
RTAH: Resource and Thermal Aware
Hadoop

by

Gautam Dudeja

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 2, 2014

Keywords: Data Centers, Thermal Energy, Hadoop, Map-Reduce

Copyright 2014 by Gautam Dudeja

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science Software Engineering
Cheryl Seals, Associate Professor of Computer Science Software Engineering
Alvin Lim, P Associate Professor of Computer Science Software Engineering



Abstract

The amount of unstructured data, also known as Big Data in Internet is growing every

day. Because the Big data is unstructured, a large-scale distributed batch processing in-

frastructure like Hadoop is used instead of traditional databases. Hadoop is an open source

framework, which uses MapReduce programming model to process large data set. Hadoop’s

true power lies in while working in a cluster of machines in data centers. Hadoop’s master-

slave architecture enables master node to control the slave nodes to store and process the

data. When a client application submits a job to Hadoop, the scheduler in master node

schedules tasks on every available slave to process the job in parallel fashion. Many existing

Hadoop schedulers do not consider the workload distribution, its thermal impact and overall

heat distribution in the data center which leads to unstructured increase in temperature and

then massive power expenditure on cooling the data center which now stands about 25% of

total investment in data centers.

With the exponential increase in cooling costs of large-scale data centers, thermal man-

agement must be adequately addressed. Recent trends have discovered one of the critical

reason behind the temperature rise turns out to be heat re-circulation within data center;

where for a server i not only server i’s workload but also its neighbor server’s contribute

in its temperature rise. Based on thorough investigations of Hadoop’s available schedulers,

we proposed a new resource and thermal aware scheduler that schedules tasks to minimize

peak inlet temperature across all nodes and reduce power consumption by Air conditioning

units and eventually cooling costs in data center. The proposed dynamic scheduler, sched-

ules a job based on the current CPU, disk’s utilization and number of tasks running and

the feedback given by all slave nodes at run-time. This resource information gets simulated

to find the respective temperature of each slave node also its neighbor’s contribution. This
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resource and thermal aware scheduler is implemented on top of Hadoop’s FIFO scheduler.

We test our schedulers and FIFO scheduler by running a set of standard Hadoop benchmark

applications like WordCount, DistributedGrep, PI and TeraSort at different temperature,

utilization thresholds and cluster sizes. The experimental results show that our scheduler

achieve average inlet temperature reduction by 2.5C over the default FIFO scheduler that

saves about 15% of cooling cost with little performance overhead.
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Chapter 1

Introduction

Cloud computing often referred to as simply the cloud, is leading emerging utility com-

puting, which provides the basic level of computing service that is considered essential to

meet the everyday needs of the general community. Cloud computing is the next generation

in computation. Maybe Clouds can save the world; possibly people can have everything they

need on the cloud. Cloud computing is the next natural step in the evolution of on-demand

information technology services and products. The Cloud is a metaphor for the Internet. It is

a style of computing in which IT-related capabilities are provided as a service, allowing users

to access technology-enabled services from the Internet (i.e., the Cloud) without knowledge

of, expertise with, or control over the technology infrastructure that supports them. Gartner

Inc. have predicted that at year-end 2016, more than 50% of Global 1000 companies will

have stored customer-sensitive data in the public cloud [5]. IDC have predicted that 80%

of new commercial enterprise apps will be deployed on cloud platforms [6]. Without any

doubts we can say that term cloud computing phrase has become ”cream of mussel” of the

computing world.

Software Engineering Institute [7] studies shows the pattern that cloud computing envi-

ronments can either be public or private. These computing environments represent the way

the services are offered to the clients. In public environment the services are offered to clients

either free or for a fee. The private environments are generally limited to organizations in

which services are deployed behind the organization’s firewall. The computing environments

should take one of the 3 popular service models as described below:

1. Infrastructure-as-a-Service (IaaS): The computational infrastructure includes of a set

of virtual machines that have computation and storage capacity and are available for
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access over the Internet. In this model, clients can run computation intensive or a data

intensive job using a variety of interfaces that facilitate the interaction. The services

are provided over an infrastructure and client’s programs do not have rights to access

or modify it. Some examples of IaaS include: Amazon Cloud Formation, Rackspace

Cloud and Google Compute Engine.

2. Platform-as-a-Service (PaaS): This service model provides the basic platform upon

which the clients can write their own applications and deploy it. The platform in-

cludes operating systems, libraries, environments, services, supporting tools provided

by the service provider. Like IaaS, PaaS also does not allow user programs to alter the

underlying infrastructure. However, they can modify and change the settings that are

in application’s scope and environment.

3. Software-as-a-Service (SaaS): In this service model, Software developed by the client,

provider or by a third party is provided as service to the client. The client do not

run the application locally, instead it would use an API to communicate with the

application that runs in the cloud platform remotely. These APIs cannot modify the

underlying cloud infrastructure, however they can still be used to customize and change

the application’s configuration. A few examples of SaaS include GMail, GDocs and

Office 365.

To provide these services and to supply the demand of computational power as a utility

has increased in never heard volume and that has led to building infrastructure to handle

that huge data which is being produced every second. The amount of unstructured data, also

known as Big Data in Internet is growing every day. The sheer volume of data being stored

today is exploding. In year 2000, 800,000 peta(10005) bytes data were stored in the world

and by year 2012 it has grown to 8 Zetta (10007) bytes. Social networking and e commerce

sites like Facebook, Twitter, Amazon and YouTube are generating and processing petabytes

of data everyday. The Big data is large and unstructured, so it is really hard to process and
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analyze using the traditional database models like RDBMS. In cloud computing, MapReduce

is the programming model used for processing and analyzing large data sets.MapReduce is

the heart of Hadoop. It is this programming paradigm that allows for massive scalability

across hundreds or thousands of servers in a Hadoop cluster. The MapReduce concept is

fairly simple to understand for those who are familiar with clustered scale out data processing

solutions.

1.1 Hadoop Map-Reduce Framework

MapReduce is a programming model designed for processing large volumes of data in

parallel by dividing the work into a set of independent tasks. The model does not work by

sharing the data arbitrarily between the nodes. Instead, the data elements in the MapReduce

are immutable. The data is written only once and read many times. The data read from the

input files in HDFS are processed and converted to intermediate values and further processed

to generate outputs. Any changes on the input files during this process are not reflected on

the actual files.

As the name suggests MapReduce programs process the input data in two stages- Map

stage and Reduce stage. In the mapping stage, the mapper takes one item at a time from the

input list of data elements that are fetched from the HDFS and transforms to an intermediate

output data element. The Map operations are paralleled when input file set is first split to

several pieces called File Splits or Input Splits. Every mapper would have exactly one input

split; the number of mappers created is dependent on the number of input splits. Splitting

the input file set helps in paralleling the processing as the mappers do not have to synchronize

and contend to read the file. Moreover, mappers do not have any identities of their own, so

all mappers are the same and are not aware of each other’s existence let alone communication

taking place between them. Every mapper that receives the input split processes it in a speci

ed format. The input split parser (or Record Reader) in the mapper parses the split and

generates the key-value pairs. The key-value pairs are processed in parallel by the mappers,
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one at a time to generate exactly one intermediate key-value pair for every (key,value) pair.

The output (key,value) pair of the mapper serves as input to the reducer. When the map-

ping phase has completed, the intermediate (key, value) pairs must be exchanged between

machines to send all values with the same key to a single reducer. The reducer receives

the intermediate data generated by the mapper as input, combines the values of all mapper

outputs and generates a single output data corresponding to the input data fetched by the

mapper. The reducers reduce a key value that is unique to each other, so reducers are same

as mappers in the sense that they do not have to communicate with each other and also

remain anonymous to each other.

1.2 Hadoop Distributed File System

Hadoop includes a distributed file system called Hadoop Distributed Filesystem (HDFS)

. It is designed for storing large files of the order of petabytes with streaming data access

running on commodity hardware. It follows the write once read many times and since

analyses are performed over the whole dataset, time to read it should be very fast. The write

once read many model relaxes concurrency control issues, makes data coherency simple and

enables high throughput. Data writes are restricted to one writer at a time.

