 80(30) 22(19) 10(20) 4(17) O(5) 34(4) 52(5) 15(4) -2(4) 15(3) 17(4) O(6) 49(5) 31(4) 22(4) 0(4) 14(4) 10(4) S(7) 37(2) 33(2) 22(1) 4(1) 3(1) 11(1) O(7) 28(4) 31(4) 21(4) 0(3) 6(3) 10(3) S(8) 30(2) 49(2) 48(2) -5(2) 6(1) 12(1) O(8) 35(4) 52(5) 17(4) 9(4) 14(3) 2(4) S(9) 31(1) 36(2) 28(2) 8(1) 9(1) 4(1) O(9) 47(4) 32(4) 17(4) 3(3) 15(3) 19(3) S(10) 29(1) 27(2) 28(2) 2(1) 4(1) 10(1) C(10) 58(8) 41(8) 23(6) -10(6) -21(6) -2(6) S(11) 39(2) 48(2) 28(2) 11(2) 8(1) -3(1) O(11) 29(4) 44(5) 20(4) 2(4) 9(3) 11(3) C(11) 60(8) 48(8) 23(6) 15(6) 23(6) 24(6) S(12) 33(1) 25(1) 32(2) 3(1) 1(1) 4(1) O(12) 39(4) 27(4) 23(4) 10(3) 14(3) 11(3) C(12) 44(7) 35(7) 25(6) 8(5) 8(5) 11(5) S(13) 42(2) 41(2) 36(2) 14(2) 16(1) 25(1) ! 195! O(13) 25(4) 35(4) 23(4) 6(3) 10(3) 12(3) C(13) 39(6) 31(6) 36(7) 10(6) 11(5) 11(5) S(14) 45(2) 38(2) 32(2) 4(1) 5(1) 20(1) O(14) 45(4) 29(4) 20(4) -9(3) 3(3) 11(3) S(15) 31(1) 35(2) 28(2) 9(1) 7(1) 12(1) O(15) 32(4) 35(4) 13(4) 5(3) 12(3) 14(3) S(16) 33(1) 31(2) 27(2) 9(1) 5(1) 7(1) O(16) 29(4) 43(5) 23(4) 7(4) 11(3) 16(3) S(17) 35(2) 38(2) 33(2) -5(1) 14(1) 0(1) O(17) 24(4) 40(5) 33(5) 0(4) 2(3) 8(3) S(18) 39(2) 29(2) 32(2) 3(1) 13(1) 10(1) O(18) 38(4) 34(4) 19(4) 1(3) 19(3) 19(3) S(19) 64(2) 46(2) 30(2) 13(2) 23(2) 34(2) O(19) 44(4) 27(4) 28(4) 8(4) 8(3) 10(3) S(20) 45(2) 25(2) 34(2) 8(1) 17(1) 8(1) S(21) 37(2) 37(2) 39(2) 13(2) 21(1) 11(1) S(25) 24(1) 37(2) 31(2) 10(1) 4(1) 9(1) S(31) 25(1) 54(2) 35(2) -8(2) 3(1) 8(1) N(41) 48(7) 71(9) 67(9) 24(8) -4(6) 1(6) C(51) 46(7) 31(6) 24(6) -12(5) 24(5) 2(5) C(52) 52(7) 42(8) 17(6) -4(6) 20(5) 18(6) N(52) 77(9) 54(8) 49(8) 18(7) -4(6) -8(7) C(55) 45(7) 51(8) 26(6) 8(6) 28(5) 21(6) C(56) 44(7) 39(8) 48(8) 10(7) 15(6) 12(6) C(59) 40(6) 37(7) 23(6) -11(5) 5(5) 12(5) N(59) 45(6) 52(7) 66(9) -12(6) 0(6) 22(5) C(60) 29(6) 50(8) 37(7) 14(6) 6(5) 10(6) C(61) 37(6) 43(7) 28(6) 3(6) 24(5) 6(5) N(61) 58(7) 37(7) 83(10) 12(7) 23(7) 18(6) N(62) 91(9) 42(7) 38(7) 14(6) 10(6) 10(6) C(62) 39(7) 51(8) 56(9) 25(7) -4(6) 13(6) N(63) 60(7) 56(7) 21(5) 5(5) 4(5) 24(6) C(63) 37(7) 55(9) 35(7) 11(7) 11(6) 20(6) C(64) 39(7) 70(11) 66(10) 32(9) 9(7) 32(7) N(65) 44(6) 57(8) 77(9) 32(7) 13(6) 3(6) C(65) 49(7) 55(9) 23(6) 26(6) 10(5) 17(6) N(66) 49(6) 53(7) 36(6) 12(6) 8(5) 13(5) C(66) 36(7) 48(9) 44(8) -7(7) 4(6) -3(6) N(67) 67(8) 72(9) 41(7) 19(7) 4(6) 37(7) C(67) 40(6) 38(7) 26(6) 6(6) 21(5) 10(5) C(68) 49(8) 84(11) 22(7) 1(7) 17(6) 40(8) N(68) 52(7) 81(9) 33(7) -4(6) 4(5) 20(6) N(69) 56(8) 56(9) 118(13) 29(9) 15(8) 19(7) C(70) 50(7) 41(8) 45(8) 15(7) 15(6) 20(6) C(71) 29(6) 69(9) 40(8) 15(7) 25(5) 12(6) C(80) 55(8) 46(8) 22(6) 6(6) 24(6) 3(6) ! 196! C(81) 40(7) 47(8) 64(9) 23(7) 31(6) 23(6) C(82) 61(8) 54(8) 14(6) -2(6) 27(5) 19(6) C(84) 33(6) 35(7) 53(8) 12(6) -5(6) 2(5) C(85) 55(8) 35(7) 33(7) -7(6) -9(6) 4(6) C(86) 53(7) 44(8) 28(7) 7(6) -1(6) 11(6) C(87) 24(6) 62(10) 85(12) 9(9) 7(7) 16(6) C(88) 45(7) 49(8) 46(8) 22(7) 0(6) 14(6) C(89) 75(9) 57(9) 12(6) -10(6) 31(6) 9(7) C(90) 46(7) 74(10) 37(8) 3(7) 33(6) 16(7) S(99) 52(2) 35(2) 23(2) 2(1) 4(1) 2(1) N(100) 64(8) 77(9) 53(8) 32(7) 12(6) 26(7) N(101) 64(8) 71(9) 50(8) 9(7) -11(6) 13(7) C(201) 45(7) 38(7) 33(7) -4(6) 4(6) 18(6) C(202) 52(8) 48(9) 65(10) 15(8) 13(7) 27(7) C(301) 55(8) 57(9) 42(8) -9(7) 29(7) 9(7) C(302) 42(7) 69(10) 27(7) 1(7) 16(6) 19(6) C(303) 67(9) 43(8) 31(7) 0(6) 22(6) 19(6) C(304) 35(6) 42(8) 59(9) 8(7) 11(6) -5(5) C(305) 45(7) 40(8) 62(9) 8(7) 10(6) 21(6) C(306) 69(9) 13(6) 81(11) 13(7) 22(8) 20(6) C(307) 67(9) 47(8) 45(8) 22(7) 11(7) 20(7) C(308) 118(13) 38(8) 31(8) -11(7) 15(8) 30(8) C(309) 52(8) 42(8) 66(10) 15(8) 5(7) -9(6) C(310) 67(9) 33(8) 77(11) 14(8) 12(8) 26(7) C(311) 57(8) 79(11) 33(8) -8(8) 31(7) -7(7) C(312) 42(8) 77(11) 75(11) 4(9) 0(7) 33(7) C(313) 50(8) 65(10) 46(8) 1(7) 24(6) 32(7) C(314) 122(13) 34(8) 47(9) 23(7) 16(9) 26(8) C(315) 105(13) 53(10) 98(14) 37(11) 26(11) 25(9) C(316) 163(18) 132(18) 32(9) 23(11) 67(11) 70(14) C(317) 50(9) 105(15) 68(12) 5(11) -4(8) -9(9) C(318) 55(10) 139(18) 91(14) -68(13) -12(9) 33(10) C(319) 59(8) 41(8) 24(6) 1(6) 6(6) 7(6) C(501) 102(12) 90(12) 38(8) 18(8) 62(8) 58(10) _______________________________________________________________________ ! 197! Crystallographic Table 36. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (A 2 x 10 3 ) for [Th(C 2 H 6 SO) 9 ][Pt(CN) 4 ] 2 ?4H 2 O. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(10A) 7603 7136 4189 70 H(10B) 7509 6591 4613 70 H(10C) 6796 7181 4698 70 H(11A) 4636 5689 3992 59 H(11B) 5015 6342 4563 59 H(11C) 5707 5741 4505 59 H(12A) 2609 7567 729 51 H(12B) 1608 6997 393 51 H(12C) 2808 6869 317 51 H(13A) 2836 5456 3169 52 H(13B) 1786 5614 2754 52 H(13C) 1826 5632 3504 52 H(70A) 9445 660 3612 64 H(70B) 9722 1225 4267 64 H(70C) 10441 641 4152 64 H(71A) 12091 2602 800 65 H(71B) 11574 2302 58 65 H(71C) 11985 1819 500 65 H(80A) 2019 5629 1255 60 H(80B) 2486 5750 631 60 H(80C) 1275 5858 700 60 H(81A) 1718 7434 3441 68 H(81B) 1164 6814 3675 68 H(81C) 1116 6779 2922 68 H(82A) 4804 5999 784 62 H(82B) 4955 5231 630 62 H(82C) 5934 5787 1033 62 H(84A) 6782 734 1054 62 H(84B) 7178 979 458 62 H(84C) 5972 1026 582 62 H(85A) 8987 1206 127 68 H(85B) 10155 984 129 68 H(85C) 9747 1441 -342 68 H(86A) 12420 2173 4179 63 H(86B) 12212 1546 4492 63 H(86C) 11486 2127 4602 63 H(87A) 6452 3045 2309 87 ! 