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Abstract

After a disaster, distributing supplies and transferring people are critical operations and

should be done quickly and fairly, with consideration to difficulties associated with limited

resources.

In this research, more realistic and integrated models are proposed to perform several

important logistic operations, including commodity distribution, wounded evacuation, and

work–force transfer. To accomplish this, first, an existing model of Yi and Kumar (2007),

which considers two logistic operations (e.g., commodity distribution and wounded evacua-

tion), is discussed and corrected.

Second, a new model is developed to incorporate a new logistic operation of work–force

transfer. Evaluation of this model shows that it has some of the same limitations as the

Yi and Kumar (2007) model such as lacking detailed vehicles routes. Third, an integrated

logistics system is developed to incorporate all three logistic operations while considering

realistic issues such as the determination of detailed vehicle routes. Tiny-scale problems are

solved optimally via CPLEX-Concert Technology, while problems of realistic size require the

application of new heuristic approaches based on solving the model iteratively and optimally

according to specific routes which are constructed greedily to achieve the maximum resources

utilization. Different heuristic versions are considered to solve the model, the performances

of which are compared to the CPLEX results for numerous randomly generated data sets,

and they show excellent results in an extremely short processing time. Local search is used

in conjunction with replacement and insertion to improve the suggested solution approaches.

In replacement, one customer visit could be replaced by two customer visits in the existing

routes, if possible, to increase the number of visits which improves the distribution system.

Using insertion, a node may be added to existing routes, if possible, to improve the efficiency
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of vehicles. These searches are applied in different ways and the results show that applying

them for each candidate solution with higher numbers of iterations (longer termination time)

gives the best results among all ways.

Finally, a more comprehensive, multi-objective model is developed to consider the use of

large vehicles as temporary satellite facilities, serving as mobile supply nodes to improve the

efficiency of smaller vehicles. The objectives are considered separately which will minimize

the total wounded deviation, the total worker deviations, or the total commodities deviations.

Different approaches are developed to find a wide range of solutions for more representative

Pareto sets. It is found that there are some clusters in both wounded deviations–worker

deviations and wounded deviations–commodities deviations Pareto sets, but they decrease

in the commodities deviations–worker deviations Pareto set. Despite the problem of clusters,

the suggested solution approaches are capable of finding many solutions in different regions

of Pareto sets to cover most cases that might be requested from users.
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Chapter 1

Introduction

Each year, natural and man-made disasters result in catastrophic loss of life, critical

injuries, and debilitating economic impacts worldwide. In 2010, for example, a total of

385 natural disasters killed more than 297,000 people, affected over 217 million others and

caused $123.9 billion in economic damages worldwide (Sapir et al. 2010). In the United

States, the Federal Emergency Management Agency (FEMA) reported 99 major and 29

emergency declarations in 2011, FEMA (2013).

In response to the large number of disasters experienced in the last 20 years, an increas-

ing amount of research in engineering, medicine, and social sciences has been conducted to

aid in recovery in the aftermath of these events. Logistics is one of the most important

research fields that could help save lives, especially when the resources are distributed fairly

and in a timely manner. A recent survey by the Fritz Institute investigated the importance

of logistics for humanitarian relief after a tsunami. Their findings indicate that 88% of the

relief organizations had to reallocate their most experienced logisticians to staff the tsunami

relief efforts. Furthermore, without adequate supply chain systems in place, the majority of

organizations relied on solutions using Excel spreadsheets or manual processes for tracking

goods in the field. Not surprisingly, 62% of the organizations’ plans fell short of needs and

only 58% of organizations used logisticians in their assessment teams, Firtz Institute (2013).

With many deficiencies existing in humanitarian relief logistics, the focus of this research

is to address some of these shortcomings by developing realistic models and constructing

solution approaches capable of solving these models with reasonable computational effort.

Altay and Green (2006) divided the disaster operations into four main categories; miti-

gation, preparedness, response, and recovery. The first two categories are performed before
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disasters, so they are called pre-disaster operations and include pre-disaster planning (c.f.

Chang et al. (2007), Rawls and Turnquist (2010), and Campbell and Jones (2011)) and con-

struction of warehouses (c.f. Widener and Horner (2011)). The second two categories are

done after disasters, so they are called post-disaster operations. The goals of post-disaster

humanitarian relief logistics are to provide rapid delivery of essential commodities to sur-

vivors (e.g. food, water, medicine), to evacuate wounded survivors in the most efficient

manner possible, given limited resources and potentially impassable roadways (c.f. Yi and

Kumar (2007) and Yi and Ozdamar (2007)), debris removal (c.f. Fetter and Rakes (2011))

and construction of temporary warehouses (c.f. Widener and Horner (2011)).

This research presents optimization models to focus on post-disaster logistic operations

such as commodity delivery, wounded evacuation, and assignment of relief workers to regions

affected by the event. This problem is complicated by a number of factors. First, workforce

transfer is difficult due to operational complexity and the variety of skills required (i.e.

doctors, nurses, and drivers). Second, besides demand distribution, vehicles have to evacuate

the wounded. Third, demand almost certainly exceeds the available supply. Fourth, vehicles

are working in an environment of damaged roads and infrastructure. Fifth, because vehicles

are donated from different sources, they have a variety of specifications in size, capacity, and

speed. Finally, large vehicles, which can not be used in cases of partially destroyed roadways,

require long load, unload, and travel times, and thus require utilization in different ways.

Several existing studies in the literature have proposed approaches to post-disaster hu-

manitarian relief logistics efforts; however, to the best of our knowledge, no study has consid-

ered more than two logistic operations (e.g., commodity distribution, wounded evacuation,

and workforce transfer) in the same model, and no study has considered workforce assign-

ment and transfer in conjunction with other logistic operations. There are also no studies

that utilize large and small vehicles in different ways. Accordingly, new models, and corre-

sponding solution approaches, are proposed to address these shortcomings.
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In the proposed models, many vehicle routing problem (VRP) variants are considered,

including split deliveries, multiple depots, multiple commodities, heterogeneous vehicles,

and multiple periods. Furthermore, the suggested models in this research consider dynamic

supply and demand changes, hence they will be solved for multiple time periods and resolved

at the beginning of each new time horizon. More details about these models are discussed

in later chapters.

The remaining sections of this chapter address the research objectives in Section 1.1,

list the research contributions in Section 1.2, and describe all models that are discussed or

developed in this dissertation in Section 1.3 .

1.1 Research Objectives

This research considers mixed integer models to optimize the service performance of a

post-disaster logistic system and solve the problems that humanitarian agencies encounter

during relief work. To do so, we propose different models, each of which offers improvements

over previous studies, as follows:

• All studies in the literature consider at most two logistic operations in post–disaster

situations while utilizing many unrealistic assumptions. The first research objective

is to develop more realistic and efficient models to incorporate more than two logistic

operations that can be used efficiently in post-disaster situations. These operations

include commodity delivery, wounded evacuation, and assignment of relief workers.

• In post–disaster situations, utilizing large vehicles in distribution is not easy because

of blocked roads and substantial loading and unloading times. In the literature of

humanitarian relief operations, there are no studies that utilize large vehicles in non-

traditional ways. The second research objective is to develop a model to use large

vehicles as mobile satellite facilities (SFs) that serve as movable supply nodes to im-

prove the performance of distribution systems. These SFs are used to replenish small
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vehicles without returning back to supply depots, which saves time and increases the

delivered amount.

• With the improved model from previous research objectives, the third research objec-

tive is to use multiple objectives instead of a single objective. The objectives used

are relevant to the case of post-disaster, including minimizing total commodities de-

viations, total workers deviations, and total wounded deviations. Deviations are the

difference between requested amounts and delivered amounts. These objectives are

used because they are the most suitable objectives in case of a disaster. The goal of

using multi-objective optimization is to provide a wide range of solutions to the users.

• Create different heuristic approaches to solve these models in a reasonable time. These

approaches are supposed to provide full a detailed distribution plan for each individual

vehicle based on a given route.

• Suggest different techniques to improve the heuristic approaches to offer different so-

lution platforms with different performances and computation times.

Figure 1.1 shows the flow of research objectives.

Figure 1.1: Overview of the proposed research objectives
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1.2 Research Contributions

This research effort aims to provide many contributions. First, it will provide a corrected

formulation of the humanitarian logistics model of Yi and Kumar (2007). This represents

an admittedly minor contribution, but enables its use as a basis for future models.

The second contribution of this research is the construction of a humanitarian logistics

model incorporating the most important operations that must be performed after a disas-

ter, with consideration of realistic assumptions. The literature in this field shows that the

available models incorporate two operations at most (i.e. wounded evacuation and demand

distribution). By contrast, the suggested model in this research will incorporate three op-

erations within a single framework by adding the work-force assignment operation to those

previously mentioned.

Third, the model in the second contribution has the same limitations as that of Yi

and Kumar (2007) such that it does not produce a detailed route for each vehicle, needs a

heuristic to build up a detailed solution for each vehicle, and considers vehicles with same

speed. A new model is developed to explicitly consider individual vehicle routes, a feature

that is noticeably absent from the work of Yi and Kumar (2007). This model represents the

first major contribution in this research.

Fourth, the incorporation of larger vehicles as temporary satellite facilities (SF) repre-

sents a novel approach to improve humanitarian relief efforts. SFs represent movable supply

nodes that can supply distribution vehicles, saving time, and enhancing the distribution

system.

Fifth, efficient heuristic approaches will provide high-quality solutions to the model de-

veloped in the third contribution with a short computation time. It depends in constructing

route for all vehicles using greedy approaches, and then solve complete model at specific

routes (fixed binary variables) using CPLEX. This approach allows CPLEX to find an opti-

mal solution for the modified model in extremely short time such that, in large scale problem,

it gives a feasible solution in less than 5 minutes whereas CPLEX fails to give any feasible
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solution in 16 hours. The procedure is repeated iteratively to find different vehicle routes

and solutions taking the advantage of some good routes inherited from previous iterations.

Furthermore, different local search variants are applied iteratively to this approach to find

more improved solutions.

Finally, the heuristic approaches that were developed in previous contribution will be

modified to be suitable to solve the model developed in the fourth contribution. Hence

the model is using SF and multi-objective, the proposed heuristic is capable to take SFs in

consideration and provide representative Pareto sets that include wide range of solutions in

short computation time.

1.3 An Overview of Proposed Model Development

In this section, a short description of the five models included in this research is presented

which makes the understanding of the following chapters easier. Detailed information about

each model is contained in later chapters.

1.3.1 The Baseline Model (YK)

There are many insightful studies related to humanitarian relief in post-disaster opera-

tions, including Ozdamar et al. (2004), Yi and Kumar (2007), and Yi and Ozdamar (2007),

all of which include two operations and use an objective function well-suited to the prob-

lem at hand. Of these, the model of Yi and Kumar (2007), which we will denote as YK,

was selected to be the starting point for this research. It incorporates multiple commodity

types, split deliveries, differing vehicle capacities, multiple depots, multiple time periods,

and wounded evacuation. A complete description of the YK model is presented in Chapter

3.
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1.3.2 A Corrected YK Model (YK’)

There are some minor errors in the YK model such as missing indices and missing

variables in some constraints that cause infeasible solutions. A corrected version of this

model, denoted as model YK’, is presented in Section 3.2.2.

1.3.3 Adding the Workforce Transfer Operation (YK’+WT):

A new model is built to incorporate one more logistic operation. In the YK’ model, there

are some potential operations that could be added to make it more robust. The most impor-

tant operation that could improve it is to use available vehicles to transfer the workforce from

the supply nodes or hospitals to the demand nodes to help in distribution, medication, and

evacuation of wounded people. Although Dolinskaya et al. (2011) have suggested workforce

management as an important area for future research, and Jiang et al. (2012) have suggested

a focus on the interdependency of operations and work-flow across different stakeholders, no

models exist that incorporate workforce management in humanitarian relief efforts. This

model formulation with a numerical example is presented in Chapter 3.3

1.3.4 Incorporating Vehicle Routing (HLVRP)

One drawback of the YK’+WT model is that it neglects vehicle routing. A new model,

the humanitarian logistics vehicle routing problem (HLVRP), is proposed to incorporate

vehicle routing decisions. In particular, solutions to the HLVRP provide detailed vehicle

tracking information that is not afforded by the aforementioned models. Details about this

model – including differences from previous models, a mathematical formulation, a numerical

analysis, and an example – are explained in Chapter 4.

1.3.5 Satellite Facilities and Multiple Objectives (HLVRPSF)

Improving the distribution system is the ultimate goal of this research. A new model

is developed to incorporate the operations in the HLVRP model with improved logistics
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operations. We will call this model humanitarian logistics vehicle routing problem with

satellite facilities (HLVRPSF). The benefit of this model is to use large vehicles as satellite

facilities (SFs) to deliver commodities faster, where using large vehicles as satellite facilities

incurs no construction cost or time comparing with construction fixed warehouses.

The model with SF considers three objectives in a truly multi–objective manner. The

first objective is to minimize unsatisfied demand, the second objective is to minimize unserved

workforce, and the third objective is to minimize unserved wounded evacuees. In the HLVRP

model, priorities are defined by users and used in a single objective function to differentiate

between wounded, workers, and commodities categories. Whereas, in the HLVRPSF model,

considering these objectives separately overcomes the problem of using priorities which could

cause undesirable results when unsuitable values are used. Formulation, solution approaches,

and numerical analysis of this model are presented in Chapter 5.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, an extensive literature review

of related studies is provided. Chapter 3 includes the model from Yi and Kumar (2007),

the corrected model of Yi and Kumar (2007), and develops the first model to incorporate

work-force transfer with demand distribution and wounded evacuation.

In Chapter 4, a new model is developed to incorporate all three operations while con-

sidering detailed routes for each individual vehicle. To utilize the large vehicles as mobile

satellite facilities, the last model is developed in Chapter 5 which includes the formula-

tion, solution approaches, and discussion about different multi-objective treatments. Finally,

Chapter 6 concludes this research and suggests future work.
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Chapter 2

Review of Related Literature

This section reviews the literature related to this research and is organized as follows.

Section 2.1 summarizes related pre-disaster research, while Section 2.2 summarizes and de-

scribes relevant post-disaster research. Section 2.3 explains the most relevant VRP variants

and how they are related to this research. Finally, Section 2.4 reviews existing satellite

facility (SF) research and describes how this research area will be applied to the proposed

work.

2.1 Pre-Disaster Research

Pre-disaster research is concerned with all activities performed before a disaster, such

as determining facility locations in areas with a high risk of disaster, and determining the

quantities of first aid materials, food, and other supplies to store in those facilities. Although

this research does not consider pre-disaster planning, the following articles could be helpful

for post-disaster cases. For example, most of the permanent suppliers’ locations found in

pre-disaster models are used in post-disaster activities.

Several optimization models have been developed for pre-disaster planning. For instance,

Chang et al. (2007) suggested two models to help relief agencies construct rescue organiza-

tions, specify the locations of rescue resource storehouses, allocate rescue resources under

capacity restrictions, and distribute rescue resources. They have formulated two stochastic

models for the case of a flood disaster. The first model aims to distribute rescue equipment

from the distribution centers of minimum distance to the predefined rescue areas under dif-

ferent rainfall levels. The second model determines the quantity of equipment that should

be stored at each location before the rainy season. The objective is to minimize the cost
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of operations, maintenance, and purchases. These models use non-mathematical approaches

to divide the disaster area into groups and a sampling-based approximation to address the

stochastic nature of the problem.

Similarly, Rawls and Turnquist (2010) proposed an integer programming model to de-

termine the locations and quantities of different commodities that should be prepositioned

in areas having a high disaster risk. The objective is to minimize the fixed cost of construct-

ing new facilities plus the cost of quantities that will be stored at these locations. Costs of

transportation, holding in case of excess, and a penalty in the case of shortage, were also

added, based on the different possible scenarios with different probabilities. The authors

assume that the road conditions before and after a disaster are the same (i.e. constant cost),

and consider the quantities stored at a supply location to be the only resources for supply.

Other research demonstrates parameter specification. For example, Campbell and Jones

(2011) have defined the parameters that could affect the selection of supply points in pre-

disaster conditions. These parameters define the probability of the disaster destroying the

supply points, the distances between points, restocking costs, salvage values, and other

variables. Additional literature related to pre-disaster planning can be found in the recent

review article of Caunhye et al. (2012).

2.2 Post-Disaster Research

Post-disaster research is concerned with all activities performed after a disaster, such as

commodity distribution, wounded evacuation, and workforce management. In this section,

some studies related to this research are presented.

Because the complexity of the post-disaster situation and the limited resources, logistic

systems should adopt many important logistical operations. Few studies incorporate more

than one operation in the optimization model. For example, Yi and Kumar (2007) suggest

a model that includes the objective of minimizing both unsatisfied demand and unserved

wounded. It aims to distribute commodities to distribution centers in the affected areas
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and evacuate the wounded people to medical centers. Similarly, Yi and Ozdamar (2007),

Yan and Shih (2009), Ozdamar and Demir (2012), Balcik et al. (2008) and Ozdamar and Yi

(2008) have suggested models with two logistical operations.

In Yi and Ozdamar (2007), an integrated capacitated location-routing problem (LRP)

is suggested, which is a mixed integer multi-commodity network flow model aimed at the

coordination of the transportation of commodities from major supply centers to affected areas

and the transportation of wounded people from affected areas to temporary and permanent

emergency units. Specifically, the objective is to minimize the total unserved commodities

multiplied by their priorities and divided by a standard amount to sustain one wounded,

plus the number of unserved wounded people with different level of wounded multiplied by

its priority for all time periods. The drawback of this model is neglecting vehicle routes and

treating the vehicles as commodities passing along arcs. Similarly, Ozdamar and Yi (2008)

have suggested a model with minor differences from the model of Yi and Ozdamar (2007)

such as adding limitations to the number of wounded that can be served at each hospital.

They used a greedy neighborhood search to solve the model. Because roadway repair affects

the supply distribution, Yan and Shih (2009) have suggested a model to perform these

operations with respect to the repair schedule. In a similar way, Wex et al. (2013) suggested

a model for the problem of rescue unit scheduling and assignment, where the rescue units

are scheduled to process different prioritized types of incidents such as fires and building

collapse.

Some studies include a model for evacuation only. For example, Baharanchi et al. (2011)

have developed bi-objective integer programming models to evacuate wounded persons after

an earthquake. The first objective is to minimize the number of unsuccessful vehicle visits,

and the second is to minimize the total travel distance. Drawbacks include the assumption of

only one level of earthquake (six Richter), incorporating only identical vehicles, and decision

variables that indicate only the arcs that should be traveled by each vehicle without sequence.

Jotshi et al. (2009) have used data fusion analysis to estimate the number of victims who
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need transfer. Chiu and Zheng (2007) have suggested a model to evacuate multi-priority

groups with minimum travel time.

On the other hand, some studies only include a model for demand distribution. For

example, Ozdamar et al. (2004) have presented a model to minimize the amount of unsatisfied

demand for all types of commodities at all nodes and time slots. In the model, vehicles do not

necessarily return to the depot, assuming the drivers have contact with coordination centers.

The first of the two models determines the flow plan or quantity that should be transfered

through each road. The second model is an integer program to determine the number of

vehicles that should pass through each road. Similarly, Balcik et al. (2008) have suggested a

model to find the routes of vehicles with minimum travel cost and unsatisfied demand cost

where the route costs are assumed to be known, and Lin et al. (2011) have presented a model

to minimize the penalty cost associated with a delay of delivering the demand of different

types to the nodes at all periods plus the penalty cost of unsatisfied demand. Finally, Afshar

and Haghani (2012) have developed a model to distribute the demand while minimizing the

total prioritized unsatisfied demand.

Some studies have used numerical analysis to develop the procedure for performing some

post-disaster operations, but they do not include an optimization model. Sheu (2007) has

shown a hybrid fuzzy clustering optimization approach to divide the relief supply network

into three levels: supply, distribution, and demand areas. His model starts with processing

data numerically to forecast the relief demand based on the number of facilities available in

the governmental records. A fuzzy clustering approach classifies affected area into groups

based on the clustering results. Finally, multi-criteria decision making is applied to rank

the priority order of groups. This article does not include an optimization model, and

instead is a numerical analysis. Similarly, Sheu (2010) used numerical methods to forecast

the relief demand, group the affected areas, and determine the urgency of relief demand;

these models do not consider optimization. In the same manner, numerical and statistical

analysis are used to determine the bounds and estimations of some parameters and decision
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variables. For example, Fiedrich et al. (2000) employed statistical methods to find the

estimated number of supplier locations to be used among available facilities. Gong and Batta

(2007) used numerical techniques to model the clusters in disaster areas and to allocate/re-

allocate ambulances into the clusters. Arora et al. (2010) described a resource allocation

approach to optimize regional aid during public health emergencies.

Some studies consider models with multiple objectives, such as Liu and Zhao (2007) who

have presented a weighted multi-objective model for distributing commodities in emergency

logistics. In the model, the objective is to minimize the time needed to move the items

from suppliers to distribution centers (DCs) and from DCs to the demand points. The

cost of constructing DCs and the cost of unsatisfied demand are also included. In this

model, the decision variables represent the demand quantities that should be distributed to

each location, without considering the vehicle routes. Using other objectives related to the

distribution time, Campbell et al. (2008) have presented a new objective function for relief

effort that depends on the maximum and average arrival times, instead of total distance.

They used a model with one vehicle, and then approximated values for some bounds. Besides

the time, Vitoriano et al. (2010) added more terms to the objective function. They developed

a multi-objective model based on equity, reliability, time, cost, security and priority. A target

value for each of these objectives is specified, and the deviation variables are defined as the

difference between the objective and its target value. They assumed a heterogeneous fleet of

vehicles characterized by capacity, velocity, and variable and fixed costs. Two types of nodes

were suggested in this single-commodity model: nodes to pick up the commodity and nodes

for delivery. A goal programming approach was used to minimize the deviation variables of

the objectives.

Yuan and Wang (2009) suggested two models to select the paths during the relief dis-

tribution. In the first model, travel speed along each arc was considered while in the second

model, chaos, panic and congestion were considered to minimize the number of arcs required

to cover all demand locations.
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Some studies incorporate location determination in post-disaster relief. For example,

Widener and Horner (2011) have suggested a hierarchical model to select the best location

for facilities in the event of a hurricane to minimize the total distance of serving the nodes

with different service or demand levels. They neglected vehicle routing, multi-commodity

considerations, and differing costs of facility construction based on location. Tzeng et al.

(2007) constructed a multi-objective model to minimize the total cost and total travel dis-

tance and maximize the minimal satisfaction. Total cost includes the fixed costs associated

with constructing supply nodes and transportation. Supply nodes are selected from prede-

termined locations. The drawback with this model is that the best locations to construct the

supply nodes are selected after a disaster. Distribution can only begin after construction,

creating extremely long delays for post-disaster response where time is a critical factor.

Barbarosoglu et al. (2002) developed a model for a helicopter logistics system. It is

divided into six sub problems: fleet consumption, pilot assignment, number of tours for

each helicopter, helicopter routing, helicopter transportation (loading and unloading), and

refueling scheduling problems. The mathematical model is divided into two models, such

that the top level model contains the first three sub problems, while the base level model

contains the last three sub problems. The objective is to minimize the cost of pilots and

helicopters in the first model, and the total distance in the second model.

Finally, some researches suggest models that are suitable for small scale problems only.

First, Barbarosoglu and Arda (2004) developed a model with two stochastic stages to solve

multi-commodity network flow problems. This model was used to solve a small scale problem

with 6 demand nodes and 5 supply nodes. Second, Fei et al. (2011) solved a small scale path

selection problem for post-disaster situations. The problem solves a 15-node problem using

ant colony optimization, with the objective of minimizing the time traveled by all vehicles.

Finally, Haghani and Oh (1996) solved two problems, one with 4 nodes and the other with

10 nodes.
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A recent review article is by Galindo and Batta (2013) includes a full summary about

the studies concerning pre-disaster and post-disaster, as well as a discussion on research

gaps in the literature. For example, they note the lack of studies on coordination among

humanitarian agencies that are working in the same geographical area. New technologies,

such as geographical information system (GIS) ans simulation software, have not yet seen

widespread adoption. Furthermore, better performance indicators to measure the effective-

ness of proposed models, using interdisciplinary techniques that would be more suitable for

the case of disaster, are desirable. Finally, it is suggested that future research should rely

upon more realistic assumptions. Another review study has been conducted by Luis et al.

(2012), which includes a good summary for the research of disaster relief operations.

The following subsections classify the research according to different criteria. These

classifications highlight several gaps in the existing literature.

2.2.1 Humanitarian Logistics Operations

There are many different operations that take place during humanitarian relief efforts.

First, demand requirements must be determined, typically via numerical methods to analyze

existing demand data and forecast future demands (c.f., Sheu (2007) and Sheu (2010)). Next,

emergency resources must be allocated to available facilities (c.f., Fiedrich et al. (2000),

Sherali et al. (2004), Gong and Batta (2007), and Arora et al. (2010)). These resources

must be distributed to points of demand (c.f., Tzeng et al. (2007), Yuan and Wang (2009),

Barbarosoglu and Arda (2004), and Barbarosoglu et al. (2002)). In addition to resource

delivery, wounded persons must be evacuated to first aid areas or hospitals (c.f., Jotshi et al.

(2009), Han et al. (2006), Chiu and Zheng (2007), Ozdamar and Yi (2008), Ozdamar and

Demir (2012) and Tan et al. (2009)).

Most existing research on humanitarian logistics has focused on only one logistic activity

at a time. While some research, most notably the works of Ozdamar and Yi (2008), Yi and

Kumar (2007), Yi and Ozdamar (2007), Yan and Shih (2009), and Balcik et al. (2008) have
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incorporated two of these activities within a single model, we are aware of no existing models

that have considered three or more of these critical operations within a unified framework.

Furthermore, the activities of allocating and transferring relief workers are noticeably absent

from the literature.

2.2.2 Objectives in Emergency Logistics

A variety of objectives have been considered in humanitarian relief optimization models,

as highlighted in Table 2.1. Most studies employ traditional objectives such as minimizing

cost and time while few use emergency-related objectives such as minimizing unsatisfied

demand and unserved wounded.

Table 2.1: Common objectives in emergency logistics research.

Objective References
Minimize distribution time Tzeng et al. (2007), Jotshi et al. (2009), Chiu and

Zheng (2007), Ozdamar and Demir (2012) and
Yan and Shih (2009)

Minimize maximum completion time Gong and Batta (2007), Campbell et al. (2008)
Minimize evacuation time Tan et al. (2009)
Minimize distribution cost Sheu (2007), Tzeng et al. (2007), Barbarosoglu

and Arda (2004), and Balcik et al. (2008)
Maximize vehicle tour duration Barbarosoglu et al. (2002)
Minimize unsatisfied demand and minimize un-
served wounded (in one objective function)

Ozdamar and Yi (2008), Yi and Ozdamar (2007),
and Yi and Kumar (2007)

Maximize demand fill rate Sheu (2007) and Tzeng et al. (2007)
Minimize number of fatalities Fiedrich et al. (2000)
Multi-objective Lin et al. (2011) (penalty cost of delayed deliv-

eries, tours cost, and satisfaction), Yan and Shih
(2009) (Minmax repairing, Minmax distribution),
Liu and Zhao (2007) (overall cost, effectiveness,
and satisfaction), Najafi et al. (2013), and Tzeng
et al. (2007) (total cost, travel time, satisfaction)

2.2.3 Review of Solution Approaches in Humanitarian Relief Studies

Many previous studies on humanitarian relief relied on commercial integer programming

software (e.g. CPLEX, GAMS, LINGO) to solve small-scale problems optimally. For large
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scale problems, heuristic approaches, such as particle swarm optimization (PSO), modified

branch-and-bound (MBAB), ant colony optimization (ACO), tabu search (TS), genetic al-

gorithm (GA), and simulated annealing (SA) were used. A summary of solution approaches

applied to previous emergency studies is contained in Table 2.2.

Table 2.2: Solution approaches employed in previous studies.

Solution Approaches References
Commerical software (CPLEX, GAMS, LINGO) Lin et al. (2011), Yi and Ozdamar (2007), Vitori-

ano et al. (2010), Yan and Shih (2009), Widener
and Horner (2011), Liu and Zhao (2007), Tzeng
et al. (2007), Sheu (2007), Barbarosoglu and Arda
(2004), and Balcik et al. (2008)

Genetic Algorithm Lin et al. (2011)
Ant Colony Yuan and Wang (2009), Yi and Kumar (2007), and

Fei et al. (2011)
Simulated Annealing Baharanchi et al. (2011)
Greedy Neighborhood Search Ozdamar and Yi (2008)
Lagrangian relaxation based iterative algorithm Ozdamar et al. (2004)
Insertion algorithm Campbell et al. (2008)
hierarchical cluster and route procedure Ozdamar and Demir (2012)

2.3 Vehicle Routing Problem (VRP)

The classical vehicle routing problem (VRP) is an essential part of this research because

it forms the basis for many logistic systems. The VRP will be used to construct the inte-

grated logistic system for post-disaster relief, which is the ultimate goal of this research. It

should be noted, however, that the VRP must be substantially extended to be applicable

to humanitarian relief problems. Such enhancements include incorporating multiple existing

VRP variants, considering workforce transfer, and addressing wounded evacuation. In this

section, some common VRP variants that are related to this research will be reviewed and

explained.

The VRP is a very well-known problem in logistics and operations research, and was

first introduced by Dantzig and Ramser (1959). The classical version of the VRP consists of
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a set of customers with known demands for a single commodity, a fleet of identical vehicles,

and a single depot. The objective is to minimize the total cost of distribution, where each

customer must be visited exactly once.

Any violation of one or more of the previous assumptions will result in a new VRP vari-

ant. In the next subsections, a short review of relevant variants is presented. A comparison

of these variants with the proposed research is provided in Table 2.3. There are some other

VRP classes of note that incorporate multiple variants simultaneously (c.f. Bettinelli et al.

(2011) and Ho and Haugland (2004)). More details about VRP variants can be found in

Toth and Vigo (2002) and Chapter 6 of Barnhart and Laporte (2007), while Cordeau et al.

(2002) describe many effective algorithms to solve VRP problems.

Table 2.3: A comparison of VRP variants.

Multi Split Time Hetero. Multi Satellite
Type Commodities Delivery Windows Vehicle Depot Periodic Facilities
VRP
CVRP
VRPTW X
MDVRP X
VRPSD X
PVRP X
VRPSF X
This Research X X X X X X

2.3.1 Capacitated VRP (CVRP)

This variant considers identical vehicles and is the simplest extension of the VRP. Al-

though this variant will not be considered in this research, it is explained here because it

is an important case that is used for building other variants. It is considered as a modified

multiple traveling salesman problem (MTSP). The only difference between the two cases is

that in the CVRP the capacity of vehicles is finite, not infinite as in MTSP. The terms VRP

and CVRP are often used interchangeably because vehicle capacities are typically implied

within most VRP formulations.
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Many studies have considered this variant. For example, Laporte (1992) reviewed the

exact and approximate algorithms that have been used to solve the CVRP. The exact al-

gorithms include direct tree search, dynamic programming, and integer programming. The

heuristics or approximate algorithms include the nearest neighbor, insertion algorithms, and

tour improvement procedures. In recent studies, both Baldacci et al. (2008) and Lysgaard

et al. (2004), have presented an exact algorithm based on the branch-and-cut to solve the

CVRP. More details about the CVRP can be found in Chapters 1–6 of Toth and Vigo (2002).

2.3.2 VRP with Time Windows (VRPTW)

In the VRPTW, customers must be visited within pre-determined time windows. This

variant was first presented by Golden and Assad (1986). Chapter 7 of Toth and Vigo (2002)

explains details of this variant. Many articles have suggested algorithms to solve the VRPTW

(c.f., Wen and Meng (2008) and Ho and Haugland (2004)).

While the proposed research effort does not explicitly consider customer time windows,

the time-critical nature of customer demand is certainly important. For example, in the

short period of time immediately following a disaster, the golden time, all customers need

the demand as soon as possible. For this reason, it is difficult to define a time window for

when each customer should be supplied. Instead, in the context of humanitarian relief, some

urgency parameters that depend on the customer status are developed to attribute higher

priority to the most urgent demand needs.

2.3.3 Multi-Depot VRP (MDVRP)

The MDVRP addresses cases that have more than one depot, such as distribution centers

or stores. If the nodes can be clustered around depots, this problem becomes a multi-CVRP;

otherwise, it should be treated as a MDVRP.

This problem was first introduced by Tillman (1969). Desaulniers et al. (1998) studied

this variant with time windows and waiting costs. Ho et al. (2008) developed a hybrid genetic
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algorithm to solve the MDVRP with customer grouping. Soeanu et al. (2011) suggested a

decentralized heuristic approach to solve the MDVRP with split delivery. Bettinelli et al.

(2011) suggested a branch-and-cut-and-price algorithm to solve VRP with a heterogeneous

fleet, time windows, and multi depots.

In the proposed research effort, more than one location in the logistic network will be

considered as a supply point.

2.3.4 VRP with Split Delivery (VRPSD)

The VRPSD occurs when customers may be supplied by more than one vehicle. The

mathematical formulation is the same as that of the CVRP, except the single vehicle con-

straint, which guarantees that only one vehicle supplies each node, is removed.

This variant was first introduced by Dror and Trudeau (1989). Ho and Haugland (2004)

used tabu search to solve VRP with time window and split delivery, and Jin et al. (2007)

suggested two stage tabu search to solve VRPSD. In the proposed research, split deliveries

are allowed.

2.3.5 Periodic VRP (PVRP)

The PVRP is a general case of the CVRP where the distribution could occur over many

days or time periods. Beltrami and Bodin (1979) were the first to describe this case for

a waste collection case study. The proposed research may be considered to be a modified

PVRP, as each demand node may have a different demand for each time period.

2.3.6 VRP with Satellite Facilities (VRPSF)

In the VRPSF, satellite facilities (SFs) can be used to provide delivery vehicles with

additional supplies if needed. In this case, the vehicles could be replenished completely or

partially during the distribution without returning back to the depot. At the end of each

shift, delivery vehicles may return to the depot. Beltrami and Bodin (1979) were the first to
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suggest this variant, while Bard et al. (1998a) suggested a branch-and-cut solution approach.

This variant is applicable to the proposed research effort, where large vehicles may serve as

SFs.

2.4 Satellite Facilities Research

The term satellite facility appears to lack a universal definition in the context of logistic

networks. Typically, SFs include large vehicles, simple buildings, tents, local stores, or

shelters. In the proposed research, large mobile vehicles will be used as satellite facilities

whose use affords improved response to affected areas. The remainder of this section describes

the use of SFs in other research fields, within the area of humanitarian relief, and as they

are applied specifically to the proposed research.

2.4.1 General SF Research

Satellite facilities have been successfully deployed across a variety of applications. For

example, military camps operating in remote areas often utilize temporary SFs for both

housing and supplies. Other short-duration activities such as blood donation drives and

weather monitoring stations typically use mobile vehicles as SFs. In industry, the term SF

is commonly used in inventory routing problems and multi-echelon inventory systems where

the inventory is transfered from the main warehouses to local stores and then to the final

retailers.

Bard et al. (1998b) have suggested the use of satellite facilities around a central sup-

plier to solve the problem of demand uncertainty which could conflict with the objective of

minimizing the annual operating cost of the inventory routing problem (IRP). An IRP arises

when a set of customers depends on a supplier to provide them with a certain commodity.

The solutions of such cases aims to distribute the commodity and specify the amount of

supplies that should be maintained at stores to reduce the chance of stock-out.
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Bard et al. (1998a) have suggested branch-and-cut to solve the vehicle routing problem

with satellite facilities (VRPSF). In this problem vehicles could be replenished at any of

the SFs instead of going back to the main depot. In this article, the model consists of n

customers with demands from a known distribution, a central depot, and s satellite facilities.

Vehicles can be reloaded at the central depot or at any satellite facility.

As with many routing problems, the objective is to minimize the cost of distribution.

The model was solved in three main steps: identification of the customers to visit at each

time, assignment of customers to vehicles, and construction of routes for each vehicle.

Research on multi-echelon inventory problems often incorporates the use of satellite

facilities. Here, inventory is distributed in multiple stages from the main suppliers through

multiple levels of transshipment nodes until reaching the end users. Vehicle routing decisions

are not always considered within these problems. Clark and Scarf (1960) were the first

to present the multi-echelon inventory system to determine optimal purchasing quantities.

Rottkemper et al. (2012) suggested a mixed integer model with two objectives to minimize the

total unsatisfied demand and distribution cost. The model allows transshipments between

regional depots, and was solved by a rolling horizon solution method. The main drawback

associated with this model is that it can be used for only a single item. Jaillet et al. (2002)

determined distribution cost approximations in an inventory routing problem with fixed

satellite facilities. Crainic et al. (2010) proposed a distribution system within a two-echelon-

vehicle routing problem. This basic system employs large vehicles that travel from the

central depot to a fixed number of capacitated satellite facilities. Smaller vehicles transfer

the demand from the SFs to customers with fixed demands. Such a system keeps large

vehicles outside of crowded cities. Perboli et al. (2008) presented a two-echelon model with

capacitated vehicle routing to minimize the total cost of transferring goods from the first

level depot to the predetermined SFs.

Zhao et al. (2008) presented a three-echelon logistics system consisting of a supplier, a

central warehouse, and a group of retailers. The objective is to minimize the overall average
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cost of the system. This model was solved by a large neighborhood search. Jung and Mathur

(2007) suggested a heuristic to solve the two-echelon inventory routing problem with a single

warehouse and multiple retailers. Gendron and Semet (2009) suggested path- and arc-based

formulations for multi-echelon inventory routing problems.

A comprehensive review about this topic can be found in the paper of Paterson et al.

(2011). In previous studies, there are many assumptions that limit their use in humanitarian

relief efforts. For example, in all existing studies, time is not a critical factor. However,

in the proposed research, the primary motivation behind employing SFs is to improve the

distribution system and reduce delivery times. Additionally, the previous studies assume that

the SF locations are fixed and already constructed, or can be selected from many available

locations. In this research, SF locations will be changed after each shift based on the new

data concerning demand and road conditions. Other assumptions regarding customers with

equal demands and customers with unlimited storage capacities are also inappropriate for

humanitarian relief.

2.4.2 SF in Humanitarian Relief Research

To the best of our knowledge, only Azimi et al. (2012) have used the SF term and

applied it in the context of humanitarian relief. The authors have suggested a model to

deliver multiple commodities to demand locations through multiple fixed SFs. The model

results only decide which SFs and node should be visited by each vehicle in a single trip.

Many shortcomings are encountered in this research. First, it is not periodic, as a single

trip with only one arc for each vehicle is considered. Second, SF locations are predetermined

and each node is assigned to a specific SF with an unknown procedure. Third, it is assumed

that the available supply is greater than the overall demand. Finally, the objective function

is to minimize the total distance traveled by all vehicles.

Some studies have used multi-phase distribution systems in post-disaster situation such

as Clark et al. (2013) who developed a model to distribute demand from main suppliers
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to regional warehouses and then to the recipients. The objective is to minimize unsatisfied

demand, operating cost of the vehicles, amount of inventory, and the number of vehicles

used. Similarly, Rottkemper et al. (2012) suggested a model with multi-phase distribution

to minimize the cost of distribution demand and the running cost of trucks. Finally, Afshar

and Haghani (2012) suggested a single logistic operation and multi-phases supply model for

demand distribution. In this study, the term “mobile center” is used to define the locations

where the supplies can be stored for a specific time. The objective is to minimize the

prioritized unsatisfied demand.

It can be concluded from the literature that no studies consider SF efficiently in a

multi-operation model while considering individual plans for each SF and vehicle.
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Chapter 3

A Baseline Humanitarian Relief Model with Corrections and Improvement

3.1 Introduction

In this chapter, the model of Yi and Kumar (2007) is studied extensively and corrected

to make it usable. For the purposes of the proposed research effort, the so-called YK model

was chosen to serve as a baseline model because it is one of the most recent studies that

includes two operations (distribution and evacuation), utilizes an objective function related

to humanitarian relief. There are some errors in the YK model, so it is corrected and used

to solve a simple example. The corrected model is denoted as YK’ model.

The second part of this chapter addresses a new model. The YK’ model is extended

to consider the use of available vehicles for the transfer of relief workers from supply nodes

to demand nodes. In post–disaster situation, volunteers and workers are supposed to help

people in evacuation and wounded treatment. But the problem with this is that workers

come to the regions of where the humanitarian agencies are placed and they request transfer

to demand areas. This leads us to extend the YK’ model to adopt workforce transfer as a

new logistic operation that can improve the whole model.

This chapter is organized as follows: Section 3.2 describes the problem solved by YK

model, Section 3.2.1 presents the mathematical formulation, Section 3.2.2 provides some

corrections to the YK’ model, Section 3.2.3 shows a numeric example of the YK’ model.

Section 3.3 includes the description, formulation, and a numeric example of the YK’+WT

model. Section 3.4 summarizes the chapter.
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3.2 The Yi and Kumar Model (YK)-Problem Description

Yi and Kumar (2007) developed a multi-operation logistics model for post-disaster sit-

uations. It aims to distribute commodities to affected areas and evacuate wounded persons

to medical centers. In such situations, disaster areas are divided into three main categories:

supply nodes, demand nodes, and hospital nodes with the distance of the arcs (routes) be-

tween nodes being predefined. Vehicles are classified into many types based on capacity but

they are assumed to have equal speed. They pick up supplies from the supply nodes and

deliver them to the demand nodes. They can then pick up wounded from demand nodes and

transfer them to the hospitals.

Demand is classified into many types and prioritized based on its importance where

the more important commodities have higher priority. In the same manner, wounded are

classified into many categories and prioritized based on the level of injury.

Due to the limitation of resources in a post–disaster situation, vehicles might not be

able to deliver the overall demand for each demand node or to pick up all wounded from a

node when it is visited. The difference between the requested and the delivered demand for

each node at each time period is called deviation or unsatisfied demand, and the difference

between the total wounded needing evacuation and the wounded still awaiting transfer is

called deviation wounded. Accordingly, this model develops a relevant objective function to

minimize the summations of these deviation variables.

The model outputs for each time period are the amount of commodities of each type

which are transfered on each arc, number of wounded from each category traveling on each

arc, number of unsatisfied demand of each type at each demand node, number of unserved

wounded (deviations) from each category, number of vehicles from each types transfer each

arc at each time, and the total number of wounded treated at each hospital node.

Many data sets for this model were exactly solved by the authors using CPLEX. These

problems were also solved using a two-phase approach. Ant colony optimization (ACO) is
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applied in the first phase to determine distribution quantities, while the number of vehicles

required to deliver goods between pairs of nodes is determined in the second phase.

3.2.1 Notations and Formulation

The YK model employs the following sets and parameters:

• T : Set of discrete time periods comprising the planning horizon, T= {1, 2, . . . , |T |}.

• H: Set of severity categories for wounded people,

H = {1(heavy), 2 (moderate), 3 (light), . . . , |H|}.

• V : Set of vehicle types, where vehicles are classified based on capacity.

• A: Set of commodity types, A = {1, 2, 3, . . . , |A|}.

• CD: Set of demand nodes.

• CS: Set of supply nodes.

• CH: Set of available hospitals.

• C: Set of all nodes in the network, C = CD ∪ CS ∪ CH.

• top: Number of discrete time intervals required to traverse arc (o, p). This parameter

is not vehicle-specific.

• dHhot: Number of wounded people of category h ∈ H at node o ∈ CD at time t ∈ T .

• dAaot: Amount of commodity a ∈ A demanded at node o ∈ CD at time t ∈ T .

• supaot: Amount of commodity a ∈ A that can be supplied at node o ∈ CS at time

t ∈ T .

• avovt: Number of vehicles of type v ∈ V assigned to node o at time t ∈ T .

• srvho: Service rate of node o ∈ CH for wounded category h ∈ H. This represents the

maximum number of wounded category h ∈ H can be treated at hospital node o.

• wca: Unit weight of one unit of commodity a ∈ A.

• wwh: Average weight of one wounded person of category h ∈ H.

• capv: Capacity of vehicles of type v ∈ V .

• PCa: Priority of commodity type a ∈ A.
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• PWh: Priority of wounded category h ∈ H

• Kospt: Binary parameter such that Kospt = 1 if node p ∈ C is reachable from node

o ∈ C at time t ∈ T , zero otherwise.

The decision variables are given by:

• Zaopvt: Quantity of commodity a ∈ A traversing arc (o, p) at time t ∈ T by vehicle

type v ∈ V .

• devCaot: Amount of unsatisfied demand of commodity a ∈ A at node o ∈ CD at time

t ∈ T .

• Xhopvt: Number of wounded people of category h ∈ H traversing arc (o, p) at time

t ∈ T by vehicle type v ∈ V .

• devWht: Number of unserved wounded people of category h ∈ H at time t ∈ T .

• Yopvt: Number of vehicles of type v ∈ V traversing arc (o, p) at time t ∈ T .

• SPhot: Number of wounded category h ∈ H served at node o ∈ CH at time t ∈ T .

The YK model of Yi and Kumar (2007) is given as follows.

Minimize
∑
a∈A

∑
o∈CD

∑
t∈T

PCa devCaot +
∑
h∈H

∑
t∈T

PWh devWht (3.1)

subject to∑
s∈T
s≤t

dAaos −
∑
p∈C

∑
v∈V

∑
s∈T
s≤t

[KpsotZapovs − Zaopvs] = devCaot ∀ a ∈ A, o ∈ CD, t ∈ T

(3.2)∑
p∈C

∑
v∈V

∑
s∈T
s≤t

[Zaopvs −KpsotZapovs] ≤
∑
s∈T
s≤t

supaos ∀ a ∈ A, o ∈ CS, t ∈ T (3.3)

Yopvt ≤M
∑
s∈T
s≤t

Kotps ∀ o ∈ C, p ∈ C, v ∈ V, t ∈ T (3.4)

Yopvtcapv ≥
∑
a∈A

wcaZaopvt +
∑
h∈H

wwh Xhopvt ∀ o ∈ C, p ∈ C, t ∈ T (3.5)
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∑
s∈T
s≤t

∑
p∈C

[Yopvs − YpovsKpovs] ≤
∑
s∈T
s≤t

avovs ∀ o ∈ C, v ∈ V, t ∈ T (3.6)

∑
v∈V

∑
s∈T
s≤t

∑
p∈C

[Xhopvs −KpsotXhpovs] ≤
∑
s∈T
s≤t

dwhos ∀ h ∈ H, o ∈ CD, t ∈ T (3.7)

∑
v∈V

∑
s∈T
s≤t

∑
p∈C

[KpsotXhpovs −Xhopvs] ≥
∑
s∈T
s≤t

SPhos ∀ h ∈ H, o ∈ C\CD, t ∈ T (3.8)

∑
s∈T
s≤t

∑
o∈C

[dwhos − SPhos] = devWht ∀ h ∈ H, t ∈ T (3.9)

0 ≤ all variables <∞, SPhot ≤ srvho ∀ h ∈ H, o ∈ CH, t ∈ T (3.10)

In this model, the objective is to minimize the total unsatisfied commodity demands

(weighted by the priority of each type at all demand nodes, across all time periods) plus

the number of unserved wounded people (weighted by their priority) across all time periods.

Constraints (3.2) balance the flow and define the unsatisfied demand for each demand node.

In other words, the total quantity delivered from node o minus the quantity received by

node o in previous periods plus the unsatisfied demand at that node in the current period

should equal the total demand for all previous periods. Similarly, constraints (3.3) balance

the flow through supply nodes. Constraints (3.4) restrict the itinerary of each vehicle type

to existing arcs, while (3.5) restrict the transportation quantities by the capacity of vehicles

traversing the arc. Constraints (3.6) balance the vehicle flows at each node and restrict

the number of vehicles introduced to the network by their cumulative availability over time.

Constraints (3.7) and (3.8) govern the flow of wounded people, whereas constraints (3.9)

define the unserved wounded people. Finally, constraints (3.10) define the variable bounds.

Unfortunately, as described in the next section, the YK model contains errors that limit

its usefulness.
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3.2.2 A Corrected Formulation

The YK’ model represents a corrected formulation of the model proposed by Yi and

Kumar (2007). The first issue associated with the YK model is encountered in constraints

(3.2) and (3.3). They were designed to restrict the quantity delivered from each node by

its supply capacity and input. Using only these constraints could result in demand nodes

operating as supply nodes with unrealistic quantities being admitted. For example, a demand

node could supply 100 units and receive 80 units with both constraints (3.2) and (3.3) still

satisfied. To correct this, the following constraint, (3.11), is added to the model:

∑
v∈V

∑
p∈C

[Zaopvt − Zapovt] ≤ supaot ∀ a ∈ A, o ∈ C, t ∈ T (3.11)

Similarly, constraints (3.6) allow infeasible vehicle flows at a given node. For example,

suppose that only 6 vehicles are available in the system. As written, these constraints would

allow the release of 10 vehicles and the receipt of 5. The net difference of 5 is less than the

number of vehicles in the system, but the 10 vehicles released exceeds the system vehicle

availability. To solve this issue, constraints (3.12), below, are added to restrict the total

number of vehicles that are moving in the system at any time by the actual number of

available vehicles in the system.

∑
o∈C

∑
p∈C

Yopvt ≤
∑
s∈T
s≤t

∑
o∈C

avovs ∀ v ∈ V, t ∈ T (3.12)

Constraints (3.5) do not properly define the v index, an omission likely due to a typo-

graphical error in the YK model. These constraints are easily modified as follows, where

v ∈ V is incorporated into the “for–all (∀)” sets:

Yopvtcapv ≥
∑
a∈A

wwa Zaopvt +
∑
h∈H

wwh Xhopvt ∀ o ∈ C, p ∈ C, v ∈ V, t ∈ T (3.13)
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Finally, constraints (3.8) and (3.9) utilize variable SPhot, which is defined for hospital

nodes only. These constraints are modified by considering node o ∈ CH, rather than o ∈ C

or o ∈ {C\CD}. These constraints are rewritten as:

∑
v∈V

∑
s∈T
s≤t

∑
p∈C

[KpsotXhpovs −Xhopvs] ≥
t∑

s=0

SPhos ∀ h ∈ H, o ∈ CH, t ∈ T (3.14)

∑
s∈T
s≤t

∑
o∈CH

[devWhos − SPhos] = devWht ∀ h ∈ H, t ∈ T (3.15)

The corrected model, YK’, may be represented as:

Min (3.1)

s.t. (3.2)− (3.4), (3.6), (3.7), (3.11)− (3.15).