In HDFS Architecture, the NameNode manages filesystem operations and maps data

blocks to DataNodes. The DataNodes ask the NameNodes for the type of file operations to

perform. The NameNode returns values to the functions called from the DataNode. The

NameNode maintains and administers changes to the file system namespace.

Data replication and organization One of the key features of HDFS is that it provides

fault tolerance. It does so by replicating file blocks. The number of replications can be

provided by the user during input time. HDFS replication is rack aware so as to use network

bandwidth intelligently. The location of the DataNodes is identified by the NameNodes

through the rack IDs.
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Failure detection and prevention Failures in HDFS can occur in NameNodes, DataNodes

or network connectivity problems. HDFS uses heartbeat messages to detect the presence

of connection between NameNode and DataNode. Each DataNode sends messages to the

NameNode indicating it is alive. If the NameNode stops receiving the message from the

DataNode, it marks it as dead and stops sending it requests. Since the dead node no longer

responds to messages, hence the data present in that node is considered to be lost. If the

loss of a node causes the replication factor to go below the minimum value, the NameNode

starts the process of replicating the lost data in other nodes.

1.3 Existing Schedulers in Hadoop

The performance of a master-worker system like MapReduce system closely ties to its

task scheduler on the master. Hadoop schedulers are designed as jar module and can be easily

plugged in to any Hadoop distro. Although there have been lot of work on schedulers,they

are still in the early stages of its life compared to OS’s schedulers. Still, there are quite a

few popular schedulers that are worth mentioning:

• The FIFO scheduler is the default scheduler in Hadoop which uses a single queue for

scheduling tasks (partitioned jobs) with a FIFO method.

• Yahoo’s capacity scheduler uses multiple queues for scheduling. It schedules jobs and

assigns resources to jobs based on resources capacity allocated for the queue of jobs

and usage density density of capacities.

• Facebook’s fair scheduler uses multiple queues for allocating different resources in the

cluster. The fair scheduler maintains a pool of jobs with each pool having a dedicated

number of Map and Reduce slots. It runs a job by using the map and reduce slots and

if a pool is not running any job then the free slots can be allocated to other pools.

• Dynamic Priority Scheduler is a parallel task scheduler in which it allows users to

control their allocated capacity by adjusting their spending over time.
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1.4 why Thermal Management in Data Center required?

The energy consumption in data centers have seen a steady increase trend and also the

power density with in the associated data center like environment. Almost half of such power

consumption is been the cooling power consumption which signals that urgent and efficient

solutions to reduce the energy consumption in data centers for greening the data centers. The

Green Grid, a consortium of data center technology companies, is trying to make a standanrd

pattern in industry to maintain and achieve energy and thermal efficiency [18]. 5.1No existing

frameworks are not thermal efficient although resource and workload management is innate

to achieve thermal efficiency.

The high maintenance cost is predominantly due to high electricity and cooling costs,

which is 25% of the total investment. In fact, the cooling costs of a data center are higher

than the entire IT equipment it supports. In data centers the main contribution to power is

computing and cooling power. The power usage effectiveness(PUE) [18] of a data center is

total power consumed and larger PUE shows large cooling power consumption since that is

the only largest non-computing power consumer. Thermal aware resource management is of

prominent importance to improve cooling energy efficiency. According to US Department of

Energy, average data centers PUE is around 1.7 which means around 30% - 40% is cooling

cost.

Hadoop, being popularly used by enterprises that usually have average data centers,

incorporating thermal awareness into it would benefit them. None of the Hadoop schedulers

developed so far considers the source of temperature to handle the power consumption of the

node and most importantly the thermal model of the data center while scheduling the jobs.

Although there have been many works on scheduling the tasks in the data center to make

data center more thermal aware, none of the schedulers have been implemented in Hadoop

to see their performance in reality.
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Table 1.1: Improving energy efficiency in Data Centers

Design Equipment Framework
Cold aisle, hot aisle ar-
rangement; aisle isola-
tion

Low power states and
DVFS (e.g. Intel’s
Speed-Step, AMD’s Pow-
erNow);Low power elec-
tronics (Intel Atom)

Popular commercial
frameworks are not ther-
mal aware e.g. Hadoop,
Rocks, Moab are not
thermal-aware

1.5 Contribution

In this research we propose to incorporate thermal and resource awareness in Hadoop

MapReduce framework(RTAH) so as to contribute in reducing cooling power in the data

centers it runs. The proposed scheme dynamically schedules tasks on the slave nodes with

only intention of reducing the inlet temperature of each slave node which leads to reduction

of air conditioning cost. The cooling energy depends on two factors 1) the cooling demand

driven by the power distribution and the redline temperature and 2) the cooling behavior

i.e. the behavior of the Computer Room Air Conditioner to meet the cooling demand. Of

particular concern is the re circulation and intermixing of the hot air generated from the

servers running the jobs with the cold air supplied from the CRAC. The heat re circulation

depends on the data center layout and can cause hot-spots which in turn increase the cooling

demand. The proposed algorithm uses slave nodes CPU and disk utilization feedback to

master node. The second most critical aspect algorithm utilizes here is the heat re circulation

matrix which represents the temperature effect of servers on each other. The algorithm tries

to consider all heat generating sources and also its circulation affect to make the decision

in order to make sure the inlet temperature of slave nodes in a rack are below a redline.

Finally we evaluate and compare our Thermal Scheduler(RTAH) with the native Hadoop

scheduler (FIFO) on our lab cluster using standard benchmarks and applications like word

count, distributed grep, pi and tera sort at different temperature threshold and cluster sizes.

The experimental results show the our scheduler achieves peak inlet temperature reduction

by 2.5C and power consumption reduction by 14%. We also used governmental data for
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states with data center locations and we observed the cost saving of around half a million

dollar annualy for a medium size data center with 12000 cluster size.

1.6 Organization

The thesis is organized as follows Chapter 2 explains the Hadoop’s architecture, HDFS

and MapReduce framework in Hadop. Chapter 3 explains the problem and existing thermal

solutions. Chapter 4 describes of our thermal aware scheduler. Chapter 5 analyzes the

results and performances of our scheduler. Chapter 6 refers to some possible future work

with conclusion to the thesis.
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Chapter 2

Apache Hadoop Framework

Apache Hadoop is an open source software project that enables the distributed process-

ing of large data sets across clusters of commodity servers. It is designed to scale up from

a single server to thousands of machines, with a very high degree of fault tolerance. Rather

than relying on high-end hardware, the resiliency of these clusters comes from the softwares

ability to detect and handle failures at the application layer. Hadoop enables a computing

solution that is scalable, cost effective, exible and fault tolerant [6].

2.1 Hadoop Top Architecture

Hadoop is implemented using relatively simple model of Client-Master-Slave design

pattern. There are two masters in the architecture, which are responsible for the controlling

the slaves across the cluster. The first master is the NameNode, which is dedicated to manage

the HDFS and control the slaves that store the data. Second master is JobTracker, which

manages parallel processing of HDFS data in slave nodes using the MapReduce programming

model. The rest of the cluster is made up of slave nodes which runs both DataNode and

TaskTracker daemons. DataNodes obey the commands from its master NameNode and store

parts of HDFS data decoupled from the meta-data in the NameNode. TaskTrackers on the

other hand obeys the commands from the JobTracker and does all the computing work

assigned by the JobTracker. Finally, Client machines are neither Master or a Slave. The

role of the Client machine is to give jobs to the masters to load data into HDFS, submit

Map Reduce jobs describing how that data should be processed, and then retrieve or view

the results of the job when its finished.
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Figure 2.1: Hadoop Top Architecture

Figure 2.1 [24] shows the basic organization of the Hadoop cluster. The client machines

communicates with the NameNode to add, move, manipulate, or delete files in HDFS. The

NameNode in turn calls the DataNodes to store, delete or make replicas of data being

added to HDFS. When the client machines want to process the data in the HDFS, they

communicate to the JobTracker to submit a job that uses MapReduce. JobTracker divides

the jobs to map/reduce tasks and assigns it to the TaskTracker to process it. Typically, all

nodes in Hadoop cluster are arranged in the air cooled racks in a data center. The racks are

linked with each other with the help of rack switches which runs on TCP/IP.

