AUTOMATIC DETECTION OF SOFTWARE SECURITY
VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This
dissertation does not include proprietary or classified information.

Jay-Evan J. Tevis

Certificate of Approval:

Dean Hendrix John A. Hamilton, Jr., Chair
Associate Professor Associate Professor

Computer Science and Software Computer Science and Software
Engineering Engineering

David A. Umphress Stephen L. McFarland
Associate Professor Acting Dean

Computer Science and Software Graduate School

Engineering

AUTOMATIC DETECTION OF SOFTWARE SECURITY
VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Jay-Evan J. Tevis

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 8, 2005

AUTOMATIC DETECTION OF SOFTWARE SECURITY
VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Jay-Evan J. Tevis

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author
reserves all publication rights.

Signature of Author

Date of Graduation

il

DISSERTATION ABSTRACT
AUTOMATIC DETECTION OF SOFTWARE SECURITY
VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Jay-Evan J. Tevis

Doctor of Philosophy, August 8, 2005
(M.S., Air Force Institute of Technology, 1990)
(B.S., Iowa State University, 1985)

423 total pages

Directed by Dr. John A. Hamilton, Jr.

Secure programming describes those techniques that software developers use to
provide security features in their applications. In addition to these techniques, software
practitioners use static code security checkers to parse through and scan the source
code, looking for potential security problems. Related to static code checking, runtime
checkers have been developed that monitor the software while it is in use.

In an effort to counter the hacker threat, software security professionals need
better methods and tools than these to analyze executable programs the way hackers do:

from the binary data level. This level is where the hackers find the secret doorways and

v

security loopholes that are not evident in high-level source code. A few commercial
companies have recently started marketing software products that will scan executable
files for software security vulnerabilities; however, these products have unpublished
methodologies and unverified test results. Consequently, software practitioners have
only a loose collection of homegrown, commercial, and operating system software tools
to perform their secure programming work and to do so in primarily a manual approach.

To help security analysts, programmers, and users detect security vulnerabilities
in executable program files, we have created a methodology that uses information
located in the headers, sections, and tables of a Windows N'T/XP executable file, along
with information derived from the overall contents of the file, as a means to detect
specific software security vulnerabilities without having to disassemble the code. In
addition, we have instantiated this methodology in a software utility program called
findssv that automatically dissects an executable file and detects certain anomalies and
software security vulnerabilities before installing and running the software.

We tested findssv on seven categories of files: software installation files,
software development files, Windows XP operating system files, Microsoft application
files, security-centric application files, and miscellaneous application files. We show
through the test results on these 2700 files that findssv is able to detect table size
anomalies, large zero-filled regions of bytes, unknown regions of bytes, compressed
files, sections that are both writable and executable, and the use of functions susceptible
to buffer overflow attacks. We also list sixteen key security vulnerability findings about

software in the seven categories.

ACKNOWLEDGMENTS

The author would like to thank his advisor, Dr. Drew Hamilton, for his expert
computer security guidance, constructive ideas, and "can-do" attitude throughout this
time of research. Thanks also to the two graduate committee members, Dr. David
Umphress and Dr. Dean Hendrix, for their review and comments on this research work.
Special thanks to Dr. W. Homer Carlisle for his references on assembly language and
his services as a sounding board for many of the novel approaches taken by this
research. Finally, the author would like to thank his wife and children who endured
many moves, travels, and separations for the author to complete this course of study and

dissertation.

vi

Style manual or journal used Journal of the ACM

Computer software used Microsoft Word 2000

vii

TABLE OF CONTENTS

List of Tables
List of Figures
1. INTRODUCTION
1.1 Making Software More Secure
1.2 Static Analysis of Source Code Files
1.3 Static Analysis of Executable Files
1.4 Objectives of this Research
2. LITERATURE REVIEW
2.1 Secure Programming as a Separate Discipline
2.2 Secure Programming Techniques
2.3 General Security Defense Rules When Developing Software
2.4 Specific Software Vulnerabilities To Avoid in Source Code
2.5 Static Code Security Checkers
2.6 Runtime Code Security Checkers

2.7 Other Approaches Involving Executable Files

viii

xi

xii

10

11

16

25

26

2.8 Hacker Attacks 27

2.9 Software Security on the Offensive 36
2.10 Examining Executable Files 41
3. STATEMENT OF RESEARCH OBJECTIVES 52
4. DESCRIPTION OF RESEARCH RESULTS 55
4.1 Explanation of Terms 55
4.2 The PE Format from a Security Point of View 57
4.3 A Software Ultility to Dissect a PE File 67
4.4 A Methodology for Finding Software Security 79

Vulnerabilities in a PE File

4.5 Automation of the Methodology: the Findssv Software 84
Utility

4.6 Results from Testing the Automated Methodology 94

5. CONCLUSION 119

5.1 Proof of the Dissertation Hypothesis 119

5.2 Performance of Findssv in a Real-World Security 126

Vulnerability Analysis
5.3 Future Work 130
6. REFERENCES 134

APPENDIX A: INSECURE CODING PRACTICES TO AVOID 149

X

APPENDIX B: LIST OF COMMONLY USED HACKER TOOLS

APPENDIX C: TEST RESULTS FROM ANALYZING SPECIFIC

EXAMPLE FILES

APPENDIX D: TEST RESULTS FROM ANALYZING

EXECUTABLE INSTALLATION FILES

APPENDIX E: TEST RESULTS FROM ANALYZING

SOFTWARE DEVELOPMENT FILES

APPENDIX F: TEST RESULTS FROM ANALYZING

WINDOWS XP OPERATING SYSTEM FILES

APPENDIX G: TEST RESULTS FROM ANALYZING

MICROSOFT APPLICATION FILES

APPENDIX H: TEST RESULTS FROM ANALYZING

SECURITY-CENTRIC APPLICATION FILES

APPENDIX I: TEST RESULTS FROM ANALYZING

MISCELLANEOUS APPLICATION FILES

151

153

193

210

244

281

316

356

LIST OF TABLES

Table 1 — Static Code Security Checkers

Table 2 — Test Summary of Specific Example Files

Table 3 — Test Summary of Executable Installation Files

Table 4 — Test Summary of Software Development Files

Table 5 — Test Summary of Windows XP Operating System Files
Table 6 — Test Summary of Microsoft Application Files

Table 7 — Test Summary of Security-Centric Application Files
Table 8 — Test Summary of Miscellaneous Applications Files

Table 9 — Test Summary of Simulation Software Files

X1

18

97

102

104

109

111

113

117

127

LIST OF FIGURES

Figure 1 — Program Organization
Figure 2 — Typical Layout of the Portable Executable File Format

Figure 3 — Findssv Help Screen

Xii

30

43

85

1. INTRODUCTION

1.1 Making Software More Secure

The news of another virus threatening our computers has become a regularly expected
occurrence. Moreover, we have come to accept the installation of a software patch as
the preferred means to stop such malicious code. Companies have even devoted large
amounts of resources to anti-virus teams and defense strategies to combat these
problems. Such strategies include firewalls, intrusion detection mechanisms, honey
pots, port monitors, system security scanners, and internet/e-mail content scanners
[Grimes 2001]. Instead, we should look at ways to build more secure software and

identify ways to detect vulnerable software code before installing it on our computers.

Secure programming describes the practices that software developers can use to provide
security features in their applications. To study its relationship to software
development, secure programming can be divided into the following categories: safe
program initialization, access control, input validation, safe cryptographic usage, safe

networking, safe random number generation, and anti-tampering.

In addition to secure programming practices, security researchers and practitioners have
developed defense solutions targeted at decreasing the security vulnerabilities of

computer systems. These solutions involve auditing all source code for vulnerabilities,

authenticating all software, giving security concerns a higher priority than increased
functionality during software development, and preventing any unauthorized changes in

the code baseline on a system [Grimes 2001].

1.2 Static Analysis of Source Code Files

For the vulnerability auditing solution, security experts have developed several software
tools that provide a security check of C/C++ source code. The research concentrates on
information about functions and data structures that pose a risk to the security of a
computer system. These insecure items are a doorway through which malicious code
enters to attack a system [Schaeffer 2002]. The security checkers search for these

"doorways" in a source code file and alert the programmer to their presence.

Even though these security checkers provide some assistance in the prevention of
security vulnerabilities, they have many weaknesses and only concentrate on the source
code. The hackers, on the other hand, target the vulnerabilities in the executable code.
In general, these are the same vulnerabilities that secure programming practices strive to
prevent. By disassembling an executable program and looking for certain key

indicators, hackers apply their tools of exploitation.

1.3 Static Analysis of Executable Files
In the past year, two commercial vendors began marketing security checking tools that
scan executable files [HBGary 2004a, @stake 2004a]. According to their

documentation, these tools perform an in-depth security analysis of the files; however,

2

they have published no detailed methodologies or test results demonstrating that their

approaches actually work.

14 Objectives of this Research

This research effort also involves the scanning of executable files for software security
vulnerabilities. Specifically, it involves the scanning of files that conform to the
portable executable (PE) format designed for software running on Windows NT/XP
computers. This effort sets out to prove the following hypothesis: A methodology can
be devised that uses information located in the headers, sections, and tables of an
executable file, along with information derived from the overall contents of the file, as a
means to detect specific software security vulnerabilities without having to disassemble
the code. Such a methodology can be instantiated in a software utility program that
automatically detects certain software security vulnerabilities before installing and

running the executable file.

To prove this hypothesis, this research effort first identifies specific information in the
PE format that is useful in a security vulnerability analysis. It then formulates a
methodology for identifying certain security vulnerabilities using this information. It
incorporates this methodology into a software application called findssv that dissects a
PE file and analyzes its parts. To test the hypothesis, the findssv program is run against
seven categories of executable files (over 2700 files in all). Based on the test results,
conclusions are drawn on the correctness of the hypothesis and on the usefulness of this

approach.

2. LITERATURE REVIEW

This section summarizes the work done so far by others that impacts this research
effort. It discusses secure programming techniques, general security defense strategies,
specific software security vulnerabilities, static source code security checkers, common

hacking techniques and tools, and examination of executable files.

2.1 Secure Programming as a Separate Discipline

The Internet and the World Wide Web continue to grow as extensions of the data
storage and processing power of the personal computer. As a consequence of the
resulting security risks, the need for secure programming practices also is growing.
Moreover, secure programming is quickly becoming a separate discipline in computer
programming and software engineering as evidenced by the books and articles

published on the subject.

[Acar and Michener 2002] address the need for security to be a part of the initial
software architecture rather than an add-on feature that users can opt to purchase. They
also point out the need for security and software engineering to be integrated into
computer science curriculums. [Anderson 2001] presents security engineering
fundamentals, from protocols, passwords, cryptography, and access controls to the

basics of security in distributed systems. [Evans 2004] discusses how security

4

properties can be placed as annotations into source code comments. These annotations
provide a way for security scanning software to use preconditions to see if a function's
implementation ensures the postconditions. [Goth 2002; McGraw 1998] talk about the
need for software developers to move away from the "find and patch" method of
software testing toward proactive software security and the establishment of security
standards to reduce the impact of current vulnerabilities. [Howard 2004] lists a number
of best practices to follow when developing software with a security mindset. [Soo
Hoo, Sudbury and Jaquith 2001] discuss the return on investment of incorporating
secure software engineering practices early in the software development life cycle.
[Yoder and Barcalow 1997] provide a description of seven design patterns that provide

a secure framework for building software applications.

[Graff and van Wyk 2003] cover the software side of security architecture, design,
implementation, operations, and testing. In doing so, they use the approach of first
identifying good and bad security practices and then presenting case studies. [Grimes
2001] looks at malicious code. It systematically dissects viruses, Trojans and worms,
ActiveX and Java exploits, DOS viruses, macro viruses, browser-based exploits, e-mail
attacks, and instant messaging attacks. [Hall and Chapman 2002] go through each of
the stages of a software development process and propose security measures that
developers can take at each stage. In these stages, formal methods are applied to
greatly reduce security defects in the software. [Howard and LeBlanc 2002] discuss

various secure coding techniques such as good access control, running with least

privilege, and using cryptography. They also look at socket security, RPC, ActiveX

controls, DCOM, denial of service attacks, and web-based services.

[Kahn and Han 2002] look at how software components can make known their required
and ensured security properties. They address how to characterize the security
properties of components, how to analyze at runtime the internal security properties of a
system comprising several atomic components, how to characterize the entire system's
security properties, and how to make those characterized properties available at
runtime. [Landwehr 1994] supplies a taxonomy showing how both intentional and
unintentional security defects are introduced into software and where in the software
development process that this can occur. For example, inadvertent security errors can
be birthed through validation errors, object reuse, authentication errors, and boundary
condition violations. [Du 1998] compares and contrasts several schemes for
categorizing software security vulnerabilities and proposes a new approach based on
cause, direct impact, and proposed fix. [Neumann 2003] discusses the problems of
security vulnerabilities in end-user systems, routers, servers, and communication
devices. It points out that software is regularly released with security flaws, and that
patches introduce more flaws. The article closes by proposing that it is time to stop
accepting bad software that is seriously unsecurable and require software security

practices to be dramatically improved.

[Splaine 2002] covers how to plan a software security testing effort, how to test network

and system configuration security, and how to check for security vulnerabilities in web-

6

based applications. [Viega and McGraw 2002] discuss guiding principles for building
secure software. They strive to end the "penetrate and patch" approach to software
security by emphasizing proper analysis and design techniques. [Viega and Messier
2003] supply a whole array of secure programming practices that are covered in more
detail later in this section. [Wall 1999] provides information on secure programming in
Linux. It addresses specific code issues for setuid programs, network servers, network
clients, mail user agents, CGI programs, and various utilities and applications.
[Wheeler 2004] lists Windows and Unix functions that are vulnerable to exploitation

and discusses ways to reduce or eliminate these security problems.

[Short 2002] describes many kinds of vulnerabilities that are detectable by allowing
unrestricted access to the source code. Although executable files can be disassembled
or decompiled by tools that are easily obtained, these tools do not produce the original
source code. Such source code is invaluable in understanding the logical flow of a

program, the cause of the various branches, and the reason for certain function calls.

2.2 Secure Programming Techniques

Secure programming describes those techniques that software developers use to provide
security features in their applications. Each of the following subsections summarizes a
recommended secure programming technique. [Viega and Messier 2003] expand on

each of these and provide examples using C and C++ code samples.

2.2.1 Safe Program Initialization

Safe program initialization refers to the values taken on by program constants and
variables at the time a program begins execution. If also refers to the condition of any
external resources utilized by the software. The goal is to validate as much of a
program's environment as possible before any critical part of the application runs. A
software application should make few, if any, assumptions about its environment in

order to minimize the risks of many malicious attempts [Viega and Messier 2003].

2.2.2 Access Control

Access control refers to the need of a software application to protect the access to
resources under its control. As soon as an application opens a file or port, access to that
resource must be protected. In addition, an application should consistently use standard
application program interfaces to system resources. Moreover, an application should
use the minimum time needed in a privileged state in order to avoid race conditions
whereby malicious attempts can try to gain access to specific resources during that time

[Viega and Messier 2003].

2.2.3 Input Validation

Input validation refers to the need to confirm the content of any data read in by a
program. No data should be assumed valid at any time during the life of a program. A
policy of "default deny" should be enforced. In addition, no untrusted data should be

used to control an application [Viega and Messier 2003; Whittaker 2003].

2.2.4 Safe Cryptographic Usage

Cryptography is the science of mathematical techniques for protecting data from
malicious or unauthorized actions by transforming the data itself [Hankerson 2000].
Cryptographic protection involves the use of encryption and decryption techniques to
safeguard the secrecy of data. It also involves message authentication techniques to

detect data that has been tampered with [Viega and Messier 2003].

2.2.5 Safe Networking
Safe networking refers to the secure communication between two nodes over a network
medium. This security ensures that both nodes are who they claim to be and the data

exchanged by these nodes is protected from malicious attacks [Viega and Messier

2003].

2.2.6 Safe Random Number Generation

Safe random number generation refers to the creation of a continuing sequence of
random numbers that is as close to nondeterministic as possible. This is a difficult task
given that computers are inherently deterministic, and must be, to do the level and
precision of calculations demanded of them. Methods for producing random numbers
include insecure random number generators, cryptographic pseudo-random number

generators, and entropy harvesters [Viega and Messier 2003].

2.2.77 Anti-tampering

Anti-tampering refers to techniques to protect the reverse engineering of binary code.
Such action may be needed to protect software from malicious attempts to access
proprietary data or algorithms, or find vulnerabilities in order to change the proper

execution of the software [Viega and Messier 2003].

23 General Security Defense Rules When Developing Software

Along with security programming techniques are standard data validation rules to
practice in software to prevent many software security vulnerabilities [Viega and
Messier 2003]. These rules are based on the principle that all data should be filtered

and then either accepted or rejected.

® Assume all input is invalid or incorrectly formatted until proven otherwise
® Prefer rejecting data to filtering data

e Perform data validation both at input points and at the component level

® Do not accept commands from the user unless you parse them yourself

e Beware of special commands, characters, and quoting

® Make policy decisions based on a "default deny" rule

¢ The better you understand the data, the better you can filter it

Along with good rules to follow in the source code, there are certain insecure coding
practices that a software developer should avoid. See Appendix A for a summary of

secure programming "Do nots" taken from [Graff and van Wyk 2003].
10

24 Specific Software Vulnerabilities to Avoid in Source Code

Attacks on software vulnerabilities vary from year to year as old bugs are fixed and new
ones are found. Nevertheless, the one bug that invariably holds the top position in the
list is buffer overflow. In a June 2000 study of the ten top vulnerabilities, cases of
buffer/stack overflow were in the #1, #3, and #6 positions [Anderson 2001]. An
interesting history of the birth of buffer overflow know-how is described in [Scambray,
McClure, and Kurtz 2001]. It also describes how easy it is to use a web browser to
modify a login page in an effort to abort a web server. This is done by changing the
size of the userid or password field on the page, refreshing the page, entering long
strings of characters into the text boxes, sending the client response, and watching the
effect on the web server. [Schiffman 2001] contains a detailed scenario called Jack and
Jill that recounts how an actual attack occurred on the Internet Information Server

software using buffer overflows.

Buffer overflow attacks occur when a string of characters of unchecked length is
entered into a program. This allows user-supplied input to overwrite other variables,
thereby changing their values. Such attacks can change the value of a return address
from a function call and cause control to jump to malicious code that was also entered
via the buffer overflow. Some solutions are declaring all local variables in C as static to
keep them off of the stack. Patches can be added to an operating system to make code
in the stack non-executable. Modifications can be made to compilers to detect a

possible buffer overflow situation [Lhee and Chapin 2002]. [Prasad and Chiueh 2003]

11

recommend a static translation of the contents of a binary file to incorporate a return
address defense mechanism. This change protects the integrity of the return address on
the stack by making a redundant copy of it. Canary values can be declared right next to
string variables. The value of a canary value can then be checked after each string write
using the assert function to see if its value has changed [Howard and LeBlanc 2002]. A
version of the gcc compiler has been modified to automatically add canary values to

functions [Wall, Watson, and Whitis 1999].

A variation of the buffer overflow attack is the exploitation of the mismatch between
the sizes of Unicode characters and ANSI characters. The vulnerable function is
MultiByteToWideChar() which has a buffer length parameter that can be changed by
exploiting the stack [Howard and LeBlanc 2002]. Heap overflow attacks are also
possible. A common way is to manipulate the bits maintained for each memory block
in the free list. By doing so, a user can get calls to the free() function to overwrite
memory locations with specific malicious data [Howard and LeBlanc 2002, Pincus and

Baker 2004].

Array indexing attacks can allow a malicious user to write data to an arbitrary location
in the data segment of a software application. Such data could change the constant
value used in a conditional expression for example, thereby allowing the expression to
return a true value to a larger range of user inputs [Howard and LeBlanc 2002]. This
vulnerability exists because of the semantics of the array operator in C and C++. Such a

vulnerability does not exist in Ada or Java because of the implicit bounds checking that

12

occurs in the runtime environment [Cohen 1986, Jaworksi and Perrone 2000; Lewis and

Loftus 2005; Louden 2003].

Format string attacks using the "%n" specifier can make the printf() function write an
integer value to an arbitrary location in memory. Because the printf() function allows a
variable number of arguments, it doesn't know what number of arguments have been
passed. A simple solution is to always pass a constant string as the format string, but
then the values in this constant string could be changed [Andress 2002; Howard and

LeBlanc 2002].

Standard C functions that do no range checking of character string inputs are vulnerable
to function algorithm attacks. These functions include scanf(), gets(), sprintf(),
vsprintf(), strcpy(), and strcat() [Schildt 2000]. Alternatives are available on some
operating systems for each of these functions. These alternatives, such as fgets(),
strncat, and strncpy require an additional string length parameter to counter any buffer
overflow attempt [Miller and DeRaadt 1999]. Such measures are effective; however, a
long string can still be entered into one function and the remaining unread part of the
string will be input by the next function that reads input. [Viega and McGraw 2002]
contain a two-page table of 31 standard C functions that should be used with caution or
avoided altogether. A common characteristic across these functions is the passing of
one or more character array parameters as character strings. The character array data
structure in C and C++ has no built-in bounds checking for information written outside

the range of the array indices.

13

Several types of system software applications can be exploited. Setuid programs have
the setuid or setgid bits set, thus giving the program all the privileges of the file owner,
which may be root. Network servers (daemons) can be continually attacked with data
until one breaks and the attack is successful. Network clients are normally built with a
lower concern for security than network servers. Clients such as browsers many times
allow a server to execute code on the client machine. This code can easily be malicious
software. Mail user agents are targets for buffer overflow attacks and malicious

attachments.

CGI programs, which are run on a server, have the same if not more vulnerabilities as
the server software because they are usually written in insecure scripting languages
[Castro 2001; McComb 1997]. Ultilities, such as those commonly available on a UNIX
system, can be exploited through the use of special patterns of characters that may take
advantage of buffer overflow or be interpreted in a special way by a shell program.
Specific user applications such as office productivity software are vulnerable to

malicious macro code embedded in documents [Wall, Watson, and Whitis 1999].

Inside each of these applications, various code features can be exploited. The use of
certain commands in shell scripts such as eval() or function calls such as the system()
function call in programs allows a malicious user to possibly execute any arbitrary

command. An alternative to the system() call is the use of one of the functions in the

14

exec() family [Nutt 2002]. Although the exec() calls have fewer vulnerabilities, they

should be chosen and used wisely [Viega and Messier 2003].

Changes in system environment variables can cause unexpected changes in the behavior
of a program. An example is the change of LD_LIBRARY_PATH that can cause a
program to link to code in a malicious library. Symbolic links can be changed or added
to introduce vulnerabilities into a computer system. After such changes are made, many
standard C functions (e.g., chmod(), chown(), link(), stat()) are vulnerable to allowing

unauthorized access to certain files or directories [Wall, Watson, and Whitis 1999].

Host name attacks can occur. Information returned by the gethostbyname() function
should not be trusted because a server can spoof the DNS response. A possible solution
is to cross-check all responses using the gethostbyaddr() call [Wall, Watson, and Whitis

1999].

Signals that occur when a program is in a privileged state can cause vulnerabilities.
[Wall, Watson, and Whitis 1999] list over 50 functions whose operation can be
interrupted midstream by a signal. Through the use of a signal, a malicious user can
induce a race condition involving a system command that executes in two or more user
modes. An interruption while the command is in kernel mode can allow unbridled

access to system-level files [Anderson 2001; Arce 2004].

15

One other area of exploitation to consider is core dumps. Malicious users can analyze a
core dump to glean information on the value of program constants, variables, and
registers. UNIX systems offer the setrlimit() function to disable memory dumps if an

application crashes [Viega and Messier 2003].

2.5 Static Code Security Checkers

Static code security checkers parse through and scan the source code, looking for
potential security problems. The process is similar to virus scanners. The static code
checker looks through the source code for any of the known and previously defined
problem conditions. Both false positives and false negatives may occur, and should
therefore be used in conjunction with other security auditing and testing methods [Graff

and van Wyk 2003].

The goal of static code security checkers is to focus the security analysis. Instead of the
programmer searching the source code with a utility program such as grep(), the
checker software is aware of known potential problems and searches for them based on
encoded rules and entries in a database. These checkers not only find problems, they
many also describe the problem and suggest possible remedies. In addition, they
provide an assessment of the potential severity of each problem for an auditor to use in

his overall assessment [Viega and McGraw 2002].

The security checkers differ according to the following criteria: the method of detecting

security problems, the kinds of security problems detected, the way the problems are

16

reported, the suggestions offered for improvement, the host platforms, the availability of
the auditing tool source code, and the proprietary or non-proprietary nature of the
software. These criteria indicate a vast range in the features offered by each security

auditing tool.

2.5.1 Inventory of Security Checkers

A list of currently-available static code security checkers is shown in Table 1. These
checkers detect problematic code using proprietary heuristics to look for suspicious
code segments, calls to specific utilities known to have vulnerability issues, or a
combination of both [Chen and Wagner 2002; Dekok 2003; Evans and Larochelle 2002;
Evans 2003; Gimpel 2003; Holzmann 2003; LDRA 2003; Parasoft 2003; Reasoning
2003; Secure Software 2004a; SPI Dynamics 2003; Viega et al. 2000; Wagner 2003;
and Wheeler 2003]. The following paragraphs give a brief description of each of these

code checkers.

17

Mane Fooe Authear Aorailah ke From Target Lang License Writenin TRL
Umvesitrof

BOON tufferoverflor David Whgrer Califterda at Berleley C Public C woanar s berkeley e dut~ dawb cond
Danzerons coda

CodeWizard constncts Pawt ot Paral ot C,C++ Private ~ananar. parasoft. com
Fanction calls,

Flaafinder %ei'ha-}d lhraries David Wheeler Davd Wheeler CC++ GHNT GFL Pythom woeardwrheeler.comiflaadinder?

T

variables,
memoryuse ard

Ilhima pointers EReascming Reamoning CC++ Private VnAnAr YeSSOMINE SO
fanchon calls,
petential baffer

IT5 4 cverflowrs John Viega Cigital C,i0++ Puklic C wnanar.cizital. oot d
general-puposs Ada O, CH+,
static code LDEAL 5ofhar awe Java, plus

LDEAL Testhed analisis LDEA Tanlmoley ANy BOre Private wanar Jd ¥ conl
viclshon of males
stated as
tenpoal safety Universitraf

BICES properties HaoChen Califteria at Berheley C Public Java pranarcs berkeley edudasrimops!
general-prrpose
static oode

PC-hrt analysis Gizepel Girnpe] 5 ofbarare C, 0+ Private wanar minmel con

FaC AN Format stings Al Dekolk Alan Dielonle [GHU GFL [wranar striker ottaara on cade aland pecans
Conenon security C, C++, Farl,

EaATs flavars Semure Software Seowe Softwaw Pythem, FHP GHU GFL C wranar seoriesother ate foom
tuffer overflow,

3 plird %m::mat B0l David Evans Univess ity of Virginia c GHT GFL c wnner.splind. crg

Ty

variables, nil
poimters, index Gerard

UHO checlang Holzmam Eell Lahs C Public C httpedispivroct comlzeram f
Conmnon security

WebInspect flaws SHlDwanues 3Pl Dwmanncs C, C++, Java Proprietanr ananar s pidvmaries oom

Takle 1 - Static Code Security Checkers

BOON stands for Buffer Overrun Detection. As the full name implies, the software

searches for buffer overruns in C source code. The concept behind BOON is that buffer

overflow detection is an integer range analysis problem. The algorithm first takes the

allocated size and the actual length of each character string and builds a corresponding

value pair. This approach is also taken with the parameters of the standard C library

functions that handle character strings. A comparison is then made to see if the inferred

allocated size of the string is at least as large as its maximum length [Wagner et al.

2000].

18

CodeWizard is a proprietary general-purpose source code analyzer. It is not targeted
specifically at security issues, and does not even advertise to do so, although the
capabilities are there. Instead, it examines source code to locate violations of industry-
accepted language-specific guidelines. This is done to reduce the opportunities for
coding errors that could result in bugs. The analysis works by using a patented
technology to search for patterns and then compare what is found to a set of rules

[Parasoft 2003].

FlawFinder searches through C/C++ code looking for potential security flaws. After the
code analysis is complete, it produces a list of potential flaws sorted by risk.
FlawFinder's database contains both general rules that affect any program and specific

Windows and Unix functions that are very vulnerable to exploitation [Wheeler 2003].

Illuma is proprietary software that searches C/C++ source code for problems such as
memory leaks, null pointer dereferences, bad memory deallocation, out-of-bounds array
access, and unitialized variables. It is used in conjunction with contracted services to

assess the quality of a client's source code [Reasoning 2003].

ITS4 stand for It's The Software Stupid (Security Scanner) [Chess and McGraw 2004;
Viega et al. 2000]. It statically scans C and C++ code for vulnerabilities, but it does not
do so by parsing the actual source code used in a single build configuration. Instead,
ITS4 looks at several files to check for vulnerabilities in multiple builds of the software.

This is done for many reasons. First, it reduces the false negatives to almost zero.

19

Second, it avoids the complexities of real parsing that add no value to the security
scanning requirement. Third, it allows the ITS4 software to be used real-time in
integrated development environments to highlight potential errors from within an editor

[Viega et al. 2000].

LDRA Testbed is proprietary software that performs a general-purpose static code
analysis. It checks for such things as code complexity, unreachable code segments,
variable interdependence, loop analysis, and correctness of procedure interfaces. It can
also be used to verify a set of programming standards established by an organization;
however, it does not specifically address security scanning as a possible use for the

product [LDRA 2003].

MOPS stands for Model Checking Program for Security Properties. It checks for
security vulnerabilities from a sequence of operations viewpoint. It uses model
checking together with specific rules to detect the violation of temporal safety
properties. A user describes the rules in the form of a finite state machine. If the
software finds any problems related to a property, it prints out the offending path found
in the source code. Such techniques can find potential issues with buffer overflow, user

privileges, and array indexing [Chen and Wagner 2002; Wagner 2003].

PC-Lint is proprietary software that checks C/C++ source code to find such things as
bugs, glitches, inconsistencies, non-portable constructs, and redundant code. The

software can produce over 1900 distinct error messages. It does not specifically address

20

security vulnerabilities in its findings; however, a security analyst could spot many of
these vulnerabilities in PC-Lint's error report. FlexeLint is a version of the PC-Lint

software extended to non-PC platforms [Gimpel 2003].

PSCAN searches a C source code file for problematic uses of functions in the printf and
scanf family, the syslog function, and a variety of functions used to display warning and
error messages. It does not scan for normal buffer overflows or general misuse of

function parameters [DeKok 2003].

RATS stands for Rough Auditing Tools for Security. It checks a variety of different
language source code files for security-related problems such as buffer overflows and
time-of-check vs. time-of-use race conditions. The software uses greedy pattern
matching to find potential errors; consequently, false positives are prone to occur more

often [Viega and McGraw 2002].

Splint stands for Secure Programming Lint. (It was previously known as LCLint.) The
software checks that the source code is consistent with security properties stated in
annotations. The annotations appear as comments and are associated with function
parameters and return values, global variables, and structure fields. The annotations
provide a way for the Splint software to use the preconditions to see if the function
implementation ensures the postconditions. It resolves preconditions using
postconditions from previous statements and annotated preconditions for the function
[Evans 2003; Larochelle and Evans 2001].

21

UNO is named after the three focus areas of the software: use of unitialized variables,
nil pointer references, and out of bounds index checking. It emphasizes these three
areas to reduce the amount of false alarms produced by other static code checkers that
try to look for everything. It also concentrates specifically on ANSI C source code.
UNO has the ability to accept user-defined properties of application specific
requirements, and then check the source code for strict compliance with these

requirements [Holzmann 2003].

Weblnspect is proprietary software that automates the discovery of security
vulnerabilities in both traditional and web-based applications. It can be used in an
integrated development environment to do static code analysis at the click of a button.
Weblnspect also makes recommendations on how to fix any potential security flaws
that are found. SPI Dynamics, the maker of Weblnspect, is part of a technical
committee working on the definition of an Application Vulnerability Description
Language (AVDL). The goal of the committee is to form an XML standard to define,
categorize, and classify application vulnerabilities that can be understood and used by a

variety of security products [SPI Dynamics 2003].

2.5.2 Critique of Static Code Security Checkers
Although source code checkers are very effective in detecting certain security
vulnerabilities, they do have many shortcomings. The liberal syntax of C makes the

language poorly suited to static analysis. The added object-oriented complexities of

22

C++ make it difficult to analyze. Static analysis in a multi-threaded environment is
difficult because of the potential interaction of data. Performing a better static analysis
using more advance algorithms is difficult and can cause an order of magnitude increase
in scan time [Viega et al. 2000]. The static code checkers still require a significant level
of expert knowledge. In other words, they work well for novice programmers;

however, an expert can do a better job at manually evaluating the potential security
vulnerabilities in the source code. Even for experts, analysis is still time consuming.
The static code checker only cuts down about % to 1/3 of the static code analysis that
needs to be performed. The rest must still be done manually [Viega and McGraw

2002].

[Nazario 2002] points out more limitations in the current checkers. First, an automated
scan has not been developed yet that catches many of the problems detected during
manual analysis. Second, the scanners don't know the particulars of functions contained
in libraries supplied by various domain-specific applications. Developers need to
understand this so they don't think the checker looks at such things. Third, most
checkers scan at most two languages. An exception is RATS, which can scan five.
Fourth, the checkers perform no preprocessing that would expand macros or constant

definitions.

[Wilander and Kamkar 2002] report similar limitations when comparing the
performance of ITS4, FlawFinder, RATS, Splint, and BOON. They concluded the
following:

23

"We have shown that the current state of static intrusion prevention tools is not
satisfying. Tools built on lexical analysis produce too many false positives leading to
manual work, and tools building on deeper analysis on the syntactical and semantical
level produce too many false negatives leading to security risks. Thus the main usage
for these tools would be as support during development and code auditing, not as a

substitute for manual debugging and testing."

In a study on the reliability of static code security checkers, [Dor, Rodeh, and Sagiv
2003] discovered that the checkers miss certain character string errors, yield many false
alarms, and cannot handle multilevel pointers and structures in C. In response to these
problems, they formulated a way to detect all string manipulation errors by
incorporating pre- and post-condition contracts into the source code of programs. These
annotated programs are then subjected to a multi-stage analysis that performs static
string verification in order to detect problem areas. Part of their methodology reduces
the problem of checking for character string manipulations into a simpler problem of

checking for integer manipulations.

Nevertheless, the checkers are still useful in a small way. These tools help to prevent
the rush to check the security vulnerabilities of every piece of source code. Because of
the prioritization and assessment features, they focus the analyst's attention on the more
severe problems that may have manually been overlooked. They can help find real
bugs. These tools actually work to find problems in just a few minutes that may have
taken much longer to detect [Viega and McGraw 2002].

24

2.6 Runtime Code Security Checkers

Along with static code checking, runtime checkers have been developed also. Running
in a layer between the application and operating system, these checkers work by
intercepting system calls and screen each call for correctness before passing it to the
operating system to be executed. Example products are Libsafe, PurifyPlus, and

Immunix tools [Graff and van Wyk 2003].

Another related method is use profiling. The concept works as follows. The behavior
of a program's system calls and file activity is studied for a number of software
executions and then defined. The profile is then used as a basis to monitor the software
activity for any behavior anomalies. Such anomalies could indicate malicious actions
by an application or the presence of virus software. Example user profiling tools are

Papillon, Janus, and gprof [Graff and van Wyk 2003].

Potential buffer overflow is undoubtedly the most searched for problem in static code
checking. Run-time checking of this problem can also be done by executing destructive
tests intentionally designed to detect the existence of a buffer overflow vulnerability.
Example tools for testing buffer overflow are NTOMax and SendIP. Test tools can also
be built to record and play back data submitted to a software application [Splaine 2002].
[Hunt and Brubacher 1999] have created a software library that instruments Win32
function calls without affecting the original binary files. This allows easier inspection

and debugging of executable files. [Yong and Horwitz 2003] describe how they
25

automatically instrument the source code to check at runtime for invalid pointer
dereferences. [Ghosh, O’Connor and McGraw 1998] have developed a process that
uses fault injection analysis to automatically test the vulnerability of security-critical

software.

[Cowan et al. 1998] describe the use of a patch to the Gnu C compiler to combat buffer
overflow attacks. This patch, called StackGuard, virtually eliminates buffer overflow
vulnerabilities through the use of canary values to detect changes in the data stored in

locations outside the bounds of an array.

[Jiwnani and Zelkowitz 2004] recommend that security testing be focused in the areas
of greatest vulnerabilities. They have created a susceptibility matrix of vulnerabilities
by identifying error-prone system software components. For example, they found that
implementation-level high-risk areas in software are common among Windows and

Linux. This is in spite of different security policies and development histories.

2.7 Other Approaches Involving Executable Files

[DuVarney, Bhatkar, and Venkatakrishnan 2003] have proposed changes to the
executable file format produced by linkers in order to enhance the security of programs.
They recommend an extra section that contains the address, size, and alignment
requirements for each code and static data item in the program. [Haugh and Bishop

2003] describe how to automatically instrument a source code file with additional code

26

so that the resultant executable file detects when and where buffer overflow attacks can

occur.

In a related area, [Christodorescu and Jha 2003] investigated the usefulness of virus
scanners to detect malicious patterns that had been obfuscated in executable code. They
found that scanners could easily be defeated by simple code transformations. In
response to this problem, they developed a methodology to detect virus code that
involves the creation of a generalized automaton reflecting the virus code's dependency
on certain data variables. This automaton is then converted into a control flow graph
and compared to other control flow graphs formed for each procedure in the executable

code.

2.8 Hacker Attacks

2.8.1 The Hacker Strategy

The hacker community considers itself to be a group of ordinary people providing a
much-needed service to the computer software users of this world. Hackers proactively
find holes and weaknesses in software to create their own exploits [Utimaco 2004,
Wong 2001]. They cover their tracks by breaking into insecure systems and using
them to launch attacks against other systems [Wall, Watson, and Whitis 1999]. Hackers
see themselves as a pseudo-extension of the security teams paid by software companies
to test software for vulnerabilities [Khalilzad, White, and Marshall 1999]. They feel
that hacking is really just the act of finding a clever and counterintuitive solution to a

problem. The hacks found in program exploits usually deal with using the rules of the

27

computer in ways never intended in order to achieve results that are usually focused on
bypassing security [Erickson 2003, Kaspersky 2003]. One example uses a technique
that relies on http traffic only to attack and penetrate web and applications servers [Shah

2004].

The Network Systems Survivability Program at Carnegie-Mellon University has
identified a vulnerability exploit cycle that occurs with hackers [CERT 2002]. This
cycle involves the following stages:
® Advanced intruders discover a new vulnerability through software testing and
code examination
¢ (Crude exploit tools are distributed in the form of scripts or a collection of
command-line inputs
* Novice intruders pick up and use the crude exploit tools
¢ Automated scanning/exploit tools are developed and distributed via FTP servers,
web sites, bulletin boards, or some physical means
¢ Widespread use of automated scanning/exploit tools occurs, thereby causing the
use, attempt and success to be at its peak
® Patches are installed, but the number of exploits never become negligible
because of poorly-maintained systems or systems redeployed with default
configuations

¢ Intruders begin using new types of exploits on newly-discovered vulnerabilities

28

[Arbaugh, Fithen and McHugh 2000] used historical data obtained from the Network
Systems Survivability Program to identify a similar life cyle model for software
vulnerabilities. Their model consists of seven states. The first three states (birth,
discovery, and disclosure) always occur in order. The next three states (correction,
publicity, and scripting) occur in any order, with scripting occurring only in some
circumstances. Finally, the vulnerability enters the death state. Sometimes this occurs
after a few days, but often it takes many years because system administrators do not get

all the holes patched immediately.

Many programmers write in high-level languages such as C or C++. Such languages
assume that the programmer is responsible for data integrity. If this responsibility were
shifted over to the compiler, the resulting executable programs would run significantly
slower due to integrity checks on every variable. Also, this would remove a significant
level of control from the programmer and complicate the language. When working at
that high level, the programmer doesn't consider physical variable memory, stack calls,
execution pointers, and other low-level machine commands. Hacking at the lower level
involves knowing more of the rules and using them in ways never anticipated [Erickson

2003].

2.8.2 Hacker Tools
Hackers work with assembly code, or more accurately, an executable program that has

been disassembled into assembly code. One of the major goals of a hacker is to get a

29

return instruction in a computer program to branch to an unplanned location in memory
where a malicious payload awaits. Unplanned branching occasionally occurs in
programs without hacker intervention due to logical errors when working with memory
addresses. For example, such branching to a read-only code segment or to an invalid
address causes a general protection fault in Protected Mode on an Intel32-based

computer [Irvine 2003].

Low memory addresses | text segment

data segment

bss segment

heap segment

(unallocated)

High memory addresses | stack segment

Figure 1 — Program Organization in Memory

Hackers understand the organization of an executable program in computer memory
and use it to their advantage. Program memory is normally divided into five segments:

text, data, bss, heap, and stack as shown in Figure 1 [Erickson 2003].

The text or code segment is where the machine language instructions reside. This

segment is read only. The data and bss segments store global and static program

30

variables. They are writeable and have a fixed size. The heap segment is used for
dynamically allocated memory. It grows and shrinks over the course of program
execution. The stack segment is used in the implementation of function calls and
parameter passing. It also grows and shrinks over time. When a function is called, a
stack frame (or activation record) is the area on the stack set aside for a procedure's
return address, passed parameters, any saved registers and local variables [Erickson

2003, Irvine 2003].

Along with the memory organization, hackers understand registers. Registers are very
fast memory located near or as a part of the central processor. The Intel32 family of
processors has a standard set of registers categorized into general purpose, segment,
control, and other registers [Intel 2004]. Examples of the general-purpose registers are
EAX, EBX, and ECX, where the 'E' stands for extended. These are 32-bit registers that
are used for computation and comparisons. The segment registers are 16-bit registers
with names such as CS, DS, and SS. They are used to track the location of segments in
memory. The "other" category is simply a collection of miscellaneous registers. A
well-known one is the EFLAGS register, which contains various run-time status flags

such as results from comparisons [Koziol 2004].

To exploit vulnerable executable programs, hackers spend weeks and months
performing a line-by-line analysis of disassembled code. Over time they have collected

or written an unorganized bag of software tools to semi-automatic their endeavors.

31

Some of these tools were originally designed for software development and
maintenance, such as debuggers and execution tracers. Others have been built
specifically for hackers to exploit software. In addition, others have been used in a
process for performing vulnerability assessments on simulation software [Hamilton,
Greaney, and Evans 2003]. Some researchers claim that hackers have a distinguishable
programming pattern in the software tools they develop [Spafford and Weeber 1992].
Appendix B provides a list of commonly used hacker tools. [Schwarz, Debray, and
Andrews 2002] have found that some disassemblers do not produce accurate assembly
code and just fail silently. This occurs because of confusion from indirect jumps and

the presence of non-executable data such as jump tables and alignment bytes.

2.8.3 Hacker Techniques

Hacking involves thinking about things that weren't anticipated. The two most common
types of hacker techniques are buffer overflow exploits and format string exploits. The
goal of both is to get an injection vector to strategically place a memory address so that

it causes program control to transfer to a malicious payload [Erickson 2003].

Injection vectors must take into account several factors: the size of a buffer, the
alignment of bytes, and restrictions on characters sets. Consequently, injection vectors
are usually coded into a properly formatted protocol of some kind. The memory
address of the payload must be known to the attacker and must be placed directly into

the injection vector [Hoglund and McGraw 2004].

32

In the case of buffer flow, a program that runs fine for years might suddenly crash when
a hacker decides to try to input a thousand characters into a field that normally only uses
several dozen, such as a username field. Buffer overflow can occur either in the stack
segment or in the heap segment. The ability to overwrite any arbitrary address in a
program's memory space opens up many possibilities for exploitation. Basically, any
section of memory that is writeable and contains a memory address that directs the flow

of program execution can be targeted [Erickson 2003].

Buffer overflows are a relatively simple concept and explanations of them appear in
most computer security books. Sometimes data can extend past the perceived
boundaries of a record or array, and sometimes there are ways to take advantage of that.
This is obviously true in languages such as C and C++ that do no bounds checking.
With stack-based overflows, it's usually just a matter of finding the right location to
place the return address. However, with heap-based overflows, creativity and
innovation are needed because the exploit must involve a function calling another
function [Erickson 2003]. In studies done by [Hoglund and McGraw 2004], they have
found that corrupting memory remains the single most powerful technique for the
attacker. They state that perhaps stack overflows will go away when programmers stop

using the seriously broken Standard C library calls.

33

The injection vector and payload are usually delivered into a vulnerable program by
means of character string input parameters. Consequently, the crafting of an injection
vector and payload involves the proper choice of characters. Because the ASCII null
character acts as the string termination symbol in C and C++ programs, hackers have
had to find ways to avoid operands or operators that assemble into null bytes [Erickson
2003]. One way to overcome the negative effects of NULL bytes in injection vectors is
to XOR the string [Hoglund and McGraw 2004]. Another way is to use the subset of
machine instructions that correspond byte-wise to printable ASCII characters. This
restriction makes writing shellcode, that is, code that spawns a command shell,
significantly more difficult. [Erickson 2003] contains a number of examples of

printable ASCII strings that correspond to executable code.

2.8.4 Common Hacker Targets
Based on experience with well-known techniques and tools, hackers tend to focus on

certain targets. They include the following [Erickson 2003, Ahmad 2003]:

e Off-by-one error on arrays

® Adapting software from 8-bit ASCII to 16-bit Unicode
e Multiple backslashes in file paths

® Placing shellcode in an environment variable

e Printf format strings

e Other string-based Standard C library functions

34

¢ Constructors and destructors in GNU C

e Shellcode using printable characters

e (Clearing out all stack memory

e Returning into the Standard C library (libc)

e Integer errors

The secure programming practices and input validation rules covered in earlier sections

of this document are designed specifically to help eliminate these targets.

2.8.5 Hacking Over a Network

Hacking is not just limited to stand-alone software. Network software that involves
communication protocols is also vulnerable. According to one hacker author,
uninspiring and repetitious following of protocols may not be desirable for humans, but
it's ideal work for a computer. The creativity and intelligence of a human mind is better
suited to the design of protocols, the creation of programs that implement them, and the
invention of hacks that use them to achieve interesting and unintended results [Erickson

2003].

Server software has come to be a major target of hacker exploits. The root cause of the
server software problem is one of trusted input. Server software that exposes its
functionality to whatever may come over the network must be built defensively. A

common assumption of server software builders is that only the corresponding client

35

software will be used to access the servers. Instead, there is no need for an attacker to
user particular client code to generate input to a server. The attacker can just send well-
formed network traffic from a custom-built client program [Whittaker and Thompson

2004].

Along with server software problems, client software programs are almost never tested,
let alone tested explicitly for security vulnerabilities. For example, the exploit code
ends up executing with the same permissions that the user has [Whittaker and

Thompson 2004].

2.9 Software Security on the Offensive

2.9.1 Informing the Software Developers

Countering the exploits of hackers are software security professionals [Arce and
McGraw 2004]. These professionals believe that teaching software developers how
hackers operate helps them build better defenses in their software and also apply secure
programming practices. This is based on the philosophy that completely removing
software security vulnerabilities from source code in advance is much better than trying
to catch them when they are exploited at runtime. For example, when it comes to
defending against malicious input, white listing is superior to a black listing approach.
White listing is the exhaustive listing or defining of all acceptable program inputs

[Hoglund and McGraw 2004].

36

Popular hacking books today focus mainly on existing exploits of network security
issues. They do not strive to train the practitioner to find and eliminate new software
exploits. Consequently, professionals writing software for secure systems are unaware

of what they are up against [Bishop 2005, Hoglund and McGraw 2004].

Software risk from hacker exploits can only be measured and assessed relative to a
particular environment. A threat may be a minimal risk in one setting, but be
catastrophic in another. In the risk assessment approach proposed by [Hoglund and
McGraw 2004], they measure only the damage to software assuming that a capable

attacker exists. Consequently, if there are no capable attackers, there is no risk.

