
AUTOMATIC DETECTION OF SOFTWARE SECURITY

 VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

__
Jay-Evan J. Tevis

Certificate of Approval:

__________________________ __________________________
Dean Hendrix John A. Hamilton, Jr., Chair
Associate Professor Associate Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

__________________________ __________________________
David A. Umphress Stephen L. McFarland
Associate Professor Acting Dean
Computer Science and Software Graduate School
Engineering

AUTOMATIC DETECTION OF SOFTWARE SECURITY

 VULNERABILITIES IN EXECUTABLE

 PROGRAM FILES

Jay-Evan J. Tevis

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 8, 2005

 iii

AUTOMATIC DETECTION OF SOFTWARE SECURITY

VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Jay-Evan J. Tevis

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

Signature of Author

Date of Graduation

 iv

DISSERTATION ABSTRACT

AUTOMATIC DETECTION OF SOFTWARE SECURITY

VULNERABILITIES IN EXECUTABLE

PROGRAM FILES

Jay-Evan J. Tevis

Doctor of Philosophy, August 8, 2005
(M.S., Air Force Institute of Technology, 1990)

(B.S., Iowa State University, 1985)
423 total pages

Directed by Dr. John A. Hamilton, Jr.

Secure programming describes those techniques that software developers use to

provide security features in their applications. In addition to these techniques, software

practitioners use static code security checkers to parse through and scan the source

code, looking for potential security problems. Related to static code checking, runtime

checkers have been developed that monitor the software while it is in use.

In an effort to counter the hacker threat, software security professionals need

better methods and tools than these to analyze executable programs the way hackers do:

from the binary data level. This level is where the hackers find the secret doorways and

 v

security loopholes that are not evident in high-level source code. A few commercial

companies have recently started marketing software products that will scan executable

files for software security vulnerabilities; however, these products have unpublished

methodologies and unverified test results. Consequently, software practitioners have

only a loose collection of homegrown, commercial, and operating system software tools

to perform their secure programming work and to do so in primarily a manual approach.

To help security analysts, programmers, and users detect security vulnerabilities

in executable program files, we have created a methodology that uses information

located in the headers, sections, and tables of a Windows NT/XP executable file, along

with information derived from the overall contents of the file, as a means to detect

specific software security vulnerabilities without having to disassemble the code. In

addition, we have instantiated this methodology in a software utility program called

findssv that automatically dissects an executable file and detects certain anomalies and

software security vulnerabilities before installing and running the software.

We tested findssv on seven categories of files: software installation files,

software development files, Windows XP operating system files, Microsoft application

files, security-centric application files, and miscellaneous application files. We show

through the test results on these 2700 files that findssv is able to detect table size

anomalies, large zero-filled regions of bytes, unknown regions of bytes, compressed

files, sections that are both writable and executable, and the use of functions susceptible

to buffer overflow attacks. We also list sixteen key security vulnerability findings about

software in the seven categories.

 vi

ACKNOWLEDGMENTS

The author would like to thank his advisor, Dr. Drew Hamilton, for his expert

computer security guidance, constructive ideas, and "can-do" attitude throughout this

time of research. Thanks also to the two graduate committee members, Dr. David

Umphress and Dr. Dean Hendrix, for their review and comments on this research work.

Special thanks to Dr. W. Homer Carlisle for his references on assembly language and

his services as a sounding board for many of the novel approaches taken by this

research. Finally, the author would like to thank his wife and children who endured

many moves, travels, and separations for the author to complete this course of study and

dissertation.

 vii

Style manual or journal used Journal of the ACM

Computer software used Microsoft Word 2000

 viii

TABLE OF CONTENTS

List of Tables xi

List of Figures xii

1. INTRODUCTION 1

 1.1 Making Software More Secure 1

 1.2 Static Analysis of Source Code Files 2

 1.3 Static Analysis of Executable Files 2

 1.4 Objectives of this Research 3

2. LITERATURE REVIEW 4

 2.1 Secure Programming as a Separate Discipline 4

 2.2 Secure Programming Techniques 7

 2.3 General Security Defense Rules When Developing Software 10

 2.4 Specific Software Vulnerabilities To Avoid in Source Code 11

 2.5 Static Code Security Checkers 16

 2.6 Runtime Code Security Checkers 25

 2.7 Other Approaches Involving Executable Files 26

 ix

 2.8 Hacker Attacks 27

 2.9 Software Security on the Offensive 36

 2.10 Examining Executable Files 41

3. STATEMENT OF RESEARCH OBJECTIVES 52

4. DESCRIPTION OF RESEARCH RESULTS 55

 4.1 Explanation of Terms 55

 4.2 The PE Format from a Security Point of View 57

 4.3 A Software Utility to Dissect a PE File 67

4.4 A Methodology for Finding Software Security

 Vulnerabilities in a PE File

 79

4.5 Automation of the Methodology: the Findssv Software

 Utility

84

 4.6 Results from Testing the Automated Methodology 94

5. CONCLUSION 119

 5.1 Proof of the Dissertation Hypothesis 119

5.2 Performance of Findssv in a Real-World Security

 Vulnerability Analysis

126

 5.3 Future Work 130

6. REFERENCES 134

APPENDIX A: INSECURE CODING PRACTICES TO AVOID 149

 x

APPENDIX B: LIST OF COMMONLY USED HACKER TOOLS 151

APPENDIX C: TEST RESULTS FROM ANALYZING SPECIFIC

 EXAMPLE FILES

153

APPENDIX D: TEST RESULTS FROM ANALYZING

 EXECUTABLE INSTALLATION FILES

193

APPENDIX E: TEST RESULTS FROM ANALYZING

 SOFTWARE DEVELOPMENT FILES

210

APPENDIX F: TEST RESULTS FROM ANALYZING

 WINDOWS XP OPERATING SYSTEM FILES

244

APPENDIX G: TEST RESULTS FROM ANALYZING

 MICROSOFT APPLICATION FILES

281

APPENDIX H: TEST RESULTS FROM ANALYZING

 SECURITY-CENTRIC APPLICATION FILES

316

APPENDIX I: TEST RESULTS FROM ANALYZING

 MISCELLANEOUS APPLICATION FILES

356

 xi

LIST OF TABLES

Table 1 – Static Code Security Checkers 18

Table 2 – Test Summary of Specific Example Files 97

Table 3 – Test Summary of Executable Installation Files 102

Table 4 – Test Summary of Software Development Files 104

Table 5 – Test Summary of Windows XP Operating System Files 109

Table 6 – Test Summary of Microsoft Application Files 111

Table 7 – Test Summary of Security-Centric Application Files 113

Table 8 – Test Summary of Miscellaneous Applications Files 117

Table 9 – Test Summary of Simulation Software Files 127

 xii

LIST OF FIGURES

Figure 1 – Program Organization 30

Figure 2 – Typical Layout of the Portable Executable File Format 43

Figure 3 – Findssv Help Screen 85

 1

1. INTRODUCTION

1.1 Making Software More Secure

The news of another virus threatening our computers has become a regularly expected

occurrence. Moreover, we have come to accept the installation of a software patch as

the preferred means to stop such malicious code. Companies have even devoted large

amounts of resources to anti-virus teams and defense strategies to combat these

problems. Such strategies include firewalls, intrusion detection mechanisms, honey

pots, port monitors, system security scanners, and internet/e-mail content scanners

[Grimes 2001]. Instead, we should look at ways to build more secure software and

identify ways to detect vulnerable software code before installing it on our computers.

Secure programming describes the practices that software developers can use to provide

security features in their applications. To study its relationship to software

development, secure programming can be divided into the following categories: safe

program initialization, access control, input validation, safe cryptographic usage, safe

networking, safe random number generation, and anti-tampering.

In addition to secure programming practices, security researchers and practitioners have

developed defense solutions targeted at decreasing the security vulnerabilities of

computer systems. These solutions involve auditing all source code for vulnerabilities,

 2

authenticating all software, giving security concerns a higher priority than increased

functionality during software development, and preventing any unauthorized changes in

the code baseline on a system [Grimes 2001].

1.2 Static Analysis of Source Code Files

For the vulnerability auditing solution, security experts have developed several software

tools that provide a security check of C/C++ source code. The research concentrates on

information about functions and data structures that pose a risk to the security of a

computer system. These insecure items are a doorway through which malicious code

enters to attack a system [Schaeffer 2002]. The security checkers search for these

"doorways" in a source code file and alert the programmer to their presence.

Even though these security checkers provide some assistance in the prevention of

security vulnerabilities, they have many weaknesses and only concentrate on the source

code. The hackers, on the other hand, target the vulnerabilities in the executable code.

In general, these are the same vulnerabilities that secure programming practices strive to

prevent. By disassembling an executable program and looking for certain key

indicators, hackers apply their tools of exploitation.

1.3 Static Analysis of Executable Files

In the past year, two commercial vendors began marketing security checking tools that

scan executable files [HBGary 2004a, @stake 2004a]. According to their

documentation, these tools perform an in-depth security analysis of the files; however,

 3

they have published no detailed methodologies or test results demonstrating that their

approaches actually work.

1.4 Objectives of this Research

This research effort also involves the scanning of executable files for software security

vulnerabilities. Specifically, it involves the scanning of files that conform to the

portable executable (PE) format designed for software running on Windows NT/XP

computers. This effort sets out to prove the following hypothesis: A methodology can

be devised that uses information located in the headers, sections, and tables of an

executable file, along with information derived from the overall contents of the file, as a

means to detect specific software security vulnerabilities without having to disassemble

the code. Such a methodology can be instantiated in a software utility program that

automatically detects certain software security vulnerabilities before installing and

running the executable file.

To prove this hypothesis, this research effort first identifies specific information in the

PE format that is useful in a security vulnerability analysis. It then formulates a

methodology for identifying certain security vulnerabilities using this information. It

incorporates this methodology into a software application called findssv that dissects a

PE file and analyzes its parts. To test the hypothesis, the findssv program is run against

seven categories of executable files (over 2700 files in all). Based on the test results,

conclusions are drawn on the correctness of the hypothesis and on the usefulness of this

approach.

 4

2. LITERATURE REVIEW

This section summarizes the work done so far by others that impacts this research

effort. It discusses secure programming techniques, general security defense strategies,

specific software security vulnerabilities, static source code security checkers, common

hacking techniques and tools, and examination of executable files.

2.1 Secure Programming as a Separate Discipline

The Internet and the World Wide Web continue to grow as extensions of the data

storage and processing power of the personal computer. As a consequence of the

resulting security risks, the need for secure programming practices also is growing.

Moreover, secure programming is quickly becoming a separate discipline in computer

programming and software engineering as evidenced by the books and articles

published on the subject.

[Acar and Michener 2002] address the need for security to be a part of the initial

software architecture rather than an add-on feature that users can opt to purchase. They

also point out the need for security and software engineering to be integrated into

computer science curriculums. [Anderson 2001] presents security engineering

fundamentals, from protocols, passwords, cryptography, and access controls to the

basics of security in distributed systems. [Evans 2004] discusses how security

 5

properties can be placed as annotations into source code comments. These annotations

provide a way for security scanning software to use preconditions to see if a function's

implementation ensures the postconditions. [Goth 2002; McGraw 1998] talk about the

need for software developers to move away from the "find and patch" method of

software testing toward proactive software security and the establishment of security

standards to reduce the impact of current vulnerabilities. [Howard 2004] lists a number

of best practices to follow when developing software with a security mindset. [Soo

Hoo, Sudbury and Jaquith 2001] discuss the return on investment of incorporating

secure software engineering practices early in the software development life cycle.