2.2 HDFS

Hadoop Distributed File System is the file system designed for Hadoop to store the large

sets of data reliably and stream those data to the user application at the high throughput

rather than providing low latency access. Hadoop is designed in Java and that makes it

incredibly portable across platform and operating systems. Like the other distributed
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file systems like Lustre and PVFS, HDFS too stores the meta data and the data sep-

arately. 2.2 [3]NameNode stores the meta-data and the DataNodes store the application

data. But, unlike Lustre and PVFS, the HDFS stores the replicas of the data to provide high

throughput data access from multiple sources and also data redundancy increases the fault

tolerance of HDFS. When the HDFS replicates it does not replicate the entire file, it divides

the files into fixed sized blocks and the blocks are placed and replicated in the DataNodes.

The default block size in Hadoop is 64MB and is configurable.

Figure 2.2: HDFS Architecture

2.2.1 NameNode

Namenode is the master of HDFS that maintains and manages the blocks present on

the DataNodes(slave nodes). It keeps the directory tree of all files in the file system, and

tracks where across the cluster the file data is kept. It does not store the data of these files

itself. There is just one Namenode in Gen1 Hadoop which is the single point of failure in the

entire Hadoop HDFS cluster. The HDFS architecture is built in such a way that the user

data is never stored in the Namenode.

These are the following functions of a NameNode:
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• The NameNode maintains and executes the file system namespace. If there are any

modifications in the file system namespace or in its properties, this is tracked by the

NameNode

• It directs the Datanodes (Slave nodes) to execute the low-level I/O operations.

• It keeps a record of how the files in HDFS are divided into blocks, in which nodes these

blocks are stored and by and large the NameNode manages cluster configuration.

• It maps a file name to a set of blocks and maps a block to the DataNodes where it is

located.

• It records the metadata of all the files stored in the cluster, e.g. the location, the size

of the files, permissions, hierarchy, etc.

• With the help of a transactional log, that is, the EditLog, the NameNode records each

and every change that takes place to the file system metadata. For example, if a file is

deleted in HDFS, the NameNode will immediately record this in the EditLog.

• The NameNode is also responsible to take care of the replication factor of all the blocks.

If there is a change in the replication factor of any of the blocks, the NameNode will

record this in the EditLog.

• NameNode regularly receives a Heartbeat and a Blockreport from all the DataNodes

in the cluster to make sure that the datanodes are working properly. A Block Report

contains a list of all blocks on a DataNode.

• In case of a datanode failure, the Namenode chooses new datanodes for new replicas,

balances disk usage and also manages the communication traffic to the datanodes.
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2.2.2 DataNode

A DataNode stores data in the HDFS. A functional filesystem has more than one DataN-

ode, with data replicated across them. On startup, a DataNode connects to the NameNode;

spinning until that service comes up. It then responds to requests from the NameNode for

filesystem operations. These are the following functions of a DataNode

• Datanodes perform the low-level read and write requests from the file systems clients.

• They are also responsible for creating blocks, deleting blocks and replicating the same

based on the decisions taken by the NameNode.

• They regularly send a report on all the blocks present in the cluster to the NameNode.

• Datanodes also enables pipelining of data.

• They forward data to other specified DataNodes.

• Datanodes send heartbeats to the NameNode once every 3 seconds, to report the overall

health of HDFS.

• The DataNode stores each block of HDFS data in separate files in its local file system.

• When the Datanodes gets started, they scan through its local file system, creates a list

of all HDFS data blocks that relate to each of these local files and send a Blockreport

to the NameNode.

2.2.3 Backup Node or Secondary NameNode

The NameNode is the single point of failure for the Hadoop cluster, so the HDFS copies

the of the Namespace in NameNode periodically to a persistent storage for reliability and

this process is called checkpointing. Along with the NameSpace it also maintains a log of

the actions that change the Namespcace, this log is called journal. The checkpoint node

copies the NameSpace and journal from NameNode to applies the transactions in journal
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on the Namespace to create most up to date information of the namespace in NameNode.

The backup node however copies the Namespace and accepts journal stream of Namespace

and applies transactions on the namespace stored in its storage directory. It also stores

the uptodate information of the Namespace in memory and synchronizes itself with the

NameSpace. When the NameNode fails, the HDFS picks up the Namespace from either

BackupNode or CheckPointNode.

2.2.4 Replica and Block Management

HDFS makes replicas of a block with a strategy to enhance both the performance and

reliability. By default the replica count is 3, and it places the first block in the node of

the writer, the second is placed in the same rack but different node and the third replica is

placed in different rack. In the end, no DataNode contains more than one replica of a block

and no rack contains more than two replicas of same block. The nodes chosen on the basis

of proximity to the writer, to place the blocks. There are situations when the blocks might

be over-replicated or under-replicated. In case of over-replication the NameNode deletes the

replicas within the same rack first and from the DataNode, which has least available space.

In case of under-replication, the NameNode maintains a priority queue for the blocks to

replicate and the priority is high for the least replicated blocks. There are tools in HDFS

to maintain the balance and integrity of the data. Balancer is a tool that balances the data

placement based on the node disk utilization in the cluster. The Block Scanner is a tool

used to check integrity using checksums. Distcp is a tool that is used for inter/intra cluster

copying.

2.3 MapRedue

JobTracker is the master, to which the applications submit MapReduce jobs. The

JobTracker gets the map tasks based on input splits and assigns tasks to TaskTracker nodes

in the cluster. The JobTracker is aware of the data block location in the cluster and machines

14



which are near the data. The JobTracker assigns the job to TaskTracker that has the data

with it and if it cannot, then it schedules it to the nearest node to the data to optimize

the network bandwidth. The TaskTracker sends a HeartBeat message to the JobTracker

periodically, to let JobTracker know that it is healthy, and in the message it includes the

memory available, CPU frequency and etc. If the TaskTracker fails to send a HeartBeat to

the JobTracker, the JobTracker assumes that the TaskTracker is down and schedules the

task to the other node which is in the same rack as the failed node.

Figure 2.3: Map-Reduce Flow

The Figure 2.3 [4] shows the data flow of MapReduce in couple of nodes . The steps

below explains the flow of the MapReduce. [4]

• Split the file: First the data in the HDFS are split up and read in InputFromat speci
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ed. InputFormat can be specified by the user and any InputFormat chosen would

read the files in the directory, select the files to be split into InputSplits and give it

to RecordReader to read the records in (key, value) pair that would be processed in

further steps. Standard InputFormats provided by the MapReduce are:

– TextInputFormat reads text files where the byte offset is key and line contents is

value.

– KeyValueInputFromat reads (key,val) pair. Keys and values are separated with a

tab key.

– SequenceFileInputFormat is Hadoop specific high-performance binary format where

key and value are user defined.

The InputSplit is the unit work that comprises a single map task in a MapReduce

program. The job submitted by the client is divided into the number of tasks, which

is equal to the number of InputSplits. The default InputSplit size is 64MB and can

be configured by modifying split size parameter. The InputSplits enable the parallel

processing of MapReduce by scheduling the map tasks on other nodes in cluster at

same time. When the HDFS splits the file into blocks, the task assigned to that node

accesses the data locally.

• Read the records in InputSplit: The InputSplit although is ready to be processed it still

does not make sense to the MapReduce program as the input to it is not in keyvalue

format. The RecordReader actually loads the data and converts it to ¡key,value¿ pair

expected by the Mapper task. The calls to RecordReader calls map() method of

Mapper.

• Process the records: When the Mapper gets the key-value pair from the RecordReader,

it calls the map() function to process the input key-value pair and output an intermedi-

ate key-value pair. While these mappers are reading their share of data and processing
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it in parallel fashion across the cluster, they do not communicate with each other as

they have no data to share. Along with the key-value pair, the Mapper also gets couple

of objects, which indicates where to forward the output and report the status of task.

