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Abstract 
 
 
 This dissertation outlines a universal problem resolution framework implementing reasoning 
and improvement capabilities exhibited by human beings. The work reviews literature concerning 
major differentiations of human learning compared to contemporary artificial intelligence (A/I) 
systems. Deductions from the body of knowledge in mathematics, computer science, and human 
learning quantify the human capability for continuous and recursive self-reflection as a central 
differentiator. Analysis of capabilities of computational systems establishes that structural 
differences between the human brain and computational devices do not preclude computational 
implementation of human self-reflective capability.  The work establishes self-reflective capability 
as an enabler for a co-recursive and recursive paradigm operable with unlimited depth and breadth 
for the problem of optimizing problem solving itself. 
Discovering the general algorithm for the Tower of Hanoi is the base case used to show how 
simulation outputs can transform to higher order pattern recognition problems. The Tower of 
Hanoi provides a model that is common for any problem in that it includes an initial state, a desired 
outcome state, and an allowed transition state (where states allow multiple combinations of sub-
states). This model is representable in the system and thus enabled for solution discovery. Detailed 
examples wherein the system pursues problem search spaces in a manner enabling autonomous 
self-improvement as a natural result of encountering new types of problems validate the thesis. 
Cooperating agents analyze solution path determinations for problems including those concerning 
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their own optimization. This spawns state transition rules generalizable to higher layers of 
abstraction resulting in new knowledge enabling self-optimization. 
Major outcomes include:  
1) Proof by example that a continuous improvement universal problem resolution framework 
is constructible using currently available software and hardware, 
2) Production of a prototype that meets the thesis for a continuous improvement system ? non-
domain specific, extensible without reprogramming of the core system, lacking need of subject 
matter expert intervention; and executing within polynomial time complexity, 
3) Rationale that the framework coupled with technology advancements generate optimal 
solutions using fewer resources than possible without such a framework. 
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1. INTRODUCTION 
1.1 Motivation 
The motivation for this dissertation comes from a desire to advance computational processing 
in the area of problem solving from a domain-centric orientation to a general-purpose orientation 
[1], universal in nature with intrinsic support for automated continuous improvement. This 
motivation concerns not only the generic capability to model and represent problems within a 
system, but also the ability to generically discover and optimize solutions to computational 
problems. A key assertion of this dissertation is that the ability to resolve problems universally in 
terms of their optimal solutions will provide an automated improvement mechanism in the problem 
solving system itself and minimize the interaction requirements of domain-specific subject matter 
experts (SMEs). This dissertation substantiates the underlying assumption that problem solving 
itself is an NP-complete problem and therefore benefits from and provides benefits to other 
problems in the NP-class due to the effectiveness of approximation techniques and ever-increasing 
computational capabilities, even if the optimal solution never achieves polynomial time. 
A second motivation is to model the remarkable self-reflective component at work early on in 
human development whereby the mind intrinsically reflects on each experience in order to 
evaluate: (1) the success of varying approaches used to solve a problem; and (2) the methods of 
evaluation useful for success [2]. In addition, present at youth is a form of creativity that involves 
utilizing a solution from a prior domain and applying it in new ways to a completely different 
domain seems [3]. This capability appears to be part of the predictive aspect of human learning 
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and behavior whereby humans are able to quickly generalize and correlate current events with past 
experiences, learn to effectively filter vast amounts of sensory inputs, and make predictions [4]. 
The results of these predictions then help guide the process for filtering input data, analyzing events 
and, ultimately spawn creativity to realize efficiency improvements. Similar benefits should be 
realizable in a software framework that leverages self-reflection effectively.  
A third motivation comes from the desire to simulate the human learning processes within a 
computational framework [5]. Even children at very young ages possess the ability to differentiate 
themselves from the rest of the animal kingdom through mastery of complex language. Language 
learning remains a puzzling issue for the fields of both neuroscience and psychology [6]. This 
unique ability to evolve from virtually no language competency to highly sophisticated 
communication in the space of just a few short years surpasses the achievements by even the most 
adventurous artificial intelligence experiments. One hope is that a continuously improving 
problem solving system may lead to insights in the language-learning process.  
1.2 Research Goal 
These motivations inspire the goal for a universal problem solving system. However, not all 
problems are solvable, so the term ?resolution? better supports the concept of searching for the 
outcome to a problem. In addition, the term ?system? implies a self-contained product but the 
dynamic nature of problems indicate a need for extensibility and evolvability indicating a 
framework. Based on this, the dissertation targets a feasibility proof of a universal problem 
resolution framework (UPRF) as an outcome of prototyping the concept. 
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1.3 Research Questions 
These motivations raise four research questions: 
1) Is it possible to build a universal problem resolution framework that continuously improves 
and learns from its own execution including automatically cross-applying concepts learned 
in other domains in the most optimal method possible given the information available?  
2) What is the design of such a universal problem resolution framework (UPRF)? What are 
the constraints and requirements for a design that fully supports generic representation of 
problems, generic pursuit of problem solutions and continuous improvement utilizing an 
overarching set of processing components without the need for modifications of the actual 
components for the solving system? The specific subordinate questions under this are: 
a. How can UPRF generically encode problems from any domain without the need 
for redesign of the problem representation process? What is the level of effort 
required to represent various types of problems? 
b. How can it utilize the generic representation of a problem to explore possible 
solutions? 
c. How can it support a continuous improvement paradigm? 
3) Is UPRF practical for various types of problems?  
a. How would UPRF model, solve, and improve with various types of problems?  
b. Can it scale beyond the Tower of Hanoi base case to more advanced scenarios 
including scenarios representing real-world industry problems?  
c. What Subject-Matter-Expert (SME) interactions are required? What aspects of the 
framework help minimize these interactions?  
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d. Does the architecture support scaling to large scenarios and provide capability to 
leverage emerging technologies? 
1.4 Methodology 
The dissertation addresses the research questions through the following chapters: 
? Chapter 2 ? Literature Review: This chapter reviews the literature covering concepts that 
form the foundations and provide impetus for a UPRF. Problem representation, 
simulation, complexity, human learning theory, recursion, co-recursion, relational 
algebra, and reflectivity are among the topics reviewed. The section concludes with a 
review of the research and the implications to feasibility for the UPRF concept. 
? Chapter 3 ? System Framework: This chapter outlines the basic design of UPRF. The goal 
of this chapter is to lay the groundwork to support a processing infrastructure for problem 
representation. This chapter shows the feasibility for the framework to support the data 
and processes associated with problem representation, simulation, and learning. It also 
provides insights into how a UPRF can be constructed, prescribing a set of constructs for 
relational problem representation that support simulation and solution discovery including 
higher order problem transformation. 
? Chapter 4 ? Operational Proof: This chapter targets the first research question (regarding 
feasibility) from the perspective of proving that problems can be generically represented, 
simulated, and analyzed for solution patterns to generate higher order problems within the 
framework that learn how to solve the lower order problems. Whereas the system design 
chapter focuses on structure, this chapter focuses on operation. It postulates constructs, 
provides an informal semantic proof and concludes with a proof-by-example scenario 
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using the Tower of Hanoi. The goal of the chapter is to demonstrate how multiple 
simulative solving instances generate knowledge within a system for solving higher order 
pattern recognition to find a general solution. 
? Chapter 5 ? Practicality: This chapter targets the third research question concerning 
operation of the framework for various applications. It provides additional use cases 
beyond the Tower of Hanoi to show how UPRF extends to other types of problems. It 
explore more complex scenarios including: 
a. K-peg variations of the Tower of Hanoi illustrating the ability to scale from a 
lower-level problem domain to higher-level domains. 
b. Multi-agent/deterministic/exclusively competitive or collaborative including an 
example with Tic-Tac-Toe. 
c. Single-agent/non-deterministic/random influencer including an example involving 
stock market trading. 
? Chapter 6 ? Conclusion and Further Research: This chapter summarizes the findings, the 
significance of the work, and provides insights for the fourth research question involving 
the practicality of UPRF. It explores enabling technologies that can make the massive 
amount of data tracking practical. This includes high-speed storage technology, distributed 
problem solving, and high-performance computing. 
1.5 Chapter Summary 
This chapter introduced the motivation and research goals associated with the objective of this 
dissertation, a universal problem-solving framework (UPRF). The motivation derives from 
drawing parallels between the factors driving humankind?s advancements over time and software 
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frameworks leveraging a universal, continually improving model. Research goals associated with 
answering questions of feasibility, constructability, and practicality arise from this motivation and 
form the basis for the work of the dissertation.  
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2. LITERATURE REVIEW 
2.1 Maslow and Technology 
The technological progress of human civilization focuses on the improvement of solutions to 
problems facing the human species. A key differentiator between humans and other species is the 
ability to identify non-optimal aspects of our existence and utilize nature in the creation of 
continually improving remedies to challenges that detract from the human experience [7]. These 
remedies span across all of the aspects of human life and encompass all of the needs associated 
with motivation of human behavior.  
Maslow provides a hierarchy of needs for human motivation [8]. This hierarchy depicts a 
pyramid with basic physiological survival at the base of the hierarchy and self-actualization at the 
top. The respective intermediate levels moving up the pyramid are safety, love/belonging, and 
esteem. Through history, human civilization has evolved by continuously devising improving 
methods to meet these needs. Invention is the cornerstone of the human existence and significantly 
differentiates us from all other species. Throughout history, no other species has shown such 
significant capability for progression as humans. While all species evolve to adapt to changing 
conditions, rarely does a species achieve a higher level of existence using technology.  
2.2 Technology and Computer Systems 
Technology is often thought of as an advent of the 20th century, however the word 
?technology? comes from Greek ?????????? (technolog?a); from ????? (t?chn?), meaning ?art, 
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skill, craft,? and -????? (-log?a), meaning ?study of? [9]. Technology marks the beginning of 
human civilization. Technological progress ultimately involves enabling progression within a 
system from an initial state to a goal state where the initial state is less than desirable and the goal 
state is the desired improvement. At the bottom of the Maslow?s hierarchy, the invention of the 
wheel (epitomizing the beginning of civilization) optimizes the scenario of reducing the resistance 
between an object and its surface to minimize the effort required to move the object. At the top of 
the pyramid, the printing press facilitates the populace to enter into satisfaction associated with 
literary works.  
In the modern era of computer software, higher level programming provides the ability to 
create automated information management systems that help humans across all the layers of 
Maslow?s hierarchy ? from scheduling flights to tracking finances to social media interaction ? 
and everything in between [10]. Algorithms, improvements, and innovations within hardware and 
software continue to improve the capabilities of computer systems. A unique aspect of 
computational devices is the orientation toward solving problems across all domains. Computer 
systems are no longer only informational devices providing an answer to some sort of computation 
problem, but are bidirectional in nature [11] exerting control over systems such as financial 
markets, power grids, medical aids, and weapon systems. Computer systems solve problems that 
directly affect everything from human survival itself to geo-political stability.  
2.3 Universality of Computational Frameworks 
Modern computer hardware and operating system software platforms are able to run 
applications encompassing multiple domains without any pre-knowledge of the specific domain 
[12]. The same computational device using the same operating system that can run an accounting 
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package can also run word processing software, engineering simulations and data mining software.  
Programming languages provide support for creating application software that runs the full gamut 
of computational requirements and represents a universality class in the overall computer system 
framework. 
Relational database management systems [13] using Structured Query Language (SQL) [14] 
provide a generic capability to represent a wide variety of data. Any information that can be 
understood in terms of values related to other values, including those related through functions, 
can be represented in a relational schema [15]. Relational databases have evolved to support 
object-oriented storage, another class of universality in the area of information representation.  
More recently, data mining [16] software supporting business intelligence [17] and predictive 
analytics [18] such as MicroStrategy? and ?R? have emerged with increasingly considerable 
capabilities that are further enhanced by hardware developments such as solid-state storage, 
parallel processing and by evolution of distributed computing networks. Similar to programming 
languages and operating systems, data mining has become increasingly generic [19] with the same 
data mining software supporting analysis of different domains. 
2.4 The Universality Gap Pertaining to Problem Solving 
Despite the universality of operating systems, programming languages, databases, and data 
mining software, domain-specific limitations persist when endeavoring to discover solutions to 
computational problems [20]. For example, data mining software may provide a generic platform 
for analyzing pattern data, but, for many scenarios, subject matter expertise is heavily needed in 
not only the problem definition aspect, but also in evaluating results and formulating actions from 
those results [21].  
  
 
   
 11 
 
 
It is natural that problem solving tends to be domain-specific since problems that we encounter 
are by their very nature varied across the entire sphere of existence. For example, the solution for 
calculating a flight trajectory is vastly different from the solution for determining customer 
preferences based on prior purchases. Another example of domain-specificity is the Deep Blue 
system for playing chess [22]. While this system was able to defeat the best grandmaster in the 
world, it was not able to play any other games ? even a game as simple as tic-tac-toe ? without 
extensive re-programming [23]. 
The domain specificity not only concerns algebra, and correlative analysis, but also entails the 
algorithmic aspect for determining optimal solutions. Typically software designed to find the 
optimal solution for a problem focuses on the use of a specific algorithmic approach or a 
combination of approaches whether it be neural networks [24] dynamic programming [25], 
heuristic-based [26], genetic algorithms [27], simulation-based [28] approximation-oriented [29] 
or some other method. Without a doubt, certain types of problems benefit more from specific 
algorithmic approaches. Therefore, feedback mechanisms commonly found in problem 
optimization research are typically limited to merely evaluating the success of the algorithm and 
parameters [30] rather than a holistic approach that encompasses any algorithm and endeavors to 
determine the most optimal set of algorithms or the most optimal patterns for applying the 
algorithms.  
2.5 The Case for Universal Problem Solving 
While it is true that using even the highest-level programming languages (including those 
oriented towards problem solving such as PROLOG [31] and Python [32]) will yield different 
approaches to achieve optimality, this dissertation asserts there is a central issue that exists in 
  
 
   
 12 
 
 
problem solving itself that accommodates universality. The evidence for this comes from the large 
family of NP-complete problems. An NP-complete problem is a problem that does not have an 
exact solution in polynomial time and is thus NP-hard in execution, but is in the class of P 
regarding verification since NP-Complete problem solutions are verifiable within polynomial time 
[33]. 
All NP-complete problems ? some of which seem very different on the surface such as the 
zero subset problem, the traveling salesman problem (TSP) [34] and theorem proving are 
fundamentally reducible to each other through mathematical transformations. It has been shown 
that if one can find a polynomial-time solution to one NP-complete problem, then all NP problems 
would be solvable and thus that P=NP would be proven true [35]. The discovery that P=NP has 
incredible repercussions and, in fact, most mathematicians and computer scientists do not believe 
that P=NP is even possible. However, P!=NP also persists as an open question. 
The ability to transform problems into a generic format is not limited to variations of NP-
complete problems. Relational databases provide another example of the extensibility for 
modeling a problem within a common framework under the umbrella schema of the relational 
model, particularly through application of associative data modelling [36] and key/value pair 
approaches such as ?noSQL? [37] that support generic representations. The best evidence for 
generic problem representation comes from the representation of knowledge in the human mind. 
Humans are able to link memories together without limitation even where the schematic attributes 
of the knowledge is completely different. Images, emotions, facts, and events are all seamlessly 
related together suggesting the concept of generic schema in the infrastructure of the human mind 
that is able to represent all information such that any piece of datum can be related to another [38]. 
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Cognitive machines that utilize varying technologies with the ability to learn new information 
and improve themselves are yet another example supporting the concept of universal problem 
resolution.  Such machines function in their environments for a particular purpose but integrate 
with the environment and receive feedback to improve in their operations [39]. Cognitive machines 
are often used for surveillance and sensing of events in the environment and share the following 
similarities: 
? They have embedded (i.e., software-defined) signal processing for flexibility. 
? They perform learning in real-time through continuous interactions with the outside 
environment. 
? They utilize closed-loop feedback. 
 
Figure 2-1: Block diagram of cognitive radar closed loop system (Taken from Haykin [40]) 
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Figure 2-2: Feedback loop (from Haykin) 
 
2.6 Must P=NP for a Universal Problem Solver to be Possible or Useful? 
Turing?s ?imitation game?, also known as the Turing Test probes the issue of whether a 
computational device can become so sophisticated that it can respond indistinguishably from a 
human to a series of questions [41]. The question precludes that the machine would need to have 
access to the typical data that a human being possess. However, even if such a machine possessed 
all this information, could it respond in a manner that reflected human cognitive abilities?  Could 
such a machine learn from the dialogues intended to test the machine and apply feedback 
ultimately to evolve itself to pass the Turing test? 
Some think of the Turing problem as intractable or NP-complete even if a system had all of 
the data embodied in a human mind [42]. However, this dissertation asserts that P=NP is not a 
requirement for the design or the useful execution of a universal problem resolution framework 
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and is not a constraint preventing continuous improvement of the system. There are three main 
rationales for this assertion: 
1) Many optimizations to NP-complete problems derive from observation of data patterns 
that provide the basis for generalizations implemented via dynamic programming. 
Examples of this include cutting algorithms and branch-and-bound algorithms that make 
optimization decisions based on dynamic evaluation of the data associated to an instance 
of a problem. UPRF naturally promotes optimizations for NP-complete problems by 
tracking details of all state sequences related to all data inputs. This provides a mechanism 
to learn from data and ultimately assert rules into the transition state queries that optimize 
the solutions [43]. 
2) Approximate solutions to NP-complete problems continue to improve to be effective 
enough for practical purposes for very large problem instances [44]. For example, a 
validated-optimal Traveling Sales Problem (TSP) tour for visiting 24,978 cities in Sweden 
by means of approximation techniques was found in 2004 [45]. Humans demonstrate the 
use of approximation rather than rote calculation when faced with complex problems. This 
is evident since a human can accurately guess complex routes to a TSP problem within a 
small margin of error [46]. Most of the ?real-world? problems commonly found in human 
life are probabilistic and do not lend themselves to direct computation but approximation 
techniques. 
3) By embedding a cost-benefits problem into UPRF and instantiating this as a constraining 
problem on the system, the framework is able to maintain equilibrium in terms of effort to 
guarantee maximal effectiveness. 
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2.7 Problem Solving and Complexity 
For many years, computer scientists have wrestled with the Turing test [47] trying to devise 
methods based on the field of Artificial Intelligence to address the functional capabilities 
represented by this test. However, all attempts to this point have failed  not only in meeting the 
test [48] (not surprising given the fact that the test requires the computer to be in possession of all 
of the knowledge associated with a typical human persona), but in demonstrating the type of 
learning capability needed to achieve that of a human persona. To develop highly complex 
algorithms, researchers invested great amounts of time to anticipate the wide range of human 
behavior necessary to meet the Turing test. There have been applications and platforms developed 
that perform human-like behaviors and able to defeat human opponents in some very complex 
game scenarios that span beyond typical A/I algorithms including Chess. Deep Thought 
exemplifies such a pattern, however as is typical of many A/I systems, it is domain-specific, highly 
dependent on subject matter expertise for training, and computationally optimized for the 
particular domain thus representing a very narrow scope of human behavior [49]. 
Despite the advances in A/I, this dissertation asserts that the human learning model is the best 
software model to achieve the Turing test and that automated machine learning approaches based 
on the human mind have been inadequate to this point. Nature reveals that the human mind already 
contains the entire problem solving ability needed to not only potentially solve any solvable 
problem given adequate data, time and computational resource, but to develop more advanced 
problem solving automatically through the use of simulation, self-examination and domain cross-
over. One only needs to ponder the miracle of human language to realize this. By the age of four, 
a child has mastered all that one needs in human language to communicate and be understood by 
  
 
   