3.2.3 An Example

A small example demonstrates the validity of model YK’. This example includes three

demand nodes, one supply node, one hospital node, six time periods, and two vehicle types.

Two vehicles from each type are available, such that the first (second) vehicle of Type 1 is

added at the beginning of time period 1 (2), and the first (second) vehicle of Type 2 is added

at the beginning of time period 3 (4). Type 1 vehicles have a capacity of 800 lb and Type 2

vehicles have a capacity of 600 lb. This small example considers only one commodity type

with a unit weight of 1.5 lb, and one category of wounded victims with an assumed weight of

200 lb each. Unit travel times between any two nodes are assumed for the sake of simplicity.

Periodic supply and demand quantities for each node are shown in Table 3.1, while Table

3.2 contains the number of wounded persons waiting at each demand node over time.

31



Table 3.1: Commodity supply and demand over time.

Node Type t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
1 Supply 360 460 360 200 240 200
2 Demand 0 260 200 160 210 0
3 Demand 0 190 140 180 192 100
4 Demand 90 160 186 100 160 80
5 Hospital – – – – – –

Table 3.2: Quantity of evacuation requests over time.

Node Type t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
2 Demand 2 3 1 2 1 0
3 Demand 7 3 1 2 0 0
4 Demand 6 2 1 2 2 0

For this small-scale problem, an optimal solution may be obtained directly via CPLEX.

This solution, as represented graphically in Figure 3.1, provides the quantities of commodities

and wounded persons transported between nodes. A summary of unsatisfied commodity

demand and unserved wounded persons is contained in Table 3.3.

Table 3.3: Summary of unsatisfied commodity demand and unserved wounded over time.

Node Type t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
2 Demand 0 0 0 0 0 0
3 Demand 0 0 140 140 192 0
4 Demand 0 160 26 100 130 0
Nodes 2, 3, and 4 (Total) Wounded 15 8 6 0 1 0
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Figure 3.1: Example solution using the YK’ model.

3.3 Incorporating Workforce Transfer (YK’+WT)

The YK’ model is extended to consider the use of available vehicles for the transfer

of relief workers from supply nodes to demand nodes to help in wounded treatment and

evacuation. These workers, while vital to relief efforts, can consume valuable vehicle space

and impose additional constraints on the system. It is assumed that workers may be classified

according to their skills (e.g., doctors or nurses) with many assumptions such as a known

number of each category of relief worker at any node in the network at any specific time,

a periodic demand for particular worker skills at any node, and a priority for successfully

delivering workers of a particular type.

Beside the same assumptions, inputs, and outputs of the YK’ model, the YK’+WT

model has the number of workers available at supply nodes and the number of workers re-

quested at demand nodes as inputs, and the number of workers from each category transfered

at each arcs by each type of vehicles as output.
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3.3.1 Notation and Formulation

The following additional parameters are required by this new model which we denote

as YK’+WT.

• W : Set of worker categories, W = {1 (nurses), 2 (doctors), . . . , |W |}.

• SRwot: Number of workers of category w ∈ W that are available at node o ∈ CS at

time t ∈ T .

• dwot: Number of workers of category w ∈ W that are needed at node o ∈ CD at time

t ∈ T .

• wrw: Average weight of a worker in category w ∈ W .

• PRw: Priority of workers in category w ∈ W .

Two new decision variables are also required. The first, Wwopvt, represents the number

of workers of category w ∈ W traversing arc (o, p) at time t ∈ T by vehicle type v ∈ V .

Second, devRwot denotes the number of workers of category w ∈ W are requested by all

demand nodes at time t ∈ T , but they are not delivered.

The objective function of the YK’+WT model incorporates a third term not found

in the YK and YK’ models. This term penalizes the number of relief workers waiting for

transfer over time:

Minimize
∑
a∈A

∑
o∈CD

∑
t∈T

PCa devCaot +
∑
h∈H

∑
t∈T

PWh devWht +
∑
w∈W

∑
o∈C

∑
t∈T

PRw devRwot.

(3.16)

New constraints related to workforce transfer are as follows:

Yopvtcapv ≥
∑
a∈A

wcaZaopvt +
∑
h∈H

wwhXhopvt +
∑
w∈W

wrwWwopvt ∀ o, p ∈ C, v ∈ V, t ∈ T

(3.17)
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∑
s∈T
s≤t

SRwot +
∑
v∈V

∑
s∈T
s≤t

∑
p∈C

[Wwpovs −KosptWwopvs] = devwot ∀ w, o ∈ CS, t ∈ T (3.18)

∑
s∈T
s≤t

dwos −
∑
s∈T
s≤t

SRwot −
∑
v∈V

∑
s∈T
s≤t

∑
p∈C

[Wwpovs −KosptWwopvs] = devwot ∀ w, o ∈ CD, t ∈ T

(3.19)∑
v∈V

∑
p∈C

[Wwopvt −Wwpovt] ≤ SRwot ∀ w ∈ W, o ∈ CS, t ∈ T (3.20)

Constraints (3.17) incorporate worker weights within vehicle capacity restrictions. As in

the YK’ model, constraints (3.18) - (3.20) balance the flow of workers, define the deviation

variables, and restrict the number of workers that can be moved between nodes.

The YK’+WT model may be represented as corrected model while YK’ may be repre-

sented as:

Minimize (3.16)

s.t. (3.2)− (3.4), (3.6), (3.7), (3.11)− (3.15), (3.17)− (3.20).

3.3.2 An Example

A small example of the YK’+WT model is presented to demonstrate the differences

between the solution to the YK’+WT model and YK’ model (where work–force transfer is

ignored). The data for this problem are taken from the example of Section 3.2.3, with the

addition of workforce parameters, as shown in Table 3.4. This table describes the number of

available workers at supply nodes and the number of workers needed at demand nodes. It

is assumed that the average weight of workers and wounded people are the same, such that

wrw = 200.
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Table 3.4: Worker demands and availability at each node over time.

Node Type t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
1 Available 6 6 4 5 4 0
2 Needed 3 4 1 2 1 0
3 Needed 2 2 2 0 0 1
4 Needed 5 1 0 2 1 0

A graphical representation of the solution to this example is depicted in Figure 3.2, and

quantities of unsatisfied demand, unserved wounded, and available workers awaiting transfer

are summarized in Table 3.5.

Figure 3.2: Example solution from the YK’+WT model.

Table 3.5: Summary of unsatisfied commodity demand, unserved wounded, and non–
delivered workers over time.

Node Type t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
2 Demand 0 0 0 27 130 0
3 Demand 0 190 0 180 192 0
4 Demand 0 160 186 34 0 0

All nodes Wounded 15 8 6 5 0 0
All nodes Workers 7 5 0 0 0 1
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In the YK’ solution, the total commodities delivered is 1,520 and the number of wounded

evacuated is 13. Whereas, in the YK’+WT solution, less commodities are delivered and fewer

wounded are evacuated (the total commodities delivered is 1,309 and the number of wounded

evacuated is 9). This is because the new logistic operation (work–force transfer) is added to

the YK’+WT model and 13 workers are transfered consuming space in vehicles. Accordingly,

the benefit of the YK’+WT model is to utilize the available vehicles to perform more logistic

operations as requested realistically by the humanitarian agencies in post disaster relief

operations.

It can be also noted that the utilization of the vehicles in YK’+WT is better than in

YK’, as the total mass picked by vehicles in the YK’ solution is 4,880 lb and in YK’+WT

solution is 6,163 lb. This happens because vehicles in YK’+WT have more options for

picking up at supply nodes.

3.4 Summary

To start this research, a good baseline model was studied in this chapter. The model

from Yi and Kumar (2007) is selected to be our starting point. For better understanding,

the mathematical model from this study is coded in CPLEX to solve a small example, but

some errors are found which limit its use. Because of this, some corrections are made to the

formulation which represents the first contribution in this research.

Unfortunately, solutions obtained by the corrected model (YK’) do not provide actual

vehicle routes. They provide the demand quantities and wounded numbers traveled by each

type of vehicles as shown in Figure 3.1; such solutions can not be applied directly. Due to this

drawback, an additional optimization procedure is required to obtain vehicle assignments to

deliver the quantities of goods or people between nodes. This type of post-processing may

result in inefficient vehicle routes or the use of excess vehicles which could be avoided if

the model were to incorporate individual vehicle assignments. Such an enhancement is
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described in Chapter 4; however, the YK’ model is first extended to consider the transfer of

relief workers between nodes.

The new model is developed to incorporate the work-force transfer in YK’ model in the

same manner of wounded and commodities transfer, i.e. this model provides the number of

workers from each category transfered at each arc without providing insight into the actual

vehicles route. This shortcoming is addressed in the next chapter.

It is interesting to note the differences between the solutions obtained by the YK’ and

YK’+WT models. First, the flow quantities of commodities and wounded persons differ,

as shown in Figures 3.1 and 3.2. Not surprisingly, the numbers of unserved wounded and

unsatisfied demand are greater in the YK’+WT model than in the YK’ model. This reduction

in service reflects the more realistic nature of the YK’+WT model where the work–force

transfer is considered.

The next chapter provides a new model to incorporate work–force transfer and consider

individual vehicle routes.
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Chapter 4

Humanitarian Logistics Vehicle Routing Problem (HLVRP)

4.1 Introduction

In this chapter, the fourth model which represents the first main contribution of this

research is considered. This model, the humanitarian logistics vehicle routing problem

(HLVRP), is an integrated model for humanitarian relief logistics that offers several dis-

tinct advantages over the baseline model of Yi and Kumar (2007), denoted as YK. First,

the new model incorporates three logistic operations simultaneously: demand distribution,

evacuation of wounded, and workforce transfer. To the best of our knowledge, no other

humanitarian logistics model has considered more than two operations. For example, in

the models of Yi and Kumar (2007) and Yi and Ozdamar (2007), demand distribution and

wounded evacuation, but not workforce transfer, are included.

Second, the HLVRP model provides valid and complete vehicle routes. This is facilitated

by the inclusion of a new binary decision variable, xvijt, which determines if a particular

vehicle, v, arrives at node j at time t after traversing arc (i, j). Thus, solutions of the

HLVRP model indicate the exact sequence of nodes to be visited by each vehicle at particular

times. By contrast, while the YK model determines the quantities of commodities and

wounded traversing each arc, valid vehicle routes to transport these entities are not modeled.

This increased granularity of solution information provided by the HLVRP model, as well

as detailed vehicle speed characteristics, result in a more practical model. For example,

solutions from the HLVRP may indicate exactly which vehicles should be operated to deliver

goods, pickup wounded, and transport workers. Conversely, the models of Yi and Kumar

(2007) and Yi and Ozdamar (2007) only indicate that a certain number of goods or wounded

should be transferred between two nodes by some nondescript vehicle of a particular type.
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The final advantage of the proposed HLVRP model is the fact that it considers hetero-

geneous vehicles, such that each vehicle may have a unique capacity, average travel speed,

and capabilities of traveling along certain roadways. The inclusion of this data provides a

more realistic representation of the problem, where many of the vehicles employed may be

donated from several sources.

Besides the above advantages, this model considers many VRP variants and humani-

tarian relief features and activities. While many of the individual features of the proposed

research effort have been considered in separate existing studies, this model aims to provide a

comprehensive unified model that incorporates multiple critical components of humanitarian

relief. These variants and features are explained in the next section.

4.2 Problem Description

The problem to be solved in this chapter deals with a logistic system in a post–disaster

network requiring coordination of commodity distribution from main distribution centers to

areas affected by a disaster, evacuation of wounded people from affected areas to the available

emergency centers, and transfer of workers from distribution centers to affected areas to

help in medication, evacuation, and repairing the damaged infrastructures. Each separate

affected area represents a demand node, where each demand node is characterized by a time

based demand for different commodities, such as bottled water, boxed food, medications,

and clothes. Commodities have different priority values based on their importance. Besides

the demand requested at each demand node, there are a number of wounded persons with

differing levels of injuries awaiting transfer to emergency centers or hospitals. To differentiate

among the different levels of injury (category), each is given a value of priority such that

more severe levels are given a higher value. Because, in the demand nodes, disasters cause

different levels of destruction and the number of affected people changes over time, different

types of workers are needed at each demand node. Accordingly, different numbers of workers

at a given time are requested at each demand node from different professions, such as doctors
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and nurses who are supposed to help in medication of wounded and electrical technicians

who help in repairing power lines.

Supplies and workers are picked up from the supply nodes to fulfill the requests that

sent from the demand nodes. Time–based supply for each type of commodity and worker

are available in the distribution centers which could be the available warehouses in the

affected areas, supply units constructed in pre–disaster planning, non–permanent warehouses

built immediately after a disaster, and shelters and tents donated by humanitarian agencies.

Despite the kind of supply places, each one is called a supply node.

The last type of node in a post–disaster network is the hospitals and emergency centers.

These nodes could be the already available hospitals in the area of the disaster or temporary

units constructed by humanitarian agencies after the disaster.

Heterogeneous vehicles are utilized to perform the demand distribution, worker transfer,

and wounded evacuation. It is assumed that each vehicle has its own capacity and speed,

starts from a depot (one of the supply nodes) and returns to the same depot at the end

of the planning period to start from there for the next plan. The logistic operations are

performed as follows. Each vehicle, based on its capacity and the availability of supplies and

workers, retrieves an amount of commodities and workers from its depot. The vehicle then

starts visiting demand nodes to distribute commodities and deliver workers. If sufficient free

space is available, a vehicle may pick up wounded people. After some visits, it has many

options such as going to a hospital to deliver the wounded and then to another depot to

reload, returning directly to another depot if it has no wounded, or returning to its origin

depot.

In some cases with special conditions, vehicles perform the logistic plans differently.

For example, if some depots have a high number of vehicles compared to others, vehicles

from these depots may go directly to the depots with low number of vehicles to pick up

supplies and/or workers and then start distribution. In another example, if the available

vehicle capacities exceed the available supplies, or if the priority of wounded evacuation is
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much higher than the demand distribution and work–force transfer, some vehicles may travel

empty to demand nodes to evacuate wounded.

Due to the limitation of supplies and transporters in a post–disaster situation, the goal

in this problem is to deliver as many commodities as possible, transfer as many workers as

possible, and evacuate as many wounded as possible. Thus, these minimizing the unsatisfied

demand, non–transfered workers, and non-evacuated wounded.

4.3 An Overview of the HLVRP Model

From the previous description, a mathematical model called HLVRP model, a mixed

integer program, is used to model a dynamic routing system. The HLVRP includes many

input sets. First, the time horizon set T , which is discretized into a set of integer periods with

equal length, where the duration of each depends on the situation and could be any time,

(e.g., 5 minutes, 30 minutes, 1 hours, 2 hours). This time horizon makes other parameters,

such as demands needed, available supplies, number of workers at each depot, and number

of wounded as time based parameters. Second, the set of wounded evacuee categories E

includes different qualitative values such as heavy, moderate, and light injuries. For fairness,

the priority of these categories is different, where more severe injuries have higher priority

values. Third, the set of vehicles, V , includes all vehicles in the system with different speeds

and capacities. Fourth, the set of commodities, C, contains all commodity types, such as

bottled water, boxed food, medications, and clothes. Fifth, the set of workers, W , defines

different professions of the work-force and volunteers, such as doctors, nurses, and first

responders. Sixth, the set of nodes N contains all nodes in the networks. This set includes

three sub–sets: supply nodes set S, demand nodes set D, and hospital nodes set H.

The given parameters are: starting depot for each vehicle, time needed to pass between

nodes by each vehicle, time based demand at each demand node from each type of commodity,

time based number of wounded for each level of injury at each demand node, time based

number of workers from each category (profession) requested by each demand node, time
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based supply from different commodities and available workers from each category at each

supply node, mass capacity for each vehicle, unit mass for each demand type, unit mass for

each worker and wounded, priorities for each demand type, priorities for each work-force

category, and priority for each wounded level.

After solving the model, each vehicle will be given a route and the following outputs

(decisions) given for the users. For each vehicle and time period, the number of commodities

of each type to be picked up from each supply node, the number of commodities of each

type to be delivered to each demand node, the number of wounded from each level to be

picked up from each demand node, the number of wounded from each level to be delivered

to each hospital node, the number of workers from each category to be picked up from each

supply node, and the number of workers from each category to be delivered to each demand

node will be determined. Accordingly, unsatisfied demand, non–evacuated wounded, and

undelivered workers can be determined

The HLVRP model considers many realistic features. First, the existence of multiple

depots, where each vehicle starts from a specific depot. Second, split deliveries are allowed,

such that each demand node can be supplied by different vehicles. Third, the HLVRP consid-

ers multiple commodity types, evacuee categories, and work–force professions. Fourth, the

HLVRP provides a detailed route for each vehicle including the nodes that must be visited,

the time to visit each node, demand quantities to be picked up and delivered, wounded to

be evacuated, and workers to be transfered. Finally, the proposed HLVRP model considers

heterogeneous vehicles, such that each vehicle may have a unique capacity, average travel

speed, and capabilities of traveling along certain roadways. Table 4.1 contrasts the previous

studies with this proposed model according to several key features.

Some assumptions are made in the HLVRP model for practical reasons. First, demand

nodes can not operate as transshipment nodes (i.e., excess supply can not be temporarily

stored at a demand node). This restriction is considered for the practical reason that it is

likely that any excess goods left at a demand node may be consumed (or even stolen) during
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the chaos of a humanitarian crisis. However, this assumption may be relaxed by modifying

some constraints.

Second, workers do not need to return to their starting locations. Instead, it is assumed

that they will remain stranded at their last destinations and begin from there on the following

day. In the event that it is necessary for each worker to return “home”, a constraint may

be added to the model, as discussed later. Third, because each vehicle starts from its depot

and can not revisit it, a vehicle can pick up commodities and workers from its depot only at

the first time period, but vehicles can pick up commodities and workers from other supply

nodes. Fourth, each vehicle should return back to its depot where a new plan could be given

for the next planning horizon.

To avoid any infeasible activity, many conditions must be satisfied through the model’s

constraints. First, a vehicle can not reach a node (i) before finishing the travel time on the

arc between its current node and node (i). Second, any vehicle that enters a node should also

leave that node which balances the vehicle flows. Third, the total picked up commodities

and workers from any supply node should be less than or equal to the available quantities.

Fourth, the total delivered commodities and workers to any demand node at any time period

should be less than or equal to the requested numbers. Fifth, vehicles must visit a node to

be able to pick up or deliver commodities, workers, or wounded.

Table 4.1: A comparison between the HLVRP model and the existing literature.

Multi Split Different Diff. Cap Multi Vehicles Multi-Time Work-force
Reference Commodity Delivery Speed Vehicle Depot Routing slots Evacuation Transfer

Ozdamar et al. (2004) X X X X
Yi and Kumar (2007) X X X X X X
Liu and Zhao (2007) X X X

Yi and Ozdamar (2007) X X X X X X
Campbell et al. (2008)
Yuan and Wang (2009)
Vitoriano et al. (2010) X X X X

Widener and Horner (2011) X X
Lin et al. (2011) X
Fei et al. (2011) X

HLVRP X X X X X X X X X
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4.4 Notations and Formulation

4.4.1 Notations

In this section, the notations employed by the model are defined. This model requires

the definitions of numerous parameters and decision variables, as described below.

• T : Set of discrete time periods in the planning horizon, T = {1, 2, 3, . . . |T |}.

• E: Set of different injury severity categories of evacuees (wounded people). For exam-

ple, E= {1: Heavy, 2: Moderate, 3: Light, . . .}.

• W : Set of worker categories. For example, W = {1 (doctors), 2 (nurses), 3, . . . , |W |}.

• V : Set of individual vehicles, V = {1, 2, 3, . . . |V |}.

• C: Set of commodity types C = {1, 2, 3, . . . |C|}.

• D: Set of demand nodes.

• S: Set of supply nodes.

• H: Set of available hospitals.

• N : Set of all nodes in the network, N = {D ∪ S ∪H}.

• iv: Initial depot of vehicle v ∈ V , where each depot is a supply node, i.e. all iv ∈ S.

• τvij: Integer time periods needed by vehicle v ∈ V to travel from node i ∈ N to node

j ∈ N .

• dEeit: Number of wounded persons, of category e ∈ E, requesting evacuation from node

i ∈ D at time t ∈ T .

• dWwit: Number of workers of category w ∈ W requested by node i ∈ D at time t ∈ T .

• dCcit: Amount of commodity type c ∈ C demanded at node i ∈ D by time t ∈ T .
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• sCcit: Amount of commodity type c ∈ C that can be supplied from node i ∈ S at time

t ∈ T .

• mC
c : Unit mass of commodity c ∈ C.

• mE
e : Average mass of an evacuee of category e ∈ E.

• sWwit: Number of workers of category w ∈ W that are available at node i ∈ S at time

t ∈ T .

• mW
w : Average mass of one worker of category w ∈ W .

• pWw : Priority of workers in category w ∈ W .

• mv: Mass capacity of vehicle v ∈ V .

• pCc : Priority of commodity type c ∈ C.

• pEe : Priority of wounded evacuees category e ∈ E.

Numerous decision variable types are required to provide the more detailed solutions

afforded by the HLVRP model. There are four main variable categories: pick–ups, deliveries,

deviations, and binary routing variables. The pick–up variables are used to define the picked

up quantities of supplies as in zPcivt, number of workers picked up from the supply nodes as in

wPwivt, and the number of wounded evacuated from the demand nodes as in ePeivt. Similarly,

the delivery variables define the demand deliveries as in zDcivt, workers delivered to demand

nodes as in wDwivt, and the number of wounded delivered to each hospital as in eDeivt.

The deviation variables depend on the values of picked up and delivery variables. There

are three groups of the deviation variables. First, the demand deviation variables vCcit are

defined, at each demand node and time, as the demand requested minus the total value

of demand delivery variables to that node by that time. Second, worker–force deviation

variables vWwit are defined, at each demand node and time, as the number of workers requested

by that node minus the total value of work–force delivery variables to that node by the same
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time. Third, the evacuation deviation variables vEeit are defined, at each demand node and

time, as the number of wounded request evacuation by that node minus the total value of

wounded picked up variables from that node by the same time.

Finally, binary variables define the vehicle routes and relate to other variables using

big–M constraints, such that the picked up and delivery variables for each vehicle can take

values greater than zero only if a particular binary variable is equal to one. This is discussed

more clearly after the model is formulated. All of these variables are listed below:

• zDcivt: Quantity of commodity type c ∈ C delivered to node i ∈ D at time t ∈ T by

vehicle v ∈ V , where zDcivt ∈
{

0, 1, . . . ,min

{
dCcit,

mv

mC
c

}}
• zPcivt: Quantity of commodity type c ∈ C picked up from node i ∈ S at time t ∈ T by

vehicle v ∈ V , where zPcivt ∈

0, 1, . . . ,min


∑
s∈T
s≤t

sCcis,
mv

mC
c




• vCcit: Amount of unsatisfied demand of commodity type c ∈ C at node i ∈ D at time

t ∈ T , where vCcit ∈
{

0, 1, . . . , dCcit
}

• vEeit: Number of evacuees of category e ∈ E that requested transportation from node

i ∈ D at time t ∈ T but were not transfered, where vEeit ∈
{

0, 1, . . . , dEeit
}

• vWwit: Number of workers of category w ∈ W requested by node i ∈ D at time t ∈ T

but were not satisfied, where vWwit ∈
{

0, 1, . . . , dWwit
}

• eDeivt: Number of evacuees of category e ∈ E transfered (delivered) to node i ∈ H at

time t ∈ T by vehicle v ∈ V , where eDeivt ∈
{

0, 1, . . . ,
mv

mE
e

}
• ePeivt: Number of evacuees of category e ∈ E transfered (picked up) from node i ∈ D

at time t ∈ T by vehicle v ∈ V , where ePeivt ∈
{

0, 1, . . . ,min

{
dEeit,

mv

mE
e

}}
• wDwivt: Number of workers of category w ∈ W (e.g., nurses or doctors) transfered (deliv-

ered) to node i ∈ D at time t ∈ T by vehicle v ∈ V , where wDwivt ∈
{

0, 1, . . . ,min

{
dWwit,

mv

mW
w

}}
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• wPwivt: Number of workers of category w ∈ W transfered (picked up) from node i ∈ S

at time t ∈ T by vehicle v ∈ V , where wPwivt ∈
{

0, 1, . . . ,min

{
sWwit,

mv

mW
w

}}
• xvijt: A binary variable, such that xvijt = 1 if vehicle v ∈ V arrives at node j ∈ N ,

coming from node i ∈ N, i 6= j, at time t ∈ T ; xvijt = 0 otherwise.

4.4.2 The HLVRP Formulation

In this section, a mathematical formulation of the HLVRP is presented, as follows

Min
∑
c∈C

∑
i∈D

∑
t∈T

pCc vCcit +
∑
e∈E

∑
i∈D

∑
t∈T

pEe vEeit +
∑
w∈W

∑
i∈D

∑
t∈T

pWw vWwit (4.1)

∑
i∈N

∑
j∈N
j 6=i

xvijt ≤ 1 ∀ v ∈ V, t ∈ T (4.2)

∑
j∈N
j 6=iv

∑
t∈T

xvivjt = 1 ∀ v ∈ V (4.3)

∑
j∈N
j 6=iv

∑
t∈T

xvjivt = 1 ∀ v ∈ V (4.4)

∑
i∈N
i 6=j

∑
t∈T

xvijt ≤ 1 ∀ v ∈ V, j ∈ N (4.5)

∑
i∈N

∑
t∈T

t xvijt ≤
∑

k∈N\iv

∑
t∈T

(t− τjkv)xvjkt ∀ v ∈ V, j ∈ N (4.6)

∑
i∈N\iv
i 6=j

∑
t∈T

xvijt =
∑
i∈N\iv

∑
t∈T

xvijt ∀ v ∈ V, j ∈ N (4.7)

∑
i∈N

∑
j∈N
i 6=j

∑
t∈T

τijv xvijt ≤ |T | ∀ v ∈ V (4.8)

∑
s∈T
s≤t

vCcis =
∑
s∈T
s≤t

dCcis −
∑
v∈V

∑
s∈T
s≤t

zDcivs ∀ c ∈ C, i ∈ D, t ∈ T (4.9)

∑
s∈T
s≤t

vEeis =
∑
s∈T
s≤t

dEeis −
∑
v∈V

∑
s∈T
s≤t

eDeivs ∀ e ∈ E, i ∈ D, t ∈ T (4.10)
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∑
s∈T
s≤t

vWwis =
∑
s∈T
s≤t

dWwis −
∑
v∈V

∑
s∈T
s≤t

wDwivs ∀ w ∈ W, i ∈ D, t ∈ T (4.11)

∑
s∈T
s≤t

∑
i∈S

zPcivs ≥
∑
s∈T
s≤t

∑
j∈D

zDcjvs ∀ v ∈ V, c ∈ C, t ∈ T (4.12)

∑
s∈T
s≤t

∑
i∈D

ePeivs ≥
∑
s∈T
s≤t

∑
j∈E

eDejvs ∀ v ∈ V, e ∈ E, t ∈ T (4.13)

∑
s∈T
s≤t

∑
i∈S

wPwivs ≤
∑
s∈T
s≤t

∑
j∈D

wDwjvs ∀ v ∈ V, w ∈ W, t ∈ T (4.14)

∑
v∈V

zPcivt ≤
∑
s∈T
s≤t

sCcis −
∑
s∈T
s≤t−1

∑
v∈V

zPcivt ∀ c ∈ C, i ∈ S, t ∈ T (4.15)

∑
v∈V

ePeivt ≤ dEeit ∀ e ∈ E, i ∈ D, t ∈ T (4.16)

∑
v∈V

wPwivt ≤
∑
s∈T
s≤t

sWwis −
∑
s∈T
s≤t−1

∑
v∈V

wPwivs ∀ w ∈ W, i ∈ S, t ∈ T (4.17)

mv ≥
∑
a

∑
s∈T
s≤t

∑
i∈S

mC
c zPcivs +

∑
e∈E

∑
s∈T
s≤t

∑
i∈D

mE
e ePeivs

+
∑
winW

∑
s∈T
s≤t

∑
i∈S

mW
w wPwivs −

∑
c∈C

∑
s∈T
s≤t

∑
i∈D

mC
c zDcivt

−
∑
e∈E

∑
s∈T
s≤t

∑
i∈H

mE
e eDeivs −

∑
w∈W

∑
s∈T
s≤t

∑
i∈D

mW
w wDwivs ∀ v ∈ V, t ∈ T (4.18)

∑
i∈D

∑
t∈T

∑
v∈V

ePeivt =
∑
i∈H

∑
t∈T

∑
v∈V

eDeivt ∀ e ∈ E (4.19)

∑
c∈C

zDcivt ≤M4.20

∑
j∈N

xvjit ∀ i ∈ D, v ∈ V, t ∈ T (4.20)

∑
c∈C

zPcivt ≤M4.21

∑
j∈N

xvjit ∀ c ∈ C, i ∈ S\iv, v ∈ V, t ∈ T (4.21)

zPcivvt = 0 ∀ c ∈ C, v ∈ V, t ∈ T\t = 1 (4.22)∑
e∈E

eDeivt ≤M4.23

∑
j∈N

xvjit ∀ e ∈ E, i ∈ H, v ∈ V, t ∈ T (4.23)

∑
e∈E

ePeivt ≤M4.24

∑
j∈N

xvjit ∀ e ∈ E, i ∈ D, v ∈ V, t ∈ T (4.24)
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∑
w∈W

wDwivt ≤M4.25

∑
j∈N

xvjit ∀ w ∈ W, i ∈ D, v ∈ V, t ∈ T (4.25)

∑
w∈W

wPwivt ≤M4.26

∑
j∈N

xvjit ∀ w ∈ W, i ∈ S\iv, v ∈ V, t ∈ T (4.26)

wPcivvt = 0 ∀ w ∈ W, v ∈ V, t ∈ T\t = 1 (4.27)

The objective function (4.1), seeks to minimize the quantities of unsatisfied demand,

unserved wounded, and non-transfered workers. Each of these quantities are scaled by their

respective priority values. There are 26 constraint sets: Constraints (4.2) ensure that each

vehicle may serve only one node at a given time, whereas Constraints (4.3) ensure that

each vehicle starts from its initial depot. To ensure that each vehicle will return to its initial

depot after finishing its route and it can not leave the depot again, Constraints (4.4) are used.

Constraints (4.5) prevent each vehicle from visiting any node more than once. To maintain

feasibility of routes, Constraints (4.6) are used ensure that each vehicle can not reach any

node before finishing the arc between the previous and the current nodes, Constraints (4.7)

are used to balance flow for each demand node, so each vehicle should enter and leave each

node the same number of times. Constraints (4.8) restrict each vehicle’s route by the total

time available for that vehicle.

Constraints (4.9), (4.10), and (4.11) define the deviation variables, such that Constraints

(4.9) address unsatisfied demand, Constraints (4.10) address non–evacuated wounded, and

Constraints (4.11) consider undelivered workers. To maintain control of quantities in each

vehicle, Constraints (4.12) restrict the quantity of commodities that may be delivered to

demand nodes by the quantity that are picked up from supply nodes. Similarly, constraints

(4.13) and (4.14) restrict the number workers delivered to demand nodes and the number of

wounded delivered to hospitals by the number picked up by each vehicle.

Constraints (4.15), (4.16), and (4.17) restrict the supply and transfer at each time.

Constraints (4.15) ensure that each supply node can provide quantities not exceeding the

available supply for each type. Constraints (4.16) limit the number of assisted wounded to

50



be no more than the number waiting at a particular demand node. In the same manner,

Constraints (4.17) ensure that the number of workers dispatched from any supply node

does not exceed the actual number of available workers. Vehicle capacity limitations are

included in constraints (4.18), while constraints (4.19) ensure that wounded persons should

be transferred from demand nodes to hospital nodes.

Constraints (4.20)–(4.27) ensure that all distribution and transfer variables have a value

for any node only if a vehicle visits that node; such that Constraints (4.20) ensure that the

delivered quantity from a vehicle to a demand node can be greater than zero only if the

vehicle visits that node. Constraints (4.21) ensure that the quantity picked up from a supply

node by a vehicle can be greater than zero only if the vehicle visits that node. Constraints

(4.22) require that each vehicle can pick up commodities from its depot at time zero but

not later. Constraints (4.23) ensure that a vehicle can deliver wounded to a hospital only if

it visits that hospital. For wounded pick–ups, Constraints (4.24) ensure that a vehicle can

retrieve wounded from a demand node only if it visits that node. Constraints (4.25) allow a

vehicle to deliver workers to a demand node only if it visits that node. Similarly, Constraints

(4.26) allow a vehicle to pick up workers from a supply node if it visits that node. Finally,

Constraints (4.27) ensure that each vehicle can pick up workers from its depot only at the

first time period. Because vehicles can leave their depots just once, both Constraints (4.27)

and (4.22) are used for the same purpose, which is to allow vehicles to pick up commodities

or workers only at the first time.

On of the assumptions discussed before is that workers do not need to return to their

starting locations. In the event that it is necessary for each worker to return “home”,

Constraints 4.28 may be added.

∑
v∈V

∑
t∈T

wPwivt =
∑
v∈V

∑
t∈T

wDwjvt ∀i ∈ S. (4.28)
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The big–M values in constraints (4.20), (4.21), and (4.23)–(4.26) may be calculated as

follows. The definitions of these values have an abuse of notation such that the M values

should be defined for each combination of indices, (e.g., M ivt
4.20), but for simplicity, it is defined

without indices (e.g., M4.20).

M4.20 =min

{
dCcit,

mv

mC
c

}
∀ i ∈ D, v ∈ V, t ∈ T

M4.21 =min


∑
s∈T
s≤t

sCcis,
mv

mC
c

 ∀ c ∈ C, i ∈ S\iv, v ∈ V, t ∈ T

M4.23 =
mv

mE
e

e ∈ E, i ∈ H, v ∈ V, t ∈ T

M4.24 =min

{
dEeit,

mv

mE
e

}
∀ e ∈ E, i ∈ D, v ∈ V, t ∈ T

M4.25 =min

{
dWwit,

mv

mW
w

}
∀ w ∈ W, i ∈ D, v ∈ V, t ∈ T

M4.26 =min

{
sWwit,

mv

mW
w

}
∀ w ∈ W, i ∈ S\iv, v ∈ V, t ∈ T

By defining each value separately, the bounds of the linear program (LP) relaxation may be

improved, thus (potentially) saving computational effort.

In the next section, an example verifies this model and demonstrates how the solution

represents a detailed plan.

4.5 Model Verification by Example

A small problem is presented to demonstrate the benefits of the proposed HLVRP

formulation and to show how the results are understandable and easy to apply. This example

includes 12 time periods (15 minutes each), 3 demand nodes, 2 supply nodes, 1 hospital

node, 2 commodity types, 1 wounded category, 1 worker category, and 3 vehicles. Table 4.2

contains the commodity demand data over the planning horizon, while Table 4.3 contains the
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commodity supply data over the planning horizon. Available and requested numbers of relief

workers are summarized in Table 4.4. Similarly, Table 4.5 shows the number of wounded

requiring evacuation. Finally, Table 4.6 shows other parameter values which are the starting

node for each vehicle (iv), vehicle capacities (mV
v ), unit mass of each commodity type (mC

c ),

wounded and worker average mass (mE
e , m

W
w ), commodity priorities (pCc ), wounded priority

(pEe ), and worker priority (pWw ), respectively.

Table 4.2: Demand data, dccit

Demand Time
Node Type 1 2 3 4 5 6 7 8 9 10 11 12

1 1st type 0 0 60 85 96 0 100 0 0 120 0 0
2nd type 0 0 100 100 30 0 110 0 180 0 0 0

3 1st type 0 0 30 100 0 0 195 0 165 66 0 0
2nd type 0 0 100 200 0 100 0 120 0 30 0 0

4 1st type 0 0 0 36 112 0 100 0 120 0 0 0
2nd type 0 0 140 0 112 0 100 200 0 130 0 0

Table 4.3: Supply data, sccit

Demand Time
Node Type 1 2 3 4 5 6 7 8 9 10 11 12

2 1st type 400 0 0 60 0 100 0 60 0 0 0 0
2nd type 230 0 0 0 300 0 0 0 0 0 0 0

6 1st type 400 0 0 60 0 100 0 60 0 0 0 0
2nd type 566 0 0 220 0 68 0 0 0 0 0 0

Table 4.4: Available and needed workers, sWwit and dWwit

Time
Node Type 1 2 3 4 5 6 7 8 9 10 11 12

1 Requested 0 1 4 3 5 2 1 4 3 2 2 0
2 Available 6 0 2 0 0 4 0 0 1 0 0 0
3 Requested 0 2 3 1 6 5 5 2 0 2 0 0
4 Requested 0 1 3 3 2 0 2 5 3 2 3 0
6 Available 8 0 0 2 0 0 0 3 0 0 0 0
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Table 4.5: Wounded awaiting evacuation, dEeit

Time
Node 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 4 2 1 1 0 1 1 0 0 0
3 0 6 4 1 8 0 5 0 1 0 0 0
4 0 0 7 0 4 0 4 0 1 0 0 0

Table 4.6: Parameter values

Parameter Values

Vehicle depots iv [2, 2, 6]

Vehicle capacities (lb) mV
v [1400, 1000, 1100]

Commodity mass (lb) mC
c [1.5, 2]

Wounded and worker mass mW
w , mE

e 200

Commodity priorities pCc [5, 10]

Evacuee priority pEe 160

Worker priorities pWw 100

4.5.1 Example Results

The deviation variable results of this example are shown in Tables 4.7–4.9. These vari-

ables are: unsatisfied demand of commodity type 1 (vC1it), unsatisfied demand of commodity

type 2 (vC2it), undelivered workers (vWwit), and unserved wounded (vEeit). Route variables xvijt,

which are used to construct the route for each vehicle, are shown in Table 4.10. To make

the solution of this example easier to understand, it is depicted graphically in Figure 4.1.

Table 4.7: Unsatisfied demand (commodity deviation values), vCcit

Unsatisfied Time
Node Demand 1 2 3 4 5 6 7 8 9 10 11 12

1 1st type 0 0 0 85 96 0 100 0 0 120 0 0
2nd type 0 0 0 100 30 0 110 0 0 0 0 0

3 1st type 0 0 30 7 0 0 195 0 165 66 0 0
2nd type 0 0 50 170 0 100 0 120 0 30 0 0

4 1st type 0 0 0 36 112 0 0 0 120 0 0 0
2nd type 0 0 140 0 112 0 0 0 0 130 0 0
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Table 4.8: Non–evacuated wounded (wounded deviation values), vEeit

Time
Node 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 2 1 1 0 1 1 0 0 0
3 0 6 3 0 5 0 5 0 1 0 0 0
4 0 0 7 0 0 0 0 0 1 0 0 0

Table 4.9: Undelivered workers (worker–force deviation values), vWwit

Time
Node 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 3 3 5 2 1 4 0 2 2 0
3 0 2 0 1 1 5 5 2 0 2 0 0
4 0 1 3 1 2 0 2 2 3 2 3 0

Table 4.10: Vehicle routes

Vehicle Route, times are listed below
1 depot → 3 → 4 → hospital → depot

t=1(8:00) t=5(9:15) t=7(9:45) t=9(10:15) t=12(11:00)
2 depot → 1 → 3 → hospital → resupply → 4 → depot

t=1(8:00) t=3(8:45) t=4(9:00) t=5(9:15) t=6(9:30) t=8(10:00) t=12(11:00)
3 depot → 3 → 4 → hospital → resupply → 1 → depot

t=1(8:00) t=3(8:45) t=4(9:00) t=5(9:15) t=6(9:30) t=9(10:15) t=12(11:00)
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(a) Problem Data. (b) Vehicle 1 route with its logistic plan.

(c) Vehicle 2 route with its logistic plan. (d) Vehicle 3 route with its logistic plan.

Figure 4.1: Detailed logistic plan for all vehicles

As indicated, the HLVRP provides a full detailed and realistic logistic plan which is easy

to apply. For each vehicle, the plan includes the quantities which should be picked up, where

they should be delivered, the number of wounded, and where workers should be transfered

at each time.

4.6 Solution Approaches

As an extension of the CVRP, it is clear that the HLVRP represents an NP-hard problem.

It is particularly challenging because it requires the determination of vehicle routes and

delivery quantities that might not meet demand. Additionally, decisions must be made
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regarding whether to visit a particular hospital, the number of workers to transport, and the

number of wounded to evacuate. Although small-scale problems may be solved optimally via

CPLEX, larger-scale problems require the use of customized heuristic approaches to obtain

high-quality solutions.

The proposed heuristic depends on taking advantage of the model’s inherent consider-

ation of individual vehicle routes. Thus, the solution approach will be rooted in a valid,

realistic, and complete mathematical model. The first phase will consist of a heuristic vehi-

cle route construction procedure. Preliminary testing indicates that, given a set of vehicle

routes, the resulting integer programming problem can be solved surprisingly quickly (i.e.,

in a few seconds) using CPLEX. The CPLEX solution would provide quantities of com-

modities, wounded, and workers (again, for a fixed set of vehicle assignments). An iterative

procedure will be applied to generate different vehicle routes at each iteration via changing

some parameters. Then different local search techniques are used to improve the routes, as

discussed later in this section.

4.6.1 Heuristic Description

In this subsection, the proposed heuristic is described. The new notations are defined

as follows:

• Routev is a route for a vehicle v which is constructed from the variables xvijt and is

used to facilitate the coding. For example, if a vehicle route is [2, 3, 6, 8, 2], this

means the vehicle starts from node 2 and visits 3, 6, and 8, before returning to node

2. The vehicle does not visit any nodes not shown in this array. A function exists to

convert between Routev and xvijt. This function is the Binaries-Route and shown in

Algorithm 1 in the next point.

• RouteTv is a row array of the same size as Routev which contains the time to reach each

node. Function Binaries-Route in Algorithm 1 shows how Routev and RouteTv are

generated from the binary variables.
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Algorithm 1: Binaries-Route converter

1: Set k = current selected vehicle

2: Set counter = 2

3: Set Routek(1) = ik // starting point is the current vehicle’s depot

4: Set RouteTk (1) = 1 // starting time

5: for all t ∈ T do

6: for all i ∈ N do

7: for all j ∈ N\i do

8: if xkijt = 1 then

9: Routek(counter) = j

10: RouteTk (counter) = t

11: counter = counter + 1

12: Set i, j > |N | Skip loops, impossible to find other visit at the same time.

13: end if

14: end for

15: end for

16: end for

• current is a holder used to save the current location for a vehicle. It changes dynami-

cally during the process.

• sortD is a two dimensional array of size |T | × |D| which contains the demand nodes

sorted in descending order at each time based on their importance value. The element

sortD(t, i) represents the ith demand node at time t. For example, if the importance

values for 5 demand nodes at time t are [1000, 800, 3000, 2100, 1450], then the tth row

from sortD is [3, 4, 5, 1, 2] so the element sortD(t, 1) = 3. In other words, node 3
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is placed in the first place because it has the highest preference to be visited by the

current selected vehicle.

• sortS is a two dimensional array of size |T | × |S| which contains the supply nodes

sorted in descending order at each time based on their importance value. The element

sortS(t, i) represents the ith supply node at time t.

• sortH is a two dimensional array of size |T | × |H| which contains the hospital nodes

sorted in descending order at each time based on their importance value. The element

sortH(t, i) represents the ith supply node at time t.

• AvgD is a scalar quantity which represents the average commodity and worker masses

requested by the demand nodes for the whole time horizon. It can be mathematically

calculated as

AvgD =

∑
c∈C
∑

i∈D
∑

t∈T (dCcit ×mC
c ) +

∑
w∈W

∑
i∈D
∑

t∈T (dWwit ×mW
w )

|T | × |D|

• α is a random integer which represents the number of demand nodes that should be

visited by a vehicle v before it ends the trip and goes to a hospital or supply node. It

is randomly selected from a set of integer values, a set which is created based on the

vehicle capacity and node demands. Mathematically, α can be represented as follows

α ∈
[⌊

mv

d× AvgD
+ 0.5

⌋
− 2,

⌊
mv

d× AvgD
+ 0.5

⌋
+ 2

]
. (4.29)

Selecting a high number for α, i.e. 8 nodes in the previous example, could result

in useless visits such as visiting some nodes while the vehicle is empty. In contrast,

visiting a low number of demand nodes could force the vehicle to resupply or go to a

hospital while it has some undelivered commodities and workers. d is the percentage

of the demand and workers requested expected to be delivered each time the vehicle

visits a demand node. Portion of 70% is selected as a value of d because it has been

noticed that in many instances, vehicles try to visit demand nodes where 70% of their
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needs can be supplied. This helps minimize the deviation variables which is the model

objective.

For example, in a data instance, if AvgD is 600 lb and the capacity of a vehicle is 1600,

assuming vehicle supplies 70% of node demands each time it visits a node (d = 0.7), this

means vehicle v can supply 1600 / (0.7*600) = 3.8 nodes. In this case, α is randomly

selected from an interval that has a center value of 3.8 (rounded to the closest integer

which is 4) nodes. Based on equation 4.29, the interval equals to [2 nodes, 6 nodes].

The value of α is randomly selected from this interval at each time the vehicle v leaves

a supply node and begins distribution.

• tnow is the current time of the selected vehicle which is used to test the feasibility of

any visit done by the vehicle. This time is incremented at each visit but not between

visits. For example, one of the feasibility conditions is to test if tnow + τv,current,i = t,

where i is a node that the vehicle tries to visit. At the beginning, tnow = t = 1, if the

first visit to node i can be made at time 4 because τv,current,i = 3, tnow is kept at a

value of 1 while the value of t incremented to 2, 3, and 4. At time 4, the visit is done

and the value of tnow is updated to 4.

• ξsup is a counter used to keep track of the number of supply nodes which are visited

by a vehicle. It is incremented by 1 each time the vehicle visits a supply node during

the heuristic process.

• ξdem is a counter used to keep track of the number of demand nodes visited by a vehicle.

It is incremented by 1 each time the vehicle visits a demand node during the heuristic

process.

• ξhos is a counter used to keep track of the number of hospital nodes visited by a vehicle.

It is incremented by 1 each time the vehicle visits a hospital.

• β is a number selected randomly from the set [1, 2] selected randomly after a vehicle

finishes visiting α demand nodes, such that β = 1 means that the current vehicle must
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visit a supply node on the next step while β = 2 means the vehicle must visit a hospital

next.

• PTD is a two dimensional array, where the element PTD(t, i) represents the prioritized

demand requested, workers needed, and wounded awaiting help at node i ∈ D at time

t ∈ T . It can be calculated as

PTD(t, i) =
∑
c∈C

dCcit p
C
c +

∑
e∈E

dEeit p
E
e +

∑
w∈W

dWwit p
W
w . (4.30)

The whole array appears as follows

PTD(t, i) =



PTD(1, 1), PTD(1, 2), . . . PTD(1, |D|)

PTD(21), PTD(22) . . . PTD(2, |D|)

. . . , . . . , . . . . . .

PTD(|T |, 1), PTD(|T |, 2), . . . PTD(|T |, |D|)


.

• PT S is a two dimensional array, where the element PT S(t, i) represents the prioritized

available supply and workers at node i ∈ S at time t ∈ T . It can be calculated as

PT S(t, i) =
t∑

k=2

{∑
c∈C

sCcik p
C
c +

∑
w∈W

sWwik p
W
w

}
(4.31)

In demand nodes, prioritized demand is calculated at each time by using the demand,

wounded, and workers at that time. For supply nodes, because picking up workers

and supplies left from previous periods is allowed, prioritized supply is calculated cu-

mulatively excluding the first time period. In the first time period, vehicles pick up

workers and supplies from their depots, so the information about prioritized supply val-

ues at that time is not known. This justifies its exclusion from the prioritized supply

calculation. The whole array is given by
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PT S(t, i) =



PT S(1, 1), PT S(1, 2), . . . PT S(1, |S|)

PT S(2, 1), PT S(2, 2) . . . PT S(2, |S|)

. . . , . . . , . . . . . .

PT S(|T |, 1), PT S(|T |, 2), . . . PT S(|T |, |S|)


.

• IM v is a two dimensional array which contains the importance values, IM v(t, i), of

node i ∈ N at each time t ∈ T for vehicle v. This array is calculated for each vehicle at

the beginning of the solution approach and is updated each time the vehicle changes its

location. Importance is not constant and is a function of the selected vehicle, current

location, PT S, and PTD. This array looks like:

IM v =



IM v(1, 1), IM v(1, 2), . . . IM v(1, |N |)

IM v(2, 1), IM v(2, 2), . . . IM v(2, |N |)

. . . , . . . , . . . . . .

IM v(|T |, 1), IM v(|T |, 2), . . . IM v(|T |, |N |)


.

• Z∗ is the incumbent objective value, initialized to be ∞.

• ZB∗ is an array which contains all variables associated with the incumbent objective

value such that

ZB∗ =



zDcivt ∀c ∈ C, i ∈ D, v ∈ V, t ∈ T

zPcivt ∀c ∈ C, i ∈ S, v ∈ V, t ∈ T

vCcit ∀c ∈ C, i ∈ D, t ∈ T

vWwit ∀w ∈ W, i ∈ D, t ∈ T

vCcit ∀e ∈ E, i ∈ D, t ∈ T

eDeivt ∀e ∈ E, i ∈ H, v ∈ V, t ∈ T

ePeivt ∀e ∈ E, i ∈ D, v ∈ V, t ∈ T

wDwivt ∀w ∈ W, i ∈ D, v ∈ V, t ∈ T

wPwivt ∀w ∈ W, i ∈ S, v ∈ V, t ∈ T

xvijt ∀i ∈ N, j ∈ N\i, v ∈ V, t ∈ T



.
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• Xbvijt is a four dimensional array which contains all binary variable values xbvijt ∀i ∈

N, j ∈ {N\i}, and t ∈ T associated with the best solution ZB∗, so, it contains the

last row of matrix ZB∗ .

• Z is the objective function value of the current candidate solution.

• ZC is an array which contains all variables associated with the current objective func-

tion value. It looks similar to ZB∗ but is associated with the current solution.

• XCvijt: is a sub–array from ZC which contains only the binary variables associated

with the current objective function value, XCvijt = xcvijt ∀i ∈ N, j ∈ {N\i}, t ∈ T .