• Combiner combines all the ¡key,value¿ pair with same keys before sending intermediate

data to the Reducer. It is in some ways a mini Reducer.

• Partition and Shuffle: The mappers output the key,value pair which is the input for the

reducer. This stage the mappers begin exchanging the intermediate outputs and the

process is called shuffling. The reducer reduces the intermediate value with the same

key and it partitions all the intermediate output with the same key. The partition er

determines which partition a given ¡key,value¿ pair go to. The intermediate data are

sorted before they are presented to the Reducer.

• Reduce the mapper’s output: For every key in the assigned partition in the reducer a

reduce() function is called. Because the reducer reduces the partition with the same

key, it iterates over the partition to generate the output. The OutputFormat will

specify the format of the output records, and the reporter object reports the status.

The RecordWriter writes the data to file specified by the OutputFormat.

2.4 HearBeat Mechanism

As we know that once if the input file is loaded on to the Hadoop Cluster, the file is

sliced into blocks, and these blocks are distributed among the cluster. Now Job Tracker

and Task Tracker comes into picture. To process the data, Job Tracker assigns certain tasks

to the Task Tracker. Let us think that, while the processing is going on one DataNode

in the cluster is down. Now, NameNode should know that the certain DataNode is down

, otherwise it cannot continue processing by using replicas. To make NameNode aware of

the status(active / inactive) of DataNodes, each DataNode sends a ”Heart Beat Signal” for

every 10 minutes(Default). Based on this Heart Beat Signal Job Tracker assigns tasks to
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the Tasks Trackers which are active. If any task tracker is not able to send the signal in the

span of 10 mins, Job Tracker treats it as inactive, and checks for the ideal one to assign the

task. If there are no ideal Task Trackers, Job Tracker should wait until any Task Tracker

becomes ideal.
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Chapter 3

DataCenter Layout and Existing Thermal Models

In this chapter we begin describing contemporary system model. Then we briefly de-

scribe general layout of data center as well a the heat circulation and cooling energy asso-

ciated with a typical data center. Next we presents a review of thermal aware scheduling

algorithmic solutions proposed in literature.

3.1 System Model

Here we start by some standard assumptions which are pretty generic in a data center

like scene. we start with inferring Data center with non-uniform temperature distribution

within the data center room. Believing servers are nitrogenous so they have non-uniformly

contribution on the heat re-circulation in the data center room . Further, we assume the

data center runs data-processing jobs using hadoop framework. Finally we assume the

data-processing jobs consist of delay-tolerant batch processing jobs, such as background log

analysis, that do not have strict completion time requirements; they can be delayed by a

bounded amount of time. Cooling energy savings are possible by being able to temporally

spread the workload, and assign it to the computing equipment’s which reduce the heat

re-circulation in data center room and therefore the load on the cooling systems.

3.2 Data Center Layout and Heat Distribution

0

We consider typical CRAC cooled data centers, in which the servers are arranged in

chassis which are in turn arranged in racks with the racks being organized in rows. In each

aisle, between two rows, the front panels or the rear panels face each other and are termed
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Figure 3.1: An Overview of a data center.

cold/hot aisle respectively.The computing nodes or chassis consume power and generate

heat according to the amount of power they consume. Computing Room Air-Conditioners

(CRAC) provide the cooling through the perforated tiles in the floor [12]. Figure 3.1

represents a typical data center. We can see here cold aisle is towards the inlet side of the

server while outlet side faces the hot aisle. Cold air is blown from CRAC which passes

through perforated tiles placed in the cold aisles towards inlet sides. Ideally the hot air from

hot aisle should directly go back to CRAC but here some heat gets recirculated back to

inlet side of the computing nodes which leads to imbalance in thermal management and non

uniformity in temperature distribution. Figure 3.1 shows that this he re circulation effect of

heat creates hot spots towards inlet sides of rack, the reason being intermixing of hot and

cold air. As temperature increases towards the inlet side of server now CRAC temperature

should go down to bring the inlet temperature down which is also power consumption and

lately has become a large chunk of data center’s operational cost.

The temperature of supplied cooled air by CRAC Tsup should be with in the limits of red

line temperature Tred. Tred depends on the client using data center. Due to re-circulation of
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heat from hot aisle to cold aisle the inlet temperature vector of servers Tin gets represented

as 3.1.

Tin = Tsup +4T (3.1)

here T is the temperature rise of servers due to heat re-circulation which means it heat

server recieves from own outlet temperature but also from other neighbor machine. T is

directly proportion to the workload that particular server processing at the time. Cooling

energy consumption depends on Tsup. Cooling energy of CRAC can be modeled by its

coefficient of performance (CoP) 3.3, which is the ratio of heat removed (i.e., computing

energy) over the work required to remove the heat(i.e., cooling energy).

The The total power consumed (PTotal) is sum of total computing power(PC) and power

used for cooling (PAC). The lighting costs and other energy costs have negligible contribution

to the total costs(Equation 3.5) [11] and [20]

PTotal = PAC + PC (3.2)

CoP =
heatremoved

energyconsumedtoremovetheheat
(3.3)

The CoP model is given by equation 3.4 where Tsup is supply temperature. CoP is

linear(Figure 3.2) and normally increases with supplied temperature. Higher CoP shows less

work to do for cooling the servers and less power consumption [12].

CoP = (0.068T 2
sup + 0.0008Tsup + 0.458) (3.4)

The power consumed by CRAC can shows in terms of computing power and COP as

PAC =
PC

CoP
(3.5)
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Figure 3.2: Coefficient of Performance.

In Hadoop PC is total number of tasks that has been given to hadoop to process. These

tasks boil down to basically few machine instructions, which takes different time to execute,

but at cluster level, all Task Trackers are executing the similar instructions or same task. So

that could be inferred as all task trackers are uniformly utilized. [22] shows that their is a

linear relationship between Power Consumption of a node and CPU utilization of a machine.

As their is a linear relationship between temperature and Power consumption. Using the

transitive property CPU usage and temperature are also holds a linear relationship. The

CPU temperature has linear model with outlet temperature of server 3.6

P = aCutil + b

PαCutil

TcpuαP

ToutαTcpu (3.6)
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Its not only CPU temperature but also disk temperature which contributes to the outlet

temperature. [8] shows that an active disk contributes by almost 1.2 -1.3 degrees. They

do not have a linear relation so to also count the disk contribution in the thermal model it

can been seen as in two binary states as active or idle. An active disk will contribute the

constant temperature rise at the server’s outlet. For achieving the eventual goal of reduction

in cooling cost, model minimizes the Tinlet and hence it minimizes the need of bringing down

the Tsup which reduces the power consumption of CRAC.

3.3 Related Work

There is considerable work has been done to develop the efficient thermal aware schedul-

ing algorithms for an hyper active data center. The algorithms differ in terms of workload

type, optimality or complexity of the solution, the data center thermal model parameters.

• XInt-GA and XInt-SQP : XInt-GA and XInt-SQP are based on heat re-circulation

coefficient for all pairs of nodes in data center, taking into consideration the data

center physical layout and thermodynamics conditions.

D = |di,j|NxN (3.7)

Where N is total number of cluster machines. di,j is fraction of heat that flows from

node j to node i. [22] reffered as HRM and can be calculated according to data center

airflow simulations and data center physical layout. [23] proposed XInt-GA and X-

Int-SQP to minimize the peak inlet temperatures results less cooling power. They

structured the problem as a minimization of peak inlet temperature through task

assignment and solve it using XInt-GA, a genetic algorithm (meta-heuristic) approach

as well as XInt-SQP, a sequential quadratic approach.

• HP and Duke University in [16] and [2] built an online measurement and control

techniques to enhance energy efficiency. Supply and Return Heat Index (RHI and SHI)
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characterizes the energy efficiency of CRAC in data center. Using Computational Fluid

Dynamic(CFD) tools which is a thermodynamic and fluid simulator, they figured out

the configurations that results in hot spots and non-uniformity in heat distribution.