198! H(87B) 6694 3561 1871 87 H(87C) 6350 3815 2555 87 H(88A) 7185 2839 877 68 H(88B) 6227 2274 466 68 H(88C) 7441 2231 358 68 H(89A) 9020 2440 4251 73 H(89B) 7869 2213 4425 73 H(89C) 8029 2822 4082 73 H(90A) 6077 1503 2798 76 H(90B) 6257 2249 3226 76 H(90C) 6133 1631 3561 76 H(30V) 9261 7289 2158 78 H(30W) 9160 7645 2877 78 H(30X) 8555 7880 2278 78 H(30Y) 7945 8491 3982 69 H(30Z) 7368 9129 4191 69 H(31D) 8498 9212 3945 69 H(30A) 5199 9352 4175 69 H(30B) 5128 9311 4902 69 H(30C) 4055 9154 4370 69 H(30D) 12666 4297 2245 70 H(30E) 12189 4692 1733 70 H(30F) 12415 3945 1494 70 H(30G) 11095 485 1387 72 H(30H) 10368 -235 1191 72 H(30I) 10808 112 1935 72 H(30J) 5299 4812 2262 78 H(30K) 6237 5087 1919 78 H(30L) 5269 4527 1509 78 H(30M) 9376 3778 1078 75 H(30N) 10439 3616 793 75 H(30O) 10261 4373 1031 75 H(30P) 4055 9467 2990 95 H(30Q) 2870 9634 2787 95 H(30R) 3558 9372 2245 95 H(30S) 6610 9660 2647 82 H(30T) 7717 9902 3148 82 H(30U) 6598 9825 3405 82 H(31E) 9185 4705 2794 86 H(31F) 7948 4784 2811 86 H(31G) 8324 4512 2139 86 H(31H) 13403 2955 2096 88 H(31I) 14325 2507 2215 88 H(31J) 13837 2884 2810 88 H(31K) 1274 7948 1911 98 H(31L) 1920 8478 1606 98 ! 199! H(31M) 1200 8724 2136 98 H(31N) 12909 1056 2738 77 H(31O) 13599 1733 3180 77 H(31P) 14023 1350 2561 77 H(31Q) 4251 7483 4804 97 H(31R) 3492 8042 4759 97 H(31S) 4579 8206 5279 97 H(31T) 5202 8881 1345 121 H(31U) 5639 8736 677 121 H(31V) 6444 8808 1340 121 H(31W) 6377 7027 526 149 H(31X) 7155 7692 926 149 H(31Y) 6439 7686 249 149 H(31Z) 12731 3774 3807 120 H(32A) 12566 4275 4447 120 H(32B) 12118 4397 3754 120 H(32C) 9596 4053 4354 166 H(32D) 10300 4553 4045 166 H(32E) 10722 4462 4753 166 H(31A) 7758 85 1799 64 H(31B) 8785 -150 2164 64 H(31C) 8351 -471 1415 64 H(50A) 7776 6049 2920 102 H(50B) 8598 6702 3303 102 H(50C) 8872 6244 2669 102 ________________________________________________________________ ! 200! Crystallographic Table 37 Crystal data and structure refinement for Usalzine. Identification code Usalzine Empirical formula C 25 H 26 N 4 O 7 S 2 U Formula weight 796.65 Temperature 182(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P2(1)/n Unit cel dimensions a = 8.6053(18) ? ? = 90 ? b = 20.457(4) ? ? = 101.532(3) ? c = 16.111(3) ? ? = 90 ? Volume 2778.9(10) ? 3 Z, Calculated density 4, 1.904 Mg/m 3 Absorption coeficient 6.042 mm -1 F(000) 1536 Crystal size 0.17 x 0.13 x 0.10 mm Theta range for data collection 1.63 to 24.75 deg. Limiting indices -10<=h<=9, -24<=k<=24, -18<=l<=18 Reflections collected / unique 40617 / 4727 [R(int) = 0.0754] Completenes to theta = 24.75 99.5 % Absorption correction None Max. and min. transmision 0.5918 and 0.4178 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4727 / 12 / 351 Goodnes-of-fit on F^2 1.105 Final R indices [I>2sigma(I)] R1 = 0.0441, wR2 = 0.1111 R indices (al data) R1 = 0.0590, wR2 = 0.1234 Largest dif. peak and hole 3.058 and -0.927 e. ? -3 ! 201! Crystallographic Table 38 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for Usalzine. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ U(1) 964(1) 2095(1) 1341(1) 26(1) S(1) -914(3) 2546(1) -778(1) 30(1) S(2) 3331(3) 9518(1) 8542(2) 46(1) O(5) 1250(9) 988(3) 1909(4) 50(2) O(6) 881(8) 1063(3) 533(4) 42(2) N(2) 306(8) 4236(3) 2254(4) 28(2) O(3) 1245(7) 2270(3) 2723(4) 32(1) O(2) 3001(9) 2151(3) 1422(4) 41(2) O(4) 535(6) 2467(3) -55(3) 27(1) O(7) 4764(10) 9916(4) 8485(5) 60(2) C(8) 1264(9) 3841(4) 1186(5) 23(1) C(3) -1058(11) 2585(5) 4323(6) 39(2) N(4) 2225(8) 5690(3) 276(4) 29(2) N(3) 2990(7) 4522(3) -519(4) 26(1) C(20) 1120(11) 724(4) 1192(6) 40(2) C(21) 1212(14) -5(5) 1144(7) 53(3) N(1) 846(7) 3324(3) 1623(4) 26(2) C(19) 939(9) 4448(4) 1564(5) 23(1) C(7) 292(10) 3576(4) 2254(5) 28(2) C(6) -263(9) 3217(4) 2937(5) 28(2) C(5) -1217(10) 3526(4) 3429(5) 33(2) C(4) -1606(11) 3214(5) 4124(6) 39(2) C(2) -151(11) 2262(5) 3845(6) 37(2) C(1) 265(10) 2570(4) 3145(5) 27(2) C(18) 1258(10) 5056(4) 1303(5) 29(2) C(17) 1935(10) 5090(4) 569(5) 28(2) C(16) 2910(10) 5707(4) -405(5) 30(2) C(15) 3243(10) 6321(4) -753(5) 32(2) C(14) 3951(11) 6350(5) -1413(6) 39(2) C(13) 4404(11) 5779(4) -1792(6) 37(2) C(12) 4089(10) 5173(4) -1504(5) 33(2) C(11) 3324(10) 5125(4) -801(5) 28(2) C(10) 2314(9) 4503(4) 160(5) 24(2) C(9) 1964(10) 3882(4) 474(5) 26(2) O(1) -1084(9) 2068(3) 1242(4) 43(2) C(22) -229(14) 3124(5) -1430(6) 52(3) C(23) -854(12) 1825(5) -1396(6) 50(3) ! 202! C(24) 3329(14) 8875(5) 7814(7) 55(3) C(25) 3888(17) 9068(6) 9494(7) 74(4) ________________________________________________________________ ! 203! Crystallographic Table 39 Bond lengths [?] and angles [?] for Usalzine. _____________________________________________________________ U(1)-O(2) 1.735(8) U(1)-O(1) 1.739(8) U(1)-O(3) 2.221(6) U(1)-O(4) 2.333(5) U(1)-O(5) 2.437(6) U(1)-O(6) 2.474(6) U(1)-N(1) 2.559(7) U(1)-C(20) 2.822(9) S(1)-O(4) 1.535(6) S(1)-C(22) 1.759(10) S(1)-C(23) 1.788(10) S(2)-O(7) 1.496(8) S(2)-C(24) 1.762(11) S(2)-C(25) 1.771(11) O(5)-C(20) 1.259(12) O(6)-C(20) 1.252(11) N(2)-C(7) 1.350(10) N(2)-C(19) 1.400(11) N(2)-H(2) 0.8800 O(3)-C(1) 1.334(10) C(8)-N(1) 1.358(11) C(8)-C(9) 1.402(11) C(8)-C(19) 1.435(10) C(3)-C(2) 1.370(13) C(3)-C(4) 1.386(14) C(3)-H(3) 0.9500 N(4)-C(16) 1.345(11) N(4)-C(17) 1.357(10) N(3)-C(10) 1.339(10) N(3)-C(11) 1.365(10) C(20)-C(21) 1.495(13) C(21)-H(21A) 0.9800 C(21)-H(21B) 0.9800 C(21)-H(21C) 0.9800 N(1)-C(7) 1.313(10) C(19)-C(18) 1.358(12) C(7)-C(6) 1.478(11) C(6)-C(5) 1.401(12) C(6)-C(1) 1.418(12) C(5)-C(4) 1.387(12) C(5)-H(5) 0.9500 C(4)-H(4) 0.9500 ! 