
Adaptive TCP Flow Control for Improving Performance of
Mobile Cloud Clusters

by

Seungbae Lee

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 4, 2014

Keywords: mobile device, mobile ad hoc cloud, Hadoop mobile cluster, distributed
computing performance, analytic data flow, TCP flow control

Copyright 2014 by Seungbae Lee

Approved by

Alvin Lim, Chair, Associate Professor of Computer Science and Software Engineering
David Umphress, Associate Professor of Computer Science and Software Engineering
Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering

Xiao Qin, Associate Professor of Computer Science and Software Engineering

Abstract

Significant innovations in mobile technologies are enabling mobile users to make real-

time actionable decisions based on balancing opportunities and risks in order to take co-

ordinated actions with others in the workplace. This requires a new distributed analytic

framework that collects relevant information from internal and external sources, performs

real-time distributed analytics, and delivers a critical analysis to any user at any place in a

given time frame through the use of mobile devices such as smartphones and tablets.

This work discusses the benefits and challenges of building mobile cloud clusters using

recent mobile devices for distributed analytic applications by showing its feasibility with

MapReduce framework and also investigates performance issues of Hadoop mobile clusters

by conducting extensive experiments using typical Hadoop benchmarks; the newest release of

Hadoop software framework with its enhancements is ported to the latest Android-based mo-

bile devices through mobile virtualization technique. In addition, it develops the MapReduce

simulator based on the ns-2 network simulator to comprehensively examine the performance

and efficiency of mobile cloud clusters in extensive operating environments, which enables it

to identify critical performance issues under different cluster (or workload) scales, dynamic

node mobility, and various wireless channel conditions.

From the performance analysis this work identifies TCP (Transmission Control Proto-

col) communication problems resulting from distinct traffic patterns of MapReduce-based

Hadoop distributed framework and proposes adaptive TCP flow control algorithms for im-

proving the performance of mobile cloud clusters. The overall computing power of the mobile

cluster is no longer significantly bounded by typical processing capabilities of each individ-

ual mobile node as mobile devices have been constantly enhanced, but the mobile cluster

has limitations on interchanging large amounts of analytical data among mobile devices and

ii

monitoring real-time status of cluster nodes through timely state updates, which result in

significant delays in the processing time with corresponding performance degradation.

This work proposes an algorithm for cross-layer TCP flow control and dynamic network

resource scheduling to avoid frequent overflows of the MAC (Media Access Control) layer

transmit queue on the mobile nodes, which interrupt long-lived analytical data streams

required for the partition and aggregation workflow of distributed analytic frameworks. It

controls TCP’s packet transmission based on the queueing level and implements dynamic

resource scheduling for incoming and outgoing frames to minimize the queueing delay and

stabilize the queueing level. In the evaluation test, the aggregate throughput of peer-to-peer

TCP connections was significantly improved without incurring any throughput collapse.

In order to prevent TCP receive buffer overflows on the controller node due to the use of

TCP push packets, which involve many interruptions in the reception of the latest status up-

dates and progress reports from its worker nodes, this work also introduces another algorithm

for mitigating the adverse effects of the TCP push flows that cause excessive transmissions

from fast congestion window growth and frequent RTO (retransmission timeout) underesti-

mation. It moderates the congestion window outburst and skips the RTO estimation using

RTT (round-trip time) updates from the TCP push streams when the buffer overflow is de-

tected. In the Hadoop TeraSort benchmark test, there were marked decreases in frequency

of receive buffer overflows and TCP packet retransmissions and the overall processing time

could be shortened accordingly.

iii

Table of Contents

Abstract . ii

List of Figures . vii

List of Tables . ix

1 Introduction . 1

1.1 Recent mobile trends in the workplace . 1

1.1.1 Mobile device capabilities . 2

1.1.2 Mobility in the workplace . 3

1.1.3 Actionable analytics . 4

1.2 Different types of mobile cloud computing 4

1.2.1 Remote and local cloud services . 6

1.2.2 Ad hoc cloud and other concepts . 6

2 Background and related work . 9

2.1 Overview of Apache Hadoop for cloud clusters 9

2.1.1 Apache Hadoop . 9

2.1.2 MapReduce programming model . 10

2.1.3 Hadoop distributed filesystem . 10

2.1.4 MapReduce task execution . 11

2.2 Overview of TCP flow control for performance analysis 13

2.2.1 Sliding window flow control . 13

2.2.2 Packet loss detection mechanisms . 16

2.2.3 Congestion window dynamics . 17

2.3 Related studies on mobile cloud clusters . 19

2.3.1 Implementation of mobile ad hoc cloud 20

iv

2.3.2 Network problems of traditional cloud 21

2.3.3 MapReduce performance prediction using simulation 22

3 Understanding performance issues of Hadoop mobile clusters 23

3.1 Hadoop benchmarks for performance evaluation 23

3.2 Assumptions on mobile cloud clusters . 26

3.3 Performance experiments of Hadoop mobile clusters 27

3.3.1 Experimental setup . 27

3.3.2 I/O performance of mobile nodes . 32

3.3.3 Performance of WordCount workload 34

3.3.4 Performance of TeraSort workload . 35

3.3.5 Performance of scale testing . 39

3.4 Performance simulations of Hadoop mobile clusters 42

3.4.1 MRPerf simulator for MapReduce . 43

3.4.2 Implementation and validation of MapReduce simulator 44

3.4.3 Performance of scale testing . 46

3.4.4 Performance over different radio propagations 49

3.5 Performance issues of Hadoop mobile clusters 51

4 Problem statements and research questions . 54

4.1 Limitations on TCP performance over mobile devices 54

4.2 Problems of using mobile devices for mobile cloud 55

4.3 Research questions . 56

5 Adaptive TCP flow control for mobile clusters 58

5.1 Queueing level control for transmit queue overflow 58

5.1.1 Analysis of MAC-layer transmit queue overflow 58

5.1.2 Transmit queueing level control algorithm 62

5.2 TCP push flow control for receive buffer overflow 63

5.2.1 Analysis of TCP receive buffer overflow 63

v

5.2.2 TCP push flow control algorithm . 69

6 Evaluation of proposed solutions . 72

6.1 Transmit queueing level control algorithm 72

6.1.1 Performance improvement of peer-to-peer data transfer 72

6.1.2 Performance improvement in data aggregation 76

6.2 TCP push flow control algorithm . 77

6.2.1 Packet analysis of Hadoop master running TeraSort 77

6.2.2 Performance improvement of TeraSort workload 80

7 Conclusion . 83

7.1 Summary . 83

7.2 Discussion . 84

Bibliography . 86

vi

List of Figures

1.1 CPU performance improvement of Apple and Samsung’s smartphones 2

1.2 Different types of mobile cloud computing . 5

2.1 Data flows in MapReduce task execution . 12

2.2 Sliding window based TCP data transfer process 15

2.3 Upper bound of TCP congestion window growth 15

3.1 Experimental mobile cluster using Google NEXUS 7 28

3.2 Mobile virtualization for MapReduce implementation 31

3.3 Network and filesystem throughput of mobile nodes 33

3.4 Network utilization of Hadoop mobile cluster with WordCount workload 35

3.5 Resource utilization of MapReduce nodes running WordCount tasks 36

3.6 Network utilization of Hadoop mobile cluster with TeraSort workload 37

3.7 Resource utilization of MapReduce nodes running TeraSort tasks 38

3.8 Cluster size scaling of WordCount and TeraSort experiments 39

3.9 Data block size scaling of TeraSort experiments 40

3.10 Input size scaling of WordCount experiments 41

3.11 Architecture of MRperf simulator . 43

3.12 Screenshot of MapReduce simulation . 44

3.13 Validation of MapReduce simulation with TeraSort workload 45

3.14 Cluster size scaling of TeraSort simulations . 47

3.15 Input size scaling of TeraSort simulations . 48

vii

3.16 Simulation area scaling with node mobility . 49

3.17 MapReduce simulations with different radio propagation models 51

5.1 TCP packet transmitting process of mobile nodes 59

5.2 Data flows between master and slave nodes . 64

5.3 Comparison of Hadoop data and heartbeat flow 66

5.4 TCP packet receiving process of master node 67

6.1 Evaluation setup for transmit queueing level control 73

6.2 TCP performance of mobile nodes with different MAC queue sizes 74

6.3 TCP performance with modified network stack 75

6.4 TCP throughput of original and modified network stack 76

6.5 Resource utilization of master node running TeraSort workload 78

6.6 Traffic patterns of cluster nodes running TeraSort workload 78

6.7 TCP packet analysis of master node . 79

6.8 Zero Window advertisements of original and modified TCP 80

6.9 Performance improvement of experimental mobile cluster 81

viii

List of Tables

1.1 Internal hardware sensors of Samsung Galaxy S4 smartphone 3

3.1 Hadoop benchmarks and their characteristics 25

3.2 Hardware and software specifications of experimental nodes 29

3.3 Comparison of Java and Dalvik bytecode . 30

3.4 Hadoop configurations of the experimental mobile cluster 32

3.5 Simulation configurations of the Hadoop mobile cluster 46

5.1 Parameters for transmit queue overflow analysis 60

5.2 Variables for transmit queueing level control algorithm 61

5.3 Parameters for receive buffer overflow analysis 68

5.4 Variables for TCP push flow control algorithm 70

ix

Chapter 1

Introduction

Many IT industry analysts predict that mobile growth is one of the most significant

trends for the forthcoming years. In recent years, mobile technologies have matured and

become suitable for a wider range of use, which creates new opportunities and demands for

emerging platforms and services including mobile computing, hybrid cloud, and actionable

analytics.

According to International Data Corporation (IDC) estimates, the recent surge in de-

mand for mobile systems will continue to lead market growth of smartphones and tablet

computers surpassing PC sales [1]. Gartner, Inc. also forecasts sales of 1.9 billion mobile

phones in 2014, a 5 percent increase from 2013. In 2014, the worldwide tablet market is

forecast to grow 47 percent with lower average selling prices attracting new users while

world-wide shipments of traditional PCs are forecast to a 7 percent decline from 2013 [2].

The rising demand for mobile devices and mobility-related services has led smartphones

and tablets to become far more powerful. Mobile devices with a quad-core 1.9 GHz processor

and 2 GB memory are already widely available. Even octa-core processors and 3 GB memory

modules for mobile devices are planned for release at the time of writing this dissertation.

Along with enhancements in battery capacity and network capability, mobile devices are

now capable of sharing their resources for distributed processing of critical data analytics as

resource providers of cloud computing.

1.1 Recent mobile trends in the workplace

With the increasing popularity of mobile devices, a growing number of organizations

are adopting Bring Your Own Devices (BYOD) programs [3]. With BYOD, workers bring

1

2007 2008 2009 2010 2011 2012 2013 2014
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

iPhone 3G
3GS 4

4S

5

5S

Release date

C
P

U
 b

en
ch

m
ar

k
ra

tin
g

Apple iPhone series

2010 2011 2012 2013 2014
0

0.5

1

1.5

2
x 10

4

Galaxy S

S2

S3

S4

Release date

C
P

U
 b

en
ch

m
ar

k
ra

tin
g

Samsung Galaxy S series

Figure 1.1: CPU performance improvement of Apple and Samsung’s smartphones

their own mobile devices to their workplace and use those devices to access privileged in-

formation and run applications of their organization. It provides a great opportunity for

improving productivity by accelerating the speed of decision-making and problem-solving

and by allowing more flexibility.

1.1.1 Mobile device capabilities

The strong demand for diverse mobile devices and applications has led smartphones

and tablets to offer the latest advanced features. Mobile platforms are leveraging multi-core

processor architecture to dramatically increase processing power at a low cost. Manufactur-

ers are introducing high-speed memory and increasing storage capacity for mobile devices.

Moreover, advances in battery capacity and power saving techniques enable mobile devices

to support large complex computations and long-running processes and provide more reli-

able high-speed wireless connectivity with more optional features, including 4G LTE, Wi-Fi,

Bluetooth, and Near Field Communication (NFC). Figure 1.1 shows the CPU performance

improvement (CPU benchmark results from PassMark [4]) of two flagship smartphones from

2

Table 1.1: Internal hardware sensors of Samsung Galaxy S4 smartphone

Sensors Features

Accelerometer Detects the mobile phone movement state based on three axes

Barometer Identifies the atmospheric pressure at the user’s current location

Geomagnetic sensor Detects magnetic field intensity based on three axes

Gesture sensor Recognizes the user’s hand movements using infrared rays

Gyro sensor Detects the mobile phone rotation state based on three axes

Hall sensor Recognizes whether the cover is open or closed

Proximity sensor Recognizes whether the mobile phone is located near the user by using
infrared rays

RGB light sensor Measures the red, greed, blue, and white intensity of the light source

Temperature sensor Checks temperature level

Humidity sensor Detects humidity level

Apple and Samsung Electronics, iPhone and Galaxy S series, which run mobile operating

systems of Apple iOS and Google Android, respectively.

Furthermore, recent mobile devices provide innovative visual interaction through the use

of advanced high-resolution touchscreens. Also, they integrate a variety of sensors that are

constantly being improved, which include microphones, image sensors, 3-axis accelerometers,

gyroscopes, atmosphere pressure sensors, digital compasses, optical proximity sensors, ambi-

ent light sensors, humidity sensors, touch sensors, etc, as detailed in Table 1.1. These cutting

edge touchscreens and sensors enable mobile devices to monitor the operating environment

in real time and adapt to the situation accordingly.

1.1.2 Mobility in the workplace

Today, people are connected in more ways than before. By using mobile devices, they

no longer need to sit in front of desktop computers at office or at home in order to search

for information and communicate with other people. People are creating new connections

anywhere, anytime, and on any device. Mobility is having a huge impact on the way people

work by saving time and resources and by opening new opportunities for innovation. A recent

3

IDC report shows the world’s mobile worker population will reach 1.3 billion, representing

37.2% of the total workforce by 2015 [5]. The number of mobile workers in the U.S. will

grow from 182.5 million in 2010 to more than 212.1 million by 2015.

The increasingly mobile and remote workforce is driving organizations to support a

wide range of mobile applications and services, which enables workers to proactively detect

and collect more information from internal and external sources by using mobile devices, and

perform real-time analytics for rapid decision, thus improving collaboration and productivity.

A Gartner’s report shows that more than 40 percent of all enterprise web applications will

support mobile environments by 2014 and 90 percent of companies will support corporate

applications on mobile devices by 2014 [6].

1.1.3 Actionable analytics

Conventional explanatory analytics usually focused on what happened in the past. Such

analytics may be an outdated and ineffective approach to offering timely, accurate, and

actionable insights needed for distributed decision making and coordinated action planning

today. What is happening now? What is going to happen in the future? The ability to

answer these questions in real time or near real time can provide a competitive advantage.

Recent advances in mobile technologies enable mobile users to collaborate with their

team members through coordinated actions by balancing opportunities and risks. These

actions can be generated by ad hoc distributed analytics that may consist of simulation,

prediction, and/or optimization. This capability leads to a great opportunity for reducing

cost while improving outcomes through more flexible decision-making that can be optimized

for a specific scenario at a certain time and place [6].

1.2 Different types of mobile cloud computing

The increasing number of mobile applications require more complex processing and more

operational data. These applications may include real-time mobile analytics that enhances

4

(a) Remote cloud (b) Local cloud

(c) Ad hoc cloud (d) Personal cloud

Figure 1.2: Different types of mobile cloud computing

situational awareness, risk assessment, distributed decision making, coordinated action plan-

ning, team collaboration, and instant responsiveness.

Despite the increasing use of mobile devices, exploiting its full potential is difficult due

to the inherent problems such as resource limitations (e.g., low computational capability and

battery capacity) and frequent disconnections from mobility. Mobile cloud computing can

solve these problems cost-effectively by utilizing computing and storage capabilities from

remote resource providers or other mobile devices. There are several approaches to mobile

cloud computing with different concepts and configurations [7, 8]. Figure 1.2 illustrates the

different types of mobile cloud computing.

5

1.2.1 Remote and local cloud services

The mobile cloud computing commonly means to run a mobile application (e.g., Google

Maps) on a remote resource-rich server (e.g., Google Cloud Platform) while the mobile device

acts like a thin-client connecting to the remote server through Wi-Fi or 3G/4G wireless

networks. Mobile users can access cloud systems using a web browser or mobile application

regardless of their location or device type. Other examples include mobile commerce (m-

commerce), mobile learning (m-learning), mobile healthcare (m-health), etc.

Although the mobile cloud applications that connect to a remote infrastructure are

becoming popular, they can perform well only under reliable connectivity. It is not practical

to assume high-speed connections, seamless handovers, and fast responses on mobile devices

as mobile environments are subject to high probability of significant disruptions to network

services due to mobility, where fixed infrastructures are frequently unavailable and network

partitions are common.

The Cloudlet proposed by [9] is another approach to mobile cloud computing. Mobile

users usually run client-server software at a remote location and high network latency (or

low network bandwidth) makes it insufficient for real-time applications. To cope with this

issue, they introduced the concept of local cloud: trusted, resource-rich computers in the

near vicinity of the mobile user (e.g., near or co-located with wireless access points). Mobile

users can rapidly instantiate custom virtual machines (VMs) on the cloudlet running the

required software in a thin-client fashion. The cloudlet can be deployed in common areas,

such as public offices, airports, shopping malls, etc.