 17 
 
 
their family without any deliberate attempts to train the child in human language speech and 
recognition [50]. 
The focus of AI has traditionally been on the development of specific algorithms or targeting 
specific domains rather than on the holistic process of learning and problem solving. A holistic 
process can function across all domains and is not limited to particular algorithms or applications. 
In the last several years, some noteworthy efforts address the holistic issue of automated machine 
learning. The basis of these efforts is on study of the brain from both a physical operational 
perspective as well as a functional aspect. 
This dissertation proves by induction and through example that it is possible to model 
information about problems and the solution paths for problems in a framework to enable eventual 
achievement of the Turing test. This is accomplished through ongoing pattern recognition that 
continually analyzes solution paths to generate new patterns which themselves become new 
problems in an optimal path problem continuum that is domain agnostic. Using a problem 
definition alone can determine not only the optimal solution paths for a problem, but the optimal 
solution path technique or algorithm associated with the problem. Such solution path techniques 
are then employable to optimize the solution for variations of not only the same but also similar 
problems, as well as for cross training into other domains. The exercise of the solution path 
techniques become part of the knowledge of the system. 
A key issue for such a problem system is the issue of computational complexity. Even if a 
universal problem resolution framework is constructible, will it be able to operate in polynomial 
time on P type problems only, or will it be able to achieve polynomial time complexity even within 
the class of NP-complete? This is a very significant question relative to whether or not the problem 
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solving apparatus is useful for discovering algorithms for NP-complete problems. This dissertation 
uses the Tower of Hanoi, an NP-hard problem with exponential complexity having a generalized 
solution as the base use case. Although the system does not address NP-complete problems 
specifically, this dissertation asserts that eventually the system will determine the optimal solution 
path for discovering the optimal algorithm for an NP-complete problem. The system will 
eventually also improve itself within polynomial time constraints. The problem solver itself 
represents a variation of the traveling salesperson in that it is seeking out the most optimal path 
from start state to the end state for its own operation. Even if the optimal path utilizes 
approximation and the derivation is not deterministic, this does not defeat the utility of the system 
for generic problem solving and solution optimization. 
2.7.1 What is Problem Solving? 
For the purposes of this dissertation, problem solving is considered a process for achieving a 
goal state, given an initial state, including a set of rules providing constraints on how the state may 
be changed in transitioning from the initial state to the goal state [51].  This definition provides a 
universal basis for pursuing problem solving in any context that supports state definition and state 
testing, including mathematics, formal specifications, and even psychology. Within the realm of 
computational problem solving, a state transition system representable by a Kripke structure [52] 
provides support for pursuing a solution for a problem.  Since states in finite state automata 
represent values of objects relative to a point in time without specifying the types of objects, this 
provides unlimited flexibility for defining a state system.   
This definition provides the basis for a state machine that can support any arrangement of 
items in terms of their semantic values related to other objects.  Such a definition provides for a 
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state machine that, for example, could represent a particular equation relative to the variables of 
the equation or even more significantly the arrangement of a particular problem state relative to 
other problem states in terms of solution paths.  For purpose of this work, solution paths indicate 
a sequence of state changes representing the truth of a conditional state for a problem at each state 
transition in the transition from the initial state of a problem to its goal state. Another term utilized 
in the undertaking of solving problem systems in terms of state is relational state tracking [53].  
Relational state tracking allows a complete history of all state changes within a system. This 
enables reversibility to a prior state and also supports reproducible reversibility so long as the 
underlying functions that change state are deterministic and the functional relations projecting the 
values associated to the states are stored along with the overall data state [54].  
2.7.2 Trends in Data Science and Machine Learning 
?Big data? has become a buzzword in today?s technological world and, although the entire 
field is buzzing about it, there is no true definition of ?big data? at this point. In fact, it seems that 
everyone has a different definition for it. There are however five key characteristics attributed to 
this kind of data ? whether separately or combined. The first is a volume of data that is large 
enough to require special considerations in order for storage and analysis. The next is a variety of 
data that consists of many different types of data possibly also from multiple different sources. 
Third is a velocity of data production that warrants special consideration ? usually in this case the 
use of old or ?stale? data production is not valuable. Fourth is the value of the data produced ? i.e. 
data that has perceived benefit to certain organizations or initiatives. Lastly is the veracity of data 
? i.e. being able to verify the accuracy of the data [55].  
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Today?s technology news focuses on ?big data? and systems that work with such big data. 
Use cases for forecasting events based on copious amounts of data are increasingly prevalent. 
Along with this, data science and machine learning are now becoming industry focuses. These 
trends are all relevant to autonomous problem solving. However, the focus of this dissertation is 
on a framework that can integrate research from machine learning, data science, and predictive 
analytics in a holistic fashion. Machine learning systems learn from data for different types of 
scenarios including supervised and unsupervised learning [56]. The systems serve a useful 
framework for problem solving by identifying patterns and predicting solutions. However, the 
emphasis of this dissertation is that no currently implemented systems provide a model for 
continuous reflection in order to reflect on their own performance and generate higher and higher-
level machine learning scenarios that implement improvements into the machine learning systems.  
The process for injecting feedback and integrating feedback as higher order problems is not a 
machine-learning problem but a software design challenge involving recursion, data modeling, 
and a re-entrant methodology for turning each level of problem solving into an optimization 
problem [57]. Therefore, this work does not concern itself with machine learning, but rather the 
framework that can host machine-learning algorithms, inspect their success, and utilize machine-
learning algorithms to learn about the process of problem solving. The outcome of this is the 
enabling pattern matching of higher and higher order problems instantiated into the framework. 
For purposes of the dissertation, machine-learning algorithms are black boxes evaluated in terms 
of success and relevance correlated to their outputs and input data from problem spaces, with the 
algorithms themselves treated as data points in sequences converging to higher levels of learning. 
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2.7.3 Recursion  
Recursion solves problems that are either too large or too complex to solve through traditional 
methods. Recursive algorithms work by deconstructing problems into manageable fragments, 
solving these smaller or less complex problems, and then combining the results in order to solve 
the overall problem. Recursion involves the use of a function that calls itself in a step having a 
termination condition so that repetitions are processed up to the point where the condition is met 
with remaining repetitions from the last one to the first [58]. 
Mathematical induction proves recursion. The definition of primitive recursion is [59]: 
I-algebra (X, in) admits simple primitive recursion if for any B ? B and morphisms 
d; : F;(X x B) -+ B, there exists a S : X -+ B such that the f. d. c. for i ? I.  
Corecursion then is the dual form of structural recursion. While recursion defines functions 
that utilize lists, corecursion defines functions that produce new lists. Thus, with corecursion, 
output rather than input propels analysis and is able to express functions that involve co-inductive 
types. Corecursion originally came from the theoretic notion of co-algebra with practical 
implications for higher order problem solving needed in a continuous learning framework [60]. 
Four primary methods prove corecursion: These are fixpoint induction, approximation lemma, 
co-induction, and fusion. Fixpoint induction is the lowest-level method, primarily meant to be a 
foundation tool. Approximation lemma allows the use of induction on natural numbers. Co-
induction looks directly at the structure of the programs. Fusion is the highest-level of these four 
methods and allows for purely equational proofs rather than relying on induction or coinduction 
[61].  This dissertation utilizes both coinduction and fusion with the Tower of Hanoi to prove that 
the system supports corecursion in order to achieve continuous improvement. 
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2.7.4 The Tower of Hanoi as a Typical Problem 
The Tower of Hanoi [62] meets the requirements for a recursion problem, although it can be 
solved through iteration as well. The Tower of Hanoi represents a simple problem that contains a 
definitive solution pattern for the optimal number of steps. As the number of discs increase, the 
same solution approach applies in a recursive fashion. While it is trivial to implement an algorithm 
to solve the Tower of Hanoi, it is not so trivial to discover the algorithm in a generic fashion using 
simulation alone without pre-knowledge of the algorithm. As a typical recursion problem, the 
patterns that emerge from the solution model for discovering an algorithm relates similarly to any 
other recursive problem. Thus, the Tower of Hanoi provides a useful example for an exercise in 
algorithm discovery. The complexity of Tower of Hanoi also provides an example for incremental 
domain learning by means of increasing the complexity through adding another peg or by making 
the number of pegs a variable. 
2.8 The Role of Feedback in Problem Solving 
It is becoming increasingly more common for computing systems to incorporate feedback in 
order to provide improvement to software. A simple example that Microsoft Windows? users are 
familiar with is the feature that prompts the user if they wish to communicate information about 
an event causing an error back to Microsoft. By gathering, the information related to the error, 
Microsoft is then able to try to diagnose a root cause and potentially provide an improvement to 
resolve the issue back into the software through a service pack. Feedback is a fundamental tenant 
of evolutionary theory in that it provides a means to incentivize an organism to change its behavior 
if the feedback is adverse to the organism?s survival [63].  Humans regularly employ feedback in 
their thought processes and it is a fundamental concept for motivational learning theory. Software 
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evolution based on a feedback loop is a key aspect for continuous improvement within a software 
process [64].  
2.9 Relational Models and Neural Networks 
State Sequencing involves the capture of state changes occurring to an object or the attributes 
of an object. Through the capture of all object and attributes related to other objects and attributes 
in a system, relational state descriptions are obtained that represent the state changes and their 
relationships to changes of other attributes within the system. Capturing these relational state 
sequences allows a complete representation of a functioning system including the ability to replay 
the model and analyze sequences derived from execution of one model to that of another model.  
Relational state sequencing is a key enabler for representing Bayesian networks in both 
probabilistic and deterministic problems [65]. Storing these sequences into a repository and 
correlating them back to the source endeavors foster both unsupervised and supervised learning 
for intelligent analytic systems [66]. Functional programming supports lambda calculus and 
pattern matching to integrate relational state descriptions in an evolutionary manner to solve 
problems [67]. 
Neural networks [68] and relational models have different approaches, but are compatible for 
information representation. A neural network can be represented relationally and a relational 
model represented in a network model [69], [70]. This allows the use of a relational model to store 
the concepts associated with a network learning exercise. Integration of functional programming 
outputs into relational state sequences that represent the complete behavior of a system allow 
convergence to recursive relations to generalize behavior of systems [71]. 
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The integration of neural network information into relational sequences within the context of 
a descriptive relational model enables the relational state tracking approach alluded to earlier in 
this chapter. Through relational state tracking, the capture of complete information about a system 
behavior occurs which then enables the complete analysis of the correlations within the system. 
Through a recursive framework, actions used to analyze the relational sequences become enablers 
for higher and higher order problem transformations that optimize not only the base problem but 
the higher order problems of how the framework itself can achieve new capabilities through its 
own introspection [72]. These new capabilities form the basis for the generation of new algorithms 
that provide further improvement within a software framework [73]. 
2.10 Domain Crossover and Associated Limitations 
One limitation of many A/I systems is that their orientation is focused to solving a problem in 
a particular domain such that the formulas, functions, data structures, and other aspects of the 
software application are optimized for the domain and may have limited utility outside the domain. 
For example, while neural network architectures for single-layer nets have shown relevance to 
certain domains, neural networks for multi-layer domains suffer from interaction complexity [74].  
An algorithm applied effectively in one problem domain   may be completely ineffective for 
another domain. This is because problems vary significantly in terms of their initial state 
configurations, types of objects involved, transition state constraints, and final goal states. Each of 
these has an impact on what technique is optimal for the particular domain.  
The lack of automated algorithm selection depending on the problem type is a common 
problem encountered by novice users using sophisticated data mining software. Many data mining 
packages prompt the user as to the type of mining model to use, whether it be associative, 
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clustering,  structural, pattern-based, time-series, etc.  Often the users of this system lack the 
subject-matter expertise or experience in the domain to make a well-informed decision. Some 
systems now try to predict the model that will be most effective by sampling the data and 
evaluating the effectiveness of a model, thus incorporating feedback as part of the problem solving 
approach.  
One approach commonly used for problem solving in traditional A/I is the use of genetic 
algorithms [75]. NP-complete problems domains commonly use such algorithms as well as other 
domains with some success. Genetic algorithms can have utility for cross-domain learning as a 
means to optimize a solution approach rapidly [76].  However because genetic algorithms focus 
on energy functions for a specific domain and follow an evolutionary model that optimizes toward 
a particular goal state in a random fashion, their usefulness for finding the best solution that can 
map from one domain to another is limited, particularly if genetic drift accommodation is lacking 
[77]. Through an approach that utilizes machine-learning algorithms, including genetic algorithms 
as black boxes inside of the holistic framework, the genetic algorithms themselves along with their 
limitations and correlations to problem types become an area of continuous learning within the 
framework. 
Domain crossover for the context of this dissertation indicates a deliberate effort on the behalf 
of a system to apply a solution technique to another domain in order to determine the usefulness 
of the technique to the newly targeted domain. A simple way to determine this is to actually test 
the technique in the targeted domain and evaluate effectiveness relative to other techniques. 
However, this technique imposes potential inefficiencies ? one of which being the difficulty in 
determining an effective sample size that adequately tests the technique since the data values may 
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be skewed for certain attribute values for entities subjected to the technique. In addition, even if a 
technique applied to a particular problem in a domain is effective, how does one know that it will 
be effective to other problems in the domain? For example, what are the criteria that cause a 
technique to be effective that may vary even within the same domain for different problems? 
Making decisions without all the information on a system is a challenge for decision systems 
and expert systems. Often subject matter experts (SMEs) train these systems to orient data mining 
techniques based on certain conditions in the data or types of problems; however, this is a tedious 
and error-prone process. UPRF?s ability to automate the trivialities of inspecting data results 
against a goal reduces SME interaction. 
When contemplating the various obstacles of domain-crossover, it may seem that attempts to 
utilize proven techniques from another domain or from dissimilar problems have such a low 
likelihood of success as to be virtually no improvement over random selection -- perhaps even 
worse considering the addition effort of applying techniques likely to fail. However, this assertion 
is proven false by examining systems that are effective and do utilize domain-crossover. A good 
example of such a system lies in the area of human learning and problem solving. In human 
problem solving endeavors, people often successfully apply a solution technique from a seemingly 
unrelated domain onto another domain.  
How do humans accomplish domain-cross-over and can the same techniques apply to 
software-based problem solving? For example, how is it that a child who gets bit by a dog as a by-
product of harassing it make the decision to be careful in treating other types of animals with no 
resemblance to a dog? In this case the answer lies within the question of whether the child is able 
to recognize that there are commonalities between animals such that a dog and a cat are both related 
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closely enough that the cost/benefit of restraining their impulse has a positive return [78].  For 
example, a young child who is bit by a dog because of treating it roughly, with limited knowledge 
of machine commonality from dogs to self-propelled vacuum cleaners (i.e. a Roomba iRobot?) 
may hesitate before treating a vacuum cleaner roughly. These examples indicate correlation is the 
enabler for human achievement of domain crossover. In the same way, problem-solving systems 
should also be capable of domain crossover by linking attribute commonality (either directly or 
indirectly) among problem domains. 
2.11 Association, Pattern Matching, and Prediction 
Based on the concept of associative correlation and commonality [79], an equation can be 
constructed to avoid an adverse response wherein the initial state involves an object that relates to 
another object belonging to a problem that has already been solved. Combining the concept of 
feedback with association enables prediction generation. In ?The Two-Second Advantage? the 
authors postulates that humans make decisions based on attempting predictions and monitoring 
the success rate in response to associative patterns [80] and thus optimize their effectiveness to 
adjust to new circumstances. Without this ability, humans would not be able to function because 
the amount of sensory input received by the brain is too much to analyze completely in time to 
respond effectively. Consider the millions of neurons that are fired every 40 milliseconds or so 
from images transmitted by the retina in comparison to the number of computations that a person 
can perform in one second [81].  
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2.12 Fuzzy Logic, Probability, and Statistics 
A study of predictive learning links to the concept of ?fuzziness?. Computation commonly 
focuses on binary absolutes wherein a logical expression yields either true or false with some 
systems including the concept of undefined/unknown. However, decision-making as done by 
organisms, particularly human is not strictly binary, it is based on probability.  Probability is a key 
aspect of data mining in order to determine correlations. Probabilistic data mining systems estimate 
likely correlations. The more robust data mining systems calculate confidence intervals that 
accompany the correlational findings.  Utilizing ?fuzzy logic?, programs are often able to achieve 
higher efficiency while retaining high reliability for the targeted problem [82]. Recommendations 
result from probability models, which while not guaranteed to be correct, are likely enough to 
justify acting upon probability calculation. A good example is a high-frequency trading application 
that does not have time to examine all of the data, but has enough time to identify significant 
deviations to anticipate a market risk and perform a mitigation action. This concept is useful for 
mathematical models including Fourier Transformations to reduce problems of unsolvable scope 
via estimation or division to probability problems that reflect the accuracy of the fully constituted 
problem accurately enough to be useful while not being too slow to be practical [83]. 
2.13 Holistic A/I or ?Authentic Intelligence? 
At this point, it is apparent that the optimal combination of logical techniques performed in 
an optimal sequence is greater than the sum of its parts. That is, each of these techniques taken to 
an extreme without integration to other techniques has less value than the intelligent combination 
of the techniques.  Pure prediction is nothing more than guessing with limited utility. Calculating 
statistical likelihoods is a waste of resources for a simple problem. Constantly changing a solution 
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technique due to occasional unexpected feedback is worse than relying on one that is usually 
correct. Associating items that have similarity into the same problem class is not useful if the 
similarity does not relate in some way to determining the outcome of a solution technique. Even 
reliance on pattern recognition and relational state tracking may lead to false solution paths if the 
relational state sequences form the same pattern for a certain grouping of initial configurations. 
For example if Tower of Hanoi is instantiated only having an odd number of disks, pattern 
recognition will yield a technique that dictates always moving to the third peg on the first move. 
This solution pattern will prove faulty once the initial state is set for the game to have an even 
number of disks. Until a suitable variety of test cases establishes a causality relationship between 
the number of discs and the required first peg move, the apparently universal truth condition arising 
from a preponderance of test cases will be in a state of failure. 
Based on the above, the optimal problem-solving model does not confine itself to a singular 
approach, but is combinatorial in the selection and sequencing of application of various techniques 
to a problem.  This brings the focus to intelligence. In order for all these techniques to work 
together, the techniques must integrate in the most optimal fashion. In this sense, traditional A/I 
work is mainly too narrow in scope. The emphasis tends to be on particular techniques such as 
neural networks, Bayesian-based, symbolic logic, pattern matching, etc. (all of which work well 
when paired to the suitable problem types) rather than on the problem of identifying how to find 
the optimal combination of techniques for a problem solution.  
2.14 Self-Organizing and Diminishing Returns 
The concept of searching for solutions to problems in a symbiotic fashion that benefits the 
overall system manifests in the principle of self-organization [84].  Self-organization is a 
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requirement of UPRF in order to improve itself without external modification. To be effective, 
self-organizing systems must possess the following attributes [85]: 
? Autonomy: The system needs no external controls. 
? Emergence: Local interactions induce creation of globally coherent patterns. 
? Adaptability: Changes in the environment have only a small influence on the behavior of 
the system. 
? Decentralization: The control of the system not done by a single entity or by just a small 
group of entities but by all entities of the system. 
 Merely finding the optimal way to combine techniques for a particular problem and then 
using them is of little utility given the myriad types of problems and techniques available. Such an 
approach if done randomly is undoubtedly worse than using any one technique exclusively.  
Therefore, a more important problem is discovering how to find the optimal solution combination 
technique.  However, even if one solves the second order problem of discovering an optimal 
solution combination that finds the optimal combination for the lower order problem, can the 
second higher order problem for finding the optimal combination also be optimized?  One answer 
is to transform the second order problem to a higher-level problem targeting the goal state as being 
the optimal way to find the optimal way to find the optimal way to solve the original problem. 
2.14.1 The Infinite Recursion Problem 
The dissertation asserts that any problem whereby complete state tracking of all the steps 
utilized to solve the problem including capturing all of the function calls, assertion tests, and 
outcomes can be transformed to a higher level problem that is representable in a generic state 
machine. However, even with implementation of such a means for recursive problem optimization, 
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the perfect solution path will never be determinable since each level of solution path optimization 
leads to a higher order problem.  The outcome is that each higher order problem targeting the 
optimization of the lower order problem provides additional benefit albeit with diminishing returns 
at some point. Another problem is that if the recursion loop fails to unwind, none of the problems 
in the optimization hierarchy ever receives any optimization. Constructing such a system for 
solving problems would in fact never solve any problem because it would never exit the recursion 
loop; this is known as the infinite recursion problem [86]. 
2.14.1.1 The Recursion Exit Dilemma 
For recursion problems that involve potentially infinite recursion, a constant or type of 
expression serves as an exit condition to cause the unwinding of the recursion [87]. This technique 
has application to the recursive problem solving machine construction outlined earlier.  This seems 
the best option with UPRF since infinite recursion is of no use and the framework can provide 
another optimization problem that concerns the exit condition for the recursion itself.  
Depending on the problem complexity and effectiveness measured at each iteration of solver 
recursion, the optimal exit point is highly variable. Therefore, use of a constant to control this is 
inadequate. A better approach is to unwind the recursion in parallel spawning sub-problems until 
exploration of the solution space for the lower order problem completes or reaches some threshold. 
In this model, co-recursion occurs with recursion such that the new high order problems derive 
from lower-level instance solving and optimize the lower level problems. In this scenario, the 
optimization techniques are passed down to the lower level problem immediately or deferred by a 
recursion gap representing a threshold of hierarchy levels that triggers the application of the 
techniques back to the lower level problem. One advantage of the co-recursive/recursive approach 
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is that the system can infinitely attempt to optimize higher and higher order problems while 
providing utility and continually improving.  
From the above, continuous improvement capability is possible provided the constraints of 
generic problem representation, complete relational state representation, and a base set of functions 
have sufficient robustness to accommodate analysis and problem solving. Sufficient robustness in 
solving and analytical functions is achievable through at least three different means:  
1) The functions contained in the baseline of the system provide a high enough coverage for 
pattern matching, probability functions, data mining functions, condition assertion functions, and 
condition testing functions such that the exercise of the functions in concert and tracking of their 
invocation patterns is better than random choice;  
2) There exists an extensibility function such that the system is able to incorporate new 
functions autonomously in response to dead-ends for solutions using some type of dynamic 
function execution model combined with dynamic search or an ability for a SME to add functions 
dynamically (however, this is a violation of the principle that SME intervention should not be 
needed);  
3) The system is able to write its own functions, track the primitive operations used for writing 
the functions in terms of relational state sequences relative to the optimization and dynamically 
execute them by combining primitive functions in different combinations in order to accelerate the 
effectiveness rate of function application relative to optimal solution paths. 
2.14.2 The Equilibrium Paradigm 
Equilibrium within a system manifests when the system reaches a steady state or ranged state 
such that a balance between different functions exists [88]. This result is typical of systems that 
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act upon themselves; the reactions in the system arise from actions and have a counter effect on 
the initiating actions over a sequence of states. Financial markets to a certain degree exhibit 
equilibrium since money inflows, money supply expansion, and money redistribution act upon the 
overall system [89] (Pareto Principle [90]). Equilibrium generally indicates that a system has 
reached a level of optimization whereby alterations do not provide benefit if the system is 
achieving the desired goal state. 
Multi-agent reinforcement learning can facilitate equilibrium in machine learning systems 
[91]. These systems utilize cooperating agents to converge to a desired equilibrium that spawns 
actions that contribute in actions that optimize reaching of the goal. Due to the recursive nature of 
UPRF and the possibility for endless iterations, equilibrium is a key aspect to accommodate in the 
framework as a continuous operational problem. Utilizing the framework to host this equilibrium 
problem allows UPRF to leverage the same infrastructure as that used for other problems and reap 
the same benefits of cross-domain learning and continuous improvement.  
2.14.2.1 Targeting equilibrium as the goal state 
Based on the above, the master problem for a universal problem solver is to achieve and 
maintain equilibrium where equilibrium represents the optimal ratio of computational processing 
utilized for optimizing the system relative to computational processing utilized for solving 
problems. Herein lies a central tenant of this work; the optimal solution to a problem is able to be 
defined in terms of reaching equilibrium in a co-recursive/recursive problem solving system across 
all depths of the hierarchical problem space including the optimal method for arriving at optimal 
equilibrium. By targeting equilibrium, the framework avoids arbitrary recursion exits and is able 
to manage its recursion.  
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The concept of self-reflection was alluded to earlier in the context of a feedback loop and as 
a differentiator of UPRF compared to existing problem solving frameworks. This self-reflective 
process ensures that measurement of all actions is relative to prior results for correlated actions. In 
some cases, the correlations may be distant but still relevant. For example, one may consult the 
Internet to obtain directions and a time estimate to travel to a specific location but the time estimate 
is only accurate given the current traffic. The estimate may not be accurate for a later time when 
some event may occur that adds to the traffic. A person may mistakenly not factor in the occurrence 
of an event and assume the travel time to be exactly as prescribed on the web site. It is only later 
when the person arrives late due to some large event occurring along the traffic route such as a 
sporting game that the person learns to not only search for the directions and estimated time, but 
also for nearby events related to the destination. This type of learning affects our processes even 
across domains to the point that the experience may remind of the need to be cautionary in a 
seemingly unrelated endeavor such as finishing a group collaborative document. The experience 
of lateness due to an unexpected event may heighten the fear of being late on a project involving 
multiple individuals where the factoring of the commitment level of all individuals is not included. 
This process of self-reflection ultimately leads to more complex and interrelated schema from a 
human perspective [92] as well as when implemented in software. 
The targeting of equilibrium is a natural goal state postulated by evolutionary theory and 
exemplified in human learning. The human mind is capable of endlessly exhausting computation 
cycles in self-reflection to a point that the individual takes no action resulting in a paralyzed state. 
Yet, without this model of reflection, there is the risk of an impulse decision that does not leverage 
experiential knowledge leading to a disastrous error in judgment. Exclusivity to either extreme is 
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disastrous to self-preservation and prevents survival. Based on this, it is evident that the human 
organism through decision-making driven by learning and problem solving experience is in a 
constant search for equilibrium. Thus, a system that targets equilibrium in self-reflection and 
optimization (self-organizing) in terms of higher order problems to generate optimality patterns 
for lower order problems and continually probe cross-domain problem solving improvement as a 
relation onto its exercise of computation for direct problem solving should be achievable. It is also 
arguable that such a system emulates human creativity since creativity appears to arise out of 
pattern recognition between distantly related problems triggered by a commonality relation that if 
true would drastically improve the solution for the problem. The concept of creativity in this 
context represents the outcome from pursuing an optimization goal driven by the probability that 
a decision with potentially low likelihood to succeed is worth attempting based on the metrics of 
prior forays. 
2.14.3 Managing Time and Storage Complexity  
The time and storage complexity of a problem solving system is exponential for NP-complete 
problems until optimizations are found, since the problem space must be explored as a search 
problem that exponentially increases in size for trying out all possible state sequences [93]. 
However, the equilibrium goal places a constraint on the system for optimality that requires the 
system to retain polynomial time complexity. This allows the system to constraint itself to finding 
optimizations that may not be exact but are justified based on a return-on-investment principle 
where a ?good-enough? solution is better than no solution at all. 
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2.15 Towards a Generic Schema for Problems 
For a problem solving system to function generically across different problem types, the 
system must be able to interact generically with all types of problems. This implies the need for a 
general-purpose schema for representing information about any problem. Historically, problem 
domains rely on semantics and schemas specifically targeting the domain rather than on generic 
constructs. Various models have been put forth to try to make schemas for problems generic [94], 
but without a unified model from that can represent knowledge from all problems, integration of 
knowledge across problem space requires custom agents that can interpret the information specific 
to a problem domain. Case-based reasoning (CBR) systems provide a model for such a generic 
database for general purpose problem solving. CBR functionality is dependent on a path and 
pattern database that stores the all problem and solution states [95]. 
Proof that such a schema also enables autonomous improvement arises through a simple 
Tower of Hanoi scenario where multiple variations of the game play out using different instances. 
The next chapter illustrates this by instantiating two through five discs to generate relational state 
sequences intersecting different conditions of specific attribute values to conditions defining other 
attribute values in the system.  The relational state sequences incorporate derivative states to 
provide recognition sequences that reflect problems that project into functions based on change 
frequencies. Many NP-hard problems exhibit symmetrical patterns when interrogating the problem 
space related to the solution space including Tower of Hanoi.  
In the Tower of Hanoi scenario, analysis of discs two through five reveals symmetrical 
patterns allowing simple pattern recognition using bit functions to generate functions that 
generalize conditional expressions relative to the number of discs for setting the peg number. The 
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conditional expressions that prove as valid transition state optimizations to add to the rule states 
are able to generate the prediction state sequences by the time that the count of discs reaches six, 
providing linear time complexity for the solution path identification after the first four test cases. 
Generalizations spawned from optimizing the higher order problem for finding the optimal 
solution serve as optimization conditions to add to the lower level problems. The framework 
revisits the lower level problems and applies the generalizations. As more variations are tested, 
pruning the set of candidate generalizations becomes possible. Using the tested conditions as 
optimization expressions starting with a count of discs equal to six, the conditional expressions 
that prove as valid transition state optimizations provide linear time complexity for arriving to the 
solution path for all future attempts regardless of the number of discs. 
2.15.1 Rationale for using a Relational Schema 
Relational algebra provides [96] finitary relations that allow objects to be organized relative 
to other objects in terms of existence dependencies as well as enabling object values to be 
associated to the parent object containers. This allows a relational database schema to represent 
semantically how collections of objects relate in terms of dependencies as well as values. Such a 
schema provides utility for UPRF since full state representation is dependent on object values 
relative to each other at each sequence in a problem solving exercise. Since the values are able to 
provide the linkage between the objects and this information is part of the information schema of 
the model, this effectively supports neural-network constructs of associating an object to another 
object. Metrics regarding the relative strength of a connection can be determined in terms of the 
number of intervening nodes as well as in terms of numbers of physical connections based on 
cardinality between the nodes. 
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Value change state relative to other values in the model over a sequence of states yield binary 
strings indicating truth or falsity between every object in the system for every state. Through 
application of transform operators successfully predicting the outcome of one instance from other 
instances, a progression of transformation operator sequences results. The UPRF schema thus 
demonstrates an effective modelling of a neural network within a relational construct with all 
objects in the endeavor linked together. 
Since the relational model provides for information about itself within the same model containing 
the information, it supports self-representation and a recursive data structure, which are both 
foundational to provide generic semantics to agents interacting with the structure. This is a key 
component for supporting the recursive processing identified earlier associated with a problem 
solving system that can interact with itself.  
2.16 Rationale for the Possibility of UPRF 
The human mind is vastly different from current computer systems in terms of structure and 
operation; however, computer systems and the mind share many similar attributes. These attributes 
allow computer systems as well as humans to fulfil the requirements of an ?Intelligent System? 
[97]. Intelligent System implies the ability not only to solve problems but also to learn and improve 
in a continuous fashion with minimal outside intervention. This section examines evidence 
supporting the thesis that capability for autonomous continual learning present in humans is 
possible for a computational device through appropriately designed software. 
Many have attempted at distilling human problem solving into software frameworks. Among 
these attempts include the use of cognitive primitives [98], evolutionary multi-agent systems [99], 
and algorithm pools [100]. UPRF is novel in this regard since rather than choosing a particular 
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machine learning strategy, it resides at a layer above the A/I realm to act as a holistic consumer 
and benefactor from the underlying algorithms. 
2.16.1 Attributes of Intelligent Systems 
This section explores the attributes that support the processes of general problem solving and 
ongoing improvement or optimization of the solution-discovery process. Four attributes surface as 
possible cornerstones for understanding a problem, discovering solutions, and profiting from the 
exercise to enable improvement of the overall problem solving framework so that additional 
problems incrementally benefit from the problem solving experiences [101]. These attributes link 
to the processes outlined in Figure 3-1. They are: 
1) Problem Representation [102]: A system cannot endeavor to solve a problem unless the 
problem can be schematically represented such that a solving agent can understand the 
starting state, desired state, and allow intermediate states that are traversable in order to 
find solution discovery paths. 
2) Solution Space Probing: A solution to a problem is undiscoverable unless there is a process 
for exploring possible solutions to determine the arrangement of steps needed to achieve 
the solution. 
3) Performance Metric Collection: For a system to be able to improve it must have a 
mechanism to collect metrics about how well it is performing so that these metrics can be 
analyzed to determine the relative effectiveness of actions carried out by the system for 
problem solving.  
4) Performance Analysis: There must exist a process that correlate the effectiveness of a 
system to meet its goals with the steps taken to obtain the goals.  
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2.16.1.1 Problem Representation 
A generic solving system is only possible if the organization of problem information is in a 
structure that supports generic evaluation.  Problems that can occur in wide varieties of domains 
involve a wide variety of different types of objects. It is impossible to anticipate beforehand all of 
the different types of problems that can occur. Therefore, self-improvement and continuous 
learning require that the problem-recording structure is robust and extensible enough to store 
information about a problem even without knowing the manner of it solution.  
In humans, children exemplify this paradigm in language learning. Children receive language 
information well before the time they are able to use language to express themselves. Despite the 
inability of an infant to understand spoken language or use it in early infancy, the capability to 
decipher speech and learn to use it develops autonomously through experience without deliberate 
instruction. Research suggests that the child is able to schematize information about language even 
before it is able to decipher the meaning and semantics necessary to employ language [REF]. 
How humans are able to schematize problem information such that a solution discovery 
process can understand the meaning of the problem and work toward a solution is a mystery. One 
theory is that neurons and synapses form a neural network in the brain through connections that 
represent information about a problem [103]. Neural networks provide a method for representing 
information through connections. The arrangement of a set of objects perceived can thus map into 
a network that contains the information about how the objects inter-relate to each other. An 
unanswered question regarding human thought concerns how the mind is able to map particular 
types of connections to thought processes associated with thinking about and solving the problem.  
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Software applications provide a caricature of problem understanding and solving for specific 
domains using a variety of different methods for representing information and then processing the 
information to meet the goals of the system [104]. For example, a flight reservation system stores 
information about flights, routes, and scheduling constraints such as airplane seating capacity, and 
factors affecting efficiency and performance of the aircraft including speed, range, fuel usage, etc. 
Advanced flight dispatching systems not only allow the flights to be scheduled, but optimize the 
scheduling to meet some target goals such as clustering flights toward a particular hub, minimize 
under-utilization of seats, and maximizing the likelihood for on-time arrivals. An intelligent flight 
reservation system is only intelligent because the software has been oriented to pursue goals 
defined as part of the data. 
Operating systems also provide an example of software that attempts to optimize its own 
performance through heuristics [105] and rules that define the goal behavior [106]. Operating 
systems seek to minimize resource deadlocks, assure maximum throughput, and maintain optimal 
equilibrium in the use of memory, storage, and computational resources. Relational databases also 
include mechanisms such as I/O cost evaluation in order to attempt to optimize queries for 
maximum throughput [107]. 
These examples provide evidence that it is possible to build intelligent systems within 
particular domains. Combining data structures that represent the state constraints of a problem with 
processes that interact with the states to perform simulation and correlational analysis provides a 
problem resolution framework. This evokes the question of whether or not it is possible to abstract 
the domain-specific details of computational problems in such a way as to promote a general-
purpose problem-solving framework. 
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The traditional approach for solving problems by focusing on aspects of the domain does not 
promote generic problem solving and modeling, thus compelling the need for another approach to 
achieve optimality without domain-targeted programming. Is it possible to model domain-specific 
information concerning goals purely declaratively as the data relates to functions over a sequence 
of time rather than in imperatively terms of procedural code? A key to finding these answers lies 
in distinguishing declarative and imperative program definition. Imperative programming 
approaches utilize a sequence of steps to solve a particular problem. Declarative programming 
implies that computational logic follows as a derivative from rules that define the inter-
relationships of structural and relational data objects. Relational databases are a form of declarative 
programming in that much information about the computational requirements for a set of entities 
can be defined through the relationships specified in a relational database [108]. For example, a 
database relation can enforce the requirement for a customer to exist before creation of an order. 
The relational approach of UPRF promotes a declarative model wherein the data does not only 
include the details of a particular system, but information about how the data within the system 
works together to define it. Data that provides information about a system?s information constitutes 
metadata. Comprehensive metadata is a key foundation for enabling generalizing information 
about problems such that solutions can be data-derived rather than procedurally prescribed.  
 A second key enabler for generalized processing that extends beyond domain specificity is 
the use of polymorphism. Polymorphism allows management of different types of objects through 
the same interfaces [109]. In the case of the flight scheduling system and an operating system, a 
polymorphic system can implement common functions for optimizing performance and efficiency 
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despite the differences in the data structures. Polymorphism allows for abstraction of functionality 
from structural data implementation details.  
 Generalization is a third aspect for enabling information representation that facilitates the 
abstraction of data from processes [110]. Generalization allows for aggregation of multiple aspects 
of information to in terms of a higher-level concept. Object-oriented semantics such as 
generalization and abstraction, as well as relational representation, are information storage and 
processing mechanisms that undergird problem representation and solving in human thought 
processes, also existing as well-defined software design patterns.  
 Using object-oriented and relational constructs along with state representation for declarative 
programming ensures that information about problems lends itself to a generic representation 
structure through multiple levels of abstraction. UPRF provides semantics for generalizing 
problems in terms of their objects in a relational manner relative to the pertinent states associated 
with object configurations needed to navigate from a problem definition through intermediary 
steps to meet a goal state. The dissertation outlines implementation of these constructs through a 
relational database schema exposed through XML schemas that demonstrate the utility to support 
universality. 
2.16.1.2 Solution Space Probing 
Assuming a common semantic model defines a problem based on relational representation, 
will the resulting problem definition support generic solution approaches? Probing of solution 
paths associated to multiple instance of a problem and transforming correlations learned asserts 
this attribute of human problem solving is available to a software framework. As the framework 
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catalogues higher layers of problem solving abstraction, progress toward solving increasingly 
complex problems occurs. 
Functions that control the possible solution paths provide the constraints for solving any 
problem. Possible solution paths derive from the outputs of functions underlying the rules for the 
solution space. Together the functions that define the potential solution possibilities along with the 
ranges materialize the potential states of a problem related to its solution. Turning back to the 
generic representation concept, if a problem has been defined in terms of initial state, goal state, 
and allowed intermediate states in the context of encapsulating functions, then it follows that a 
generic solution probing process can explore the potential states and branch the problem states 
until ultimately achieving the goal state. Chapter 4 provides a walkthrough of how this is 
accomplished. 
2.16.1.3 Performance Metric Collection 
A system that can generically represent problems and automatically probe for solution paths 
may be useful but it cannot allow for intelligence without a mechanism for optimization. 
Optimization requires metrics [111]. Improvement requires a baseline and a target. Optimization 
is in fact a problem in and of itself with the initial state being a brute-force solution discovery to 
meet a goal for a computational problem and the goal state being the optimal sequence to find the 
steps for solving the problem. The intermediate steps are the rules that the system can follow to 
attempt to achieve the optimal path. For UPRF to be able to accomplish this, capture of all actions 
performed by the framework must occur to support correlation of the actions to the effectiveness 
of reaching any particular problem?s goal state.  
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The aspect of collecting and analyzing information related to a process is an area of knowledge 
management in data mining increasingly implemented in more and more software applications and 
business processes. Examples of such systems today include applications for counter-terrorism, 
insurance actuarial analysis, online shopping-basket customer sales prediction, and financial risk 
management. Therefore standard data mining, including collection, analysis, and interpretation of 
data related to operation of UPRF is a fundamental component to enable the continuously 
improvement mechanism. A weak point in most data mining implementations is the requirement 
for a subject matter expert (SME) to examine the results and provide interpretation. However, by 
transforming the analysis process into just another problem with a baseline state and a goal state 
as is done for all other problems, the optimization process itself can be enabled for automatic 
improvement.  
2.16.1.4 Continuous Improvement 
Continuous improvement [112] is a differentiating aspect of UPRF achieved by transforming 
the problem of solving a problem to be a problem in and of itself. This is where the recursive aspect 
of the system comes into full force; it allows the system to view the problem of its own 
performance as just another problem within the same framework as any other problem. This design 
ensures the system is unlimited and not bound by any pre-determined abstraction definition. The 
functioning of continuous improvement is the most advanced aspect of UPRF. The continuous 
learning aspect functions in an autopoietic method capable of self-enhancement without 
enforcement from a supervisory external force [113]. This is in contrast to allopoietic systems that 
are inherently fragile and require continuous intervention to maintain operation and implement 
improvements. 
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2.17 Chapter Summary 
This section reviewed the literature associated with computational problem solving across a 
variety of disciplines including Neuroscience, Artificial Intelligence, Machine Learning, Software 
Architecture, and Information Theory. This detailed study drives not only the requirements for a 
universal problem-solving framework (UPRF) but also points the way to key principles and 
concepts needed to support such a framework. From this detailed exploration of these areas, 
several key requirements emerge that UPRF must address. These requirements include: 
1) A generic representation of a problem including the queries that associate functions and 
data attributes to generate objects that map to its initial, goal, and allowed transition states;  
2) A system that can probe the solution space based on the problem states in a general fashion 
without knowledge of the problem domain; 
3) A mechanism to learn from the solving of related instances in order to create higher and 
higher level abstraction problems that yield higher level instances, which generate higher 
order assertions that can ultimately generate solution paths without simulation.  
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3. SYSTEM FRAMEWORK 
3.1 Framework Foundations 
Computational problems may be in various types and forms, but there are qualitative aspects 
and attributes common to all problems.  This section identifies these common attributes and 
establishes constructs and semantics for the generic definition and solution of problems. These 
constructs then guide the design for UPRF. This section provides an informal proof augmented by 
examples to establish credibility for the feasibility of a universal problem resolution system that 
continually learns.  
Before construction and design of any software framework, one must define the entities that 
constitute the actors, objects, interactions, and boundaries. In addition, the designer must identify 
the use cases that include scenarios of operation to define the interactions and rules that the 
framework must support. Finally, the designer must determine the critical success factors that 
include the goals and non-goals to ensure the framework meets the design requirements. 
Frameworks are not applications in and of themselves but rather provide the infrastructure for 
hosting applications to achieve a purpose [114].  
UPRF?s goal is to support problem probing, solution discovery, and solution optimization in 
a general fashion.  The framework is able to represent any computational problem in terms of its 
objects with queries mapped to functions to identify starting state, allowed transition states, and a 
goal state. The states may be complex and involve combinations of sub-states. There may also be 
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states to represent constraints about the solution process including those that limit resources or 
associate to some condition in the solution process governing the extent of effort for pursuing the 
goal state. The framework allows for simulation problems that do not include an explicit goal state 
in which case the goal state is simply to exhaust all possibilities in the scenario. 
Various components work together with a schema to achieve UPRF goals that support both 
generic schematization and resolution of problems.  This section provides the basic framework 
design that enables operation. The focus of the work is not on the framework construction in and 
of itself but only as it pertains to enabling operation of the problem solving process. Therefore, 
this section prescribes the high-level components only. Chapter five on practicality delves into 
more detail regarding implementation scenarios and maps the framework to technological trends. 
3.2 Base Use Case 
Tower of Hanoi serves as the main use-case for this dissertation. Hanoi provides a good use 
case because it is possible to pursue multiple solution paths for multiple instances of Hanoi 
generated from the number of discs used. Tower of Hanoi only has a single optimal solution for 
each instance that simplifies the presentation of the concepts. It is important to recognize that the 
choice of Tower of Hanoi does not limit the design of UPRF; the framework supports any type of 
problem regardless of the specific features of Hanoi. Chapter 5 explores the ability for UPRF to 
scale beyond Tower of Hanoi to other problems. 
Tower of Hanoi itself is NP-hard, but the process for discovering a general solution for all 
instances to this ? or any other problem (the theorem proof problem [115]) is actually NP-
complete. In other words, even though it takes exponential time to solve an instance of Hanoi 
related to the inputs, finding the solution for a general case is still NP-complete. After the 
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transformation process yields a generic solution, application of the general algorithm discovered 
proceeds within polynomial time. The assertion from this is that the NP-complete process for 
discovering optimal algorithms stands to improve through monitoring and learning from all steps 
involved in the optimization.  Since solution discovery is in the family of NP-complete, then all 
NP-complete scenarios stand to benefit and should be helpful for any solving endeavor whether 
the algorithm for the problem itself is NP-complete, NP-hard, or P. 
3.3 Core Architecture 
UPRF must support a problem transformation paradigm where each solution sequence 
becomes the target of a higher order problem transform in order to generate increasingly 
generalized transformation sequences in search of general solutions to lower instances. Figure 3-
1 illustrates this concept - each solution determination spawns a higher order optimization problem 
to generalize the steps required for multiple instances of a lower level problem.  In the case of the 
Tower of Hanoi, each circle represents the higher order problems targeting the instances of the 
lower order problem. At the lowest level, multiple solutions target different disc-counts. The 
solution process generates sequences that an inspection process uses to determine how to transform 
from a simpler instance to a more complex instance. Chapter 4 iterates through this process in 
detail. 
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Figure 3-1: Continuous Improvement Cycle 
In Figure 3-1, each solution determination step transforms to a higher-level optimization 
problem with the target of determining the optimal steps needed to generate the steps for the lower 
level problem. The lowest level of problem solving is pure simulation using search based on the 
heuristics of the problem that govern the valid states. When there are multiple instances for a 
particular problem, as in Hanoi, UPRF spawns a transformation problem to attempt calculation of 
the sequence of steps for one instance based on one or more other instances. 
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Figure 3-2: Simulation Process 
Figure 3-2 illustrates the approach for exploring possible solutions to a problem. UPRF 
queries for the allowed setup states when first initializing a problem. If there is more than one 
instance, the additional instances are branched from the main instance for parallel solving by the 
engine. This is the case with the Tower of Hanoi as shown in Figure 3-3; different branches develop 
as the simulator tries to work through the solutions for a particular number of discs. The variable 
number of discs overflow the problem instance space creating problem state overflow in Figure 3-
2 generating the required instances. 
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Problem state overflow also occurs when multiple outputs arise at some level in the 
simulation. This when multiple attribute values are available for a single attribute linked to a single 
entity instance at some point in a problem state transition such as when there are multiple pegs 
available for a disc. UPRF defines an entity as an item having an imputable unique key that is 
associated to a set of attributes that vary in values between instances. Multiple entities result in the 
entity state overflow within the diagram that then generates the separate entities required for a 
particular problem instance. For example, in a three-disc Hanoi scenario, the simulator creates 
three entities. Figure 3-3 starts from the point of a particular instance after the entities creation and 
illustrates the attribute overflow state that occurs when there are multiple solution paths available 
to test. Each attribute overflow leads to a new branch since an attribute may only contain a single 
value within an entity instance within a problem instance. 
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Figure 3-3: Attribute overflow in Hanoi Simulation 
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3.4 Data Architecture 
UPRF is highly dependent on data and follows the case-based reasoning model alluded to in 
the literature review section outlining the generic schema approach. The framework records every 
operation endeavored to solve a problem in the database including the algorithms and functions 
used to carry out the operation and all of the parameters associated to the operation. Every step of 
the simulation, problem transformation, and problem solving process is traceable back to every 
attribute value modified. For the Tower of Hanoi, this means the framework captures every single 
move for every instance. The literature review for this dissertation was able to find only scant 
examples of systems with tracking at this level of detail. One reason for this may be practicality 
considerations associated with such massive data tracking requirements; however, newer 
technology is mitigating this.  
Figure 3-4 illustrates the high-level data entities. The actual physical database design varies 
from this in order to achieve normalization. The relational design support representation of entities, 
attributes, and expressions that govern behavior or a problem solution endeavor as well as tracking 
of all operations that occur within the simulation and solving process including the transformation 
process described earlier. 
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Figure 3-4: High Level Data Architecture 
 Data flows shown in Figure 3-5 show the outward flow from base level items. These items 
define constants or fixed attribute values through expressions transformed by operators. These 
operators then generate problem states that reflect the output of queries based on the allowed states. 
Ultimately, solution states are generated which capture the sequence of operations and the entities 
with their attributes and values that are affected throughout each step of a simulation process 
constrained by the state rules. The system endeavors to discover optimizations that generalize the 
  