204! C(2)-C(1) 1.400(12) C(2)-H(2A) 0.9500 C(18)-C(17) 1.421(12) C(18)-H(18) 0.9500 C(17)-C(10) 1.438(11) C(16)-C(15) 1.429(11) C(16)-C(11) 1.429(12) C(15)-C(14) 1.328(12) C(15)-H(15) 0.9500 C(14)-C(13) 1.409(14) C(14)-H(14) 0.9500 C(13)-C(12) 1.369(12) C(13)-H(13) 0.9500 C(12)-C(11) 1.423(12) C(12)-H(12) 0.9500 C(10)-C(9) 1.420(11) C(9)-H(9) 0.9500 C(22)-H(22A) 0.9800 C(22)-H(22B) 0.9800 C(22)-H(22C) 0.9800 C(23)-H(23A) 0.9800 C(23)-H(23B) 0.9800 C(23)-H(23C) 0.9800 C(24)-H 0.9800 C(24)-HA 0.9800 C(24)-HB 0.9800 C(25)-HC 0.9800 C(25)-HD 0.9800 C(25)-HE 0.9800 O(2)-U(1)-O(1) 177.9(3) O(2)-U(1)-O(3) 90.5(2) O(1)-U(1)-O(3) 90.1(3) O(2)-U(1)-O(4) 90.8(2) O(1)-U(1)-O(4) 87.7(2) O(3)-U(1)-O(4) 151.6(2) O(2)-U(1)-O(5) 90.4(3) O(1)-U(1)-O(5) 91.7(3) O(3)-U(1)-O(5) 77.9(2) O(4)-U(1)-O(5) 130.5(2) O(2)-U(1)-O(6) 91.0(2) O(1)-U(1)-O(6) 90.2(2) O(3)-U(1)-O(6) 130.6(2) O(4)-U(1)-O(6) 77.80(19) O(5)-U(1)-O(6) 52.7(2) O(2)-U(1)-N(1) 89.9(2) ! 205! O(1)-U(1)-N(1) 88.4(2) O(3)-U(1)-N(1) 70.4(2) O(4)-U(1)-N(1) 81.2(2) O(5)-U(1)-N(1) 148.3(2) O(6)-U(1)-N(1) 159.0(2) O(2)-U(1)-C(20) 90.4(3) O(1)-U(1)-C(20) 91.4(3) O(3)-U(1)-C(20) 104.3(2) O(4)-U(1)-C(20) 104.1(2) O(5)-U(1)-C(20) 26.4(2) O(6)-U(1)-C(20) 26.3(2) N(1)-U(1)-C(20) 174.7(2) O(4)-S(1)-C(22) 101.9(4) O(4)-S(1)-C(23) 103.1(4) C(22)-S(1)-C(23) 99.9(6) O(7)-S(2)-C(24) 104.9(5) O(7)-S(2)-C(25) 104.6(5) C(24)-S(2)-C(25) 98.7(6) C(20)-O(5)-U(1) 94.1(5) C(20)-O(6)-U(1) 92.6(5) C(7)-N(2)-C(19) 108.3(6) C(7)-N(2)-H(2) 125.9 C(19)-N(2)-H(2) 125.9 C(1)-O(3)-U(1) 129.2(5) S(1)-O(4)-U(1) 135.5(3) N(1)-C(8)-C(9) 132.3(7) N(1)-C(8)-C(19) 111.1(7) C(9)-C(8)-C(19) 116.6(7) C(2)-C(3)-C(4) 121.6(8) C(2)-C(3)-H(3) 119.2 C(4)-C(3)-H(3) 119.2 C(16)-N(4)-C(17) 116.7(7) C(10)-N(3)-C(11) 116.9(7) O(6)-C(20)-O(5) 120.6(8) O(6)-C(20)-C(21) 120.7(9) O(5)-C(20)-C(21) 118.7(9) O(6)-C(20)-U(1) 61.1(5) O(5)-C(20)-U(1) 59.5(4) C(21)-C(20)-U(1) 178.2(8) C(20)-C(21)-H(21A) 109.5 C(20)-C(21)-H(21B) 109.5 H(21A)-C(21)-H(21B) 109.5 C(20)-C(21)-H(21C) 109.5 H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 C(7)-N(1)-C(8) 105.7(7) ! 206! C(7)-N(1)-U(1) 123.9(5) C(8)-N(1)-U(1) 130.4(5) C(18)-C(19)-N(2) 131.5(7) C(18)-C(19)-C(8) 126.3(8) N(2)-C(19)-C(8) 102.1(7) N(1)-C(7)-N(2) 112.9(7) N(1)-C(7)-C(6) 127.0(8) N(2)-C(7)-C(6) 120.1(7) C(5)-C(6)-C(1) 118.9(7) C(5)-C(6)-C(7) 120.7(8) C(1)-C(6)-C(7) 120.3(7) C(4)-C(5)-C(6) 120.8(9) C(4)-C(5)-H(5) 119.6 C(6)-C(5)-H(5) 119.6 C(3)-C(4)-C(5) 119.3(8) C(3)-C(4)-H(4) 120.4 C(5)-C(4)-H(4) 120.4 C(3)-C(2)-C(1) 120.1(9) C(3)-C(2)-H(2A) 120.0 C(1)-C(2)-H(2A) 120.0 O(3)-C(1)-C(2) 119.5(8) O(3)-C(1)-C(6) 121.0(7) C(2)-C(1)-C(6) 119.3(8) C(19)-C(18)-C(17) 116.4(7) C(19)-C(18)-H(18) 121.8 C(17)-C(18)-H(18) 121.8 N(4)-C(17)-C(18) 118.0(7) N(4)-C(17)-C(10) 121.4(7) C(18)-C(17)-C(10) 120.6(7) N(4)-C(16)-C(15) 119.9(8) N(4)-C(16)-C(11) 122.1(7) C(15)-C(16)-C(11) 118.0(8) C(14)-C(15)-C(16) 120.9(9) C(14)-C(15)-H(15) 119.6 C(16)-C(15)-H(15) 119.6 C(15)-C(14)-C(13) 121.5(8) C(15)-C(14)-H(14) 119.2 C(13)-C(14)-H(14) 119.2 C(12)-C(13)-C(14) 120.8(8) C(12)-C(13)-H(13) 119.6 C(14)-C(13)-H(13) 119.6 C(13)-C(12)-C(11) 119.1(8) C(13)-C(12)-H(12) 120.4 C(11)-C(12)-H(12) 120.4 N(3)-C(11)-C(12) 119.3(7) N(3)-C(11)-C(16) 121.1(7) ! 207! C(12)-C(11)-C(16) 119.6(8) N(3)-C(10)-C(9) 118.3(7) N(3)-C(10)-C(17) 121.7(7) C(9)-C(10)-C(17) 120.0(7) C(8)-C(9)-C(10) 120.1(7) C(8)-C(9)-H(9) 119.9 C(10)-C(9)-H(9) 119.9 S(1)-C(22)-H(22A) 109.5 S(1)-C(22)-H(22B) 109.5 H(22A)-C(22)-H(22B) 109.5 S(1)-C(22)-H(22C) 109.5 H(22A)-C(22)-H(22C) 109.5 H(22B)-C(22)-H(22C) 109.5 S(1)-C(23)-H(23A) 109.5 S(1)-C(23)-H(23B) 109.5 H(23A)-C(23)-H(23B) 109.5 S(1)-C(23)-H(23C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(23B)-C(23)-H(23C) 109.5 S(2)-C(24)-H 109.5 S(2)-C(24)-HA 109.5 H-C(24)-HA 109.5 S(2)-C(24)-HB 109.5 H-C(24)-HB 109.5 HA-C(24)-HB 109.5 S(2)-C(25)-HC 109.5 S(2)-C(25)-HD 109.5 HC-C(25)-HD 109.5 S(2)-C(25)-HE 109.5 HC-C(25)-HE 109.5 HD-C(25)-HE 109.5 _____________________________________________________________ ! 208! Crystallographic Table 40 Anisotropic displacement parameters (? 2 x 10 3 ) for Usalzine. The anisotropic displacement factor exponent takes the form: -2 ? 2 [ h 2 a* 2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ U(1) 35(1) 19(1) 25(1) 1(1) 7(1) -1(1) S(1) 33(1) 25(1) 31(1) 0(1) 4(1) 1(1) S(2) 49(2) 47(1) 43(1) 6(1) 14(1) 4(1) O(5) 89(6) 22(3) 40(4) 8(3) 16(4) 2(3) O(6) 69(5) 21(3) 35(3) -1(3) 9(3) -1(3) N(2) 40(4) 23(3) 25(4) -2(3) 14(3) 5(3) O(3) 40(4) 28(3) 30(3) 0(2) 8(3) 3(3) O(2) 74(5) 29(3) 14(3) -2(2) -7(3) 10(3) O(4) 30(3) 25(3) 26(3) 0(2) 5(2) -3(2) O(7) 78(6) 48(4) 55(5) 16(4) 17(4) -19(4) C(8) 24(3) 21(3) 20(3) -7(2) -9(2) 6(2) C(3) 38(5) 46(5) 35(5) 6(4) 12(4) -12(4) N(4) 34(4) 19(3) 34(4) 3(3) 6(3) -2(3) N(3) 24(4) 28(4) 24(4) 0(3) 2(3) -2(3) C(20) 49(6) 22(4) 50(6) 7(4) 16(5) -6(4) C(21) 65(7) 27(5) 65(7) 6(5) 8(6) 1(5) N(1) 23(3) 29(4) 27(4) -6(3) 6(3) -5(3) C(19) 24(3) 21(3) 20(3) -7(2) -9(2) 6(2) C(7) 26(4) 31(5) 24(4) -1(3) -3(3) 2(3) C(6) 24(4) 33(4) 28(4) 2(4) 9(3) 0(3) C(5) 33(5) 35(5) 33(5) -1(4) 10(4) 0(4) C(4) 38(5) 45(5) 40(5) -7(4) 20(4) -9(4) C(2) 38(5) 36(5) 36(5) 5(4) 4(4) -9(4) C(1) 28(4) 27(4) 25(4) 0(3) 1(3) -8(3) C(18) 44(5) 21(4) 23(4) -3(3) 11(4) 1(3) C(17) 34(5) 22(4) 22(4) -1(3) -5(3) 1(3) C(16) 31(5) 27(4) 29(5) 1(3) 3(4) -4(3) C(15) 34(5) 26(4) 34(5) 6(4) -1(4) -8(4) C(14) 44(6) 33(5) 36(5) 13(4) 3(4) -7(4) C(13) 43(5) 38(5) 34(5) 9(4) 13(4) -9(4) C(12) 31(5) 35(5) 31(5) 0(4) 5(4) -1(4) C(11) 28(5) 29(4) 26(4) 0(3) 3(3) 2(3) C(10) 27(4) 22(4) 23(4) 2(3) 6(3) 2(3) C(9) 39(5) 17(4) 21(4) 0(3) 6(3) 0(3) ! 