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Abstract

Highlands on Mars interpreted as impact craters may instead be supervolcanoes
within an ancient volcanic province in Arabia Terra, Mars. These volcanoes are
characterized by lower than normal topographic relief, collapse features, layered
deposits, as welks effusive volcanism and explosive eruptions. Seven features are to be
considered part of the new volcanic field, which includes Siloe Patera. Although an
FfTOSNYFGADBS KelLlRGKSaAa F2NI {Af2S tI G§SNI Qa
more towards multiple caldera collapses or a combination of impact and caldera
collapse events. Regions of interest in and around Siloe Patera include: (1) possible
volcaniedoming along the bench; (2) possible ring faulting on the eastern portion of the
bench; (3 a spire located on the floor of Siloe Patera; and (4) flow features around Siloe
Patera. Data from various Martian orbiters was used to analyze Siloe Patera, Ascraues
Mons, a nested crater and three random craters roughly the size of Siloe Patera. Data
collection included gathering raw Mars Orbital Laser Altimeter (MOLA) tracks over Siloe
Patera, Thermal Emission Imaging System (THEMIS) Night Infrared, Context Camera
(CTX), and Mars Orbiter Camera (MOC) images. Utilizing data currently available,
charaderistics of Siloe Patera resemble that of a volcano more than that of an impact
crater based on topographic profiles, depth diameter ratios, slope angles, and

comparison of regions of interest.
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CHAPTER 1

Recent work by Michalski and Bleacher (2013) suggest a possible volcanic field
located in northern Arabia Terra, Mars, along the Martian global dichotomy boundary
(Figure 1). The field contains seven possible volcanic calderas and associated features
that have been named Eden Patera, Euphrates Patera, Semeykin Crater, Ismenia Patera,
Oxus Patera, Oxus cavus, and Siloe Patera (Michalski and Bleacher, 2013; Figure 1). A
volcanic field associated with Siloe Patera is discussed here. These features are
proposedas volcanic in origin due to the presence of complex collapse features,
faulting, ridged plains likely to be volcanic in nature, and friable layered deposits, as well
as a significant lack of central peaks, uplifted rim, and ejecta typical of impactsrate
¢KSaS &adzLlSNB2f Oly2Sa NBE RSTAYSR Fa aLX LAY
characterized by lower than normal topographic relief, collapse features, and friable and
layered deposits (Michalski and Bleacher, 2013). Friable layered deposits and fretted
terrain are characterized by broad flibored, steepwalled valleys that are located
along the dichotomy boundary (Carr, 2001). Many fretted terrain regions are thought to
form from windblown volcanic ash @olian sedimentary deposits of sand due teith
morphology and erosional characteristics (Irwin and Watters, 2004; Hynek et al., 2003;
Michalski and Bleacher, 2013). Sulfates have been detected in a nearby region known as
fretted terrain (Gendrin et al., 2005) and ash deposition is interpreted toriee

possible reason for the texture of the fretted terrain(Kerber et al., 2012). The sulfates
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likely formed in a valanic outgassing environment where materials were altered under
water-limited, acidic conditions (Michalski and Bleacher, 2013).

The type volcano for this new category is Eden Patera (Figure 2), which contains
evidence for complex and irregularly shaped collapse events with arcuate scarps lining
the depressions (Michalski and Bleacher, 2013). Eden Patera tegghaad ~ 700 m and
displays many features interpreted as former lava lakes, vents, and cracks related to
lava lake drainage. Euphrates Patera also displays irregularly shaped depressions with a

similar depth of 700 m (Michalski and Bleacher, 2013). Rigera is interpreted to be

- Elevation (m)
¥ |

-4,000 -3,000 | &

Faults
[/ Lava lake
< B2 Vent

{ e %
o s

Figure 2: Eden Patera shown here displaying multiple collapse events, as well

a valeritia venip rnddaatiaiesdivitbamridiencharid¥ateras and a lack of identifiable



impact crater characteristics. This includes a surrounding terrain with ridged plains of
Hesperian basaltic volcanism and faodttunded Bocks with surfaces similar to adjacent
ridged plain lavas. Other caldera/volcanic characteristics include blocks tilted toward the
center of the depression, a mound interpreted as a grabelated vent, and continuous
terraces 100 and 150 meters above t@or, interpreted to be high stands of lava lake
drainage. The presence of apparent volcanic geomorphic features and faulting
consistent with caldera collapse are consistent with interpretations of Eden Patera as
volcanic in origin

Although multiple es of evidence suggest a volcanic origin for Siloe Patera, it is
also possible that it originated as the result of multiple impact craters or a combination
of an overlapping impact crater and volcano. Comparison of Martian volcanoes and
impact cratersar&§ E L 2 NER KSNBAY FyR gAfft AR Ay (K¢
origin.

Similar to Eden Patera, SilBatera contains quasircular nested depressions
and arcuate scarps, although it is almost 1 km deeper than Eden Patera (Figure 2),with a
total depth of ~1700 m. Herein, the overlapping depressions of Siloe Patera are referred
to as Crater A the largeshd older depression and, Crater B the second and younger in
the southern half of Crater figure 3A).Crater A is roughly 37 x 33km in diameter (NS
EW) with an average depth of 1000m, 100 m, while Crater B is ~28 x 24km with a depth
of 700m, £100 m. Sild@atera contains a number of notable features (Figure 3B),

including parallel mounds as a result of possible ring faulting, on the floor of Crater A. A



Figure 3A: Siloe Patera divided into two craters. Crater A circled in blue and Crater B cil
yellow.

large mound on the floor of Crater B connects with the southeast rim of Siloe Patera and

is referred to as a spire for the purposes of this paper. The spire rises up in elevation

from the center of Crater B to the rim of Siloe Patera and is dgemliin more detall

herein. Apparent flows lacking a definable source are found to the north, southeast, and
a2dzikKgSald 2F {Aft2S tIFGSNIFQa NAY G6AGK O NBA
(Grant and Schultz, 1993). Five mounds found lining theé $aatp of Crater A and
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Figure 3B: Regions of interest: (1) volcadoming shown in red hexagons; (2) faulting circl
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highlighted in green.

