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Abstract

In this thesis several topics from Topology, Linear Algebra, and Real Analysis are com-

bined in the study of linear topological spaces. We begin with a brief look at linear spaces

before moving on to study some basic properties of the structure of linear topological spaces

including the localization of a topological basis. Then we turn our attention to linear spaces

with a metric topology. In particular, we consider problems involving normed linear spaces,

bounded linear transformations, and Hilbert spaces.
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Chapter 1

Introduction

This thesis is a compilation of solutions to problems assigned under the direction of

Professor Michel Smith. The material in this thesis was developed through a one-on-one

Moore method directed study. I was given notes on linear topological spaces which included

definitions and theorems to be proved. During weekly meetings I presented my solutions

to various problems and we discussed approaches to solving problems. A large portion of

the notes came from Linear Topological Spaces by John L. Kelley and Isaac Namioka, but

other material came about when we were side-tracked during our weekly discussions. All

proofs in this thesis can be assumed to be my own unless otherwise stated. The style of

the thesis reflects the way in which it was developed. It could be used as a framework for

an introductory course on linear topological spaces, and it reads like a set of class notes

with solutions included. A course on linear topological spaces could be useful for upper-

level undergraduate students or new graduate students because it integrates many areas of

mathematics including Topology, Linear Algebra, and Real Analysis.

1.1 Notation and Terminology

Throughout this thesis I try to be as consistent as possible with notation. I use uppercase

English letters such as X, Y , and Z to denote linear spaces, topological spaces, or linear

topological spaces. The elements of these spaces are denoted by lowercase letters such as x,

y, and z. The elements of a linear space are called vectors, but we refer to the elements of

a linear topological space as points. An arbitrary set of vectors or points will be denoted by

uppercase English letters such as A, B, E, F , and M , while the symbols U , V , and W will

usually be reserved for open subsets of a linear topological space.
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A linear space consists of a set X together with two operations, addition + and scalar

multiplication ·, and is denoted by (X,+, ·). However, the operations are usually omitted,

and the space is simply denoted by X. Moreover, a topological space consists of a set X

together with a collection T of subsets of X and is denoted by (X, T ). Again, the topology

is omitted, and we simply denote the space by X.

Associated with a linear space is an underlying field of (real or complex) numbers,

denoted by F. The elements of the field are called scalars and are denoted by lowercase

Greek letters such as λ and µ. The real part of a complex number λ will be denoted by <eλ,

and the imaginary part will be denoted by =mλ. However, occassionally the symbols m or

M may be used to denote a scalar whenever it is used to demonstrate a type of boundedness.

When integers are used as an index they will be denoted by i, j, k, m, n, or N . As usual, the

complex numbers are denoted by C, the real numbers by R, the rationals by Q, the integers

by Z, and the natural numbers by N.

A linear transformation between linear spaces will usually be denoted by the uppercase

letter T . When the domain and range of a linear transformation are linear topological spaces,

it may be referred to as a linear map.

In general, a function may be denoted by lowercase letters f , g, or h, or occassionally by

uppercase letters F and G. A function f can also be denoted by the arrow →; for example,

x→ f(x). If A is a set and f is a function, then f−1(A) denotes the set consisting of points

x in the domain whose image f(x) is an element of A, and f(A) denotes the set consisting

of each point that is the image of an element of A.

A collection of sets will be denoted by uppercase script letters such as A, B, G, and T .

However, the script letter H will be used to denote a Hilbert space. A countable collection

of sets is denoted by {Ai}∞i=1, where Ai is a set for each positive integer i. In general, a

collection of sets is denoted by {Aα : α ∈ Γ}, where Aα is a set for each index α in the index

set Γ, to indicate that the collection is not necessarily countable.
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If A and B are sets of points, then A × B denotes the Cartesian product of A and B,

which is the set of all ordered pairs (a, b) where a is an element of A and b is an element of B.

If {Aα : α ∈ Γ} is a collection of sets, then the Cartesian product of all sets in the collection

is denoted by
∏
α∈Γ

Aα and elements of this product are denoted by (xα)α∈Γ or simply (xα). If

the index set is countable, we denote the product by
∞∏
n=1

An and write sequences as (xn).

If a sequence (xn) converges to a point x, we will denote this by xn → x.

If A is a subset of a topological space X, then Int(A) denotes the interior of the set A

and A denotes the closure of A. The complement of A in X is denoted by X \ A.

The vertical bars | · | have many uses throughout this thesis, but each use is standard.

• If A is a set, then |A| is used to denote the cardinality of A.

• If λ is a scalar, then |λ| denotes the magnitude or absolute value of λ.

• If T is a bounded linear transformation, then |T | is a norm.

The vertical bars ‖·‖ are denote the norm on a normed linear space. The angled brackets

〈·, ·〉 are used to denote an inner product.

1.2 Preliminary Material

Throughout this thesis I assume some prior knowledge of both linear spaces and topo-

logical spaces. I will often use some basic theorems and concepts from Topology without

stating them explicitly in the body of the thesis. Among these theorems are those that

would be seen in an undergraduate course. Each of the following theorems can be found in

Munkres’ Topology [3].

Theorem. Let f be a function from a topological space X to a topological space Y . Then

the following are equivalent:

(1) f is continuous.
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(2) f(A) ⊂ f(A) for every A ⊂ X.

(3) f−1(B) is closed in X for every closed set B ⊂ Y .

(4) For each x ∈ X and each neighborhood V of f(x) in Y there is a neighborhood U of x

in X such that f(U) ⊂ V .

Theorem. A product of compact spaces is compact.

Theorem. If A ⊂ X and B ⊂ Y , then A×B = A×B in the product space X × Y .

Theorem. Let A be a subset of the topological space X. Then x ∈ A if and only if every

open neighborhood U of x intersects A.

Theorem. Let X be a topological space; let A ⊂ X. If there is a sequence of points of A

converging to x, then x ∈ Ā; the converse holds if X is metric (or first-countable, in general).

Theorem. Let f : X → Y . If the function f is continuous, then for every convergent

sequence xn → x in X, the sequence (f(xn)) converges to f(x). The converse holds if X is

metric (or first-countable, in general).

Theorem. Let X be a metrizable space. Then, the following are equivalent:

(1) X is compact.

(2) X is limit point compact.

(3) X is sequentially compact.

Theorem. A topological space X is regular if and only if given a point x of X and an open

neighborhood U of x, there is an open neighborhood V of x such that V ⊂ U .

Theorem. If X is a compact metric space, then X is complete.
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Chapter 2

Linear Spaces

In this chapter we discuss the elementary structure of linear spaces, linear subspaces,

and linear transformations between spaces. We also prove the existence of a Hamel base

for any linear space and the uniqueness of its cardinality. We start with some elementary

definitions and terminology for linear spaces which will be used throughout this thesis. We

assume some prior knowledge about the structure of linear spaces, including the axioms of

the underlying field and the operations of addition and scalar multiplication. Throughout

this chapter assume that X is a linear space over a scalar field F unless otherwise stated.

2.1 Elementary Properties

Definition. A subset E of a linear space X is said to be linearly independent provided for

each finite subset {x1, . . . , xn} of E,

λ1x1 + · · ·+ λnxn = 0 if and only if λ1 = · · · = λn = 0

Definition. Given any subset E of a linear space X, the span of E, denoted by span(E), is

the set of all finite linear combinations of vectors in E, that is,

span(E) = {λ1x1 + · · ·+ λnxn : n ∈ N, xi ∈ E, λi ∈ F, 1 ≤ i ≤ n}

Definition. A subset B of a linear space X is called a Hamel base if and only if for each

non-zero vector x ∈ X there is a unique set {b1, . . . , bn} of vectors in B and a unique set

{λ1, . . . , λn} of scalars so that x = λ1b1 + · · ·+ λnbn.
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Definition. Given two subsets A and B of a linear space X, the algebraic sum A+B denotes

the set consisting of all sums a + b, where a ∈ A and b ∈ B. In particular, if x ∈ X, then

the x-translate of the set A is defined by

x+ A = {x}+ A = {x+ a : a ∈ A}

Given a scalar λ ∈ F and a subset A of X, λA denotes the set consisting of all scalar multiples

λa with a ∈ A.

Definition. A linear transformation T from a linear space X to a linear space Y (over the

same scalar field F) is a function satisfying

1. T (x+ y) = T (x) + T (y), for all x, y ∈ X, and

2. T (λx) = λT (x), for all x ∈ X and for all λ ∈ F.

Observation. Suppose that T is a linear transformation from the linear space X to the

linear space Y .

(a) If A,B ⊂ X, then T (A+B) = T (A) + T (B).

Proof. If y ∈ T (A+B), then there is a vector x ∈ A+B such that y = T (x). Because

x ∈ A+B, we can write x = a+ b, where a ∈ A and b ∈ B. Consequently,

y = T (x) = T (a+ b) = T (a) + T (b) ∈ T (A) + T (B)

On the other hand, if y ∈ T (A) + T (B), then we can write y = y1 + y2, where

y1 ∈ T (A) and y2 ∈ T (B). So, there exist a ∈ A and b ∈ B such that y1 = T (a) and

y2 = T (b). Hence,

y = y1 + y2 = T (a) + T (b) = T (a+ b) ∈ T (A+B)

Therefore, T (A+B) = T (A) + T (B).
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(b) If A ⊂ X and λ ∈ F, then T (λA) = λT (A).

Proof. If y ∈ T (λA), then there is a point x ∈ λA such that y = T (x). Because

x ∈ λA, we can write x = λa, where a ∈ A. As a result,

y = T (x) = T (λa) = λT (a)

On the other hand, if y ∈ λT (A), then we can write y = λy1, where y1 ∈ λT (A). So,

there exists a ∈ A such that y1 = λT (a). Therefore,

y = λy1 = λT (a) = T (λa) ∈ T (λA)

Thus, T (λA) = λT (A).

Definition. Given a linear transformation T from a linear space X to a linear space Y , the

nullspace of T , denoted by null(T ), is the set of all elements of X that are mapped by T to

the zero vector 0Y of Y , that is,

null(T ) = T−1(0Y ) = {x ∈ X : T (x) = 0Y }

The following observation demonstrates that the pre-image of an element in a linear

space under a linear transformation is a translate of the nullspace of the linear transformation.

We will use this fact in the theorem that follows.

Observation. Let T be a surjective linear transformation from a linear space X to a linear

space Y . If T (x) = y, then T−1(y) = x+ T−1(0).

Proof. For each y ∈ Y there exists a vector x ∈ X such that T (x) = y since T is surjective.

For any element u of x+ T−1(0), we can write u = x+ v, where T (v) = 0, if and only if

T (u) = T (x+ v) = T (x) + T (v) = T (x) + 0 = T (x) = y
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In other words, u is in x+ T−1(0) if and only if T (u) = y. Hence, x+ T−1(0) = T−1(y).

Theorem 2.1 (Induced mapping theorem). Suppose that X, Y , and Z are linear spaces

and that T : X → Y and S : Y → Z are linear transformations such that the nullspace of

T contains the nullspace of S. Moreover, suppose that S is surjective. Then there exists a

unique linear transformation U : Z → Y such that T = U ◦S. Furthermore, U is one-to-one

if and only if null(T ) = null(S).

Proof. Given a vector z0 in Z there is a vector x0 of X such that S(x0) = z0 because S is

a surjection. Then, S−1(z0) is the x0-translate of S−1(0Z). Now, because the nullspace of T

contains the nullspace of S, it follows that

S−1(z0) = x0 + S−1(0Z) ⊂ x0 + T−1(0Y )

As a result, for any x ∈ S−1(z0), we can write x = x0 + v for some v ∈ T−1(0Y ). Then,

T (x) = T (x0 + v) = T (x0) + T (v) = T (x0) + 0 = T (x0)

Therefore, T (x) = T (x0) for every x ∈ S−1(z0). Let y0 = T (x0) and define U(z0) = y0.

Then, for all x ∈ S−1(z0), we have

(U ◦ S)(x) = U(S(x)) = U(z0) = y0 = T (x)

That is, T = U ◦ S on S−1(z0). Because this can be done for each z ∈ Z, it follows that

T = U ◦ S on
⋃
z∈Z

S−1(z) = X. Furthermore, T−1 = (U ◦ S)−1 = S−1 ◦ U−1. Thus, U is

one-to-one if and only if U−1(0Y ) = {0Z} if and only if

T−1(0Y ) = (S−1 ◦ U−1)(0Y ) = S−1(U−1(0Y )) = S−1(0Z)

Consequently, U is one-to-one if and only if null(T ) = null(S).
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2.2 Base and Dimension

In this section, we establish the existence of a Hamel base for any linear space. Every

non-trivial linear space contains a non-zero vector. The set consisting only of this non-zero

vector is linearly independent. According to Theorem 2.3, this linearly independent set lies

in a maximal linearly independent set. By Theorem 2.4, this maximal linearly independent

set is a Hamel base for the linear space. Consequently, these theorems demonstrate that

every linear space has a Hamel base. Then, we show that any two Hamel bases for a given

linear space must have the same cardinality.