1.2.2 Ad hoc cloud and other concepts

Another approach is to consider other mobile devices as resource providers of cloud

computing by making up a mobile ad hoc network as in [10]. Reliable access to remote

resources is the first challenge in the mobile environments since the resources are commonly

distributed across a variety of remote sources. Thus, clustering with nearby mobile devices

6

will promise faster connectivity and better availability. This work primarily focuses on this

type of mobile cloud computing, where the remote resources are mobile and available only

within the range of the wireless transmission.

The collective resources of the various mobile devices in a local area, and other stationary

devices if available, are utilized for cloud computing in the mobile ad hoc cloud. As a result,

it can effectively support user mobility, collective sensing, and distributed applications. On

the other hand, a mobile device that initiates cloud computing in the ad hoc cloud needs

to dynamically take advantage of mobile cloud resources depending on requirements of its

workload because the ad hoc resources and operating environments of the mobile cloud are

subject to change. Hence, monitoring and scheduling of available cloud resources are one of

the most critical capabilities for the success of the mobile ad hoc cloud.

In addition to the approaches above, there are other concepts and models for imple-

menting cloud services using mobile devices. For example, personal cloud and private cloud

are operated solely for a single person and a single organization, respectively, public cloud

is open for public use, and community cloud shares resources between several organizations

from a specific community with common concerns [11]. Although there may be little or no

difference between those cloud architecture, they have substantially different security con-

sideration for resources and applications. Furthermore, Gartner identified hybrid cloud as

one of the top strategic trends for 2014, which is composed of some combination of personal,

private, public and community cloud services offering the benefits from multiple deployment

models [12].

The rest of this paper is organized as follows. Chapter 2 introduces the background and

work related to this work. Chapter 3 then describes the details of our experimental setup for

mobile cloud clusters and conducts performance analysis to identify performance problems

of mobile MapReduce applications. Chapter 4 presents problem statements and research

questions of this study. Then Chapter 5 proposes adaptive TCP flow control algorithms

for mobile clusters with an analysis of TCP performance problems and Chapter 6 provides

7

evaluation results for the proposed solutions. Finally, Chapter 7 concludes this paper with

a summary of the previous chapters and a discussion of main contributions and further

research ideas.

8

Chapter 2

Background and related work

This section provides background information about the distributed analytic framework

for mobile cloud clusters and its communication protocol, and also presents summaries on

previous studies related to this work.

2.1 Overview of Apache Hadoop for cloud clusters

When reviewing multiple distributed analytic frameworks, this work found that Apache

Hadoop [13] can provide a good starting point for implementing mobile cloud clusters since

it supports cost-effective and high performance analysis of a large volume of unstructured

data on a set of commodity hardware. This section summarizes main ideas of MapReduce

programming model and describe working mechanisms of Hadoop distributed file system and

MapReduce task execution in Hadoop framework.

2.1.1 Apache Hadoop

Apache Hadoop is an open-source framework that uses a simple distributed processing

model based on Google MapReduce [14] and Google file system (GFS) [15]. It effectively

handles massive amount of information by either transforming it to a more useful structure

and/or format, or extracting valuable analytics from it. Hadoop runs on any machines

equipped with a lower cost processor and storage, and automatically recovers from hardware,

and software failures by providing fault tolerance mechanisms. Hence, Hadoop is more cost-

effective for handling large unstructured data sets than conventional data mining approaches

by offering great scalability and high availability.

9

2.1.2 MapReduce programming model

MapReduce is a fundamental programming model in Hadoop architecture to process

large volumes of data. MapReduce applications with a parallel approach utilize a scale-out

architecture that makes use of inexpensive commodity servers configured as a cluster, which

allows users to analyze terabytes or petabytes of data in a fast and reliable way. To take

advantage of parallel processing that MapReduce provides, users need to submit a job with

desired computations for a series of MapReduce tasks. MapReduce operates by dividing the

processing into two phases: the Map phase and the Reduce phase. Each phase has key-value

pairs as input and output, the data formats can be specified according to the application.

The user implements two functions: the Map function and the Reduce function. The Map

function reads each input key-value pairs and produces a list of intermediate key-value pairs.

The Reduce function takes in all intermediate key-value pairs by sorting with the identical

key and generates a final set of key-value pairs. Both the input and output key-value pairs

in Map and Reduce phase are stored in an distributed file system.

The Hadoop platform that runs MapReduce applications automatically parallelizes the

execution, coordinates network communication and ensures fault tolerance, which spares

users from concerning about parallelization and hardware failures in a large-scale distributed

environment. In addition, the Hadoop framework tries to assign Map and Reduce tasks to

cluster nodes where the data to be processed is stored for alleviating loads on network band-

width and preventing unnecessary network transfers, which is critical for high performance

in data-intensive computing.

2.1.3 Hadoop distributed filesystem

Hadoop implements a distributed, scalable, and portable filesystem, called Hadoop dis-

tributed file system (HDFS), designed for storing large files with streaming access to data

and optimized for data-intensive workloads such as MapReduce, running across clusters with

commodity hardware. The data in the Hadoop cluster is broken down into small, fixed-size

10

pieces, called blocks; the default size of a block is 64 MB. The files in HDFS are split into

block-sized chunks, which are stored as independent units. HDFS has two types of instance

in a master-slave pattern: a single NameNode (the master) and a number of DataNodes (the

slaves). NameNode manages the filesystem namespace which maintains the filesystem tree

and the metadata for all the files and directories in the tree. NameNode also monitors the

DataNodes on which all the blocks for a given file are located. DataNodes are the worker

nodes of the filesystem. They store and retrieve blocks at the request of clients or NameNode

through remote procedure call (RPC), and report their recent status updates periodically to

NameNode with the metadata of their current blocks.

When an HDFS client wants to read a file, it first contacts NameNode to obtain the

location information of data blocks comprising the file and then retrieves block contents from

the DataNodes closest to the client. When writing data, the client also requests NameNode

to schedule a set of DataNodes to store the block replicas for fault tolerance and then writes

data to the DataNodes in a pipeline-like fashion. Since the current architecture has a single

NameNode for each cluster where NameNode keeps all the namespace and block locations in

memory, the size of the NameNode’s heap limits the number of files as well as the number

of blocks addressable. This also limits the total cluster storage that can be supported by

NameNode.

2.1.4 MapReduce task execution

A typical Hadoop cluster consists of a single master node and many slave nodes. An

entire MapReduce computation is called a job and the execution of a Map or Reduce function

on a slave is called a task. A sever process running on the master node, named JobTracker,

coordinates jobs on a cluster of slave nodes. The JobTracker is responsible for accepting jobs

from clients, dividing the input data (i.e., file) into many splits (i.e., blocks) and assigning

the blocks to Map tasks that are processed concurrently on multiple slave nodes. Each

slave node runs a client process called TaskTracker that manages the execution of the tasks

11

Figure 2.1: Data flows in MapReduce task execution

assigned to the node. Each TaskTracker has a fixed number of slots for executing tasks; the

number of slots on each cluster node may be different and it depends on the node’s hardware

capacity.

After the MapReduce job is submitted, the number of Map tasks is determined by

the total number of data blocks spilt from input files. Each Map task reads a block from

HDFS, parses it into key-value pairs and applies the Map function to each pair. Once the

intermediate key-value pairs are generated on the local disk by the Map tasks, partitions on

the intermediate pairs are performed using a scheme that keeps pairs with the identical key

to be processed on the same Reduce task. After that, JobTracker sends the locations of the

pairs to corresponding Reduce tasks. MapReduce guarantees that the intermediate result

to every Reduce task is sorted by key. The process by which the system performs the sort

and transfers the Map outputs to the Reduce tasks as inputs is known as the shuffle. After

a Reduce task has read all the intermediate pairs, it runs the Reduce function and writes

the output pairs to a final output file in HDFS. The data flows in MapReduce execution

consisting of the Map, Shuffle, and Reduce phase are illustrated in Figure 2.1.

12

This section omits some details of configuration parameters, performance metrics, and

analytic algorithms in Hadoop architecture, which can be found in many excellent publica-

tions including tutorials, academic papers, and technical reports. Some of them (e.g., [16],

[17], [18], and [19]) are referenced in this work.

2.2 Overview of TCP flow control for performance analysis

Most of the current distributed systems including Hadoop analytic framework exten-

sively employ Transmission Control Protocol (TCP) for reliable communications between

cluster nodes. Since TCP is optimized for accurate delivery rather than timely delivery,

TCP on mobile devices may frequently incur significant delays while waiting for retrans-

missions of lost or damaged packets and rearrangements of out-of-order packets on wireless

communication links as detailed in [20]. This section presents an overview of TCP flow con-

trol mechanisms to provide a background for performance analysis of mobile cloud clusters.

2.2.1 Sliding window flow control

TCP provides reliable data transfer with its flow control and congestion control mecha-

nisms between applications on two hosts in the network. Since the TCP sender that desires

to transmit a large amount of data may try to send data too fast for the TCP receiver to

receive and process it reliably, the TCP standard [21] describes a sliding window based flow

control mechanism. The TCP sender first buffers all data (in a TCP transmit buffer) before

the transmission, assigning a sequence number to each buffered byte. Pieces of the buffered

data are continuously formed into TCP packets that include a sequence number of the first

data byte in the packet. Then a portion (window) of the packets that are ready to send is

transmitted to the receiver using the IP protocol. As soon as the sender receives delivery

confirmation for at least one transmitted packet, it transmits a new portion of packets; the

window slides along the sender’s buffer as shown in Figure 2.2a. Since packet transfers over

bad network conditions may not be reliable, the receiver is required to respond with an

13

acknowledgment as it receives the data while the sender keeps a record of each packet it

transmits. The sender also maintains a retransmission timer, and retransmits a packet if the

timer expires before the data has been accurately acknowledged.

Although a sliding window based flow control is relatively simple, it has conflicting

objectives. In order to maximize the throughput of a TCP flow, it is essentially required

that the size of a sliding window also be maximized. On the other hand, if the sliding

window is too large, there is a high probability of packet loss because the network and the

receiver have resource limitations. Thus, reducing packet losses requires minimizing the

sliding window. Hence, finding an optimal value for the sliding window parameter (which

is usually referred to as the congestion window size) that provides better throughput, yet

does not overwhelm the network bandwidth and the receiver capacity is a critical problem

in TCP communications.

The TCP flow control mechanism integrates the receive window concept as well, which is

designed for the receiver to share the information about the available receive buffer with the

sender. In each TCP segment, the receiver specifies the amount of additionally acceptable

data (in bytes) in the receive window field. The sender can send only up to that amount

of data before it must wait for an acknowledgment and window update from the receiver.

Figure 2.2b illustrates this mechanism. When establishing a connection, the receiver informs

the sender about the available buffer size for incoming packets (in the example shown, the

receiver’s window reported initially is 7). The sender transmits a portion (window) of data

packets. This portion must not exceed the receiver’s window and may be smaller if the

sender is not willing (or ready) to send a larger portion. In the case where the receiver

is unable to process data as fast as the sender generates it, the receiver reports decreasing

values of the window (3 and 0 in the example). This induces the sender to shrink the sliding

window. As a result, the TCP transmission will eventually synchronize with the receiver’s

processing rate as demonstrated in Figure 2.3.

14

(a
)

S
li

d
in

g
w

in
d

ow
co

n
tr

o
l

(b
)

R
ec

ei
v
e

w
in

d
ow

co
n
tr

o
l

F
ig

u
re

2.
2:

S
li
d
in

g
w

in
d
ow

b
as

ed
T

C
P

d
at

a
tr

an
sf

er
p
ro

ce
ss

(a
)

N
et

w
or

k
li

m
it

(b
)

R
ec

ei
v
er

li
m

it

F
ig

u
re

2.
3:

U
p
p

er
b

ou
n
d

of
T

C
P

co
n
ge

st
io

n
w

in
d
ow

gr
ow

th

15

When a receiver advertises a window size of 0, Zero Window (i.e., a receiver is not able to

receive any more data at the moment) as shown in Figure 2.2b, the sender stops transmitting

data and starts a persist timer. The persist timer protects TCP from the deadlock situation

that the sender will never be able to transmit further data by waiting for a new window

update from the receiver, which could arise if a subsequent window update from the receiver

is lost. When the persist timer expires, the TCP sender attempts recovery by transmitting

a small packet (called Zero Window probe) so that the receiver forcibly responds by sending

another acknowledgement containing the receive window update.

2.2.2 Packet loss detection mechanisms

The early and accurate detection of packet loss is one of core mechanisms in the TCP

congestion and flow control. Most of the TCP control proposals gradually increase the

utilization of network resources up to the limit where a packet loss is starting to be detected,

at which point they reduce its transmitting rate, retransmit the lost packet, and begin

another phase of rate controls (e.g., rate increases). TCP detects a packet loss through two

critical mechanisms: retransmission timeout and duplicate acknowledgement [21].

The first mechanism defines the retransmit timeout (RTO), in which TCP waits for

a timeout of the retransmission timer for the detection of a packet loss. Although it is

capable of reliably detecting all losses, the detection is not fast enough and is necessarily

time consuming since the retransmission timer must be set high enough to avoid unnecessary

timeouts caused by transient network conditions; the minimum time when a loss can be

detected is the round-trip time (RTT) and the RTO should be greater than the RTT.

If the RTO value is overestimated, the TCP packet loss detection mechanism becomes

very conservative, and performance of individual flows may be significantly degrade. In the

opposite case, when the RTO value is underestimated, the loss detection mechanism may

cause unnecessary retransmissions by wasting the available network resources and aggravat-

ing the network congestion level. For the problems of erroneous RTO estimates, the RTT

16

variance estimation algorithm [22] tries to alleviate the overestimation problem by establish-

ing a fine-grained upper bound for the RTO and the exponential RTO backoff algorithm [23]

to mitigate the underestimation problem by doubling the RTO value on each retransmission

occurrence.

The second mechanism assumes that if TCP receives a few duplicate acknowledgements

of a packet then the packet was lost, in which TCP counts the number of acknowledgements

with the same sequence number for the detection of a packet loss. When the probability

of packet duplication (and packet reordering) in the network is negligible, the duplicate ac-

knowledgments can be considered a reliable loss indication. Thus, the sender can retransmit

a lost packet faster without waiting for the corresponding retransmission timer to expire.

2.2.3 Congestion window dynamics

The initial TCP standard lacks any means to adjust the transmission rate to the actual

capacity of the network. When a TCP sender (or many senders) is transmitting too much

data that can exceed the available network bandwidth, congestion collapse easily occurs in

the form of queueing delay, packet loss or the blocking of new connections, which result in an

substantial reduction in network throughput. To resolve this congestion collapse problem,

a number of solutions have been proposed. Most of them share the same idea of utilizing

a network-aware rate limiting mechanism along with the receiver-based flow control. For

this purpose the congestion window mechanism was introduced, in which the TCP sender

determines (or estimates) the number of data packets that the network can accept for delivery

without becoming overloaded. If the receiver does not have any resource limitations, the

congestion window limit can be considered an indication of the maximum capacity of the

connection. On the other hand, when the flow control limit (i.e., the receive window) is less

than the congestion control limit (i.e., the congestion window), the former is considered a real

bound for outstanding data packets. Graphs in Figure 2.3 show two cases of the congestion

window dynamics; the left graph shows the congestion window dynamics when the network

17

cannot deliver any more data at the transmitting rate, and the right graph represents the

case when the receiver cannot process further data at the receiving rate [20].

One of the earliest solutions to solve the congestion problem in TCP operation has been

proposed by [22]. The solution is based on the original TCP specification and includes a

number of algorithms to avoid the network congestion. The most important algorithms are

the Slow Start and Congestion Avoidance algorithm. These provide two slightly different

distributed peer-to-peer mechanisms which allow a TCP sender to detect available network

resources and adjust the transmission rate of the TCP flow to the limit determined. Assuming

the probability of random packet corruption during transmission is negligible, the sender can

consider all the packet losses as the congestion problem. Furthermore, the reception of any

acknowledgement packet is an indication that the network can accept and deliver a new

packet. Thus, the sender expecting that it will not result in any congestion can transmit

at least the amount of data that has just been acknowledged. This incoming and outgoing

packet balancing is called the packet conservation principle that is the basic concept of both

Slow Start and Congestion Avoidance algorithm.

In the Slow Start algorithm, the reception of an acknowledgement packet indicates avail-

ability of network resources for transmitting double the amount of data (i.e., multiplicative

increase) that has been acknowledged by the receiver. In other words, instead of a linear

growth in the congestion window, its growth follows an exponential function (i.e., the growth

is quite aggressive). If a packet loss is detected (i.e., the network is experiencing congestion

because all network resources have been utilized), on the other hand, the congestion window

is reset to the initial value (e.g., the maximum segment size) to ensure release of network

resources. The other algorithm for improving TCP effectiveness in the networks with re-

source limitations is Congestion Avoidance that combines linear growth of the congestion

window with an exponential reduction when a congestion takes place. In comparison to the

Slow Start, this algorithm is much more conservative in response to acknowledgement of

transmitted packets and to detection of packet losses. As opposed to doubling the size, the

18

congestion window increases by one (i.e., additive increase) only if all data packets have been

successfully delivered during the last RTT. After a loss is detected, the algorithm reacts in

a different way, which cuts the congestion window size by half (i.e., multiplicative decrease).

Figure 2.3a demonstrates the behaviors of the Slow Start and Congestion Avoidance algo-

rithm over the bandwidth-limited network.