 
   
 56 
 
 
pursuit of solutions to higher order problems that return sequences of operations to perform 
transformations that generate solution paths avoiding the branching associated with brute-force 
simulation. For example, in the Tower of Hanoi, an optimization might be that the first move 
should always be to the second peg when the number of discs is even, but to the third peg when 
the number of discs is odd. In the operational proof, transform sequencing is utilized to identify 
patterns so that not only the correct starting move in Hanoi is calculated for any instance, but the 
entire solution pattern. 
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Figure 3-5: General Data Flow 
3.5 Agent Topology 
A common attribute of problem solving frameworks is an agent-based architecture. UPRF 
implements this type of architecture in the form of an agent topology. The idea of topology is that 
the agents themselves are independent and the framework easily supports the addition of agents. 
Stateless data architecture and task-oriented processing promote the use of independent processes 
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that may be distributed. UPRF?s agent topology framework meets the goals outlined by the 
literature for agent-based modelling and simulation [116] which include the following:  
? An agent is identifiable with discrete sets of characteristics and self-contained. 
? An agent lives in an environment that it interacts with other agent with the capability 
to respond to the environment.  
? An agent is goal-directed having goals to achieve with respect to its behaviors 
? An agent is autonomous and self-directed.  
? An agent is flexible, and has the ability to learn and adapt its behaviors over time 
based on experience. An agent may have rules that modify its rules of behavior. 
Multiple agents collaborate to support problem definition, simulation, and higher order 
transformations. Figure 3-6 show the main agents and their interactions with a broker agent that 
dispatches tasks. The design model follows that of a ?smart environment? [117] which promotes 
an environment where the behaviors of each object assist each other to reach the goals of the 
framework. This design provides scalability across parallel processes across any number of 
machines. Chapter 5 discusses some of the deployment options that UPRF can leverage to take 
advantage of distributed high-performance computing frameworks. The agent architecture is a 
very important concept in intelligent systems. Frameworks that can seamlessly integrate 
independent agents that focus on solving a specific task provides an environment that heuristics 
can be seamlessly added, which enhance the other agents. Lifelong machine learning systems 
provide a model of this approach wherein a heuristics generator operates independently and 
autonomously against the problem stream [118]. This behavior occurs in UPRF through separation 
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of the various tasks for assimilation of knowledge from those of simulation and transformation of 
problems.  
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Figure 3-6: Agent Architecture 
Figure 3-6 illustrates the relationships between the major agents with their roles listed below: 
? Schematizer: Listens for problem definitions and injects into the database 
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? Simulator-Setup: Instantiates the starting instances for a problem. For example, this allows 
dispatching of tasks to create instances for disc count of two to ten given these as the 
minimum and maximum number of discs. 
? Simulator-Mover: Performs depth/breadth exploration of simulation solution space based 
on the transition query for the problem for instances in the initial or checked-state still 
requiring transitions. 
? Goal-Checker: Checks the simulation instance against the goal for instances that have just 
completed a transition state. 
? Transformer: Checks for existence of combinations of at least two solved instances to 
escalate to the next higher order problem to identify the transformation sequence needed 
to derive a solved instance from another solved instance within a problem space. 
? Assimilator: Generates transformation problem instances for the transformer problem. 
? Broker: Looks for tasks in the database that are relevant to the particular agents and 
dispatches the tasks to the agent. 
? Data Helper: Provides the data interface layer between the broker and various agents to 
the problem definition and problem instances. 
The architecture supports knowledge discovery with a feedback loop. In Figure 3-3, a web 
discovery agent integrates into the framework to engage a continuous improvement model that 
integrates semantic web search with unstructured text mining. Potential interactions depicted in 
Figure 3-7 as part of an overall learning framework. 
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Figure 3-7: Automation Framework 
  
 
   
 62 
 
 
 
D a t a
U p d a t e  L i s t
X M L  P r o b l e m  
D e f i n i t i o n
P r o b l e m /
S o l u t i o n  S p a c e
S t a t e  E x p r e s s o r
Loader
I n s t a n c e  
S i m u l a t o r  
( P l a y e r )
I n s t a n c e  C r e a t o r  
( S o l v e r )
P r o b l e m  
O p t i m i z a t i o n  
B r a n c h  
( I n t e l l i g e n t  
S o l u t i o n )
O r i g i n a l  
P r o b l e m
P r o b l e m  
B r a n c h  
( S i m u l a t i o n  
S o l u t i o n  
P a th )
P a t t e r n  
R e c o g n i z e r  
( A s s e r te r )
O p t i m i z a t i o n  
S t a t e  E x p r e s s o r
R e l a t i o n a l  
S t a t e  
S e q u e n c e s
S t a t e  S e q u e n c e  
B u i l d e r  
( T r a c k e r )
K n o w l e d g e  
D i s c o v e r y  
P r o b l e m
C l o u d
W e b  S c r a p e r
S o l u ti o n  A n a l y z e r  
( G e n e r a l i z e r )
D i s c o v e r e d  
K n o w l e d g e  
I n s t a n c e  S t a t e  
U p d a t e r  
( C h e c k e r )
 
Figure 3-8: Web Mining Scenario with Feedback 
3.6 Problem Schematization 
UPRF includes a universal problem definition language (UPDL) component. UPDL provides 
an XML format that works with a listener process that imports problem definitions into the system 
as illustrated in Figure 3-8. Figure 3-9 depicts the UPDL schema. Figure 3-10 shows an example 
with Tower of Hanoi that adheres to the schema. The schema supports defining problems in a 
structure that is compatible with the core relational database storage design. During the course of 
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the dissertation, the schema has evolved. Utilizing a technique based on normalizing OML storage 
in relations [119], a mapping layer provides transformation from the schema to the actual database. 
The schema is thus extensible and changeable to better accommodate problem definitions. 
Therefore, UPRF may evolve to support additional schemas focused on particular problem 
domains that may provide greater abstraction on top of the core schema or support lower level 
functions and external data interfaces. The mapping layer ensures that different schemas can still 
populate the core database entities defined in the data architecture section.  
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Figure 3-9: UPDL Schema 
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Figure 3-10: Sample Problem Definition - Tower of Hanoi 
Figure 3-10 shows the Tower of Hanoi in UPDL format with entities, attributes, expressions, 
and queries to govern the state. This provides the information needed for the framework to define 
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the problem so that a simulation process can explore the valid solutions. The next chapter 
containing the operational proof explains how the items interact to provide queries that associate 
to states and determine whether a simulation instance completes successfully or fails. 
UPRF provides an import process for the problems written according to the UPDL 
specification. This process loads the problems into a staging area and then normalizes the data 
from the schema into the database. The relational database design also provides support for 
historical tracking of imports and lineage to higher order problem transformations. Figures 3-10 
and 3-11 show the process for importing problems written in UPDL format into UPRF. 
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Figure 3-11: High-level Problem Load Process 
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Figure 3-12: Detailed UPDL Flow into Database 
3.7 Database Implementation 
The relational database consists of four main schemas: 
1. Staging: Defines the area for loading UPDL problems from XML. This area receives 
problems schematized from the UPDL XML node structure that the framework transforms 
into the Data schema after validation finishes (Figure 3-12). 
2. Data: Defines the problem (Figure 3-13). 
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3. Engine: Tracks all entities and attribute values over a solution instance (Figure 3-14). 
4. Reference: Defines the operators (functions) utilizable for all operation along with their 
parameters (Figure 3-15). Expressions in the Data schema utilize operators in the 
Reference schema for problem instances, which enables tracking all operator usages 
correlated to problem instances.  
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Figure 3-13: Staging Schema 
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The staging schema stores problem definitions that come through the UPDL loading process 
and potentially support other import formats as well. This schema allows verifying the integrity of 
problem schemas before presentation for solving in UPRF. Staging provides the area to persist the 
XML definition and then validate the definition before transforming it into the Data schema. 
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Figure 3-14: Data Schema 
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The Data schema defines the database objects required to model a problem 
definition including entities, attributes, expressions, and queries to represent the initial 
state, valid transition states, failure/abort states, and goal state for a problem. It also 
provides a mapping (LearningMap table) for linking instances of one problem to a learning 
(transformation) problem for higher order generalization of the simulation instance 
solutions. It correlates loosely to the schema defined by UPDL and normalizes the 
incoming problem definition.  
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Figure 3-15: Engine Schema 
 The Engine schema stores all of the instances of a problem so that the simulator can carry out 
solution attempts. It includes a mapping mechanism for parallelizing tasks to carry out via the 
ChangeDataTask and ChangeDataTaskDetail. This schema integrates with the problem definition 
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schema to enable a problem to spawn solution instances. This mechanism supports distributed and 
parallel execution of solution instantiations at the instance state level. The Engine schema also 
stores the relational state sequences associated with all attribute value changes including the state 
activations for all recorded values for an attribute over a solution state sequence. 
 
Figure 3-16: Ref Schema 
The Reference (Ref) schema supports extensibility for all types of operators (functions) 
utilized for simulation and solution discovery. It defines the operators that are available to the 
system and loads operators dynamically. This provides extensibility to add new operators to the 
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E x e c F u n c ti o n S c h e m a N . . .
F u n c ti o n S c h e m a N a m e
R e tu r n s T a b le
S y s te m D e f in iti o n
O p e r a t o r A r g u m e n t  ( R e f )
O p e r a to r A r g u m e n tI d
S e q u e n c e N u m b e r
E x p r e s s io n O p e r a to r I d
A tt r ib u te I d
E x p r e s s i o n  ( D a t a )
E x p r e s s io n I d
E x p r e s s io n O p e r a to r I d
S te p N u m b e r
P r o b le m I d
D e p e n d e n c y L e v e l
E x p r e s s i o n A r g u m e n t  ( D a t a )
E x p r e s s io n A r g u m e n tI d
E x p r e s s io n I d
O p e r a to r A r g u m e n tI d
E n ti ty A tt r ib u te I d
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system by simply importing the function into the engine schema and then referencing the function 
from the problem definition.  
Operators are enumerable based on type and then executed in a higher order simulation to 
search for the operators that can generate a solution path for one instance of a problem using data 
from another instance of a problem. In this way, the framework tracks the sequences of selected 
operators correlated to a solution path associated to a problem instance. These operators include 
conditional operators to compare values as well as expression operators that can generate scalar or 
tabular result sets. Expression operators include transformation operators that can host machine-
learning algorithms in order to generate prediction sequences from source sequences. 
3.8 Simulation  
By default, the simulator utilizes depth-first search to explore solution spaces for each 
problem?s instances. Each problem instance is independent allowing UPRF to explore the solution 
space separately and branch instances to generate new instances. The new instances branch off in 
the same fashion as the originating instances for parallel execution. Problem queries that define 
the candidate result sets drive the exploration of the solution space. The search is not strictly depth-
first if the problem itself exposes queries that lead to a different type of search including breadth. 
As the search proceeds, the framework catalogues the candidate solutions. Simulation instances 
terminate upon reaching a certain resource threshold if a ?quit query? specifies to stop execution. 
(Figure 3-1) shows the process for assigning tasks through state inspection as illustrated in Figure 
3-17. 
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Figure 3-17: Simulation State Flow 
Figure 3-17 shows the problem-instance state flow in terms of color shading to indicate 
transition for execution by various processes. When a problem instance enters the light-green type 
of state, this indicates it is ready for some sort of execution. The dark green tasks register instances 
for the next task while the yellow tasks execute. The end state shown by the double-circle green 
object indicates termination due to success in reaching the goal state while the red state indicates 
termination due to failure.  As each task in the cycle is executed, the definition and/or solution 
state (depending upon the task) is updated which then qualifies the next task to be executed for the 
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problem instance. Figure 3-18 illustrates the creation of new states for a problem based on results 
from queries and Figure 3-19 depicts the query processing that generates potential states. 
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Figure 3-18: State Expression Flow 
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Expression operators interact with entities and attributes to return results through query 
extractions. Query extractions are joined together to form results and then filtered. UPRF spawns 
new states when more than one result returns from a transition query and creates an overflow 
condition. The query-processing engine generates results through the extraction and filters with 
logical conjunctions that represent Boolean and/or groupings (Figure 3-19). 
S t a t e
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Figure 3-19: State Generation from Queries 
3.9 Transformation 
UPRF performs transformation automatically upon solution sequence completion upon 
solution path discovery for a second instance of a problem. The transformation results in a new 
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instance of the Universal Discovery Problem (UDP) (elaborated on in chapter 4).  The UDP defines 
the goal state as the sequence of operators required to transform one instance to another instance. 
For example in the Tower of Hanoi, when a four-disc problem instance is solved after a three-disc 
instance has also been solved, then a transformation problem is generated whose goal is to generate 
the operations required to utilize solution sequence paths from the three-disc simulation to generate 
the solution for the four-disc instance. Chapter 5 delves into the 4-peg Hanoi or variable-peg (K-
peg) scenario to show how UPRF can scale problem learning a simple base case to more advanced 
solutions.  Figure 3-20 depicts the flow for transforming simulations into higher order problems. 
Sn + 1
T S n
Tn
Sn
S 1 -  S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 2 )
S 2 ? S i m u l a t i o n  
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S 4 ? S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 5 )
T 1 -  T r a n s f o r m  
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TS 1 ? T r a n s f o r m  
S e q u e n c e  
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S i m u l a t i o n  
( d i s c s = 6 )
TS 3 ? G e n e r a te d  
T r a n s f o r m  
S o l u t i o n  ( T 3 - > T 4 )
T 4 ? G e n e r a t e d  
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Figure 3-20: Problem Transformation Process 
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3.10 Chapter Summary 
This chapter provided a high-level software architecture for a universal problem resolution 
framework (UPRF). It did not delve into implementation details, but did provide a general design 
for critical components. Chapter 4 builds upon this architectural foundation and utilizes these 
components in order to demonstrate an operational proof.  Chapter 3 outlined the Tower of Hanoi 
problem as the base use case for UPRF validation and established key constructs for UPRF 
architecture, which include: 
1) A core architecture that provides a continuous improvement cycle to support transforming 
learning achieved at a lower level to increasingly higher levels in the search for a general 
solution or problem optimization; 
2) A data architecture that supports generic representation of problem information including 
the various states of a problem from instantiation through solution; 
3) An agent topology that shows the integration of various agents working together within 
the framework to enable continuous improvement; 
In addition, the chapter outlined the functionality for problem schematization, simulation, and 
transformation and delved into the actual database implementation undergirding the framework. 
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4. OPERATIONAL PROOF  
4.1 Inductive Proof for Feasibility 
A primary goal of this work is to construct a framework that utilizes scenarios of adequate 
variation and sufficient complexity such that it achieves the goal of continuous improvement. To 
validate the following proof, the dissertation provides scenarios that demonstrate how to 
schematize problems and then pursue solution paths through simulation, which result in higher-
order transformation problems. The transformation problem fits within the same schema as the 
underlying problem, enabling a simulative process that focuses on optimization of solution paths 
at increasingly higher order degrees, which can target and benefit from the entire breadth of 
problems presented to the framework. 
4.1.1 Generic Problem Definition and Simulation Capability 
4.1.1.1 Postulates 
1. Let P be a Problem having initial state PI, allowed transition states PT, and goal state PG and 
optional state for failure (PF) and quitting (PQ) 
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P r o b le m  P
I n it ia l S t a t e  P I
Tr a n s it io n  S t a t e  P T
G o a l S t a t e  P G
F a il  S t a t e  P F
Q u it  S t a t e  P Q
 