Using those CFD simulations they dynamically distributed the workload to achieve

more thermal efficiency.

• [1] gave Thermal Aware Server Provisioning(TASP) which decreases the heat gen-

erated by server provisioning. It also uses the CFD models to formulate hear re-

circulation model. The authors, formulate the problem as choosing the active server

set among a set of servers so as to minimize total energy. The authors solve this

problem using Mixed Integer Programming (i.e., TASP-MIP) and propose a and N-

approximation greedy algorithm (i.e., TASP-LRH).

• MinHR proposed by [13] is a power budgeting policy. The goal is to minimize the total

amount of heat recirculated in the data center before returning to CRAC and increase

power budget. It uses Hear Re-circulation Factor(HRF) as parameter which models

the heat re-circulation of one chassis on all other servers (i.e., for a data centers with

whose servers has homogeneous power consumption, HRF for each server is equal to

the sum of the correspond row of heat recirculation matrix D). MinHR is a heuristic

solution which ranks chassis based on the ratio of the HRF of each individual chassis

to the sum of all HRFs, and assign tasks to the chassis with lowest HRF ratio.

• Inverse-temperature: This algorithm proposed by [19]where imbalances in tempera-

ture are resolved heuristically by redistributing workload inversely proportional to the

chassis outlet temperature. Thermal load balancing is achieved by providing cooling

inlet air for each rack below redline temperature, maintain uniformity in inlet tem-

perature and also dynamically responding to thermal emergencies that cause uneven

temperature.
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We can see here all the above algorithms introduce a solution to choose thermal balance

in data center. All solutions differ with their approach of handling the critical issue here of

thermal efficiency. None of them are lithe to use them in real time framework like hadoop

to really garner the solutions proposed in primarily in simulated territory. In next chapter

we propose the dynamic scheduler implemented on real time distributed framework like

Hadoop which uses XInt-GA like approach of minimizing the peak inlet temperature by also

considering the Heat Circulation Matrix generated by CFD one time simulations of data

center’s physical layout.
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Chapter 4

RTAH:Resource and Thermal Aware Scheduler

Scheduler in Hadoop primarily designed to share Map Reduce cluster for several jobs.

Over time it has grown to support hierarchical scheduling, preemption and multiple ways

of organizing and weighing jobs. Hadoop schedulers are like a pluggable interface and its

possible to switch between them. By default Hadoop had three schedulers FIFO, Fair and

Capacity scheduler. All these schedulers are structured to handle resources optimally but

none of them really holds any thermal management aspect to them. RTAH here is been

build on top of FIFO scheduler which is default scheduler Hadoop uses for processing the

jobs. we chose FIFO because its already an optimized scheduler and adding thermal aware

aspect to them will certainly be the best decision.

4.1 FIFO scheduler

In Hadoop jobs are divided into tasks based on the split size of input data. Those tasks

are then stored into a task queue. Job Tracker assigns tasks from the task queue to one of the

task tracker in cluster which is healthy and free to perform the task. The interface between

Job Tracker and Task Tracker is the mechanism called HeartBeat which we introduced in

chapter 1.

• After Job client submits the job to the cluster. As figure 4.1 from [15] shows it puts

it into an internal queue from where the job scheduler will pick in up and initialize

it. Initialization involves creating a task queue which is nothing but total data size

divided by block size being configured that is total number of splits.
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Figure 4.1: An anatomy of typical FIFO scheduler.

• After Splits being calculated Job Client creates map tasks for each split and each task

being given an id.

• Now Task trackers run a simple loop that periodically (where period could be cus-

tomized) sends heartbeat method calls to job tracker. The heartbeat message is the

means of communication between the Task Tracker and the Job Tracker. The key fields

which this message contains maximum Map and Reduce tasks,total physical and virtual

memory, frequency of CPU and CPU time, responseid, state of Task Tracker health.

The heartbeat message is sent periodically be the Task Tracker to the Job Tracker

and if the Job Tracker does not get a heartbeat message from the Task Tracker for an

interval of time, then it labels that node as unhealthy and allocates the tasks given to

that Task Tracker to other healthy Task Trackers.

• In acknowledgement of heartbeat Job Tracker will further assign Map/Reduce tasks

based on the number of free slots it has. The Task Trackers usually have 2 map and
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reduce slots, which means that Task Tracker can only run 2 Map or 2 Reduce tasks at

a time. Generally, the number of Map/Reduce slots in a Task Tracker are configured

based on the number of cores it has, one slot for each core is widely followed setting.

If a node has at least 1 Map slot then the node gets a Mapper task, else it will do the

Reduce task.

• Before processing heartbeat Job Tracker calls for Task Tracker profiling on the basis

on its previous heartbeat information.

– Process HeartBeat: Job Tracker receives a HeartBeat from a Task Tracker with

all the above mentioned data and accepts it only if an allowed Task Tracker sent

it. If the HeartBeat is duplicate then Job Tracker will ignore it. Else, it will

process the HeartBeat, process a response and check for the tasks to execute.

– When the Task Tracker is ready to run a task, Job Tracker gets the list tasks that

are either a setup or clean-up task.

– Choose a task from list: The scheduler iterates through the set up task list, and

it chooses a task if the task is runnable, not running and is a failed task. It will

remove a task from the list if task is scheduled, killed, completed, running or

failed on this Task Tracker before.

– Check for Flaky Task Tracker: After it obtains the Map or Reduce task, it checks

if many tasks have failed on this Task Tracker before; If yes, then it does not

schedule the task. Otherwise, marks the task as schedulable.

– Assign the created Map/Reduce Task: Get the Task Tracker’s total Map and

Reduce Slots and get total Map and Reduce slots across the pool to calculate

the load factor of Map and Reduce. Find a new Task from the FIFO queue and

ensure it has all the resources and process the tasks in the order of: Failed Task,

Non-running Task, Speculative Task, No Location information Task
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– Launch the task: After the task is assigned, it launches the task in the Task

Tracker and starts a timer. If the Task Tracker does not respond to this task for

too long then it will mark the task as failed task.

Job Tracker further checks for any jobs to be killed, cleaned up or tasks that needs to

be committed. In the HeartBeat response, it checks if any restart information should

be included before sending it to the Task Tracker.

4.2 RTAH Design

The most important part of RTAH is to have required information about task trackers

health and its current Disk and CPU utilization to be communicated to Job Tracker. The

given information a Temperature Simulator consumes to calculate Temperature information

Scheduler needs in order to keep the Peak Inlet Temperature below Redline.

4.2.1 HeartBeat Mechanism Modification

Our one of the main design goal was to build a propagation system between Task Tracker

and Job Tracker to get the required information of task tracker to scheduler in real time.

There are few options from available mechanisms which already exist in Hadoop such as

Metrics, Counters and HeartBeat. Metrics are not part of Hadoop’s internal MapReduce

interface in fact it runs as an external process. We chose to use Heartbeat because of its

light weight nature. There are 2 Heartbeat interfaces in Hadoop cluster one is between

Job Tracker and Task Tracker while another between DataNode and NameNode. For our

schedulers prospective we used the Mapreduce interface.

At Task Tracker it maintains an instance of a class called ResourceStatus which com-

posed of all resource information about the task trackers resources such as Virtual memory,

Physical Memory, number of map/reduce slots. We modified the Resource status class and

added few more methods to calculate the CPU Utilization, Disk Utilization, CPU core tem-

perature and Disk temperature. Since Hadoop is a java based framework and running on
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JVM it can’t access the resource of any machine. So we used some Linux Resource Calcu-

lator plugins such as /proc/stat which provides the CPU and Disk information. For Disk

Temperature we used another Linux application called hddtemp to extract the Disk Tem-

perature.

The advantage of using the heartbeat to communicate the data from Task Tracker to

Job Tracker is to leverage an existing lightweight mechanism that is very well suited for real

time data propagation. We also recognized that the data is real-time upto the period of the

heartbeat which is minimum 3 seconds.