• Pv is the performance of a vehicle v ∈ V which equals the total mass of commodities,

workers, and wounded picked up by v during the whole logistic plan, as in equation

4.32

Pv =
∑
t∈T

{∑
i∈S

∑
c∈C

mC
c z

P
civt +

∑
i∈D

∑
e∈E

mE
e e

P
eivt +

∑
i∈S

∑
w∈W

mW
w w

P
wivt

}
(4.32)

• BPv is the best performance achieved by vehicle v ∈ V . It is initialized to zero for all

vehicles.

• Xbvvijt is a four dimensional array which contains all binary variable values xbvvijt ∀i ∈

N, j ∈ {N\i}, and t ∈ T associated with the best performance achieved by each

vehicle.

The difference between Xbvvijt and Xbvijt is that Xbvvijt used to save the best binary

values for each vehicle individually, (i.e., the best binaries for vehicles might come

from different solutions and iterations and they only depend on the performance of the

vehicle). Conversely, Xbvijt is used to save the best binaries for a complete solutions

from a single iteration, depending on the performance of all vehicles together.

• XI initialvijt is a four dimensional array which contains all binary variable values xivijt ∀i ∈

N, j ∈ {N\i}, and t ∈ T . This array is used as a starting solution for the local search
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and can take different values based on the type of local search. Local search with initial

solutions are further explained later in this section.

• ϕ is a number, ϕ ∈ [0, 1, 2, 3], set by the user before the code is run to specify some

inputs for the local search where 0 is used when local search is not required, 1 is used

for (A) variants of local search, 2 is used for (I) variants of local search, and 3 is used

for (B) variants of local search. All of these types are explained later in this section.

This approach begins with calculating the prioritized demand for each demand node and

the prioritized supply for each supply node. In the case of demand nodes, the prioritized

demand is found based on the demand needed, workers requested, and wounded evacuees

who need help, as in equation 4.30. For supply nodes, the prioritized supply is determined

by cumulative available supply and workers, as in equation 4.31.

Next, the set of vehicles is randomly partitioned into two sets, large (V 1) and small

(V 2), where the number of vehicles in the larger set is about 70% of the total number. The

reason of selecting the 70% for the larger set is discussed later. In the larger set, a vehicle is

randomly selected, and the importance for all nodes is calculated depending on node type,

the selected vehicle, and its current place which is initially its depot. In the case of hospital

nodes, vehicles visit closer hospitals, so importance values of hospitals are independent of

the node type and they are mainly dependent on the distance from the current node.

The selected vehicle moves to the most beneficial demand node (i.e., the demand node

with the highest importance value), given that the node has not yet been visited by the

vehicle. After a specific random number of demand nodes α, the vehicle visits the most

beneficial (important) supply node or hospital based on the β value. If the vehicle decides to

visit a hospital, it goes afterwards to a supply node to be replenished, then visits a new value

of α demand nodes. On the other hand, if it visits a supply node, it goes on to visit a new

set of α demand nodes. This procedure is repeated until the end of the time horizon. Each

time a node is visited, its importance is decreased to avoid being revisited by other vehicles

in the same time period unless its importance justifies multiple visits. This procedure is
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continued until all vehicles in the larger group have been selected. At the end of the time

horizon for each vehicle, binary variables are known and set to 0 or 1.

In the smaller set of vehicles (V 2), best binary variables are set to be the current values

except the first iteration where no history is available. Vehicles in this set are treated as

the vehicles in the larger set. To determine the best binary variable values for each vehicle

at the end of each iteration, the total mass of commodities, wounded, and workers picked

up by the vehicle is measured; higher mass indicates a better route because this means the

vehicle works more efficiently by picking up more commodities, wounded, and/or workers.

If the current measure is improved, it is saved as the best performance for this vehicle and

binary variables are saved as best binaries.

The selection of 70% of the vehicles to be in the larger group is justified as follows.

All the vehicles are working in parallel such that one route could affect other routes and

the best routes for the vehicles are created within different complete solutions from different

iterations where each solution includes routes for all vehicles. Within the same solution,

vehicles have no conflicts such as an important node being visited by two vehicles at the

same time while other important nodes are available for visit by that time. This is because

the suggested approach prevents conflicts from happening, as the prioritized demand value

for visited demand nodes is dropped down. However, the best routes could have some

conflicts because they are produced from different solutions. Therefore, selecting many best

routes to create a new complete solution could have some conflicts that affect the objective

negatively. Accordingly, in the smaller vehicle group (V 2), the best route for each vehicle,

achieved in previous iterations is selected to be the current route to take advantage of good

inherited history. Preliminary results show that increasing the number of vehicles in (V 2)

can worsen results; this why is the smaller group is set to the best routes while routes are

constructed in the larger group.

When all binary variables are set using the construction function or selected from the

best history, the model is solved optimally in CPLEX where the binaries are set to zeros and
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ones. The model is solved with CPLEX-Concert technology to determine the other variable

values such as quantities picked up, quantities delivered, worker assignments, and wounded

evacuation.

Iterations end when the termination criterion is met. Many termination criteria can be

used, including the total memory used, processing time, number of iterations, and number

of iterations without improvement. In this research, time limit is selected in the numerical

analysis because it is easier for users to set based on an actual situation.

The pseudo code of this heuristic is provided in Algorithm 2.

Algorithm 2: Main Heuristic

1: Define the termination criterion

2: Set ϕ ∈ [0, 1, 2, 3]

3: Initialize incumbent Z∗ =∞

4: itr = 1 //Iterations counter

5: BPv = 0 ∀ v ∈ V

6: while Termination criterion not met do

7: Calculate the prioritized demand for all demand nodes, as PTD(t, i) =
∑
c∈C

dCcit p
C
c +∑

e∈E

dEeit p
E
e +

∑
w∈W

dWwit p
W
w ∀i ∈ D, t ∈ T

8: Calculate the cumulative prioritized supply for all supply nodes, as PT S(t, i) =
t∑

k=2

∑
c∈C

sCcik p
C
c +

t∑
k=2

∑
w∈W

sWwik p
W
w ∀i ∈ S, t ∈ T .

9: Randomly divide vehicle set V into 2 groups, V 1 and V 2

10: Reorder v ∈ V 1 and v ∈ V 2 to be randomly sequenced.

11: for all v ∈ V 1 do

12: xvijt = 0 ∀i, j ∈ N\i, t ∈ T // Initialization and clear any 1 values from previous

iterations

13: current = iv // Set current location to the depot of the selected vehicle
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14: Calculate time-based importance for all nodes, such that

15: IM v = Importance
(
v, current,N, PT S, PTD

)
16: Construct the route (Set the binary variables), xvijt ∀i, j ∈ N, i 6= j, t ∈ T =

Construction(IM v, v)

17: end for

18: for all v ∈ V 2 do

19: if itr == 1 then //first iteration, no history is available

20: current = iv //Set current location to the depot of the selected vehicle

21: Calculate the importance for all nodes, such that

22: IM v = Importance
(
v, current,N, PT S, PTD

)
23: Specify the binary variables, xvijt ∀i, j ∈ N, i 6= j, t ∈ T = Construction(IM v, v)

24: end if

25: if itr ≥ 2 then

26: Use the binary variables associated with the best route as current variables, xvijt =

xbvvijt ∀i ∈ N, j ∈ N\i, t ∈ T

27: end if

28: end for

29: Binary variable values = Construction function output or set from history

30: Solve the model using CPLEX// CPLEX determines variable values except xvijt, out-

put Z and ZC

31: if Z ≤ Z∗ then

32: Z∗ = Z

33: Save the new solution ZB∗ = ZC

34: end if

35: for all v ∈ V do

36: Pv =
∑
i∈D

∑
t∈T

∑
w∈W

mW
w w

D
wivt +

∑
i∈D

∑
t∈T

∑
e∈E

mE
e e

P
eivt +

∑
i∈D

∑
t∈T

∑
c∈C

mC
c z

D
civt

37: if Pv ≥ BPv then // Performance improved
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38: Save the current binary variable values of v as best values, xbvvijt = xvijt ∀i ∈

N, j ∈ N\i, t ∈ T .

39: end if

40: end for

41: if ϕ = 1 then // (A) local search, performed at each iteration

42: XI initialvijt = XCvijt

43: Local search
(
XI initialvijt

)
// Function call

44: end if

45: if ϕ = 2 and Z ≤ Z∗ then // (I) local search, performed at each iteration if the

current solution improved

46: XI initialvijt = XCvijt

47: Local search
(
xinitialvijt

)
// Function call

48: end if

49: itr = itr + 1

50: end while// End main loop

51: if ϕ = 3 then // (B) local search, performed at the end of all iterations

52: XI initialvijt = XBvijt

53: Local search
(
xinitialvijt

)
// Function call

54: end if

The Importance function depends on the node type, the current vehicle, and its loca-

tion. Current location is used to incorporate the travel time between it and other nodes

in the importance, where nearer nodes have higher importance. The other parameters are

incorporated in the importance based on the node type, such as the demand and workers re-

quested in the case of demand nodes and available supplies and workers in the case of supply

nodes. To give more exploration choices, all importance values are slightly randomized by

multiplying the value by a random number from the interval of [0.8, 1.2]. Selecting a wider
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interval to select the random number increases the randomness. This worsens the results

because it performs against the main concept of this proposed solution approach which is

the greedy concept. This function is shown in Algorithm 3.

Algorithm 3: Importance Function

1: for all t ∈ T do

2: for all i ∈ N do

3: Generate R //Random number [0.8,1.2]

IM v
t,i =



R

tv,current,i
PTDti if i ∈ D

R

tv,current,i
PT Sti if i ∈ S

R

τv,current,i
if i ∈ H

4: end for

5: end for

6: Return IM v

Route construction is used to set the binary variables to zero or one which is a major

part of this solution approach. The pseudo code of the Construction function is shown in

Algorithm 4. There are many important steps in this function. First, nodes from each type

are sorted based on their importance value (IM v). Next, the time loop begins considering

three possibilities for the current selected vehicle; demand node visits, supply node visits,

and hospital visits. Only one of these possibilities can be performed at a given time, and

each has two conditions. The first is whether a possibility is selected or not, as in lines 12,

35, and 55. The second tests if this visit is feasible or not by satisfying many sub–conditions,

such as determining if this node has been visited before by this vehicle, if it is reachable by

the vehicle at time t which is done by check the equation tnow + τv, current, sort(t,i) = t, and if

the vehicle can return back to its depot before the end of time horizon if the node is visited
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which is done by checking the inequality tnow + τv, current, sort(t,i) + τv, sort(t,i), iv ≤ |T |. These

conditions are in lines 14, 37, and 57.

If the demand node visit condition is satisfied, as in line 12, both t–loop in line 11 and

demand nodes loop in line 13 are working in parallel to find the nearest and most important

demand node to visit. When a demand node is visited, its prioritized demand by the visiting

time is decreased by dividing by 3. As prioritized demand values were calculated at the

beginning of while loop in line 7 in Algorithm 2, the new reduced value of the visited demand

will be used to calculate the importance values for the next selected vehicles. Reducing the

prioritized demand value by a large amount causes the visited demand node to not be visited

by other vehicles. After testing many reduction values, it is found dividing by 3 is the most

proper value.

In case of hospital node visits, as in line 35, a vehicle selects the most important hos-

pital where the hospital importance values are calculated based on travel time with some

randomness. Supply node visits, as in line 55, are similar to demand node visits; the sub–

conditions inside the supply node loop find the nearest and most important supply node

excluding its depot. Once a supply node is visited, its prioritized supply value is reduced

for a period from the second time period to the current time. This is because vehicles can

pick supplies from previous periods. To explain this, suppose that a supply node is visited

by a vehicle at time t, and the next vehicle wants to visit the same supply node at an earlier

time. It should be warned that the importance of this node is reduced. The first time is

excluded from prioritized supply value reduction because vehicles start picking up supplies

and workers from the supply nodes at the first time period. No information will be available

about the remaining supplies and workers from the first time and we can not depend on the

first time to recalculate the importance values.

After the time loop ends, the selected vehicle returns back to its depot and the Construction

function returns the binary values.
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Algorithm 4: Construction Function

1: ξdem = 0 //Set demand node visits to zero

2: ξsup = 1 //Set supply node visits to one because the current vehicle leaves from its depot

which is supply node.

3: ξhos = 0 //Set hospital node visits to zero

4: tnow = 1

5: for all t ∈ T do

6: Sort demand nodes in descending order based on their total importance to get sortD.

7: Sort supply nodes in descending order based on their total importance to get sortS.

8: Sort hospital nodes in descending order based on their total importance to get sortH .

9: end for

10: Select a random integer number α ∈
[⌊

cv
0.7× AvgD

+ 0.5

⌋
− 2,

⌊
cv

0.7× AvgD
+ 0.5

⌋
+ 2

]
// Based on vehicle capacity and average masses of workers and demand

11: for all t ∈ T do

12: if ξdem ≤ α then

13: for all i ≤ |D| do

14: if it is feasible to visit demand node sortD(t, i) then

15: x̂v, current, sortD(t,i), t = 1

16: tnow = t

17: Update current = sortD(t, i)

18: Reduce the prioritized demand of sortD(t, i), such that

19: PTD(t, i) = PTD(t, i)/3 //to avoid revisiting by other vehicles

20: Recalculate importances for all nodes: // Because the current is updated

21: IM v = Importance
(
v, current,N, PT S, PTD

)
22: for all k ∈ T do // New sorting because importance values are updated
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23: Sort demand nodes in descending order based on their total importance to

get sortD.

24: Sort supply nodes in descending order based on their total importance to get

sortS.

25: Sort hospital nodes in descending order based on their total importance to

get sortH .

26: end for

27: ξdem = ξdem + 1

28: i = big number > |D| // end loop to avoid infeasibility due to visiting more

than one node at the same time.

29: if ξdem = α then

30: Select β randomly from [1,2] // To decide the next step

31: end if

32: end if// End if feasible to visit

33: end for

34: end if

35: if β == 2 And ξhos < |H| And ξdem ≥ α then

36: for all i ≤ |H| do

37: if it is feasible to visit hospital node sortH(t, i) then

38: x̂v, current, sortH(t,i), t = 1

39: Set tnow = t

40: Update current = sortH(t, i)

41: Recalculate importance of all nodes, // Current updated

42: IM v = Importance
(
v, current,N, PT S, PTD

)
43: for all s ∈ T do

44: Sort demand nodes in descending order based on their total importance to

get sortD.
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45: Sort supply nodes in descending order based on their total importance to get

sortS.

46: Sort hospital nodes in descending order based on their total importance to

get sortH .

47: end for

48: tnow = t

49: ξhos = ξhos + 1 // Hospital visits counter updated

50: β = 1 //next step must be re-supply

51: i = big number > |H| // to exit the for loop

52: end if// End if feasible to visit

53: end for

54: end if// End hospital visit

55: if β == 1 And ξsup < |S| And ξdem ≥ α then

56: for all i ≤ |S| do

57: if If it is feasible to visit supply node sortS(t, i) then

58: x̂v, current, sortS(t,i), t = 1

59: Set tnow = t

60: Update current = sortS(t, i)

61: Reduce the prioritized supply of sortS(t, i) node, such that

62: for all k ∈ [2, t] do

63: PT S = PT S(k, current)/2

64: end for

65: Recalculate importance of all nodes,

66: IM v = Importance
(
v, current,N, PT S, PTD

)
67: for all s ∈ T do

68: Sort demand nodes in descending order based on their total importance to

get sortD.
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69: Sort supply nodes in descending order based on their total importance to get

sortS.

70: Sort hospital nodes in descending order based on their total importance to

get sortH .

71: end for

72: ξsup = ξsup + 1

73: i = big number > |S| // to exit the for loop

74: Generate new value of α // As in line 10, next steps must be demand nodes

visits

75: end if// End if feasible to visit

76: end for

77: end if// End supply visit

78: end for// End t-loop

79: tnow = tnow + τv, current, iv // time to return back

80: xv current iv tnow = 1

81: Return xvijt ∀i, j ∈ N, i 6= j, t ∈ T

The previous approach with ϕ = 0 (no local search) is called Heuristic-0. Preliminary

tests show that the main advantage of this approach is the short computation time, such as 1

minute to perform 100 iterations to solve small scale instance. This good attribute allows for

further improvements by spending more time on computational efforts. Two kinds of local

search are iteratively applied to improve Heuristic-0. First, if a node in a vehicle route is

selected and is then found to be far from the previous or next node in the route, it could

waste vehicle time. To solve this problem, an extensive search can be performed to find two

nearer nodes to replace it. In this case, a neighborhood is defined as any solution which can

be constructed by replacing a node with two nodes. This search is called a Replacement

local search heuristic.
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Second, in some routes, vehicles might have an idle time. For example, if three time

periods are available to a vehicle, and it can not find a node to visit before the end of the

time horizon, it could return to its depot in one time period and sit idle for the next two.

In this event, local search is performed to find a node which can be inserted in earlier route

steps without affecting the feasibility of the route. In this case, a neighborhood is defined as

any solution which can be constructed by inserting a node at any point in the route. This

is called an Insertion local search heuristic. Figure 4.2 provides an explanation of

both replacement and insertion.

(a) Replacement (b) Insertion

Figure 4.2: Local search operations

The pseudo codes for both searches are provided in Algorithm 5, where γ1 is the number

of iterations each local search is repeated using the same starting solution, and γ2 is the

number of trials used to perform insertions or replacements inside each local search iteration.

In other words, each iteration of γ1 starts with the same initial solution, and γ2 is the number

of trials performed inside each iteration of γ1.

Different values of γ1 and γ2 were tested, and results show that in most data sets the

number of local searches required for at least one success is 4, so both γ1 and γ2 are fixed at

2. Let γ3 represent the number of random nodes generated and tested for feasibility of use

in replacement or insertion; this number is selected to be a large value such as 100 because
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the chance of success for replacement or insertion using random nodes is very low, and the

calculations can be done in a very short time.

These local searches start from an initial solution, XI initialvijt , which is a four dimensional

array that contains the value of all binary variables, such that it contains the elements

xiinitialvijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T . It could be the current solution (XI initialvijt =

XCvijt), the current solution if improved compared with previous solutions (XI initialvijt =

XCvijt and ZC ≤ Z∗), or the best solution at the end of all iterations (XI initialvijt = XBvijt).

The variable array (x̂n
′

vijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T ) is used to save the updated

binary variable values after replacement in the nth iteration, whereas x̂nvijt ∀v ∈ V, i, j ∈

N, i 6= j, t ∈ T is used to save the updated binary variable values after insertion in the nth

iteration. At the end of local search, x̂γ2vijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T is used to save the

last updated binary values after replacement and insertion have been performed γ2 times.

Algorithm 5: Local search function

1: for y = 1 : γ1 do

2: x̂0
vijt = xinitialvijt // Initialization

3: success = 0

4: for n = 1 : γ2 do

5: Try Replacement, x̂n
′

vijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T = Replacement {V, x̂n−1
vijt }

6: if replacement succeeded then

7: success = 1

8: end if

9: Try Insertion, x̂nvijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T = Insertion {V, x̂n′vijt}

10: if insertion succeeded then

11: success = 1

12: end if

76



13: if success = 1 then

14: Solve the model at specific x̂γ2vijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T variables using

CPLEX // Determine all variables except xvijt, output Z and ZC

15: if Z ≤ Z∗ then

16: Z∗ = Z

17: Save the new solution ZB∗ = ZC

18: end if

19: end if// end if success = 1

20: end for// end for loop of γ2

21: end for// end for loop of γ1

The Replacement function is performed using the following approach. Replacement

function starts with vehicle loop, creating a route for the current vehicle by putting the

nodes that have binary variables of value 1 in ascending order of time index. The benefit of

creating routes from the binaries is to facilitate the coding process. A loop for the nodes in

the route starts. If the travel time between a node and the next node in the route is greater

than or equal to twice the minimum travel time in the network, this means there is a chance

of finding two nodes for replacement. Once this condition is satisfied, two random nodes of

any type are generated many times (e.g., 100 times) and determined if they can be placed in

the route by testing if they are visited anywhere in the route and if the travel times needed

to visit them can be satisfied. After this procedure, we might have updated binary variable

values or we might not find any possibilities for replacement.
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Algorithm 6: Replacement local search function

1: for all v ∈ V do

2: Create route using binary variable values

3: for all i ∈ Routev do

4: if node τv,i−1,i or τv,i,i+1 ≥ 2× the shortest time needed by v to pass between any

two nodes in the system then

5: while Stopping criterion is not met do // γ3 trials

6: Generate two nodes randomly x, y

7: if Feasible to replace i by these two nodes then

8: Replace i by x, y

9: end if

10: end while

11: end if

12: end for

13: end for

14: Return x̂n
′

vijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T

Insertion is demonstrated in the next approach. The Insertion function starts the

vehicle loop that takes the binary variable values from the replacement function as an input.

If the time for the current vehicle is less than the total time available, this means there is

idle time somewhere in the route and a chance to insert a node or more. A random node is

selected and tested to determine if it can be inserted in the route. If the travel time between

it and any two nodes in the route is less than or equal to the idle time and if it is not visited

by the same vehicle in the route, then it is viable insertion. The condition at line 6 is done

by a loop to insert the random node anywhere in the route. After the Insertion function,

a new update of binaries might be available.
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Algorithm 7: Insertion local search function

1: for all v ∈ V do

2: Create route using binary variable values

3: if Total time needed for Routev < |T | then

4: while Stopping criterion is not met do// γ3 iterations

5: Generate a node randomly x

6: if Feasible to insert x at any place in Routev then

7: Insert it //

8: success = 1

9: end if

10: end while

11: end if

12: end for

13: Return x̂nvijt ∀v ∈ V, i, j ∈ N, i 6= j, t ∈ T

As shown in Algorithm 2, lines 42, 46, and 52, previous versions of local searches can

be applied in different ways using different initial solutions. First, they can be applied after

the main heuristic to improve the best known solution Heuristic-B, in line 42. The main

advantage of this variant is the short computation time, as it could improve the incumbent

solution while spending very limited additional time after Heuristic-0. The disadvantage

is the small neighborhood structure which produces no improvement in many cases. its

The second method is to apply the local search to each candidate solution of the

main algorithm (i.e. in each iteration), line 46. Three different versions are considered

for this variant: short computation time limit Heuristic-A1, medium computation time
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limit Heuristic-A2, and long computation time limit Heuristic-A3. Time limits are dif-

ferent based on the problem size which is explained more in the numerical analysis section.

This variant is expected to give the best solution because it has the largest neighborhood.

In the third method, local searches can be applied at each iteration if a solution is

better than the previous iteration’s solution (better than the incumbent). Two versions are

considered for this method: Heuristic-I1, and Heuristic-I2. Heuristic-I2 is performed

by running Heuristic-I1 many times (4 times in this research), and then selecting the

best solution from all runs. Testing Heuristic-I1 shows that stagnation problems appear

frequently, which means no improvement on the incumbent for many iterations because the

local search is applied to improved solutions only. This is why Heuristic-I2 is performed

by running Heuristic-I1 many times, where each time all parameters are re–initialized and

more search space is explored. Similar to Heuristic-As variants, time limits vary between

data sets based on their size, as discussed in the next section. Table 4.11 summarizes the

suggested approaches.

Solution Time Where LS starting
approach limit LS applied solution
Heuristic-0 The shortest No local search —–
Heuristic-B Slightly longer than

Heuristic-0

After Heuristic-0 XIvijt = XBvijt

Heuristic-A1

The shortest among
Heuristic-A1,2,3

At each iteration XIvijt = XCvijt

Heuristic-A2

Medium compared with
Heuristic-A1,3

At each iteration XIvijt = XCvijt

Heuristic-A3

The longest among
Heuristic-A1,2,3

At each iteration XIvijt = XCvijt

Heuristic-I1

= Heuristic-A1 At each iteration,
if ZC ≤ Z∗

XIvijt = XCvijt

Heuristic-I2

=Heuristic-I1 × 3 At each iteration,
if ZC ≤ Z∗

XIvijt = XCvijt

Table 4.11: Solution approach variants
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4.7 Numerical Analysis

To test the effectiveness of the suggested approaches, different data sets are solved using

them and using CPLEX with a six hour time limit. CPLEX solutions are produced using

CPLEX–Concert Technology 12.2 MIP solver on an HP Compaq 8100 Elite SSF PC, with a

quad-core Intel i7-860 processor running Ubuntu Linux 10.10 in 64-bit mode. Data sets are

classified as tiny, small, medium, and large scale. This classification is developed based on

available data and the literature. For example, Red Cross stated that in a disaster, it has

about 30 vehicles and more than 20 regions, Red-Cross (2013). These specifications, which

are considered for large scale problems, are suitable for a relief agency. All data sets are

generated randomly, with about 20%-30% of nodes specified as supply and hospital nodes,

while the remaining are considered to be demand nodes. This portioning of nodes has been

used in many studies, such as Yi and Ozdamar (2007).

Preliminary testing shows that CPLEX can give optimal results for tiny scale data sets

and sub-optimal results for small scale instances, but it fails to solve medium and large scale

problems in six hours. The scale of problem instances are decided based on the parameters

described in Section 4.7.1. Sections 4.7.2, 4.7.3, 4.7.4, and 4.7.5 show and analyze the results

of CPLEX and the heuristic approaches for tiny, small, medium, and large scale sets. Finally,

Section 4.8 analyzes the performance of different heuristics with respect to the data set scales.

4.7.1 Experimental Design

Some parameters, such as time intervals, number of nodes, number of vehicles, com-

modity types, and work–force and evacuee categories influence computation time greatly.

These parameters are used to classify the data sets into different scales. In Table 4.12,

these parameters are shown along with their suggested values. Other parameters, such as

vehicle capacities and commodity masses, have less influence over computation time. These

parameters are fixed and do not depend on the disaster scale, as shown in Table 4.13
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Parameter Tiny Scale Small Scale Medium Scale Large Scale
Range Range Range Range

Time Intervals |T | ∼Unif(5,8) ∼Unif(7,10) ∼Unif(10,16) ∼Unif(16,48)

Vehicles |v| ∼Unif(2,4) ∼Unif(3,5) ∼Unif(5,15) ∼Unif(10,40)

Demand Nodes |D| ∼Unif(3,6) ∼Unif(4,8) ∼Unif(8,15) ∼Unif(10,30)

Supply Nodes |S| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(3,7) ∼Unif(5,10)

Hospital Nodes |H| ∼Unif(1,2) ∼Unif(1,2) ∼Unif(2,4) ∼Unif(3,6)

Commodities Types |C| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Workers categories |W | ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Evacuees categories |E| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Table 4.12: HLVRP - design of experiment

Parameter All Scales
Range

Capacity of each vehicles mv ∼Unif(600 lb,1400b)
Speed of each vehicles ∼Unif(1,3)

Mass of each commodity mC
c ∼Unif(1 lb,10 lb)

Mass of one worker mW
w 200 lb

Mass of one evacuee mE
e 200 lb

Demand of each demand node dCcit ∼Unif(0,350)
Workers needed dWwit ∼Unif(0,8)

Available workers sWwit ∼Unif(70%,100%)
Available supply sCcit ∼Unif(70%,100%)

Table 4.13: HLVRP - fixed parameters

In Table 4.12, the parameter ranges are displayed for the four different problem scales.

This means the total number of sets to cover all possible combinations is 48 = 65536 sets.

It could take 16384 days if each one was run in CPLEX using a six hour limit. Accordingly,

75 sets are generated for the tiny scale to compare the results with optimal solutions which

allows us to evaluate the proposed heuristic approaches fairly. Fifty sets are randomly

generated in the small scale to compare with near optimal results, and 50 sets are generated
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randomly for medium and large scales to compare different heuristic approaches and to test

the scalability of the proposed heuristic. CPLEX is not used in the medium and large scales

because it fails to give results in a 6–hour time limit.

The last five parameters have the same range for all scales because they are independent

of the disaster scale. The capacity of each vehicle is selected to be between 600 lb and 1400

lb, which covers most available vehicles suitable to work in such cases. The other vehicle

parameter is speed, which is selected from one of three factors: one means fast, two means

medium, and three means slow speeds. Quantitatively, if a vehicle with a speed factor of one

takes three time units to pass from node i and node j, another vehicle with a speed factor

of two would take six time units to pass between the same nodes, while one with a speed

factor of three would require nine time units.

Mass of commodities is generated between 1 and 10 lbs, which covers most commodities

such water bottles, food bags, and blankets. Workers and wounded mass is considered to be

a fixed value of 200 lb. This is approximately the body mass of an average person in the

USA when clothes and other personal effects are taken into account, (McDowell et al. 2006).

Demand at each node is selected to be between 0 and 350 units from each type at each

time period, and the supply is generated as a percentage of the demand. In other words, the

total supply at all supply nodes and time periods equals 70-100% of the total demand. In the

same way, the total number of available workers at all supply nodes and time periods equals

70-100% of the total workers requested by the demand nodes. It is assumed that 30-50% of

the available supply and workers is ready in the first time period for several reasons. First,

undistributed commodities and non-transferred workers from previous plans are collected at

time zero of the current plan. Second, plans are usually started when the planning agencies

have a large enough amount of supplies that they can use vehicles efficiently. Finally, if

prepositioned amounts exist, they can be used at time zero.
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4.7.2 Tiny Scale Problems

In this subsection, all data sets that CPLEX can produce optimal solutions for in 6

hours are tested versus the proposed heuristic. For the sake of comparison, a gap between

the objective function value (OFV) of the CPLEX solution (which is the best or minimum

one in case of tiny scale problems) and the OFV of the heuristic solution is defined as:

gap =
Heuristic OFV - CPLEX OFV

CPLEX OFV
100%

Tables 4.14, 4.15, and 4.16 summarize the results of these sets. The second and third

columns show the results given by CPLEX with time limits equal to 6 hours (21600 seconds).

Tiny scale sets are considered as special cases because CPLEX can solve some of them

in 1 second. Because of this, a new variant of (A) heuristic with time limit 1 second is

considered only for tiny problems and is called Heuristic-A0. Time limits are 5 seconds

for Heuristic-0, 6 seconds for Heuristic-B, 10 seconds for Heuristic-A1, 20 seconds for

Heuristic-A2, 30 seconds for Heuristic-A3, 10 seconds for Heuristic-I1, and 10 seconds

repeated three times for Heuristic-I2

Data
CPLEX H-0

(5s)
H-B
(5.5s)

H-A0
(1s)

H-A1
(10s)

H-A2
(20s)

H-A3
(30s)

H-I1
(10s)

H-I2
(30s)

Set Time OFV gap gap gap gap gap gap gap gap
1 647 125666 1.10% 1.10% 2.06% 2.06% 1.79% 1.79% 2.02% 1.74%
2 1 42280 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3 2 83070 0.82% 0.82% 1.93% 0.82% 0.63% 0.00% 1.42% 0.82%
4 1 126700 0.24% 0.00% 0.24% 0.24% 0.00% 0.00% 0.24% 0.00%
5 3 120350 1.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6 1040 178041 2.61% 2.61% 2.33% 1.57% 1.57% 1.57% 1.97% 1.71%
7 247 147557 0.30% 0.00% 1.59% 0.30% 0.30% 0.30% 0.00% 0.00%
8 1 60490 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9 1 26232 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 1 93096 0.00% 0.00% 0.40% 0.46% 0.46% 0.00% 2.67% 0.00%
11 1 98315 3.17% 2.30% 2.37% 2.30% 2.30% 1.66% 2.30% 2.30%
12 1 37760 4.13% 4.13% 0.00% 0.00% 0.00% 0.00% 4.13% 4.13%
13 6 166660 1.68% 1.26% 1.26% 1.23% 1.23% 1.23% 1.68% 1.23%
14 1 46288 0.00% 0.00% 1.97% 0.00% 0.00% 0.00% 5.25% 0.00%
15 1 149880 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
16 80 140850 0.67% 0.00% 2.17% 0.00% 0.00% 0.00% 0.67% 0.67%
17 11 52550 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.61% 0.00%
18 162 174310 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00%
19 2 132299 0.06% 0.00% 0.15% 0.11% 0.00% 0.00% 0.24% 0.11%
20 48 127330 0.42% 0.31% 2.02% 0.63% 0.42% 0.31% 0.31% 0.31%
21 1 36944 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.52% 0.00%
22 1 74750 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
23 5 53150 12.74% 6.65% 2.86% 2.86% 2.86% 1.51% 6.65% 4.08%
24 3566 74650 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
25 6 76610 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.22% 0.00%

Table 4.14: Tiny scale data set results (sets 1-25)
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Data
CPLEX H-0

(5s)
H-B
(5.5s)

H-A0
(1s)

H-A1
(10s)

H-A2
(20s)

H-A3
(30s)

H-I1
(10s)

H-I2
(30s)

Set Time OFV gap gap gap gap gap gap gap gap
26 1 52517 2.40% 1.41% 3.12% 1.14% 1.14% 0.00% 1.98% 1.98%
27 46 303962 1.32% 0.00% 0.05% 0.00% 0.00% 0.00% 0.03% 0.00%
28 2 126800 0.00% 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.00%
29 14 204134 0.00% 0.00% 0.78% 0.00% 0.00% 0.00% 0.00% 0.00%
30 177 125946 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00%
31 1 27886 6.99% 4.66% 4.66% 6.10% 0.00% 0.00% 7.71% 0.00%
32 1 98035 0.00% 0.00% 1.53% 0.00% 0.00% 0.00% 0.00% 0.00%
33 53 104700 0.00% 0.00% 1.43% 0.00% 0.00% 0.00% 0.00% 0.00%
34 1 59060 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
35 35 103700 6.78% 1.72% 1.53% 0.58% 0.58% 0.58% 5.69% 1.14%
36 1 95615 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
37 302 157550 0.00% 0.00% 0.54% 0.00% 0.00% 0.00% 1.37% 0.00%
38 1 51570 3.30% 1.07% 5.04% 2.52% 2.52% 0.29% 3.18% 2.52%
39 1 32862 0.05% 0.05% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00%
40 2 86534 0.92% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00%
41 1 27580 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.61% 0.00%
42 1 35540 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.04% 0.00%
43 3 50466 11.87% 10.14% 2.36% 5.67% 1.95% 1.58% 7.09% 2.36%
44 8 62470 0.00% 0.00% 0.70% 0.16% 0.16% 0.00% 0.16% 0.13%
45 1 62018 3.03% 3.03% 2.85% 0.00% 0.00% 0.00% 3.61% 0.00%
46 143 29753 0.28% 0.28% 0.28% 2.52% 0.87% 0.87% 0.87% 0.28%
47 1 153910 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
48 1 75370 0.00% 0.00% 0.00% 0.16% 0.16% 0.00% 0.11% 0.00%
49 1 26690 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
50 1 113562 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.75% 0.00%

Table 4.15: Tiny scale data set results (sets 26-50)

Data
CPLEX H-0

(5s)
H-B
(5.5s)

H-A0
(1s)

H-A1
(10s)

H-A2
(20s)

H-A3
(30s)

H-I1
(10s)

H-I2
(30s)

Set Time OFV gap gap gap gap gap gap gap gap
51 2 23620 0.00% 0.00% 0.56% 0.00% 0.00% 0.00% 2.34% 0.00%
52 1 25150 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53 1 99430 1.13% 1.13% 1.13% 1.13% 1.13% 1.13% 2.35% 1.13%
54 33 145987 0.41% 0.41% 1.67% 0.00% 0.00% 0.00% 0.01% 0.00%
55 4 120490 0.40% 0.00% 1.22% 0.00% 0.00% 0.00% 0.40% 0.00%
56 8 120998 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
57 1 42810 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
58 2 144274 0.00% 0.00% 1.39% 0.00% 0.00% 0.00% 0.00% 0.00%
59 2 86580 1.70% 1.70% 2.43% 1.88% 1.88% 1.70% 1.70% 1.70%
60 8 128918 0.00% 0.00% 1.63% 0.00% 0.00% 0.00% 0.00% 0.00%
61 3 32000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 8.03% 0.00%
62 1 34130 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
63 4 28394 2.11% 2.11% 2.11% 0.00% 0.00% 0.00% 0.00% 0.00%
64 345 70260 9.29% 3.38% 2.13% 4.06% 3.43% 2.13% 2.13% 2.13%
65 1 46360 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 8.52% 0.00%
66 2 46180 3.36% 3.36% 0.00% 0.69% 0.00% 0.00% 3.36% 3.36%
67 1 56214 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
68 2 19682 0.00% 0.00% 0.00% 12.03% 12.03% 0.00% 7.81% 0.00%
69 2 74316 0.00% 0.00% 2.56% 0.00% 0.00% 0.00% 3.54% 0.00%
70 1 80019 0.00% 0.00% 2.12% 0.00% 0.00% 0.00% 0.00% 0.00%
71 4 198890 2.69% 2.69% 0.00% 0.00% 0.00% 0.00% 2.69% 0.35%
72 12552 132200 1.40% 1.40% 4.88% 2.16% 2.16% 2.16% 3.82% 1.63%
73 12 101200 1.38% 1.38% 1.83% 1.33% 0.00% 0.00% 1.73% 0.00%
74 2 110793 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
75 6 86590 1.15% 1.15% 0.00% 0.00% 0.00% 0.00% 0.69% 0.00%

Table 4.16: Tiny scale data set results (sets 51-75)

Heuristic approaches give competitive results for tiny scale problems. The mean gap

for Heuristic-0 equals 1.23% and the standard deviation is 0.0252. Low improvement

is achieved with Heuristic-B with a mean gap 0.83% and standard deviation of 0.0168.

Heuristic-A0 with a 1 second time limit gives good results with a mean gap of 0.94%

and standard deviation of 0.0125. With longer time limits, solutions are improved as

seen in Heuristic-A1 which has a mean gap of 0.73% and standard deviation of 0.018,
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Heuristic-A2 which has a mean gap of 0.38% and standard deviation of 0.0154, and

Heuristic-A3 which has a mean gap of 0.25% and standard deviation of 0.006. As expected,

Heuristic-I1 gives good results with high variation in gaps, the mean gap equals 1.72% and

standard deviation is .0235. Finally, Heuristic-I2 improves the results of Heuristic-I1

producing a mean gap of only 0.48% and standard deviation of 0.0097. Figure 4.3 shows the

box plot of tiny problem gaps and the bar plot of computation times.
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Figure 4.3: Gap and computation time for tiny scale sets

Many advantages and recommendations can be obtained from previous tables and fig-

ures. Heuristic-A0 gives 0 gap and finds optimal solution for 29 sets out of 75 in 1 sec-

ond, and Heuristic-A3 produces 0 gap and finds optimal solution for 56 out of 75 sets.

Heuristic-I1 is not recommended for tiny scale because compared to Heuristic-0 and

Heuristic-B variants, it produces the worst results and takes longer to do it. Finally, the
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main aim of tiny problems is to test the heuristics versus optimal solutions, and the results

show that the heuristics give very competitive results.

4.7.3 Small Scale Problems

In this subsection, data sets which CPLEX can produce near optimal solutions for in 6

hours are considered. The same definition of gap from Section 4.7.2 is used. Tables 4.17 and

4.18 summarize the results of these sets. Figure 4.4 shows the box–plot of the gaps and the

bar plot of the computation times. Time limits are 10 seconds for Heuristic-0, 11 seconds

for Heuristic-B, 20 seconds for Heuristic-A1, 40 seconds for Heuristic-A2, 60 seconds

for Heuristic-A3, 20 seconds for Heuristic-I1, and 20 seconds repeated three times for

Heuristic-I2

Data
CPLEX Heur-0

(10sec)
Heur-B
(11sec)

Heur-A1
(20sec)

Heur-A2
(40sec)

Heur-A3
(60sec)

Heur-I1
(20sec)

Heur-I2
(60sec)

Set Time OFV gap gap gap gap gap gap gap
1 21600 738520 3.20% 3.11% 1.61% 1.26% 1.26% 2.14% 1.72%
2 17232 232860 3.50% 3.50% 2.05% 1.89% 1.70% 2.48% 2.19%
3 21600 851796 2.90% 1.78% 1.57% 1.30% 1.12% 2.14% 1.42%
4 21600 204539 3.59% 3.13% 1.15% 1.15% 1.15% 3.32% 2.53%
5 21600 251515 1.67% 1.67% 1.39% 0.00% 0.00% 1.57% 1.11%
6 21600 530080 6.43% 2.23% 1.00% 1.00% 1.00% 1.03% 1.03%
7 21600 456744 0.50% 0.50% 0.00% 0.00% 0.00% 0.00% 0.00%
8 21600 736496 3.66% 1.96% 1.59% 1.10% 1.10% 2.00% 1.38%
9 21600 720756 1.56% 1.56% 1.52% 0.85% 0.85% 1.30% 1.28%
10 21600 670375 1.97% 0.61% 0.01% 0.01% 0.00% 0.84% 0.22%
11 21600 776360 2.62% 2.62% 0.95% 0.88% 0.88% 1.64% 1.27%
12 21600 135922 13.43% 6.14% 1.96% 1.96% 1.96% 5.67% 5.67%
13 21600 559040 0.61% 0.56% 0.36% 0.36% 0.00% 0.00% 0.00%
14 21600 123850 13.36% 5.81% 2.18% 2.18% 1.98% 4.64% 4.64%
15 21600 329630 4.88% 2.76% 1.89% 1.19% 0.89% 2.68% 2.18%
16 21600 606340 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75%
17 21600 791170 2.50% 1.34% 0.65% 0.65% 0.65% 1.45% 0.87%
18 21600 493312 6.28% 2.85% 2.96% 2.02% 2.02% 3.97% 3.54%
19 21600 553610 5.50% 2.63% 1.23% 1.06% 1.06% 2.64% 1.74%
20 21600 920500 0.83% 0.83% 0.49% 0.49% 0.00% 0.68% 0.50%
21 21600 827490 2.75% 1.72% 1.25% 1.25% 1.25% 2.00% 1.43%
22 21600 537284 2.11% 1.64% 1.87% 1.40% 1.40% 2.36% 0.64%
23 21600 404205 5.17% 3.42% 1.83% 1.73% 0.93% 1.39% 1.39%
24 21600 451491 1.27% 1.27% 0.63% 0.32% 0.32% 1.06% 1.06%
25 21600 451760 6.93% 3.81% 0.99% 0.99% 0.99% 3.11% 2.07%

Table 4.17: Small scale data set results (sets 1-25)
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Data
CPLEX Heur-0

(10sec)
Heur-B
(11sec)

Heur-A1
(20sec)

Heur-A2
(40sec)

Heur-A3
(60sec)

Heur-I1
(20sec)

Heur-I2
(60sec)

Set Time OFV gap gap gap gap gap gap gap
26 21600 560862 5.52% 4.02% 1.98% 1.98% 1.57% 1.72% 1.72%
27 21600 442150 7.17% 5.38% 2.17% 2.17% 2.17% 2.38% 2.38%
28 21600 241736 4.98% 3.35% 1.41% 1.05% 1.05% 2.59% 1.70%
29 21600 287875 4.40% 2.78% 0.71% 0.61% 0.00% 1.20% 0.89%
30 21600 636080 2.78% 2.25% 1.15% 1.08% 1.08% 1.51% 1.51%
31 21600 511150 3.22% 2.93% 1.54% 1.27% 0.50% 2.53% 1.29%
32 21600 391509 3.64% 3.18% 0.94% 0.94% 0.94% 2.14% 0.82%
33 21600 723720 2.09% 1.72% 1.32% 0.66% 0.66% 1.22% 1.05%
34 21600 231540 0.84% 0.84% 1.12% 0.84% 0.84% 1.12% 0.84%
35 21600 732652 2.34% 1.32% 0.99% 0.99% 0.90% 1.14% 1.09%
36 21600 140640 7.34% 4.25% 2.39% 2.39% 2.37% 3.63% 3.63%
37 21600 613290 5.77% 3.32% 2.11% 2.11% 1.79% 2.38% 2.10%
38 21600 533797 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
39 5 354152 0.20% 0.20% 0.20% 0.20% 0.20% 0.14% 0.14%
40 21600 251622 2.86% 2.54% 0.36% 0.24% 0.00% 0.52% 0.52%
41 1687 393260 1.91% 1.69% 1.22% 0.96% 0.96% 1.30% 1.30%
42 21600 440309 3.73% 2.46% 2.41% 1.49% 1.49% 2.19% 2.19%
43 21600 432990 5.15% 3.50% 2.01% 1.94% 1.94% 3.54% 3.29%
44 21600 681130 2.59% 2.23% 1.57% 1.57% 1.33% 1.60% 1.50%
45 21600 458146 2.85% 2.13% 1.57% 1.57% 1.26% 1.97% 1.39%
46 21600 280662 1.10% 0.96% 0.66% 0.60% 0.60% 0.66% 0.00%
47 21600 456218 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
48 21600 853630 5.00% 2.64% 1.81% 1.81% 1.81% 2.47% 1.99%
49 21600 221014 0.24% 0.24% 0.20% 0.07% 0.07% 0.66% 0.31%
50 21600 387540 4.56% 2.35% 1.34% 1.34% 0.15% 1.17% 1.17%

Table 4.18: Small scale data set results (sets 26-50)
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Figure 4.4: Gap and computation time for small scale sets
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As shown in the results, Heuristic-0 produces results with a mean gap of 3.57%

and standard deviation of 0.0281 in a short computation time. Heuristic-B improves the

solution with gap average of 2.29% and standard deviation of 0.014.

Because Heuristics-A1, Heuristics-A2, and Heuristics-A3 have a larger neighbor-

hood structure than Heuristics-0 and Heuristics-B, they produce better solution as in

Heuristic-A1 with a mean gap of 1.26% and standard deviation of 0.007, Heuristic-A2

with a mean gap of 1.08% and standard deviation of 0.00647, and Heuristic-A3 with a

mean gap of 0.94% and standard deviation 0.006. Heuristic-I1 has better results than the

Heuristic-0 and Heuristic-B variants with a mean gap of 1.82% and standard deviation

of 0.01174, while Heuristic-I2 gives solutions with a mean gap of 1.49% and standard

deviation of 0.01128.

In small data sets, the proposed heuristics are highly recommended because in one

minute they can give results with a gap less than 1% in many instances, while CPLEX

takes 6 hours to determine near optimal solutions. Heuristic-A3 is recommended because

it gives the best results in a short time while other variants give worse results without saving

valuable time. For example, the Heuristics-0 has mean gap of 3.57%, but spending 50

seconds more improves the solutions greatly to a mean gap of 0.94%.

4.7.4 Medium Scale Problems

In this subsection, larger data sets are considered. CPLEX does not give any solution

to this size in 6 hours. Because of this, gap is redefined to be the gap between the solution

and the minimum solution among all versions. The gap of a solution S is

gaps =
OFV of S - Minimum OFV

Minimum OFV
100%

Tables 4.19 and 4.20 show the results of these data sets, and Figure 4.5 shows the box-

plot of the gap and the bar plot of the computation time. Time limits are 60 seconds for

Heuristic-0, 66 seconds for Heuristic-B, 600 seconds for Heuristic-A1, 1200 seconds
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for Heuristic-A2, 1800 seconds for Heuristic-A3, 600 seconds for Heuristic-I1, and 600

seconds repeated three times for Heuristic-I2

Data Min.
Obj.

CPLEX Heur-0
(60 sec)

Heur-B
(66 sec)

Heur-
A1 (600

sec)

Heur-A2
(1200
sec)

Heur-A3
(1800
sec)

Heur-I1
(600
sec)

Heur-I2
(1800
sec)

Set Value Time OFV gap gap gap gap gap gap gap
1 928858 21600 No Soln 3.69% 3.69% 0.49% 0.13% 0.00% 0.51% 0.51%
2 1529400 21600 No Soln 2.37% 1.63% 0.24% 0.24% 0.22% 0.43% 0.00%
3 2805420 21600 No Soln 1.35% 0.17% 0.10% 0.00% 0.00% 0.37% 0.00%
4 1906670 21600 No Soln 3.61% 0.83% 0.42% 0.12% 0.12% 0.37% 0.00%
5 801382 21600 No Soln 5.92% 2.18% 0.00% 0.00% 0.00% 0.93% 0.56%
6 1683350 21600 No Soln 2.51% 2.51% 0.00% 0.00% 0.00% 0.08% 0.08%
7 1310170 21600 No Soln 3.17% 1.53% 0.19% 0.19% 0.19% 0.28% 0.00%
8 986323 21600 No Soln 3.33% 2.96% 0.01% 0.01% 0.00% 0.58% 0.32%
9 2697340 21600 No Soln 1.67% 0.59% 0.38% 0.24% 0.24% 0.31% 0.00%
10 2795330 21600 No Soln 2.97% 1.06% 0.17% 0.17% 0.17% 0.37% 0.00%
11 1772760 21600 No Soln 2.20% 2.04% 0.18% 0.18% 0.18% 0.71% 0.00%
12 2258300 21600 No Soln 2.61% 1.48% 0.23% 0.00% 0.00% 0.51% 0.39%
13 1051940 21600 No Soln 5.05% 1.90% 0.03% 0.03% 0.00% 0.87% 0.78%
14 1766640 21600 No Soln 2.52% 1.53% 0.00% 0.00% 0.00% 0.59% 0.08%
15 2654650 21600 No Soln 2.00% 1.04% 0.00% 0.00% 0.00% 0.25% 0.18%
16 966704 21600 No Soln 2.66% 1.20% 0.00% 0.00% 0.00% 0.66% 0.59%
17 2931340 21600 No Soln 1.28% 0.36% 0.00% 0.00% 0.00% 0.31% 0.25%
18 1792000 21600 No Soln 3.68% 1.23% 0.45% 0.00% 0.00% 0.41% 0.22%
19 2177910 21600 No Soln 2.72% 1.66% 0.79% 0.00% 0.00% 0.13% 0.13%
20 2492010 21600 No Soln 3.96% 1.43% 0.46% 0.20% 0.00% 0.58% 0.27%
21 2492800 21600 No Soln 2.92% 1.55% 0.73% 0.59% 0.00% 0.72% 0.63%
22 1488200 21600 No Soln 2.32% 0.47% 0.04% 0.00% 0.00% 0.79% 0.08%
23 1485120 21600 No Soln 2.88% 1.97% 0.84% 0.00% 0.00% 0.92% 0.34%
24 755301 21600 No Soln 7.37% 2.81% 0.63% 0.00% 0.00% 0.20% 0.20%
25 1442420 21600 No Soln 2.58% 0.91% 0.36% 0.31% 0.28% 0.52% 0.00%

Table 4.19: Medium scale data set results (sets 1-25)

Data Min.
Obj.