A number of proposals to improve various aspects of TCP performance (e.g., the effective

use of available network resources) have been presented over the past 20 years, which in-

clude mechanisms to probe the available network resources, estimate the network congestion

state, and detect the packet loss under different assumptions on the network environment.

Moreover, some proposals contain algorithms to improve the poor utilization of error-prone

wireless and high-speed wired networks. For example, TCP Westwood+ [24] proposes a

bandwidth estimation technique for wireless networks with random loss and TCP CUBIC

[25]) a congestion control algorithm that scales well in high-speed networks with long la-

tency. The current Linux kernel supports some of those proposals and users can choose a

better algorithm for a particular network connection; TCP CUBIC is implemented by de-

fault in Linux kernel 2.6.19 and above. However, there are not yet the practical guideline

and performance criteria for the selection of a congestion control algorithm.

2.3 Related studies on mobile cloud clusters

Many researchers have identified key attributes, technologies, and challenges that dis-

tinguish cloud computing from traditional computing paradigms [26, 27, 28, 29, 30]. To put

it briefly, cloud computing provides reliable, customizable and dynamic computing environ-

ments with Quality of Service (QoS) guarantee for end-users [31]. Also, many studies have

been interested in mobile cloud services on the Internet as summarized in [7] and [8].

This work pays particular attention to the performance of mobile ad hoc cloud, where

ad hoc networks of mobile devices themselves work as resource providers of the cloud. In

19

this type of cloud, the workload and data reside on individual mobile devices rather than on

remote resource servers.

2.3.1 Implementation of mobile ad hoc cloud

Hyrax [32, 33] explores the feasibility of using a cluster of mobile phones as resource

providers by porting Apache Hadoop to Android smartphones. For a sample application,

they present a simple distributed mobile multimedia search and sharing program. However,

their performance evaluations for the Hadoop mobile cluster are limited since they completed

only a partial implementation of the Hadoop architecture, where many core features had to

be removed due to difficulties and obstacles in Hadoop migration. Even the major controllers

of Hadoop framework, such as JobTracker for MapReduce and NameNode for HDFS, are not

installed on the mobile node. A similar approach to implementing the Hadoop framework

on mobile devices is found in [34].

Serendipity [35, 36] discusses the challenges of remote computing using mobile devices

and introduces a framework that enables a mobile computation initiator to use remote com-

putational resources available on mobile devices. They implement an actual prototype on

Android devices and evaluate their system using two sample applications: a face detection

application and a speech-to-text application. However, no performance comparison with

the existing distributed frameworks is made. Another study, Cuckoo [37], proposes a com-

putation offloading framework for Android smartphones and illustrates its utility with an

application for multimedia content analysis.

In short, several studies on the ad hoc cloud framework for mobile devices have been

conducted by implementing only part of an existing distributed analytic framework or by

proposing a customized framework similar to the existing one [38]. Furthermore, the previous

studies are mostly evaluated using just one or two domain-specific applications and fail

to provide comparative analysis of their performance and efficiency. To the best of our

20

knowledge, there has been no comparable framework and performance analysis for practical

mobile cloud clusters running distributed analytic applications.

Although this work mostly focuses on the performance of practical distributed analytics

on the mobile cloud clusters in terms of job processing time and response time, other work

concentrates on mobile device’s energy efficiency which is a key aspect to enable data analysis

and mining over mobile devices. For example, an energy-aware scheduling over the mobile

cluster to optimize energy utilization should be taken into account for mobile distributed

analytics.

2.3.2 Network problems of traditional cloud

This work also focuses on reliable data communications between mobile devices for

analytical data transfers in the workflow of distributed analytics under the limitations of

TCP performance over wireless links. To find the best way to control data flows on mobile

devices for improving performance of mobile cloud clusters, it is necessary to review previous

solutions for the typical datacenter cloud.

In datacenter networks, there have been many proposals to solve typical network prob-

lems in many-to-one communication patterns, known as TCP Incast, where the traffic bursts

overload the switch buffers, which lead to a significant increase in queueing delay and decrease

in TCP throughput. The problems affect the performance of cloud computing frameworks

in which distributed processing cannot progress until all parallel threads in a stage complete

[39]. Examples of such frameworks include distributed filesystems, web search, and other

applications with partition or aggregation workflows [40, 41, 42].

The traditional solutions to TCP Incast include modifying network parameters [41,

43] or TCP congestion/flow control algorithms in Link and Transport network layer [44,

45], which may involve customized network designs for the efficient switching [40, 42], and

optimizing application data transfer patterns for mitigating the TCP congestion [46, 42].

Since TCP Incast is originally incurred in the switch-based network topology using TCP,

21

however, most of the solutions may be inapplicable directly to the mobile network issues

that arise in the wireless environments with different characteristics.

2.3.3 MapReduce performance prediction using simulation

Simulation has been widely used for performance prediction and characterization, which

can simplify research process by skipping intricate processes of experimental setup and con-

figuration and significantly reduce the experiment time. Since MapReduce has been adopted

as a preferred choice of framework for data intensive computing, there have been many

efforts toward developing MapReduce simulators over the past few years to address the per-

formance analysis of scheduling algorithms. They provide several MapReduce simulators

such as Mumak [47], MRSim [48], and MRPerf [49].

Mumak uses job trace of real world workload as input to estimate job execution time,

throughput, etc. MRSim is another simulator based on discrete event simulation, which can

predict job performance as well as hardware utilization. The other simulator is MRPerf that

uses information about node specification, cluster topology, data layout, and job description

as inputs and generates a detailed phase-level execution trace that provides job execution

time, amount of data transferred, and time-line of each phase of the job execution [19].

MRPerf is uniquely based on the popular ns-2 network simulator [50], which models

task communications over the networks with varying cluster configurations and different

network topologies to simulate correct network behavior of the real system. Although this

work primarily performs actual experiments using Hadoop clusters consisting of practical

mobile devices to identify performance issues of mobile cloud clusters, it also develops a

MapReduce simulator based on an existing simulator (MRPerf on ns-2) to address dynamic

node mobility under various wireless environments and capture more details of performance

aspects.

22

Chapter 3

Understanding performance issues of Hadoop mobile clusters

MapReduce is the fundamental software programming model in the Hadoop architec-

ture, which performs distributed processing of large data sets on a computing cluster. A

single large workload (job) is divided or mapped into smaller sub-workloads (tasks) to be

processed in parallel. The results from the sub-workloads are merged, condensed, and re-

duced to produce the final result. Both input and output are stored on the nodes throughout

the cluster in the distributed filesystem.

Numerous factors can affect the performance of the Hadoop cluster. The typical perfor-

mance factors such as workload type, cluster size, input/output data size, and characteristics

of computing nodes (e.g., CPU, memory, and I/O resources) have significant impacts on the

processing time. In addition, the network is also a critical factor on the Hadoop perfor-

mance since the nodes are interconnected through the network in order to transfer data for

distributed processing during one or more phases of MapReduce execution.

This chapter examines the performance of MapReduce in practical mobile cluster se-

tups using Hadoop benchmarks and identifies its critical performance issues in the mobile

operating environments.

3.1 Hadoop benchmarks for performance evaluation

A benchmark provides a method of comparing the performance of various subsystems

across different system architectures and mimics a particular type of workload on a com-

ponent or system. In order to perform extensive performance analysis of Hadoop mobile

clusters, this work chooses workloads from a benchmark suite provided by [51]. It contains

23

typical Hadoop workloads with options for input/output configurations (e.g., data size, com-

pression method, etc). Table 3.1 lists its benchmark workloads with their characteristics.

All the workloads are implemented with Hadoop MapReduce framework and are capable of

performing a variety of data intensive computations such as sorting, I/O operations, web

search and machine learning.

The Sort, WordCount and TeraSort benchmark for micro-benchmarking are currently

implemented in Hadoop software releases, which are three most popular benchmarks widely

used by Hadoop developers and engineers. The Sort and WordCount are representative of

a large group of real world MapReduce applications that extract the interesting information

from large input data. The Sort benchmark simply uses the MapReduce framework to sort

the input directory into the output directory, where the inputs and outputs must be sequence

files with keys and values. The WordCount benchmark reads text files and counts how often

words occur. Each Map task takes a line as input, breaks it into words and then generates a

key-value pair of < word, 1 >. The Reduce task sums the counts for each word and generates

a single key-value. The TeraSort benchmark sorts data at terabyte scale, which has been

used in many cluster competitions among distributed computing platforms to show their

performance and efficiency.

The TestDFSIO benchmark also included in the Hadoop releases is another microbench-

mark for I/O performance, which performs parallel file read and write operations in separate

Map tasks. The output of the Map task is used for collecting statistics relating to the file

just processed. The statistics are accumulated in a Reduce task to generate a summary on

average I/O throughput of the distributed file system (i.e., HDFS).

The Nutch Indexing and PageRank benchmark represent the web search applications,

which are open-source applications. The Nutch Indexing benchmark that comes from Apache

Nutch project crawls web links from root URLs and converts the link information into

inverted index files with MapReduce tasks. The PageRank benchmark is composed of a

24

T
ab

le
3.

1:
H

ad
o
op

b
en

ch
m

ar
k
s

an
d

th
ei

r
ch

ar
ac

te
ri

st
ic

s

C
a
te

g
o
ry

W
o
rk

lo
a
d

R
e
so

u
rc

e
u

ti
li
z
a
ti

o
n

D
a
ta

fl
o
w

p
a
tt

e
rn

s

M
ic

ro
b

e
n

ch
m

a
rk

s

S
o
rt

I/
O

b
ou

n
d

d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
→

W
o
rd

C
o
u

n
t

C
P

U
b

ou
n

d
d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
−→

T
e
ra

S
o
rt

M
ap

:
C

P
U

b
ou

n
d

,
R

ed
u

ce
:

I/
O

b
ou

n
d

d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
→

T
e
st

D
F

S
IO

I/
O

b
ou

n
d

M
ap

d
a
ta

−−
−−
−→

R
ed

u
ce

A
p

p
li
c
a
ti

o
n

s

W
eb

se
a
rc

h
N

u
tc

h
in

d
e
x
in

g
M

ap
:

C
P

U
an

d
I/

O
b

ou
n

d
,

R
e-

d
u

ce
:

I/
O

b
ou

n
d

d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
−→

P
a
g
e

ra
n

k
C

P
U

b
ou

n
d

d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
−→

R
ed

u
ce

d
a
ta

−−
−−
−→

M
a
ch

in
e

le
a
rn

in
g

K
-m

e
a
n

c
lu

st
e
ri

n
g

I/
O

b
ou

n
d

,
d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
−→

R
ed

u
ce

d
a
ta

−−
−−
−→

1
st

M
ap

:
C

P
U

b
ou

n
d

d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

B
a
y
e
si

a
n

c
la

ss
ifi

c
a
ti

o
n

C
P

U
b

ou
n

d
in

it
er

at
io

n
,

d
a
ta

−−
−−
−→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
→

I/
O

b
ou

n
d

in
cl

u
st

er
in

g
d
a
ta

−−
−−
→

M
ap

d
a
ta

−−
−−
→

R
ed

u
ce

d
a
ta

−−
−−
−→

N
ot

e:
F

o
n
t

si
ze

d
en

o
te

s
th

e
d

at
a

si
ze

of
th

e
in

p
u

t,
in

te
rm

ed
ia

te
,

an
d

ou
tp

u
t;

d
a
ta

−−
−−
→

>
>

d
a
ta

−−
−−
→

>
>

d
a
ta

−−
−−
−→

25

chain of Hadoop jobs calculating the rank of each web page according to the number of

reference links.

The K-means Clustering and Bayesian Classification are also introduced as the machine

learning applications. The K-means clustering benchmark takes in a numerical vector in n

dimensional space representing the features of the objects to be clustered. The algorithm

that randomly chooses k points in the vector space serving as the initial centers of the

clusters recalculates the center of each cluster iteratively with MapReduce jobs until the

points are not reselected or the maximum number of iterations is reached. The Bayesian

Classification benchmark involves four chained MapReduce jobs that extract labels from

input text, compute the Term Frequency-Inverse Document Frequency (TFIDF) of each

feature in each label, and then perform the weighting and normalization.

3.2 Assumptions on mobile cloud clusters

This work performs actual experiments and runs simulations based on the following

assumptions on the basic, common configurations of practical mobile cloud clusters for ad

hoc analytics. However, future work will consider extensive scenarios that include dynamic

node mobility and complicated analytical workloads over various mobile environments.

• Mobile devices may process computational workload that exceeds their capability by

offloading portions of the workload to remote resources for distributed execution. All

mobile devices are capable of sharing their computing resources, and behave in a col-

laborative and trustworthy manner.

• Clustering with nearby mobile devices to build a mobile ad hoc cloud provides faster

connectivity and better availability because the actual connectivity with typical remote

cloud infrastructures may be intermittent and unpredictable due to the mobility of

mobile devices.

26

• Mobile nodes belonging to a cluster only communicate with adjacent nodes within their

communication range in a wireless single-hop network. The data transmission of the

multiple nodes might interfere with each other due to the overlapping communication

ranges on a shared channel.

• The mobile cluster runs a single workload at a time, either transforming the unstruc-

tured input data to a more useful structure without adding new data, or extracting

small but valuable analytics from the input data. The amount of intermediate and

output data generated by mobile devices depends on the type of workload.

3.3 Performance experiments of Hadoop mobile clusters

This section describes details of the practical experimental setup for Hadoop mobile

clusters and presents the experimental results for performance analysis.

3.3.1 Experimental setup

In the experiments this work measured the performance of Hadoop clusters using Android-

based mobile platforms including smartphones (e.g., Samsung Galaxy S2 and Google Galaxy

NEXUS), media players (e.g., Samsung Galaxy player), and tablets (e.g., Samsung Galaxy

Tab and Google NEXUS 7) under extensive distributed configurations. This chapter presents

experimental results from one of those cluster setups, which consists of eleven NEXUS 7

tablets developed by Google in conjunction with Asus. Figure 3.1 displays the experimental

mobile cluster with Google NEXUS 7 tablets.

The experimental platform, NEXUS 7, is the first tablet in the Google Nexus series

that implements the Android operating system. The Nexus 7 features a 7-inch display,

NVIDIA Tegra 3 quad-core processor, 1 GB of memory, and 16 GB of internal storage, and

incorporates built-in Wi-Fi, Bluetooth, and NFC connectivity [52]. The tablet runs the

latest Android operating system (version 4.2.2, nicknamed Jelly Bean) and Hadoop stable

release (version 1.1.2) with Oracle JDK (version 1.6) at the time of writing this paper. The

27

Figure 3.1: Experimental mobile cluster using Google NEXUS 7

detailed specifications of experimental platforms are listed in Table 3.2. All platforms are

reliably interconnected with a Wi-Fi based wireless access point, Asus RT-N66U, in an IEEE

802.11n [53] infrastructure mode.

Android is a mobile operating system designed for smartphones and tablets, which makes

use of a virtual machine on a customized embedded Linux system as its runtime environment

to run mobile applications. The virtual machine provides an isolated environment for code

execution, where an application with a malicious piece of code cannot directly affect the

system (i.e., the core OS will be kept from getting corrupted). Thus, it makes the system

more stable and reliable. In addition, it allows for cross-compatibility as its applications can

be executed on any mobile platform using the virtual machine. The android applications

are usually written in Java language and are executed in the Dalvik virtual machine (DVM)

that is substantially different from the classical Java virtual machine (JVM) [54]. The DVM

is developed by Google and optimized for the characteristics of mobile operating systems

(especially for the Android platform). The differences between Java and Dalvik bytecode

based on JVM and DVM, respectively, are summarized in Table 3.3.

28

Table 3.2: Hardware and software specifications of experimental nodes

Platform Google NEXUS 7

CPU NVIDIA Tegra 3 quad-core processor (1.7 GHz single / 1.6 GHz quad)

Memory 1 GB, RAM

Storage 16 GB, Nand flash

Network Wi-Fi 802.11 b/g/n, Bluetooth, NFC

Mobile OS Android 4.2, Jelly Bean (Build number: JDQ39)

Kernel Linux 3.1.10

Linux extension Ubuntu 12.04 for ARM

JVM JDK 1.6.0 32 (Oracle Java SE for Embedded 6u32 ARMv7 Linux)

Hadoop 1.1.2 stable release

Resource monitoring Sysstat 10.0.3-1 stable version

Porting Hadoop framework on the Android operating system was a big and significant

challenge at the early stage of this work. Since Android employs the Dalvik virtual machine

to support its mobile applications, Hadoop software framework based on a specific Java

virtual machine is not fully compatible with the Android runtime environment. Hence,

Hadoop can be ported by either converting from its JVM based source codes and libraries

to DVM compatible ones or installing a specific JVM recommended by the Hadoop project

to run the original Hadoop software.

Most of the previous work [32, 33, 34] had difficulties with rewriting Hadoop codes for

Android. They implemented only a small number of Hadoop functions by removing many

core features that are incompatible with the Dalvik environment. In contrast to earlier

approaches, this work successfully installed Oracle JVM that is a base platform for perfectly

running Hadoop framework on Linux-based operating systems by adding a Linux extension

[55], Ubuntu 12.04, to the Android Linux kernel as illustrated in Figure 3.2; this kind of

approach is called Mobile virtualization, in which virtualization technology enables multiple

operating systems or virtual machines to run simultaneously on a mobile device [56]. It was

carefully ensured that there was no degradation of the hardware performance or adverse effect

on Android operations. As a result, the experimental mobile cluster runs all the existing

29

T
ab

le
3.