2. Define P in terms of one or more entities E including itself having one or more attributes A. 
Represent entity E by a key attribute K that uniquely identifies it and does not change in value. 
Let an entity E map to an attribute A as EA such that EA derives from the domain or expression 
of attribute A. 
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3. Let A be defined by an expression X which utilizes an expression operator EO that executes 
as a function on another attribute A` or references a constant value V, a list of values L, or 
another expression and returns a set of attributes with one specific attribute identified as a result 
and the other as associated attributes. 
E xp r e ssi o n  X
E x p r e s s io n  O p e r a t o r  
EO
E x p r e s s i o n  X '
A t t r i b u t e  A
A t t r ib u t e  A 2C o n s t a n t
 
4. Let X specify a list of mapping M that links an expression operator (EO) parameter to an entity  
EA.  Let each mapping retrieve values from entity attributes such that if M belongs to the same 
entity, the values correlate together for each entity instance based on the entity key and, if from 
different entities, they cross such that each combination is used. 
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O p e r a t o r  
P a r a m e t e r  1
E x p r e s s io n  X
E n t i t y  A t t r i b u t e  1
E n t it y  A t t r ib u t e  N
E x p r e s s i o n  O p e r a t o r  
EO
O p e r a t o r  
P a r a m e t e r  N
M a p p in g  1 
( M 1 )
M a p p i n g  N  
( Mn )
 
5. Let X be reflexive to EA ? that is X may reference any EA and any EA may reference any X 
so long as the dependencies do not form a closed cycle.  
6. Let X and EA return either a single value or a sequence of values of the same type. Let X return 
a hidden set called XH of all A associated with entity E for attribute XA representing the 
attributed returned by A 
E x p r e s s i o n  X
V a l u e  1
R e t u r n  Ty p e
V a l u e  N
V a l u e
 
7. Let X optionally define a null expression N that references another expression returning a 
single value to substitute for each value instance X that is null. 
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8. Let X optionally utilize a state S to reference a step that defines the values those present at the 
state S of the problem P. 
E x p r e s s io n  X
V a l u e  a t  S t a t e  S
S t a t e  S  ( S t e p )
P r o b le m  P
 
9. Let the expression operator (EO) reference any data stored within this schema as well as any 
data generated through operations in the system or utilize an interface to reference datasets 
external to the system. 
U P R F  D a t a
E x p r e s s io n  
O p e r a t o r  E O
P r o b le m s E n t it i e s E x p r e s s io n s
 
10. Let Q be a query that contains expressions that can reference each other and apply compare 
operators upon each other as criteria C to filter results from the expression. Combine each 
filtered expression with other filtered expressions through a join operator JO and be known as 
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an extract for the query QE. Let the extract define the output attribute OA that maps to a State 
S. 
10.1. For the join operator, allow the following operations: 
10.1.1. INNER retrieves values from QE passing the compare test for each attribute value 
from QC and drops values from a second QE where there is no match found. 
10.1.2. OUTER preserves all values from both sets with null values specified for all non-
matches 
10.1.3. LEFT preserves all values from the expression associated to QE and only those 
matching to a second QE. 
10.1.4. RIGHT preserves all values from the expression associated to the second QE and 
only those matching to QE 
E x p r e s s io n  ( X )
J o in  O p e r a t o r
( JO )
Q u e r y  ( Q )
Q u e r y  E x t r a c t  1
( QE )
Q u e r y  E x t r a c t  ( Q E n )
C o m a r is o n  E x p r e s s io n
( CO )
C o m p a r e  
O p e r a t o r  C O
C r it e r ia  ( C )
C o lu m n  R e s u lt s
( QC )
 
11. Let Q further contain a list of Filter F that uses a compare operator CO to compare any query 
column QC to any other column QC. 
12. Let each filter F provide a junction to the output of any other filter in either or both an OR 
conjunction or an AND conjunction filter. Let this conjunction occur within the Filter F 
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definition such that a parent-child relationship exists to support any type of AND/OR 
conjunction between filters. 
Q u e r y  Q
Filt e r  F ( F 1 )
Filt e r  F ( FN )
Co m p a r e  O p e r a t o r  
CO
Filt e r  E x p r e s s io n
 f x  X
J u n c t io n  J
 
 
13. Let Problem P identify queries for projecting possible values to the following special sets that 
map to the required states: 
13.1. Setup Query ? Query which instantiates a problem into multiple instance PI that reflect 
all possible starting combinations of values for the entities associated to the problem. This 
maps to the problem initial state PI. 
13.2. Transition Query ? Query that defines all outputs that are valid for a transitive state in a 
problem-solving endeavor. This maps to problem transition state PT. 
13.3. Goal Query ? Query that returns a status indicating achievement of a goal for an instance 
or overall problem and what the next action should be related to the instance or problem. 
A status of one indicates a solved instance that no longer requires processing; two indicates 
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the solution of a particular instance in scenario that calls for the continued checking of 
other branched problem instances. This maps to the problem goal state PG. 
13.4. Fail Query ? Query that returns a status indicating if a failure condition has been met for 
the instance (status value one). This maps to the problem Fail State PF. 
13.5. Quit Query ? Query that returns a status indicating the aborting of further solving efforts 
for any instances within the problem (status value -1). This maps to the problem quit state 
PQ. 
Figure 4-1 depicts the overall flow in constructing a problem definition that includes queries 
that reference operators and attributes in order to generate the required states. The progression 
consists of: 
1) Define a Problem P. 
2) Define Attributes for problem P (A). 
3) Define Entities for problem P (E). 
4) Define Entity attributes (EA) based on the problem attributes linked to the entities (A). 
5) Define an Expression Operator (EO) and its associated parameters (OP) 
6) Define an Expression X relative to an expression operator and parameter mappings to entity 
attributes (EA) 
7) Define a Query Extract (QE) that joins an expression to a query to contribute output 
attributes (OA). 
8) Define a Query (Q) that integrates the Query Extracts together 
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9) Define a Filter consisting of Junctions (J) and Conditions (C) that filters the Query Extracts 
within the Query to output Query Column (QC) results that satisfy states (S) associated to 
the Problem P. 
P r obl e m  S t a t e s  ( P  x  S )
P
A ( P  x  A )
E ( P  x  E )
EO
OP
XE A ( E  x  A )
M ( X  x  E A x  O P )
Q
Q E  ( Q  x  X )
J
F ( J  X  C )
C
PI
PG
PT
PF
PQ
L eg en d
A : A t t r i b u t e
C : C r i t e r i a
E : E n t i t y
F : F i l t er
J : J u n c t i o n
M : M a p p i n g
X : E x p r es s i o n
EO : E x p r es s i o n  O p er a t o r
OP : O p er a t o r  P a r a m et er
PI : P r o b l em  In i t i a l  S t a t e
PF : P r o b l em  F a i l  S t a t e
PG : P r o b l e m  G o a l  S t a t e
PQ : P r o b l e m  Q u i t  S t a t e
PT : P r o b l e m  T r a n s i t i o n  Q u e r y
QE : Q u er y  E x t r a c t
 
Figure 4-1: Problem Definition Flow 
 
Figure 4-2 shows an XML problem schema that supports the problem definition. This schema 
originates in the database design already discussed in Chapter 3. The NullExpression refers back 
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to another expression, DataEntity, or attribute. DataEntity and attribute items automatically imply 
an expression. The expression within an extract is a reference to other expressions in a definition. 
JunctionGroup provides the means to associate a junction of multiple filter or extract items. Each 
filter or extract criteria is joined together in a Boolean fashion using the JunctionType of AND, 
OR, NAND, NOR, or XOR. CompareOperator supports the use of any comparison function to 
apply an extract result to an attribute associated with an expression. DeriveFrom provides a means 
to link an expression to a DataEntity or attribute to generate the range of values for the DataEntity 
or attribute. The Tower of Hanoi example in section 4.2 provides an illustration of how the schema 
applies to a problem. 
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Figure 4-2: XML Schema 
 
Figure 4-3 - Hanoi Problem Definition - Part 1 
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Figure 4-3 represents the Tower of Hanoi problem using attributes to define the initial peg, 
goal peg, minimum number of discs for a simulation, maximum number of discs for a simulation. 
An entity (DataEntity) represents the disc identified by the size. The DeriveFrom method uniquely 
identifies each problem instance in terms of the number of discs for the instance. Each disc then 
has a peg attribute associated with it that varies from one to three (derived from the Peg-List 
ValueList definition). Although the Tower of Hanoi only requires a single entity and single 
attribute, a problem definition could have any number of entities with any number of attributes so 
long as each entity derives from a unique key.  
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Figure 4-4 - Hanoi Problem Definition Part 2 
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Figure 4-5 - Example Matrix for Tower of Hanoi 
Figure 4-4 shows the remainder of the problem definition starting from the expression that 
generates the size range from which the disc entity derives. The query ?Play-Game? contains the 
extracts and filters needed to generate a result set for any particular configuration of a simulation. 
The query filters the data as follows: 
1) Extract next disc (Next-Disc) using the Candidate-Disc expression (defined in Figure 4-
4) The Candidate-Disc expression uses the function ?SELECT_NONUSED? which 
selects any entity not selected on the prior state change. This adheres to the Hanoi rule not 
to move the same disc twice in a row. The selected disc is stored in the output attribute 
?Disc.? 
2) Extract next peg (Next-Peg) using the expression ?Peg-List? (defined in Figure 4-3). Peg-
List returns a list from one to three. This value is stored in the output attribute ?Peg.? 
3) Identify candidate pegs for a disc by filtering out the peg it is currently on in the ?Next-
Peg? extract. This extract utilizes the ?Peg-List? expression and filters using a comparison 
operator of ?NOT_EQUAL? to eliminate the current peg. 
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4) Extract the minimum disc for the peg (?Min-Disc-For-Disc-Peg?). This utilizes the 
expression ?Min-Disc-For-Peg? which finds the smallest disc on a peg. A comparison 
operator of ?EQUAL? provides the filter for output from ?Peg-List? results. This generates 
a result set identifying the minimum sized disc on each peg into a matrix. As each extract 
adds values to the query, intersection of prior values occurs based on the comparison 
operator and join operator. (The default join operator is an intersection or inner join, but 
supports all standard join types ? (see # 10 under the Postulates).) Figure 4-5 shows a 
sample result matrix. 
5) Extract the minimum disc for the peg a second time, but this time utilize the ?Next-Peg? 
as the criteria for filtering. This determines the minimum-sized disc on only the candidate 
pegs (not the current peg of the disc) which ultimately determines if it possible for the disc 
to be moved to the peg by the filter. Note that the Min-Disc-For-Peg includes a 
NullExpression construct that forces the value to the max-sized disc (Disc-Count) if no 
discs are on the peg. 
6) As shown in the matrix in Figure 4-5, this query provides a matrix with rows and columns, 
which allows further filtering. 
7) The expression extracts have at this point reduced the results to eliminate the following: 
a. Exclude the peg that the disc is currently on in the Next-Peg column. 
b. Exclude any disc that moved on the last move. 
8) The result set still contains invalid moves without an additional filter to ensure that no 
larger disc moves on top of a smaller disc. The filter ?Filter-Disc-Too-Large-For-Peg? 
eliminates any disc that is not less than the smallest disc on the candidate next peg with 
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the empty peg condition. This ensures that the result for an empty peg returns a disc 
number higher than the highest due to the NullExpression construct thus permitting the 
peg to receive any disc. 
9) Given the above, the Play-Query provides only valid next moves for the simulator.  
10) The final step is to define the queries that define if the simulation is in a lost or won state 
so that the simulation instance does not go on forever and to provide a goal for the 
simulator to pursue in the solution. The lost query (?Check-If-Lost? ) verifies that the 
maximum number of state changes (moves) has been exceeded which is defined by the 
Max-Move-Count expression as the number two raised to the number of discs. For 
example in a three-disc scenario, the solution is achievable within seven moves, for a four-
disc scenario, fifteen moves, etc. The goal step defined as ?Check-If-Won?. Check-If-Won 
utilizes the expression ?Disc-Count-On-Peg? to compare if the number of discs on a peg 
is equal to the Disc-Count associated to the problem for the peg equal to the value ?Final-
Peg? which has a value of three. In other words, the simulation is successful if the number 
of discs on peg three is equal to the total number of discs. The return value of ?1? indicates 
to the simulator that the simulation can be marked as successful for the problem instance. 
At this point, there is no need for further simulation activity for the problem instance.  
Additional return values provide support for other problems that may have multiple 
solutions by allowing ?2? as a return attribute. Return attribute ?2? directs the simulator 
to mark a simulation instance as complete but to continue searching for additional 
solutions. For the Tower of Hanoi, there is only one optimal solution path for any 
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configuration of discs, so the simulation stops for each instance as soon as it finds the 
solution. 
4.1.1.2 Claims from Postulates 
1. Based on the dynamicity of the expression operators and the ability of the expressions to 
operate against any set of attributes, defining the appropriate functions can derive any set 
of values associated with a problem. 
2. Any problem state where state is the result of a query that relate behaviors of objects within 
a problem is feasible based on the unlimited join structure that supports all set operations 
and filtering constructs combined with the ability for any expression operators to be loaded 
into the framework. This derivation is context sensitive, related to other states using the 
state sequence qualifier for expressions or when referencing expressions. 
3. This definition supports the ability to generically define any problem using the same 
schema and utilize a generic simulation approach to apply the functions in order to 
generate states in the pursuit of a goal query defined for the problem. 
4.1.2 Reflexive Property of Problem Solving 
The reflexive property of problem solving allows the solution to a problem to be query-able 
within the constructs of the same schema that defined the problem. This provides the foundation 
for transforming a problem that has associated solution instances into a higher order problem that 
attempts to augment the base problem with a prediction (transform) operator.  The prediction 
operator then generates additional expressions and queries to reduce the number of simulations 
and predict the solution path for additional instances of the problem. The property conforms to the 
following two constructs: 
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1. Any problem P that the framework presents for solution by the system generates multiple 
outputs for entities along a state sequence. The capture of states representing all values of 
all entities throughout solution endeavors can be stored generically through the same 
entity/attribute structure as that used to represent the problem. This means that the entire 
solution endeavor is visible to a higher order problem using the same schema. 
2. All problems are solved using a generic process such that the output actions taken in regard 
to each problem are stored generically within the same entity/attribute structure which is 
represented by: 
a. Problem Instance 
i. Problem-Identifier 
ii. Instance-Identifier 
iii. Result-State 
iv. Instance-Step 
b. Entity Instance 
i. Instance-Identifier 
ii. Instance-Step 
iii. Entity-Key 
iv. Entity-Attribute 
v. Value 
Based on these constructs, UPRF captures all of the states of each entity instance associated 
with a problem for each entity attribute. The next step is to define a method for querying the 
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problem information and the solution paths such that instances solved via simulation provide the 
basis to predict values for additional instantiations of the same or related problems. 
4.1.3 Postulates of the Predictive Solving Framework 
14. Let VS be a set of values over a series of steps that represent the truth or falsity for an activation 
of a particular value for the entity at a given state. The simulation system that operates against 
the schema from 1.2.1 for every entity instance value generates the VS utilized in a problem. 
15. Let PTO be a prediction transform operator defined as a function that receives parameters from 
a problem P, an entity-instance attribute-value sequence (PVS) to predict.  The PVS is the last 
value of the prediction for this operator for the target VS (TVS) and a source entity-instance-
attribute-value sequence (SVS) to use as a source. Let the output of the PTO be a value 
sequence and let each instantiation operate upon the prior value of the PVS 
16. Let PTO reference only the information passed to it by the problem definition, that is, source 
instances containing entity-attribute-value sequences for earlier instances of the problem. 
Require that PTO record all sources and targets utilized to derive a VS. 
17. Let the application of each PTO result in a new step to be accomplished in the same way as 
any problem simulation and the combination of values based on the selection of values be 
captured as another value sequence  
4.1.4 Claims based on the Postulates including 1.2.1 and 1.2.2  
1. The higher order problem is representable in the same problem schema that represented the 
lower level problem without loss of any fidelity since it uses the same entities as those of the lower 
order problem. The prediction operator belongs to a type of expression operator, but the particular 
operator selection materializes as an attribute value in a standard entity-attribute structure. This 
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allows for the correlation of one operator sequence from one solving instance to operator sequences 
from another solving instance enabling creation of a transformation problem for detecting a higher-
order sequence for transforming the lower level instances. 
2. The higher order solution requires the same solving approach as the lower level instance 
meaning the process is recursive and allows continually higher-order use of the same techniques 
that the system found successful in pursuit of a lower order problem. 
4.1.5 Transformative Property of a Problem Solution 
Based on 4.1.4, there is a transformation available to generate a higher order problem from 
any lower order problem. This includes generating higher order problems from the second-level 
higher order problems without limit. This means that the problem solver is able to use simulation 
to optimize the solution discovery phase for not only a base problem but also for the process of 
optimizing solution discovery. This recursive model can scale up infinitely. The transformative 
property concerns the transposition for utilizing the known solution states of a problem and 
transforming this to a higher order problem with the goal of testing the prediction operator?s 
success at predicting the outcome based on prior instances. If the transformation process works for 
a lower order problem using the same simulation model for solution discovery then it must also be 
transformative to a higher order problem. This section provides proof that the second-order 
transformative problem is identical to the third-order problem and all higher order problems. The 
proof accomplishes this outcome by pivoting of the problem upon the steps involved for finding 
the optimal application of prediction operators against combinations of input sequences over a 
sequence of application. This application generates sequences for each higher and higher order 
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problem that follow the same simulation model and use the exact same schema definition. From 
this: 
? The information about the solution path for each instance thus presents as a higher order 
problem with the goal of learning from the solution pattern for prior instances in order to 
predict the solution pattern to apply to additional instances. The higher order problem for 
any lower order problem incorporates the entity/attribute structure representing 
information about the problem instance and adds the following for each entity instance 
(defined by instance-identifier, instance-step, entity-key, and entity-attribute): 
o Entity-Instance-Prediction 
? Predicted Instance-Entity-Attribute 
? Predicted Value 
? Instance-Step 
? Prediction Operator from the domain of possible predictors 
o Entity-Instance-Prediction-Sources 
? Source Instance-Entity-Identifier-Attribute from the domain of all 
instances earlier than the targeted instance.  
? Source-Step from the domain of steps 
o Predictor-Operator-Query-Addition - Incorporates additional filtering to reduce 
the size of possible solutions 
o Predictor-Operator-Expression-Additions ? Additional expressions to support the 
updated query. 
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? The above then provides for a higher order simulation that generates branches for each 
prediction-operator and the combinations of source instances associated with source steps. 
The predictor operator itself is an entity-attribute and generates a value sequence. The goal 
of the higher order problem then becomes selecting from the same set of prediction 
operators from the lower order problem that accurately predict the value sequences that 
reflect the optimal sequencing of the prediction operators against the source instances. 
? The solution goal for the higher order problem is to identify the prediction-operator that 
most effectively predicted the values. This is modeled as a goal of the higher order 
problem in terms of the following query constructs: 
o Find the sequence of prediction operators that generated the query additions that 
filtered the solution path and resulted in the fewest steps to achieve the goal state 
of the underlying problem. 
o Map this sequence of prediction operators as the higher level goal for the higher 
order problem such that prediction of lower instances derive by the solution 
sequence of the higher order problem. Once again, the selected sequence of 
prediction operators that resulted in the selection of the lower order prediction 
operators can generate the correct solution path. 
4.2 Proof by Example ? the Tower of Hanoi 
This section examines the solution sequences of various instances with different numbers of 
discs for the Tower of Hanoi and the transformation process for pivoting a solution sequence to 
become a higher order problem. The transformative process itself models itself as higher and 
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higher order sequence problem. Ultimately, the framework converges to a generic solution 
sequence. 
 
Figure 4-6: Three Disc Tower of Hanoi 
4.2.1 Methodology 
1. Define the Tower of Hanoi problem as illustrated by Figure 4-6 using the generic problem-
solving schema (Figure 4-2). 
2. Generate instantiations based on the setup query for the range of discs defined for 
simulation. 
3. Utilize simulation to process the outputs of the transition query until achieving success for 
four instances of Hanoi (two to five discs). Table 4-1 illustrates results of the entity- 
attribute value sequences. 
4. Using the higher order problem (Figure 4-10), apply prediction operators that evaluate the 
solution sequences, generate additions to the lower level problem queries, execute the 
queries, and measure the success. This process runs as a simulation and results in 
identifying the sequence of prediction operators necessary to solve each larger instance 
from the smaller instances.  
  
 
   
 107 
 
 
5. The entity-attribute value sequences for the optimal solution evolve from instances three 
and four. The higher order problem for instances three and four finds the causative 
predictive operator that involves a transformation based on even or odd discs. Instance 
five applies this transformation to predict the sequencing of instance six.  
4.2.2 Proof from the Data 
Table 4-1: Sequence Patterns from Hanoi by Disc and Peg 
Discs Disc Peg Move States 
2 1 1 --- 
2 1 2 1-- 
2 1 3 --1 
2 2 1 --- 
2 2 2 --- 
2 2 3 -1- 
3 1 1 ----1-- 
3 1 2 --1---- 
3 1 3 1-----1 
3 2 1 ------- 
3 2 2 -1----- 
3 2 3 -----1- 
3 3 1 ------- 
3 3 2 ------- 
3 3 3 ---1--- 
4 1 1 ----1-----1---- 
4 1 2 1-----1-----1-- 
4 1 3 --1-----1-----1 
4 2 1 ---------1----- 
4 2 2 -----1--------- 
4 2 3 -1-----------1- 
4 3 1 --------------- 
4 3 2 ---1----------- 
4 3 3 -----------1--- 
4 4 1 --------------- 
4 4 2 --------------- 
4 4 3 -------1------- 
5 1 1 ----1-----1-----1-----1-----1-- 
5 1 2 --1-----1-----1-----1-----1---- 
5 1 3 1-----1-----1-----1-----1-----1 
5 2 1 ---------1-----------1--------- 
5 2 2 -1-----------1-----------1----- 
5 2 3 -----1-----------------------1- 
5 3 1 -------------------1----------- 
5 3 2 -----------1------------------- 
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5 3 3 ---1-----------------------1--- 
5 4 1 ------------------------------- 
5 4 2 -------1----------------------- 
5 4 3 -----------------------1------- 
5 5 1 ------------------------------- 
5 5 2 ------------------------------- 
5 5 3 ---------------1--------------- 
 
In the above chart, each disc has a relationship to the peg affected on a particular move. A 
sophisticated learning algorithm should be able to find the patterns between the discs and pegs, 
but a simpler method emerges using aggregation. Rather than analyzing the detailed patterns for 
each combination, the result of simply aggregating all the states across the sequence for each 
distinct value for the entity (disc) and for the attribute (peg) without regard to the intersection of 
the entity and attribute provides more concise insights as shown below: 
Table 4-2: State Sequence by Disc 
Discs Disc State Change Sequence 
2 1 1-1 
2 2 -1- 
3 1 1-1-1-1 
3 2 -1---1- 
3 3 ---1--- 
4 1 1-1-1-1-1-1-1-1 
4 2 -1---1---1---1- 
4 3 ---1-------1--- 
4 4 -------1------- 
5 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 
5 2 -1---1---1---1---1---1---1---1- 
5 3 ---1-------1-------1-------1--- 
5 4 -------1---------------1------- 
5 5 ---------------1--------------- 
  
Table 4-3: State Sequence by Peg 
Discs Peg State Change Sequence 
2 1 --- 
2 2 1-- 
2 3 -11 
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3 1 ----1-- 
3 2 -11---- 
3 3 1--1-11 
4 1 ----1----11---- 
4 2 1--1-11-----1-- 
4 3 -11----11--1-11 
5 1 ----1----11-----1--1-11-----1-- 
5 2 -11----11--1-11-----1----11---- 
5 3 1--1-11-----1--1-11----11--1-11 
 
A simple sequence recognition algorithm can spot that that the pattern for the smallest disc is 
to change state every other move, for the next largest disc to change every fourth move, the third 
every eighth interval and so on. When the peg states are also examined for patterns in disc counts 
three to six, only a few of the patterns need to be identified and the rest can be deduced due to the 
standard rules of play. This effectively generates a rule that only allows one choice so that the 
sequence can generate instantly. From there, all that is necessary is a reversal process to generate 
the query criteria that reflects the relational sequences. 
To prove that the transformative property works, the framework must show the following 
three things:  
1. The learning problem process for finding a sequence of machine learning algorithm 
operations can be defined schematically using the same schema and operations associated 
with the base problem; 
2. There is a problem definition P? which represents the problem of searching for patterns to 
find the optimal solution; 
3. The process for the generating and solving the learning problem P? spawns a P?? to 
optimize the learning problem P? and that P??? is generated in the same way as P?. This 
indicates that there is no limit to the learning depth obtainable from higher order problems.  
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An additional consideration is that if the system truly generates higher and higher order 
problems, there must exist an energy function to govern the levels of problem solving at which the 
diminishing returns of the computation outweigh the benefits of reflection. A human reflective 
analogy of this is that one may think about how well they performed a particular task to try to 
identify improvement and about how to think about the mechanism for evaluating such 
performance ? a process that can go on indefinitely. At some point the human mind implicitly 
imposes a restriction on reflection in order to permit functionality and not spend all of one?s time 
simply reflecting upon reflecting. Therefore an additional constraint to govern system behavior is: 
4. There is an equilibrium process for the efficiency problem to determine the number of 
levels is definable in terms of an overriding problem in the system governed by a least-
energy function EF. 
Figure 4-10 illustrates a schema for recursive self-examination of problem solving to support 
the continuous-learning goal. The key to the functionality lies in the expression operators? 
extensibility to select data from within the schema without requiring explicit redefinition of the 
optimization problem in terms of a new entity. Referencing existing data generated from the 
simulation solution paths provides the optimization problem with the information necessary to 
execute operations to try to meet the goal.  
However, allowing the optimization problem to self-reference data within the system schema 
that targets optimal discovery of the solution creates a problem if such an optimization problem 
does not adhere to the constraints of the framework as far as generating solution data for the higher 
order problem. To resolve this, the framework uses the same simulation process to find the optimal 
solution path for a problem as that for probing a solution to a base problem (founded on the given 
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constraints). This means that the effort of solving the optimization problem generates data about 
the optimization problem such that the solution steps for the lower level optimization problem now 
become the inputs for the higher order solution problems. Once the frameworks shows that the 
same process used to generate the first-order higher-level solving problem is the same as the 
process used for generating the higher-order problems, there is proof that the learning process is 
recursive. The process of finding each higher order problem generates optimizations back to the 
lower level problem such that new instances of the lower level problem are solved using the 
optimizations generated from the higher order problem. In the case of Hanoi, this manifests itself 
through the generation of the learning problem map that enables the new instances of the problem 
to benefit from the optimization query generated by the higher order problem. 
4.2.3 Summary 
Based on this, the following steps emerge for problem resolution: 
1) Identify a problem P that has multiple instances each increasing in size such as the Tower 
of Hanoi with more and more discs added.  
2) Represent the overall problem using relational algebra to define unique entities with their 
attributes that define the problem. 
3) Define expressional functions to return possible domains of values including aggregates and 
queries that follow a relational model that joins the expressions and filters the results with Boolean 
and/or conjunctions to represent the valid states for entities/attributes which create an instance, 
define the valid transitions, and attain a goal state. 
  