Theorem 2.2 (Zorn’s Lemma). Suppose that S is a set and G is a collection of subsets of

S so that if G ′ is a monotonic subcollection of G then there is an element of G that contains

every element of G ′. Then there is an element of G which is a subset of no other element of

G. (There is a maximal element of G.)

Theorem 2.3. Every linearly independent subset of a linear space X lies in a maximal

linearly independent subset of X.

Proof. We will apply Zorn’s lemma to prove this theorem. Suppose that E ⊂ X is a linearly

independent set. The collection G of all linearly independent subsets of X which contain E

is non-empty because E ∈ G. Suppose that G ′ ⊂ G is a monotonic subcollection, that is, for

any B1, B2 ∈ G ′, either B1 ⊂ B2 or B2 ⊂ B1. Let B0 denote the union of all the sets in the

collection G ′. From the definition of B0 it is clear that B0 contains each element of G ′. So,

we just need to show that B0 ∈ G, that is, B0 is linearly independent and contains E.

Clearly, B0 contains E because it is defined as the union of sets each of which contains

E. Now, we just need to show that B0 is linearly independent. Assume that B0 is not linearly

independent. Then, there is a finite subset {b1, . . . , bn} of B0 and scalars λ1, . . . , λn ∈ F, not

all zero, such that

λ1b1 + · · ·+ λnbn = 0
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Since B0 is the union of all sets in the collection G ′ and since b1, . . . , bn ∈ B0, there

must be finitely many (at most n) sets B1, . . . , Bk ∈ G ′ such that b1, . . . , bn ∈
⋃k
j=1Bj.

Because G ′ is a monotonic collection we can assume, without loss of generality, that B1 ⊂

B2 ⊂ · · · ⊂ Bk. So, the union of these sets is Bk and we have b1, . . . , bn ∈ Bk. However, this

contradicts the assumption that Bk is linearly independent because λ1b1 + · · · + λnbn = 0,

where λ1, . . . , λn are not all zero. So, B0 must be linearly independent and is therefore an

element of the collection G. By Zorn’s lemma, there is an element of G which is a subset of

no other elements of G. That is, E is contained in a maximal linearly independent set.

Theorem 2.4. The subset B of a linear space X is a Hamel base if and only if B is a

maximally linearly independent subset of X.

Proof. Suppose that B is a Hamel base for the linear space X. Given a vector x ∈ X,

there is a unique representation of x as a linear combination x = λ1b1 + · · · + λnbn, where

b1, . . . , bn ∈ B and λ1, . . . , λn ∈ F. As a result,

0 = x− x = (λ1 − λ1)b1 + · · ·+ (λn − λn)bn = 0 · b1 + · · ·+ 0 · bn

In other words, given a finite subset {b1, . . . , bn} of B, the only representation of the zero

vector as a linear combination of b1, . . . , bn is with coefficients all equal to zero. Therefore,

B must be linearly independent. Assume that B is not maximal with respect to linear

independence. Then B is properly contained in a maximal linearly independent set B′ by

the previous theorem. If b ∈ B′ \B, then b is an element of X that has no representation as

a linear combination of the elements of B, contradicting the assumption that B is a Hamel

base. Thus, B must be a maximal linearly independent set.

Conversely, suppose that B is a maxial linearly independent subset of X. Given

x ∈ X, we have the unique representation x = 1 · x because B is linearly independent. Now,

suppose that x /∈ B. Let B′ = B ∪ {x}. Since B is a maximal linearly independent set, it

follows that B′ is linearly dependent. Then, there is a finite subset {b1, . . . , bn, x} of B′ and
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scalars λ1, . . . , λn, λ ∈ F, not all zero, such that

0 = λx+ λ1b1 + · · ·+ λnbn

In particular, λ 6= 0 for otherwise 0 = λ1b1 + · · ·+ λnbn, with λ1, . . . , λn not all zero, would

contradict linear independence of B. Therefore, we have

−λx = λ1b1 + · · ·+ λnbn

x =
(
−λ1

λ

)
b1 + · · ·+

(
−λn

λ

)
bn

So, we have a representation of x as a linear combination of elements of B. Assume

that we have two such representations:

x = λ1b1 + · · ·+ λnbn and x = µ1b1 + · · ·+ µnbn

Then, we can write the zero vector as

0 = x− x = (λ1 − µ1)b1 + · · ·+ (λn − µn)bn

Since B is linearly independent, it follows that λi = µi, for each i ∈ {1, . . . , n}. Therefore,

the scalars in the representation of x are unique. Hence, B is a Hamel base for X.

Our next goal is show that any two Hamel bases for a given linear space must have the

same cardinality. We take our first step toward this result with the following lemma, allows

us to consider the case where the linear space has a finite Hamel base and the case where

the Hamel base is infinite separately.

Lemma 2.1. If X is a linear space with a finite Hamel base, then all bases for X are finite.

Proof. Suppose that A = {a1, . . . , an} is a finite Hamel base for X, and suppose that B

is another Hamel base for X. Then, each vector in A can be expressed as a finite linear

11



combination of vectors in B. Because A is finite, we only need finitely many vectors, say

{b1, . . . , bm}, in B to represent any element of A as a linear combination. Let B′ denote this

finite subset of B. For each i ∈ {1, . . . , n}, there exist scalars λi,1, . . . , λi,m ∈ F such that

ai = λi,1b1 + · · ·+ λi,mbm. Moreover, B′ is linearly independent as a result of being a subset

of B. Assume that B′ ( B, and choose b ∈ B \B′. Because A is a Hamel base, we can write

b = µ1a1 + · · ·+ µnan. Now, we have

b = µ1(λ1,1b1 + · · ·+ λ1,mbm) + · · ·+ µn(λn,1b1 + · · ·+ λn,mbm)

After collecting like terms and relabeling the scalars, we have

b = λ1b1 + · · ·λmbm

Therefore,

0 = −1 · b+ λ1b1 + · · ·+ λmbm

contradicting the linear independence of B′. Thus, B′ = B and B is therefore finite.

The proofs of the next lemma and the following theorem are not my own. I was exposed

to these proofs in an Abstract Algebra course with Dr. Ulrich Albrecht. Using this lemma we

will be able to establish a process of replacing the elements of one Hamel base with elements

of another Hamel base in order to show that the two bases have the same cardinality.

Lemma 2.2 (Steinitz exchange lemma). Let B = {b1, . . . , bn} be a finite Hamel base for a

linear space X. If x = λ1b1 + · · ·+ λnbn and λi 6= 0, then Bx = {b1, . . . , bi−1, x, bi+1, . . . , bn}

is also a Hamel base for X.

Proof. Because x = λ1b1 + · · ·+ λnbn and λi 6= 0, we can solve for bi to get

bi =
1

λi
x−

(∑
j 6=i

λj
λi
bj

)
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Given a vector y in X with representation y = µ1b1 + · · ·+ µnbn, we can substitute bi in the

expression for y, which gives

y = µ1b1 + · · ·+ µi−1bi−1 + µi

(
1

λi
x−

∑
j 6=i

λj
λi
bj

)
+ µi+1bi+1 + · · ·+ µnbn

After distributing µi and collecting like terms, we have the following representation of y as

a linear combination of the vectors in Bx = {b1, . . . , bi−1, x, bi+1, . . . , bn}.

y =
∑

1≤j<i

(
µj −

µiλj
λi

)
bj +

µi
λi
x+

∑
i<j≤n

(
µj −

µiλj
λi

)
bj

As a result, the vector y is in the span of Bx and therefore Bx spans all of X. Now, to

show that Bx is linearly independent, suppose we have

0 = γ1b1 + · · ·+ γi−1bi−1 + γix+ γi+1 + bi+1 + · · ·+ anbn

Substituting the representation x = λ1b1 + · · ·+ λnbn for the vector x, we have

0 = γ1b1 + · · ·+ γi(λ1b1 + · · ·+ λnbn) + · · ·+ γnbn

0 =
∑

1≤j<i

(γj + γiλj) bj + γiλibi +
∑
i<j≤n

(γj + γiλj) bj

Since B is linearly independent, this expression of zero in terms of the vectors of B implies

γiλi = 0, which implies that γi = 0 because λi 6= 0 by assumption. So, the last equation

becomes

0 = γ1b1 + · · ·+ γi−1bi−1 + γi+1bi+1 + · · ·+ γnbn

Again, since B is linearly independent, we have γj = 0 for all j ∈ {1, . . . , n}. Therefore, Bx

is linearly independent. As a result, Bx is a Hamel base for X.

Theorem 2.5. If A and B are Hamel bases for X, then |A| = |B|.
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Proof. According to Lemma 2.1, we can prove this first for finite Hamel bases and then for

infinite Hamel bases separately. Suppose that A = {a1, . . . , am} and B = {b1, . . . , bn} are

finite Hamel bases for X, and suppose that m 6= n. Without loss of generality, assume that

m < n. Since A and B are linearly independent, every vector in each set is non-zero. Since

B is a Hamel base, each vector of A is in the span of B. In particular,

a1 = λ1,1b1 + λ1,2b2 + · · ·+ λ1,nbn

for some scalars λ1,1, . . . , λ1,n ∈ F. Because a1 6= 0, we can re-order the finitely many elements

of B so that λ1,1 6= 0. By the Steinitz exchange lemma, the set B1 = {a1, b2, . . . , bn} is also

a Hamel base for X. So, a2 is in the span of B1, and we have

a2 = λ2,1a1 + λ2,2b2 + · · ·+ λ2,nbn

where λ2,1, . . . , λ2,n ∈ F. Because A is linearly independent, λ2,1 = 0. Without loss of

generality, assume that λ2,2 6= 0 because a2 6= 0 and we can re-order the elements of B1

accordingly. By the Steinitz exchange lemma, the set B2 = {a1, a2, b3, . . . , bn} is a Hamel

base for X.

Continuing this process, at the mth step we find that

Bm = {a1, . . . , am, bm+1, . . . , bn} = A ∪ {bm+1, . . . , bn}

is a Hamel base for X. By linear independence of Bm, the vectors bm+1, . . . , bn cannot be

represented as linear combinations of the vectors in A. This contradicts the assumption that

A is a Hamel base for X because bm+1, . . . , bn are not in the span of A. Therefore, m ≥ n.

By a symmetric argument in A and B, we obtain m ≤ n. Hence, m = n and |A| = |B|.

Now, suppose that A is a Hamel base for X with cardinality |A| ≥ ℵ0, and let B be

another Hamel base for X. Given a vector a ∈ A, let Ba denote the finite subset of B that
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is needed to express a as a linear combination with non-zero scalar coefficients. Since B is a

Hamel base, Ba is uniquely determined by a. Define

B′ =
⋃
a∈A

Ba

Since A spans X, so does B′. Assume that B′ ( B, and choose b ∈ B \ B′ so that b can be

expressed as

b = λ1b1 + · · ·+ λnbn

for some b1, . . . , bn ∈ B′ and for some λ1, . . . , λn ∈ F. Then,

0 = (−1)b+ λ1b1 + · · ·+ λnbn

gives a non-trivial representation of the zero vector as a linear combination of elements of

the Hamel base B, contradicting linear independence of B. Therefore, B′ = B. As a result,

|B| =

∣∣∣∣∣⋃
a∈A

Ba

∣∣∣∣∣ ≤ ℵ0|A| = |A|

By a symmetric argument in A and B, we also have

|A| ≤ ℵ0|B| = |B|

Therefore, |A| = |B|.

Definition. The dimension of a linear space X is the cardinality of a Hamel base for X.

If X has a finite Hamel base, then X is said to be finite-dimensional. Otherwise, X is

infinite-dimensional.
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2.3 Linear Subspaces

A linear subspace is essentially a subset of a linear space that is also a linear space

in its own right. The intersection of a collection of linear subspaces is a linear subspace.

The span of any subset of a linear space is the smallest linear subspace that contains the

subset. Moreover, the algebraic sum of two linear subspaces is the span of their union and

is therefore a linear subspace. Each problem in this section comes from a set of exercises in

Royden’s Real Analysis [4].

Definition. A non-empty subset E of a linear space X is a linear subspace if and only if

λx+ µy ∈ E whenever x, y ∈ E and λ, µ ∈ F.