CPLEX Heur-0
(60 sec)

Heur-B
(66 sec)

Heur-
A1 (600

sec)

Heur-A2
(1200
sec)

Heur-A3
(1800
sec)

Heur-I1
(600
sec)

Heur-I2
(1800
sec)

Set Value Time OFV gap gap gap gap gap gap gap
26 1801260 21600 No Soln 4.55% 2.11% 0.55% 0.39% 0.00% 0.50% 0.39%
27 1151870 21600 No Soln 6.61% 3.80% 0.61% 0.61% 0.61% 1.82% 0.00%
28 1407980 21600 No Soln 4.85% 0.98% 0.15% 0.15% 0.15% 0.00% 0.00%
29 1525910 21600 No Soln 1.50% 0.51% 0.11% 0.00% 0.00% 0.17% 0.12%
30 1435790 21600 No Soln 3.30% 0.77% 0.40% 0.00% 0.00% 0.08% 0.08%
31 2077950 21600 No Soln 3.10% 1.64% 0.26% 0.10% 0.10% 0.16% 0.00%
32 2142580 21600 No Soln 4.19% 2.02% 1.07% 0.00% 0.00% 0.75% 0.75%
33 1433270 21600 No Soln 4.65% 2.84% 0.28% 0.28% 0.04% 0.85% 0.00%
34 2029990 21600 No Soln 2.12% 1.34% 0.00% 0.00% 0.00% 0.61% 0.40%
35 1361960 21600 No Soln 2.83% 1.09% 0.00% 0.00% 0.00% 0.56% 0.55%
36 1760760 21600 No Soln 3.81% 3.81% 0.00% 0.00% 0.00% 0.36% 0.24%
37 3687690 21600 No Soln 2.87% 0.51% 0.00% 0.00% 0.00% 0.42% 0.04%
38 2770330 21600 No Soln 1.36% 0.77% 0.00% 0.00% 0.00% 0.14% 0.14%
39 1209690 21600 No Soln 4.45% 0.03% 0.26% 0.21% 0.00% 0.50% 0.27%
40 1490920 21600 No Soln 5.28% 2.37% 0.42% 0.42% 0.42% 0.69% 0.00%
41 3571340 21600 No Soln 2.07% 0.75% 0.00% 0.00% 0.00% 0.20% 0.11%
42 3132370 21600 No Soln 3.71% 1.11% 0.22% 0.22% 0.01% 0.00% 0.00%
43 4502810 21600 No Soln 1.70% 0.38% 0.14% 0.14% 0.00% 0.13% 0.13%
44 1246840 21600 No Soln 3.51% 0.98% 0.62% 0.45% 0.45% 0.04% 0.00%
45 2606130 21600 No Soln 2.94% 0.67% 0.23% 0.18% 0.00% 0.55% 0.36%
46 1132090 21600 No Soln 7.08% 6.88% 0.00% 0.00% 0.00% 0.96% 0.96%
47 998599 21600 No Soln 7.98% 4.09% 2.65% 1.89% 1.89% 2.69% 0.00%
48 1729040 21600 No Soln 1.85% 1.57% 0.28% 0.28% 0.28% 0.11% 0.00%
49 1685150 21600 No Soln 1.75% 0.48% 0.28% 0.00% 0.00% 0.23% 0.02%
50 1901940 21600 No Soln 2.47% 1.74% 0.00% 0.00% 0.00% 0.77% 0.47%

Table 4.20: Medium scale data set results (sets 26-50)

92



Heuristic−0 Heuristic−B Heuristic−A1 Heuristic−A2 Heuristic−A3 Heuristic−I1 Heuristic−I2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
G

ap
 R

el
at

iv
e 

to
 M

in
im

um

Heuristics

Medium Scale Data Sets Gaps

(a) Gap

Heuristic−0 Heuristic−B Heuristic−A1 Heuristic−A2 Heuristic−A3 Heuristic−I1 Heuristic−I2
0

100

200

300

400

500

600

700

800

900

Medium Scale Data Sets Computation Time

Heuristics

C
om

pu
ta

tio
n 

T
im

e 
(S

ec
)

(b) Computation time

Figure 4.5: Gap and computation time for medium scale sets

CPLEX fails to find any feasible solutions for medium–scale problems, even with a time

limit longer than 6 hours. The Heuristic-0 solutions have a mean gap of a 3.36% and

standard deviation of 0.0157. Heuristic-B improves the solutions to a mean gap of 1.64%

and standard deviation of 0.0122. Heuristic-A1 has results with a mean gap of 0.31% and

standard deviation of 0.004. Heuristic-A2 improves the solution even further with mean
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gap of 0.16% and standard deviation of 0.0029. Heuristic-A3 gives the best solution in most

sets with a mean gap of 0.11% and standard deviation of 0.0028. Heuristic-I1 produces

results with a mean gap of 0.51% and standard deviation of 0.0045, and Heuristic-I2

improves the results of Heuristic-I1 to a mean gap of 0.21% and standard deviation of of

0.00244.

4.7.5 Large Scale Problems

In this subsection, large scale data sets are considered to test the scalability of the pro-

posed heuristics and show that they are suitable for this type of data sets. No solutions

are obtained from CPLEX in 6 hours, so creating a feasible integer solution is a challenging

problem. The suggested heuristics are used to solve these sets with a time limit of 600 sec-

onds for Heuristic-0, 660 seconds for Heuristic-B, 1200 seconds for Heuristic-A1, 2400

seconds for Heuristic-A2, 3600 seconds for Heuristic-A3, 1200 seconds for Heuristic-I1,

and 1200 seconds with three Heuristic-I1 replications for Heuristic-I2. The same gap

definition from section 4.7.4 is used. Tables 4.21 and 4.22 show the results of these sets and

Figure 4.6 shows the box-plot of the gap and bar plot of the time.

Data Min. Obj.
CPLEX Heur-0

(600sec)
Heur-B
(660sec)

Heur-
A1

(1200sec)

Heur-A2
(2400sec)

Heur-A3
(3600sec)

Heur-I1
(1200sec)

Heur-I2
(3600sec)

Set Value Time OFV gap gap gap gap gap gap gap
1 5199930 21600 No Soln 5.16% 0.16% 0.05% 0.05% 0.04% 0.14% 0.00%
2 9102900 21600 No Soln 1.69% 0.60% 0.13% 0.13% 0.00% 0.30% 0.29%
3 9261110 21600 No Soln 2.96% 0.00% 0.15% 0.15% 0.06% 0.29% 0.29%
4 6760140 21600 No Soln 2.72% 0.47% 0.29% 0.00% 0.00% 0.38% 0.37%
5 12433200 21600 No Soln 2.77% 0.00% 0.28% 0.02% 0.02% 0.21% 0.04%
6 3938800 21600 No Soln 4.66% 0.69% 0.79% 0.04% 0.04% 0.00% 0.00%
7 4508870 21600 No Soln 5.32% 0.43% 0.00% 0.00% 0.00% 1.20% 0.70%
8 8657580 21600 No Soln 4.29% 4.26% 0.00% 0.00% 0.00% 0.96% 0.34%
9 4328400 21600 No Soln 2.95% 1.40% 0.00% 0.00% 0.00% 0.51% 0.41%
10 6349750 21600 No Soln 3.07% 0.00% 0.35% 0.12% 0.12% 0.54% 0.07%
11 3473970 21600 No Soln 5.49% 0.95% 0.16% 0.16% 0.00% 0.19% 0.19%
12 8520220 21600 No Soln 3.63% 0.28% 0.26% 0.20% 0.20% 0.00% 0.00%
13 2722880 21600 No Soln 8.11% 1.89% 0.00% 0.00% 0.00% 2.02% 0.68%
14 14113300 21600 No Soln 3.07% 0.00% 0.44% 0.41% 0.41% 0.34% 0.19%
15 18787200 21600 No Soln 1.68% 0.29% 0.00% 0.00% 0.00% 0.17% 0.17%
16 9586200 21600 No Soln 2.01% 0.33% 0.00% 0.00% 0.00% 0.44% 0.18%
17 20355600 21600 No Soln 0.45% 0.01% 0.03% 0.00% 0.00% 0.11% 0.05%
18 4090640 21600 No Soln 7.60% 0.42% 0.16% 0.16% 0.00% 0.44% 0.44%
19 19053200 21600 No Soln 1.64% 0.11% 0.09% 0.08% 0.00% 0.09% 0.03%
20 19171800 21600 No Soln 1.22% 0.08% 0.13% 0.13% 0.00% 0.04% 0.03%
21 5976030 21600 No Soln 4.14% 4.29% 0.00% 0.00% 0.00% 0.58% 0.26%
22 24445800 21600 No Soln 0.42% 0.42% 0.00% 0.00% 0.00% 0.05% 0.00%
23 15692900 21600 No Soln 1.45% 0.23% 0.00% 0.00% 0.00% 0.14% 0.14%
24 18946000 21600 No Soln 1.11% 0.19% 0.11% 0.00% 0.00% 0.15% 0.02%
25 4331500 21600 No Soln 4.03% 0.44% 0.00% 0.00% 0.00% 0.41% 0.41%

Table 4.21: Large scale data set results (sets 1-25)
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Data Min. Obj.
CPLEX Heur-0

(600sec)
Heur-B
(660sec)

Heur-
A1

(1200sec)

Heur-A2
(2400sec)

Heur-A3
(3600sec)

Heur-I1
(1200sec)

Heur-I2
(3600sec)

Set Value Time OFV gap gap gap gap gap gap gap
26 11707600 21600 No Soln 2.38% 0.27% 0.16% 0.15% 0.00% 0.22% 0.07%
27 12358200 21600 No Soln 1.61% 0.45% 0.21% 0.15% 0.15% 0.33% 0.00%
28 10995800 21600 No Soln 1.70% 0.31% 0.03% 0.02% 0.02% 0.05% 0.00%
29 6044960 21600 No Soln 3.63% 0.78% 0.21% 0.18% 0.00% 0.81% 0.22%
30 8457880 21600 No Soln 1.71% 0.47% 0.27% 0.12% 0.00% 0.36% 0.36%
31 7092580 21600 No Soln 4.50% 0.43% 0.22% 0.22% 0.08% 0.36% 0.00%
32 29186200 21600 No Soln 0.42% 0.14% 0.04% 0.04% 0.03% 0.12% 0.00%
33 9516200 21600 No Soln 1.60% 0.46% 0.08% 0.08% 0.06% 0.24% 0.00%
34 13883100 21600 No Soln 2.28% 0.09% 0.09% 0.00% 0.00% 0.18% 0.05%
35 22829800 21600 No Soln 1.37% 0.00% 0.18% 0.17% 0.13% 0.25% 0.11%
36 12748400 21600 No Soln 2.77% 0.24% 0.00% 0.00% 0.00% 0.28% 0.00%
37 12705600 21600 No Soln 2.02% 0.23% 0.04% 0.00% 0.00% 0.16% 0.05%
38 15699000 21600 No Soln 1.63% 0.00% 0.07% 0.07% 0.07% 0.14% 0.14%
39 12719400 21600 No Soln 2.31% 0.01% 0.16% 0.00% 0.00% 0.01% 0.01%
40 4006900 21600 No Soln 6.00% 0.88% 0.00% 0.00% 0.00% 0.36% 0.12%
41 31674500 21600 No Soln 0.75% 0.07% 0.09% 0.03% 0.03% 0.11% 0.00%
42 21076300 21600 No Soln 0.54% 0.16% 0.05% 0.03% 0.03% 0.10% 0.00%
43 13002700 21600 No Soln 1.32% 0.23% 0.19% 0.10% 0.00% 0.27% 0.27%
44 24388600 21600 No Soln 1.01% 0.11% 0.09% 0.03% 0.02% 0.10% 0.00%
45 9321270 21600 No Soln 2.46% 0.17% 0.15% 0.11% 0.07% 0.10% 0.00%
46 23020700 21600 No Soln 0.66% 0.00% 0.03% 0.03% 0.00% 0.08% 0.05%
47 12763300 21600 No Soln 1.73% 0.07% 0.12% 0.02% 0.02% 0.00% 0.00%
48 13673200 21600 No Soln 0.88% 0.34% 0.05% 0.05% 0.05% 0.00% 0.00%
49 14635000 21600 No Soln 1.38% 0.25% 0.11% 0.09% 0.04% 0.17% 0.00%
50 19091900 21600 No Soln 1.02% 0.28% 0.14% 0.00% 0.00% 0.16% 0.16%

Table 4.22: Large scale data set results (sets 26-50)
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Figure 4.6: Gap and computation time for large scale sets

As seen, Heuristic-0 gives the worst results with an average gap of 2.59% and standard

deviation of 0.0178, but also using the shortest time. Heuristic-B improves the results

greatly compared to the Heuristic-0 variant with a 0.49% gap average and 0.0085 standard

deviation. Heuristic-A1, Heuristic-A2, and Heuristic-A3 give better results such as

Heuristic-A1 with a mean gap of 0.12% and standard deviation of 0.0014, Heuristic-A2
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with a mean gap of 0.07% and standard deviation of 0.0008, and the best solutions are

obtained by Heuristic-A3 which has mean gap of 0.03% and standard deviation of 0.00069.

For (I) variants, Heuristic-I1 has better solution than Heuristic-B but takes 9 minutes

longer time. The average gap of Heuristic-I1 results is only 0.029% and standard deviation

is 0.0034% which are almost the same as those of Heuristic-A1 and are produced in a

slightly shorter time. Heuristic-I2 produces better results with a mean gap of 0.14% and

standard deviation of 0.00174.

In large scale sets, time becomes more important and choosing between variants becomes

a trade off problem. If very short time is available for the users, Heuristic-B can be used,

while Heuristic-A1 or Heuristic-I1 can be used if more time is available. Heuristic-A2

and Heuristic-A3 would be the best choices if time is not an issue.

4.8 Numerical Analysis with Respect to Scales

In this section, a brief analysis is presented to show the performance of the proposed

approaches versus the set scales. First, to see the effect of Heuristic-B, the average of the

gaps is drawn with Heuristic-0 versus the data set scales as in Figure 4.7. In the figure,

the amount of improvement achieved by Heuristic-B increases with increasing set size. It

can be concluded that Heuristic-B becomes more beneficial as the size of a set increases

because the chance of finding suitable nodes for replacement or insertion is higher with larger

sets.
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Figure 4.7: Heuristic-0 and Heuristic-B vs. scale

Second, if a long computation time limit is available for users, it is better to use

Heuristic-A with time limit equal to the available time in the termination criterion. As

described in the numerical analysis, giving a longer time limit to Heuristic-A improves the

results. Figure 4.8 shows the results of Heuristic-A1, Heuristic-A2, and Heuristic-A3

with different set scales. As seen, Heuristic-A3 is always the best, and it is better in the

cases of large and medium scale than in those of tiny and small scales. This is because

CPLEX results are not available for medium and large scales which allows the results of

Heuristic-A3 to be the best in the most sets. Since gaps are calculated based on the best

solution, the gap average of Heuristic-A3 is better for medium and large scales than for

tiny and small scales.
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Figure 4.8: Gap averages produced by Heuristics-A vs. size scales

Third, Heuristic-I variants fail to compete with other heuristics. Figure 4.8 shows

the results of Heuristic-I variants with all other results in one figure with different scales.

As seen, Heuristic-I2 is defeated by Heuristic-A3 in all scales. One of the unexpected

results is that Heuristic-0 and Heuristic-B are better than Heuristic-I1 in tiny scale.

This can be justified by the fact that the time limit in tiny scale is short and the chance of

finding candidate nodes for replacement and insertion is low; Heuristic-I1 consumes time

for local search without any improvement which reduces the number of iterations which can

be performed. Heuristic-0 and Heuristic-B perform more iterations because they do not

consume time for local search which allows them to find more solutions and finds better

incumbents at the end.

In general from Figure 4.9, Heuristic-A3 shows the best results among all heuris-

tics, Heuristic-B is always better than Heuristic-0, and Heuristics-A is better than

Heuristics-I.
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Figure 4.9: Gap average comparison for all proposed heuristics at different size scales

The other comparison which can be made is how many times each heuristic produces

the best results compared to the other heuristics. Because 75 sets were solved for tiny scale

and 50 sets for other scales, the percentage, instead of using the numbers, of how many

times each heuristic produces the best results is drawn in Figure 4.10. It can be noticed that

Heuristic-A3, which gives the best gap average in all scales, gives the most best solutions

for scales. Even the number of best solutions for Heuristic-A3 in small scale sets is low, it

does very well for other sets as shown in Figure 4.8 which shows that a mean gap of 0.98%

for small scale sets, and the analysis of Figure 4.4 shows a narrow spread of Heuristic-A3

gaps for small scale sets.
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Figure 4.10: Percentages of how many times best solution is produced

4.9 Summary

In this chapter, a new model (HLVRP model) is developed to incorporate vehicle routing

and three logistic operations in a single framework, which improves resource utilization in

post–disaster situations. In this model, incorporating work–force transfer with the demand

distribution and wounded evacuation in a single logistic system represents the first contri-

bution. Considering detailed vehicle routes overcomes the main shortcoming of YK’+WT

model and represents another contribution. Finally, creating novel solution approaches rep-

resents the last contribution of the work discussed in this chapter.

The HLVRP is an NP–hard problem and can not be solved in a reasonable time using

commercial packages. Hence, a new heuristic approach is created to solve the model. The

proposed approach depends on building a route for each vehicle using a greedy approach,

then solving the model using CPLEX at specific binary variable values to determine for each

vehicle the quantities which should be picked up, amount which should be delivered to each

node, number of workers which should be transfered, and the number of wounded which

should be evacuated. All of these decisions are made for each time period. This approach
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is iterated many times by changing the routes to explore more choices and ultimately select

the best one.

Different local searches are added to the proposed approach to improve the results.

These are replacement and insertion applied to replace one node by two other nodes or to

insert one or more nodes into the vehicle routes. These local searches use initial routes

to start so they can be applied in different places in the heuristic using different initial

routes. First, Heuristic-B is performed at the end of the approach to improve the best

routes achieved. In this type, the initial routes to start the local searches are taken from the

best routes achieved after finishing the basic run (XIvijt = XBvijt). Second, Heuristic-A1,

Heuristic-A2, and Heuristic-A3 are applied at the end of each iteration of the approach to

improve the current candidate routes. In this case, the initial routes are taken as the current

iteration routes (XIvijt = XCvijt). The difference between the three variants of this type

is the time limit. Short time limit is given for Heuristic-A1, medium time limit is given

for Heuristic-A2, and long time limit is given for Heuristic-A3. Finally, Heuristic-I1

and Heuristic-I2 are applied at the end of each iteration of the approach if the solution of

the this iteration is improved. In this type, the initial routes are the current routes and the

condition of improved solution should be satisfied (XIvijt = XCvijt and ZC ≤ Z∗).

To test the performance of the approaches, an extensive numerical analysis has been

preformed on four different data set scales: tiny, small, medium, and large. The results show

that Heuristic-B is highly recommended in cases of limited waiting time because it can

improve the results of Heuristic-0 with very little time added.

Heuristic-A has different termination criteria and is recommended in non-urgent cases

where a longer computation time limit is available. Because this variant is applied for each

candidate solution, it gives the best results among all other heuristics, which is expected due

to the larger exploration space available in this case. Heuristic-A is recommended for tiny

and small scales because it does not take a long time to give excellent results. For example,

in small scale problems, it takes 10 seconds to produce results with a mean gap of 3.57%
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using Heuristic-0 and 60 seconds to improve the results to a mean gap of 0.98%. In the

case of medium and large scale sets, it is hard to differentiate between the heuristics because

it depends on how much computation time is available.

Heuristic-I1 and Heuristic-I2 are not recommended because they are always de-

feated by one of the Heuristic-A variants. Heuristic-I1 is used with a short time limit and

gives results with high variation (i.e., high standard deviations compared to Heuristic-A

variants). This is because Heuristic-I1 performs local search when the current candidate

solution is improved which shrinks the search space. However, when Heuristic-I1 finds

good candidates for replacement and insertion, it could improve the solution greatly in some

instances. This results in low gaps in many instances and bad gaps in others. Some tests show

that increasing the time limit for Heuristic-I1 is not helpful, because continuing to perform

local search for only improved solutions could not lead to better results. To overcome this

problem, Heuristic-I2 is performed by repeating Heuristic-I1 four times which allows it

to reinitialize the best routes and start local search in different spaces. Heuristic-I2 shows

a good improvement over Heuristic-I1, but Heuristic-A3, which has the same time limit

of Heuristic-I2, gives better results than Heuristic-I2. It can be concluded that even

through applying local search to the improved solution is recommended in many research

fields, it fails to give competitive results in this research and is not recommended.

The next chapter addresses the last model which improves and overcomes some limi-

tations of the HLVRP model. The first limitation of the HLVRP model is that it does not

consider any special care for using large vehicles where they can not be used efficiently in

many cases in post–disaster situations; the next model suggests a novel use for them. Second,

using a single objective function in the HLVRP model requires the specification of priority

values which could lead to bad results if improper values are used. Thus, the next model

uses multiple objective functions to avoid this problem.
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Chapter 5

Incorporating Satellite Facilities and Multiple Objectives

5.1 Introduction

Employing large vehicles to serve as satellite facilities (SFs) may help to improve dis-

tribution efforts. Additionally, it is clear that there are multiple objectives relevant to post-

disaster relief efforts, for example, minimizing unsatisfied demand, minimizing the number

of non–evacuated wounded, and minimizing the number of non–transfered workers. In the

HLVRP model, a single objective function is used, where it is noted that the humanitarian

logistic models are quite sensitive to changes in the coefficients of the objective function.

Because of this, using multiple objective functions leads to more realistic solutions and will

be adopted in this chapter.

In this chapter, a new model is developed to incorporate the use of SFs and multiple

objectives. Knowledge obtained through the development of the aforementioned models will

be applied to the construction of this new model. With appropriate modifications to consider

SFs and multiple objectives, the same concepts of heuristic approaches under development

for the HLVRP are applicable to the new model.

This chapter is organized as follows. Section 5.2 describes the problem to be solved in the

chapter. Section 5.3 describes the mathematical model used to solve the problem. Section

5.4 includes the formulation of the model. Section 5.5 provides a small example to verify the

formulation and demonstrate the benefits of using SFs. Section 5.6 explains the proposed

solution approaches. Section 5.7 provides the suggested approaches for route construction

and solution generation. Section 5.8 shows some numerical results for specific data sets

obtained by the proposed solution approaches. Section 5.9 discusses the advantages and

disadvantages of the suggested solution approaches and suggests a new solution approach.
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Section 5.10 solves a case study and proposes a procedure to compare between single and

multi–objective models. Section 5.11 summarizes the chapter.

5.2 Problem Description

In post–disaster relief operations, many humanitarian agencies work together to allocate

available resources to areas affected by a disaster, transfer relief workers to areas affected by

a disaster, and evacuate wounded to hospitals. Each agency has a set of vehicles provided

by different donors; consequently, vehicles have different specifications for speed, capacity,

and starting location. Some of these vehicles can not be utilized efficiently in post–disaster

situations because of destroyed infrastructure and the low speed of some large vehicles. This

chapter solves a post–disaster humanitarian relief logistic problem where small and large

vehicles are utilized differently. In this problem, large vehicles are called satellite facilities

(SFs). The reasons for and importance of utilizing large vehicles in a unique manner is

discussed in Section 5.2.1.

Unlike the network in the HLVRP model, nodes in this problem’s network are classified

into four main groups: demand nodes, supply nodes, candidate SF locations, and hospital

nodes. Demand nodes represent the affected areas where people request demand from supply

nodes and wounded people await evacuation. Supply nodes represent the warehouses or

temporary stores built after disasters. Candidate SF locations are empty nodes representing

candidate locations for SF parking. Once SFs park at the candidate SF locations, these

locations serve as supply nodes. Finally, hospital nodes represent medical facilities in the

area of a disaster which were not destroyed by the disaster, or any non-permanent emergency

center built by humanitarian agencies.

The same operations considered in the HLVRP model are also considered here. These

include demand dispatching, wounded evacuation, and work-force transfer. Demand is clas-

sified into different types, such as food and medical supplies, where each type has its own

priority value which varies among nodes. Similarly, workers are classified into different
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categories based on their professions, such as doctors, nurses, drivers, and maintenance tech-

nicians. Every worker requested by a demand node has a priority based on his profession

and the node which requests him. Wounded waiting at demand nodes are classified into

different categories (levels) based on their injury level. Each level has a priority value depen-

dent on the seriousness of the injury and the demand node where the wounded are waiting.

Sometimes, wounded with a given injury level will have a higher priority at one node than

wounded of the same injury level at another node. This is because the lack of medications

and doctors at some nodes makes the wounded evacuation more urgent.

Logistic operations are performed as follows: both vehicles and SFs are filled with com-

modities and workers from the main depots (supply nodes). Vehicles then begin distributing

the demand and workers to the demand nodes, while the SFs select the best SF locations to

park based on vehicle movement. SFs select to park in some of SF locations to minimize the

distance traveled by vehicles to these locations for resupply. After a vehicle has completed

its first trip, it has many choices. It can travel to a hospital to drop wounded people, travel

to a SF (which functions as a mobile supply node in this problem), or visit a supply node to

replenish and restart distribution. This procedure continues for the reminder of the avail-

able time. It is assumed that vehicles can revisit hospitals to perform evacuation as often as

necessary, and visit candidate SF locations to pick up supplies and workers from SFs instead

of going back to supply nodes if this saves time. However, they must return to their depots

before the end of time horizon. In the case of SF routes, SFs can only visit the candidate SF

locations and can revisit any of the SF locations or spend more than one time period there.

These activities can be understood more in the numeric example shown in Section 5.5.

In some cases, vehicles and SFs may perform the logistic operations different than what

is described above. For example, some vehicles can arrive at demand nodes empty to evacuate

wounded in the event evacuation is more important than other operations. In case a depot

has limited resources, vehicles start from that depot can go directly to other depots (supply
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nodes) or SF locations to pick up commodities or workers. Finally, some SFs can pick up

only commodities or only workers.

The goals of this problem are to deliver the maximum possible commodities to demand

nodes, transfer the maximum possible workers to demand nodes, and evacuate as many

wounded as possible.

5.2.1 Satellite Facilities in Post–Disaster Relief

Due to the impracticality of constructing permanent facilities immediately after a dis-

aster, temporary mobile satellite facilities are suggested to help in distribution efforts. The

benefits of using SFs in humanitarian relief operations may be observed in a variety of ways.

For example, many regions of the world do not have any prepositioned facilities available

in case of a disaster. In this situation, temporary mobile facilities (SFs, in this case) can

be dispatched quickly to help in logistic operations. Additionally, due to a lack of a priori

information about demands and supplies, SFs could be used to replenish vehicles in remote

locations, away from primary depots.

Other benefits of using SFs are related to the availability of warehouses. For example,

warehouses that exist in other cities or near airports could be used as main depots because

they are already constructed and are the easiest places to receive supplies. Using these

depots as main suppliers will result in a long travel time, so temporary depots (candidate

SF locations) may be located closer to affected regions. Another reason for incorporating

SFs is that using large vehicles (LVs) in humanitarian relief could cause problems such as

road blocking and long times for unloading and dispatching commodities during distribution

operations. It is, therefore, preferable to keep SFs off of major roadways and to use them as

intermediate suppliers with low setup cost and time. These large vehicles can be loaded and

parked at candidate locations to avoid problems.

Candidate locations are selected based on accessibility, distance from depots, and avail-

ability of security. Figure 5.1 shows an example of a system containing 1 large vehicle, 1
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small vehicle, 1 hospital, 1 depot, and 10 demand nodes. Both vehicles are positioned at the

depot, and four candidate SF locations are identified. It is necessary to determine a location

for the large vehicle to serve as a SF, and to construct vehicle routes for the small vehicle.

A notional example demonstrating a scenario in which the large vehicle serves as a

temporary supply point is described by Figure 5.2. If the large vehicle is not dispatched to a

candidate satellite location, the small vehicle must make frequent return visits to the depot

to re-supply (Figure 5.2a). If, as in Figure 5.2b, the large vehicle is loaded and moved to

a more centralized location, the small vehicle can more efficiently deliver goods to demand

nodes.

Figure 5.1: A humanitarian relief network including candidate locations for a large vehicle
(LV) to serve as a satellite facility.
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(a) Longer vehicle routes are required without the
SF.

(b) A SF allows more efficient and timely delivery.

Figure 5.2: A comparison of vehicle routes when SFs are considered.

To better demonstrate how the humanitarian relief problem is solved used our suggested

model by using SFs, Section 5.5 shows an example which will be discussed extensively later

in this chapter. The next section provides an overview of the mathematical model which is

used to solve the problem of this chapter.

5.3 An Overview of the HLVRPSF Model

A mixed integer linear model, called HLVRPSF model, is constructed to formulate the

described problem. As with the HLVRP, the HLVRPSF includes the same input sets. First,

the time horizon set T includes all discrete time slots. The time set makes all parameters,

such as supplies, demand, wounded, and workers as time based parameters. Second, the set

of wounded evacuee categories or levels, E, includes different injury levels such as heavy,

moderate, and light. Higher injury level is given a higher priority value. Third, the set

of available vehicles, V , contains all small vehicles in the network, but not the SFs. Each

vehicle has its capacity, speed, and starting node. Fourth, the set of commodities C contains

the different types of commodities, such as boxed food, bottled water, and clothes. Each

commodity type is given a priority value varies between demand nodes. Fourth, the set of

workers, W , contains all types of professions requested by the demand nodes such as nurses,
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doctors, and technicians. Fifth, the set of demand nodes, D, represents the areas where the

demand is requested and wounded are awaiting evacuation. Sixth, the set of supply nodes

S includes all nodes that have supplies such as warehouses and non–permanent stores built

by the humanitarian agencies. Seventh, the set of hospital nodes, H, includes all hospitals

and emergency centers. Eighth, the set of nodes, N , includes all nodes. Additionally, the

HLVRPSF considers a set of satellite facilities F and a set of candidate SF locations where

SFs can park L.

In this model, the set of nodes (N) contains the subsets of candidate SF locations (L),

demand (D) nodes, supply (S) nodes, and hospital (H) nodes (i.e., N = L ∪ D ∪ S ∪ H).

Candidate SF locations are not a part of the supply node set, because a SF location can

work as a supply node at time t only if SF(s) park at that location by that time.

The parameters that are assumed to be known for each time period t ∈ T are the

supplies of each type available at each supply node, demand for each type requested by

each demand node, number of workers for each category available at each supply node or

requested at each demand node, and the number of each level of wounded waiting at each

demand node. Additionally, the average mass for each commodity type, worker category,

and wounded level are assumed to be known. Specifications for speed, capacity, and starting

points for all vehicles and SFs are known. Finally, priorities for each commodity type,

work–force category, and wounded level are specified at each demand node.

There are many outputs (decision variable values) for this model. First, the number

of commodities of each type and workers of each category to be picked up by each vehicle

at each time from each supply node or SF location. Second, the number of commodities

and workers to be picked up by each SF and vehicle from its depot at the first time period.

Third, the number of wounded of each level to be picked up from each demand node at each

time and which hospital they are delivered and when to. Fourth, a route for each vehicle.

Fifth, a route for each SF which represents which SF locations to be visited and when each

SF location is visited.
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As discussed earlier, the HLVRPSF considers the objectives of minimizing unsatisfied

commodities, non-transfered workers, and unserved wounded separately as a multiple objec-

tive model. In single objective models, a single solution is produced after solving the model

and the decision variable values depend on the coefficients (priority values in this research)

used in the objective function, which could lead to inappropriate solutions. For example, if

relatively high priorities are applied to commodities (compared to the priorities of wounded

and workers), a single solution could be available which has an excellent performance for

demand distribution and poor performance for worker transfer and wounded evacuation. In

contrast, the multi–objective models, as will be considered in this chapter, eliminate the

effect of priority values between the objective functions and produce multiple solutions with

different performance for the logistic operations.

This model considers many features. First, multiple depots are considered, each of which

serve as supply node. Each vehicle begins its route at one of these depots. Second, split

delivery is allowed, such that each demand node can be supplied by different vehicles. Third,

heterogeneous vehicles with different speeds and capacities are used. Fourth, the HLVRPSF

model considers multiple commodity types, evacuee categories, and workforce professions.

Fifth, a solution of the HLVRPSF provides a route for each vehicle, including the nodes

must be visited, supplies of each type should be picked up from the SFs and supply nodes,

the demand of each type to be delivered to each visited demand node, wounded of each

category to be evacuated from each visited demand node, and workers of each category to

be transfered to each visited demand node.

Sixth, hospitals can be visited more than once by the same vehicle which makes the

HLVRPSF model more realistic. In some actual cases of the HLVRPSF, the objective of

minimizing evacuation deviations becomes the main objective and there may be few hospital

nodes available in the network. In this way, vehicles can perform the evacuation operation

as much as necessary by revisiting the same hospitals. Seventh, SFs can revisit candidate

SF locations and spend more than one time period in the same place which is easily done in
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practice and could cause the logistic system to become more efficient. Eighth, the HLVRPSF

model considers priority values depending on the node and type or category, while the

HLVRP model considers priority values depending on the category only.

The HLVRPSF relies on some practical assumptions. First, candidate SF locations are

selected in discrete positions and are not part of decisions made by the model. This is

because in disaster areas, the locations for delivering demand from one vehicle to another

must be secured by police or security agencies. Second, each SF starts from a depot, which

is one of the supply nodes, and must return to the same depot before the end of the time

horizon. Third, SFs can visit only the candidate SF locations to deliver supplies and workers

to vehicles. This is for the same reason (availability of security) that discrete locations are

chosen. Fourth, demand nodes can not operate as transshipment nodes because leaving

supplies at demand nodes could be unsafe. Fifth, workers stay at the last point they reach,

and do not need to return to their starting locations. If it is necessary that they return

home, a constraint set may be added to the model which is the same set discussed in the

HLVRP model (Constraint 4.28). Sixth, vehicles can not revisit supply nodes, candidate SF

locations, and demand nodes. Because of this, they can pick up supplies and workers from

their depots only at the first time period before they leave. Seventh, each vehicle should

return back to its depot to start a new plan from the same depot.

Section 5.4 contains the notations and formulation of the mixed integer linear program-

ming model developed to solve the HLVRPSF.

5.4 Notations and Formulation

This model requires the definitions of numerous parameters and decision variables de-

scribed as follows. All sets, parameters, and variables are shown in this section. Some of

them have the same definition as in the HLVRP model of Chapter 4.

• List of new notations for the HLVRPSF model
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– F : Set of individual large vehicles that can be used as satellite facilities (SF),

F = {1, 2, 3, . . . |F |}. F ∩ V = φ

– L: Set of candidate SF locations, L = {1, 2, 3, . . . |L|}.

– N : Set of all nodes and locations, N = {D ∪ S ∪H ∪ L}.

– iFf : Initial depot of satellite vehicle f ∈ F , all iFf ∈ S.

– τFfij: Integer time periods needed by SF f ∈ F to travel from node i ∈ iFf ∪ L to

j ∈ iFf ∪ L.

– mF
f : Mass capacity of SF f ∈ F .

– pWwi: Priority of workers in category w ∈ W at node i ∈ D.

– pCci: Priority of commodity type c ∈ C at node i ∈ D.

– pEei: Priority of wounded evacuees category e ∈ E at node i ∈ D.

• List of notations that have the same definitions as in the HLVRP

– T : Set of discrete time periods in the planning horizon, T = {1, 2, 3, . . . |T |}.

– V : Set of individual vehicles, V = {1, 2, 3, . . . |V |}.

– E: set of different categories of evacuees (wounded) people, E= {Heavy, Moderate,

Light, . . .}.

– C: Set of commodity types C = {1, 2, 3, . . . |C|}.

– W : Set of worker categories W = {1 (doctors), 2 (nurses), 3, . . . , |W |}.

– D: Set of demand nodes.

– S: Set of supply nodes.

– H: Set of available hospitals.

– N : Set of all nodes and locations, N = {D ∪ S ∪H ∪ L}.

– iVv : Initial depot of vehicle v ∈ V , all iVv ∈ S.
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– τVvij: Integer time periods needed by vehicle v ∈ V to travel from node i ∈ N to

j ∈ N .

– dEeit: Number of wounded of category e ∈ E requesting evacuation from node

i ∈ D at time t ∈ T .

– dCcit: Amount of commodity type c ∈ C demanded at node i ∈ D at time t ∈ T .

– sCcit: Amount of commodity type c ∈ C that can be supplied from node i ∈ S at

time t ∈ T .

– mC
c : Unit mass of commodity c ∈ C.

– mE
e : Average mass of an evacuee of category e ∈ E.

– sWwit: Number of workers of category w ∈ W that are available at node i ∈ S at

time t ∈ T .

– dWwit: Number of workers of category w ∈ W requested at node i ∈ D at time

t ∈ T .

– mW
w : Average mass of one worker of category w ∈ W .

– mV
v : Mass capacity of vehicle v ∈ V .

Numerous decision variable types are required to provide the more detailed solutions

afforded by the HLVRPSF model. Decision variables can be grouped into different categories;

pick–up, delivery, deviation, and routing. Pick–up variables define, for each vehicle at each

time period, the picked up commodities of each supply type, the picked up workers of each

work–force category, and the picked up wounded of each wounded level. For SFs, pick–up

variables represent the commodities of each supply type and the number workers of each

work–force category picked up by each SF from its depot. There are seven variables types

used to define all pick–up variables, as explained below.

Delivery variables define all deliveries in the logistic system, such as the quantity of

each demand type delivered by each vehicle during all time periods to demand nodes zDcivt,
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the number of workers of each work–force category delivered by each vehicle during all time

periods to demand nodes wDwivt, and the number of wounded of each level delivered by each

vehicle at each time period to each hospital node eDeivt. Both zPLcflvt and zPLcflvt are considered

to be picked up variables, but they can be also be regarded as delivery variables because the

quantity of demand or number of workers delivered by each SF at candidate SF locations

during all time periods are picked up by the vehicles.

Deviation variables represent the shortage or unsatisfied demand vCcit, unserved wounded

eDeivt, and non–transfered workers vWwit. Routing variables are binary variables used to define

a route for each vehicle xVvijt and for each SF xFfijt. All variables are listed below.

• Decision variables having the same definitions and notations as in the HLVRP model:

– zDcivt: Amount of commodity type c ∈ C delivered to node i ∈ D at time t ∈ T by

vehicle v ∈ V , where zDcivt ∈
{

0, 1, . . . ,min

{
dCcit,

mV
v

mC
c

}}
– vCcit: Amount of unsatisfied demand of commodity type c ∈ C at node i ∈ D at

time t ∈ T , where vCcit ∈
{

0, 1, . . . , dCcit
}

– vEeit: Number of wounded of category e ∈ E at node i ∈ D that requested evacu-

ation at time t ∈ T which were not evacuated. vEeit ∈
{

0, 1, . . . , dEeit
}

– vWwit: Number of workers of category w ∈ W requested by node i ∈ D at time

t ∈ T which were not assigned. vWwit ∈
{

0, 1, . . . , dWwit
}

– eDeivt: Number of evacuees of category e ∈ E transfered (delivered) to node i ∈ H

at time t ∈ T by vehicle v ∈ V , where eDeivt ∈
{

0, 1, . . . ,
mV
v

mE
e

}
– ePeivt: Number of evacuees of category e ∈ E transfered (picked up) from node

i ∈ D at time t ∈ T by vehicle v ∈ V , where ePeivt ∈
{

0, 1, . . . ,min

{
dEeit,

mv
V

mE
e

}}
– wDwivt: Number of workers of category w ∈ W (e.g., nurses or doctors) transfered

(delivered) to node i ∈ D at time t ∈ T by vehicle v ∈ V , where wDwivt ∈{
0, 1, . . . ,min

{
dWwit,

mV
v

mW
w

}}
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• Decision variables having the same definitions as in the HLVRP model, but using

different notations:

– zPScivt: Amount of commodity type c ∈ C picked up from node i ∈ S at time t ∈ T

by vehicle v ∈ V , where zPScivt ∈
{

0, 1, . . . ,min

{
sCcit,

mV
v

mC
c

}}
– wPSwivt: Number of workers of category w ∈ W transfered (picked up) from node

i ∈ S at time t ∈ T by vehicle v ∈ V , where wPwivt ∈
{

0, 1, . . . ,min

{
sWwit,

mV
v

mW
w

}}
– xVvijt: Binary variables used to define the small vehicles movement, such that

xVvijt = 1 if vehicle v ∈ V arrives at node j ∈ N coming from node i ∈ N, i 6= j at

time t ∈ T ; otherwise, xVvijt = 0.

• New decision variables created for the HLVRPSF:

– zPLcflvt: Amount of commodity type c ∈ C picked up by vehicle v ∈ V at time

t ∈ T from satellite facility f ∈ F that parks at node l ∈ L, where zPLcflvt ∈{
0, 1, . . . ,min

{∑
f∈F

Ccf ,
mV
v

mC
c

}}
– Ccf : Amount of commodity type c ∈ C picked up by SF f ∈ F from its depot,

where Ccf ∈

{
0, 1, . . . ,min

{
sCcit,

mF
f

mC
c

}}
– Wwf : Number of workers of category w ∈ W (e.g., nurses or doctors) picked up

by SF f ∈ F from its depot, where Wwf ∈

{
0, 1, . . . ,min

{
sWwit,

mF
f

mW
w

}}
– wPLwflvt: Number of workers of category w ∈ W transfered (picked up) from satellite

facility f ∈ F while it is parked at node l ∈ L at time t ∈ T by vehicle v ∈ V ,

where wPwflvt ∈
{

0, 1, . . . ,min

{
Wwf ,

mV
v

mW
w

}}
– xFfijt: Binary variables to define SFs movement, such that xFvijt = 1 if satellite

vehicle f ∈ F arrives at node j ∈ L ∪ iFf coming from node i ∈ L ∪ iFf at time

t ∈ T ; otherwise, xFfijt = 0.
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5.4.1 The HLVRPSF Formulation

In this section, a mathematical formulation of the HLVRPSF model is presented.

Min
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

(5.1)

Min
∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

(5.2)

Min
∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

(5.3)

∑
j∈N

∑
i∈N
i 6=j

xVvijt ≤ 1 ∀ v ∈ V, t ∈ T (5.4)

∑
i∈N
i 6=iVv

∑
t∈T

xviVv it = 1 ∀ v ∈ V (5.5)

∑
i∈N
i 6=iVv

∑
t∈T

xVviiVv t = 1 ∀ v ∈ V (5.6)

∑
j∈N
j 6=iVv

xVviVv jt = 0 ∀ v ∈ V t ∈ {T, t ≤ tjiVv } (5.7)

∑
i∈N

∑
j∈N
j 6=i

∑
t∈T

τVijv x
V
vijt ≤ |T | ∀ v ∈ V (5.8)

∑
i∈N
i 6=j

∑
t∈T

xVvijt ≤ 1 ∀ v ∈ V, j ∈ N\H (5.9)

∑
i∈N
i 6=j

∑
s∈T

s+tVvjk≤t

xVvijs ≥ xVvjkt ∀ v ∈ V, j ∈ H, k ∈ N\j, t ∈ T (5.10)

∑
i∈N
i 6=j

∑
s∈T
s≤t

xVvijs ≥
∑
k∈N
k 6=j

∑
s∈T

s≤t+tvvjk

xVvjks ∀ v ∈ V, j ∈ H, t ∈ T (5.11)

∑
i∈N\iVv

∑
t∈T

t xVvijt ≤
∑

i∈N\iVv

∑
t∈T

(t− τVijv)xVvijt ∀ v ∈ V, j ∈ N (5.12)
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∑
i∈N\iVv
i 6=j

∑
t∈T

xVvijt =
∑

i∈N\iVv
i 6=j

∑
t∈T

xVvjit ∀ v ∈ V, j ∈ N (5.13)

∑
j∈L

∑
t∈T

xFfiFf jt
= 1 ∀ f ∈ F (5.14)

∑
j∈L

∑
t∈T

xFfjiFf t
= 1 ∀ f ∈ F (5.15)

∑
i∈iFf ∪L

∑
j∈iFf ∪L

xFfijt ≤ 1 ∀ f ∈ F, t ∈ T (5.16)

∑
t∈T

t≤τF
fjiF

f

xFfiFf jt
= 0 ∀ f ∈ F, j ∈ L (5.17)

∑
i∈L∪iFf
i 6=k

∑
s∈T

s+τFfjk≤t

xFfijs ≥ xFfjkt ∀ f ∈ F, j ∈ L, k ∈ L, t ∈ T (5.18)

∑
i∈L∪iFf

∑
s∈T
s≤t

xFfijt ≥
∑
k∈L

∑
s∈T

s≤t+τFfjk

xFfjks ∀ f ∈ F, j ∈ L, t ∈ T (5.19)

∑
j∈L

∑
t∈T

τFjiFf f
xFfjiFf t

≤ |T | ∀ f ∈ F (5.20)

∑
s∈T
s≤t

vCcis =
∑
s∈T
s≤t

dCcis −
∑
v∈V

∑
s∈T
s≤t

zDcivs ∀ c ∈ C, i ∈ D, t ∈ T (5.21)

∑
s∈T
s≤t

vEeis =
∑
s∈T
s≤t

dEeis −
∑
v∈V

∑
s∈T
s≤t

eDeivs ∀ e ∈ E, i ∈ D, t ∈ T (5.22)

∑
s∈T
s≤t

vWwis =
∑
s∈T
s≤t

dWwis −
∑
v∈V

∑
s∈T
s≤t

wDwivs ∀ w ∈ W, i ∈ D, t ∈ T (5.23)

∑
s∈T
s≤t

∑
i∈S

zPScivs +
∑
s∈T
s≤t

∑
f∈F

∑
k∈L

zPLcfkvs ≥
∑
s∈T
s≤t

∑
j∈D

zDcjvs ∀ v ∈ V, c ∈ C, t ∈ T (5.24)

∑
s∈T
s≤t

∑
i∈D

ePeivs ≥
∑
s∈T
s≤t

∑
j∈H

eDejvs ∀ v ∈ V, e ∈ E, t ∈ T (5.25)

∑
s∈T
s≤t

∑
i∈S

wPSwivs +
∑
s∈T
s≤t

∑
j∈L

∑
f∈F

wPLwfjvs ≤
∑
s∈T
s≤t

∑
k∈D

wDwkvs ∀ v ∈ V, w ∈ W, t ∈ T (5.26)
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∑
v∈V

zPScivt ≤
∑
s∈T
s≤t

sCcis −
∑
s∈T
s≤t−1

∑
v∈V

zPScivt −
∑

f∈{F :iFf =i}

Ccf ∀ c ∈ C, i ∈ S, t ∈ T (5.27)

∑
v∈V

ePeivt ≤ dEeit ∀ e ∈ E, i ∈ D, t ∈ T (5.28)

∑
v∈V

wPSwivt ≤
∑
s∈T
s≤t

sWwis −
∑
s∈T
s≤t−1

∑
v∈V

wPSwivs −
∑

f∈{F :iFf =i}

Wwf ∀ w ∈ W, i ∈ S, t ∈ T (5.29)

mV
v ≥

∑
c∈C

∑
s∈T
s≤t

∑
i∈S

mC
c zPScivs +

∑
c∈C

∑
s∈T
s≤t

∑
i∈L

∑
f∈F

mC
c zPLcfivs +

∑
e∈E

∑
s∈T
s≤t

∑
i∈D

mE
e ePeivs

+
∑
w∈W

∑
s∈T
s≤t

∑
i∈S

mW
w wPSwivs +

∑
w∈W

∑
s∈T
s≤t

∑
i∈L

∑
f∈F

mW
w wPLwfivs −

∑
c∈C

∑
s∈T
s≤t

∑
i∈D

mC
c zDcivt

−
∑
e∈E

∑
s∈T
s≤t

∑
i∈H

mE
e eDeivs −

∑
w∈W

∑
s∈T
s≤t

∑
i∈D

mW
w wDwivs ∀ v ∈ V, t ∈ T (5.30)

mF
f ≥

∑
w∈W

mW
w Wwf +

∑
c∈C

mC
c Ccf ∀ f ∈ F, t ∈ T (5.31)

∑
t∈T

∑
v∈V

∑
l∈L

zPLcflvt ≤ Ccf ∀ f ∈ F, c ∈ C (5.32)

∑
t∈T

∑
v∈V

∑
l∈L

wPLwflvt ≤ Wwf ∀ f ∈ F, w ∈ W (5.33)

∑
i∈D

∑
t∈T

∑
v∈V

ePeivt =
∑
i∈H

∑
t∈T

∑
v∈V

eDeivt ∀ e ∈ E (5.34)

∑
i∈S

∑
t∈T

∑
v∈V

zPScivt +
∑
l∈L

∑
f∈F

∑
t∈T

∑
v∈V

zPLcflvt =
∑
i∈D

∑
t∈T

∑
v∈V

zDcivt ∀ c ∈ C (5.35)

∑
i∈S

∑
t∈T

∑
v∈V

wPSwivt +
∑
l∈L

∑
f∈F

∑
t∈T

∑
v∈V

wPLwflvt =
∑
i∈D

∑
t∈T

∑
v∈V

wDwivt ∀ w ∈ W (5.36)

∑
c∈C

zDcivt ≤M5.37

∑
j∈N
j 6=i

xVvjit ∀ i ∈ D, v ∈ V, t ∈ T (5.37)

∑
c∈C

zPScivt ≤M5.38

∑
j∈N

xVvjit ∀i ∈ S\iv, v ∈ V, t ∈ T (5.38)

∑
c∈C

zPLcfivt ≤M5.39

∑
j∈N

xVvjit ∀ v ∈ V, i ∈ L, c ∈ C, t ∈ T (5.39)

∑
c∈C

wPLwfivt ≤M5.40

∑
j∈N

xVvjit ∀ v ∈ V, i ∈ L,w ∈ W, t ∈ T (5.40)
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∑
c∈C

zPLcfivt ≤M5.41

∑
j∈L∪iFf

xFfjit ∀ c ∈ C, i ∈ L, f ∈ F, t ∈ T (5.41)

∑
c∈C

wPLwfivt ≤M5.42

∑
j∈L∪iFf

xFfjit ∀ w ∈ W, i ∈ L, f ∈ F, t ∈ T (5.42)

zPSciVv vt = 0 ∀ c ∈ C, v ∈ V, t ∈ {T : t > 1} (5.43)∑
e∈E

eDeivt ≤M5.44

∑
j∈N

xVvjit ∀ e ∈ E, i ∈ H, v ∈ V, t ∈ T (5.44)

∑
e∈E

ePeivt ≤M5.45

∑
j∈N

xVvjit ∀ e ∈ E, i ∈ D, v ∈ V, t ∈ T (5.45)

∑
w∈W

wDwivt ≤M5.46

∑
j∈N

xVvjit ∀ w ∈ W, i ∈ D, v ∈ V, t ∈ T (5.46)

∑
w∈W

wSPwivt ≤M5.47

∑
j∈N

xVvjit ∀ w ∈ W, i ∈ S\iv, v ∈ V, t ∈ T (5.47)

wPwiVv vt = 0 ∀ w ∈ W, v ∈ V, t ∈ {T : t > 1} (5.48)∑
j∈N

xVvjit ≤M5.49

∑
f∈F

∑
j∈L∪iFf

xFfjit ∀ v ∈ V, i ∈ L, f ∈ F, t ∈ T (5.49)

The objective functions (5.1)–(5.3), seek to minimize the quantities of unsatisfied de-

mand, non-transfered workers, and unserved wounded, respectively. Each of these quantities

are scaled by their respective priority values which vary between nodes. The second term

in each function is a very small value used to ensure the SFs return to their depot, once

they finish distribution. The value of this term should be small compared to the first term

(deviation term) so that it does not affect the distribution quantities.