209! O(1) 84(5) 21(3) 23(3) 0(2) 6(3) -2(3) C(22) 68(7) 48(6) 32(5) 12(5) -11(5) -18(5) C(23) 58(7) 33(5) 52(6) -15(5) -5(5) 6(5) C(24) 75(8) 49(6) 44(6) 8(5) 18(5) -6(5) C(25) 114(11) 64(8) 40(6) 16(6) 8(7) -40(8) _______________________________________________________________________ ! 210! Crystallographic Table 41 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (? 2 x 10 3 ) for Usalzine. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(2) -25 4490 2624 34 H(3) -1316 2373 4802 47 H(21A) 175 -179 871 80 H(21B) 1515 -185 1717 80 H(21C) 2006 -128 813 80 H(5) -1604 3955 3285 40 H(4) -2240 3429 4460 47 H(2A) 195 1828 3989 44 H(18) 1040 5438 1596 34 H(15) 2953 6715 -510 39 H(14) 4157 6764 -1634 46 H(13) 4935 5815 -2253 45 H(12) 4378 4790 -1770 39 H(9) 2206 3495 200 31 H(22A) -102 3549 -1144 78 H(22B) -999 3164 -1966 78 H(22C) 794 2981 -1545 78 H(23A) 171 1798 -1571 75 H(23B) -1708 1841 -1900 75 H(23C) -993 1439 -1057 75 H 3117 9050 7237 83 HA 2503 8558 7874 83 HB 4365 8658 7929 83 HC 4889 8840 9493 111 HD 3060 8748 9537 111 HE 4024 9367 9978 111 ________________________________________________________________ ! 211! Crystallographic Table 42 Torsion angles [?] for Usalzine ________________________________________________________________ O(2)-U(1)-O(5)-C(20) -90.0(6) O(1)-U(1)-O(5)-C(20) 89.8(6) O(3)-U(1)-O(5)-C(20) 179.6(6) O(4)-U(1)-O(5)-C(20) 1.4(7) O(6)-U(1)-O(5)-C(20) 0.9(5) N(1)-U(1)-O(5)-C(20) 179.5(5) O(2)-U(1)-O(6)-C(20) 88.9(6) O(1)-U(1)-O(6)-C(20) -92.9(6) O(3)-U(1)-O(6)-C(20) -2.6(7) O(4)-U(1)-O(6)-C(20) 179.5(6) O(5)-U(1)-O(6)-C(20) -0.9(5) N(1)-U(1)-O(6)-C(20) -178.9(6) O(2)-U(1)-O(3)-C(1) 148.1(6) O(1)-U(1)-O(3)-C(1) -29.9(6) O(4)-U(1)-O(3)-C(1) 55.5(8) O(5)-U(1)-O(3)-C(1) -121.6(7) O(6)-U(1)-O(3)-C(1) -120.2(6) N(1)-U(1)-O(3)-C(1) 58.4(6) C(20)-U(1)-O(3)-C(1) -121.4(6) C(22)-S(1)-O(4)-U(1) 159.2(6) C(23)-S(1)-O(4)-U(1) -97.6(6) O(2)-U(1)-O(4)-S(1) 173.2(5) O(1)-U(1)-O(4)-S(1) -8.4(5) O(3)-U(1)-O(4)-S(1) -94.4(6) O(5)-U(1)-O(4)-S(1) 81.9(5) O(6)-U(1)-O(4)-S(1) 82.3(5) N(1)-U(1)-O(4)-S(1) -97.1(5) C(20)-U(1)-O(4)-S(1) 82.5(5) U(1)-O(6)-C(20)-O(5) 1.7(10) U(1)-O(6)-C(20)-C(21) -180.0(8) U(1)-O(5)-C(20)-O(6) -1.7(10) U(1)-O(5)-C(20)-C(21) 179.9(8) O(2)-U(1)-C(20)-O(6) -91.5(6) O(1)-U(1)-C(20)-O(6) 87.5(6) O(3)-U(1)-C(20)-O(6) 177.9(5) O(4)-U(1)-C(20)-O(6) -0.5(6) O(5)-U(1)-C(20)-O(6) 178.3(10) N(1)-U(1)-C(20)-O(6) 176(2) O(2)-U(1)-C(20)-O(5) 90.2(6) O(1)-U(1)-C(20)-O(5) -90.9(6) O(3)-U(1)-C(20)-O(5) -0.4(6) O(4)-U(1)-C(20)-O(5) -178.9(6) ! 212! O(6)-U(1)-C(20)-O(5) -178.3(10) N(1)-U(1)-C(20)-O(5) -3(3) O(2)-U(1)-C(20)-C(21) 88(22) O(1)-U(1)-C(20)-C(21) -93(22) O(3)-U(1)-C(20)-C(21) -3(22) O(4)-U(1)-C(20)-C(21) 179(100) O(5)-U(1)-C(20)-C(21) -2(22) O(6)-U(1)-C(20)-C(21) 179(100) N(1)-U(1)-C(20)-C(21) -5(24) C(9)-C(8)-N(1)-C(7) 177.7(8) C(19)-C(8)-N(1)-C(7) -0.4(8) C(9)-C(8)-N(1)-U(1) -3.9(12) C(19)-C(8)-N(1)-U(1) 178.0(5) O(2)-U(1)-N(1)-C(7) -121.6(6) O(1)-U(1)-N(1)-C(7) 59.6(6) O(3)-U(1)-N(1)-C(7) -31.1(6) O(4)-U(1)-N(1)-C(7) 147.5(6) O(5)-U(1)-N(1)-C(7) -31.0(8) O(6)-U(1)-N(1)-C(7) 145.9(7) C(20)-U(1)-N(1)-C(7) -29(3) O(2)-U(1)-N(1)-C(8) 60.2(6) O(1)-U(1)-N(1)-C(8) -118.6(7) O(3)-U(1)-N(1)-C(8) 150.7(7) O(4)-U(1)-N(1)-C(8) -30.6(6) O(5)-U(1)-N(1)-C(8) 150.8(6) O(6)-U(1)-N(1)-C(8) -32.3(10) C(20)-U(1)-N(1)-C(8) 153(2) C(7)-N(2)-C(19)-C(18) -177.3(8) C(7)-N(2)-C(19)-C(8) 0.2(8) N(1)-C(8)-C(19)-C(18) 177.8(7) C(9)-C(8)-C(19)-C(18) -0.6(11) N(1)-C(8)-C(19)-N(2) 0.1(8) C(9)-C(8)-C(19)-N(2) -178.3(6) C(8)-N(1)-C(7)-N(2) 0.6(9) U(1)-N(1)-C(7)-N(2) -178.0(5) C(8)-N(1)-C(7)-C(6) -177.4(7) U(1)-N(1)-C(7)-C(6) 4.0(11) C(19)-N(2)-C(7)-N(1) -0.5(9) C(19)-N(2)-C(7)-C(6) 177.6(7) N(1)-C(7)-C(6)-C(5) -162.2(8) N(2)-C(7)-C(6)-C(5) 19.9(12) N(1)-C(7)-C(6)-C(1) 22.7(12) N(2)-C(7)-C(6)-C(1) -155.2(8) C(1)-C(6)-C(5)-C(4) 1.9(13) C(7)-C(6)-C(5)-C(4) -173.3(8) C(2)-C(3)-C(4)-C(5) -0.5(14) ! 213! C(6)-C(5)-C(4)-C(3) -1.0(13) C(4)-C(3)-C(2)-C(1) 1.1(14) U(1)-O(3)-C(1)-C(2) 129.6(7) U(1)-O(3)-C(1)-C(6) -55.2(10) C(3)-C(2)-C(1)-O(3) 175.0(8) C(3)-C(2)-C(1)-C(6) -0.2(13) C(5)-C(6)-C(1)-O(3) -176.4(8) C(7)-C(6)-C(1)-O(3) -1.2(12) C(5)-C(6)-C(1)-C(2) -1.3(12) C(7)-C(6)-C(1)-C(2) 173.9(8) N(2)-C(19)-C(18)-C(17) 179.0(8) C(8)-C(19)-C(18)-C(17) 2.0(12) C(16)-N(4)-C(17)-C(18) 178.1(7) C(16)-N(4)-C(17)-C(10) -1.3(11) C(19)-C(18)-C(17)-N(4) 178.0(7) C(19)-C(18)-C(17)-C(10) -2.6(12) C(17)-N(4)-C(16)-C(15) 179.6(7) C(17)-N(4)-C(16)-C(11) -0.3(12) N(4)-C(16)-C(15)-C(14) 178.5(8) C(11)-C(16)-C(15)-C(14) -1.6(12) C(16)-C(15)-C(14)-C(13) -0.2(13) C(15)-C(14)-C(13)-C(12) 1.7(14) C(14)-C(13)-C(12)-C(11) -1.4(13) C(10)-N(3)-C(11)-C(12) 178.0(7) C(10)-N(3)-C(11)-C(16) -2.4(11) C(13)-C(12)-C(11)-N(3) 179.1(8) C(13)-C(12)-C(11)-C(16) -0.5(12) N(4)-C(16)-C(11)-N(3) 2.2(12) C(15)-C(16)-C(11)-N(3) -177.7(7) N(4)-C(16)-C(11)-C(12) -178.2(8) C(15)-C(16)-C(11)-C(12) 1.9(12) C(11)-N(3)-C(10)-C(9) -179.4(7) C(11)-N(3)-C(10)-C(17) 0.8(11) N(4)-C(17)-C(10)-N(3) 1.1(12) C(18)-C(17)-C(10)-N(3) -178.3(7) N(4)-C(17)-C(10)-C(9) -178.7(7) C(18)-C(17)-C(10)-C(9) 2.0(12) N(1)-C(8)-C(9)-C(10) -178.2(8) C(19)-C(8)-C(9)-C(10) -0.1(11) N(3)-C(10)-C(9)-C(8) 179.7(7) C(17)-C(10)-C(9)-C(8) -0.6(12) ________________________________________________________________ ! 214! Crystallographic Table 43 Crystal data and structure refinement for salzine. Identification code salzine Empirical formula C 19 H 12 N 4 O Formula weight 312.33 Temperature 296(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P2 1 /n Unit cel dimensions a = 6.692(3) ? alpha = 90 ? b = 26.911(14) ? beta = 104.413(9) ? c = 8.086(4) ? gama = 90 ? Volume 1410.3(12) ? 