[Yoder and Barcalow 1997] provide a description of seven design patterns that provide

a secure framework for building software applications.

[Graff and van Wyk 2003] cover the software side of security architecture, design,

implementation, operations, and testing. In doing so, they use the approach of first

identifying good and bad security practices and then presenting case studies. [Grimes

2001] looks at malicious code. It systematically dissects viruses, Trojans and worms,

ActiveX and Java exploits, DOS viruses, macro viruses, browser-based exploits, e-mail

attacks, and instant messaging attacks. [Hall and Chapman 2002] go through each of

the stages of a software development process and propose security measures that

developers can take at each stage. In these stages, formal methods are applied to

greatly reduce security defects in the software. [Howard and LeBlanc 2002] discuss

various secure coding techniques such as good access control, running with least

 6

privilege, and using cryptography. They also look at socket security, RPC, ActiveX

controls, DCOM, denial of service attacks, and web-based services.

[Kahn and Han 2002] look at how software components can make known their required

and ensured security properties. They address how to characterize the security

properties of components, how to analyze at runtime the internal security properties of a

system comprising several atomic components, how to characterize the entire system's

security properties, and how to make those characterized properties available at

runtime. [Landwehr 1994] supplies a taxonomy showing how both intentional and

unintentional security defects are introduced into software and where in the software

development process that this can occur. For example, inadvertent security errors can

be birthed through validation errors, object reuse, authentication errors, and boundary

condition violations. [Du 1998] compares and contrasts several schemes for

categorizing software security vulnerabilities and proposes a new approach based on

cause, direct impact, and proposed fix. [Neumann 2003] discusses the problems of

security vulnerabilities in end-user systems, routers, servers, and communication

devices. It points out that software is regularly released with security flaws, and that

patches introduce more flaws. The article closes by proposing that it is time to stop

accepting bad software that is seriously unsecurable and require software security

practices to be dramatically improved.

[Splaine 2002] covers how to plan a software security testing effort, how to test network

and system configuration security, and how to check for security vulnerabilities in web-

 7

based applications. [Viega and McGraw 2002] discuss guiding principles for building

secure software. They strive to end the "penetrate and patch" approach to software

security by emphasizing proper analysis and design techniques. [Viega and Messier

2003] supply a whole array of secure programming practices that are covered in more

detail later in this section. [Wall 1999] provides information on secure programming in

Linux. It addresses specific code issues for setuid programs, network servers, network

clients, mail user agents, CGI programs, and various utilities and applications.

[Wheeler 2004] lists Windows and Unix functions that are vulnerable to exploitation

and discusses ways to reduce or eliminate these security problems.

[Short 2002] describes many kinds of vulnerabilities that are detectable by allowing

unrestricted access to the source code. Although executable files can be disassembled

or decompiled by tools that are easily obtained, these tools do not produce the original

source code. Such source code is invaluable in understanding the logical flow of a

program, the cause of the various branches, and the reason for certain function calls.

2.2 Secure Programming Techniques

Secure programming describes those techniques that software developers use to provide

security features in their applications. Each of the following subsections summarizes a

recommended secure programming technique. [Viega and Messier 2003] expand on

each of these and provide examples using C and C++ code samples.

 8

2.2.1 Safe Program Initialization

Safe program initialization refers to the values taken on by program constants and

variables at the time a program begins execution. If also refers to the condition of any

external resources utilized by the software. The goal is to validate as much of a

program's environment as possible before any critical part of the application runs. A

software application should make few, if any, assumptions about its environment in

order to minimize the risks of many malicious attempts [Viega and Messier 2003].

2.2.2 Access Control

Access control refers to the need of a software application to protect the access to

resources under its control. As soon as an application opens a file or port, access to that

resource must be protected. In addition, an application should consistently use standard

application program interfaces to system resources. Moreover, an application should

use the minimum time needed in a privileged state in order to avoid race conditions

whereby malicious attempts can try to gain access to specific resources during that time

[Viega and Messier 2003].

2.2.3 Input Validation

Input validation refers to the need to confirm the content of any data read in by a

program. No data should be assumed valid at any time during the life of a program. A

policy of "default deny" should be enforced. In addition, no untrusted data should be

used to control an application [Viega and Messier 2003; Whittaker 2003].

 9

2.2.4 Safe Cryptographic Usage

Cryptography is the science of mathematical techniques for protecting data from

malicious or unauthorized actions by transforming the data itself [Hankerson 2000].

Cryptographic protection involves the use of encryption and decryption techniques to

safeguard the secrecy of data. It also involves message authentication techniques to

detect data that has been tampered with [Viega and Messier 2003].

2.2.5 Safe Networking

Safe networking refers to the secure communication between two nodes over a network

medium. This security ensures that both nodes are who they claim to be and the data

exchanged by these nodes is protected from malicious attacks [Viega and Messier

2003].

2.2.6 Safe Random Number Generation

Safe random number generation refers to the creation of a continuing sequence of

random numbers that is as close to nondeterministic as possible. This is a difficult task

given that computers are inherently deterministic, and must be, to do the level and

precision of calculations demanded of them. Methods for producing random numbers

include insecure random number generators, cryptographic pseudo-random number

generators, and entropy harvesters [Viega and Messier 2003].

 10

2.2.7 Anti-tampering

Anti-tampering refers to techniques to protect the reverse engineering of binary code.

Such action may be needed to protect software from malicious attempts to access

proprietary data or algorithms, or find vulnerabilities in order to change the proper

execution of the software [Viega and Messier 2003].

2.3 General Security Defense Rules When Developing Software

Along with security programming techniques are standard data validation rules to

practice in software to prevent many software security vulnerabilities [Viega and

Messier 2003]. These rules are based on the principle that all data should be filtered

and then either accepted or rejected.

• Assume all input is invalid or incorrectly formatted until proven otherwise

• Prefer rejecting data to filtering data

• Perform data validation both at input points and at the component level

• Do not accept commands from the user unless you parse them yourself

• Beware of special commands, characters, and quoting

• Make policy decisions based on a "default deny" rule

• The better you understand the data, the better you can filter it

Along with good rules to follow in the source code, there are certain insecure coding

practices that a software developer should avoid. See Appendix A for a summary of

secure programming "Do nots" taken from [Graff and van Wyk 2003].

 11

2.4 Specific Software Vulnerabilities to Avoid in Source Code

Attacks on software vulnerabilities vary from year to year as old bugs are fixed and new

ones are found. Nevertheless, the one bug that invariably holds the top position in the

list is buffer overflow. In a June 2000 study of the ten top vulnerabilities, cases of

buffer/stack overflow were in the #1, #3, and #6 positions [Anderson 2001]. An

interesting history of the birth of buffer overflow know-how is described in [Scambray,

McClure, and Kurtz 2001]. It also describes how easy it is to use a web browser to

modify a login page in an effort to abort a web server. This is done by changing the

size of the userid or password field on the page, refreshing the page, entering long

strings of characters into the text boxes, sending the client response, and watching the

effect on the web server. [Schiffman 2001] contains a detailed scenario called Jack and

Jill that recounts how an actual attack occurred on the Internet Information Server

software using buffer overflows.

Buffer overflow attacks occur when a string of characters of unchecked length is

entered into a program. This allows user-supplied input to overwrite other variables,

thereby changing their values. Such attacks can change the value of a return address

from a function call and cause control to jump to malicious code that was also entered

via the buffer overflow. Some solutions are declaring all local variables in C as static to

keep them off of the stack. Patches can be added to an operating system to make code

in the stack non-executable. Modifications can be made to compilers to detect a

possible buffer overflow situation [Lhee and Chapin 2002]. [Prasad and Chiueh 2003]

 12

recommend a static translation of the contents of a binary file to incorporate a return

address defense mechanism. This change protects the integrity of the return address on

the stack by making a redundant copy of it. Canary values can be declared right next to

string variables. The value of a canary value can then be checked after each string write

using the assert function to see if its value has changed [Howard and LeBlanc 2002]. A

version of the gcc compiler has been modified to automatically add canary values to

functions [Wall, Watson, and Whitis 1999].

A variation of the buffer overflow attack is the exploitation of the mismatch between

the sizes of Unicode characters and ANSI characters. The vulnerable function is

MultiByteToWideChar() which has a buffer length parameter that can be changed by

exploiting the stack [Howard and LeBlanc 2002]. Heap overflow attacks are also

possible. A common way is to manipulate the bits maintained for each memory block

in the free list. By doing so, a user can get calls to the free() function to overwrite

memory locations with specific malicious data [Howard and LeBlanc 2002, Pincus and

Baker 2004].

Array indexing attacks can allow a malicious user to write data to an arbitrary location

in the data segment of a software application. Such data could change the constant

value used in a conditional expression for example, thereby allowing the expression to

return a true value to a larger range of user inputs [Howard and LeBlanc 2002]. This

vulnerability exists because of the semantics of the array operator in C and C++. Such a

vulnerability does not exist in Ada or Java because of the implicit bounds checking that

 13

occurs in the runtime environment [Cohen 1986, Jaworksi and Perrone 2000; Lewis and

Loftus 2005; Louden 2003].

Format string attacks using the "%n" specifier can make the printf() function write an

integer value to an arbitrary location in memory. Because the printf() function allows a

variable number of arguments, it doesn't know what number of arguments have been

passed. A simple solution is to always pass a constant string as the format string, but

then the values in this constant string could be changed [Andress 2002; Howard and

LeBlanc 2002].

Standard C functions that do no range checking of character string inputs are vulnerable

to function algorithm attacks. These functions include scanf(), gets(), sprintf(),

vsprintf(), strcpy(), and strcat() [Schildt 2000]. Alternatives are available on some

operating systems for each of these functions. These alternatives, such as fgets(),

strncat, and strncpy require an additional string length parameter to counter any buffer

overflow attempt [Miller and DeRaadt 1999]. Such measures are effective; however, a

long string can still be entered into one function and the remaining unread part of the

string will be input by the next function that reads input. [Viega and McGraw 2002]

contain a two-page table of 31 standard C functions that should be used with caution or

avoided altogether. A common characteristic across these functions is the passing of

one or more character array parameters as character strings. The character array data

structure in C and C++ has no built-in bounds checking for information written outside

the range of the array indices.

 14

Several types of system software applications can be exploited. Setuid programs have

the setuid or setgid bits set, thus giving the program all the privileges of the file owner,

which may be root. Network servers (daemons) can be continually attacked with data

until one breaks and the attack is successful. Network clients are normally built with a

lower concern for security than network servers. Clients such as browsers many times

allow a server to execute code on the client machine. This code can easily be malicious

software. Mail user agents are targets for buffer overflow attacks and malicious

attachments.

CGI programs, which are run on a server, have the same if not more vulnerabilities as

the server software because they are usually written in insecure scripting languages

[Castro 2001; McComb 1997]. Utilities, such as those commonly available on a UNIX

system, can be exploited through the use of special patterns of characters that may take

advantage of buffer overflow or be interpreted in a special way by a shell program.

Specific user applications such as office productivity software are vulnerable to

malicious macro code embedded in documents [Wall, Watson, and Whitis 1999].