Constraints (5.4)–(5.13) are used to construct the vehicle routes in the following ways.

Constraints (5.4) ensure that each vehicle may serve only one node at each time. Constraints

(5.5) ensure that each vehicle starts from its initial depot, while Constraints (5.6) ensure

that it returns to its initial depot after finishing its route. Constraints (5.7) prevent the

creation of infeasible initial visits (e.g., reaching a node in less time than is needed) for

the vehicles. Constraints (5.8) restrict each vehicle’s route by the total time available for

that vehicle. Constraints (5.9) restrict each vehicle from visiting any node more than once.
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Hospital nodes are excluded because they can be revisited by the same vehicle multiple times,

so Constraints (5.10) and (5.11) are added to ensure the feasibility of revisiting hospitals.

Constraints (5.10) ensure that if a vehicle leaves a hospital node it must have traveled to this

hospital from another node, and Constraints (5.11) balance the vehicle flows at each hospital

node. To maintain feasibility of routes, Constraints (5.12) ensure that no vehicle can reach

any node before finishing the arc between that node and the current node. Constraints (5.13)

balance the flow of each demand node so each vehicle enters and leaves each node the same

number of times.

Satellite facilities are routed differently because they can revisit the same node and stay

more than one time period at a given SF location; consequently, variables xFfijf , where i = j,

are defined and can take a value of 1. Constraints (5.14) and (5.15) ensure that each SF

leaves from and returns to its depot only once. Constraints (5.16) ensure that each SF can

be in only one location at a given time. Constraints (5.17) prevent each SF from making

any infeasible initial visit, such as reaching the first node in the route in less time than is

needed. Constraints (5.18) maintain the feasibility of the route series by ensuring that if a SF

visits a SF location node, it must come from its depot or another SF location. Constraints

(5.19) ensure that the number of SFs leaving a node is less than the number to enter the

same node, this balances the SF flows at each node. Similar to the constraints for small

vehicles, Constraints (5.20) ensure that each SF must return to its depot before the end of

the available time slots.

Constraints (5.21), (5.22), and (5.23) define the deviation variables: (5.21) address un-

satisfied demand, (5.22) address non–evacuated wounded, and (5.23) consider non–transfered

workers.

Vehicle supply restrictions are found in Constraints (5.24)–(5.26). Constraints (5.24)

restrict the delivered commodities to the quantity picked up from suppliers and SFs. Con-

straints (5.25) restrict the delivered wounded to the number picked up from demand nodes.

Constraints (5.26) restrict the delivered workers to the number picked up from suppliers and
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SFs. Constraints (5.34) ensure that wounded persons picked up from demand nodes are

transferred to hospital nodes.

Similarly, Constraints (5.27), (5.28), and (5.29) restrict the nodes supply and transfer

at each time. Constraints (5.27) ensure that each supply node can provide quantities not

exceeding the available supply of each commodity type. Constraints (5.28) limit the number

of assisted wounded to be no more than the number waiting at a particular demand node.

In the same manner, Constraints (5.29) ensure that the number of workers dispatched from

any supply node does not exceed the actual number of available workers.

In Constraints (5.27) and (5.29), it is assumed that SFs can pick up commodities and

workers only once from their depots and perform one trip to deliver commodities and workers

to small vehicles. This assumption can be relaxed by adding new time–based variables

representing the amount of commodities and the number of workers that picked up from

other supplies nodes (Wwift, Ccift instead of Wwf , Ccf ). This complicates the model and

makes it hard to be mathematically solved and to be accomplished in practice.

Constraints (5.32) prohibit each SF from providing quantities of a commodity type

exceeding what was picked up at its depot. Similarly, Constraints (5.33) ensure that SFs can

not provide a number of workers from each category exceeding the number picked up by the

same SF. Vehicle capacity limitations are included in Constraints (5.30), while Constraints

(5.31) consider the SFs’ capacity limitations. Constraints (5.34)–(5.36) ensure that any

picked up commodity, worker, or wounded person must be delivered.

Constraints (5.37)–(5.48) ensure that all distribution and transfer variables have a value

for any node only if a vehicle or SF visits that node. Constraints (5.37) allow for the delivery

of commodity type c to a demand node i at time t by vehicle v only if the vehicle visits that

node at that time. Constraints (5.38) allow vehicle v to pick up commodities of type c

from supply node i if it visits the node at that time; vehicle depots are excluded from this

constraint set. For candidate SF locations, Constraints (5.39) ensure that a vehicle can

pick up from a SF location only if it visits the SF location. Constraints (5.40) ensure that
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vehicle v can pick up workers from SF location l only if it visits the SF location at time t.

Constraints (5.41) ensure that SF f can deliver commodities to a candidate SF location l if

it visits the location at time t. For workers, Constraints (5.42) ensure that SF f can deliver

workers to vehicles at candidate SF location l if it visits the location at time t. Constraints

(5.43) ensure that each vehicle can pick up commodities from its depot only at the beginning

of the time horizon; once it leaves the depot, it can not revisit the depot again until it is

finished. Constraints (5.44) allow vehicles to deliver wounded to a hospital only if they visit

the hospital. For wounded pick–ups, Constraints (5.45) ensure that a vehicle can pick up

wounded from a demand node only if the vehicle visits the demand node. Constraints (5.46)

ensure that if a vehicle visits a demand node, then it can deliver workers. Constraints (5.47)

ensure that a vehicle can pick up workers only if it visits a supply node which is not its

depot. Constraints (5.48) ensure that each vehicle can pick up workers from its depot only

at the beginning of a plan series since it can not revisit the depot during the time horizon.

The big-M values in Constraints (5.37)–(5.42), (5.44)–(5.47), and (5.49) are defined as

follows. By using the lowest possible value for each M, the computation effort is potentially

saved because the solver may start with better bound for the linear program relaxation. Value

of M in each constraint should be defined for all indices of the constraint. For simplicity, the

notations are slightly abused and big-M values are defined just once for each constraint. For

example, M5.37 is defined instead of the definition of M ivt
5.37.

M5.37 =min

{
dCcit,

mV
v

mC
c

}
∀ i ∈ D, v ∈ V, t ∈ T

M5.38 =min


∑
s∈T
s≤t

sCcis,
mV
v

mC
c

 ∀ c ∈ C, i ∈ S\iVv , v ∈ V, t ∈ T

M5.39 =
mV
v

mC
c

c ∈ C, i ∈ L, v ∈ V, t ∈ T

M5.40 =
mV
v

mW
w

∀ w ∈ W, i ∈ L, v ∈ V, t ∈ T
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M5.41 =
mF
f

mC
c

c ∈ C, i ∈ L, f ∈ F, t ∈ T

M5.42 =
mF
f

mW
w

∀ w ∈ W, i ∈ L, f ∈ F, t ∈ T

M5.44 =
mV
v

mE
e

∀ e ∈ E, i ∈ H, v ∈ V, t ∈ T

M5.45 =min

{
dEeit,

mV
v

mE
e

}
∀ e ∈ E, i ∈ D, v ∈ V, t ∈ T

M5.46 =min

{
dWwit,

mV
v

mW
w

}
∀ w ∈ W, i ∈ D, v ∈ V, t ∈ T

M5.47 =min

{
sWwit,

mV
v

mE
e

}
∀ w ∈ W, i ∈ D, v ∈ V, t ∈ T

M5.49 =|F | ∀ v ∈ V, i ∈ L, f ∈ F, t ∈ T

(5.50)

Finally, Constraints (5.49) allow vehicles to visit a candidate SF location only if a SF

visits the same SF location at that time, otherwise, such visitations are useless.

In the next section, a small example is used to verify this model.

5.5 Numerical Example

The goal of the small example presented here is to verify the model, not to discuss

how it is solved. Solution approaches are developed and fully explained in the next section.

This example is solved by CPLEX–Concert technology using a single objective function that

includes all logistic operations, as follows

Min
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit (5.51)

Two regular vehicles, each of different capacity and travel speed are used together, with

a single SF. There are four demand nodes, one supply node, and one hospital node. Three

candidate SF locations for the SF have been pre–determined. A single commodity type
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is considered. Similarly, wounded persons are classified as being of the same category, as

are workers. Additional problem details, including the commodity demands over time, are

shown in Figure 5.3a. This example is solved twice: once using the available SF, and again

without utilizing the SF. Figure 5.3b shows the route of the SF. Figure 5.3c shows the plan

of the first vehicle while the use of the SF is allowed, and Figure 5.3d shows the plan when

the use of the SF is prohibited. Similarly, Figure 5.3e shows the plan of the second vehicle

using the SF and Figure 5.3f shows the plan of the second vehicle without using the SF.
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(a) HLVRPSF Example Data (b) SF Route

(c) First vehicle plan using SF (d) First vehicle plan without using SF

(e) Second vehicle plan using SF (f) Second vehicle plan without using SF

Figure 5.3: Solution of the HLVRPSF model example for both options: with and without
using the available SF
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The first vehicle visits 3 demand nodes when the SF is not used and only 2 when it is

used, as shown in Figures 5.3a and 5.3b. Nevertheless, it delivers less demand quantity (400

food bags) when the SF is not used compared to the other case (640 food bags). This is

because when using the SF, the first vehicle visits a location and loads 240 food bags from

the SF which allows it to deliver more quantity, even with a smaller number of demand nodes

visited. In both cases, the vehicle evacuates 6 persons and does not transfer any workers.

The second vehicle delivers 752 food bags when using the SF (as in Figure 5.3e) and

only 400 food bags otherwise (as in Figure 5.3f). In both cases, this vehicle visits the

hospital 3 times, but in case when not using the SF, the vehicle visits 2 of the demand

nodes empty to pick up wounded without delivering any workers or food bags because no

more supplies are available. This results in fewer efficient visits. If more demand nodes were

available in the example and the time horizon was longer, this vehicle, when not using a SF,

is expected to perform more evacuations. This is not preferable in some actual cases such

as if hospitals have limited work capacity and if the demand distribution is much important

than evacuation. To quantify the comparison, Table 5.1 summarizes the total numbers of

commodities, workers, and wounded in both cases.

Using SF Without using SF
Food bags delivered 1,392 800
Workers transfered 8 1
Wounded evacuated 24 27

Total mass (lb) 10,576 8,000

Table 5.1: Summary of the HLVRPSF example solution for both options: with and without
using the available SF

In Table 5.1, it can be obtained that when using a SF, vehicles are more fully utilized

since they load 10,576 lb using the SF compared to 8,000 lb when not using the SF. In this

particular example, worker priorities are low, and it can be noticed that only 1 worker is

transfered when not using a SF. When using a SF, because vehicles know ahead of time

that resupplies are allowed during the route, the second vehicle picks up 4 workers at the
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beginning which improves the operation of work–force transfer. This is another benefit of

using a SF in this example.

The previous comparisons show that the using SFs improves the logistics system with

a single objective. However, using a single objective in the HLVRPSF is not appropriate.

Consequently, one of the main ideas of the HLVRPSF is to incorporate multiple objectives.

To check how the SFs improve the HLVRPSF with multiple objectives, the next section will

solve many instances, where each instance is solved three times considering a single objective

function each time.

5.5.1 Examples to Demonstrate SF Benefits

In this section, different examples are solved in different ways to show the benefits of

using SFs in humanitarian logistic systems.

Allowing small vehicles to be resupplied from SFs at SF locations offers more choices and

flexibility for resupply operations. This saves time for vehicles and allows them to visit more

nodes which results in more commodity delivery, worker transfer, and wounded evacuation.

To show an example of such logistic system enhancement, 10 different data sets are randomly

generated. Each of the 10 sets is solved 6 times using CPLEX–Concert technology with a

time limit equal to 3 hours. They are solved 6 times to cover all possible combinations of

objective functions and SF utilization options.

First, using objective function 5.3 to minimize the total wounded deviation variables

and vehicles can be resupplied only from supply nodes. Second, using objective function

5.3 to minimize the total wounded deviation variables and vehicles can be resupplied from

supply nodes or from SFs at SF locations. The results of both options are plotted in in

Figure 5.4a.

Third, using objective function 5.2 to minimize the total worker deviation variables and

vehicles can be resupplied only from supply nodes. Fourth, using objective function 5.2 to

minimize the total worker deviation variables and vehicles can be resupplied from supply
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nodes or from SFs at SF locations. The results of the third and fourth options are shown in

Figure 5.4b.

Fifth, using objective function (5.1) to minimize the total commodity deviation variables

and vehicles can be resupplied only from supply nodes. Sixth, using objective function 5.1

to minimize the total commodity deviation variables and vehicles can be resupplied from

supply nodes or from SFs at SF locations. Results of these options are shown in Figure 5.4c.
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(a) Objective Function is to Minimize Wounded Evacuation Devia-
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(b) Objective Function is to Minimize Workers Transfer Deviations
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(c) Objective Function is to Minimize Commodity Delivery Devia-
tions

Figure 5.4: HLVRPSF model, with SFs vs. without SFs

In Figure 5.4, there are no significant differences in part (a) which is expected because

in minimizing the wounded evacuation deviations, vehicles are not resupplied, but they are

utilized for evacuation only. The small differences are because some data sets are not solved

optimally in 3 hours which causes very tiny differences between the options of using SFs

and not using SFs. In parts (b) and (c), there is an improvement because there are more

locations added for resupply instead of depending only on supply nodes. The improvement

average in part (b), where the objective is to minimize the worker transfer deviations, is
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3.7%. In part (c), where the objective is to minimize the commodity delivery deviations, the

improvement average is 5%. These improvement values are expected to be higher in medium

and large scale sets where longer time horizons are available, more vehicles are considered,

and more replenishments are needed by each vehicle. As shown in the previous section,

the improvements are achieved by visiting more nodes and/or delivering higher quantities of

demand and workers.

In this section, an example was solved using CPLEX with a single objective function

includes the objective functions (5.1), (5.2), and (5.3) in a linearly weighted manner. Since a

single objective function was used in this example, only one solution is provided containing all

logistic operations (i.e., demand distribution, work–force transfer, and wounded evacuation).

After that, in the sub–section 5.5.1, ten data instances were solved using exact solution

procedure by CPLEX three times (considering only the cases of using SFs) where one of the

objective functions (5.1), (5.2), and (5.3) is used each time. Three solutions are provided

for each data set where each solution contains only one logistic operation based on which

objective function was used. For example, if the objective function (5.1) is used, only demand

distribution is performed. Based on this, depending on a single objective function includes

all functions in a weighted form is not useful because it provides only a single solution, and

solving the model three times where one objective function is used each time is not also

useful because only three solutions are provided and each solution contains only one logistic

operation. Additionally, exact solutions using CPLEX require a very long time.

The HLVRPSF model is suggested to be a multiple objective model, and multiple solu-

tions should be provided after solving the model with different combinations of the logistic

operations. In the next sections, different solution approaches are suggested to provide a

wide range of solutions in a reasonable amount of time.
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5.6 Description of the HLVRPSF Solution Approach

In multi-objective models, many solutions should be provided after solving the models

to offer a wide variety of solution options where some of them are excellent for some of

objective functions and bad for others. In the case of competing objectives, decision makers

seek solutions that are acceptable for all objectives. Before proceeding, some important

definitions and explanations should be considered.

Consider a problem with K objectives, and let X represent a solution vector with

objective function values equal to z(X) = z1(X), z2(X), . . . , zk(X). Solution X is said

to dominate some other solution Y in a minimization problem if zi(X) ≤ zi(Y ) ∀ i =

1, . . . , k and zi(X) < zi(Y ) for at least one objective. A Pareto optimal set is a set containing

all solutions that are not dominated by other solutions. The corresponding objective function

values are called a Pareto front. The aim of this section is to provide a representative subset

from the Pareto optimal set by using good solution approaches.

Finding feasible solution for the HLVRPSF is a challenging problem because it is an

NP–hard problem and includes many decision variables such as the variables that define the

vehicle and SF routes, amount of pick–ups and deliveries, number of workers to transfer, and

number of wounded to evacuate. Commercial solvers such as CPLEX can give sub–optimal

solutions for very small problems while it fails to produce any feasible solution for larger

problems in a reasonable amount of time. Accordingly, a solution approach is suggested to

provide multiple and representative solutions for the HLVRPSF instances in a reasonable

time.

The suggested heuristic is an iterative approach. In each iteration, it starts by selecting

an objective function to be active for the iteration and builds a route for each vehicle in a

greedy approach depending on which objective function is activated. The next phase is to

use the information available from the constructed vehicle routes to create the SF routes.

Vehicle and SF route construction are in Section 5.7.1. The final phase is to use a proper

procedure to find some candidate solutions as discussed in Section 5.7.2. The common step in
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these procedures is to solve the integer HLVRPSF problem using CPLEX while considering

the pre–specified SF and vehicle routes (fixed binary variables) which can be performed in

a short computation time.

It can be noticed that the suggested approach is similar to the approach used to solve

the single (weighted) objective HLVRP but with some modifications to address multiple

objectives in a more robust manner. First, the suggested method depends on an iterative

greedy solution approach where only one objective function is randomly selected for each

iteration to find a set of candidate solutions. Depending on one objective function for each

iteration to find a set of candidate solutions has been used by Kulturel-Konak et al. (2006).

In Kulturel-Konak et al. (2006), multi-objective tabu search (MOTS) using a multinomial

probability mass function is used to solve the redundancy allocation problem (RAP) with

three objective functions: maximizing the reliability, minimizing the cost, and minimizing

the weight. To perform MOTS to solve the RAP, the objectives have equal chance of being

activated which is similar to the approach suggested here to solve the HLVRPSF. However,

in RAP, special moves suitable for the problem are used to create a set of candidate solu-

tions while different procedures are used to create candidate solutions for the HLVRPSF as

explained in Section 5.7.2. Second, routes are constructed with some dependency on which

objective function is active.

Third, best routes are not used in this approach despite their use to solve the HLVRP.

In the HLVRP approach, the best route for each vehicle represents the route that has the

highest utilization (highest mass picked up during the planning horizon) among all iterations

and it is found based on the single objective function. Best routes will potentially produce

a high quality solution every iteration they are used because the same single objective is

used. In the approach suggested for the HLVRPSF with multiple objective functions, if a

best route for a vehicle is found when a specific objective function is active, it can give a high

quality solution in the next iterations if the same objective function is used; however, they

will not give a good objective function value with other objective functions. For example, if

132



a best route for a vehicle is found when the function of minimizing commodity deviations

is active, it is expected to contain many demand node visits with commodities as the main

load while visiting the hospital a minimum number of times. In the next iteration, if the

function of minimizing wounded deviations is activated, this route will produce a very bad

results in term of evacuation because of the few hospital visits. Fourth, local search phase is

not used because, in multi-objective HLVRPSF, local searches of replacements or insertions

cause deterioration of some objective function values though they can improve others. For

example, it is found in some preliminary testing that the replacement of a hospital by

two demand nodes deteriorates the wounded deviation objective and will not necessarily

improve the others. Consequently, relying on the fact that the multi-objective approaches

should provide diverse solution sets makes these types of local search unhelpful to solve the

HLVRPSF.

The next Section 5.7 describes the overall approach. Section 5.7.1 describes new route

construction procedures, and candidate solution approaches are proposed and discussed in

Section 5.7.2.

5.7 Solution Approach for the HLVRPSF

The overall approach to solve the HLVRPSF is shown in Algorithm 8. The algorithm

starts with the definitions of the termination criterion which could be time, number of

iterations, or number of different solutions produced. In this research, specific time based

on the data scale is used as the termination criterion, as shown in the numerical analysis

section. Then, a number ψ is selected from a set of [1, 2, 3] to specify which option of SF

route construction is used. One of three options can be used to construct the SF routes, as

explained in Section 5.7.1.

Once the iteration loop starts, a number φ is selected randomly at the beginning of

each iteration from a set of [1, 2, 3] to define which objective function is active for the

current iteration. One means the current activated objective is to minimize the wounded
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deviations (Objective 5.1), two means the current objective is to minimize the commodity

deviations (Objective 5.2), and 3 indicates the current objective is to minimize the worker

deviations (Objective 5.3). After this, prioritized demand is calculated. Prioritized demand

is defined as a two dimensional array, where the element PTD(t, i) represents the prioritized

demand requested, workers needed, and wounded awaiting help at node i ∈ D at time

t ∈ T . This array depends on the activated function. If the current activated objective

function is to minimize the commodity deviations, PTD is calculated based in requested

demand. If the current activated objective function is to minimize the workforce deviations,

PTD is calculated based in requested workers. If the current activated objective function

is to minimize the wounded deviations, PTD is calculated based in the number of wounded

waiting evacuation. Calculations of the prioritized demand are in line 6 of the Algorithm 8.

The whole array appears as follows

PTD(t, i) =



PTD(1, 1), PTD(1, 2), . . . PTD(1, |D|)

PTD(21), PTD(22) . . . PTD(2, |D|)
...,

...
. . .

...

PTD(|T |, 1), PTD(|T |, 2), . . . PTD(|T |, |D|)


.

Similarly, prioritized supply is calculated for each supply node and SF location. Priori-

tized supply is defined as a two dimensional array, where the element PT SL(t, i) represents

the prioritized available supply and workers at node i ∈ S ∪ L at time t ∈ T . It depends on

the node type (Supply node or SF locations) and the current activated objective function.

It can be calculated as in line 7 of the Algorithm 8. The whole array appears as follows

PT SL(t, i) =



PT SL(1, 1), PT SL(1, 2), . . . PT SL(1, |S|+ |L|)

PT SL(2, 1), PT SL(2, 2) . . . PT SL(2, |S|+ |L|)
...,

...
. . .

...

PT SL(|T |, 1), PT SL(|T |, 2), . . . PT SL(|T |, |S|+ |L|)


.

In demand nodes, prioritized demand is calculated at each time by using the demand,

wounded, and workers at that time with dependency on current activated objective function.

For supply nodes, because picking up workers and supplies left from previous periods is
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allowed, prioritized supply is calculated cumulatively considering which objective function is

active and excluding the first time period. In the first time period, vehicles pick up workers

and supplies from their depots, so the information about prioritized supply values at that

time is not known. This justifies its exclusion from the prioritized supply calculation. In SF

locations, since SFs pick up workers and commodities from supply nodes at the first time

period, their prioritized supply are calculated as the average of available supply and workers

at the first time and based on the current activated objective function, as shown in as in

line 7 of the Algorithm 8. The whole array of prioritized supply is shown below. This array

can be divided into two sub–arrays; PT S which includes the prioritized supply values for

only the supply nodes, and PTL which includes the prioritized supply values for only the SF

locations.

After that, a vehicle is randomly selected, and the importance value is calculated for

each node using the Importance function as shown in Algorithm 9. Importance array for

each vehicle (IM v) is a two dimensional array where the element IM v(t, i) represents the

importance value of node i ∈ N at time t ∈ T for vehicle v. This array is calculated for

each vehicle at the beginning of the solution approach and is updated each time the vehicle

changes its location. This array looks like:

IM v =



IM v(1, 1), IM v(1, 2), . . . IM v(1, |N |)

IM v(2, 1), IM v(2, 2), . . . IM v(2, |N |)
...

...
. . .

...

IM v(|T |, 1), IM v(|T |, 2), . . . IM v(|T |, |N |)


.

Demand and supply node importances are not constants and depend on the prioritized

demand and supply values, the selected vehicle, the activated objective function, and the

current location of the selected vehicle which is its depot at the beginning. Dependency on

the activated objective function is already included in the calculation of the prioritized values

such that if the activated objective is the wounded deviations, the importance is calculated

using only the total prioritized wounded with some randomness. If the activated objective

is the commodities deviations, the importance is calculated using only the total prioritized
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commodities. Similarly, if the activated objective is the workers deviations, the importance

is calculated using only the total prioritized workers. This ensures that vehicles visit nodes

in such a way as to minimize the activated objective. Relying on the fact that the route

construction, which will be accomplished in the next step, is performed in a greedy way

and vehicles should visit the most important nodes, closer hospitals are more beneficial to

vehicles because they can be visited in a shorter time. Hence, importance values for hospital

nodes depend on the travel time from the current node of the selected vehicle.

Both supply and SF location nodes are considered as one type because both of them

are responsible for the supply of small vehicles with commodities and workers. In the case

of supply nodes, importance depends on the activated objective function in cases of com-

modity deviations and worker deviations, but does not depend on the activated objective

function for wounded deviations. In the case of candidate SF locations where the SFs may

deliver commodities and workers to the smaller vehicles, the best way to find representative

importance values is to initially assign the averages of workers, commodities, or both to each

SF location. These assignments will be updated as discussed later.

After all importance values are calculated, the construction function is performed to

construct a route for the current selected vehicle by giving a specific value, 0 or 1, for

all binary variables related to this vehicle, as discussed later in Section 5.7.1. The same

procedure is repeated many times until all vehicles are selected and a route is created for

each vehicle.

After constructing routes for all vehicles, a route for each SF is constructed. The

updated values of the prioritized supply (produced after vehicle routes construction) for SF

locations are used to calculate the importance values as in function SF-Importance. In the

same manner, a SF is randomly selected and SF-construction route function is performed

to set all binary variables that relate to the selected SF to 0 or 1. This procedure is repeated

until all SFs are selected. SF routes construction is explained in Section 5.7.1.
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When all routes for vehicles and SFs are constructed and all variables are set, candi-

date solutions are found next. The HLVRPSF model has a characteristic that complicates

the model and makes finding candidate solutions difficult. Specifically, using one objective

function, the variables that do not relate to this function will acquire the value of zero. For

example, if objective (5.1), which is to minimize the total commodity–delivery deviations,

is used, the number of workers transfered and the number of wounded evacuated are zero

because they do not affect the objective value. In this case, vehicles only work for commod-

ity delivery (i.e., ZD
civt ≥ 0, ∀c ∈ C, i ∈ D, v ∈ V, t ∈ T ) to minimize the deviation

variables, dCcit, because they are part of the objective function. While other variables such as

eDeivt and wDwivt = 0, ∀e ∈ E, w ∈ W, i ∈ D, v ∈ V, t ∈ T because they are not a part of

the objective function.

Similarly, if objective (5.2), minimizing the total workforce transfer deviations, is used,

the number of commodities distributed and wounded evacuated are zero, and if objective

(5.3), which is to minimize the total wounded–evacuation deviations, is used, the number of

commodities distributed and number of workers transfered are zero. This means that finding

candidate solution or solutions in line 24 of the Algorithm 8 is an important phase and as

such will be extensively discussed in Section 5.7.2 where proper procedures for treatment of

multi-objective are developed.

Every candidate solution generated has an objective value Z which includes 3 elements

for the three objective functions as

Z =

[∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

]
.

Associated with the objective value vector Z, an array ZC is defined which contains all

variables associated with the current objective function value. It looks as

137



ZC =



zDcivt ∀c ∈ C, i ∈ D, v ∈ V, t ∈ T

zPScivt ∀c ∈ C, i ∈ S, v ∈ V, t ∈ T

zPLcflvt ∀c ∈ C, l ∈ L, v ∈ V, f ∈ F, t ∈ T

vCcit ∀c ∈ C, i ∈ D, t ∈ T

vWwit ∀w ∈ W, i ∈ D, t ∈ T

vCcit ∀e ∈ E, i ∈ D, t ∈ T

Ccf ∀c ∈ C, f ∈ F

Wwf ∀w ∈ W, f ∈ F

eDeivt ∀e ∈ E, i ∈ H, v ∈ V, t ∈ T

ePeivt ∀e ∈ E, i ∈ D, v ∈ V, t ∈ T

wDwivt ∀w ∈ W, i ∈ D, v ∈ V, t ∈ T

wPSwivt ∀w ∈ W, i ∈ S, v ∈ V, t ∈ T

wPLwflvt ∀w ∈ W, l ∈ L, v ∈ V, f ∈ F, t ∈ T

xVvijt ∀i ∈ N, j ∈ N\i, v ∈ V, t ∈ T

xFfijt ∀i ∈ N, j ∈ N\i, t ∈ T



.

Another array (Zall) is defined to contain all objective values for all candidate solutions,

as follows. To save all solution candidate details, an array(ZCall) is constructed to contain

all variables associated with all solutions. Keeping track of all solution details consumes the

memory. CPLEX-Concert technology has a good feature which allows to save each solution

in a separate data file with small memory. Sizes of these arrays depend on the termination

criterion used and is dynamically changed when any solution added.

Zall =



Soln1 =

[∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

]
Soln2 =

[∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

]
Soln3 =

[∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

]
Soln4 =

[∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

]
...

...
...

...


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In line 26 of the Algorithm 8, 4 types of Pareto sets are found. Three of them are

two dimensional: wounded evacuation deviations versus commodities deviations (EC), evac-

uation deviations versus worker deviations (EW), workers deviations versus commodities

deviations (WC). The fourth set is three dimensional and contains all objectives together.

Finding Pareto sets from available solutions is done by testing each solution to determine if

it is dominated by others. If it is not, it is added to the Pareto set.

Algorithm 8: Main Heuristic

1: Define the termination criterion

2: itr = 1 //Iterations counter

3: Set ψ //Which option is considered for SF route construction

4: while Termination criterion not met do

5: Randomly select φ

6: Calculate the prioritized demand for all demand nodes

PTD(t, i) =



PTD(t, i) =
∑
e∈E

dEeit p
E
e if φ = 1

PTD(t, i) =
∑
c∈C

dCcit p
C
c if φ = 2

PTD(t, i) =
∑
w∈W

dWwit p
W
w if φ = 3

7: Calculate the cumulative prioritized supply for all supply nodes and SF locations

PT SL(t, i) =



PT SL(t, i) =
t∑

k=2

{∑
c∈C

sCcik p
C
c +

∑
w∈W

sWwik p
W
w

}
if φ = 1 and i ∈ S

PT SL(t, i) =

∑
c∈C s

C
ci1 p

C
c +

∑
w∈W sWwi1 p

W
w

|S|
if φ = 1 and i ∈ L

PT SL(t, i) =
t∑

k=2

∑
c∈C

sCcik p
C
c if φ = 2 and i ∈ S

PT SL(t, i) =

∑
c∈C s

C
ci1 p

C
c

|S|
if φ = 2 and i ∈ L

PT SL(t, i) =
t∑

k=2

∑
w∈W

sWwik p
W
w if φ = 3 and i ∈ S

PT SL(t, i) =

∑
w∈W sWwi1 p

W
w

|S|
if φ = 3 and i ∈ L

139



8: Reorder the vehicle set (lV ) to be randomly sequenced.

9: for all v ∈ V do

10: xVvijt = 0 ∀i, j ∈ N\i, t ∈ T // Initialization and clear any 1 values from previous

iterations

11: current = iVv // Set current location to the depot of the selected vehicle

12: Calculate time-based importance for all nodes, such that

13: IM v = Importance
(
v, current,N, PT SL, PTD

)
14: Construct the route (Set the binary variables), xVvijt ∀i, j ∈ N, i 6= j, t ∈ T =

Construction(IM v, v)

15: end for

16: Reorder the SF set (F ) to be randomly sequenced.

17: for all f ∈ F do

18: xFfijt = 0 ∀i ∈ {L∪ iFf }, j ∈ {L∪ iFf }, t ∈ T // Initialization and clear any 1 values

from previous iterations

19: current = iFf // Set current location to the depot of the selected vehicle

20: Calculate time-based importance for all SF locations, such that

21: IM f = SF-Importance
(
f, current, L, PTL

)
22: Construct the route (Set the binary variables), xFfijt ∀i, j ∈ N, i 6= j, t ∈ T =

SF-Construction
(
IM f , f

)
23: end for

24: Find one or more candidate solutions and save them. // Call one of the functions

LWCO, SOWP, SOSMS, SOIMRUC, SOAMRUC2, as explained in Section 5.7.2

25: end while// End main loop

26: Find Pareto sets.

Algorithm 9 shows the pseudo code of the Importance function which is used to calculate

the importance values for all nodes based on the current selected vehicle, its current location,
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the activated objective function, and the prioritized demand and supply value. Importances

are slightly randomized by using a multiplier R close to 1. Using a wider range for R

produces higher randomness which works against the use of the greedy approach; using a

narrower range of R decreases the effect of randomness. Preliminary testing indicates that

R ∈ [0.8, 1.2] works well.

Algorithm 9: Importance Function

1: for all t ∈ T do

2: for all i ∈ N do

3: Generate R //Random number [0.8,1.2]

IM v
t,i =



R

τVv,current,i
PTDti if i ∈ D

R

τVv,current,i
PT Sti if i ∈ S

R

τVv,current,i
if i ∈ H

4: end for

5: end for

6: Return IM v

Finally, the importance values for SFs are calculated for SF locations in the same manner

of importances of vehicles, as in the next function.

Algorithm 10: SF-Importance Function

1: for all t ∈ T do

2: for all i ∈ L do

3: Generate R //Random number [0.8,1.2] IM f
t,i =

R

τFf,current,i
PTLti

4: end for

5: end for
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6: Return IM f

The next section explains the Construction and SF-Construction functions that used

to construct vehicle and SF routes.

5.7.1 Route Construction for Various Objectives

In this section, a proposed approach is suggested to construct the vehicle and SF routes.

A set of notations used in this approach are defined as follows:

• current is a holder used to save the current location for a vehicle. It changes dynami-

cally during the process.

• sortD is a two dimensional array of size |T | × |D| which contains the demand nodes

sorted in descending order at each time based on their importance. The element

sortD(t, i) represents the ith demand node at time t. For example, if the importance

values for 5 demand nodes at time t are [1000, 800, 3000, 2100, 1450], then the tth row

from sortD is [3, 4, 5, 1, 2] so the element sortD(t, 1) = 3. In other words, node 3

is placed in the first place because it has the highest preference to be visited by the

current selected vehicle.

• sortS is a two dimensional array of size |T |×|S| which contains the supply nodes sorted

in descending order at each time based on their importance. The element sortS(t, i)

represents the ith supply node at time t.

• sortL is a two dimensional array of size |T | × |L| which contains the candidate SF

locations sorted in descending order at each time based on their importance. The

element sortL(t, i) represents the ith SF location at time t.

• sortSL is a two dimensional array of size |T | × (|S| + |L|) which contains the supply

nodes and the candidate SF locations sorted in descending order at each time based

on their importance. The element sortSL(t, i) represents the ith SF location or supply

node at time t.
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• sortH is a two dimensional array of size |T | × |H| which contains the hospital nodes

sorted in descending order at each time based on their importance. The element

sortH(t, i) represents the ith supply node or SF locations at time t.

• AvgD is a scalar quantity which represents the average commodity and worker masses

requested by the demand nodes for the whole time horizon. It can be mathematically

calculated as

AvgD =

∑
c∈C
∑

i∈D
∑

t∈T (dCcit ×mC
c ) +

∑
w∈W

∑
i∈D
∑

t∈T (dWwit ×mW
w )

|T | × |D|

• α is a random integer which represents the number of demand nodes that should be

visited by a vehicle v before it ends the trip and goes to a hospital or supply node. It

is randomly selected from a set of integer values, a set which is created based on the

vehicle capacity and node demands, Mathematically, α can be represented as follows

α ∈
[⌊

mv

d× AvgD
+ 0.5

⌋
− 2,

⌊
mv

d× AvgD
+ 0.5

⌋
+ 2

]
.

Selecting a high number for α, i.e. 8 nodes in the previous example, could result

in useless visits such as visiting some nodes while the vehicle is empty. In contrast,

visiting a low number of demand nodes could force the vehicle to resupply or go to a

hospital while it has some undelivered commodities and workers. d is the percentage

of the demand and workers requested expected to be delivered each time the vehicle

visits a demand node. Portion of 70% is selected as a value of d because it has been

noticed that in many instances, vehicles try to visit demand nodes where 70% of their

needs can be supplied. This helps minimize the deviation variables which is the model

objective.

For example, in a data instance, if AvgD is 600 lb and the capacity of a vehicle is 1600,

assuming a vehicle supplies 70% of node demands each time it visits a node, this means

vehicle v can supply 1600 / (0.7*600) = 3.8 nodes. In this case, α is randomly selected

from an interval that has a center value of 3.8 (rounded to the closest integer which is
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4) nodes. The interval equals to [2 nodes, 6 nodes]. This value of α is generated each

time the vehicle v leaves a supply node and begins distribution.

• tnow is the current time of the selected vehicle which is used to test the feasibility of

any visit done by the vehicle. This time is incremented at each visit but not between

visits. For example, one of the feasibility conditions is to test if tnow + τv,current,i = t,

where i is a node that the vehicle tries to visit. At the beginning, tnow = t = 1, if the

first visit to node i can be made at time 4 because τv,current,i = 3, tnow is kept at a

value of 1 while the value of t incremented to 2, 3, and 4. At time 4, the visit is done

and the value of tnow is updated to 4.

• ξsl is a counter used to keep track of the number of supply nodes and SF locations

which are visited by a vehicle. It is incremented by 1 each time the vehicle visits a

supply node during the heuristic process.

• ξdem is a counter used to keep track of the number of demand nodes visited by a vehicle.

It is incremented by 1 each time the vehicle visits a demand node during the heuristic

process.

• β is a number from the set [0, 1, 2] selected randomly after a vehicle finishes visiting

a supply, SF location node, or set of α demand nodes, such that β = 0 means that

the current vehicle must visit α demand nodes on the next step, β = 1 means that the

current vehicle must visit a supply node or SF location on the next step, and β = 2

means the vehicle must visit a hospital next.

Route construction is performed using the Construction function. In this function, β

does not have the same definition as in the approach suggested to solve the HLVRP model

where only two values are considered. In the HLVRP, routes are constructed using the

same procedure with some differences, by visiting a set of demand nodes and then visiting

a hospital or resupply node. The difference in the HLVRPSF is that routes are constructed

based on which objective function is active for the current iteration. Thus, in the HLVRPSF,

vehicles may make visits that are not common in the HLVRP. For example, a vehicle may
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visit two SF locations consecutively to collect more supplies if the current objective function

is to minimize the commodity deviations, or it may visit a hospital to transfer wounded

people and then go to demand nodes while it is empty to evacuate more wounded if the

current objective function is to minimize the non–evacuated wounded. Such visits are not

common in the HLVRP model. Because of this, β has three values and is updated at the

end of each loop in the Construction function to decide what the next visit should be.

Because unusual visits, such as visiting two supply nodes or SF locations, are not com-

mon, β is selected from the numbers [0,1,2] with different chances. For example, at the

beginning when a vehicle leaves its depot, there is no need to visit a hospital, so the chance

of selecting β = 2 is set to 0. After visiting supply node or SF locations, demand visits

(β = 0) is given higher chance because this was observed to be more effective in preliminary

testing.

The Construction function is used to construct a route, by setting all binary variables

to 0 and 1, for the current selected vehicle and it is recalled (executed) for each vehicle. This

function starts by sorting all node types in descending order based in their importance value

to create the SortD, SortSL, and SortH sets. Then the time loop begins and three types

of visit are allowed: demand node visits, supply node and SF location visits, and hospital

node visits. Only one of these visit types can be performed at a time because only one of

the if–conditions in lines 14, 37, and 58 can be satisfied at a given time. Once one of these

if–conditions is satisfied and becomes the current choice of visits, other loop begins to test

which node is reachable (feasible to visit) by this time and has the highest importance value,

as in lines 15, 38, 59. A feasibility test is performed by two sub–tests which are if the node

can be reached by the current time loop value and if the current selected vehicle can return

to its depot if this suggested visit is performed.

In the case of demand node visits, the prioritized demand of the visited node is decreased

by dividing by 3. Prioritized demand values are calculated at the beginning of each iteration

and are not reinitialized inside the while loop, so, this decreased value is used to calculate the
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importance values for the next vehicles. Experimental works show that 3 is the best number

to divide by because using a larger number may make the visited nodes not preferable

for future visits even if they are worth more visits, and using a smaller value renders the

reduction not useful as the visited nodes remain preferable for more visits.

For hospital node visits, vehicles select the nearest hospital, so hospital importance

values are calculated based on travel time with some randomness and it is not necessary to

decrease them when a hospital is visited. Both supply and candidate SF location nodes are

grouped in one category because they perform the same job, resupplying small vehicles with

workers and commodities, but supply nodes are treated differently than SF locations when

they are visited.

In case a vehicle visits a supply node at time t, its prioritized supply value is decreased

from the second time period to the current time t. This is because picking up commodities

and workers that are left from previous periods is allowed and it can not be determined if

the next selected vehicles will visit this supply node at an earlier time or not. The next

vehicles should know that this supply node was visited at time t and some of its supplies at

any time before t might already be picked up. The first time period is excluded because the

supplies and workers left at that time period is not known. Thus, it can not be used in the

calculations.

In contrast, when a vehicle visits a candidate SF location node at time t, the prioritized

supply value of this SF location is increased for three time slots: t−1, t, t+1. This is to make

the visited SF location more preferable to other small vehicles and to SFs which facilitates

and improves the distribution system by decreasing diversity. To explain this, consider a data

instance with 10 vehicles, 2 SFs, and 20 SF locations. If the importance of SF locations is

updated in the same way as of supply nodes by decreasing the values, the vehicles could visit

15 different SF locations because vehicle prefer to visit higher important SF location nodes,

and most unvisited SF locations have higher importance value than reduced SF locations.
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If many SF locations are visited, SFs would not be available at these SF locations to

provide small vehicles with demand. By using the proposed importance update technique to

increase the importance of visited SF locations, vehicles visit the SF locations with higher

importance values, SF locations which have already been visited. In this example, vehicles

could visit only 5 SF locations, and SFs can easily find a feasible solution to be available

at these 5 different SF locations. Additionally, importances are increased for three periods

to eliminate non-important movements which could be performed by SFs. For example, if

a SF visits the location node l at time t, where other small vehicles will visit a location

at time t + 1, it is much easier for the SF to stay at l while the vehicles come to that

location. This is why the importance of a location is increased for multiple time periods.

On the other hand, allowing only one visit by each vehicle to each SF location encourages

diversity and randomness of location visits. Increasing the prioritized supply value of visited

SF locations is done by multiplying the current value by 1.5, this value is selected empirically

through some observations performed in preliminarily test. First, SF route construction can

be skipped in small scale instances and when CPLEX is used to find a complete candidate

solution, it finds the best values for the xFfijt variables. This approach produces the best

solution for the SF routes in short computation time using the pre–specified small vehicle

routes.

Algorithm 11: Construction Function for Small Vehicle Routes

1: ξdem = 0 //Set demand node visits to zero

2: ξsl = 1 //Set supply node visits to one because the current vehicle leaves from its depot

which is a supply node.

3: tnow = 1

4: for all t ∈ T do

5: Sort demand nodes in descending order based on their total importance to get sortD.
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6: Sort supply nodes and SF locations in descending order based on their total importance

to get sortSL.

7: Sort hospital nodes in descending order based on their total importance to get sortH .

8: end for

9: Select β = [0, 1] // First visit(s) could be demand node, SF locations, or supply node.

But not hospital

10: if β == 0 then //Demand node visits are selected.

11: Select a random integer number α ∈
[⌊

cv
0.7× AvgD

+ 0.5

⌋
− 2,

⌊
cv

0.7× AvgD
+ 0.5

⌋
+ 2

]
// Based on vehicle capacity and average masses of workers and demand

12: end if

13: for all t ∈ T do

14: if ξdem ≤ α and β = 0 then

15: for all i ≤ |D| do

16: if it is feasible to visit demand node sortD(t, i) then1stif2-hlvrpsf

17: xVv, current, sortD(t,i), t = 1

18: tnow = t

19: Update current = sortD(t, i)

20: Reduce the prioritized demand of sortD(t, i), such that

21: PTD(t, i) = PTD(t, i)/3 //to avoid revisiting by other vehicles

22: Recalculate importances for all nodes: // Because the current is updated

23: IM v = Importance
(
v, current,N, PT SL, PTD

)
24: for all k ∈ T do // New sorting because importance values are updated

25: Sort demand nodes in descending order based on their total importance to

get sortD.

26: Sort supply nodes and SF locations in descending order based on their total

importance to get sortSL.
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27: Sort hospital nodes in descending order based on their total importance to

get sortH .

28: end for

29: ξdem = ξdem + 1

30: i = big number > |D| // end for loop to avoid infeasibility due to visiting more

than one node at the same time.

31: if ξdem = α then

32: Select β = [1, 2] randomly // To decide the next step (visits supply node, SF

location, or hospital)

33: end if

34: end if// End if feasible to visit

35: end for

36: end if

37: if β == 2 And ξdem ≥ α then

38: for all i ≤ |H| do

39: if it is feasible to visit hospital node sortH(t, i) then

40: xVv, current, sortH(t,i), t = 1

41: Set tnow = t

42: Update current = sortH(t, i)

43: Recalculate importance of all nodes, // Current updated

44: IM v = Importance
(
v, current,N, PT SL, PTD

)
45: for all s ∈ T do

46: Sort demand nodes in descending order based on their total importance to

get sortD.

47: Sort supply nodes and SF locations in descending order based on their total

importance to get sortSL.
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48: Sort hospital nodes in descending order based on their total importance to

get sortH .

49: end for

50: β = random[0, 1] //next step could be re-supply or demand node visits

51: if β = 0 then

52: Generate new value of α // Next steps are demand node visits

53: end if

54: i = big number > |H| // to exit the for loop

55: end if// End if feasible to visit

56: end for

57: end if// End hospital visit

58: if β == 1 And ξsl < |S|+ |L| And ξdem ≥ α then

59: for all i ≤ |S|+ |L| do

60: if If it is feasible to visit supply or location node sortSL(t, i) then

61: xVv, current, sortSL(t,i), t = 1

62: Set tnow = t

63: Update current = sortSL(t, i)

64: if sortSL(t, i) ∈ S then

65: Reduce the prioritized supply of sortSL(t, i) node, such that

66: for all k ∈ [2, t] do

67: PT SL(t, i) = PT SL(t, i)(k, current)/2

68: end for

69: if i ∈ L then

70: Increase the prioritized supply of sortSLt, i, such that:

71: PT SL(t, i) = 1.5 ∗ PT SL(t, i)

72: PT SL(t− 1, i) = 1.5 ∗ PT SL(t− 1, i)

73: PT SL(t+ 1, i) = 1.5 ∗ PT SL(t+ 1, i)
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74: end if

75: Recalculate importance of all nodes,

76: IM v = Importance
(
v, current,N, PT SL, PTD

)
77: end if

78: for all s ∈ T do

79: Sort demand nodes in descending order based on their total importance to

get sortD.

80: Sort supply nodes and SF locations in descending order based on their total

importance to get sortSL.

81: Sort hospital nodes in descending order based on their total importance to

get sortH .

82: end for

83: ξsl = ξsl + 1

84: i = big number > |S|+ |L| // to exit the for loop

85: Select new value of β = [0, 0, 1, 2] randomly // decide next step, higher chance

to 0 (visit demand node)

86: if β = 0 then

87: Generate new value of α

88: end if

89: end if// End if feasible to visit

90: end for

91: end if// End supply visit

92: end for// End t-loop

93: xVv current iVv tnow
= 1

94: Return xVvijt ∀i, j ∈ N, i 6= j, t ∈ T
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After execution of the vehicle routes construction function, some information is pro-

duced such as which SF locations were visited by the small vehicles, when they were visited,

and the prioritized values of the SF locations. This information is used to construct the SF

routes in different ways.

As discussed earlier, the common step to generate any candidate solution is to solve

the model by CPLEX at specific binary variable values. The first option to construct the

SF routes is to keep their binary variables as free (without setting them to 0 or 1) and use

CPLEX to solve the model at specific vehicle binary variable values. In this case, CPLEX

is used to find a complete candidate solution, it finds the best values for the xFfijt, variables

besides the picked–up and delivery variable values. This approach produces the best solution

for the SF routes in short computation time using the pre–specified small vehicle routes.

The second approach for SF routes construction is to eliminate, for all time periods, the

unvisited SF locations from the network by setting some xFfijt variables to zero and keeping

the others as free binary. If a SF location l is visited at time t by one or more small vehicles,

variables xFfil t−1, x
F
fil t, x

F
fil t+1∀f ∈ F remain free binary while others variables related to

this SF location are set to 0. Three time periods are considered to select the free binary

variables to add flexibility to the model and reduce the chance of infeasibility. To explain

this, consider a SF location which is visited by small vehicles at times t and t + 2. Only

the variables at these times are kept free (e.g., only xFfil t, x
F
fil t+2 ∀f ∈ F are kept free, and

xFfil t+1 = 0 ∀f ∈ F ). This means that if a SF visits l at time t, it can not stay until t + 2

because the binary variables at t+ 1 are set to 0. So, adding free binary conditions to three

time periods provides more choices for SFs.