JobTracker keeps a HashMap of Task Tracker Name to last TaskTrackerStatus received

from that Task Tracker. The ResourceStatus instances can be accessed through TaskTrack-

erStatus.getResourceStatus().

4.2.2 Thermal Simulator

We described the plan of the model used as well as the basic components necessary for

the model. In this section, we will present the assumptions and the notations we used in the

model. Following are the assumptions :

1. Initial temperature is always consistent which is room temperature throughout the

data center.

2. The air flow is static in all parts of the data center.

3. Supplied temperature strength is linearly proportional to the distance from the vent.

4. disk is assumed to be in two states either active or idle.

5. we assume in active state disk contributes constant rise in outlet temperature.

At Job Tracker a Temperature simulator class gathers CPU and Disk Utilization from the

Hash structure maintained by Job Tracker. For a server i the outlet temperature is sum of

Tinitial and Trise. Here Trise is linearly related to the CPU Utilization of server i as equation
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Table 4.1: Model Notation

Variables Description
i Number of Server Node
Q Heat generated (J)
p Density of air (kg/m3)
f Flow rate (m3/s)
Tsup Air temperature as supplied from cooling unit
Anxn Heat Re-circulation/ cross-interference matrix
Tout Outlet Temperature (c)
Tin Inlet Temperature (c)
T Change/Rise in temperature (c)
Tred Red Line/Threshold temperature
Pc Computational Power
R Ratio of distance
di,j Cross Interference matrix
di Distance of the server from AC vent (m)
d Height of room (m)
Tinitial Room Initial Temperature (c)
Kdisk constant temperature rise by disk

T possilble
in Possible Inlet temperature if job assigned
Cutil CPU utilization
Dutil Disk Utilization
PAC cooling cost/Power consumption by AC unit
COP Coefficient of performance

4.2 where Kdisk is a constant contribution of an active disk to the outlet temperatureTout. We

know the Inlet temperature of a server node(Task Tracker) gets affected by CRAC temper-

ature Tsup and also by outlet temperature of itself and also the contribution by other server

nodes because of heat re-circulation effect. Equation 4.1 shows the actual representation of

Inlet Temperature of a server at any given point of time. In the article [21], they define Tin

as dependent on Ts and a vector which models the exact strength of Ts at each height.

Here R represents the factor of height of server from CRAC this gets calculated using

ratio of server’s height from CRAC to ceiling height from CRAC. This in lines of the fact

that the higher the server’s placement from CRAC which is at floor the less cooling effect it

will receive from cooling device. Inequation 4.1 A is a heat re-circulation or cross-interference
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Figure 4.2: Cross-Interference between neighbor servers

vector which sums up the temperature rise of server node i because of its neighbors outlet

temperature sitting at placement for say at i+1, i+2 or i-1.

Heat Re-circulation vector or matrix gets calculated using thorough evaluation of phys-

ical layout of data center using CFD tools as proposed in [17] and [13]. In figure 4.2 A

is a nxn matrix where n is total number of cluster nodes in the cluster. each element di,j

from the matrix represents the fraction contribution of heat from server i’s outlet to j’s inlet

temperature.

R = 1− di

d

Tin
i = T i

initial −RTsupi + ATout (4.1)

This equation can be reorganized to solve for outlet temperature.
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Trise
i = Kdisk

i + aCutil
i + b

Tout
i = T i

initial + Trise (4.2)

The main reason for Tout to rise is the heat transfer in the system from inlet side to

outlet side. The PC components such as CPU chip and disks heats up on processing the

workload and with air heat transfer it leads to rise in Tout.

4.3 Implementation

The algorithm in goal of minimizing the inlet temperature uses some input parameters.

which are listed here below:

1. A[][] : a cross interference matrix/heat re-circulation matrix

2. CPU and Disk utilization from heartbeat message

3. height[] vector which keeps the height information of each server with respect to CRAC

at floor.

4. Currently running map tasks on task tracker i, also supplied via heartbeat.

Now as previously stated when the Task Tracker sends the HeartBeat message, we

incorporate CPU usage and disk utilization information in it. The Task Tracker java thread

polls the OS for the temperature and utilization adds it to the HeartBeat message. For

the disk and CPU utilization we use iostat command. The HeartBeat message interval sets

the accuracy of the real time information we have on the Job Tracker. Now there are few

assumptions which were considered for algorithm such as:

1. Try to keep T i
in below Tred

2. Each Task Tracker will be assigned one task at a time
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3. All map tasks in a job are identical in terms of their resource requirement because they

all process the same operation.

4. All map tasks are processing the same input block size

5. Each task will be assigned to utmost one Task Tracker

6. Above constraints meant that Temperature rise per map task will also be same for a

server

7. Heat re-circulation effect is more profound to servers belong to same rack.

The first assumption here is decision making condition in scheduling to keep inlet tem-

perature below redline and this way no need to decrease the CRAC temperature Tsup. The

FIFO scheduler by default assigns one map task to each task tracker whenever task tracker

asks for a task from the task queue. Since each map task gets created to process a similar

operation and also on similar size of data block they believe to be similar in terms of contri-

bution to temperature rise. Each Task will be assigned to only one task tracker the most so

duplicate work being done in entire scene. As shown in Figure 4.3

1. The HeartBeat messages are sent by the Task Tracker i with the information of CPU,

Disk temperature and utilization along with the other HeartBeat fields periodically.

The Disk temperature, CPU temperature and the utilization are extracted from the

Task Tracker with system commands.

2. The Job Tracker calls Simulator which receives the heartbeat message and extracts the

Task Tracker status.

3. In the initial part each Task Tracker has no task so they all will be available to accept a

task. So each time a task tracker requests for a task by sending its availability through

heartbeat it also registers itself with simulator. If i has just sent heartbeat and asked

for a task it will register itself in Simulator.
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Figure 4.3: RTAH Design Implementation

4. The Simulator then extracts the message and creates a map structure to keep the

heartbeat required fields (CPUutil and Diskutil) with each information being mapped

to the Task Trackers address i and their field values.

5. Now on wards each time i task tracker sends heartbeat, simulator updates its map

structure to keep information real time.

6. Now simulator has structure with all required fields for simulating the thermal model:
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• It uses the CPU usage and Disk usage to calculate the outlet temperature of server

i and maintains another map structure for storing the outlet and inlet temperature

for Task Tracker.

• Simulator uses model mentioned in equation 4.2 to calculate the outlet Temper-

ature. We uses CPUutil as linear model between outlet temperature and Diskutil

represents either active or idle and it contributes a constant temperature to outlet

temperature.

• Now Simulator used outlet temperature to calculate the Inlet temperature for

the server itself and also its neighbor task trackers using equation 4.1. Tsup is a

constant temperature and A is cross interference matrix gives the factor di,j by

which server i is going to contribute to the inlet temperature of its neighbor Task

Trackers j. The far the neighbor task tracker is the least the factor in the matrix.

The most prominent heat re-circulation affect could be noticed in the local servers

in a rack than servers in another rack.

7. The scheduler meanwhile iterates through the set up task list, and it chooses a task,

or removes a task if it is completed or killed.

8. The simulator now a boolean method called shouldGo whether scheduler should assign

task to the task seeking task tracker. The method here uses the inlet and outlet

temperature difference. Lets say task tracker i has requested for task as in equation

4.3.

4T i = Tout
i − Tini (4.3)

9. Now method calculates the temperature rise per map task using equation 4.4. This we

can understand by our assumption above that all map tasks are similar so they have

very close equal contribution to outlet temperature of server i.
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Temp rise per map =
4T
mapi

(4.4)

10. Method now calculates and maintains another structure called possible outlet temper-

ature if job got assigned to that tracker T possilble
out .

11. Suppose for server i , the method calculates the average of di,j where j ε [1...n]. Here

n is number of Task Trackers in cluster as in equation 4.5.

Average Factor for server i =

∑n
1

n
(4.5)

12. From given matrix then scheduler looks for neighbor nodes for which the cross-interference

matrix value is greater than average for that server as point out in 4.5. Once known

the neighbor servers could be critically affected because of re-circulation effect of heat

it then uses T possilble
out to calculate the inlet temperature of all its neighbor nodes and

stored as T possilble
in .