 
   
 112 
 
 
4) Solve the instances of increasing size in order using a generic simulator. Generate a 
relational state sequence corresponding to each attribute within the problem instance and all 
possible values and the sequence at the activated value. 
5) Within each simulation instance, generate instances of a prediction problem based on the 
same schema as that for the base problem. Reference as entities the state sequences from within 
the instances and transform operators for application of each state sequence to predict future values 
of the state sequence. For example, given Hanoi simulation instance S1 with two discs, select 
operators for each branch of the instance in a prediction problem that predicts the next value in the 
state sequence for each state sequence change within the instance. Allow the prediction operators 
(also known as transform operators) to be visible not only to the sequences associated with the 
current instance but also to the sequences from prior solved instances. This means that while 
framework solves simulation instance S2 with three discs, the prediction operators can reference 
solved sequences from S1 and apply the prediction operators against the earlier sequence to 
generate the expected sequence values for S2. Allow each subsequent instance to reference the 
solved sequences of the prediction problem associated with each instance. Further, allow 
prediction operators that may generate portions or the entire section of the state sequences rather 
than just one value at a time. Set the goal for each of these prediction instances to generate the 
solution instance in the fewest number of steps. 
7) Once there are two solved instances of the first-order prediction problem, generate a 
prediction problem that references the lower-level prediction problem-state sequences as entities 
in the same way as process five above. Continue to generate more high-level prediction problems 
while creating the lower-level generation instances. Expand the scope of the higher level prediction 
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to include instances from other problems since at this point the focus is on improving the higher 
order solution selection process.  
8) Continue processes five through seven with higher and higher transformations until 
reaching a point of diminishing returns in terms of effort and success. This problem is an ongoing 
problem that checks the number of operations against the success ratio and dynamically injects 
constraints that prevent problem escalation to the point of diminishing returns. This is the 
equilibrium problem. 
 Figure 4-6 illustrates increasing problem transformation depth as the framework solves more 
simulation instances for the Tower of Hanoi. The first-order problem is to determine the 
transformation operators that vary the sequences of a source instance so that they match a 
prediction instance (target). Once there are two solved transformation solutions, a sequencing 
problem arises that determines the sequencing operators to act upon one transformation instance 
to create the transformation operations in a prediction instance. Once there are two solved 
sequencing solutions, a sequence generation problem learns the operators needed to generate the 
sequencing operations in a predicted instance from a source instance.  
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S 1 -  S i m u l a t i o n  
So l u t i o n  ( d i s c s = 2 )
S 2 ?  S i m u l a t i o n  
So l u t i o n  ( d i s c s = 3 )
S 3 ?  S i m u l a t i o n  
So l u t i o n  ( d i s c s = 4 )
S 4 ?  Si m u l a t i o n  
S o l u t i o n  ( d i s c s = 5 )
T 1 -  T r a n s f o r m  
S o l u t i o n  ( S 1 - > S 2 )
T 2 -  T r a n s f o r m  
S o l u t i o n  ( S 2 - > S 3 )
T 3 -  T r a n s f o r m  
S o l u t i o n  ( S 3 - > S 4 )
TS 1 ?  T r a n s f o r m  
Se q u e n c e  S o l u t i o n  
( T 1 - > T 2 )
TS 2 ?  T r a n s f o r m  
S e q u e n c e  S o l u t i o n  
( T 2 - > T 3 )
SG 1 -  S e q u e n c e  
G e n e r a t i o n  
So l u t i o n
C a p t u r e  t r a n s f o r m  o p e r a t i o n s
P r e d i c t  T r a n s f o r m s
 
Figure 4-7: Simulation Graph 
 At this point in the Tower of Hanoi, a repeating sequence becomes evident and the sequence 
generation operators are able to generate the solution to a higher instance. The framework 
accomplishes this using the lower solved instance without requiring the use of simulation to 
increase the breadth or depth of the established solution space.  Rather than relying on simulation, 
the tree can be co-recursively visited, creating a new transformation sequence problem instance to 
leverage the last transformation solution as input to generate a transformation instance, which then 
generates the simulation output result without re-simulating.  This process repeats using the output 
simulation of each instance with higher disc-counts until solving the desired disc-count. Figure 4-
7 illustrates the solution generation process wherein the sequence generation solution is able to 
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generate the next transform sequence solution. This in turns generates the next transform solution, 
which then generates the output that would have come from simulation. To verify that the 
generated solution is correct, the framework can execute further simulations. Each simulation adds 
further depth of learning such that the generational sequence solution evolves into higher-level 
generational sequence solutions. As the learning depth increases, it becomes more and more likely 
that a general case solution will evolve for a deterministic scenario. For the Tower of Hanoi, four 
simulations that spawn three levels of solution generation are adequate for the transform operators 
to identify a pattern that works for all instances of disc counts.  
Sn + 1
T S n
Tn
Sn
S 1 -  S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 2 )
S 2 ? S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 3 )
S 3 ? S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 4 )
S 4 ? S i m u l a t i o n  
S o l u t i o n  ( d i s c s = 5 )
T 1 -  T r a n s f o r m  
S o l u t i o n  ( S 1 - > S 2 )
T 2 -  T r a n s f o r m  
S o l u t i o n  ( S 2 - > S 3 )
T 3 -  T r a n s f o r m  
S o l u t i o n  ( S 3 - > S 4 )
TS 1 ? T r a n s f o r m  
S e q u e n c e  
S o l u t i o n  ( T 1 - > T 2 )
TS 2 ? T r a n s f o r m  
S e q u e n c e  
S o l u t i o n  ( T 2 - > T 3 )
SG 1 -  S e q u e n c e  
G e n e r a t i o n  
S o l u t i o n
C a p t u r e  o b j e c t  s t a t e  s e q u e n c e s
P r e d i c t  G e n e r a t i o n  S t e p s
S 5 -  U n s o l v e d  
S i m u l a t i o n  
( d i s c s = 6 )
TS 3 ? G e n e r a te d  
T r a n s f o r m  
S o l u t i o n  ( T 3 - > T 4 )
T 4 ? G e n e r a t e d  
T r a n s f o r m  
S o l u t i o n  ( S 4 - > S 5 )
 
Figure 4-8: Reversibility Operation to Generate Solution Instances 
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Table 4-4 illustrates the generation of sequences associated with activation states from solved 
simulation instances. The framework exposes these sequences for solving using transformation 
operators to calculate the sequence of one instance from a lower instance. The framework actually 
identifies the transformation needed for the discs and pegs on the very first transformation solution 
using the first two instances. The complexity here comes from the fact that each instance introduces 
an additional instance of the disc entity based on the disc-count for the instance. In order to 
generate a transformational sequence solution that incorporates this additional entity, sequence 
results must be utilized that are then aggregated and correlated so that the copying of the prior 
entities as well as the creation of the entities are flattened as distinct sequences. 
Table 4-4: Solution State Sequences for Disc-Count = 2 and Disc-Count=3 
Attrib. Value/Expression Sequence/ Transform 
Results 
S1 - Solution path from simulation for Disc-Count=2 
Disc --1 (1) 1-1 
Disc Min-Disc 1-1 
Disc Min-Disc+1 -1- 
Disc -1- (2) -1- 
Disc Disc-Count -1- 
Peg --1 (1) --- 
Peg -1- (2) 1-- 
Peg -11 (3) -11  
S2 - Solution path from simulation for Disc-Count=3 
Disc --1 (1) 1-1-1-1 
Disc Min-Disc 1-1-1-1 
Disc Min-Disc+1 -1---1- 
Disc -1- (2) -1---1- 
Disc Min-Disc+2 ---1--- 
Disc -11 (3) ---1--- 
Disc Disc-Count ---1--- 
Peg --1 (1) ----1-- 
Peg -1- (2) -11---- 
Peg -11 (3) 1--1-11  
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Table 4-4 illustrates the relational state sequences from two instances of a Hanoi solution 
capturing the entities (discs) and attributes correlated to the activation of particular values in a 
solution sequence. For example, in the two-disc simulation, the disc with the smallest size (one) 
activates on the first and third move of the solution while activating the larger disc on the second 
move. Likewise, each peg correlated to a value is activated at different points, with peg two 
activated on the first move (disc one moves to peg two) and then peg three activated for the 
remaining two moves. Within UPRF, relational state sequences should be fully reversible; the 
combination of all captured states for any instance of a problem can be reversed to replay all of 
the actions involved in a simulation.  
The second simulation on Table 4-4 shows the relationship between the state sequences 
associated to a second instance with an additional disc. The color-coding illustrates how the 
sequences from the first simulation constitute sequences in the second simulation solution. For 
example, the smallest disc inherits the pattern of moving every other move; the next largest disc 
moves every fourth move; and the new disc takes on the same pattern as the largest disc in the first 
simulation within the extended sequence.  
The peg sequences also show a relationship that maps sequences from multiple pegs to 
generate new relationships. For example, the peg one sequence of the second instance derives from 
the sequence for peg one followed by a zero bit and appended with the sequence for peg two from 
the first instance. This pattern continues for the other pegs serially with each peg instance and the 
second peg of instance two derivable from the instance-one peg-three sequence plus a zero bit and 
then rotating back to append the peg one sequence. The framework can create these 
transformations using a bit function as shown in Table 4-5. 
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In Table 4-5, the attribute sequenced is a transform operator.  The transform operator 
represents an algorithm for generating or updating a target sequence from a source sequence. For 
example, the sequence for the smallest disc from the two-disc simulation initializes with a Copy-
Segment operation to copy the sequence to the smallest disc in the three-disc instantiation. The 
framework applies the Copy-Segment operation twice to the target disc with an intervening zero 
bit insertion. These operations together generate the required relational state sequence for the first 
disc. The process repeats for each disc with the new disc utilizing a different set of operations 
taken from the largest disc in the first instance.  
The transform operators themselves become relational state sequences that identify which 
operators the framework utilizes across the entire solution sequences rather than only for the 
source/target instances. De-coupling the source object activations used by the sequence into 
separate sequences provides traceability of these sequences to enable reversibility. Relational 
sequences of type ?sequence? represent both the operator sequences and the entity/attribute 
activations associated to the operator sequences.  
Note that the purpose of the framework is not to inherently provide the logical functions 
needed to achieve the transformations but to provide an environment for hosting machine-learning 
algorithms that serve as transform operators. The framework provides the same simulation 
problem solving approach for finding the learning operations as that for playing out a simulation 
through brute force. The goal is to find some function that accomplishes the pattern recognition 
using one or more source instances. These source instances predict the correct relational state 
sequence in an unsolved instance. The framework also ensures that each algorithm executes with 
traceability back to the parameters used by the algorithm to make the prediction. This ensures that 
  
 
   
 119 
 
 
the execution of all algorithms is constrained within a measurement framework so that the 
operation of the algorithms themselves make themselves visible as higher-level optimization 
problems. This also provides the potential to analyze algorithms for correlation to rank the 
selection processes which the process thereof continually improves as the system solves more 
problems. The algorithms themselves are stored as data entities in the framework to allow 
extensibility. The framework can register any algorithm for use as a transform operator within the 
framework utilizing the prescribed interface for the algorithm to search the source values exposed 
for a problem instance and record the sequences of operations utilized to achieve a target sequence.  
Table 4-5: Transformation for New Instance Using a Prior Instance (Count=3) 
Attrib. Value/Expression Sequence/ Transform Results 
T1 - Solution path for pattern for disc-count=2 to solution for disc-
count=3 (S1->S2) 
E-Operation Copy-Segment 1-11-1- 
E-Operation Insert-Bit -1--1-- 
New-E-
Operation 
Binary-Expand ------1 
E-Source Instance-1:Disc-1 1-1---- 
E-Source Instance-1:Disc-2 ---1-11 
E-Source Instance-1:Max-Steps 
(Power(2, Disc-Count) -1  
------1 
E-Target Instance-2:Disc-1 111---- 
E-Target Instance-2:Disc-2 ---111- 
E-Target Instance-2:Disc-3 ------1 
E-Source 0 -1--1-- 
Attribute Operations 
A-Operation Copy-Segment 1-11-11-1 
A-Operation Insert-Bit -1--1--1- 
A-Source Instance-1:Peg-1 1--1----- 
A-Source Instance-1:Peg-2 --1--1--- 
A-Source Instance-1:Peg-3 ------1-1 
A-Source 0 -1--1---- 
A-Source 1 -------1- 
A-Target Instance-1:Peg-1 111------ 
A-Target Instance-2:Peg-2 ---111--- 
A-Target Instance-3:Peg-3 ------111 
 
  
 
   
 120 
 
 
Table 4-5 shows the three different types of operations and how they correlate to source/target 
entities and attributes. The three operations are: 
1. E-Operation: Carries out a transformation that uses source entities and affects a target 
entity. 
2. New-E-Operation: Carries out a transformation that uses sources entities and creates a 
new target entity. 
3. A-Operation: Carries out a transformation that relates to source and target attribute 
values. 
In the above example, the Copy-Segment operation utilizes Instance 1/Disc 1 on steps one 
and three while the Copy-Segment affects Instance 1/Disc 1. Intervening between the uses of the 
source Instance 1/Disc 1 is the use of the Insert-Bit function which is active at step two to insert 
an intermediate bit in the target Instance 2/Disc 1 sequence. The peg sequence population follows 
the pattern required to generate the peg two sequence for the second instance from the first instance 
by first activating the peg one sequence, then inserting a zero bit, and finally adding the sequence 
from peg two, also from the first instance. This repeats for the second peg on the second instance. 
However, the third peg involves the insertion of a one bit between the two sequences. There is also 
an exception to the source entity handle outlined in the New-E-Operation. This operation utilizes 
a binary expansion to generate the sequence for the new disc both appending and prepending the 
source sequence by enough bits to fill out the required sequence length. The required sequence 
length is understood in terms of the expression that calculates the maximum move count. For 
example, applying the move count as the number of bits expands the sequence for the largest disc 
two in a two-disc scenario from 010 to the large disc three sequence for a three-disc scenario of 
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000100 since the number of moves in a two-disc scenario is three and for a three-disc scenario it 
is seven (Power (2, Disc-Count) ? 1). In both cases, the number of total bits to expand 
symmetrically with zero fill is the number of maximum moves. 
The transformation sequence applies to additional instances (as shown in Table 4-6) wherein 
the simulation pattern from an instance of three discs can predict the pattern for a four-disc 
solution. Note that the transformation operations are the same except for the addition of further 
operations to support the creation of the new disc associated with the instance for the disc-count 
of four. It is clear with the third simulation that a solution pattern exists which involves simply 
using the prior transformations and adding in the new transform for the new disc. This creates a 
temptation to stop the process and simply implement a programmatic solution. However, the goal 
of UPRF is not only to identify the solution pattern, but also to generate a pattern that implements 
the solution transformation. Therefore, the framework continues onto the next level of identifying 
the transformations for creating the transformation sequences for the original problem. 
To complete the next step, a new simulation for S5 is necessary in order to spawn another 
Transformation instance T3 so that a second instance of the transform solution (TS2) wherein the 
pivot that includes the operation type is incorporated. Having TS1 and TS2 transform solution 
paths enables the highest order of problem solving which handles transform operation sequences 
generically shown as SG. The transformation sequence for TS1 and TS2 incorporates the base 
expressions that reflect data about the instance itself, specifically the disc count in order to 
calculate the number of offset operations required to achieve the transform from TSN to TS-N+1. 
The generic solution is thus de-coupled from the specific instances and able to operate on any 
simulation instances in an identical fashion. This allows execution of the higher order transform 
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even where no supporting simulation exists. The capability represents the pivot point in the 
recursion, such that co-recursion reverses back down the tree and ultimately generates the next 
simulation solution instance without the need to carry out simulation, but only to implement the 
transformations. Thus, instead of requiring exponential complexity to explore the solution space, 
the complexity is linear with respect to finding the solution approach based on the number of discs. 
This does not mean that the problem itself reduces to linear complexity, as the size complexity still 
must increase with larger simulations to reflect the need for an exponential increase in moves for 
each added disc. 
Table 4-6: Solution State Sequences with Disc-Count = 3 and Disc-Count=4 
S2 - Solution path from simulation for Disc-Count=3 
Attrib. Value/Expression Sequence/ Transform Results 
Disc --1 (1) 1-1-1-1 
Disc Min-Disc 1-1-1-1 
Disc Min-Disc+1 -1---1- 
Disc -1- (2) -1---1- 
Disc Min-Disc+2 ---1--- 
Disc -11 (3) ---1--- 
Disc Disc-Count ---1--- 
Peg --1 (1) ----1-- 
Peg -1- (2) -11---- 
Peg -11 (3) 1--1-11  
S3 -Solution path from simulation for Disc-Count=4 
Disc Min-Disc 1-1-1-1-1-1-1-1 
Disc Min-Disc+1 -1---1---1---1- 
Disc Min-Disc+2 ---1-------1--- 
Disc Disc-Count -------1------- 
Peg --1 (1) ----1----11---- 
Peg -1- (2) 1--1-11-----1-- 
Peg -11 (3) -11----11--1-11 
 
Table 4-6 illustrates the transformation of the sequence associated with the disc and peg states 
from a three-disc simulation to a four-disc simulation. Note that the transformation pattern is 
identical duplicating the disc sequences with the new sequence introduced with a mid-point state 
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set and the copying peg sequences serially to combine pegs one and two to form target peg one 
sequence, three and one to form target peg two, and two and three to form target peg three. 
Table 4-7: Transformation for New Hanoi Instance Using a Prior Instance (Count=4) 
Attrib. Value/Expression Sequence/ Transform Results 
T2 - Solution path for pattern for disc-count=3 to solution for disc-
count=4 (S2->S3) 
E-Operation Copy-Segment 1-11-11-1- 
E-Operation Insert-Bit -1--1--1-- 
New-E-
Operation 
Binary-Expand ---------1 
E-Source Instance-1:Disc-1 1-1------- 
E-Source Instance-1:Disc-2 ---1-1---- 
E-Source Instance-1:Disc-3 ------1-11 
E-Source Instance-1:Max-
Steps (Power(2, 
Disc-Count) -1  
---------1 
E-Target Instance-2:Disc-1 111------- 
E-Target Instance-2:Disc-2 ---111---- 
E-Target Instance-1:Disc-3 ------111- 
E-Target Instance-2:Disc-4 ---------1 
E-Source 0 -1--1--1--  
Attribute Operations 
A-Operation Copy-Segment 1-11-11-1 
A-Operation Insert-Bit -1--1--1- 
A-Source Instance-1:Peg-1 1--1----- 
A-Source Instance-1:Peg-2 --1--1--- 
A-Source Instance-1:Peg-3 ------1-1 
A-Source 0 -1--1---- 
A-Source 1 -------1- 
A-Target Instance-1:Peg-1 111------ 
A-Target Instance-2:Peg-2 ---111--- 
A-Target Instance-3:Peg-3 ------111 
 
Table 4-7 shows the sources, targets, and operations that represent the state sequences to 
generate the simulation solution for a disc count of four from an instance with a disc count of three. 
Table 4-8: Sequence Comparison T1 to T2 
Trans-
form 
Attrib. Value/ 
Expression 
Sequence 
T1 E-Operation Copy-Segment 1-11-1- 
T2 E-Operation Copy-Segment 1-11-11-1- 
T1 E-Operation Insert-Bit -1-1--- 
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T2 E-Operation Insert-Bit -1-1-1---- 
T1 New-E-Operation Binary-Expand ------1 
T2 New-E-Operation Binary-Expand ---------1 
T1 E-Source Instance-S1:Disc-1 1-1---- 
T2 E-Source Instance-S1:Disc-1 1-1------- 
T1 E-Source Instance-S1:Disc-2 ---1-11 
T2 E-Source Instance-S1:Disc-2 ---1-1---- 
T2 E-Source Instance-S2:Disc-3 ------1-11 
T1 E-Source Instance-S2:Max-Steps 
(Power(2, Disc-Count) -1  
------1 
T2 E-Source Instance-S3:Max-Steps 
(Power(2, Disc-Count) -1  
---------1 
T1 E-Target Instance-1:Disc-1 111---- 
T2 E-Target Instance-S3:Disc-1 111------- 
T1 E-Target Instance-S2:Disc-2 ---111- 
T2 E-Target Instance-S3:Disc-2 ---111---- 
T1 E-Target Instance-S2:Disc-3 ------1--- 
T2 E-Target Instance-S3:Disc-3 ------111- 
T2 E-Target Instance-S3:Disc-4 ---------1 
T1 E-Source 0 -1--1?1 
T2 E-Source 0 -1--1--1--1 
Attribute Operations 
T1, T2 A-Operation Copy-Segment 1-11-11-1 
T1, T2 A-Operation Insert-Bit -1--1--1- 
T1, T2 A-Operation Insert-Bit -1--1--1- 
T1, T2 A-Source Instance-1&2:Peg-1 1--1----- 
T1, T2 A-Source Instance-1&2:Peg-2 --1--1--- 
T1, T2 A-Source Instance-1&2:Peg-3 ------1-1 
T1,T2 A-Source 0 -1--1---- 
T1,T2 A-Source 1 -------1- 
T1 A-Target Instance-1:Peg-1 111------ 
T1 A-Target Instance-2:Peg-2 ---111--- 
T2 A-Target Instance-3:Peg-3 ------111 
 
In Table 4-8, the source sequences map from the transformation-solution instance one to 
transformation solution instance two. The sequences are targeting the problem of generating the 
sequence of operations needed to solve the Tower of Hanoi rather than the Tower of Hanoi itself. 
The transform column identifies the transform instance with the instance qualifier within the 
transform shown in the expression column of the chart. This is the first higher order problem 
transformation problem. Since there are no new attributes and the pattern for copying the 
sequences are the same, the attribute solution path is simply an exact duplication of the prior 
instance. 
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Table 4-9: Operation Transform Sequence  (T1->T2) 
TS1 - Solution path for generating sequence to transform from T1 to T2 
E-Operation Prepend-Bit 111 111 --- 111 --- 
E-Operation New-Sequence --- --- --- 1-- --- 
E-Operation Append-Bit --- --- -11 --- --- 
E-Operation Copy-Segment --- --- 1-- --- --- 
E-Source T1:Insert-Bit --- 111 --- --- --- 
E-Source T1:Copy-Segment 111 --- --- --- --- 
E-Source T1:Binary-Expand --- --- --- --- 111 
E-Source T1:Source-Entity --- --- 1-- --- --- 
E-Source T1:New-Entity (Disc=3) --- --- -11 1-- --- 
E-Source T2:Target-Entity --- --- 1-- --- --- 
E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 --- 
E-Source 0 1-1 -1- --- 111 111 
E-Source 1 -1- 1-1 -11 --- --- 
Attribute Operations 
A-Operation Copy-Segment 1-11-11-1 
A-Source Copy-Segment 1--1-----, --1--1---, -----
-1-1 
A-Target Copy-Segment 111------, ---111---, -----
-111 
Legend: 
Yellow: Copy-Segment alteration via bit-prepending 
Green:  Insert-Bit alteration via bit-prepending 
Blue: Cloning of entities through segment copying 
Olive: Creating of new entity sequence via bit-appending 
Red: Offsetting binary expansion operation via bit-prepending  
 
 Table 4-9 examines the problem of generating the transformation sequence. This second-order 
transformation generates the sequences to convert the lower level transformation T1 to predict the 
sequences required for T2.  TS1 generalizes all the source discs associated with T1 into a single 
operation and creates a new operation linked to the disc-count. Carrying out the operations in Table 
4-9 transforms the source instance T1 to T2. For example in Table 4-8, T2?s copy segment 
sequence requires an additional 101 at the start. The framework accomplishes this by referencing 
the copy-segment source along with a prepend-bit operator referencing 1, 0, 1 in steps one through 
three of the sequence as highlighted in yellow.  The green highlight shows the sequences required 
to generate the T2 Insert-Bit operation sequence from the T1 Insert-Bit sequence operation that 
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also operate against the target entities but not the source. The blue highlight shows the copy-
segment applied to all the entities of the source. The green highlight shows the operation sequences 
that transform the sequence for creating a new entity in T1 to create the new disc entity in T2.  In 
T2, the binary expand operation is executed three steps later so prepend of bit zero is applied to 
that operation highlighted in red. Attribute operations are resolved as simply a duplication of the 
prior instance of the operation, source, and targets.  The generation of a solution that transforms a 
transformation sequence set of operations from one instance to another moves up the abstraction 
level and gets closer to a generic solution for generating T-n+1 from T-n.   
Table 4-10 shows an additional simulation instance with the following tables going through 
the same process for the earlier solution instances to derive a transformation sequence solution in 
Table 4-13. The attribute operations for the peg values are the same in these tables because TS1 
was able to identify an exact copy operation for both T1 and T2 thus the generic solution is already 
in place for the attributes. The final higher order problem in Table 4-14 targets the higher order 
transformation-sequencing instance using the prior transformation-sequencing instance in order to 
generate a generic method for generating the transformation-sequencing instance. This then maps 
back to a problem attribute to define a repetition operation as well as an insertion operation based 
on this attribute. The insertion operation inserts a bit zero or bit one in the sequence depending 
upon the reference sequence/prediction target while the repetition operator (repeat-last-operation) 
repeats the insertion relative to the offset of the targeted instance, based on the disc-count from the 
source.  The solution generation in Table 4-14 instance reflects the derivative operations of the 
lower level transforms to discover that the transform pattern between the two instances is simply 
a copy operation. Thus, no additional higher order transformations are necessary. 
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In this case, the disc count problem attribute becomes part of the sequence generation rule 
such that transformation-sequencing solutions can be generated for yet non-simulated problem 
instances. This capability allows the problem solver to predict the solution path incrementally for 
each lower level transformative property in a co-recursive fashion until the instance for the desired 
number of discs.  In the last set of transformation operators, the prediction targets replace the 
original sources. This allows the solution to be repeatedly instantiated using its own predictions as 
the input until achieving the desired target instance. 
The only capability needed for this is a reversal process that maps the relational state 
sequences to generate the actual state changes in the entity/attribute combinations from start to 
finish, performing an actual solution of an instance. Since the state capture process is complete in 
terms of all items necessary to reproduce a solution, a simple enumeration approach, covered in 
the next section, accomplishes this. 
Table 4-10: State Sequences for Solved Simulations - Disc-Count = 4 and Disc-Count=5 
S3 - Solution path from simulation for Disc-Count=4 
Attrib. Value/Expression Sequence/ Transform Results 
Disc Min-Disc 1-1-1-1-1-1-1-1 
Disc Min-Disc+1 -1---1---1---1- 
Disc Min-Disc+2 ---1-------1--- 
Disc Disc-Count -------1------- 
Peg --1 (1) ----1----11---- 
Peg -1- (2) 1--1-11-----1-- 
Peg -11 (3) (3) -11----11--1-11 
S4 -Solution path from simulation for Disc-Count=5 
Disc Min-Disc (1) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 
Disc Min-Disc+1 (2) -1---1---1---1---1---1---1---1- 
Disc Min-Disc+2 (3) ---1-------1-------1-------1--- 
Disc Min-Disc+3 (4 -------1---------------1------- 
Disc Disc-Count (5) ---------------1--------------- 
Peg --1 (1) ----1----11-----1--1-11-----1-- 
Peg -1- (2) -11----11--1-11-----1----11---- 
Peg -11 (3) (3) 1--1-11-----1--1-11----11--1-11 
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Table 4-11: Transformation for New Instance from Prior Instance (Count=5) 
Attrib. Value/Expression Sequence/ Transform Results 
T3 - Solution path for pattern for disc-count=4 to solution for disc-
count=5 (S3->S4) 
E-Operation Copy-Segment 1-11-11-11-1- 
E-Operation Insert-Bit -1--1--1--1-- 
New-E-
Operation 
Binary-Expand ------------1 
E-Source Instance-1:Disc-1 1-1---------- 
E-Source Instance-1:Disc-2 ---1-1------- 
E-Source Instance-1:Disc-3 ------1-1---- 
E-Source Instance-1:Disc-4 ---------1-1- 
E-Source Instance-1:Max-
Steps (Power(2, 
Disc-Count) -1  
------------1 
E-Target Instance-2:Disc-1 111---------- 
E-Target Instance-2:Disc-2 ---111------- 
E-Target Instance-1:Disc-3 ------111---- 
E-Target Instance-2:Disc-4 ---------111- 
E-Target Instance-2:Disc-5 ------------1 
E-Source 0 -1--1--1--1--  
Attribute Operations 
A-Operation Copy-Segment 1-11-11-1 
A-Operation Insert-Bit -1--1--1- 
A-Source Instance-1:Peg-1 1--1----- 
A-Source Instance-1:Peg-2 --1--1--- 
A-Source Instance-1:Peg-3 ------1-1 
A-Source 0 -1--1---- 
A-Source 1 -------1- 
A-Target Instance-1:Peg-1 111------ 
A-Target Instance-2:Peg-2 ---111--- 
A-Target Instance-3:Peg-3 ------111 
 