Inside each of these applications, various code features can be exploited. The use of

certain commands in shell scripts such as eval() or function calls such as the system()

function call in programs allows a malicious user to possibly execute any arbitrary

command. An alternative to the system() call is the use of one of the functions in the

 15

exec() family [Nutt 2002]. Although the exec() calls have fewer vulnerabilities, they

should be chosen and used wisely [Viega and Messier 2003].

Changes in system environment variables can cause unexpected changes in the behavior

of a program. An example is the change of LD_LIBRARY_PATH that can cause a

program to link to code in a malicious library. Symbolic links can be changed or added

to introduce vulnerabilities into a computer system. After such changes are made, many

standard C functions (e.g., chmod(), chown(), link(), stat()) are vulnerable to allowing

unauthorized access to certain files or directories [Wall, Watson, and Whitis 1999].

Host name attacks can occur. Information returned by the gethostbyname() function

should not be trusted because a server can spoof the DNS response. A possible solution

is to cross-check all responses using the gethostbyaddr() call [Wall, Watson, and Whitis

1999].

Signals that occur when a program is in a privileged state can cause vulnerabilities.

[Wall, Watson, and Whitis 1999] list over 50 functions whose operation can be

interrupted midstream by a signal. Through the use of a signal, a malicious user can

induce a race condition involving a system command that executes in two or more user

modes. An interruption while the command is in kernel mode can allow unbridled

access to system-level files [Anderson 2001; Arce 2004].

 16

One other area of exploitation to consider is core dumps. Malicious users can analyze a

core dump to glean information on the value of program constants, variables, and

registers. UNIX systems offer the setrlimit() function to disable memory dumps if an

application crashes [Viega and Messier 2003].

2.5 Static Code Security Checkers

Static code security checkers parse through and scan the source code, looking for

potential security problems. The process is similar to virus scanners. The static code

checker looks through the source code for any of the known and previously defined

problem conditions. Both false positives and false negatives may occur, and should

therefore be used in conjunction with other security auditing and testing methods [Graff

and van Wyk 2003].

The goal of static code security checkers is to focus the security analysis. Instead of the

programmer searching the source code with a utility program such as grep(), the

checker software is aware of known potential problems and searches for them based on

encoded rules and entries in a database. These checkers not only find problems, they

many also describe the problem and suggest possible remedies. In addition, they

provide an assessment of the potential severity of each problem for an auditor to use in

his overall assessment [Viega and McGraw 2002].

The security checkers differ according to the following criteria: the method of detecting

security problems, the kinds of security problems detected, the way the problems are

 17

reported, the suggestions offered for improvement, the host platforms, the availability of

the auditing tool source code, and the proprietary or non-proprietary nature of the

software. These criteria indicate a vast range in the features offered by each security

auditing tool.

2.5.1 Inventory of Security Checkers

A list of currently-available static code security checkers is shown in Table 1. These

checkers detect problematic code using proprietary heuristics to look for suspicious

code segments, calls to specific utilities known to have vulnerability issues, or a

combination of both [Chen and Wagner 2002; Dekok 2003; Evans and Larochelle 2002;

Evans 2003; Gimpel 2003; Holzmann 2003; LDRA 2003; Parasoft 2003; Reasoning

2003; Secure Software 2004a; SPI Dynamics 2003; Viega et al. 2000; Wagner 2003;

and Wheeler 2003]. The following paragraphs give a brief description of each of these

code checkers.

 18

BOON stands for Buffer Overrun Detection. As the full name implies, the software

searches for buffer overruns in C source code. The concept behind BOON is that buffer

overflow detection is an integer range analysis problem. The algorithm first takes the

allocated size and the actual length of each character string and builds a corresponding

value pair. This approach is also taken with the parameters of the standard C library

functions that handle character strings. A comparison is then made to see if the inferred

allocated size of the string is at least as large as its maximum length [Wagner et al.

2000].

 19

CodeWizard is a proprietary general-purpose source code analyzer. It is not targeted

specifically at security issues, and does not even advertise to do so, although the

capabilities are there. Instead, it examines source code to locate violations of industry-

accepted language-specific guidelines. This is done to reduce the opportunities for

coding errors that could result in bugs. The analysis works by using a patented

technology to search for patterns and then compare what is found to a set of rules

[Parasoft 2003].

FlawFinder searches through C/C++ code looking for potential security flaws. After the

code analysis is complete, it produces a list of potential flaws sorted by risk.

FlawFinder's database contains both general rules that affect any program and specific

Windows and Unix functions that are very vulnerable to exploitation [Wheeler 2003].

Illuma is proprietary software that searches C/C++ source code for problems such as

memory leaks, null pointer dereferences, bad memory deallocation, out-of-bounds array

access, and unitialized variables. It is used in conjunction with contracted services to

assess the quality of a client's source code [Reasoning 2003].

ITS4 stand for It's The Software Stupid (Security Scanner) [Chess and McGraw 2004;

Viega et al. 2000]. It statically scans C and C++ code for vulnerabilities, but it does not

do so by parsing the actual source code used in a single build configuration. Instead,

ITS4 looks at several files to check for vulnerabilities in multiple builds of the software.

This is done for many reasons. First, it reduces the false negatives to almost zero.

 20

Second, it avoids the complexities of real parsing that add no value to the security

scanning requirement. Third, it allows the ITS4 software to be used real-time in

integrated development environments to highlight potential errors from within an editor

[Viega et al. 2000].

LDRA Testbed is proprietary software that performs a general-purpose static code

analysis. It checks for such things as code complexity, unreachable code segments,

variable interdependence, loop analysis, and correctness of procedure interfaces. It can

also be used to verify a set of programming standards established by an organization;

however, it does not specifically address security scanning as a possible use for the

product [LDRA 2003].

MOPS stands for Model Checking Program for Security Properties. It checks for

security vulnerabilities from a sequence of operations viewpoint. It uses model

checking together with specific rules to detect the violation of temporal safety

properties. A user describes the rules in the form of a finite state machine. If the

software finds any problems related to a property, it prints out the offending path found

in the source code. Such techniques can find potential issues with buffer overflow, user

privileges, and array indexing [Chen and Wagner 2002; Wagner 2003].

PC-Lint is proprietary software that checks C/C++ source code to find such things as

bugs, glitches, inconsistencies, non-portable constructs, and redundant code. The

software can produce over 1900 distinct error messages. It does not specifically address

 21

security vulnerabilities in its findings; however, a security analyst could spot many of

these vulnerabilities in PC-Lint's error report. FlexeLint is a version of the PC-Lint

software extended to non-PC platforms [Gimpel 2003].

PSCAN searches a C source code file for problematic uses of functions in the printf and

scanf family, the syslog function, and a variety of functions used to display warning and

error messages. It does not scan for normal buffer overflows or general misuse of

function parameters [DeKok 2003].

RATS stands for Rough Auditing Tools for Security. It checks a variety of different

language source code files for security-related problems such as buffer overflows and

time-of-check vs. time-of-use race conditions. The software uses greedy pattern

matching to find potential errors; consequently, false positives are prone to occur more

often [Viega and McGraw 2002].

Splint stands for Secure Programming Lint. (It was previously known as LCLint.) The

software checks that the source code is consistent with security properties stated in

annotations. The annotations appear as comments and are associated with function

parameters and return values, global variables, and structure fields. The annotations

provide a way for the Splint software to use the preconditions to see if the function

implementation ensures the postconditions. It resolves preconditions using

postconditions from previous statements and annotated preconditions for the function

[Evans 2003; Larochelle and Evans 2001].

 22

UNO is named after the three focus areas of the software: use of unitialized variables,

nil pointer references, and out of bounds index checking. It emphasizes these three

areas to reduce the amount of false alarms produced by other static code checkers that

try to look for everything. It also concentrates specifically on ANSI C source code.

UNO has the ability to accept user-defined properties of application specific

requirements, and then check the source code for strict compliance with these

requirements [Holzmann 2003].

WebInspect is proprietary software that automates the discovery of security

vulnerabilities in both traditional and web-based applications. It can be used in an

integrated development environment to do static code analysis at the click of a button.

WebInspect also makes recommendations on how to fix any potential security flaws

that are found. SPI Dynamics, the maker of WebInspect, is part of a technical

committee working on the definition of an Application Vulnerability Description

Language (AVDL). The goal of the committee is to form an XML standard to define,

categorize, and classify application vulnerabilities that can be understood and used by a

variety of security products [SPI Dynamics 2003].

2.5.2 Critique of Static Code Security Checkers

Although source code checkers are very effective in detecting certain security

vulnerabilities, they do have many shortcomings. The liberal syntax of C makes the

language poorly suited to static analysis. The added object-oriented complexities of

 23

C++ make it difficult to analyze. Static analysis in a multi-threaded environment is

difficult because of the potential interaction of data. Performing a better static analysis

using more advance algorithms is difficult and can cause an order of magnitude increase

in scan time [Viega et al. 2000]. The static code checkers still require a significant level

of expert knowledge. In other words, they work well for novice programmers;

however, an expert can do a better job at manually evaluating the potential security

vulnerabilities in the source code. Even for experts, analysis is still time consuming.

The static code checker only cuts down about ¼ to 1/3 of the static code analysis that

needs to be performed. The rest must still be done manually [Viega and McGraw

2002].

[Nazario 2002] points out more limitations in the current checkers. First, an automated

scan has not been developed yet that catches many of the problems detected during

manual analysis. Second, the scanners don't know the particulars of functions contained

in libraries supplied by various domain-specific applications. Developers need to

understand this so they don't think the checker looks at such things. Third, most

checkers scan at most two languages. An exception is RATS, which can scan five.

Fourth, the checkers perform no preprocessing that would expand macros or constant

definitions.

[Wilander and Kamkar 2002] report similar limitations when comparing the

performance of ITS4, FlawFinder, RATS, Splint, and BOON. They concluded the

following:

 24

"We have shown that the current state of static intrusion prevention tools is not

satisfying. Tools built on lexical analysis produce too many false positives leading to

manual work, and tools building on deeper analysis on the syntactical and semantical

level produce too many false negatives leading to security risks. Thus the main usage

for these tools would be as support during development and code auditing, not as a

substitute for manual debugging and testing."

In a study on the reliability of static code security checkers, [Dor, Rodeh, and Sagiv

2003] discovered that the checkers miss certain character string errors, yield many false

alarms, and cannot handle multilevel pointers and structures in C. In response to these

problems, they formulated a way to detect all string manipulation errors by

incorporating pre- and post-condition contracts into the source code of programs. These

annotated programs are then subjected to a multi-stage analysis that performs static

string verification in order to detect problem areas. Part of their methodology reduces

the problem of checking for character string manipulations into a simpler problem of

checking for integer manipulations.

Nevertheless, the checkers are still useful in a small way. These tools help to prevent

the rush to check the security vulnerabilities of every piece of source code. Because of

the prioritization and assessment features, they focus the analyst's attention on the more

severe problems that may have manually been overlooked. They can help find real

bugs. These tools actually work to find problems in just a few minutes that may have

taken much longer to detect [Viega and McGraw 2002].

 25

2.6 Runtime Code Security Checkers

Along with static code checking, runtime checkers have been developed also. Running

in a layer between the application and operating system, these checkers work by

intercepting system calls and screen each call for correctness before passing it to the

operating system to be executed. Example products are Libsafe, PurifyPlus, and

Immunix tools [Graff and van Wyk 2003].