Software security is sometimes compared to software safety [Leveson 1995]. The
difference between the two from an analysis standpoint is the addition of an intelligent
adversary with the goal of making the system break. This so called "break" could have
the side effect of compromising the operating system; consequently, exploiting a system
through software becomes much easier. Advanced technology for scanning code is
good at finding implementation-level mistakes, but there is no substitute for experience.
Advanced technology for securing applications is excellent for making sure that only
approved software is executed, but it is not good at finding vulnerabilities in executable

programs. One collection of software security vulnerabilities is www.bugtrag.com.

Another collection described by [Christey et al. 1999] is the Common Vulnerabilities

37

and Exposures (CVE) database administered by MITRE and located at

WWW.CVe.mitre.org.

[Arora and Telang 2005] studied the advantages and disadvantages of publicizing
software security vulnerabilities. They first looked at the response by software vendors
whose products were affected by vulnerabilities. For those vendors whose
vulnerabilities were published by CERT (Computer Emergency Response Team), 77%
of vendors responded with a software patch in an average of 242 days. For those
vendors whose vulnerabilities were published by BugTraq, 60% of vendors responded
with a software patch in an average of 390 days. They then studied the response by
software attackers. They found that publishing vulnerabilities and patches both
attracted attacks. This seems intuitive for publishing a vulnerability; however, it turns
out that publishing a patch alerts the attackers on how to compromise the vulnerability

even further.

From a software engineering perspective, [Rescorla 2005] questions whether the quality
of software is improving even when security vulnerabilities are discovered and fixed.
His results are inconclusive, but he does point out that current software development
practices continue to produce security problems in software even with the knowledge of

how to prevent them.

38

2.9.2 Attack Patterns

Software security vulnerabilities can be grouped together by common characteristics
and fall prey to certain attack patterns. This is based on the premise that related
programming errors give rise to similar exploit techniques. An attack by a hacker starts
with breaking rules and undermining assumptions. One of these assumptions is
"implicit trust". Attackers will break the rule on what the program expects the user to
enter. [Hoglund and McGraw 2004] have outlined a collection of attack patterns. An
attack pattern is a blueprint for exploiting a software vulnerability. As such, an attack
pattern describes several critical features of the vulnerability and arms an attacker with
the knowledge required to exploit the target system. Each attack consists of an injection

vector and a payload.

A successful hacker attack takes several logical steps. First qualify the target, mainly to
learn what input points exist in the software. Then figure out the kinds of transactions
that are accepted at the input points. This will involve an in-depth machine instruction
analysis. Once a vulnerability is discovered, try to exploit it and thereby gain access to

the system.

Most vulnerabilities can be found by examining the following key areas [Bishop 2005,

Hoglund and McGraw 2004]:
¢ Functions that do improper (or no) bounds checking

¢ Functions that pass through or consume user-supplied data in a format string

39

¢ Functions meant to enforce bounds checking in a format string
e Routines that get user input using a loop

e Lower-level byte copy operations

e Routines that use pointer arithmetic on user-supplied buffers

e So called "trusted" system calls that take dynamic input

In a typical case, white box analysis is used to find potential problem areas in the
software, and black box testing is then used to develop working attacks against these
areas [Ghosh and McGraw 1998; Potter and McGraw 2004]. This results in a kind of
gray box approach that may include backtracing [Hoglund and McGraw 2004]. The
first step in backtracing is to identify potentially vulnerable calls. Once the hostile input
is determined, the tester tries to backtrace through the target program to determine

whether an attacker can apply the hostile input from outside the program.

2.9.3 Counter Attacks
[Jim et al. 2002] describes the use of a security-focused version of C called Cyclone.
This version keeps all the low-level features of C but prevents buffer overflows, format

string attacks, and memory management errors.

[Barrantes et al. 2003] describe how to randomize an instruction set in order to disrupt

binary code injection attacks. They have devised a way to randomize the binary code at

40

load time and then pass the code through an emulator to convert it back to the

instruction set recognized by the computer processor.

Randomization is also used by [Bhatkar, DuVarney, and Sekar 2003] to thwart hacker
attacks. However, they use randomization in a process called address obfuscation. This

process repositions the locations of the data and code in a program at link and load time.

A means of preventing the execution of software on a specific computer is proposed by
[Kirovski, Drinic, and Potkonjak 2002]. They describe a method of ensuring trusted
software integrity by causing an attacker to solve a computationally intense problem
concerning the format of an executable file before he can create a program that can be

executed on the computer.

2.10 Examining Executable Files

Instead of scanning source code files for security vulnerabilities, it is possible to directly
examine executable files. Two commercial companies are already marketing tools to
perform such an analysis: BugScan from HBGary [HBGary 2004a] and SmartRisk
Analyzer from @stake [@stake 2004a]. At first it may appear that the scanning of
executable files would only be necessary if the source code is not available. However,
we must remember the techniques of the hacker who looks directly at disassembled
executable code to find vulnerabilities. In addition, an executable file contains much

more useful information than just the program code and data.

41

2.10.1 The Format of an Executable File

The executable files of software applications that run under a version of Microsoft
Windows conform to a specification developed by Microsoft [Microsoft Corporation
1999, Minasi 2001]. This specification describes the contents of object code files,
executable files, and dynamic link library files [Dabak, Borate, and Phadke 1999]. The
term “image file” is used to refer to both “.exe” and “.dll” files. Files of these two types

differ only in their use, not in their content [Pietrek 2002a].

A compiler or assembler places information in an object code file according to the
Microsoft common object file format (COFF). A typical 32-bit COFF object code file
contains a file header, an optional header, a section table, a symbol table, a string table,
an import table, possible other tables, and sections for code and data. The file header
identifies the computer type, the number of sections, a time/date stamp when the file
was created, a pointer to the symbol table, a count of the number of symbols in the
symbol table, the size of the optional header, and flags indicating certain characteristics
of the file. The optional header normally only appears in image files. The section table

lists information on the various sections located in the image pages of the file.

A linker extracts information from one or more object code files and libraries in order to
build a single executable file according to the Microsoft portable executable file format
(PE). This PE format is designed to work on all versions of Microsoft Windows and
supported CPUs. A typical 32-bit PE file contains an MS-DOS stub and a PE signature
followed by the same areas that appear in an object code file. This is shown in Figure 2.

42

Type or Structure Name Name in Specification

IMAGE_DOS_HEADER DOS Header

None MS-DOS Stub
DWORD PE Signature (32 bits)
IMAGE_FILE_HEADER File Header

IMAGE_OPTIONAL_HEADER | Optional Header

IMAGE_SECTION_HEADER | Section Table

Figure 2 — Typical Layout of the Portable Executable File Format

The MS-DOS Stub is a very small program that runs under MS-DOS and simply
displays the message “This program cannot be run in DOS mode” when the executable

file is run in MS-DOS.

2.10.2 Sections in an Executable File

An executable file may contain many sections, although only a code section and a data
section are mandatory. Each section has a header in the section table. This header lists
the location, length, and characteristics of the section. One interesting characteristic to
hackers is if the section’s attributes are set to read only or read/write [Woodmann
2004]. Although the text section is read only, both the normal data section and the
uninitialized data sections are read/write. The combination of both the writeable
attribute and the executable attribute for a section creates a vulnerability for hackers to

exploit.

43

Some other sections are the exports section and the imports section [Pietrek 2002b].
The exports section contains the functions or variables made available by the file to
other executable files. The imports section lists the functions or variables located
external to the file including the files where they are contained. Such information can
indicate the DLLs that are needed by a certain program. Hackers take advantage of the
information stored in the section table and in the various sections by using available

software tools, such as those listed in Appendix B, to examine executable files.

An executable file may also contain symbol table information that was placed earlier in
the object code files and was used by the linker. Section names, file names, code
symbols, and data symbols are listed in the symbol table. A linker option allows
information from the symbol table to be stripped from the executable file or be included

in the executable file for use by a debugger [Microsoft Corporation 1999].

[Huang 2003] found that the PE format is subject to a number of security vulnerabilities
because of the amount of non-executable information stored in the file. Such

vulnerabilities permit the file to be easily modified either manually or by other software.

2.10.3 BugScan from HBGary
BugScan is a commercial tool from HBGary that analyzes executable files to find
security vulnerabilities. BugScan was unveiled to the public at the Black Hat USA

conference on July 28-29, 2003 in Las Vegas, Nevada. It sells for $19,500 with a

44

$3,900 yearly maintenance fee after the first year. BugScan is a hardware and software
combination appliance that attaches to a user’s computer network. The hardware
consists of a Dell PowerEdge 650 with a 2.4 GHz Pentium 4 processor, 256MB RAM,
and 80GB of disk storage [InfoWorld 2004, Zacker 2001]. The software consists of an
application server containing the actual binary code scanning utilities. According to the
press release, “BugScan works simply by submitting binary files to the application
server via a web interface. A report is generated for each file detailing specific coding
errors found, coding error locations, problem severity and remediation advice. Binary
locations of errors can be cross-referenced to source code lines or functions where

programming errors can be fixed [HBGary 2004a].”

BugScan can be used to statically scan C and C++ programs. It looks for insecure C
library calls (approximately 35 signatures), buffer overflow problems, format string
vulnerabilities, poor use of the pseudorandom rand() function in C, signed/unsigned

variable conversion errors, and poor exception handling [HBGary 2004a].

According to the technical white paper, BugScan works in the following manner
[HBGary 2004b]. First, BugScan slices the code in the executable file into sections and
creates a control flow map among the sections. This is done to determine what code is
being called and from where. Next, BugScan applies pattern detection to find
potentially vulnerable locations in the code such as certain API calls. For example,
BugScan checks the size and type of the arguments passed to a function. It also uses

backtracing from the vulnerable point in an attempt to reach a location in the code

45

where user-supplied input of data occurs. However, this process is normally too
involved because the backtracing is too deep. In addition, branching may be

encountered, thereby making the control flow only determinable at run time.

The technical white paper goes on to describe the report features of BugScan [HBGary
2004b]. The report contains red, yellow, and green alerts. Red alerts are high severity
problems caused by a misuse of APIs. Yellow alerts are medium severity problems
related to insecure coding practices when bad APIs are used. This includes functions
related to buffer overflow, poor use of random number generation, and race conditions
that may allow data disclosure or logic errors. Green alerts point out good coding
practices such as the use of a more secure library function. Information provided with a
red or yellow alert describes how to correct the problem and also gives a memory

address to point to the location in the executable file where the problem was detected.

The user’s manual for BugScan states that the product performs a static white box
analysis providing 100% code coverage with no input from the user, providing an
advantage over black box techniques [HBGary 2004c, Pressman 2005, and Sommerville
2001]. It also lists the following purposes for using BugScan:

e Ensure that only systems beyond a certain security threshold are being deployed

® Automate some aspects of security code reviews

e Verify and enforce that developers are writing secure code

¢ Provide online training for developers in writing secure code

e Evaluate commercial-off-the-shelf (COTS) software before a purchase

46

The manual points out that the supported file types for BugScan are Windows x86
portable executable (PE) binary files using the Microsoft Visual C library, and Linux
x86 executable and linking format (ELF) binary files using GNU C library. In the
troubleshooting area of the user’s manual, it cautions that if a program has implemented
its own version of C library calls, BugScan cannot currently detect their usage. In other
words, BugScan can only detect the use of C library calls in the supported platforms,

compilers, and libraries.

The Frequently-Asked Questions (FAQ) document for BugScan brings out some
interesting information on the product from the point of view of the developers
(HBGary 2004d]. They state that BugScan does not make it easy for hackers to develop
new attacks. They also add that the security vulnerability information provided by
BugScan only optimizes a small part of the exploit development process. It still

requires a very skilled person to do the additional work to produce a working exploit.

The FAQ also states that BugScan makes no claim that a detected security coding error
creates an exploitable vulnerability. They explain that it is difficult to determine with

any amount of certainty if a problem detected is truly exploitable.

2.10.4 SmartRisk Analyzer from @stake
SmartRisk Analyzer is also a commercial tool that analyzes executable files to find

security vulnerabilities. It is sold by a company called @stake. SmartRisk Analyzer

47

was announced to the public on May 24, 2004. Its selling price starts at $30,000 [PC
Magazine 2004]. SmartRisk Analyzer supports C, C++, and Java (J2EE) languages
running on Windows or Solaris platforms. The system requirements are Windows 2000

or higher, 2 GHz CPU, 2GB RAM, and 100MB disk space [@stake 2004b].

According to the press release [@stake 2004a], SmartRisk Analyzer uses deep static
analysis of the application binary code that maps application control and data flow paths
into a comprehensive security model. It looks at the variables introduced in the
software’s runtime environment and allows developers to identify security
vulnerabilities introduced by third-party libraries. SmartRisk Analyzer builds a
multidimensional model of the application and runs hundreds of risk analysis scans
against the model to identify and prioritize security vulnerabilities. The scans find
flaws related to insecure or improper use of programming languages and standard
libraries and flaws that may result from the deployment platform on which the
applications runs. It also detects vulnerabilities from input validation, command and
script injection, backdoors, and malware (i.e., viruses). Flaws are classified and

grouped by level of priority from severe to informational.

The press release and the product datasheet for SmartRisk Analyzer list the following
features [@stake 2004a, @stack 2004c]:

e Automated secure code assurance (runs the code analysis automatically)

® Deep binary analysis (maps application control and data flow paths into a

comprehensive security model)

48

® Linked library analysis (searches external libraries for security flaws)
e Comprehensive security scans (scans for hundreds of security flaws)
¢ Risk analysis module (reports flaws by type and severity)
¢ Remediation module (annotates errors on source code, if availability)
e Extension security rules module (allows new security scans to be added)
¢ Advanced vulnerability reporting (provides reports for QA and management)
e Program and library analysis (looks for improper use of programming languages
and standard libraries)
e Application platform analysis (looks for platform-related vulnerabilities)
e Additional security modules (looks for vulnerabilities not covered by other
modules)
The vulnerabilities detected by SmartRisk Analyzer include stack/heap buffer overruns,
format string risks, integer overflows/underflows, threading/race conditions, return code
checking, network access, privilege escalation, weak cryptography, input validation,

backdoors, and command/script injection.

The white paper for SmartRisk Analyzer outlines the four-step process used in
analyzing a binary file [@stake 2004d]:
1. Load the binary file, third party libraries, and platform environment data for
comprehensive analysis
2. Develop the security model of the application including data flow, control flow,

and range propagation

49

3. Perform security analysis on the application model and risk analyses on the
output to rank results
4. Generate both detailed and summary reports for security flaws that were

detected

In contrast to the approach taken by HBGary’s BugScan to inspect the executable file
itself, SmartRisk Analyzer loads the executable file into memory just like the operating
system would do. This allows the analyzer to determine all of the interfaces that the
program makes to its environment through dynamic link libraries. The analyzer then
does a reverse link to break the program up into the individual functions in order to
create a call graph. This call graph provides the data flow modeler with the information
needed to graph the data flow among functions in the program. The control flow graph
is then generated by analyzing the branch instructions in the program. This detailed
control and data flow model of the program is subjected to an in-depth security analysis
of over 400 scans to identify potential flaws that may become actual flaws. Each flaw
is ranked as a severe error, a normal error, a possible error, a warning error, or an

informational alert.

2.10.5 Code Security Evaluation by Secure Software

A third company, called Secure Software, is also involved with the security scanning of
executable files; however, they are offering it as a service rather than as a product
[Secure Software 2004b]. The service, entitled “Code Security Evaluation”, provides a

comprehensive and detailed evaluation of the source code or binary code of an

50

application to detect, identify, and validate security flaws. According to [Immix
Technology 2004], the GSA schedule pricing for this service ranges from $31,200 to

$46,800.

This scanning service has already been contracted by the Navy for use in scanning the
software to be used on the prototype of the Navy-Marine Corps Intranet (NMCI). It is
part of a two-pronged test aimed at determining whether specific applications create
vulnerabilities and whether they work well under Microsoft Windows 2000 and XP.
The source article states that Secure Software is using its Code Security Evaluation and
Information Assurance Review software to run the tests. It also states that Code
Security provides an automated security review process for software in development

[Onley 2004].

51

3. STATEMENT OF RESEARCH OBJECTIVES

This research effort sets out to prove the following hypothesis: A methodology can be
devised that uses information located in the headers, sections, and tables of an
executable file, along with information derived from the overall contents of the file, as a
means to detect specific software security vulnerabilities without having to disassemble
the code. Such a methodology can be instantiated in a software utility program that
automatically detects certain software security vulnerabilities before installing and

running the executable file.

To prove this hypothesis, this research effort has the following objectives:

1) Do an in-depth study of the PE format of an executable file to discover any
information that could be useful in detecting software security vulnerabilities.
This involves the examination of the Microsoft PE format specification through
the eyes of a security analyst armed with the list of "specific software security

vulnerabilities" as described earlier in Section 2.

2) Create a software utility to dissect a PE file byte-by-byte from beginning to end
(without disassembling) in order to identify, map, and categorize its contents.

This means building a software utility that understands the various header,
52

3)

4)

5)

section, and table information in a PE file and correctly translates the relative
virtual addresses and pointer offsets found in those items. The dissection is
necessary so that every part of a PE file will be accessible to whatever security

vulnerability analysis will come next.

Formulate a methodology for combining and correlating the information found
in a PE file in an effort to detect indicators of certain security vulnerabilities.
This involves the need to look at the information from a viewpoint that does not
consider what the loader does with the information or what happens at runtime,

but rather what the information reveals about the security nature of the file itself.

Incorporate the methodology into the PE dissecting utility in order to
automatically detect certain software security vulnerabilities in seconds. The

automation factor is a must to make the methodology of any practical use.

Test the automated methodology on installation files, software development
files, Windows XP operating system files, Microsoft application files, security-
centric application files, and other application files. Such a wide breadth of
testing is necessary to demonstrate that the software utility can handle PE files
designed for a variety of purposes. Also, such testing will provide a large
amount of results to evaluate the correctness of the hypothesis and the

usefulness of the methodology.

53

6) Analyze the test results and make conclusions. This involves a thorough review
of the results to see not only how many and what kind of security vulnerabilities
were found but also what do these findings mean. The analysis will need to
answer several questions. Do the vulnerability indicators (as stated in the
methodology above) occur in the executable files of actual software? And
when they do, what do they reveal about the overall security of the software?
Are there trends in the test results that point to categories of software, or even
specific software applications, which are more or less secure than others? Can
we conclude that the methodology actually works, that is, is the hypothesis

correct?

54

4. DESCRIPTION OF RESEARCH RESULTS

4.1 Explanation of Terms
Throughout this section, the terms listed below are used when describing the contents of

a portable executable (PE) File.

Common Object File Format (COFF). This refers to a standardized file format created
by Microsoft and used by the Microsoft compilers when creating object code files
[Microsoft 1999]. Object code files created by the Cygwin GNU compilers also use
this same format; however, the Borland compilers use a vendor-specific object code

format.

Dynamic Link Library (DLL). This refers to a file containing executable code that can
be called from another executable file. The only physical difference between a DLL
and a typical ".exe" executable file is a bit flag in the file header stored in the file. Note
that DLLs do not need to have a ".dll" extension to be a valid DLL file; other extensions

such as ".ocx" and ".cpl" are used on certain Windows DLL files [Pietrek 2002].

Executable file. This refers to a file containing executable code (i.e., a program) that

can be run on a computer by invoking the file's name. The program is invoked either

55

from the command line or from a double click of the mouse, depending on the Windows
subsystem that the program expects. Note that executable files do not need to have a
".exe" extension to be a valid executable file; other extensions such as ".sys" and ".drv"

are used on certain Windows executable files.

File offset/pointer. This refers to an actual byte address in a file, where the first byte in

the file is numbered starting with zero.

Image file. This refers to a file that is either a typical executable file or a dynamic link
library file that runs on a Windows NT system. Microsoft uses the name "image file" to

refer to both kinds of files.

Loader. This refers to the operating system program that runs behind the scenes when
an executable program is invoked by a user or another process. The loader reads
through the contents of the PE file, loads specific information from that file into

memory, and then begins execution of the program.

Portable Executable (PE) format. This refers to a standardized file format created by
Microsoft and used by any image file that runs on a computer system running some
version of the Windows NT operating system [Perry 2004]. The COFF is a subset of
the PE format and governs the format of any region in an image file that also appears in

an object code file such as the file header or the section table [Microsoft 1999]. The PE

56

format is different from the executable file format used for programs that run on

LINUX or UNIX systems running on non-Intel platforms.

Relative virtual address (RVA). This refers to the byte address of image file
information after the file is loaded into memory. This address is different than the
location of the same information in the file. Consequently, any program reading
through an image file or object code file must calculate the RVA delta or difference in
order to locate the start of specific tables in a file. This RVA difference is calculated
using an algorithm that involves the address data stored in section headers in the section

table.

Region. This refers to a range of byte addresses in a file containing information of
interest. A file contains many regions depending on the actual header, section, and
table contents of an object code file or image file, and on the unmapped or zero-filled

data found in a file.

winnt.h header file. This refers to the Microsoft header file that contains the constants
and type definitions used by programs written in C or C++ that read files in the portable

executable or common object file format.

4.2 The PE Format from a Security Point of View
The typical contents of a PE file are the DOS header, the MS-DOS stub, the PE

signature, the file header, the optional header, the section table, the symbol table, the

57

string table, various sections (e.g., ”.text" and ".data"), the import table, and the export
table. The winnt.h header file describes the byte format for each of these items by

means of type definitions.

The purpose of the information below is not to give a detailed explanation of the PE
format. Such an explanation is given later in this section when describing the PE
dissecting software utility. Instead this subsection summarizes each typical item found
in a PE file and points out any indicators of anomalies or security vulnerabilities that we

find in these items.

4.2.1 The DOS Header

The DOS header is a single record of data that begins at the start of a file. It contains
information mainly used by the loader program. It also contains a DOS signature of
"MZ" that marks the file as an MS-DOS file. In addition, it contains the offset for the
start of the PE signature that appears later in the file. We found no information in the

DOS header that was useful for detecting security vulnerabilities.

4.2.2 The MS-DOS Stub

The MS-DOS stub directly follows the DOS header and is a holdover from the days
before Microsoft Windows when PC software ran in the MS-DOS operating system. If
a PE file is invoked on an MS-DOS system, a short default message will be displayed
stating that the program cannot be run in MS-DOS mode. The program will then

terminate. We found no information in the MS-DOS stub that was useful for detecting

58

security vulnerabilities. However, between the end of the MS-DOS stub and the
location in the file where the PE signature is located, there should be a contiguous
region of zero-filled bytes. The loader ignores any information in this area;
consequently, software developers might use this area to store application-specific
messages or data. Although we see no direct security risk in this information, we do
consider any non-zero data in this region to be useful for detecting an anomaly in the

file.

4.2.3 The File Header

The start of the file header immediately follows the PE signature. (The PE signature
simply contains the letters "PE".) The file header is a single record that reveals much
about the operating environment that the file expects, the contents of the file, and the
characteristics of the file. It tells the number of sections in the file, the start location of
the symbol table, the number of symbols in the symbol table, and the size of the
variable-length optional header. It also implicitly tells the start location of the string
table because that table directly follows the symbol table. The file header also contains
status information that indicates if the file is an application file or a dynamic link
library. This status information is the only way for a loader to tell if a file is a DLL or

not; no other data in a PE file denotes this difference.

We found no information in the file header that was useful for detecting security

vulnerabilities. However, the file header does reveal the presence or absence of the

59

symbol table and string table. As we will see later, these two tables are very helpful in

detecting buffer overflow security vulnerabilities.

4.2.4 The Optional Header

The start of the optional header immediately follows the end of the file header. The
name of the optional header is misleading. It is only optional in the COFF format used
in an object code file; it is mandatory in the PE file format. Except for the last field of
the optional header, the rest of the header is a fixed record size. The data fields in this
record reveal even more detail than the file header does about the operating
environment expected by the file and the runtime requirements required by the file.

However, we found no information that was useful for detecting security vulnerabilities.

4.2.4.1 The Data Directory in the Optional Header

The last field in the optional header is referred to as the data directory. It contains a
variable-length list of the start location and size of each optional table located in the file.
For example, the location and size of the import table and export table will be found in
this list. The start location is not given as a simple file offset, as was the case earlier for
the symbol table and string table. Instead, the start location is a relative virtual address
(RVA) that the loader uses when the file contents are placed into memory. However, its
use in locating the start of a table statically in a PE file is complicated. This is

explained in more detail later when the section table is reviewed.

60

Although we found no information in the optional header that is useful for detecting
security vulnerabilities, we do compare the stated size of each table in the data directory
to the actual size that we detect later when reading the contents of the table in the PE
file. If there is a difference in these two sizes, we consider this a file anomaly. We also
consider it to be an anomaly when the data directory lists an optional table that does not

actually appear in the file.

4.2.5 The Section Table

The start of the section table immediately follows the end of the optional header. It
contains one or more fixed-sized records containing information on the start location,
size, and attributes of each section in the PE file. The number of entries in the section
table is denoted by the value in the Number of Sections field in the file header. The

section entries are listed in the order that the sections appear in the PE file.

4.2.5.1 Calculation of a File Offset for an Optional Table

Two specific fields in each section entry of the section table provide helpful information
when calculating the static start location of an optional table in a PE file. These are the
virtual address and the pointer to raw data fields. The data directory in the optional
header contains the relative virtual address (RVA) for the start location of each optional
table. This value is designed for use when the program is loaded in memory. To find
the start location of a table statically in the PE file using the RVA, a file offset for the

optional table needs to be calculated from it. This is done using the following steps:

61

1. Use the optional table's RVA to search through the section table entries to find
the virtual addresses of two entries where the RV A falls between. Mark the
section entry having the lower of the two virtual addresses

2. Calculate an address difference by subtracting the section entry's virtual address
from its pointer to raw data value

3. Calculate the optional table's file offset by subtracting the address difference

from the RVA of the optional table

4.2.5.2 Detecting Security Vulnerabilities in the Section Table

A security vulnerability can be detected in the section table by looking at the
characteristics for a section. These characteristics tell the loader program if the contents
of the section contain executable code or initialized/uninitialized data. They also tell if
the section's contents can be executed, read from, or written to. Each of these
characteristics has it own bit position in a 64-bit word. To be secure, any section that
has the characteristic "contains executable code" or "can be executed" set should not

have the characteristic "can be written to" also set.

A security vulnerability can be also be detected in a PE file by looking for a section
entry that is located in the section table but does not have a corresponding section in the
file, and a section entry in the section table that exceeds the number of sections denoted
in the file header. Although both of these occurrences could be considered anomalies,
they could also indicate that a virus has tampered with the contents of a file by deleting

or adding a section.

62

4.2.6 The Symbol Table

The location and size of the symbol table are based on two fields in the file header that
indicate this information. If the number of symbols is zero, then the file contains no
symbol table. The linker uses the symbol table in an object code file but not in a PE
file. The table is present in a PE file only for the use by a debugger. The symbol table
contains the names of every data item and function declared by the program and any
library or runtime environment software linked in with the program. Depending on
which linker is used, the symbol table also contains the names of the application source

code files for the program.

A search of the function names in the symbol table can be used to detect a buffer
overflow security vulnerability in a program. Each function name listed in the symbol
table can be compared to the list of standard C library functions susceptible to such a
vulnerability. The resulting list of vulnerable functions may reveal function names that
do not occur in the application source code at all. If this happens, then the names could

be part of the implementation of the language by the compiler designer.

4.27 The String Table
The string table is located immediately following the symbol table. If a symbol table is
not present in the file, then the string table is located where the symbol table would

have started. If the start location of the symbol table field in the file header is zero, then

63

the file does not contain a string table. The linker needs a string table in an object code
file but not in a PE file. The table is present in a PE file only for the use by a
debugger. The string table contains the name of every variable name, section name,
and constant character string that appears in a program or in any library or runtime
environment code linked in with the program. The section table and symbol table only
contain entry names up to eight bytes in length. For a name of any greater length, an
offset is stored in the data field instead. This offset points to the start of a character
string in the string table. Although we found no information in the string table that was
directly useful for detecting security vulnerabilities, the contents are helpful indirectly

in supplying the names used in the section table and symbol table.

4.2.8 Various Sections

The sections referred to in the section table fill out the remainder of a PE file. Some
linkers place each optional table in its own section. For example, the export table may
be in the ".edata" section. Other linkers place an optional table in the midst of other
data in a section. For example, the import table may be in the ".text" section. The
actual code and constant data that we commonly associate with an executable file are
stored in one or more sections. These sections are usually referred to as the ".text" and
".data" sections, although they may have other names. Because we do not disassemble
any executable code in this research effort, we found no information in the sections

themselves that was useful for detecting security vulnerabilities.

64

4.2.9 The Import Table

The location of the import table in a PE file is found by calculating the file offset of the
starting location. This is done using the RVA in the data directory of the optional
header and the virtual address and pointer to raw data fields in the section table. This
process is explained in more detail in the paragraphs above describing the section table.
The import table contains the names of the DLL files and the functions in those files
that the program requires in order to run. If a program does not use any DLL files, then

the import table is not present.

As was described already in the case of the symbol table, the import table also contains
the names of functions used in the file, albeit only functions imported from DLLs. This
information can be used to determine a buffer overflow security vulnerability in a file
similar to the method used with the symbol table. Note that if a file uses no DLLs and
also contains no symbol table, then a search for the names of vulnerable functions will
come up with an empty list. This should not be considered an indication that the
program uses no vulnerable functions. Instead, it should point out the lack of enough

information to make such a determination.

Although the use of a specific DLL by a program does not in itself constitute a security
vulnerability, a security analyst may be interested in the DLLs used by a file. By
looking at the purpose or function served by a DLL, this may reveal operations
performed by the program that aren't readily apparent from the outside. This could

include DLLs to assist in network connections, encryption, or installation of files.

65

4.2.10 The Export Table

The location of the export table in a PE file is found by calculating the file offset of the
starting location as was described above for the import table. The export table contains
the name of each function in the file that is available for use by another program. This
is the normal behavior for a dynamic link library (DLL) file. We found no information

in the export table that was useful for detecting security vulnerabilities.

4.2.11 Summary of Anomaly and Security Vulnerability Indicators

Our study of the PE format revealed many ways of detecting anomalies in a PE file.
We can detect a file anomaly by looking at the region following the MS-DOS stub to
see if data is stored there. We can also detect an anomaly by comparing the sizes given
for the optional tables in the optional header to their actual sizes and note any

differences.

Our study also found ways to detect certain security vulnerabilities in a PE file. We can
detect executable code that can be written to in a section by looking at the
characteristics in the section entries of the section table. We can detect hidden sections
or sections that are listed but don't actually exist by comparing the number given for the
entries in the section table to the actual entries found. We can detect buffer overflow

vulnerabilities by comparing the list of function names found in the symbol table and

66

import table to those in the list of standard C library functions that are vulnerable to

such attacks.

4.3 A Software Utility to Dissect a PE File

4.3.1 The Search for a PE Dissecting Program

After finding that we could detect anomalies and software security vulnerabilities in a
PE file by statically analyzing it, we needed a means to dissect a PE file into all of its
components. We looked at the features and output produced by four dump utilities:
objdump from Cygwin [Cygwin 2004], tdump from Borland [Borland 2004], dumpbin
from Microsoft [Visual Studio 2004], and pedump [Pietrek 2002b]. All provide PE
format information that has first been filtered, summarized and text formatted. All rely
on the values given in the header and look-up tables to locate and display section and
table contents instead of looking directly at what is actually in the tables. Comparing
results provided by each dump utility revealed inconsistencies in the section table and
import table information. None provide a byte-for-byte account of the file contents in
order to find hidden section contents, hidden table contents, or evidence of compressed
files. Many aborted or printed out extraneous data when run against PE files that
contain non-typical format information. Consequently, we found the need to first build
our own PE dissecting utility and then add anomaly and vulnerability analysis

capabilities to it later.

4.3.2 Program Modules and Classes

67

The PE dissecting utility consisted of 2700 source lines of code written in C++. The
code was divided among one driver module, one utility module, and 16 class
definitions. It later became version one of the findssv software described later in this
section. The purpose of each of the modules and classes in the PE dissecting utility is

described in the following paragraphs.

4.3.2.1 Driver Module

The driver module contains the main() function for the program. It calls methods to
parse the command line, check the file type, and read the contents of an image file or
object code file into a collection of data structures. It also calls methods to change,

display, or search through the data in a file.

4.3.2.2 Utilities Module

The Utilities module contains three functions used for converting data formats to C++
strings so the program can store certain information in a string format. The Itostr()
function converts a signed long number to a string. The ultostr() function converts an
unsigned long number to a string. The toLowerCase function converts a string

containing mixed upper and lowercase letters to a string with all lowercase letters.

4.3.2.3 FileTypeChecker Class
The FileTypeChecker class contains methods to quickly verify two types of files based
on certain key signature information located in a file. The program uses the methods in

this class to verify that it is reading an image file in Microsoft's portable executable

68

(PE) format or an object code file in Microsoft's common object file format (COFF). It
considers all other file formats to be unknown. Valid files in the PE format are not just
those with a ".exe" extension. Other valid PE files may have extensions such as ".dIl",

n

.sys", or "drv".

4.3.2.4 File Handler Class

The File Handler class is implemented as a singleton. The class provides methods to
open, close, and get the stream descriptor for an executable or object code file. This
approach allows methods throughout the classes in the program to quickly and

accurately access the file contents without having to repeatedly open and close the file.

4.3.2.5 PECOFF_Partitioner Class

The PECOFF _Partitioner class contains methods that call other class methods to read,
store, and later analyze the information obtained from a COFF object code file or PE
image file. It also calls class methods to print the data read by those classes. The class
aggregates the DosHeader, FileHeader, OptionalHeader, SectionTable, SymbolTable,

StringTable, ExportTable, ImportTable, DebugTable, and CoffRelocations classes.

The readData() method in the PECOFF_Partitioner class contains the main algorithm
for reading the data from a COFF or PE formatted file. This algorithm is summarized
below. (Note that the program reads the string table before reading the symbol table or
section table. This allows the program to immediately retrieve any string information

pointed to by entries in the symbol table or section table. Also note the action of

69

"mapping" the file contents. This is explained in more detail when the findssv classes

are described later.)

Count the number of bytes in a file and map the byte at the end of the file

If the file is a PE file, read and map the DOS header and the PE signature

If the file is a PE file, read and map the MS-DOS stub

Read and map the file header

If the file header indicates the presence of an optional header, read and map
the optional header

If the file header indicates the presence of a symbol table, first read and map
the string table and then read and map the symbol table

Read and map the section table

Read and map the COFF relocations table if any relocations exist

Map any of the tables that have entries in the data directory found in the
optional header

Read and map the sections

Find and map the unknown regions in a file

Find and map any zero-filled regions in a file that contain a certain minimum

number of zeros

4.3.2.6 DosHeader Class

The DosHeader class contains the methods to read the DOS header data from an image

file and display it in a report format. (Object code files do not contain a DOS header.)

The winnt.h header file describes the format of the DOS header, which consists of a

70

single 64-byte record. Most of the fields in the record are not significant except for the
first field named e_magic and the last field name e_Ifanew. To be a valid executable
file, the first field should contain the two letters "MZ", which stand for Mark Zbikowski
who was one of the original designers of MS-DOS [Pietrek 2002]. The last field
contains the absolute offset in the file to the portable executable (PE) signature field. A

valid PE signature consists of four bytes containing the values "PE\O\O".

Between the DOS header and the PE signature field is the MS-DOS stub. It starts
immediately following the 64 bytes of the DOS header. The MS-DOS stub is a small
DOS program that by default displays the words "This program cannot run in DOS
mode" when an image file that is targeted for a graphical user interface environment is

invoked from the command line [Microsoft 1999].

4.3.2.7 FileHeader Class

The FileHeader class contains the methods to read the file header data from an object
code file or image file and display it in a report format. The winnt.h header file
describes the format of the file header, which consists of a single 20-byte record. The
file header appears at the very start of an object code file or just after the PE signature in
an image file. It has a number of significant fields. The NumberOfSections field
indicates the number of sections in the section table. The PointerToSymbolTable field
contains the absolute offset in the file to the start of the symbol table. This field still
contains an offset if the symbol table does not exist but the string table does. This is

because the string table follows directly after the symbol table in a file. The

71

NumberOfSymbols field tells how many symbols are in the symbol table. If this field is

zero, then no symbol table exists.

The SizeOfOptionalHeader field tells the size in bytes of the optional header. This
value is used to calculate the start of the section table, which immediately follows the
optional header. The Characteristics field is a two-byte field, where each bit serves as a
flag describing a characteristic of the file. For example, the flags tell if the symbol table
has been stripped or not from the file, the type of architecture that the software expects,
the big endian or little endian order of the bytes in the file, and if the file is a DLL or
not. The DLL flag is the only valid indicator in a file for differentiating a DLL from a

typical executable file.

4.3.2.8 OptionalHeader Class

The OptionalHeader class contains the methods to read the optional header data from an
image file and display it in a report format. (Object code files normally do not contain
an optional header.) The winnt.h header file describes the format of the optional
header, which consists of a single 224-byte record. The word "optional" in the name of
this header is misleading because an optional header is required in an image file. The
optional header contains a number of significant fields. Some of the fields describe
address details used when the file is loaded into memory. Other fields contain the

operating system and subsystem versions that the software needs to run properly.

72

One significant field in the optional header is the NumberOfRvaAndSizes field. This
field indicates the number of data descriptor records in the data directory that appears at
the end of the optional header. The winnt.h header file describes the format of a data
descriptor record in this directory. The purpose of this directory is to indicate the
presence and location of certain standard tables in a file. These tables include, but are
not limited to, the export table, import table, resource table, exception table, certificate

table, base relocation table, and debug table.

The data directory entry for each table occurs at a specific index in the directory,
ranging from 1 to 16. If an entry is present (i.e., if the data descriptor does not contain
all zeros), then the data descriptor record contains the virtual address where the table
starts in memory and the size of the table. The entries for the tables that appear most

often occur in the lower indices in the directory.

4.3.2.9 SectionTable Class

The SectionTable class contains the methods to read the section table data from an
object code file or image file and display it in a report format. The section table appears
directly after the optional header in a file. The NumberOfSections field in the file
header contains the number of section header entries in the section table. The winnt.h
header file describes the format of a section header, which consists of a single 40-byte

record.

73

A section header contains many significant fields. The Name field contains the section
name. The VirtualAddress field contains the address where the section starts when the
file is loaded into memory. The PointerToRawData field contains the file offset for the
start of the section in the file. The program uses the difference between the

Virtual Address field and the PointerToRawData field, in conjunction with virtual
addresses from the data directory in the optional header, to calculate the starting byte
position of various tables in a file. Through the use of the "-M" map option, a security
analyst can see the results from how the program has used this RVA difference
calculation to map the location of tables inside of sections. The program stores the

section table in a vector.

4.3.2.10 CoffRelocations Class

The CoffRelocations class contains the methods to read the COFF relocation data from
an object code file or image file and display it in a report format. The
NumberOfRelocations field in a section table entry indicates the number of relocations
that exist for that section. The PointerToRelocations field in a section table entry points
to the location of this data in an image file. COFF relocations specify how the section

data should be modified when placed in the image file and later into memory [Microsoft

1999].

The program stores the COFF relocations data in a vector. Each member of the vector
contains three fields: the section name connected with a set of relocations, the symbol

name connected with a set of relocations, the actual relocation data. The winnt.h header

74

file describes the format of a relocations data record. Each record contains the address
of the item being relocated, the index of the symbol in the symbol table, and the type of
relocation. A type refers to the kind of relocation to perform, such as absolute

addressing, virtual addressing, or relative virtual addressing.

4.3.2.11 SymbolTable Class

The SymbolTable class contains the methods to read the symbol table data from an
object code file or image file and display it in a report format. The
PointerToSymbolTable field in the file header points to the start of the symbol table in a
file. The NumberOfSymbols field in the filed header tells how many symbols are in the
symbol table. The symbol table contains section names, file names, code symbols, and
data symbols. The table consists of an array of symbol records. The winnt.h header file
describes the format of the 18-byte symbol record. Each symbol has at least one
standard symbol record. There may be one or more auxiliary symbol records following
a standard symbol to store additional data about the symbol. A standard symbol record

that is zero filled marks the end of the symbol table.

A symbol table appears in object code files, but can be left out of an executable file.

This is done by the use of a command line option to the linker that requests the symbol

table be stripped out. The program stores the symbol table records in a vector.

75

4.3.2.12 StringTable Class

The StringTable class contains the methods to read the string table data from an object
code file or image file and display it in a report format. The string table appears directly
after the symbol table in a file. The first four bytes of the string table contain the total
size in bytes of the table. This includes the first four bytes. The rest of the table
contains null-terminated character strings that are pointed to by symbols in the symbol

table [Microsoft 1999].

A string table appears in object code files, but can be left out of an executable file. This
is done by the use of a command line option to the linker that requests the string table
be stripped out. The program uses a vector to store the strings read from the string

table.

4.3.2.13 ImportTable Class

The ImportTable class contains the methods to read the import table data from an object
code file or image file and display it in a report format. The import table is referred to
as the ".idata" section in some image files. It lists the functions (called by a program)
whose definitions are located in a dynamic link library (DLL) file. The import table
actually consists of one or more sets of tables. Each set corresponds to a certain

dynamic link library and the functions used from that library.

The program stores the import table information in two vectors. The first vector

contains the names of each of the DLLs and its corresponding descriptor record. The

76

winnt.h header file describes the format of the descriptor record. One significant field
in the record is the name of the DLL. Another significant field is the FirstThunk field,
which points to the record that heads up the link list of functions used from this DLL.
The second vector contains all of the functions located in other DLLs. Each function

name is stored with the name of the DLL where it is located.

4.3.2.14 ExportTable Class

The ExportTable class contains the methods to read the export table data from an object
code file or image file and display it in a report format. The export table is referred to
as the ".edata" section in some image files. This table is normally only found in

dynamic link library files. It lists the functions callable by programs that use this DLL.

The export table actually consists of many tables: a directory table, an address table, an
ordinal table, a name pointer table, an export name table, and a forwarder name table.
All of these tables contribute to the mechanics necessary for software to call a function
located in another file. Except for the directory table, which is just a single record, the
program stores each of the remaining tables in vectors. The winnt.h header file
describes the format of the directory table record. The members of the vectors are 16-

bit words, 32-bit words, or strings.

4.3.2.15 DebugTable Class
The DebugTable class contains the methods to read the debug table data from an object

code file or image file and display it in a report format. The debug table is referred to as

77

the ".debug" section in some image files. The format of the debug information is
dependent on the specific vendor debug tool that is designed to read it; however, this
data commonly consists of line numbers, indices in the symbol table, and indices in the

string table.

The program stores the debug table data in a vector. The winnt.h header file describes
the format of a debug record, which is the member of the vector. The Type field in this

record serves as an indicator for various debug tools.

4.3.2.16 FileChanger Class

The FileChanger class contains methods to change the value of any designated byte in a
file. The class provides services for the "-C" change option. The class works on any
kind of file and writes data in byte, ASCII string, Unicode string, 16-bit word, and 32-
bit word formats. The purpose of these methods is to give a security analyst the ability
to easily change a value in a file in order to test the behavior of a file or to correct an

anomaly detected in a file.

4.3.2.17 ValueDisplayer Class

The ValueDisplayer class contains methods to display the values in a range of byte
addresses in a file. The class provides services for the "-D" display option. The
ValueDisplayer works on any kind of file and displays the values in byte, ASCII string,
Unicode string, 16-bit word, or 32-bit word formats. The purpose of these methods is to

give a security analyst the ability to quickly display the contents of any byte addresses
78

in a file in a variety of formats. If the file is a PE or COFF file, the analyst can use the
"-M" map option to first see the layout of a file, and then use the "-D" display option to
see what values are stored in certain interesting file locations such as those marked as

"Contents not known."

4.3.2.18 PatternFinder Class

The PatternFinder class contains methods to search for a value in a file. The class
provides services for the "-S" search option. It works on any kind of file and looks for
data in byte, ASCII string, Unicode string, 16-bit word, and 32-bit word formats. The
purpose of these methods is to give a security analyst the ability to quickly search for
the existence and location of a value in a file. If the file is a PE or COFF file, the
analyst can note the address where a value was found and then use the "-M" option to
find the name of the header, section, or table in which the value appears. The analyst
can also use the "-D" option to display the range of values surrounding a value. When
an ASCII or Unicode value pattern is searched for, the program displays the location of
the matching pattern along with the context (i.e., other surrounding characters) in which

it was found.

4.4 A Methodology for Finding Software Security Vulnerabilities in a PE File
This methodology describes how to statically analyze a PE file to provide useful
information to a security analyst. When analyzing the file, the methodology categorizes
its findings as facts, anomalies, or vulnerabilities. The methodology described in the

following paragraphs is organized around these three categories.

79

4.4.1.1 Creating a File Fact Summary

Based on the administrative information stored in the DOS header, file header, and
optional header, a file fact summary is generated. These facts include the actual file
size in bytes, the target CPU and operating system, an indication that the file is a DLL
file or not, an indication that the file has a symbol table or string table, the names of the
text files containing the program source code, and a list of optional tables found in the

file.

By examining the import table, a fact list is built of the DLLs required by a program.
[Whittaker and Thompson 2004] describe how a hacker can exploit the user security
level of an application by finding out the DLLs that a program uses, crafting a look-
alike DLL with the same name and similar interface, and then placing that DLL in the
application’s current working directory. Now the program has the ability to use the

same privilege level granted to the original DLL.

4.4.1.2 Detecting Anomalies When Reading the File

As stated earlier in this section, anomalies can be detected in the process of reading a
PE file. One interesting anomaly is the mismatch between the size of a table as stated in
the optional header and the actual size of the table in the file. Such anomalies may

indicate an error in the linker or possibly manual tampering with the file contents.

80

4.4.1.3 Detecting Anomalies When Mapping the File Contents

Another interesting anomaly is the detection of regions in the file that contain either
unknown information or possibly compressed files used in a software installation.
Mapping the contents of the bytes of a file from the first byte to the last makes this
possible. As each header, table, or section is read from the file, its start and stop
location are recorded (i.e., mapped). After mapping the locations of every known entity
in a PE file, a complete pass is made through the map to find byte regions between
entities that are unaccounted for. Such a region is marked as "contents not known" if it
falls outside the bounds of any known entity, or it is marked as "no additional details" if
it is inside a section containing an optional table but not also inside the bounds of the

table itself.

The detection of compressed files is found by comparing an unknown region's size to a
maximum acceptable size constant. Based on a survey we made of the average
maximum size of known regions in a variety of image files, we found that 200,000
bytes is a good constant. During the survey we also found that such large unknown
areas occur in executable installation files where the files to be installed are stored in a
compressed format in the executable file. These areas occur most often before or after
the last known section in a file. Some also occur as part of the ".rsrc" resource section
or a ".winzip" section. The loader ignores any bytes in a file that are not part of one of
the listed headers, sections, or tables; consequently, an executable installation file can

act as its own repository of hidden data.

81

4.4.1.4 Detecting Software Security Vulnerabilities

Our research has revealed three kinds of security vulnerabilities that can be detected
when statically analyzing an image file (without doing any disassembling): sections in a
file whose contents can be both written to and also executed, large unused zero-filled
regions in a file, and the use of functions susceptible to buffer overflow attacks. The

ways for detecting these vulnerabilities are described in the following paragraphs.

4.4.1.4.1 Detecting Sections That are Both Writable and Executable

Earlier in this document when we described the section table, we pointed out that each
entry in the table contains bits in a 64-bit word that indicate the read, write, and execute
characteristics of the contents of the corresponding section. A security vulnerability can
be detected by finding the simultaneous occurrence of both the write and execute
characteristics for a section. Such an occurrence may indicate an error in a linker. It
may also indicate tampering by malicious software in an effort to later modify the

program's executable code when it is loaded into memory and executed.