13. Now is the moment to decide and make decision of flag the scheduler that whether its

good to assign job to server i or not. The criteria being T possilble
in for all neighbor nodes

of server i and also for i are less than Tred. Equation 4.6

criteria = T possilble
in < Tred (4.6)

14. If the criteria in previous step doesn’t meet it flags the scheduler don’t assign the ready

to assign task to this server and wait for next server with heartbeat message ready to

be processed.

To Summarize the strategy above is to schedule the tasks to the node which will not bring

the inlet temperature for itself and also its neighbor nodes. For making the decision it

considers parameters as CPU usage, Disk usage and currently running map tasks on node i.
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Technically it considers the Heat re-circulation effect into much in consideration by taking

into account the physical layout of data center which is in form of a cross-interference matrix.

We also take into consideration of the fact about the physical placement of server with in

rack and their proximity to cooling system since that gets affects the Inlet temperature over

the course of duration. This strategy works and helps utilizing the thermal management into

data center with least affect on performance. Next chapter describes the experiment setup

and compiles the results observed and helps strategy put into prospective.
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Chapter 5

Results and Interpretation

The performance of the Hadoop schedulers were measured using actual Hadoop cluster

implementation. Unlike the data center clusters, we implemented a cluster of relatively

small scale of 10 nodes and performed experiments and gathered the performance data of

our schedulers. Similarly, due to unavailability of the large data sets, we scaled down the

data set to suit the performance of the cluster size. In this section we will be determining

the parameters for the model we created in the modeling section for server. Do this we need

to prove that all the factors describe in the model will indeed have an effect, and then solve

for the constants described in the previously in the modeling section.

5.1 Set up

Using the commodity hardware we setup a Hadoop cluster composed of a Job Tracker,

NameNode and 10 DataNodes and Task Trackers.

5.1.1 Hardware

Table 5.1: Server Specifications

Node Number of cores RAM Storage
HP Xeon 4 cores(2.8GHz) 2GB 143GB
Dell 4 cores(2.8GHz) 2GB 143GB

5.1.2 Software

All nodes in Hadoop cluster were running on Linux Ubuntu 10.04 operating system.

For Hadoop, we used the stable version of 1.0.3 across all nodes in the cluster. To support
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Hadoop 1.0.3, java version of 1.6 was installed on all nodes. The nodes had password free

access between them for starting the tasks and exchange of intermediate data. The nodes

were also installed with the sensors, hddtemp to measure the CPU temperature and Disk

temperature.

5.1.3 Cluster Size and Data set

To evaluate the performance our schedulers, we change the cluster size and data set

sizes. Several experiments are conducted with cluster size of 5, 10 and 12. The data sets

are varied as well at sizes of 5GB, 10GB and 20GB respectively. All nodes had default

map/reduce slot settings, block size and input split size. The replication factor was set to 3

in all experiments.

5.1.4 Benchmarks

The schedulers were evaluated using standard Hadoop Benchmarks. The benchmarks

were chosen to really stress test the cluster by varying CPU and disk utilization by big deal.

The Benchmarks used were:

• WordCount

• Distributed Grep

• PI estimation

• Tera Sort

5.2 Results

5.2.1 Temperature Reduction

For Evaluation we start with the temperature reduction for nodes which could see

imbalanced temperature distribution in default hadoop scheduler which increases their peak
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Figure 5.1: Map Task Distribution for WordCount

(a) Number of Map Tasks vs Node(10GB) (b) Number of Map Tasks vs Node(15GB)

inlet temperature non uniformly, which leads for consistent need of lowering the Tsup and

power consumption. We stated to test RTAH with original FIFO hadoop scheduler. Figure

5.2(a) shows the number of map task distribution for 5 node cluster processing data size

of 10GB and figure 5.2(b) similarly processing the 15GB data size, they both using RTAH

and Original Hadoop. We can clearly see that the Original Hadoop doesn’t distribute with

any sort of knowledge of server location in rack or in data center in general so map task

distribution is pretty random but RTAH evidently does consider the location of server in

rack if it happens to be close to cooling system or say close to floor it will be cooler in respect

to other server;s in the rack so it ends up processing more map tasks than others and with

height that number varies it looks like a stair structure. The server far most from CRAC or

top server sees the most the heat re-circulation effect so it has its inlet temperature highest

at most time of the job processing so it ends up processing the less number of map tasks.

We can see here using RTAH we were able to see the peak inlet temperature difference of

1.9 degree Celsius.

In figure 5.3(a) and figure 5.3(b) again evidently shows the prominent reduction in peak

inlet temperature of 5 nodes processing two different data size for Word Count application.

The inlet temperature reduction helps by avoiding the need of lower cooling temperature

which saves the power consumption.
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Figure 5.2: Peak Inlet Temperature for WordCount

(a) Peak Inlet Temperature vs Node (10GB) (b) Peak Inlet Temperature vs Node (15GB)

Figure 5.3: Map Task distribution for Grep

(a) Number of Map Tasks vs Node(10GB) (b) Number of Map Tasks vs Node(20GB)

Similarly for other benchmark application such as grep Figure 5.5(a) and 5.5(b) shows

the prominent temperature decline in Peak inlet temperature. We were able to see the tem-

perature difference of 1.5 degree Celsius for grep application. The temperature contribution

was primarily by disk usage as grep in more I/O intensive job. From Figure 5.4(a) and

Figure 5.4(b) displays that the nodes which were over utilized in FIFO scheduler are literally

under utilized in RTAH which could have been the source of temperature imbalance.

Tera Sort Application [14] which is another industrical standard for benchmarking

the Hadoop cluster. Basically, the goal of TeraSort is to sort 1TB of data (or any other

amount of data) as fast as possible. It is a benchmark that combines testing the HDFS
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Figure 5.4: Peak Inlet Temperature for Grep

(a) Peak Inlet Temperature vs Node (10GB) (b) Peak Inlet Temperature vs Node (20GB)

Figure 5.5: Map Task distribution for Tera Sort

(a) Number of Map Tasks vs Node(10GB) (b) Number of Map Tasks vs Node(20GB)

and MapReduce layers of an Hadoop cluster. As such it is not surprising that the TeraSort

benchmark suite is often used in practice, which has the added benefit that it allows us among

other things to compare the results of our own cluster with another cluster setting. Tera Sort

exhaustively tests the Map Reduce and HDFS interface so its big contributor in faster rise

of temperature and then its imbalance. Using RTAH as in Figure 5.7(a) and Figure 5.7(b)

shows the prominent decrease in inlet temperature of the cluster’s most overused nodes. In

a rack like environment they are the ones on the top of rack. RTAH bring down the inlet

temperature significantly down by almost 2 degree Celsius.

43



Figure 5.6: Peak Inlet Temperature for Tera Sort

(a) Peak Inlet Temperature vs Node (10GB) (b) Peak Inlet Temperature vs Node (20GB)

Figure 5.7: Pi Estimation Map Distribution and Peak Inlet Temperature Reduction

(a) Map Task Distribution vs Node (b) Peak Inlet Temperature vs Node

Figure 5.6(a) and Figure 5.6(b) displays the workload distribution of load in data center

to avoid the occurrences or even possibilities of hot sopts.

PI estimation is also another benchmark application benchmark. Pi job computes value

of PI, and is primarily a CPU intensive job unlike WordCount and Grep, which are also disk

intensive job. In fact, pi job does not actually need any data in HDFS to work on. Figure

5.8(a) and 5.8(b) shows temperature reduction of around 2.2 degree Celcius.

This section of temperature reduction was primarily to display the basic functionality

of the scheduler and its minimum goal it met. The results of map task distribution displays

the overall performance of the cluster. The nodes overwhelmed with regular FIFO scheduler
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tends to be under utilized with RTAH. Purely the reason is that we can see that the nodes

which are closer to cooling system should process more task than the ones which are tend to

see quick rise in their inlet temperature and which may become the reason for cooling system

to bring down the temperature using more power. So this stair like distribution represents

the servers in one rack where they do get affected by the neighbor server. The servers on the

top are processing less tasks because they are already experiencing temperature rise coming

from heat re-circulation effect and they might lead to becoming a hot spot.