3:
C

om
p
ar

is
on

of
J
av

a
an

d
D

al
v
ik

b
y
te

co
d
e

J
a
v
a

b
y
te

c
o
d

e
e
x
e
c
u

te
d

in
J
V

M
D

a
lv

ik
b
y
te

c
o
d

e
ru

n
n

in
g

in
D

V
M

A
p

p
li
c
a
ti

o
n

S
tr

u
c
tu

re
C

on
si

st
s

of
on

e
or

m
or

e
.
c
l
a
s
s

fi
le

s,
on

e
fi

le
p

er
cl

as
s.

H
as

a
si

gn
le

.
d
e
x

fi
le

co
n
ta

in
gi

n
g

al
l

cl
as

se
s.

R
e
g
is

te
r

a
rc

h
it

e
c
tu

re
S

ta
ck

-b
a
se

d
.

P
u

sh
lo

ca
l

va
ri

al
b

le
s

on
to

a
p

ro
-

gr
am

st
ac

k
fo

r
m

an
u

ip
u

la
ti

on
.

R
eg

is
te

r-
b

as
ed

.
A

ss
ig

n
s

lo
ca

l
va

ri
ab

le
s

to
an

y
of

th
e

2
1
6

av
ai

la
b

le
re

gi
st

er
s

an
d

d
ir

ec
tl

y
m

an
ip

u
-

la
te

re
gi

st
er

s.

In
st

ru
c
ti

o
n

se
t

H
as

20
0

op
co

d
es

.
H

av
e

a
d

oz
en

of
op

co
d

es
d

ed
i-

ca
te

d
to

m
ov

in
g

el
em

en
ts

b
et

w
ee

n
th

e
st

ac
k

an
d

lo
ca

l
va

ri
ab

le
ta

b
le

s.

H
as

21
8

op
co

d
es

.
H

as
lo

n
ge

r
in

st
ru

ct
io

n
s,

si
n

ce
m

os
t

of
th

em
co

n
ta

in
so

u
rc

e
an

d
d

es
ti

n
at

io
n

ad
-

d
re

ss
of

re
gi

st
er

s.

C
o
n

st
a
n
t

p
o
o
l

st
ru

c
tu

re
R

ep
li

ca
te

s
el

em
en

ts
in

co
n

st
an

t
p

o
ol

s
w

it
h

in
th

e
m

u
lt

ip
le

.
c
l
a
s
s

fi
le

s,
e.

g.
,

re
fe

rr
er

an
d

re
fe

re
n
t

m
et

h
o
d

n
am

es
.

U
se

s
a

si
n

gl
e

p
o
ol

th
at

al
l
cl

as
se

s
si

m
u

lt
an

eo
u

sl
y

re
fe

re
n

ce
an

d
el

im
in

at
es

so
m

e
co

n
st

an
ts

b
y

in
-

li
n

in
g

th
ei

r
va

lu
es

d
ir

ec
tl

y
in

to
th

e
b
y
te

co
d

e.

A
m

b
ig

u
o
u

s
p

ri
m

it
iv

e
ty

p
e
s

V
ar

ia
b

le
as

si
gn

m
en

ts
d

is
ti

n
gu

is
h

b
et

w
ee

n
in

-
te

ge
r

(i
n
t
)

an
d

si
n

gl
e-

p
re

ci
si

on
fl

oa
ti

n
g-

p
oi

n
t

(f
l
o
a
t
)

co
n

st
an

ts
an

d
b

et
w

ee
n

lo
n

g
in

te
-

ge
r

(l
o
n
g
)

an
d

d
ou

b
le

-p
re

ci
si

on
fl

oa
ti

n
g

p
oi

n
t

(d
o
u
b
l
e
)

co
n

st
an

ts
.

V
ar

ia
b

le
as

si
gn

m
en

ts
(i
n
t
/
f
l
o
a
t

an
d

l
o
n
g
/
d
o
u
b
l
e
)

u
se

th
e

sa
m

e
op

co
d

es
fo

r
in

te
ge

rs
an

d
fl

oa
ts

,
e.

g.
,

th
e

op
co

d
es

ar
e

u
n
ty

p
ed

b
ey

on
d

sp
ec

if
y
in

g
p

re
ci

si
on

.

N
u

ll
re

fe
re

n
c
e
s

H
a
s

a
n
u
l
l

ty
p

e.
D

o
es

n
ot

sp
ec

if
y

a
n
u
l
l

ty
p

e,
in

st
ea

d
op

ti
n

g
to

u
se

a
ze

ro
va

lu
e

co
n

st
an

t.

O
b

je
c
t

re
fe

re
n

c
e
s

U
se

s
ty

p
ed

op
co

d
es

fo
r

th
e

co
m

p
ar

is
on

of
ob

je
ct

re
fe

re
n

ce
s

(i
f
a
c
m
p
e
q

an
d
i
f
a
c
m
p
n
e
)

an
d

fo
r

n
u
l
l

co
m

p
ar

is
on

of
ob

je
ct

re
fe

re
n

ce
s

(i
f
n
u
l
l

an
d
i
f
n
o
n
n
u
l
l
).

U
se

s
a

m
or

e
si

m
p

li
st

ic
in

te
ge

r
co

m
p
ar

is
on

b
e-

tw
ee

n
tw

o
in

te
ge

rs
,

an
d

a
co

m
p

ar
is

on
of

an
in

-
te

ge
r

an
d

ze
ro

,
re

sp
ec

ti
ve

ly
.

S
to

ra
g
e

o
f

p
ri

m
it

iv
e

ty
p

e
s

in
a
rr

a
y
s

U
se

s
d

efi
n

ed
,

u
n

am
b

ig
u

ou
s

op
co

d
es

.
U

se
s

am
b

ig
u

ou
s

op
co

d
es

to
st

or
e

an
d

re
-

tr
ie

ve
el

em
en

ts
in

ar
ra

y
s

of
p

ri
m

it
iv

e
ty

p
es

(e
.g

.,
a
g
e
t

fo
r
i
n
t
/f
l
o
a
t

an
d

a
g
e
t
-
w
i
d
e

fo
r

l
o
n
g
/
d
o
u
b
l
e
).

30

Figure 3.2: Mobile virtualization for MapReduce implementation

and emerging features of the Hadoop architecture, including MapReduce 2.0, also known as

YARN [16].

The experimental mobile cluster that runs the Hadoop software is composed of a single

master node and ten slave nodes which are configured with the default values for system

parameters of the Android OS and Hadoop framework. The master node coordinates the

slave nodes to get the workload done and the slaves run the sub-workloads, Map and Reduce

tasks, assigned by the master node. The usage of computing and networking resources on

each node is carefully monitored with a performance monitoring tool, Sysstat. To investigate

node’s behavior in the Hadoop workflow, two typical workloads – WordCount and TeraSort

– are tested with associated Hadoop benchmark tools on the mobile cluster.

• WordCount: this workload counts the occurrence of each word in the input data sets

generated by the Hadoop RandomTextWriter tool. It represents workload that extracts

small but valuable analytics from the input data.

31

Table 3.4: Hadoop configurations of the experimental mobile cluster

Configuration metrics Settings / values

Number of slave nodes 1 to 10

Available Map slots 2 per node

Available Reduce slots 2 per node

Workloads WordCount, TeraSort (and TestDFSIO for I/O test)

Data block size 1, 2, 4, 8, 16, 32, 64 MB

Input data size 1 to 10 GB

DFS replication 1

Note: MapReduce slots define the maximum number of Map and Reduce tasks that can run in parallel
on a cluster node. The number of slots on each cluster node may be different and it depends on the
node’s hardware capacity.

• TeraSort: this workload sorts the input data sets generated by the Hadoop TeraGen

tool in a predefined order. It represents workload that transforms unstructured source

data to a more useful structure or format without adding new data.

The input and output data usually need to be replicated to a small number of physically

separate nodes (typically three) to insure against data block corruption and hardware failure.

However, this work disables the replication of both input and output data in the experiments

to concentrate on core behaviors of the MapReduce workflow. The details of the configuration

metrics are listed in Table 3.4.

3.3.2 I/O performance of mobile nodes

Before analyzing the performance of Hadoop framework on the mobile cloud cluster, the

experimental cluster nodes are tested to examine their robustness, availability, and error han-

dling under a heavy load and to investigate which resource (e.g., CPU, memory, filesystem,

network, etc.) may affect the performance of MapReduce applications. In the stress testing,

remarkable performance characteristics of the filesystem and network I/O are observed, in

which the Hadoop TestDFSIO benchmark that tests the I/O performance of the distributed

filesystem by sampling the number of bytes read/written at fixed time intervals is utilized

32

0 50 100 150 200 250 300
Data rate (MB/s)

2.13 Wireless TCP thoughput of mobile nodes

2.32 Wireless UDP thoughput of mobile nodes

119.21 Gigabit Ethernet bandwidth

27.12 Filesystem read rate of mobile nodes

9.36 Filesystem write rate of mobile nodes

SATA II read / write speed 285 / 275

Figure 3.3: Network and filesystem throughput of mobile nodes

to measure the actual HDFS read/write speed (in a single-node cluster setup) and the Iperf

network performance measurement tool that generates constant TCP or UDP traffic flows

is employed to compute the actual network throughput (between two cluster nodes).

Figure 3.3 displays throughput measurements of the filesystem and network in the load

tests. The result shows that the network and filesystem I/O of mobile devices are far slower

than those of commodity servers with one or two wired Gigabit connections and SATA

II internal storages; 10-Gigabit Ethernet and SATA III storage are already common. In

particular, the available network throughput of mobile nodes is too much lower than that of

typical Hadoop clusters presented in [18]. The network speed is mush slower than the data

transfer rates of internal storage as well. Since the actual effect of the network bandwidth on

Hadoop performance is relatively small in conventional Hadoop setups with high-speed wired

connectivity, not much attention has been paid to Hadoop operations under the network

bandwidth constraint that is critical for reliable data transfers.

33

Consequently, the performance of mobile cloud clusters may be strongly influenced by

the characteristics of wireless links in the operating environments. Although computing

capabilities of cluster nodes are a significant performance factor, each node also needs the

capability to read and write large amounts of data to and from the distributed filesystem

that is implemented on remote nodes. In wireless networks with relatively low network

bandwidth, time required to transfer data blocks can significantly contribute to the total

processing time even though the distributed computing power generally decreases the amount

of time required for job completion.

3.3.3 Performance of WordCount workload

The WordCount workload that counts the occurrence of each word in the input data sets

produces small final output. The Map phase is generally computation intensive, compared

to other phases. Network utilization is low in the Shuffle phase, in which the Map tasks

transfer their output (i.e., intermediate results) to the Reduce task as input, because the

Map output is a small subset of the large input data set in this kind of workload.

Figure 3.4 shows the network utilization with MapReduce task progress of the Word-

Count workload that starts with 1 GB input data. In the workload, 20 Map tasks corre-

sponding to the 1 GB input size are equally distributed over 10 slave nodes. One node is

chosen to run the single Reduce task that produces the final output. Figure 3.5 displays

resource utilization on two typical slave nodes; the Map node runs only two of 20 Map tasks

and the Reduce node runs both the Map tasks and the additional Reduce task.

Figure 3.4 contains an aggregate data traffic pattern receiving from all nodes running

Map tasks, which is denoted by the solid line and a single data flow transmitted by a typical

Map node, denoted by the dash line. The graph shows two bursts of received traffic since

each node finishes two assigned Map tasks one at a time and transmits the intermediate

result at the same time to the single node running the Reduce task.

34

0 50 100 150 200 250
0

20

40

60

80

100

P
ro

gr
es

s
(%

)

1 GB WordCount task progress

Map
Reduce

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

Run time (s)

D
at

a
ra

te
 (

M
B

/s
)

Data flows on Map and Reduce node

Map transmit
Reduce receive

Figure 3.4: Network utilization of Hadoop mobile cluster with WordCount workload

Although Hadoop has the ability to process multiple tasks simultaneously within re-

source bounds, the experimental nodes run tasks sequentially due to lack of memory (see

Figure 3.5). This explains the separated bursts of traffic and corresponding delays in the

Map and Reduce progress. The network bandwidth is saturated during each burst, but it

only lasts for a short period of time since the output of the Map tasks is very small.

3.3.4 Performance of TeraSort workload

The TeraSort workload that sorts input data sets generates a large amount of interme-

diate data in the Map phase, which needs to be transmitted to the Reduce task over the

network to produce the final output. Both Map and Reduce phase are commonly compu-

tation and I/O intensive. Network utilization is very high in the Shuffle phase because the

output of Map tasks has the same size as the input data sets in this workload.

35

0
50

10
0

15
0

20
0

25
0

02040608010
0

R
un

 ti
m

e
(s

)

CPU usage (%)

C
P

U

0
50

10
0

15
0

20
0

25
0

02040608010
0

R
un

 ti
m

e
(s

)

Memory usage (%)

M
em

or
y

0
50

10
0

15
0

20
0

25
0

051015202530

R
un

 ti
m

e
(s

)

I/O rate (MB/s)

S
to

ra
ge

re

ad
w

rit
e

(a
)

M
a
p

n
o
d

e

0
50

10
0

15
0

20
0

25
0

02040608010
0

R
un

 ti
m

e
(s

)

CPU usage (%)

C
P

U

0
50

10
0

15
0

20
0

25
0

02040608010
0

R
un

 ti
m

e
(s

)

Memory usage (%)

M
em

or
y

0
50

10
0

15
0

20
0

25
0

051015202530

R
un

 ti
m

e
(s

)

I/O rate (MB/s)

S
to

ra
ge

re

ad
w

rit
e

(b
)

R
ed

u
ce

n
o
d

e

F
ig

u
re

3.
5:

R
es

ou
rc

e
u
ti

li
za

ti
on

of
M

ap
R

ed
u
ce

n
o
d
es

ru
n
n
in

g
W

or
d
C

ou
n
t

ta
sk

s

36

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

P
ro

gr
es

s
(%

)

1 GB TeraSort task progress

Map
Reduce

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

Run time (s)

D
at

a
ra

te
 (

M
B

/s
)

Data flows on Map and Reduce node

Map transmit
Reduce receive

Figure 3.6: Network utilization of Hadoop mobile cluster with TeraSort workload

Figure 3.6 shows the network utilization with MapReduce task progress of the TeraSort

workload initialized with 1 GB input data. The configuration is identical to the WordCount

workload; 20 Map tasks are equally distributed over 10 slave nodes and one node runs the

single Reduce task. The resource utilization of two different slave nodes is detailed in Figure

3.7 in the same way as the WordCount performance analysis.

Figure 3.6 illustrates a large volume of aggregate traffic made up of data flows transmit-

ted at the same time by multiple nodes because the entire input data needs to be shuffled

to the single node running the Reduce task. The network bandwidth is saturated while the

output of all Map tasks is being transferred. This traffic pattern increases the possibility

of packet loss, resulting in throughput reduction and fluctuating performance; a significant

number of TCP packets are dropped during the shuffle phase. Consequently, the Map tasks

finish relatively quickly but the Reduce task makes slow progress since it spends a great deal

37

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

CPU usage (%)

C
P

U

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

Memory usage (%)

M
em

or
y

0
15

0
30

0
45

0
60

0
75

0
90

0
051015202530

R
un

 ti
m

e
(s

)

I/O rate (MB/s)

S
to

ra
ge

re

ad
w

rit
e

(a
)

M
a
p

n
o
d

e

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

CPU usage (%)

C
P

U

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

Memory usage (%)

M
em

or
y

0
15

0
30

0
45

0
60

0
75

0
90

0
051015202530

R
un

 ti
m

e
(s

)

I/O rate (MB/s)

S
to

ra
ge

re

ad
w

rit
e

(b
)

R
ed

u
ce

n
o
d

e

F
ig

u
re

3.
7:

R
es

ou
rc

e
u
ti

li
za

ti
on

of
M

ap
R

ed
u
ce

n
o
d
es

ru
n
n
in

g
T

er
aS

or
t

ta
sk

s

38

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

Number of nodes running tasks

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

1 GB WordCount
1 GB TeraSort

Figure 3.8: Cluster size scaling of WordCount and TeraSort experiments

of time in receiving the large input data (i.e., the output of Map tasks) and processing the

entire data sets.

3.3.5 Performance of scale testing

This section examines the effects of scaling up the cluster size, data block size, and input

data size that represents the variability in configuring the mobile ad hoc cloud.

First, an optimally configured cluster generally has the ability to improve performance

by scaling up the cluster size. Figure 3.8 shows the results from the experiments which

are intended to verify how the cluster size affects performance of the mobile distributed

framework. The job completion time of two typical workloads, WordCount and TeraSort,

with 1 GB input data is measured as the number of slave nodes participating in the cluster

gradually increases.

39

0 8 16 24 32 40 48 56 64
0

250

500

750

1000

1250

1500

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Data block size (MB)

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 ta

sk
s

(b
lo

ck
s)

1 GB 10 node TeraSort
Map tasks (data blocks)

Figure 3.9: Data block size scaling of TeraSort experiments

As indicated in Figure 3.8, increasing the number of nodes considerably decreases the

job completion time of the WordCount workload. On the other hand, in the cluster scaling

with the TeraSort workload, the increase in cluster size does not lead to a significant decrease

in job completion time because the performance of the mobile cluster is bounded by the time

taken by the entire input data to be shuffled under the limited network bandwidth that is

also highly variable.