Table 4-11 shows the sources, targets, and operations that represent the state sequences to 
generate the simulation solution for a disc count of five from an instance with a disc count of four. 
This follows the identical pattern as for a transformation from three to four discs except the 
additional operations and the lengthening of the sequences. 
Table 4-12: Entity Sequence Comparison from Transformation T2 to T3 
Trans-
form 
Attrib. Value/ 
Expression 
Sequence 
T2 E-Operation Copy-Segment 1-11-11-1- 
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T3 E-Operation Copy-Segment 1-11-11-11-1- 
T2 E-Operation Insert-Bit -1-1-1--- 
T3 E-Operation Insert-Bit -1-1-1-1---- 
T2 New-E-
Operation 
Binary-Expand ---------1 
T3 New-E-
Operation 
Binary-Expand ------------1 
T2 E-Source Instance-S3:Disc-1 1-1------- 
T3 E-Source Instance-S3:Disc-1 1-1---------- 
T2 E-Source Instance-S3:Disc-2 ---1-1--- 
T3 E-Source Instance-S3:Disc-2 ---1-1---- 
T2 E-Source Instance-S3:Disc-3 ------1-1--- 
T3 E-Source Instance-S3:Disc-3 ------1-1---- 
T3 E-Source Instance-S4:Disc-4 ---------1-11 
T2 E-Source Instance-S4:Max-Steps 
(Power(2, Disc-Count) 
-1  
---------1 
T3 E-Source Instance-S5:Max-Steps 
(Power(2, Disc-Count) 
-1  
------------1 
T2 E-Target Instance-1:Disc-1 111---- 
T3 E-Target Instance-S5:Disc-1 111------- 
T2 E-Target Instance-S4:Disc-2 ---111- 
T3 E-Target Instance-S5:Disc-2 ---111---- 
T2 E-Target Instance-S4:Disc-2 ------111- 
T3 E-Target Instance-S5:Disc-2 ------111---- 
T2 E-Target Instance-S4:Disc-3 ---------1--- 
T3 E-Target Instance-S5:Disc-3 ---------111- 
T3 E-Target Instance-S5:Disc-4 ------------1 
T2 E-Source 0  -1--1--1-1 
T3 E-Source 0 -1--1--1--1?1 
 
In Table 4-12, the source entity sequences map from the transformation solution instance two 
to transformation solution instance three. Again, the sequences are targeting the problem of 
generating the sequence of operations needed to solve the Tower of Hanoi and not the Tower of 
Hanoi itself. This is the second instance of the higher-order problem transformation problem. The 
next problem is to generate a sequence generation problem that can generate the sequence of 
instructions to create the transformation required to transform the simulation instances (TS1 ^ TS2 
-> SG1). The sequence of operations for T3 is identical to T2; therefore, there is now a general 
solution by simply using the copy segment operation from the prior instance. 
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Table 4-13 ?Sequence for Transforming a Transform Sequence (T1->T2 ? Entities) 
TS2 - Solution path for generating sequence to transform from T2 to T3 
E-Operation Prepend-Bit 111 111 --- 111 --- 
E-Operation New-Sequence --- --- --- 1-- --- 
E-Operation Append-Bit --- --- -11 --- --- 
E-Operation Copy-Segment --- --- 1-- --- --- 
E-Source T1:Insert-Bit --- 111 --- --- --- 
E-Source T1:Copy-Segment 111 --- --- --- --- 
E-Source T1:Binary-Expand --- --- --- --- 111 
E-Source T1:Source-Entity --- --- 1-- --- --- 
E-Source T1:New-Entity (Disc=3) --- --- -11 1-- --- 
E-Source T2:Target-Entity --- --- 1-- --- --- 
E-Source T2:New-Entity(Disc =Disc-Count) --- --- --- 111 --- 
E-Source 0 1-1 -1- --- 111 111 
E-Source 1 -1- 1-1 -11 --- --- 
Attribute Operations 
A-Operation Copy-Segment 1-11-11-1 
A-Source Copy-Segment 1--1-----, --1--1---, -----
-1-1 
A-Target Copy-Segment 111------, ---111---, -----
-111 
Legend: 
Yellow: Copy-Segment alteration via bit-prepending 
Green:  Insert-Bit alteration via bit-prepending 
Blue: Cloning of entities through segment copying 
Olive: Creating of new entity sequence via bit-appending 
Red: Offsetting binary expansion operation via bit-prepending  
 
 
Table 4-14: Sequence Generation for Generating Transform Solution 
SG1 - Solution path for generating sequence to transform from TS2 to TS3 
E-Operation Copy-Sequence 1 
E-Source TS(n+1) 1 
E-Target TS(n) 1 
 
Table 4-14 meets the goal to generate a TS2 operational sequence from TS1 through a simple 
copy sequence. This ultimately provides the general solution to generate the solution directly 
without the need for simulation for further instances of Hanoi. This is because SG1 can generate 
the TS(n) Transform generation by copying TS(n-1) sequence. When reversing TS(n) from state 
sequences back to entity and attribute values, it generates Tn+1. When reversing T(n+1) 
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sequences, it generates entity and attribute values for simulation Sn+1. When S(n+1) is provided 
to T(n+1), the framework generates Sn+1. Generation of T(n+1) enables TSn+1 and the process 
repeats until S(n) meets the criteria for the number of discs. That is, if there is a request for the 
solution to a disc number of eight and UPRF has solved four instances in order to generate SG1, 
then simulation instances five through seven generate through the reversal process without any 
simulation in order to provide the criteria to generate the solution sequence for a simulation with 
eight discs.  
 
4.2.4 Sequence Reversal  
The prior section illustrated the process for transforming solution paths into higher order 
problems. In these higher order problems, the goal transitions to finding the technique for 
predicting the solution paths for the lower order problem for one instance from another instance ? 
possibly multiple instances. This section will demonstrate how the state sequences transform into 
actual values in the database entities and attributes associated with the instance. This capability is 
necessary in order to generate a solution instance for a problem directly without the need for 
simulation. The purpose of this elaboration is to prove that the state capture associated with 
solution-path problem transformations is adequate to reproduce an actual solution. 
In the final transformation, the disc count for the new problem instance is the reference 
variable. The framework simply needs to execute the problem setup, creating the initial instance 
in order to access this variable. In order to generate the targeted simulation, the framework must 
perform all of the transformations upon which the targeted simulation depends. This co-recursive 
process is the unwinding of the recursive problem solving process. As the framework performs 
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each higher order transformation, it generates the lower order solution instance until finally 
achieving the targeted simulation. This process is best illustrated by flipping the problem 
transformation process upside down and depicting the leading edge of the transformation 
generation associated with new instances as shown in Figure 4-9. In this process, the only required 
inputs are the predicted solution paths from the prior transformations. The source transformation 
instances are not necessary because the predicted instances are now the sources. In the diagram, 
the dashed connectors represent the inputs and the solid connectors represent the instances that 
will generate through the predictive transform operations. 
Starting at the solution generator node, the process requires moving incrementally through 
each lower level instance until reaching the target instance for the problem variable. Therefore, 
even with this requirement to build out the number of instances incrementally, the actual time 
complexity increase is less than two times the complexity for a direct solution.  There is also an 
overhead for building out the intermediate nodes, but this is a constant factor of three since the 
framework must perform only the leading edge of the transformations for each additional instance. 
Therefore, the number of operations is the number of operations in the target solution plus a 
constant factor for reversing from the solution generator back to the steps. Based on this, the time 
complexity of generating a solved instance is simply the addition of a linear constant in respect to 
the actual solution sequence. For example, it takes 31 steps to solve a Tower of Hanoi problem 
with five discs (25 ? 1) using the most efficient set of moves. The solution generator is able simply 
to copy the sequences from the prior instance to generate the transformation sequence, which then 
generates the simulation sequences. 
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Figure 4-9: Transformative Reversal Process 
The reversal process starts at SG1, which utilizes TS3 as the input to generate TS4. TS4 uses 
the prior predicted instance of T4 as the input in order to generate T5. T5 then uses the last 
simulation S5 as the input to generate the prediction solution sequence for S6. This process is 
repeatable for incrementally increasing the number of instances until solving the target instance. 
Table 4-17 illustrates how the output of the sequence states are transformed into attribute value 
sequences that represent the specific state changes. State sequences that define the entity and 
attribute values intersect in order to define the specific values for the entity attribute combinations. 
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The framework must examine the sequence reversal process starting at the highest order and 
working backwards since only the highest order transformation is able to create the dependent 
instance. This dependent instance is necessary to generate the solution path tree for a new solution 
instance to the simulation problem. For example, given S5 as the last simulation instance, only T5 
can create S6 and only TS4, which does not exist, can create T5. However, SG1 can create TS4 by 
using the output of SG1 as the input for the next instance of SG1 as defined by the Replace-Source 
operation in the final transforms of the SG1 instance. Once the framework creates TS4, it can then 
generate the required instances to predict S6. 
Although the reversal process must start at the highest order transformation level, the process 
is easier to understand at the lower level transformation so before embarking on the full process, 
let us examine a lower level process. Table 4-17 shows how a sequence is implemented into the 
value sequence data table from the activation sequences in Table 4-16. The value sequence is 
query-able to define the exact solution steps because it identifies the specific attribute value to 
assign to an attribute value for a specific entity instance over a sequence range. If the value 
sequence populates accurately from the state activation sequences, then it is easy to replicate the 
exact solution to a problem instance. 
Table 4-15: State Sequences for S1 
Instance Ref. Attrib. Binary 
Value/Expression 
Sequence/ Transform Results 
S1 - Solution path from simulation for Disc-Count=2 
1 1 Disc 001 (1) 1-1 
1 2 Disc 010 (2) -1- 
1 3 Peg 001 (1) --- 
1 4 Peg 010 (2) 1-- 
1 5 Peg 011 (3) -11  
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Table 4-16: Translating attribute sequences to unique entity/attribute values 
Value Sequences for S1 
Entity  
Value 
Attribute Value Start 
Step 
End 
Step 
Source 
Seq. Refs 
Source Sequence 
Intersection 
Disc=1 Peg=1   1  
Disc=1 Peg=2 1 2 1,4 1-1,1-- 
Disc=1 Peg=3 3 3 1,5 1-1,-11 
Disc=2 Peg=1   2  
Disc=2 Peg=2   2  
Disc=3 Peg=3 2 3 2,5 -1-, -1- 
 
An intersection of an entity with a specific value, an attribute with a specific value, and a 
sequence must join in order to define a definitive value to assign to an entity for an attribute at any 
given point. For example, the entity value Disc=1 is supported by the activation sequence that 
shows disc one is active at step one and step three, but Peg=1 is not active at either of these steps. 
Therefore no causative sequence intersection exists to indicate a value for Disc=1 and Peg=1 for 
any of the steps. However, Peg=2 is activated at step one as well as Disc=1, therefore an 
intersection exists resulting in a value sequence active at step one. Value sequences retain their 
values throughout the sequence until a change occurs. Since Disc=1 does not have an activation 
on step two, its sequence remains intact for the current value. Thus the value sequence for Disc=1, 
Peg=1 is true from step one to step two. On step three, Disc=1 is once again activated, but the 
activated attribute is Peg=3. Therefore the value sequence for Disc=1/Peg=2 terminates and a new 
value sequence starts with Disc=1/Peg=3. The framework can easily query these value sequences 
to display the move sequence by displaying all of the points where the value sequence changes as 
illustrated in Figure Table 4-17. 
For the transformation to be valid, the higher-level activation sequences must be able to 
generate the sequence of operations used to attain the predictive sequence at each lower level. The 
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process for generating the transformation solution-sequence paths is the same as that for the base 
simulation instance. Table 4-18 shows the transformation sequence for the problem T1 along with 
the steps at which the attribute is set to the associated value based on the sequence. The reversibility 
mechanism in this instance needs to generate the steps utilized in T2 from the transform operators. 
The prior section already demonstrated that the transformation operators are able to produce the 
predicted solutions. At the higher-level transformation, it is important to show that the sequences 
and usages which will be used for the next higher order transformation are correct for replicating 
the transformation operations against the lower level activation sequences of the base simulation. 
Table 4-19 shows how the framework reverses state sequences to replicate the operations at the 
specific steps in the solution. 
Table 4-17: Transform Sequence Steps 
Attrib. Value/Expression Sequence/ Transform Results Steps 
T1 - Solution path for pattern for disc-count=2 to solution for disc-count=3 
(S1->S2) 
E-
Operation 
Copy-Segment 1-11-1- 1,3-4,6 
E-
Operation 
Insert-Bit -1--1-- 2,5 
New-E-
Operation 
Binary-Expand ------1 7 
E-Source Instance-1:Disc-1 1-1---- 1,3 
E-Source Instance-1:Disc-2 ---1-11 4,6,7 
E-Source Instance-1:Max-Steps 
(Power(2, Disc-Count) 
-1  
------1 7 
E-Source 0 -1--1-- 2,5 
E-Target Instance-2:Disc-1 111---- 1-3 
E-Target Instance-2:Disc-2 ---111- 4-6 
E-Target Instance-2:Disc-3 ------1 7 
Attribute Operations 
A-
Operation 
Copy-Segment 1-11-11-1 1,3-4,6-7,9 
A-
Operation 
Insert-Bit -1--1--1- 2,5,8 
A-Source Instance-1:Peg-1 1--1----- 1,4 
A-Source Instance-1:Peg-2 --1--1--- 3,6 
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A-Source Instance-1:Peg-3 ------1-1 2,5 
A-Source 0 -1--1---- 2,5 
A-Source 1 -------1- 8 
A-Target Instance-1:Peg-1 111------ 1-3 
A-Target Instance-2:Peg-2 ---111--- 4-6 
A-Target Instance-3:Peg-3 ------111 7-9 
 
 
Table 4-18: Reversibility Matrix for Transform Sequence 
Entity/Attribute. Value Start Step End Step 
E-Operation Copy-Segment 1 1 
3 4 
6 6 
Insert-Bit 2 2 
 5 5 
New-E-Operation Binary-Expand 7 7 
E-Source Instance-1:Disc-1 1 1 
3 3 
Instance-1:Disc-2 4 4 
6 7 
Instance-1:Max-Steps (Power(2, 
Disc-Count) -1  
7 7 
0 2 2 
5 5 
E-Target Instance-2:Disc-1 1 3 
Instance-2:Disc-2 4 6 
Instance-2:Disc-3 7 7 
A-Operation Copy-Segment 1 1 
  3 4 
  6 7 
  9 9 
 Insert-Bit 2 2 
  5 5 
  8 8 
A-Source Instance-1:Peg-1 1 1 
 4 4 
Instance-1:Peg-2 2 2 
5 5 
Instance-1:Peg-3 3 3 
6 6 
0 2 2 
5 5 
1 8 8 
A-Target Instance-1:Peg-1 1 3 
 Instance-2:Peg-2 4 6 
 Instance-3:Peg-3 7 9 
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In Table 4-19, the attributes are stored in multiple entities each uniquely identified by the 
problem step where step represents a discrete state in the solution sequence. The framework 
defines each sequence entity in terms of the attribute that stores a pointer to the value sequence 
from the lower level problem. In the first-level transformation, the values reflect the sequences 
from the simulation instances. As the problem progresses to higher order transformations, the 
source values point to the underlying sequences for the transformation problems themselves.  
These activation sequences are reversible to generate the value sequences that reflect the 
required transformations. The framework understands this process in terms of TS1, which predicts 
T2. The value sequences from the TS1 instance map to the attributes for the higher order problem, 
which follow the same pattern as T1. Since TS1 can generate T2 successfully in the same format 
at T1 and T1 generates S2 successfully, then T2 will generate S3 successfully.  It now only remains 
for SG1 to generate TS2 successfully. Since SG1 can generate TS2 value sequences that implement 
the T3 transform successfully, SG1 is correct for generating a new instance of TS. This new 
instance cascades down to new solved instances of S because T1 was reversible and all higher 
order transformations follow the same model of referencing the lower level transformation 
sequences. Therefore, the following recursive/co-recursive sequence exists: 
Recursive Discovery: 
S1, S2, S1 ^ S2->T1 
S3, S2 ^ S3->T2 
T1 ^ T2->TS1 
S4, S3 ^ S4 -> T3 
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T2 ^ T3 -> TS2 
TS1 ^ TS2 -> SG1 
Recursivity Pivot Point: 
TS2 ^ SG -> TS3 
Co-recursive Cascade 
T3 ^ TS3 -> T4 
S4 ^ T4 -> S5 
TS3 ^ SG -> TS4 
T4 ^ TS4 - > T5 
S5 ^ T5 -> S6 
Co-recursive Relation: 
TS(n) ^ SG -> TS(n+1 ) 
T(n) ^ TS(n+1) -> T(n+1) 
S(n) ^ T(n+1) -> S(n+1) 
 
4.3 Universal Problem Representation 
In the prior section, the Tower of Hanoi was modeled to show the UPRF process for generating 
solution simulations, transforming solution sequences as the goal state for a higher order problem, 
and generating the solution sequences associated to each level of higher order problem (until 
reaching an equilibrium point where the sequence was generic regardless of the instance). At that 
point, the process was reversible to generate the sequences back into the database to model the 
steps accurately. This section focuses on the problem of problem solving itself. The earlier section 
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made the assertion that the same process utilized to discover solution patterns via simulative search 
could search for pattern sequences by testing transform operators. This section provides the 
problem definition of the universal optimization problem that is associated with the sequence 
discovery and is fully recursive and co-recursive. 
Figure 4-8 shows the schema for UPRF sequence discovery problem or the universal 
discovery problem (UDP). The goal of the problem is to discover the operators that generate the 
targeted sequence. This aligns with the prior section wherein the solution state sequence of each 
entity/attribute combination became the target of a higher order problem. UDP utilizes the same 
schema as the base case problem including Hanoi. This means that UDP fits into the same 
framework for simulation as any other problem and helps validate that the problem definition 
language (UPDL) is robust enough to handle complex problems. In the next chapter on practicality, 
further examples help validate the extensibility of UPDL as well as the framework (UPRF) to 
model and solve a variety of problems. 
A distinguishing aspect of the UDP from other problems is that the problem is that the 
simulation relies on a special operator (?TEST_TRANSFORM?) to actually generate the 
sequences from the operators and test them.  However, this aspect does not prevent UDP from 
operating within the self-same framework and it meets the criteria for the continuous improvement 
model by exposing all the attributes, expressions, and queries back to the framework that are 
utilized to meet the goal defined by the problem in the schema.  
A second distinguishing aspect is the use of the ?SELECT_ INTERNAL?. This provides a 
means for the UDP to query objects within the database without the need for them to replicate to 
the standard entity/attribute tables. This ensures access to the lower level problem data without the 
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need to replicate this back into the structure. The difference in implementation does not 
compromise the rule for the system requiring all operations to be traceable back to problem states 
so long as views insulate the underlying implementation and provide uniform representation of 
problems regardless of height in the solving hierarchy. The actual implementation of the learning 
solution is done through the standard entities/attributes persisted back into the database. This data 
is accessible then through the higher order transformations without any limit, since every 
instantiation of the UDP utilizes the same definition. Triggering a UDP problem occurs when 
solution of more than one instance at the same level in a problem. For example in Hanoi, solving 
a three-disc simulation after solving a two-disc simulation generates a UDP transformation 
problem whose goal is to discover the sequence of operations to generate a three-disc solution 
from a two-disc solution using the relational state sequences.  
Figure 4-6 depicts the UDP definition. The definition obfuscates much of the delineation from 
the prior operational proof through highly encompassing functions for testing the transformations. 
The definition could provide more detail to support lower granularity, but there is little value in 
this since the transformation operation generates the information needed for traceability back to 
the correlations associated with the transform operator used and the sequences. The goal of the 
UDP problem is simply to execute a broad query, which filters using the transform testing function 
that then returns all valid instances of source and target entities along while iterating through each 
transform operator. This forms the output of the query. When the full sequence generates 
successfully for all sequences, the process is complete. At this point, the transformation sequence 
forms the first instance of the transformation problem. When UPRF finishes the simulation for a 
third lower level instance such as for a disc count of five, then the framework will detect an 
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untransformed instance. It will then attempt to find the method for generating the transform 
sequence to transform the transform operations performed on the simulation for three discs to 
achieve operations to solve four discs in order to generate the operations needed to transform the 
simulation for four discs to solve five discs. This becomes a third-level problem when encountering 
more simulations until reaching generalization as described earlier. 
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Figure 4-10: Universal Discovery Problem 
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4.4 Chapter Summary 
This chapter provided an operational proof for the feasibility of a universal problem resolution 
framework (UPRF). It enumerated an inductive proof showing how the proposed UPRF design 
met the key requirements for generic problem definition, solution space probing, and higher-order 
transformation.  The chapter concluded with a proof-by-example using the Tower of Hanoi in 
which the solution path, through simulation and transformation to higher levels of abstraction, 
evolves from brute-force exploration to generating a generic transformation that reduces 
identification of the solution path of further instances of the puzzle to a linear process.  
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5. PRACTICALITY 
To this point, the dissertation has focused on the use of Hanoi to demonstrate UPRF. The 
Tower of Hanoi is an NP-hard problem, but it has commonality with virtually all types of 
computational problems; it possesses an initial state, manifests in multiple instances, and has a 
generalized solution adaptable for any instance to meet a goal state. Wide varieties of problems 
share these attributes including NP-complete problems such as the traveling salesman problem 
(TSP).  The TSP also has an initial state, goal state and is configurable as different instances. 
General solutions exist that require exponential complexity as well as approximation solutions that 
attempt to optimize the solution discovery at the risk of not being perfect. A wide variety of 
problems fall into the NP-complete domain and every NP problem is reducible to another NP 
problem. The problem of discovering an algorithm is actually an NP-complete problem. To be 
practical, UPRF must be able to leverage current technology or at least the technology being 
developed to solve problems in practical time limits within reasonable resource constraints.  
Discussions around practicality involve the concept of scalability. This chapter examines 
scalability in terms of both UPRF functionality across problem types as well as in terms of 
implementation of the system within technological constraints. This chapter provides answers to 
the following questions: 
1. Scalability for other problems: How does UPRF handle other problems including non-
deterministic or probabilistic scenarios? Is it able to scale for problems that are more 
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complex or for different types of problems? Does the UPRF sequence recognition model 
scale to higher-order complexity for the base Tower of Hanoi scenario when the number 
of pegs is a variable as well as the number of discs? Can it optimize solutions for NP-
complete problems including finding an even larger TSP route than currently possible 
through approximation optimizations? Can UPRF support collaborative or cooperative 
multi-agent scenarios? For example, could it continually play itself in a game such as 
Chess and improve itself without input from a SME? 
2. Implementation Feasibility: Is UPRF practical for implementation? How can it scale to 
leverage technology innovations?  
5.1 Scalability for Other Problems 
Scalability includes supporting expanding capacity without the need for extensive 
modification of the system. The schematization model of UPRF supports this by providing a 
generic representation of any relational state through functions. UPRF supports external 
referencing as well as self-referencing through comprehensive polymorphism data structures. In 
UPRF, a problem may manifest itself as an entity that another problem can reference. Items within 
the data structure are also bi-directional within the context of constraints that prevent endless 
reference loops while using dependency detection to iterate through scenarios in dependency 
sequence. In this chapter, UPRF uses this capability to support competitive and collaborative 
scenarios including an example from Tic-Tac-Toe and discussions of Chinese checkers and 
Canasta. The Tic-Tac-Toe example delves into the variations imposed by multi-agent scenarios 
and iterates through a solution scenario from start to finish for an application of symmetry to 
replicate a solution path. This chapter discusses feasibility for the implementation of Chinese 
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checkers and Canasta scenarios based on the multi-agent paradigm established in the Tic-Tac-Toe 
example. 
An additional area of scalability provided by UPRF concerns the types of solutions that are 
pursuable. The Tower of Hanoi illustrated the pursuit of a definitive deterministic goal; the goal 
specified an exact solution to the problem. However, because the goal state derives from functions 
against the relational state and such functions may be aggregate in nature rather than exact, UPRF 
can work towards solutions that are not exact and based on an energy function. In this chapter, the 
zero-sum subset problem, a manifestation of the NP-complete problem type, serves as an example.  
NP Problems include scenarios such as the TSP. This example shows all such problems are 
reducible to each other and the subset problem is easy to represent in queries. In the zero subset 
problem, the goal defined involves minimizing steps rather than finding the solution in a specific 
number of steps. This allows UPRF to attempt solutions to NP-complete problems and utilize the 
transformational learning process to identify optimizations toward the problem. While the 
dissertation does not attempt to show the reduction through successive optimizations to polynomial 
time of an NP-complete problem, it does show that the maximum degree of optimization is a 
natural outcome of the UPRF approach.  
Another example of scalability related to problem types are probabilistic scenarios. This 
chapter provides an example of a probabilistic scenario for optimizing trades in the stock market. 
In this scenario, UPRF attempts to find the optimal method for making profitable trades with the 
transformations involving different instances of time to identify repeatable patterns. Some research 
asserts the stock market is an efficient system and therefore not providing any repeatable 
optimization technique that is better than chance. This dissertation does not attempt to prove this 
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either way, but it does show how UPRF can help to test such a hypothesis through the simulation 
and transformation process. 
5.1.1 Increasing Complexity ? K-Peg Tower of Hanoi 
In the k-peg Tower of Hanoi, the number of pegs themselves become a variable rather than 
fixed at three pegs only. This section explores the background of the k-peg Hanoi, models a k-peg 
problem, utilizes simulation to generate the sequences, examines the patterns that emerge from 
this exercise, and analyzes how the UPRF process ultimately identifies the transformation 
sequence to extend the 3-peg solution to any number of pegs. Although this section does not go 
into  the degree of depth as Chapter 3 did regarding the transformation sequence recognition 
process, it does provide proof from inspection that the same technique used to derive the general 
formula for 3-peg, k-disc variations will yield a general formula aligning to Reve?s [120] and 
solving the puzzle in the minimum steps. The number of optimal steps for different variations with 
pegs and discs is a complex formula [121]. UPRF does not need to know the optimal number in 
order to pursue a simulative solution, as it is able to exhaust all possible paths until finding the 
minimum.  Providing the number of steps is an optimization to reduce the amount of simulation 
work. 
Debate regarding the proof for an optimal solution approach for k-peg Hanoi persists but 
brute-force simulation achieves the minimum number of steps for scenarios where k is sufficiently 
small. Using the same approach as with the standard Tower of Hanoi, UPRF is able to model the 
problem very simply for presentation to the simulator (Figure 5-1).  This example illustrates an 
alternative definition method using standard Structured Query Language (SQL) to define views 
and functions based on views from the generic UPRF schema. Figures 5-2 and 5-3 contain the 
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SQL code for modelling the detailed K-peg tower problem and then returning the rows associated 
with the next possible moves at any point in the simulation process.  
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Figure 5-1: Hanoi K-Peg Definition 
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Figure 5-2: Hanoi K-Peg SQL View based on UPRF Schema 
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Figure 5-3: SQL Function for Next Move States for K-Peg 
As the simulation finds solution paths, the framework captures the sequences associated to the 
solution (Table X). A unique feature of adding more pegs is that multiple optimal solutions arise, 
which is not the case for the 3-peg version. This requires UPRF to search across multiple solution 
instances in order to find a solution pattern and then cross-search within the k-peg solution space 
to correlate sequences for the variations.  This represents a similar scenario but with multiple 
instantiations as the 3-peg variation. Table 5-1 provides sample move sequences and Table 5-2 
provides example solution sequences that map closely to the 3-peg and from 4-peg to 5-peg as 
well as providing two diverse solution sequences. 
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Table 5-1: Sample Solution Sequences for K-Peg (peg count = disc count) 
Hanoi_Disc_Count Step Disc Peg 
3 1 1 3 
3 2 2 2 
3 3 1 2 
3 4 3 3 
3 5 1 1 
3 6 2 3 
3 7 1 3 
4 1 1 4 
4 2 2 2 
4 3 3 3 
4 4 1 2 
4 5 4 4 
4 6 3 4 
4 7 1 1 
4 8 2 4 
4 9 1 4 
5 1 1 5 
5 2 2 3 
5 3 3 4 
5 4 1 3 
5 5 4 2 
5 6 5 5 
5 7 4 5 
5 8 3 5 
5 9 1 1 
5 10 2 5 
5 11 1 5 
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Table 5-2: Sample Disc Sequences for K-Peg Hanoi (disc count = peg count) 
Discs/Pegs Disc Sequence Value 
3 1 ---------------------------------------------------------1-1-1-1 85 
3 2 ----------------------------------------------------------1---1- 34 
3 3 ------------------------------------------------------------1--- 8 
4 1 -------------------------------------------------------1-1--1--1 329 
4 2 --------------------------------------------------------1-----1- 130 
4 3 ----------------------------------------------------------1--1-- 36 
4 4 -----------------------------------------------------------1---- 16 
5 1 -----------------------------------------------------1-1----1--1 1289 
5 2 ------------------------------------------------------1-------1- 514 
5 3 --------------------------------------------------------1----1-- 132 
5 4 ---------------------------------------------------------1-1---- 80 
5 5 ----------------------------------------------------------1----- 32 
6 1 ---------------------------------------------------1-1-----1---1 5137 
6 2 ----------------------------------------------------1---------1- 2050 
6 3 ------------------------------------------------------1------1-- 516 
6 4 -------------------------------------------------------1----1--- 264 
6 5 --------------------------------------------------------1-1----- 160 
6 6 ---------------------------------------------------------1------ 64 
 