4.4.1.4.2 Detecting Large Unused File Regions

When mapping the regions of a file, the zero-filled regions are also tracked and a total is
kept of the number of total zero bytes that are encountered. Based on a survey we made
of the average size of a contiguous region of zero-filled bytes in a variety of image files,
we found that a value less than or equal to 50 is acceptable. Any size above this
constant indicates the vulnerability of malicious software employing these unused areas

to store hidden code or data.

82

4.4.1.4.3 Detecting Vulnerable C Library Functions

Earlier in this section we described how examination of the symbol table and the import
table could reveal the names of many of the functions used by a program. [Viega and
McGraw 2002] provide a list of 31 commonly-recognized C library functions that are
vulnerable to buffer overflow attacks on their character string parameters. We create a
list of vulnerable functions used by a software program by comparing the function
names found in the symbol table and import table to those found in the list of known

vulnerable functions. We then store the matching names.

4.4.1.44 Understanding the Consequences of no Symbol Table or Import Table
The ability to detect the use of functions vulnerable to buffer overflow attacks
obviously depends on the presence of the symbol table and/or the import table in the PE
file. If the software developer had the linker strip the symbol table when the executable
file was built, then that source of information does not exist in a PE file. Also, if the
linker placed the function definitions in the executable file rather than arrange to have
them be accessed through a dynamic link library, then the import table will not contain
the names of the vulnerable functions. This finding is very important to understand.
Without it, a person can get a false sense of security if no vulnerable function calls are
found when statically analyzing a PE file using this approach. In other words, an empty
list of vulnerable functions can only safely indicate the lack of enough information to

detect any function names at all.

83

4.5 Automation of the Methodology: the findssv Software Utility

From a practical point of view it would be very difficult to manually apply the
methodology described above to even the smallest of PE files. This is because of the
tens of thousands of bytes in PE administrative information and runtime environment
code included in the file. Instead, we incorporated the methodology into the PE
dissecting software tool developed earlier to create a greatly enhanced version called
"findssv", where "ssv" means software security vulnerabilities. Its purpose is to assist a

person in performing a static analysis of executable and dynamic link library files.

Findssv operates similar to an MS-DOS command line utility and is designed to detect
anomalies and certain software security vulnerabilities in files that run on Windows NT.
It also works with object code files that use the Microsoft Common Object File Format
(COFF). Findssv accepts an executable or object code file name (or a wildcard form of
the file name) on the command line, followed by zero or more options. It displays
information about each of the PE and COFF files in a report that is sent to the standard
output device (i.e., the screen). It can be used to automatically check for security

vulnerabilities in a single file or in a whole directory of files in just a few seconds.

4.5.1 Program Features

The findssv program has a variety of features to help a security analyst detect what is in
a PE file. The following paragraphs describe each of the options available in findssv.
Figure 3 contains the help screen that the program displays when only “findssv” is

entered on the command line. Note that a file name entered on the command line can be

84

either a specific file name or a wildcard file name such as *.exe. If such a wildcard file
name is entered, it must be enclosed in double quotes so that the MS-DOS command

interpreter won't attempt to expand the asterisk.

Usage: findssv <filename> [-L] [-T] [-M] [-F] [-AV] [-P[<parts>]]
findssv <filename> -C <format> <start> <new>
findssv <filename> -D <format> <start> <#values>
findssv <filename> -S <format> <pattern>

findssv <filename> -S {ascii | unicode} <#chars> <start> <stop>
Explanation:
filename : binary file name or wildcard name (Example: "*.exe")
-AV : display the anomalies and security vulnerabilities
(default)
-C : permanently change specific values in a file (Use with
care!)
format : format of changed value: byte | ascii | unicode |
word | dword
new : new value to replace current value in the file
start : starting byte location of the value to change
-D : display a range of file wvalues in various data formats
start : starting byte location of the first value to display
#values : number of total values to display
format : format of values: byte | ascii | unicode |
word | dword
-F : display a summary of facts about the file (default)
-L : filename is a file containing a list of binary files
to read
-M : display an address map of the file
-MZ : map all zero regions, then display address map
-P : Display one or more standard parts found in a file
parts : one or more parts to display; if none then display all
parts

d — DOS header y — symbol table
f - file header t - string table
o - optional header e — export table
s - section table i - import table
c - COFF relocations b - debug table
-S : search for a specific pattern of bytes in the file
pattern : the pattern to find
format : format of pattern: byte | ascii | unicode |
word | dword
#chars : minimum number of characters in a string
start : starting address of string search
stop : stopping address of string search
-T : Turn program trace on

Figure 3 — Findssv Help Screen

Anomalies and Vulnerabilities. The “~-AV” option is used to display a list of anomalies

and security vulnerabilities that findssv discovered while reading through and analyzing

85

the file contents. This list is also displayed by default if only findssv and a file name
are entered on the command line. There may be other anomalies or vulnerabilities in a

file, but these are the ones that findssv is currently designed to detect.

Change. The “-C” option is used to permanently change a specific value starting at a
certain byte position in a file. When making the change, findssv will first display the
current value and then the success or failure of replacing it with the new value. The
format of the value can be a single byte, an ASCII string, an ASCII string converted
internally into Unicode, a 16-bit word, or a 32-bit double word. This option can be used

on any type of file, not just executable or object code files.

Display. The “-D” option is used to display the values located at a range of byte
addresses in a file. The output of the values can be displayed as bytes, ASCII values,
Unicode values, 16-bit words, or 32-bit double words. The number of values is format-
dependent in that it refers to the actual number of values using that format rather than
the number of bytes in the range of displayed values. This option can be used on any

type of file, not just executable or object code files.

Facts. The “-F” option is used to display a list of facts that findssv discovered while

reading through and analyzing the file contents. This list is also displayed if only

findssv and a file name are entered on the command line.

86

List. The "-L" option is used to submit a specific list of executable or object code files
to findssv. The list is contained in a text file that is submitted to findssv on the
command line. This approach to supplying file names to findssv can be used when a

wildcard file name will not select the desired files to analyze.

Map. The “-M” option is used to display a diagram that acts similar to an x-ray of a
file. The diagram shows the byte location and size of every header, table, and section in
an executable or object code file. Each byte location from the start to the end of a file is
examined. If a file does not contain enough information for findssv to use when
describing a part of a file, the program instead displays “Contents not known” in that

location in the file map.

Map Zero. The “-MZ” option performs the same function as the “-M” option. In
addition, it checks for and notes zero-filled regions in a file before displaying the map
diagram. For a zero-filled region to qualify, it must contain a certain minimum number

of bytes. Currently that minimum number is 50.

Parts. The “-P” option is used to display the contents of one or more standard parts
located in an executable file. These parts are the DOS header, the file header, the
optional header, the section table, the COFF relocations, the symbol table, the string
table, the export table, the import table, and the debug table. If only “-P” is entered
with no part letter, then the contents of all of the parts are displayed; otherwise, a user
may designate which part or parts to display. The order of the part letters makes no

87

difference in the order in which the data is displayed. Instead, the parts are displayed in

the order that they normally appear in a file.

Search. The “-S” option has two separate forms. The first form of this option is used to
search for the starting byte location of a specific pattern of information in a file. The
format of the pattern may be a byte, an ASCII string, a Unicode string, a 16-bit word, or
a 32-bit double word. When the ASCII or Unicode format is specified, findssv will
display the starting locations of the pattern and the context of characters in which the
pattern was found. The second form of this option is used to search for any ASCII or
Unicode character strings in a file. The user specifies the minimum length of a string
and the range of byte addresses to search in the file. The “-S” option in either of its

forms can be used on any type of file, not just executable or object code files.

Trace. The “-T” option directs findssv to display a number of messages indicating the
sequence of activities it performs when reading through and analyzing a file. Itis
mainly used to display details on problems that may have occurred when reading a

specific file.

4.5.2 Program Classes

We built the findssv software features onto the existing version of the PE dissecting
utility. The capability to automatically detect anomalies and software security
vulnerabilities added 1100 source lines of code and six class definitions to the program.

The subsections below describe the six new classes.

88

4.5.2.1 UserOptions Class

The UserOptions class contains methods to set and get the user options requested by a
user on the command line. The user options fall into two categories. The first category
contains the display choices of the various parts of a file using the "-P" parts option.
The second category contains options to select the "-T" trace output, the "-M" file
mapping functionality, the "-MZ" zero-region mapping functionality, the "-F" facts
output, the "-AV" anomalies and vulnerabilities output, the "-C" change value
functionality, the "-D" display value functionality, the "-S" search functionality, the "-

H" hide data functionality, and the "-E" extract data functionality.

4.5.2.2 Analysis Manager Class

The Analysis Manager class contains methods to collect the names of all the files to
analyze, submit those names one by one to the PECOFF_Partitioner, and then
summarize the results of the analysis after all the files have been read and analyzed.
This allows findssv to analyze multiple files one after another in a single run of the

program.

4.5.2.3 DiscoveryTracker Class

The DiscoveryTracker class is implemented as a singleton. It serves as a collector and
displayer of fact, anomaly, and security vulnerability information. Findssv discovers
this information either while reading through a file or when analyzing and correlating

the data gathered from a file. As soon as findssv comes upon a discovery, it enters the

89

category of the discovery and a description of the discovery in the DiscoveryTracker.
After the file is completely read, findssv displays all of the fact, anomaly and security
vulnerability findings it contains depending on the display desires requested in the user

options.

The fact category contains information that describes the size, creation date, target cpu,
and operating system for the file. It also contains a list of the dynamic link libraries
(DLLs) needed by the file. If the symbol table and string table are present in the file,
the fact category will also contain the names of the source code files that were used

when building this file.

The anomaly category contains mismatches of totals and pointers that findssv detects
while reading through a file. These findings don’t point out vulnerabilities, but rather
indicate something that is inconsistent in the file such as a section entry but no
corresponding section, or a stated size of a table when it is actually a different size.
These anomalies may be caused by logical errors in linkers or possibly manual

tampering with the file that occurred after the link stage.

The vulnerability category contains specific software security vulnerabilities that
findssv looks for after reading all the data from a file. Findssv does no disassembling of
object code to find these vulnerabilities. Instead, it analyzes and correlates the data

collected from the various headers, sections, and tables in a file.

90

Findssv stores the discovery tracker data in a vector. Each member of the vector
contains four fields: the category of the discovery, the location of the discovery, an
occurrence count, and a description of the discovery. Findssv only displays the location
of a discovery when the "-T" trace option is used in conjunction with the "-AV" option

on the command line.

4.5.2.4 FileMapper Class

The FileMapper class is implemented as a singleton. The class provides services for the
"-M" map option and the "-MZ" map zero-filled regions option. It contains methods to
collect, analyze, and display the byte-for-byte layout information of an object code file
or image file. The map output shows the location and size of every header, section, and
table in the file. It also points out the areas of the file whose contents are unknown and
the areas of the file containing only a series of zeros. Appendix C contains examples of

file maps created by findssv.

Findssv stores the file map information in a map data structure. The key for each entry
in the map is the start address of a region (e.g., a header, section, or table) in the file.
The corresponding data part of each entry contains the size of the region and a short
description of its contents. Findssv detects any attempt to place an entry in the file map
that matches a key (i.e., a starting address) already in the map. When such an event
occurs, findssv makes adjustments in the map contents depending on the size of the
original region and the size of the new region. It also keeps track of each of these

occurrences and displays them in a summary after the end of a map display.

91

The FileMapper class contains complicated algorithms to locate and map unknown data
regions in a file, to locate and map the zero-filled regions in a file, and to display the
layout of all the regions in a file in a hierarchical format. This hierarchical format is
necessary because some regions of a file may be contained within other regions. For
example, the ".text" or ".data" section of a file may contain the import table or the

export table along with other information.

The algorithm to locate and map unknown regions looks for byte ranges in the file that
are unaccounted for in the file map. Findssv performs this action after all of the known
regions of a file have been read and mapped. This process involves the tracking of the
start and stop addresses of large regions in a file that may contain smaller regions.
After findssv detects an unknown region, it enters the region in the file map. If the
region is outside of any other region, it describes the region as "Contents not known";
otherwise it describes the region as "No additional details". This is because it occurs

inside an already-mapped region.

The algorithm to locate and map zero-filled regions looks for byte ranges in the
"Contents not known" regions of a file that contain a minimum number of consecutive
zero bytes. Consequently, this algorithm is run after the algorithm to locate and map
unknown regions. The minimum number of zeros allowed is defined as a constant in
the FileMapper class. When findssv detects a "Contents not known" region exceeding

this minimum, it inserts this information into the file map.

92

The algorithm to display the map layout of a file takes its information directly from the
contents of the file map structure. In doing so, it keeps track of any smaller regions that
are mapped inside of any larger regions. The resulting map display gives a security
analyst an eye-opening view of how the contents of the file are structured. It also
reveals areas, such as the regions marked as "Contents not known", that may require

manual investigation using the "-D" display option.

4.5.2.5 FunctionCollector Class

The FunctionCollector class contains methods to collect the names of functions that are
used by a program. Findssv gathers this information from a combination of data
obtained from the symbol table, string table, and import table. As the FunctionCollector
gathers names, it looks for functions that are known to be vulnerable to buffer overflow
attacks and other hacker actions [McGraw and Viega]. When it finds such functions, it
stores them along with one of the following risk levels: low, medium, high, very high,

and ultra high.

Findssv stores both the list of all functions found and the list of vulnerable functions

found in map data structures. The key for each map is the function name.

4.5.2.6 DLL Librarian Class
The DLL Librarian Class contains a table of DLL file names and descriptions along

with methods to look up a description. The table currently contains the descriptions of

93

over 200 DLLs. Findssv uses this information in the file fact summary when it displays

the names of DLLs used by a program.

4.6 Results from Testing the Automated Methodology

4.6.1 The Test Platform and Test Files

The test platform consisted of a Hewlett-Packard 531w personal computer with a
1.3GHz Intel Celeron processor, 512MB RAM, 40GB hard drive, running the Windows
XP Home Edition operating system. The test files consisted of 2725 image files (i.e., PE
files) already installed on the computer and used frequently for home office use,

computer science research, personal entertainment, and software development.

4.6.2 Three Test Objectives

We had three test objectives. Our first was to test that findssv could detect the
anomalies and security vulnerabilities that we had identified in the methodology. Our
second was to test if findssv could correctly read a varied assortment of PE formatted
files. Our third was to test if the automated methodology would produce meaningful
and useful test data on the anomalies and security vulnerabilities detected in the test

files.

4.6.3 Test Approach
To achieve our first objective, we tested findssv on a set of specific example files. This
also allowed us to fine-tune the findssv software and the automated methodology. In

addition, it allowed us to see what facts, anomalies, and security vulnerabilities we
94

could discover about software for which we had a special interest. To achieve our
second and third objectives, we identified six categories of PE files: executable
installation files, software development files, Windows XP operating system files,
Microsoft application files, security-centric application files, and miscellaneous
application files. The results of all of these tests are described in the rest of this

subsection.

4.6.4 General Contents of the Test Results

The test results from the specific example files contain a fact summary, display of file
parts, and file mapping output along with information on the detection of any anomalies
and security vulnerabilities. The test results from the six test categories only contain
information on the detection of anomalies and security vulnerabilities. Some of the test
results for the six categories became extremely lengthy when hundreds of files were
analyzed in the category. In such cases, the test results in Appendices C through I only
contain the names of the files analyzed and the total number of anomalies and/or

vulnerabilities detected in the files.

Paragraphs marked by the words “Key Finding” appear within many of the test result
descriptions. These paragraphs highlight noteworthy findings about executable files

that we discovered as a result of performing the tests and analyzing the results.

Each subsection of test results contains a results table with seven columns. The

columns have the following meanings for the entries in each row:

95

® A short description of the kinds of files tested

e The total number of files tested

¢ The total number of files with one or more anomalies

¢ The total number of files with one to three security vulnerabilities
¢ The total number of files with four or more security vulnerabilities
¢ The total number of anomalies in all of the files

¢ The total number of security vulnerabilities in all of the files

A "*" found in the cell in a vulnerability column signifies that not enough information
was available to test for security vulnerabilities in those file(s). This is mainly due to

the absence of a symbol table or import table in the files.

4.6.5 Testing Specific Example Files

This subsection covers the results we obtained from testing findssv on specific example
files. We selected these files for several reasons. First, the files demonstrate the overall
features of findssv. This includes the fact summaries and the display of the contents of
each header and table. Second, the files show how the C++ compiling and linking tools
from three different vendors (Borland, Cygwin, and Microsoft) generate three different
executable files, file maps, and test results for the same source code files. Third, the
files are important to the actual software development for this research effort. This is
described in more detail below. Table 2 lists a summary of the test results. The

detailed test results are in Appendix C.

96

Description of File(s) Total Total Total | Total Total Total
no. of with with with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.
1+) (1-3) (4+)
Vulnerable — Borland C++ 1 1 * * 3 *
Vulnerable — Cygwin Gnu C++ 1 1 0 1 1 24
Vulnerable — Microsoft VS C++ 1 1 * * 3 *
Helloworld — Borland C++ 1 1 * * 3 *
Helloworld — Cygwin Gnu C++ 1 1 0 1 1 7
Helloworld — Microsoft VS C++ 1 1 * * 3 *
findssv — Borland C++ 1 1 * * 3 *
findssv — Cygwin Gnu C++ 1 1 0 1 1 7
findssv — Microsoft C++ 1 1 * * 3 *
Cygwin Gnu Cygwinl.dll 1 1 0 1 3 12
Microsoft Windows XP kernel32.dll 1 1 1 0 5 2
JGRASP 1.7.5 IDE (.exe files) 3 3 * * 12 *

Table 2 — Test Summary of Specific Example Files

4.6.5.1 Results from Testing for Functions Susceptible to Buffer Overflow Attacks
We tested findssv on a C++ program named vulnerable.cpp (that we created) to see if
findssv would detect the use of functions susceptible to buffer overflow. The program
had only a main function that contained calls to each of the vulnerable functions listed
in [McGraw Viega and McGraw 2002]. We compiled and linked the file into different

executable versions using three separate vendor products.

When findssv analyzed the executable file built by the Cygwin Gnu compiler and linker
[Cygwin 2004], it was able to detect the use of the vulnerable functions by examining
both the symbol table and the import table. The import table was available because the
Gnu linker arranges for the program to use the standard cygwinl.dll dynamic link
library rather than include the function code in the executable file. When findssv
analyzed the executable file built by the Borland compiler and linker [Borland 2004], it

97

did not detect the use of any vulnerable functions. The same negative results occurred
with the Visual Studio compiler and linker [Visual Studio 2004]. This is because both
linkers automatically strip the symbol table from the executable file and include any
standard C library code as a part of the executable file. This occurrence is made more
evident by comparing the sizes of the three executable files:

e vulnerable.exe (built using the Gnu linker): 7,168 bytes

¢ vulnerable.exe (built using the Borland linker): 66,560 bytes

¢ vulnerable.exe (built using the Visual Studio linker): 45,056 bytes

Key Finding: It is possible for an executable file to reveal less information about the
functions it uses to hackers by having its symbol table stripped and by having the linker
include the language's standard function definitions in the executable file rather than

reference functions in a dynamic link library.

4.6.5.2 Results from Testing a "Hello World" Program

We tested findssv on a hello world source code file that consisted simply of a main()
function definition containing one C++ "cout" function call to print "Hello World"
followed by one statement to return O from the function. We compiled and linked this
file into different executable versions using three separate vendor products. The results
shown in Appendix C were rather surprising. Findssv detected no vulnerabilities in the
Borland and Visual Studio versions; however, it detected seven vulnerable functions in

the Cygwin Gnu version. This means that the Gnu compiler used those seven

98

vulnerable functions either in its implementation of the C++ source code for "Hello

World" or in its runtime environment included with the hello world program.

Key Finding: A program compiled and linked using the Cygwin Gnu tools will have
standard C functions in it that are susceptible to buffer overflow attacks even when

these functions are not explicitly used by the software developer.

4.6.5.3 Results from Testing the findssv Program

An obvious candidate to run the findssv software against is itself. When we did this, the
test results showed that findssv contained no software security vulnerabilities, at least
when compiled and linked using either the Borland or Microsoft Visual Studio tools.
This was expected based on the evidence gained after compiling and linking the
"vulnerable" program described above. However, the version of findssv generated using
the Cygwin Gnu compiler and linker contained seven vulnerable functions: getc(),
memcpy(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy(). A text search of the
findssv source code files for these function names resulted in no matches. These results

were consistent with those for the hello world program.

Key Finding: The Cygwin Gnu C++ compiler and linker injected seven vulnerable

function calls into the executable program of the findssv program.

99

4.6.5.4 Detection of Vendor-Specific Patterns in File Maps

We noticed something interesting in the file maps created by findssv for the
vulnerable.cpp, helloworld.cpp, and findssv programs. Each set of compiler and linker
tools created a different arrangement of sections and optional tables in the executable
file. In other words, the executable code created by a certain vendor's linker had a

pattern to it that was not dependent on the purpose of the application.

Key Finding: It may be possible to analyze the general layout of the sections and tables
in a file map in order to detect a pattern that indicates the compiling and linking tools

used to generate an executable file.

4.6.5.5 Results from Testing the Cygwin1.dll File

The apparent security weakness of the Cygwin C++ compiler to inject vulnerable
functions into a software application extends beyond the compiler. Each executable
program generated using the Cygwin C++ compiler and linker uses the Cygwinl.dll
dynamic link library. When we tested findssv against Cygwin1.dll, it detected 12
sections in the file with attributes set that allow the contents of the 12 sections to be
both written to and executed. This is a hacker's dream to find such an error because the
sections in an executable program that contain executable code should have the read
only attribute set instead. This stops hackers from placing executable code in these
sections when the program is loaded in memory. The security concerns of Cygwin even

get worse than this. Many of the software products that come bundled with Cygwin

100

contain software security vulnerabilities. For more details, see the upcoming subsection

on the test results from the software development files.

Key Finding: The Cygwinl.dll file contains security vulnerabilities that allow

executable code to be modified after the program is loaded into memory and executed.

4.6.5.6 Results from Testing the Kernel32.dll File

Almost every executable program that we tested findssv against uses the Kernel32.dll
dynamic link library. It serves as a common DLL to provide a path to other DLLs on a
computer system that may not have standard names. Findssv detected that kernel32.d1l

contains calls to two vulnerable functions: sprintf() and strncpy().

Key Finding: The Kernel32.dll contains functions that are susceptible to buffer

overflow attacks.

4.6.5.7 Results from Testing the JGRASP Files

We used jGRASP as the main integrated development environment for the findssv
software. Most of JGRASP is written in Java; consequently, we only tested findssv on
the executable files that JGRASP uses as wedges to run compiler and linkers. Findssv
detected no security vulnerabilities in the JGRASP executable files. However, if the
JGRASP executable files were linked using the Borland or the Visual Studio linker, then
these results could be misleading because findssv found no symbol table or import table

in any of the files.

101

4.6.6 Testing Executable Installation Files

This subsection covers the results we obtained from testing findssv on executable
installation files. The files in this test category all serve the same purpose: to act as a
repository and a means for the installation of one or more files on a computer. Table 3

lists a summary of the test results. The detailed test results are in Appendix D.

Description of File(s) Total Total Total | Total Total Total
no. of with with | with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.

(1+) 1-3) | 4+
*

Adobe Acrobat Reader 5.0 installation 1 1 * 3 *
file

Earthlink TotalAccess 5.0 installation file 1 1 * * 4 *
Java SDK 1.4.2 installation file 1 1 1 0 4 1
Java SDK 1.5 installation file 1 1 1 0 4 1
JGRASP 1.7.5 installation file 1 1 * * 4 *
JGRASP 1.7.5 (with JRE) installation file 1 1 * * 4 *
Windows Media Player 9.0 installation 1 1 * * 4 *
file

Real One Player (Windows XP) 1 1 * * 4 *

installation file

Table 3 — Test Summary of Executable Installation Files

4.6.6.1 The Mechanics of Executable Installation Files

Executable installation files call either the Windows InstallShield program or their own
internal functions to uncompress files that are stored in the file and then copy these files
into specific subdirectories on a hard drive. They also contain function calls to the
advapi32.dll dynamic link library to create and update information in the Windows

registry.

102

4.6.6.2 Results from Testing Executable Installation Files

When we tested findssv on the installation files, only the Java SDK files revealed any
security vulnerabilities. The Java SDK 1.4.2 installation file contained the use of the
sprintf() function that is vulnerable to buffer overflow attack. The Java SDK 1.5
installation file contained 4492 bytes of unused zero-filled bytes that could be used to

store malicious code or data.

4.6.6.3 Results from Testing for Compressed Files

Near the middle or end of each executable installation file, findssv detected a large
region containing millions of bytes of compressed data (i.e., compressed files). Some
of these regions were in a separate section of their own named ".winzip" or in the ".rsrc"
section. Other regions were not in a specific section at all, but instead were located at
the end of a file after all the sections and tables. This is possible because the Windows
loader only loads specific section and table information into memory when a program is
run. Any other information in an image file that does not conflict with the PE format is

ignored.

Key Finding: An image file can take advantage of the flexibility of the PE format and

serve as its own storehouse for millions of bytes of data.

103

4.6.7 Testing Software Development Files

This subsection covers the results we obtained from testing findssv on software

development files. The files in this test category contain the executable programs and

dynamic link libraries used by a programmer to create software using various vendor

software tools. They consist of integrated development environments, compilers,

linkers, debuggers, and other utilities. Table 4 lists a summary of the test results. The

detailed test results are in Appendix E.

Description of File(s) Total Total Total | Total Total Total
no. of with with with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.
a+) 1-3) | 4+
Borland C++ Builder 5 executable files 22 22 * * 79 *
Borland C++ Builder 5 DLL files 20 20 * * 46 *
Cygwin executable files 325 325 107 177 331 1448
Cygwin DLL files 56 56 19 32 122 234
Sun Java 4.2 executable files 15 15 12 2 46 32
Sun Java 4.2 DLL files 41 41 27 1 181 44
Microsoft VS SDK executable files 29 29 5 2 117 25
Microsoft VS SDK DLL files 3 3 1 0 14 1
Microsoft VS VC7 executable files 15 15 5 3 64 27
Microsoft VS VC7 DLL files 6 6 2 3 34 21

Table 4 — Test Summary of Software Development Files

4.6.7.1 Results from Testing the Borland Files

When we tested findssv on the Borland software development files, it detected many

anomalies but no security vulnerabilities. The anomalies dealt with inconsistencies in

the actual sizes for the optional tables compared to the size values given in the data

directory of the optional header. The lack of any security vulnerabilities is consistent

104

with our earlier findings when we tested the specific example files. It appears that

Borland uses its own compiler and linker to build its software development tools.

4.6.7.2 Results from Testing the Cygwin Files

We tested findssv on the complete suite of software development files that come with
the Cygwin download. This includes many directory and file utility programs in
addition to software development files. Our tests detected a wealth of anomalies and
vulnerabilities. Of the 325 executable files that we tested, findssv found vulnerabilities
in 284 of them. Of those, 21 had 10 or more vulnerabilities. Some of these programs
were: as, captoinfo, cvs, expect, ftp, gdb, gprof, info, infotocap, insight, 1d, less,
makinfo, mutt, ncftp, squid, tic, and wget. The gcc and g++ compilers both had six
vulnerabilities. Of the 56 DLL files that we tested, findssv found vulnerabilities in 51
of them. Of those, four of the files had nine or more vulnerabilities. This included

cygwinl.dll with 12 vulnerabilities.

Findssv detected not only calls to functions susceptible to buffer overflow attacks, but

also found the following vulnerabilities:

e A writeable and executable ".idata" (import table) section in cyghistory4.dll,
cygreadline4.dll, chgrp.exe, chmod.exe, chown.exe, cp.exe, data.exe, dd.exe,
df.exe, dir.exe, dircolors.exe, du.exe, install.exe, In.exe, Is .exe, mkdir.exe,

mkfifo.exe, mknod.exe, mktemp.exe, mv.exe, rm.exe, rmdir.exe, and shred.exe

105

* A writeable and executable ".text" section in cygform6.dll, cyggdbm,
cyggettextsrc-0-12-1.dll, cyggettextsrc-0-12-1.dll, cygmenu6.dll,
cygncurses++6.dll, cygpanel6.dll, cygpcreposix-0.dll, Cygwinl.dll, fileman.exe,
less.exe, mutt.exe, ncftp.exe, ncftpbookmarks.exe, rcp.exe, rl.exe, rlogin.exe,
rlvsersion.exe, rsh.exe, scp.exe, sftp.exe, ssh-add.exe, and ssh-agent.exe

* A writeable and executable ".text" section and source code file names in
cygform?7.dll, cygmenu?7.dll, cygpanel7.dll, clearn.exe, infocmp.exe,

infotocap.exe, reset.exe, tack.exe, tic.exe, toe.exe, tput.exe, and tset.exe

In addition, findssv detected six executable files that listed the names of their source
code files. These executable files were cygncurses7.dll, mingwm10.dll, awk.exe,

captoinfo.exe, gawk.exe, and pgawk.exe

Key Finding: The Cygwin software development files and utility programs contain
scores of security vulnerabilities. Therefore, we do not recommend them for secure

programming activities.

4.6.7.3 Results from Testing the Sun Microsystems Java Files

We tested findssv on 15 executable files and 41 DLLs that are part of the Sun
Microsystems Java development suite. Findssv detected security vulnerabilities in 14 of
the executable files. This includes java.exe, the Java interpreter. The vulnerabilities
that occurred most often were the use of the fgets() and sprintf() functions, which are

susceptible to buffer overflow attacks. Many of the executable files also contained calls

106

to the fgetc() and sscanf() functions. Findssv detected security vulnerabilities in 28 of
the DLL files. These mostly involved the use of one of more of the following

functions: sprintf() sscanf(), fgets(), and fgetc().

Key Finding: 42 of the 56 Sun Microsystems Java software development files that we
tested (including the Java interpreter) contained one or more functions that are

susceptible to buffer overflow attacks.

4.6.7.4 Results from Testing the Microsoft Visual Studio SDK Files

We tested findssv on 29 executable files and three DLLs that are part of the Microsoft
Visual Studio SDK. Findssv detected security vulnerabilities in seven of the executable
files. The most severe was the ildasm.exe program (the MSIL disassembler), where
findssv found the use of seven functions susceptible to buffer overflow attacks: fgets(),
memcpy(), sprintf(), strcat(), strcpy(), strncpy(), and vsnprintf(). Findssv detected a
security vulnerability in only one of the DLL files. This vulnerability was the use of the

sprintf() function, which is also susceptible to a buffer overflow attack.

Key Finding: 8 of the 32 Microsoft Visual Studio SDK files that we tested (including

the MSIL disassembler) contained one or more functions that are susceptible to buffer

overflow attacks.

107

4.6.7.5 Results from Testing the Microsoft Visual C/C++ 7.0 Files

We tested findssv on 15 executable files and six DLLs that are part of the Microsoft
Visual Studio SDK. Findssv detected security vulnerabilities in eight of the executable
files. The two most severe were the cl.exe program and the link.exe program. The
cl.exe program is the Visual C/C++ compiler. In this file findssv found the use of
eight functions susceptible to buffer overflow attacks: fgets(), getchar() memcpy(),
sprintf(), sscanf(), strcat(), strcpy(), and strncpy(). The link.exe program is the Visual
C/C++ linker. In this file findssv found the use of seven vulnerable functions: fgets(),
getc(), getchar(), read(), sprintf(), sscanf(), and strncpy(). Findssv detected a security
vulnerability in five of the DLL files. The most severe was the c1xx.dll file. In this file
findssv found the use of seven vulnerable functions: fgets(), read(), snprintf(), sprintf(),

sscanf(), strncpy(), and vsnprintf().

Key Finding: 13 of the 21 Microsoft Visual Studio C/C++ 7.0 files that we tested
(including the compiler and linker) contained one or more functions that are susceptible

to buffer overflow attacks.

4.6.8 Testing Windows XP Home Edition Operating System Files

This subsection covers the results we obtained from testing findssv on Windows XP
Home Edition operating system files. We tested all of the images files located in the
c:\windows directory, the c:\windows\system directory, and the c:\windows\system32

directory. This included executable files, dynamic link libraries, and driver files.

108

Table 5 lists a summary of the findings. Appendix F contains the actual test results.

Description of File(s) Total Total Total | Total Total Total
no. of with with | with no. of | no. of
Files | Anom. | Vul Vul. | Anom. | Vul

a+) a-3) | @44

Windows executable files (in c:\windows) 20 20 4 0 108 5

Windows DLL files (in c:\windows) 2 2 1 0 10 2

Windows System32 executable files (in 279 279 57 9 1135 123

c:\windows\system32)

Windows System32 DLL files (in 1304 1304 317 49 6245 743

c:\windows\system32)

Windows System32 DRYV files (in 5 5 * * 26 *

c:\windows\system32)

Windows System DLL files (in 2 2 * * 7 *

c:\windows\system)

Windows System DRYV files (in 1 1 * * 6 *

c:\windows\system)

Table 5 — Test Summary of Windows XP Operating System Files

4.6.8.1 Results from Testing Files in the C:\windows and C:\windows\system
Directories

When we tested findssv on the executable and DLL files in the c:\windows directory, it
detected very few security vulnerabilities. Of the 20 executable files, only four
contained any vulnerabilities and these were all three or less occurrences. When we
tested findssv on the files in the c:\windows\system directory, it was not able to identify

any vulnerability information because of the missing symbol tables and import tables.

109

4.6.8.2 Results from Testing Files in the C:\windows\system32 Directory

We tested findssv on 279 executable files in the c:\windows\system32 directory.
Findssv detected four or more security vulnerabilities in nine of the files. The most
severe of these were the Ntsd.exe file and the MsPMSPSv.exe file. The
MsPMSPSv.exe file uses seven functions susceptible to buffer overflow attacks:
memcpy(), sprintf(), sscanf(), strcat(), strcpy(), strncpy(), and veprintf(). The file
Ntsd.exe also uses seven functions susceptible to buffer overflow attacks: fgetc(),

fgets(), snprintf(), sprintf(), sscanf(), strncpy(), and vsnprintf().

We tested findssv on 1304 DLL files in the c:\windows\system32 directory. Findssv
detected four or more security vulnerabilities in 49 of the files. The most severe of
these were dbgeng.dll, drmv2clt.dll, LibZkr.dll, python15.dll, vsinit.dll, vsutil.dll, with
eight vulnerabilities each, and ipebase12.dll with nine security vulnerabilities. These
nine vulnerabilities consisted of nine functions susceptible to buffer overflow attacks:

fgets(), fscanf(), getc(), read(), sprintf(), sscanf(), strncpy(), vsnprintf(), and vsprintf().

Findssv found one file named exsec32.dll in the C:\windows\system32 directory that
revealed the names of the six source code files that were used to build it. This

information was stored in the symbol table of the file.

Key Finding: In the Windows XP Home Edition c:\windows\system32 directory,
approximately 25% of the executable files and dynamic link libraries use one or more

standard C functions that are susceptible to buffer overflow attacks.

110

4.6.9 Testing Microsoft Application Files

This subsection covers the results we obtained from testing findssv on a variety of
heavily-used Microsoft application files. This includes Microsoft Office software,
multimedia software, and network-enabled applications. Table 6 lists a summary of the

findings. Appendix G contains the actual test results.

Description of File(s) Total Total Total | Total Total Total
no. of with with | with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.

(1+) 1-3) (4+)

Microsoft Office 2000 executable files 14 14 5 1 59 10
Microsoft Office 2000 DLL files 48 48 17 3 253 42
Microsoft Outlook Express executable 5 5 * * 20 *

files

Microsoft Outlook Express DLL files 6 6 * * 29

Windows Internet Explorer executable 1 1 * * 4

files

Windows Internet Explorer DLL plugin 7 7 1 1 35 8

files

Windows Media Player 9 executable files 5 5 2 1 21 9

Windows Media Player 9 DLL files 8 8 2 0 45 4
Windows Messenger executable files 2 2 * * 9 *

Windows Messenger DLL files 3 3 * * 14 *

Windows MovieMaker executable files 1 1 0 1 5 5

Windows MovieMaker DLL files 3 3 2 0 15 3

Windows NetMeeting executable files 3 3 * * 12 *

Windows NetMeeting DLL files 15 15 1 0 77 1

Table 6 — Test Summary of Microsoft Application Files

4.6.9.1 Results from Testing Microsoft Office Files
We tested findssv on 14 executable files and 48 dynamic link library files that are part

of Microsoft Office. Findssv found no standard C functions susceptible to buffer

111

overflow attacks in excel.exe (Excel), outlook.exe (Outlook), powerpnt.exe
(PowerPoint), winproj.exe (Project), or winword.exe (Word). It did detect four such
vulnerabilities in the wavtoasf.exe file. These consisted of function calls to fgets(),

sprintf(), sscanf(), and strncpy().

4.6.9.2 Results from Testing Network-Enabled Files

When we tested findssv on the executable files for Outlook Express, Internet Explorer,
Messenger, and NetMeeting, it was unable to detect any security vulnerabilities. This
was partially because the symbol tables and import tables are not present. However,
findssv also searched for code sections with writable characteristics and large unused
file regions in these files. Neither of these vulnerabilities was found. However, findssv
did find seven security vulnerabilities in the NPDocBox.dll file, which is a DLL for
Internet Explorer. This file uses calls to seven functions susceptible to buffer overflow

attacks: memcpy(), snprintf(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy().

4.6.9.3 Results from Testing Windows Media Player and MovieMaker Files

We tested findssv on five executable files and eight dynamic link library files that are
part of Windows Media Player. Findssv found no security vulnerabilities in the

wmplayer.exe file, but it did find four vulnerabilities in the migrate.exe file. That file
contains calls to four vulnerable functions: memcpy(), strcat(), strcpy(), and strncpy().
Findssv found three security vulnerabilities in the npdrmv?2.dll file. That file contains

calls to three vulnerable functions: memcpy(), strcat(), and strcpy().

112

When we tested findssv on the moviemk.exe file, which is the major file for
MovieMaker, it detected five security vulnerabilities. These consisted of calls to the
following functions vulnerable to buffer overflow attacks: memcpy(), sprintf(), sscanf(),

strepy(), and strncpy().

4.6.10 Testing Security-Centric Application Files
This subsection covers the results we obtained from testing findssv on security-centric
application files. The files in this test category consist of programs whose main purpose

is to improve the security of the computing environment of a personal computer.

Description of File(s) Total Total Total | Total Total Total
no. of with with with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.

1+ a3 | @4+

Network Associates Common Framework 7 7 4 1 28 19

executable files

Network Associates Common Framework 35 35 24 5 175 70

DLL files

Network Associates VirusScan 7.0 11 11 1 0 45 1

executable files

Network Associates VirusScan 7.0 DLL 16 16 * * 81 *

files

Secure CRT 4.0 executable files 5 5 1 2 23 12

Secure CRT 4.0 DLL files 5 5 3 1 30 10

SpyBot 1.2 executable files 4 4 * * 16 *

SpyBot 1.2 DLL files 7 7 * * 12 *

WinSCP executable file 1 1 1 0 5 2

Zero Knowledge Freedom 3.0 executable 5 5 1 0 19 1

files

Zero Knowledge Freedom 3.0 DLL files 34 34 23 1 173 42

Zone Alarm Pro 4 executable files 6 6 1 1 23 6

Zone Alarm Pro 4 DLL files 3 3 1 2 15 11

Table 7 — Test Summary of Security-Centric Application Files

113

Before testing this category, we had thought that these files would be our shining stars
for secure programming and contain no security vulnerabilities; however, the results
showed otherwise. Table 7 lists a summary of the findings. Appendix H contains the

actual test results.

4.6.10.1 Results from Testing Network Associates' Virus Scanning Files

We tested findssv on both the Common Framework files and the VirusScan files that
are part of the Network Associates software installation. The VirusScan files faired
well, but one of the Common Framework executable files and five of the Common
Framework dynamic link library files contained four or more security vulnerabilities.
The executable file is McScript.exe. It contains the use of ten functions that are
susceptible to buffer overflow: getc(), memcpy(), read(), snprintf(), sprintf(), sscanf(),
strcat(), strepy(), strncpy(), and vsnprintf(). The DLL files are InternetManager,dll,
ListenServer.dll, naCmnLib.dll, naisign.dll, and Scheduler.dll. All contain calls to

vulnerable functions.

Key Finding: In the Network Associates Common Framework software installation that
accompanies the VirusScan software installation, approximately 75% of the executable
files and dynamic link libraries use one or more standard C functions that are

susceptible to buffer overflow attacks.

114

4.6.10.2 Results from Testing SecureCRT Files

We tested findssv on five executable files and five dynamic link library files that are a
part of SecureCRT. It found four or more security vulnerabilities in two of the
executable files and one of the dynamic link library files. The SecureCRT.exe file
contains calls to three vulnerable functions. The Vcp.exe file contains calls to four
vulnerable functions. The Vsh.exe file contains calls to five vulnerable functions:
gets(), sprintf(), sscanf(), strncpy(), and vsprintf(). One of these, the gets() function, is
considerable an ultra high risk function for buffer overflow attacks, and its use is never
recommended. The Mfc42.dll file contains 3409 unused zero-filled bytes that could be
used to store malicious code or data. It also contains the use of four functions

susceptible to buffer overflow attacks: fgets(), memcpy(), sprintf(), and vsprintf().

Key Finding: The SecureCRT 4.0 software contains executable files and DLL files that

are highly vulnerable to buffer overflow attacks.

4.6.10.3 Results from Testing Zero Knowledge Freedom Files

Zero Knowledge Freedom is designed to be a firewall software product. When we
tested findssv on the DLL files for Zero Knowledge Freedom, it found security
vulnerabilities in 24 of the 34 files. The most severe was the NetworkR.dllI file that

contained the use of four vulnerable functions: memcpy(), snprintf(), strcat(), and

strepy().

115

Key Finding: In the Zero Knowledge Freedom software, approximately 70% of the
dynamic link library files contain standard C functions that are susceptible to buffer

overflow attacks.

4.6.10.4 Results from Testing Zone Alarm Pro Files

Zone Alarm Pro is also designed to be a firewall software product. When we tested
findssv on Zone Alarm Pro files it faired better than Zero Knowledge Freedom; one
executable file and two dynamic link libraries contained four or more security
vulnerabilities. The executable file is zapro.exe, which is the main program for Zone
Alarm Pro. It contains calls to five vulnerable functions: memcpy(), sprintf(), strcat(),
strcpy(), and strncpy(). The two dynamic link library files are expert.dll and

framewrk.dll. Both contain five calls to vulnerable functions.

Key Finding: In the Zone Alarm Pro software, all three of the dynamic link library files

contain standard C functions that are susceptible to buffer overflow attacks.

4.6.11 Testing Miscellaneous Application Files

This subsection covers the results we obtained from testing findssv on a variety of
miscellaneous application files that did not fit in any of the previous test categories.

Table 8 lists a summary of the findings. Appendix I contains the actual test results.

116

Description of File(s) Total Total Total | Total Total Total
no. of with with with no. of | no. of
Files | Anom. Vul. Vul. Anom. Vul.
(a+) (1-3) | @44
Adobe Acrobat Reader 5.0 executable 1 1 * * 5 *
files
Adobe Acrobat Reader 5.0 DLL files 7 7 1 1 31 11
Earthlink TotalAccess 5.0 executable files 13 13 8 1 56 27
Earthlink TotalAccess 5.0 DLL files 54 54 31 11 273 114
HP PC CoreTech executable files 1 1 1 0 4 2
HP PC CoreTech DLL files 7 7 2 0 34 4
Iomega ZIP Disk executable files 4 4 * * 15 *
MusicMatch Jukebox executable files 11 11 2 3 43 17
MusicMatch Jukebox DLL files 44 44 18 11 219 78
OpenOffice 1.1 executable files 8 8 4 0 28 8
OpenOffice 1.1 DLL files 193 193 38 12 1002 123
Real One Player executable files 4 4 1 0 14 2
Real One Player DLL files 15 15 12 2 73 32
Veritas Update Manager image files 9 9 5 0 43 9
WinZIP 8.0 executable files 2 2 * * 8 *
WinZIP 8.0 DLL files 7 7 * * 32 *

Table 8 — Test Summary of Miscellaneous Application Files

4.6.11.1 Observing the State of Secure Programming Practices in Commercial
Software

These test results gives us an indication of the state of secure programming practices in
commercial software. As has been observed already in the previous tables, what really
stands out in the test results are those programs in which findssv detected a large
number of vulnerabilities and those in which it detects only a few. As for the programs
in which findssv found no vulnerabilities, we must be cautious about give them a high
rating. Recall that findssv can only detect the presence of security vulnerabilities, not
confirm they don't exist. Nevertheless, when findssv does detect vulnerabilities, it is

worth noticing as we point out concerning the DLL files below.

117

In Earthlink TotalAccess, findssv detected security vulnerabilities in 42 of the 54 DLL
files. In MusicMatch Jukebox, findssv detected security vulnerabilities in 29 of the 44
DLL files. Of the 29 files, 11 have four or more vulnerabilities. In OpenOffice, findssv
detected security vulnerabilities in only 50 of the 193 DLL files. But of those 50 files,
12 have four or more vulnerabilities. In Real One Player, findssv detected security

vulnerabilities in 14 of the 15 DLL files.

This indicates a major lack of secure programming practices by the programmers who
developed the dynamic link libraries for these application programs. This is in sharp
contrast to the very low number of security vulnerabilities detected by findssv in the
DLL files of the Windows application files. However, this high number of
vulnerabilities corresponds closely to the large number of vulnerabilities found in the

executable files and the DLL files in the c:\windows\system32 directory.

118

5. CONCLUSION

Our main goal throughout this research effort has been to devise and test techniques to
automatically detect software security vulnerabilities in executable program files
through static code analysis. Published open source auditing techniques only describe
automated static code analysis of source code files. Because of the results of this
research effort, a second approach directed at executable files now exists for the
security analyst, the software developer and the computer user. This new approach
takes a time-consuming manual process that required weeks to complete and replaces it
with an automated methodology that not only finishes in just seconds, but until this

research effort occurred, was not available in open source.

5.1 Proof of the Dissertation Hypothesis

5.1.1 The Hypothesis

This research effort involved the automatic scanning of executable files. Specifically, it
involved the scanning of files that conform to the portable executable (PE) format
designed for software running on Windows NT/XP computers. This effort set out to

prove the following hypothesis:

A methodology can be devised that uses information located in the headers, sections,

and tables of an executable file, along with information derived from the overall

119

contents of the file, as a means to detect specific software security vulnerabilities
without having to disassemble the code. Such a methodology can be instantiated in a
software utility program that automatically detects certain software security

vulnerabilities before installing and running the executable file.

5.1.2 Achievement of Research Objectives

We proved our hypothesis by achieving four research objectives: identification of PE
file information useful in a security vulnerability analysis, formulation of a
methodology for conducting the analysis, automation of the methodology, and testing of

the automated methodology.

5.1.2.1 Identification of PE File Information

We identified specific information in the PE file format that was useful in a security
vulnerability analysis. The characteristics for each section entry in the section table can
reveal executable code that can be written to during program execution. The
mismatches in the number of expected entries and the number of actual entries in the
section table can reveal hidden sections or sections that are listed but don't actually
exist. Occurrences of C standard function names in the symbol table and import table
can reveal the use of functions that are susceptible to buffer overflow attacks. A byte-
for-byte mapping of the complete file contents can reveal areas of unused zero-filled

space that could be used to store malicious code or data.

120

5.1.2.2 Formulation of a Methodology

Using the information discussed in the paragraph above, we formulated a methodology
for conducting the analysis and identifying certain security vulnerabilities. These are
the steps of the methodology:

e C(reate a file fact summary to understand the general layout of the file

e Detect anomalies when reading in the parts of a PE file

e Detect anomalies when mapping the complete file contents

e Detect sections that are both writable and executable

e Detect non-existent or spurious sections

® Detect large unused regions in the file

e Detect the use of C library functions that are susceptible to buffer overflow attack

e Report the anomalies and vulnerabilities that were found

5.1.2.3 Automation of the Methodology

We incorporated this methodology into a software application called findssv that
dissects a PE file and analyzes its contents for anomalies and security vulnerabilities.
The findssv software consists of 3800 source lines of C++ code. It has a driver module,
a utility module, and 22 classes. The program runs in MS-DOS text mode and accepts a
variety of options on the command line to assist the security analyst in checking either
one executable file or a complete directory of files. The program produces results after

only a few seconds of operation for each file.