Second, the unit of input for a Map task is a data block of the input file. A single

large input file is split into many blocks which are distributed over the nodes in the Hadoop

cluster. The size of a data block stored in Hadoop filesystem is large – 64 MB by default,

compared to a block size in traditional filesystems – normally 512 bytes. By making a block

large enough, the data transfer time from the disk becomes significantly larger compared to

the time required to seek the start of the block. Thus, the transfer operation of a large file

made of multiple blocks becomes faster by minimizing the seek time [16].

40

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

Input data size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

10 node WordCount

Figure 3.10: Input size scaling of WordCount experiments

What is the effect of the data block size in wireless configurations where one or more

phases of MapReduce transfer a considerable number of data blocks over wireless links with

low throughput? The previous study, Hyrax [32], suggested the use of a small block size

in consideration of the lengthy transfer time and delay of the large block in the wireless

network. However, they did not provide any comparative measurements to validate their

suggested value. To determine an appropriate data block size for the Hadoop mobile cluster,

the job completion time of the I/O intensive TeraSort workload with 1 GB input data is

measured as the data block size gradually increases.

Contrary to expectations, Figure 3.9 displays performance degradation in small data

block sizes. A Map task handles a data block of input at a time. If the data block is very

small (i.e., there are a large number of data blocks), more Map tasks are required to process

each data block as also shown in the figure. This imposes an inefficient data access pattern

by causing frequent seeks to retrieve each small block. Furthermore, resources are scarce for

41

an excessive number of Map tasks. Hence, configuration parameters for the mobile cluster

should be carefully determined by taking into account various other performance aspects.

Finally, Figure 3.10 demonstrates the impact of input data size on the job completion

time of the WordCount workload as the size of the input data increases. The larger the

input data, the longer it takes to process the workload and produce the output result.

Meanwhile, a problem has been encountered when plotting the same measurements from the

TeraSort workload because its performance is extremely variable and unreliable due to an

increasing number of task failures (caused by task response timeouts and intermittent node

disconnections) and re-runs. This work identifies the cause of the failures in the following

chapters.

3.4 Performance simulations of Hadoop mobile clusters

Comprehensively evaluating the performance in extensive operating setups is important

to understand the performance issues of mobile cloud clusters and the overall efficiency of

the distributed system. However, it is increasingly harder to evaluate and repeat every

possible configuration as the scale of the cluster size become larger before gaining insight

into the system performance. For example, to make cluster nodes move coordinating a large

number of nodes and to observe performance constrains in various wireless communication

conditions are necessary, but performing the actual experiments involves both time and

cost. For a similar reason, many researchers have proposed simulation-based solutions to

evaluate and optimize MapReduce systems by saving cost and time. This work also shares

the concern of a need for simulation approaches and develops a MapReduce simulator for

mobile cloud clusters based on one of existing simulators, MRPerf. Using the simulator,

extensive MapReduce simulations are conducted to identify more performance issues under

different MapReduce scale, node mobility, and wireless channel condition.

42

Figure 3.11: Architecture of MRperf simulator

3.4.1 MRPerf simulator for MapReduce

MRPerf [49] is one of the earlier simulator tools for the MapReduce data processing

framework, which provides a fine-grained simulation to capture various performance aspects

of MapReduce execution phases and predict application performance. Since MRPerf is based

on the popular ns-2 network simulator [50], It models inter- and intra-rack task communi-

cations over the networks to simulate correct network behavior. Some of the important

motivations behind MRPerf were to examine the performance of MapReduce applications

under varying cluster configurations, different network topologies, different data placement

algorithms and different task schedulers by assuming that a node’s resources are equally

shared among tasks assigned concurrently to the node and the simulator does not model

OS-level asynchronous prefetching.

Figure 3.11 shows the high-level architecture of MRPerf. The input configurations for

initializing the simulator are defined in a set of files, and processed by different processing

modules. The ns-2 driver module provides the interface for network simulation. Similarly,

43

Figure 3.12: Screenshot of MapReduce simulation

the simple disk module that models the storage I/O can be extended to interface with other

disk simulators. All the modules are driven by the MapReduce Heuristics module (MRH)

that simulates Hadoop’s behavior. To perform a simulation, MRPerf first reads all the

configuration parameters and instantiates the required number of simulated nodes arranged

in the specified topology. The MRH then schedules tasks to the nodes based on the specified

scheduling algorithm. This enables each node to run its assigned tasks, which further creates

network traffic (modeled through ns-2) as nodes interact with each other. Thus, a simulated

MapReduce workload is created.

3.4.2 Implementation and validation of MapReduce simulator

This work selects MRPerf as a base simulator to implement MapReduce simulation for

mobile cloud clusters since it is open source and supports various cluster configurations and

network topologies by utilizing the network simulator. MRPerf was originally developed to

investigate the impact of network topologies on the performance of Hadoop clusters that

44

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

Number of nodes running tasks

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

simulation
experiment

Figure 3.13: Validation of MapReduce simulation with TeraSort workload

consist of commodity servers. All the network topologies (e.g., Star, Double rack, Tree and

DCell) represent switch-based wired network setups and all the cluster configurations are

based on node characteristics (e.g., CPU, memory, disk, etc.) from server platforms. Thus,

the mobile cluster’s characteristics and behaviors under wireless ad hoc configurations need

to be integrated into the MRPerf framework.

Implementing a mobile cluster on MRPerf involves a lot of tasks. First, a careful analysis

of MRPerf architecture and source codes was conducted. Second, cluster configuration pa-

rameters for the mobile clusters, such as hardware capacity and Hadoop/MapReduce setup,

were attentively tuned. Finally, additional features and exception handlings for node mobil-

ity were implemented. Figure3.12 displays a sample screenshot of the MapReduce simulator

for mobile cloud clusters, where 20 mobile nodes are moving in a simulation area by running

a MapReduce application; black circle denotes a master node, blue and green circle denotes

a slave node with and without running tasks, and red circle denotes a malfunctioning node.

45

Table 3.5: Simulation configurations of the Hadoop mobile cluster

Configuration metrics Settings / values

Simulation area (meter×meter) 50×50, 100×100, 200×200, 300×300, 400×400, 500×500

Radio propagation model FreeSpace, Shadowing, TwoRayGround

Node mobility No mobility (static nodes), Random Waypoint

Number of slave nodes 1 to 40

Available Map slots 2 per node

Available Reduce slots 2 per node

Workloads TeraSort

Data block size 64 MB

Input data size 1 to 10 GB

DFS replication 1

For the validation tests, this work compares data collected from real cluster configu-

rations running 1 GB TeraSort workload with data observed in the MapReduce simulation

runs with the same workload. Each cluster node has wireless single-hop connections and

is stationary during the tests, which allows the validation tests to consistently evaluate the

performance of the cluster under reliable connectivity. The job completion time is measured

as the number of cluster nodes gradually increases. Figure 3.13 shows the results from the

actual experiments as well as simulation runs. As indicated in the figure, the MapReduce

simulator is able to predict the job completion time within the margin of error. Through

a series of validation tests, this work finds that it is capable of simulating the MapReduce

performance of mobile clusters fairly accurately.

3.4.3 Performance of scale testing

Using the MapReduce simulation, this section investigates the effects of scaling up the

cluster size, input data size, and simulation area size to provide more insights into the mobile

ad hoc cloud. The details of the configuration metrics are listed in Table 3.5.

First, Figure 3.14 displays the result of simulations designed to verify how the cluster

size affects the performance of I/O intensive MapReduce applications. The job completion

46

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of nodes running tasks

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

10 GB TeraSort

Figure 3.14: Cluster size scaling of TeraSort simulations

time of TeraSort workload with 10 GB input data is measured as the number of cluster nodes

increases up to 40. As indicated in figure, increasing the number of nodes decreases the job

completion time of the TeraSort workload but it does not lead to a significant decrease in job

completion time since the performance is bounded by the time taken by the large amount of

intermediate data to be shuffled under the wireless communication links as discussed in the

earlier section.

Second, Figure 3.15 demonstrates the impact of input data size on the job completion

time of TeraSort workload in the 10 node cluster setup as the size of the input data increases

up to 10 GB. The result exactly shows that the execution time is proportional to the size of

input data. Note that the actual performance of TeraSort workload in large-scale input data

setups was unmeasurable because unexpected problems of system operation were frequently

encountered before getting a final result and the performance measures were highly variable

during the experiments using real mobile devices. Thus, the MapReduce simulator can be

47

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Input data size (GB)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

10 node TeraSort

Figure 3.15: Input size scaling of TeraSort simulations

a useful tool to predict the performance trend by avoiding temporarily unobservable faults

from other performance factors that are not relevant to the MapReduce execution.

Lastly, Figure 3.16 shows the effect of the size of simulation area. In the simulation, the

mobile cluster with 10 nodes runs 1 GB TeraSort workload. The effective communication

range of wireless cluster nodes is set to around 100 meters in the simulation considering the

actual radio coverage of mobile devices. As a result, cluster nodes are frequently discon-

nected in a large simulation space due to range-limited communication, which means that

the Hadoop cluster experiences numerous task timeout events as timely task monitoring is

unavailable, resulting in job execution failure. Interestingly, the simulation result shows that

it is possible to run MapReduce applications with node mobility by adjusting Hadoop con-

figuration parameters (e.g., the heartbeat interval and task timeout period), which enables

the intermittently connected mobile nodes to perform cooperative processing in the Hadoop

framework.

48

50^2 100^2 200^2 300^2 400^2 500^2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Simulation area (Sq. meters)

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

No mobility
Random Waypoint

Figure 3.16: Simulation area scaling with node mobility

3.4.4 Performance over different radio propagations

Wireless network simulation is an important tool for evaluating wireless protocols and

wireless applications before they evolves towards real world implementation. Many studies

have used network simulators, such as ns-2, for the simulation of wireless networks. The ns-2

simulator supports different Physical (e.g., radio propagation) and MAC layer models (e.g.,

IEEE 802.11 standard), network routing protocols (e.g., AODV, DSR, DSDV and OLSR),

and their extensions (or modifications). Since the MapReduce simulator exploits the ns-2

for simulating application’s performance over different network configurations, it is possible

to apply various wireless network models and protocols for the MapReduce simulation.

The wireless networks are much more complicated to analyze than wired networks.

Their characteristics and conditions may change rapidly and randomly. There are significant

differences between simple wireless paths with line of sight (LOS) and those with obstacles

(e.g., vehicles and buildings) between the sender and receiver as well. To investigate the

49

impact of various wireless channel conditions, this work compares the performance of the

Hadoop mobile cluster with different propagation models.

The network simulations generally consider two channel models: large-scale and small-

scale propagation models. The large scale propagation models predict the mean signal

strength for an arbitrary transmitter-receiver separation distance to estimate the radio cov-

erage area of the transmitter. On the other hand, the small scale models characterize the

rapid fluctuations of the received signal strength over very short travel distances or short

time durations. Due to multipath propagation of radio waves, movements of the receiver can

have large effects on the received signal strength.

This work tests three frequently used radio propagation models included in the ns-2

network simulator for the mobile cluster simulation. First, FreeSpace model assumes that

the received power is only dependent on the transmitted power, the antenna’s gains and

on the distance between the transmitter and the receiver, where a radio wave that moves

away from the sender has to cover a larger area so the received power decreases with the

square of the distance. Second, Shadowing model assumes that the average received signal

power decreases logarithmically with distance, where a Gaussian random variable is added

to this path loss to account for environmental influences at the transmitter and the receiver.

Third, TwoRayGround model assumes that the received energy is the sum of the direct line

of sight path and the path including one reflection on the ground between the sender and

the receiver.

Figure 3.17 demonstrates the result of simulation runs (where 10 cluster nodes runs 1

GB TeraSort workload in two simulation area sizes) with different propagation models, which

indicates that the radio wave propagation has a strong impact on the job completion time.

Actual mobile devices are equipped with heterogeneous wireless adapters and antennas,

which means that mobile nodes have different transmit and receive capabilities and their

mobility induces complicated changes to the communication coverage. Thus, the received

signal strength of mobile devices may vary over the time periods of communication (i.e.,

50

FreeSpace Shadowing TwoRayGround
0

1000

2000

3000

4000

5000

6000

7000

8000

Radio propagation model

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

502 Sq. meters

1002 Sq. meters

Figure 3.17: MapReduce simulations with different radio propagation models

data transfers). The Shadowing model simulates this case and the simulation result shows

that variation on the job completion time increases in comparison to one with the FreeSpace

model. Furthermore, it is also observed that the multipath propagation of radio waves

simulated by the TwoRayGround model has a significant effect on the performance of the

mobile cluster, especially with a larger simulation space (i.e., an increased communication

range), since the propagation pattern causes serious communication problems such as jitter

and ghosting.

3.5 Performance issues of Hadoop mobile clusters

In the performance analysis it is found that the overall computing power of the mobile

cluster is no longer significantly bounded by internal resource capabilities of each individual

node since mobile devices have been constantly enhancing their resources and processing

power. On the other hand, this work identifies distinct performance problems in MapReduce

51

analytics on the Hadoop mobile clusters, which come in the form of longer job completion

time or frequent task failure from task response timeout and node disconnection.

In distributed systems where a controller usually makes control decisions with limited

information from remote components, a timeout control provides a key mechanism through

which the controller can infer valuable information about unobservable states and events in

the system when direct feedback is either impossible or costly [57]. The timeout control is

configured using a timer which expires after a timeout threshold. This defines an expected

time by which a specific event should occur. If no information arrives within this period, a

timeout event occurs and the controller triggers corresponding reactions. In fact, the timeout

control is an integral component for building up a reliable distributed system.

The Hadoop distributed system also adopts the timeout control for both job scheduling

and progress monitoring. A MapReduce job initiates long-lived batch tasks running on slave

nodes, which usually take a few minutes or hours. Because of the significant length of run-

time, it is important for the master node to get feedback on how the job is progressing in

a timely fashion. It enables the master to keep track of task status and restart failed or

slow tasks. If a slave (task) fails by crashing or running very slowly, for example, it stops

sending (or sends intermittently) current status and progress updates, called heartbeats, to

the master; the master then marks the slave (task) as failed after the timeout threshold

which is 10 minutes by default [16].

In the previous experiments and simulations, the frequent timeout occurrences (task

failures) with corresponding performance degradation while running the I/O intensive Tera-

Sort workload with large input data were observed in the Hadoop mobile clusters. The

problems can be summarised as follows:

First, the job execution time is sensitive to slow-running tasks as only one slow task

makes the time significantly longer. When a mobile node running Map tasks has significant

delays in transmitting a large amount of intermediate result to Reduce tasks through wireless

connections (i.e., tasks are running slower than expected due to the lengthy transfer time

52

of Shuffle phase), the master launches another, equivalent tasks as a backup instead of

diagnosing and fixing the slow-running tasks. The slow-running (or hanging) tasks are

considered failed and automatically killed after the timeout period. The master also tries to

avoid rescheduling the tasks on the slave node where they have previously failed.

Second, depending on the size of the cluster, the master node has high resource require-

ments as it manages the cluster resources, schedules all user jobs, and holds block metadata

of the distributed filesystem. On a busy cluster running a heavy workload, the master uses

more memory and CPU resources. Thus, the master node based on a mobile device is subject

to resource scarcity and bottlenecks in processing received data in a timely fashion. When

the master has not received an expected progress update from a slave node for the timeout

threshold, it arranges for all the Map tasks that were scheduled on the failed node, whether

completed or not, to be rerun since intermediate output residing on the node may not be

accessible to the Reduce task.

Consequently, theses failures and reactions lead to a significant increase in job execution

time. Therefore, it is critical to mitigate the effect of the timeout occurrences in the Hadoop

mobile clusters where the chance of particular node failures and communication problems is

comparatively high.

53

Chapter 4

Problem statements and research questions

Most of the current distributed systems including Hadoop employ Transmission Control

Protocol (TCP) for reliable communications between cluster nodes. The performance of

mobile distributed processing largely relies on how effectively each mobile device exploits the

available network resources through TCP connections as outlined earlier. Despite advances

in mobile technologies, mobile devices still face significant limitations on transmitting and

receiving reliable TCP data streams required to avoid any interruptions while performing

distributed analytics.

4.1 Limitations on TCP performance over mobile devices

Mobile devices use a wireless channel as a transmission medium. Unlike wired net-

works, the time-varying condition on the wireless channel is the dominant cause of packet

loss. TCP proposals mostly designed for wired networks are unable to react adequately to

the packet loss due to channel noise, fading, or interference since they assume the only source

of packet loss is congestion [20]. The random packet loss in the wireless channel makes it

difficult for mobile nodes using one of those proposals (e.g., TCP CUBIC [25] in Android

OS based on Linux Kernel) to estimate available channel bandwidth and achieve optimal

TCP throughput. In addition, most of the wireless protocols allow wireless devices to share

the same channel through contention-based media access control (MAC) that includes pro-

cesses for initiating a new transmission, determining the channel state (e.g., available or

unavailable), and managing retransmissions in the event of a busy channel or data loss,

which has several limitations. If many nodes attempt to transmit data at the same time, for

example, a substantial number of collisions may occur and result in lowering the available

54

bandwidth. Without pre-coordination, it is hard to prioritize data flows and prevent unfair

transmissions. Not many studies have been made on TCP performance of mobile distributed

analytic applications under these practical constraints.