Another related method is use profiling. The concept works as follows. The behavior

of a program's system calls and file activity is studied for a number of software

executions and then defined. The profile is then used as a basis to monitor the software

activity for any behavior anomalies. Such anomalies could indicate malicious actions

by an application or the presence of virus software. Example user profiling tools are

Papillon, Janus, and gprof [Graff and van Wyk 2003].

Potential buffer overflow is undoubtedly the most searched for problem in static code

checking. Run-time checking of this problem can also be done by executing destructive

tests intentionally designed to detect the existence of a buffer overflow vulnerability.

Example tools for testing buffer overflow are NTOMax and SendIP. Test tools can also

be built to record and play back data submitted to a software application [Splaine 2002].

[Hunt and Brubacher 1999] have created a software library that instruments Win32

function calls without affecting the original binary files. This allows easier inspection

and debugging of executable files. [Yong and Horwitz 2003] describe how they

 26

automatically instrument the source code to check at runtime for invalid pointer

dereferences. [Ghosh, O’Connor and McGraw 1998] have developed a process that

uses fault injection analysis to automatically test the vulnerability of security-critical

software.

[Cowan et al. 1998] describe the use of a patch to the Gnu C compiler to combat buffer

overflow attacks. This patch, called StackGuard, virtually eliminates buffer overflow

vulnerabilities through the use of canary values to detect changes in the data stored in

locations outside the bounds of an array.

[Jiwnani and Zelkowitz 2004] recommend that security testing be focused in the areas

of greatest vulnerabilities. They have created a susceptibility matrix of vulnerabilities

by identifying error-prone system software components. For example, they found that

implementation-level high-risk areas in software are common among Windows and

Linux. This is in spite of different security policies and development histories.

2.7 Other Approaches Involving Executable Files

[DuVarney, Bhatkar, and Venkatakrishnan 2003] have proposed changes to the

executable file format produced by linkers in order to enhance the security of programs.

They recommend an extra section that contains the address, size, and alignment

requirements for each code and static data item in the program. [Haugh and Bishop

2003] describe how to automatically instrument a source code file with additional code

 27

so that the resultant executable file detects when and where buffer overflow attacks can

occur.

In a related area, [Christodorescu and Jha 2003] investigated the usefulness of virus

scanners to detect malicious patterns that had been obfuscated in executable code. They

found that scanners could easily be defeated by simple code transformations. In

response to this problem, they developed a methodology to detect virus code that

involves the creation of a generalized automaton reflecting the virus code's dependency

on certain data variables. This automaton is then converted into a control flow graph

and compared to other control flow graphs formed for each procedure in the executable

code.

2.8 Hacker Attacks

2.8.1 The Hacker Strategy

The hacker community considers itself to be a group of ordinary people providing a

much-needed service to the computer software users of this world. Hackers proactively

find holes and weaknesses in software to create their own exploits [Utimaco 2004,

Wong 2001]. They cover their tracks by breaking into insecure systems and using

them to launch attacks against other systems [Wall, Watson, and Whitis 1999]. Hackers

see themselves as a pseudo-extension of the security teams paid by software companies

to test software for vulnerabilities [Khalilzad, White, and Marshall 1999]. They feel

that hacking is really just the act of finding a clever and counterintuitive solution to a

problem. The hacks found in program exploits usually deal with using the rules of the

 28

computer in ways never intended in order to achieve results that are usually focused on

bypassing security [Erickson 2003, Kaspersky 2003]. One example uses a technique

that relies on http traffic only to attack and penetrate web and applications servers [Shah

2004].

The Network Systems Survivability Program at Carnegie-Mellon University has

identified a vulnerability exploit cycle that occurs with hackers [CERT 2002]. This

cycle involves the following stages:

• Advanced intruders discover a new vulnerability through software testing and

code examination

• Crude exploit tools are distributed in the form of scripts or a collection of

command-line inputs

• Novice intruders pick up and use the crude exploit tools

• Automated scanning/exploit tools are developed and distributed via FTP servers,

web sites, bulletin boards, or some physical means

• Widespread use of automated scanning/exploit tools occurs, thereby causing the

use, attempt and success to be at its peak

• Patches are installed, but the number of exploits never become negligible

because of poorly-maintained systems or systems redeployed with default

configuations

• Intruders begin using new types of exploits on newly-discovered vulnerabilities

 29

[Arbaugh, Fithen and McHugh 2000] used historical data obtained from the Network

Systems Survivability Program to identify a similar life cyle model for software

vulnerabilities. Their model consists of seven states. The first three states (birth,

discovery, and disclosure) always occur in order. The next three states (correction,

publicity, and scripting) occur in any order, with scripting occurring only in some

circumstances. Finally, the vulnerability enters the death state. Sometimes this occurs

after a few days, but often it takes many years because system administrators do not get

all the holes patched immediately.

Many programmers write in high-level languages such as C or C++. Such languages

assume that the programmer is responsible for data integrity. If this responsibility were

shifted over to the compiler, the resulting executable programs would run significantly

slower due to integrity checks on every variable. Also, this would remove a significant

level of control from the programmer and complicate the language. When working at

that high level, the programmer doesn't consider physical variable memory, stack calls,

execution pointers, and other low-level machine commands. Hacking at the lower level

involves knowing more of the rules and using them in ways never anticipated [Erickson

2003].

2.8.2 Hacker Tools

Hackers work with assembly code, or more accurately, an executable program that has

been disassembled into assembly code. One of the major goals of a hacker is to get a

 30

return instruction in a computer program to branch to an unplanned location in memory

where a malicious payload awaits. Unplanned branching occasionally occurs in

programs without hacker intervention due to logical errors when working with memory

addresses. For example, such branching to a read-only code segment or to an invalid

address causes a general protection fault in Protected Mode on an Intel32-based

computer [Irvine 2003].

Low memory addresses text segment

 data segment

 bss segment

 heap segment

 (unallocated)

High memory addresses stack segment

 Figure 1 – Program Organization in Memory

Hackers understand the organization of an executable program in computer memory

and use it to their advantage. Program memory is normally divided into five segments:

text, data, bss, heap, and stack as shown in Figure 1 [Erickson 2003].

The text or code segment is where the machine language instructions reside. This

segment is read only. The data and bss segments store global and static program

 31

variables. They are writeable and have a fixed size. The heap segment is used for

dynamically allocated memory. It grows and shrinks over the course of program

execution. The stack segment is used in the implementation of function calls and

parameter passing. It also grows and shrinks over time. When a function is called, a

stack frame (or activation record) is the area on the stack set aside for a procedure's

return address, passed parameters, any saved registers and local variables [Erickson

2003, Irvine 2003].

Along with the memory organization, hackers understand registers. Registers are very

fast memory located near or as a part of the central processor. The Intel32 family of

processors has a standard set of registers categorized into general purpose, segment,

control, and other registers [Intel 2004]. Examples of the general-purpose registers are

EAX, EBX, and ECX, where the 'E' stands for extended. These are 32-bit registers that

are used for computation and comparisons. The segment registers are 16-bit registers

with names such as CS, DS, and SS. They are used to track the location of segments in

memory. The "other" category is simply a collection of miscellaneous registers. A

well-known one is the EFLAGS register, which contains various run-time status flags

such as results from comparisons [Koziol 2004].

To exploit vulnerable executable programs, hackers spend weeks and months

performing a line-by-line analysis of disassembled code. Over time they have collected

or written an unorganized bag of software tools to semi-automatic their endeavors.

 32

Some of these tools were originally designed for software development and

maintenance, such as debuggers and execution tracers. Others have been built

specifically for hackers to exploit software. In addition, others have been used in a

process for performing vulnerability assessments on simulation software [Hamilton,

Greaney, and Evans 2003]. Some researchers claim that hackers have a distinguishable

programming pattern in the software tools they develop [Spafford and Weeber 1992].

Appendix B provides a list of commonly used hacker tools. [Schwarz, Debray, and

Andrews 2002] have found that some disassemblers do not produce accurate assembly

code and just fail silently. This occurs because of confusion from indirect jumps and

the presence of non-executable data such as jump tables and alignment bytes.

2.8.3 Hacker Techniques

Hacking involves thinking about things that weren't anticipated. The two most common

types of hacker techniques are buffer overflow exploits and format string exploits. The

goal of both is to get an injection vector to strategically place a memory address so that

it causes program control to transfer to a malicious payload [Erickson 2003].

Injection vectors must take into account several factors: the size of a buffer, the

alignment of bytes, and restrictions on characters sets. Consequently, injection vectors

are usually coded into a properly formatted protocol of some kind. The memory

address of the payload must be known to the attacker and must be placed directly into

the injection vector [Hoglund and McGraw 2004].

 33

In the case of buffer flow, a program that runs fine for years might suddenly crash when

a hacker decides to try to input a thousand characters into a field that normally only uses

several dozen, such as a username field. Buffer overflow can occur either in the stack

segment or in the heap segment. The ability to overwrite any arbitrary address in a

program's memory space opens up many possibilities for exploitation. Basically, any

section of memory that is writeable and contains a memory address that directs the flow

of program execution can be targeted [Erickson 2003].

Buffer overflows are a relatively simple concept and explanations of them appear in

most computer security books. Sometimes data can extend past the perceived

boundaries of a record or array, and sometimes there are ways to take advantage of that.

This is obviously true in languages such as C and C++ that do no bounds checking.

With stack-based overflows, it's usually just a matter of finding the right location to

place the return address. However, with heap-based overflows, creativity and

innovation are needed because the exploit must involve a function calling another

function [Erickson 2003]. In studies done by [Hoglund and McGraw 2004], they have

found that corrupting memory remains the single most powerful technique for the

attacker. They state that perhaps stack overflows will go away when programmers stop

using the seriously broken Standard C library calls.

 34

The injection vector and payload are usually delivered into a vulnerable program by

means of character string input parameters. Consequently, the crafting of an injection

vector and payload involves the proper choice of characters. Because the ASCII null

character acts as the string termination symbol in C and C++ programs, hackers have

had to find ways to avoid operands or operators that assemble into null bytes [Erickson

2003]. One way to overcome the negative effects of NULL bytes in injection vectors is

to XOR the string [Hoglund and McGraw 2004]. Another way is to use the subset of

machine instructions that correspond byte-wise to printable ASCII characters. This

restriction makes writing shellcode, that is, code that spawns a command shell,

significantly more difficult. [Erickson 2003] contains a number of examples of

printable ASCII strings that correspond to executable code.

2.8.4 Common Hacker Targets

Based on experience with well-known techniques and tools, hackers tend to focus on

certain targets. They include the following [Erickson 2003, Ahmad 2003]:

• Off-by-one error on arrays

• Adapting software from 8-bit ASCII to 16-bit Unicode

• Multiple backslashes in file paths

• Placing shellcode in an environment variable

• Printf format strings

• Other string-based Standard C library functions

 35

• Constructors and destructors in GNU C

• Shellcode using printable characters

• Clearing out all stack memory

• Returning into the Standard C library (libc)

• Integer errors

The secure programming practices and input validation rules covered in earlier sections

of this document are designed specifically to help eliminate these targets.