Observation. Let E be a non-empty subset of a linear space X. Then E is a linear subspace

if and only if E + E = E and λE = E, for each non-zero scalar λ ∈ F.

Proof. Suppose that E is a linear subspace. If x ∈ E, then x = 1
2
x + 1

2
x is an element of

E +E because E is closed under scalar multiplication. On the other hand, given x ∈ E +E

we can write x = x1 +x2 for some x1, x2 ∈ E. Since E is a linear subspace, it is closed under

addition and consequently x1 + x2 = x ∈ E. Hence, E = E + E. Now, given x ∈ E, we

can write x = λ(λ−1x), for some non-zero scalar λ, where λ−1x is in E because E is a linear

subspace. On the other hand, if x ∈ E and λ is any scalar, then λx ∈ E since E is closed

under scalar multiplication. Hence, λE = E.

Conversely, suppose that E + E = E and λE = E, for each non-zero scalar λ. Given

vectors x, y ∈ E and non-zero scalars λ, µ ∈ F, λx and µy are elements of E because λE = E

and µE = E by assumption. If either λ or µ is zero, then λx and µy are still elements of

E because 0 ∈ E. Moreover, because E + E = E, we have λx + µy ∈ E. Therefore, E is a

linear subspace.

Lemma 2.3. The intersection of a collection of linear subspaces is a linear subspace.

16



Proof. Let {Eα : α ∈ Γ} be a collection of linear subspaces of a linear space X. Let E denote

the intersection
⋂
α∈Γ

Eα. Then, E is non-empty because 0 ∈ Eα, for each α ∈ Γ. For any x

and y in E, we have x, y ∈ Eα, for each α ∈ Γ. Since each Eα is a linear subspace, we have

λx+ µy ∈ Eα, for any scalars λ, µ ∈ F and for each α ∈ Γ. Hence, λx+ µy ∈ E. Therefore,

the intersection E is a linear subspace of X.

Theorem 2.6. Given a subset E of a linear space X, there exists a smallest linear subspace

containing E. This linear subspace is the span of E.

Proof. Let E be a subset of a linear space X. Let A be the collection of all linear subspaces

of X containing E. Then, A is non-empty because X ∈ A. By Lemma 2.3, the intersection

A of all elements in the collection A is a linear subspace of X. This is clearly the smallest

linear subspace containing E; if B is another linear subpace containing E, then B ∈ A so

that B contains the intersection A of elements of A.

Now, we want to show that the intersection A of all linear subspaces containing E is the

span of E. If x ∈ A, then x belongs to every linear subspace that contains E. So, we must

show that span(E) is a linear subspace (it clearly contains E). First, the span of E is non-

empty whenever E is non-empty. Now, if x and y are vectors in the span of E, then there exist

vectors x1, . . . , xn ∈ E and y1, . . . ym ∈ E together with scalars λ1, . . . , λn, µ1, . . . , µm ∈ F

such that

x =
n∑
i=1

λixi and y =
m∑
i=1

µiyi

So, for any scalars λ, µ ∈ F, we have

λx+ µy = λ
n∑
i=1

λixi + µ
m∑
i=1

µiyi =
n∑
i=1

λλixi +
m∑
i=1

µµiyi

Because λx + µy is a finite linear combination of elements of E, it follows that αx + µy is

in the span of E. Therefore, the span of E is a linear subspace of X that contains E, from

which it follows that A ⊂ span(E).
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Finally, we need to show that the span of E is contained in the intersection A so that it

is the smallest linear subspace containing E. Given a vector x in the span of E, there exist

x1, . . . , xn ∈ E and scalars λ1, . . . , λn ∈ F such that x = λ1x1 + · · · + λnxn. Because A is a

linear subspace of X containing E, it follows that A contains the finite linear combination

λ1x1 + · · ·+ λnxn of elements of E. Hence, span(E) ⊂ A. Thus, span(E) = A and the span

of E is the smallest linear subspace of X that contains E.

Corollary 2.1. If each of A and B is a linear subspace of a linear space X, then so is A+B.

Moreover, A+B is the span of A ∪B.

Proof. Suppose that A and B are linear subspaces of a linear space X. According to Theorem

2.6, we only need to show that A + B is the span of A ∪ B. If x ∈ A + B, then x = a + b,

for some a ∈ A and b ∈ B. As a result, x is a finite linear combination of elements of

A ∪ B. So, x is in the span of A ∪ B. Hence, A + B ⊂ span(A ∪ B). On the other hand,

if x ∈ span(A ∪ B), then x can be expressed as a finite linear combination of elements of

A ∪B. So, there are scalars λ1, . . . , λn, µ1, . . . , µm ∈ F such that

x =
n∑
i=1

λiai +
m∑
i=1

µibi

where a1, . . . , an ∈ A and b1, . . . , bm ∈ B. Because A is a linear subspace, it follows that

a = λ1a1 + · · · + λnan ∈ A. Similarly, b = µ1b1 + · · · + µmbm ∈ B because B is a linear

subspace. Thus, x = a+ b is an element of A+B. Therefore, A+B = span(A∪B). By the

previous theorem, A+B is the smallest linear subspace containing A ∪B.
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Chapter 3

Linear Topological Spaces

A linear space X over a field F has two algebraic operations: addition and scalar mul-

tiplication. In order to call something a linear topological space we have to describe the

relationship between the topology and the linear structure. Because continuous functions

are the main object of study in topology, it is natural to define a linear topological space to

be a linear space together with a topology that makes the operations of addition and scalar

multiplication continuous functions. In this chapter we consider some basic properties of

linear topological spaces including the effects of the linear operators on sets, the localization

of a topological basis, and other computations involving linear operators and sets.

Definition. A linear space X over a field F is a linear topological space provided there exists

a topology TX for X and a topology TF for F such that addition (x, y)→ x+ y from X ×X

into X and scalar multiplication (λ, x) → λx from F × X into X are continuous functions

according to their respective product topologies.

3.1 Linear Operations That Are Homeomorphisms

By the definition of a linear topological space, the operations of addition and scalar

multiplication are continuous. The following lemma will be used to show that translation

(addition by a fixed point) and multiplication by a fixed non-zero scalar are also continuous

functions. As a result, we will see that translation by a point and multiplication by a fixed

non-zero scalar are homeomorphisms and therefore preserve topological properties.

Lemma 3.1. Let X, Y , and Z be topological spaces and let F : X×Y → Z be a continuous

function. For any point x0 of X the function f defined by restricting the domain of F to the

subspace {x0} ×X is continuous.
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Proof. Let V be an open subset of Z. Because F is continuous, the pre-image F−1(V ) is

an open subset of X × Y . By definition, F−1(V ) consists of all points (x, y) in X × Y such

that F (x, y) ∈ V . Fix a point x0 ∈ X and let f denote the function obtained by restricting

the domain of F to the subspace {x0} ×X. Then, f−1(V ) is the set of all points (x0, y) in

X × Y such that f(x0, y) ∈ V . From the definition of F−1(V ) and f−1(V ), it is clear that

f−1(V ) is the intersection of the open subset F−1(V ) of X × Y and the subset {x0} × Y of

X × Y . As a resul, f−1(V ) is an open subset of {x0} × Y in the subspace topology. Hence,

f is continuous.

Theorem 3.1. Given a point x0 of a linear topological space X, the translation map defined

by x→ x0 + x is a homeomorphism.

Proof. Let f denote the translation map from X into X. First, f maps X onto itself since

for each x ∈ X, we have

x = 0 + x = (x0 − x0) + x = x0 + (x− x0) = f(x− x0)

where x− x0 ∈ X so that x ∈ f(X). Now, we show that f is one-to-one. If f(x1) = f(x2),

then x0 + x1 = x0 + x2. Adding −x0 to each side of this equation gives x1 = x2. Thus, f is

a bijection. Now, f is obtained by restricting the domain X ×X of the continuous addition

operation to the slice {x0}×X. By Lemma 3.1, f is continuous. Notice that f−1 : X → X is

defined by f−1(x) = −x0 +x. Consequently, f−1 is also continuous by the lemma. Therefore,

f is a homeomorphism.

Corollary 3.1. Given a point x of X and a subset E of X which satisfies a topological

property P , the translate x+ E also satisfies the property P .

Proof. Fix x0 ∈ X and let f denote translation by x0 as a function from X to X, which is

a homeomorphism by Theorem 3.1. Given a subset E of X,

x0 + E = {x0 + x : x ∈ E} = {f(x) : x ∈ E} = f(E)
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In other words, the translate x0 + E is the homeomorphic image of the set E.

Corollary 3.2. If A is any subset of X and U is an open subset of X, then A+U is open.

Proof. If A is any subset of X and U is an open subset of X, then

A+ U = {a+ u : a ∈ A, u ∈ U} =
⋃
a∈A

(a+ U)

By the previous corollary, a + U is open, for each a ∈ A, so that A + U is a union of open

sets. Thus, A+ U is open.

We have a similar result for multiplication by a fixed non-zero scalar. Clearly, multipli-

cation by zero is not a homeomorphism for any non-trivial linear topological space X because

it does not map X onto X. It is also not one-to-one because a linear map is one-to-one if and

only if its nullspace is trivial. More importantly, the inverse of multiplication by zero does

not exist because the inverse function of multiplication by a given scalar is multiplication by

its reciprocal. None of these is a problem for multiplication by non-zero scalars.

Theorem 3.2. Given a non-zero scalar λ ∈ F, the map x→ λx is a homeomorphism.

Proof. Fix a non-zero scalar λ and let g denote multiplication by λ as a function from X

into X. First, g maps X onto X since for each x ∈ X, we have

x = 1x =
(
λλ−1

)
x = λ

(
λ−1x

)
= g

(
λ−1x

)
where λ−1x ∈ X so that x ∈ g(X). Now, we show that g is one-to-one. If g(x1) = g(x2),

then λx1 = λx2. Multiplying each side by λ−1 gives x1 = x2. Thus, g is a bijection. Notice

that g−1 : X → X is defined by g(x) = λ−1x. By Lemma 3.1, g and g−1 are both continuous.

Thus, g is a homeomorphism.

Corollary 3.3. If λ ∈ F is a non-zero scalar and E ⊂ X satisfies a topological property

P , then λE also satisfies P . In particular, a non-zero scalar multiple of an open open

neighborhood of zero is an open neighborhood of zero.
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Proof. Fix a non-zero scalar λ and let g be the homeomorphism from the previous theorem.

Given a subset E of X,

λE = {λx : x ∈ E} = {g(x) : x ∈ E} = g(E)

That is, the set λE is the homeomorphic image of the set E.

Now that we have established that translation by a fixed point is a homeomorphism,

we can prove the following theorem. If a linear transformation between linear topological

spaces is continuous at one point, then we can guarantee continuity at any other point by

using the open set definition of continuity together with the fact that translation by a point

is a homeomorphism. This theorem will be useful to us in later chapters because it allows us

to check for continuity of a linear map by simply checking for continuity at the zero element

of the domain space.

Theorem 3.3. A linear map between linear topological spaces is continuous if and only if it

is continuous at one of its points.

Proof. Suppose that each of X and Y is a linear topological space and that T : X → Y

is a linear transformation. If T is continuous, then it is continuous at each point of X.

Conversely, suppose that T is continuous at a point x0 of X. Let x ∈ X be an arbirary point

and let V be an open neighborhood of T (x) in Y . Then,

T (x0)− T (x) + V = T (x0 − x) + V

is an open neighborhood of T (x0). Since T is continuous at x0, there is an open subset U

of X containing x0 such that T (U) ⊂ T (x0 − x) + V . Since U is a neighborhood of x0, it

follows that (x− x0) + U is an open neighborhood of x, and we have

T [(x− x0) + U ] = T (x− x0) + T (U) ⊂ T (x− x0) + [T (x0 − x) + V ]
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Now, because T is linear, it follows that

T [(x− x0) + U ] ⊂ T (x)− T (x0) + T (x0)− T (x) + V = V

Therefore, (x− x0) + U is an open neighborhood of x in X such that T maps all of its

points into the open neighborhood V of T (x) in Y . Hence, T is continuous at x. Because x

was chosen arbitrarily, T is continuous at each point of X.

3.2 Homogeneity

One useful property of linear topological spaces is homogeneity. In homogeneous spaces,

all points play the same role with respect to the topology. For example, if one point of a

homogeneous space is a limit point, then each point of the space must be a limit point.

Homogeneity of a linear topological space depends only on the property that translation is

a homeomorphism. For instance, translation in two-dimensional Euclidean space R2 corre-

sponds to changing the location of the origin, which results in a plane that is topologically

equivalent to the original plane. Because this property depends on only one operation, we

will see that homogeneity is a property of topological groups in general.