The IEEE 802.11 standard for WLANs [58] defines several Physical-layer (PHY) data

rates (e.g., most of recent mobile devices supporting IEEE 802.11n [53] use eight data rates:

6.5, 13, 19.5, 26, 39, 52, 58.5, and 65 Mbps) to provide more robust communication by

falling back to a lower rate in the presence of a high noise level, where a rate adaptation

algorithm of Media access control (MAC) layer makes a runtime prediction of changes in the

channel condition and a selection of the most appropriate PHY rate. Although the PHY rate

change is critical to the TCP performance, the cross layer interaction between the TCP flow

control and MAC rate adaptation is yet to be thoroughly investigated [59]. For example, a

problematic issue arises when the rate adaptation algorithm aggressively and rapidly reduces

the PHY rate due to short-term degradation of channel quality (e.g., 65 → 52 Mbps: 20%

decrease, 52 → 26 Mbps: 50%). TCP reacts to the sudden PHY rate reduction but needs a

substantial amount of settling time to converge into a stable rate by updating its congestion

window size corresponding to the PHY rate after detecting packet losses. In the event that

frequent rate changes occur in the PHY layer, it is hard to utilize the available bandwidth to

the fullest extent using TCP. Moreover, the TCP performance may drastically deteriorate if

inappropriate PHY rates are selected unnecessarily.

4.2 Problems of using mobile devices for mobile cloud

Some low-cost smartphones and tablets continue to have resource limitations compared

to traditional PCs and laptops in spite of the advances made in their hardware capabilities.

Their wireless capability, in particular, is limited by several factors including power-saving

operations (which may result in lower communication quality and intermittent connectivity),

form factor constraints (that involve challenges in antenna implementation and placement),

and minimal production costs (that bring about small network buffer/queue sizes due to low

55

memory capacity), all of which subject them to throughput reduction and fluctuating perfor-

mance in wireless communications [60]. Moreover, when an application on the receiver is not

able to process incoming TCP packets as fast as senders transmit due to lack of processing

resources, the receiver sets the TCP flow limit by reporting the decreased receive window size

(e.g, no buffer space available in the worst case). As a result, the sender’s transmission will

eventually be bounded by the receiver’s processing rate. Thus, the processing capability of a

mobile device potentially becomes a significant performance factor (i.e., TCP transmit rate

bound) in TCP data communications when the mobile device experiences resource scarcity

on processing data.

Furthermore, most of the mobile devices are generally optimized to improve receive per-

formance, which can be found when looking into the mobile OS kernel and network drivers.

For example, the mobile devices have an asymmetric resource scheduling (or distribution)

scheme for transmitting and receiving data, where the mobile kernel allocates more resources

to speed up processing of data frames on arrival and only the minimum number of frames

necessary to acknowledge the received frames is scheduled for transmission while receiving

data. In addition, the mobile OS does not alert the user to runtime errors of its wireless

kernel or hardware faults nor display information about the internal problems directly, which

makes it difficult to identify critical performance problems and improve the performance of

mobile applications. Besides, it is not an easy task to customize the OS kernel and wireless

driver of mobile devices for the variable operating environments although the mobile OS is

open-source. Hence, the network (or application) performance observed on mobile devices

may not be optimal and it is hard to find out the performance bound.

4.3 Research questions

This work studies the advantages and challenges of utilizing mobile devices for dis-

tributed analytics by showing its feasibility and conducting performance analysis. The em-

pirical study based on experiments and simulations focuses on how to build the mobile ad

56

hoc cloud by clustering with nearby mobile devices to reliably support practical distributed

analytics. The following questions are addressed in this work:

• Is a typical distributed software framework for cloud computing capable of effectively

supporting mobile distributed analytics? What are the problems of implementing

the distributed analytic framework on mobile devices? How can the performance of

distributed analytics be evaluated on practical mobile clusters?

• What are the limitations in enabling mobile devices to offload portions of the workload

to remote computing resources and share their resources for distributed processing?

How efficiently can the controller node initiate distributed analytics using dynamic

mobile cloud resources under the time-varying operating environment?

• In what ways, is the mobile cluster able to mitigate the effect of frequent task fail-

ures while supporting large complex computations and long-running processes for dis-

tributed analytics, which are usually caused by hardware/software faults (or slow-

running tasks) and communication problems?

• How can reliable data communications between mobile devices for analytical data

transfers in the workflow of distributed analytics be guaranteed under the limitations

of TCP performance over wireless links? What is the best way to control TCP flows

on mobile devices for improving performance of mobile distributed analytics?

To resolve these questions, this work has developed a test bed of mobile distributed

platforms and a simulator for mobile cloud clusters by conducting performance analysis to

identify performance issues as presented in the previous chapter, and will propose adaptive

TCP flow control algorithms for enhanced analytic performance by validating the proposed

solutions through extensive experiments in the following chapters.

57

Chapter 5

Adaptive TCP flow control for mobile clusters

Through the performance analysis of Hadoop mobile clusters, this work has focused on

two major traffic patterns: 1) between Map and Reduce tasks and 2) between master and

slave nodes. It identifies two performance issues that cause frequent performance degradation

in mobile distributed analytics with MapReduce. Specifically, overflows of the MAC-layer

transmit queue on the slave nodes interrupt long-lived analytical data flows required for

data aggregation and overflows of the TCP receive buffer on the master node prevent timely

updates of task progress and resource status for job monitoring and scheduling. This chapter

introduces adaptive TCP flow control algorithms for improving the performance issues.

5.1 Queueing level control for transmit queue overflow

Most of the previous TCP proposals for both wired and wireless environments (e.g.,

[24] and [25]) neglect a major influence of the MAC-layer packet loss due to transmit queue

overflows. Neither do they consider any round-trip time (RTT) variations due to queueing

delays, transmission rate changes, and retransmissions (transmit retries) in the MAC layer

while emphasizing the effect of packet loss resulting from network congestion or channel

fading. They commonly assume a MAC-layer transmit queue with infinite capacity and zero

delay (i.e., no queue dynamics). In practice, the queue’s behavior on mobile devices can

have a significant impact on TCP performance.

5.1.1 Analysis of MAC-layer transmit queue overflow

Once a TCP connection is established, TCP decides its data rate based on the Transport-

layer information only. If the sender’s congestion window is not full and the receiver has

58

Figure 5.1: TCP packet transmitting process of mobile nodes

a sufficient receive buffer for the connection, TCP packets are continuously injected into a

transmit queue of the lower network layer (e.g. MAC-layer transmit queue) until the window

size is fully used or there is no more packet in the Transport layer. Meanwhile, the limi-

tations on the TCP performance over mobile devices (e.g., time-varying channel condition,

contention-based channel access, PHY transmit rate change, power-saving operation, etc.)

can prevent mobile nodes from sending out packets at the same rate as the TCP packet

injection (i.e., the inflow of the transmit queue). Thus, the queueing delay for transmission

increases and the queueing packets can exceed the limited capacity of the transmit queue.

With a simple queue management algorithm (e.g., Tail drop), when the queue is filled to

its maximum capacity, the newly arriving packets are dropped until the queue has enough

space to accept incoming packets. The loss of packets causes the TCP sender to move into

congestion avoidance phases, which reduces throughput in the TCP session.

Figure 5.1 illustrates how mobile nodes process TCP transmitting packets. Consider a

wireless single-hop connection consisting of a set of nodes. When one node transfers large

data to the other node using TCP, the Transport-layer TCP of the sender releases packets

to the MAC-layer transmit queue at the TCP transmit rate Rtcp
tx (t) which corresponds to

the inflow rate of the queue at time t. If there is an influx of packets in the queue, the

MAC protocol sends out packets at the Physical-layer transmit rate Rphy
tx (t) selected by a

rate adaptation algorithm. Table 5.1 presents the input parameters of the TCP transmit

analysis.

59

Table 5.1: Parameters for transmit queue overflow analysis

Notation Parameter

Rtcp
tx (t) TCP transmit rate at time t

Rphy
tx (t) Physical-layer transmit rate at time t

R∗
tx(t) Actual throughput of wireless link at time t

P ch
tx Probability of channel loss

P q
tx Probability of queueing loss

Qmac
tx (t) Size of MAC transmit queue at time t

qmax Maximum queue capacity

Let R∗
tx(t) be the actual throughput of the wireless link, which is equal to or lower than

the available network bandwidth because some damaged or lost frames due to the varying

channel condition with a probability P ch
tx of packet loss may need to be retransmitted. And

let Qmac
tx (t) denote the size of the transmit queue (i.e., the number of packets in the queue).

Using the notations above, the following differential equation that represents the queue’s

behavior can be derived at a given time t:

dQmac
tx (t)

dt
=

 0, if Rtcp
tx (t) ≤ Rphy

tx (t)

Rtcp
tx (t)−Rphy

tx (t), otherwise
(5.1)

Thus, R∗
tx(t) is given by

R∗
tx(t) =

 Rphy
tx (t)− P ch

tx ×R
phy
tx (t), if Qmac

tx (t) > 0

Rtcp
tx (t)− P ch

tx ×R
tcp
tx (t), if Qmac

tx (t) = 0
(5.2)

As Rtcp
tx (t) is bounded by Rphy

tx (t) that adapts to the channel condition through rate adapta-

tion, both Rtcp
tx (t) and Rphy

tx (t) should converge into R∗
tx(t) in stable state:

Rtcp
tx (t) ≈ Rphy

tx (t) ≈ R∗
tx(t) (5.3)

60

Table 5.2: Variables for transmit queueing level control algorithm

Identifier Variables

tx qlen Size of transmit queue

rx qlen Size of receive queue

fc threshold Threshold for queue inflow control

tx queueing Queueing status (set true when queueing data; otherwise false)

tx bound Max transmit frames in scheduling

max frames Max limit of processing frames in one scheduling

rx pending Receive status (set true when receiving data; otherwise false)

In reality, there is high probability of packet loss caused by poor quality of wireless

channel in the mobile environment. When the rate adaptation algorithm aggressively reduces

Rphy
tx (t) due to a short-term increase of channel loss, TCP reacts to the sudden PHY rate

reduction but needs a significant amount of settling time to find out the stable rate R∗
tx(t)

by updating its congestion window corresponding to Rtcp
tx (t) many times. During this time

lag, Rtcp
tx (t) exceeds Rphy

tx (t). Thus, the number of packets filling the queue increases:

dQmac
tx (t)

dt
= Rtcp

tx (t)−Rphy
tx (t) > 0 (5.4)

Moreover, mobile nodes share the same channel based on contention-based access. When

the channel is busy as many nodes attempt to communicate, the window of transmit op-

portunity (i.e., transmit time slot) for each node is narrowing. If such delays in queueing

and transmitting last during an interval (t, t + δ) and the transmit queue has a limit on its

capacity qmax, the queue overflow that may lead to packet loss from TCP retransmission

timeout (RTO) with a probability P q
tx will occur as follows:

∫ t+δ

t

dQmac
tx (t)

dt
= qmax (5.5)

61

Algorithm 1: Transmit queueing Level control

1 if tx qlen > 0 then

2 if tx queueing = true then /* TCP flow control */

3 if tx qlen ≥ fc threshold then

4 Stop TCP packet injection;

5 end

6 else

7 if tx qlen < fc threshold then

8 Restart TCP packet injection;

9 end

10 end

11 if rx pending = false then /* MAC resource scheduling */

12 tx bound← max frames;

13 else

14 if tx qlen = 0 then

15 tx bound← max frames / 2;

16 end

17 end

18 end

5.1.2 Transmit queueing level control algorithm

To avoid the transmit queue overflow, TCP needs to regulate the outflow rate (i.e.,

inflow rate of the transmit queue) according to the available queue space (i.e., the queueing

level) first. As the current network protocol architecture that follows strict layering principles

do not provide any interface for coordination, interaction, or optimization between network

protocols of different layers, a modification of the existing layered protocols is necessary to

implement a cross-layer flow control between the Transport and MAC layer.

In addition, mobile devices are usually optimized to improve receive performance, where

more resources are statically assigned to make the processing of receive frames faster. If there

is no incoming data frame, however, all available resources can be used to transmit packets

for reducing the queueing delay. Even though there are incoming frames, the resources for

62

processing receive and transmit data can be dynamically scheduled according to the data

size to be processed as well.

Algorithm 1 presents the steps of the cross-layer flow control and dynamic resource

scheduling for stabilizing the queueing level, which are performed on the TCP sender node.

Table 5.2 defines variables for monitoring the queue usage, thresholds for initiating the flow

control, and parameters for scheduling network resources. If the transmit queue fills and the

queue length exceeds the pre-defined threshold, TCP stops injecting packets into the queue.

When the queueing level stabilizes, TCP restarts queueing. Then, it checks the receiving

data flows. If there is no overhead in processing incoming frames, it uses more resources for

transmitting packets in the queue.

5.2 TCP push flow control for receive buffer overflow

The previous research has mostly focused on the partition and aggregation pattern of

distributed systems in data center networks, where the input data is partitioned and sent

to worker nodes, and the output data of each worker node is transmitted to an aggregation

node, but another traffic pattern between the controller and worker nodes also has a sig-

nificant impact on the performance of the distributed computing system. Although worker

nodes complete assigned all sub-workloads faster, the controller’s final response to the user’s

request of the workload can be delayed if there is a bottleneck in reporting the sub-workload

completion and transmitting metadata for the final result to the controller. Thus, the re-

sponse time is substantially affected by the network performance between the controller and

worker nodes as well.

5.2.1 Analysis of TCP receive buffer overflow

Every slave node that composes the Hadoop cluster transmits two types of packets

(heartbeat packets for quick status updates and data packets for operational data transfers)

to the master node, the only controller of Hadoop framework. For the MapReduce operation,

63

F
ig

u
re

5.
2:

D
at

a
fl
ow

s
b

et
w

ee
n

m
as

te
r

an
d

sl
av

e
n
o
d
es

64

each node runs a simple loop that periodically sends a heartbeat packet to the master. The

heartbeat packets contain timely information about the node state (e.g., statistics of resource

utilization) and progress of running tasks, which enables the master to monitor task status

and restart a failed or slow task rapidly. The master combines these updates to produce

a global view of the status of all the jobs being run and their sub-tasks. There are other

sporadic operational data transfers for task assignments and task completion reports using

data packets in the traffic pattern as well. In addition, each node also communicates with the

master using the same kinds of packet for the distributed files system (i.e., HDFS) operation

as depicted in Figure 5.2.

The Hadoop software architecture distinctively implements the heartbeat updates using

the TCP push function to force an immediate data transfer (without data buffering). When

this function is invoked, TCP creates a packet that contains application data, and transmits

it right away with the PSH control flag bit set to 1. The PSH flag informs the receiving host

that the data should be pushed up to the receiving application immediately. This function

is originally designed for time-sensitive TCP connections (e.g., Telnet, HTTP GET request,

etc.) and is also useful for TCP-based real-time applications. Figure 5.3 illustrates how the

data flow of Hadoop with the normal TCP packets differs from the heartbeat flow with the

TCP push packets.

Meanwhile, current window-based TCP congestion/flow control algorithms (e.g., [25],

[24]) do not effectively deal with the fast data flow consisting of TCP push packets. Because

the TCP push packets unregulated by the typical window-based (or buffer-based) control

scheme have a high process priority, a data flow with excessive TCP push packets can

exacerbate any congestion level of the TCP connection or processing overhead of inflowing

packets stored in TCP receive buffers. For example, the TCP push packets account for

about 30 percent of traffic to the master node that coordinates 10 slave nodes in the Hadoop

cluster running TeraSort workload with 1GB input data; the master receives around 30 TCP

65

(a) Data flow

(b) Heartbeat flow

Figure 5.3: Comparison of Hadoop data and heartbeat flow

push packets per second. Thus, the data flows between the master and slave nodes have a

non-negligible effect on the performance.

In the performance analysis, the frequent TCP receive buffer overflows on the master

node are observed (i.e., the master node advertises TCP zero receive window) while running

the Hadoop benchmarks. When a receiver (i.e., master node) is unable to process TCP pack-

ets in the receive buffer quickly, the receiver reports decreasing values of the receive window

and the sender (i.e., slave node) transmits a portion of data that does not exceed the receive

window. If TCP Zero Window is reported by the receiver, the sender immediately stops its

transmission of the corresponding TCP session. Thus, every Zero Window advertisement

incurs a substantial throughput penalty and transmission delay on the TCP connection due

66

Figure 5.4: TCP packet receiving process of master node

to the significant amount of time taken for the receive window to be re-opened to the normal

window size [60].

Figure 5.4 demonstrates how the master node processes TCP receiving packets. Consider

one of TCP sessions between the master and slave nodes. The master receives packets from

a slave at the rate R∗
rx(t) and the application of the master processes the packets at the

rate Rapp
rx (t). When the master has a bottleneck in processing the receive packets, the TCP

receive buffer begins to fill. Let rwndi(t) denote the size of the TCP receive buffer i at

time t. Table 5.3 presents the input parameters of the TCP receive analysis. The following

equation that describes behavior of the receive buffer can be derived at a given time t. If

67

Table 5.3: Parameters for receive buffer overflow analysis

Notation Parameter

R∗
rx(t) Physical-layer receive rate at time t

Rapp
rx (t) Application’s processing rate at time t

P b
rx Probability of packet loss due to buffer overflow

rwndi(t) Size of TCP Receive buffer at time t

rwndmax Maximum buffer capacity

there are no substantial MAC-layer receive buffering delays,

drwndi(t)

dt
=

 0, if R∗
rx(t) ≤ Rapp

rx (t)

R∗
rx(t)−Rapp

rx (t), otherwise
(5.6)

Since the master node based on a mobile device is subject to resource scarcity on man-

aging its slave nodes by monitoring the job progress and by updating the entire image of the

distributed filesystem, there is higher possibility of bottlenecks in processing. For example,

the master of Hadoop runs two major controller modules, JobTracker for MapReduce and

NameNode for HDFS, and maintains at least 2× n concurrent receive buffers for TCP con-

nections between the master node with 2 controllers and the n slave nodes (as well as the

same number of TCP transmit buffers for bidirectional TCP flows) as depicted in Figure 5.4.