2.8.5 Hacking Over a Network

Hacking is not just limited to stand-alone software. Network software that involves

communication protocols is also vulnerable. According to one hacker author,

uninspiring and repetitious following of protocols may not be desirable for humans, but

it's ideal work for a computer. The creativity and intelligence of a human mind is better

suited to the design of protocols, the creation of programs that implement them, and the

invention of hacks that use them to achieve interesting and unintended results [Erickson

2003].

Server software has come to be a major target of hacker exploits. The root cause of the

server software problem is one of trusted input. Server software that exposes its

functionality to whatever may come over the network must be built defensively. A

common assumption of server software builders is that only the corresponding client

 36

software will be used to access the servers. Instead, there is no need for an attacker to

user particular client code to generate input to a server. The attacker can just send well-

formed network traffic from a custom-built client program [Whittaker and Thompson

2004].

Along with server software problems, client software programs are almost never tested,

let alone tested explicitly for security vulnerabilities. For example, the exploit code

ends up executing with the same permissions that the user has [Whittaker and

Thompson 2004].

2.9 Software Security on the Offensive

2.9.1 Informing the Software Developers

Countering the exploits of hackers are software security professionals [Arce and

McGraw 2004]. These professionals believe that teaching software developers how

hackers operate helps them build better defenses in their software and also apply secure

programming practices. This is based on the philosophy that completely removing

software security vulnerabilities from source code in advance is much better than trying

to catch them when they are exploited at runtime. For example, when it comes to

defending against malicious input, white listing is superior to a black listing approach.

White listing is the exhaustive listing or defining of all acceptable program inputs

[Hoglund and McGraw 2004].

 37

Popular hacking books today focus mainly on existing exploits of network security

issues. They do not strive to train the practitioner to find and eliminate new software

exploits. Consequently, professionals writing software for secure systems are unaware

of what they are up against [Bishop 2005, Hoglund and McGraw 2004].

Software risk from hacker exploits can only be measured and assessed relative to a

particular environment. A threat may be a minimal risk in one setting, but be

catastrophic in another. In the risk assessment approach proposed by [Hoglund and

McGraw 2004], they measure only the damage to software assuming that a capable

attacker exists. Consequently, if there are no capable attackers, there is no risk.

Software security is sometimes compared to software safety [Leveson 1995]. The

difference between the two from an analysis standpoint is the addition of an intelligent

adversary with the goal of making the system break. This so called "break" could have

the side effect of compromising the operating system; consequently, exploiting a system

through software becomes much easier. Advanced technology for scanning code is

good at finding implementation-level mistakes, but there is no substitute for experience.

Advanced technology for securing applications is excellent for making sure that only

approved software is executed, but it is not good at finding vulnerabilities in executable

programs. One collection of software security vulnerabilities is www.bugtraq.com.

Another collection described by [Christey et al. 1999] is the Common Vulnerabilities

 38

and Exposures (CVE) database administered by MITRE and located at

www.cve.mitre.org.

[Arora and Telang 2005] studied the advantages and disadvantages of publicizing

software security vulnerabilities. They first looked at the response by software vendors

whose products were affected by vulnerabilities. For those vendors whose

vulnerabilities were published by CERT (Computer Emergency Response Team), 77%

of vendors responded with a software patch in an average of 242 days. For those

vendors whose vulnerabilities were published by BugTraq, 60% of vendors responded

with a software patch in an average of 390 days. They then studied the response by

software attackers. They found that publishing vulnerabilities and patches both

attracted attacks. This seems intuitive for publishing a vulnerability; however, it turns

out that publishing a patch alerts the attackers on how to compromise the vulnerability

even further.

From a software engineering perspective, [Rescorla 2005] questions whether the quality

of software is improving even when security vulnerabilities are discovered and fixed.

His results are inconclusive, but he does point out that current software development

practices continue to produce security problems in software even with the knowledge of

how to prevent them.

 39

2.9.2 Attack Patterns

Software security vulnerabilities can be grouped together by common characteristics

and fall prey to certain attack patterns. This is based on the premise that related

programming errors give rise to similar exploit techniques. An attack by a hacker starts

with breaking rules and undermining assumptions. One of these assumptions is

"implicit trust". Attackers will break the rule on what the program expects the user to

enter. [Hoglund and McGraw 2004] have outlined a collection of attack patterns. An

attack pattern is a blueprint for exploiting a software vulnerability. As such, an attack

pattern describes several critical features of the vulnerability and arms an attacker with

the knowledge required to exploit the target system. Each attack consists of an injection

vector and a payload.

A successful hacker attack takes several logical steps. First qualify the target, mainly to

learn what input points exist in the software. Then figure out the kinds of transactions

that are accepted at the input points. This will involve an in-depth machine instruction

analysis. Once a vulnerability is discovered, try to exploit it and thereby gain access to

the system.

Most vulnerabilities can be found by examining the following key areas [Bishop 2005,

Hoglund and McGraw 2004]:

• Functions that do improper (or no) bounds checking

• Functions that pass through or consume user-supplied data in a format string

 40

• Functions meant to enforce bounds checking in a format string

• Routines that get user input using a loop

• Lower-level byte copy operations

• Routines that use pointer arithmetic on user-supplied buffers

• So called "trusted" system calls that take dynamic input

In a typical case, white box analysis is used to find potential problem areas in the

software, and black box testing is then used to develop working attacks against these

areas [Ghosh and McGraw 1998; Potter and McGraw 2004]. This results in a kind of

gray box approach that may include backtracing [Hoglund and McGraw 2004]. The

first step in backtracing is to identify potentially vulnerable calls. Once the hostile input

is determined, the tester tries to backtrace through the target program to determine

whether an attacker can apply the hostile input from outside the program.

2.9.3 Counter Attacks

[Jim et al. 2002] describes the use of a security-focused version of C called Cyclone.

This version keeps all the low-level features of C but prevents buffer overflows, format

string attacks, and memory management errors.

[Barrantes et al. 2003] describe how to randomize an instruction set in order to disrupt

binary code injection attacks. They have devised a way to randomize the binary code at

 41

load time and then pass the code through an emulator to convert it back to the

instruction set recognized by the computer processor.

Randomization is also used by [Bhatkar, DuVarney, and Sekar 2003] to thwart hacker

attacks. However, they use randomization in a process called address obfuscation. This

process repositions the locations of the data and code in a program at link and load time.

A means of preventing the execution of software on a specific computer is proposed by

[Kirovski, Drinic, and Potkonjak 2002]. They describe a method of ensuring trusted

software integrity by causing an attacker to solve a computationally intense problem

concerning the format of an executable file before he can create a program that can be

executed on the computer.

2.10 Examining Executable Files

Instead of scanning source code files for security vulnerabilities, it is possible to directly

examine executable files. Two commercial companies are already marketing tools to

perform such an analysis: BugScan from HBGary [HBGary 2004a] and SmartRisk

Analyzer from @stake [@stake 2004a]. At first it may appear that the scanning of

executable files would only be necessary if the source code is not available. However,

we must remember the techniques of the hacker who looks directly at disassembled

executable code to find vulnerabilities. In addition, an executable file contains much

more useful information than just the program code and data.

 42

2.10.1 The Format of an Executable File

The executable files of software applications that run under a version of Microsoft

Windows conform to a specification developed by Microsoft [Microsoft Corporation

1999, Minasi 2001]. This specification describes the contents of object code files,

executable files, and dynamic link library files [Dabak, Borate, and Phadke 1999]. The

term “image file” is used to refer to both “.exe” and “.dll” files. Files of these two types

differ only in their use, not in their content [Pietrek 2002a].

A compiler or assembler places information in an object code file according to the

Microsoft common object file format (COFF). A typical 32-bit COFF object code file

contains a file header, an optional header, a section table, a symbol table, a string table,

an import table, possible other tables, and sections for code and data. The file header

identifies the computer type, the number of sections, a time/date stamp when the file

was created, a pointer to the symbol table, a count of the number of symbols in the

symbol table, the size of the optional header, and flags indicating certain characteristics

of the file. The optional header normally only appears in image files. The section table

lists information on the various sections located in the image pages of the file.

A linker extracts information from one or more object code files and libraries in order to

build a single executable file according to the Microsoft portable executable file format

(PE). This PE format is designed to work on all versions of Microsoft Windows and

supported CPUs. A typical 32-bit PE file contains an MS-DOS stub and a PE signature

followed by the same areas that appear in an object code file. This is shown in Figure 2.

 43

Type or Structure Name Name in Specification

IMAGE_DOS_HEADER DOS Header

None MS-DOS Stub

DWORD PE Signature (32 bits)

IMAGE_FILE_HEADER File Header

IMAGE_OPTIONAL_HEADER Optional Header

IMAGE_SECTION_HEADER Section Table

 Figure 2 – Typical Layout of the Portable Executable File Format

The MS-DOS Stub is a very small program that runs under MS-DOS and simply

displays the message “This program cannot be run in DOS mode” when the executable

file is run in MS-DOS.

2.10.2 Sections in an Executable File

An executable file may contain many sections, although only a code section and a data

section are mandatory. Each section has a header in the section table. This header lists

the location, length, and characteristics of the section. One interesting characteristic to

hackers is if the section’s attributes are set to read only or read/write [Woodmann

2004]. Although the text section is read only, both the normal data section and the

uninitialized data sections are read/write. The combination of both the writeable

attribute and the executable attribute for a section creates a vulnerability for hackers to

exploit.

 44

Some other sections are the exports section and the imports section [Pietrek 2002b].

The exports section contains the functions or variables made available by the file to

other executable files. The imports section lists the functions or variables located

external to the file including the files where they are contained. Such information can

indicate the DLLs that are needed by a certain program. Hackers take advantage of the

information stored in the section table and in the various sections by using available

software tools, such as those listed in Appendix B, to examine executable files.

An executable file may also contain symbol table information that was placed earlier in

the object code files and was used by the linker. Section names, file names, code

symbols, and data symbols are listed in the symbol table. A linker option allows

information from the symbol table to be stripped from the executable file or be included

in the executable file for use by a debugger [Microsoft Corporation 1999].

[Huang 2003] found that the PE format is subject to a number of security vulnerabilities

because of the amount of non-executable information stored in the file. Such

vulnerabilities permit the file to be easily modified either manually or by other software.

2.10.3 BugScan from HBGary

BugScan is a commercial tool from HBGary that analyzes executable files to find

security vulnerabilities. BugScan was unveiled to the public at the Black Hat USA

conference on July 28-29, 2003 in Las Vegas, Nevada. It sells for $19,500 with a

 45

$3,900 yearly maintenance fee after the first year. BugScan is a hardware and software

combination appliance that attaches to a user’s computer network. The hardware

consists of a Dell PowerEdge 650 with a 2.4 GHz Pentium 4 processor, 256MB RAM,

and 80GB of disk storage [InfoWorld 2004, Zacker 2001]. The software consists of an

application server containing the actual binary code scanning utilities. According to the

press release, “BugScan works simply by submitting binary files to the application

server via a web interface. A report is generated for each file detailing specific coding

errors found, coding error locations, problem severity and remediation advice. Binary

locations of errors can be cross-referenced to source code lines or functions where

programming errors can be fixed [HBGary 2004a].”

BugScan can be used to statically scan C and C++ programs. It looks for insecure C

library calls (approximately 35 signatures), buffer overflow problems, format string

vulnerabilities, poor use of the pseudorandom rand() function in C, signed/unsigned

variable conversion errors, and poor exception handling [HBGary 2004a].