Table 5-3: Sample Peg Sequences for K-Peg Hanoi (disc-count = peg-count) 
Discs/Pegs Peg Sequence Value 
3 1 -----------------------------------------------------------1---- 16 
3 2 -------------------------------------------------------------11- 6 
3 3 ---------------------------------------------------------11-1--1 105 
4 1 ---------------------------------------------------------1------ 64 
4 2 ------------------------------------------------------------1-1- 10 
4 3 -------------------------------------------------------------1-- 4 
4 4 -------------------------------------------------------11-11---1 433 
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5 1 -------------------------------------------------------1-------- 256 
5 2 -----------------------------------------------------------1---- 16 
5 3 ------------------------------------------------------------1-1- 10 
5 4 -------------------------------------------------------------1-- 4 
5 5 -----------------------------------------------------11-111----1 1761 
3 1 -----------------------------------------------------------1---- 16 
  Alternate peg sequences  
3 1 -----------------------------------------------------------1---- 16 
3 2 -------------------------------------------------------------11- 6 
3 3 ---------------------------------------------------------11-1--1 105 
4 1 ---------------------------------------------------------1------ 64 
4 2 -------------------------------------------------------------1-- 4 
4 3 ------------------------------------------------------------1-1- 10 
4 4 -------------------------------------------------------11-11---1 433 
5 1 -------------------------------------------------------1-------- 256 
5 2 -----------------------------------------------------------1---- 16 
5 3 -------------------------------------------------------------1-- 4 
5 4 ------------------------------------------------------------1-1- 10 
5 5 -----------------------------------------------------11-111----1 1761 
6 1 -----------------------------------------------------1---------- 1024 
6 2 ----------------------------------------------------------1----- 32 
6 3 ------------------------------------------------------------1--- 8 
6 4 -------------------------------------------------------------1-- 4 
6 5 -----------------------------------------------------------1--1- 18 
6 6 ---------------------------------------------------11-1111-----1 7105 
 
Basic inspection shows that there is a definitive pattern for at least some cases of the 4-peg 
and 5-peg back to the 3-peg. Table 5-2 highlights the similarities. An area of further verification 
and research for UPRF would be to apply the same technique used in Chapter 4 for identifying the 
operator transform sequencing to progress from 3-peg to 4-peg, from 4-peg to 5-peg, and then 
from 5-peg to 6-peg. This provides data needed to generate the sequence transformation involved 
in generating the 4-peg prediction from the 3-peg prediction. The outcome should be a successful 
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prediction of a 7-peg solution sequence. With sufficient transformation learning, a general solution 
should arise just as with the 3-peg scenario.  
The k-peg scenario tables include the binary values from the sequences. The work in Chapter 
3 did not include this, but the principle is applicable to all sequencing solution scenarios. Their use 
here calls out a potential area of research for utilizing learning operators to correlate the values 
associated to the binary sequences rather than the sequences. There is an algebraic relationship 
between the numbers as Table 5-4 illustrates that the total number of state changes add up to the 
total number of state changes mandated by the goal. A learning operator could deduce the sequence 
of operations for a missing peg or missing disc once the other peg or disc sequences were 
determined by subtracting the values of the determined sequences from the value of the total 
sequences. For example Table 5-4 shows that the total value of all sequences for the 4-peg scenario 
is 29? 1 (511).  If the sequence values for pegs 1, 2, and 4 were determined for the first sequence 
example (64, 10, 433), then one can derive the third sequence by subtracting (501  (64 + 10 + 433) 
from the total required for the overall sequence (511) and arrive to 10 as the sequence value for 
Peg 3 which expands to the binary sequence 1010. 
Table 5-4: Total Sequence Values for Pegs or Discs 
Discs/Pegs Sequence Value 
3 ---------------------------------------------------------1111111 127 
4 -------------------------------------------------------111111111 511 
5 -----------------------------------------------------11111111111 2047 
 
The patterns in Table 5-2 clearly show a pattern relationship as the number of pegs increase 
for the same number of discs. In this case, the pattern for the discs is easy to derive, as it is merely 
the widening of the bit strings in a symmetrical fashion. A pattern that predicts the cascading of 
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the pegs also emerges in Table 5-3. The test case was for using an equal number of discs as pegs. 
Undoubtedly, similar patterns emerge from adding additional discs for the same number of pegs. 
This example provides support for the concept of extending the learning capability of UPRF 
by expanding the variability of a problem. The same sequencing problem arises from the k-peg as 
the 3-peg scenario. A similar learning scenario for sequence inspection with higher-level 
transformation operator sequencing emerges as that associated with the automated general solution 
discovery of the 3-peg scenario. 
5.1.2 Multi-agent Scenario ? Two Player Tic-Tac-Toe 
The bi-direction allows the framework to incorporate other problems as entities within larger 
problems to support virtually any type of problem scenarios. The architecture of UPRF finds 
solutions through seeking to meet a goal. In Hanoi, the goal was deterministic and absolute in 
terms of either failure or success. However, there is nothing in the structure preventing UPRF from 
seeking solutions and transforming such solutions into higher order problems in the same way as 
pursuing the Hanoi transformational sequence. This section models Tic-Tac-Toe as an example of 
a multi-agent scenario. 
For the purposes of this chapter, a multi-agent scenario refers to a problem that is either 
collaborative, competitive, or a combination of the two.  A collaborative scenario involves multiple 
agents working toward a single goal. A competitive scenario involves one or more agents 
competing against each other to reach a goal and includes the scenario of multiple agents working 
together against another team of multiple agents. The polymorphic database design of UPRF 
provides the support needed for all of these scenarios. 
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Figure 5-1 illustrates a sample schema for Tic-Tac-Toe. In the Tic-Tac-Toe scenario, the goal 
is to find the optimal solution path from both player?s perspective. Once the transformational 
sequence processing done, the goal is for the simulation to perform the optimal moves for each 
player from learning the brute-force simulations. In Tic-Tac-Toe, the significant patterns are all 
within only three significant squares for the start ? the center square, a corner square, and a mid-
point square along a row. Therefore, a simulation process that explores paths for these three 
different squares should yield the transformation sequence to automatically find the optimal 
solution path for the other six starting squares and ultimately identify the correct responses to avoid 
the failure state and maximize achievement of the goal state. The schema in Figure 5-1 provides 
enough information to instantiate all of the possible simulations including redundant ones by 
varying the row range from one to three as well as the column range. In addition, the concept of a 
player is added which varies from one to two. This allows the problem to vary by player creating 
separate simulations from the perspective of the different players with the goal being relative to 
the player number of the simulation. Figure 5-2 identifies the constraints of the move, goal, and 
failure states so that the simulation can proceed similar to Hanoi. 
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Figure 5-4: Sample Tic-Tac-Toe Problem Schema ? Initial Relations 
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Figure 5-5: Tic-Tac-Toe Query Rules 
In the Tower of Hanoi, there was an exhaustive review of multiple simulations including the 
state sequences. All simulations within UPRF follow the same model of depth-first solution space 
exploration, so it is not necessary to examine Tic-Tac-Toe exhaustively, but it is useful to explore 
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a sample showing the interaction from both the starting player and responding player perspective. 
This example represents an evolution of the schema to support the constructs of Tic-Tac-Toe more 
easily. However, this evolution is not a reflection that the Hanoi schema is lacking, but rather an 
improvement more relevant to helping for this scenario. The actual data structure utilized to store 
the schema is identical in each version. This section explores the progression in terms of the 
following phases from both player perspectives: 
1. Instantiation Phase:  Generates the initial scenario for placement of the first square 
for the first player for all the possible first set of moves. 
2. Play Phase: Generates the response moves from perspective of both players as 
separate simulations. Sequences for the relational states are captured in this phase. 
3. Transformation Phase: Maps the sequences of operations to the higher order 
transformation problem. 
5.1.2.1 Instantiation Phase 
The instantiation phase creates the following instances by nature of the expressions embedded 
in the problem definition using the attribute overflow concept explained earlier in the dissertation. 
The attribute overflow principle means that whenever more a query or expression generates more 
than one row of data, generation of a new simulation instance arises that represents that unique 
path. Based on this, the output is a combination of the following values: 
? Players: 1 or 2 (Generated by the Range construct for the Player Number attribute) 
? Player Move 
o Player (Derived from Player Number) 
o Row: 1 through 3 (Derived from Square-Range rule) 
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o Column: 1 through 3 (Derived from Square-Range rule) 
5.1.2.2 Play Phase 
In the play phase, the simulation applies the goal context based on the player role associated 
to the simulator against the grid of square representing the plays made including the coordinates 
as well as the player associated to the move. The Player-Move entity thus includes not only the 
coordinates but also the player that made the particular move. The rule accomplishes this through 
the Play-Game query, which looks for a non-used square and non-used column to assign the next 
move. The outputs of Play-Game are thus: 
? Player Number making the move based on a lookup that forces the player number to 
alternate on each move. 
? Square selected 
? Column selected 
The framework thus generates overflow situation necessary for branching multiple instances 
for every possible move for each player. This generates the relational state sequences that represent 
the relationship of each variable values relative to the sequence at which the value changes.  
5.1.2.3 Transformation Phase 
The transformation phase occurs after achieving solutions to two distinct instances. This phase 
regenerates the problem of deriving an instance solution from another instance solution. The 
problem is modeled executing transform operators to try to generate a sequence of operators that 
successfully transform the first instance operations to create the operations used to solve the second 
instance.  
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In the case of Hanoi, the solving of the solution path for different instances was simplified 
since each solution path ultimately derives from the same recursive algorithmic solution with only 
a slight variation based on whether the count of discs for the instance was even or odd. With Tic-
Tac-Toe, some paths are more successful than others are. For example placing a square in the 
center peg ensures at least a tie-game (?Cat?s game?) for the first player and results in several 
scenarios where the first player is victorious. However, placing a square in a diagonal square, while 
still effective to ensure at least a tie, does not generate as many victorious paths and the sequence 
to success is different. 
The outcome of multiple-solution path instances is that the transformation operators should 
eventually find a sequence that converges on common variables in the same way as Hanoi. 
Ultimately, with Hanoi, the transformations become more and more abstract such that by the third 
transformation, a very simple set of operators are able to generate the lower level solution to posit 
the higher order problem ? solving it generically. The same approach works for Tic-Tac-Toe with 
the caveat that there is ?noise? which serves to invalidate some instance as not related to other 
instances. For example, Player 1 responses to Player 2 placing a mark in a corner square on the 
first move indicate a different solution path than if Player 2 places a mark in a middle row or 
column. However, if the response of Player 2 is simply a transformation of another response across 
a different axis, the solution patterns should be convergent. For example, if Player 2 response to 
Player 1?s first move in the center with an adjacent square rather than a square diagonal, the 
solution paths are deterministic relevant to symmetry.  Table 5-5 illustrates the concept of related 
instances with solution paths whose variance is purely a function of symmetry as opposed to other 
instances whose solution path is not attributable to symmetry. 
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Table 5-5: Solution Symmetries in Tic-Tac-Toe 
       
O X    X O 
       
       
O      O 
 X    X  
       
In the above chart, the olive-shaded instances have symmetric optimal solution paths separate 
from the solution patterns for the beige-shaded instances. 
To examine all the potential solution paths exhaustively using combinations of Player 1 and 
Player 2 would take hundreds of lines of relational state sequence captures. A single base pattern 
with different symmetries illustrates the relational state sequence chapter and how the 
transformation problems evolve to converge on a solution transformation sequence that solves 
multiple instances across symmetries. Based on this, the framework targets four instances initiated 
by Player 1 moving to the center but with asymmetrical responses from Player 2. This is a subset 
of the possible paths, but it illustrates the learning transformation process. By the end of the 
simulation, UPRF is able to generate the solution to the fourth sequence from transformation 
without the use of simulation. Table 5-6 shows the square labeling convention. These instances 
are: 
? P1: R2,C2; P2: R2,C1 
? P1: R2,C2; P2: R2,C3 
? P1: R2,C2; P2: R1,C2 
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? P1: R2,C2; P2: R3,C2 
Table 5-6: Tic-Tac-Toe Square Numbering 
R1, C1 R1, C2 R1, C3 
R2, C1 R2, C2 R2, C3 
R3, C1 R3, C2 R3, C3 
 
 Figure 5-6 illustrates the transformation process relative to the Player 2 response. This 
diagram is very similar to the approach from Hanoi. The difference is that only two levels of 
transformations are necessary to solve the fourth instance given the constraints outlined for a 
similar solution path with different symmetries.  
S 1 -  S i m u l a t i o n  
S o l u t i o n  ( R 2 , C 1 )
S 2 ?  Si m u l a t i o n  
S o l u t i o n  ( R 2 , C 3 )
S 3 ?  Si m u l a t i o n  
S o l u t i o n  ( R 1 , C 2 )
T 1 -  T r a n s f o r m  
So l u t i o n  ( S 1 - > S 2 )
T 2 -  T r a n s f o r m  
So l u t i o n  ( S 2 - > S 3 )
TS 1 ?  T r a n s f o r m  
S e q u e n c e  S o l u t i o n  
( T 1 - > T 2 )
C a p t u r e  t r a n s f o r m  o p e r a t i o n s
P r e d i c t  T r a n s f o r m s
 
Figure 5-6: Tic-Tac-Toe Simulation Transform Map 
The generic solution for the symmetrical sequence used to achieve victory in S1 derives from 
the transformations as follows: 
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? S1, S2 -> T1 
? S2, S3 -> T2 
? T1, T2 -> TS1 
TS1 will contain the generic operators to generate T2 that transforms S3 to S4 without the 
need for simulation. The goal is that by solving three instances through simulation, the 
framework learns the fourth instance transformation generating the solution sequence without 
simulation. Figure 5-7 shows the generation of simulation four from the learned sequence 
from the third transform generated by the generic transform sequence solution. The model 
will increase in depth to support more advanced transformations including how to determine 
the method for determining the correct response to different variations as instances are added 
with non-symmetric responses. This was examined in detail in Hanoi and follows for Tic-Tac-
Toe and all other problem scenarios.  
S 1 -  S i m u l a t i o n  
So l u t i o n  ( R 2 , C 1 )
S 2 ?  S i m u l a t i o n  
So l u t i o n  ( R 2 , C 3 )
S 3 ?  S i m u l a t i o n  
So l u t i o n  ( R 1 , C 2 )
S 4 ?  S i m u l a t i o n  
S o l u t i o n  ( R 1 , C 3 )
T 1 -  T r a n s f o r m  
S o l u t i o n  ( S 1 - > S 2 )
T 2 -  T r a n s f o r m  
S o l u t i o n  ( S 2 - > S 3 )
T 3 -  T r a n s f o r m  
S o l u t i o n  ( S 3 - > S 4 )
TS 1 ?  T r a n s f o r m  
Se q u e n c e  S o l u t i o n  
( T 1 - > T 2 )
C a p t u r e  t r a n s f o r m  o p e r a t i o n s
 
Figure 5-7: Tic-Tac-Toe Simulation Map with Sequence Generation 
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The base scenario is the forced victory that comes from Player 2 moving to an adjacent square 
rather than the corner. Table 5-7 shows the move sequence pattern for the first three scenarios 
that provide the information ultimately needed to generate the fourth scenario solution. 
Table 5-7 Tic-Tac-Toe Base Use Case for Simulation 1 (S1) 
R1, C1 
3 
R1, C2 
5 
R1, C3 
6 
R2, C1 
2 
R2, C2 
1 
R2, C3 
R3, C1 
 
R3, C2 
7 
R3, C3 
4 
 
Tables 5-8 and 5-9 depict the transformations as simple rotations of the first simulation: 
Table 5-8 Tic-Tac-Toe Base Use Case for Simulation 2 (S2) 
R1, C1 
 
R1, C2 
2 
R1, C3 
3 
R2, C1 
7 
R2, C2 
1 
R2, C3 
5 
R3, C1 
4 
R3, C2 
 
R3, C3 
6 
 
Table 5-9 Tic-Tac-Toe Base Use Case for Simulation 3 (S3) 
R1, C1 
4 
R1, C2 
7 
R1, C3 
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R2, C1 
 
R2, C2 
1 
R2, C3 
2 
R3, C1 
6 
R3, C2 
5 
R3, C3 
3 
 
Using Table 5-10 and applying symmetric transformations yields relational state sequences 
for the first three scenarios that mirror one another. The table shows that each pattern repeats in 
the other instances by varying the square and column that reuses the sequence. All that is necessary 
to generate a transform sequence is to identify the variation that drives the transformation. The 
following transforms occur for S1 - > S2: 
? Row 1 -> Column 3 
? Row 2 -> Column 2 
? Row 3 -> Column 1 
? Column 1-> Row 1 
? Column 2 -> Row 2 
? Column 3 -> Row 3 
Thus, an operation sequence that transforms Rows to Columns and adjusts the column 
numbers inverse to the row numbers generates the solution sequence for S2. 
For S2 -> S3: 
? Row 1 -> Column 3 
? Row 2 -> Column 2 
? Row 3 -> Column 1 
? Column 1-> Row 1 
? Column 2 -> Row 2 
? Column 3 -> Row 3 
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The same approach works for S2 to S3. Therefore, the same sequence of transform operators 
can predict S4 and the solution is generic for the symmetry. The simulator can then apply this 
learned knowledge to generate higher order transforms for other symmetries. Ultimately, the 
symmetries feed up such that the framework generates a solution that defines the operations 
required for each sequence of moves to transform to the optimal solution. 
Table 5-10: Sample Solution Sequences for Tic-Tac-Toe 
Attribute Value State Change Sequence 
S1 
Player P1 1-1-1-1 
Player P2 -1-1-1- 
Row 1 --1-11- 
Row 2 11----- 
Row 3 ---1--1 
Column 1 -11---- 
Column 2 1---1-1 
Column 3 ---1-1- 
S2 
Player P1 1-1-1-1 
Player P2 -1-1-1- 
Row 1 -11----- 
Row 2 1---1-1 
Row 3 ---1-1- 
Column 1 ---1--1 
Column 2 11----- 
Column 3 --1-11- 
S3 
Player P1 1-1-1-1 
Player P2 -1-1-1 
Row 1 ---1--1 
Row 2 11----- 
Row 3 --1-11- 
Column 1 ---1-1- 
Column 2 1---1-1 
Column 3 -11---- 
   
From the above, S4 with an initial move of R1, C3 by Player 2 follows directly from sequence 
transformation if the playing pattern is the same in regard to symmetry.  
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5.1.3 Advanced Multiple-Agent Scenarios 
The Tic-Tac-Toe example illustrated the exploration of a solution path that involves multiple 
agents being the players. Each player is simply another variable with an associated state sequence 
mapped against a minimal energy efficiency goal to obtain success. In this way, an exhaustive 
simulation with upper level transformations will yield the ideal move patterns for both players.  
However many multi-agent scenarios are far more complex and not deterministic. Can the 
same concepts be applied to games or problem scenarios that include more than one antagonist? 
What is the impact on the usability of the framework if multiple agents collaborating against 
another team is introduced?  For these questions, this section considers two simple games that 
involve more than two agents: Chinese checkers and Canasta. 
Chinese checkers may have more than one player whose goal is to change the state of their 
objects to be within the opposing player?s square prior to other players. However, the pursuit of 
the goal is more complicated because of the interaction with other players.  Interaction with other 
player moves may both benefit and hurt the changes of a player meeting the goal state. In the Tic-
Tac-Toe scenario, players were modeled as variables. This is one approach to multi-agent, but 
there is another approach that works within UPRF that allows the perspective of each player to be 
the actual problem. This allows the UPRF to model the optimization problem for each player as a 
separate problem from the perspective of the particular player achieving the goal. The polymorphic 
database design of UPRF provides the role-perspective ability. In UPRF, every object may be 
polymorphic. This allows the framework to represent a problem in one scenario as an entity inside 
of another problem. For example, the framework can represent the interactions occurring on one 
  
 
   
 172 
 
 
simulation involving a separate player as an entity state sequence within another problem. This 
allows simulation to occur in parallel on behalf of each player.  
 