3 Z, Calculated density 4, 1.471 Mg/m 3 Absorption coeficient 0.096 mm -1 F(000) 648 Crystal size 0.1 x 0.1 x 0.1 mm Theta range for data collection 2.71 to 26.47 deg. Limiting indices -8<=h<=8, -33<=k<=33, -10<=l<=10 Reflections collected / unique 13099 / 2924 [R(int) = 0.0581] Completenes to theta = 26.47 99.8 % Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2924 / 0 / 220 Goodness-of-fit on F^2 1.032 Final R indices [I>2sigma(I)] R1 = 0.0428, wR2 = 0.0895 R indices (al data) R1 = 0.0700, wR2 = 0.1013 Largest dif. peak and hole 0.189 and -0.199 e. ? -3 ! 215! Crystallographic Table 4 Salzine Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for salzine. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ O(1) -62(2) 10442(1) 6163(2) 27(1) N(1) 10015(2) 8799(1) 10557(2) 24(1) N(2) 6342(2) 10188(1) 7286(2) 23(1) N(3) 6069(2) 8472(1) 10852(2) 22(1) N(4) 3228(2) 9937(1) 7518(2) 22(1) C(1) 11363(3) 7668(1) 13040(2) 32(1) C(2) 11565(3) 8089(1) 12166(2) 30(1) C(3) 9789(3) 8380(1) 11399(2) 23(1) C(4) 8290(2) 9061(1) 9855(2) 21(1) C(5) 8478(3) 9502(1) 8948(2) 22(1) C(6) 6705(2) 9756(1) 8239(2) 20(1) C(7) 4265(2) 10279(1) 6889(2) 21(1) C(8) 3293(3) 10703(1) 5882(2) 21(1) C(9) 4441(3) 11055(1) 5243(2) 27(1) C(10) 3513(3) 11451(1) 4280(2) 31(1) C(11) 1379(3) 11501(1) 3917(2) 30(1) C(12) 9389(3) 7504(1) 13192(2) 31(1) C(13) 7665(3) 7770(1) 12468(2) 28(1) C(14) 7801(3) 8215(1) 11555(2) 22(1) C(15) 6274(3) 8894(1) 10003(2) 20(1) C(16) 4477(2) 9171(1) 9249(2) 21(1) C(17) 4699(2) 9595(1) 8380(2) 20(1) C(18) 1135(3) 10763(1) 5535(2) 22(1) C(19) 198(3) 11160(1) 4532(2) 27(1) ________________________________________________________________ ! 216! Crystallographic Table 45 Bond lengths [?] and angles [?] for salzine. _____________________________________________________________ O(1)-C(18) 1.360(2) O(1)-H(9) 0.98(2) N(1)-C(3) 1.345(2) N(1)-C(4) 1.351(2) N(2)-C(7) 1.369(2) N(2)-C(6) 1.383(2) N(2)-H(3) 0.8600 N(3)-C(14) 1.347(2) N(3)-C(15) 1.353(2) N(4)-C(7) 1.328(2) N(4)-C(17) 1.399(2) C(1)-C(2) 1.360(3) C(1)-C(12) 1.427(3) C(1)-H(1) 0.9300 C(2)-C(3) 1.428(2) C(2)-H(7) 0.9300 C(3)-C(14) 1.438(2) C(4)-C(5) 1.417(2) C(4)-C(15) 1.454(2) C(5)-C(6) 1.366(2) C(5)-H(8) 0.9300 C(6)-C(17) 1.442(2) C(7)-C(8) 1.457(2) C(8)-C(9) 1.398(2) C(8)-C(18) 1.410(2) C(9)-C(10) 1.375(2) C(9)-H(11) 0.9300 C(10)-C(11) 1.390(3) C(10)-H(12) 0.9300 C(11)-C(19) 1.381(3) C(11)-H(2) 0.9300 C(12)-C(13) 1.360(3) C(12)-H(4) 0.9300 C(13)-C(14) 1.422(2) C(13)-H(5) 0.9300 C(15)-C(16) 1.417(2) C(16)-C(17) 1.368(2) C(16)-H(6) 0.9300 C(18)-C(19) 1.393(2) C(19)-H(10) 0.9300 C(18)-O(1)-H(9) 106.7(12) ! 217! C(3)-N(1)-C(4) 117.26(15) C(7)-N(2)-C(6) 108.00(13) C(7)-N(2)-H(3) 126.0 C(6)-N(2)-H(3) 126.0 C(14)-N(3)-C(15) 117.35(15) C(7)-N(4)-C(17) 106.06(14) C(2)-C(1)-C(12) 121.10(17) C(2)-C(1)-H(1) 119.5 C(12)-C(1)-H(1) 119.5 C(1)-C(2)-C(3) 120.15(17) C(1)-C(2)-H(7) 119.9 C(3)-C(2)-H(7) 119.9 N(1)-C(3)-C(2) 119.51(16) N(1)-C(3)-C(14) 121.75(15) C(2)-C(3)-C(14) 118.74(16) N(1)-C(4)-C(5) 118.53(15) N(1)-C(4)-C(15) 121.19(15) C(5)-C(4)-C(15) 120.28(15) C(6)-C(5)-C(4) 117.18(15) C(6)-C(5)-H(8) 121.4 C(4)-C(5)-H(8) 121.4 C(5)-C(6)-N(2) 131.98(15) C(5)-C(6)-C(17) 123.10(15) N(2)-C(6)-C(17) 104.92(14) N(4)-C(7)-N(2) 112.50(14) N(4)-C(7)-C(8) 123.61(15) N(2)-C(7)-C(8) 123.89(14) C(9)-C(8)-C(18) 118.55(16) C(9)-C(8)-C(7) 121.83(16) C(18)-C(8)-C(7) 119.63(14) C(10)-C(9)-C(8) 121.54(17) C(10)-C(9)-H(11) 119.2 C(8)-C(9)-H(11) 119.2 C(9)-C(10)-C(11) 119.32(17) C(9)-C(10)-H(12) 120.3 C(11)-C(10)-H(12) 120.3 C(19)-C(11)-C(10) 120.65(17) C(19)-C(11)-H(2) 119.7 C(10)-C(11)-H(2) 119.7 C(13)-C(12)-C(1) 120.32(17) C(13)-C(12)-H(4) 119.8 C(1)-C(12)-H(4) 119.8 C(12)-C(13)-C(14) 120.63(17) C(12)-C(13)-H(5) 119.7 C(14)-C(13)-H(5) 119.7 N(3)-C(14)-C(13) 119.44(16) ! 218! N(3)-C(14)-C(3) 121.50(15) C(13)-C(14)-C(3) 119.06(15) N(3)-C(15)-C(16) 118.52(15) N(3)-C(15)-C(4) 120.94(15) C(16)-C(15)-C(4) 120.54(15) C(17)-C(16)-C(15) 118.07(15) C(17)-C(16)-H(6) 121.0 C(15)-C(16)-H(6) 121.0 C(16)-C(17)-N(4) 130.66(15) C(16)-C(17)-C(6) 120.83(15) N(4)-C(17)-C(6) 108.51(14) O(1)-C(18)-C(19) 118.96(16) O(1)-C(18)-C(8) 121.40(15) C(19)-C(18)-C(8) 119.64(15) C(11)-C(19)-C(18) 120.27(17) C(11)-C(19)-H(10) 119.9 C(18)-C(19)-H(10) 119.9 _____________________________________________________________ ! 219! Crystallographic Table 46 Anisotropic displacement parameters (? 2 x 10 3 ) for salzine. The anisotropic displacement factor exponent takes the form: -2 ?^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ O(1) 20(1) 28(1) 33(1) 4(1) 8(1) 1(1) N(1) 21(1) 24(1) 28(1) -1(1) 6(1) 1(1) N(2) 19(1) 22(1) 28(1) 3(1) 8(1) -1(1) N(3) 23(1) 20(1) 24(1) -2(1) 5(1) 0(1) N(4) 20(1) 22(1) 23(1) 2(1) 4(1) 0(1) C(1) 31(1) 30(1) 35(1) 5(1) 6(1) 10(1) C(2) 24(1) 31(1) 35(1) 1(1) 8(1) 4(1) C(3) 25(1) 21(1) 22(1) -2(1) 6(1) 1(1) C(4) 19(1) 21(1) 22(1) -3(1) 5(1) 1(1) C(5) 17(1) 23(1) 26(1) -2(1) 8(1) -2(1) C(6) 22(1) 19(1) 21(1) -2(1) 7(1) -1(1) C(7) 20(1) 21(1) 21(1) -3(1) 6(1) 0(1) C(8) 25(1) 20(1) 20(1) -3(1) 6(1) 0(1) C(9) 26(1) 27(1) 30(1) 1(1) 9(1) -1(1) C(10) 36(1) 26(1) 33(1) 5(1) 14(1) -3(1) C(11) 39(1) 26(1) 27(1) 5(1) 9(1) 7(1) C(12) 38(1) 23(1) 34(1) 5(1) 9(1) 3(1) C(13) 28(1) 23(1) 32(1) 1(1) 8(1) -1(1) C(14) 23(1) 21(1) 21(1) -3(1) 4(1) 1(1) C(15) 22(1) 19(1) 19(1) -4(1) 6(1) -1(1) C(16) 15(1) 24(1) 24(1) -1(1) 5(1) -3(1) C(17) 20(1) 20(1) 20(1) -3(1) 5(1) -1(1) C(18) 25(1) 22(1) 21(1) -4(1) 9(1) -2(1) C(19) 25(1) 29(1) 27(1) 0(1) 6(1) 7(1) _______________________________________________________________________ ! 