Crater B ee uncharacteristic of impact craters and will be discussed in more detalil

below. Immediately south of Siloe Patera is a large, irregularly shaped depression that

links to Crater B at its southern flank. The significance of these regions is discussed

belowl YR Aad ONARGAOIET F2NJ dzyRSNERUOIFIYRAY3I (GKS yl

CHAPTER 2

6



Mars is a dynamic planet with a complex history of geologic processes that have
shaped its surface through time. Volcanic features make up more than 35 percent of the
Martian surface and cover much of the planet with volcanic fields and plains, including
large shield volcanoes such as Olympus Mons (Greeley, 1985). Although volcanism is
widespread on Mars, impact craters are the more dominate feature and cover the entire
planet. Impact craters and volcanoes can be differentiated from one another other in
mog cases; however, impact and volcanic processes can result mmqoe
geomorphic features that make unequivocal interpretations difficult. In these cases,
remote sensing is a very helpful tool as it provides methods that can help to identify
rock typesby spectrographic signatures and provides insight into the process that may
have formed a particular feature.

Threemain intervals (Figure 4) in Martian geologic history have been defined
based onmpact crater size and frequency: Noachian (4.6 toGa%; Hesperian (3.5 to
1.8 Ga); and Amazonian (1.8 to present; Scott and Carr, 1978; Figure 4). Tanaka (1986)
modified the original timestratigraphic classification &cott and Car1978) and
4dz0 RAGARSR GKS GKNBS LISNARRSE Ay ANRREASNA Sy R
based on research in the western hemisphere of Mars, where detailed imagery
suggested stratigraphy in remotely observed outcrops. A second time scale was derived
from data gathered by the OMEGA Visible and Infrared MineralogiappMg
Spectrometer on board the Mars Express orbiter (Bibring et al., 2006). In this new time

scale there are three periods: Phyllocian (4.5 to 4.0 Ga); Theiikian (4.0 to 3.5); and



Siderikan (3.5 to present). These chemical periods are determined bytimelance of
specific minerals associated with water availability (Bibring, et al., 2006).

Physical History

Crater Density Scale

Noachian Hesperian Amazonian
45-3.5Ga 3.5-1.8Ga 1.8 - present
Volcanic activity Volcanic activity Waning of volcanic

& flooding & little flooding activity & flooding

Mineralogical Scale

Phyllocian Theiikian Siderikan
45-4.0Ga 40-3.5Ga 3.5 - present
Phyllosilicates Sulfates Oxidation

Figured: Depiction of the physical and cheral history of Mars.

Noachian Period (4.5 to 3.5 GaNoachian rocks are the oldest, generatig most
densely cratered by impacts, and are mainly found in the southern highlands (Scott and
Tanaka, 1986; Figure 5).Rocks which formed during this age developed during the final
stages of planetary accretion and subsidence associated with the heavyadsdment
period. Extensive flood lavas and surface modifications formed from eolian, fluvial, and
other surface processes after the heavy bombardment. It is thought that the Tharsis
bulge (Figure 5) formed during this time, as well as major floodingjbig lwater

(Bibring, et al., 2006).

Lower Noachian SerieRecent mapping has distinguished stratigraphically lower
GolasSYSyid YIFOGSNALFEfE FNRBY ONIFGSNBR GSNNI AY

2y alNR o0{O0200G FYyR ¢l yirg lIZyRdyEddey @l A ya AYWF N
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Figure 5: Global Mars map displaying various regions and features.

have been reclassified as basement material within the Lower Noachian Series and are
best observed in the uplifted rim of Charitum Montes (Figure 6) surrounding Argyre
Planitia. These rims are rugged, heavily cratered fropacts, and faulted with hills and
ridges that appear to be concentrically aligned with Argyre Planitia. Middle Noachian
cratered terrain material embays much of the Lower Noachian basement and can be
found around Hellas Basin (Tanaka, 1986; Figureh®)Ldwer Noachian Series

represents the most primitive crust of Mars and formed by solidification of the molten

surface when the planet was forming (Tanaka, 1986).

Middle Noachian Serge The Middle Noachian Series contains rugged and scattered
cratered terrain with remnants in the northern plains. This unit has been mapped as
GONJ GSNBR dzyAlG 2F GKS LI F{dSIdz aSljdzSy 0S¢

all of the Noachian SystesnThe Middle Noachian Series type region is west of Hellas

o¢



Figure 6: Charitum Montesurrounding Argyre Planitia

impact basin (Figure 5) and characterized by rugged cratered terrain with moderate high

relief, secondary impact craters, wrinkle ridgesarps, and channels (Tanaka, 1986).

Upper Noachian Serie§ STAYSR a aONF GSNBR LI FGSt dz
Noachian Series was originally classified as densely cratered with smooth and flat
intercrater areas, but recent mapping shows that bothtsmre s@arate. The smooth,
flat portions over the cratered terrains embay the Middle Noachian Series (Tanaka,

1986).

Hesperian Period (3.5 to 1.8 Galjlesperian formations and features display

extensive volcanism, tectonism, and canyon and chafanelation as well as significant
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