After setting some binary variables to 0 and keeping others as free binary, the SF-construction

function can be skipped, allowing CPLEX to find the optimal SF routes, but only the free

binary variables are available. This becomes much easier for CPLEX and this approach is

suitable for medium scale instances.
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In the third approach, the updated SF location prioritized value matrix (which is part of

the whole prioritized matrix) that produced at the end of small vehicle routes construction

can be used to construct SF routes in the same manner as those of small vehicles. In this

approach, SFs are randomly sequenced, then selected one by one. For each SF, the current

location is set to its depot, then the time loop starts in line 22 of Algorithm 12. Time loop

and the feasibility test at line 27 are working in parallel to find the most important SF

location which has the highest importance value and can be reached by the current time

value.

In the SF-construction function, the SF location prioritized values are no longer

treated as in the Construction function by increasing the importance value of the visited

SF locations as discussed earlier. Instead they are treated as supply nodes by decreasing the

importance value of the visited SF locations to break ties and allow other important SF lo-

cations to be visited. Accordingly, once a SF location is visited by a SF, its prioritized value

decreased by divided by 1.5 which the same multiplication number used in Construction

function to increase the prioritized value of visited SF locations. Then, the current selected

SF stays at the same SF location if necessary or visits another. This procedure continues up

to the end of the planning horizon.

The third approach produces a complete set of routes for SFs, so it is suitable for large

scale instances. Because solving the model with complete specified routes for both SFs and

small vehicles saves much computational effort and time. Pseudo code 12 shows the SF route

construction.

To allow the code run without any input from the users, some conditions can be added

to select one of these choice. For example, if the number of vehicles is greater than 20, the

code will select the third choice.
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Algorithm 12: SF-Construction Routes Function

1: if Ψ == 1 then

2: First case, Skip the SF-Construction function

3: end if//End the first case if

4: if Ψ == 2 then

5: Case two: some of the xFfijt variables are free, such that

6: for all l ∈ L, t ∈ T do

7: if
∑
v∈V

∑
i∈N

x̂Vvilt ≥ 1 then //Check if the location is visited

8: for all f ∈ F, j ∈ L ∪ iFf do

9: Add condition: xFfjlt is binary.

10: Add condition: xFfjl(t+1) is binary.

11: Add condition: xFfjl(t−1) is binary.

12: end for

13: end if

14: end for

15: end if//End the second case if

16: if Ψ == 3 then

17: Case three: construct routes

18: Sort location nodes in descending order based on their total importance

19: for all f ∈ F do

20: tnow = 1

21: Set current = iFf

22: for all t ∈ T do

23: Sort SF location nodes in descending order based on their total importance to get

sortL

24: end for
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25: for all t ∈ T do

26: for all i ≤ |L| do

27: if it is feasible to visit SF location sortL(t, i) then

28: xFf, current, sortt,i, t = 1

29: tnow = t

30: Update current = sortL(t, i)

31: Reduce the the prioritized value of sortL(t, i), such that PTL(sortL(t, i)) =

sortL(t, i)/1.5 //to avoid revisiting many times by other SF

32: Recalculate importances for all SF locations,

33: IM f = SF-Importance
(
f, current, L, PTL

)
34: for all k ∈ T do

35: Sort SF location nodes in descending order based on their total importance

to get sortL

36: end for

37: i = big number > |L| // end for loop to avoid infeasibility due to visiting

more than one node in the same time.

38: end if// End if feasible to visit

39: end for//End for i

40: end for//End for t

41: end for//End for f

42: end if//End the third case if

43: xFf current iFf tnow
= 1

44: Return xFfijt ∀i, j ∈ L ∪ iFf , i ∈ L ∪ iFf , t ∈ T

After finishing the construction of small vehicle and SF routes, the set of candidate

solutions should be developed considering these routes, in line 24 of pseudo code 8, to get

Pareto optimal at the end of all iterations. This is discussed next in Section 5.7.2.
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5.7.2 Generating Candidate Solutions for a Particular Objective

As discussed in Section 5.6, using a single objective causes many variables to have a

value of zero. In this section, six different approaches are developed to generate representative

candidate solutions that include all logistic operations.

Multiple approaches are developed and evaluated because each approach has some lim-

itations that prevent it from being suitable for all cases. So, the six approaches aim to

overcome the limitations and cover all possible cases. All proposed approaches are compared

in terms of the number of solutions generated in a specific computation time, variety of solu-

tions, and quality of solutions to find the most suitable approach. Some of these approaches

depend on a single objective function without adding any constraints, as in Sections 5.7.2.1

and 5.7.2.6. On the other hand, some approaches depend on a single objective function as

well as the addition of new constraints, as in Sections 5.7.2.2, 5.7.2.3, and 5.7.2.4. Finally,

in Section 5.7.2.5, a multi–stage approach is proposed, where a single objective function is

used in each stage.

5.7.2.1 A Linearly–Weighted Combination of Objectives (LWCO)

This is the easiest approach where all objectives are used in a single objective with

different weights, W1,W2, and W3, which are generated randomly in the range of [0,1]. The

single objective function is in 5.52.

Min W1

∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +W2

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +W3

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit (5.52)

In line 24 of Algorithm 8, the LWCO function is called and performed as shown in Algo-

rithm 13. The termination criterion in this algorithm is a specific number γ which represents

how many candidate solutions are created in each iteration using the same routes (same bi-

nary variable values). Because the termination criterion for the overall main code is time (as
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discussed in the Algorithm 8), using a high number for γ decreases the number of iterations

which can be performed in a specific time. On the other hand, using a low number for γ

decreases the chance of getting different candidate solutions for different objective function

values at each iteration using the same binary variables. After extensive experiments, it

is found that finding four candidate solutions (γ = 4) at each iteration is appropriate to

produce the best diverse set of solutions at the end.

To generate each candidate solution, weights are randomly generated, binary variable

values for vehicles are taken from the Construction function, and binary variable values

for SFs are taken from the SF-construction function. In the case of Ψ = 1, where the

SF-construction function is skipped, binary variables are used without any conditions, as

defined originally. Then, CPLEX can solve the model to create a complete solution for the

HLVRPSF. This procedure is repeated γ times.

Algorithm 13: LWCO Function

1: Set Counter = 1

2: while Counter ≤ γ do

3: Generate W1,W2, and W3 ∈ [0, 1] randomly

4: Use the objective function

5: Min W1

∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +W2

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +W3

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit

6: Vehicle binary variable values = Construction function output

7: SF binary variable values = SF-Construction function output

8: Solve the model using CPLEX

9: Save the value of all objective functions in Zobj

10: Save the complete solution in Zall

11: Update Counter = Counter + 1

12: end while
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This approach has many advantages and produces representative results as will be shown

in the numerical analysis; however, it has the disadvantage that created solutions depend on

the generated weights. It is supposed that using different weights to build different objective

functions to generate many candidate solutions at each iteration can overcome the problem

of using a single objective. In some cases, the priorities that are used in each single objective

function can dominate the effect of the generated weights and similar candidate solutions

are produced regardless of the weight values.

The next approach uses only the current activated objective function to generate a

candidate solution and overcome the potential problems due to the use of a weighted single

objective.

5.7.2.2 Single Objective with Individual Minimum Resource Usage Constraints

(SOIMRUC)

Using a single objective function which includes all objective functions in a weighted

manner could cause a problem due to the priority values while using only one of the three ob-

jective functions causes the problem of producing many variables with a value of 0. Because

of this, a new approach is suggested in this section to use the current activated objective

function with some added constraints to overcome these problems.

In this approach, the total load of each vehicle picked up during the whole plan is divided

into three almost equal parts for the three logistic operations, i.e. commodities, workers, and

wounded. This is achieved by adding three constraints, as follows

0.3

(∑
t∈T

∑
c∈C

∑
i∈S

mC
c z

PS
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∑
t∈T

∑
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∑
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c z
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+
∑
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∑
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∑
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∑
l∈L

mW
w w
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wflvt +

∑
t∈T

∑
w∈W

∑
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mW
w w
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wivt +

∑
t∈T

∑
e∈E

∑
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mE
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P
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)

≤
∑
t∈T

∑
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∑
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mC
c z

PS
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∑
t∈T

∑
f∈F

∑
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∑
l∈L

mC
c z

PL
cflvt ∀v ∈ V (5.53)
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0.3
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mW
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PS
wivt ∀v ∈ V (5.55)

Using these constraints ensures that the vehicles perform all logistic operations almost

equally regardless of which objective is used. Suppose that the total mass of commodities,

workers, and wounded picked up by a vehicle v equals M . Constraints (5.53) ensure that at

the end of the plan the total mass of commodities picked up by the vehicle v greater than

or equal to 30% of M . In the same manner, Constraints (5.54) ensure that the total mass

of wounded picked up by the vehicle v greater than or equal to 30% of M , and Constraints

(5.55) ensure that the total mass of workers picked up by the vehicle v greater than or equal

to 30% of M .

Ten percent of the total mass picked up is assigned as free space to reduce the chance of

producing infeasible solutions due to the integer condition of some variables. To understand

the benefit of using 0.3 but not 0.33, the following example is created. Assume a vehicle v,

with capacity 1300 lb, performs only one simple trip by visiting two demand nodes and one

hospital. Using 0.33 means that this vehicle should pick up more than 433 lb of wounded,

workers, and commodities. Knowing that the average mass of people is 200 lb, the vehicle

can pick up only 400 lb or 600 lb. By picking 600lb of workers and wounded, no more space

will be available to pick up 433lb of commodities, making the model infeasible. If 0.3 is used,
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the vehicle can pick up 400 lb of workers, 400 lb of wounded, 390 lb of commodities, and

110 lb of other commodities.

This approach is performed by calling the SOIMRUC function in line 24 of the Algorithm

8. This function is presented in Algorithm 14. Because only one objective function is used,

γ is set to 1 which means only one candidate solution is created at each iteration using this

approach.

Algorithm 14: SOIMRUC Function

1: Set Counter = 1

2: while Counter ≤ γ do

3: Add constraints (5.53)–(5.55) to the HLVRPSF model

4: if ϕ = 1 then

5: Use objective function 5.1

6: Min
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

7: end if

8: if ϕ = 2 then

9: Use objective function 5.2

10: Min
∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

11: end if

12: if ϕ = 3 then

13: Use objective function 5.3

14: Min
∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

15: end if

16: Vehicle binary variable values = Construction function output

17: SF binary variable values = SF-Construction function output

18: Solve the model using CPLEX

19: Save the value of all objective functions in Zobj
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20: Save the complete solution in Zall

21: Update Counter = Counter + 1

22: end while

This procedure is tested for many data sets and shows limitations of use. One limitation

is that it is only suitable for long planning horizons where the vehicles can perform many

trips by resupplying and revisiting hospitals. For short planning horizon, vehicles will work

at less than full capacity to satisfy Constraints (5.53)–(5.55). To explain this more fully,

consider Figure 5.5 which shows a simple route performed by a slow vehicle where the

current activated objective function is to minimize the wounded deviations.

Figure 5.5: Slow vehicle route in HLVRPSF model- first approach

In the figure, the vehicle picks up 400 lb of commodities from its depot, 400 lb of workers

from its depot, and 400 lb of wounded from one of the demand nodes. Because it starts with

a load of 800 lb, it also has 400 lb of free space. Furthermore, it picks up only 400 lb of

wounded from one of the demand nodes to transfer them to the hospital which leaves 800 lb

of free space. After the hospital visit, because of the limited planning horizon, it returns to

its depot.

Other solution can be constructed by picking up 600 lb of commodities and 600 lb of

workers from its depot, and 1200 lb of wounded from the demand nodes. This solution is
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wanted because it provides higher vehicle utilization and better objective function values.

The wanted solution was not created by this approach, even it is possible, because picking

up full loads violates Constraints (5.53)–(5.55) as happens if this vehicle picks up a full load

of 600 lb of commodities and 600 lb of workers from its depot, and 1200 lb of wounded from

the demand nodes. The total mass is 2400 lb; the quantities of 600 lb are not greater than

or equal 30% of 2400. According to the proposed example, it can be concluded that this

procedure is suitable if the plan is long and the vehicles can make many visits to resupply

and deliver wounded to hospitals, so any shortages of mass that violate the constraints in

the first trip can be satisfied in the following trips.

Beside the one above, another limitation of this approach is that the number of solutions

in each Pareto set is low (2-3 solutions), because the value of each objective would not be

changed greatly no matter what objective is activated. This is not always considered a lim-

itation. In some cases where the three logistic operations have the same care or importance

to be performed, this approach can be used efficiently without any worries concerning the

priority values hence it produces a few solutions with almost the same deliverables.

In Section 5.7.2.3, a similar procedure is suggested to use the current activated objective

function with some added constraints but with better source utilizations in the cases of a

short planning horizon.

5.7.2.3 Single Objective with Aggregate Minimum Resource Usage Constraints

(SOAMRUC1)

It can be noticed from the network system that commodities and workers have the same

sources, the supply and SF location nodes, and the same destinations, the demand nodes. On

the other hand, wounded are picked up from the demand nodes and delivered to the hospital

nodes. Relying on this, a new set of constraints are added to give equal opportunities for

commodity distribution and workers transfer with wounded evacuation. In other words, the

total loads that can be picked up by a vehicle is divided into two almost equal parts. The
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first part is used for commodity distribution and worker transfer while the second part is

used for wounded evacuation. This allows vehicles to pick up a full load, if resources are

available, of commodities and workers each time they visit supply nodes, and pick up a full

load of wounded before they visit hospitals without violating the added constraints. These

constraints are presented below.
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Constraints (5.56) and (5.57) are always added to the model, regardless of which ob-

jective function is active in the current iteration. In these constraints, the right hand side
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represents the total mass of commodities and workers without considering the wounded mass.

They balance the first part of the load between workers and commodities.

Constraints (5.58) are used only if Objective (5.3) is activated to force the vehicles to

perform commodity distribution and worker transfer even though the objective is to minimize

the wounded deviations. Constraints (5.59) are used only if either Objectives (5.1) or (5.2)

are activated to force vehicles to perform wounded evacuation while the current objective

function is to minimize the commodities deviations or work-force deviations. As in the

previous approach, 10% of vehicle capacity is not assigned to one type of load to avoid

infeasible solutions due to integer condition of some variables. This free space is partially or

completely filled up when it is needed to satisfy the added constraints.

This approach is performed by calling the function SOAMRUC1 in the main Algorithm 8

at line 24. SOAMRUC1 is presented in Algorithm 15. As in the previous approach, because

one of the objective functions is used at each iteration, γ is set to one and one candidate

solution is created.

Algorithm 15: SOAMRUC1 Function

1: Set Counter = 1

2: while Counter ≤ γ do

3: Add constraints (5.53)–(5.55) to the HLVRPSF model

4: if ϕ = 1 then

5: Use objective function 5.1

6: Min
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

7: Add constraints 5.56, 5.57, and 5.59

8: end if

9: if ϕ = 2 then

10: Use objective function 5.2
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11: Min
∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

12: Add constraints 5.56, 5.57, and 5.59

13: end if

14: if ϕ = 3 then

15: Use objective function 5.3

16: Min
∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xFfliFf t

17: Add constraints 5.56, 5.57, and 5.58

18: end if

19: Vehicle binary variable values = Construction function output

20: SF binary variable values = SF-Construction function output

21: Solve the model using CPLEX

22: Save the value of all objective functions in Zobj

23: Save the complete solution in Zall

24: Update Counter = Counter + 1

25: end while

Testing this approach shows marked improvement in the performance of vehicles. In

this case, vehicles pick up almost full loads of commodities and workers each time they visit

a supply or SF location node, and pick up almost full loads of wounded before visiting a

hospital, but, as in the previous approach, the number of solutions in each Pareto set is low

because the objective values do not depend on the current activated function. Consequently,

this approach is recommended when the actual case requests equal care for both commodity

distribution and worker transfer on one side and wounded evacuation on the other side.

The limitation with this approach is the unassigned 10% space which is not fully used

in most of cases and which reduces the efficiency of vehicles. In Section 5.7.2.4, a modified

approach is presented to utilize this free space.
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5.7.2.4 Single Objective with Aggregate Minimum Resource Usage Constraints

to Fill Free Space (SOAMRUC2)

The following approach is used overcome the problem of 10% unassigned space in the

previous approach. This free space is not utilized in most cases which decreases the amount

of commodities delivered, workers transfered, and/or wounded evacuated. For this reason,

in this approach, beside adding Constraints (5.56) – (5.59), the original objective functions

(5.1) – (5.3) are changed as follows.
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W
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C
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(5.62)

Where Ω =

(∑
w∈W

∑
i∈D

∑
t∈T

pWwi d
W
wit +

∑
c∈C

∑
i∈D

∑
t∈T

pCci d
C
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∑
e∈E

∑
i∈D

∑
t∈T

pEei d
E
eit

)
repre-

sents the maximum possible total deviations if all requested demands and workers are not

satisfied and all wounded are not evacuated. The third term in each function is very small

compared to the first term and is always less than one. This term motivates vehicles to fill

up any free space without affecting the main objective (first term). Another benefit of using

the third term in each objective function is that the vehicles perform the logistic operations,

not related to the current activated objective (first term), with respect to priority values. For

example, if the current activated objective function is to minimize the wounded deviations,

if the third term is not used, vehicles pick up commodities and workers without preference.
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When the third term is used, vehicles pick up commodities and workers with higher priority

to satisfy the added constraints and minimize the value of the third term in the objective

function.

To execute this approach, the SOAMRUC2 function is called in the main Algorithm 8

at line 24. SOAMRUC2 is presented in Algorithm 16. Again, because one of the objective

functions is used at each iteration, γ is set to one and one candidate solution is created.

Algorithm 16: SOAMRUC2 Function

1: Set Counter = 1

2: while Counter ≤ γ do

3: Add constraints (5.53)–(5.55) to the HLVRPSF model

4: if ϕ = 1 then

5: Use objective function 5.60

6: Min
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
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∑
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t
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W
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∑
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∑
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∑
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pEei v
E
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 /Ω

7: Add constraints 5.56, 5.57, and 5.59

8: end if

9: if ϕ = 2 then

10: Use objective function 5.61

11: Min
∑
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∑
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∑
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W
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12: Add constraints 5.56, 5.57, and 5.59

13: end if

14: if ϕ = 3 then

15: Use objective function 5.62

16: Min
∑
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∑
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∑
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E
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17: Add constraints 5.56, 5.57, and 5.58

18: end if

19: Vehicle binary variable values = Construction function output

20: SF binary variable values = SF-Construction function output
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21: Solve the model using CPLEX

22: Save the value of all objective functions in Zobj

23: Save the complete solution in Zall

24: Update Counter = Counter + 1

25: end while

The vehicle in Figure 5.5, produced by the SOIMRUC approach, is re-drawn after

solving the model using the SOAMRUC2 approach; Figure 5.6 shows the solution. It can be

observed that the total mass of evacuated wounded is improved from 400 lb to 1200 lb, and

the total mass for both transfered workers and distributed commodities are increased from

400 lb to 600 lb, as summarized in Table 5.2.

Figure 5.6: A vehicle route in the HLVRPSF model obtained by the SOAMRUC2 approach

Logistic SOIMRUC SOAMRUC2
Operation Solution Solution

Commodities distribution 400 lb 600 lb
Workers transfer 400 lb 600 lb

Wounded evacuation 400 lb 1,200 lb
Total mass 1,200 lb 2,400 lb

Table 5.2: SOAMRUC2 vs. SOIMRUC
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Similarly, the SOIMRUC approach in Section 5.7.2.4 can be modified slightly to solve

the problem of the 10% unassigned space. To do so, the same third term in each objective

function in this section can be added to the objective functions used in the SOIMRUC

approach and Algorithm 14 can be used again but with modified objective functions.

The approach defined in this Section 5.7.2.4 keeps the vehicles at full capacity as the

supplies are available, but the limitation is that these procedures give the same importance

to commodities and workers as they do to wounded. This might not be reasonable in some

cases and fails to find the extreme cases determined using a single objective. The next

section presents a new approach that uses multiple stages to find candidate solutions at each

iteration.

5.7.2.5 Single Objective Solved in Multiple Stages (SOSMS)

In this section, a new approach is suggested to create candidate solutions. A similar

approach has been suggested by Najafi et al. (2013) to solve a humanitarian relief problem

considering demand distribution and wounded evacuation. The objective functions consid-

ered in Najafi et al. (2013) are to minimize unsatisfied demand, minimize non–evacuated

wounded, and minimize the number of vehicles used.

SOSMS begins by solving the model with one objective function. Then, a constraint set

derived from the first solution is added to the model which is solved using the first objective

function with the next objective function in the next stage. In the final stage, the model is

solved again using the first two functions and the third objective function while considering

two constraint sets. There is no clear rule of how to select the arrangement of the objective

functions. In the HLVRPSF, because 3 objective functions are used, there are 6 different

possibilities, as in Table 5.3.
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Fist stage Second stage Third stage
objective function objective function objective function
Minimize commodity

deviations
5.1+Minimize workers deviations 5.1+5.2+Minimize wounded deviations

5.1 5.1+5.2 5.1+5.2+5.3
Minimize commodity

deviations
5.1+Minimize wounded deviations 5.1+5.3+Minimize workers deviations

5.1 5.1+5.3 5.1+5.3+5.2
Minimize workers deviations 5.2+Minimize commodity

deviations
5.2+5.1+Minimize wounded deviations

5.2 5.2+5.1 5.2+5.1+5.3
Minimize workers deviations 5.2+Minimize wounded deviations 5.2+5.3+Minimize commodity

deviations
5.2 5.2+5.3 5.2+5.3+5.1

Minimize wounded deviations 5.3+Minimize commodity
deviations

5.3+5.1+Minimize workers deviations

5.3 5.3+5.1 5.3+5.1+5.2
Minimize wounded deviations 5.3+Minimize workers deviations 5.3+5.2+Minimize commodity

deviations
5.3 5.3+5.2 5.3+5.2+5.1

Table 5.3: Different possibilities of SOSMS

Suppose the first possibility is arbitrarily selected to construct the approach of SOSMS.

This procedure is performed by calling the SOSMS function in line 24 of the main Algorithm 8.

The SOSMS function is presented in Algorithm 17. In this function, the model is first solved

considering only the first objective function which is to minimize the commodity deviations.

The first solution includes only demand distribution, and vehicles are expected to work with

full load of commodities if the supplies are available. Suppose that the objective function

value of this solution is Z∗1 which is the best value of total commodity deviations which

can be achieved because it is produced when vehicles only perform the logistic operation of

demand distribution. Then the constraint in line 12 is added to the model where the left

hand side is the total commodity deviations and the right side is δ1 (a number greater than

1) multiplied by Z∗1 . Because Z∗1 is the best value which can be achieved for commodity

deviations, using this constraint forces vehicles to have free space depending on the value of

δ1. This free space is used to transfer workers which is part of the second objective function.
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After the model is solved using the updated objective function that includes two func-

tions (commodity and worker deviations), a new solution is produced with only commodity

distribution and worker transfer. Suppose the objective function value of the second solution

is Z∗2 , which is the best value can be achieved for total commodity and worker deviations.

Another constraint is added to the model as in line 16 with the left hand side being total

commodity and worker deviations. The value δ2 is randomly generated with a value greater

than 1 and Z∗2 is the best objective value for commodity and worker deviations; this con-

straint forces vehicles to have free space to use for wounded evacuation because evacuation

is added to the third objective function. Finally, the model is solved with the third objec-

tive function, which includes all deviation variables, and with added constraints to find the

complete candidate solution.

As this approach requires solving the model three times to get one complete candidate

solution, γ is set to one to allow the generation of more candidate solutions using different

routes.

Algorithm 17: SOSMS Function

1: Set Counter = 1

2: while Counter ≤ γ do

3: Vehicle binary variable values = Construction function output

4: SF binary variable values = SF-Construction function output

5: Use objective function 5.1

6: Min
∑
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∑
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∑
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C
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∑
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∑
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∑
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7: Solve the model using CPLEX

8: Assume the solution has an objective value of Z∗1 =
∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit

9: Second step: modify the first objective function to add other objective function 5.2+5.1

10: Min
∑
w∈W

∑
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∑
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W
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∑
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∑
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∑
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t

|T |
xFfliFf t

11: Generate δ1 ∈ (1, 1.5] randomly
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12: Add a constraint
∑
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∑
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∑
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C
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∗
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13: Solve the model using CPLEX

14: Assume the solution has an objective value of Z∗2 =
∑
c∈C

∑
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∑
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C
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15: Third step: modify the previous objective function to add other objective function

5.1+5.2+5.1

16: Min
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17: Generate δ2 ∈ (1, 1.5] randomly.

18: Keep constraint in line 12, add the constraint

19:
∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +

∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit ≥ δ2 Z

∗
2

20: Solve the model using CPLEX

21: Save the value of all objective functions obtained from the previous step in Zobj

22: Save the complete solution obtained from the previous step Zall

23: Update Counter = Counter + 1

24: end while

The ranges of δ1 and δ2 are defined by the users. Based on some experimental work,

(1,1.5] seems to be a reasonable range. The problem with this approach is that three stages

are required to generate one candidate solution which takes more time. Another problem

demonstrated during experimental work is that no solution is produced during many itera-

tions because vehicles can not always satisfy the added constraints.

The final approach is suggested in the next section and adopts different features from

the previous approaches. First, it can create a candidate solution in one stage. Second, it

uses single objective function without adding constraints. Finally, it incorporates the other

objective functions with the current activated function in a way different than the weighted

method.
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5.7.2.6 Single Objective with Weighted Penalties (SOWP)

In previous approaches, the LWCO approach, which uses weighted objective functions,

depends on the priority values and might not be a proper approach if the priority values

are not selected carefully. Both SOIMRUC and SOAMRUC2, which use a single objective

function with added constraints, make selection of the current activated objective function

not important because the added constraints force the vehicles to always perform all logistic

activities regardless of which objective function is activated. SOSMS needs to solve the

model three times to create one candidate solution. Consequently, the approach suggested

in this section uses the current activated objective function without adding constraints to

create a candidate solution in one stage. To let vehicles to perform all logistic operations

without adding constraints, small weights (penalties) are used to add the other objective

functions to the current selected function.

This new objective equals the active plus the other two objectives multiplied by random

penalties to create other candidate solutions around the solution of the activated objective.

Assume the current activated function is φ1, and the other two functions are φ2 and φ3, as in

Objective 5.63. The generated objective function is as follows, where R1 and R2 are random

ratios. Many penalty ranges were tested, such as R1, R2 = [0.1, 0.6], R1, R2 = [0, 0.6],

R1, R2 = [0.1, 0.8], R1, R2 = [0.1, 0.4], and R1 = [0, 0.3], R2 = 1 − R1. Preliminary tests

show that the last choice (R1 = [0, 0.3], R2 = 1 − R1) is the best one to generate a wider

range of less clustered Pareto sets.

Objective = φ1 +R1 × φ2 +R2 × φ3 (5.63)

This approach is performed by the function SOWP which is presented in Algorithm 18.

This function is called at line 24 in the main Algorithm 8. As in the LWCO, four candidate

solutions are created in each iterations using the same routes (γ = 4).
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Algorithm 18: SOWP Function

1: Set Counter = 1

2: Vehicle binary variable values = Construction function output

3: SF binary variable values = SF-Construction function output

4: while Counter ≤ γ do

5: Generate R1 ∈ [0, 0.3] randomly

6: Calculate R2 = 1−R1

7: if ϕ = 1 then

8: Use objective function

9: Min
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10: end if

11: if ϕ = 2 then

12: Use objective function
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14: end if

15: if ϕ = 3 then

16: Use objective function

17: Min
∑
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18: end if

19: Solve the model using CPLEX

20: Save the value of all objective functions in Zobj

21: Save the complete solution in Zall

22: Update Counter = Counter + 1

23: end while
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In this approach, we know the current routes are constructed to minimize the function

φ1, whereas the generated objective function contains φ1 and the other two functions are

penalized. Extreme cases can be found such that vehicles are allowed to work with 90% of

their capacity for doing only one logistic operation. This allows us to find a wide range of

different solutions which really represent the subset of Pareto optimal. However, its ability

to produce solutions which have good objective values for all functions is not guaranteed

because one of the objective functions always slightly dominates the others.

Table 5.4 summarizes the good and bad attributes that obtained during preliminary

tests for all approaches.
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Approach How it is performed Advantages Limitations
LWCO Single objective function that in-

cludes all three objective func-
tions in linearly weighted man-
ner, no constraints are added

Short computation time
which allows to create
more candidate solutions

Improper weights and pri-
ority values could produce
bad solutions

SOIMRUC Uses only the current activated
objective function, constraints
are added to perform all logistic
operations almost equally

Suitable for the cases that
request equal care for the
three logistic operations

Not suitable for the prob-
lems with a short planning
horizon, needs longer com-
putation time compared to
LWCO, and few different
solutions are produced for
the Pareto set because the
effect of objective function
is decreased

SOAMRUC1 Uses only the current activated
objective function, constraints
are added to give equal care
for both commodity distribution
and workers transfer as wounded
evacuation

Better utilization of vehi-
cles compared to SOIM-
RUC in short plan prob-
lems

Needs longer computation
time compared to LWCO,
and few different solu-
tions are produced for the
Pareto set because the ef-
fect of objective function is
decreased

SOAMRUC2 Uses the current activated objec-
tive function plus a term that
gives very small care to other
functions, constraints are added
to give equal care for both com-
modity distribution and workers
transfer as wounded evacuation

Solves the limitation of
unassigned space, better
vehicles utilization com-
pared to SOAMRUC1

Needs longer computation
time compared to LWCO,
and few different solu-
tions are produced for the
Pareto set because the ef-
fect of objective function is
decreased

SOSMS Solves the model 3 times. The
first solution is obtained by using
single objective function without
adding constraints. Then, the
second and third solutions are ob-
tained using a new objective func-
tion plus the previous one adding
a constrain built using informa-
tion from previous solutions

– Take longer computation
time than others, no solu-
tions appear in many iter-
ations because of the in-
teraction complexity be-
tween different objectives
and added constraints

SOWP Uses the current activated objec-
tive function plus the other func-
tions

Short computation time as
in LWCO, able to cre-
ate solutions in most of
Pareto’s optimal regions

Ability to produce solu-
tions with good objective
value for all functions

Table 5.4: HLVRPSF – compare all approaches

In the next section, some results using these approaches are shown and discussed.
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5.8 Numerical Analysis

In this section, different data sets are randomly generated and solved by using the

proposed approaches. As in the HLVRP, model solving is conducted using CPLEX–Concert

Technology 12.2 MIP solver on an HP Compaq 8100 Elite SSF PC, with a quad-core Intel

i7-860 processor running Ubuntu Linux 10.10 in 64-bit mode. This section is organized

as follows. Section 5.8.1 describes the data sets classification based on scales. Sections

5.8.2, 5.8.3, 5.8.4, and 5.8.5 show the results of a tiny, small, medium, and large data set,

respectively.

5.8.1 Experimental Design

As in the HLVRP model, different data sets of different sizes are randomly generated.

They are classified as tiny scale, small scale, medium scale, or large scale. All parameters

have the same ranges as in the HLVRP model except for the time periods. As the SFs

are assumed to be slower than the vehicles and the benefits of using them becomes more

noticeable when the small vehicles have longer time for resupply, longer planning horizons

are used for the HLVRPSF sets. Table 5.5 shows all parameter ranges for the HLVRPSF

model. Other parameters are fixed for all scales and have the same values as in the HLVRP

model (Table 4.13).

As stated in the HLVRP model, the large scale ranges are suitable for an agency and

they are larger than many sets considered in the literature. For example, the analysis has

been done by Yi and Kumar (2007) includes sets up to 55 vehicles, 80 nodes, and with only

10 time periods.

To test the effectiveness of the solution approaches, one data set is randomly selected

from each scale and solved using the suggested approaches – LWCO, SOIMRUC, SOAM-

RUC2, and SWOP – to find the Pareto sets. SOSMS is not considered because of the
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Parameter Tiny Scale Small Scale Medium Scale Large Scale
Range Range Range

Time Intervals |T | ∼Unif(12,16) ∼Unif(15,22) ∼Unif(20,28) ∼Unif(25,48)

Vehicles |v| ∼Unif(2,4) ∼Unif(3,5) ∼Unif(5,15) ∼Unif(10,40)

SFs |F | ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,8) ∼Unif(5,20)

Demand Nodes |D| ∼Unif(3,6) ∼Unif(4,8) ∼Unif(8,15) ∼Unif(10,30)

Supply Nodes |S| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(3,7) ∼Unif(5,10)

Location Nodes |S| ∼Unif(2,4) ∼Unif(3,5) ∼Unif(5,10) ∼Unif(10,20)

Hospital Nodes |H| ∼Unif(1,2) ∼Unif(1,2) ∼Unif(2,4) ∼Unif(3,6)

Commodities Types |C| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Workers categories |W | ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Evacuees categories |E| ∼Unif(1,2) ∼Unif(1,3) ∼Unif(2,5) ∼Unif(3,7)

Table 5.5: HLVRPSF - design of experiment

limitations discussed earlier and because testing this approach shows that it is very sensi-

tive to the constants used in the constraints shown in lines (12) and (19) of Algorithm 17.

Consequently, there are many iterations with no solution when using this procedure.

5.8.2 Tiny Scale Problem

In this section, a tiny scale set is selected and solved with the proposed solution ap-

proaches. Data of this set is shown in Appendix D . The termination criterion is the time

limit which is set to 60 seconds. Figure 5.7 shows the Pareto sets of this set.

In Figure 5.7a, the 2-dimensional Pareto optimal of the total deviations of wounded

evacuation, denoted as (E) on the x–axis, and the total deviations of commodities, denoted

as (C) on the y–axis, is drawn. In Figure 5.7b, the 2-dimensional Pareto optimal of the total

deviations of wounded evacuation, denoted as (E) on the x–axis, and the total deviations of

workers, denoted as (W) on the y–axis, is drawn. In Figure 5.7c, the 2-dimensional Pareto

optimal of the total deviations of workers, denoted as (W) on the x–axis, and the total

deviations of commodities, denoted as (C) on the y–axis, is drawn. In Figure 5.7d, the

3-dimensional Pareto optimal of the total deviations of commodities, denoted as (C) on the

x–axis, the total deviations of wounded evacuation, denoted as (E) on the y–axis, and the

total deviations of workers, denoted as (W) on the z–axis, is drawn.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.7: Detailed Pareto front for a tiny scale set

In Figure 5.7, some small clusters are obtained in figures (a), (b), and (c) using all

approaches. The LWCO and SWOP approaches produce clusters more clearly in figures (a)

and (b) because the wounded deviations is one of the axes. In these cases, wounded have

the hospitals as destinations, whereas commodities and workers have the demand nodes as

destinations. This makes finding alternative solutions for the latter case harder and causes

clusters. In figure (c), the clusters are less frequent because both workers and commodities

have the same sources and destinations.

Both SOIMRUC and SOAMRUC2 have bad results in terms of the number of solutions

for each Pareto optimal sets and the objective value of the solutions. This is because in both

approaches, evacuation composes a portion of the total vehicle loads which prevents worker

and commodity deviations from obtaining a wide range values. Additionally, in tiny scale

sets, SOIMRUC has the fewest number of solutions clustered in the middle of the figures
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which is a good example of its inefficient use of resources in short planning horizons, as

mentioned earlier.

It can be concluded that there is no clear winner which can be considered for all Pareto

sets.

5.8.3 Small Scale Problem

In this section, the larger data set shown in Appendix C is considered; the results are

shown in Figure 5.8. Time limit is set to 300 seconds.

As in the previous section, Figure 5.8 contains four sub–figures. Figure 5.8a represents

the Pareto optimal of wounded evacuation (E) versus commodity distribution (C), Figure

5.8b shows the Pareto optimal of wounded evacuation (E) and workers transfer (W), Figure

5.8c shows the Pareto optimal of wounded evacuation (E) and workers transfer (W), and

5.8d represent the Pareto optimal of all logistic operations in one 3-dimensional figure.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.8: Detailed Pareto front for a small scale set

180



As in the tiny scale set, all approaches produce some clusters in both the wounded

evacuation–workers transfer (EW) and wounded evacuation–commodities distribution (EC)

Pareto sets, while fewer clusters are obtained in the workers-commodities (WC) Pareto set.

SOIMRUC produces few solutions on the right side of the EC and EW figures which

limits its use. This happens because this approach gives both logistic operations the same

chance to be performed by forcing vehicles to load the same mass of wounded as commodities

in case of EC and the same mass of wounded as workers in case of EW. On the other hand,

SOAMRUC2 produces few solutions on the left hand side of EC and EW figures because

the wounded evacuation is in the x–axis and it consumes around 50% of the vehicle loads

in this approach. Both SOAMRUC2 and SOIMRUC produce few solutions in the middle of

the WC figure because they give workers transfer and commodity distribution equal care.

Both LWCO and SWOP produce better results than SOAMRUC2 and SOIMRUC in

terms of the number and variety of the solutions, overall we can not find a single approach

that always produces better results than others.

5.8.4 Medium Scale Problem

The medium data set shown in Appendix B is considered in this section. Figure 5.9

shows the Pareto sets of this set. The time limit is set to 1800 seconds. Similar to the

previous sections, 4 sub–figures are included in Figure 5.9. First, wounded evacuation and

commodity distribution (EC) is included in Figure 5.9a. Second, wounded evacuation and

workers transfer (EW) is shown in Figure 5.9b. Third, workers transfer and commodity

distribution (WC) is presented in Figure 5.9c. Fourth, the Pareto optimal that shows all

logistic operations is drawn in Figure 5.9d.

It seems that clusters in the cases of wounded–workers (EW) and wounded–commodities

(EC) can not be eliminated, but even with the problem of clusters, the LWCO and SOWP

approaches are capable of finding solutions in extreme regions where one objective is good

and the other is bad, and solutions in the middle regions where both objectives are good.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.9: Detailed Pareto front for a medium scale set

It can be determined that some SOIMRUC and SOAMRUC2 solutions have better

objective values than some of SOWP and LWCO solutions in the middle of the WC Pareto

set; whereas, in EC and EW Pareto sets, bad results are produced in terms of objective

values, variety of solutions, and number of different solutions. Similar to small and tiny sets,

there is no approach that has an advantage over the other approaches. Although LWCO

gives the best results in most regions of EC and EW Pareto sets, it does not in many places

in the WC Pareto set.

5.8.5 Large Scale Problem

In this section, a large scale set shown in Appendix A is considered, and the time limit is

set to 3600 seconds. Figure 5.10 shows the results of this set. Figure 5.10 includes the Pareto

optimal of wounded evacuation and commodity distribution (EC) in Figure 5.9a, wounded
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evacuation and workers transfer (EW) in Figure 5.9b, workers transfer and commodity dis-

tribution (WC) in Figure 5.9c, and all logistic operations in Figure 5.9d.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.10: Detailed Pareto front for a large scale set

Several things can be noted in this section. First, clusters are obtained in Figure 5.10

using LWCO and SWOP approaches, but there is a wide range of solutions available in

different regions of the figures. Second, SOIMRUC and SOAMRUC2 have good results in

term of objective values only in the WC Pareto sets. Third, LWCO is a clear winner in the

EC Pareto set, but not in the EW and the WC Pareto sets.

Because of the previous notes and conclusions, a new approach involving all previous

approaches is suggested to provide us a clear winner. The next section discusses this in

detail.
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5.9 Hybrid Approach

In this section, a new approach is developed as a combination of all approaches and

it takes all approaches into consideration based on their advantages and disadvantages as

obtained from previous analysis. To get the Pareto optimal using the hybrid approach, the

following steps should be followed

• Run the main code in Algorithm 8, call the SOIMRUC function in line 24. This produces

Pareto optimal using the SOIMRUC approach. As noted in the previous analysis,

the SOIMRUC approach produces good results, in term of objective values, only in

the middle of the WC Pareto set. So, shorter time is considered as the termination

criterion, as shown in Table 5.6.

• Similarly, run the main code in Algorithm 8, call the SOAMRUC2 function in line 24. For

the same reason above, short time is considered as the termination criterion for this

run.

• Run the main code in Algorithm 8, call the LWCO function in line 24. Because LWCO

produces good results in all Pareto sets, this run is given longer time as the termination

criterion as shown in Table 5.6.

• Run the main code in Algorithm 8, call the SOWP function in line 24. Similar to the

previous run, this run is given a longer time as the termination criterion.

• Run the main code in Algorithm 8, call the EXTR function in line 24. The EXTR

approach is a modified version of the SOWP version, as explained below. The aim of

this approach is to produce solutions in the extreme areas, so this run is given a short

time as termination criterion.

• Five different Pareto sets are found at the end of these runs, where each approach has

its own Pareto set, then a Pareto of Pareto sets is found which represents our final

solution.
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SOWP is modified to construct a new approach with a new objective function, as follows

(denoted as EXTR)

Min R1 × obj1 +R2 × obj2 +R3 × obj3

Where one of the numbers R1, R2, and R3 is randomly selected to take the value of 1,

and the other two numbers take a random value from [0, 0.2]. This approach helps in finding

extreme points which are hard to locate using LWCO and SOWP. The EXTR is performed

by using the EXTR function as shown below in Algorithm 19. Value of γ is set to 4 as in

LWCO and SOWP approaches.

Algorithm 19: EXTR Function

1: Set Counter = 1

2: Vehicle binary variable values = Construction function output

3: SF binary variable values = SF-Construction function output

4: while Counter ≤ γ do

5: Randomly select one of the R1, R2, or R3 to be 1

6: Generate others Rs ∈ [0, 0.2] randomly

7: Use objective function

8: Min R1

∑
c∈C

∑
i∈D

∑
t∈T

pCci v
C
cit +R2

∑
w∈W

∑
i∈D

∑
t∈T

pWwi v
W
wit +R3

∑
e∈E

∑
i∈D

∑
t∈T

pEei v
E
eit +

∑
f∈F

∑
l∈L

∑
t∈T

t

|T |
xF
fliF

f
t

9: Solve the model using CPLEX

10: Save the value of all objective functions in Zobj

11: Save the complete solution in Zall

12: Update Counter = Counter + 1

13: end while

185



Table 5.6 shows that the hybrid approach does not take more time to produce the Pareto

sets than the previous methods, Figure 5.11 shows the results of the same tiny scale set in

Section 5.8.2.

Data Set Scale
Time Limit (sec) Tiny Scale Small Scale Medium Scale Large Scale

LWCO 20 100 600 1200

SWOP 20 100 600 1200

SOAMRUC2 5 25 150 300

SOIMRUC 5 25 150 300

EXTR 10 50 300 600

Total 60 300 1800 3600

Table 5.6: Hybrid approach time limits
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.11: Detailed Pareto front for a tiny scale set with hybrid approach

Now, we can see that the hybrid approach gives the best results in all Pareto sets.

Clusters in the hybrid approach become wider which is expected because this approach is
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designed to find the good solutions at all regions. The good solutions dominate the others

and cause the clusters. Next, Figure 5.12 shows the results of the same small scale set in

Section 5.8.3.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.12: Detailed Pareto front for a small scale set with hybrid approach

Figure 5.12 shows some clusters in the EW and EC Pareto sets, and less in the WC

Pareto set. A noticeable solution enhancement achieved by the hybrid approach is obtained

in the first half of the EW Pareto set. It is hard to explain this enhancement, but it could

be because the extreme approach, with some help from the LWCO and SOWP approaches,

produces these good results. Figure 5.13 shows the results of the medium scale set.
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(d) Wounded-Workers-Commodities Pareto Front

Figure 5.13: Detailed Pareto front for a medium scale set with hybrid approach

In Figure 5.13, the hybrid approach gives good results for the EC Pareto set and can

be considered the clear winner although it losses in one point. In the EW Pareto set, the

hybrid approach results in amazingly improved solutions on the left side of the figure, while

the right side has no solutions because they are dominated by the good solutions on the left.

In the WC Pareto set, solutions appear in a more uniform style.

For the medium scale set, the hybrid approach improves the results in the EW Pareto

set more than for tiny and small sets. This is might be a data set specific. Several medium

sets are solved similarly and the results show different improvement ranges. Figure 5.14

shows the results of the large scale set.
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Figure 5.14: Detailed Pareto front for a large scale set with hybrid approach

The hybrid approach results in solutions dominant over those from other approaches,

and it can be seen that it gives more solutions in extreme regions. For example, in the

EC Pareto set, there are many solutions with extreme good objective values in wounded

deviations and two solutions with extreme commodities deviation values. Similarly in the

EW Pareto set, there is a solution with a very good wounded deviation value and one

solution with very good worker deviations. In the WC Pareto set, the hybrid approach loses

in two places, where other approaches result in slightly better solutions, but it can still be

considered as the clear winner.

The next section provides a simple case study solved by the proposed solution approaches

for the HLVRP and HLVRPSF models.
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5.10 Case Study

One of the problems encountered in this research is how to estimate real data. All data

sets used in this research are randomly generated, but with dependence on some parameters

from previous studies, such as the number of nodes and the number of vehicles.

In this section, a case study is generated based on some real data to reflect a real life

scenario. This case is considered to solve an example as HLVRPSF and HLVRP models

using the suggested approaches.

5.10.1 Case Study Data

FEMA developed software called HAZUS to help generate real data1. This software

also needs some realistic inputs such as the expected earthquake scales in case of earthquake

estimation, the actual population in the region, the number of schools and universities in the

region, available hospitals, and the regions which can be used as supply nodes such airports

and warehouses.

In 2008, MMI engineering group prepared a full HAZUS earthquake simulation for a

region in California containing 8 counties with about 19 million in population and about 5

million houses with a value of 2 trillion dollars, (MMI Engineering Group (2013)).

The number of casualties is estimated according to the time the expected earthquake

will occur. The time of 2 AM is expected to cause the highest number of casualties because

most people at this time will be in the houses. The most extreme case is considered in this

section.

Casualties are classified into four groups (levels). The first, require medical attention

but hospitalization is not needed. The second, require hospitalization but are not considered

life-threatening. The third, require hospitalization and can become life threatening if not

1http://www.fema.gov/hazus
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promptly treated. The fourth are killed victims. The first group is used to estimate the num-

ber of workers needed because this group can be treated in the demand nodes. The second

and third groups are considered as wounded needing evacuation with different priorities.

An extra large scale problem is generated based on this HAZUS simulation results and

used to solve the HLVRPSF and HLVRP model. Some parameters are missing, such as the

number of vehicles needed by agencies. Such variables are generated randomly as follows.

• The total number of vehicles and SFs is estimated to be 65 which is the highest number

considered by Yi and Kumar (2007).

• The number of time periods is set to 10 to cover one day, where each period is 2.4

hour. This is the same number considered by Yi and Kumar (2007).

• The maximum nodes considered by Yi and Kumar (2007) is 80 which is the same

number considered in this case study, where 30% of the nodes are hospitals, supply

nodes, and locations. The other 70% of the nodes are considered to be demand nodes.

• The number of wounded is taken from HAZUS results which equals 2,154 for the second

level, and 140 for the third level. As resulted from HAZUS, wounded in level one do

not need evacuation, but they need attention at demand nodes.

• The number of wounded for the first level is taken from HAZUS results which equals

11,303. These wounded do not request evacuation, but need care and supplies at

demand nodes.

• The number of workers is assumed to be 3000± 200 which equals to one fourth of the

total people awaiting help in shelter areas. This data is taken from HAZUS.

• Three commodity categories are selected: bottled water, boxed food, and medication

and first aid bags. These are the most common categories needed. Water bottles

are expected to be needed every 2 time periods by each person, so the total number
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11, 303 person× 5 times = 56, 515. A food box is needed every 3 time periods by each

person, so the total number 11, 303 person× 3 times = 33, 909. One medications and

first aid bag is needed by every 10 persons at the beginning of each day, so the total

number 11, 303 person/10 = 1, 190. Availability of supplies is assumed to be 80± 5%

of total requested demand.

Table 5.7 shows a summary of the case study parameters and data.

Parameter Notes and Description
Time Periods 10, 2.4 hours each
Vehicles and SFs 65
Nodes 80, 30% are supply nodes, locations, and hospitals
Commodities 3 types: bottled water, boxed food, and medication bags
Bottled water demand is uniformly distributed with average of 56,515
Boxed food demand is uniformly distributed with average of 33,909
Medication bags demand is uniformly distributed with average of 1,190
Workers 2 Categories, uniformly distributed with average of 3000
Evacuees 2 levels, uniformly distributed with average of 2154 and 140 respectively

Table 5.7: Case study parameters and Data

A data set is randomly generated depending on the parameters described above in

Table 5.7. Then it is solved twice. First, it is considered as HLVRP problem and solved

using Heuristic-A3 approach (discussed in Chapter 4) with a time limit of two hours as

a termination criterion. Second, it is considered as HLVRPSF problem and solved using

the suggested approach suggested in Chapter 5 with the options of ψ = 3 for SF route

construction, two hours time limit as a termination criterion, and the hybrid approach to

create candidate solutions.

The next section, provides a procedure to compare between multi–objective and single

objective models. This procedure will be used in Section 5.10.3 to compare between the

HLVRP and HLVRPSF models.
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5.10.2 Comparison between Multi–objective and Single Objective Models

Multi–objective models are solved to provide different solutions that can cover wide

ranges in Pareto fronts. Single objective models are solved to create only one solution.

According to this, it is not easy to compare the quality of the single solution created by

a single objective model with multiple solutions created by a multi–objective model. In

this subsection, to perform a fair comparison between multi–objective and single objective

models, a two phase comparison procedure is suggested.

In the first phase, the objective function value of the single solution, which is obtained

from the single objective model, is split into many values. Each of those values represents

a single objective function value of the single objective model if it is solved as multiple

objectives. For further explanation, consider the following example for how this procedure

is applied in the HLVRP. When the HLVRP is solved, a single objective function value is

produced. This value is split into three values where the first value represents the total

commodity deviations, the second value represents the total work–force deviations, and

the third value represents the total wounded deviations. After this, the single solution

produced by the single objective model (HLVRP) can be easily plotted in the Pareto optimal

sets obtained by the multiple objective model (HLVRPSF). The benefit of this phase is to

compare the performance of the single objective model versus the multiple objective in two

dimensional objectives.

Two–dimensional Pareto sets include only the non–dominated solutions of two objective

function values without knowing the performance of the third objective function value. From

the Pareto front sets, in the previous sections, when a solution appears in a Pareto front

set, it will potentially have a bad objective function value of the third dimension that is not

shown in this Pareto set. For example, any point in EC figures has a good objective function

value for one or both commodity distribution and wounded evacuation; however, it likely

has a bad objective function value of the work–force transfer which is not shown in the EC

figures. This makes depending on only the Pareto sets (the first phase) for comparison not
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fair for the single objective function model. Consequently, the second phase is suggested, as

follows.