220! Crystallographic Table 47 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (? 2 x 10 3 ) for salzine. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(9) 860(30) 10182(7) 6780(20) 40 H(3) 7260 10368 6995 27 H(1) 12531 7484 13548 39 H(7) 12861 8188 12067 36 H(8) 9755 9613 8840 26 H(11) 5867 11020 5475 33 H(12) 4303 11684 3876 37 H(2) 742 11766 3253 37 H(4) 9281 7214 13790 38 H(5) 6384 7659 12570 33 H(6) 3184 9067 9343 25 H(10) -1228 11197 4275 33 ________________________________________________________________ ! 221! Crystallographic Table 48 Salzine Torsion angles [?] for salzine. ________________________________________________________________ C(12)-C(1)-C(2)-C(3) 0.9(3) C(4)-N(1)-C(3)-C(2) -179.99(15) C(4)-N(1)-C(3)-C(14) -0.1(2) C(1)-C(2)-C(3)-N(1) 179.15(16) C(1)-C(2)-C(3)-C(14) -0.7(2) C(3)-N(1)-C(4)-C(5) -179.51(14) C(3)-N(1)-C(4)-C(15) -0.2(2) N(1)-C(4)-C(5)-C(6) 179.41(15) C(15)-C(4)-C(5)-C(6) 0.1(2) C(4)-C(5)-C(6)-N(2) -179.63(16) C(4)-C(5)-C(6)-C(17) 0.1(2) C(7)-N(2)-C(6)-C(5) 179.80(17) C(7)-N(2)-C(6)-C(17) 0.03(17) C(17)-N(4)-C(7)-N(2) -0.31(18) C(17)-N(4)-C(7)-C(8) 179.50(14) C(6)-N(2)-C(7)-N(4) 0.18(18) C(6)-N(2)-C(7)-C(8) -179.63(15) N(4)-C(7)-C(8)-C(9) 179.96(16) N(2)-C(7)-C(8)-C(9) -0.3(2) N(4)-C(7)-C(8)-C(18) 0.0(2) N(2)-C(7)-C(8)-C(18) 179.80(15) C(18)-C(8)-C(9)-C(10) -0.7(2) C(7)-C(8)-C(9)-C(10) 179.36(16) C(8)-C(9)-C(10)-C(11) -0.7(3) C(9)-C(10)-C(11)-C(19) 0.9(3) C(2)-C(1)-C(12)-C(13) -0.4(3) C(1)-C(12)-C(13)-C(14) -0.3(3) C(15)-N(3)-C(14)-C(13) 179.70(14) C(15)-N(3)-C(14)-C(3) -0.6(2) C(12)-C(13)-C(14)-N(3) -179.91(16) C(12)-C(13)-C(14)-C(3) 0.4(2) N(1)-C(3)-C(14)-N(3) 0.5(2) C(2)-C(3)-C(14)-N(3) -179.61(15) N(1)-C(3)-C(14)-C(13) -179.77(15) C(2)-C(3)-C(14)-C(13) 0.1(2) C(14)-N(3)-C(15)-C(16) 179.96(14) C(14)-N(3)-C(15)-C(4) 0.3(2) N(1)-C(4)-C(15)-N(3) 0.1(2) C(5)-C(4)-C(15)-N(3) 179.41(14) N(1)-C(4)-C(15)-C(16) -179.57(15) C(5)-C(4)-C(15)-C(16) -0.2(2) N(3)-C(15)-C(16)-C(17) -179.42(14) ! 222! C(4)-C(15)-C(16)-C(17) 0.2(2) C(15)-C(16)-C(17)-N(4) 179.82(15) C(15)-C(16)-C(17)-C(6) -0.1(2) C(7)-N(4)-C(17)-C(16) -179.57(17) C(7)-N(4)-C(17)-C(6) 0.32(17) C(5)-C(6)-C(17)-C(16) -0.1(2) N(2)-C(6)-C(17)-C(16) 179.69(15) C(5)-C(6)-C(17)-N(4) 179.99(15) N(2)-C(6)-C(17)-N(4) -0.22(17) C(9)-C(8)-C(18)-O(1) -178.03(15) C(7)-C(8)-C(18)-O(1) 1.9(2) C(9)-C(8)-C(18)-C(19) 1.9(2) C(7)-C(8)-C(18)-C(19) -178.16(15) C(10)-C(11)-C(19)-C(18) 0.4(3) O(1)-C(18)-C(19)-C(11) 178.18(15) C(8)-C(18)-C(19)-C(11) -1.7(2) ________________________________________________________________ ! 223! Crystallographic Table 49 Crystal data and structure refinement for t-butsalzine. Identification code bam137_0m Empirical formula C 32 H 38 N 4 O 2 Formula weight 510.66 Temperature 183(2) K Wavelength 0.71073 A Crystal system, space group Triclinic, P-1 Unit cel dimensions a = 9.0785(5) ? ? = 103.4900(10) ? b = 9.9896(6) ? ? = 103.2300(10) ? c = 16.3768(9) ? ? = 99.4810(10) ? Volume 1368.08(13) ? 3 Z, Calculated density 2, 1.240 Mg/m 3 Absorption coeficient 0.078 mm -1 F(000) 548 Crystal size 0.1 x 0.1 x 0.1 mm Theta range for data collection 1.33 to 30.75 ? Limiting indices -13<=h<=13, -14<=k<=14, -23<=l<=23 Reflections collected / unique 37120 / 8315 [R( int ) = 0.0313] Completenes to theta = 30.75 97.5 % Absorption correction Numerical Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 8315 / 3 / 358 Goodnes-of-fit on F 2 1.646 Final R indices [I>2sigma(I)] R1 = 0.0576, wR2 = 0.2008 R indices (al data) R1 = 0.0659, wR2 = 0.2135 Largest dif. peak and hole 0.716 and -0.386 e.A -3 ! 224! Crystallographic Table 50 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (? 2 x 10 3 ) for t- butsalzine. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________ x y z U(eq) ________________________________________________________________ O(1) -1590(1) 6661(1) 7088(1) 31(1) O(2) 7143(1) 7150(1) 4385(1) 34(1) O(3) 3166(2) 9372(1) 8977(1) 58(1) N(2) 365(1) 6953(1) 6203(1) 23(1) N(3) 1721(1) 5305(1) 5876(1) 21(1) N(4) 4074(1) 7677(1) 4043(1) 22(1) C(1) 2863(3) 7116(2) 9179(2) 67(1) C(2) 3054(3) 8179(2) 10042(1) 56(1) C(3) 2838(3) 9496(2) 9790(2) 63(1) C(4) 2694(5) 7954(2) 8529(2) 107(1) C(5) -82(2) 1332(2) 8466(1) 36(1) C(6) 848(1) 2095(1) 7972(1) 23(1) C(7) 130(1) 3262(1) 7692(1) 21(1) C(8) 653(1) 3906(1) 7112(1) 21(1) C(9) 91(1) 5045(1) 6900(1) 20(1) C(10) 707(1) 5752(1) 6324(1) 20(1) C(11) 1215(1) 7336(1) 5658(1) 20(1) C(12) 1318(1) 8500(1) 5347(1) 22(1) C(13) 2312(1) 8644(1) 4805(1) 20(1) N(1) 2472(1) 9808(1) 4521(1) 22(1) C(15) 3358(1) 9885(1) 3972(1) 22(1) C(16) 3505(2) 11064(1) 3620(1) 28(1) C(17) 4347(2) 11124(1) 3037(1) 32(1) C(18) 943(2) 980(1) 7175(1) 28(1) C(19) -991(1) 3798(1) 8051(1) 22(1) C(20) -1592(1) 4927(1) 7868(1) 22(1) C(21) -2788(1) 5489(1) 8301(1) 26(1) C(22) -4314(2) 5333(2) 7602(1) 31(1) C(23) -3187(2) 4669(2) 8937(1) 34(1) C(24) -2134(2) 7055(2) 8828(1) 38(1) C(25) -1037(1) 5557(1) 7280(1) 22(1) C(26) 2085(1) 6286(1) 5442(1) 19(1) C(27) 3031(1) 6366(1) 4905(1) 20(1) C(28) 3155(1) 7562(1) 4573(1) 19(1) C(29) 4148(1) 8796(1) 3716(1) 21(1) C(30) 5118(2) 10037(2) 2775(1) 32(1) ! 225! C(31) 5030(2) 8910(1) 3115(1) 29(1) C(32) 2510(2) 2777(2) 8572(1) 34(1) ________________________________________________________________ ! 