According to the technical white paper, BugScan works in the following manner

[HBGary 2004b]. First, BugScan slices the code in the executable file into sections and

creates a control flow map among the sections. This is done to determine what code is

being called and from where. Next, BugScan applies pattern detection to find

potentially vulnerable locations in the code such as certain API calls. For example,

BugScan checks the size and type of the arguments passed to a function. It also uses

backtracing from the vulnerable point in an attempt to reach a location in the code

 46

where user-supplied input of data occurs. However, this process is normally too

involved because the backtracing is too deep. In addition, branching may be

encountered, thereby making the control flow only determinable at run time.

The technical white paper goes on to describe the report features of BugScan [HBGary

2004b]. The report contains red, yellow, and green alerts. Red alerts are high severity

problems caused by a misuse of APIs. Yellow alerts are medium severity problems

related to insecure coding practices when bad APIs are used. This includes functions

related to buffer overflow, poor use of random number generation, and race conditions

that may allow data disclosure or logic errors. Green alerts point out good coding

practices such as the use of a more secure library function. Information provided with a

red or yellow alert describes how to correct the problem and also gives a memory

address to point to the location in the executable file where the problem was detected.

The user’s manual for BugScan states that the product performs a static white box

analysis providing 100% code coverage with no input from the user, providing an

advantage over black box techniques [HBGary 2004c, Pressman 2005, and Sommerville

2001]. It also lists the following purposes for using BugScan:

• Ensure that only systems beyond a certain security threshold are being deployed

• Automate some aspects of security code reviews

• Verify and enforce that developers are writing secure code

• Provide online training for developers in writing secure code

• Evaluate commercial-off-the-shelf (COTS) software before a purchase

 47

The manual points out that the supported file types for BugScan are Windows x86

portable executable (PE) binary files using the Microsoft Visual C library, and Linux

x86 executable and linking format (ELF) binary files using GNU C library. In the

troubleshooting area of the user’s manual, it cautions that if a program has implemented

its own version of C library calls, BugScan cannot currently detect their usage. In other

words, BugScan can only detect the use of C library calls in the supported platforms,

compilers, and libraries.

The Frequently-Asked Questions (FAQ) document for BugScan brings out some

interesting information on the product from the point of view of the developers

(HBGary 2004d]. They state that BugScan does not make it easy for hackers to develop

new attacks. They also add that the security vulnerability information provided by

BugScan only optimizes a small part of the exploit development process. It still

requires a very skilled person to do the additional work to produce a working exploit.

The FAQ also states that BugScan makes no claim that a detected security coding error

creates an exploitable vulnerability. They explain that it is difficult to determine with

any amount of certainty if a problem detected is truly exploitable.

2.10.4 SmartRisk Analyzer from @stake

SmartRisk Analyzer is also a commercial tool that analyzes executable files to find

security vulnerabilities. It is sold by a company called @stake. SmartRisk Analyzer

 48

was announced to the public on May 24, 2004. Its selling price starts at $30,000 [PC

Magazine 2004]. SmartRisk Analyzer supports C, C++, and Java (J2EE) languages

running on Windows or Solaris platforms. The system requirements are Windows 2000

or higher, 2 GHz CPU, 2GB RAM, and 100MB disk space [@stake 2004b].

According to the press release [@stake 2004a], SmartRisk Analyzer uses deep static

analysis of the application binary code that maps application control and data flow paths

into a comprehensive security model. It looks at the variables introduced in the

software’s runtime environment and allows developers to identify security

vulnerabilities introduced by third-party libraries. SmartRisk Analyzer builds a

multidimensional model of the application and runs hundreds of risk analysis scans

against the model to identify and prioritize security vulnerabilities. The scans find

flaws related to insecure or improper use of programming languages and standard

libraries and flaws that may result from the deployment platform on which the

applications runs. It also detects vulnerabilities from input validation, command and

script injection, backdoors, and malware (i.e., viruses). Flaws are classified and

grouped by level of priority from severe to informational.

The press release and the product datasheet for SmartRisk Analyzer list the following

features [@stake 2004a, @stack 2004c]:

• Automated secure code assurance (runs the code analysis automatically)

• Deep binary analysis (maps application control and data flow paths into a

comprehensive security model)

 49

• Linked library analysis (searches external libraries for security flaws)

• Comprehensive security scans (scans for hundreds of security flaws)

• Risk analysis module (reports flaws by type and severity)

• Remediation module (annotates errors on source code, if availability)

• Extension security rules module (allows new security scans to be added)

• Advanced vulnerability reporting (provides reports for QA and management)

• Program and library analysis (looks for improper use of programming languages

and standard libraries)

• Application platform analysis (looks for platform-related vulnerabilities)

• Additional security modules (looks for vulnerabilities not covered by other

modules)

The vulnerabilities detected by SmartRisk Analyzer include stack/heap buffer overruns,

format string risks, integer overflows/underflows, threading/race conditions, return code

checking, network access, privilege escalation, weak cryptography, input validation,

backdoors, and command/script injection.

The white paper for SmartRisk Analyzer outlines the four-step process used in

analyzing a binary file [@stake 2004d]:

1. Load the binary file, third party libraries, and platform environment data for

comprehensive analysis

2. Develop the security model of the application including data flow, control flow,

and range propagation

 50

3. Perform security analysis on the application model and risk analyses on the

output to rank results

4. Generate both detailed and summary reports for security flaws that were

detected

In contrast to the approach taken by HBGary’s BugScan to inspect the executable file

itself, SmartRisk Analyzer loads the executable file into memory just like the operating

system would do. This allows the analyzer to determine all of the interfaces that the

program makes to its environment through dynamic link libraries. The analyzer then

does a reverse link to break the program up into the individual functions in order to

create a call graph. This call graph provides the data flow modeler with the information

needed to graph the data flow among functions in the program. The control flow graph

is then generated by analyzing the branch instructions in the program. This detailed

control and data flow model of the program is subjected to an in-depth security analysis

of over 400 scans to identify potential flaws that may become actual flaws. Each flaw

is ranked as a severe error, a normal error, a possible error, a warning error, or an

informational alert.

2.10.5 Code Security Evaluation by Secure Software

A third company, called Secure Software, is also involved with the security scanning of

executable files; however, they are offering it as a service rather than as a product

[Secure Software 2004b]. The service, entitled “Code Security Evaluation”, provides a

comprehensive and detailed evaluation of the source code or binary code of an

 51

application to detect, identify, and validate security flaws. According to [Immix

Technology 2004], the GSA schedule pricing for this service ranges from $31,200 to

$46,800.

This scanning service has already been contracted by the Navy for use in scanning the

software to be used on the prototype of the Navy-Marine Corps Intranet (NMCI). It is

part of a two-pronged test aimed at determining whether specific applications create

vulnerabilities and whether they work well under Microsoft Windows 2000 and XP.

The source article states that Secure Software is using its Code Security Evaluation and

Information Assurance Review software to run the tests. It also states that Code

Security provides an automated security review process for software in development

[Onley 2004].

 52

3. STATEMENT OF RESEARCH OBJECTIVES

This research effort sets out to prove the following hypothesis: A methodology can be

devised that uses information located in the headers, sections, and tables of an

executable file, along with information derived from the overall contents of the file, as a

means to detect specific software security vulnerabilities without having to disassemble

the code. Such a methodology can be instantiated in a software utility program that

automatically detects certain software security vulnerabilities before installing and

running the executable file.

To prove this hypothesis, this research effort has the following objectives:

1) Do an in-depth study of the PE format of an executable file to discover any

information that could be useful in detecting software security vulnerabilities.

This involves the examination of the Microsoft PE format specification through

the eyes of a security analyst armed with the list of "specific software security

vulnerabilities" as described earlier in Section 2.

2) Create a software utility to dissect a PE file byte-by-byte from beginning to end

(without disassembling) in order to identify, map, and categorize its contents.

This means building a software utility that understands the various header,

 53

section, and table information in a PE file and correctly translates the relative

virtual addresses and pointer offsets found in those items. The dissection is

necessary so that every part of a PE file will be accessible to whatever security

vulnerability analysis will come next.

3) Formulate a methodology for combining and correlating the information found

in a PE file in an effort to detect indicators of certain security vulnerabilities.

This involves the need to look at the information from a viewpoint that does not

consider what the loader does with the information or what happens at runtime,

but rather what the information reveals about the security nature of the file itself.

4) Incorporate the methodology into the PE dissecting utility in order to

automatically detect certain software security vulnerabilities in seconds. The

automation factor is a must to make the methodology of any practical use.

5) Test the automated methodology on installation files, software development

files, Windows XP operating system files, Microsoft application files, security-

centric application files, and other application files. Such a wide breadth of

testing is necessary to demonstrate that the software utility can handle PE files

designed for a variety of purposes. Also, such testing will provide a large

amount of results to evaluate the correctness of the hypothesis and the

usefulness of the methodology.

 54

6) Analyze the test results and make conclusions. This involves a thorough review

of the results to see not only how many and what kind of security vulnerabilities

were found but also what do these findings mean. The analysis will need to

answer several questions. Do the vulnerability indicators (as stated in the

methodology above) occur in the executable files of actual software? And

when they do, what do they reveal about the overall security of the software?

Are there trends in the test results that point to categories of software, or even

specific software applications, which are more or less secure than others? Can

we conclude that the methodology actually works, that is, is the hypothesis

correct?

 55

4. DESCRIPTION OF RESEARCH RESULTS

4.1 Explanation of Terms

Throughout this section, the terms listed below are used when describing the contents of

a portable executable (PE) File.

Common Object File Format (COFF). This refers to a standardized file format created

by Microsoft and used by the Microsoft compilers when creating object code files

[Microsoft 1999]. Object code files created by the Cygwin GNU compilers also use

this same format; however, the Borland compilers use a vendor-specific object code

format.

Dynamic Link Library (DLL). This refers to a file containing executable code that can

be called from another executable file. The only physical difference between a DLL

and a typical ".exe" executable file is a bit flag in the file header stored in the file. Note

that DLLs do not need to have a ".dll" extension to be a valid DLL file; other extensions

such as ".ocx" and ".cpl" are used on certain Windows DLL files [Pietrek 2002].

Executable file. This refers to a file containing executable code (i.e., a program) that

can be run on a computer by invoking the file's name. The program is invoked either

 56

from the command line or from a double click of the mouse, depending on the Windows

subsystem that the program expects. Note that executable files do not need to have a

".exe" extension to be a valid executable file; other extensions such as ".sys" and ".drv"

are used on certain Windows executable files.

File offset/pointer. This refers to an actual byte address in a file, where the first byte in

the file is numbered starting with zero.

Image file. This refers to a file that is either a typical executable file or a dynamic link

library file that runs on a Windows NT system. Microsoft uses the name "image file" to

refer to both kinds of files.

Loader. This refers to the operating system program that runs behind the scenes when

an executable program is invoked by a user or another process. The loader reads

through the contents of the PE file, loads specific information from that file into

memory, and then begins execution of the program.

Portable Executable (PE) format. This refers to a standardized file format created by

Microsoft and used by any image file that runs on a computer system running some

version of the Windows NT operating system [Perry 2004]. The COFF is a subset of

the PE format and governs the format of any region in an image file that also appears in

an object code file such as the file header or the section table [Microsoft 1999]. The PE

 57

format is different from the executable file format used for programs that run on

LINUX or UNIX systems running on non-Intel platforms.