121

5.1.2.4 Testing of the Automated Methodology

We ran the findssv software on seven categories of executable files totaling 2700 files
in all. Findssv was able to automatically detect the kinds of anomalies and
vulnerabilities that we had identified when examining the PE file format. Findssv also
correctly read a varied assortment of PE formatted files. In addition, findssv produced
meaningful and useful test data on the anomalies and security vulnerabilities detected in

the test files.

5.1.3 Key Findings Extracted From the Test Results

We extracted the following sixteen key findings from analyzing the test results

produced by findssv:

e tis possible for an executable file to reveal less information about the functions it
uses to hackers by having its symbol table stripped and by having the linker include
the language's standard function definitions in the executable file rather than
reference the functions in a dynamic link library

e A program compiled and linked using the Cygwin Gnu tools will have standard C
functions in it that are susceptible to buffer overflow attacks even when these
functions are not explicitly used by the software developer

e The Cygwin Gnu C++ compiler and linker injected seven vulnerable function calls
into the executable program of the findssv program

¢ [t may be possible to analyze the general layout of the sections and tables in a file
map of an executable file in order to detect a pattern that indicates the compiling

and linking tools used to generate the file

122

The Cygwinl.dll file contains security vulnerabilities that allow executable code to
be modified after the program is loaded into memory and executed

The Kernel32.dll file contains functions that are susceptible to buffer overflow
attacks

An executable or dynamic link library file can take advantage of the flexibility of
the PE format and serve as its own storehouse for millions of bytes of data

The Cygwin software development files and utility programs contain scores of
security vulnerabilities. Therefore, we do not recommend them for secure
programming activities

42 of the 56 Sun Microsystems Java software development files that we tested
(including the Java interpreter) contained one or more functions that are susceptible
to buffer overflow attacks

8 of the 32 Microsoft Visual Studio SDK files that we tested (including the MSIL
disassembler) contained one or more functions that are susceptible to buffer
overflow attacks

13 of the 21 Microsoft Visual Studio C/C++ 7.0 files that we tested (including the
compiler and linker) contained one or more functions that are susceptible to buffer
overflow attacks

In the “c:\windows\system32” directory of the Windows XP Home Edition,
approximately 25% of the executable files and dynamic link libraries use one or

more standard C functions that are susceptible to buffer overflow attacks

123

¢ In the Network Associates Common Framework software installation that
accompanies the VirusScan software installation, approximately 75% of the
executable files and dynamic link libraries use one or more standard C functions
that are susceptible to buffer overflow attacks

¢ The SecureCRT 4.0 software contains executable files and DLL files that are highly
vulnerable to buffer overflow attacks

® In the Zero Knowledge Freedom software, approximately 70% of the dynamic link
library files contain standard C functions that are susceptible to buffer overflow
attacks

¢ In the Zone Alarm Pro 4.0 software, all three of the dynamic link library files

contain standard C functions that are susceptible to buffer overflow attacks

These key findings show that it is possible and advisable to analyze executable files in
an effort to detect security vulnerabilities. They also confirm that findssv can detect a
certain subset of software security vulnerabilities by directly interrogating executable

files in a static manner.

5.1.4 The Immediate Practical Uses of Findssv

Given a set of executable files, findssv provides a security analyst with the ability to
quickly pare down those files to the ones in which secure programming was not an
objective of the developers. This was made most evident in our test results of the
Microsoft Office files compared to those of the other standard Microsoft application

files and dynamic link libraries. It was clear that the Microsoft security experts had

124

gone through the Microsoft Office software with a fine-tooth comb looking for and
removing security vulnerabilities. On the other hand, the other Microsoft applications
were virtually ignored by their security specialists. Findssv can produce these same
useful and focused results upon analyzing applications from any software development
project. In addition, it can eliminate the occurrence of false positives because its
approach to an analysis is purely a fact-finding approach. Consequently, findssv will
answer the question, "Was secure programming a primary goal of the software

development team?"

With findssv, a security analyst can do in seconds what could take days or weeks of
semi-automated analysis using hex editors and file dump utilities. This is possible
because it knows where to look in a PE file and what to look for. In addition, it knows
when to stop looking for certain vulnerabilities when the indicators of those
vulnerabilities do not exist in the file. An example is the absence of a symbol table, a
string table, and an import table. When these three tables are missing from a file,
findssv skips its search for buffer overflow vulnerabilities. This does not mean that
such vulnerabilities do not exist in the file. Instead, it means that disassembling the
executable sections of the code or searching those sections for unique function call

signatures is the only other means of finding these vulnerabilities if they exist.

125

5.2 Performance of Findssv in a Real-World Security Vulnerability Analysis

5.2.1 Results Obtained by the Information Assurance Laboratory at Auburn
University

Last year, the security research group in the Information Assurance Laboratory at
Auburn University performed a security vulnerability assessment on simulation
software used by the Department of Defense. Their goal was to determine if the
executable files contained any classified information. In addition, they attempted to
find buffer overflow vulnerabilities in the software. Using the automated file utilities
currently available in Cygwin, Windows, and the Internet, the research group looked for
indications of classified information in eighteen executable files (141 million total
bytes) by running the software, disassembling and decompiling the software, and

statically analyzing the executable files.

When running the software they discovered one unhandled exception from the use of a
tab key. When using freeware decompilers, the utilities mostly produced unreadable or
invalid code. When disassembling the software, the utilities produced 9.3 million lines
of raw assembly code, which they attempted to analyze manually. When statically
analyzing the executable files, they searched for the occurrence of character strings

containing classified information.

5.2.2 Results Obtained by Using Findssv
At the close of this research effort we were given the opportunity to run findssv on these

same simulation software files to look for security vulnerabilities. It took findssv less

126

than a minute to analyze all eighteen files and produce results. Table 9 contains a

summary of the results.

File File Size Total Large Unused Import Symbol | Debug
Nbr (bytes) Vul. Unknown Zero- Table and Table
Region filled Anomaly | String
(bytes) Bytes Tables

1 6,622,124 12 4,381,612 | 100,726 | 80/1620 no yes
2 4,961,816 12 3,356,184 | 56,560 | 80/1620 no yes
3 34,304 0 0 0 40/927 no no
4 4,841,964 13 3,269,100 | 76,212 | 80/1694 no yes
5 34,816 0 0 0 40/927 no no
6 23,255,612 14 16,046,652 | 314,600 | 180/4663 no yes
7 23,043,168 12 15,219,658 | 364,746 | 100/2495 yes yes
8 26,864,140 14 19,544,588 | 413,280 | 160/8341 no yes
9 27,627,392 14 19,791,744 | 443,924 | 160/5339 no yes
10 6,041,004 12 4,124,076 | 72,142 | 80/1556 no yes
11 942,138 0 0 0| 60/2533 no yes
12 31,232 0 0 0 40/898 no no
13 4,207,940 13 2,856,260 | 68,720 | 80/1570 no yes
14 7,696,928 12 5,083,680 | 98,792 | 80/1623 no yes
15 33,280 0 0 0 40/908 no no
16 16,384 1 0 0 80/432 no no
17 4,385,052 13 2,951,452 | 64918 | 80/1594 no yes
18 374,436 10 280,228 5022 | 40/1026 no yes

Table 9 — Test Summary of Simulation Software Files

The first column in the table is a unique number identifier for each of the files. Because
of security reasons, the actual file names were removed in this document. The second

column is the size of the file in bytes. The sizes range from 16KB to 27MB.

The third column contains the total number of security vulnerabilities that findssv
detected in each file. These vulnerabilities consisted of regions of unused zero-filled
bytes and the use of functions susceptible to buffer overflow attacks. The fgetc(),

fgets(), fscanf(), scanf(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy() functions

127

were used in twelve of the files. The getchar() and memcpy() functions were used in
eleven of the files. The read() function was used in four of the files. The getc()
function was used in three of the files. The function with the highest risk of buffer

overflow attack, gets(), was used in three of the files.

The fourth column contains the size in bytes of large unknown regions found in many
of the files. These regions all appeared at the end of the files. The regions were not a
part of any known section or table. This is very peculiar to have such large unknown
regions in files that are not intended to install software. The fifth column contains the
total number of bytes in unused zero-filled regions found throughout a file. We
consider this a security vulnerability because these regions could be used to store

malicious code or data.

The sixth column contains values related to an anomaly found with the import table in
each of the files. The first value refers to the size in bytes for the import table as stated
in the data directory in the optional header. The second value refers to the actual size of
the table as found by findssv upon reading the import table contents. This anomaly
could be an error in the linker used to build each one of the files. If an object code
dump utility or program loader trusts the size value in the data directory, the

information read from the import table will be incomplete.

The seventh column tells if the file contained a symbol table and a string table. Only
File #7 contained the two tables. In all of the other files, the linker used by the

128

simulation development team must have removed the string tables and symbol tables.
Either the programmers requested this using a command line option or it is a default
action by the linker. The eighth column tells if the file contained a debug table.

Thirteen of the files contained debug tables.

Findssv also detected eleven files that used functions from the dynamic link library
intended for Windows socket programming. Such functions permit the transmission

and receipt of information between programs over a network connection.

In summary, these results provide one example of how findssv detected anomalies and
security vulnerabilities in real-world executable files consisting of tens of millions of
bytes in less than a minute of operation. One member of the Auburn security group
who worked on the analysis of the simulation software gave the following comment

after experimenting later with findssv:

"The findssv software would have been very helpful during the analysis of the
simulation software...The findssv software would have been useful in order to help
determine critical portions of the simulation software and what values were contained in
the program. This is especially important when the source code of the simulation model
is not available and the executable itself must be examined for specific values [Chatam

2005]."

129

5.3 Future Work

The creation of the findssv software and the automation of our security vulnerability
detection methodology is our first success at performing static analysis of executable
files. It showed that a useful analysis could be done; however, we believe there is more
security-related information that can be gleaned from executable files. Further research
in the analysis of executable files is needed to identify more key indicators of software
security vulnerabilities that can be detected by automated means through static file
analysis. In the paragraphs below, we summarize some of our future research initiatives

in this area.

5.3.1 Determining the Compiler and Linker used to build an Executable File

In Section 4 of this document we noted that it may be possible to analyze the general
layout of the sections and tables in a file map of an executable file in order to detect a
pattern that indicates the compiling and linking tools used to generate the file. This
observation needs to be turned into a feature of findssv. First, we could study the layout
patterns in the file maps of executable files generated by known compiler and linker
utilities. Findssv is currently the only software we know of that generates a map of an
executable file. Consequently, we would use findssv to discover information in order to
expand the features of findssv. (This may seem unusual, but we used the early version
of findssv when it was just a PE dissecting tool to figure out where sections and tables
were stored in a PE file.) Second , we could draw relationships between the compiler

and linker utility vendors and the layout patterns. Third, we could formulate a way to

130

incorporate this logic into findssv so it could report that an executable file was built

using a certain compiler and linker.

5.3.2 Relationship of DLL Function Use to Program Purpose

Findssv only uses the import table as a place to check for the names of functions that
are susceptible to buffer overflow attacks. These function names and their
corresponding DLL files could also be used to determine the general activities
performed by a program. The DLLs and functions used by known programs could be
analyzed and relationships could be drawn among the purpose of the program and the
DLLs and functions it uses. These relationships could then be incorporated into findssv

and searched for in unknown executable files to ascertain their purpose.

5.3.3 More Details on Unknown Regions

We know how to use the start location, size, and relative virtual addresses in the PE file
to build a file map. We also know how to scan that map to detect large unknown
regions. The next step is to study the bytes in those regions to find out what they
contain. Is it executable code or is it data? If it is code, does the program use it? If it is
data, is it in some special format and does it belong to a table that is not a standard
component of the PE format? In other words, do some linkers create their own unique
tables of administrative information and place them at the end of executable files? All

of these questions need to be answered.

131

5.3.4 Individual Names of Files Stored in Compressed File Regions

Findssv is able to detect regions in an executable file that most likely contain
compressed files used by an installation program. We need to learn about the
compression formats used in those regions so that findssv can uncompress enough of
the data in order to report the list of individual file names and the proposed storage

locations for those files.

5.3.5 Detecting the Use of Standard Functions By Way of Function Call Signatures
The only way that findssv can detect the use of standard C functions that are susceptible
to buffer overflow attacks is by checking the function names in the symbol table and the
import table. If neither of these tables is present in an executable file, findssv cannot

perform the check for buffer overflow vulnerabilities.

An approach is needed that matches a series of particular byte values to a standard
function call in binary code. This series of bytes could then be used as a signature to
detect the use of certain vulnerable functions. Findssv could search for these signatures
in the executable code sections of a PE file and report the use of the corresponding
functions. This feature would allow us to remove the asterisks in the test result tables in
Section 4 of this document and replace them with actual numbers. We could then
analyze the executable files built with Borland and Microsoft linkers to see if those files

contain any buffer overflow vulnerabilities.

132

Although this approach sounds promising, it has a major dependency. It can only detect
the use of standard C functions for which we have identified a unique call signature. If
a software application uses its own I/O function calls rather than those from the

standard C library, then this approach will reap little benefit.

133

6. REFERENCES
[@stake 2004a]. @stake. SmartRisk Analyzer Press Release. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[@stake 2004b]. @stake. Technical Specifications for SmartRisk Analyzer. @ stake

Inc. www.atstake.com. Accessed on August 28, 2004.

[@stake 2004c]. @stake. SmartRisk Analyzer Product Datasheet. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[@stake 2004d]. @stake. SmartRisk Analyzer Product Whitepaper. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[Acar and Michener 2002] Acar, T. and Michener, J. Risk in Features vs. Assurance.
Communications of the ACM, (Aug 2002), 112.

[Ahmad 2003] Ahmad, D. The Rising Threat of Vulnerabilities Due to Integer Errors.
IEEE Security and Privacy, (Jul./Aug. 2003), 77-82.

[Anderson 2001] Anderson, R. Security Engineering. Wiley Computer Publishing,
New York, NY, 2001.

[Andress 2002] Andress, M. Surviving Security. Sams Publishing, Indianapolis, IN,
2002.

[Arbaugh, Fithen and McHugh 2000] Arbaugh, B.; Fithen, B., and McHugh J.
Windows of Vulnerability: A Case Study Analysis. IEEE Computer, 33 (10), Dec

2000.

134

[Arce 2004] Arce, I. The Kernel Kraze. IEEE Security and Privacy, (May/Jun. 2004).
[Arce and McGraw 2004] Arce, I. and McGraw, G. Why Attacking Systems Is a Good
Idea. IEEE Security and Privacy, (Jul./Aug. 2004).

[Arora and Telang 2005] Arora, A. and Telang, R.. Economics of software
vulnerability disclosure. IEEE Security and Privacy, (Jan./Feb. 2005).

[Barrantes et al. 2003] Barrantes, E.; Palmer, T.; Ackley, D.; Stefanovic, D.; Forrest, S.
and Dai Zovi, D. Randomized instruction set emulation to disrupt binary code injection
attacks. In the Proceedings of the 1 0" ACM Conference on Computer and
Communication Security (Washington, DC, 2003). ACM, New York, NY, 2003.
[Bhatkar, DuVarney, and Sekar 2003] Bhatkar, S.; DuVarney, D. and Sekar, R.
Address obfuscation: an efficient approach to combat a broad range of memory error
exploits. In the Proceedings of the 1 2™ USENIX Security Symposium (Washington, DC,
August 2003). USENIX, Berkeley, CA, 2003.

[Bishop 2005] Bishop, M. Introduction to Computer Security. Addison Wesley,
Boston, MA, 2005.

[Borland 2004] Borland. C++ Builder. Borland Website. www.borland.com. Accessed

on Dec. 10, 2004.

[Castro 2001] Castro, E. PERL and CGlI for the World Wide Web. Peachpit Press,
Berkeley, CA, 2001.

[CERT 2002] CERT Coordination Center. Module 8: Threats, Vulnerabilities, and
Attacks. Information Security for Technical Staff. Carnegie Mellon University.

http://www.andrew.cmu.edu/. Accessed on August 30, 2004.

135

[Chatam 2005] Chatam W. E-mail message received at my Auburn University account
on January 14, 2005.

[Chen and Wagner 2002] Chen, H. and Wagner, D. MOPS: An Infrastructure for
Examining Security Properties of Software. In the Proceedings of the 2002 Conference
on Computer Communications and Security (Washington, DC, Nov. 17-21). ACM,
New York, NY, 2002.

[Chess and McGraw 2004] Chess, B. and McGraw G. Static analysis for security.
IEEE Security and Privacy, (Nov./Dec. 2004).

[Christey et al. 1999] Christey, S., Baker, D., Hill, W. and Mann, D. The Development
of a Common Vulnerabilities and Exposures List. In the Proceedings of the 2
International Workshop on Recent Advances in Intrusion Detection (West Lafayette,
IN, September 1999).

[Christodorescu and Jha 2003] Christodorescu, M. and Jha, S. Static Analysis of
Executables to Detect Malicious Patterns. In the Proceedings of the 13" USENIX
Security Symposium (Washington, DC, August 2003). USENIX, Berkeley, CA, 2003.
[Cohen 1986] Cohen, N. Ada as a second language. McGraw-Hill, New York City,
NY, 1986.

[Cowan et al. 1998] Cowan, C.; Pu, C.; Maier, D.; Hinton, H.; Walpole, J.; Bakke, P.;
Beattie, S.; Grier, A.; Wagle, P. and Zhang Q. StackGuard: Automatic Detection and
Prevention of Buffer-Overflow Attacks. In the Proceedings of the 7™ USENIX Security
Symposium (San Antonio, TX, January 1998). USENIX, Berkeley, CA, 1998.

[Cygwin 2004] Cygwin. Cygwin Website. www.Cygwin.com. Accessed on Dec. 10,

2004.

136

[Dabak, Borate, and Phadke 1999] Dabak, P.; Borate M. and Phadke, S. Undocumented
Windows NT. Wiley and Sons, New York, NY, 1999.
[Dekok 2003] Dekok, A. PScan. Striker-On-Line.

www.striker.ottawa.on.ca/~aland/pscan/. Accessed Oct. 28, 2003.

[Dor, Rodeh, and Sagiv 2003] Dor, N., Rodeh, M., Sagiv, M. CSSV: Towards a
realistic tool for statically detecting all buffer overflows in C. In the Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (San Diego, CA, 2003). ACM, New York, NY, 2003.

[Du 1998] Du, W. Categorization of Software Errors That Led to Security Breaches. In
the Proceedings of the 21" National Information Systems Security Conference (Crystal
City, VA, 1998).

[DuVarney, Bhatkar, and Venkatakrishnan 2003] DuVarney, D.; Bhatkar, S. and
Venkatakrishnan, V. SELF: A Transparent Security Extension for ELF Binaries. In the
Proceedings of the 2002 New Security Paradigms Workshop (Ascona, Switzerland,
Aug. 18-21, 2003).

[Erickson 2003] Erickson, J. Hacking: The Art of Exploitation. No Starch Press, San
Francisco, CA, 2003.

[Evans 2004] Evans, D. Secure Programming Lint (SPLINT). Department of

Computer Science, University of Virginia. www.splint.org, accessed on Feb. 22, 2004.

[Evans and Larochelle 2002] Evans, D. and D. Larochelle. Improving Security Using
Extensible Lightweight Static Analysis. IEEE Software, no. 2 (Jan./Feb. 2002), 42-51.
[Fusco 2004] Fusco, J. Ten Commands Every Linux Developer Should Know. LINUX
Journal, September 2004.

137

[Ghosh and McGraw 1998] Ghosh, A. and McGraw G. An approach for certifying
security in software components. In the Proceedings of the 21" National Information
Systems Security Conference (Crystal City, VA, October 1998).

[Ghosh, O’Connor and McGraw 1998] Ghosh, A.; O’Connor, T. and McGraw, G. An
automated approach for identifying potential vulnerabilities in software. In the
Proceedings of the IEEE Symposium on Security and Privacy (Oakland, CA, May
1998).

[Gimpel 2003] Gimpel. PC-Lint Software. Gimpel Software. www.gimpel.com.

Accessed Nov. 1, 2003.

[Goth 2002] Goth, G. Federal Government Calls for More Secure Software Design.
IEEE Software, (Jan./Feb. 2002), 90-94.

[Graff and van Wyk 2003] Graff, M. and van Wyk, K. Secure Coding: Principles and
Practices. O'Reilly and Associates, Sebastopol, CA, 2003.

[Grimes 2001] Grimes, R. Malicious Mobile Code. O'Reilly and Associates,
Sebastopol, CA, 2001.

[Hall and Chapman 2002] Hall, A. and Chapman, R. Correctness by Construction:
Developing a Commercial Secure System. [EEE Software, (Jan./Feb. 2002), 18-25.
[Hamilton, Greaney, and Evans 2003] Hamilton J.; Greaney K.; and Evans G. Defining
a Process for Simulation Software Vulnerability Assessments. CrossTalk, (November
2003).

[Hankerson et al. 2000] Hankerson, D. et al. Coding Theory and Cryptography: The

Essentials, 2" Edition. Marcel-Dekker, New York, NY, 2000.

138

[Haugh and Bishop 2003] Haugh, E. and Bishop, M. Testing C programs for buffer
overflow vulnerabilities. In the Proceedings of the 2003 Symposium on Network and
Distributed System Security (San Diego, CA, February 2003).

[HBGary 2004a] HBGary. BugScan 2003 Press Release on July 31, 2003. HBGary

Inc. www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004b] HBGary. BugScan Technical White Paper. HBGary Inc.

www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004c] HBGary. BugScan 2003 User’s Manual. HBGary Inc.

www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004d] HBGary. BugScan FAQ. HBGary Inc. www.hbgary.com. Accessed

on 22 July 2004.

[Hoglund and McGraw 2004] Hoglund, G. and McGraw, G. Exploiting Software: How
to Break Code. Addison Wesley, Boston, MA, 2004.

[Holzmann 2003] Holzmann, G. UNO Software. Bell Labs.

www.spinroot.com/gerard/. Accessed Nov. 1, 2003.

[Howard 2004] Howard, M. Building more secure software with improved
development processes. IEEE Security and Privacy, (Nov./Dec. 2004).

[Howard and LeBlanc 2002] Howard, M. and LeBlanc, D. Writing Secure Code.
Microsoft Press, Redmond, WA, 2002.

[Huang 2003] Huang, Y. Vulnerabilities in Portable Executable (PE) File Format for

Win32 Architecture. OS Security. www.ossecurity.ca. Accessed on August 30, 2004.

139

[Hunt and Brubacher 1999] Hunt, G. and Brubacher, D. Detours: Binary Interception
of Win32 Functions. In the Proceedings of the third USENIX NT Symposium (Seattle,
WA, July 12-15, 1999).

[Immix Technology 2004] Immix Technology. GSA Schedule Pricing. Immix

Technology. www.immixtechnology.com. Accessed August 31, 2004.

[InfoWorld 2004]. InfoWorld. Code Catcher in a Box. InfoWorld.

www.infoworld.com. Accessed on August 28, 2004.

[Intel 2004] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual,

Volumes 1-3. http://developer.intel.com/design. Accessed on August 30, 2004.

[Trvine 2003] Irvine, K. Assembly Language for Intel-Based Computers. Prentice Hall,
Upper Saddle River, NJ, 2003.

[Jaworski and Perrone 2000] Jaworski, J. and Perrone, P. Java Security Handbook.
Sams Publishing. Indianapolis, IN, 2000.

[Jim et al. 2002] Jim, T.; Morrisett, G.; Grossman, D.; Hicks, M.; Cheney, J. and
Wang, Y. Cyclone: A safe dialect of C. In the Proceedings of the USENIX Annual
Technical Conference (Monterey, CA, June 2002). USENIX, Berkeley, CA, 2002.
[Jiwnani and Zelkowitz 2004] Jiwnani, K. and Zelkowitz, M. Susceptibility Matrix: A
New Aid to Software Auditing. IEEE Security and Privacy, (Mar./Apr. 2004).

[Kahn and Han 2002] Kahn, K. and Han, J. Composing Security-Aware Software.
IEEE Software, (Jan./Feb. 2002), 34-40.

[Kaspersky 2003] Kaspersky, K. Hacker Disassembling Uncovered. A-List, Wayne,

PA, 2003.

140

[Khalilzad, White, and Marshall 1999] Khalilzad, Z.; White, J.; and Marshall, A.
Strategic Appraisal: The Changing Role of Information in Warfare. Rand Corporation.
Santa Monica, CA, 1999.

[Kirovski, Drinic, and Potkonjak 2002] Kirovski, D., Drinic, M., and Potkonjak, M.
Enabling trusted software integrity. In the Proceedings of the 10" International
Conference on Architectural Support for Programming Languages and Operating
Systems (San Jose, CA, October 2002).

[Koziol et al. 2004] Koziol, J. et al. The Shellcoder's Handbook. Wiley Publishing,
Indianapolis, IN, 2004.

[Landwehr 1994] Landwehr, C. et al. A Taxonomy of Computer Program Security
Flaws with Examples. ACM Computing Surveys, (Sep 1994).

[Larochelle and Evans 2001] Larochelle, D. and Evans, D. Statistically detecting likely
buffer overflow vulnerabilities. In the Proceedings of the 1 0™ USENIX Security
Symposium (Washington, DC, August 2001).

[LDRA 2003] LDRA. LDRA Testbed Software. LDRA Software Technology.

www.ldra.co.uk/. Accessed Nov. 1, 2003.

[Leveson 1995] Leveson, N. Safeware: System Safety and Computers. Addison
Wesley, Reading, MA, 1995.

[Lewis and Loftus 2005] Lewis, J., and Loftus, W. Java Software Solutions. Addison
Wesley, Boston, MA, 2005.

[Lhee and Chapin 2002] Lhee, K. and Chapin, S. Type-Assisted Dynamic Buffer
Overflow Detection. In the Proceedings of the 2002 USENIX Conference (San
Francisco, CA, Aug. 5-9, 2002).

141

[Louden 2003] Louden, K. Programming Languages: Principles and Practice, 2md
Edition. Thomson Brooks/Cole, Pacific Grove, CA, 2003.

[McComb 1997] McComb, G. Web Programming Languages. Wiley and Sons, New
York, NY, 1997.

[McGraw 1998] McGraw, G. Testing for Security During Development: Why we
should scrap penetrate-and-patch. IEEE Aerospace and Electronic Systems, April 1998.
[Microsoft Corporation 1999] Microsoft Corporation. Microsoft Portable Executable
and Common Object File Format Specification Revision 6.0 February 1999. Microsoft

Corporation. www.microsoft.com/whdc/system/platform/firmware. Accessed on Aug.

28, 2004.

[Miller and DeRaadt 1999] Miller, T. and DeRaadt, T. strlcpy and strlcat—consistent,
safe, string copy and concatenation. In the Proceedings of the 1999 USENIX
Conference (Monterey, CA, June 1999). USENIX, Berkeley, CA, 1999.

[Minasi 2001] Minasi, M. Mastering Windows XP Professional. Sybex, San Francisco,
CA, 2001.

[Nazario 2002] Nazario, J. Source Code Scanners for Better Code. LinuxJournal.Com.

www.linuxjournal.com//article.php?sid=5673. Accessed January 26, 2002.

[Neumann 2003] Neumann, P. Information System Security Redux. Communications
of the ACM, (Oct 2003), 126.

[Nutt 2002] Nutt, G. Operating Systems: A Modern Perspective. Addison Wesley,
Boston, MA, 2002.

[Onley 2004] Onley, D. NMCI launches prototype for apps testing. Government
Computer News, (Aug 2004).

142

[Parasoft 2003] Parasoft. CodeWizard. Parasoft Inc. www.parasoft.com. Accessed

November 1, 2003.
[PC Magazine 2004] PC Magazine. Review of SmartRisk Analyzer 1.0. PC Magazine.

www.pcmag . com. Accessed on August 28, 2004.

[Perry 2004] Perry, M. Introduction to Reverse Engineering Software. Mike Perry

Website. www.acm.uiuc.edu/sigmil/RevEng. Accessed on Dec. 22, 2004.

[Petron 2000] Petron, E. Linux Essential Reference. New Riders Publishing,
Indianapolis, IN, 2000.

[Pietrek 2002a] Pietrek, M. An In-Depth Look into the Win32 Portable Executable File
Format, Part 1. MSDN Magazine, (Feb 2002).

[Pietrek 2002b] Pietrek, M. An In-Depth Look into the Win32 Portable Executable File
Format, Part 2. MSDN Magazine, (Mar 2002).

[Pincus and Baker 2004] Pincus, J. and Baker, B. Beyond Stack Smashing: Recent
Advances in Exploiting Buffer Overruns. IEEE Security and Privacy, (Jul./Aug. 2004).
[Potter and McGraw 2004] Potter, B. and McGraw G. Software security testing. I[EEE
Security and Privacy, (Nov./Dec. 2004).

[Prasad and Chiueh 2003] Prasad, M. and Chieueh, T. A Binary Rewriting Defense
Against Stack-based Buffer Overflow Attacks. In the Proceedings of the 2003 USENIX
Conference (San Antonio, TX, Jun. 9-14, 2003).

[Pressman 2005] Pressman, R. Software Engineering: A Practitioner's Approach, 6"
Edition. McGraw-Hill, Boston, MA., 2005.

[Reasoning 2003] Reasoning. Illuma Software. Reasoning Inc. www.reasoning.com.

Accessed November 1, 2003.

143

[Rescorla 2005] Rescorla, E. Is finding security holes a good idea. IEEE Security and
Privacy, (Jan./Feb. 2005).

[Scambray, McClure, and Kurtz 2001] Scambray, J.; McClure, S.; and Kurtz, G.
Hacking Exposed, 3rd Edition. Osborne/McGraw-Hill, Berkeley, CA., 2001.
[Schaeffer 2002] Schaeffer, F. Surfing Anonymously. Data Becker, Newton, MA.,
2002.

[Schiffman 2001] Schiffman, M. Hacker's Challenge. Osborne/McGraw-Hill,
Berkeley, CA., 2001.

[Schildt 2000] Schildt, H. C: The Complete Reference, 4™ Edition. McGraw-Hill,
Berkeley, CA., 2000.

[Schwarz, Debray, and Andrews 2002] Schwarz, B.; Debray, S.; and Andrews, G.
Disassembly of executable code revisited. In the Proceedings of the 2002 Working
Conference on Reverse Engineering (Richmond, VA, Oct. 29-Nov.1, 2002).

[Secure Software 2004a] Secure Software. Rough Auditing Tool for Security (RATS).

Secure Software Inc. www.securesoftware.com. Accessed July 22, 2004.

[Secure Software 2004b] Secure Software. Code Security Evaluation. Secure Software

Inc. www.securesoftware.com. Accessed August 31, 2004.

[Shah 2004] Shah, S. One-Way Web Hacking: Attacking Web and Application Servers.

Net Square. http://www.net-square.com/papers/one_way/one_way.html. net-

square, 2004.
[Short 2002] Short, C. Source Code Revelation Vulnerabilities. SANS Institute.

www .sans.orqg. SANS Institute, 2002.

144

[Sommerville 2001] Sommerville, I. Software Engineering, 6™ Edition. Addison-
Wesley, New York, NY., 2001.

[Soo Hoo, Sudbury and Jaquith 2001] Soo Hoo, K.; Sudbury, A. and Jaquith, A.
Tangible ROI through Secure Software Engineering. Secure Business Quarterly, (Vol
1:2).

[Spafford and Weeber 1992] Spafford, E. and Weeber, S. Software forensics: can we
track code to its authors. In the Proceedings of the 1 5™ National Information Systems
Security Conference (Washington, DC, October 1992).

[SPI Dynamics 2003] SPI Dynamics. Weblnspect Software. SPI Dynamics Inc.

www.spidynamics.com. Accessed November 1, 2003.

[Splaine 2002] Splaine, S. Testing Web Security. Wiley Publishing, Indianapolis, IN,
2002.
[Utimaco 2004] Utimaco Safeware. White Paper on Vulnerabilities in Pure Software

Security Systems. Utimaco Safeware. www.utimaco.com. Accessed on August 30,

2004.
[Viega et al. 2000] Viega, J.; Block, J.; Kohno, T.; and McGraw, G. ITS4: A Static

Vulnerability Scanner for C and C++ Code. Cigital Inc. www.cigital.com/its4/. 2000.

[Viega and McGraw 2002] Viega, J. and McGraw, G. Building Secure Software.
Addison-Wesley, Boston, MA, 2002.

[Viega and Messier 2003] Viega, J. and Messier, M. Secure Programming Cookbook
for C and C++. O'Reilly, Sebastopol, CA, 2003.

[Visual Studio 2004] Visual Studio. Microsoft Visual Studio Website.

msdn.microsoft.com/visualc. Accessed on Dec. 10, 2004.

145

[Wagner 2003] Wagner, D. Modelchecking Program for Security Properties (MOPS).
Computer Science Division, University of California Berkeley.

www.cs.berkeley.edu/~daw/mops/. Accessed October 28, 2003.

[Wagner et al. 2000] Wagner, D.; J. Foster; E. Brewer; and A. Aiken. A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities. In the Proceedings of
the 2000 Network and Distributed Security Symposium (San Diego, CA, Feb. 3-4,
2000). ISOC.

[Wall, Watson, and Whitis 1999] Wall, K.; Watson, M.; and Whitis, M. Linux
Programming Unleashed. Sams Publishing, Indianapolis, IN, 1999.

[Wheeler 2003] Wheeler, D. Flawfinder. David A. Wheeler.

www.dwheeler.com/flawfinder/. Accessed October 28, 2003.

[Wheeler 2004] Wheeler, D. Secure Programming for Linux and Unix. David Wheeler

Website. www.dwheeler.com. Accessed on Feb. 22, 2004.

[Whittaker 2004] Whittaker, K. Why Secure Applications are Difficult to Write. /EEE
Security and Privacy, (Jan./Feb. 2003).

[Whittaker and Thompson 2004] Whittaker, J. and Thompson, H. How to Break
Software Security. Addison Wesley, Boston, MA, 2004

[Wilander and Kamkar 2002] Wilander, J. and Kamkar, M. A comparison of publicly
available tools for static intrusion prevention. In the Proceedings of the 7™ Nordic
Workshop on Secure IT Systems (Karlstad, Sweden, November 2002).

[Wong 2001] Wong, K. Introduction to Hacking Methods and Ways of Counter-

Measure. Internet Industry Association. www.security.iia.net.au. October 21, 2001.

Accessed on August 30, 2004.

146

[Woodmann 2004] Woodmann, C. Reverser’s Archive Pages of Reverse Engineering.

Woodman Website. www.woodmann.com/fravia. Accessed on Dec. 12, 2004.

[Yoder and Barcalow 1997] Yoder, J. and Barcalow, J. Architectural Patterns for
Enabling Application Security. In the Proceedings of the Fourth Conference on Pattern
Languages of Programming Conference (Monticello, IL, September 1997).

[Yong and Horwitz 2003] Yong, S. and Horwitz, S. Protecting C programs from
attacks via invalid pointer dereferences. In the Proceedings of the 9th European
Software Engineering Conference (Helsinki, Finland, 2003).

[Zacker 2001] Zacker, C. PC Hardware: The Complete Reference. McGraw-Hill,

Berkelely, CA, 2001.

147

APPENDICES

148

7. APPENDIX A - INSECURE CODING PRACTICES TO AVOID [Graff and
van Wyk 2003]

1) Don't write code that uses relative filenames. Such names can be redirected to
another location.

2) Don't refer to a file by its name twice in the same program. Such code can cause
race conditions on which physical file is being referenced.

3) Don't invoke untrusted programs from within trusted ones.

4) Avoid using setuid or similar mechanisms whenever possible. In particular, do
not setuid to an existing identity/profile that has interactive login capabilities.

5) Don't assume that your users are not malicious. This means to double-check
every piece of external information read by your software.

6) Don't dump core. Instead, design your program to degrade gracefully.

7) Don't assume success. In other words, check the return status of all functions
calls.

8) Don't confuse random with pseudo-random. Any cryptological algorithm
requires a sound random number generator.

9) Don't invoke a shell or a command line from within your program.
10) Don't authenticate on untrusted criteria. This means to not blindly accept the
identity of a user or process based on an IP address, a MAC address, or an e-

mail address.

11) Don't use world-writable storage, even temporarily. This refers to a common
storage area offered by an operating system.

12) Don't trust the integrity of user-writable storage. Hackers can tamper with it.

13) Don't keep sensitive data in a database without password protection.

149

14) Don't echo passwords or display them on the user's screen for any reason.
15) Don't issue passwords via e-mail.

16) Don't programmatically distribute sensitive information via e-mail.

17) Don't code user names or passwords into an application.

18) Don't store unencrypted passwords (or other highly sensitive information) on
disk in an easy-to-read format, such as straight unencrypted text.

19) Don't transmit unencrypted passwords (or other highly sensitive information)
between systems in an easy-to-read format, such as straight (unencrypted) text.

20) Don't rely on host-level file protection mechanisms as the sole means of
preventing unauthorized file access. Such controls can be easily compromised.

21) Don't make access decisions based on environment variables or command-line
parameters passed in at run-time.

22) Avoid, if reasonable, storing the application or key data on an NFS-mounted

structure.

23) Avoid, as much as you can, relying on third-party software or services
for critical operations. Such decisions result in dependencies and additional
risks

150

8. APPENDIX B - LIST OF COMMONLY USED HACKER TOOLS
[Erickson 2003, Fusco 2004, Hoglund and McGraw 2004, Petron 2000]

NAME PLATFORM | OBTAIN HACKER PURPOSE

ADMutate Linux Freeware XOR encrypt shellcode

APISpy Windows Freeware Log function calls made by running
programs

DebugView | Windows Freeware Monitor kernel mode and Win32
debug output

depends Windows Windows Show a dll dependency tree

disasm Windows Microsoft Disassemble an instruction in your
own program

dissembler | Linux Freeware Generate printable ASCII bytecode
from an existing piece of bytecode

dsniff Linux Freeware Sniff packets and looks for user
names and passwords

dumpbin Windows Microsoft Identify functions imported by a
program

DyninstAPI | Multiple Freeware Insert code patches in running
programs

exehdr Linux Linux Display header of an executable file

fenris Linux Linux Show runtime trace of a process

filemon Windows Freeware Monitor and display file system
activity

ffp Linux Freeware Use fuzzy footprint technology to
alter crypto keys

file Linux Linux Identify the general type of
information in a file

fuser Linux Linux Tell what processes have opened a
given file

gdb Linux Linux Disassemble and debug binary files

IDA 4.1 Windows Freeware Disassemble Intel32 binary code

John the Linux Freeware Detect weak passwords

Ripper

Itrace Linux Linux Show dll calls from a process

nasm Both Freeware Assemble 80x86 instructions into
many Windows and Linux formats

netcat Linux Linux Read and write data across network

151

connections using TCP/IP

netstat Windows Windows Audit a system for local sockets

nemesis Linux Freeware Inject packets from the command
line

nm Linux Linux List symbols in an object code or
executable file

objdump Linux Linux Display contents and disassemble
object code

od Linux Linux Convert a binary file's contents to
octal, decimal or hex format (See
xxd)

OllyObg Windows Freeware Analyze binary code through dumps

ps -0 Linux Linux Access many details of a running
process

regmon Windows Freeware Monitor which applications access
the registry

SoftICE Windows Compuware | Provide kernel mode debugging

Speedbreak | Linux Freeware Set breakpoints in process and data
areas

strace Linux Linux Show system calls from a process

strings Linux Linux Look for ASCII strings embedded in
executable files

tcpdump Linux Freeware Print headers of packets sensed on a
network interface (packet sniffer)

tdump Windows Borland Identify functions imported by a
program

time Linux Linux Use to understand the runtime
performance of a process

truss Solaris Solaris Track library API calls of a process

windump Windows Freeware Print headers of packets sensed on a
network interface (packet sniffer)

xxd Linux Linux Convert a binary file's contents to

octal, decimal or hexadecimal
format, without disturbing the byte
ordering (See od tool)

152

9. APPENDIX C - TEST RESULTS FROM ANALYZING SPECIFIC
EXAMPLE FILES

9.1 vulnerable - Object code compiled using Cygwin Gnu g++

FILE NAME: vulnerable-gpp.o

==== File Fact Summary ====

— Object code file in Windows NT common object file format (COFF)
— Actual file size: 1657 bytes

— Created on Wed Dec 31 18:00:00 1969

- Target CPU: Intel 386 or later compatibles

— Not an executable image file

— Targeted for a 32-bit-word architecture

— Contains a string table with 6 entries

- Contains a symbol table with 25 entries

==== End of File Fact Summary ====

No anomalies were found

1111 Security Vulnerabilities and Risks!!!!

— Reveals that it was built from one source code file:
vulnerable.cpp

— Uses 13 standard C functions susceptible to buffer overflow
attacks: fscanf (Very high risk), getopt (Very high risk), gets (Ultra
high risk), realpath (Very high risk), scanf (Very high risk), sprintf
(Very high risk), sscanf (Very high risk), strcat (Very high risk),
strcpy (Very high risk), vfscanf (Very high risk), vscanf (Very high
risk), vsprintf (Very high risk), wvsscanf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —————————-

Total number of files submitted: 1

153

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)
A V/R Filename
0 14 vulnerable-gpp.o
9.2 vulnerable - Compiled and linked using Borland C++ Builder 5
FILE NAME: vulnerable-borland.exe

Reso

* Kk Kk Kk

of 2
was

TLS
512

Relo
it i

* Kk Kk Kk

No s

File Fact Summary ====

Image file in Windows NT portable executable (PE) format

Actual file size: 66560 bytes

Created on Tue Feb 1 16:25:56 2005

Target CPU: Intel 386 or later compatibles

Targeted for a 32-bit-word architecture

Debugging information has been removed

Designed for Windows Operating System version 4.0
Runs in the Windows character subsystem

Lists these table names in the data directory: Export,
urce, Relocation, TLS

Contains no string table

Contains no symbol table

Exports functions using the file name vulnerable.exe
Imports functions from

—— KERNEL32.DLL (WinNT base API client)

—— USER32.DLL (Windows NT user API client)

End of File Fact Summary ====

Anomalieg ****

Import,

The file indicates a thread local storage table exists consisting
4 bytes; this table usually does not appear in an image file so it

not read and only its start address was mapped

The data directory table in the optional header states that the
Table (.tls section) (?) is 4 bytes in size when actually it is

bytes in size

The data directory table in the optional header states that the
cation Table (.reloc section) is 2460 bytes in size when actually

s 2560 bytes in size
End of Anomalies ***x*

ecurity wvulnerabilities or security risks were found

154

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 vulnerable-borland.exe

9.3 vulnerable - Compiled and linked using Cygwin Gnu g++

FILE NAME: vulnerable—-gpp.exe

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format

— Actual file size: 7168 bytes

— Created on Tue Feb 1 16:01:34 2005

- Target CPU: Intel 386 or later compatibles

— Targeted for a 32-bit-word architecture

— Debugging information has been removed

— Designed for Windows Operating System version 4.0

- Runs in the Windows character subsystem

- Lists these table names in the data directory: Import

— Contains no string table

- Contains no symbol table

- Imports functions from
—-— cygwinl.dll (CYGWIN GNU base dynamic link library)
—— KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

xEk Anomalies ***x*

— A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 128 bytes for that section

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 24 standard C functions susceptible to buffer overflow
attacks: bcopy (Low risk), fgetc (Medium risk), fgets (Low risk),

155

fscanf (Very high risk), getc (Medium risk), getopt (Very high risk),
getopt_long (Very high risk), getpass (Very high risk), gets (Ultra
high risk), memcpy (Low risk), read (Medium risk), realpath (Very high
risk), scanf (Very high risk), snprintf (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk), vfscanf (Very high risk), vscanf (Very
high risk), vsnprintf (Low risk), vsprintf (Very high risk), wvsscanf
(Very high risk)

11! End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

1 24 vulnerable—-gpp.exe

9.4 vulnerable - Compiled and linked using Microsoft Visual Studio

FILE NAME: vulnerable-vs.exe

==== File Fact Summary ====

- Image file in Windows NT portable executable (PE) format
— Actual file size: 45056 bytes
— Created on Tue Feb 1 16:17:17 2005
— Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows character subsystem
- Lists these table names in the data directory: Import, Import
Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

x%k Anomalies ***x*

156

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 212 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1165 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 vulnerable-vs.exe

9.5 findssv - Compiled and linked using Borland C++ Builder 5

FILE NAME: findssv.exe

-——— File Map ———-

ADDRESS DESCRIPTION

0 - +
DOS Header [64 bytes]
63 +
64 o +
MS-DOS Stub [56 bytes]
1179 4 +
20 +——"————"—71—"n-—- . +
(** Zero—-filled region **) [392 bytes]
51 +----——--------—--—— +
52 +—-———11-71-——""" """ """ —"—"—"—"\—"—"(—{\—"(—(—(—(—(—(—(—(—(—(—(—(—(—(—(————— +
PE Signature [4 bytes]
55 +--——1H-"1=-1-—1H————- +
56 +-—-——1—"H——"H——"H—m-"Hm-m-rm- +
File Header [20 bytes]
5% +-—————— +
586 +——"—771H+71-—1-—1—"1"-"H"+1"—- """ """ +

Optional Header [224 Dbytes]

759 4
T60 A
Section Table [320 bytes]
079 +—-——"H-—"1H+—1-""""""-"
1080 +——————————
(** Zero—-filled region **) [456 bytes]
1535 4+
1536 +—————————
.text section [973312 bytes]
974847 4-———————————————
974848 A
data section [167424 bytes]
1142271 ===
1142272 ===
tls section [512 bytes]
1142783 === e
1142784 @ +——————
.rdata section [512 bytes]
1143295 +————————————m
1143296 +————————
idata section [1660 bytes]
1144955 -
1144956 +—————————
(** Zero—-filled region *¥*) [388 bytes]
1145343 +————————
1145344 -
.edata section [107 bytes]
1145450 +——————————
1145451 +—————————
(** Zero—-filled region *¥*) [405 bytes]
1145855 +—————————m
1145856 +————————
.rsrc section [512 bytes]
1146367 +————————
1146368 +————————
.reloc section [31744 bytes]
1178111 -
—-——— End of File Map —-——-
NOTES ON FILE MAP CHANGES:
— Changed "Export Table (.edata section) [107 bytes]" at address
1145344
by inserting ".edata section [107 bytes]"
- Changed "Import Table (.idata section) [1660 bytes]" at address
1143296
by inserting ".idata section [1660 bytes]"
- Changed "TLS Table (.tls section) (?) [4 bytes]" at address
1142784
by inserting ".rdata section [512 bytes]"
— Changed "Resource Table (.rsrc section) [512 bytes]" at address
1145856

by inserting

".rsrc section [512 bytes]™"

158

- C
addr
b

- C
b

- C
b

- C
b

- C
b

Reso

* Kk Kk Kk

hanged "Relocation Table (.reloc section) [31724 bytes]" at
ess 1146368
y inserting ".reloc section [31744 bytes]"
hanged " (Contents not known) [392 bytes]" at address 120
y inserting " (** Zero-filled region *¥*) [392 bytes]™"
hanged " (Contents not known) [456 bytes]" at address 1080
y inserting " (** Zero-filled region **) [456 bytes]™"
hanged " (Contents not known) [388 bytes]" at address 1144956
y inserting " (** Zero-filled region *¥*) [388 bytes]"
hanged " (Contents not known) [405 bytes]" at address 1145451
y inserting " (** Zero-filled region **) [405 bytes]™"
File Fact Summary ====
Image file in Windows NT portable executable (PE) format
Actual file size: 1178112 bytes
Created on Wed Jan 26 21:12:31 2005
Target CPU: Intel 386 or later compatibles
Targeted for a 32-bit-word architecture
Debugging information has been removed
Designed for Windows Operating System version 4.0
Runs in the Windows character subsystem
Lists these table names in the data directory: Export, Import,

urce, Relocation, TLS

Contains no string table

Contains no symbol table

Exports functions using the file name findssv.exe
Imports functions from

—— KERNEL32.DLL (WinNT base API client)

—— USER32.DLL (Windows NT user API client)

End of File Fact Summary

Anomalies ****

— The file indicates a thread local storage table exists consisting

of 2
was

TLS
512

Relo
it 1

* ok Kk Kk

No s

4 bytes; this table usually
not read and only its start
The data directory table in
Table (.tls section) (?) is
bytes in size

address was mapped

does not appear in an image file so it

the optional header states that the
4 bytes in size when actually it is

The data directory table in the optional header states that the

cation Table (.reloc section)
s 31744 bytes in size

End of Anomalies ***%*

ecurity wvulnerabilities or security risks were found

is 31724 bytes in size when actually

159

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 findssv.exe

9.6 findssv - Compiled and linked using Cygwin Gnu g++

FILE NAME: findssv.exe

-——— File Map ———-

ADDRESS DESCRIPTION

o 4
DOS Header [64 bytes]
63 +—————- -
64 +————H—--——————
MS-DOS Stub [57 bytes]
120 +—————— ==
121 4
(Contents not known) [7 bytes]
127 4
128 +———— =
PE Signature [4 bytes]
131 =
132 -
File Header [20 bytes]
151 +———————
152 +————————
Optional Header [224 bytes]
37 4
376 @+
Section Table [200 bytes]
57% +————"771"—"-"-"---"""""
576 +——————mm
(** Zero—-filled region **) [448 Dbytes]
1023 ===
1024 +—————————
.text section [594944 Dbytes]
595967 -
595968 -
.data section [4608 bytes]
600575 4+-———---mmmm
600576 4+-——————mmmm

.rdata section [78848 bytes]

679423 4
679424 A
.idata section [1387 bytes]
680810 4-————mmmm e
680811 4-——mmmmmmm
More of Import Table (.idata section) [281 bytes]
681091 4-——mmmm
681092 4
(** Zero—-filled region **) [380 bytes]
681471 A
———— End of File Map —--———
NOTES ON FILE MAP CHANGES:
- Changed "Import Table (.idata section) [1668 bytes]" at address
679424
by inserting ".idata section [1387 bytes]"
— Changed " (Contents not known) [448 bytes]" at address 576
by inserting " (** Zero-filled region **) [448 bytes]"
— Changed " (Contents not known) [380 bytes]" at address 681092
by inserting " (** Zero-filled region **) [380 bytes]™"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 681472 bytes

— Created on Tue Jan 25 19:32:32 2005

- Target CPU: Intel 386 or later compatibles

- Debugging information has been removed

— Designed for Windows Operating System version 4.0

— Runs

in the Windows character subsystem

- Lists these table names in the data directory: Import
- Contains no string table
- Contains no symbol table
— Imports functions from
—— cygwinl.dll (CYGWIN GNU base dynamic link library)
—— KERNEL32.dll (WinNT base API client)

=== End

of File Fact Summary ====

x%k Anomalies ***x*

- A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 5392 bytes for that section

* Kk Kk Kk End

of Anomalies ***x*

1111 Security Vulnerabilities and Risks!!!!

161

- Uses 7 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

1 7 findssv.exe

9.7 findssv - Compiled and linked using Microsoft Visual Studio

FILE NAME: findssv.exe

-——— File Map ———-

ADDRESS DESCRIPTION

o 4
DOS Header [64 bytes]
63 +————----- -
64 +————H—--——————
MS-DOS Stub [57 bytes]
120 +—————— =
121 4=
(Contents not known) [95 bytes]
215 A
I T
PE Signature [4 bytes]
219 A
220 A
File Header [20 bytes]
239 A
I i
Optional Header [224 bytes]
463 A
Y
Section Table [120 bytes]
583 +--in——-————-—----—--

584

(Contents not known) [3512 bytes]
409 +——-———H—"H—1—"H—1mr- .
4096 +—————H—————"H——"———
.text section [331776 bytes]
335871 H————————
335872 A4
.rdata section [32768 bytes]
368639 A
335872 @ mm e
(No additional details) [28968 bytes]
364839 @ pmmmmm
364840 Ao m
Import Table (.idata section) [1626 bytes]
366465 tm—m—m—mmm
366466 t——m—m—mmm
(No additional details) [2174 bytes]
368639 A
368640 @ A——m
.data section [53248 bytes]
U421 887 @A m

———— End of File Map —-———

NOTES ON FILE MAP CHANGES:

- Changed "Import Table (.idata section) [40 bytes]" at address
364840
by inserting "Import Table (.idata section) [1626 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 421888 bytes
— Created on Fri Jan 28 13:34:56 2005
- Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows character subsystem
- Lists these table names in the data directory: Import, Import
Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

163

— The file indicates an import address table consisting of 292 bytes
exists starting at address 335872; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1626 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 findssv.exe

9.8 Cygwin Gnu cygwinl.dll Dynamic Link Library

FILE NAME: cygwinl.dll

%k* Anomalies *x*

- A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 226272 bytes for that
section

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1104 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 43792 bytes in size when actually
it is 44032 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

- Has a section named .advapi32_text whose contents can be both
written to and executed

164

— Has a section named
written to and executed

- Has a section named
to and executed

— Has a section named
to and executed

— Has a section named
written to and executed

- Has a section named
written to and executed

- Has a section named
written to and executed

- Has a section named
written to and executed

— Has a section named
written to and executed

— Has a section named
to and executed

- Has a section named
written to and executed

— Has a section named
to and executed

.netapi32_text whose contents can be both
.ntdll_text whose contents can be both written
.psapi_text whose contents can be both written
.secur32_text whose contents can be both
.user32_text whose contents can be both
.wsock32_text whose contents can be both
.ws2_32_text whose contents can be both
.iphlpapi_text whose contents can be both
.0le32_text whose contents can be both written
.kernel32_text whose contents can be both

.winmm_text whose contents can be both written

End of Security Vulnerabilities and Risks!!!!