226! Crystallographic Table 51 Bond lengths [?] and angles [?] for t-butsalzine. _____________________________________________________________ O(1)-C(25) 1.3554(13) O(1)-H(20) 0.97(2) O(2)-H(37) 0.829(9) O(2)-H(38) 0.835(9) O(3)-C(4) 1.378(3) O(3)-C(3) 1.412(3) N(2)-C(10) 1.3344(13) N(2)-C(11) 1.3846(15) N(3)-C(10) 1.3700(14) N(3)-C(26) 1.3787(13) N(3)-H(21) 0.8600 N(4)-C(28) 1.3454(15) N(4)-C(29) 1.3450(14) C(1)-C(4) 1.496(3) C(1)-C(2) 1.510(3) C(1)-H(1) 0.9700 C(1)-H(4) 0.9700 C(2)-C(3) 1.497(3) C(2)-H(6) 0.9700 C(2)-H(5) 0.9700 C(3)-H(2) 0.9700 C(3)-H(7) 0.9700 C(5)-C(6) 1.5283(17) C(5)-H(31) 0.9600 C(5)-H(8) 0.9600 C(5)-H(30) 0.9600 C(6)-C(7) 1.5357(15) C(6)-C(18) 1.5358(17) C(6)-C(32) 1.5408(18) C(7)-C(8) 1.3888(15) C(7)-C(19) 1.4050(16) C(8)-C(9) 1.4040(14) C(8)-H(28) 0.9300 C(9)-C(25) 1.4183(16) C(9)-C(10) 1.4571(15) C(11)-C(12) 1.3716(14) C(11)-C(26) 1.4415(15) C(12)-C(13) 1.4163(16) C(12)-H(22) 0.9300 C(13)-N(1) 1.3486(13) C(13)-C(28) 1.4527(15) N(1)-C(15) 1.3428(16) ! 227! C(15)-C(16) 1.4278(15) C(15)-C(29) 1.4345(16) C(16)-C(17) 1.3585(19) C(16)-H(26) 0.9300 C(17)-C(30) 1.423(2) C(17)-H(9) 0.9300 C(18)-H(35) 0.9600 C(18)-H(36) 0.9600 C(18)-H(10) 0.9600 C(19)-C(20) 1.3948(15) C(19)-H(29) 0.9300 C(20)-C(25) 1.4072(16) C(20)-C(21) 1.5378(16) C(21)-C(23) 1.5364(18) C(21)-C(22) 1.5402(18) C(21)-C(24) 1.5411(19) C(22)-H(13) 0.9600 C(22)-H(11) 0.9600 C(22)-H(12) 0.9600 C(23)-H(14) 0.9600 C(23)-H(16) 0.9600 C(23)-H(15) 0.9600 C(24)-H(18) 0.9600 C(24)-H(17) 0.9600 C(24)-H(19) 0.9600 C(26)-C(27) 1.3691(15) C(27)-C(28) 1.4227(14) C(27)-H(27) 0.9300 C(29)-C(31) 1.4170(17) C(30)-C(31) 1.3664(17) C(30)-H(24) 0.9300 C(31)-H(25) 0.9300 C(32)-H(33) 0.9600 C(32)-H(34) 0.9600 C(32)-H(32) 0.9600 C(25)-O(1)-H(20) 105.4(12) H(37)-O(2)-H(38) 102.8(16) C(4)-O(3)-C(3) 106.18(16) C(10)-N(2)-C(11) 105.79(9) C(10)-N(3)-C(26) 107.37(9) C(10)-N(3)-H(21) 126.3 C(26)-N(3)-H(21) 126.3 C(28)-N(4)-C(29) 118.00(10) C(4)-C(1)-C(2) 104.31(16) C(4)-C(1)-H(1) 110.9 ! 228! C(2)-C(1)-H(1) 110.9 C(4)-C(1)-H(4) 110.9 C(2)-C(1)-H(4) 110.9 H(1)-C(1)-H(4) 108.9 C(3)-C(2)-C(1) 103.44(16) C(3)-C(2)-H(6) 111.1 C(1)-C(2)-H(6) 111.1 C(3)-C(2)-H(5) 111.1 C(1)-C(2)-H(5) 111.1 H(6)-C(2)-H(5) 109.0 O(3)-C(3)-C(2) 107.16(16) O(3)-C(3)-H(2) 110.3 C(2)-C(3)-H(2) 110.3 O(3)-C(3)-H(7) 110.3 C(2)-C(3)-H(7) 110.3 H(2)-C(3)-H(7) 108.5 O(3)-C(4)-C(1) 108.52(19) C(6)-C(5)-H(31) 109.5 C(6)-C(5)-H(8) 109.5 H(31)-C(5)-H(8) 109.5 C(6)-C(5)-H(30) 109.5 H(31)-C(5)-H(30) 109.5 H(8)-C(5)-H(30) 109.5 C(5)-C(6)-C(7) 112.51(10) C(5)-C(6)-C(18) 107.72(10) C(7)-C(6)-C(18) 110.86(9) C(5)-C(6)-C(32) 108.80(11) C(7)-C(6)-C(32) 108.39(10) C(18)-C(6)-C(32) 108.47(10) C(8)-C(7)-C(19) 116.97(10) C(8)-C(7)-C(6) 120.72(10) C(19)-C(7)-C(6) 122.14(10) C(7)-C(8)-C(9) 121.39(10) C(7)-C(8)-H(28) 119.3 C(9)-C(8)-H(28) 119.3 C(8)-C(9)-C(25) 119.85(10) C(8)-C(9)-C(10) 120.64(10) C(25)-C(9)-C(10) 119.45(10) N(2)-C(10)-N(3) 112.73(10) N(2)-C(10)-C(9) 122.36(10) N(3)-C(10)-C(9) 124.87(10) C(12)-C(11)-N(2) 129.75(10) C(12)-C(11)-C(26) 121.40(11) N(2)-C(11)-C(26) 108.84(9) C(11)-C(12)-C(13) 117.92(10) C(11)-C(12)-H(22) 121.0 ! 229! C(13)-C(12)-H(22) 121.0 N(1)-C(13)-C(12) 118.67(10) N(1)-C(13)-C(28) 121.00(11) C(12)-C(13)-C(28) 120.32(10) C(15)-N(1)-C(13) 117.50(10) N(1)-C(15)-C(16) 119.69(11) N(1)-C(15)-C(29) 121.61(10) C(16)-C(15)-C(29) 118.69(11) C(17)-C(16)-C(15) 120.16(12) C(17)-C(16)-H(26) 119.9 C(15)-C(16)-H(26) 119.9 C(16)-C(17)-C(30) 121.20(11) C(16)-C(17)-H(9) 119.4 C(30)-C(17)-H(9) 119.4 C(6)-C(18)-H(35) 109.5 C(6)-C(18)-H(36) 109.5 H(35)-C(18)-H(36) 109.5 C(6)-C(18)-H(10) 109.5 H(35)-C(18)-H(10) 109.5 H(36)-C(18)-H(10) 109.5 C(20)-C(19)-C(7) 124.40(10) C(20)-C(19)-H(29) 117.8 C(7)-C(19)-H(29) 117.8 C(19)-C(20)-C(25) 117.22(11) C(19)-C(20)-C(21) 121.90(10) C(25)-C(20)-C(21) 120.87(10) C(23)-C(21)-C(20) 111.74(10) C(23)-C(21)-C(22) 107.34(11) C(20)-C(21)-C(22) 110.25(10) C(23)-C(21)-C(24) 107.41(11) C(20)-C(21)-C(24) 110.19(11) C(22)-C(21)-C(24) 109.83(11) C(21)-C(22)-H(13) 109.5 C(21)-C(22)-H(11) 109.5 H(13)-C(22)-H(11) 109.5 C(21)-C(22)-H(12) 109.5 H(13)-C(22)-H(12) 109.5 H(11)-C(22)-H(12) 109.5 C(21)-C(23)-H(14) 109.5 C(21)-C(23)-H(16) 109.5 H(14)-C(23)-H(16) 109.5 C(21)-C(23)-H(15) 109.5 H(14)-C(23)-H(15) 109.5 H(16)-C(23)-H(15) 109.5 C(21)-C(24)-H(18) 109.5 C(21)-C(24)-H(17) 109.5 ! 230! H(18)-C(24)-H(17) 109.5 C(21)-C(24)-H(19) 109.5 H(18)-C(24)-H(19) 109.5 H(17)-C(24)-H(19) 109.5 O(1)-C(25)-C(20) 118.96(10) O(1)-C(25)-C(9) 120.87(10) C(20)-C(25)-C(9) 120.17(10) C(27)-C(26)-N(3) 132.10(10) C(27)-C(26)-C(11) 122.63(10) N(3)-C(26)-C(11) 105.26(9) C(26)-C(27)-C(28) 116.98(10) C(26)-C(27)-H(27) 121.5 C(28)-C(27)-H(27) 121.5 N(4)-C(28)-C(27) 118.67(10) N(4)-C(28)-C(13) 120.62(10) C(27)-C(28)-C(13) 120.71(10) N(4)-C(29)-C(31) 119.67(11) N(4)-C(29)-C(15) 121.07(11) C(31)-C(29)-C(15) 119.25(10) C(31)-C(30)-C(17) 120.14(12) C(31)-C(30)-H(24) 119.9 C(17)-C(30)-H(24) 119.9 C(30)-C(31)-C(29) 120.53(12) C(30)-C(31)-H(25) 119.7 C(29)-C(31)-H(25) 119.7 C(6)-C(32)-H(33) 109.5 C(6)-C(32)-H(34) 109.5 H(33)-C(32)-H(34) 109.5 C(6)-C(32)-H(32) 109.5 H(33)-C(32)-H(32) 109.5 H(34)-C(32)-H(32) 109.5 _____________________________________________________________ ! 231! Crystallographic Table 52 Anisotropic displacement parameters (? 2 x 10 3 ) for t-butsalzine. The anisotropic displacement factor exponent takes the form: -2 ?