Relative virtual address (RVA). This refers to the byte address of image file

information after the file is loaded into memory. This address is different than the

location of the same information in the file. Consequently, any program reading

through an image file or object code file must calculate the RVA delta or difference in

order to locate the start of specific tables in a file. This RVA difference is calculated

using an algorithm that involves the address data stored in section headers in the section

table.

Region. This refers to a range of byte addresses in a file containing information of

interest. A file contains many regions depending on the actual header, section, and

table contents of an object code file or image file, and on the unmapped or zero-filled

data found in a file.

winnt.h header file. This refers to the Microsoft header file that contains the constants

and type definitions used by programs written in C or C++ that read files in the portable

executable or common object file format.

4.2 The PE Format from a Security Point of View

The typical contents of a PE file are the DOS header, the MS-DOS stub, the PE

signature, the file header, the optional header, the section table, the symbol table, the

 58

string table, various sections (e.g., ”.text" and ".data"), the import table, and the export

table. The winnt.h header file describes the byte format for each of these items by

means of type definitions.

The purpose of the information below is not to give a detailed explanation of the PE

format. Such an explanation is given later in this section when describing the PE

dissecting software utility. Instead this subsection summarizes each typical item found

in a PE file and points out any indicators of anomalies or security vulnerabilities that we

find in these items.

4.2.1 The DOS Header

The DOS header is a single record of data that begins at the start of a file. It contains

information mainly used by the loader program. It also contains a DOS signature of

"MZ" that marks the file as an MS-DOS file. In addition, it contains the offset for the

start of the PE signature that appears later in the file. We found no information in the

DOS header that was useful for detecting security vulnerabilities.

4.2.2 The MS-DOS Stub

The MS-DOS stub directly follows the DOS header and is a holdover from the days

before Microsoft Windows when PC software ran in the MS-DOS operating system. If

a PE file is invoked on an MS-DOS system, a short default message will be displayed

stating that the program cannot be run in MS-DOS mode. The program will then

terminate. We found no information in the MS-DOS stub that was useful for detecting

 59

security vulnerabilities. However, between the end of the MS-DOS stub and the

location in the file where the PE signature is located, there should be a contiguous

region of zero-filled bytes. The loader ignores any information in this area;

consequently, software developers might use this area to store application-specific

messages or data. Although we see no direct security risk in this information, we do

consider any non-zero data in this region to be useful for detecting an anomaly in the

file.

4.2.3 The File Header

The start of the file header immediately follows the PE signature. (The PE signature

simply contains the letters "PE".) The file header is a single record that reveals much

about the operating environment that the file expects, the contents of the file, and the

characteristics of the file. It tells the number of sections in the file, the start location of

the symbol table, the number of symbols in the symbol table, and the size of the

variable-length optional header. It also implicitly tells the start location of the string

table because that table directly follows the symbol table. The file header also contains

status information that indicates if the file is an application file or a dynamic link

library. This status information is the only way for a loader to tell if a file is a DLL or

not; no other data in a PE file denotes this difference.

We found no information in the file header that was useful for detecting security

vulnerabilities. However, the file header does reveal the presence or absence of the

 60

symbol table and string table. As we will see later, these two tables are very helpful in

detecting buffer overflow security vulnerabilities.

4.2.4 The Optional Header

The start of the optional header immediately follows the end of the file header. The

name of the optional header is misleading. It is only optional in the COFF format used

in an object code file; it is mandatory in the PE file format. Except for the last field of

the optional header, the rest of the header is a fixed record size. The data fields in this

record reveal even more detail than the file header does about the operating

environment expected by the file and the runtime requirements required by the file.

However, we found no information that was useful for detecting security vulnerabilities.

4.2.4.1 The Data Directory in the Optional Header

The last field in the optional header is referred to as the data directory. It contains a

variable-length list of the start location and size of each optional table located in the file.

For example, the location and size of the import table and export table will be found in

this list. The start location is not given as a simple file offset, as was the case earlier for

the symbol table and string table. Instead, the start location is a relative virtual address

(RVA) that the loader uses when the file contents are placed into memory. However, its

use in locating the start of a table statically in a PE file is complicated. This is

explained in more detail later when the section table is reviewed.

 61

Although we found no information in the optional header that is useful for detecting

security vulnerabilities, we do compare the stated size of each table in the data directory

to the actual size that we detect later when reading the contents of the table in the PE

file. If there is a difference in these two sizes, we consider this a file anomaly. We also

consider it to be an anomaly when the data directory lists an optional table that does not

actually appear in the file.

4.2.5 The Section Table

The start of the section table immediately follows the end of the optional header. It

contains one or more fixed-sized records containing information on the start location,

size, and attributes of each section in the PE file. The number of entries in the section

table is denoted by the value in the Number of Sections field in the file header. The

section entries are listed in the order that the sections appear in the PE file.

4.2.5.1 Calculation of a File Offset for an Optional Table

Two specific fields in each section entry of the section table provide helpful information

when calculating the static start location of an optional table in a PE file. These are the

virtual address and the pointer to raw data fields. The data directory in the optional

header contains the relative virtual address (RVA) for the start location of each optional

table. This value is designed for use when the program is loaded in memory. To find

the start location of a table statically in the PE file using the RVA, a file offset for the

optional table needs to be calculated from it. This is done using the following steps:

 62

1. Use the optional table's RVA to search through the section table entries to find

the virtual addresses of two entries where the RVA falls between. Mark the

section entry having the lower of the two virtual addresses

2. Calculate an address difference by subtracting the section entry's virtual address

from its pointer to raw data value

3. Calculate the optional table's file offset by subtracting the address difference

from the RVA of the optional table

4.2.5.2 Detecting Security Vulnerabilities in the Section Table

A security vulnerability can be detected in the section table by looking at the

characteristics for a section. These characteristics tell the loader program if the contents

of the section contain executable code or initialized/uninitialized data. They also tell if

the section's contents can be executed, read from, or written to. Each of these

characteristics has it own bit position in a 64-bit word. To be secure, any section that

has the characteristic "contains executable code" or "can be executed" set should not

have the characteristic "can be written to" also set.

A security vulnerability can be also be detected in a PE file by looking for a section

entry that is located in the section table but does not have a corresponding section in the

file, and a section entry in the section table that exceeds the number of sections denoted

in the file header. Although both of these occurrences could be considered anomalies,

they could also indicate that a virus has tampered with the contents of a file by deleting

or adding a section.

 63

4.2.6 The Symbol Table

The location and size of the symbol table are based on two fields in the file header that

indicate this information. If the number of symbols is zero, then the file contains no

symbol table. The linker uses the symbol table in an object code file but not in a PE

file. The table is present in a PE file only for the use by a debugger. The symbol table

contains the names of every data item and function declared by the program and any

library or runtime environment software linked in with the program. Depending on

which linker is used, the symbol table also contains the names of the application source

code files for the program.

A search of the function names in the symbol table can be used to detect a buffer

overflow security vulnerability in a program. Each function name listed in the symbol

table can be compared to the list of standard C library functions susceptible to such a

vulnerability. The resulting list of vulnerable functions may reveal function names that

do not occur in the application source code at all. If this happens, then the names could

be part of the implementation of the language by the compiler designer.

4.2.7 The String Table

The string table is located immediately following the symbol table. If a symbol table is

not present in the file, then the string table is located where the symbol table would

have started. If the start location of the symbol table field in the file header is zero, then

 64

the file does not contain a string table. The linker needs a string table in an object code

file but not in a PE file. The table is present in a PE file only for the use by a

debugger. The string table contains the name of every variable name, section name,

and constant character string that appears in a program or in any library or runtime

environment code linked in with the program. The section table and symbol table only

contain entry names up to eight bytes in length. For a name of any greater length, an

offset is stored in the data field instead. This offset points to the start of a character

string in the string table. Although we found no information in the string table that was

directly useful for detecting security vulnerabilities, the contents are helpful indirectly

in supplying the names used in the section table and symbol table.

4.2.8 Various Sections

The sections referred to in the section table fill out the remainder of a PE file. Some

linkers place each optional table in its own section. For example, the export table may

be in the ".edata" section. Other linkers place an optional table in the midst of other

data in a section. For example, the import table may be in the ".text" section. The

actual code and constant data that we commonly associate with an executable file are

stored in one or more sections. These sections are usually referred to as the ".text" and

".data" sections, although they may have other names. Because we do not disassemble

any executable code in this research effort, we found no information in the sections

themselves that was useful for detecting security vulnerabilities.

 65

4.2.9 The Import Table

The location of the import table in a PE file is found by calculating the file offset of the

starting location. This is done using the RVA in the data directory of the optional

header and the virtual address and pointer to raw data fields in the section table. This

process is explained in more detail in the paragraphs above describing the section table.

The import table contains the names of the DLL files and the functions in those files

that the program requires in order to run. If a program does not use any DLL files, then

the import table is not present.

As was described already in the case of the symbol table, the import table also contains

the names of functions used in the file, albeit only functions imported from DLLs. This

information can be used to determine a buffer overflow security vulnerability in a file

similar to the method used with the symbol table. Note that if a file uses no DLLs and

also contains no symbol table, then a search for the names of vulnerable functions will

come up with an empty list. This should not be considered an indication that the

program uses no vulnerable functions. Instead, it should point out the lack of enough

information to make such a determination.

Although the use of a specific DLL by a program does not in itself constitute a security

vulnerability, a security analyst may be interested in the DLLs used by a file. By

looking at the purpose or function served by a DLL, this may reveal operations

performed by the program that aren't readily apparent from the outside. This could

include DLLs to assist in network connections, encryption, or installation of files.

 66

4.2.10 The Export Table

The location of the export table in a PE file is found by calculating the file offset of the

starting location as was described above for the import table. The export table contains

the name of each function in the file that is available for use by another program. This

is the normal behavior for a dynamic link library (DLL) file. We found no information

in the export table that was useful for detecting security vulnerabilities.

4.2.11 Summary of Anomaly and Security Vulnerability Indicators

Our study of the PE format revealed many ways of detecting anomalies in a PE file.

We can detect a file anomaly by looking at the region following the MS-DOS stub to

see if data is stored there. We can also detect an anomaly by comparing the sizes given

for the optional tables in the optional header to their actual sizes and note any

differences.

Our study also found ways to detect certain security vulnerabilities in a PE file. We can

detect executable code that can be written to in a section by looking at the

characteristics in the section entries of the section table. We can detect hidden sections

or sections that are listed but don't actually exist by comparing the number given for the

entries in the section table to the actual entries found. We can detect buffer overflow

vulnerabilities by comparing the list of function names found in the symbol table and

 67

import table to those in the list of standard C library functions that are vulnerable to

such attacks.

4.3 A Software Utility to Dissect a PE File

4.3.1 The Search for a PE Dissecting Program

After finding that we could detect anomalies and software security vulnerabilities in a

PE file by statically analyzing it, we needed a means to dissect a PE file into all of its

components. We looked at the features and output produced by four dump utilities:

objdump from Cygwin [Cygwin 2004], tdump from Borland [Borland 2004], dumpbin

from Microsoft [Visual Studio 2004], and pedump [Pietrek 2002b]. All provide PE

format information that has first been filtered, summarized and text formatted. All rely

on the values given in the header and look-up tables to locate and display section and

table contents instead of looking directly at what is actually in the tables. Comparing

results provided by each dump utility revealed inconsistencies in the section table and

import table information. None provide a byte-for-byte account of the file contents in

order to find hidden section contents, hidden table contents, or evidence of compressed

files. Many aborted or printed out extraneous data when run against PE files that

contain non-typical format information. Consequently, we found the need to first build

our own PE dissecting utility and then add anomaly and vulnerability analysis

capabilities to it later.