Summary of File Security Analysis

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 12 cygwinl.dll
9.9 helloworld - Compiled and linked using Borland C++ Builder 5
FILE NAME: helloworld-borland.exe
-——— File Map ————
ADDRESS DESCRIPTION

0 +

DOS Header

[64 bytes]

165

B3 b

o4 +-———"—"""""- - -"-"—-"-"-"" """ ———"(—(—(—«(—«(—«(—~(—(—(—(—(—(—(—(—(————
MS-DOS Stub [56 bytes]
1179 +——1—1——1———1-"——
20 -
(** Zero—-filled region *¥*) [392 bytes]
5 1. +—-———17H+-71-—1—1—1""-————--—————
52 +---—-—"7—"—"H——
PE Signature [4 bytes]
55 +—--——————17"771-—+—"7-""""""-—--"&--"-"\"-"" """ —(—(—(—(—(—(—(—(—(—(————
56 +—-—————1+71H+71-—H—"—"""""-" """ """ """—"—"—"—"—"——(
File Header [20 bytes]
53% +-iiii—H———--—----- -
58 +— -
Optional Header [224 Dbytes]
759 4
760 @ +———
Section Table [320 bytes]
0799 +———"——H—1—+-"H—"—"—-
w080 +————1—H——"—""-"""-""-"""
(** Zero—-filled region **) [456 bytes]
535 +—-—m———
153 +———"——H—1-+"-"H—"——-—
.text section [79872 bytes]
81407 4————"H"-""-""-"""""""""""""——
81408 4————""-"H"+7"H"+"-"H>"""""""""""""""""————
data section [23040 bytes]
104447 +-——""H"-""-"—-""-"——""——
104448 +-—"-"H—--"H—--"—-""——-""————
.tls section [512 bytes]
104959 +4——"—1——"Hm-"1-—"—"-"—-"-""-"-""-"-""- -
10490 +-——-——"-"1-"1-"-"H—-"""""""""""""""—
rdata section [512 bytes]
105471 +-—-——"—-——"—-"-"—--"——
105472 4+4———"—"-"—"-""-""-"""""""""""——
idata section [1450 bytes]
106921 +4———"—"H—"-""-""-"""""""""""——
106922 +——"——"—"—"-"—"-"""—""--
(** Zero—-filled region **) [86 bytes]
107007 4+—-——————
07008 +4-—-———"—"—"""—"H—""""""""""""""""""""""—"—"———
.edata section [110 bytes]
107117 +4-—-——"——"—————————
107118 +—-——"—"H-—"H—"-"Hm-—m———
(** Zero—-filled region *¥*) [402 bytes]
07519 +4———————1—"H—+-—H—--—-- -
07520 +4-—-—"1-+1H+--——H—""--------- -
.rsrc section [512 bytes]
108031 +-——"———-—"—-"—rrr—————
08032 +4————-"17-71-"1-—H—""""""""""""""——
.reloc section [4608 bytes]
112639 4——"———1—-"+"-—"H—-""-"""""""

———— End of File Map —-———

166

NOTES ON FILE MAP CHANGES:

- Changed "Export Table (.edata section) [110 bytes]" at address

107008
by inserting ".edata section [110 bytes]"

- Changed "Import Table (.idata section) [1450 bytes]" at address

105472
by inserting ".idata section [1450 bytes]"

— Changed "TLS Table (.tls section) (?) [4 bytes]" at address 104960
by inserting ".rdata section [512 bytes]"

— Changed "Resource Table (.rsrc section) [512 bytes]" at address

107520
by inserting ".rsrc section [512 bytes]"

— Changed "Relocation Table (.reloc section) [4412 bytes]" at

address 108032
by inserting ".reloc section [4608 bytes]"

— Changed " (Contents not known) [392 bytes]" at address 120
by inserting " (** Zero-filled region **) [392 bytes]™"

— Changed " (Contents not known) [456 bytes]" at address 1080
by inserting " (** Zero-filled region *¥*) [456 bytes]"

— Changed " (Contents not known) [86 bytes]" at address 106922
by inserting " (** Zero-filled region **) [86 bytes]"

— Changed " (Contents not known) [402 bytes]" at address 107118
by inserting " (** Zero-filled region *¥*) [402 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 112640 bytes
— Created on Wed Jan 26 17:27:01 2005
- Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Debugging information has been removed
— Designed for Windows Operating System version 4.0
- Runs in the Windows character subsystem
- Lists these table names in the data directory: Export, Import,
Resource, Relocation, TLS
— Contains no string table
— Contains no symbol table
- Exports functions using the file name helloworld.exe
- Imports functions from
—— KERNEL32.DLL (WinNT base API client)
—— USER32.DLL (Windows NT user API client)

==== End of File Fact Summary ====

**** Anomalies ****
— The file indicates a thread local storage table exists consisting

of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

167

- The data directory table in the optional header states that the
TLS Table (.tls section) (?) is 4 bytes in size when actually it is
512 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4412 bytes in size when actually
it is 4608 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 DOS Header —————————-

DOS signature: MZ
Bytes on last page of file: 80
Pages in file: 2
Relocations: 0
Size of header in paragraphs: 4
Minimum extra paragraphs: 15
Maximum extra paragraphs: 65535
Initial (relative) SS value: 0
Initial SP value: 184
Checksum: 0
Initial IP value: 0
Initial (relative) CS value: 0
File address of relocation table: 64
Overlay number: 26
Reserved words: 0O 0 0 O
OEM identifier: 0

OEM information: 0
Reserved words: 0 O

Offset to PE signature and header: 512
———————— End of DOS Header —-——————-—

—————————— File Header ——————————

Target CPU: Intel 386 or later compatibles
Number of Sections: 8

Time Date Stamp: Wed Jan 26 17:27:01 2005

Ptr to Symbol Table: 0

Number of Symbols: 0

Size of Optional Header: 224

Characteristics:

- This is an executable image

— COFF line numbers have been removed

— COFF symbol table entries for local symbols have been removed
- Software is targeted for a 32-bit-word architecture

— Debugging information has been removed from the image file

————————— End of File Header -——-——-—
7777777777 Optional Header —————————-—

Magic: 267 (PE32 executable)
Linker Version: 5.0

168

Size of Code: 81920

Size of Initialized Data: 28672
Size of Uninitialized Data: O
Address of Entry Point: 4096
Base of Code: 4096
Base of Data: 86016
Image Base: 4194304
Section Alignment: 4096
File Alignment: 512

OS Version: 4.0
Major Image Version: 0
Minor Image Version: 0
Major Subsystem Version: 4
Minor Subsystem Version: 0

Size of Image: 143360
Size of Headers: 1536
Check Sum: 0

Required Windows Subsystem: Runs in the Windows character subsystem
DLL Characteristics: 0

Size of Stack Reserve: 1048576

Size of Stack Commit: 8192

Size of Heap Reserve: 1048576

Size of Heap Commit: 4096

Loader Flags: 0

Nbr of RVS and Sizes: 16

Data Directory:
Export Table RVA: 0126976 Size: 110
Import Table RVA: 0122880 Size: 1450
Resource Table RVA: 0131072 Size: 512
Exception Table RVA: 0000000 Size: O
Certificate Table RVA: 0000000 Size: O
Base Relocation Table RVA: 0135168 Size: 4412
Debug RVA: 0000000 Size: O
Architecture RVA: 0000000 Size: O
Global Ptr RVA: 0000000 Size: O
TLS Table RVA: 0118784 Size: 24
Load Config Table RVA: 0000000 Size: O
Bound Import RVA: 0000000 Size: O
Import Address Table RVA: 0000000 Size: O
Delay Import Descriptor RVA: 0000000 Size: O
COM+ Runtime Header RVA: 0000000 Size: O
Reserved RVA: 0000000 Size: O

77777777 End of Optional Header ————-——-—-

—-——— Section Table (8 entries) —--——-—

Entry#0:

Full Name: .text
Stored name: .text
Virtual Size: 81920
Virtual Address: 4096
Size of Raw Data: 79872
Ptr to Raw Data: 1536
Ptr to Relocations: 0

169

Ptr to Line Numbers:
Number of Relocations:
Number of Linenumbers:
Characteristics:

No COFF line numbers
0
0

— Contains executable code
— Can be executed as code

- Can be read from
- Cannot be written

Entry#l:

Full Name:

Stored name:

Virtual Size:

Virtual Address:

Size of Raw Data:

Ptr to Raw Data:

Ptr to Relocations:
Ptr to Line Numbers:
Number of Relocations:
Number of Linenumbers:
Characteristics:

to

.data

.data

28672

86016

23040

81408

0

No COFF line numbers
0

0

— Contains initialized data

— Can be read from
- Can be written to

Entry#2:

Full Name:

Stored name:

Virtual Size:

Virtual Address:

Size of Raw Data:

Ptr to Raw Data:

Ptr to Relocations:
Ptr to Line Numbers:
Number of Relocations:
Number of Linenumbers:
Characteristics:

.tls

.tls

4096

114688

512

104448

0

No COFF line numbers
0

0

— Contains initialized data

- Can be read from
- Can be written to

Entry#3:

Full Name:

Stored name:

Virtual Size:

Virtual Address:

Size of Raw Data:

Ptr to Raw Data:

Ptr to Relocations:
Ptr to Line Numbers:
Number of Relocations:
Number of Linenumbers:
Characteristics:

.rdata

.rdata

4096

118784

512

104960

0

No COFF line numbers
0

0

— Contains initialized data
- Can be shared in memory

170

- Can be read from
— Cannot be written to

Entry#4:
Full Name: .idata
Stored name: .idata
Virtual Size: 4096
Virtual Address: 122880
Size of Raw Data: 1536
Ptr to Raw Data: 105472
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

— Contains initialized data

- Can be read from

- Cannot be written to

Entry#5:
Full Name: .edata
Stored name: .edata
Virtual Size: 4096
Virtual Address: 126976
Size of Raw Data: 512
Ptr to Raw Data: 107008
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

— Contains initialized data

- Can be read from

- Cannot be written to

Entry#6:
Full Name: .rsrc
Stored name: .rsrc
Virtual Size: 4096
Virtual Address: 131072
Size of Raw Data: 512
Ptr to Raw Data: 107520
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

- Contains initialized data

— Can be read from

— Cannot be written to

Entry#7:
Full Name: .reloc
Stored name: .reloc
Virtual Size: 8192

171

Virtual Address: 135168

Size of Raw Data: 4608
Ptr to Raw Data: 108032
Ptr to Relocations: 0

Ptr to Line Numbers: No COFF

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

- Contains initialized data

- Can be shared in memory

- Can be read from

— Cannot be written to

No Symbol Table to display
No String Table to display
-——— Export Table —--——-

Directory Table:
Characteristics:
Time Date Stamp:
Major Version:
Major Version:
Name of DLL:
Starting Ordinal Number:
Number of Function Addresses:
Number of Names:
Location of Address Table:
Location of Name Ptr Table:
Location of Ordinal Table:

Export Name Table (2 names) :
Entry#l: __ GetExceptDLLinfo
Entry#2: CPPdebugHook

Forwarder Name Table (0 names) :

—-——— End of Export Table —--——-

—-——— Import Table —-——-
Import Directory Table:

Entry#0:
RVA of Lookup Table:
Time Date Stamp:

Start Index of Forwarder Chain:

DLL Name:

RVA of Import Lookup Table:

Import Lookup Table Contents:
CloseHandle
CreateFileA
EnterCriticalSection

line numbers

0

Wed Dec 31 18:00:00 1969
0

0
helloworld.exe
1

2

2

0x1£028
0x1£030
0x1£f038

122940

Tue Apr 14 17:09:36 1970
25886720

KERNEL32.DLL

OxlelOc

172

ExitProcess

GetACP

GetCPInfo
GetCommandLineA
GetCurrentThreadId
GetEnvironmentStrings
GetFileType
GetLastError
GetLocalTime
GetLocaleInfoA
GetModuleFileNameA
GetModuleHandleA

Get OEMCP
GetProcAddress
GetProcessHeap
GetStartupInfoA
GetStdHandle
GetStringTypeA
GetStringTypeW
GetSystemDefaultLanglID
GetUserDefaultLCID
GetVersion
GetVersionExA
GlobalMemoryStatus
HeapAlloc

HeapFree
IsValidLocale
LCMapStringA
LeaveCriticalSection
LoadLibraryA
MultiByteToWideChar
RaiseException
ReadFile

Rt1Unwind
SetConsoleCtrlHandler
SetFilePointer
SetHandleCount
SetLastError
SetThreadLocale
TlsAlloc

TlsFree

TlsGetValue
TlsSetValue
UnhandledExceptionFilter
VirtualAlloc
VirtualFree
WideCharToMultiByte
WriteFile

Entry#l:
RVA of Lookup Table: 123356
Time Date Stamp: Wed Dec 31 20:16:32 1969
Start Index of Forwarder Chain: 4305980
DLL Name: USER32.DLL
RVA of Import Lookup Table: Oxlelec

173

Import Lookup Table Contents:
EnumThreadWindows
MessageBoxA
wsprint fA

—-——— End of Import Table -——-

No Debug Table data to display

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 helloworld-borland.exe

9.10 helloworld - Compiled and linked using Cygwin Gnu g++

FILE NAME: helloworld-gnu.exe

-——— File Map ———-

ADDRESS DESCRIPTION

o +—————--------—-———
DOS Header [64 bytes]
63 +——————-- -
64 +——m———--
MS-DOS Stub [57 bytes]
120 ===
121 4=
(Contents not known) [7 bytes]
27 +——————-
128 +————— =
PE Signature [4 bytes]
131 =
132 4=
File Header [20 bytes]
151 +——————— =
152 4+
Optional Header [224 bytes]
37 4
376 +——m————————————

Section Table [200 bytes]

174

57 +———-"H———
576 +————————
(** Zero—-filled region **) [448 Dbytes]
1023 +———"——H—-"——--—-—-—
024 +—————-"-——---" "
text section [176128 bytes]
177151 +-—————
17712 +-—-—-"H-"1—-——-
data section [4608 bytes]
81759 4+
81760 +———"—-"—-1+-""-""-""-"""""""""""
rdata section [35840 bytes]
2175%9¢ +——-—H—1———-"n-"--r--——m--——
217600 +—-—-———"——H—--""r-"H—m-m-"-r——
.idata section [1183 bytes]
218782 +4——"—m-"-—"H—"-"H—-""-"-""-""""""——
218783 +4——1———"-"H-"1—-"-"-"-""-""""""""""
More of Import Table (.idata section) [24]1 bytes]
219023 +4——-—H——1—-"-r-"--"m-—mr-————
219024 +4————H—-"-""-""-"""""""""""""""——
(** Zero—-filled region **) [112 bytes]
21913 +4—————"—+1-"1-—"1-—1-—1-"-—""-"-""-"-"—"-"--"-"---
—-——— End of File Map —-———
NOTES ON FILE MAP CHANGES:
- Changed "Import Table (.idata section) [1424 bytes]" at address
217600
by inserting ".idata section [1183 bytes]"
— Changed " (Contents not known) [448 bytes]" at address 576
by inserting " (** Zero-filled region **) [448 bytes]™"
— Changed " (Contents not known) [112 bytes]" at address 219024
by inserting " (** Zero-filled region *¥*) [112 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 219136 bytes

— Created on Wed Jan 26 17:24:34 2005

- Target CPU: Intel 386 or later compatibles

— Debugging information has been removed

— Designed for Windows Operating System version 4.0

— Runs

in the Windows character subsystem

- Lists these table names in the data directory: Import
— Contains no string table
— Contains no symbol table
— Imports functions from
—-— cygwinl.dll (CYGWIN GNU base dynamic link library)
—— KERNEL32.dll (WinNT base API client)

———— End

of File Fact Summary ====

175

x%k Anomalies ***x*

— A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 4464 bytes for that section

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

- Uses 7 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

—————————— DOS Header - —————————

DOS signature: MZ

Bytes on last page of file: 144

Pages in file: 3
Relocations: 0

Size of header in paragraphs: 4

Minimum extra paragraphs: 0

Maximum extra paragraphs: 65535
Initial (relative) SS wvalue: 0

Initial SP value: 184
Checksum: 0

Initial IP value: 0

Initial (relative) CS wvalue: 0

File address of relocation table: 64

Overlay number: 0

Reserved words: 0O 0 0 O
OEM identifier: 0

OEM information: 0

Reserved words: 0 0
Offset to PE signature and header: 128
———————— End of DOS Header —-——————-—
7777777777 File Header —-————————-

Target CPU: Intel 386 or later compatibles
Number of Sections: 5

Time Date Stamp: Wed Jan 26 17:24:34 2005
Ptr to Symbol Table: 0

Number of Symbols: 0

Size of Optional Header: 224

Characteristics:

- Base relocations have been stripped (default linker action),
so file must be loaded at preferred base address

- This is an executable image

— COFF line numbers have been removed

176

— COFF symbol table entries for local symbols have been removed
- Debugging information has been removed from the image file

End of File Header

Optional Header

Magic: 267 (PE32 executable)
Linker Version: 2.56
Size of Code: 176128
Size of Initialized Data: 218112
Size of Uninitialized Data: 4608
Address of Entry Point: 4096
Base of Code: 4096
Base of Data: 180224
Image Base: 4194304
Section Alignment: 4096
File Alignment: 512

0OS Version: 4.0
Major Image Version: 1

Minor Image Version: 0

Major Subsystem Version: 4

Minor Subsystem Version: 0

Size of Image: 237568
Size of Headers: 1024
Check Sum: 235824

Required Windows Subsystem:

Runs in the Windows character subsystem

DLL Characteristics: 0

Size of Stack Reserve: 2097152
Size of Stack Commit: 4096
Size of Heap Reserve: 1048576
Size of Heap Commit: 4096
Loader Flags: 0

Nbr of RVS and Sizes: 16

Data Directory:

Export Table RVA: 0000000 Size: O
Import Table RVA: 0233472 Size: 1424
Resource Table RVA: 0000000 Size: O
Exception Table RVA: 0000000 Size: O
Certificate Table RVA: 0000000 Size: O
Base Relocation Table RVA: 0000000 Size: O
Debug RVA: 0000000 Size: O
Architecture RVA: 0000000 Size: O
Global Ptr RVA: 0000000 Size: O
TLS Table RVA: 0000000 Size: O
Load Config Table RVA: 0000000 Size: O
Bound Import RVA: 0000000 Size: O
Import Address Table RVA: 0000000 Size: O
Delay Import Descriptor RVA: 0000000 Size: O
COM+ Runtime Header RVA: 0000000 Size: O
Reserved RVA: 0000000 Size: O

-——— Section Table

End of Optional Header

(5 entries)

177

Entry#0:

Full Name: .text

Stored name: .text

Virtual Size: 176112

Virtual Address: 4096

Size of Raw Data: 176128

Ptr to Raw Data: 1024

Ptr to Relocations: 0

Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:
- Contains executable code
- Contains initialized data
— Can be executed as code
- Can be read from
— Cannot be written to

Entry#1l:
Full Name: .data
Stored name: .data
Virtual Size: 4508
Virtual Address: 180224
Size of Raw Data: 4608
Ptr to Raw Data: 177152
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

— Contains initialized data

- Can be read from

- Can be written to

Entry#2:
Full Name: .rdata
Stored name: .rdata
Virtual Size: 35484
Virtual Address: 188416
Size of Raw Data: 35840
Ptr to Raw Data: 181760
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

— Contains initialized data

- Can be read from

- Can be written to

Entry#3:
Full Name: .bss
Stored name: .bss
Virtual Size: 4464
Virtual Address: 225280

178

Size of Raw Data: 0

Ptr to Raw Data: 0
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:
- Contains uninitialized data
— Can be read from
- Can be written to

Entry#4:
Full Name: .idata
Stored name: .idata
Virtual Size: 1424
Virtual Address: 233472
Size of Raw Data: 1536
Ptr to Raw Data: 217600
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

- Contains initialized data

- Can be read from

- Can be written to

77777777 End of Section Table —————-—-
No Symbol Table to display
No String Table to display
No Export Table to display

———— Import Table —--——-
Import Directory Table:

Entry#0:

RVA of Lookup Table: 233536
Time Date Stamp: Wed Dec 31 18:00:00 1969
Start Index of Forwarder Chain: 0
DLL Name: cygwinl.dll
RVA of Import Lookup Table: 0x39124
Import Lookup Table Contents:

__errno

__main

ctype

abort

atoi

calloc

cygwin_internal
dll_crtO__FPllper_process
fclose

fdopen

179

fflush
fileno
fopen
fprintf
fread
free
fseek
ftell
fwrite
getc
malloc
memchr
memcpy
memmove
memset
printf
pthread_mutex_lock
pthread_mutex_unlock
pthread_once
realloc
setlocale
setvbuf
sprintf
sscanf
strcat
strcmp
strcoll
strcpy
strdup
strftime
strlen
strncpy
strtod
strtol
strtoll
strtoul
strtoull
strxfrm
ungetc

Entry#l:
RVA of Lookup Table:
Time Date Stamp:

Start Index of Forwarder Chain:

DLL Name:
RVA of Import Lookup Table:
Import Lookup Table Contents:
AddAtomA
FindAtomA
GetAtomNameA
GetModuleHandleA

———— End of Import Table —--——-

No Debug Table data to display

233740

Wed Dec 31 18:00:00 1969
0

KERNEL32.d1l1

0x391£0

180

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

1 7 helloworld—gnu.exe

9.11 helloworld - Compiled and linked using Microsoft Visual Studio

FILE NAME: helloworld-vs.exe

-——= File Map -

ADDRESS DESCRIPTION

0 +—————
DOS Header [64 bytes]
63
64 o
MS-DOS Stub [57 bytes]
20 +——"———"—1—+"n-—--.
221 4+
(Contents not known) [87 bytes]
207 +—————"1—1—"H—m-——
208 +——-————H—"H—""---- -
PE Signature [4 bytes]
R
212 4—m"——m——- -
File Header [20 bytes]
231, +———————————— - - - .
232 +—————-—- -
Optional Header [224 Dbytes]
45 -0 - -
456 +——""--———"—"—"————
Section Table [120 bytes]
5% +--——1H-"1-—r--——--- -
576 +————————
(Contents not known) [3520 bytes]
409 +——-—H———1—"H—1—r"H—-m1r- -k
4096 +—————H——"H—-—"H——-"———
.text section [131072 bytes]
135167 +4————"-"-71H+7"1-—1H—"1""""--""""-"""""""""——
135168 +4———"-"—-""-—"H""""-"—"""""""""""""————

16

16

17

NOTE
- C

1592
b

Addr

* Kk Kk Kk

cont
exis
an i
Impo
1626

* Kk Kk Kk

.rdata section [28672 bytes]

3839 4——-——mm—H—"-—H——------- +
135168 +-——"—"—"—"-"—"-"-""—-""m +
(No additional details) [24056 bytes]
159223 +—-—-————"H—-"—----"-""" """ +
159224 44— """ +
Import Table (.idata section) [1546 bytes]
l¢0769 +—-——"—""""-"—-"m""m-"m +
le0770 +-—-—"——"H—"—"Hm—"m"-"m-"mr——— +
(No additional details) [3070 bytes]
163839 +4———1—-—H—""H—-"-"—-""-""-""""""""""" +
340 4———m————H—"—"H—7"""-"—""""""""————— +
.data section [8192 bytes]
2031 +———"—————"1""n"-rrr————— +

End of File Map ———-—

S ON FILE MAP CHANGES:

hanged "Import Table (.idata section) [40 bytes]" at address
24

y inserting "Import Table (.idata section) [1546 bytes]"

File Fact Summary ====

Image file in Windows NT portable executable (PE) format
Actual file size: 172032 bytes

Created on Fri Jan 28 13:40:30 2005

Target CPU: Intel 386 or later compatibles

Targeted for a 32-bit-word architecture

Designed for Windows Operating System version 4.0

Runs in the Windows character subsystem

Lists these table names in the data directory: Import, Import
ess

Contains no string table

Contains no symbol table

Imports functions from

—— KERNEL32.dll (WinNT base API client)

End of File Fact Summary ====

Anomaliesg ****

The normally small zero-filled region following the MS-DOS Stub
ains some kind of information

The file indicates an import address table consisting of 292 bytes
ts starting at address 335872; this table often does not appear in

mage file so it was not read and it was also not mapped

The data directory table in the optional header states that the

rt Table (.idata section) is 40 bytes in size when actually it is
bytes in size

End of Anomalies ***x*

182

No security wvulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 helloworld-vs.exe

9.12 jGRASP IDE 1.7.5 Executable Files

FILE NAME: jgrasp.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1232
bytes exists starting at address 131072; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
6545 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 7904 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: jGRASPjava.exe

x%k Anomalies ***x*

183

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 268 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
592 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8600 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: winconfig.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 916 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4819 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8960 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
jgrasp.exe

JGRASPjava.exe
winconfig.exe

DD
o O O

184

9.13 Microsoft Windows XP kernel32.dll Dynamic Link Library

FILE NAME:

-——= File Map -

ADDRESS

63
64

120
121

247
248

251
252

271
272

495
496

655
656

683
684

1023
1024

478207

\windows\system32\kernel32.dl1l

DESCRIPTION

DOS Header [64 bytes]

MS-DOS Stub [57 bytes]

Optional Header [224 Dbytes]

136511
136512

162811
162812

163527
163528

467395
467396

Import Table (.idata section) [10330 bytes]

477725 @ Hmm e +
V. By R B X~ R —————. +
(No additional details) [2 bytes]
477727 @ em +
477728 @ Hem +
Debug Table (.debug section) [56 bytes]
477783 A +
477784 A +
(No additional details) [424 Dbytes]
478207 @ Hm—mmmm e +
478208 A +
.data section [9216 bytes]
A487T423 A +
478208 Ammmmm +
(No additional details) [1704 bytes]
479911 @ Hmmmmm e +
479912 @A +
Load Config Table [64 bytes]
479975 @ Ao +
479976 Ao +
(No additional details) [7448 bytes]
487423 A +
< Ry V. N R R ————————. +
.rsrc section [417792 bytes]
905215 4o +
905216 4o +
.reloc section [21504 bytes]
926719 A +

—-——— End of File Map —--——-

NOTES ON FILE MAP CHANGES:

— Changed "Export Table (.edata section) [27016 bytes]" at address
136512

by inserting "Export Table (.edata section) [26300 bytes]"
- Changed "Import Table (.idata section) [40 bytes]" at address
467396

by inserting "Import Table (.idata section) [10330 bytes]"
— Changed "Debug Table (.debug section) [56 bytes]" at address
477728

by inserting "Debug Table (.debug section) [56 bytes]"
— Changed "Resource Table (.rsrc section) [417496 bytes]" at address
487424

by inserting ".rsrc section [417792 bytes]"
— Changed "Relocation Table (.reloc section) [21264 bytes]" at
address 905216

by inserting ".reloc section [21504 bytes]"
— Changed " (Contents not known) [340 bytes]" at address 684

by inserting " (** Zero-filled region **) [340 bytes]™"

==== File Fact Summary ====

186

- Image file in Windows NT portable executable (PE) format

— Actual file size: 926720 bytes

- Created on Sat Aug 18 00:33:02 2001

— Target CPU: Intel 386 or later compatibles

- Targeted for a 32-bit-word architecture

- Image file is a dynamic link library (DLL)

— Designed for Windows Operating System version 5.1

- Runs in the Windows character subsystem

— Lists these table names in the data directory: Export, Import,
Resource, Relocation, Debug, Load Config, Bound Import, Import Address

- Contains no string table

— Contains no symbol table

— Exports functions using the file name KERNEL32.dl1l

— Imports functions from

-— ntdll.dll (NT layer)

- Contains a large area of 303868 bytes starting at address 163528

which may indicate a group of compressed files

==== End of File Fact Summary ====

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1544
bytes exists starting at address 1024; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
10330 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 417496 bytes in size when actually
it is 417792 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 21264 bytes in size when actually
it is 21504 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

—————————— DOS Header - —————————

DOS signature: MZ
Bytes on last page of file: 144
Pages in file: 3

187

Relocations: 0

Size of header in paragraphs: 4

Minimum extra paragraphs: 0

Maximum extra paragraphs: 65535
Initial (relative) SS value: 0

Initial SP value: 184
Checksum: 0

Initial IP value: 0

Initial (relative) CS value: 0

File address of relocation table: 64

Overlay number: 0

Reserved words: O 0 0 O
OEM identifier: 0

OEM information: 0

Reserved words: 0 O
Offset to PE signature and header: 248
77777777 End of DOS Header ———————-—
—————————— File Header ——————————

Target CPU: Intel 386 or later compatibles
Number of Sections: 4

Time Date Stamp: Sat Aug 18 00:33:02 2001
Ptr to Symbol Table: 0

Number of Symbols: 0

Size of Optional Header: 224

Characteristics:

- This is an executable image

— COFF line numbers have been removed

— COFF symbol table entries for local symbols have been removed
- Software is targeted for a 32-bit-word architecture

— This image file is a dynamic link library (DLL)

777777777 End of File Header ——————-

—————————— Optional Header —-————————-—

Magic: 267 (PE32 executable)
Linker Version: 7.0

Size of Code: 477184
Size of Initialized Data: 450048
Size of Uninitialized Data: O

Address of Entry Point: 107073
Base of Code: 4096

Base of Data: 462848
Image Base: 2011561984
Section Alignment: 4096

File Alignment: 512

0OS Version: 5.1

Major Image Version: 5

Minor Image Version: 1

Major Subsystem Version: 4

Minor Subsystem Version: 0

Size of Image: 937984
Size of Headers: 1024

Check Sum: 952210

188

Required

Windows Subsystem: Runs in the Windows character subsystem

DLL Characteristics: 0
Size of Stack Reserve: 262
Size of Stack Commit: 409
Size of Heap Reserve: 104
Size of Heap Commit: 409
Loader Flags: 0
Nbr of RVS and Sizes: 16
Data Directory:

Export Table

Import Table

Resource Table

Exception Table

Certif

icate Table

Base Relocation Table

Debug
Archit
Global
TLS Ta
Load C
Bound
Import
Delay

ecture

Ptr
ble

onfig Table
Import

Address Table
Import Descriptor

COM+ Runtime Header

Reserv

ed

End of Optional Header

—-——— Section Table (4 entries)

Entry#0:
Full Name: .text
Stored name: .text
Virtual Size: 47676
Virtual Address: 4096
Size of Raw Data: 47718
Ptr to Raw Data: 1024
Ptr to Relocations: 0
Ptr to Line Numbers: No CO
Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

144
6
8576
6

RVA: 0139584 Size:
RVA: 0470468 Size:
RVA: 0495616 Size:
RVA: 0000000 Size:
RVA: 0000000 Size:
RVA: 0913408 Size:
RVA: 0480800 Size:
RVA: 0000000 Size:
RVA: 0000000 Size:
RVA: 0000000 Size:
RVA: 0485032 Size:

RVA: 0656 Size: 28

27016
40
417496
0

0
21264
56

0

0

0

64

RVA: 04096 Size: 1544

RVA: 0000000 Size:
RVA: 0000000 Size:
RVA: 0000000 Size:

0

4

FF line numbers

— Contains executable code

- C
- C
- C

Entry#1l:
Full N
Stored
Virtua
Virtua
Size o
Ptr to
Ptr to

an be executed as code
an be read from
annot be written to

ame : .data
name : .data
1 Size: 10442
1 Address: 48332
f Raw Data: 9216

Raw Data: 47820
Relocations: 0

8

8

189

0
0
0

Ptr to Line Numbers: No COFF line numbers
Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:
— Contains initialized data
- Can be read from
- Can be written to

Entry#2:

Full Name: .rsrc

Stored name: .rsrc

Virtual Size: 417496

Virtual Address: 495616

Size of Raw Data: 417792

Ptr to Raw Data: 487424

Ptr to Relocations: 0

Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0
Number of Linenumbers: 0
Characteristics:

— Contains initialized data

- Can be read from

- Cannot be written to

Entry#3:
Full Name: .reloc
Stored name: .reloc
Virtual Size: 21264
Virtual Address: 913408
Size of Raw Data: 21504
Ptr to Raw Data: 905216
Ptr to Relocations: 0
Ptr to Line Numbers: No COFF line numbers

Number of Relocations: 0

Number of Linenumbers: 0

Characteristics:
— Contains initialized data
- Can be discarded as needed
— Can be read from

Cannot be written to

No Symbol Table to display
No String Table to display
—-—-—— Export Table —-——-

Directory Table:

Characteristics: 0

Time Date Stamp: Fri Aug 17 22:24:08 2001
Major Version: 0

Major Version: 0

Name of DLL: KERNEL32.d11

190

Starting Ordinal Number:

Number of Function Addresses:

Number of Names:

Location of Address Table:

Location of Name Ptr Table:
Location of Ordinal Table:

Table (928 names) :
ActivateActCtx
AddAtomA

AddAtomW

Export Name
Entry#1l:
Entry#2:
Entry#3:

Entry#926: lstrlen
Entry#927: lstrlenA
Entry#928: lstrlenW
Forwarder Name Table

—-——— End of Export Table —--——-

———— Import Table —--——-
Import Directory Table:

Entry#0:
RVA of Lookup Table:
Time Date Stamp:

Start Index of Forwarder Chain:

DLL Name:

RVA of Import Lookup Table:

(0 names) :

1

928

928
0x22168
0x22fe8
0x23e68

470518

Wed Dec 31 17:59:59 1969
4294967295

ntdll.dll

0x1000

Import Lookup Table Contents:

_wcsnicmp
NtFsControlFile
NtCreateFile

NtQueryDefaultLocale
_strlwr
Rt1lUnwind

—-——— End of Import Table —--——-

—-——- Debug Table ——-——-
Debug Directory Table

Entry#0:
Characteristics:
Time Date Stamp:
Format Major Version:
Format Minor Version:
Debug Type:
Size of Debug Data:
Image Address of Raw Data:
File Pointer to Raw Data:

Entry#l:

(2 entries):

0

Fri Aug 17 22:24:08 2001

0

0

CodeView debug information
29

470180

467108

191

Characteristics:

Time Date Stamp:
Format Major Version:
Format Minor Version:
Debug Type:

Size of Debug Data:

Image Address of Raw Data:

File Pointer to Raw Data:

—-——— End of Debug Table —--——-

0

Fri Aug 17 22:24:08 2001

0
0

Unknown information (10)

0
0
0

7777777 Summary of File Security Analysis —-————————-

Total number of files submitted: 1
List of files containing anomalies (A), vulnerabilities
(R)

A V/R Filename

; __; 1;1;&;;;\system32\kernel32.dll

192

(V)

or risks

10. APPENDIX D - TEST RESULTS FROM ANALYZING EXECUTABLE
INSTALLATION FILES

10.1 Adobe Acrobat Reader 5.0 Installation File

FILE NAME: rp500enu.exe

==== File Fact Summary ====

- Image file in Windows NT portable executable (PE) format
— Actual file size: 10236296 bytes
— Created on Thu Mar 26 08:31:20 1998
— Target CPU: Intel 386 or later compatibles
- Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows GUI subsystem
— Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
- Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—-— GDI32.dll (Graphics device interface client)
—-— COMCTL32.dll (Custom controls library)
—-— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
—-— SHELL32.dll (Windows shell common)
—— Lz32.d11 (LZ expand/compress API)
- Contains a large area of 10078496 bytes starting at address 130560
which may indicate a group of compressed files

==== End of File Fact Summary ====

x%k Anomalies ***x*

— The file indicates an import address table consisting of 588 bytes
exists starting at address 85228; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3174 bytes in size

193

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41640 bytes in size when actually it
is 41984 bytes in size

%* End of Anomalies **

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 rp500enu.exe

10.2 Earthlink TotalAccess 5.0 Installation File

FILE NAME: TA2005_1.exe

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 427096 bytes
— Created on Sat Jun 19 00:10:13 2004
— Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows GUI subsystem
— Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—— GDI32.dll (Graphics device interface client)
—-— comdlg32.dll (Common dialogs)
—— WINSPOOL.DRV (Purpose unknown)
—-— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
—— SHELL32.dll (Windows shell common)
—— COMCTL32.d1ll (Custom controls library)
—-— SHLWAPI.dll (Purpose unknown)
—— WININET.dll (Purpose unknown)

194

—-— OLEAUT32.dll1 (OLE 2.20 for Windows NT and Windows 95)
—-— OLEACC.dll (Purpose unknown)
— Contains an unusual area of 212992 bytes starting at address
192512 which may indicate a group of compressed files

==== End of File Fact Summary ====

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1324
bytes exists starting at address 147456; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
7206 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 227664 bytes in size when actually
it is 229376 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 TA2005_1.exe

10.3 Java 1.4.2 Installation Files

FILE NAME: j2re-1_4_2_ 0l-windows—-1i586-iftw.exe

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
Actual file size: 1418120 bytes

Created on Tue Aug 19 21:32:03 2003

- Target CPU: Intel 386 or later compatibles

195

- Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
— Runs in the Windows GUI subsystem
- Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
- Contains no string table
- Contains no symbol table
— Imports functions from
—— KERNEL32.dll (WinNT base API client)
—— USER32.d1ll (Windows NT user API client)
—— WININET.dll (Purpose unknown)
—-— MSVCRT.dll (C runtime library)

==== End of File Fact Summary ====

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 208 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
972 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1394544 bytes in size when actually
it is 1396736 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: j2sdk-1_4_2_ 0l-windows-1i586-iftw.exe

==== File Fact Summary ====

- Image file in Windows NT portable executable (PE) format
— Actual file size: 364544 bytes

- Created on Tue Aug 19 21:34:40 2003

— Target CPU: Intel 386 or later compatibles

— Targeted for a 32-bit-word architecture

— Designed for Windows Operating System version 4.0

196

- Runs in the Windows GUI subsystem
— Lists these table names in the data directory: Import, Resource,
Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—— WININET.dll (Purpose unknown)
—-— MSVCRT.dll (C runtime library)

==== End of File Fact Summary ====

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 208 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
972 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 345680 bytes in size when actually
it is 348160 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: jdk-1_5_0O-betaZ2-windows—1586.exe

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 45836078 bytes

— Created on Wed Feb 4 10:43:10 2004

- Target CPU: Intel 386 or later compatibles

- Targeted for a 32-bit-word architecture

— Designed for Windows Operating System version 4.0

- Runs in the Windows GUI subsystem

197

— Lists these table names in the data directory: Import, Resource,
Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— VERSION.dll (Version checking and file installation)
—-— SHELL32.dll (Windows shell common)
—— COMCTL32.d1ll (Custom controls library)
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—-— GDI32.dll (Graphics device interface client)
—-— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
-— 0le32.d1ll1 (OLE 2.1 16/32 interoperability library)
—-— OLEAUT32.dll (OLE 2.20 for Windows NT and Windows 95)
— Contains an unknown region of 45610798 bytes starting at address
225280 which may indicate a group of compressed files

==== End of File Fact Summary ====

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1084
bytes exists starting at address 143360; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4682 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41696 bytes in size when actually it
is 45056 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Contains 4492 bytes of unused zero-filled space that could be used
to store malicious code or data

1111 End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 3
List of files containing anomalies (A), vulnerabilities (V) or risks

(R)

198

A V/R Filename

4 1 j2re-1_4_2_0l-windows-i586-iftw.exe
4 1 j2sdk-1_4_2_0l-windows-1i586-iftw.exe
4 1 jdk-1_5_0O-beta2-windows—-1586.exe

10.4 jGRASP 1.7.5 Installation File

FILE NAME: jgraspl75.exe

-——— File Map ———-

ADDRESS DESCRIPTION

o +———"————---------—————
DOS Header [64 bytes]
63 +—————- -
64 +———m———---
MS-DOS Stub [57 bytes]
120 ===
121 4=
(Contents not known) [87 bytes]
207 4"
208 A
PE Signature [4 bytes]
e
212 A
File Header [20 bytes]
B
B
Optional Header [224 bytes]
455 4
456 @ Hmmmmm e
Section Table [200 bytes]
655 4
656 -
(** Zero-filled region **) [368 bytes]
1023 +=——————
1024 +——————— =
.text section [24064 bytes]
25087 A
25088 A4
.rdata section [4608 bytes]
29695 A4
25088 4
(No additional details) [816 bytes]
25903 4
25904 A4
Import Table (.idata section) [3637 bytes]

199

29541 41— - - ————
(No additional details) [155 bytes]
29695 +—————-rrrr—rrrr——
29696 +———H—"=—"—""-""""""" """
.data section [1024 bytes]
30719 +4———"——1"+1H—H—"1"-——-- -
30720 +-————1—1—"Hm—m1mr-"n----mo----————
.rsrc section [12800 bytes]
43519 4——"—————-"H-—"1—-"1"-"-"""-""- -
43520 4—————-—"1-—"1H—+7"-"H—-""-""-"—"-"""-"--—
More of Resource Table (.rsrc section) [3584 bytes]
47103 +-——"—"—-"-—"—-"————-—
47104 +-—-——-—"H—-"H—1—-"———-—
(Contents not known) [2053221 bytes]
2100324 4———"-"-"1-"1-—"1H"-"-""""""""""""""""""——
———— End of File Map —--———
NOTES ON FILE MAP CHANGES:
- Changed "Import Table (.idata section) [180 bytes]" at address
25904
by inserting "Import Table (.idata section) [3637 bytes]"
— Changed "Resource Table (.rsrc section) [16384 bytes]" at address
30720
by inserting ".rsrc section [12800 bytes]"
— Changed " (Contents not known) [368 bytes]" at address 656
by inserting " (** Zero-filled region *¥*) [368 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 2100325 bytes

— Created on Sat Feb 7 11:26:28 2004

- Target CPU: Intel 386 or later compatibles

— Targeted for a 32-bit-word architecture

— Designed for Windows Operating System version 4.0

— Runs

in the Windows GUI subsystem

— Lists these table names in the data directory: Import, Resource,
Import Address
— Contains no string table
— Contains no symbol table
- Imports functions from
—-— COMCTL32.dll (Custom controls library)
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—— GDI32.dll (Graphics device interface client)
—-— ADVAPI32.dll (Routines to read and modify the Windows NT

registry)