In the second phase, objective function values of each solution produced by the multi–

objective model are summed to create a single value. In our case study, a total objective

function value is calculated for each solution obtained by the HLVRPSF as the sum of the

three individual objective values. Then the summed objective values of the HLVRPSF are

plotted with the single objective value obtained by the HLVRP in a single figure. The benefit

of this phase is that the multi–objective model can be compared with single objective while

considering all objective function values.

5.10.3 Case Study Results

The first phase of comparison is to plot the single solution obtained by the HLVRP in

the Pareto front plots of the multi–objective HLVRPSF. Figure 5.15 shows these Pareto sets.

The HLVRP solution will fail to be in any Pareto sets if it competes with the HLVRPSF

solutions. This is because of two reasons.

First, as discussed earlier, HLVRP is a single objective function model which produces a

single solution that has a moderate objective function value in all logistic operations based on

the priority values used. In the HLVRPSF, the two dimensional Pareto sets include the solu-

tions that have good objective function values in two logistic operations and bad in the other

operation. This makes the objective function values for any two logistic operations, from the

single HLVRP solution, are not competitive to the corresponding objective function values

from the HLVRPSF solutions which appear in Pareto sets. For example, the HLVRPSF so-

lutions appear in the wounded-commodity Pareto front have good objective function values

in both wounded and commodity deviations and bad objective function value in worker de-

viations. If the wounded and commodity deviations of the HLVRP solution is plotted in this

Pareto front, they will potentially lose the competition with the HLVRPSF solutions, as the
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worker transfer in the HLVRP solution consume a good portion from the vehicle capacities

and prevent wounded and commodity to have a good value.

Second, SFs are used in the HLVRPSF which makes small vehicles more efficient. This

results in better operational performance in the HLVRPSF compared to the HLVRP solution.

In the wounded–commodity deviations Pareto set, the HLVRP solution has a better

objective function value for wounded evacuation than two solutions of the HLVRPSF. In

the wounded–worker deviations Pareto set, the HLVRP solution has a better objective func-

tion value for wounded evacuation than one solution of the HLVRPSF. In the wounded–

commodity deviations Pareto set, the HLVRP solution has a better objective function value

for commodity distribution than one solution of the HLVRPSF and a better objective func-

tion value for work–force transfer than six solutions of the HLVRPSF.
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Figure 5.15: Detailed Pareto Front for a Case Study Set

The second phase of comparison is to compare the HLVRP solution versus the HLVRPSF

solutions while considering all logistic operations. Table 5.8 shows the objective function
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values for 35 solutions produced by the HLVRPSF and the objective function value for

the solution resulted by the HLVRP. In the fifth column, the objective function values are

summed in a single objective function value for the sake of performing the second phase of

comparison. These values are sorted in descending order and plotted in Figure 5.16.

Before proceeding to the second phase of comparison, other strong point can be derived

from the table to validate the first phase. Table 5.8 includes 35 solutions that are produced

by the HLVRPSF, whereas only 8 solutions appear in the EC Pareto front, 11 solutions

appear in the EW Pareto set, and 15 solutions appear in the WC Pareto set. This provides

a good example that the two dimensional Pareto sets include the solutions that have a bad

objective function value in the hidden dimension.

Solution
#

Wounded
Deviations

Commodity
Deviations

Worker
Deviations

Total
Deviations

1 1021500 475379 1852700 3349579
2 923350 454950 1935200 3313500
3 1036500 427520 1978550 3442570
4 952500 479276 1829600 3261376
5 1018100 410761 2150800 3579661
6 964850 475727 1874900 3315477
7 1081750 478589 1819050 3379389
8 924950 480358 1866850 3272158
9 1004800 473696 1879400 3357896
10 925350 467260 1920550 3313160
11 1064100 464033 1886100 3414233
12 1049500 403905 2080250 3533655
13 930700 479911 1855250 3265861
14 1022750 431100 1793050 3246900
15 922650 481387 1893350 3297387
16 959300 477510 1833400 3270210
17 1022600 411295 2147850 3581745
18 918300 459869 1931100 3309269
19 941500 476646 1837500 3255646
20 1083150 476222 1830800 3390172
21 950250 479353 1835250 3264853
22 958250 476201 1845350 3279801
23 1072800 445210 1792900 3310910
24 1047800 440786 1928450 3417036
25 964850 479517 1803400 3247767
26 1053550 472006 1862450 3388006
27 942650 476086 1876900 3295636
28 993450 429544 2002100 3425094
29 1091750 483574 1792850 3368174
30 1137650 383550 2159600 3680800
31 1106250 477071 1811400 3394721
32 1043850 426232 1989750 3459832
33 1061600 478976 1829200 3369776
34 1050000 389485 2139150 3578635
35 1130300 386726 2158700 3675726
HLVRP
Solution

1077350 484932 1937500 3499782

Table 5.8: Objective function values for the HLVRPSF and HLVRP solutions
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Figure 5.16: Objective function value for HLVRPSF and HLVRP solutions

In Figure 5.16, the objective function value of the HLVRP solution is better than the

objective function value of 6 HLVRPSF solutions and worse than 29 solutions. Again, this

shows that using SFs improves the post–disaster relief operations by providing more supply

points which enhances the resource utilizations. Even with SF utilization, the HLVRP was

able to defeat six of the HLVRPSF solutions.

5.11 Summary

In this chapter, a new model is developed for post–disaster logistic systems which in-

corporates three logistic operations and multiple objectives while utilizing satellite facilities

as movable supply nodes. The three logistic operations are wounded evacuation, demand

distribution, and workers transfer. Considering these operations in a single logistic system

represents the first contribution of this model because it has not been done before. Consider-

ing multiple objectives eliminates the problem of scaling the objectives by arbitrary weights.

Finally, using large vehicles as mobile satellite facilities allows small vehicles to be resupplied

more quickly which improves the efficiency of the logistic system.
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In multiple objective models, different solutions should be found to cover most possible

cases. Accordingly, different solution approaches are developed in this chapter to create

different candidates, after which one of these approaches is selected to be the best approach

based on the objective values of the created solutions. These candidate solutions are used

to create three main Pareto sets: wounded–commodities deviations (EC), wounded–worker

deviations (EW), and worker–commodities deviations (WC).

In all data set sizes, some clusters appear in some Pareto plots and can not be elimi-

nated. They occur because of the integer condition of many variables with different ranges.

For example, both workers and wounded have mass considered to be very large compared

to commodities, and with smaller ranges. This makes finding many different solutions com-

plicated; however, the suggested solution approaches have the advantage of covering a wide

range of solutions.

The following points can be concluded for all sets in general. First, in the commodities–

wounded (EC) deviations Pareto front, SOAMRUC2 gives few solutions with good objective

function values in wounded evacuation and bad objective function values in commodity

distribution (solutions on the upper left side of the EC figure); whereas SOIMRUC2 gives

a wider range of solutions on the upper right side of EC figure with bad objective values in

both wounded evacuation and commodity distribution. There is an overlap in commodities

deviations objective values between SOIMRUC2 and SOAMRUC2, but SOAMRUC2 gives a

better value of wounded deviations. This is expected, because SOIMRUC2 gives only 30% of

total vehicles loads to the wounded while SOAMRUC2 allocates about half to this purpose.

Both SOIMRUC and SOAMRUC2 give a very bad commodities deviations objective value

because they always force vehicles to pick up workers having total masses almost equal to

commodity masses which effect the commodities quantity negatively.

Second, SOWP gives the widest range of solutions and LWCO gives the second widest

solutions range with better objective values in some cases, especially on to the evacuation

operation (on the left side of the EC figure). The wider range of SOWP is due to its ability
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to find extreme cases. The better objective values of LWCO has no clear argument, but

might be because all objectives have equal chances to be in the weighted single objective.

Third, SOSMS is not considered in the analysis because it is sensitive to the constants

used in each step. This causes the problem of no solutions in most iterations after the first

step. Accordingly, this approach is removed because it might cause confusion for users.

Fourth, in worker–commodity deviations Pareto front, a more uniform mix is obtained

from SOWP and LWCO, because both workers and commodities have the same sources

and destinations which allows for more solutions. Both SOIMRUC and SOAMRUC2 are

clustered in the middle of the figure because these approaches have limited solution choices

and do not depend on which objective is used. Finally, a hybrid approach which uses all

approaches is suggested to find the best results.

If we need only some solutions in the extreme areas, different ratios can be used to

produce them with shorter run times. For example, if we need very good solutions for

wounded deviations, this objective can be given a higher chance of being selected in the

SOWP approach instead of uniform random selection at the beginning of the code. The

ratios can be R1 = [0, 0.25], R2 = 1 − R1. In these cases, good solutions for wounded

deviations can be obtained in a shorter time.

A data set is generated using some real parameter values as a case study. This case

study is solved as a HLVRP and as a HLVRPSF. Two phase comparison is used to compare

between the single solution produced by the HLVRP and multiple solutions produced by the

HLVRPSF. It is found that the HLVRPSF is able to produce many solutions with better

objective function values than the HLVRP solution. This is because the utilization of the

available resources is improved in the HLVRPSF by using SFs.

The next chapter provides conclusions for this research and suggests future research

opportunities.
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Chapter 6

Conclusion and Opportunities for Future Research

6.1 Conclusion

This research proposes different mixed integer models to perform post-disaster logis-

tic operations in an integrated, efficient, and realistic manner. In doing so, the HLVRP

model is developed to perform the logistics operations involving commodities distribution,

wounded evacuation, and work–force transfer, while considering detailed individual vehicle

routes. This is an NP-hard problem which requires an extremely long time to solve optimally

using commercial solvers such as CPLEX and can not be solved optimally in cases of large

scale problems. Because of this, a new greedy local search heuristic depends on building a

feasible route for each vehicle based on the node visit beneficiary, and then solves the model

optimally for these specific routes to determine other details. This procedure is repeated

in an iterative fashion using some good route attributes determined in previous iterations

to avoid bad moves as possible. In the end, the best solution is the one associated with

the minimum objective value. The suggested approach is denoted as Heuristic-0. This

heuristic is improved by replacement and insertion local search algorithms. These algorithms

are applied in different ways. First, they can be applied for the best solution achieved from

the main heuristic, as in Heuristic-B. Second, they can be applied for each solution, as in

the Heuristic-A1, Heuristic-A2, and Heuristic-A3. Third, they can be applied for each

improved solution, as in Heuristic-I1 and Heuristic-I2.

The proposed heuristics’ results are compared with CPLEX results for tiny, small,

medium, and large data sets. Comparing the results shows that the proposed heuristics

are effective and can produce competitive results in an extremely short processing time,

an advantage in the case of a post-disaster situation. Heuristic-A1, Heuristic-A2, and
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Heuristic-A3 shows the best results among all local search variants but requires more time,

whereas Heuristic-B gives good results in a very short time, but is not guaranteed to always

improve the best solution. Finally, Heuristic-I1 produces high variations in results if it is

run just once, but improves results in a moderate processing time if the run repeated many

times, as in Heuristic-I2.

For most tiny scale sets, CPLEX can be used to solve the model. Users can run CPLEX

with a short time limit such as 5 minutes, but if they fail to get a solution, can switch to the

heuristic to get a solution in less than a minute. Tiny sets are used in this study to compare

optimal solutions versus the proposed heuristics. Such comparison shows excellent solutions

with an average gap of 0.25% in 30 seconds. The proposed heuristics become more important

in small scale problems where CPLEX takes a long time to give sub-optimal solutions. In

medium and large scale sets, CPLEX can not be used, and the heuristics are utilized to

efficiently solve these problems.

Heuristic-0 is not recommended in all sets because Heuristic-B may give the same

or better results with very little time added and is considered a free benefit. It is found

that Heuristic-B becomes more efficient when the size of sets increases. For example,

Heuristic-B decreases the average gap from 2.59% to 0.49% when it is added to Heuristic-0

for large scale problems, and it drops the average gap from 3.57% to 2.29% in small scale

problems. Heuristic-A1, Heuristic-A2, and Heuristic-A3 are highly recommended for

tiny and small sets because they give a better results in short time although this time is

longer than the time needed for Heuristic-0 and Heuristic-B. For example, it is worth

while to wait only up to 50 seconds more to get better solutions. Heuristic-I1 variants

are not recommended for tiny, small, and medium sets because there are other variants with

better results in the same or shorter time; however, in large problems, Heuristic-I1 has an

advantage over Heuristic-A1. The selection between the variants in medium and large scale

problems depends on the available time for the users; Heuristic-B is recommended in cases
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of short time, Heuristic-I1 or Heuristic-A1 can be used when more time is available, and

Heuristic-A2 or Heuristic-A3 are good for long time.

The research is extended by developing the new model HLVRPSF which incorporates

satellite facilities as mobile supply nodes and considers multi-objective. To solve this model, a

new solution approach similar to that suggested to solve the HLVRP model, is recommended

to construct the vehicle routes, then many solution approaches are suggested to provide a

wide range of candidate solutions to cover most combinations of objective values. Eight

different approaches were used to generate candidate solutions.

First, the linearly weighted combination of objectives (LWCO) uses a single objective

function without adding any constraint. This approach produce a wide range of solutions

with better objective functions compared with other approaches. Second, the single objec-

tive with individual minimum resources usage constraints (SOIMRUC) uses a single objective

function with adding some constraints to provide each logistic operation an equal opportu-

nity. This approach is found not suitable for short time horizons and it is able to produce

only few solutions. Third, the single objective with aggregate minimum resources usage con-

straints (SOAMRUC1) uses a single objective function with adding some constraints to give

equal opportunities for commodity distribution and workers transfer with wounded evacu-

ation. This approach overcomes the limitation of the (SOIMRUC) in short time horizons,

but it also produces few solutions. Fourth, the single objective with aggregate minimum re-

sources usage constraints to fill free space (SOAMRUC2) adds small terms to the objective

functions used in the (SOAMRUC1) to fill the free space. This improve the vehicle utiliza-

tions. Fifth, the single objective solved in multiple stages (SOSMS) utilizes many steps to

generate a single candidate solution. It is found that this approach is not recommended

because it needs to define many constants by users and it can not generate solutions in may

iterations. Sixth, the single objective with weighted penalties (SOWP) uses single objective

without adding any constraint. Similar to the LWCO, this approach produces wide range

of solution with good objective function values. Seventh, the extreme approach (EXTR) is
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used to find solution in extremed regions of Pareto fronts. These solutions usually have an

excellent objective function value in one logistic operation and bad objective function values

in others. Eighth, the hybrid approach utilizes all previous approaches, except the SOSMS,

to find the best representative Pareto fronts.

Four data sets are solved using the suggested approaches. These data sets cover all size

scales; tiny, small, medium, and large. The results shows that there are some clusters in

the wounded–commodities and workers–wounded Pareto front sets, but these clusters are

reduced in the commodities–workers Pareto set. It is also found that the hybrid approach

can be considered as a clear winner to provide the Pareto fronts.

A case study is included in Chapter 5 to create a data set with some real parameter

values. A procedure is suggested to compare between single objective and multi–objective

models. This procedure is used to compare the results of the cases study when it is solved as

HLVRP and as HLVRPSF. The comparison concludes that the HLVRPSF produces better

solutions than the single solution produced by the HLVRP. In spite of this, the HLVRP

solution is able to defeat some of the HLVRPSF solutions in term of total objective values.

As stated in the literature review, no studies have suggested models with three logistic

operations; consequently, the performance of the solution approaches can not be compared to

existing solutions from the literature in terms of quality and computation time. In the case

of the HLVRP model, solutions obtained from the proposed approaches are compared with

CPLEX results in tiny and small scale problems. In case of the HLVRPSF model, results

are evaluated based on some properties such as clusters, regions covered in the Pareto plots,

and computation time.

6.2 Future Research

This research is the first attempt to consider three logistic operations and satellite fa-

cilities in post–disaster humanitarian relief and many of future works can be suggested to

improve it. First, more than three logistic operations could be incorporated in the logistic
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system. For example, vehicles could pick up debris when they have idle time to open im-

portant blocked roads. Second, although the suggested solution approaches are capable of

providing solutions in a reasonable amount of time for large scale sets, more research could

address solutions for cases with extra-large scale sets by dividing the set into sub problems

and solving while sharing some information and activities between sub-sets.

One apparent improvement opportunity is to define conditions or cost for using SFs. In

some cases where the ratio between the number of vehicles and SFs is low (i.e. 4 vehicles, 3

SFs), SFs could work at low efficiency such as making a trip with 20% of its capacity. This

would be beneficial because there is no cost associated with using SFs.

If commodities have different sizes (i.e. cots, blankets, first aids bags, and insulin bottles)

and weights, vehicle loads have two restrictions: weight and volume. This can make finding

the optimum load for each vehicle more complex. All studies in this field have considered

only the weight of commodities. Which, when ignoring the size restriction, could result in

infeasible solutions.

In the proposed models, workforce transfer is considered from a logistic perspective.

Workforce management can be also studied using the humanitarian relief logistic, which

includes scheduling, jobs distribution, finding the optimum number of each profession to

stay at each node, and work time management.

Another opportunity for future research might be an investigation of the effect of data

randomness either by considering a stochastic or a robust model. Due to the inherent

uncertainty associated with humanitarian logistics, the idea of robust optimization (RO)

may be introduced to consider a worst-case situation, especially when unmet demand may

result in the loss of someone’s life.

RO can be defined as an optimization approach that attempts to solve problems with

uncertain parameters by using the worst possible scenario associated with the data sets,

or by using an approximate value of uncertain parameters for defined intervals of time.

In the linear program, the uncertain set could be the cost matrix, right hand side matrix
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(RHS), and/or coefficients matrix. RO has been extensively studied in different fields such as

communication and control systems, but less so in industrial engineering and humanitarian

relief logistics. For example, BenTal and Nemirovski (1999) introduced uncertain ellipsoidal

sets where the uncertain parameters could have any value inside an ellipse rather than box.

BenTal et al. (2004) have talked about adjustable RO with application for uncertain RHS.

In this article, the variables were divided into two groups, first the adjustable variables

which can be determined based on the previous realizations, and second the non-adjustable

variable which should be determined before the realization. BenTal et al. (2011) have used

the same concept of adjustable RO to solve emergency logistics that have uncertain demand,

and Sungur et al. (2008) have shown a solution for a vehicle routing problem (VRP) with

uncertain demand.

Another extension may incorporate the use of communication devices and feedbacks

from social media. Using these devices is so important in humanitarian relief, and the model

with communication devices is different from the model without them. For example, assume

that a road is blocked and the driver has a communication device to communicate this to

the control at depot. In this case, it is easy for the vehicle to be redirected with little time

loss; however, if the driver does not have the communication device, he may redirect himself

or go back to the supply node which will cause a high loss of time. The model should take

this issue into consideration and give different results (alternatives) such as leaving roads

with high blocking probability until the last step of the routes in case there is a lack of

communication devices. Using the same model to find logistic plans for both cases could

lead to very bad results. For example, consider the network depicted in Figure 6.1, where

arc (2, 3) is suddenly blocked. In this case, the driver must decide which alternative route

should be followed, two of which are suggested in Figure 6.2.

If the driver has a communication device, he will be redirected to 4, and then go back

to node 3; however, if he does not have a communication device, he could decide to go back
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Figure 6.1: Communication device effect

Figure 6.2: Communication device: with and without cases

directly to the depot as depicted by the doted line or he could go to the node 5 then 4 ,

missing number 3 and traveling a much longer distance.

Finally, because detrimental behaviors such as stealing could exist on roads or at nodes

and delivery could exceed demand at some nodes, some additions could be used to overcome

these problems. For example, chance constraints could be studied to model the human

behavior. For example, these constraints could add a probability for the successful delivery

of commodities, where the nodes with low probability should take precautionary measures.

Sungur et al. (2008) compare between chance-constrained at different level of chances. The

importance of the chance constraints is to determine the expected quantity to be distributed
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by each vehicle or received at each node which may not be equal to the planned quantity, i.e

if a vehicle is supposed to deliver 100 items to a specific node, this quantity could be only

95 units or, in extreme cases, zero.
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Appendix A

Large Scale Set- HLVRPSF Model

Table A.1: Large scale – set parameters

Time Wounded Commodities workers Vehicles Satellite Demand Supply Hospital SF
Periods
|T |

Levels |E| Types |C| Categories
|W |

|V | Facilities
|F |

Nodes
|D|

Nodes|S| Nodes
|H|

Locations
|L|

30 2 3 2 20 6 20 4 3 12

Table A.2: Demand – first type (dC1it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 0 240 200 100 300 300 340 320 120 140 340 220 80 360 100 340 60 360 100 300 180 320 260 0 320 300 240 180 0
2 0 100 200 0 200 340 240 220 120 120 0 0 160 220 260 220 140 140 260 100 160 0 280 0 220 280 100 0 280 0
3 0 0 300 200 320 340 100 60 100 60 260 60 80 280 260 140 320 320 0 260 180 360 320 180 0 0 340 300 0 0
4 0 360 320 300 0 60 360 240 0 340 160 0 80 160 0 160 160 260 60 340 160 180 140 100 160 240 280 0 360 0
5 0 300 220 140 160 220 260 80 0 0 240 140 0 220 300 0 360 180 80 240 340 240 340 240 60 120 320 300 200 0
6 0 280 260 320 100 260 160 320 100 240 280 140 120 180 340 140 80 200 260 300 0 240 60 0 100 320 280 300 0 0
7 0 60 300 80 320 220 0 80 180 220 120 60 240 100 260 220 240 260 240 220 220 80 0 120 120 100 180 0 340 0
8 0 360 0 160 320 0 160 200 0 220 220 360 80 300 160 0 0 200 240 80 280 300 240 200 220 340 0 0 140 0
9 0 80 0 0 0 220 0 180 120 160 260 260 320 180 80 340 140 280 160 120 60 300 340 220 100 0 0 140 280 0
10 0 0 120 0 80 60 100 60 180 0 0 0 360 0 360 360 300 320 340 340 0 140 0 0 140 120 0 100 180 0
11 0 180 160 0 100 340 0 340 0 100 80 280 0 140 100 140 80 60 300 240 140 340 120 260 240 240 100 0 120 0
12 0 360 360 220 180 280 120 200 0 340 240 120 100 180 100 160 340 280 0 340 220 280 240 340 320 320 140 220 0 0
13 0 0 140 80 120 100 80 280 200 0 280 80 80 0 0 200 180 60 140 0 200 240 180 140 0 100 340 300 240 0
14 0 120 220 360 0 240 0 220 0 0 300 80 0 0 360 160 80 260 100 0 0 100 280 300 0 120 0 120 120 0
15 0 80 0 180 0 360 320 200 140 240 200 140 0 0 80 360 160 200 120 200 160 280 0 100 140 220 0 180 0 0
16 0 200 80 320 320 180 360 0 340 300 0 320 300 0 360 220 180 260 280 360 220 0 80 80 140 60 0 180 0 0
17 0 340 160 0 280 220 0 60 220 260 80 200 0 360 360 300 360 100 360 160 180 0 320 80 220 360 0 260 280 0
18 0 80 0 160 160 0 360 200 160 300 260 100 0 360 300 80 0 140 100 0 320 100 0 100 360 0 100 0 0 0
19 0 320 60 260 340 320 140 300 220 80 0 240 240 240 280 360 260 260 0 360 60 0 200 300 240 260 320 160 340 0
20 0 0 280 340 0 240 220 100 360 0 0 0 0 0 280 340 340 60 300 360 260 0 100 320 140 300 180 60 240 0
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Table A.3: Demand – second type (dC2it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 260 120 0 0 100 0 0 60 120 320 100 0 340 260 260 0 0 320 140 240 0 140 80 0 0 280 320 280 0
2 0 0 80 100 80 220 340 300 260 200 140 60 0 220 280 0 240 300 0 200 320 120 0 240 60 0 340 260 140 0
3 0 180 340 360 260 240 240 80 100 300 0 320 0 320 240 320 60 200 120 0 120 360 260 240 0 240 80 160 80 0
4 0 120 340 300 100 0 340 60 300 340 200 260 60 0 300 0 80 80 0 160 340 320 80 0 0 100 220 0 0 0
5 0 0 300 60 340 0 340 160 0 220 120 0 360 80 200 0 0 260 80 160 0 120 260 0 340 0 280 180 0 0
6 0 0 0 360 100 140 360 0 140 260 80 80 240 140 0 180 100 0 60 300 280 0 320 320 100 0 60 100 180 0
7 0 360 280 0 120 100 200 60 0 60 360 300 160 60 0 0 0 340 360 180 220 100 180 360 0 0 100 180 300 0
8 0 320 80 320 340 0 360 0 280 0 0 260 120 120 160 0 80 140 320 100 320 60 60 360 0 180 220 160 320 0
9 0 220 200 100 0 0 260 120 200 0 0 240 220 160 320 0 160 200 200 220 0 0 360 320 220 0 0 300 200 0
10 0 140 180 180 200 180 80 140 0 200 240 100 0 280 0 0 0 300 100 240 60 220 320 120 60 280 0 360 280 0
11 0 300 100 320 340 80 220 0 100 0 80 60 220 240 240 100 80 360 80 100 280 200 140 140 80 280 360 340 0 0
12 0 280 220 0 0 140 60 160 0 140 360 240 200 180 60 300 240 60 140 240 0 180 340 200 0 240 80 320 260 0
13 0 340 0 100 240 240 260 60 240 0 60 280 0 0 160 120 60 0 240 0 0 0 160 360 120 0 240 300 180 0
14 0 320 340 360 180 0 0 0 60 140 220 260 280 60 0 360 80 0 240 0 0 240 180 0 240 160 160 0 120 0
15 0 340 300 100 0 280 280 340 180 0 260 320 320 360 0 320 140 0 0 140 340 60 280 320 100 60 280 300 0 0
16 0 320 280 160 80 320 200 140 140 0 60 80 160 0 140 300 360 280 0 160 360 60 340 320 140 140 300 160 80 0
17 0 100 180 200 300 80 300 0 180 60 180 200 240 60 140 100 0 140 0 360 300 120 80 0 280 0 240 280 180 0
18 0 320 80 220 80 0 0 80 180 280 240 60 200 220 300 340 240 60 360 0 180 80 60 260 140 100 0 0 280 0
19 0 0 140 60 340 320 0 80 260 160 240 260 200 320 0 160 0 160 100 0 160 360 280 240 100 0 0 180 260 0
20 0 120 340 60 340 0 0 260 360 80 0 320 360 200 0 320 60 0 240 340 260 260 320 200 0 340 140 80 0

Table A.4: Demand – third type (dC3it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 320 0 280 260 200 0 260 0 360 240 320 360 240 200 180 0 360 320 180 140 280 120 120 280 200 240 160 360 0
2 0 240 340 0 240 0 280 300 280 300 180 80 0 0 120 60 200 80 180 120 240 340 200 280 260 60 360 320 320 0
3 0 360 360 200 300 0 320 280 0 180 140 200 80 180 80 0 0 0 0 140 0 360 0 220 0 60 0 160 0 0
4 0 360 0 260 180 0 0 160 200 180 80 0 120 0 340 140 220 280 180 360 100 200 0 280 320 280 0 80 160 0
5 0 120 80 200 100 100 0 0 140 320 0 60 260 80 320 180 260 100 160 220 0 0 60 100 220 0 260 340 220 0
6 0 0 0 0 280 340 0 340 0 0 100 0 260 240 200 200 200 300 300 360 360 280 120 100 0 100 140 60 300 0
7 0 260 260 300 280 80 0 220 0 140 140 340 0 0 100 0 60 220 300 60 320 0 100 220 0 320 0 60 360 0
8 0 320 260 80 220 200 160 260 80 80 280 180 360 140 360 60 0 320 280 100 300 320 0 220 0 240 360 0 0 0
9 0 360 120 0 120 340 280 0 0 360 0 300 100 140 260 180 360 0 240 100 220 80 0 280 300 260 0 320 100 0
10 0 120 140 0 140 280 300 0 200 340 220 340 120 240 320 100 200 240 0 160 60 120 140 0 300 0 120 200 0 0
11 0 280 360 340 320 240 0 100 160 360 120 220 60 360 80 200 360 60 140 0 140 120 260 300 0 360 200 80 120 0
12 0 240 320 200 0 300 300 60 200 160 260 60 80 80 360 120 0 120 0 140 180 280 80 100 180 300 0 260 140 0
13 0 60 60 0 0 340 280 180 180 0 60 360 0 240 80 360 60 300 260 0 200 100 180 240 60 160 180 300 300 0
14 0 0 280 120 120 360 260 240 240 0 280 360 140 160 160 0 360 0 280 120 340 160 0 140 320 140 320 240 220 0
15 0 60 180 100 260 120 300 60 240 60 280 0 0 120 140 0 240 360 340 0 360 0 180 0 360 300 260 240 140 0
16 0 220 360 320 60 60 140 220 260 0 340 120 0 0 320 360 260 320 220 200 180 280 0 140 120 200 120 300 0 0
17 0 280 0 140 340 260 160 0 260 140 140 0 240 160 80 360 60 320 360 100 340 100 0 0 0 140 360 100 280 0
18 0 120 300 200 180 260 120 160 280 160 220 200 360 120 360 220 280 0 340 60 200 0 120 360 0 340 300 0 280 0
19 0 320 200 360 60 100 120 300 0 140 340 200 220 80 360 80 200 0 220 60 340 240 300 100 0 120 0 0 340 0
20 0 340 260 300 0 0 300 220 0 0 160 100 0 100 280 160 360 120 260 120 0 140 180 180 100 280 100 360 60 0

Table A.5: Supply – first type (sC1it)

Time 1-30
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 10923 201 0 0 0 0 613 0 0 0 359 0 0 0 434 0 0 89 437 0 0 0 520 0 0 0 289 277 0 0
2 12245 212 504 323 0 153 409 0 0 178 0 203 0 0 0 391 0 0 0 133 0 0 0 492 165 0 0 335 0 0
3 7986 268 322 0 275 0 587 0 0 0 149 434 0 0 0 459 0 0 377 0 0 127 278 668 0 0 0 636 0 0
4 7116 64 373 0 0 624 0 300 341 0 0 0 0 0 623 0 0 95 176 89 0 0 513 448 201 0 0 448 0 0
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Table A.6: Supply – second type (sC2it)

Time 1-30
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 4465 0 191 0 425 592 385 0 290 0 591 0 631 350 0 0 327 0 633 0 339 0 0 0 0 148 212 0 0 0
2 14162 61 0 74 0 493 0 0 147 0 214 0 373 536 251 0 0 0 103 179 0 0 360 0 0 0 0 0 0 0
3 16748 447 191 294 0 53 0 0 596 442 0 154 0 589 154 0 608 649 218 0 0 112 0 0 98 659 0 0 0 0
4 8266 586 0 0 0 655 663 0 663 0 182 0 0 0 0 491 653 0 0 73 522 217 0 0 0 0 166 223 0 0

Table A.7: Supply – third type (sC3it)

Time 1-30
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 14865 255 365 635 0 315 143 644 381 603 0 0 0 0 259 585 0 635 444 0 0 247 459 562 0 0 0 0 0 0
2 13178 0 617 0 663 0 0 0 0 0 193 0 523 0 480 377 0 0 234 0 479 0 0 0 0 63 0 528 0 0
3 7809 600 352 447 175 0 0 189 0 174 555 361 125 0 0 390 431 147 0 0 0 72 526 0 0 0 0 382 0 0
4 16339 98 0 0 564 293 335 173 260 0 0 0 0 624 254 581 384 0 475 276 546 194 481 570 0 0 0 0 0 0

Table A.8: Available workers – first category (sW1it)

Time 1-30
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 11 4 3 4 0 0 2 0 1 2 0 4 0 4 0 0 3 4 2 0 3 1 0 0 0 3 2 1 0 0
2 14 1 0 0 1 3 0 1 3 0 0 2 0 0 5 3 4 3 3 4 5 0 0 0 0 0 0 0 0 0
3 35 5 3 0 3 0 0 0 0 0 0 2 1 0 5 0 0 0 3 0 4 5 1 4 0 0 4 3 0 0
4 34 0 0 0 0 0 0 3 3 1 0 0 0 4 0 1 5 0 4 3 0 0 0 0 2 0 0 0 0 0

Table A.9: Available workers – second category (sW2it)

Time 1-30
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 26 1 0 0 0 5 5 0 0 2 1 0 0 0 5 2 5 5 1 0 0 0 0 0 0 4 4 0 0 0
2 15 0 1 0 5 5 5 0 0 0 0 0 1 0 5 0 0 0 0 0 3 0 1 2 1 3 0 5 2 0
3 37 0 0 0 0 4 0 2 0 0 2 4 0 0 4 3 2 4 4 3 1 1 0 0 0 2 0 3 5 0
4 43 5 0 0 2 0 0 0 3 0 2 1 5 4 0 2 0 0 0 4 1 2 0 0 3 5 2 2 0 0
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Table A.10: Requested workers – first category (dW1it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 3 6 2 6 3 1 8 5 5 6 3 6 4 2 8 5 4 3 8 7 8 8 0 4 7 0 8 0 0
2 0 4 7 8 5 3 1 0 4 2 8 1 5 5 4 2 8 4 8 2 7 2 1 5 0 0 3 4 7 0
3 0 3 3 6 5 0 5 1 1 4 1 5 4 1 6 0 4 0 0 3 2 7 5 0 7 6 3 7 6 0
4 0 6 3 3 8 4 7 2 2 3 4 1 7 3 7 2 2 2 0 7 0 0 8 3 7 5 1 6 0 0
5 0 5 4 5 0 5 8 6 8 6 0 8 7 2 1 3 3 8 5 6 8 5 2 0 3 1 3 2 4 0
6 0 2 6 5 7 8 8 6 3 7 1 2 2 1 1 7 1 2 1 5 8 4 0 8 0 2 6 3 1 0
7 0 7 3 6 0 7 0 6 7 8 1 1 4 2 1 4 4 0 2 3 1 1 8 0 5 6 6 3 6 0
8 0 1 4 8 8 6 3 7 4 1 2 0 7 3 8 2 5 0 4 7 8 4 2 0 5 8 7 8 6 0
9 0 3 2 1 4 6 7 2 1 1 7 6 0 0 6 7 3 4 7 8 4 2 7 1 6 0 1 2 8 0
10 0 0 1 3 1 1 5 5 6 1 5 7 1 3 4 1 3 0 0 6 4 7 6 6 1 2 8 5 2 0
11 0 7 8 8 5 7 1 6 0 4 3 6 5 6 2 6 1 5 6 4 5 6 0 7 2 4 2 1 6 0
12 0 1 7 6 0 4 3 5 2 4 1 0 6 4 4 1 8 7 7 0 3 4 3 6 8 3 4 0 7 0
13 0 6 8 4 6 4 1 4 6 2 7 0 5 8 7 2 1 3 3 1 8 0 8 2 2 2 6 0 5 0
14 0 1 7 1 5 4 5 0 0 4 2 6 7 8 4 3 7 1 3 7 4 5 6 3 5 5 3 5 6 0
15 0 0 3 0 8 1 2 2 6 5 1 4 1 3 1 6 2 4 7 8 5 8 6 7 4 1 8 7 4 0
16 0 2 2 1 0 5 2 6 7 2 8 4 7 0 8 6 2 7 3 4 2 8 3 5 8 7 3 1 6 0
17 0 2 0 2 2 2 1 2 7 3 8 3 3 6 5 2 4 2 8 6 1 1 0 1 0 1 7 6 7 0
18 0 1 8 4 4 6 6 6 8 6 7 4 7 4 8 2 8 4 4 4 7 3 8 6 4 8 7 3 1 0
19 0 3 0 8 5 6 3 7 3 8 2 2 3 7 5 1 3 4 3 2 6 7 4 2 0 4 8 2 1 0
20 0 5 3 2 8 2 8 2 8 1 7 3 0 8 3 3 6 8 2 7 1 6 8 8 2 3 8 0 5 0

Table A.11: Requested workers – second category (dW2it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 8 3 7 4 4 7 1 6 7 4 6 8 0 7 6 8 1 7 6 8 0 2 0 4 1 6 7 3 0
2 0 6 5 6 3 6 2 5 2 1 6 8 8 8 3 5 0 1 2 8 1 0 3 0 7 4 7 3 5 0
3 0 3 8 6 7 4 2 8 2 4 4 2 5 8 1 2 6 3 7 6 2 0 3 3 7 5 1 4 0 0
4 0 7 5 3 1 4 8 6 6 1 5 6 5 7 8 0 6 1 2 1 2 8 7 4 6 0 8 5 3 0
5 0 7 7 3 5 3 4 4 5 3 8 2 2 2 0 6 0 8 6 5 7 6 6 7 5 3 3 3 1 0
6 0 0 6 4 7 4 5 2 5 0 4 1 2 2 3 4 4 1 1 5 8 5 8 4 1 3 3 4 6 0
7 0 4 7 5 4 2 0 0 4 5 0 0 4 3 1 6 5 3 8 0 2 8 3 1 4 0 4 3 4 0
8 0 5 8 8 0 6 5 2 7 3 2 2 0 1 3 2 4 2 8 0 5 7 7 8 6 0 7 0 0 0
9 0 2 3 4 7 0 2 5 5 7 7 3 1 1 5 8 0 6 8 4 0 7 2 5 4 7 2 8 7 0
10 0 8 8 6 1 1 8 7 1 1 1 6 6 0 7 6 8 4 5 8 1 3 1 8 1 1 5 3 6 0
11 0 5 3 5 4 0 0 4 8 8 0 1 1 1 5 7 1 2 4 7 4 8 4 3 2 5 3 1 4 0
12 0 8 5 2 2 8 5 7 6 5 0 6 4 0 5 5 1 1 2 1 1 4 6 5 3 2 0 3 7 0
13 0 3 5 1 0 1 3 2 7 8 7 4 4 7 8 8 7 4 3 7 4 3 6 5 7 3 2 2 5 0
14 0 2 5 2 5 8 3 3 7 4 5 3 3 4 6 5 0 5 2 8 1 5 4 5 8 1 1 5 2 0
15 0 3 7 8 3 1 8 8 8 2 2 6 4 6 8 7 8 5 3 8 1 3 5 2 0 0 5 6 8 0
16 0 7 0 2 8 7 8 3 7 7 0 4 7 1 8 2 7 7 7 4 3 8 3 3 2 7 5 0 5 0
17 0 0 7 5 7 5 5 6 2 4 7 0 0 8 2 7 7 1 7 5 0 5 7 1 2 8 4 4 6 0
18 0 8 5 3 8 1 6 4 6 0 8 8 2 7 6 2 6 8 7 4 8 3 7 6 8 3 5 8 2 0
19 0 1 3 0 7 6 1 4 7 5 8 3 5 7 0 7 3 7 7 0 4 5 2 1 8 7 7 5 1 0
20 0 2 4 4 1 5 2 8 3 3 1 8 6 0 0 2 5 1 7 0 6 5 7 8 8 8 1 5 4 0
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Table A.12: Waiting evacuees – first level (dE1it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 5 3 6 2 5 1 2 5 4 4 6 1 2 5 2 4 5 1 5 6 6 0 4 4 5 0 3 0 0
2 0 1 6 3 6 2 1 1 5 2 1 3 0 6 1 1 6 6 1 1 2 2 0 1 1 5 4 5 2 0
3 0 4 6 2 5 5 4 2 0 3 1 3 3 3 0 3 0 6 2 6 5 3 6 5 3 6 5 4 2 0
4 0 2 0 4 4 5 5 1 3 2 1 2 3 1 3 6 4 3 1 2 0 1 6 3 3 5 2 6 2 0
5 0 0 2 5 0 2 2 2 5 0 1 2 0 3 2 3 4 5 1 6 0 2 1 0 3 0 4 6 4 0
6 0 4 4 6 4 6 4 2 6 0 4 5 0 6 5 1 0 5 2 4 3 3 1 1 5 2 2 0 0 0
7 0 4 4 4 1 1 4 3 5 6 5 5 6 0 1 0 4 6 6 4 4 1 6 5 3 0 0 1 0 0
8 0 0 6 1 4 4 3 3 3 5 4 2 5 0 5 4 0 6 2 5 5 6 0 0 6 0 5 2 5 0
9 0 3 1 6 3 1 5 5 3 1 1 4 5 3 6 3 3 2 5 2 1 6 5 4 3 5 4 2 3 0
10 0 1 4 2 4 6 1 6 5 4 4 1 3 4 3 1 0 3 2 2 3 6 4 5 5 2 2 1 5 0
11 0 5 2 2 4 6 2 6 3 1 5 6 5 1 5 1 5 2 3 3 3 3 5 6 2 2 4 0 2 0
12 0 5 0 1 1 0 1 5 6 3 2 1 4 1 0 2 0 6 3 5 1 4 1 4 1 5 1 3 0 0
13 0 6 2 1 2 0 2 3 0 3 6 4 6 1 3 1 0 4 3 0 1 4 3 0 0 5 2 6 3 0
14 0 3 0 1 2 0 2 2 0 2 5 5 3 4 3 0 4 6 1 4 1 2 3 2 0 6 2 5 2 0
15 0 2 4 3 6 2 5 6 3 5 2 3 6 0 2 2 3 3 3 0 0 2 2 2 5 5 2 3 3 0
16 0 3 1 5 5 3 2 4 5 5 4 1 1 6 3 0 4 3 1 0 6 4 5 6 6 6 6 2 4 0
17 0 2 5 5 5 4 4 3 0 4 6 4 0 3 5 1 0 6 0 2 2 1 1 1 3 6 6 0 5 0
18 0 5 3 1 5 6 6 3 4 1 5 2 5 4 6 3 5 3 3 5 2 3 0 3 2 1 2 3 6 0
19 0 1 3 2 5 4 3 3 2 1 0 6 0 5 6 4 0 4 0 5 5 3 1 5 4 6 1 6 6 0
20 0 4 0 5 5 4 5 3 6 0 5 1 1 5 5 1 1 3 5 6 0 4 4 5 0 3 3 3 2 0

Table A.13: Waiting evacuees – second level (dE2it)

Time 1-30
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 3 0 1 0 1 4 3 3 1 5 2 1 3 2 0 6 0 6 0 1 3 4 1 0 1 4 5 2 0
2 0 1 1 4 4 2 4 2 3 6 5 4 0 3 6 1 4 6 1 3 5 1 1 6 4 5 1 2 4 0
3 0 5 0 6 4 2 2 6 2 6 1 5 5 5 2 6 6 6 5 4 6 5 0 2 4 0 1 1 5 0
4 0 2 3 1 6 1 0 3 3 2 1 5 6 2 1 5 5 1 2 5 6 5 2 3 3 0 5 0 0 0
5 0 6 6 4 0 0 5 6 2 3 0 3 6 1 0 3 2 6 1 0 1 1 3 5 5 3 1 6 4 0
6 0 6 0 2 3 4 6 3 5 2 0 5 6 1 6 3 0 6 6 0 6 6 6 5 5 2 3 3 6 0
7 0 2 3 1 1 1 3 2 5 1 6 1 1 4 4 0 5 4 1 4 1 1 2 0 0 1 3 3 2 0
8 0 6 0 1 1 1 0 0 2 3 3 5 2 0 5 4 4 0 2 1 2 4 3 4 5 5 2 3 0 0
9 0 6 6 2 5 4 1 5 3 6 3 3 2 4 2 3 4 5 0 0 5 2 6 6 4 2 3 2 5 0
10 0 5 3 5 4 1 5 1 5 4 6 2 3 2 5 4 0 5 5 2 1 3 0 5 5 6 4 3 6 0
11 0 0 3 5 5 0 1 1 6 5 2 4 0 6 4 2 6 3 6 4 6 2 5 1 5 5 6 1 3 0
12 0 3 2 0 1 6 3 4 4 5 5 3 1 5 5 1 2 3 3 2 4 0 4 3 2 0 2 0 4 0
13 0 1 2 0 2 4 5 3 1 2 1 3 5 4 6 6 1 3 5 3 6 0 3 1 0 6 4 1 6 0
14 0 0 1 3 6 1 1 0 4 0 3 5 0 2 2 5 5 6 2 6 2 0 0 6 0 4 0 6 3 0
15 0 3 0 2 1 6 4 0 6 5 0 3 3 2 6 3 2 1 6 5 6 1 4 6 0 5 4 5 0 0
16 0 4 4 3 5 2 3 6 2 0 5 1 4 3 2 0 3 1 4 6 1 1 2 0 3 0 4 1 3 0
17 0 1 6 1 4 2 2 2 2 5 0 4 4 5 3 1 6 3 6 3 5 1 0 6 3 2 4 4 0 0
18 0 1 5 1 3 2 2 0 4 4 0 0 1 0 2 3 3 4 2 3 0 1 6 5 3 4 2 6 6 0
19 0 6 3 5 1 6 6 2 1 2 0 6 4 0 4 5 1 4 1 4 1 1 5 0 3 4 3 4 6 0
20 0 6 3 6 3 4 2 2 1 1 4 2 1 4 6 4 3 3 0 2 1 0 4 0 1 3 0 4 5 0

Table A.14: Vehicle depots (iVv )

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i ∈ S 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4

Table A.15: Vehicle speed factors

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Speed Factor 2 2 2 2 1 2 2 2 2 2 1 2 1 2 1 1 2 2 1 2
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Table A.16: Vehicle capacities (mV
v )

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Capacity 1200 1000 1000 1100 1000 900 1300 800 800 900 900 800 1400 1100 1000 800 1200 1300 1300 1300

Table A.17: Satellite facility depots (iFf )

f ∈ F 1 2 3 4 5
i ∈ S 1 2 3 3 3

Table A.18: Satellite facility speed factors

f ∈ F 1 2 3 4 5
Speed Factor 4 2 3 3 3

Table A.19: Satellite facility capacities (mF
f )

f ∈ F 1 2 3 4 5
Capacity 4200 4300 3900 3000 3800

Table A.20: Mass of commodities, workers, and wounded (mC
c , mE

e , and mW
w )

Type c1 c2 c3 w1 w2 e1 e2

Mass (lb) 3 8 9 200 200 200 200

Table A.21: Priorities (pCci, p
E
ei, and pWwi)

i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c1 6 10 6 7 5 4 8 10 6 1 7 2 10 8 7 4 10 7 10 6
c2 10 7 6 5 1 7 5 6 2 3 5 9 4 2 5 10 7 4 9 3
c3 4 7 6 4 4 4 9 5 10 8 2 10 6 10 4 6 8 1 3 9
w1 700 800 900 850 500 650 800 800 800 800 500 600 650 800 850 900 950 750 750 950
w2 700 800 500 950 850 750 800 750 750 900 650 950 850 600 800 850 850 700 750 750
e1 550 800 850 800 600 800 700 650 550 950 700 850 900 700 900 750 600 800 600 850
e2 750 800 950 700 500 850 650 950 600 900 700 650 700 700 950 900 500 750 600 700
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Table A.22: Distance matrix

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
1 0 2 1 1 1 2 1 1 1 2 2 2 1 1 2 1 1 2 2 2 3 3 2 2 2 1 1 2 1 1 2 2 1 1 1 2 1 2 2
2 2 0 2 2 2 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 3 3 3 3 2 1 1 2 1 1 2 1 2 2 1 2 1 2 2
3 1 2 0 1 1 2 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 2 1 1 2
4 1 2 1 0 1 2 2 2 2 1 2 1 1 1 2 1 1 2 1 2 2 3 2 3 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2
5 1 2 1 1 0 1 2 2 2 1 1 1 2 1 2 1 2 2 1 2 3 2 2 3 2 2 2 1 1 1 1 1 2 2 1 1 1 1 1
6 2 1 2 2 1 0 1 2 1 1 2 1 1 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 2 1 2 1 2 1
7 1 1 1 2 2 1 0 2 2 1 2 1 1 1 2 1 1 1 2 2 3 3 2 2 2 2 1 1 1 1 2 1 2 2 1 2 2 1 2
8 1 1 2 2 2 2 2 0 1 2 1 2 2 1 1 2 2 1 2 1 3 2 2 2 1 2 2 1 1 2 2 1 2 2 1 2 1 1 1
9 1 1 2 2 2 1 2 1 0 1 2 1 1 1 2 1 2 1 2 1 2 2 3 2 2 2 1 1 1 1 2 2 1 1 2 2 1 2 2
10 2 1 2 1 1 1 1 2 1 0 2 2 1 1 2 2 2 2 2 2 3 3 2 3 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1
11 2 1 2 2 1 2 2 1 2 2 0 2 1 2 2 2 2 1 2 1 2 2 3 3 1 1 2 2 1 1 1 2 1 1 2 2 1 2 1
12 2 2 2 1 1 1 1 2 1 2 2 0 1 1 2 1 1 1 2 2 3 3 2 2 1 1 2 2 2 1 1 1 2 1 2 1 1 1 2
13 1 1 1 1 2 1 1 2 1 1 1 1 0 2 2 2 1 1 2 2 2 2 3 2 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2
14 1 1 1 1 1 2 1 1 1 1 2 1 2 0 1 1 2 1 2 2 3 2 3 3 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1
15 2 2 1 2 2 2 2 1 2 2 2 2 2 1 0 1 1 2 1 1 2 2 2 3 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2
16 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 0 2 2 2 2 3 3 2 2 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1
17 1 1 2 1 2 1 1 2 2 2 2 1 1 2 1 2 0 2 2 1 3 3 3 3 2 2 1 1 1 2 1 1 2 2 1 2 2 2 2
18 2 2 1 2 2 2 1 1 1 2 1 1 1 1 2 2 2 0 1 2 3 3 3 3 2 2 2 1 1 2 1 2 1 1 1 1 2 1 2
19 2 1 1 1 1 1 2 2 2 2 2 2 2 2 1 2 2 1 0 2 2 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 1 2
20 2 1 1 2 2 2 2 1 1 2 1 2 2 2 1 2 1 2 2 0 3 3 3 3 2 2 1 2 1 2 2 2 1 2 1 1 2 2 2
21 3 3 2 2 3 2 3 3 2 3 2 3 2 3 2 3 3 3 2 3 0 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 2 2
22 3 3 2 3 2 2 3 2 2 3 2 3 2 2 2 3 3 3 2 3 1 0 2 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2
23 2 3 2 2 2 2 2 2 3 2 3 2 3 3 2 2 3 3 2 3 1 2 0 2 2 1 1 1 2 2 2 2 2 1 2 2 2 1 2
24 2 3 2 3 3 2 2 2 2 3 3 2 2 3 3 2 3 3 2 3 1 1 2 0 2 2 1 1 2 2 1 2 2 2 1 1 1 1 2
25 2 2 2 1 2 1 2 1 2 1 1 1 1 1 2 1 2 2 2 2 1 1 2 2 0 1 2 1 2 2 1 1 2 2 2 1 1 2 1
26 1 1 2 1 2 1 2 2 2 1 1 1 2 1 1 1 2 2 1 2 2 1 1 2 1 0 2 2 2 1 1 2 1 2 2 1 1 1 2
27 1 1 1 1 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 1 1 1 1 1 2 2 0 1 2 1 2 2 1 1 1 1 1 2 2
28 2 2 1 1 1 1 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 1 1 1 1 2 1 0 2 1 2 1 1 1 1 1 1 2 2
29 1 1 1 2 1 2 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 2 2 2 2 2 0 1 2 2 1 2 2 1 2 2 2
30 1 1 2 2 1 2 1 2 1 1 1 1 2 1 1 1 2 2 2 2 1 1 2 2 2 1 1 1 1 0 1 2 2 1 2 1 1 2 1
31 2 2 2 2 1 1 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 2 2 2 1 0 2 1 1 2 1 1 1 2
32 2 1 2 1 1 1 1 1 2 1 2 1 1 2 2 1 1 2 2 2 2 2 2 2 1 2 2 1 2 2 2 0 1 1 2 1 2 1 1
33 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 2 2 1 2 1 1 1 2 2 2 1 1 1 1 2 1 1 0 1 2 2 1 2 2
34 1 2 1 1 2 2 2 2 1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 1 2 1 1 1 1 0 2 2 1 1 1
35 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 1 2 2 1 1 2 2 2 2 2 2 0 1 2 2 1
36 2 2 2 1 1 2 2 2 2 1 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 2 2 1 0 1 2 1
37 1 1 1 1 1 1 2 1 1 2 1 1 2 2 2 2 2 2 2 2 1 2 2 1 1 1 1 1 2 1 1 2 1 1 2 1 0 1 1
38 2 2 1 2 1 2 1 1 2 2 2 1 2 2 1 2 2 1 1 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 2 1 0 2
39 2 2 2 2 1 1 2 1 2 1 1 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 1 2 0
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Appendix B