Definition. A topological space X is said to be homogeneous if and only if for each pair x

and y of points in X there is a homeomorphism h of X onto itself such that h(x) = y.

Theorem 3.4. A linear topological space is homogeneous.

Proof. Let X be a linear topological space. Given two points x0 and y0 in X, let h denote the

translation map x→ (y0−x0) +x as a function from X to X. Then, h is a homeomorphism

of X onto itself by Theorem 3.1, and we have

h(x0) = (y0 − x0) + x0 = y0 + (−x0 + x0) = y0 + 0 = y0
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Because this homeomorphism can be defined for any pair of points of X, it follows that the

linear topological space X is homogeneous.

A topological group is a group (G, ∗) such that the maps (x, y)→ x ∗ y and x→ x−1 are

continuous. A linear space together with the addition operation is an Abelian group. Notice

that the proof that a linear topological space is homogeneous depends only on the translation

map being a homeomorphism. Suppose that in the definition of a linear topological space a

non-communtative operation is used instead of +. For instance, let (G, ∗) be a topological

group that is not necessarily Abelian. Given x0, y0 ∈ G, we can define h(x) = (y0∗x−1
0 )∗x or

h(x) = x ∗ (x−1
0 ∗ y0). In either case, h is a homeomorphism and h(x0) = y0. So, topological

groups in general are homogeneous.

3.3 Local Topological Basis

Because translation by a point is a homeomorphism, the topology for a linear topological

space is determined by a local topological basis at zero. A basis for the topology on the linear

space is given by the collection consisting of all translates of elements of a local topological

basis at zero. In this section we consider some properties of the elements of a local topological

basis at zero. These properties are true for open neighborhoods of zero, so I will occassionally

use the term “open neighborhood of zero” in place of “element of a local topological basis

at zero.” Throughout this section, assume that X is a linear topological space with topology

T , and assume that B0 is a local topological basis at the zero point of X.

Theorem 3.5. The collection B = {x+ U : x ∈ X,U ∈ B0} is a basis for X.

Proof. Given a point x in X and an element U of the local topological basis B0, we have

x ∈ x + U . Therefore, every element of X lies in some element of B. Fix x0 ∈ X. Suppose

that x1 +U1 and x2 +U2 are two elements of B such that x0 lies in their intersection. Then,

the translates (x1 − x0) + U1 and (x2 − x0) + U2 are open neighborhoods of zero. So, there

is an element U0 of B0 such that 0 ∈ U0 and U0 lies in the intersection of (x1 − x0) +U1 and
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(x2 − x0) + U2. As a result, x0 ∈ x0 + U0 and x0 + U0 is contained in the intersection of

x1 + U1 and x2 + U2. Thus, the collection B is a basis for the topology of X.

Corollary 3.4. In the previous theorem, we can replace B0 with a local topological basis at

any other point of X.

Proof. Given a point x ∈ X and a local topological basis Bx at x, the collection

B0 = {−x+ U : U ∈ Bx}

is a local topological basis at zero. Then, the collection

B = {(y − x) + U : y ∈ X,U ∈ Bx}

is a topological basis for X as a result of Theorem 3.5.

Theorem 3.6. If U is an open neighborhood of zero, then there is an open neighborhood V

of zero such that V + V ⊂ U .

Proof. Let U be an open set containing zero and define A = {(x, y) ∈ U × U : x + y ∈ U}.

Notice that A is the intersection of the open set U × U and the pre-image of U under

the continuous addition operation. By continuity of the addition operation, A is an open

neighborhood of (0, 0) in X × X. So, there is a basis element (in the product topology)

V1 × V2 that contains (0, 0) and lies in A. In particular, V1 and V2 are open neighborhoods

of zero in X. So, there is an element V of the local topological basis B0 at zero such that

V ⊂ V1 ∩ V2. Then V × V ⊂ V1 × V2 ⊂ A, which implies that V + V ⊂ U .

This theorem can be used for arguments that require estimating the closeness of two

points even in a non-metric linear topological space. The set V in the theorem essentially

plays the role of the ε/2-ball in a metric space. Using an inductive argument, the theorem

can be generalized to guarantee the existence of an open neighborhood V of zero satisfying

V1 + V2 + · · ·+ Vn ⊂ U , where n is any natural number and Vi = V , for all i ∈ {1, 2, . . . , n}.
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The following definitions provide some useful and insightful terminology for describ-

ing sets. These are especially useful in describing the open neighborhoods of zero. These

definitions are given by Aliprantis and Border [1].

Definition. Let X be a linear space. The line segment joining two elements x and y of X

is the set {λx+ (1− λ)y : 0 ≤ λ ≤ 1}. A subset E of a linear space X is said to be:

• convex if it contains the line segment joining any two of its points.

• absorbing (or radial) if for any x ∈ X, some multiple of E includes the line segment

joining x and zero, that is, if there exists a scalar λ0 ∈ F so that λx ∈ E, for all λ ∈ F

satisfying |λ| ≤ |λ0|.

• balanced (or circled) if for each x ∈ E, the line segment joining x and −x is contained

in E, that is, λx ∈ E for any x ∈ E and for any λ ∈ F satisfying |λ| ≤ 1.

• symmetric if −x ∈ E whenever x ∈ E, that is, −E = E.

• star -shaped about zero if it includes the line segment joining each of its points with

zero, that is, if λx ∈ E for any x ∈ E and for all λ satisfying 0 ≤ λ ≤ 1.

The underlying tool used in the proof of Theorem 3.6 is continuity of the addition

operation on a linear space. On the other hand, the following theorem is a consequence

of continuity of the scalar multiplication operation. The proof of this theorem is adapted

from Aliprantis and Border [1]. I came across the proof while reading their discussion of

the terminology given in the previous definition. While reading through various sources I

tried to avoid reading proofs, but this proof was given informally before the statement of the

thereom, and I did not realize what they were proving until it was too late.

Theorem 3.7. Every open neighborhood of zero contains a balanced neighborhood of zero.

Proof. Let U be an open neighborhood of zero. By continuity of scalar multiplication, there

is a neighborhood A× V of (0, 0) in F×X such that λV ⊂ U , for all λ ∈ A. In particular,
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there is a number ε > 0 such that λ ∈ A whenever |λ| < ε. Fix λ0 ∈ F with 0 < |λ0| < ε.

Since λ0 6= 0, multiplication by λ0 is a homeomorphism. Hence, λ0V is an open neighborhood

of zero and λV ⊂ U , for all λ ∈ F satisfying |λ| ≤ |λ0|. Define

W =
⋃
{λV : |λ| ≤ |λ0|}

Then, W is contained in U because it is a union of subsets of U . If x ∈ W , then there exists

a scalar µ ∈ F with |µ| ≤ |λ0| and a point v ∈ V such that x = µv. Therefore, if λ ∈ F

satisfies |λ| ≤ 1, then |λµ| ≤ |µ| ≤ |λ0| and

λx = λ(µv) = (λµ)v ∈ (λµ)V ⊂ W

where (λµ)V ⊂ W because |λµ| ≤ |λ0|. So, λW ⊂ W , for each scalar λ satisfying |λ| ≤ λ0;

that is, W is a balanced neighborhood of zero that lies in U .

Theorem 3.8. Every open neighborhood of zero is an absorbing set.

Proof. Assume that U is a neighborhood of zero which is not radial. In particular, for each

positive integer n, there exists a scalar λn ∈ F such that |λn| < 1
n

and λnx /∈ U . In F×X, the

sequence (λn, x) clearly converges to the point (0, x). By continuity of scalar multiplication,

the sequence (λnx) must converge to 0 · x = 0. Since (λnx) is a sequence of points in the

closed set X \ U , the sequential limit point 0 must belong to X \ U ; that is, 0 ∈ X \ U ,

contradicting the assumption that U is an open neighborhood of zero. As a result, there

must be a scalar λ0 such that λx ∈ U , for all λ satisfying |λ| ≤ |λ0|.

Corollary 3.5. If U is an open neighborhood of zero and x is a point of X, then there is a

scalar λ ∈ F such that x ∈ λU .

Proof. By Theorem 3.8, U is an absorbing set. So, there is a nonzero scalar µ ∈ F such that

µx ∈ U . Let λ = µ−1. Then, λ(µx) ∈ λU and λ(µx) = λλ−1x = x. Hence, x ∈ λU .
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This corollary does not hold in general if the point x is replaced by any subset E of

X. For instance, a line in two-dimensional Euclidean space R2 cannot be contained in a

scalar multiple of a neighborhood of zero whenever that neighborhood is not all of R2. It

seems that this property is related to boundedness. So, we are able to define the concept of

a bounded set even in linear topological spaces on which there is no metric.

Definition. A subset E of a linear topological space X is said to be bounded if for each

neighborhood U of zero there is a scalar λ ∈ F such that E ⊂ λU .

3.4 More Properties of Linear Topological Spaces

In this section we continue our discussion of properties of linear topological spaces. In

particular, we apply some of the properties of the local topological basis at zero. Assume

throughout this section that X is a linear topological space with topology T , and let B0

denote a local topological basis at zero.

Theorem 3.9. If the topology T for a linear topological space X satisfies the T1 axiom, then

{0} =
⋂
{U : U ∈ B0}.

Proof. Clearly, zero is contained in each element of B0 so that {0} ⊂
⋂
{U : U ∈ B0}.

Because the topology of X satisfies the T1 axiom, given a non-zero point x in X, there is

an open neighborhood V of 0 such that x /∈ V . So, there is a local basis element U of B0

that contains zero and lies in V . Consequently, x /∈ U because x /∈ V and U ⊂ V . In other

words, for each non-zero x ∈ X, there is an element of B0 that does not contain x. So,

x /∈
⋂
{U : U ∈ B0}. Therefore,

⋂
{U : U ∈ B0} ⊂ {0}. Hence, {0} =

⋂
{U : U ∈ B0}.

Theorem 3.10. If M is a subset of X, then M =
⋂
{M + U : U ∈ B0}.

Proof. Suppose that x ∈M , and let U be an element of the local topological basis B0. Then,

x − U is an open neighborhood of x. So, x − U contains a point y of M distinct from x.

This implies that y − x ∈ −U and therefore x − y ∈ U . Hence, x = y + (x − y) ∈ M + U .

So, for each element U in B0, x ∈M + U . Consequently, M ⊂
⋂
{M + U : U ∈ B0}.
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On the other hand, suppose that x ∈
⋂
{M + U : U ∈ B0}, and let V be an open

neighborhood of x. If x ∈ M , then x = x + 0 ∈ M + V , as desired. Now, suppose that

x /∈M . Because V is open, there is an element U of the local topological basis B0 such that

x ∈ x−U and x−U ⊂ V . Because x ∈
⋂
{M +U : U ∈ B0}, there is a point y of M distinct

from x such that x = y+ (x− y), where x− y ∈ U . Therefore, y = x− (x− y) ∈ x−U ⊂ V .

Hence, every open neighborhood of x contains a point of M distinct from x. In other words,

x ∈M and
⋂
{M + U : U ∈ B0} ⊂M . Thus, M =

⋂
{M + U : U ∈ B0}.

Theorem 3.11. The closure of a linear subspace is a linear subspace.

Proof. Suppose that M is a linear subspace of a linear topological space X. According to

Theorem 3.10, we have M =
⋂
{M + U : U ∈ B0}. First, M is non-empty because M is

non-empty. Given an arbitrary open set U in B0, we can choose an open set V in B0 such

that V + V ⊂ U . For any x, y ∈ M , there exist a, b ∈ M and u, v ∈ V such that x = a + u

and y = b+ v. Therefore,

x+ y = (a+ u) + (b+ v) = (a+ b) + (u+ v)

where a+b ∈M because M is a linear subspace and u+v ∈ V +V ⊂ U . Since x+y ∈M+U

for any element U of B0, it follows that x + y ∈ M . So, M is closed under addition. For

λ = 0 and for any x ∈ M , λx = 0 ∈ M . Now, assume λ 6= 0. Given an open set U in B0,

the set λ−1U is an open neighborhood of zero and it therefore contains some element V of

the local topological basis B0. For any x ∈M , there exists a ∈M and v ∈ V so that

λx = λ(a+ v) = λa+ λv

where λa ∈M because M is a linear subspace and λv = λλ−1u = u, for some u ∈ U , because

V ⊂ λ−1U . Since λx ∈ M + U for any element U of B0, it follows that λx ∈ M . Therefore,

M is closed under scalar multiplication. Thus, M is a linear subspace.
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Theorem 3.12. A linear topological space is regular.