In addition, each slave node periodically sends heartbeats that need to be processed

as soon as they arrive. TCP pushes them to the application immediately. The TCP push

packets aggravate the process overhead while the master is busy processing many requests.

Consequently, R∗
rx(t) frequently goes beyond Rapp

rx (t) on the master node. Thus, the receive

buffer size (the number of TCP data packets to be processed in the receive buffer) increases:

drwndi(t)

dt
= R∗

rx(t)−Rapp
rx (t) > 0 (5.7)

68

When such bottleneck in processing receive packets lasts during the interval (t, t + δ)

and the TCP receive buffer has a limit on its capacity rwndmac, the receive buffer overflow

that leads to packet loss from TCP retransmission timeout (RTO) with a probability P b
rx

may occur as follows: ∫ t+δ

t

drwndi(t)

dt
= rwndmax (5.8)

As a result, the receiver’s processing rate Rapp
rx (t) eventually slows down the sender’s

transmission rate Rtcp
tx (t) and limits the actual throughput R∗

tx(t) of the TCP connection.

From (3), we have

Rtcp
tx (t) ≈ Rphy

tx (t) ≈ R∗
tx(t) ≈ R∗

rx(t) ≈ Rapp
rx (t) (5.9)

5.2.2 TCP push flow control algorithm

To avoid the receive buffer overflow on the master node which results in the interruption

of receiving the latest status updates and task reports, a modification of the TCP congestion

control is needed because the current TCP implementation does not include any performance

consideration and sophisticated exception handling for the TCP push function. This work

has reviewed the Linux Kernel codes for TCP by focusing on TCP push packet handling

and identified a problem in round-trip time (RTT) estimation that is essential for TCP

congestion window control and retransmission timeout (RTO) estimation.

The TCP sender measures the RTT of the network path, which includes the propa-

gation delays of the network channels, queueing delays of network devices, and processing

delays at the receiver. The TCP implementation estimates the accurate RTT of the path

using new RTT samples and updates the RTO based on the estimated RTT. If the RTO

is underestimated due to incorrect RTT estimates, the TCP packets can be retransmitted

excessively, which also initiates TCP congestion avoidance procedures unnecessarily. Thus,

the RTT measure is the most important parameter in the TCP performance.

In the Hadoop cluster, the master node responds (acknowledges) to the heartbeat (TCP

push packet) using the same type of packet, i.e., every heartbeat call incurs a bidirectional

69

Table 5.4: Variables for TCP push flow control algorithm

Identifier Variables

fc mode Flow control status (set true when enabled; otherwise false)

zero window TCP Zero Window reception (set true when advertised by master; other-
wise false)

psh acked TCP push ACK reception (set true when acknowledged; otherwise false)

delayed ack TCP delayed ACK status (set true when enabled; otherwise false)

cwnd TCP congestion window

packets in flight Unacknowledged TCP data in flight

TCP push stream. As the TCP push packet is passed directly to the application and its

acknowledgment is transmitted without buffering on the receiver, the TCP push stream has

a shorter processing delay compared to the normal TCP data stream as shown in Figure 5.3.

If the short RTT of the push stream is frequently used for the samples of RTT estimation,

excessive retransmissions of many normal TCP packets will occur after the RTO is underes-

timated according to the incorrect RTT estimates. Also, the fast acknowledgements of the

push packets increase the sender’s congestion window quickly. As a result, the sender (i.e.,

slave node) transmits too many packets that overwhelm the available network bandwidth

and/or the receiver (i.e., master node)’s processing capability.

Algorithm 2 includes the TCP flow control procedure for improving receive buffer over-

flows of the master node, which is performed on the slave nodes. Table 5.4 defines variables

for monitoring the Zero Window events, thresholds for initiating the flow control, and pa-

rameters for the TCP control. If Zero Window is advertised by the master node, the slave

node initiates the TCP push flow control mode. In this mode, the TCP control skips the

specific receive steps for the RTT update and RTO estimation using the RTT sample of TCP

push streams; also bypasses the step for delayed ACK timeout (ATO) estimation if enabled.

Then, it moderates the congestion window by taking the smallest size of the congestion

window and the unacknowledged data (i.e., the actual bandwidth limit of the connection)

in order to prevent an outburst from the fast growth due to the quick acknowledgements of

70

Algorithm 2: TCP push flow control

1 if zero window = true then /* Initiate flow control */

2 fc mode← true;

3 end

4 if fc mode = true then /* TCP push flow control */

5 if psh acked = true then

6 Skip RTT update;

7 Skip RTO estimation;

8 if delayed ack = true then

9 Skip ATO estimation;

10 end

11 cwnd← min(cwnd, packets in flight);

12 end

13 end

the push packets. This algorithm is implemented in the TCP protocol of the experimental

platform.

71

Chapter 6

Evaluation of proposed solutions

This chapter presents performance evaluation of two proposed solutions: the transmit

queueing level control algorithm for avoiding MAC-layer transmit queue overflows on the

slave nodes and TCP push flow control algorithm for mitigating TCP receive buffer overflows

on the master node.

6.1 Transmit queueing level control algorithm

To avoid frequent MAC-layer transmit queue overflows on the mobile cluster nodes,

which interrupt long-lived analytical data flows required for the partition and aggregation

workflow of distributed processing frameworks, Algorithm 1 performed on the TCP sender

includes the cross-layer flow control for TCP packet injection and dynamic network resource

scheduling for incoming and outgoing frames to minimize the queueing delay and stabilizing

the queueing level. The algorithm is implemented in the TCP and MAC protocol of Linux-

based Android OS kernel on the experimental mobile platform (Google Nexus 7).

6.1.1 Performance improvement of peer-to-peer data transfer

First, TCP communication performance between two mobile devices was measured in

order to clarify the cause of performance degradation during large data transfers. One

device was configured as a transmitter and the other as a receiver. A network performance

measurement tool, Iperf, was employed to investigate communication performance, which

generates constant TCP traffic. In addition, several scripts to control continuous Iperf

test runs and collect performance measurements (e.g., TCP throughput) by configuring

the Iperf test parameters according to each experimental setup were developed. The scripts

72

Figure 6.1: Evaluation setup for transmit queueing level control

also collected TCP and link statistics (e.g., TCP congestion window, transmit queue size,

transmission rate, retransmission, and transmission failure) from the Linux kernel and its

wireless driver. As the performance of a wireless link is usually affected by the surrounding

channel conditions, the experimental results may exhibit variations. To eliminate this effect,

the communication performance was measured at 10 feet range with an unobstructed line-

of-sight, where all measurements reported negligible differences. Figure 6.1 presents the

evaluation setup for the transmit queueing level control.

Figure 6.2 indicates how the frequent transmit queue overflows affect the TCP perfor-

mance between two mobile nodes. Three different queue capacities of the transmitter with

the original protocol stack are tested; the smaller is 128 packets, the default 256 packets,

and the larger 512 packets. It is found that the queue overflows are even observed in the

larger queue and they cause frequent TCP throughput collapse with constant adjustments

of TCP congestion window from the transmit queueing losses. Figure 6.3 also demonstrates

how the proposed algorithm improves the TCP performance. The same queue sizes of the

transmitter with the modified protocol stack are applied. As the algorithm implements the

TCP flow control and dynamic resource scheduling for reliable data communications, two

mobile nodes achieve better TCP throughput with the stable congestion window in all the

different queue capacities. Note that the transmit queue size should be optimized considering

73

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw

nd
ss

th
re

sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m

ax
 q

ue
ue

qu
eu

e
le

ng
th

(a
)

M
ax

q
u

eu
e:

12
8

p
k
ts

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw

nd
ss

th
re

sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m

ax
 q

ue
ue

qu
eu

e
le

ng
th

(b
)

M
a
x

q
u

eu
e:

2
5
6

p
k
ts

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw
nd

ss
th

re
sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m
ax

 q
ue

ue
qu

eu
e

le
ng

th

(c
)

M
a
x

q
u

eu
e:

5
1
2

p
k
ts

F
ig

u
re

6.
2:

T
C

P
p

er
fo

rm
an

ce
of

m
ob

il
e

n
o
d
es

w
it

h
d
iff

er
en

t
M

A
C

q
u
eu

e
si

ze
s

74

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw
nd

ss
th

re
sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m

ax
 q

ue
ue

qu
eu

e
le

ng
th

(a
)

M
ax

q
u

eu
e:

12
8

p
k
ts

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw
nd

ss
th

re
sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m

ax
 q

ue
ue

qu
eu

e
le

ng
th

(b
)

M
a
x

q
u

eu
e:

2
5
6

p
k
ts

0
10

20
30

40
50

60
05101520

Data rate (Mbps)

Ip
er

f T
C

P
 th

ro
ug

hp
ut

0
10

20
30

40
50

60
0

10
0

20
0

30
0

40
0

50
0

60
0

Segments

T
C

P
 c

on
ge

st
io

n
w

in
do

w

cw
nd

ss
th

re
sh

0
10

20
30

40
50

60
0

12
8

25
6

38
4

51
2

R
un

 ti
m

e
(s

)

Packets

T
ra

ns
m

it
qu

eu
e

le
ng

th

m
ax

 q
ue

ue
qu

eu
e

le
ng

th

(c
)

M
a
x

q
u

eu
e:

5
1
2

p
k
ts

F
ig

u
re

6.
3:

T
C

P
p

er
fo

rm
an

ce
w

it
h

m
o
d
ifi

ed
n
et

w
or

k
st

ac
k

75

0 20 40 60 80 100
0

5

10

15

20

Run time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

modified stack original stack

Figure 6.4: TCP throughput of original and modified network stack

other communication protocol usages (e.g., UDP) even though the small queue size works

well with the adaptive TCP flow control algorithm.

6.1.2 Performance improvement in data aggregation

Next, three mobile devices were configured to generate aggregate data traffic that is

similar to the data flow pattern between the Map and Reduce nodes; see Figure 6.1. Two

devices simultaneously transmit a constant TCP stream to one device. To compare the

TCP performance between the original and modified protocol stack, one transmitter was

configured with the original stack and the other with the modified stack that implements

the algorithm. The TCP performance is measured in the same way as the prior experiments

using the Iperf scripts.

Figure 6.4 shows a significant improvement in TCP performance. During the 100-

second test with the original stack, the zero throughput due to the transmit queue overflows

76

is observed twice at 13 and 75 second. On the contrary, the transmitter with the modified

stack sends more TCP data reliably without throughput collapse as indicated in the figure

and its average throughput (9.82 Mbps) is significantly improved compared to that of the

original one (6.18 Mbps).

Although the proposed algorithm improves the performance problem, the critical values

for the flow control threshold (or transmit queue size) and resource scheduling parameters

should be carefully determined in consideration of other performance factors (e.g., memory

utilization, network condition, and other communication protocols) and the operating con-

ditions (or environments). Thus, the future work should continue to refine the algorithms by

validating through extensive experiments using various benchmarks and sample applications.

6.2 TCP push flow control algorithm

In order to prevent the TCP receive buffer overflows on the master node due to the use of

TCP push packets, which results in interruptions in the reception of the latest status updates

and task reports from slave nodes, Algorithm 2 performed on slave nodes includes the TCP

push flow control for mitigating the side effects of TCP push flows that cause excessive

transmissions from fast congestion window growth and recurrent RTO underestimation. It

moderates the congestion window outburst and bypasses the receive steps for the RTO

estimation using RTT updates from the TCP push streams when the buffer overflow is

detected. The algorithm is implemented in the Linux TCP protocol of the experimental

Android platform.

6.2.1 Packet analysis of Hadoop master running TeraSort

For evaluation of the algorithm, the TeraSort benchmark with 1 GB input data is ex-

ecuted in the same configuration of the previous performance analysis, where the mobile

cluster that runs the Hadoop software consists of a single master node and ten slave nodes

77

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

CPU usage (%)

C
P

U

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

Memory usage (%)

M
em

or
y

0
15

0
30

0
45

0
60

0
75

0
90

0
02040608010
0

R
un

 ti
m

e
(s

)

I/O rate (KB/s)

S
to

ra
ge

re

ad
w

rit
e

F
ig

u
re

6.
5:

R
es

ou
rc

e
u
ti

li
za

ti
on

of
m

as
te

r
n
o
d
e

ru
n
n
in

g
T

er
aS

or
t

w
or

k
lo

ad

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
051015202530

R
un

 ti
m

e
(s

)

Data rate (KB/s)

M
as

te
r

no
de

re

ce
iv

e
tr

an
sm

it

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
0

0.
51

1.
52

2.
53

R
un

 ti
m

e
(s

)

Data rate (MB/s)
M

ap
 n

od
e

re

ce
iv

e
tr

an
sm

it

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
0

0.
51

1.
52

2.
53

R
un

 ti
m

e
(s

)

Data rate (MB/s)

R
ed

uc
e

no
de

re

ce
iv

e
tr

an
sm

it

F
ig

u
re

6.
6:

T
ra

ffi
c

p
at

te
rn

s
of

cl
u
st

er
n
o
d
es

ru
n
n
in

g
T

er
aS

or
t

w
or

k
lo

ad

78

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

P
ro

gr
es

s
(%

)

1 GB TeraSort task progress

Map
Reduce

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

P
ac

ke
ts

TCP push flows on Master node

receive
transmit

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

Run time (s)

C
ou

nt

Zero Window advertisements of Master node

Figure 6.7: TCP packet analysis of master node

configured with the default values for system parameters of Android OS and Hadoop frame-

work. The usages of computing and networking resources of each node are monitored with

the performance monitoring tool during the experiments.

First, slave nodes with the original TCP protocol are used for the mobile cluster in order

to investigate master node’s behavior under the CPU and I/O bound TeraSort testing. As

the master node based on a mobile device is subject to resource scarcity on managing all

the cluster nodes by monitoring their task progress with resource usages and by updating

the entire image of the distributed filesystem, the high memory usage and steady storage

79

0 20 40 60 80 100
0

2

4

6

8

10

Run time (s)

Z
er

o
W

in
do

w
 c

ou
nt

original TCP
modified TCP

Figure 6.8: Zero Window advertisements of original and modified TCP

utilization of the master node are commonly observed as shown in Figure 6.5. Figure 6.6 also

displays the master’s incessant sort-lived traffic pattern (i.e., TCP push flows) compared to

slave nodes running Map and Reduce tasks during the experiment. In addition, Figure 6.7

includes the TCP packet analysis of the master node with the task progress, which indicates

that the master node processes around 30 incoming and outgoing TCP push packets (i.e.,

heartbeats and acknowledgements) every second. As a result, the master node receives too

many heartbeat and data packets that overwhelm its processing capability at some time and

advertises frequent Zero Window to halt the TCP transmission; see Figure 6.7.

6.2.2 Performance improvement of TeraSort workload

Next, the slave nodes where the modified TCP protocol is implemented are deployed

on the mobile cluster in order to evaluate the proposed algorithm. Since it prevents the

RTT update and RTO estimation using the RTT sample of TCP push streams when the

80

original TCP modified TCP
0

1

2

3
x 10

4

P
ac

ke
ts

TCP transmissions

original TCP modified TCP
0

1

2

3

4

R
et

ra
ns

m
is

si
on

 r
at

e
(%

)

TCP retransmissions

original TCP modified TCP
50

75

100

125

150

Protocol stack

C
ou

nt

Zero Window advertisements

original TCP modified TCP
700

750

800

850

900

Protocol stack

T
im

e
(s

)

Job completion time

Figure 6.9: Performance improvement of experimental mobile cluster

master node advertises Zero Window and moderates the TCP congestion window to avoid

an outburst from the fast growth due to the quick acknowledgements of the push packets,

there are marked decreases in the Zero Window advertisement (i.e., receive buffer overflow

occurrence) of the master node as shown in Figure 6.8. When all the cluster nodes have the

implementation of the TCP push flow control algorithm along with the transmit queueing

level control algorithm, it is observed that the TCP retransmission rate of the slave nodes (as

well as the total number of transmit packets) can be reduced and the overall job completion

time also expects to be shortened; see Figure 6.9.

Even though the proposed algorithm mitigates the performance problem, there are still

a significant number of buffer overflow occurrences on the master node. Therefore, the

future work should continue to improve the proposed algorithm. For example, adaptive

buffer management for many concurrent receive buffers (e.g., twice the number of slaves

81

for Hadoop master) is required to receive more incoming packets when considering the slow

application processing rate under resource scarcity of mobile devices.

As analyzed in this study, frequent overflows of the MAC-layer transmit queue and

TCP receive buffer on the mobile cluster nodes are the two most significant performance

issues, which interrupt reliable analytical data interchanges for mobile distributed analytics.