—-— SHELL32.dll (Windows shell common)
-— 0le32.d1ll1 (OLE 2.1 16/32 interoperability library)
—— VERSION.dll (Version checking and file installation)

200

— Contains an unknown region of 2053221 bytes starting at address
47104 which may indicate a group of compressed files

==== End of File Fact Summary ====

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 672 bytes
exists starting at address 25088; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3637 bytes in size

- A section entry named .ndata appears in the section table, but the
table doesn't contain the location of the 61440 bytes for that section

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 jgraspl75.exe

10.5 jGRASP 1.7.5 (with JRE) Installation File

FILE NAME: jgraspjrel75.exe

-——— File Map ———-

ADDRESS DESCRIPTION

0 44— +
DOS Header [64 bytes]

63 +———m—————— +

64 +———m————- +

MS-DOS Stub [57 bytes]

20 4+
21 4+
(Contents not known) [87 bytes]
207 4
208 4———"——H—"=-"H—+""-"--"-""-"""""" """ """—"—"———
PE Signature [4 bytes]
211 40— -
212 +———————-—
File Header [20 bytes]
23, 44— -
232 44—
Optional Header [224 bytes]
45 +——H—————-———
45 +———""-""-"-""" """
Section Table [200 bytes]
65, 4-—-—1—-"-""- -
656 +———---"---—————
(** Zero—-filled region **) [368 bytes]
023 4+
024 +————-"—-"-"—-"-""" """
.text section [24064 bytes]
25087 +—-—-———1—1—H—r—-—r i —
25088 +———rr————
.rdata section [4608 bytes]
2969 +——"——"=-—1—1"-—-—1H—1-"1-—1—1-"-—"——-----
25088 +——"———+"1=-—"1—+71-"1-—H—""-"1"--------
(No additional details) [816 bytes]
25903 +—————-—————
25904 +————1"+"1=—H—"H-"-"—-"""-"-""—"-"—--"""""—
Import Table (.idata section) [3637 bytes]
29%40 +—————1—+1-"1-"1-—"1-—""-"-—""-"-"——-" """ - ————
29541 +———1————1—"—r"r-r-—rr-H—-m—_———
(No additional details) [155 bytes]
2969 +———1—+"1-—1—1—"1-"H—-—1-+—"-—"1-""-"""-""--——-" "
29696 +——1H—1H—""-""-"""""-""""" """ """
.data section [1024 bytes]
30719 +4———"——1—1——"Hm—m1-"--omo---r———
30720 +————1———"1H—"—""-"-------m-————
.rsrc section [12800 bytes]
43519 4——————H——H—"-""-"-""-""
43520 4—————-——1"-"H"-"""-"""-"-"""" "
More of Resource Table (.rsrc section) [3584 bytes]
47103 +-—-——"—"—-"-—"—-"——_-—
47104 4———"--—"H—-—"H—--—"—-"-""-""-"-"""""""
(Contents not known) [17384875 bytes]
17431978 4-——"-—"—-"—-""-""""""""""""""

———— End of File Map —-———

NOTES ON FILE MAP CHANGES:

- Changed "Import Table (.idata section) [180 bytes]" at address
25904
by inserting "Import Table (.idata section) [3637 bytes]"

202

— Changed "Resource Table (.rsrc section) [16384 bytes]" at address
30720

by inserting ".rsrc section [12800 bytes]"
— Changed " (Contents not known) [368 bytes]" at address 656

by inserting " (** Zero-filled region **) [368 bytes]™"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 17431979 bytes
— Created on Sat Feb 7 11:26:28 2004
— Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows GUI subsystem
— Lists these table names in the data directory: Import, Resource,
Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—-— COMCTL32.dll (Custom controls library)
—— KERNEL32.dll (WinNT base API client)
—— USER32.dll (Windows NT user API client)
—-— GDI32.dll (Graphics device interface client)
—-— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
—-— SHELL32.dll (Windows shell common)
-— 0le32.d1ll1 (OLE 2.1 16/32 interoperability library)
—— VERSION.dll (Version checking and file installation)
— Contains an unknown region of 17384875 bytes starting at address
47104 which may indicate a group of compressed files

==== End of File Fact Summary ====

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 672 bytes
exists starting at address 25088; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3637 bytes in size

- A section entry named .ndata appears in the section table, but the
table doesn't contain the location of the 61440 bytes for that section

**** End of Anomalies ****

No security vulnerabilities or security risks were found

203

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 jgraspjrel75.exe

10.6 Windows Media Player 9.0 Installation File

FILE NAME: MPSetupXP-9.exe

-——= File Map -

ADDRESS DESCRIPTION

0 +——————
DOS Header [64 bytes]
63
64 o
MS-DOS Stub [57 bytes]
20 +——"———"—1—"n-——-
221 4+
(Contents not known) [79 bytes]
199 +——"1——"H—"H""nr-"Hm-mr-—--""--
200 +—H——1——1——"—1—""n-"Hm-r-——
PE Signature [4 bytes]
208 4—————"=—"H—"-"---"-" "
204 4———"—-""-"""""""""""" """
File Header [20 bytes]
223 44—
224 +——"——— -
Optional Header [224 Dbytes]
447
48 +—-—-——--—-—--"—-—-—-——-— -
Section Table [120 bytes]
57 +---———7171H-"1"—- 4 -k -4\&
58 +--——"—"—"77"17"1--——--"--"--"-" """ """ """
(** Zero—-filled region *¥*) [456 bytes]
1023 +———"——H————-—-—-—
1024 +—————1—"—"—"—-"-"—"H—-—---—-—
.text section [34816 bytes]
339 4—"———1——1""-"1-—+1"—H—1"-""-""-""-—"—"""-" """

(No additional details) [528 bytes]

551 4 =
152 +——-—-——-—-—--—-—-— -
Debug Table (.debug section) [28 bytes]
1579 +————————
580 +————"——-"-"-" -
(No additional details) [30852 bytes]
32431 4—————"——rr—
32432 +4—————"——"—-""-r—
Import Table (.idata section) [2834 bytes]
35265 4——————1+"1H+"1-—1H—"1"-"1"-"""-"-—""--" -
35266 +———1"——"H—""-""""""""""""" """ —
(No additional details) [574 bytes]
35839 44—
35840 4———"1——1—""-""-""""""""""""""""""————
.data section [1024 bytes]
36863 +4——1—1—1—"1"+"=—"H—+"""-"""""""""""
36864 +—————-m

10128895 Hm———

10116607 A————m

10116608 4————m
Certificate Table [6792 bytes]

10123399 @ o

10123400 4o —m

10135687 +—————————
—-——— End of File Map —--——-

NOTES ON FILE MAP CHANGES:

— Changed "Import Table (.idata section) [140 bytes]" at address
32432
by inserting "Import Table (.idata section) [2834 bytes]"
- Changed "Debug Table (.debug section) [28 bytes]" at address 1552
by inserting "Debug Table (.debug section) [28 bytes]"
— Changed "Resource Table (.rsrc section) [10092012 bytes]" at

address 36864
by inserting ".rsrc section [10092032 bytes]"

- Changed " (Contents not known) [456 bytes]" at address 568
by inserting " (** Zero-filled region *¥*) [456 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 10135688 bytes

- Created on Fri Aug 17 20:42:57 2001

- Target CPU: Intel 386 or later compatibles

- Targeted for a 32-bit-word architecture

— Designed for Windows Operating System version 5.1

- Runs in the Windows GUI subsystem

205

— Lists these table names in the data directory: Import, Resource,
Certificate, Debug, Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—-— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
—— KERNEL32.dll (WinNT base API client)
—— GDI32.dll (Graphics device interface client)
—— USER32.d1ll (Windows NT user API client)
—-— COMCTL32.dll (Custom controls library)
—— VERSION.dll (Version checking and file installation)
— Contains an unusual area of 10079744 bytes starting at address
36864 which may indicate a group of compressed files

==== End of File Fact Summary ====

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 528 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2834 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10092012 bytes in size when actually
it is 10092032 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 MPSetupXP-9.exe

10.7 Real One Player (ME/XP) Installation File

206

FILE NAME: RealPlayerl0-5GOLD_bb.exe

-——= File Map -

ADDRESS DESCRIPTION

0 +——————
DOS Header [64 bytes]
&3 +---———---"-"------"----"-"--"—- " ———
o4 +-—-——"—"""""-"""-" """ """ —(——(—«(—«(—«(—~(—(—(—(—(—(—(—(—(—(—(——
MS-DOS Stub [57 bytes]
20 +——"————"—1—7"——---
221 4+
(Contents not known) [111 bytes]
23, 4—————m—————— -
232 +—————----—
PE Signature [4 bytes]
23 +4—"——------- -k
236 44—
File Header [20 bytes]
25 +--—------------- .
256 +———— - -\ -4 M
Optional Header [224 Dbytes]
479 4
480 +——————-"—"-""-"""-""""—
Section Table [160 bytes]
639 4+———---—————
640 4—————"H""""""""""""""——
(** Zero—-filled region *¥*) [3456 bytes]
409 4——1———1———1—-—"1—"1"—- -
4096 +—————H——"H———"H———-—
.text section [98304 bytes]
02399 4———1—H—"H-"-"""-"""-"-"—"-"-"""-" """ """
102400 +4-—-—"H"-—1-"H—""-"H—-"""""""""""""""""""———
.rdata section [12288 bytes]
114687 +-—-"H——"—--"——m—
102400 +-—-—-——"—-—"H—-"—"H—"-"m--—"H——-r—
(No additional details) [688 bytes]
103087 4+4—————"—"—"17"1—"H—""-"""""""""""—
103088 +-————-"-"1+71+7"1-—"1-—H—""""""""""""""""""-———
Debug Table (.debug section) [28 bytes]
103115 +4—-——1——H—-""m-"——————
103116 +————"H—"-""-""-"""""""""—————
(No additional details) [6556 bytes]
1096717 4———"—"-—"—""-""""""""""""""———
109672 +-—-——"—"—"1—"—"1-""-"H—-"r-"H——mr——_—
Import Table (.idata section) [2665 bytes]
112336 +4———"—H—""-""""-"""""————
112337 44—
(No additional details) [2351 bytes]
114687 +-——"H——"H—-"-"—mr———
114688 +—-——"H——"—-"-"—-""-"—mmr——

.data section [20480 bytes]

207

135167 Hmmm e

135168 4——m -
.rsrc section [10354688 bytes]

10489855 4o

135168 +———

10481711 Hm——mmmmmm
10481712 Hm——m—mmmm

10487327 Hm——mmmmm e
10487328 Hm————mmm

10495519 +-——————————mmm
—-——— End of File Map —--——-

NOTES ON FILE MAP CHANGES:

— Changed "Import Table (.idata section) [140 bytes]" at address
109672

by inserting "Import Table (.idata section) [2665 bytes]"
— Changed "Debug Table (.debug section) [28 bytes]" at address
103088

by inserting "Debug Table (.debug section) [28 bytes]"
— Changed "Resource Table (.rsrc section) [10351928 bytes]" at

address 135168
by inserting ".rsrc section [10354688 bytes]"
— Changed " (Contents not known) [3456 bytes]" at address 640
by inserting " (** Zero—-filled region *¥*) [3456 bytes]"

==== File Fact Summary ====

— Image file in Windows NT portable executable (PE) format
— Actual file size: 10495520 bytes
— Created on Tue Oct 19 18:51:27 2004
- Target CPU: Intel 386 or later compatibles
— Targeted for a 32-bit-word architecture
— Designed for Windows Operating System version 4.0
- Runs in the Windows GUI subsystem
— Lists these table names in the data directory: Import, Resource,
Certificate, Debug, Import Address
— Contains no string table
- Contains no symbol table
- Imports functions from
—— KERNEL32.dll (WinNT base API client)
—— USER32.d1ll (Windows NT user API client)
—— ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
—-— GDI32.dll (Graphics device interface client)
—-— COMCTL32.dll (Custom controls library)
—— VERSION.dll (Version checking and file installation)
— Contains an unusual area of 10346544 bytes starting at address
135168 which may indicate a group of compressed files

208

==== End of File Fact Summary ====

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 676 bytes
exists starting at address 102400; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2665 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10351928 bytes in size when actually
it is 10354688 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 RealPlayerl0-5GOLD_bb.exe

209

11. APPENDIX E - TEST RESULTS FROM ANALYZING SOFTWARE
DEVELOPMENT FILES

11.1

Dynamic Link Library (DLL) files for Borland CBuilder 5§

Total number of files submitted:

List of files containing anomalies (A), vulnerabilities

(R)

b=

PN WORPNNE SRENDNWOWOROOOREDNDDND W |

V/R

[cNeoNeoNoNoRoNoNoNoNoNoNoNololNolNolNolNolNoly

Summary of File Security Analysis

Filename
bcbedit.dll
bcbmm.dll
borlndmm.dl1l
brcide.dll
cc3250.d11
cc3250mt.dll
comp32p.dll
dccb50.d11
delphimm.dll
ilink32.d1l1
imged32.dl1l
ixxml50.d11
Inkdfm50.d11
rlink32.d1l1
rw32core.dll

typelibimport.dll

vcltest3.dll
xmlide.dll
xprtfltr.dll

20

11.2 Executable (EXE) files for Borland CBuilder 5

(V)

or risks

Summary of File Security Analysis

210

Total number of files submitted: 22

List of files containing anomalies (A), vulnerabilities

(R)

b=

W WU OotwO O WwWwo Wb oo wN

V/R

[eNeoNoNoNoNoNoNoNoNoNoNoNolNolNoNolNolNolNolNoly

Filename
bcb.exe
bcc32.exe
bpr2mak.exe
brc32.exe
brcc32.exe
coff2omf.exe
convert.exe
cpp32.exe
dcc32.exe
grep.exe
ilink32.exe
imagedit.exe
impdef.exe
implib.exe
instreg.exe
make.exe
tdump.exe
tlib.exe
touch.exe
tregsvr.exe

11.3 Dynamic Link Library (DLL) files for Cygwin

(V)

or risks

Summary of File Security Analysis —-————————-

Total number of files submitted: 56

List of files containing anomalies (A), vulnerabilities

(R)

b=

DNDNNDNDDNDNDNDDNDDNDOYN |

V/R

W wo ol O oo w0 wON

Filename
cygbz2-1.d11
cygcrypto-0.9.7.d11
cygcrypto.dll
cygdb-3.1.d11
cygdb_cxx-3.1.d11
cygform5.dl1l
cygform6.dll
cygform7.dll
cyggdbm-3.d11
cyggdbm-4.d1l1
cyggdbm.dll

211

(V)

or risks

WE WDNODNWDNDNDNDNNNDNDNNDNNDNNDNDNNNNDNDNDNDNDNDNDNNDNDNDWNNNDNDNDNDNNDNODNDNDDNDNDNDNDDNDDNDNDN

NO PR OUNDDMMREPEPOOJIJOW-JWWERERNRORPROWOUOODU DB DWDNDWWOOOD DU OO WW

cyggdbm_compat-3.d1l1l
cyggdbm_compat-4.d1l1l

cyggettextlib-0-12-1.d11

cyggettextpo-0.dll

cyggettextsrc-0-12-1.d11

cyghistory4.dll
cyghistory5.dll
cygiconv-2.d1l1
cygintl-1.d11
cygintl-2.d11
cygjbigl.dll
cygijpeg-62.dll
cygijpegbb.dll
cygmenub.dll
cygmenub6.dll
cygmenu7.dll
cygminires.dll
cygncurses++5.d11
cygncurses++6.dl1l
cygncurses5.dll
cygncurses6.dll
cygncurses7.dll
cygpanel5.dll
cygpanel6.dll
cygpanel7.dll
cygpcre-0.dl1l
cygpcre.dll
cygpcreposix-0.dll
cygpcreposix.dll
cygperl5_8_0.d1l1
cygpngl2.dll
cygpopt-0.dl1l
cygreadline4.dll
cygreadline5.dll
cygssl-0.9.7.d11
cygssl.dll
cygtiff3.dll
cygtiffd.dll
cygwinl.dll
cygz.dll
glut32.d1l1l
mingwmlO.dl1l
tcl84.d1l1
tclpip84.dll
tk84.dl1

11.4 Executable (EXE) files for Cygwin

Summary of File Security Analysis

Total number of files submitted:

325

212

List of files containing anomalies (A), vulnerabilities

(R)

b=

PR, PR RPRPRPRPRPRERRERRRRRRPRPRPRPRPREPRERRRERRERRPRPRPRPRPRPRPRERRERERERERRRRRRERRRRRR PP

V/R

N WEOIORFRPDNUDOONWWOWWNRERERPNENIOINMNRP WOOODU U OR JO BB DDMOOOOE OO O o Ul

Filename
alp.exe
addftinfo.exe
addr2line.exe
ar.exe

as.exe
ascii.exe

awk .exe
banner.exe
basename.exe
bash.exe
bison.exe
bunzip2.exe
bzcat.exe
bzip2.exe
bzip2recover.exe
c++.exe
ct+filt.exe
cal.exe
captoinfo.exe
cat.exe
chgrp.exe
chmod.exe
chown.exe
chroot.exe
cjpeg.exe
cksum.exe
clearn.exe
client.exe
cmp.exe
col.exe
colcrt.exe
colrm.exe
column.exe
comm.exe
conv.exe
cp.exe
cpio.exe
cpp.exe
crypt.exe
csplit.exe
cut.exe
cvs.exe
cygcheck.exe
cygpath.exe
Cygrunsrv.exe
cygserver.exe
cygstart.exe
d2u.exe
date.exe

213

(V)

or risks

PR PR RPRPRPRPRPRPRPRRNNRRRRPRPRPRPRPRPRPEREPRRRRERRRPRPRPRPRPRERRERERRRPRRPRRPRPRPRERRRERERRRRRRRR R

[y

[uy

=

=
0O U OORFRPRREPREPNOWOOHUOODOT OO P NRFPOODODU WO JORFRPRONWOR JOOWUWOURE JWJwOuwhEFE OordND o oo

dd.exe
ddate.exe

df .exe
diff.exe
diff3.exe
dir.exe
dircolors.exe
dirname.exe
djpeg.exe
dlltool.exe
dllwrap.exe
dos2unix.exe
du.exe

dump .exe
dumper.exe
dumpgdbm. exe
echo.exe
env.exe
egn.exe
expand.exe
expect.exe
expr.exe
factor.exe
false.exe
fax2ps.exe
fax2tiff.exe
file.exe
fileman-stat.
fileman.exe
find.exe
flex++.exe
flex.exe

fmt .exe
fold.exe
ftp.exe
funzip.exe
gt++.exe
g77.exe

gawk .exe
gcc.exe
gcj.exe
gcjh.exe
gcov.exe
gdb.exe
getclip.exe
getfacl.exe
getopt.exe
gettext.exe
gif2tiff.exe
gij.exe
gprof.exe
grep.exe
grepjar.exe
grn.exe
grodvi.exe

exe

214

groff.exe

grolbp.exe

grolj4.exe

grops.exe

grotty.exe

gunzip.exe

gzip.exe

head.exe

hostname.exe
hpftodit.exe
1i686-pc-cygwin—-c++.exe
i686-pc-cygwin—-g++.exe
i686-pc-cygwin-gcc.exe

PR PR RPRPRPRPRPRPRPRRERRRRRRPRPRPRPPRPRPEPREREPRRERRPRPRPRPPRERERERRNRPRPRPRRERRERERRRRRRRRRE R

=

Wb oD DNDNWOR J0J9J1JJO0JWNWOwWOHWORREREREDR®ODWNOUOOSDWOH WO WOWOOOOHO O OO F Ul Ul o o o

=

id.exe
indxbib.exe
info.exe
infocmp.exe
infokey.exe
infotocap.exe
insight.exe
install-info.exe
install.exe
jar.exe
Jjbgtopbm.exe
jcf-dump.exe
join.exe
jpegtran.exe
jv—-convert.exe
jv—-scan.exe
kill.exe
ld.exe
less.exe
lessecho.exe
lesskey.exe
lkbib.exe
In.exe
loadgdbm.exe
locate.exe
logger.exe
login.exe
logname.exe
lookbib.exe
lpr.exe
ls.exe
md . exe
make.exe
makeinfo.exe
man.exe
man2html.exe
mcookie.exe
md5sum. exe
mkdir.exe
mkfifo.exe
mkgroup.exe
mknod.exe

215

PR PR RPRPRPRPRPRPRPRRERRRRRRPRPRPRPRPRPPRERRERRERRRERRPRPRPRPRPPRPERRERERRERRPRPRPRPRPRPRPRERRERERERRERRRRRR R

=
WO W WN & B W

=

= e
AR P OR MR OWMONWWMAMOOWNOOWOU JJOOROOWERUFENOO®OWNOWOWO®OUU OF MWOOO O ®

mkpasswd.exe
mkshortcut.exe
mktemp.exe
mount .exe
mutt.exe
mv.exe
namei.exe
ncftp.exe
ncftpbatch.exe

ncftpbookmarks.exe

ncftpget.exe
ncftpls.exe
ncftpput.exe
ncftpspooler.exe
ngettext.exe
nice.exe
nl.exe
nm.exe
objcopy.exe
objdump.exe
od.exe
openssl.exe
pal2rgb.exe
passwd.exe
paste.exe
patch.exe
pathchk.exe
pbmtojbg.exe
perl.exe
perl5.8.0.exe
pfbtops.exe
pgawk.exe
pgpewrap.exe
pgpring.exe
pic.exe
pinky.exe
post—-grohtml.exe
ppm2tiff.exe
pr.exe
pre—grohtml.exe
printenv.exe
printf.exe
ps.exe
ptx.exe
putclip.exe
pwd.exe
ranlib.exe
ras2tiff.exe
raw2tiff.exe
rcp.exe
rdjpgcom.exe
readelf.exe
readlink.exe
realpath.exe
refer.exe

216

HF R, NONNRPRPRPRPRPRPRRRRRRRPRPRPRPRPPRPEREPREREPRRERRRPRPRPPRERRERERRERRRPRPRPRPRRERRERRERERRRRRRRR R

P WOOOWOoWwWR WO WhbhWNNOWJOR OWWOOW-JONMNNMNWUULOJOONDdORERE U WOHWOWwWWwWhRooRFOHNOOOWREROOR O

regtool.exe
reset.exe
rev.exe
rgb2ycbcr.exe
rl-stat.exe
rl.exe
rlogin.exe
rltest-stat.exe
rltest.exe
rlversion—-stat.exe
rlversion.exe
rm.exe
rmdir.exe
rmic.exe
rmiregistry.exe
rsh.exe
scp.exe
sdiff.exe
sed.exe
seq.exe
setfacl.exe
sftp.exe
sh.exe
shalsum.exe
shred.exe
size.exe
sleep.exe
soelim.exe
sort.exe
split.exe
squid.exe
ssh—add.exe
ssh—agent.exe
ssh-keygen.exe
ssh-keyscan.exe
ssh.exe
ssp.exe
strace.exe
strings.exe
strip.exe
stty.exe
su.exe
sum.exe
sync.exe
syslog.exe
tac.exe
tack.exe
tail.exe
talk.exe
tar.exe
thbl.exe
tclsh.exe
tclsh84.exe
tcsh.exe
tee.exe

217

PR PR RPRPRPNNNR R RRRRRRPRPRPRPRPRERRRRRERRRPRPRPRPRPRPRRERRERERRRPRRPRPRPRPRPRERRERERRERRRRRRRR R

WO U WWERERERODOWNON-JIRFRP U OODWRERPOOWOWWOWWOM™IONOOOH PP OOOREOOODO ONDBDWOO

telnet.exe
test.exe
testdbm.exe
testgdbm.exe
testndbm.exe
texindex.exe
tfmtodit.exe
tftp.exe
thumbnail.exe
tic.exe
tiff2bw.exe
tiff2ps.exe
tiff2rgba.exe
tiffcmp.exe
tiffcp.exe
tiffdither.exe
tiffdump.exe
tiffinfo.exe
tiffmedian.exe
tiffset.exe
tiffsplit.exe
toe.exe
touch.exe
tput.exe
tr.exe
troff.exe
true.exe
tset.exe
tsort.exe
tty.exe
uz2d.exe
umount .exe
uname.exe
unexpand.exe
uniqg.exe
unix2dos.exe
unzip.exe
unzipsfx.exe
users.exe
vdir.exe
wC.exe

wget .exe
which.exe
who.exe
whoami .exe
windres.exe
wish.exe
wish84.exe
wrjpgcom.exe
Xargs.exe
yes.exe

zcat .exe
zip.exe
zipcloak.exe
zipnote.exe

218

5

zipsplit.exe

11.5 Dynamic Link Library (DLL) files for Java 1.4.2

Total number of files submitted:

41

List of files containing anomalies (&),

(R)

b=

OO OO OO oY OO 01O DD DD D DD DD O DD 01O

V/R

ONRFEFRPRPREPRPPEPEPONMENMNMNOOORRORRNRPEPWODMMMODONMNWDNOREOREREDN

Filename
awt .dll
axbridge.dll
cmm.dll
dcpr.dll
dt_shmem.dl1l

dt_socket.dll

eula.dll

fontmanager.dll

hpi.dll
hprof.dll
ioserl2.dll
jaas_nt.dll
java.dll
Jawt.dll
jcov.dll
JdbcOdbc.dll
Jjdwp.dll
Jjpeg.dll
Jjpicom32.d11
Jjpiexp32.d1l1l
jpins4.dll
jpins6.dll
Jjpins7.d1l1l
jpinsp.dll
jpishare.dll
jsound.dll
msvcrt.dll
net.dll
nio.dll
NPJavall.dll
NPJaval2.dll
NPJaval3.dll
NPJaval4d.dll
NPJava32.dll

NPJPI142_01.d1l1

NPOJI610.d1l1
RegUtils.dll
rmi.dll

219

Summary of File Security Analysis ——————————

vulnerabilities

(V)

or risks

4 0 verify.dll
4 0 w2k_1lsa_auth.dll
4 1 zip.dll

11.6 Executable (EXE) files for Java 1.4.2

FILE NAME: java.exe

x& Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

%* End of Anomalies **

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: javaw.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 216 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
974 bytes in size

**** End of Anomalies ****

220

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: Jjpicpl32.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 92 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
419 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: jucheck.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 932 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 280 bytes in size when actually it is
4566 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 166192 bytes in size when actually
it is 167936 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

221

- Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: jusched.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 364 bytes
exists starting at address 20480; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1780 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: keytool.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

222

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: kinit.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

%* End of Anomalies **

11l Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: klist.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

223

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: ktab.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: orbd.exe

k* Anomalies *

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

224

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: policytool.exe

FxEk* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: rmid.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

225

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: rmiregistry.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: servertool.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

226

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: tnameserv.exe

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

w

2 java.exe
3 2 Jjavaw.exe

227

policytool.exe
rmid.exe
rmiregistry.exe
servertool.exe
tnameserv.exe

3 0 Jjpicpl32.exe
4 4 jucheck.exe
3 4 jusched.exe
3 2 keytool.exe
3 2 kinit.exe

3 2 klist.exe

3 2 ktab.exe

3 2 orbd.exe

3 2

3 2

3 2

3 2

3 2

11.7 Dynamic Link Library (DLL) files for Microsoft Visual Studio SDK

FILE NAME: Microsoft.VisualStudio.Designer.Interfaces.dll

xEk Anomalies ***x*

— The file indicates an import address table consisting of 8 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a COM runtime header consisting of 72 bytes
exists starting at address 1032; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
512 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1640 bytes in size when actually it
is 2048 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: Microsoft.VisualStudio.dll

*x** Anomalies ***x*

228

— The file indicates an import address table consisting of 8 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a COM runtime header consisting of 72 bytes
exists starting at address 4104; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1520 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msdisl130.d11l

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 188 bytes
exists starting at address 102400; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1954 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 21728 bytes in size when actually
it is 24576 bytes in size

**** End of Anomalies ****

11!l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

229

Total number of files submitted:

Summary of File Security Analysis —-—————————

3

List of files containing anomalies (A), vulnerabilities (V) or risks

(R)

s O

Filename

Microsoft.VisualStudio.Designer.Interfaces.dll
Microsoft.VisualStudio.dll

msdisl130.d11l

11.8 Executable (EXE) files for Microsoft Visual Studio SDK

Total number of files submitted:

Summary of File Security Analysis —-—————————

29

List of files containing anomalies (A), vulnerabilities (V) or risks

(R)

b=

T S T S T S ST o N S o T T Y & I S N N ST

V/R

O OO WOOOOWNWOOOOJOOOOoOHOFr OoOOo

Filename
AxImp.exe
cert2spc.exe
certmgr.exe
ChkTrust.exe
cordbg.exe
disco.exe
FUSLOGVW.exe
gacutil.exe
ildasm.exe
lc.exe
makecert.exe

MgmtClassGen.

mscordmp.exe
nmake.exe
PermView.exe
PEVerify.exe
ResGen.exe
SecUtil.exe
setreg.exe
signcode.exe
sn.exe
SoapSuds.exe
StoreAdm.exe
T1bExp.exe

exe

230

TlbImp.exe
WinCV.exe
WinRes.exe
wsdl.exe
xsd.exe

SO DD
O O O oo

11.9 Dynamic Link Library (DLL) files for Microsoft Visual Studio VC7

FILE NAME: atlprov.dll

*x*k* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 364 bytes
exists starting at address 159744; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 192848; this item often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1189 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42272 bytes in size when actually it
is 45056 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 11300 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: cl.dll

**** Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 608 bytes
exists starting at address 405504; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 96
bytes exists starting at address 474284; this item often does not
appear in an image file so it was not read and it was also not mapped

231

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2764 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 265384 bytes in size when actually
it is 266240 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 37796 bytes in size when actually
it is 40960 bytes in size

%* End of Anomalies **

11l Security Vulnerabilities and Risks!!!!
- Uses 5 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), snprintf (Low risk),

sprintf (Very high risk), strncpy (Low risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: clxx.dll

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 764 bytes
exists starting at address 1314816; this table often does not appear
in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 1515864; this item often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
3400 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 269632 bytes in size when actually
it is 270336 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 102648 bytes in size when
actually it is 106496 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

232

- Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), snprintf (Low risk),
sprintf (Very high risk), sscanf (Very high risk), strncpy (Low risk),
vsnprintf (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: c2.dl1l

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 416 bytes
exists starting at address 1359872; this table often does not appear
in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 128
bytes exists starting at address 1453448; this item often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1946 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 17440 bytes in size when actually it
is 20480 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 64036 bytes in size when actually
it is 65536 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 5 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), strncpy (Low risk), vsprintf (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: rcdll.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

233

— The file indicates an import address table consisting of 292 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1176 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27496 bytes in size when actually it
is 27648 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6504 bytes in size when actually
it is 7168 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: wmiscriptutils.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 304 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1603 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5576 bytes in size when actually it
is 5632 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1332 bytes in size when actually
it is 2048 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

234

- Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

6 0 atlprov.dll

6 5 cl.dll

6 7 clxx.dll

6 5 c2.dll

5 3 rcdll.dll

5 1 wmiscriptutils.dll

11.10 Executable (EXE) files for Microsoft Visual Studio VC7

FILE NAME: bscmake.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 328 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1441 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5352 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

235

- Uses 4 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), read (Medium risk), sprintf (Very high
risk), vsnprintf (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: cl.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 548 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 51700; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2529 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 16280 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 8 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getchar (Medium risk), memcpy (Low risk),
sprintf (Very high risk), sscanf (Very high risk), strcat (Very high
risk), strcpy (Very high risk), strncpy (Low risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: clstencil.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

236

— The file indicates an import address table consisting of 612 bytes
exists starting at address 131072; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2362 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3064 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: cvtres.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 288 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1304 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2616 bytes in size when actually it
is 4096 bytes in size

x* End of Anomalies *

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: dumpbin.exe

x%k Anomalies **F*x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

237

— The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 1024 bytes in size

%* End of Anomalies **

No security vulnerabilities or security risks were found

FILE NAME: editbin.exe

x& Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: h2inc.exe

x%k Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 388 bytes
exists starting at address 278956; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
2150 bytes in size

238

- The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
8192 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1670 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: lib.exe

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 920 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: link.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 812 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 592608; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2516 bytes in size

239

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 37504 bytes in size when actually it
is 40960 bytes in size

%* End of Anomalies **

1111 Security Vulnerabilities and Risks!!!!

- Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getc (Medium risk), getchar (Medium risk),
read (Medium risk), sprintf (Very high risk), sscanf (Very high risk),
strncpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: ml.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 276 bytes
exists starting at address 278528; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1545 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 20680 bytes in size when actually it
is 24576 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: nmake.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 448 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

240

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1900 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10280 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!
— Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getc (Medium risk), sprintf (Very high

risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: rc.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 88 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
445 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: sproxy.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

241

— The file indicates an import address table consisting of 408 bytes
exists starting at address 89600; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1223 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27320 bytes in size when actually it
is 27648 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: undname.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 152 bytes
exists starting at address 3072; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
699 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 984 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

111!l End of Security Vulnerabilities and Risks!!!!

242

FILE NAME: vcdeploy.exe

%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 632 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2553 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9208 bytes in size when actually it
is 9216 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 4 bscmake.exe
6 8 cl.exe

4 0 clstencil.exe
4 2 cvtres.exe

4 0 dumpbin.exe
4 0 editbin.exe
5 0 h2inc.exe

4 0 lib.exe

5 7 link.exe

4 0 ml.exe

4 3 nmake.exe

4 0 rc.exe

4 1 SProxy.exe

4 1 undname.exe
4 1 vcdeploy.exe

243

12. APPENDIX F - TEST RESULTS FROM ANALYZING WINDOWS XP
HOME EDITION OPERATING SYSTEM FILES

12.1 Dynamic Link Library (DLL) Files for Windows XP (C:\windows
directory)

FILE NAME: twain_32.d11l

***k* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 328 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1259 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4728 bytes in size when actually it
is 5120 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2008 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: vmmreg32.dll

244

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 100 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
489 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1008 bytes in size when actually it
is 1024 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 344 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 2 twain_32.d11
5 0 vmmreg32.dll

12.2 Executable (EXE) Files for Windows XP (C:\windows directory)

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 26

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

delttsul.exe
explorer.exe
GPInstall.exe
hh.exe

S oy U1
O O OoON

245

ieuninst.exe
IsUninst.exe
muninst.exe
NOTEPAD.EXE
oeuninst.exe
0330994 .exe
regedit.exe
rmud.exe
setdebug.exe
TASKMAN.EXE
twunk_32.exe
uinst001.exe
uninst.exe
unvise32.exe
unvise32gt.exe
winhlp32.exe

L e N T Y ST S O o T Y e e . S TS~
P O OOORFrr OORFr OOO0OOoOOOoO oo

12.3 Dynamic Link Library (DLL) Files for Windows XP (C:\windows\system
directory)

FILE NAME: CTL3D32.DLL

xEk Anomalies ***x*

— A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 0 bytes for that section

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2384 bytes in size when actually it
is 2560 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 568 bytes in size when actually
it is 5120 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: CW3215.DLL

x% Anomalies ***x*

— The length of 256 forwarder name(s) in the export table exceeded
the buffer size of 255 bytes

- Tried to read a directory table entry in the import table but
didn't find the amount of data expected

246

- The data directory table in the optional header states that the
Import Table (.idata section) is 2256 bytes in size when actually it
is 2560 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5640 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 18

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 CTL3D32.DLL
4 0 Cw3215.DLL

12.4 Driver (DRYV) Files for Windows XP (C:\windows\system directory)

FILE NAME: WINSPOOL.DRV

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 708 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 112252; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4041 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2512 bytes in size when actually it
is 2560 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5260 bytes in size when actually
it is 5632 bytes in size

**** End of Anomalies ****

247

No security wvulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

6 0 WINSPOOL.DRV

12.5 Dynamic Link Library (DLL) Files for Windows XP (C:\windows\system32
directory)

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1348

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

6todsvc.dll
aaaamon.dll
acctres.dll
acledit.dll
aclui.dll
activeds.dll
actxprxy.dll
admparse.dll
adptif.dll
adsldp.dll
adsldpc.dll
adsmsext.dll
adsnt.dll
advapi32.dll
advpack.dll
alrsvc.dll
amstream.dll
apcups.dll
apphelp.dll
asferror.dll
asfsipc.dll
asycfilt.dll
atkctrs.dll

OO0 U1 WwWoy U1 OOl Uoroy O U1 U1 OO oy U1 oy U1 W OO
ONOOWWOOONORrRPR O OOORrRrROOOOoONN

248

Gy O OO 01 OO O1ToYOYUTUToYOY U U oy Ul OO U1 Uy WNOY OO Oroy U1 (N OoY 01 O OO0 O U1 U1 oy Oy U1 U1 U1 U1 oY O O

OO O OO0 WNDPMRPRPEPOODODODODODODODIODODODODOOOOOOHPF WOOOUIMOOOODOORrROOOOORrONE OO

atl.dll
atl70.d11
atmfd.dll
atmlib.dll
atmpvcno.dll
atrace.dll
audiosrv.dll
authz.dll
autodisc.dll
avicap32.dll
avifil32.dll
avmeter.dll
avtapi.dll
avwav.dll
basesrv.dll
batmeter.dll
batt.dll
bcbmm.dl1l
bfc42.dl1l
bfcd42d.dll
bidispl.dll
bitsprx2.dll
bitsprx3.dll
blackbox.dll
Bocof.dll
bootvid.dll
borlndmm.dl1l
browselc.dll
browser.dll
BROWSEUI.DLL
browsewm.dll
cabinet.dll
cabview.dll
camocx.dll
capesnpn.dll
cards.dll
catsrv.dll
catsrvps.dll
catsrvut.dll
cc3250.d11
cc3250mt.dll
ccfgnt.dll
cddbcontrol.dll
cdfview.dll
cdm.dll
cdmodem.dll
cdosys.dll
cehelper.dll
certcli.dll
certmgr.dll
CEWMDM.d11
cfgbkend.dll
cfgmgr32.dll
ciadmin.dll
cic.dll

249

Gr O U1 G oY U1 U1 oY U1 U1 UTOYOYOYOY UToy Ul Uy o W U1 OO U1 O 01T oy U1 O U1 U1 Ul OOy OO O 0oy O O 0101 oy O o o1 (i

ORFRP NEFPF OONWODMOONONRPEFPRORPPEPROONOOOOOHR O OOOOODOOOOHrHOORPR OOOOOOUNE OOO

ciodm.dll
clb.dll
clbcatex.dll
clbcatg.dll
cliconfg.dll
ClientBR.d1l1l
clusapi.dll
cmcfg32.d11
cmdial32.dll
cmpbk32.d11
cmprops.dll
cmutil.dll
cnbjmon.dll
cnetcfg.dll
cnvfat.dll
colbact.dll
comaddin.dll
comcat.dll
comctl32.d1l1l
comdlg32.dl1l
compatUI.dll
compstui.dll
comrepl.dll
comres.dll
comsnap.dll
comsvcs.dll
comuid.dll
confmsp.dll
console.dll
corpol.dll
cpuinf32.d1l1l
credui.dll
crtdll.dll
crypt32.dll
cryptdlg.dll
cryptdll.dll
cryptext.dll
cryptnet.dll
cryptsvc.dll
cryptui.dll
cscdll.dll
cscui.dll
csrsrv.dll
csseqchk.dll
ct13d32.d11
d3ds8.dll
d3d8thk.dl1l
d3d9.d1l1
d3dim.dll
d3dpmesh.dll
d3dramp.dll
d3drm.dl1l
d3dxof.dll
danim.dll
dataclen.dll

250

GO U1 oy O OO OO OO OO O s OO OO0 OO0 OO oy OO OO 00T N oY OO OO o101 oy U1 oy U1l

OO PO OOORPR OODODODODODODODWOOOOOORROOONEFEFOOOOODOOOOOOOOOOORLRNENRE NMWOO

datime.dll
davclnt.dll
dbgeng.dll
dbghelp.dll
dbmsadsn.dll
dbmsrpcn.dll
dbmsvinn.dLL
DBnetlib.dll
dbnmpntw.dll
dciman32.dl1l
ddraw.dll
ddrawex.dll
delphimm.dll
deskadp.dll
deskmon.dll
deskperf.dll
devenum.dll
devmgr.dll
dfrgres.dll
dfrgsnap.dll
dfrgui.dll
dfsshlex.dll
dgnet.dll
dgrpsetu.dll
dgsetup.dll
dhcpcsve.dll
dhcpmon.dll
dhcpsapi.dll
diactfrm.dll
digest.dll
dimap.dll
dinput.dll
dinput8.dll
diskcopy.dll
dispex.dll
dmband.dll
dmcompos.dll
dmconfig.dll
dmdlgs.dll
dmdskmgr.dll
dmdskres.dll
dmime.dll
dmintf.dll
dmloader.dll
dmocx.dll
dmscript.dll
dmserver.dll
dmstyle.dll
dmsynth.dll
dmusic.dll
dmutil.dll
dnsapi.dll
dnsrslvr.dll
docprop.dll
docprop2.dll

251

o U1 U1 OOl OO OO OO oy U1 OO s oY1 U1 OY OO U1 oY U1 U1 OO U1 Ul oy U U101 01O OO OOl a1 s oo

ORFRPEFPF UO0ORFR OOOODOOWMMOPMMOORPRPR OODODODODODOODOOOHRH P OOODMOJOOONOOHFHR OOODONOO OO

dpcdll.dll
dplay.dll
dplayx.dll
dpmodemx.dl1l
dpnaddr.dll
dpnet.dll
dpnhpast.dll
dpnhupnp.dll
dpnlobby.dll
dpnmodem.dll
dpnwsock.dll
dpserial.dll
dpvacm.dll
dpvoice.dll
dpvvox.dll
dpwsock.dll
dpwsockx.dll
drmclien.dll
drmstor.dll
drmv2clt.dll
drprov.dll
ds32gt.dll
dsauth.dll
dsdmo.dll
dsdmoprp.dll
dskquota.dll
dskquoui.dll
dsound.dll
dsound3d.dll
dsprop.dll
dsquery.dll
dssdata.dll
dssec.dll
dssenh.dll
dsuiext.dll
dswave.dll
duser.dll
dx3j.d1l1
dx7vb.dll
dx8vb.dll
dxdiagn.dll
dxmasf.dll
dxmrtp.dll
dxtmsft.dll
dxtrans.dll
els.dll
encapi.dll
EgnClass.D11
ersvc.dll
es.dll
esent.dll
esent97.d1l1l
esentprf.dll
eventcls.dll
eventlog.dll

252

O Ul U oy U1 OO O1 U1 U1 U1 WO OO oYy U1 U1 U1 OO oY U1 OO U1 O 01Oy O U1 U1 U1 OO U1 U1 1oy U1 O U1 W U1 W 0o o1 oo o1

O OO OO OOONRE PP OWHRFORPRONORFPROORPR OOWOOOOOOOOODOOOOOWRONOODOODOOOR WhOo

expsrv.dll
EXSEC32.DLL
exts.dll
faultrep.dll
feclient.dll
filemgmt.dll
fldrclnr.dll
FLORA32.DLL
FM20.DLL
FM20ENU.DLL
fmifs.dll
fontext.dll
fontsub.dll
framebuf.dll
fsusd.dll
ftsrch.dll
fxsapi.dll
fxscfgwz.dll
fxsclntR.d1l1l
fxscom.dll
fxscomex.dll
fxsdrv.dll
fxsevent.dll
fxsext32.d1l1l
fxsmon.dll
fxsperf.dll
fxsres.dll
fxsroute.dll
fxsst.dll
fxst30.d11
fxstiff.dll
fxsui.dll
fxswzrd.dll
fxsxp32.d1l1l
gcdef.dll
gdi32.dll
getuname.dll
glmf32.d11
glu32.dl1l
gpkcsp.dll
gpkrsrc.dll
h323msp.dll
hal.dll
hccutils.dll
HfxClassesdb
HfxGuid5.dl1l
hhsetup.dll
hid.dll
hlink.dll
hlp25632.d11
hlp95en.dll
hnetcfg.dll
hnetmon.dll
hnetwiz.dll
hotplug.dll

.dll

253

(G206, BNC BNG NG NG Bre) NEOS NG BN G BN - NG BN G2 NG, BNG) BN G2 BN) NN AR~ G2 BN G2 BN G2 B2 B G BNG2 BN N2 BNG2 BN G BNE) BN G2 BN) I~ B G2 RGN BN G BN G, NG BEN NG, BNG BN NG BN G2 BN G BN C) B - 2 BN B G I G IO |

ORFRPFPF OO0OO0OO0ODO0OO0OODO0ODO0ODO0ODODODODOOONOORrRROOODODODOOOORROUTODOOOOOWOODOOWOREM™MNE OOO

hpaghlpr.dll
Hpgdtppg.dll
hpgdtt.dll
hpgdtuu.dll
hpgreg32.dl1l
hpgt34.d11
hpgt34tk.dll
hpgtmcro.dll
hpREG.DLL
hpsj32.d1l1
hpsjvset.dll
HPUNINST.DLL
hpvaut32.d11
hpvecp70.d11
hpvcr70.d11
hpzcoi09.dl1l
hpzcon09.d1l1
hpzlnt09.d1l1
hticons.dll
htui.dll
hypertrm.dll
i81lxcoin.dll
1i81xdnt5.d1l1
i81lxgdev.dll
i81lxgicd.dll
iasacct.dll
iasads.dll
iashlpr.dll
iasnap.dll
iaspolcy.dll
iasrad.dll
iasrecst.dll
iassam.dll
iassdo.dll
iassvecs.dll
icaapi.dll
iccvid.dll
icfgnt5.dll
icm32.d11
icmp.dll
icmui.dll
icwdial.dll
icwphbk.dll
idg.dll
IDUNINST.DLL
ieakeng.dll
ieaksie.dll
ieakui.dll
iedkcs32.d11
iepeers.dll
iernonce.dll
iesetup.dll
ifmon.dll
ifsutil.dll
igfxdev.dll

254

GO o1 OO0 OOl 01O oo oo grtoy U OO OO OOt wOo ool w ooy U1 WO OOl oy oy U1 OO OO OO U1

OO OO OONOORFRNPFPF OOOOOOONF ORPROOODODOOOOOPMIODIODIODIODOOOOOOHFH WOODOOOOOoOOoOo

igfxdgps.dll
igfxdo.dll
igfxeud.dll
igfxhk.dll
igfxpph.dll
igfxres.dll
igfxsrvec.dll
igmpagnt.dll
ils.dll
imagehlp.dll
imeshare.dll
imgutil.dll
imm32.d11
inetcfg.dll
INETCOMM.DLL
inetcplc.dll
inetmibl.dll
inetpp.dll
inetppui.dll
inetres.dll
INETWH32.DLL
infosoft.dll
initpki.dll
INLOADER.DLL
input.dll
inseng.dll
InstAdm.dll
InstExp.dll
iologmsg.dll
ioRdyUI.dl1l
ioReady.dll
ipeapil2.dll
ipebasel2.dll

ipeistorl2.dll

iphlpapi.dll
ipl.dll
ipla6.dll
iplm5.d11
iplm6.d1l1l
iplp6.dll
iplpx.dll
iplw7.d1l1l
ipmontr.dll
ipnathlp.dll
ippromon.dll
iprop.dll
iprtprio.dll
iprtrmgr.dll
ipsecsnp.dll
ipsecsvc.dll
ipsmsnap.dll
ipvémon.dll
ipxmontr.dll
ipxpromn.dll
ipxrip.dll