Proof. Suppose that X is a linear topological space. Let A be a closed subset of X and let x

be a point that is not in A. Since A is closed, X \A is open and −x+X \A is a neighborhood

of zero. So, there is an open neighborhood U of zero such that U +U ⊂ −x+X \A. The set

V = U ∩ (−U) is a balanced (V = −V ) neighborhood of zero satisfying V +V ⊂ −x+X \A.

Then, x+ V is an open neighborhood of x and A+ V is an open set containing A. Assume

that there is a point y in the intersection (x+ V )∩ (A+ V ). Then, there exists v1 ∈ V such

that y = x + v1, and there exists v2 ∈ V such that y = a + v2, for some a ∈ A. As a result,

a = x+v1−v2 ∈ x+V −V . Because V is balanced, it follows that V −V = V +V ⊂ −x+X\A

and therefore x + V − V ⊂ X \ A. Therefore, a ∈ x + V − V ⊂ X \ A, contradicting the

assumption that a ∈ A. Thus, x+ V and A+ V are disjoint open sets containing x and A,

respectively, and X is a regular space.

Theorem 3.13. Let {Xi}∞i=1 be a collection of linear topological spaces, and let X denote

the Cartesian product
∞∏
i=1

Xi. The space X in the product topology, together with addition

and scalar multiplication defined coordinate-wise, is a linear topological space.

Proof. Let f denote coordinate-wise addition as a function from X×X into X. Given points

(xi)
∞
i=1 and (yi)

∞
i=1 of X, let U be an arbitrary open subset of X containing (xi+yi)

∞
i=1. Then,

there is a basis element (of the product topology)

∞∏
i=1

Ui = U1 × U2 × · · ·Un ×Xn+1 ×Xn+2 × · · ·

where n is some fixed integer and Ui = Xi for i > n, such that (xi + yi)
∞
i=1 ⊂

∞∏
i=1

Ui ⊂ U . For

each i ∈ {1, . . . , n}, the addition function fi : Xi ×Xi → Xi, defined by fi(xi, yi) = xi + yi,

is continuous because Xi is a linear topological space. So, there is an open subset Vi ×Wi

of Xi ×Xi containing (xi, yi) such that Vi + Wi ⊂ Ui. For i > n, let Vi = Xi and Wi = Xi.
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Then,

V =
∞∏
i=1

Vi and W =
∞∏
i=1

Wi

are open subsets of X so that V × W is an open subset of X × X. Moreover, for any

((x′i)
∞
i=1, (y

′
i)
∞
i=1) ∈ V ×W , we have

f((x′i)
∞
i=1, (y

′
i)
∞
i=1) = (x′i + y′i)

∞
i=1 ∈

∞∏
i=1

(Vi +Wi) ⊂
∞∏
i=1

Ui ⊂ U

Therefore, coordinate-wise addition on X is a continuous function.

Now, let g denote coordinate-wise scalar multiplication as a function from F ×X into

X. Fix a scalar λ0 ∈ F and let (xi)
∞
i=1 be a point of X. Given an open subset U of X

containing (λ0xi)
∞
i=1, there is a basis element

∞∏
i=1

Ui = U1 × U2 × · · · × Un ×Xn+1 ×Xn+2 × · · ·

containing (λ0xi)
∞
i=1 such that

∞∏
i=1

Ui ⊂ U . For each i ∈ {1, . . . , n}, the scalar multiplication

gi : F×Xi → Xi, defined by gi(λ, xi) = λxi, is continuous because Xi is a linear topological

space. For each i ∈ {1, . . . , n}, there exists an open subset Vi of F containing λ0 and an open

subset Wi of Xi containing (xi)
∞
i=1 such that λxi ∈ Ui, for each λ ∈ Vi and for each xi ∈ Wi.

Let V =
n⋂
i=1

Vi. Then, V is an open subset of F containing λ0 such that λWi ⊂ Ui, for all

λ ∈ V . For i > n, let Wi = Xi so that
∞∏
i=1

Vi is an open set in X. As a result, V ×W is an

open subset of F×X such that, for any (λ, (x′i)
∞
i=1) ∈ V ×W ,

g(λ, (x′i)
∞
i=1) = (λx′i)

∞
i=1 ∈

∞∏
i=1

Ui ⊂ U

Therefore, coordinate-wise scalar multiplication on X is continuous. Because both addition

and scalar multiplication are continuous according to their respective product topologies, it

follows that X is a linear topological space.
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3.5 Elementary Computations

The theorems in this section rely heavily on the fact that the addition operation on a

linear space X is a continuous function from X ×X into X. In particular, we consider the

relationship between the addition operation and the interiors and closures of sets. We will

also find conditions to determine if an algebraic sum of sets is closed or compact. Throughout

this section we will assume that X is a linear topological space with subsets A and B. We

will use F to denote the addition operation on X in order to more easily express images and

pre-images of sets under the addition operation.

Theorem 3.14. If each of A and B is a subset of a linear topological space X, then

Int(A+B) = Int(A) + Int(B).

Proof. If U and V are open subsets of X satisfying U ⊂ A and V ⊂ B, then U + V is an

open subset of X satisfying U + V ⊂ A+B. Consequently, we have

Int(A) + Int(B) ⊂ Int(A+B)

On the other hand, let F : X × X → X denote the addition operation on X. Suppose

that x ∈ Int(A + B) = Int(F (A × B)). Then, there is an open subset W of X such that

x ∈ W ⊂ F (A×B). Because F is continuous, F−1(W ) is an open neighborhood of F−1(x).

We can write F−1(x) = (a, b), for some a ∈ A and for some b ∈ B. So, there is an open

subset U × V of X ×X such that (a, b) ∈ U × V and U × V ⊂ F−1(W ). As a result, U is

an open subset of X satisfying a ∈ U and U ⊂ A, which implies that a ∈ Int(A). Similarly,

b ∈ Int(B). Therefore, F−1(x) ∈ Int(A)× Int(B). As a result, we have

x = F (a, b) ∈ F (Int(A)× Int(B)) = Int(A) + Int(B)
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Hence, Int(A+B) ⊂ Int(A) + Int(B) so that we have both inclusions.

Lemma 3.2. If A and B are subsets of a linear topological space X, then

A+B ⊂ A+B.

Proof. Let F denote the addition on X as a function from X × X into X. Because F is

continuous, the image of the closure of a set is contained in the closure of the image of the

set. Notice that A×B = A×B in the product space X ×X. As a result, we have

A+B = F (A×B) = F (A×B) ⊂ F (A×B) = A+B

Hence, A+B ⊂ A+B.

Example 3.1. The other inclusion in Lemma 3.2 does not necessarily hold. For instance, let

A = {(x, y) ∈ R2 : x > 0, y ≥ 1/x} and B = {(x, y) ∈ R2 : x < 0, y ≥ −1/x}.

Both A and B are closed so that A = A and B = B. The algebraic sum is given by

A+B = {(x, y) ∈ R2 : y > 0}, the closure of which is the set A+B = {(x, y) ∈ R2 : y ≥ 0}.

Because A+B is not closed, we have A+B 6⊂ A+B = A+B.

Theorem 3.15. Let A be a subset of a linear topological space X. For any point x of X,

x+ A = x+ A.

Proof. The inclusion x+A ⊂ x+ A results from Lemma 3.2. For the other inclusion, suppose

that p ∈ x+ A. Write p = x+ y so that y = −x+ p. Let U be an open neighborhood of y.

Then, x + U is an open neighborhood of x + y = p. Since p ∈ x+ A, it follows that x + U

intersects x+ A. As a result, U must intersect A. Therefore, every open neighborhood of y

intersects A. In other words, y ∈ A so that p = x+ y ∈ x+ A. Hence, x+ A ⊂ x+ A.
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The previous theorem may be generalized a little bit. Given any subset A of a linear

topological space X and a finite subset F = {x1, . . . , xn} of X, the set F + A is the finite

union of the translates xi+A, for i ∈ {1, . . . , n}. Because the closure of a finite union of sets

is equivalent to the union of the closures of the sets, Theorem 3.15 implies that the closure

of F + A is equal to the union of the translates xi + A. Therefore, F + A = F + A. This

establishes the following corollary.

Corollary 3.6. If A is any subset of a linear topological space X and F is a finite subset of

X, then F + A = F + A.

Theorem 3.16. If each of A and B are compact subsets of X, then A+B is compact.

Proof. Because A and B are compact subsets of X, their product A × B is compact. Let

F : X ×X → X be the addition operation defined on X. Then,

F (A×B) = {a+ b : a ∈ A, b ∈ B} = A+B

So, A+B is the continuous image of the compact set A×B. Therefore, A+B is compact.

The proof of the previous theorem uses two basic ideas. One is that the product of

compact sets is compact, and the other is that the image of a compact set under a continuous

map is compact. Given two sets A and B satisfying a topological property that is preserved

under products and continuous maps, the sum A+B will also satisfy that property.

Recall that the sum of two sets is open whenever at least one of the sets is open. The

next example demonstrates that another assumption is necessary to guarantee that the sum

of two sets is closed whenever at least one is closed.

Example 3.2. If A and B are closed subsets of a linear topological space X, then A + B is

not necessarily closed. For instance, let X = R2 and consider the subsets

A = {(x, y) : x > 0, y ≥ 1/x} and B = {(x, y) : x <, y ≥ −1/x}
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Each of A and B is closed, but the sum A+B = {(x, y) : y > 0} is not closed.

Although the sum A + B is not necessarily closed whenever both A and B are closed,

it is true that A + B is closed if we include the additional assumption that one of the two

sets is compact. In order to show this, we will first prove another result that can be useful.

Theorem 3.17. Suppose that A is a closed subset of X and B is a compact subset of X

such that A and B are disjoint. Then there is an open neighborhood V of zero such that A

and B + V are disjoint.

Proof. Let x ∈ B. Because A and B are disjoint, it follows that x belongs to the open

set X \ A. So, −x + X \ A is an open neighborhood of zero. By Theorem 3.6, there is a

neighborhood Wx of zero satisfying Wx +Wx ⊂ −x+X \ A. For each x ∈ B, x+Wx is an

open neighborhood of x, and therefore the collection {x + Wx : x ∈ B} is an open covering

of B. Because B is compact, there exist finitely many points x1, . . . , xn ∈ B such that

B ⊂
n⋃
i=1

(xi + Wxi). Let V =
n⋂
i=1

Wxi , which is an open set because it is a finite intersection

of open sets. Given x ∈ B, x ∈ xi + Wxi , for some i ∈ {1, . . . , n}. In particular, for some

i ∈ {1, . . . , n}, we have

x+ V ⊂ x+Wxi ⊂ (xi +Wxi) +Wxi = xi + (Wxi +Wxi)

By construction, Wxi +Wxi ⊂ −xi +X \A so that xi + (Wxi +Wxi) ⊂ X \A, and we have

x+ V ⊂ X \A. In other words, A∩ (x+ V ) = ∅, for all x ∈ B. Thus, A∩ (B + V ) = ∅.

Theorem 3.18. If A is a closed subset of X and B is a compact subset of X, then the

algebraic sum A+B is closed.

Proof. If X = A+B, then the statement holds because X is closed. Suppose that A+B ( X

and let x ∈ X\(A+B). Then, A∩(x−B) = ∅ because otherwise a point z in this intersection

would satisfy z = a, for some a ∈ A, and it would satisfy z = x − b, for some b ∈ B, so

that x could be expressed as x = a+ b, contrary to assumption. Notice that −B is compact
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because B is compact and multiplication by a non-zero scalar is a homeomorphism. By

Theorem 3.17, there is an open neighborhood V of 0 such that A∩ (x+V −B) = ∅, that is,

(A+B)∩ (x+ V ) = ∅. Since x+ V is an open neighborhood of x contained in X \ (A+B),

it follows that A+B is closed.

3.6 Linear Functionals

Given a linear space X over a scalar field F, a linear functional is a linear map from X

into the scalar field F. Let F(X) denote the collection of linear functionals on X. Define

addition and scalar multiplication on F(X) as follows: if f, g ∈ F(X), then f + g is the

linear functional on X such that (f + g)(x) = f(x) + g(x), for each x ∈ X; if f ∈ F(X) and

λ is any scalar, then λf is the element of F(X) such that (λf)(x) = λf(x), for each x ∈ X.

The collection F(X) together with addition and scalar multiplication defined in this way is

a linear space.

Theorem 3.19. Suppose that X is a linear topological space, and let f ∈ F(X) be a linear

functional which is not identically zero. The following are equivalent:

(1) f is continuous

(2) the null space of f is closed

(3) the null space of f is not dense in X

(4) f is bounded on a neighborhood of zero

Proof.

• If f is continuous, then the nullspace of f is closed.