^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ] _______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ O(1) 40(1) 30(1) 42(1) 22(1) 24(1) 22(1) O(2) 32(1) 27(1) 44(1) 7(1) 12(1) 15(1) O(3) 75(1) 42(1) 58(1) 26(1) 16(1) 9(1) N(2) 30(1) 21(1) 25(1) 10(1) 13(1) 11(1) N(3) 26(1) 18(1) 24(1) 10(1) 12(1) 9(1) N(4) 25(1) 20(1) 26(1) 11(1) 11(1) 7(1) C(1) 107(2) 35(1) 71(1) 21(1) 41(1) 19(1) C(2) 74(1) 56(1) 52(1) 28(1) 26(1) 27(1) C(3) 88(2) 51(1) 60(1) 18(1) 24(1) 34(1) C(4) 221(4) 39(1) 51(1) 10(1) 48(2) -9(2) C(5) 43(1) 37(1) 44(1) 27(1) 24(1) 20(1) C(6) 27(1) 24(1) 24(1) 12(1) 10(1) 10(1) C(7) 24(1) 21(1) 21(1) 8(1) 8(1) 8(1) C(8) 25(1) 21(1) 22(1) 9(1) 11(1) 10(1) C(9) 24(1) 20(1) 20(1) 8(1) 9(1) 8(1) C(10) 24(1) 19(1) 20(1) 7(1) 8(1) 8(1) C(11) 25(1) 18(1) 20(1) 7(1) 8(1) 7(1) C(12) 28(1) 18(1) 25(1) 8(1) 11(1) 10(1) C(13) 23(1) 15(1) 20(1) 6(1) 6(1) 6(1) N(1) 28(1) 18(1) 25(1) 9(1) 8(1) 7(1) C(15) 24(1) 18(1) 24(1) 8(1) 6(1) 5(1) C(16) 35(1) 22(1) 33(1) 14(1) 11(1) 9(1) C(17) 39(1) 27(1) 37(1) 19(1) 14(1) 8(1) C(18) 34(1) 24(1) 30(1) 8(1) 10(1) 12(1) C(19) 27(1) 22(1) 22(1) 8(1) 11(1) 8(1) C(20) 25(1) 23(1) 23(1) 7(1) 10(1) 9(1) C(21) 31(1) 25(1) 28(1) 8(1) 16(1) 12(1) C(22) 31(1) 32(1) 38(1) 13(1) 16(1) 15(1) C(23) 40(1) 39(1) 35(1) 16(1) 24(1) 18(1) C(24) 48(1) 28(1) 37(1) 1(1) 21(1) 10(1) C(25) 27(1) 21(1) 25(1) 8(1) 11(1) 12(1) C(26) 22(1) 17(1) 20(1) 7(1) 6(1) 6(1) C(27) 24(1) 17(1) 25(1) 9(1) 9(1) 8(1) C(28) 21(1) 17(1) 21(1) 7(1) 6(1) 6(1) ! 232! C(29) 22(1) 20(1) 24(1) 9(1) 7(1) 5(1) C(30) 36(1) 32(1) 38(1) 20(1) 18(1) 8(1) C(31) 31(1) 28(1) 36(1) 17(1) 18(1) 10(1) C(32) 34(1) 34(1) 32(1) 10(1) 1(1) 11(1) _______________________________________________________________________ ! 233! Crystallographic Table 53 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (? 2 x 10 3 ) for t-butsalzine. ________________________________________________________________ x y z U(eq) ________________________________________________________________ H(20) -940(20) 7030(20) 6758(13) 47 H(37) 7530(20) 7914(14) 4768(10) 50 H(38) 6198(11) 7140(20) 4246(12) 50 H(21) 2068 4552 5868 25 H(1) 3767 6713 9194 80 H(4) 1947 6359 9038 80 H(6) 2275 7874 10319 67 H(5) 4080 8325 10436 67 H(2) 1778 9594 9740 76 H(7) 3537 10321 10228 76 H(31) -1158 1031 8136 53 H(8) 16 1964 9026 53 H(30) 310 523 8546 53 H(28) 1391 3575 6860 25 H(22) 753 9174 5488 26 H(26) 3024 11793 3791 34 H(9) 4420 11890 2804 38 H(35) 1419 276 7366 42 H(36) 1553 1427 6863 42 H(10) -86 540 6797 42 H(29) -1356 3371 8436 26 H(13) -4795 4348 7334 47 H(11) -4092 5765 7164 47 H(12) -5004 5789 7871 47 H(14) -3585 3684 8629 51 H(16) -3958 5028 9181 51 H(15) -2267 4783 9399 51 H(18) -2850 7372 9137 57 H(17) -1991 7615 8437 57 H(19) -1153 7154 9240 57 H(27) 3569 5669 4763 24 H(24) 5683 10094 2372 39 H(25) 5553 8211 2949 34 H(33) 2473 3501 9064 52 H(34) 3131 3187 8251 52 H(32) 2960 2068 8774 52 ________________________________________________________________ ! 234! Crystallographic Table 54 Torsion angles [?] for t-butsalzine. ________________________________________________________________ C(4)-C(1)-C(2)-C(3) 4.7(3) C(4)-O(3)-C(3)-C(2) 33.2(3) C(1)-C(2)-C(3)-O(3) -22.7(2) C(3)-O(3)-C(4)-C(1) -30.1(3) C(2)-C(1)-C(4)-O(3) 15.2(4) C(5)-C(6)-C(7)-C(8) -169.03(11) C(18)-C(6)-C(7)-C(8) -48.33(14) C(32)-C(6)-C(7)-C(8) 70.62(14) C(5)-C(6)-C(7)-C(19) 15.73(16) C(18)-C(6)-C(7)-C(19) 136.43(12) C(32)-C(6)-C(7)-C(19) -104.62(13) C(19)-C(7)-C(8)-C(9) 0.34(17) C(6)-C(7)-C(8)-C(9) -175.14(10) C(7)-C(8)-C(9)-C(25) -0.16(17) C(7)-C(8)-C(9)-C(10) 177.06(10) C(11)-N(2)-C(10)-N(3) -0.93(13) C(11)-N(2)-C(10)-C(9) 176.96(10) C(26)-N(3)-C(10)-N(2) 0.76(13) C(26)-N(3)-C(10)-C(9) -177.07(10) C(8)-C(9)-C(10)-N(2) -170.48(11) C(25)-C(9)-C(10)-N(2) 6.75(17) C(8)-C(9)-C(10)-N(3) 7.15(17) C(25)-C(9)-C(10)-N(3) -175.62(11) C(10)-N(2)-C(11)-C(12) -178.25(12) C(10)-N(2)-C(11)-C(26) 0.73(12) N(2)-C(11)-C(12)-C(13) 178.79(11) C(26)-C(11)-C(12)-C(13) -0.08(17) C(11)-C(12)-C(13)-N(1) -177.59(10) C(11)-C(12)-C(13)-C(28) 1.65(17) C(12)-C(13)-N(1)-C(15) -176.68(10) C(28)-C(13)-N(1)-C(15) 4.08(16) C(13)-N(1)-C(15)-C(16) 177.11(10) C(13)-N(1)-C(15)-C(29) -1.89(17) N(1)-C(15)-C(16)-C(17) -177.29(12) C(29)-C(15)-C(16)-C(17) 1.73(18) C(15)-C(16)-C(17)-C(30) -1.1(2) C(8)-C(7)-C(19)-C(20) -0.48(17) C(6)-C(7)-C(19)-C(20) 174.93(11) C(7)-C(19)-C(20)-C(25) 0.40(18) C(7)-C(19)-C(20)-C(21) -178.39(11) C(19)-C(20)-C(21)-C(23) 0.45(17) ! 235! C(25)-C(20)-C(21)-C(23) -178.30(11) C(19)-C(20)-C(21)-C(22) -118.83(12) C(25)-C(20)-C(21)-C(22) 62.42(15) C(25)-C(20)-C(21)-C(24) -58.97(15) C(19)-C(20)-C(25)-O(1) -179.75(10) C(21)-C(20)-C(25)-O(1) -0.95(17) C(19)-C(20)-C(25)-C(9) -0.19(17) C(21)-C(20)-C(25)-C(9) 178.61(11) C(8)-C(9)-C(25)-O(1) 179.63(10) C(10)-C(9)-C(25)-O(1) 2.38(17) C(8)-C(9)-C(25)-C(20) 0.08(17) C(10)-C(9)-C(25)-C(20) -177.17(10) C(10)-N(3)-C(26)-C(27) 180.00(12) C(10)-N(3)-C(26)-C(11) -0.25(12) C(12)-C(11)-C(26)-C(27) -1.43(17) N(2)-C(11)-C(26)-C(27) 179.48(10) C(12)-C(11)-C(26)-N(3) 178.79(10) N(2)-C(11)-C(26)-N(3) -0.30(12) N(3)-C(26)-C(27)-C(28) -179.07(11) C(11)-C(26)-C(27)-C(28) 1.22(16) C(29)-N(4)-C(28)-C(27) 178.34(10) C(29)-N(4)-C(28)-C(13) -2.05(16) C(26)-C(27)-C(28)-N(4) 179.99(10) C(26)-C(27)-C(28)-C(13) 0.38(16) N(1)-C(13)-C(28)-N(4) -2.23(17) C(12)-C(13)-C(28)-N(4) 178.55(10) N(1)-C(13)-C(28)-C(27) 177.37(10) C(12)-C(13)-C(28)-C(27) -1.85(16) C(28)-N(4)-C(29)-C(31) -176.22(10) C(28)-N(4)-C(29)-C(15) 4.26(17) N(1)-C(15)-C(29)-N(4) -2.40(18) C(16)-C(15)-C(29)-N(4) 178.60(11) N(1)-C(15)-C(29)-C(31) 178.08(11) C(16)-C(15)-C(29)-C(31) -0.92(17) C(16)-C(17)-C(30)-C(31) -0.4(2) C(17)-C(30)-C(31)-C(29) 1.2(2) N(4)-C(29)-C(31)-C(30) 179.94(12) C(15)-C(29)-C(31)-C(30) -0.53(19) ________________________________________________________________