255

WWWWWWwWWNWWNWNWWWWWWNWOO OO WWWWHs>OoooororororOr ool O oo OOl 01w oo,

O O O OO ODODODODODIODODODODODODODODODIODODOORFRPRRPOODIODODODOONOODOOOOHRPOOODOOOODOOOOORrOoO

ipxrtmgr.dll
ipxsap.dll
ipxwan.dll
ir32_32.d11
ird4l_gc.dll
irdl_gcx.dll
ir50_32.d11
ir50_qgc.dll
ir50_gcx.dll
irclass.dll
isign32.dl1l
isrdbg32.d1l1
itircl.dll
itss.dll
iuctl.dll
iuengine.dll
ixsso.dll
iyuv_32.d11
Javacypt.dll
javaee.dll
javaprxy.dll
javart.dll
jet500.d11
Jjgaw400.d11l
Jgdw400.d11
Jjgmd400.d11
Jjgpl400.d1l1
Jjgsd400.d11l
Jjgsh400.d11
Jjit.dll
jobexec.dll
jscript.dll
Jsproxy.dll
KBDAL.DLL
kbdaze.dll
kbdazel.dll
kbdbe.d1l1l
kbdbene.dll
kbdblr.dll
kbdbr.dl1l
kbdbu.dll
kbdca.dll
kbdcan.dll
kbdcr.dll
kbdcz.dl1l
kbdczl.d1l1l
kbdcz2.d11
kbdda.dll
kbddv.dll
kbdes.dl1l
kbdest.dl1l
kbdfc.dll
kbdfi.dll
kbdfo.dll
kbdfr.dl1l

256

A OO WN WNWWWWWWWWWWWWWWNWWWNWWWWWWWWWWWWWWWWWNWDNDWWDNDDNDNWWWWW

(Pl Vo oNoNeoNoNoNoNoNoNolNolRoNoNoNoNoNoNoNoNolNoNoNoNoNoNolNolNo o]

kbdgae.dll
kbdgkl.dll
kbdgr.dll
kbdgrl.dll
kbdhe.dll
kbdhe220.d11
kbdhe319.d11
kbdhela2.dll
kbdhela3.dll
kbdhept.dll
kbdhu.dll
kbdhul.dll
kbdic.dll
kbdir.dll
kbdit.dll
kbditl142.d11
kbdkaz.dl1l
kbdkyr.dll
kbdla.dll
kbdlt.dll
kbdltl.dl1l
kbdlv.dll
kbdlvl.dll
kbdmac.dl1l
kbdmon.dl1l
kbdne.dll
kbdnec.dll
kbdno.dl1l
kbdpl.dll
kbdpll.dll
kbdpo.dll
kbdro.dll
kbdru.dll
kbdrul.dll
kbdsf.dll
kbdsg.dll
kbdsl.dll
kbdsll.dl1l
kbdsp.dll
kbdsw.dll
kbdtat.dl1l
kbdtuf.dll
kbdtug.dll
kbduk.dll
kbdur.dll
kbdus.dll
kbdusl.dll
kbdusr.dll
kbdusx.dl1l
kbduzb.dll
kbdycc.dll
kbdycl.dll
kd1394.d11
kdcom.dl1l
kerberos.dll

257

oYW W WWwWwd Wbk wWwwdWwWwwowwdwwdswWwwwwwwbwwwdwWwwWwdhwWwwdsdwWdbdkWWWo wwdswwo oro oy,
e NeoNoNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNoNolNoNoNoNolNoNolNoNoNoNoNoNol SN eololoNoNoNoNoNoNololNoNolNoNolNolNolNoRNoN N

kernel32.dl1l
keymgr.dll
ksuser.dll
langwrbk.dll
laprxy.dll
1favi80On.dll
1fawd80n.dll
lfbmplln.dll
1fbmp80n.dll
1fcal80n.dll
LFCMP11n.DLL
LFCMP70n.DLL
Lfcmp80n.dll
Lfdic80n.dll
lfepslln.dll
lfeps80n.dll
l1ffaxlln.dll
1ffax70n.dll
Lffax80n.dll
Lffpx7.d1l1l
1ffpx70n.dll
1ffpx80n.dll
l1fgiflln.dll
1fgif70n.dll
1fgif80n.dll
1fica80n.dll
1fimg80n.dll
Lfkodak.dll
1flma80n.dll
1flmb80n.dl1l
lfmac80n.dll
1fmsp80n.dll
lfpcdlln.dll
1fpcd80n.dll
1lfpct80n.dll
lfpcxlln.dll
1fpcx70n.dll
1fpcx80n.dll
Lfpnglln.dll
lfpng70n.dll
1fpng80n.dll
l1fpsdlln.dll
1fpsd80n.dll
l1fras80n.dll
lftgalln.dll
1ftga80n.dll
1ftiflln.dll
1ftif70n.dll
Lftif80n.dll
1fwfx80n.dll
l1fwmflln.dll
1fwmf80n.dll
1fwpg80n.dll
libeay32.d1l1
libmred204_000.d11

258

O 0 oo U Ul Ul U1 U Ul U1 U OOl U1ToYyUm OOl WJWWWwWwhbhWwWwdWwWwwbdWswWwoo oo ooy 01O oy 01O OO OO

ONUTONODODODODODIODODOORHRROOODODIODODODODOODODIODIODIODODODODOOODWONOOOOONRER P OOOOR 0O OoOo

libmzgc204_000.d11
libmzsch204_000.d11

libthrdR.d1l1
LibZkR.d11l

LibZkTestR.d1l1l

licdll.dll
licmgrl0.dll
licwmi.dll
linkinfo.dll
Imhsvc.dll
Imrt.dll
loadperf.dll
localsec.dll
localspl.dll
localui.dll
loghours.dll
lpk.dll
lprhelp.dll
lprmonui.dll
lsasrv.dll
ltann80n.dl1l
LTDIS11n.dll
Ltefx80n.dll
1tfillln.DLL
1t£fil70n.DLL
1t£fi180n.DLL
ltimglln.dll
Ltimg80n.dll
ltkrnlln.dll
1tkrn70n.d1l1l
Ltkrn80n.dl1l
Lttwn80n.dl1l
LTWND80n.DLL
Ltwvclln.dll
1z32.d11
mag_hook.dll
mapi32.dll
mapistub.dll
mcastmib.dll
mcd32.d11
mcdsrv32.dl1l
mchgrcoi.dll
mciavi32.dll
mcicda.dll
mciole32.d1l1
mcigtz32.d11l
mciseqg.dll
mciwave.dll
mdhcp.dll
mdminst.dll
mdwmdmsp.dll
mf3216.d11
mfc40.dll
mfc40u.dll
mfc42.dll

259

GO OO OO OO W OOy U1 W OO 0T OOy UToOY U1 UToYOTUTOTWOoOY U Oroy U101 OO OO0 OO U1 U1 0 0 WO W

ON P WNNRPOODODODODODODOOONOOHOOWRNORFRPFRPEPPFPORPROORPR OOOOOOOOORrr PP OOOONMODDNO

MFC42ENU.DLL
mfcd2u.dll
mfc70.d11
mfc70u.dll
mfcsubs.dll
mgmtapi.dll
midimap.dll
miglibnt.dll
mimefilt.dll
mindex.dll
mlang.dll
mll_hp.dll
mll_mtf.dll
mll _gic.dll
mmcbase.dll
mmcndmgr.dll
mmcshext.dll
mmdrv.dll
mmfutil.dll
mmutilse.dll
mnmdd.dl1l
mobsync.dll
modemui.dll
modex.dll
moricons.dll
mp43dmod.dll
mp4sdmod.dll
mpg4dmod.dll
mpr.dll
mprapi.dll
mprddm.dll
mprdim.dll
mprmsg.dll
mprui.dll
msaatext.dll
msacm32.dl1l
msafd.dll
msapsspc.dll
msasnl.dll
msaudite.dll
msawt .dll
mscat32.dl1l
mscms.dll
msconf.dll
mscpx32r.dLL
mscpxl132.dLL
msctf.dll
MSCTFP.d1l1l
msdart.dll
msdmo.dll
msdtclog.dll
msdtcprx.dll
msdtctm.dll
msdtcuiu.dll
msdvdopt .dll

260

W OOy OTWOIOTW OO OW N Oy U oYYy oYU oYyUT UGl U1 W B 01Oy WO OOl WO U Ul oy 6 O U1 i

P OO0 ONOODODONWOOOORFRRORRPNOOORREPEPOOORPR OOOOOOOOOOOOLOOLOLOLOLORrRr R P OOO

msdxmlc.dll
msencode.dll
msexch40.d1ll
msexcl40.dll
msgina.dll
msgsvc.dll
MSHTML.DLL
mshtmled.dll
mshtmler.dll
msi.dll
msident.dll
msidle.dll
msidntld.dll
msieftp.dll
msihnd.dll
msimg32.d1l1l
MSIMRT.DLL
MSIMRT32.DLL
msimsg.dll
MSIMTF.d11
MSIMUSIC.DLL
msisamll.dll
msisip.dll
msjava.dll
msjdbcl0.dll
msjet35.d11
msjet40.dll
msjetoledb40
MSJINT32.DLL
msjint35.d11
msjint40.dl1l
MSJT3032.DLL
MSJTER32.DLL
msjter35.d11l
msjter40.dll
msjtes40.dll
mslbui.dll
msls2.dll
msls31.dl1l
msltus40.dll
msnetobj.dll
msnsspc.dll
msobjs.dll
msoeacct.dll
msoert2.dll
msorc32r.dll
msorcl32.dl1l
mspatcha.dll
mspbde40.dll
mspmsnsv.dll
mspmsp.dll
mspmspsv.dll
msports.dll
msprivs.dll
msr2c.dll

.dll

261

W oy ™ OYOYOYOYOY Ul U1 U oYy U1 oYy DN UTOUT 10O U1 U1 Uoy Ul oy U1 U1 U1 U1 UToy Ul oyoy ooy Ul U1 U1 oy I J0y0) U 01 U1 W b

O OO O0OORRPPARPODIODIODODODODODODODOOWPRrPRNWRERERPRWORFROOORPRORPR OOOOOR WORPFPOORFR,RPEPFOOOOOO

msr2cenu.dll
msratelc.dll
msrating.dll
msrclr40.dll
MSRD2X32.DLL
MSRD2X35.DLL
msrd2x40.d11
msrd3x40.d11l
MSRDO20 .DLL
MSRECR40.DLL
msrepl35.dll
msrepld40.dll
msrle32.dl1l
msscp.dll
mssign32.dll
mssip32.dll
msstdfmt.dll
MSSTKPRP.DLL
msswch.dll
mstask.dll
mstext40.dl1l
mstime.dll
mstlsapi.dll
mstscax.dll
mstvca.dll
mstvgs.dll
msunill.dll
msutb.dll
msvl_0.dl1l
msvbvm50.d11
msvbvm60.d11
msvcirt.dll
msvcp50.dll
msvcp60.dll
msvcp70.d11
msvcr70.d1l1
msvcrt.dll
Msvecrtl10.d1l1l
msvcrt20.d1l1l
msvcert40.dll
msvfw32.dl1l
msvidc32.d1l1
msvidectl.dll
msw3prt.dll
mswdatl10.dl1l
mswebdvd.dll
mswmdm.dl1l
mswsock.dll
mswstrl1l0.dll
msxbded40.dl1l
msxml.dll
msxml2.dll
msxml2r.dll
msxml3.dll
msxml3r.dll

Gy O 01O OO oyOoYy U oYUl O oYy OOl WO J01 01 oYy Ul oy WOy Ul Ul Wwoyoy Ul U1 U1 01 U011 1 U1 U1 U1 Wb b 01O W wwo

O OMNOHFH OOWOOOOOORONWOOOOOOORR ORFRPR OORFRNOOOMNWPMRP OOOOOOHH OOONOO O OO

MSXML4.d1l1
MSXML4a.dll
MSXML4r.d1l1l
msxmlr.dll
msyuv.dll
mtxclu.dll
mtxdm.dll
mtxex.dll
mtxlegih.dll
mtxoci.dll
mycomput .dll
mydocs.dll
narrhook.dll
nbicdnt.dll
ncobjapi.dll
ncxpnt.dll
nddeapi.dll
nddenb32.d11
netapi32.dll
netcfgx.dll
netevent.dll
neth.dll
netid.dll
netlogon.dll
netman.dll
netmsg.dll
netplwiz.dll
netrap.dll
netshell.dll
netuil.dll
netuil.dll
netui2.dll
newdev.dll
nlhtml.dll
nmevtmsg.dll
nmmkcert.dll
npplg80n.dll
npptools.dll
npwmsdrm.dll
ntdll.dll
ntdsapi.dll
ntlanman.dll
ntlanui.dll
ntlanui2.dll
ntlsapi.dll
ntmarta.dll
ntmsapi.dll
ntmsdba.dll
ntmsevt.dll
ntmsmgr.dll
ntmssvc.dll
ntprint.dll
ntsdexts.dll
ntshrui.dll
ntvdmd.dll

OO0 WU oo U1 WU U1 Ul WU Ul UroyUToyU oyl Y0 UTUTU W WWWWWWWWWWWWWwwao oo orooru,m

OO OO0ORRPEPPMOODODODODWOOWOOOOHOOONRPEPROOOHNORPROOODOOOOOOOOODOOOOOOOO OO

nv4d.dll
nvcpl.dll
nvdesk32.d1l1
nvdmcpl.dll
nvinstnt.dll
nvoglnt.dll
nvgtwk.dll
nvrsda.dll
nvrsde.dll
nvrseng.dll
nvrses.dll
nvrsfi.dll
nvrsfr.dll
nvrsit.dll
nvrsja.dll
nvrsko.dll
nvrsnl.dll
nvrsno.dll
nvrsptb.dll
nvrssv.dll
nvrszhc.dll
nvrszht.dll
nwprovau.dll
oakley.dll
objsel.dll
OC30.DLL
occache.dll
ochlp30e.dll
ocmanage.dll
ODBC32.d11
odbc32gt.dll
odbcbcp.dll
odbcconf.dll
ODBCCP32.d11
odbccr32.d1l1
odbccu32.dl1l
odbcint.dll
odbcji32.dll
odbcjt32.d11
ODBCMON.DLL
odbcp32r.dll
odbctrac.dll
oddbse32.d11
odex132.d11
odfox32.d1l1
odpdx32.d11
odtext32.d1l1
OemLibR.d1l1l
offfilt.dll
0le32.d1l1
oleacc.dll
oleaccrc.dll
oleaut32.dll
olecli32.dll
olecnv32.dl1l

264

GO o1 o ooy 0O OO d 0T OO OO OOy OTOTLW TN OO0 OO WO oo oo 00O WO OO oy U1 OO oot oy U

O OO OO WO OODODIODODODODODOORFRR OODODODODOOODOONPFEF OOODODODIODOOOORNOONOBRNOOOOOO

oledlg.dll
oleprn.dll
olepro32.dll
olesvr32.d1l1l
olethk32.d11
opengl32.dll
osuninst.dll
OUTLWAB.DLL
panmap.dll
pagsp.dll
pautoenr.dll
PCDLIB32.DLL
pdh.dll
perfctrs.dll
perfdisk.dll
perfnet.dll
perfos.dll
perfproc.dll
perfts.dll
PGPhk.d1l1l
photowiz.dll
pid.dll
pidgen.dll
pifmgr.dll
pjlmon.dll
PlugFile.dll
plustab.dll
pncrt.dll
pndx5032.d11
PNGFILT.DLL
polstore.dll
POLVGA.DLL
powrprof.dll
prflbmsg.dll
printui.dll
profmap.dll
psapi.dll
psbase.dll
pschdprf.dll
psisdecd.dll
psnppagn.dll
pstorec.dll
pstorsvec.dll
px.dll
pxdrv.dll
pxmas.dll
pxwave.dll
pxwma.dll
pythonl5.dl1l
PythonCOM15.d11
PyWinTypesl5.d1l1l
gasf.dll
gcap.dll
gdv.dll
gdvd.dll

265

GO U1 W UToYyo Ul Uyl U1 OOy Wk OO O U1Toy U Uy J01TE OOk 01O OO 01 0oy U1 O g1 oy Ui OOy U1 OOy WOy

D WHE OO O0OO0OORFRR OO0OO0OORMOODODODOONOORPRORPROOOOOONRPEPODOWNORFRPRONOOR PR OOWMNMDOONOR

gedit.dll
gedwipes.dll
agmgr.dll
amgrprxy.dll
gosname.dll
quartz.dll
query.dll
racpldlg.dll
rasadhlp.dll
rasapi32.dll
rasauto.dll
raschap.dll
rasctrs.dll
rasdlg.dll
rasman.dll
rasmans.dll
rasmontr.dll
rasmxs.dll
rasppp.dll
rasrad.dll
rassapi.dll
rasser.dll
rastapi.dll
rastls.dll
rcbdyctl.dll
RDBios32.DLL
rdchost.dll
RDOCURS.DLL
rdpcfgex.dll
rdpdd.dll
rdpsnd.dll
rdpwsx.dll
regapi.dll
regsvc.dll
regwizc.dll
remotepg.dll
rend.dll
resutils.dll
RHMMPLAY .DLL
riched20.d1l1l
riched32.d1l1l
rmoc3260.d11
rnr20.d11
Roboex32.d11
routetab.dll
rpcns4.dll
rpcrt4d.dll
rpcss.dll
rsaenh.dll
rshx32.d1l1
rsmps.dll
rsvpmsg.dll
rsvpperf.dll
rsvpsp.dll
rtcdll.dll

266

O OO oYUYo W OOy Ul O U oYy U1 O UToy U1 oy Ul U1 U1 oy U1 U1 OO U1 TN UOToy U 0 U1 01 1 U1 U1 oy U1 U1 01 U1 U1 oy U1 01 U1 U1

O OO F WOOOODODODODODOODWOOOIOOOODOOORRORFRR NP RPOOODOOOOOOOODMMOOOHrHrORrRrOOOLR

rtipxmib.dll
rtm.dll
rtutils.dll
s3appdll.dll
S3Gamma.dll
s3gNB.dl1l
s3swtch2.d1l1l
safrcdlg.dll
safrdm.d1ll
safrslv.dll
samlib.dll
samsrv.dll
scarddlg.dll
scardssp.dll
sccbase.dll
sccscep.dll
scecli.dll
scesrv.dll
schannel.d1l1l
schedsvc.dll
sclgntfy.dll
SCP32.DLL
scredir.dll
scripto.dll
scrobj.dll
scrrun.dll
sdpblb.dll
seclogon.dll
secur32.dl1l
security.dll
sendcmsg.dll
sendmail.dll
sens.dll
sensapi.dll
senscfg.dll
serialui.dll
servdeps.dll
serwvdrv.dll
setupapi.dll
setupdll.dll
sfc.dll
sfcfiles.dll
sfc_os.dll
sfmapi.dll
shdoclc.dll
SHDOCVW.DLL
shell32.d1l1l

shellstyle.dll

shfolder.dll
shgina.dll
shimeng.dll
shimgvw.dll
SHLWAPTI.DLL
shmedia.dll
shscrap.dll

267

w0 oo ooy OOl U1 UToYy U1 oy Ul U oy U1 NN U001 OO U1 U1 OO U1 OO U101 U101 W oy U1 U1 U1 W oy O 01 O U1 U1 O

NORFRPRORFRRPOOOODOOWNRFROMMODODOWWOOOOODODOOOOROWNENNOONOODONOOOR OO OOOOo

shsvecs.dll
sigtab.dll
sisbkup.dll
skdll.dl1l
slayerxp.dll
slbcsp.dll
slbiop.dll
slbrccsp.dll
smlogcfg.dll
snmpapi.dll
snmpsnap.dll
softpub.dll
spmsg.dll
spnike.dll
spoolss.dll
SPORDER.DLL
sprio600.d1l1l
sprio800.dl1l
spxcoins.dll
SQLSRV32.dl11l
sglunirl.dll
sglwid.dll
sglwoa.dll
srclient.dll
srrstr.dll
srsvc.dll
srvsvc.dll
ssdpapi.dll
ssdpsrv.dll
ssleay32.d1l1l
stclient.dll
stdvcl32.dl1l
stdvcl40.d1l1l
sti.dll
sti_ci.dll
stobject.dll
storprop.dll
streamci.dll
strmdll.dll
svcpack.dll
swprv.dll
sxlrt232.d1l1
sxs.dll
synceng.dll
syncui.dll
syscontr.dll
sysinv.dll
syssetup.dll
t2embed.dll
tapi3.dll
tapi32.dll
tapiperf.dll
tapisrv.dll
tapiui.dll
tcpmib.dll

268

Gy 1oy OO OO OO OO OO OO U1 U1 oY Oy O UTOYOYOYOYOYOY U1 U1 U1 O UToy U1 U1 U1 U1 oY1 U1 U1 oYy U1 UTOY O UTOY U1

O OO WOROODODODODODODODODODODODIODIOOHOOOOOORrRr PP OOODOOORrR,rEFEFRPREPMNOPRPROOORROOONEONDN

tcpmon.dll
tcpmonui.dll
termmgr.dll
termsrv.dll
themeui.dll
traffic.dll
trkwks.dll
tsappcmp.dll
tsbyuv.dll
tscfgwmi.dll
tsd32.d11
tsddd.dll
TV_ENG32.DLL
Twain_32.d1l1
txflog.dll
udhisapi.dll
ufat.dll
ulib.dll
umandlg.dll
umdmxfrm.dll
umloader.dll
umpnpmgr.dll
unimdmat .dll
uniplat.dll
untfs.dll
upnp.dll
upnphost.dll
upnpui.dll
ureg.dll
url.dll
URLMON.DLL
usbmon.dll
usbui.dll
user32.dl1l
userenv.dll
usplO.dll
usrcntra.dll
usrcoina.dll
usrdpa.dll
usrdtea.dll
usrfaxa.dll
usrlbva.dll
usrrtosa.dll
usrsdpia.dll
usrsvpia.dll
usrv4za.dll
usrv80a.dll
usrvoica.dll
usrvpa.dll
utildll.dll
uxtheme.dll
VB40032.DLL
VBS5DB.DLL
VB5STKIT.DLL
vbajet32.d1l1l

269

0r O U1 oy oy Ul oY U1 UTU1TOY (U1 UToY U1 U1 U1 U1 U1 UToYy Oy O U U OO U1 UOToYUTOY(UTWOUoYOUT Ul UToYyYoY oY Oy Ul U1 U1 U1 W WO gl gl

ORrRPORFRF NP OODWWOWHrHROLDWODOORrRrPFrRORFR,RPORPRPOOORRFOORMMOHR ORFROORRPRPRPORPEPEPOOOOR ORF O

VBAME .DLL
VBAR2232.DLL
VBAR332.DLL
vbscript.dll
vcdex.dll
vefidl32.d11
vcefiwz32.d11
vdmdbg.dll
vdmredir.dll
verifier.dll
version.dll
vifpodbc.dll
vga.dll
vgaz256.dl1l
vga6dk.dll
vijoy.dll
vmhelper.dll
vsdata.dll
vsinit.dll
vsmonapi.dll
vspell32.dll
vspubapi.dll
vssapi.dll
vss_ps.dll
vsutil.dll
vsxml.dll
VXBLOCK.d1l1
VxDMDcDlg.dl1l
w32time.dll
w32topl.dll
wavemsp.dll
WBDBT32I.DLL
WBDBV32I.DLL
wdigest.dll
webcheck.dll
webclnt.dll
webhits.dll
webvw.dll
wh2robo.dll
wiadefui.dll
wiadss.dll
wiafbdrv.dll
wiascr.dll
wiaservc.dll
wiashext.dll
wiavideo.dll
wiavusd.dll
win32spl.dll
winfax.dll
winhttp.dll
WINHTTP5.DLL
WININET.DLL
winipsec.dll
winmm.dll
winntbbu.dll

270

Gy Oor o1 oo o1 OO ooy oY U OO U1 oy U1 U1 oY OO U1 OO U1 WO O1TOgrToy oy Ul Ol W W OO0 g groy Ul oy oy oy U oy U1

O OO OO OORPRRPOMNOOFRPNNENTIONE PRARNMNENMEPENOOOOOOOUIUIOO OOOOOONENOWOOOOOO

winrnr.dll
winscard.dll
winsrv.dll
winsta.dll
winstrm.dll
wintrust.dll
wkssvc.dll
wldap32.d1l1l
wlnotify.dll
wmadmod.dll
wmadmoe.dl1l
wmasf.dll
wmdmlog.dll
wmdmps .d1ll
wmerrenu.dll
wmerror.dll
wmi.dll
wmidx.dll
wmiprop.dll
wnmnetmgr.dll
wmp.dll
wmpasf.dll
wmpcd.dll
wmpcore.dll
wmpdxm.dll
wmploc.dll
wmpshell.dll
wmpui.dll
wmsdmod.dll
wmsdmoe.dll
wmsdmoe2.d1l1l
wmspdmod.dll
wmspdmoe.dll
wmstream.dll
wmv8dmod.dl1l
wmv8dmoe.dl1l
wmvcore.dll
wmvdmod.dll
wmvdmoe.dl1l
wmvdmoe2 .d1l1l
wow32.dl1l
wowfax.dll
wowfaxui.dll
ws2help.dll
ws2_32.d11
wshatm.dll
wshcon.dll
wshext.dll
wship6.dll
wshisn.dll
wshnetbs.dll
WshRm.dl1l
wshtcpip.dll
wsnmp32.d11
wsock32.d11

271

wstdecod.dll
wtsapi32.dll
wuaueng.dll
wuauserv.dll
wupdinfo.dll
wuv3is.dll
wzcdlg.dll
wzcsapi.dll
wzcsvce.dll
xactsrv.dll
xenroll.dll
xolehlp.dll
xpob2res.dll
zipfldr.dll
ZKLSPR.d1l1
zlib.d1l1l

oUW ooy U1 OO UG 01Ol
N WOOFHRREPREPNOOMNOOR ON

12.6 Driver (DRV) Files for Windows XP (C:\windows\system32 directory)

FILE NAME: msacm32.drv

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 308 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1560 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) 1is 7472 bytes in size when actually it
is 7680 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 492 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msh261.drv

x%k Anomalies ***x*

272

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 160 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
816 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3816 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2952 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msh263.drv

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 132 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
682 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3816 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4508 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wdmaud.drv

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

273

— The file indicates an import address table consisting of 232 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1342 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 1024 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1128 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: winspool.drv

**** Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 708 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 112252; this item often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4041 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2512 bytes in size when actually it
is 2560 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5260 bytes in size when actually
it is 5632 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 17

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

274

A V/R Filename

5 0 msacm32.drv
5 0 msh261.drv

5 0 msh263.drv

5 0 wdmaud.drv

6 0 winspool.drv

12.7 Executable (EXE) Files for Windows XP (C:\windows\system32 directory)

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 301

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

accwiz.exe
actmovie.exe
ahui.exe
alg.exe
arp.exe
at.exe
atmadm.exe
attrib.exe
autochk.exe
autoconv.exe
autofmt .exe
autolfn.exe
bootok.exe
bootvrfy.exe
cacls.exe
calc.exe
charmap.exe
chkdsk.exe
chkntfs.exe
cidaemon.exe
cisvc.exe
ckcnv.exe
cleanmgr.exe
cliconfg.exe
clipbrd.exe
clipsrv.exe
clspack.exe
cmd.exe
cmdl32.exe
cmmon32.exe
cmstp.exe

O DR DD D W DR DD DD OO OO DD WD
OO O ORPRRPODODODODODODOOORrROOOFHRPRRPOREPENMDMNMODNOO

275

OB R DS D DR DD BB DR DS D D DD DR DR DD DSDDDDDD DO D WS B DB DSBS D DD DD DD D OO DD D DD

O OO OO OO ODODUTOOHOOOWORrRPROOOHOOOODOORr P OOOORFRFR OOOODWODOORrr OO O0OO0OOoOoOOoOoOo

comp.exe
compact.exe
conime.exe
control.exe
convert.exe
cscript.exe
csrss.exe
ctfmon.exe
dcomcnfg.exe
ddeshare.exe
defrag.exe
dfrgfat.exe
dfrgntfs.exe
diantz.exe
diskpart.exe
diskperf.exe
dllhost.exe
dllhst3g.exe
dmadmin.exe
dmremote.exe
doskey.exe
dplaysvr.exe
dpnsvr.exe
dpvsetup.exe
drwtsn32.exe
dumprep.exe
dvdplay.exe
dvdupgrd.exe
dwwin.exe
dxdiag.exe
dxdllreg.exe
esentutl.exe
eudcedit.exe
eventvwr.exe
expand.exe
extrac32.exe
fc.exe
find.exe
findstr.exe
finger.exe
fixmapi.exe
fontview.exe
forcedos.exe
freecell.exe
fsutil.exe
ftp.exe
fxsclnt.exe
fxscover.exe
fxssend.exe
fxssvc.exe
GkSuil8.EXE
grpconv.exe
help.exe
hkcmd.exe
hostname.exe

276

D RS DS DR D O WD DD DB DSDSDSDD WS DS DSOS DBSDDBD DD DOOOWWDS BB BB & D DD DD

BN OWOOOOJOOOORrROORPR OO OO0 WOOOOOOOUITORFr OO O0OO0OONNMNRPOORFRR P OOOOOOOoOOo

ieduinit.exe
iexpress.exe
igfxcfg.exe
igfxdiag.exe
igfxtray.exe
imapi.exe

InstallDriver.

InstUtl.exe
ipconfig.exe
ipsec6.exe
ipv6e.exe
ipxroute.exe
java.exe
Jjavaw.exe
jdbgmgr . exe
Jjview.exe
label.exe
lights.exe
Inkstub.exe
locator.exe
lodctr.exe
logagent.exe
logoff.exe
logonui.exe
lpg.exe
lpr.exe
lsass.exe
ltremove.exe
magnify.exe
makecab.exe
MAPISRVR.EXE
migpwd.exe
mmc . exe
mnmsrvc.exe
mobsync.exe
mountvol.exe
mplay32.exe
mpnotify.exe
mrinfo.exe
msdtc.exe
msg.exe
mshearts.exe
mshta.exe
msiexec.exe
mspaint.exe
MsPMSPSv.exe
msswchx.exe
mstinit.exe
mstsc.exe
narrator.exe
nbtstat.exe
nddeapir.exe
net.exe
netl.exe
netdde.exe

exe

277

OB R DS DS DR DD BB DS DD DD DSBS SDSDD WS DDOWSDSDSDD DD DS DD DD DD O OO DBD DD

OO P OO ODODOONIODIODIODODODODODODODOOHNOONRPFPROOOHOOOOODOOOHOOOOORrOONRrR, R, OGO NDE O

netsetup.exe
netsh.exe
netstat.exe
notepad.exe
nslookup.exe
ntkrnlpa.exe
ntoskrnl.exe
ntsd.exe
ntvdm.exe
nvsvc32.exe
odbcad32.exe
odbcconf.exe
osk.exe
osuninst.exe
packager.exe
pathping.exe
pentnt.exe
perfmon.exe
ping.exe
ping6.exe
print.exe
progman.exe
progquota.exe
Ps2.EXE
pxhpinst.exe
gappsrv.exe
gprocess.exe
gttask.exe
gwinsta.exe
rasautou.exe
rasdial.exe
rasphone.exe
rcimlby.exe
rcp.exe
rdpclip.exe
rdsaddin.exe
rdshost.exe
recover.exe
reg.exe
regedt32.exe
regini.exe
regsvr32.exe
regwiz.exe
replace.exe
reset.exe
rexec.exe
route.exe
routemon.exe
rsh.exe
rsm.exe
rsmsink.exe
rsmui.exe
rsvp.exe
rtcshare.exe
runas.exe

278

OB BRSSO OB DO WD OB BB DD OB DB DSBS DB DDD OO DD DD DD

O OO OHFH OO0 ODOOOWHROOOODOODOODOODOOOODOODOOOHHOOODOODOODOOLODOOLODOORFr ORFr OO oo Oo

rundll32.exe
runonce.exe
rwinsta.exe
S3tray2.exe
S3Uninst.exe
savedump.exe
sc.exe
scardsvr.exe
sdbinst.exe
services.exe
sessmgr.exe
sethc.exe
setup.exe
sfc.exe
shadow.exe
shmgrate.exe
shrpubw.exe
shutdown.exe
sigverif.exe
skeys.exe
smlogsvc.exe
smss.exe
sndrec32.exe
sndvol32.exe
sol.exe
sort.exe
spider.exe
spoolsv.exe
SPORDER.EXE
sprestrt.exe
stimon.exe
subst .exe
svchost.exe
syncapp.exe
syskey.exe
Sysocmgr.exe
systray.exe
taskman.exe
taskmgr.exe
tcmsetup.exe
tcpsvecs.exe
telnet.exe
tftp.exe
tourstart.exe
tracert.exe
tracertb6.exe
tscon.exe
tscupgrd.exe
tsdiscon.exe
tskill.exe
tsshutdn.exe
Twunk_32.exe
unlodctr.exe
upnpcont.exe
ups.exe

279

BB D DR DD D DD DD WD DD D DO

P P> OORPRPOODODODODODOONOODIOOOH,r P OOOOOOOo

userinit.exe
usrmlnka.exe
usrprbda.exe
usrshuta.exe
utilman.exe
verifier.exe
vssadmin.exe
vssvc.exe

w32tm.exe

wextract.exe
wiaacmgr.exe
winchat.exe
winhlp32.exe
winlogon.exe
winmine.exe
winmsd.exe

winver.exe

wijview.exe

wmpstub.exe
wpabaln.exe
wpnpinst.exe
write.exe

wscript.exe
wuauclt.exe
wupdmgr.exe
XCOpYy .exe

XMNT2001 .EXE
xpsplhfm.exe

280

13. APPENDIX G - TEST RESULTS FROM ANALYZING MICROSOFT
APPLICATION FILES

13.1

Dynamic Link Library (DLL) Files for Microsoft Office 2000

Total number of files submitted:

List of files containing anomalies

(R)

b=

oy oy O U1 U1 U1 U1 U1 U1 J OO 00010101 Or OOy OO OO oy U1l

V/R

ONEFOTNORPRRPOORPR OOORFRR OOWOWORE PMMOODOORr OO

Filename
ADJDATE.DLL
ANLYZTS.DLL
ATLCONV.DLL
AW.DLL
BLNMGR.DLL
BLNMGRPS.DLL
DBCONV.DLL
DLGSETP.DLL
ENVELOPE .DLL
HLP95EN.DLL
IMPMAIL.DLL
MDHELPER.DLL
MIMEDIR.DLL
MLSHEXT .DLL
MSDETECT .DLL
MSO9.DLL
MSO97FX.DLL
MSODRAA9.DLL
MSOHEV.DLL
MSOWC.DLL
MSOWCF .DLL
MSOWCW.DLL
OLKFSTUB.DLL
OUTLACCT.DLL
OUTLAS9.DLL
OUTLCTL.DLL
OUTLLIB.DLL
OUTLMIME.DLL
OUTLRPC.DLL
OUTLVBS.DLL

Summary of File Security Analysis —-—————————

50

(A), vulnerabilities

281

(V)

or risks

OWS.DLL
OWSDSC.DLL
PDIGRAPH.DLL
PERTANL.DLL
PJ90D9.DLL
PJ9TM9.DLL
PJBKNDO9.DLL
PJPROTS.DLL
PRJRES9.DLL
RECALL.DLL
REFEDIT.DLL
RTFHTML.DLL
SELFREG.DLL
SENDTO9.DLL
SERCONV.DLL
STARTWIZ.DLL
WEBPAGE .DLL
XLCALL32.DLL

W 01 ooy oy > OY > U1 OY U1 U1 OYOY U1 U1 U1 O
O OO FPFOWONRPFPR OO REFEFOOOO

13.2 Executable (EXE) Files for Microsoft Office 2000

FILE NAME: EXCEL.EXE

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 5712
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 210 bytes in size when actually it is
15413 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 134076 bytes in size when actually
it is 135168 bytes in size

— The data directory table in the optional header states that the
(** Zero—-filled region **) is 3373 bytes in size when actually it is
7468 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Contains 3373 bytes of unused zero-filled space that could be used
to store malicious code or data

111! End of Security Vulnerabilities and Risks!!!!

282

FILE NAME: FINDER.EXE

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 140 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
742 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2416 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: GRAPHO9.EXE
xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3200
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 210 bytes in size when actually it is
10939 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 24204 bytes in size when actually it
is 24576 bytes in size

— The data directory table in the optional header states that the
(** Zero—-filled region **) is 3373 bytes in size when actually it is
7468 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Contains 3373 bytes of unused zero-filled space that could be used
to store malicious code or data

111 End of Security Vulnerabilities and Risks!!!!

283

FILE NAME: MSO7FTP.EXE
x%k Anomalies ***x*

— The data directory table in the optional
Resource Table (.rsrc section) is 1284 bytes
is 1536 bytes in size

- The data directory table in the optional
Relocation Table (.reloc section) is 8 bytes
is 512 bytes in size

**** End of Anomalies ****

header states that the
in size when actually it

header states that the
in size when actually it

No security vulnerabilities or security risks were found

FILE NAME: MSOT7FTPA.EXE

x& Anomalies ***x*

- The data directory table in the optional
Resource Table (.rsrc section) 1is 1284 bytes
is 1536 bytes in size

- The data directory table in the optional
Relocation Table (.reloc section) is 8 bytes
is 512 bytes in size

**** End of Anomalies ****

header states that the
in size when actually it

header states that the
in size when actually it

No security vulnerabilities or security risks were found

FILE NAME: MSO7FTPS.EXE
x%k Anomalies ***x*

- The data directory table in the optional
Resource Table (.rsrc section) is 1284 bytes
is 1536 bytes in size

— The data directory table in the optional
Relocation Table (.reloc section) is 8 bytes
is 512 bytes in size

**** End of Anomalies ****

header states that the
in size when actually it

header states that the
in size when actually it

No security vulnerabilities or security risks were found

284

FILE NAME: MSOHTMED.EXE

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 408 bytes
exists starting at address 33276; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1468 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2054 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: OSA9.EXE
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 460 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2320 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31512 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: OUTLOOK.EXE

x% Anomalies ****

285

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 140 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
742 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 26004 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: PJSPOOL.EXE
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 676 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3304 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8840 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: POWERPNT.EXE

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 4940
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

286

- The data directory table in the optional header states that the
Import Table (.idata section) is 244 bytes in size when actually it is
13650 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 84952 bytes in size when actually it
is 86016 bytes in size

- The data directory table in the optional header states that the
(** Zero—-filled region **) is 3333 bytes in size when actually it is
7428 bytes in size

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

— Contains 3333 bytes of unused zero-filled space that could be used
to store malicious code or data

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: WAVTOASF .EXE
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

- The data directory table in the optional header states that the
DOS Header is 64 bytes in size when actually it is 52488 bytes in size

— The file indicates an import address table consisting of 332 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1529 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4056 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Contains 446 bytes of unused zero-filled space that could be used
to store malicious code or data

- Uses 4 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), sscanf (Very high
risk), strncpy (Low risk)

111!l End of Security Vulnerabilities and Risks!!!!

287

FILE NAME: WINPROJ.EXE
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3840
bytes exists starting at address 5775360; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 304 bytes in size when actually it is
13945 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 14864 bytes in size when actually it
is 16384 bytes in size

- The data directory table in the optional header states that the
(** Zero—-filled region **) is 3201 bytes in size when actually it is
7296 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

— Contains 3201 bytes of unused zero-filled space that could be used
to store malicious code or data

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: WINWORD.EXE
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 6568
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 276 bytes in size when actually it is
17654 bytes in size

— A section entry named .CRT appears in the section table, but the
table doesn't contain the location of the 8 bytes for that section

288

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 73592 bytes in size when actually it
is 77824 bytes in size

— The data directory table in the optional header states that the
(** Zero—-filled region **) is 3249 bytes in size when actually it 1is
7344 bytes in size

%% End of Anomalies **
'l Security Vulnerabilities and Risks!!!!

— Contains 3249 bytes of unused zero-filled space that could be used
to store malicious code or data

111! End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 14

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

Filename

hd
<
~
2]

EXCEL.EXE
FINDER.EXE
GRAPHY9 .EXE
MSOT7FTP .EXE
MSOT7FTPA.EXE
MSO7FTPS .EXE
MSOHTMED . EXE
OSA9.EXE
OUTLOOK.EXE
PJSPOOL.EXE
POWERPNT .EXE
WAVTOASEFE .EXE
WINPROJ.EXE
WINWORD .EXE

N OO BB DNDDNDDND OO
PR OOF, OO0OOOOOOFr OR

13.3 Dynamic Link Library (DLL) Files for Microsoft Outlook Express

FILE NAME: MSOE.DLL
x%% Anomalies **
— The normally small zero—-filled region following the MS-DOS Stub

contains some kind of information

289

— The file indicates an import address table consisting of 2744
bytes exists starting at address 1024; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
13851 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9368 bytes in size when actually it
is 9728 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 49332 bytes in size when actually
it is 55808 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msoeres.dll

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2477960 bytes in size when actually
it is 2478080 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: oeimport.dll
**** Anomalies ****

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 588 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3152 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4664 bytes in size when actually it
is 5120 bytes in size

290

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5960 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: oemiglib.dll
%% Anomalies **

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 328 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1792 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3680 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1288 bytes in size when actually
it is 2048 bytes in size

%* End of Anomalies **

No security vulnerabilities or security risks were found

FILE NAME: wabfind.dll
*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 108 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
647 bytes in size

— A section entry named .data appears in the section table, but the
table doesn't contain the location of the 20 bytes for that section

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 25112 bytes in size when actually it
is 25600 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 216 bytes in size when actually
it is 512 bytes in size

291

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wabimp.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 316 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1661 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6400 bytes in size when actually it
is 6656 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3028 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
MSOE.DLL
msoeres.dll
oeimport.dll
oemiglib.dll
wabfind.dll
wabimp.dll

g oy O O W U
O O O O oo

13.4 Executable (EXE) Files for Microsoft Outlook Express

292

FILE NAME: msimn.exe

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 152 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
705 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 48824 bytes in size when actually it
is 49152 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: oemig50.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 460 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2493 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8304 bytes in size when actually it
is 8704 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: setup50.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

293

— The file indicates an import address table consisting of 464 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2537 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4768 bytes in size when actually it
is 5120 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wab.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 296 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1573 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 26664 bytes in size when actually it
is 27136 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: wabmig.exe

x % Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 308 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1387 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2352 bytes in size when actually it
is 2560 bytes in size

294

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 msimn.exe

4 0 oemig50.exe
4 0 setup50.exe
4 0 wab.exe

4 0 wabmig.exe

13.5 Dynamic Link Library (DLL) Files for Windows Internet Explorer Plugins

FILE NAME: NPDocBox.dll

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 848 bytes
exists starting at address 118784; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3417 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 60952 bytes in size when actually it
is 61440 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10032 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

295

- Uses 7 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), snprintf (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: nppdf32.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 412 bytes
exists starting at address 69632; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2188 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) 1is 2776 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2788 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

— Contains 486 bytes of unused zero-filled space that could be used
to store malicious code or data

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: npgtplugin.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

296

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

%* End of Anomalies **

No security vulnerabilities or security risks were found

FILE NAME: npgtplugin2.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: npgtplugin3.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

297

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: npgtplugin4.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: npgtplugin5.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

298

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 7 NPDocBox.dl1l

5 1 nppdf32.dl1

5 0 npgtplugin.dll
5 0 npgtplugin2.dll
5 0 npgtplugin3.dll
5 0 npgtplugind.dll
5 0 npgtplugin5.dll

13.6 Executable (EXE) Files for Windows Internet Explorer

FILE NAME: IEXPLORE.EXE

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 280 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1337 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 83784 bytes in size when actually it
is 83968 bytes in size

**** End of Anomalies ****

299

No security wvulnerabilities or security risks were found

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 IEXPLORE.EXE

13.7 Dynamic Link Library (DLL) Files for Windows Media Player 9

FILE NAME: custsat.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 668 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2650 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 21384 bytes in size when actually it
is 24576 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4160 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: npdrmv2.dll

***k* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

300

— The file indicates an import address table consisting of 348 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1739 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1176 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4124 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!
- Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high

risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: npdsplay.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1228
bytes exists starting at address 225280; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
6372 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11800 bytes in size when actually it
is 12288 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 19200 bytes in size when actually
it is 28672 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: npwmsdrm.dll

301

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 140 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
633 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1168 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 336 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: pidgen.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 124 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
664 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1784 bytes in size when actually it
is 2048 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 172 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

302

FILE NAME: wmpband.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 844 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
4398 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3288 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3860 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wmpns.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 904 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4665 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 984 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7312 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wmpvis.dll

303

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 328 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1570 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 413032 bytes in size when actually
it is 413696 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2292 bytes in size when actually
it is 4096 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 9

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

custsat.dll
npdrmv2.dll
npdsplay.dll
npwmsdrm.dll
pidgen.dll
wmpband.dll
wmpns.dll
wmpvis.dll

o o o 0 01 01 01 On
O OO oOoOr owo

13.8 Executable (EXE) Files for Windows Media Player 9

FILE NAME: dlimport.exe

***k* Anomalies ***x*

304

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 984 bytes
exists starting at address 212992; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
4472 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2032 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!
— Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high

risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: migrate.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1444
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
7543 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 992 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!
- Uses 4 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high

risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

305

FILE NAME: mplayer2.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 16 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
114 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2320 bytes in size when actually it
is 2560 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: setup_wm.exe

x& Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1652
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
8539 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 471576 bytes in size when actually
it is 475136 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: strncpy (Low risk), vsnprintf (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

306

FILE NAME: wmplayer.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 192 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 96
bytes exists starting at address 7844; this item often does not appear
in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1055 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 54080 bytes in size when actually it
is 57344 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 3 dlimport.exe
4 4 migrate.exe
4 0 mplayer2.exe
4 2 setup_wm.exe
5 0 wnplayer.exe

13.9 Dynamic Link Library (DLL) Files for Windows Messenger

FILE NAME: msgsc.dll

*x*k* Anomalies ***x*

307

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 316 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1666 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1160 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3184 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msgslang.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
4096 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 206056 bytes in size when actually
it is 208896 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: rtcimsp.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 740 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

308

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2361 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31104 bytes in size when actually it
is 31232 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 7272 bytes in size when actually
it is 13312 bytes in size

%* End of Anomalies **

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
msgsc.dll

msgslang.dll
rtcimsp.dll

a1 O
o O O

13.10 Executable (EXE) Files for Windows Messenger

FILE NAME: msmsgs.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1876
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 861548; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 280 bytes in size when actually it is
9819 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 571616 bytes in size when actually
it is 573440 bytes in size

309

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msmsgsin.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 220 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1113 bytes in size

- A section entry named .data appears in the section table, but the
table doesn't contain the location of the 4 bytes for that section

%* End of Anomalies **

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 2

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 msmsgs.exe
4 0 msmsgsin.exe

13.11 Dynamic Link Library (DLL) Files for Windows MovieMaker

FILE NAME: wmmfilt.dll

x% Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

310

— The file indicates an import address table consisting of 468 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 102872; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2485 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2104 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5052 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: wmmres.dll

%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
4096 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 306200 bytes in size when actually
it is 307200 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: wmmutil.dll

311

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 772 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3983 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 944 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2904 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcpy (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

1 wmmfilt.dll
0 wmmres.dll
2 wmmutil.dll

ar o

13.12 Executable (EXE) Files for Windows MovieMaker

FILE NAME: moviemk.exe

x%k Anomalies ***x*

312

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1188
bytes exists starting at address 688128; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 448
bytes exists starting at address 773624; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
6643 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27392 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!
— Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), sscanf (Very

high risk), strcpy (Very high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 5 moviemk.exe

13.13 Dynamic Link Library (DLL) Files for Windows NetMeeting

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

313

A V/R Filename

5 0 callcont.dll
5 0 confmrsl.dll
5 0 dcap32.dl1

5 0 h323cc.dll

5 1 mst120.d11

6 0 MST123.DLL

5 0 nac.dll

5 0 nmas.dll

6 0 nmasnt.dll

5 0 nmchat.dll

5 0 nmcom.dll

5 0 nmft.dll

5 0 nmoldwb.dll
5 0 nmwb.dll

5 0 rrcm.dll

13.14 Executable (EXE) Files for Windows NetMeeting

FILE NAME: cb32.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 24 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
129 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1184 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: conf.exe

*x*k* Anomalies ***x*

314

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1860
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 340 bytes in size when actually it is
9818 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 672040 bytes in size when actually
it is 675840 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: wb32.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 52 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
281 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1200 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
cb32.exe