Suppose that f is continuous, and let N denote the nullspace of f . Then, X \ N

is non-empty because f is not identically zero. Given a point x0 ∈ X \ N , we have

f(x0) 6= 0. Without loss of generality, assume that f(x0) > 0, and let U = (0,∞).
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Since f is continuous, f−1(U) is an open set containing x0. Now, for each x ∈ f−1(U),

we have f(x) ∈ (0,∞) so that f(x) 6= 0. Therefore, f−1(U) is an open set containing

x0 such that f−1(U) ⊂ X \N . Hence, X \N is open and the nullspace N is closed.

• If the nullspace of f is closed, then the null space of f is not dense in X.

Assume that the nullspace N of f is dense in X, that is, N = X. By assumption, N

is closed so that N = N . However, this implies that N = N = X, which contradicts

the assumption that f is not identically zero.

• If the nullspace of f is not dense in X, then f is bounded on a neighborhood of zero.

Suppose that the nullspace N of f is not dense in X. Then, there is a point x and

a neighborhood U of zero such that x + U does not intersect N . Because U is a

neighborhood of zero, it contains a balanced neighborhood V of zero, that is, λV ⊂ U ,

for all scalars λ with |λ| ≤ 1. Assume f is not bounded on V . Then, there exists v ∈ V

such that |f(v)| ≥ |f(x)|. Choose λ ∈ F with |λ| ≤ 1 such that |λ| · |f(v)| = |f(x)|.

Then,

|f(x)| = |λ||f(v)| = |λf(v)| = |f(λv)|

Because |λ| ≤ 1, we have λV ⊂ U so that there is an element u of U with λv = u and

hence |f(x)| = |f(u)|. Without loss of generality, assume that f(u) = −f(x) because

we can take ±λ as needed. Then,

0 = f(x) + f(u) = f(x+ u)

As a result, x + u is an element of the nullspace N of f , contrary to the assumption

that x+ U does not intersect N . Thus, f must be bounded on V .

• If f is bounded on a neighborhood of zero, then f is continuous.

Suppose that f is bounded on an open set U containing zero. Then, there is a positive

number M such that |f(x)| < M , for all x ∈ U . Given ε > 0, let λ = ε
M

and
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define V = λU . For each x ∈ V , there exists u ∈ U such that x = λu. As a result,

|f(x)| = |f(λu)| = λ|f(u)|. Because u ∈ U , it follows that |f(u)| < M so that

|f(x)| < λM = ε. Therefore, f is continuous at zero. Since f is linear, it follows that

f is continuous at each of its points.
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Chapter 4

Metric Linear Topological Spaces

In the remaining chapters we will study linear topological spaces for which the topology

is induced by a metric. I will assume some familiarity with metric spaces throughout the

rest of the thesis. Of particular interest will be spaces with a translation-invariant metric d,

meaning that d(x, y) = d(x + z, y + z), for any points x, y, and z in X. Given a point x of

a metric space X, the ε-ball centered at x will be denoted by Bε(x).

4.1 Totally Bounded Sets

A subset of a metric space is said to be totally bounded if for each ε > 0 the set can

be covered by finitely many ε-balls. The following definition extends this concept to linear

topological spaces which are not necessarily metric spaces. In this section we show that the

two definitions are equivalent for metric linear topological spaces.

Definition. A subset B of a linear topological space X is totally bounded if for each neigh-

borhood U of zero there exists a finite set F such that B ⊂ F + U .

It is clear that the set F in the definition of a totally bounded set may be assumed to

be a subset of B. It is also clear that a subset of a totally bounded set is totally bounded.

The following theorems demonstrate other properties of totally bounded sets.

Theorem 4.1. The closure of a totally bounded set is totally bounded.

Proof. Suppose that B is a totally bounded subset of a linear topological space X, and let

U be an open neighborhood of zero. Because linear topological spaces are regular, there is a

neighborhood V of zero such that V ⊂ U . By assumption, there is a finite set F such that
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B ⊂ F + V . Then, B ⊂ F + V . Since F is finite, we have F + V = F + V by Corollary 3.6.

As a result, B ⊂ F + V ⊂ F + U . Thus, B is a totally bounded set.

Theorem 4.2. The image of a totally bounded set under a continuous linear map is totally

bounded.

Proof. Suppose that B is a totally bounded subset of X and T : X → Y is a continuous

linear map. Let V be a neighborhood of zero in Y . For any y ∈ T (B), there exists x ∈ B

such that T (x) = y. Since y + V is a neighborhood of y and T is continuous, there is an

open neighborhood U of x in X such that T (U) ⊂ y + V . Because U is a neighborhood of

x, it follows that −x + U is a neighborhood of zero. Since B is totally bounded, there is a

finite set F such that B ⊂ F + (−x+U). Consequently, we have T (B) ⊂ T (−x+F +U) so

that T (B) ⊂ −T (x) +T (F ) +T (U) by linearity of T . Because T (U) ⊂ y+V and y = T (x),

it follows that T (B) ⊂ T (F )+V . Moreover, T (F ) is finite since F is finite. Therefore, T (B)

is totally bounded.

Theorem 4.3. A subset of a product is totally bounded if and only if each of its projections

is totally bounded.

Proof. Let {Xα : α ∈ Γ} be a collection of linear topological spaces. Let πβ denote the

projection map of
∏
α∈Γ

Xα onto Xβ. Suppose that B is a totally bounded subset of the

product space
∏
α∈Γ

Xα. Fix β ∈ Γ, and let Uβ be an arbitrary neighborhood of zero in Xβ.

Then,
∏
α∈Γ

Uα, where Uα = Xα for α 6= β, is an open neighborhood of zero in
∏
α∈Γ

Xα. By

assumption, there is a finite set F such that B ⊂ F +
∏
α∈Γ

Uα. Then, since the projection

map πβ is linear,

πβ(B) ⊂ πβ

(
F +

∏
α∈Γ

Uα

)
= πβ(F ) + Uβ

where πβ(F ) is finite. Therefore, πβ(B) is totally bounded.

Conversely, suppose that πα(B) is totally bounded, for each α ∈ Γ. Without loss

of generality, we can show that B is contained in a finite translate of a (topological) basis
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element containing zero. Let
∏
α∈Γ

Uα be a neighborhood of zero, where Uα 6= Xα for only

finitely many indices, say α1, . . . , αn, in Γ. For each α ∈ Γ, Uα is a neighborhood of zero

in Xα. By assumption, there exists a finite set Fα such that πα(B) ⊂ Fα + Uα. For each

α /∈ {α1, . . . , αn}, we can take Fα = {0} since Uα = Xα. Let F be the subset of
∏
α∈Γ

Xα

defined by
∏
α∈Γ

Fα, that is,

F =
{

(xα) : xαj
∈ Fαj

for j = 1, . . . , n;xα = 0 otherwise
}

Then, F is finite since each Fαj
is finite. For each α ∈ Γ, we have πα(B) ⊂ Fα + Uα, and

therefore

B ⊂
∏
α∈Γ

(Fα + Uα) =
∏
α∈Γ

Fα +
∏
α∈Γ

Uα = F + U

Thus, B is totally bounded.

Theorem 4.4. A scalar multiple of a totally bounded set is totally bounded.

Proof. Suppose that B is a totally bounded subset of X. Clearly, 0 · B = {0} is totally

bounded. Let λ be a non-zero scalar. If U is any neighborhood of zero, then λ−1U is also a

neighborhood of zero. Since B is totally bounded, there is a finite set F = {x1, . . . , xn} such

that B ⊂ F +λ−1U . As a result, λB ⊂ λ (F + λ−1U) = λF +U , where λF = {λx1, . . . , λxn}

is finite. So, λB is totally bounded.

If the metric for a linear topological space is translation-invariant, then the ε-ball cen-

tered at a point is equvialent to the translate of the ε-ball centered at zero.

Lemma 4.1. Suppose that X is a metric linear topological space with translation-invariant

metric d. If x ∈ X and ε > 0, then Bε(x) = x+Bε(0).

Proof. Suppose that x ∈ x0 + Bε(0), that is, x = x0 + y, for some y ∈ Bε(0). Because

the metric d is translation-invariant and d(0, y) < ε, we have d(x0, x0 + y) < ε. Since

x = x0 + y, it follows that d(x0, x) < ε so that x ∈ Bε(x0). On the other hand, suppose that
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x ∈ Bε(x0), that is, d(x, x0) < ε. Because the metric is translation-invariant, d(x−x0, 0) < ε.

Consequently, x− x0 ∈ Bε(0) implies that x ∈ x0 +Bε(0).

Theorem 4.5. Let X be a metric linear topological space with translation-invariant metric

d. A subset B of X is totally bounded if and only if for each ε > 0 there is a finite covering

of B by open ε-balls.

Proof. Suppose that B is a totally bounded subset of X. Given ε > 0, the ε-ball Bε(0) is an

open neighborhood of zero. By assumption, there exists a finite set F = {x1, . . . , xn} such

that B ⊂ F + Bε(0). Then, F + Bε(0) =
n⋃
i=1

(xi + Bε(0)). Because the metric is translation-

invariant, we have xi + Bε(0) = Bε(xi), for each i ∈ {1, . . . , n}, by Lemma 4.1. Therefore,

B ⊂ F +Bε(0) ⊂
n⋃
i=1

Bε(xi).

Now, suppose that for each ε > 0, there is a finite covering of B by ε-balls. Let U be

an open neighborhood of zero in X. Then, there exists ε > 0 such that Bε(0) ⊂ U . By

assumption, there exists a finite set F = {x1, . . . , xn} such that B ⊂
n⋃
i=1

Bε(xi). Therefore,

B ⊂
n⋃
i=1

Bε(xi) =
n⋃
i=1

(xi +Bε(0)) ⊂
n⋃
i=1

(xi + U) =
n⋃
i=1

xi + U = F + U

Hence, B is totally bounded.

4.2 Completeness

A sequence (xn) in a metric space (X, d) is said to be a Cauchy sequence if for each

ε > 0 there is an integer N such that d(xm, xn) < ε, for all m,n ≥ N . However, we can

extend this definition to linear topological spaces which are not necessarily metric spaces.

In this section we show that the two definitions are equivalent for linear topological spaces

with a translation-invariant metric.
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Definition. Let X be a linear topological space. A sequence (xn) in X is said to be a

Cauchy sequence if and only if for each neighborhood U of zero, there exists an integer N

such that xm − xn ∈ U , for all m,n ≥ N .

Theorem 4.6. Suppose that X is a metric linear topological space with translation-invariant

metric d. A sequence (xn) in X is Cauchy if and only if for each ε > 0 there exists an integer

N such that d(xm, xn) < ε, for all m,n ≥ N .

Proof. Suppose that (xn) is a Cauchy sequence. Given ε > 0, the ε-ball Bε(0) is a neigh-

borhood of zero. By assumption, there exists an integer N such that xm − xn ∈ Bε(0), for

m,n ≥ N . Therefore, xm ∈ xn + Bε(0) = Bε(xn), that is d(xm, xn) < ε, for all m,n ≥ N .

For the converse, let U be any open neighborhood of zero. Then, there is an ε > 0 such that

Bε(0) ⊂ U . By assumption, there exists an N such that d(xm, xn) < ε, for all m,n ≥ N . Be-

cause the metric is translation-invariant, this implies that d(0, xm−xn) < ε, for all m,n ≥ N .

Hence, xm − xn ∈ Bε(0) ⊂ U , for all m,n ≥ N .

Definition. A metric space X is complete if and only if every Cauchy sequence of X con-

verges to a point of X.
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Chapter 5

Normed Linear Spaces

A normed linear space has a natural topology, which is the metric topology induced

by the norm metric. First we will show that the operators on a normed linear space are

continuous with respect to the norm metric, proving that any normed linear space is a linear

topological space. Because we are now working in a metric space, we will be able to utilize

the sequence definition of continuity and the sequence lemma.

5.1 Normed Linear Spaces

A norm on a linear space can be thought of as a function that gives the length of a

vector in the space. The norm on a linear space leads to a natural metric for which the

distance between two points is the length of the vector joining them.

Definition. A norm on a linear space X is a function ‖·‖ : X → [0,∞) satisfying, for all

points x, y ∈ X and for all scalars λ ∈ F,

(a) (positive definiteness) ‖x‖ = 0 if and only if x = 0

(b) (homogeneity) ‖λx‖ = |λ|‖x‖

(c) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Theorem 5.1. The function d(x, y) = ‖x− y‖ is a metric for X.