Since the higher frequency of the overflows leads to a large number of under-utilization

periods and fluctuations in the TCP performance, for example, the Hadoop mobile clusters

may not able to complete a submitted job within an expected time frame by reporting

a significant number of response timeout in the task running. Hence, a better TCP flow

control algorithm for mobile distributed analytic applications should be proposed in order to

improve the performance problems and achieve the desired performance over variable mobile

environments and critical performance limitations.

82

Chapter 7

Conclusion

This chapter concludes this dissertation with a summary of the previous chapters and

a discussion of main contributions and further research suggestions.

7.1 Summary

In this work, the benefits and challenges of employing practical mobile devices for im-

plementing mobile ad hoc cloud were analyzed. The current trends of mobile technologies

and mobile services were presented with the different concepts of mobile cloud computing

in Chapter 1. The overviews of Hadoop distributed analytic framework and TCP flow con-

trol for performance analysis were introduced in Chapter 2 and the prior efforts to develop

mobile cloud services using mobile devices were discussed with other useful techniques and

approaches therein. In order to understand performance issues of mobile distributed ana-

lytic applications, the experimental performance studies were conducted by developing a test

bed of mobile cloud clusters with Hadoop analytic framework in Chapter 3 and furthermore

the simulation studies were conducted by developing the MapReduce simulator based on a

network simulator to address extensive mobility scenarios and operating setups.

Moreover, this work identified performance issues through performance analysis. De-

spite advances in mobile technologies, mobile devices still contains significant imperfections

in transmitting and receiving reliable data streams required to avoid any interruptions while

performing distributed processing, which come from limitations on TCP performance over

wireless networks and problems of using mobile devices with resource constraints. The prob-

lem statements and the main goal of this study can be found in Chapter 4 where the research

questions were presented. In order to improve the performance issues, this work proposed

83

two adaptive TCP flow control algorithms for mitigating the transmit queue overflows and

the receive buffer overflows of mobile devices with the analysis of TCP performance prob-

lems over Hadoop MapReduce framework in Chapter 5. Finally, the presented algorithms

were evaluated in Chapter 6 and it was shown that the proposed solutions improve the TCP

performance and shorten the overall MapReduce processing time.

7.2 Discussion

The main contributions of the present work can be summarized as follows. First, this

work discussed the benefits and the challenges of exploiting mobile devices for distributed

cloud applications, showing its feasibility with Hadoop analytic framework, and also inves-

tigates critical performance issues for reliable data communications between mobile devices

in the workflow of distributed computing. Second, unlike earlier approaches this work exam-

ined the performance of Hadoop mobile clusters by performing extensive experiments using

typical Hadoop benchmarks representing CPU, memory and/or I/O intensive applications.

The newest release of Hadoop software framework with its enhancements was entirely ported

to the latest Android-based mobile devices through the mobile virtualization. Third, this

work developed the MapReduce simulator based on the ns-2 network simulator in order to

comprehensively evaluate the performance and efficiency of mobile cloud clusters in extensive

operating environments, which allowed it to identify more performance issues under different

cluster (or workload) scales, dynamic node mobility, and various wireless channel conditions.

Lastly, this work analyzed the TCP performance problems resulting from distinct traffic

patterns of MapReduce-based Hadoop distributed framework and proposed adaptive TCP

flow control algorithms for improving the performance of mobile cloud clusters by mitigating

the effects of the frequent transmit queue and receive buffer overflows of mobile devices.

In order to improve the presented algorithms for the reliable data communications be-

tween mobile cluster nodes, the future work should enable the algorithms to dynamically

adjust the values of the performance parameters for TCP flow control (e.g., threshold for

84

queue inflow control) and network resource scheduling (e.g., number of transmit frames in

scheduling) according to the operating conditions although the current algorithms with pre-

defined values mitigated the performance problems in the experimental setups. In addition,

an adaptive buffer management technique for many concurrent TCP receive buffers of the

controller node is necessary to accommodate more incoming packets considering the slow

application processing rate of mobile devices with small buffer capacity. It is also impor-

tant that the algorithms should be refined, validating through extensive experiments and

simulations using other distributed analytic frameworks and various real-world applications.

While this work mostly focused on the performance of practical distributed analytic

applications on mobile cloud clusters in terms of job processing time (or completion time)

and response time, some other studies have paid attention to mobile node’s energy efficiency

that is another key performance factor for enabling data analysis and mining over mobile

devices. Reducing energy consumption is one of the most important design aspects for small

form-factor mobile platforms, such as smartphones and tablets. Therefore, an energy-aware

scheduling over the mobile cluster for optimizing energy utilization of cluster nodes should

be taken into account for reliable mobile distributed analytics.

85

Bibliography

[1] “IDC Predictions 2014: Battles for Dominance and Survival on the 3rd Platform,”
Research, IDC, Inc., 2013. [Online]. Available: http://www.idc.com/getdoc.jsp?
containerId=244606

[2] “Forecast: PCs, Ultramobiles and Mobile Phones, Worldwide, 2010-2017, 4Q13
Update,” Research, Gartner, Inc., 2014. [Online]. Available: https://www.gartner.
com/doc/2639615

[3] “Bring Your Own Device,” Website, The White House, Aug. 2012. [Online]. Available:
http://www.whitehouse.gov/digitalgov/bring-your-own-device

[4] PassMark Software, “CPU Benchmarks,” 2014. [Online]. Available: http://www.
cpubenchmark.net/

[5] “Worldwide Mobile Worker Population 2011-2015 Forecast,” Research, IDC, Inc.,
Dec. 2011. [Online]. Available: http://www.idc.com/getdoc.jsp?containerId=238366#
.USZZJ6WNEwE

[6] “Top 10 Strategic Technology Trends for 2013,” Research, Gartner, Inc., 2012. [Online].
Available: http://www.gartner.com/technology/research/top-10-technology-trends

[7] Dinh, Hoang T and Lee, Chonho and Niyato, Dusit and Wang, Ping, “A
survey of mobile cloud computing: architecture, applications, and approaches,”
Wireless Communications and Mobile Computing, 2011. [Online]. Available:
http://dx.doi.org/10.1002/wcm.1203

[8] Fernando, Niroshinie and Loke, Seng W and Rahayu, Wenny, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84 – 106, 2012.

[9] Satyanarayanan, Mahadev and Bahl, Paramvir and Caceres, Ramón and Davies, Nigel,
“The case for vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[10] Zachariadis, Stefanos and Mascolo, Cecilia and Emmerich, Wolfgang, “Satin: A Com-
ponent Model for Mobile Self Organisation,” in On the Move to Meaningful Internet
Systems 2004: CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg, 2004, pp.
1303–1321.

[11] Wikipedia, “Cloud computing,” 2014. [Online]. Available: http://en.wikipedia.org/
wiki/Cloud computing

86

[12] “Gartner Identifies the Top 10 Strategic Technology Trends for 2014,” Press Release,
Gartner, Inc., 2012. [Online]. Available: http://www.gartner.com/newsroom/id/
2603623

[13] “Hadoop project,” Website, Apache Software Foundation. [Online]. Available:
http://hadoop.apache.org

[14] Dean, Jeffrey and Ghemawat, Sanjay, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[15] Ghemawat, Sanjay and Gobioff, Howard and Leung, Shun-Tak, “The Google file sys-
tem,” in ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp.
29–43.

[16] White, Tom, Hadoop: The definitive guide. O’Reilly Media, 2012.

[17] Rajaraman, Anand and Ullman, Jeffrey David, Mining of Massive Datasets. Cambridge
University Press, 2012.

[18] “Big Data in the Enterprise: Network Design Considerations,” White paper,
Cisco Systems, Inc., 2011. [Online]. Available: http://www.cisco.com/en/US/prod/
collateral/switches/ps9441/ps9670/white paper c11-690561.html

[19] Yang, Hailong and Luan, Zhongzhi and Li, Wenjun and Qian, Depei, “MapReduce
workload modeling with statistical approach,” Journal of Grid Computing, vol. 10,
no. 2, pp. 279–310, 2012.

[20] Afanasyev, Alexander and Tilley, Neil and Reiher, Peter and Kleinrock, Leonard, “Host-
to-Host Congestion Control for TCP,” Communications Surveys & Tutorials, IEEE,
vol. 12, no. 3, pp. 304–342, 2010.

[21] Postel, Jon, “Transmission control protocol, RFC 793,” 1981.

[22] Jacobson, Van, “Congestion avoidance and control,” in ACM SIGCOMM Computer
Communication Review, vol. 18, no. 4. ACM, 1988, pp. 314–329.

[23] Karn, Phil and Partridge, Craig, “Improving round-trip time estimates in reliable trans-
port protocols,” ACM SIGCOMM Computer Communication Review, vol. 17, no. 5, pp.
2–7, 1987.

[24] Grieco, Luigi A and Mascolo, Saverio, “Performance Evaluation and Comparison of
Westwood+, New Reno, and Vegas TCP Congestion Control,” ACM SIGCOMM Com-
puter Communication Review, vol. 34, no. 2, pp. 25–38, 2004.

[25] Ha, Sangtae and Rhee, Injong and Xu, Lisong, “CUBIC: A New TCP-Friendly High-
Speed TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp.
64–74, 2008.

87

[26] Vaquero, Luis M and Rodero-Merino, Luis and Caceres, Juan and Lindner, Maik, “A
Break in the Clouds: Towards a Cloud Definition,” ACM SIGCOMM Computer Com-
munication Review, vol. 39, no. 1, pp. 50–55, 2008.

[27] Armbrust, Michael and Fox, Armando and Griffith, Rean and Joseph, Anthony D and
Katz, Randy and Konwinski, Andy and Lee, Gunho and Patterson, David and Rabkin,
Ariel and Stoica, Ion and others, “A View of Cloud Computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[28] Buyya, Rajkumar and Yeo, Chee Shin and Venugopal, Srikumar and Broberg, James
and Brandic, Ivona, “Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the 5th Utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[29] Zhang, Qi and Cheng, Lu and Boutaba, Raouf, “Cloud computing: state-of-the-art and
research challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp.
7–18, 2010.

[30] Mei, Lijun and Chan, Wing Kwong and Tse, T.H., “A Tale of Clouds: Paradigm
Comparisons and Some Thoughts on Research Issues,” in The 3rd IEEE Asia-Pacific
Services Computing Conference (APSCC) 2008. IEEE, 2008, pp. 464–469.

[31] Wang, Lizhe and Von Laszewski, Gregor and Younge, Andrew and He, Xi and Kunze,
Marcel and Tao, Jie and Fu, Cheng, “Cloud Computing: a Perspective Study,” New
Generation Computing, vol. 28, no. 2, pp. 137–146, 2010.

[32] Marinelli, Eugene E, “Hyrax: Cloud Computing on Mobile Devices using MapReduce,”
Master’s thesis, Carnegie Mellon University, 2009.

[33] Teo, Chye Liang Vincent, “Hyrax: Crowdsourcing Mobile Devices to Develop Proximity-
Based Mobile Clouds,” Master’s thesis, Carnegie Mellon University, 2012.

[34] Huerta-Canepa, Gonzalo and Lee, Dongman, “A Virtual Cloud Computing Provider for
Mobile Devices,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond. ACM, 2010, p. 6.

[35] Shi, Cong and Lakafosis, Vasileios and Ammar, Mostafa H and Zegura, Ellen W,
“Serendipity: Enabling Remote Computing among Intermittently Connected Mobile
Devices,” in Proceedings of the thirteenth ACM international symposium on Mobile Ad
Hoc Networking and Computing. ACM, 2012, pp. 145–154.

[36] Shi, Cong and Ammar, Mostafa H and Zegura, Ellen W and Naik, Mayur, “Computing
in Cirrus Clouds: The Challenge of Intermittent Connectivity,” in Proceedings of the
first edition of the MCC workshop on Mobile cloud computing. ACM, 2012, pp. 23–28.

[37] Kemp, Roelof and Palmer, Nicholas and Kielmann, Thilo and Bal, Henri, “Cuckoo:
A Computation Offloading Framework for Smartphones,” Mobile Computing, Applica-
tions, and Services, pp. 59–79, 2012.

88

[38] Lee, Seungbae and Grover, Kanika and Lim, Alvin, “Enabling actionable analytics for
mobile devices: performance issues of distributed analytics on Hadoop mobile clusters,”
Journal of Cloud Computing: Advances, Systems and Applications, vol. 2, no. 1, p. 15,
2013.

[39] Chen, Yanpei and Griffit, Rean and Zats, David and Katz, Randy H, “Understanding
TCP Incast and Its Implications for Big Data Workloads,” University of California at
Berkeley, Tech. Rep., 2012.

[40] Alizadeh, Mohammad and Greenberg, Albert and Maltz, David A and Padhye, Jitendra
and Patel, Parveen and Prabhakar, Balaji and Sengupta, Sudipta and Sridharan, Mu-
rari, “Data center tcp (dctcp),” ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4, pp. 63–74, 2010.

[41] Chen, Yanpei and Griffith, Rean and Liu, Junda and Katz, Randy H and Joseph,
Anthony D, “Understanding TCP incast throughput collapse in datacenter networks,”
in Proceedings of the 1st ACM workshop on Research on enterprise networking. ACM,
2009, pp. 73–82.

[42] Phanishayee, Amar and Krevat, Elie and Vasudevan, Vijay and Andersen, David G and
Ganger, Gregory R and Gibson, Garth A and Seshan, Srinivasan, “Measurement and
Analysis of TCP Throughput Collapse in Cluster-based Storage Systems,” in FAST,
vol. 8, 2008, pp. 1–14.

[43] Vasudevan, Vijay and Phanishayee, Amar and Shah, Hiral and Krevat, Elie and An-
dersen, David G and Ganger, Gregory R and Gibson, Garth A and Mueller, Brian,
“Safe and effective fine-grained TCP retransmissions for datacenter communication,” in
ACM SIGCOMM Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp.
303–314.

[44] Wu, Haitao and Feng, Zhenqian and Guo, Chuanxiong and Zhang, Yongguang, “ICTCP:
Incast Congestion Control for TCP in data center networks,” in Proceedings of the 6th
International COnference. ACM, 2010, p. 13.

[45] Alizadeh, Mohammad and Atikoglu, Berk and Kabbani, Abdul and Lakshmikantha,
Ashvin and Pan, Rong and Prabhakar, Balaji and Seaman, Mick, “Data center trans-
port mechanisms: Congestion control theory and IEEE standardization,” in 2008 46th
Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008,
pp. 1270–1277.

[46] Krevat, Elie and Vasudevan, Vijay and Phanishayee, Amar and Andersen, David G and
Ganger, Gregory R and Gibson, Garth A and Seshan, Srinivasan, “On application-level
approaches to avoiding TCP throughput collapse in cluster-based storage systems,”
in Proceedings of the 2nd international workshop on Petascale data storage: held in
conjunction with Supercomputing’07. ACM, 2007, pp. 1–4.

[47] “Mumak: Map-Reduce Simulator,” Website, Apache Software Foundation. [Online].
Available: https://issues.apache.org/jira/browse/MAPREDUCE-728

89

[48] Hammoud, Suhel and Li, Maozhen and Liu, Yang and Alham, Nasullah Khalid and Liu,
Zelong, “MRSim: A discrete event based MapReduce simulator,” in Seventh Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 6. IEEE,
2010, pp. 2993–2997.

[49] Wang, Guanying, “Evaluating MapReduce System Performance: A Simulation Ap-
proach,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2012.

[50] “The Network Simulator - ns,” Website, Nanam. [Online]. Available: http:
//nsnam.isi.edu/nsnam/index.php/Main Page

[51] Huang, Shengsheng and Huang, Jie and Dai, Jinquan and Xie, Tao and Huang, Bo, “The
HiBench benchmark suite: Characterization of the MapReduce-based data analysis,” in
IEEE 26th International Conference on Data Engineering Workshops (ICDEW). IEEE,
2010, pp. 41–51.

[52] “NEXUS 7,” Website, Google, Inc., 2012. [Online]. Available: http://www.google.
com/nexus/7

[53] “IEEE Standard for Information technology– Local and metropolitan area networks–
Specific requirements– Part 11: Wireless LAN Medium Access Control (MAC)and Phys-
ical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput,”
IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std
802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-
2009), pp. 1–565, 2009.

[54] Enck, William and Octeau, Damien and McDaniel, Patrick and Chaudhuri, Swarat, “A
Study of Android Application Security,” in USENIX security symposium, 2011.

[55] “LinuxonAndroid project,” Website. [Online]. Available: http://linuxonandroid.org

[56] Wikipedia, “Mobile virtualization,” 2014. [Online]. Available: http://en.wikipedia.org/
wiki/Mobile virtualization

[57] Kebarighotbi, Ali and Cassandras, Christos G, “Timeout Control in Distributed Sys-
tems using Perturbation Analysis,” in 2011 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC). IEEE, 2011, pp. 5437–5442.

[58] “IEEE Standard for Information technology–Telecommunications and information ex-
change between systems Local and metropolitan area networks–Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793,
2012.

[59] Khademi, Naeem and Welzl, Michael and Gjessing, Stein, “Experimental evaluation of
TCP performance in multi-rate 802.11 WLANs,” in 2012 IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE,
2012, pp. 1–9.

90

[60] Sanadhya, Shruti and Sivakumar, Raghupathy, “Adaptive Flow Control for TCP on
Mobile Phones,” in 2011 Proceedings IEEE INFOCOM. IEEE, 2011, pp. 2912–2920.

91