With cluster size 7 and data size of 20 GB as in Figure 5.9(a) shows the level of non

uniform distribution of jobs occur with out any thermal management consideration in the

hadoop default schedulers, but our thermal model does arrange the tasks in temperature

efficient way. In Fig 5.9(b) we can see the distribution of map tasks for each different bench

mark we implemented. The difference between the Node 7 and Node 1 which represents

the top and bottom servers in the rack respectively and we can the level of contribution

height(placement) of server has when it comes to distribution of map tasks. The number

of map tasks for pi-estimation is much lesser than others because for other applications

the input data size was 20GB while pi-estimation is input data independent it just has

computation cost and no data movement at all.

Now here in Figure 5.9 the peak temperature for multiple applications on 7 node cluster.

The temperature in original hadoop run and with RTAH peaked more than RTAH. The

reason being the server closer to the CRAC is processing more jobs than the one which is

far away. So it becomes sort of balance in Peak inlet temperature because the peak inlet

temperature for CRAC closer server is high because of its business most of the time and the

one far also gets to the similar temperature because of heat re-circulation affect of servers

around it. The Tred here is 33.5 degree Celsius.
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Figure 5.8: Map Distribution vs Node

(a) Map Task Distribution vs Application

(b) Map-Distribution vs Node

5.2.2 Cooling Cost Estimation

To measure the power consumed and cooling cost. We used the average CPU usage for

each node. To calculate the power we used the equation 5.1 where COP(Tsup) represents

the coefficient of performance and PAC shows the cooling cost[23] and Tsup here is 20 degree

Celsius temperature set up for CRAC temperature. Equation 5.2 shows the used formula to

calculate the COP.

PAC =
Pc

COP (Tsup)
(5.1)
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Figure 5.9: Peak Inlet vs Nodes

COP (Tsup) = (0.0068T 2 + 0.0008T + 0.458) (5.2)

For calculating the Pc which is computational power consumption used by server itself

to for data processing. To calculate we used equation 5.3. As we know that the Total power

consumption is sum of computing power and cooling power. Figure 5.10 shows the redcution

in difference between Tout and Tin which is directly related to computing power of server. [23]

Now to conclude the cooling cost for all 7 nodes 5.2 which shows the comparable reduction

in Cooling power consumption for all four benchmarks used.

Pc = (120 + 50(Cutil) (5.3)

Now for a data center of 50,000 nodes running these benchmarks or some variant of these

bench marks will obtain the savings as shown in 5.12 where we can see that the proposed
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Table 5.2: Cooling Cost Reduction comparison for Different Benchmarks

Cooling Cost(in Watt)

Node WC(R) WC(H) TS(R) TS(H) Gr(R) Gr(H) Pi(R) Pi(H)
1 60.734 48.587 61.294 53.259 59.799 60.734 59.799 56.996
2 59.239 56.062 59.799 60.548 56.996 60.360 58.865 59.239
3 56.062 55.688 58.865 60.734 56.956 59.789 58.304 57.930
4 54.380 56.996 57.557 57.930 56.062 59.052 57.552 58.304
5 53.259 56.249 56.062 57.744 56.060 57.865 56.996 57.557
6 50.455 54.567 53.259 57.557 56.435 57.928 56.622 57.549
7 47.092 57.193 52.324 56.062 56.001 57.183 55.127 59.425

Avg 54.460 55.047 57.023 58.690 56.916 59.132 57.610 58.144

Figure 5.10: Peak Inlet vs Nodes

model will get the cost down significantly. 5.12 shows that we can achieve the cost savings

of about $400,000 to $700,000 using the commercial unit price of electricity in states such

as Iowa, California and New York.

We also noticed from above data that our model gets power consumption savings from

9% -14%. To make sure not getting the performance affected a lot we also observed the

number of times scheduler declines assigning jobs to the task tracer in case when its inlet

temperature may exceed red line temperature. We noticed that out of all jobs requested by

Task Trackers our Scheduler rejected 3% jobs which is minimal in case of cluster running
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Figure 5.11: Cooling Cost Comparison

Figure 5.12: Cooling Cost Savings

massive jobs. That many jobs does get black listed in Hadoop’s typical processing because

of resource non availability out of all jobs. So there is not much performance lag noticed

in terms of execution time. If priority of any job is necessary then that can be handled by

assigning priorities in application creation which is meant to run on Hadoop and that will

further reduce the affect the that small lag. We also noticed the number of jobs rejected
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gets less and less further by increasing cluster size which in later end will certainly be more

optimal solution. The larger the cluster the more savings we can achieve and also by less

affecting the performance.
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Chapter 6

Conclusion and Future Work

6.1 conclusions

We have proposed a Thermal Aware Scheduler (TAS) for Hadoop MapReduce frame-

work which extends the First Come First Server (FCFS) scheduler to make it thermally

aware. The Thermal Aware Scheduler distributes tasks preferentially to servers based on

their heat re circulation affect in their rack they belong to. If it does make any of its neighbor

server to exceed threshold temperature it skips assiging job to the task. We then tested our

scheduler on four benchmarks WordCount, Terasort, Grep and Pi-estimation which showed

that preferential task distribution decreases the peak temperature as well as cooling power.

The decrease in the peak temperature was more for WordCount and PI than for TeraSort

and grep as former are more CPU intensive.

6.2 Extension

The are several possibilities to extend this work and work on achieving the goal of more

thermal and energy efficient data centers.

• Our thermal model approach does take care of Cpu and disk contribution to outlet

temperature of a server, we consider the disk to be in a binary state either active or

not active. But disk can have also relation with outlet temperature and that relation is

certainly not linear so the further extension could be extended to use disk profiling to

incorporate the disk contribution in outlet temperature calculation as in our simulator

more optimally.
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• Implement thermal module on Fair and Capacity scheduler: The thermal module is

implemented currently on FIFO scheduler which has single queue to maintain tasks.

The scheduler developed by Facebook and Yahoo, have multiple queues and parallel

scheduling capabilities. Implementing thermal module on top of these schedulers might

be interesting both on thermal management and performance fronts.

• For making the data center more energy efficient we can come up with a power con-

troller strategy which works on dynamically changing the size of cluster for reducing the

overall power consumption of data center. There is one proposed strategy here which

could be implemented in Hadoop HDFS data flow to incorporate a power controller.

– One channel could be implemented between cluster’s HDFS and a power controller

which together scale up or scale down the number of data nodes dynamically.

– We know in HDFS the typical replication factor of one block is 3, in which two

replica’s are local to one rack and third is in some other rack. The strategy has

to use the replication factor and its locations to know which nodes to power off

and which ones to power on at a particular time.

– Suppose Name Node recieves a request to create a file Fk of size Sk wit replication

factor Rk, it calculates the number of HDFS blocks that will be needed to store

it using formula 6.1. where B is block size. The total space needed now is 6.2.

Sk

B
XRk (6.1)

– The controller now should check if there is enough space available on HDFS to

store the file and turns on more nodes if needed. At all times, There should be

some margional space maintained on running data nodes so that write operation

doesn’t get failed because of less space while then new data nodes being turn on.
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Figure 6.1: Power Controller interaction with NameNode

– After the new nodes have been turned on the cluster has to be re-balanced as

new nodes are empty at the time. As in Figure ?? from [10]. [9]The name node

create HDFS block on newly added data node in rack-aware policy and mean

while name space and meta data gets updated in name node records.

– The pure criteria for scaling up or scaling down the cluster is when utilization of

one server is below/higher than a threshold utilization.

– At the time of re-balancing the cluster in cases of addition or reduction of a

node in cluster, the inter-rack or Intra-rack Transfer of blocks should be critically

monitored so that the replication policy of hadoop doesn’t get violated.

SkXRk (6.2)
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