Proof. Clearly, d(x, y) = ‖x− y‖ ≥ 0 by definition of the norm. By positive definiteness of

the norm, ‖x−y‖ = 0 if and only if x−y = 0 if and only if x = y. Moreover, by homogeneity

of the norm,

‖x− y‖ = ‖−(y − x)‖ = | − 1| · ‖y − x‖ = ‖y − x‖
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So, the function d is symmetric. Lastly, the triangle inequality is satisfied since

‖x− z‖ = ‖x− y + y − z‖ ≤ ‖x− y‖+ ‖y − z‖

Therefore, d is a metric for X.

The norm metric, defined by d(x, y) = ‖x−y‖, on a normed linear spaceX is translation-

invariant because ‖(x + z) − (y + z)‖ = ‖(x − y) + (z − z)‖ = ‖x − y‖, for all x, y, and z

in X. Moreover, the norm metric is homogeneous, that is, d(λx, λy) = |λ|d(x, y), for all x

and y in X and for any scalar λ. This follows directly from homogeneity of the norm since

‖λx− λy‖ = ‖λ(x− y)‖ = |λ|‖x− y‖.

In the following theorem, we need to show that the addition on X is a continuous

function from X × X into X and that scalar mutliplication on X is a continuous function

from F × X into X. Because the topology of X is induced by the metric d, we can give

both X ×X and F×X a metric topology which is equivalent to the product topology. As

a result, a function on these metric spaces is continuous if and only if the function preserves

sequential limit points.

Theorem 5.2. The normed linear space X together with the topology induced by the norm

metric is a linear topological space.

Proof. Let (xn) and (yn) be convergent sequences in X with xn → x and yn → y. Given

ε > 0, choose an integer N such that ‖xn− x‖ <
ε

2
and ‖yn− y‖ <

ε

2
, for all n ≥ N . By the

triangle inequality, for all n ≥ N , we have

‖(xn + yn)− (x+ y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ <
ε

2
+
ε

2
= ε

Hence, xn + yn → x+ y. Therefore, the addition operation on X is continuous.

Now, let (xn) be a convergent sequence in X as before, and let (λn) be a sequence

of scalars converging to a scalar λ. Because the sequence (λn) of scalars converges, it is
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bounded. Let M be a positive number such that |λn| ≤ M , for all n. Given ε > 0, choose

an integer N such that ‖xn − x‖ < ε
2M

and |λn − λ| < ε
2‖x‖ , for all n ≥ N . Then, we have

‖λnxn − λx‖ = ‖λnxn − λnx+ λnx− λx‖

≤ ‖λn(xn − x)‖+ ‖(λn − λ)x‖

= |λn| · ‖xn − x‖+ |λn − λ| · ‖x‖

< |λn|
(

ε
2M

)
+
(

ε
2‖x‖

)
‖x‖ ≤ ε

Hence, λnxn → λx. Therefore, scalar multiplication on X is a continuous function. Because

both operations are continuous according to the respective product topologies, it follows that

X is a linear topological space.

Lemma 5.1. For all x and y in a normed linear space X,

|‖x‖ − ‖y‖| ≤ ‖x− y‖

Proof. By the triangle inequality, we have ‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖. Subtracting

‖y‖ from each side of the inequality results in the inequality ‖x‖−‖y‖ ≤ ‖x− y‖. Similarly,

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x − y‖. Therefore, because ‖y‖ − ‖x‖ = − (‖x‖ − ‖y‖), we have

the desired inequality.

Lemma 5.2. If X is a normed linear space, then the norm ‖·‖ defined on X is uniformly

continuous (and therefore continuous).

Proof. Given ε > 0, let x and y be points of X such that ‖x − y‖ < ε. Then, we have

|‖x‖ − ‖y‖| ≤ ‖x− y‖ < ε by Lemma 5.1. Therefore, the norm is uniformly continuous.

Because the norm ‖·‖ defined on a normed linear space is uniformly continuous, the

norm preserves sequential limit points. In other words, if (xn) is a sequence in X such that

xn → x, then ‖xn‖ → ‖x‖. The next theorem demonstrates that the operation of addition

on a normed linear space is also uniformly continuous.
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Theorem 5.3. The addition operation on a normed linear space X is a uniformly continuous

function from X ×X into X.

Proof. Let ρ denote the metric defined on X ×X given by

ρ((x1, y1), (x2, y2)) = ‖x1 − x2‖+ ‖y1 − y2‖

The topology generated by this metric is equvialent to the product topology on X × X.

Given ε > 0 and points (x1, y1) and (x2, y2) in X ×X satisfying ρ((x1, y1), (x2, y2)) < ε, we

have

‖(x1 + y1)− (x2 + y2)‖ ≤ ‖x1 − x2‖+ ‖y1 − y2‖ < ε

Therefore, the addition on X is a uniformly continuous function from X ×X into X.

5.2 Bounded Linear Transformations

Linear transformations are essential in the study of linear spaces, and continuous func-

tions are essential in topology. In the study of linear topological spaces, we are concerned

mostly with continuous linear transformations. So, it will be useful to determine conditions

under which linear transformations are continuous. We will see that a linear transformation

is continuous if and only if it is bounded. All linear transformations in a finite-dimensional

space are bounded and therefore continuous.

Let Lin(X) denote the collection of all linear transformations from X into itself. For

any linear transformation T in Lin(X), define

|T | = sup
x 6=0

‖T (x)‖
‖x‖

Notice that |T | can also be expressed as sup
‖x‖=1

‖T (x)‖ or as sup
‖x‖≤1

‖T (x)‖.
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Example 5.1. The set X = C∞([0, 1]) of smooth (infinitely differentiable) real-valued func-

tions defined on the unit interval [0, 1] together with the maximum norm

‖f‖∞ = max{f(x) : 0 ≤ x ≤ 1}

is a normed linear space. Let D denote the derivative operator, that is, D(f) = f ′. Consider

the sequence (enx) of functions in X. Then,

‖D(enx)‖
‖enx‖

=
‖nenx‖
‖enx‖

=
|n|‖enx‖
‖enx‖

= |n| → ∞

As a result, |D| is unbounded, that is, |D| =∞.

Definition. A linear transformation such that |T | <∞ is said to be bounded .

Let LinB(X) denote the set of all bounded linear transformations on the linear topolog-

ical space X. Define addition and scalar multiplication on LinB(X) as follows: If T1 and T2

are bounded linear transformations on X, then T1 + T2 is the element of LinB(X) so that

(T1 + T2)(x) = T1(x) + T2(x), for all x ∈ X; if T ∈ LinB(X) and λ ∈ F is any scalar, then

λT is the element of LinB(X) so that (λT )(x) = λT (x), for all x ∈ X.

Theorem 5.4. The function | · | is a norm on LinB(X).

Proof. Given T ∈ LinB(X), we have |T | = sup
‖x‖=1

‖T (x)‖ ≥ 0 because the supremum over a

set of non-negative numbers is non-negative. Moreover, |T | = 0 if and only if ‖T (x)‖ = 0,

for all x satisfying ‖x‖ = 1, if and only if T (x) = 0, for all x ∈ X, i.e., T is the zero map.

Now, for any scalar λ,

|λT | = sup
‖x‖=1

‖(λT )(x)‖ = sup
‖x‖=1

‖λ · T (x)‖ = sup
‖x‖=1

|λ|‖T (x)‖ = |λ| sup
‖x‖=1

‖T (x)‖ = |λ| · |T |
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Lastly, for any T1, T2 ∈ LinB(X), we have

|T1 + T2| = sup
‖x‖=1

‖(T1 + T2)(x)‖ = sup
‖x‖=1

‖T1(x) + T2(x)‖

≤ sup
‖x‖=1

(‖T1(x)‖+ ‖T2(x)‖)

≤ sup
‖x‖=1

‖T1(x)‖+ sup
‖x‖=1

‖T2(x)‖ = |T1|+ |T2|

Therefore, (LinB(X), | · |) is a normed linear space.

Since (LinB(X), | · |) is a normed linear space, it follows that the |T1 − T2| defines the

norm metric on LinB(X). According to Theorem 5.2, the linear space LinB(X) together with

the norm metric forms a linear topological space. This establishes the following corollary.

Corollary 5.1. The set LinB(X) of bounded linear transformations on a normed linear space

is a linear topological space.

Theorem 5.5. A linear transformation T is continuous if and only if T ∈ LinB(X).

Proof. Suppose that T is a continuous linear map on X. By continuity of T at 0, there exists

δ > 0 such that ‖T (x)− T (0)‖ < 1 whenever ‖x‖ < δ. Because T is linear, T (0) = 0 so that

‖T (x)‖ < 1 whenever ‖x‖ < δ. Let λ = δ
2
. For any point x in X satisfying ‖x‖ = 1, we

have ‖λx‖ = λ‖x‖ = λ < δ. By continuity of T at zero, ‖T (λx)‖ < 1. Because T is linear,

‖T (λx)‖ = ‖λT (x)‖ = λ‖T (x)‖. As a result, λ‖T (x)‖ < 1 so that ‖T (x)‖ < λ−1, for all

x ∈ X satisfying ‖x‖ = 1. Therefore, |T | ≤ λ−1 so that T is bounded, that is, T ∈ LinB(X).

Conversely suppose that T ∈ LinB(X). Because |T | < ∞, there is a number M > 0

satisfying ‖T (x)‖ ≤ M‖x‖, for each point x of X. Given ε > 0, let δ = ε
M

. For any

x ∈ X that satisfies ‖x‖ < δ, we have M‖x‖ < ε. Since T is linear, we have T (0) = 0. By

assumption, ‖T (x)‖ ≤M‖x‖; therefore, ‖x− 0‖ < δ implies that ‖T (x)− T (0)‖ < ε. So, T

is continuous at zero and therefore continuous at every point of X.
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As the next theorem states, all linear transformations on a finite-dimensional space

are bounded. As a result, the previous theorem implies that all linear transformation on a

finite-dimensional space are continuous.

Theorem 5.6. If X is finite-dimensional, then Lin(X) = LinB(X).
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Chapter 6

Hilbert Spaces

6.1 Inner Product Spaces

Normed linear spaces have nice properties, but they have even better properties when

the norm is induced by an inner product. In spaces with a norm given by an inner product,

we are able to use the Cauchy-Schwarz inequality and the Parallelogram Law. After showing

that an inner product space is a linear topological space, we turn our attention to problems

set in a Hilbert space.

Definition. Let X be a linear space over R. A inner product on X is a function 〈·, ·〉 from

X ×X into R that satisfies, for all x, y, z ∈ X and for all λ, µ ∈ R,

(a) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

(b) 〈x, y〉 = 〈y, x〉

(c) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉

In this case, X is said to be a real inner product space. We can also define a complex inner

product space by allowing the scalars λ and µ in the definition to be complex numbers and

by changing part (b) of the definition to

(d) 〈x, y〉 = 〈y, x〉

where z denotes the complex conjugate of the complex number z.

IfX is an inner product space, the inner product norm onX is defined by ‖x‖ =
√
〈x, x〉.

Before we show that this does in fact define a norm on X, we will state a well-known theorem

that holds in inner product spaces. The Cauchy-Schwarz inequality will be used to show

that the inner product norm is actually a norm.
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Theorem (Cauchy-Schwarz inequality). Let X be an inner product space with inner product

〈·, ·〉. For all x, y ∈ X,

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉

Moreover, equality holds if and only if x and y are linearly dependent.

We will omit the proof of the Cauchy-Scwarz inequality. Notice that the inequality can

be expressed in terms of the inner product norm. By taking the square root of each side we

obtain the inequality |〈x, y〉| ≤ ‖x‖ · ‖y‖. Another useful property of inner product spaces

is the Parallelogram Law. This property will be important in a problem in the next section.

Theorem 6.1 (Parallelogram Law). Let X be an inner product space. For all x, y ∈ X,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

Proof. By the properties of the inner product norm, we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

= ‖x‖2 + ‖y‖2 + 2〈x, y〉

Similarly, ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉. Adding together these two equations gives the

Parallelogram Law.

Theorem 6.2. Let X be an inner product space. Then, ‖x‖ =
√
〈x, x〉 is a norm on X.

Proof. Clearly, ‖x‖ ≥ 0 for all x ∈ X. Moreover, ‖x‖ = 0 if and only if 〈x, x〉 = 0 if and

only if x = 0. Now, for any scalar λ,

‖λx‖ =
√
〈λx, λ, x〉 =

√
λ2〈x, x〉 = |λ|

√
〈x, x〉 = |λ| · ‖x‖
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Lastly, for all x and y in X, we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉

Now, if X is a real inner product space, then 〈x, y〉 = 〈y, x〉. But, if X is a complex inner

product space, then 〈x, y〉 = 〈y, x〉. In either case, 〈x, y〉 + 〈y, x〉 ≤ 2|〈x, y〉|. Now, by the

Cauchy-Scwarz inequality, we have |〈x, y〉| ≤ ‖x‖‖y‖. Thus,

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2

Taking the square root of both sides gives the triangle inequality. Thus, ‖x‖ =
√
〈x, x〉

defines a norm on X, called the inner product norm.