Medium Scale Set- HLVRPSF Model

Table B.1: Medium scale – set parameters

Time Wounded Commodities workers Vehicles Satellite Demand Supply Hospital SF
Periods
|T |

Levels |E| Types |C| Categories
|W |

|V | Facilities
|F |

Nodes
|D|

Nodes|S| Nodes
|H|

Locations
|L|

23 3 5 4 13 3 15 4 3 8

Table B.2: Demand – first type (dC1it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 60 280 200 160 220 100 300 220 0 360 60 180 360 80 240 360 100 240 320 160 0 0
2 0 200 160 180 0 220 80 0 100 240 240 280 140 80 320 80 0 60 260 0 320 220 0
3 0 100 0 0 180 280 120 140 60 120 320 300 260 0 320 180 0 220 120 160 120 140 0
4 0 200 320 360 340 80 140 60 120 280 360 320 300 300 100 0 220 260 220 360 160 360 0
5 0 260 0 260 260 200 0 160 120 0 200 60 0 180 360 260 140 0 280 340 360 0 0
6 0 120 260 180 360 80 160 320 300 0 320 260 60 320 320 0 220 60 220 140 0 0 0
7 0 160 0 0 0 340 300 160 0 340 220 320 140 220 220 80 0 360 140 280 340 360 0
8 0 0 80 100 0 260 0 180 340 360 0 60 240 320 160 100 80 80 260 300 0 0 0
9 0 360 60 100 0 80 320 340 280 300 0 340 0 0 0 240 200 120 220 160 0 0 0
10 0 200 0 300 0 180 180 140 120 120 200 80 280 160 320 200 320 120 80 0 0 0 0
11 0 240 140 180 120 260 320 80 80 340 180 0 0 220 300 320 360 0 120 340 340 140 0
12 0 180 0 0 180 260 0 140 300 200 220 0 360 80 180 0 280 180 140 300 300 80 0
13 0 160 200 60 160 260 320 100 0 60 0 140 120 240 180 120 60 140 0 180 140 60 0
14 0 140 0 200 280 220 280 360 280 80 260 100 260 280 220 0 320 360 260 0 80 140 0
15 0 320 160 140 140 0 360 320 180 280 0 360 60 100 0 320 260 180 0 60 0 300 0]

Table B.3: Demand – second type (dC2it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 200 140 360 200 0 80 80 140 260 280 180 80 280 240 180 200 220 220 360 200 0
2 0 320 0 180 320 160 320 280 120 0 200 220 0 200 60 240 200 160 220 80 340 220 0
3 0 140 220 280 0 360 120 60 140 340 60 280 60 0 140 240 260 100 100 80 60 280 0
4 0 220 160 200 260 0 360 220 100 160 60 0 160 360 60 240 0 80 220 360 280 320 0
5 0 340 200 180 260 240 140 160 100 260 60 100 0 0 360 260 320 100 0 300 320 160 0
6 0 160 220 220 280 0 320 360 100 120 0 140 340 100 0 300 80 140 60 100 200 300 0
7 0 0 160 360 240 120 120 100 300 300 360 0 0 300 280 240 120 220 320 0 280 340 0
8 0 220 360 60 160 360 360 180 120 100 0 360 120 320 60 320 320 260 260 280 0 80 0
9 0 240 200 360 200 180 300 220 60 120 280 240 0 140 360 200 0 320 0 140 260 0 0
10 0 0 300 280 100 320 260 0 200 340 220 220 0 220 180 240 300 120 80 360 140 320 0
11 0 200 0 240 100 140 0 320 100 220 0 180 280 0 0 320 140 160 260 260 360 200 0
12 0 0 280 280 140 0 220 340 80 280 60 80 360 200 240 280 100 60 120 300 340 200 0
13 0 60 80 100 300 0 340 240 80 0 360 80 200 280 320 280 220 160 0 0 280 340 0
14 0 80 300 360 200 360 340 140 300 140 300 360 80 200 0 160 320 220 100 180 200 240 0
15 0 100 320 0 60 320 260 320 240 220 240 80 200 160 300 160 300 0 320 120 180 340 0
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Table B.4: Demand – third type (dC3it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 340 140 160 100 300 0 0 0 220 300 80 120 360 220 320 60 0 100 260 300 0
2 0 360 240 160 320 0 60 160 0 0 100 120 220 260 240 240 0 240 300 220 60 200 0
3 0 60 260 280 160 200 120 60 220 0 100 340 0 200 180 280 280 100 320 80 300 0 0
4 0 300 260 260 280 280 360 60 80 0 180 80 0 0 260 360 220 220 0 0 260 300 0
5 0 360 220 240 0 120 300 0 0 280 200 280 160 220 0 260 0 300 0 240 360 120 0
6 0 100 0 80 80 140 200 180 0 0 260 340 300 320 140 200 0 120 180 360 80 340 0
7 0 0 160 0 120 180 320 280 0 300 0 100 140 240 140 340 280 200 340 0 120 0 0
8 0 80 340 120 0 260 180 200 260 360 180 180 160 160 280 220 100 100 200 240 260 180 0
9 0 260 0 0 80 300 140 340 220 0 360 280 280 300 240 160 60 0 260 0 240 80 0
10 0 320 160 320 220 280 0 0 0 0 360 300 140 140 360 260 0 260 0 320 0 180 0
11 0 140 360 140 0 0 220 0 60 60 220 320 100 140 120 360 280 340 340 0 0 280 0
12 0 140 80 340 0 280 160 100 260 0 160 360 340 200 180 360 120 260 200 320 0 180 0
13 0 100 260 220 260 140 360 280 320 180 320 160 240 0 280 160 220 180 180 120 160 260 0
14 0 260 60 60 60 0 240 0 0 220 120 200 0 260 0 180 260 120 60 0 240 260 0
15 0 200 280 180 0 220 220 260 200 320 60 280 120 80 300 360 280 120 160 160 180 280 0]

Table B.5: Demand – fourth type (dC4it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 220 0 200 160 0 160 160 120 100 280 160 0 0 0 120 160 320 0 100 0 340 0
2 0 0 220 140 160 160 120 220 200 80 200 0 0 0 140 160 360 320 100 280 0 260 0
3 0 240 360 320 0 340 360 0 200 280 300 340 240 160 260 120 100 120 0 220 0 0 0
4 0 240 180 0 300 60 220 260 140 160 0 220 0 0 200 120 0 0 60 260 100 100 0
5 0 300 240 260 260 80 120 80 120 140 80 320 280 340 80 220 300 140 0 200 0 120 0
6 0 360 260 360 280 320 140 140 300 180 100 340 240 240 340 360 80 0 100 200 0 0 0
7 0 180 160 180 0 60 260 260 0 340 240 100 280 240 340 200 160 280 240 100 180 60 0
8 0 240 160 220 140 240 0 200 360 60 280 0 0 160 0 0 60 0 160 120 140 240 0
9 0 260 340 140 180 0 180 200 220 300 240 340 200 200 0 120 80 320 200 240 160 100 0
10 0 200 0 300 80 300 300 120 140 260 120 180 240 220 200 260 140 140 160 200 0 340 0
11 0 120 0 80 140 160 180 300 220 360 220 160 140 140 360 180 140 60 180 0 220 220 0
12 0 300 0 320 360 80 340 100 240 100 100 0 140 120 0 300 60 160 140 360 140 0 0
13 0 360 60 320 160 280 0 180 260 180 280 0 0 100 180 160 60 300 0 120 360 160 0
14 0 220 340 0 260 220 340 0 0 60 180 0 0 240 140 0 280 0 80 120 0 160 0
15 0 140 100 280 80 0 140 0 360 220 240 120 240 200 100 0 320 0 140 220 0 280 0]

Table B.6: Demand – fifth type (dC5it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 160 320 220 340 100 100 0 160 0 340 80 220 200 240 360 240 180 0 340 0 220 0
2 0 0 240 60 220 240 280 80 120 300 160 120 60 220 0 0 280 0 60 300 260 220 0
3 0 260 260 160 240 200 0 120 360 180 340 340 200 200 60 0 240 360 200 120 320 260 0
4 0 140 180 0 240 0 280 100 240 80 260 0 160 100 160 260 260 0 240 0 260 120 0
5 0 80 360 0 120 300 60 280 280 120 0 160 0 360 100 140 240 60 240 100 140 0 0
6 0 0 160 320 200 0 320 240 240 140 140 260 100 240 280 260 340 60 60 320 60 100 0
7 0 300 0 160 140 0 300 320 100 0 280 160 340 100 180 0 60 120 220 200 0 140 0
8 0 300 240 240 340 60 60 280 200 200 0 80 0 140 0 60 240 0 240 220 340 140 0
9 0 160 0 260 220 280 120 200 200 300 120 120 120 140 140 360 200 0 100 0 0 160 0
10 0 240 120 100 220 140 80 300 80 160 0 160 140 300 100 240 340 360 200 240 220 260 0
11 0 360 80 360 280 140 280 320 120 280 220 120 300 340 240 0 340 0 0 80 0 0 0
12 0 80 360 280 200 180 280 0 300 0 120 260 340 60 80 0 180 100 240 0 320 120 0
13 0 320 0 360 280 0 160 60 180 360 200 100 0 60 140 160 360 80 140 0 260 220 0
14 0 180 120 0 180 280 300 100 360 300 260 60 0 320 0 0 320 0 140 260 320 60 0
15 0 0 0 360 120 100 160 300 140 120 140 80 280 100 80 80 0 120 60 160 0 180 0
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Table B.7: Supply – first type (sC1it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 4640 359 0 123 0 194 0 90 0 0 0 0 192 0 0 0 116 205 236 85 0 0 0
2 7196 0 251 0 0 0 0 77 417 0 269 0 0 0 269 148 417 0 0 429 0 0 0
3 4462 0 131 0 0 362 0 0 463 144 0 245 206 0 472 88 119 418 0 0 0 0 0
4 8149 0 107 0 0 0 262 0 0 272 0 403 0 337 0 0 79 0 0 0 139 0 0

Table B.8: Supply – second type (sC2it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 10336 0 0 386 0 0 0 538 0 0 0 0 0 0 328 476 220 355 0 183 0 0 0
2 4366 531 218 0 0 113 0 0 271 0 343 180 102 459 0 0 0 468 0 0 150 0 0
3 4329 384 321 487 238 244 380 237 0 289 0 0 54 0 0 504 330 0 146 0 324 0 0
4 8315 0 287 454 133 0 0 53 288 0 109 161 494 0 201 0 0 109 0 0 206 0 0

Table B.9: Supply – third type (sC3it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 10312 0 270 0 0 301 390 83 0 0 0 82 0 224 539 0 429 0 0 0 146 0 0
2 10263 0 119 499 0 0 0 160 0 201 274 83 357 192 51 0 0 0 0 0 0 0 0
3 4574 0 278 538 0 0 145 0 0 290 0 470 0 379 185 516 241 0 0 0 138 0 0
4 5547 153 237 0 0 0 422 250 0 0 355 0 0 0 321 0 188 263 531 317 81 0 0

Table B.10: Supply – fourth type (sC4it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 6682 308 412 0 0 0 0 450 0 211 431 0 0 0 185 419 0 0 349 0 0 0 0
2 7467 0 0 101 224 0 0 0 187 454 0 496 0 0 0 0 0 0 0 0 353 0 0
3 2775 478 0 519 519 0 255 0 0 473 0 423 233 194 0 0 392 0 0 211 372 0 0
4 8629 0 57 0 240 119 0 346 0 0 0 159 0 0 0 502 72 539 0 0 427 0 0

Table B.11: Supply – fifth type (sC5it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 6554 103 0 0 189 396 0 223 202 0 222 0 336 275 0 152 0 0 0 157 0 0 0
2 5723 0 406 0 70 414 0 312 0 0 202 0 0 0 0 421 0 362 0 0 0 0 0
3 8240 0 0 0 479 0 0 0 59 123 0 58 488 505 0 108 0 408 0 480 0 0 0
4 6542 487 0 0 0 422 0 291 364 0 0 326 0 466 0 0 0 390 82 440 287 0 0

Table B.12: Available workers – first category (sW1it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 21 0 0 0 1 0 0 3 0 0 0 3 0 3 0 0 3 2 0 0 3 3 0
2 57 2 0 0 4 3 0 0 3 0 0 5 0 0 5 4 0 4 0 0 4 0 0
3 30 0 1 2 2 0 2 3 3 5 0 5 0 3 5 2 3 1 4 0 0 0 0
4 59 0 5 0 0 1 0 2 0 1 2 4 4 0 4 5 0 4 0 4 1 2 0
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Table B.13: Available workers – second category (sW2it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 24 0 0 1 3 0 0 3 0 2 0 4 0 2 0 0 2 0 0 0 0 0 0
2 61 0 0 2 0 0 4 3 0 0 0 4 0 0 5 0 0 4 1 1 2 1 0
3 43 0 4 0 0 0 0 0 0 2 1 2 3 3 0 0 1 0 5 0 0 3 0
4 19 0 0 5 3 0 0 1 0 0 0 4 0 1 0 0 0 0 3 0 0 0 0

Table B.14: Available workers – third category (sW3it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 59 0 0 0 2 0 1 0 1 0 3 0 0 3 0 0 0 0 2 4 5 4 0
2 39 0 0 0 5 4 4 5 0 1 0 0 0 1 0 3 3 5 4 1 4 0 0
3 47 5 0 4 1 0 0 0 0 1 0 0 0 0 0 1 2 2 0 0 0 0 0
4 52 0 5 3 4 0 2 0 2 0 4 3 0 5 5 0 0 0 0 0 0 1 0

Table B.15: Available workers – fourth category (sW4it)

Time 1-23
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 16 4 0 1 3 5 0 0 3 0 0 4 2 1 3 1 3 5 0 2 0 1 0
2 41 0 2 0 0 0 0 1 1 0 0 5 2 4 0 2 0 1 0 0 0 0 0
3 26 3 4 5 0 3 5 4 2 2 0 0 1 5 0 3 0 0 5 0 0 0 0
4 57 4 0 0 3 0 0 0 1 4 5 4 4 1 0 0 4 4 4 0 1 4 0

Table B.16: Requested workers – first category (dW1it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 3 8 3 8 5 0 6 6 8 5 8 2 2 0 1 7 8 5 3 4 1 0
2 0 3 1 1 1 1 1 1 6 8 1 0 5 3 0 0 1 4 4 0 0 4 0
3 0 3 2 2 2 7 8 5 2 4 7 3 5 6 4 4 8 3 1 5 5 0 0
4 0 0 6 0 0 7 4 4 7 2 6 8 3 8 1 8 6 5 8 1 3 2 0
5 0 4 7 4 7 6 8 8 1 2 8 1 8 6 8 6 8 1 2 0 8 2 0
6 0 3 5 1 2 2 6 2 1 7 2 6 4 5 4 8 2 1 0 4 8 1 0
7 0 1 3 0 5 3 2 5 1 8 7 4 2 7 4 3 2 4 4 8 7 8 0
8 0 3 1 1 2 3 3 1 5 0 2 4 3 1 7 4 1 3 5 7 0 7 0
9 0 0 7 3 3 7 7 6 4 3 5 7 2 7 8 3 8 0 6 6 0 1 0
10 0 7 8 8 3 0 1 6 7 1 5 8 6 6 0 4 2 6 0 4 1 5 0
11 0 6 8 2 1 5 2 5 2 1 7 0 0 4 1 1 5 6 6 6 0 3 0
12 0 1 6 4 6 6 8 4 1 0 0 6 8 3 5 2 3 1 2 4 6 1 0
13 0 5 2 2 4 5 6 1 1 6 5 2 1 7 6 6 6 1 7 7 0 2 0
14 0 4 1 7 7 2 0 0 7 6 8 1 6 0 5 1 6 4 2 2 7 2 0
15 0 3 5 0 7 3 8 6 1 6 6 5 7 5 1 1 5 0 6 0 8 7 0
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Table B.18: Requested workers – third category (dW3it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 2 2 2 2 7 8 4 6 4 4 3 8 1 0 2 5 0 5 4 3 4 0
2 0 1 0 6 5 4 7 8 5 4 6 5 4 7 8 0 6 1 7 8 4 1 0
3 0 7 5 2 8 8 2 4 4 3 6 5 2 1 8 6 8 7 0 1 3 4 0
4 0 6 1 1 4 5 0 2 5 4 2 3 1 2 2 0 2 4 2 3 8 5 0
5 0 5 0 4 3 8 1 1 8 2 5 3 3 6 7 8 7 8 2 0 1 6 0
6 0 1 1 6 0 3 2 0 6 1 6 3 0 8 4 6 0 3 5 2 0 8 0
7 0 3 4 7 1 0 6 3 1 5 7 0 6 5 7 0 5 8 4 4 5 5 0
8 0 2 2 7 0 1 2 5 1 0 3 5 4 1 4 5 5 5 6 1 4 4 0
9 0 5 7 3 5 1 2 7 3 5 4 6 7 2 6 8 2 0 1 2 3 4 0
10 0 7 2 8 1 7 2 5 6 6 0 2 2 3 5 1 3 4 5 8 6 2 0
11 0 5 6 6 2 0 6 3 2 1 5 7 3 2 8 0 5 2 6 0 3 7 0
12 0 3 4 3 2 8 5 7 5 2 7 1 0 2 4 7 0 5 0 8 2 8 0
13 0 0 4 5 0 7 8 5 8 0 3 0 2 6 2 1 1 8 5 3 4 6 0
14 0 1 7 8 8 5 5 0 4 5 6 4 0 0 3 8 6 8 5 4 0 5 0
15 0 7 4 5 6 5 4 2 7 0 0 8 5 8 8 1 2 6 5 7 1 7 0

Table B.17: Requested workers – second category (dW2it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 5 8 1 6 6 3 6 6 2 8 7 7 6 6 1 6 1 0 3 7 4 0
2 0 0 3 5 1 6 5 5 5 5 1 1 2 2 7 6 3 4 3 5 1 2 0
3 0 2 8 8 1 3 0 2 4 5 6 4 0 0 3 4 6 8 0 0 0 8 0
4 0 0 0 4 7 4 6 1 7 8 1 0 5 0 0 8 7 2 3 4 6 8 0
5 0 2 4 0 4 8 0 3 8 7 2 7 8 7 5 1 4 4 6 1 6 7 0
6 0 6 4 5 5 1 7 7 3 2 4 3 6 4 7 6 4 1 3 1 4 8 0
7 0 0 0 4 8 4 7 5 6 2 1 1 6 6 7 5 2 3 8 2 7 2 0
8 0 0 2 8 4 5 0 5 6 2 5 4 2 7 3 5 5 6 0 5 8 1 0
9 0 3 3 6 6 4 0 6 6 7 6 4 8 3 6 4 4 3 1 4 6 5 0
10 0 5 4 6 1 8 3 8 4 0 0 5 2 5 3 6 3 7 1 0 2 6 0
11 0 8 6 3 3 1 6 2 3 3 5 8 6 2 0 5 3 8 0 2 7 4 0
12 0 2 1 7 6 4 5 7 4 5 4 1 2 8 2 1 3 2 5 5 7 4 0
13 0 0 7 3 5 0 0 3 0 5 7 2 6 3 8 0 6 4 2 3 0 4 0
14 0 5 6 4 5 7 7 1 1 5 3 1 2 6 6 2 5 8 2 1 4 2 0
15 0 8 6 8 8 3 3 8 4 1 3 8 5 8 4 4 6 3 5 0 6 7 0
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Table B.19: Requested workers – fourth category (dW4it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 6 8 8 3 4 5 8 8 5 4 6 1 7 2 6 3 4 4 1 2 2 0
2 0 6 0 8 5 2 3 8 8 4 4 5 1 4 8 5 0 5 5 6 7 0 0
3 0 5 5 2 2 6 5 5 7 7 5 2 7 4 5 8 7 4 7 0 0 1 0
4 0 1 2 7 7 2 3 1 6 1 8 2 4 2 3 2 5 6 7 3 2 8 0
5 0 0 6 4 6 4 7 4 2 5 3 3 7 1 8 0 2 0 5 1 0 7 0
6 0 5 0 1 5 3 7 4 6 7 1 4 4 3 1 6 1 3 8 6 6 1 0
7 0 2 5 0 1 7 8 6 8 6 4 3 4 4 8 7 0 1 2 8 2 7 0
8 0 1 6 6 8 7 8 5 3 5 4 5 0 3 6 7 2 3 5 6 6 8 0
9 0 1 8 5 6 6 7 8 5 0 4 7 4 0 4 1 8 7 4 2 3 7 0
10 0 2 6 3 8 6 4 4 3 1 1 2 7 6 8 5 4 5 8 3 1 4 0
11 0 7 1 8 8 7 5 1 0 6 7 3 3 1 0 7 5 4 8 5 3 1 0
12 0 3 0 7 6 3 3 6 4 2 1 2 1 8 0 8 4 8 0 1 6 1 0
13 0 2 7 8 7 2 3 6 7 4 7 8 2 3 6 5 6 1 0 0 2 1 0
14 0 1 1 8 1 3 7 8 2 3 7 4 1 6 0 1 7 6 8 2 2 6 0
15 0 4 5 1 8 3 2 6 1 4 5 2 4 4 1 7 3 7 1 6 5 3 0

Table B.20: Waiting evacuees – first level (dE1it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 1 0 1 1 0 0 4 6 6 3 4 6 6 1 5 5 1 6 4 1 3 0
2 0 6 6 6 1 4 4 5 1 5 6 2 3 5 1 3 6 3 2 3 5 4 0
3 0 2 4 4 5 2 3 5 0 4 6 4 1 3 5 3 5 1 5 4 0 0 0
4 0 5 6 0 2 3 3 2 6 1 5 6 5 2 2 6 5 0 6 0 5 3 0
5 0 1 1 6 4 5 5 2 0 6 1 5 3 1 0 4 4 1 1 4 6 0 0
6 0 0 1 2 6 4 1 3 4 6 4 5 5 3 2 1 2 3 1 6 4 0 0
7 0 0 5 5 4 0 6 5 2 5 3 3 6 3 0 3 4 4 5 1 1 3 0
8 0 5 3 4 6 3 5 1 0 2 6 0 5 4 2 3 4 5 6 2 1 0 0
9 0 0 2 0 1 5 2 0 4 2 1 2 5 3 0 6 1 6 6 1 5 4 0
10 0 6 2 6 1 6 4 0 0 3 5 0 3 3 6 1 4 6 6 6 6 6 0
11 0 2 2 6 1 2 5 5 3 3 2 3 4 1 4 1 3 2 1 4 5 6 0
12 0 0 1 6 2 5 3 6 2 2 5 4 3 5 3 5 1 1 1 3 3 2 0
13 0 0 2 4 1 5 4 1 0 2 0 1 4 4 1 0 1 0 3 1 5 0 0
14 0 2 3 2 0 3 3 0 6 0 0 6 0 5 5 4 0 6 4 3 5 5 0
15 0 5 0 6 3 1 6 6 1 3 5 3 4 0 2 0 3 0 6 1 0 3 0

Table B.21: Waiting evacuees – second level (dE2it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 3 2 4 4 1 1 5 4 5 3 5 2 6 4 0 4 3 3 0 0 0
2 0 0 0 0 6 1 5 3 1 5 0 1 0 2 5 2 1 4 0 4 2 1 0
3 0 2 3 5 6 3 2 1 4 0 1 2 0 6 6 0 4 3 1 0 3 0 0
4 0 5 3 3 0 2 0 5 6 1 6 1 2 3 6 5 3 0 0 4 6 2 0
5 0 2 3 2 2 5 3 1 5 6 6 4 2 2 2 4 1 1 2 0 5 3 0
6 0 2 6 0 5 3 5 5 5 2 5 0 5 5 1 3 1 0 0 5 0 4 0
7 0 5 0 4 1 1 5 3 6 2 4 1 1 5 6 2 3 4 0 4 1 1 0
8 0 2 4 0 6 6 0 6 2 5 1 1 4 5 2 3 2 5 3 4 2 4 0
9 0 3 5 2 6 0 6 6 4 5 5 6 3 5 3 0 4 0 2 0 6 3 0
10 0 2 5 5 6 5 1 2 2 2 4 5 0 6 4 0 4 2 2 2 0 0 0
11 0 3 4 3 3 1 2 6 6 1 0 2 4 6 1 2 5 1 2 0 3 6 0
12 0 6 3 3 4 5 5 0 5 4 0 2 1 1 3 0 3 2 6 5 3 6 0
13 0 0 0 5 3 5 4 5 4 1 4 3 2 6 0 0 2 0 5 4 5 5 0
14 0 5 0 2 3 1 2 1 6 3 0 5 1 4 1 5 1 4 2 2 0 3 0
15 0 2 4 3 2 4 2 6 2 0 2 5 5 4 2 0 5 3 4 1 3 2 0
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Table B.22: Waiting evacuees – third level (dE3it)

Time 1-23
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 3 5 1 1 0 4 1 0 2 4 3 6 0 5 1 0 2 3 6 5 0 0
2 0 4 0 2 2 5 5 0 5 6 0 1 5 0 0 3 4 1 3 6 5 6 0
3 0 3 3 5 2 2 5 6 1 3 4 3 4 6 6 0 2 4 5 6 2 4 0
4 0 4 2 4 0 6 3 2 3 6 1 4 1 4 0 3 3 4 4 4 1 5 0
5 0 6 0 2 0 0 6 3 6 0 1 2 2 5 0 2 2 2 3 1 4 1 0
6 0 2 1 1 3 2 5 5 0 6 4 6 4 6 4 4 4 1 3 4 2 5 0
7 0 6 5 6 6 0 1 3 0 3 4 0 3 3 4 5 1 2 5 5 4 3 0
8 0 2 2 5 6 4 6 0 6 1 4 3 0 3 3 5 2 4 3 4 6 2 0
9 0 0 2 6 5 3 6 2 1 2 3 1 4 1 5 6 1 5 5 0 2 1 0
10 0 5 3 4 2 4 6 5 1 5 0 6 0 4 2 1 2 4 0 2 5 1 0
11 0 6 0 6 5 1 3 1 6 5 2 3 0 0 5 4 4 1 3 3 0 0 0
12 0 1 4 2 3 4 5 3 6 3 3 3 3 2 6 2 5 0 2 2 3 5 0
13 0 2 1 1 4 5 2 5 6 2 5 1 5 0 4 2 5 5 0 0 1 3 0
14 0 3 2 1 6 0 1 6 0 2 2 2 3 3 4 0 5 2 6 6 0 5 0
15 0 4 6 0 4 2 6 4 2 5 6 4 0 0 1 6 6 0 6 2 0 0 0

Table B.23: Vehicle depots (iVv )

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13
i ∈ S 1 1 1 1 2 2 2 2 3 3 4 4 4

Table B.24: Vehicle speed factors

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13
Speed Factor 1 2 1 2 1 1 2 2 2 2 2 2 2

Table B.25: Vehicle capacities (mV
v )

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13
Capacity 900 900 1100 1400 800 1200 900 800 1200 1000 1300 800 1400

Table B.26: Satellite facility depots (iFf )

f ∈ F 1 2 3
i ∈ S 1 2 3

Table B.27: Satellite facility speed factors

f ∈ F 1 2 3
Speed Factor 2 4 3
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Table B.28: Satellite facility capacities (mF
f )

f ∈ F 1 2 3
Capacity 5000 4700 3200

Table B.29: Mass of commodities, workers, and wounded (mC
c , mW

w , and mE
e )

Type c1 c2 c3 c4 c5 w1 −
−w4

e1−−e3

Mass (lb) 5 8 6 4 10 200 200

Table B.30: Priorities (pCci, p
W
wi, and pEei)

i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
c1 4 2 4 10 7 5 9 5 10 9 9 4 9 2 8
c2 10 9 9 3 2 1 10 8 10 10 8 4 7 5 7
c3 6 9 9 2 10 5 8 10 1 7 8 1 2 8 3
c4 9 7 3 9 2 5 1 3 2 1 2 1 6 9 6
c5 3 6 6 3 9 5 9 6 5 9 2 2 10 4 10
w1 650 650 850 750 700 900 550 700 500 650 800 700 750 600 700
w2 500 800 950 750 500 900 600 900 750 800 900 850 950 950 600
w3 500 700 850 900 500 550 900 550 900 550 800 700 750 700 800
w4 550 800 700 500 700 700 500 800 700 800 600 750 750 650 700
e1 950 700 950 800 700 550 500 700 700 900 750 650 600 600 850
e2 550 650 650 850 800 850 600 900 650 900 700 850 650 550 550
e3 500 600 850 550 550 550 600 550 750 900 550 650 550 650 850

Table B.31: Distance matrix

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 0 2 1 2 2 2 2 2 2 2 1 2 1 1 2 3 3 2 3 1 1 1 1 1 1 1 1 2 2 2
2 2 0 2 1 1 2 1 2 1 2 2 1 2 1 2 3 2 3 2 1 1 2 1 1 2 1 2 2 2 1
3 1 2 0 1 1 1 2 1 2 2 2 1 2 1 2 3 3 3 3 1 1 1 2 1 1 1 2 1 2 2
4 2 1 1 0 1 1 2 2 2 1 2 1 2 2 1 2 2 3 2 2 1 1 1 2 1 1 1 1 1 1
5 2 1 1 1 0 2 1 1 2 1 1 2 1 2 2 3 2 2 2 1 2 2 1 1 1 1 1 2 2 1
6 2 2 1 1 2 0 2 1 1 1 2 1 1 1 1 3 2 2 2 2 1 2 1 1 1 1 2 1 1 1
7 2 1 2 2 1 2 0 1 1 1 2 1 2 1 1 3 3 3 3 1 2 2 2 2 1 2 1 2 1 1
8 2 2 1 2 1 1 1 0 2 1 1 2 1 1 2 3 2 3 2 2 1 2 2 1 1 1 2 1 1 2
9 2 1 2 2 2 1 1 2 0 1 1 2 2 1 2 2 3 3 2 1 1 2 2 1 1 1 2 2 1 1
10 2 2 2 1 1 1 1 1 1 0 2 1 1 2 2 3 2 3 2 1 2 2 2 2 1 2 2 1 1 2
11 1 2 2 2 1 2 2 1 1 2 0 1 1 2 1 2 2 2 2 2 1 1 1 2 2 2 1 2 1 2
12 2 1 1 1 2 1 1 2 2 1 1 0 1 1 1 3 2 2 2 2 2 1 1 1 2 2 1 1 2 2
13 1 2 2 2 1 1 2 1 2 1 1 1 0 2 2 2 2 3 2 2 1 1 2 2 2 2 1 2 1 1
14 1 1 1 2 2 1 1 1 1 2 2 1 2 0 1 3 2 3 2 2 1 2 2 1 1 1 2 2 2 2
15 2 2 2 1 2 1 1 2 2 2 1 1 2 1 0 2 2 3 2 1 2 1 2 2 2 2 1 2 2 1
16 3 3 3 2 3 3 3 3 2 3 2 3 2 3 2 0 1 1 1 2 2 2 2 1 1 1 1 2 2 2
17 3 2 3 2 2 2 3 2 3 2 2 2 2 2 2 1 0 2 1 2 2 1 1 2 1 1 1 2 2 1
18 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 1 2 0 1 1 1 2 2 1 1 2 2 2 1 2
19 3 2 3 2 2 2 3 2 2 2 2 2 2 2 2 1 1 1 0 2 2 1 1 2 1 2 2 1 2 1
20 1 1 1 2 1 2 1 2 1 1 2 2 2 2 1 2 2 1 2 0 1 2 1 2 2 2 2 2 2 2
21 1 1 1 1 2 1 2 1 1 2 1 2 1 1 2 2 2 1 2 1 0 2 1 1 2 1 1 1 2 2
22 1 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 1 2 2 0 2 2 2 1 1 1 2 2
23 1 1 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 2 1 1 1 2 0 1 1 1 2 2 1 2
24 1 1 1 2 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 0 1 2 1 1 1 2
25 1 2 1 1 1 1 1 1 1 1 2 2 2 1 2 1 1 1 1 2 2 2 1 1 0 1 2 1 2 1
26 1 1 1 1 1 1 2 1 1 2 2 2 2 1 2 1 1 2 2 2 1 1 1 2 1 0 1 1 1 1
27 1 2 2 1 1 2 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 1 2 1 2 1 0 1 1 2
28 2 2 1 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 1 2 1 1 1 1 0 2 1
29 2 2 2 1 2 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 1 1 2 1 1 2 0 1
30 2 1 2 1 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 1 1 2 1 1 0
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Appendix C

Small Scale Set- HLVRPSF Model

Table C.1: Small scale – set parameters

Time Wounded Commodities workers Vehicles Satellite Demand Supply Hospital SF
Periods
|T |

Levels |E| Types |C| Categories
|W |

|V | Facilities
|F |

Nodes
|D|

Nodes|S| Nodes
|H|

Locations
|L|

17 2 3 2 7 2 8 3 1 7

Table C.2: Demand – first type (dC1it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 140 240 360 200 0 100 220 120 0 0 360 200 0 120 360 0
2 0 240 200 0 160 60 240 300 360 0 140 320 120 300 60 280 0
3 0 340 0 140 340 260 0 140 0 240 0 360 180 180 0 60 0
4 0 240 260 200 100 360 220 300 140 300 300 80 180 220 240 60 0
5 0 140 200 240 0 240 300 340 280 100 180 240 280 0 240 120 0
6 0 0 120 160 0 0 0 360 60 0 160 120 360 0 200 0 0
7 0 180 0 0 240 200 340 280 220 140 0 320 160 220 240 200 0
8 0 260 240 260 0 360 240 80 300 0 340 260 0 360 0 360 0

Table C.3: Demand – second type (dC2it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 100 160 360 360 340 0 240 0 80 160 0 340 260 300 100 0
2 0 300 100 100 240 240 0 220 0 280 160 120 220 0 180 120 0
3 0 360 260 360 0 200 280 280 240 180 220 0 180 140 0 0 0
4 0 220 160 160 60 300 300 80 0 120 60 160 260 100 80 80 0
5 0 240 0 220 280 340 300 300 0 360 120 340 340 160 200 200 0
6 0 60 360 160 320 100 100 100 340 80 180 360 360 0 280 0 0
7 0 340 60 160 180 180 180 100 0 200 100 140 280 0 80 0 0
8 0 180 100 160 0 80 160 340 0 60 0 240 300 300 80 240 0
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Table C.4: Demand – third type (dC3it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 60 260 220 100 180 300 180 240 260 280 280 0 140 160 0 0
2 0 120 160 160 0 340 360 140 280 0 0 320 360 340 60 200 0
3 0 160 180 260 0 300 320 0 360 360 60 240 360 140 160 300 0
4 0 160 300 0 0 180 0 340 300 0 260 300 180 0 280 340 0
5 0 320 100 160 220 0 360 360 260 200 80 340 0 120 0 0 0
6 0 180 100 360 0 180 260 80 240 240 300 0 320 360 0 280 0
7 0 60 0 0 320 280 180 300 160 260 300 100 80 120 60 80 0
8 0 340 60 80 240 180 0 0 220 60 160 340 120 320 60 100 0

Table C.5: Supply – first type (sC1it)

Time 1-17
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 4700 372 0 0 324 63 0 0 323 223 0 0 259 143 175 0 0
2 3748 0 212 0 0 0 340 394 0 0 64 101 0 0 149 0 0
3 2738 56 0 0 127 0 260 0 0 0 0 0 225 0 344 0 0

Table C.6: Supply – second type (sC2it)

Time 1-17
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 4399 0 230 353 393 0 368 0 289 0 101 93 92 181 336 0 0
2 3519 0 386 0 0 0 320 277 148 381 287 0 84 297 58 0 0
3 1676 323 382 354 387 142 153 0 0 341 315 0 0 0 323 0 0

Table C.7: Supply – third type (sC3it)

Time 1-17
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 4327 0 0 345 0 157 0 0 0 0 246 0 0 196 212 0 0
2 4093 354 0 92 0 0 0 0 98 218 0 98 0 0 0 0 0
3 3377 0 0 315 0 0 325 238 93 275 0 0 206 185 182 0 0

Table C.8: Available workers – first category (sW1it)

Time 1-17
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 13 0 0 5 5 2 2 1 0 0 5 0 1 0 0 0 0
2 13 2 0 0 2 4 3 0 2 0 0 0 3 0 4 3 0
3 11 0 0 5 2 0 0 0 0 1 0 0 0 2 2 0 0

Table C.9: Available workers – second category (sW2it)

Time 1-17
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 25 0 0 0 0 5 4 0 2 4 1 0 0 2 4 0 0
2 9 0 0 0 5 5 3 0 1 3 2 2 5 5 3 1 0
3 22 0 1 0 0 0 0 0 2 0 3 0 0 0 3 0 0
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Table C.10: Requested workers – first category (dW1it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 7 2 2 1 6 1 6 5 4 0 3 6 5 6 5 0
2 0 8 6 5 4 2 0 0 3 2 1 8 6 3 0 2 0
3 0 8 5 2 1 6 6 2 3 2 4 3 5 1 7 1 0
4 0 4 6 7 7 8 0 7 6 4 1 8 1 7 2 1 0
5 0 7 1 4 0 0 1 6 0 2 6 4 6 1 3 2 0
6 0 2 8 6 7 6 6 6 3 1 8 4 0 0 0 1 0
7 0 1 8 0 3 6 1 4 2 8 6 8 4 1 7 5 0
8 0 3 7 2 1 6 7 5 3 1 4 2 5 5 2 3 0

Table C.11: Requested workers – second category (dW2it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 4 1 0 4 4 5 3 6 7 3 3 4 5 3 3 0
2 0 8 4 1 2 3 5 0 8 8 1 4 8 4 7 1 0
3 0 7 0 0 6 2 4 2 4 8 0 5 1 2 8 4 0
4 0 3 7 8 3 0 1 8 7 7 6 6 0 5 1 7 0
5 0 5 7 5 5 2 8 8 4 1 7 2 6 8 4 5 0
6 0 3 6 3 1 0 2 2 8 0 0 3 5 8 0 6 0
7 0 4 5 2 1 1 4 7 0 6 8 8 8 5 7 2 0
8 0 8 0 8 2 8 8 2 8 5 1 6 0 6 5 7 0

Table C.12: Waiting evacuees – first level (dE1it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 1 3 4 5 6 6 4 5 6 2 1 1 5 3 4 0
2 0 0 1 0 5 4 1 4 2 0 0 4 4 5 4 6 0
3 0 5 3 0 2 2 6 0 4 2 6 5 3 0 3 4 0
4 0 2 1 6 2 6 1 1 1 4 1 1 1 3 6 3 0
5 0 0 3 0 0 3 0 4 3 4 6 0 2 3 0 5 0
6 0 0 0 4 6 0 2 6 1 3 3 0 5 4 4 2 0
7 0 0 2 5 5 3 2 5 0 3 3 0 4 5 1 2 0
8 0 2 6 3 6 4 3 1 3 3 5 6 3 1 1 5 0

Table C.13: Waiting evacuees – second level (dE2it)

Time 1-17
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 3 6 1 0 5 2 2 3 0 3 4 5 0 1 6 0
2 0 3 3 6 4 2 1 5 2 4 1 0 3 5 6 2 0
3 0 3 2 1 4 2 4 4 2 1 5 6 3 3 4 4 0
4 0 1 5 0 5 0 1 6 6 3 1 0 1 4 3 0 0
5 0 4 0 0 5 2 1 3 5 3 2 3 0 5 4 3 0
6 0 1 5 6 1 1 0 0 0 6 1 1 4 0 3 1 0
7 0 5 0 6 6 4 6 0 5 4 1 0 0 0 3 5 0
8 0 3 4 1 2 4 3 0 2 1 6 4 1 2 4 4 0

Table C.14: Vehicle depots (iVv )

v ∈ V 1 2 3 4 5 6 7
i ∈ S 1 1 2 3 3 3 3
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Table C.15: Vehicle speed factors

v ∈ V 1 2 3 4 5 6 7
Speed Factor 2 1 2 1 1 1 2

Table C.16: Vehicle capacities (mV
v )

v ∈ V 1 2 3 4 5 6 7 8 9 10 11 12 13
Capacity 800 900 1300 900 1400 1300 800

Table C.17: Satellite facility depots (iFf )

f ∈ F 1 2
i ∈ S 1 2

Table C.18: Satellite facility speed factors

f ∈ F 1 2
Speed Factor 2 3
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Table C.19: Satellite facility capacities (mF
f )

f ∈ F 1 2
Capacity 4500 3200

Table C.20: Mass of commodities, workers, and wounded (mC
c , mW

w , and mE
e )

Type c1 c2 c3 w1 −
−w2

e1−−e2

Mass (lb) 7 7 3 200 200

Table C.21: Priorities (pCci, p
W
wi, and pEei)

i ∈ D 1 2 3 4 5 6 7 8
c1 9 10 9 9 9 8 9 7
c2 2 3 6 2 7 5 10 8
c3 7 4 10 10 8 10 6 7
w1 900 850 650 850 750 950 500 700
w2 550 500 700 950 850 600 900 500
e1 750 750 650 650 550 650 600 950
e2 900 600 900 750 550 700 650 950

Table C.22: Distance matrix

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0 1 2 2 2 2 1 1 2 3 2 1 1 2 1 1 1 1 1
2 1 0 2 1 1 2 1 1 3 2 2 2 2 2 1 2 2 1 2
3 2 2 0 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2
4 2 1 2 0 2 1 2 1 3 3 3 2 1 1 2 2 1 2 2
5 2 1 2 2 0 1 1 2 3 2 3 2 1 1 2 1 2 2 2
6 2 2 2 1 1 0 2 1 3 3 2 2 2 2 2 2 2 1 1
7 1 1 2 2 1 2 0 2 3 2 3 2 2 2 2 1 1 1 1
8 1 1 2 1 2 1 2 0 2 2 3 1 1 1 1 1 2 1 2
9 2 3 2 3 3 3 3 2 0 1 1 2 2 1 2 2 2 2 2
10 3 2 2 3 2 3 2 2 1 0 2 2 1 1 1 1 2 2 1
11 2 2 2 3 3 2 3 3 1 2 0 2 2 1 2 2 2 1 1
12 1 2 2 2 2 2 2 1 2 2 2 0 2 1 2 2 2 1 1
13 1 2 2 1 1 2 2 1 2 1 2 2 0 1 1 1 2 2 2
14 2 2 2 1 1 2 2 1 1 1 1 1 1 0 1 2 1 1 1
15 1 1 1 2 2 2 2 1 2 1 2 2 1 1 0 2 1 2 2
16 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 0 1 2 1
17 1 2 2 1 2 2 1 2 2 2 2 2 2 1 1 1 0 2 1
18 1 1 2 2 2 1 1 1 2 2 1 1 2 1 2 2 2 0 2
19 1 2 2 2 2 1 1 2 2 1 1 1 2 1 2 1 1 2 0
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Appendix D

Tiny Scale Set- HLVRPSF Model

Table D.1: Tiny scale – set parameters

Time Wounded Commodities workers Vehicles Satellite Demand Supply Hospital SF
Periods
|T |

Levels |E| Types |C| Categories
|W |

|V | Facilities
|F |

Nodes
|D|

Nodes|S| Nodes
|H|

Locations
|L|

14 1 2 2 4 1 6 1 2 3

Table D.2: Demand – first type (dC1it)

Time 1-14
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 360 0 80 240 0 260 0 100 260 200 320 160 0
2 0 0 260 80 120 300 80 240 180 260 240 180 140 0
3 0 100 280 160 300 200 240 260 0 260 320 300 280 0
4 0 220 360 220 200 300 200 300 160 0 260 260 360 0
5 0 340 0 0 240 160 100 0 240 180 280 260 260 0
6 0 0 300 180 300 320 360 0 220 100 360 260 80 0

Table D.3: Demand – second type (dC2it)

Time 1-14
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 240 60 60 60 160 0 320 360 280 0 0 0 0
2 0 100 100 300 0 60 140 300 0 0 240 80 240 0
3 0 200 140 200 200 0 160 360 220 180 340 240 80 0
4 0 0 180 160 0 160 60 320 60 0 0 120 0 0
5 0 0 320 360 360 0 120 340 160 160 220 140 140 0
6 0 240 240 80 60 180 120 0 260 280 60 0 0 0

Table D.4: Supply – first type (sC1it)

Time 1-14
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 6344 236 0 0 469 469 0 500 0 0 127 0 0 0

Table D.5: Supply – second type (sC2it)

Time 1-14
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 4178 251 495 0 528 684 729 553 0 738 0 0 0 0
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Table D.6: Available workers – first category (sW1it)

Time 1-14
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 38 0 1 5 0 0 5 5 0 0 0 5 4 0

Table D.7: Available workers – second category (sW2it)

Time 1-14
i ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 62 0 2 1 4 2 0 0 0 2 3 0 0 0

Table D.8: Requested workers – first category (dW1it)

Time 1-14
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 4 4 7 4 7 5 1 3 2 4 3 2 0
2 0 8 5 2 7 0 7 1 3 5 1 5 7 0
3 0 7 8 2 0 1 1 4 3 5 2 6 1 0
4 0 5 7 2 6 0 3 8 0 7 1 5 7 0
5 0 7 5 1 3 4 4 2 0 3 2 1 4 0
6 0 1 3 6 6 4 3 5 0 1 5 6 2 0

Table D.9: Requested workers – second category (dW2it)

Time 1-14
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 8 3 0 6 5 5 3 1 8 4 2 4 0
2 0 7 4 4 1 4 3 4 5 7 1 0 2 0
3 0 2 3 0 3 8 7 3 8 8 3 3 2 0
4 0 7 6 3 6 0 6 8 7 8 4 6 2 0
5 0 7 1 5 3 0 4 5 2 7 4 4 5 0
6 0 0 7 2 8 0 5 2 5 3 3 0 3 0

Table D.10: Waiting evacuees – first level (dE1it)

Time 1-14
i ∈ D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 0 6 3 5 4 6 6 3 5 0 3 0
2 0 6 0 2 3 6 3 1 6 3 6 0 0 0
3 0 5 2 3 0 2 1 2 2 6 1 5 3 0
4 0 3 3 2 4 1 0 1 6 6 1 0 5 0
5 0 2 6 4 5 5 2 4 1 3 0 2 5 0
6 0 6 2 0 6 1 3 2 4 4 2 2 6 0

Table D.11: Vehicle depots (iVv )

v ∈ V 1 2 3 4
i ∈ S 1 1 1 1
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Table D.12: Vehicle speed factors

v ∈ V 1 2 3 4
Speed Factor 1 1 1 2

Table D.13: Vehicle capacities (mV
v )

v ∈ V 1 2 3 4
Capacity 1200 1200 900 800

Table D.14: Satellite facility depots (iFf )

f ∈ F 1
i ∈ S 1

Table D.15: Satellite facility speed factors

f ∈ F 1
Speed Factor 2
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Table D.16: Satellite facility capacities (mF
f )

f ∈ F 1
Capacity 4500

Table D.17: Mass of commodities, workers, and wounded (mC
c , mW

w , and mE
e )

Type c1 c2 w1−w2 e1

Mass (lb) 8 2 200 200

Table D.18: Priorities (pCci, p
W
wi, and pEei)

i ∈ D 1 2 3 4 5 6
c1 6 9 3 9 1 2
c2 4 5 9 6 2 2
w1 800 850 700 900 600 900
w2 500 950 500 950 850 800
e1 750 950 950 900 700 900

Table D.19: Distance matrix

Node 1 2 3 4 5 6 7 8 9 10 11 12
1 [0 1 2 1 1 1 1 2 1 1 2 3
2 1 0 1 2 1 2 2 1 2 1 1 2
3 2 1 0 2 1 2 3 1 2 2 2 3
4 1 2 2 0 2 1 2 1 3 2 2 1
5 1 1 1 2 0 1 3 2 3 2 2 1
6 1 2 2 1 1 0 2 2 2 2 1 3
7 1 2 3 2 3 2 0 3 1 2 1 1
8 2 1 1 1 2 2 3 0 2 2 1 2
9 1 2 2 3 3 2 1 2 0 1 2 2
10 1 1 2 2 2 2 2 2 1 0 2 1
11 2 1 2 2 2 1 1 1 2 2 0 1
12 3 2 3 1 1 3 1 2 2 1 1 0
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