0
0 conf.exe
0 wb32.exe

DO

315

14. APPENDIX H - TEST RESULTS FROM ANALYZING SECURITY-
CENTRIC APPLICATION FILES

14.1 Dynamic Link Libraries (DLL) Files for Network Associates Common
Framework

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 35

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

Agent.dll
AgentPlugin.dll
ClientUI.d1l1l
ComponentSubSystem.dll
ComponentUserInterface.dll
FrmPlugin.dll
GenEvtInf.dll
InternetManager.dll
LicWrap.dll
ListenServer.dll
Logging.dll
Management.dll
mcurial.dll
naCmnLib.dl1l
nagshr32.d11
naicrt32.d11
nailog.dll
nalnet.dll
naisign.dll
naPolicyManager.dll
naSPIPE.d11
naXML.d1l1l
nmcomn32.d1l1l
patchw32.d1l1l
PcrPlug.dll
PoEvtInf.dll
PSAPI.d1l1
Scheduler.dll

oo N oo oo o1 OO ar O oy U oy oy U1 OO s 01O
B R WOONMNMNENENNMNNNNOOONDNDUO U WNOR R WwN |

316

ScriptSubSys.dll
SecureFrameworkFactory.dll
unicows.dll
UpdateSubSys.dll
UpdPlug.dll

UserSpace.dll

XMLWrap.dll

ooy O 01 g 01 Ul
WNEDNDODNDN

14.2 Exectutable (EXE) Files for Network Associates Common Framework

FILE NAME: Cleanup.exe
%% Anomalies **

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 204 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1058 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1032 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: CmdAgent.exe
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 192 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
963 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

317

No security wvulnerabilities or security risks were found

FILE NAME: FrameworkService.exe
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 756 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4965 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10120 bytes in size when actually it
is 12288 bytes in size

x* End of Anomalies *

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: FrmInst.exe
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 808 bytes
exists starting at address 86016; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
6379 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4736 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

318

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: McScript.exe
%% Anomalies **

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 988 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
4817 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1192 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 10 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), read (Medium risk),
snprintf (Low risk), sprintf (Very high risk), sscanf (Very high
risk), strcat (Very high risk), strcpy (Very high risk), strncpy (Low
risk), vsnprintf (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: naPrdMgr.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 576 bytes
exists starting at address 77824; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
3802 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9208 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

319

111 Security Vulnerabilities and Risks!!!!
- Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcpy (Very high risk), strncpy (Low

risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: UpdaterUI.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 860 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
5451 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 15000 bytes in size when actually it
is 16384 bytes in size

%x* End of Anomalies **

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

Cleanup.exe

CmdAgent .exe
FrameworkService.exe
FrmInst.exe

B DD
NN OO

320

4 10 McScript.exe
3 naPrdMgr.exe
4 2 UpdaterUI.exe

IS

14.3 Dynamic Link Libraries (DLL) Files for Network Associates VirusScan 7.0

FILE NAME: adslokuu.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 372 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
881 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3460 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: ftcfg.dll
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 468 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2154 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6572 bytes in size when actually
it is 12288 bytes in size

321

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: ftl.dll
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 348 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1951 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5824 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: midutil.dll
xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 512 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2843 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 4096 bytes in size

322

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3524 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: naeventu.dll
x% Anomalies ****

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 860 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
3632 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 944 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7192 bytes in size when actually
it is 8192 bytes in size

x* End of Anomalies *

No security wvulnerabilities or security risks were found

FILE NAME: naiann.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 536 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2940 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5780 bytes in size when actually
it is 8192 bytes in size

323

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: naievent.dll

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 37640 bytes in size when actually it
is 40960 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: nailite.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 652 bytes
exists starting at address 196608; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2778 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 442880 bytes in size when actually
it is 446464 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12324 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: nakrnlu.dll

324

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 432 bytes
exists starting at address 69632; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1291 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3904 bytes in size when actually
it is 4096 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

FILE NAME: nautilu.dll
***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 760 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
3101 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 8568 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: ntclient.dll

xFk Anomalies ***x*

325

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 416 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1061 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3468 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: scanemal.dll
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 940 bytes
exists starting at address 167936; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 175496; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4167 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9220 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: shext.dll

326

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 356 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
967 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 904 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1752 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: shutil.dll
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 876 bytes
exists starting at address 143360; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
3560 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 904 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12340 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: VS7Plugin.dll

k* Anomalies *

327

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 600 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2205 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3872 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9276 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: vsplugin.dll
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 616 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2245 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3872 bytes in size when actually it
is 4096 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9408 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 16

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

328

adslokuu.dll
ftcfg.dll
ftl.dl1l
midutil.dll
naeventu.dll
naiann.dll
naievent.dll
nailite.dll
nakrnlu.dll
nautilu.dll
ntclient.dll
scanemal.dll
shext.dll
shutil.dll
VS7Plugin.dll
vsplugin.dll

g o Oor ooy O U1 OO W OO oy oy U1 O |
O OO OO OO0 OO0OOoOoooOo

14.4 Executable (EXE) Files for Network Associates VirusScan 7.0

FILE NAME: mcconsol.exe
x% Anomalies ****

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1016
bytes exists starting at address 90112; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
5309 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1776 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: mcshield.exe

%* Anomalies *x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

329

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— The file indicates an import address table consisting of 876 bytes
exists starting at address 163840; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
4991 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: mcupdate.exe

x% Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 840 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
3311 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1776 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: naiavfin.exe

*x*k* Anomalies ****

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 248 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped

330

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1169 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 960 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: vsnprintf (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: scan32.exe

*x*k* Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1208
bytes exists starting at address 196608; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
5270 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1784 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: scncfg32.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 900 bytes
exists starting at address 114688; this table often does not appear in
an image file so it was not read and it was also not mapped

331

- The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3808 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1848 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: scnstat.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 540 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2363 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1800 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: shcfg32.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 740 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
3877 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1808 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

332

No security wvulnerabilities or security risks were found

FILE NAME: shstat.exe

x% Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 860 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4676 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1816 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: svcpwd.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 388 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
729 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5576 bytes in size when actually it
is 8192 bytes in size

x* End of Anomalies *

No security wvulnerabilities or security risks were found

FILE NAME: vstskmgr.exe

*x*k* Anomalies ***x*

333

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 792 bytes
exists starting at address 94208; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
3461 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 976 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 mcconsol.exe
5 0 mcshield.exe
4 0 mcupdate.exe
4 1 naiavfin.exe
4 0 scan32.exe

4 0 scncfg32.exe
4 0 scnstat.exe
4 0 shcfg32.exe
4 0 shstat.exe

4 0 svcpwd.exe

4 0 vstskmgr.exe

14.5 Dynamic Link Libraries (DLL) Files for Secure CRT 4.0

FILE NAME: ConnectDialoglO.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

334

— The file indicates an import address table consisting of 1068
bytes exists starting at address 65536; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2561 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9504 bytes in size when actually it
is 12288 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4340 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: License33.dl1l

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1040
bytes exists starting at address 61440; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2312 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 287136 bytes in size when actually
it is 290816 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7132 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: Mfc42.d1l1l

335

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 2068
bytes exists starting at address 638976; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 896
bytes exists starting at address 648896; this item often does not
appear in an image file so it was not read and it was also not mapped

— Invalid directory table data found in the export table; 6932
functions are being exported but the maximum allowed by this program
is 2000

— The file indicates an export table exists but the export data
could not be read

- The data directory table in the optional header states that the
Import Table (.idata section) is 148 bytes in size when actually it is
7116 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41600 bytes in size when actually it
is 45056 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 61260 bytes in size when actually
it is 61440 bytes in size

- The data directory table in the optional header states that the
(** Zero—-filled region **) is 3409 bytes in size when actually it is
7504 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

— Contains 3409 bytes of unused zero-filled space that could be used
to store malicious code or data

- Uses 4 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), vsprintf (Very high risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: Msvcrt.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 580 bytes
exists starting at address 192512; this table often does not appear in
an image file so it was not read and it was also not mapped

336

- The data directory table in the optional header states that the
Import Table (.idata section) is 54 bytes in size when actually it is
3314 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8908 bytes in size when actually
it is 12288 bytes in size

- The data directory table in the optional header states that the
(** Zero—-filled region **) is 3433 bytes in size when actually it 1is
7528 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Contains 3433 bytes of unused zero-filled space that could be used
to store malicious code or data

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: SSH2Client23.dll

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1604
bytes exists starting at address 176128; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
6801 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 21288 bytes in size when actually it
is 24576 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 15960 bytes in size when actually
it is 20480 bytes in size

x* End of Anomalies *

11l Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: strncpy (Low risk), vsprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

337

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 ConnectDialoglO.dll
5 2 License33.dl1

9 5 Mfc42.d1l1l

6 1 Msvcrt.dll

5 2 SSH2Client23.d1l1l

14.6 Executable (EXE) Files for Secure CRT 4.0

FILE NAME: ACTIVATOR.EXE

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 644 bytes
exists starting at address 57344; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2620 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 16192 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: SecureCRT.EXE

x%k Anomalies ***x*

338

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3424
bytes exists starting at address 737280; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 881232; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
9035 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 154432 bytes in size when actually
it is 155648 bytes in size

**** End of Anomalies ****

P11l Security Vulnerabilities and Risks!!!!
— Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), strncpy

(Low risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: UNINSTAL.EXE

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 888 bytes
exists starting at address 67072; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3899 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 75424 bytes in size when actually it
is 75776 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: VCP.EXE

339

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 884 bytes
exists starting at address 266240; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 315568; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4309 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8912 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 4 standard C functions susceptible to buffer overflow
attacks: gets (Ultra high risk), sscanf (Very high risk), strncpy (Low
risk), vsprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: VSH.EXE

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1000
bytes exists starting at address 262144; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 311288; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4724 bytes 1in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8848 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

340

11l Security Vulnerabilities and Risks!!!!

— Uses 5 standard C functions susceptible to buffer overflow
attacks: gets (Ultra high risk), sprintf (Very high risk), sscanf
(Very high risk), strncpy (Low risk), vsprintf (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

0 ACTIVATOR.EXE
3 SecureCRT.EXE
0 UNINSTAL.EXE
4 VCP .EXE

5 VSH.EXE

(G2 NG TN G TSN

14.7 Dynamic Link Libraries (DLL) Files for SpyBot 1.2

FILE NAME: advcheck.dll

***k* Anomalies ***x*

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7452 bytes in size when actually
it is 7680 bytes in size

— The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: borlndmm.dll

*x*k* Anomalies ***x*

341

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1216 bytes in size when actually
it is 1536 bytes in size

— The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 1175 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: delphimm.dll

x%k Anomalies ***x*

— The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 772 bytes in size when actually
it is 1024 bytes in size

- The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 1113 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: SDHelper.dll

*x** Anomalies ***x*

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 32940 bytes in size when actually
it is 33280 bytes in size

— The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 9725 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

FILE NAME: Tools.dll

%*% Anomalies **
- The data directory table in the optional header states that the

Relocation Table (.reloc section) is 24016 bytes in size when actually
it is 24064 bytes in size

342

- The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 9061 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: UnzDll.dll

**** Anomalies ****

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3384 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: ZipDll.dll

**** Anomalies ****

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3716 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
advcheck.dll
borlndmm.dl1l
delphimm.dll
SDHelper.dll
Tools.dll
UnzDl1ll.dl1l

PN DN DN
O OO O oo

343

1 0

ZipDll.d1l

14.8 Executable (EXE) Files for SpyBot 1.2

FILE NAME: blindman.exe

%k* Anomalies *x*

- The file
of 24 bytes;
was not read

— The data
.tls section

— The data

Relocation Table

indicates a thread
this table usually
and only its start
directory table in
is 0 bytes in size
directory table in

it is 1024 bytes in size
— The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 811 bytes in size

**** End of Anomalies ****

(.reloc section)

local storage table exists consisting
does not appear in an image file so it
address was mapped

the optional header states that the
when actually it is 512 bytes in size
the optional header states that the

is 728 bytes in size when actually

No security vulnerabilities or security risks were found

FILE NAME:

SpybotSD.exe

xEk Anomalies ***x*

- The file
of 24 bytes;
was not read

- The data
.tls section

— The data

Relocation Table

indicates a thread
this table usually
and only its start
directory table in
is 0 bytes in size
directory table in

(.reloc section)

local storage table exists consisting
does not appear in an image file so it
address was mapped

the optional header states that the
when actually it is 512 bytes in size
the optional header states that the

is 114196 bytes in size when

actually it is 114688 bytes in size
- The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 13312 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME:

unins000.exe

344

xEk Anomalies ***x*

- The file
of 24 bytes;
was not read

— The data
.tls section

- A section entry named

indicates a thread
this table usually
and only its start
directory table in
is 0 bytes in size

local storage table exists consisting
does not appear in an image file so it

address was mapped

the optional header states that the
when actually it is 512 bytes in size

.reloc appears in the section table,

but the

table doesn't contain the location of the 2588 bytes for that section
- The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 4608 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME:

Update.exe

x%k Anomalies ***x*

- The file
of 24 bytes;
was not read

— The data
.tls section

— The data

Relocation Table

indicates a thread
this table usually
and only its start
directory table in
is 0 bytes in size
directory table in

it is 23040 bytes in size
— The data directory table in the optional header
BSS section is 0 bytes in size when actually it is 8704 bytes in size

**** End of Anomalies ****

(.reloc section)

local storage table

exists consisting

does not appear in an image file so it

address was mapped
the optional header
when actually it is
the optional header
is 22652 bytes in

states that the
512 bytes in size
states that the
size when actually

states that the

No security vulnerabilities or security risks were found

Total number of files submitted:

List of files containing anomalies

(R)
A V/R
4 0
4 0
4 0
4 0

Summary of File Security Analysis

Filename
blindman.exe
SpybotSD.exe
unins000.exe
Update.exe

4

(),

345

vulnerabilities

(V) or risks

14.9 Executable (EXE) Files for WinSCP

FILE NAME: WinSCP.exe

x%k Anomalies ***x*

— The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

— Invalid directory table data found in the export table; 2817015669
functions are being exported but the maximum allowed by this program
is 2000

— The file indicates an export table exists but the export data
could not be read

— The data directory table in the optional header states that the
UPX0 section is 0 bytes in size when actually it is 391168 bytes in
size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13872 bytes in size when actually it
is 14848 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

— Has a section named UPX0 whose contents can be both written to and
executed

- Has a section named UPX1l whose contents can be both written to and
executed

1111 End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 2 WinSCP.exe

346

14.10 Dynamic Link Libraries (DLL) Files for Zero Knowledge Freedom 3.0

Total number of files submitted:

34

List of files containing anomalies (A),

(R)

b=

gy Oor o1 ooy oy OO OO OO OO OO OO0 o101 OO oy O s 0101 a1 |

V/R

ORFRP OMNREFEFRPRPOONREFEFREF WWRERERMANMNNMNOONNMNENMNNMNNMNNOENRE OOO

Filename
AdblockR.dl1l
BandObjs.dll
ClntpR.dll
ConvertR.dl1l
CookieR.dl1l
DialogsR.dl1l
DInetR.dl1l
FCryptR.dll
FireR.d1l1l

FirewallUIR.d1l1l

FreeBHOR.d1l1
frkygryR.dll
FrSecR.dll
inethlpR.d1l1l
IpcSrvR.dll
libbz2R.d1l1l
LibzkipR.d1l1l
libzkmR.d1l1l
NetWorkR.d1l1l
PacketR.d1l1l
PersistR.dll
ProxiesR.dl1l
ServiceR.dll
SktShimR.d11l
TConfigR.dll
TGenNetR.d1l1
TTInfoR.dll
WalletR.d1l1l
WordScnR.d11l
WzSetupR.d1ll
YarrowR.d1l1l
zkrandR.d1l1l
ZKUIR.d11
ZkYarrR.dl1l

Summary of File Security Analysis —-————————-

vulnerabilities

14.11 Executable (EXE) Files for Zero Knowledge Freedom 3.0

(V)

or risks

FILE NAME: AutoStarterR.exe

347

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 452 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3026 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: DiagR.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1412
bytes exists starting at address 45056; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
7234 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: Freedom.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3136
bytes exists starting at address 53248; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 640 bytes in size when actually it is
36172 bytes in size

348

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

x* End of Anomalies *

1111 Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: RestoreR.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 708 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3514 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: zkInstallDriver.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 160 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
883 bytes in size

349

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1296 bytes in size when actually it
is 1536 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 AutoStarterR.exe

4 0 DiagR.exe

4 1 Freedom.exe

4 0 RestoreR.exe

4 0 zkInstallDriver.exe

14.12 Dynamic Link Libraries (DLL) Files for Zone Alarm Pro 4

FILE NAME: expert.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 420 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2071 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 45792 bytes in size when actually it
is 49152 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7004 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

350

11l Security Vulnerabilities and Risks!!!!

— Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), snprintf (Low risk), sprintf (Very high
risk), strcpy (Very high risk), strncpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: framewrk.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1320
bytes exists starting at address 241664; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
6702 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 465456 bytes in size when actually
it is 466944 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 19444 bytes in size when actually
it is 28672 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), strncpy (Low risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: tutorwiz.dll

*x*k* Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 172 bytes
exists starting at address 20480; this table often does not appear in
an image file so it was not read and it was also not mapped

351

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
835 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 637520 bytes in size when actually
it is 638976 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 2116 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111!l End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 expert.dll
5 framewrk.dll
1 tutorwiz.dll

[S2BN G INE,]

14.13 Executable (EXE) Files for Zone Alarm Pro 4

FILE NAME: bbuninst.exe

***k* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 668 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2649 bytes in size

352

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2632 bytes in size when actually it
is 4096 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

FILE NAME: runlink.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 368 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1269 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: zapro.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1020
bytes exists starting at address 135168; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
5343 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 249944 bytes in size when actually
it is 253952 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

353

- Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: zatutor.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 140 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
742 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2464 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: zauninst.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 68 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
400 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 165228 bytes in size when actually
it is 165376 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: zonealarm.exe

354

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 104 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
374 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10656 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: strcat (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-————————-
Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename
bbuninst.exe
runlink.exe
Zapro.exe
zatutor.exe
zauninst.exe
zonealarm.exe

BSOS W
oo u oo

355

15. APPENDIX I - TEST RESULTS FROM ANALYZING MISCELLANEOUS
APPLICATION FILES

15.1 Dynamic Link Library (DLL) Files for Adobe Acrobat Reader 5.0

FILE NAME: Acelite.dll
%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 328 bytes
exists starting at address 290816; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1830 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 968 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 16312 bytes in size when actually
it is 20480 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: ACROFX32.DLL
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 276 bytes
exists starting at address 30208; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1263 bytes in size

356

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2060 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: Agm.dll
x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 512 bytes
exists starting at address 831488; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1898 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 976 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 60628 bytes in size when actually
it is 69632 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: Bib.dll
***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 212 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1151 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 968 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7672 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

357

No security wvulnerabilities or security risks were found

FILE NAME: CoolType.dll
%% Anomalies **

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 560 bytes
exists starting at address 1007616; this table often does not appear
in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2374 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1016 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 66024 bytes in size when actually
it is 77824 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: vdk150.d11
**** Anomalies ****

- A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 260 bytes for that section

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 17992 bytes in size when actually

it is 18432 bytes in size

x* End of Anomalies *

111 Security Vulnerabilities and Risks!!!!
- Uses 3 standard C functions susceptible to buffer overflow
attacks: strcat (Very high risk), strcpy (Very high risk), strncpy

(Low risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: WHA Library.dll

358

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 572 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4635 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11784 bytes in size when actually it
is 12288 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8956 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 8 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), read (Medium risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk), vsprintf (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 Acelite.dll
4 0 ACROFX32.DLL
5 0 Agm.dll

5 0 Bib.dll

5 0 CoolType.dll
2 3 vdk150.d11

5 8

WHA Library.dll

15.2 Executable (EXE) Files for Adobe Acrobat Reader 5.0

359

FILE NAME: AcroRd32.exe
x% Anomalies ****

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 2688
bytes exists starting at address 2240512; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
12831 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 889256 bytes in size when actually
it is 892928 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 140380 bytes in size when
actually it is 167936 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 AcroRd32.exe

15.3 Dynamic Link Library (DLL) Files for EarthLink TotalAccess 5.0

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 54

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 3 AddrBook.dll
5 2 AuthMgr.dll
5 1 CntctMgr.dll
5 2 Dialer.dll

360

E60Cmmon.dll
E60MAPTI.A11
EAuthMgr.dll
EConfig.dll
Ecrypt.dll
EFtp.dll
EImpExp.dll
ElnIE.d11
ElsAol.dll
ElsHotmail.dll
ElsMain.dll
ElsYahoo.dll
emsmtp.dll
Epic.dll
EventLog.dll
HSconfig.DLL
IdentityMgr.dll
imap4.dll
Location.dll
MagicCtl.dll
MailDoc.dll
MailEng.dll
mailstore.dll
MailStoreConverter.DLL
MailStoreDB.dl1l
MCE60Cmmon.dll
MCEcrypt.dll
MCLocation.dll
MCUtils.dll
MCWin.dl1l
MonIdle.dll
Notify.dll
Parse822.d11
PnEL.d1l1l
PnEL_UI.dll
PnMsgBlk.dl1l
pop3.dll
Register.dll
RzTp.dll
SetupKrn.dll
smtp.dll
SpamBlocker.dll
Swi_Cdmalx.dll
SynchEng.dll
tmTools.dll
Utils.dll
Win.dll
WrSetupUtils.dll
XMLCol.d1ll
zlib.d1ll

GO ooy U1 OO O s OO OO OO OO0 OO g1 g oy U1 U1 O OOl oy O U1 oy OO OOl
NEFPOMNMNIRFRPORPPEPUOWOOOOREFPONMNMNWWMAE DO JOOWERDNWNARDBDNERERPDNDOU U WWEREODN

15.4 Executable (EXE) Files for EarthLink TotalAccess 5.0

361

FILE NAME: elnbonus.exe
x% Anomalies ****

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1892
bytes exists starting at address 110592; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
5621 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13072 bytes in size when actually it
is 16384 bytes in size

%*% End of Anomalies **
1111 Security Vulnerabilities and Risks!!!!

- Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsnprintf (Low risk), vsprintf

(Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: ELNhelp.exe
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1492
bytes exists starting at address 86016; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
6245 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 28664 bytes in size when actually it
is 28672 bytes in size

%% End of Anomalies **
11l Security Vulnerabilities and Risks!!!!
— Uses 3 standard C functions susceptible to buffer overflow

attacks: memcpy (Low risk), strcpy (Very high risk), vsprintf (Very
high risk)

362

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: FixMail.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1648
bytes exists starting at address 196608; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
8928 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 77280 bytes in size when actually it
is 77824 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: IEAccnt.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 912 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4133 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!
- Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sscanf (Very high risk), vsprintf (Very

high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: MailClnt.exe

363

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3352
bytes exists starting at address 581632; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 460 bytes in size when actually it is
18402 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 93840 bytes in size when actually it
is 94208 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: MailSvr.exe
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 660 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
2218 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 29552 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: MsiUtils.exe

***k* Anomalies ***x*

364

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1180
bytes exists starting at address 126976; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
5895 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 28552 bytes in size when actually it
is 28672 bytes in size

%% End of Anomalies **
11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: PrivacyHelper.exe
xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 484 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1919 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3944 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: PuB.exe
*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 300 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped

365

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
841 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2128 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: TaskPanl.exe
x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 4644
bytes exists starting at address 692224; this table often does not
appear in an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 835044; this item often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 440 bytes in size when actually it is
24485 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31496 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: uninstll.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

366

— The file indicates an import address table consisting of 2308
bytes exists starting at address 188416; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
6790 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 49184 bytes in size when actually it
is 53248 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Uses 6 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), vsnprintf (Low risk), vsprintf
(Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: UpdMgr.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1940
bytes exists starting at address 77824; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
8200 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 93088 bytes in size when actually it
is 94208 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: sscanf (Very high risk), vsprintf (Very high risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: Webspace.exe

367

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1580
bytes exists starting at address 40960; this table often does not
appear in an image file so it was not read and it was also not mappe

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it
6304 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 29928 bytes in size when actually
is 32768 bytes in size

**** End of Anomalies ****

P11l Security Vulnerabilities and Risks!!!!

— Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

d

is

it

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 14

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 3 elnbonus.exe
4 3 ELNhelp.exe
4 0 FixMail.exe
3 3 IEAccnt.exe
4 3 MailClnt.exe
4 0 MailSvr.exe
4 1 MsiUtils.exe
4 0 PrivacyHelper.exe
4 0 PuB.exe

5 3 TaskPanl.exe
4 6 uninstll.exe
4 2 UpdMgr .exe

4 3 Webspace.exe

368

15.5 Dynamic Link Library (DLL) Files for Hewlett-Packard PC CoreTech

FILE NAME: hpcmpmgr.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 608 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2386 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11872 bytes in size when actually it
is 12288 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3840 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: hpvaut32.dll

%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1092
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
5570 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 676 bytes in size when actually it
is 4096 bytes in size

369

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 28360 bytes in size when actually
it is 32768 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: hpvcp70.d1l1l

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 440 bytes
exists starting at address 188416; this table often does not appear in
an image file so it was not read and it was also not mapped

— Invalid directory table data found in the export table; 2896
functions are being exported but the maximum allowed by this program
is 2000

— The file indicates an export table exists but the export data
could not be read

- The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
2221 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 960 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12448 bytes in size when actually
it is 16384 bytes in size

**** End of Anomaliesg ****

1111 Security Vulnerabilities and Risks!!!!
- Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), memcpy (Low risk), sprintf (Very high

risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: hpvcr70.d1l1l

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

370

— The file indicates an import address table consisting of 616 bytes
exists starting at address 233472; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
3467 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10872 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msxml4.dll

%k* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 552 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The file indicates a delay import descriptor consisting of 256
bytes exists starting at address 987372; this item often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2786 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 110512 bytes in size when actually
it is 110592 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 60540 bytes in size when actually
it is 60928 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msxmld4a.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

371

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 43368 bytes in size when actually it
is 43520 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: msxmld4r.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 81288 bytes in size when actually it
is 81408 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

hpcmpmgr.dll
hpvaut32.dl1l
hpvcp70.d11
hpvcr70.d11
msxml4d.dll
msxmlda.dll
msxmldr.dll

w W oy U 1 01 U
O OO O wor

15.6 Executable (EXE) Files for Hewlett-Packard PC CoreTech

372

FILE NAME: hpcmpmgr.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 984 bytes
exists starting at address 147456; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4015 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 14992 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 2 hpcmpmgr.exe

15.7 Executable (EXE) Files for Iomega Zip Disk 100 Utilities

FILE NAME: ActivityDisk.exe

x%k Anomalies ***x*

373

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 444 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1557 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1728 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: AppServices.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 452 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1565 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1608 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: RegW2KInst.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 196 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
449 bytes in size

374

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: Win2kDrivers.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 336 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
987 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1256 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 4

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 ActivityDisk.exe
4 0 AppServices.exe
3 0 RegW2KInst.exe

4 0 Win2kDrivers.exe

15.8 Dynamic Link Library (DLL) Files for MusicMatch Jukebox 7

7777777777 Summary of File Security Analysis —-————————-

Total number of files submitted: 47

375

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

analog.dll
CDDBControl.dll
cdr.dll

cds.dll
DestinationWavDl11l.d1l1l
digital.dll
EventMgr.dll
FileAssoc.dll
FileCacheMgr.dll
fileco.dll
FWRun.dll
JewelCasePrinter.dll
linein.dl1l
mixer.dll

mmdb.dl1l
mmfwloc.dll
MMInet.dll
mmInstall.dll
mmjbloc.dll
mmportal.dll
MMRadioEngine.dll
mmreg.dll
mmrio.dll
mmsal32.dll
MMSecurity.dll
mmsiteserv.dll
mmuiserv.dll
mmzip32.d11
mrbupd.dll
mscdex32.d11
msvcp60.dll
ObjectManager.dll
PortableDevice.dll
PortableDevice2.dll
preferences.dll
record.dll
StgCdr.dll
TrackListPrinter.dll
unmatch.dll
unzip32.dll
wnaspint.dll
xanalyze.dll
xaudio.dll
zip32.d1l1l

(G0N BNG, BNG BNC NG, BN G2 BN NG BNG2 BN G2 BNG G2 I co Tt~ BN G RGN BN G2 B2 BN G NG BN G2 BN E BNE) RN C2 B G BN G BN G NG BNG, BN G BN C) BN C2 BN G2 BN NG BT - G B G2 B G2 B |
OO OO0 OO RrRrRPRPORPRPFPROMMOIRP,R WO NN OUGOUWOONMNOUIPBRRRERE MNP WRERRREREREONSOOOLR

15.9 Executable (EXE) Files for MusicMatch Jukebox 7

376

FILE NAME: mmdiag.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1392
bytes exists starting at address 32768; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2730 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 12680 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 4 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strcat (Very high risk), strcpy
(Very high risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: mmijb.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 5564
bytes exists starting at address 1220608; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 440 bytes in size when actually it is
24246 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 306912 bytes in size when actually
it is 307200 bytes in size

%* End of Anomalies *

111 Security Vulnerabilities and Risks!!!!

377

- Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: MMJBBurn.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3024
bytes exists starting at address 425984; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
8137 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 34184 bytes in size when actually it
is 36864 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: MMJBLaunch.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 240 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1079 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 32152 bytes in size when actually it
is 32256 bytes in size

378

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: mmjbrun.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 184 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
394 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: MmjbUpdt.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 572 bytes
exists starting at address 86016; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2100 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8824 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: MMPurchase.exe

x%k Anomalies ***x*

379

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 380 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
982 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 920 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: mm_tray.exe

%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 676 bytes
exists starting at address 40960; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4755 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 32872 bytes in size when actually it
is 36864 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk)

111!l End of Security Vulnerabilities and Risks!!!!

380

FILE NAME: RefreshIcon.exe

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 240 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
633 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: ti.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 548 bytes
exists starting at address 245760; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1775 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 127080 bytes in size when actually
it is 131072 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: UpdtStub.exe

xEk Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

381

— The file indicates an import address table consisting of 232 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1088 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1072 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 4 mmdiag.exe

4 7 mmjb.exe

4 1 MMJBBurn.exe

4 0 MMJBLaunch.exe
3 0 mmjbrun.exe

4 0 MmjbUpdt . exe

4 1 MMPurchase.exe
4 4 mm_tray.exe

4 0 RefreshIcon.exe
4 0 ti.exe

4 0 UpdtStub.exe

15.10 Dynamic Link Library (DLL) Files for OpenOffice 1.1

—————————— Summary of File Security Analysis —-————————-
Total number of files submitted: 198

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 abp645mi.dll

5 0 acceptor.uno.dll
5 0 adabas2.dll

382

(G20, BNC IR \C NG NG B G2 BNG BNG BNC BN G2 BNG) BN RN RN AN BN B G2 RGN E) B C IR N ENC BN B G BNC) BEN RN G BN G BN BN SN AN G2 BN NG B G2 BNG BNC) BN G, BN G2 Be) NG RGN BENENG) BN G2 BN G BNC) B C 2 BN G2 BN G BN G B G BN G |
D OO OO OORPRORFRR OO ORFRPRORPOODOODODODOOOODOOORHR P OOOONOODODODOOOOH O, OOOOORrOoO

ado2.dl1l
analysis645mi.dll
basctl645mi.dll
bib645mi.dl1l
bridgefac.uno.dll
cachedl.dll
calc645mi.dll
cfgmgr2.dll
cmdmail.dll
cnt645mi.dll
comphelp3MSC.dl1l
connector.uno.dll
corereflection.uno.dll
cppu3.dll
cppuhelper3MSC.dll
ctl645mi.dll
date645mi.dll
dba645mi.dll
dbase645mi.dll
dbghelp.dll
dbi645mi.dll
dbp645mi.dll
dbpool2.dll
dbtools2.dll
dbu645mi.dll
del645mi.dll
dict_ja.dll
dict_zh.dll
dl645mi.dll
dnd.dll
dtrans.dll
emser645mi.dll
evtatt.dll
file645mi.dl1l
flash645mi.dl1l
flat645mi.dll
fop.dll

fps.dll
frm645mi.dll
ftransl.dll
fwe645mi.dll
fwi6d5mi.dll
fwk645mi.dll
fwl645mi.dll
go645mi.dll
hyphen645mi.dll
118n645mi.dl1l
1i18npool645mi.dll
il8nregexpMSC.dll
il8nsearch.dll
118nutilMSC.dll
icudt221.d11
icuin22.d1l1l
icule22.dl1l
icuuc22.dl1l

383

(G206, BNC BNG BNC NG, B G2 BNG BNG BNC, BN C, RGN NG, NG NG, B Sy =) G2 BN G2 BN C) N NG BN G2 BN G2 BN G, BN BN BN G2 BN G2 BN NG B G2 It) BTN G2 BN G2 BN) B) NG BN G2 BN E) BN G2 BN G BN E) BN C BN G2 BN BN G B G BN Gy |
O OO OO ODOONIOIODIODODODOONOWOOOOWWEDNOOORROOOORRN-TJdQOFRP OOOMMOOODODOOOO O oo

implreg.uno.dll
introspection.uno.dll
invocadapt.uno.dll
invocation.uno.dll
3645mi_g.dll
javaloader.uno.dll
javavm.uno.dll
java_uno.dll
java_uno_accessbridge.dll
jdbc2.d1l1

Jjpipe.dll
3s3250.d11

Juh.dl1l

Jjuhx.dll
Jjvm645mi.dll
jvmaccess3MSC.d1l1l
libcurl.dll
libdb32.d11
libdb_java32.dl1l
lng645mi.dll
localedata_en.dll
localedata_es.dll
localedata_euro.dll
localedata_others.dll
1th645mi.dll
mcnttype.dll
mozab2.dll
mozabdrv2.dll
mozreg.dll
msci_uno.dll
msgbsutl.dll
msvcp70.d11
msvcr70.dl1l
mysgl2.dll
namingservice.uno.dll
nestedreg.uno.dll
nsldap32v50.dl1l
nsldappr32v50.d1ll
nspr4.dll

nsreg.dll

odbc2.d11
odbcbase2.dll
0fa645mi.dll
offacc64b5mi.dll
officebean.dll
oleautobridge.uno.dll
opc645mi.dll
package2.dll
pcr645mi.dll
pdffilter645mi.dll
pk645mi.dll
pkgchk645mi.dll
placewaremi.dll
plcd4.dll

plds4.dll

384

(G206 INC ENG NG EN EEN NG BN B G B C2 BN REN NG, BNG) BNC I C: EN NG N E) B G BN G, BN N NG BNG BN G BN NG RN RN NG B2 BN NG B G2 RGN e NG, BN G2 BN E) BN G2 BNG) BN INC) BN G BN G BN E) B C BN C2 BN G) B G I G BN G |
OO O OO WOOOOOHFH P OOOOPMMODOFHRNORPRORPRPROODOWOHOOOORFRRONMNOOPMMODODOOOOH OOOWOOOo

preload645mi.dll
proxyfac.uno.dll
proxyset.dll
python22.d1l1
pythonloader.uno.dll
pyuno.dll

reg3.dll
reg4msdoc645mi.dll
regactivex645mi.dll
regtypeprov.uno.dll
remotebridge.uno.dll
res645mi.dll
rmcxt3.dl1

sal3.dll
salhelper3MSC.dl1l
sax.uno.dll
sb645mi.dll
sc645mi.dll
sch645mi.dll
scn645mi.dll
sd645mi.dll
sdbc2.d1l1l
security.uno.dll
servicemgr.uno.dll
set645mi.dll
sfx645mi.dll
shlibloader.uno.dll
shlxthdl.dll
simplereg.uno.dll
sm645mi.dll
smplmail.dll
s0645mi.dll
sot645mi.dll
so_activex.dll
spell64bmi.dll
spl645mi.dll
srtrsl.dll
stlport_vc745.d11
store3.dll
streams.uno.dll
sts645mi.dll
svg645mi.dll
svx645mi.dll
sw645mi.dll
sysdtrans.dll
syssh.dll
textinstream.uno.dll
textoutstream.uno.dll
tk645mi.dll
£1645mi.dl1l
tplx645mi.dll
tvhlpl.dll
typeconverter.uno.dll
typemgr.uno.dll
ucbl.dll

385

7 0 ucbhelper2MsSC.dll
5 1 ucpchelpl.dll

5 6 ucpdavl.dll

5 0 ucpfilel.dll

5 0 ucpftpl.dll

5 0 ucphierl.dll

5 0 ucppkgl.dll

5 0 ulingu645mi.dll
5 0 unicows.dll

5 0 urp_uno.dll

5 1 usp645mi.dll

7 0 utl645mi.dll

5 0 uui6dbmi.dll

5 0 uuresolver.uno.dll
5 2 uwinapi.dll

7 2 vcl645mi.dll

5 0 vos3MSC.dl1l

5 0 xcr645mi.dll

5 0 xmlfa645mi.dll

5 0 xmlfd645mi.dll

5 0 xmx645mi.dll

7 0 x0645mi.dll

7 5 xpcom.dll

5 0 xsltdlg645mi.dll
5 5 zlib.d1l1l

15.11 Executable (EXE) Files for OpenOffice 1.1

FILE NAME: crashrep.exe

***k* Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 632 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4096 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 197472 bytes in size when actually
it is 200704 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

386

- Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), sscanf (Very high
risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: jvmsetup.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1152
bytes exists starting at address 49152; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
3333 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!
— Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), strncpy (Low

risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: pkgchk.exe

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 272 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1452 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

387

FILE NAME: quickstart.exe

x% Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 220 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
942 bytes 1in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42624 bytes in size when actually it
is 45056 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: regsvrex.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 132 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
695 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: setup.exe

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 2568
bytes exists starting at address 114688; this table often does not
appear in an image file so it was not read and it was also not mapped

388

- The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
4853 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 12200 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

11! End of Security Vulnerabilities and Risks!!!!

FILE NAME: soffice.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1916
bytes exists starting at address 139264; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
7233 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 239128 bytes in size when actually
it is 241664 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: testtool.exe

***k* Anomalies ***x*

389

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 3896
bytes exists starting at address 237568; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
5655 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 8

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=
<
~
)

Filename

crashrep.exe
jvmsetup.exe
pkgchk.exe
quickstart.exe
regsvrex.exe
setup.exe
soffice.exe
testtool.exe

Wb Wb W W
O OO0 WWw

15.12 Dynamic Link Library (DLL) Files for Real One Player (ME/XP)

FILE NAME: dunzip32.dll

***k* Anomalies ***x*

- A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 42888 bytes for that section
— The data directory table in the optional header states that the
Resource Table (.rsrc section) 1is 2264 bytes in size when actually it

is 2560 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5528 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

390

No security wvulnerabilities or security risks were found

FILE NAME: ierjplug.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 268 bytes
exists starting at address 13824; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1175 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4120 bytes in size when actually it
is 4608 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 788 bytes in size when actually
it is 2560 bytes in size

x* End of Anomalies *

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: snprintf (Low risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: mmcdda32.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 196 bytes
exists starting at address 15872; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
984 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 1536 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 760 bytes in size when actually
it is 1536 bytes in size

391

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: rijbres.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 92 bytes
exists starting at address 7168; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
478 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 783208 bytes in size when actually
it is 783360 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 256 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

11!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: rijbxfade.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 260 bytes
exists starting at address 13312; this table often does not appear in
an image file so it was not read and it was also not mapped

392

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1005 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42944 bytes in size when actually it
is 43008 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 636 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

111 Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: rjdlg.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1268
bytes exists starting at address 124416; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
8052 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 284984 bytes in size when actually
it is 285184 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10068 bytes in size when actually
it is 13312 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 6 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), sprintf (Very high
risk), sscanf (Very high risk), strncpy (Low risk), vsprintf (Very
high risk)

'111 End of Security Vulnerabilities and Risks!!!!

393

FILE NAME: rijprog.dll

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 208 bytes
exists starting at address 11264; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1055 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2392 bytes in size when actually it
is 2560 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 628 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: rmbe3260.d11

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 640 bytes
exists starting at address 336384; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2829 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 36168 bytes in size when actually it
is 36352 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 14356 bytes in size when actually
it is 17920 bytes in size

**** End of Anomalies ****

394

111 Security Vulnerabilities and Risks!!!!

- Uses 4 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk), strncpy (Low
risk), vsprintf (Very high risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: rpau3260.dl1l

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 264 bytes
exists starting at address 13312; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1388 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4864 bytes in size when actually it
is 5120 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 884 bytes in size when actually
it is 2048 bytes in size

**** End of Anomalies ****

111l Security Vulnerabilities and Risks!!!!

— Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: rpwa3260.dl1l

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 160 bytes
exists starting at address 7168; this table often does not appear in
an image file so it was not read and it was also not mapped

395

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
786 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 332 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), strncpy (Low risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: tmdedit.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1020
bytes exists starting at address 73216; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
7353 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 162416 bytes in size when actually
it is 162816 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4736 bytes in size when actually
it is 7168 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

111!l End of Security Vulnerabilities and Risks!!!!

FILE NAME: tnetdtct.dll

396

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 252 bytes
exists starting at address 8704; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1101 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 608 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: tpasdk.dll

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 156 bytes
exists starting at address 22528; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
719 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1056 bytes in size when actually it
is 1536 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1372 bytes in size when actually
it is 1536 bytes in size

%* End of Anomalies **

11l Security Vulnerabilities and Risks!!!!

397

- Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), strncpy (Low
risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: tsasdk.dll

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 140 bytes
exists starting at address 71168; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
544 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1056 bytes in size when actually it
is 1536 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1096 bytes in size when actually
it is 4608 bytes in size

**** End of Anomalies ****

1111 Security Vulnerabilities and Risks!!!!

- Uses 3 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk), vsprintf (Very
high risk)

'111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: twebbrowse.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 324 bytes
exists starting at address 35840; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
1533 bytes in size

398

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 1536 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2084 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

111! End of Security Vulnerabilities and Risks!!!!

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

b=

V/R Filename

dunzip32.d1ll
ierjplug.dll
mmcdda32.dll
rijbres.dll
rjbxfade.dll
rjdlg.dll
rijprog.dll
rmbe3260.d11
rpau3260.dl1l
rpwa3260.d1l1
tmdedit.dll
tnetdtct.dll
tpasdk.dll
tsasdk.dll
twebbrowse.dll

(G BNC2 NG, BNG BNE, BNC RGN NG B C2 BNE B G B C, BNG, ROV I
N WWNNMNNNRERE _MEOOR EREDNDDNDO

15.13 Executable (EXE) Files for Real One Player (ME/XP)

FILE NAME: fixrjb.exe

x%k Anomalies ***x*

399

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 100 bytes
exists starting at address 2560; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
528 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: realjbox.exe

xEk Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 104 bytes
exists starting at address 2560; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
568 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1936 bytes in size when actually it
is 2048 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: realplay.exe

***k* Anomalies ***x*

- The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 360 bytes
exists starting at address 28160; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1782 bytes in size

400

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 94672 bytes in size when actually it
is 94720 bytes in size

%* End of Anomalies **

1111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: rphelperapp.exe

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 128 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
639 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

—————————— Summary of File Security Analysis ——————————
Total number of files submitted: 4

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

3 0 fixrjb.exe

4 0 real jbox.exe

4 2 realplay.exe

3 0 rphelperapp.exe

15.14 Image Files for Veritas Update Manager

401

FILE NAME: AniGifDisplay.ocx

x%k Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1212
bytes exists starting at address 24576; this table often does not
appear in an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2007 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6384 bytes in size when actually it
is 8192 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 2236 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: Archived.dll

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 624 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2448 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13272 bytes in size when actually it
is 16384 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5028 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

FILE NAME: Graph.ocx

402

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1076
bytes exists starting at address 16384; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1611 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4128 bytes in size when actually it
is 8192 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1732 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: sfcwall3l.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1220
bytes exists starting at address 188416; this table often does not
appear in an image file so it was not read and it was also not mapped

— The length of 143 export name(s) in the export table exceeded the
buffer size of 255 bytes

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
9813 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 39152 bytes in size when actually it
is 40960 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 11896 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

11l Security Vulnerabilities and Risks!!!!

— Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcpy (Very
high risk)

403

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: sgpropsht.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 752 bytes
exists starting at address 40960; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
4068 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4072 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3244 bytes in size when actually
it is 4096 bytes in size

%* End of Anomalies **

11l Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

1111 End of Security Vulnerabilities and Risks!!!!

FILE NAME: sgtray.exe

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 2240
bytes exists starting at address 106496; this table often does not
appear in an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
10366 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 664 bytes in size when actually it
is 4096 bytes in size

404

**** End of Anomalies ****

'l Security Vulnerabilities and Risks!!!!

- Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: sus.dll

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 848 bytes
exists starting at address 98304; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
9369 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6360 bytes in size when actually
it is 8192 bytes in size

%* End of Anomalies *

11l Security Vulnerabilities and Risks!!!!

— Uses 2 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), vsprintf (Very high risk)

111! End of Security Vulnerabilities and Risks!!!!

FILE NAME: trayrenu.dll

%k* Anomalies **

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 709408 bytes in size when actually
it is 712704 bytes in size

405

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

x* End of Anomalies *

No security vulnerabilities or security risks were found

FILE NAME: vxhttp.dll

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 436 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
3802 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) 1is 2488 bytes in size when actually
it is 4096 bytes in size

x* End of Anomalies *

111 Security Vulnerabilities and Risks!!!!

- Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsprintf (Very high risk)

'111 End of Security Vulnerabilities and Risks!!!!

7777777777 Summary of File Security Analysis —-————————-
Total number of files submitted: 9

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

5 0 AniGifDisplay.ocx
5 0 Archived.dll

5 0 Graph.ocx

406

6 3 sfcwall3l.dll
5 1 sgpropsht.dll
4 1 sgtray.exe

5 2 sus.dll

3 0 trayrenu.dll
5 2 vxhttp.dll

15.15 Dynamic Link Library (DLL) Files for WinZIP 8.0

FILE NAME: WZ32.DLL

%* Anomalies *x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 500 bytes
exists starting at address 184320; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2745 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 35592 bytes in size when actually it
is 36864 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 14808 bytes in size when actually
it is 20480 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZCAB.DLL

%k* Anomalies **

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 916 bytes in size when actually it
is 1024 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1136 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

407

FILE NAME: WZCAB3.DLL

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 312 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1617 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6680 bytes in size when actually it
is 8192 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2244 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZSHLEX1.DLL

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 424 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2315 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 7592 bytes in size when actually it
is 8192 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3060 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZSHLSTB.DLL

408

*x*k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 80 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
475 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1208 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 144 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZVINFO.DLL

***k* Anomalies ***x*

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 232 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1267 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1352 bytes in size when actually it
is 4096 bytes in size

- The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1660 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZZPMAIL.DLL

x%k Anomalies ***x*

409

— The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 656 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped

- The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3612 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 18104 bytes in size when actually it
is 20480 bytes in size

— The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3660 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

7777777777 Summary of File Security Analysis —————————-
Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

WZ32.DLL
WZCAB.DLL
WZCAB3.DLL
WZSHLEX1.DLL
WZSHLSTB.DLL
WZVINFO.DLL
WZZPMAIL.DLL

oo oo N ;g
O O OO o oo

15.16 Executable (EXE) Files for WinZIP 8.0

FILE NAME: WINZIP32.EXE

xEk Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 1628
bytes exists starting at address 487424; this table often does not
appear in an image file so it was not read and it was also not mapped

410

- The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
7538 bytes in size

— The data directory table in the optional header states that the
Resource Table (.rsrc section) is 865264 bytes in size when actually
it is 868352 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: WZSEPE32.EXE

x%k Anomalies ***x*

— The normally small zero—-filled region following the MS-DOS Stub
contains some kind of information

— The file indicates an import address table consisting of 748 bytes
exists starting at address 75776; this table often does not appear in
an image file so it was not read and it was also not mapped

— The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3910 bytes in size

- The data directory table in the optional header states that the
Resource Table (.rsrc section) is 88312 bytes in size when actually it
is 88576 bytes in size

**** End of Anomalies ****

No security wvulnerabilities or security risks were found

—————————— Summary of File Security Analysis —-—————————
Total number of files submitted: 2

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

A V/R Filename

4 0 WINZIP32.EXE
4 0 WZSEPE32.EXE

411