Because ‖x‖ =
√
〈x, x〉 defines a norm on X, the metric induced by the inner product

norm is given by ‖x− y‖ =
√
〈x− y, x− y〉 according to Theorem 5.1. Moreover, with this

metric the inner product space X is a linear topological space by Theorem 5.2.

Corollary 6.1. An inner product space X together with the topology induced by the inner

product norm metric is a linear topological space.

Theorem 6.3. Let X be an inner product space with inner product 〈·, ·〉. The inner product

is a continuous function from X ×X into R.

Proof. Suppose that (xn) and (yn) are sequences in X with xn → x and yn → y. Then,

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x, y〉|

= |〈xn, yn − y〉+ 〈xn − x, y〉|

≤ |〈xn, yn〉|+ |〈xn − x, y〉|

≤ ‖xn‖ · ‖yn − y‖+ ‖xn − x‖ · ‖y‖
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Because (xn) converges there is a positive number M such that ‖xn‖ ≤ M , for all n.

Given ε > 0, choose N ∈ N such that ‖xn − x‖ < ε
2‖y‖ and ‖yn − y‖ < ε

2M
, for all n ≥ N .

Then, for n ≥ N ,

|〈xn, yn〉 − 〈x, y〉| ≤ ‖xn‖ · ‖yn − y‖+ ‖xn − x‖ · ‖y‖ < ε

Hence, 〈xn, yn〉 → 〈x, y〉. Thus, the inner product is continuous.

6.2 Hilbert Spaces

This final section includes some problems concerning projections and orthogonality in

Hilbert spaces, including the uniqueness of the projection onto a closed and convex set.

We will also see that a Hilbert space can be written as the direct sum of a closed linear

subspace and its orthogonal complement. Lastly, we consider the relationship between a set,

the closure of its span, the orthogonal complement, and the double orthogonal complement.

Definition. A Hilbert space H is an inner product space that is complete with respect to

the inner product norm.

Theorem 6.4. Suppose that F is a closed and convex subset of a Hilbert space H. If x ∈ H,

then there is a unique element P (x) in F satisfying

‖x− P (x)‖ = inf{‖x− z‖ : z ∈ F}

The mapping P is called the projection of H on F .

Proof. Fix x0 ∈ H, and let δ = inf{‖x0 − x‖ : x ∈ F}. If x0 ∈ F , then ‖x0 − x0‖ = 0

and therefore δ = 0. Moreover, x0 is unique because ‖x0 − x‖ = 0 if and only if x0 = x.

So, we can now assume that x0 /∈ F . For each n ∈ N, we can choose xn ∈ F satisfying

δ ≤ ‖x0 − xn‖ < δ + 1
n
; otherwise, δ + 1

n
would be a lower bound of {‖x0 − x‖ : x ∈ F}

that is greater than the greatest lower bound δ. Without loss of generality, we can assume
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that x0 = 0 because translation by −x0 is a homeomorphism and the metric is translation-

invariant so that our assumptions are not afffected. Then, δ ≤ ‖xn‖ < δ+ 1
n

for each n ∈ N,

which implies that ‖xn‖ → δ. Because H is a Hilbert space, we have the Parallelogram Law,

so that for any m,n ∈ N,

‖xm − xn‖2 = 2‖xm‖2 + 2‖xn‖2 − ‖xm + xn‖2

or ‖xm − xn‖2 = 2‖xm‖2 + 2‖xn‖2 − 4
∥∥xm+xn

2

∥∥2

Now, because F is convex and (xn) is a sequence in F , it follows that xm+xn
2

is an element

of F , for every m,n ∈ N. By definition of δ, we have

∥∥∥∥xm + xn
2

∥∥∥∥ ≥ δ which implies

∥∥∥∥xm + xn
2

∥∥∥∥2

≥ δ2.

So, if we replace
∥∥xm+xn

2

∥∥2
by δ2 in the Parallelogram Law, we will be subtracting a smaller

quantity on the right-hand side so that we get the inequality

‖xm − xn‖2 ≤ 2‖xm‖2 + 2‖xn‖2 − 4δ2

Because ‖xm‖ → δ and ‖xn‖ → δ, the right-hand side of this inequality goes to zero.

Therefore, ‖xm − xn‖ → 0, and (xn) is a Cauchy sequence. Because H is complete and F is

closed, xn converges to a point x∗ of F satisfying ‖x∗‖ = δ. For uniqueness, suppose there

is another point y∗ of F such that ‖y∗‖ = δ. Then, by the Parallelogram Law,

‖x∗ − y∗‖2 = 2‖x∗‖2 + 2‖y∗‖2 − 4

∥∥∥∥xm + xn
2

∥∥∥∥2

= 2δ2 + 2δ2 − 4

∥∥∥∥xm + xn
2

∥∥∥∥2

≤ 4δ2 − 4δ2 = 0

Thus, x∗ = y∗ and the projection P (x0) = x∗ is unique.
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Definition. Let A be a subset of a Hilbert space H. A point x in H is orthogonal to A,

written x ⊥ A, if 〈x, a〉 = 0 for every a ∈ A. The orthogonal complement of A in H, denoted

by A⊥, is the set {x : x ⊥ A}.

Theorem 6.5. Suppose that M is a closed linear subspace of a Hilbert space H. Then,

〈x − P (x), y〉 = 0, for each x ∈ H and each y ∈ M . Moreover, P (x) is the unique point of

M such that x− P (x) ∈M⊥.

Proof. Let x be a point of H, and let p denote the projection of x onto the closed, convex

set M , that is, p is the unique point of M that is closer to x than any other point of M .

Given a point y ∈M and a scalar λ, we have λy ∈M and p−λy ∈M because M is a linear

subspace of H. As a result,

‖x− (p− λy)‖2 ≥ ‖x− p‖2 (6.1)

By properties of the inner product norm, we have

‖x− (p− λy)‖2 = 〈(x− p) + λy, (x− p) + λy〉

= ‖x− p‖2 + 〈λy, x− p〉+ 〈x− p, λy〉+ ‖λy‖2

≤ ‖x− p‖2 + 2<e(λ〈x− p, y〉) + |λ|2‖y‖2

Assuming that the underlying scalar field is R and combining the previous inequality with

inequality (6.1) gives

‖x− p‖2 + 2λ〈x− p, y〉+ |λ|2‖y‖2 ≥ ‖x− p‖2

2λ〈x− p, y〉+ |λ|2‖y‖2 ≥ 0

Consequently,

2λ〈x− p, y〉 ≥ −|λ|2‖y‖2 (6.2)
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If λ > 0, then we can divide by λ without affecting inequality (6.2) to get

2〈x− p, y〉 ≥ −λ‖y‖2

As λ → 0+, we have λ‖y‖2 → 0 so that 〈x − p, y〉 ≥ 0. Now, assuming that λ < 0, we can

divide both sides of inequality (6.2) by λ, but the inequality will be reversed:

2〈x− p, y〉 ≤ −λ‖y‖2

As λ→ 0−, we have λ‖y‖2 → 0 so that 〈x− p, y〉 ≤ 0. Therefore, 〈x− p, y〉 = 0. A similar

argument can be used if the scalar field is the complex numbers. Because y was chosen

arbitrarily, it follows that x− p ∈M⊥. Now, suppose that q is another point of M such that

x− q ∈M⊥. For any y ∈M , we have

〈p− q, y〉 = 〈p− x+ x− q, y〉 = 〈x− q, y〉 − 〈x− p, y〉 = 0

In particular, p− q ∈M because M is a linear subspace. So,

‖p− q‖2 = 〈p− q, p− q〉 = 0

Hence, p− q = 0 so that p = q.

Definition. A linear space X is a direct sum of linear subspaces A and B if and only if each

element of X can be expressed uniquely as a sum of an element of A and an element of B.

Theorem 6.6. If M is a closed linear subspace of a Hilbert space H, then H = M ⊕M⊥.

Proof. Given x ∈ H, let p denote the projection of x onto the closed, convex set M . Write

x = p+ (x− p). By the previous theorem, p is the unique point of M such that x− p ∈M⊥.

Therefore, p + (x − p) is a unique expression for x as a sum of an element of M and an

element of M⊥.
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Theorem 6.7. A⊥ is a closed linear subspace of H.

Proof. First, the orthogonal complement A⊥ is non-empty because 0 ∈ A⊥ since 〈0, a〉 = 0

for each a ∈ A. Furthermore, for any points x and y in A⊥ and for any scalars λ and µ, we

have

〈λx+ µy, a〉 = λ〈x, a〉+ µ〈y, a〉 = λ · 0 + µ · 0 = 0

Hence, λx+ µy ∈ A⊥ so that A⊥ is a linear subspace of H.

Now, let (xn) be a sequence in A⊥ which converges to a point x in H. Fix a point a

in A. Given a point a of A, we have 〈xn, a〉 → 〈x, a〉 by continuity of the inner product.

Because xn ∈ A⊥, for each n, we have 〈xn, a〉 = 0. Therefore, by continuity of the inner

product,

〈x, a〉 = lim
n→∞
〈xn, a〉 = 0.

Hence, the limit x of the sequence (xn) belongs to A⊥ so that A⊥ is closed. Thus the

orthogonal complement of any subset of H is a closed linear subspace of H.

Observation. If A ⊂ B, then A⊥ ⊃ B⊥.

Proof. Suppose that A ⊂ B, and let x ∈ B⊥. Then, 〈x, b〉 = 0, for all b ∈ B. Because

A ⊂ B, it follows that 〈x, a〉 = 0, for all a ∈ A. Hence, B⊥ ⊂ A⊥.

Theorem 6.8. The orthogonal complement A⊥ of A is identical with the orthogonal com-

plement of the closure of the span of A.

Proof. Let Ã denote the closure of the span of A. Because A ⊂ span(A) ⊂ Ã, we have

Ã⊥ ⊂ A⊥ by the previous observation. To get the other inclusion, let x ∈ A⊥. Given y ∈ Ã,

there is a sequence (yn) of points in the span of A such that yn → y. For each n, we can

express yn as a finite linear combination

yn =
kn∑
i=1

λ
(n)
i a

(n)
i where λ

(n)
i ∈ F and a

(n)
i ∈ A
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For each n ∈ N, we have

〈x, yn〉 =

〈
x,

kn∑
i=1

λ
(n)
i a

(n)
i

〉
=

kn∑
i=1

〈x, λ(n)
i a

(n)
i 〉 =

kn∑
i=1

λ
(n)
i 〈x, a

(n)
i 〉 = 0

where
〈
x, a

(n)
i

〉
= 0, for all i ∈ {1, . . . , kn}, n ∈ N, because x ∈ A⊥. By continuity of the

inner product, we have

〈x, y〉 = lim
n→∞
〈x, yn〉 = 0

So, 〈x, y〉 = 0, for all y ∈ Ã. Hence, x ∈ Ã⊥. Therefore, A⊥ = Ã⊥.

Theorem 6.9. A⊥⊥ is the closure of the span of A.

Proof. Let Ã denote the closure of the span of A. If x ∈ Ã, then there is a sequence (xn) of

points in the span of A such that xn → x. For each n, xn can be expressed as a finite linear

combination of elements of A:

xn =
kn∑
i=1

λ
(n)
i a

(n)
i

For any y ∈ A⊥ and for fixed n, we have

〈xn, y〉 =

〈
kn∑
i=1

λ
(n)
i a

(n)
i , y

〉
=

kn∑
i=1

λ
(n)
i

〈
a

(n)
i , y

〉
= 0

By continuity of the inner product, we have 〈x, y〉 = lim
n→∞
〈xn, y〉 = 0. Since 〈x, y〉 = 0 for

any y ∈ A⊥, it follows that x ∈ A⊥⊥. Hence, Ã ⊂ A⊥⊥. On the other hand, suppose that

x ∈ A⊥⊥. Because Ã is a closed linear subspace of H, we have H = Ã⊕Ã⊥. So, we can write,

x = p + y, where p is the unique projection of x onto Ã and y ∈ Ã⊥ = A⊥. Consequently,

〈x, y〉 = 0 because x ∈ A⊥⊥. Now, p ∈ Ã ⊂ A⊥⊥ so that 〈p, y〉 = 0. Therefore,

‖y‖2 = 〈y, y〉 = 〈x− p, y〉 = 〈x, y〉 − 〈p, y〉 = 0

Thus, y = 0 from which it follows that x = p ∈ Ã. Hence Ã = A⊥⊥.
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