Figure 5-8: Chinese checkers 
The team version of the card game Canasta is an example of a multi-player scenario where 
two members of the same team collaborate against another team. This use case benefits from 
UPRF?s ability to instantiate a problem in terms of multiple players as entities on the same team 
pursuing a goal in parallel to solving the same problem for a different team that interacts as an 
opposing entity.  In this approach the schematization of entities include both players on the same 
team to monitor state sequences that contribute towards the goal while defining the paths derived 
from the actions of another simulation mirroring the opponents? actions as a separate entity 
attribute sequence. The framework can use the same technique for any collaborative/competitive 
scenario. 
5.1.4 Non-deterministic and highly complex type problems including NP-complete 
This section examines scenarios where no deterministic path may be found or the most optimal 
solution remains undiscovered. This section also reviews probabilistic problems that may not have 
any optimal solution. This section examines the following problem scenarios: 
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? Zero-subset sum problem ? This is an NP-complete problem that is easy to model in 
UPRF. This problem is chosen because all NP-complete problems are reducible to 
other manifestations. The optimal solution to zero-subset thus can benefit not only 
zero-subset but also other NP-complete problems including the TSP. 
? Stock market trade optimization ? This probabilistic scenario investigates how 
UPRF can schematize problems that closely model real-world non-deterministic 
scenarios. This problem endeavors not only to identify optimal parameter and 
parameter value selection to maximize profitability for a given window of time, but 
also to identify an autonomous learning process whose execution resides above the 
profit-making simulation process over time periods. The problem does this in order to 
identify the optimal methods to discover parameters and parameter value variation 
methods to obtain maximum benefit over the lifetime of a trading strategy. 
5.1.4.1 Zero-Subset Sum Problem 
In the zero-subset sum problem, the goal is to find a subset of integers within a set whose sum 
is zero. Modelling the zero subset sum problem as a binary problem allows for representation in 
UPRF [122]. The number of steps required to find the integers is exponential even though the 
solution can be determined in polynomial time. The inability to solve a problem in polynomial 
time even though validation of the solution is possible in polynomial time is a distinguishing 
attribute of NP-complete problems [123]. In this section, the framework represents the zero-subset 
problem schematically so that simulation can generate possible instances of the problem within a 
range and then attempt to determine through simulation the optimal adding sequence to add the 
numbers for all possible number sets within a test range. The learning transformation problem is 
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the same as in prior scenarios. As the framework solves each subsequent instance, it generates a 
transformation problem to determine the transform operators that can generate the sequence of 
solving steps from one instance using another instance. The framework transforms each successful 
transformation solution into a higher order transformation problem to generate the transformation 
sequence for one instance from another instance.  
The modelling of zero-subset here does not intend to resolve the issue of P=NP, but shows 
how the process contributes toward optimizations for the problem. For the purposes of illustrating 
the approach, the transformation process is limited and does not involve many instances.  A 
potential contribution of an exhaustive problem solving exercise in this area is a proof relevant to 
P=NP. If it can be shown that, with sufficient instances of problem configurations, the problem 
solver converges to all of the known optimizations and the complexity remains non-polynomial, 
this is a compelling argument for P!=NP. On the other hand if some point of equilibrium is reached 
based on discovery and application of optimizations into the transformation sequences such that 
the complexity becomes less than polynomial, this establishes P=NP. It is not the purpose of this 
exercise to answer the question or to provide a proof, but to outline how UPRF can pursue an NP-
complete problem such as zero-subset sum to seek the optimal solution. 
As in prior scenarios, the first step is to schematize the problem. Figure 5-9 illustrates the 
schematization using a version of the problem schema that works well with modelling this problem 
but still maps to the generic database structure proposed earlier. Figure 5-10 depicts the schema 
used. Not all features of the schema are used. The ?Play? query is not needed because the initial 
setup query already generate all of the solved instances so these are immediately ready for 
transformation to a higher order correlation problem. Due to the polymorphic nature of a problem 
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persisted as a problem entity within itself, the framework can model even a problem that has no 
sub-entity steps for transformation in terms of its setup query outputs. The problem definition 
including its attributes are stored polymorphically in the schema as an entity which allows 
visibility in the engine to any attributes related to the problem in the same method as sub-problem 
entities. Another feature of this schema is the concept of a junction that contains criteria applying 
to expressions separately. This functionality supports nested conjunction such as having a set of 
AND operators within a set of OR operators. This simplifies the use of Boolean expressions with 
conjunctions to support any type of extraction from the query and underlying expressions. 
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Figure 5-9: Zero-Subset Sum Problem Schema 
  
 
   
 177 
 
 
 
Figure 5-10: Updated UPRF Schema (v13) 
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The baseline problem definition thus generates not only all possible test values for a domain 
of numbers but all of the sequences that might be used to solve the problem. The problem could 
have been defined in the playing query to integrate known optimizations such as that from 
Horowitz and Sahni [124] which reduces the time to O(2N/2) rather than using brute force. 
However, schematizing the problem in the current manner provides an opportunity to validate 
UPRF?s optimization process. The framework ultimately converges to the most optimal method to 
solve the problem as successful simulation sequences from different instances promote to 
transformational problems. 
Applying the concepts from the prior solving exercise shows that UPRF will converge to the 
optimal transformational sequence. The progression for achieving this is: 
1. Solution instances will all have at least one negative number and one positive number 
in order to generate the zero subset. The framework identifies this by correlation of 
the engine to the factors relevant to the solution instances. This is a feature not exposed 
by prior exercise, but is clearly easy to implement into the framework by modelling a 
problem whose goal is to eliminate sequences that do not generate a solution and 
correlate the data values to the failed instances. The framework can then assert this 
optimization back into the original problem as a failure query to speed up the 
simulation process. 
2. Positing a higher order problem against the base problem applies operators to 
transform successful instances to one another. A set of transform operators provides 
the domain for which to register selection of an algorithm given the inputs. There are 
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definitive correlations associated with optimizations involving the order of numbers 
tested within a range. 
3. The higher order problem identifies a pattern for testing the sequences from the 
sequence of numbers flagged for inclusion in the subset problem that correlates across 
instances. This becomes a third order higher problem and once this is resolved, the 
framework will establish the optimal way to sequence the testing of the numbers for 
inclusion in the subset calculation. Utilizing different functions for selecting the 
sequence provide the candidate transformational operators.  
UPRF can utilize a transformation problem that correlates solved instances incrementally 
where different functions define the sequencing of the numbers for testing. UPRF is limited to 
transform operations that provided to the framework. This is an efficiency issue and not a 
functionality issue. After enough iterations, the framework will establish a variable relationship 
that replicates the partitioning function through a sequence of more primitive operations so long 
as the primitive operations are sufficient to construct the higher-level function. This assertion 
comes from the postulate that UPRF converges to complete correlation relevant to the transform 
operators available.  
Examination of the outputs of the problem instantiation in Table 5-11 shows the correlation 
to the sequencing utilized to reach the goal. The combination of the number set and the solution 
sequence generates a unique sequence. The framework can then use this sequence as a base 
instance for transform operators to recognize the operators that converts one sequence to another. 
Table 5-1 shows the state sequences for two different instances. The two instances reveal the same 
optimal solution sequence for different numbers in the solution. This provides information to the 
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learning algorithm in the transformation problem to identify the correlating factors between the 
two simulations. In this case, the major correlating factor is that the numbers at both extremes of 
the second sequence are respectively decremented and incremented by the same amount. The 
information learned from this allows UPRF to solve a new problem instance that has this variation 
instantly without the need for simulation.   
Table 5-11: Sample Zero-subset Solutions 
Numbers Count - 
Sum 
+ 
Sum 
Solve 
Sequence 
Observation 
2,-1,1,2 4 3 3 1,2,3,4 A: Positive Sum = 
Negative Sum -> Add 
all numbers 
 1,4 B: All numbers 
symmetrical domain 
-> Choose equal 
offset from mid 
points 
C: Choose opposites 
for immediate match 
2,3 
-2,-1,1,2  2 2 1,2,3,4 A 
    1,4 B 
 4   2,3 B 
-2,-1,1,3  -3 4 1,2,4  
 4   2,3 C 
-2,-1,2,3  -3 5 1,2,4  
 4   1,3 C 
-2,1,2,3 4 -2 6 1,3 C 
-1,1,2,3 4 -1 6 1,2  
-2,1,2 3 -2 3 1,3 C 
-2,-1,1 3 -3 1 2,3 C 
-3,2,3 3 -3 5 1,3  
-1,1,2 3 -1 3 1,2 C 
-2,2,3 3 -2 5 1,2 C 
 
Table 5-12: Identical Solve Sequence for Different Subset Problems 
Attribute Value State Change Sequence 
Set: -3, -1, 2, 4 Representation 
Solve 
Sequence 
1,2,4  
Index 1 100 
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Index 2 010 
Index 3 000 
Index  4 001 
Value -3 100 
Value -1 010 
Value +2 000 
Value  +4 001 
Set: -4, -1, 3, 5 Representation 
Solve 
Sequence 
1,2,4  
Index 1 100 
Index 2 010 
Index 3 000 
Index  4 001 
Value -4 100 
Value -2 010 
Value +3 000 
Value  +5 001 
 
5.1.4.2 Stock Market Trading Optimization 
The stock market profitability scenario represents a probabilistic use case that is not of 
definitive determinism. Some research cites the efficient market theory that over a long enough 
period of time, there is no actual algorithmic approach that can fare better than simple guessing 
[125]. The goal in modelling stock-market trading as a problem to UPRF is not to determine if that 
is the case, although this could be a special type of problem for the system to solve. The goal is to 
determine if UPRF provides a framework for optimizing performance of a stock trading portfolio 
through the optimization process.  
Modelling the stock market trading scenario represents a use case where data already defined 
in a format conducive to analyzing and reporting on the stock market. For this scenario, UPRF 
executes in an external fashion to integrate existing data against the rules to seek for the simulation. 
Implementing UPRF for this scenario requires considerable software infrastructure development 
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that is not present at this time in the project. However, using a system that conceptually implements 
UPRF helps demonstrate the feasibility of the optimization process. 
Modelling of the stock market trading scenario occurs at two levels. The first level is simply 
to test various parameters with variable values in a brute force method to generate different 
portfolios and test their performance. This represents the brute force simulation exercise of UPRF 
that gathers data so that the upper level problem transformation can occur. This scenario 
incorporates the concept of autonomous learning (?auto-learning?) to demonstrate problem 
transformation of lower level instances. This is a variation from the sequencing approach in order 
to add another variable for applying the solution from the lower level instances to the higher order 
problem of identifying the most relevant profitability trend.  
In the auto-learning approach, the system calculates profitability window based on parameter 
ranges for time to look back and number of days in the evaluation period. Based on this, a higher 
order problem implements this as the measurement mechanism to test for a trend change. At a yet 
higher level, a simulation occurs which applies various profitability windows to how to determine 
the profitability window. Figure 5-11 illustrates the progression that feed the results of the lower 
level simulations as inputs for higher-level simulations that utilize parameters for trending 
profitability. Figures 5-12 and 5-13 depict schemas to enable integration with the simulation 
process as well as for the auto-learn. Figure 5-14 shows an additional schema oriented particularly 
towards modelling a behavior. This system is still in development but provides an opportunity to 
integrate an analytic application with UPRF.  
Initial test results of UPRF concepts with the stock trading application known as ?CapGen? 
show promise. The CapGen database currently stores over 3 billion records downloading over 2 
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million quote rows daily for both intraday and end-of-day. In addition, the system generates several 
million technical indicator values in a key/value store. The system provides a generic external data 
collection interface that includes web-scraping functionality to access sentiment data including 
social media feeds and macro data (Figure 5-20). Collected indicators as well as strategies 
themselves persist into the system as index instruments along with trade-able equities allowing 
correlation to occur among not only assets but also indicators. This abundance of data provides an 
excellent foundation for UPRF to operate against in simulative and learning processes. Strategies 
are loaded into the system using a schema specific to CapGen (Figures 5-18 and 5-19) to represent 
the concept of triggering instruments with parameters as well as the trade execution instruments 
and parameters. This structure is transformable to the UPRF schema to represent queries for the 
overall problem solving of optimizing asset purchase and sales.  Initial results are promising. 
Figure 5-22 shows the impact of optimizing an existing strategy based on auto-learning of cycle 
data to improve the results significantly higher than that of a buy-and-hold strategy on the 
instruments. In this case, the Auto-learn varied parameter values correlated to greed and fear by 
setting exit and stop limits that align with volatility changes in the market over the testing period 
running from 1992 through most of 2013. The approach shows how the higher-order learning 
approach of UPRF learns and adapts to avoid over-fitting data from previously learned intervals. 
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Figure 5-11: Incremental Trading Strategy Improvement 
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Figure 5-12: Stock-Trading Schema 
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Figure 5-13: Stock-Trading Schema (Continued) 
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Figure 5-14: Stock-Trading Schema (Continued) 
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Figure 5-15: Stock-Trading Schema (Continued) 
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Figure 5-16: Stock-Trading Schema (Continued) 
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Figure 5-17: Stock-Trading Schema (Continued) 
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Figure 5-18: CapGen-specific Schema (Variables) 
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Figure 5-19: CapGen-specific Schema (Values and workflow) 
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Figure 5-20: Trading System with Feedback Loop and Dynamic Web Data Collection 
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Figure 5-21: Automated Data Capture Scheme 
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Figure 5-22: Stock Trading Report Showing Impact of AutoLearn for Timing 
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Figure 5-23: Graph showing Predictive Analysis from Simulations 
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5.2 Implementation Feasibility 
Implementation feasibility revolves around multiple aspects of scalability. In this section, the 
following aspects are considered:  
1. Efficiency ? What level of efficiency occurs with UPRF? Do the costs support the 
benefits? Does the learning speed up the solving process at a faster pace than the 
complexity of the solving endeavors? 
2. Architectural Scalability ? Does the solution support scaling data and processes? This 
examines questions such as: 
a.  Can the data utilized by the system be distributed and shared among multiple 
processes? 
b. Can separate processes be instantiated to operate on sub-aspects of a problem-
solving endeavor? Can the simulation and exploration of transformation 
sequences be distributed effectively and coordinated? 
5.2.1 Efficiency 
Efficiency is an attribute of systems to ensure achieving the maximum functionality with the 
minimum amount of overhead. The degree that a system can be efficient is highly correlated to not 
only the overall system architecture, but the sophistication of the algorithms used to carry out the 
tasks [126]. Both the internal infrastructure for problem solving and the executed operators in 
problem solving endeavors to recognize transformational patterns determine the efficiency of 
UPRF. The internal architecture for UPRF is agent-based and distributable while the hosting 
architecture is extensible to support executing functions as part of the transformation process. In 
the second regard, this might seem to make UPRF limited in performance to the given algorithms; 
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however, the internal architecture of the system supports the concept of equilibrium and of 
schematizing any problem for optimization. This includes the performance of UPRF itself. 
Therefore, the system promotes efficiency improvement while still allowing extensibility.  
The Tower of Hanoi provides a good example of the benefit for the continued optimization 
through transformation of lower level instances into higher order problems that seek the generic 
solution patterns. When the framework obtains the generic solution pattern, it drastically reduces 
the effort for solving further instances in the domain. Although the Tower of Hanoi is itself NP-
hard, the solution effort does not need to be brute-force. Although the number of steps to represent 
the solution increases exponential, once the solution pattern is identified, the number of steps 
required to find the solution path can be linear. Table 5-13 shows the number of operations 
associated with both the simulation and transformation instances for Hanoi. Figure 5-24 shows the 
outcome in numbers of operations. Note that as the transformation increases to higher levels, the 
number of operations decreases and the exponential correlation to the number of discs disappears. 
Once the generic solution path is in place, the system only needs to reverse through the 
transformation process to generate the solution steps directly. 
Table 5-13 Solution Complexity 
Problem Instance Objects Solve Steps 
S1 - Simulation Solution (discs =2) 2 5 
S2 - Simulation Solution (discs = 3) 3 39 
S3 - Simulation Solution (discs = 4) 4 221 
S4 - Simulation Solution (discs = 5) 5 1975 
T1 - Transformation Solution (S1>S2) 3 232 
T2 - Transformation Solution (S2>S3) 4 495 
T3 - Transformation Solution (S3>S4) 5 1055 
TS1 - Transformation Sequence Solution (T1>T2) 6 2239 
TS2 - Transformation Sequence Solution (T2>T3) 6 2239 
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SG1 - Sequence Generation Solution 3 3 
 
 
Figure 5-24 Solution Complexity 
The identification of the simulation solution for S5 with five discs is therefore reduced to the 
three steps from the solution generation path which directly generates TS2 which then generates 
T4 which generates the S5 solution path such that the number of steps is only five to perform the 
transformation. The identification steps only rely on the prior instance being in place, which the 
framework generates through the five-step process. Therefore, even though the number of 
operations required to generate the steps into a representation are exponential with regard to the 
discs, the time complexity for identifying the transformation and generating the sequence is linear. 
This achieves the same level of performance as if predesigning an algorithm to determine the 
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correct moves. This use case demonstrates that, with no pre-knowledge and exclusively dependent 
on simulation and transformation, UPRF is ultimately able to achieve equivalent performance to 
an algorithm specifically designed for the problem. 
By storing all problem descriptions within a generic structure along with queries that represent 
the relational states required for the initial state, transitive state, and goal state, UPRF is able to 
utilize a general-purpose simulation engine and transformer without the need for custom 
applications for different domains. This provides the ability for autonomous agents to play out the 
simulations. This, along with the state capture framework, provides complete solution sequences 
for all problem instances to the transformation engine. This promotes scalability since each agent 
has the data needed in order to accomplish their task as well as allowing agents to execute on 
independent nodes. This ability to distribute tasks and utilize independent agents that are task-
oriented rather than domain-oriented promotes not only scalability but also higher efficiency [127]. 
Another area of efficiency concerns minimizing the number of operations required to find the 
correct sequencing of operations to perform the transformation. The number of possible sequences 
grows exponentially related to the number of possible operators. This indicates the important of 
the cross-domain learning aspect in order to weight the testing of operators more likely to be of 
use in a particular domain based on learning in another domain. The solving engine performance 
will slow significantly if an abundance of operators requires testing. Transformational operators 
can perform operations that transform the entire sequence as well as just portions. If a 
transformational operator emerges that can generate an instance solution from another instance 
solution in a single operation, this mitigates the exponential nature of the exercise. This dissertation 
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does not investigate this in detail and this topic along with machine learning optimization in 
general represents an area for further research. 
5.2.2 Architectural Scalability  
UPRF scales in multiple directions involving process, data, and tasks. The independent agent 
architecture supports using different nodes to target specific aspects of the framework such as 
schematization, simulation, and transformation. The only requirement is that each node have 
access to the data. Scaling of data is achievable through partitioning of the relational data across 
nodes. The framework achieves task scalability through the instantiation method whereby each 
simulation or transformation endeavor relates to a particular instance of a problem and is self-
contained. Once again, the only requirement is that all operations are able to register with a central 
data store and receive information from the data store. Even within each problem-solving instance, 
each operation is step is a new instance and interacted with by each agent at the step level. Figure 
5-25 illustrates the method in which UPRF scales out across agents, data, and tasks with sub-
instances.  
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Figure 5-25: Scalability Model for UPRF 
5.3 Chapter Summary 
This chapter focused on the practicality of a universal problem resolution framework (UPRF). 
To be of relevance for further study, the framework must show some promise to be usable within 
a foreseeable time horizon given current and emerging computational capabilities. This chapter 
dealt with concerns related to problem solving, since it is the same type of challenge as that 
presented by automated theorem proving. Therefore, problem solving is NP-Complete in nature 
and exponential, which implies limited utility. The chapter introduced other problems of different 
types, potentially much larger and more complex than the Tower of Hanoi base use case including 
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a demonstration of the extensibility of UPRF to handle increasing complexity for an existing 
scenario (transposing the 3-peg Tower of Hanoi to a K-peg problem).  Despite these challenges, 
UPRF promises to be practical because of its ability to scale both the scope of problems and the 
use of computational resources efficiently. The key driving force is the inherent capability within 
the framework to model its own performance and continually learn from it in order to achieve the 
equilibrium goal of maximum benefit within cost constraints. 
  
  
 
   
 204 
 
 
 
6. CONCLUSION AND FURTHER RESEARCH 
This section evaluates the results of the operational proof as well as contributions from the 
other chapters that outline the supporting literature, design approach, and practicality for 
applications against the research questions and goals.  In order to answer the research goals, the 
following outcomes were indicated:  
1) Proof by example that a continuous improvement universal problem resolution framework 
can be constructed using currently available software and hardware;  
2) Production of a prototype that meets the thesis for a continuous improvement system ? i.e. 
non-domain specific, extensible without reprogramming of the core system, lacking need of 
subject matter expert intervention; and executing within polynomial time complexity;  
3) Rationale that the framework coupled with technology advancements generates optimal 
solutions using fewer resources than possible without such a framework. 
The following research questions were posited in the introduction and evaluated in terms of 
the outcomes.  
1) Feasibility: Is it possible to build a universal problem resolution system that continuously 
improves and learns from its own execution including automatically cross applying 
concepts learned to other domains in the most optimal method possible given the 
information available to the system? 
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2) Construction: What is the design of such a universal problem resolution framework 
(UPRF) described above? What are the constraints and requirements for a design that fully 
supports generic representation of problems, generic pursuit of problem solutions and 
continuous improvement utilizing an overarching set of processing components without 
the need for modifications of the actual components for the solving system? The specific 
subordinate questions under this were: 
a. How can UPRF generically encode problems from any domain without the need 
for redesign of the problem representation process? What is the level of effort 
required to represent various types of problems? 
b. How can UPRF utilize the generic representation of a problem to explore possible 
solutions? 
c. How can UPRF support a continuous improvement paradigm? 
3) Practicality: How would UPRF model, solve, and improve various types of problems? 
What Subject-Matter-Expert (SME) interactions are required? How are these interactions 
minimized? Is UPRF practical given current and potential technology? 
6.1 Results 
6.1.1 Feasibility 
Chapter 3 provided a framework for storing problems generically while chapter four provided 
an operational proof of UPRF using the NP-hard problem the Tower of Hanoi as the use case. The 
operational proof demonstrated that the framework could transform sequences for different 
instances generated from a deterministic problem to a more generalized problem for finding the 
sequences. Through proof-by-example, the framework created higher order transformations while 
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solving more instances up to four levels, at which time a generalized pattern materialized that 
reversed to generate the input for the lower level problem transformation. This shows that it is 
possible not only to generate higher order problems into a common schema but also to probe for 
solutions to the higher order problems and recursively apply the solution sequences back to the 
lower order problems. The dissertation thoroughly addressed the challenge of representing a 
problem through a schema through a relational schema using not only the Tower of Hanoi, but 
also the transformation problem itself. Chapter 5 on practicality provided additional examples of 
problem schemas that the same generic schema could represent.  
An assertion from the research question concerned the NP-complete challenge. In using an 
NP-hard scenario, it was obviously impossible to solve a problem in polynomial time even with 
discovery of the optimal solution. However, the goal of the NP scenario was to demonstrate that 
the process of solution discovery could be constrained to polynomial time through an equilibrium 
construct and that the endeavors of the solution discovery could make progress toward 
optimization of NP problems. While the dissertation did not thoroughly explore this, testing proved 
that the process of applying the higher order transformation in order to generate a solution instance 
without the need to explore the full problem space in a simulative fashion contributed only a linear 
constant to the overall problem solving process.  
Another assertion involved cross-domain learning. Although not proven directly, it is possible 
to infer that, since the framework captures all of the correlations in one problem-solving endeavor, 
the framework could treat a problem in another domain as an additional instance for a transform 
operator such that a correlation leads to an optimization across the domains. A K-peg Hanoi 
problem, which included simulating solutions to four and five pegs, provided an example to 
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demonstrate this potential capability. This example verified how learning of the transform 
sequence for the three-peg solution contributes toward an optimal solution for four pegs. Other 
examples include executing the learning process against different scenarios to see how 
optimizations learned in checkers apply to chess. These type of scenarios are useful for 
understanding the problem crossover capabilities of UPRF and validate its utility for general 
problem solving. 
6.1.2 Construction 
Chapter 4 demonstrated the construction of UPRF. Much of the construction utilizes actual 
working code, although at the time of this work only the simulation and sequence generation were 
fully working. The UPD problem was not fully implemented and operational for generating 
transformations and the operational proof required manual calculation to perform the 
transformations. However, given the ability to manually generate the transformations and verify 
their correctness through the reversal process, it is feasible to create UPRF. Although UPRF was 
incomplete in this work, enough of it was prototyped to verify the concepts and establish the key 
design principles. The three main sub-questions concerned (1) the ability to represent problems 
generically, (2) the ability to generically search for solutions, and (3) the ability to learn 
continuously ? all of which the operational proof of Chapter 4 verified. 
6.1.3 Practicality 
The dissertation successfully modeled other applications including collaborative and 
cooperative involving multiple players or agents for UPRF in Chapter 5. It also discussed the 
handling of multi-agent scenarios with multiple competing as well as collaborative scenarios.  The 
dissertation examined the problem of modelling and optimizing NP-complete problems. It also 
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modelled non-deterministic problems such as stock market trading. In all cases, state change 
capture of individual values across attributes was practical in order to generate higher order 
transformation problems as candidates for sequence recognition by higher order transformation 
analysis. 
The massive data tracking requirements for UPRF are realizable given the technological 
trends. What was once thought impossible is now enabled through PCIE SSD [128]; very fast 
high-speed storage scales into the hundreds of terabytes and distributed computing enables 
memory to be treated as storage, allowing a network of computers to scale over high-speed 
networks into the petabytes of storage operating at the speed of memory.  Trends in data mining, 
and predictive analytics using high-speed clusters and technologies such as Hadoop and H-Base 
are also supportive of the high-performance computing requirements needed by this solution [129]. 
UPRF?s agent-based and task-oriented architecture is able to leverage current and emerging 
technologies. This includes distributed problem solving techniques such as MapReduce [130] 
whereby a network of computers supports distributed problem solving through reduction into sub-
problems that map onto computational nodes. PCIE SSD or in-memory databases have the 
potential to support the large amount of data needed for the state representations.  
GPU technologies also enable high-speed distributed processing [131]. Chapter 3 provided a 
system framework based on a scalable broker architecture to allow dispatching of tasks for parallel 
execution at a very low granularity. The simulation architecture leveraging parallel branching 
scales very well to make UPRF practical. 
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6.2 Further Research 
This dissertation focused mainly on the modelling, simulation, sequence capture, and 
transformational mechanism to generate higher order transformation problems from related 
instances. The work focused on the software framework to support this, rather than the 
implementation of the system. Many unanswered questions and future endeavors spawn from the 
framework concepts. This includes areas of machine learning research, in-depth research into 
specific types of problem domains, and the actual work of constructing the system.  
6.2.1 Machine Learning 
This work did not address the construction and evolution of the transformation operator 
functions required to interpret solution sequences associated with one instance and generate a 
related instance solution through correlation and machine learning. Machine learning was touched 
upon briefly as a black box that receives the sequence from one instance and then attempts to find 
the correlations needed to predict the sequence for another instance related through some 
difference in variable value between the instances. The framework design supports the dynamic 
addition of functions (transform operators) that perform transformational inspection to generate a 
target sequence from a source sequence. The integration of machine learning systems as black 
boxes will enhance the advancement of UPRF for practical solving of real world problems. An 
interesting possibility enabled by this research is the transposition of UPRF as an actual machine-
learning algorithm in and of itself.  
6.2.2 Problem Domain Research 
This work covered multiple domains but did not go into depth regarding any problem domains 
other than the Tower of Hanoi example. The work showed through diverse varieties of problems 
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including NP-complete, it is possible to schematize non-deterministic, probabilistic, and multi-
agent and combinations of problems with these attributes for a simulatory approach to solve 
instances and generate higher order transformational problems to converge instance solutions. 
Deeper studies into these other realms will enhance the area of automated problem solving and 
automated solution optimization. This research could result in greater optimizations of all types of 
problems as well as advance the feasibility for the all-encompassing generic problem system 
envisioned by this work. Additionally, deep endeavors into automatic optimization of various 
problem domains have the potential to generate cross-domain knowledge that is applicable to 
various and diverse problem domains that are only remotely correlated. 
6.2.3 Construction of UPRF 
This dissertation provided a prototype of the software and code involved in building the 
framework. Although the dissertation provided code only for the database modelling and schema, 
it did put forth sufficient design to build the functional code and provided a manual walk-through 
of the procedural code requirements. The work resulted in code for functions sufficient to automate 
the simulation and sequence generation, but there was insufficient time to finish development and 
testing of the code for the transformational aspect. The work did however put forward extensive 
design concepts for UPRF. For the framework to become a reality, it must implement the design 
concepts in code within the context of a software development effort. The framework outlined for 
autonomous problem solving supports an iterative approach so that it is possible to add 
functionality incrementally in specific problem domains. There is also the potential to bridge 
existing systems such as that depicted with the stock market optimization scenario to provide 
immediate benefit to already developed problem solving or optimization applications. 
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6.3 Chapter Summary 
This chapter provides the conclusion to the dissertation, outlining results and further research. 
The results demonstrate that a universal problem resolution framework (UPRF) is feasible, 
constructible, and practical. Through the Tower of Hanoi operational proof and the discussion of 
applications to other problems, UPRF emerges as a novel approach and paradigm shift affecting 
machine learning and artificial intelligence. The dissertation has shown that UPRF is a viable 
approach for a problem resolution framework that supports autonomous continuous improvement 
with minimal external interactions and without the need for ongoing modification of the overall 
architecture. Further, this work provides an impetus and foundation for other areas of research that 
can contribute to the domain of generic problem solving systems and be the catalyst for major 
innovations in future A/I and machine learning frameworks. 
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