4.3.2 Program Modules and Classes

 68

The PE dissecting utility consisted of 2700 source lines of code written in C++. The

code was divided among one driver module, one utility module, and 16 class

definitions. It later became version one of the findssv software described later in this

section. The purpose of each of the modules and classes in the PE dissecting utility is

described in the following paragraphs.

4.3.2.1 Driver Module

The driver module contains the main() function for the program. It calls methods to

parse the command line, check the file type, and read the contents of an image file or

object code file into a collection of data structures. It also calls methods to change,

display, or search through the data in a file.

4.3.2.2 Utilities Module

The Utilities module contains three functions used for converting data formats to C++

strings so the program can store certain information in a string format. The ltostr()

function converts a signed long number to a string. The ultostr() function converts an

unsigned long number to a string. The toLowerCase function converts a string

containing mixed upper and lowercase letters to a string with all lowercase letters.

4.3.2.3 FileTypeChecker Class

The FileTypeChecker class contains methods to quickly verify two types of files based

on certain key signature information located in a file. The program uses the methods in

this class to verify that it is reading an image file in Microsoft's portable executable

 69

(PE) format or an object code file in Microsoft's common object file format (COFF). It

considers all other file formats to be unknown. Valid files in the PE format are not just

those with a ".exe" extension. Other valid PE files may have extensions such as ".dll",

".sys", or "drv".

4.3.2.4 File Handler Class

The File Handler class is implemented as a singleton. The class provides methods to

open, close, and get the stream descriptor for an executable or object code file. This

approach allows methods throughout the classes in the program to quickly and

accurately access the file contents without having to repeatedly open and close the file.

4.3.2.5 PECOFF_Partitioner Class

The PECOFF_Partitioner class contains methods that call other class methods to read,

store, and later analyze the information obtained from a COFF object code file or PE

image file. It also calls class methods to print the data read by those classes. The class

aggregates the DosHeader, FileHeader, OptionalHeader, SectionTable, SymbolTable,

StringTable, ExportTable, ImportTable, DebugTable, and CoffRelocations classes.

The readData() method in the PECOFF_Partitioner class contains the main algorithm

for reading the data from a COFF or PE formatted file. This algorithm is summarized

below. (Note that the program reads the string table before reading the symbol table or

section table. This allows the program to immediately retrieve any string information

pointed to by entries in the symbol table or section table. Also note the action of

 70

"mapping" the file contents. This is explained in more detail when the findssv classes

are described later.)

• Count the number of bytes in a file and map the byte at the end of the file

• If the file is a PE file, read and map the DOS header and the PE signature

• If the file is a PE file, read and map the MS-DOS stub

• Read and map the file header

• If the file header indicates the presence of an optional header, read and map

the optional header

• If the file header indicates the presence of a symbol table, first read and map

the string table and then read and map the symbol table

• Read and map the section table

• Read and map the COFF relocations table if any relocations exist

• Map any of the tables that have entries in the data directory found in the

optional header

• Read and map the sections

• Find and map the unknown regions in a file

• Find and map any zero-filled regions in a file that contain a certain minimum

number of zeros

4.3.2.6 DosHeader Class

The DosHeader class contains the methods to read the DOS header data from an image

file and display it in a report format. (Object code files do not contain a DOS header.)

The winnt.h header file describes the format of the DOS header, which consists of a

 71

single 64-byte record. Most of the fields in the record are not significant except for the

first field named e_magic and the last field name e_lfanew. To be a valid executable

file, the first field should contain the two letters "MZ", which stand for Mark Zbikowski

who was one of the original designers of MS-DOS [Pietrek 2002]. The last field

contains the absolute offset in the file to the portable executable (PE) signature field. A

valid PE signature consists of four bytes containing the values "PE\0\0".

Between the DOS header and the PE signature field is the MS-DOS stub. It starts

immediately following the 64 bytes of the DOS header. The MS-DOS stub is a small

DOS program that by default displays the words "This program cannot run in DOS

mode" when an image file that is targeted for a graphical user interface environment is

invoked from the command line [Microsoft 1999].

4.3.2.7 FileHeader Class

The FileHeader class contains the methods to read the file header data from an object

code file or image file and display it in a report format. The winnt.h header file

describes the format of the file header, which consists of a single 20-byte record. The

file header appears at the very start of an object code file or just after the PE signature in

an image file. It has a number of significant fields. The NumberOfSections field

indicates the number of sections in the section table. The PointerToSymbolTable field

contains the absolute offset in the file to the start of the symbol table. This field still

contains an offset if the symbol table does not exist but the string table does. This is

because the string table follows directly after the symbol table in a file. The

 72

NumberOfSymbols field tells how many symbols are in the symbol table. If this field is

zero, then no symbol table exists.

The SizeOfOptionalHeader field tells the size in bytes of the optional header. This

value is used to calculate the start of the section table, which immediately follows the

optional header. The Characteristics field is a two-byte field, where each bit serves as a

flag describing a characteristic of the file. For example, the flags tell if the symbol table

has been stripped or not from the file, the type of architecture that the software expects,

the big endian or little endian order of the bytes in the file, and if the file is a DLL or

not. The DLL flag is the only valid indicator in a file for differentiating a DLL from a

typical executable file.

4.3.2.8 OptionalHeader Class

The OptionalHeader class contains the methods to read the optional header data from an

image file and display it in a report format. (Object code files normally do not contain

an optional header.) The winnt.h header file describes the format of the optional

header, which consists of a single 224-byte record. The word "optional" in the name of

this header is misleading because an optional header is required in an image file. The

optional header contains a number of significant fields. Some of the fields describe

address details used when the file is loaded into memory. Other fields contain the

operating system and subsystem versions that the software needs to run properly.

 73

One significant field in the optional header is the NumberOfRvaAndSizes field. This

field indicates the number of data descriptor records in the data directory that appears at

the end of the optional header. The winnt.h header file describes the format of a data

descriptor record in this directory. The purpose of this directory is to indicate the

presence and location of certain standard tables in a file. These tables include, but are

not limited to, the export table, import table, resource table, exception table, certificate

table, base relocation table, and debug table.

The data directory entry for each table occurs at a specific index in the directory,

ranging from 1 to 16. If an entry is present (i.e., if the data descriptor does not contain

all zeros), then the data descriptor record contains the virtual address where the table

starts in memory and the size of the table. The entries for the tables that appear most

often occur in the lower indices in the directory.

4.3.2.9 SectionTable Class

The SectionTable class contains the methods to read the section table data from an

object code file or image file and display it in a report format. The section table appears

directly after the optional header in a file. The NumberOfSections field in the file

header contains the number of section header entries in the section table. The winnt.h

header file describes the format of a section header, which consists of a single 40-byte

record.

 74

A section header contains many significant fields. The Name field contains the section

name. The VirtualAddress field contains the address where the section starts when the

file is loaded into memory. The PointerToRawData field contains the file offset for the

start of the section in the file. The program uses the difference between the

VirtualAddress field and the PointerToRawData field, in conjunction with virtual

addresses from the data directory in the optional header, to calculate the starting byte

position of various tables in a file. Through the use of the "-M" map option, a security

analyst can see the results from how the program has used this RVA difference

calculation to map the location of tables inside of sections. The program stores the

section table in a vector.

4.3.2.10 CoffRelocations Class

The CoffRelocations class contains the methods to read the COFF relocation data from

an object code file or image file and display it in a report format. The

NumberOfRelocations field in a section table entry indicates the number of relocations

that exist for that section. The PointerToRelocations field in a section table entry points

to the location of this data in an image file. COFF relocations specify how the section

data should be modified when placed in the image file and later into memory [Microsoft

1999].

The program stores the COFF relocations data in a vector. Each member of the vector

contains three fields: the section name connected with a set of relocations, the symbol

name connected with a set of relocations, the actual relocation data. The winnt.h header

 75

file describes the format of a relocations data record. Each record contains the address

of the item being relocated, the index of the symbol in the symbol table, and the type of

relocation. A type refers to the kind of relocation to perform, such as absolute

addressing, virtual addressing, or relative virtual addressing.

4.3.2.11 SymbolTable Class

The SymbolTable class contains the methods to read the symbol table data from an

object code file or image file and display it in a report format. The

PointerToSymbolTable field in the file header points to the start of the symbol table in a

file. The NumberOfSymbols field in the filed header tells how many symbols are in the

symbol table. The symbol table contains section names, file names, code symbols, and

data symbols. The table consists of an array of symbol records. The winnt.h header file

describes the format of the 18-byte symbol record. Each symbol has at least one

standard symbol record. There may be one or more auxiliary symbol records following

a standard symbol to store additional data about the symbol. A standard symbol record

that is zero filled marks the end of the symbol table.

A symbol table appears in object code files, but can be left out of an executable file.

This is done by the use of a command line option to the linker that requests the symbol

table be stripped out. The program stores the symbol table records in a vector.

 76

4.3.2.12 StringTable Class

The StringTable class contains the methods to read the string table data from an object

code file or image file and display it in a report format. The string table appears directly

after the symbol table in a file. The first four bytes of the string table contain the total

size in bytes of the table. This includes the first four bytes. The rest of the table

contains null-terminated character strings that are pointed to by symbols in the symbol

table [Microsoft 1999].

A string table appears in object code files, but can be left out of an executable file. This

is done by the use of a command line option to the linker that requests the string table

be stripped out. The program uses a vector to store the strings read from the string

table.

4.3.2.13 ImportTable Class

The ImportTable class contains the methods to read the import table data from an object

code file or image file and display it in a report format. The import table is referred to

as the ".idata" section in some image files. It lists the functions (called by a program)

whose definitions are located in a dynamic link library (DLL) file. The import table

actually consists of one or more sets of tables. Each set corresponds to a certain

dynamic link library and the functions used from that library.

The program stores the import table information in two vectors. The first vector

contains the names of each of the DLLs and its corresponding descriptor record. The

 77

winnt.h header file describes the format of the descriptor record. One significant field

in the record is the name of the DLL. Another significant field is the FirstThunk field,

which points to the record that heads up the link list of functions used from this DLL.

The second vector contains all of the functions located in other DLLs. Each function

name is stored with the name of the DLL where it is located.

4.3.2.14 ExportTable Class

The ExportTable class contains the methods to read the export table data from an object

code file or image file and display it in a report format. The export table is referred to

as the ".edata" section in some image files. This table is normally only found in

dynamic link library files. It lists the functions callable by programs that use this DLL.

The export table actually consists of many tables: a directory table, an address table, an

ordinal table, a name pointer table, an export name table, and a forwarder name table.

All of these tables contribute to the mechanics necessary for software to call a function

located in another file. Except for the directory table, which is just a single record, the

program stores each of the remaining tables in vectors. The winnt.h header file

describes the format of the directory table record. The members of the vectors are 16-

bit words, 32-bit words, or strings.

4.3.2.15 DebugTable Class

The DebugTable class contains the methods to read the debug table data from an object

code file or image file and display it in a report format. The debug table is referred to as

 78

the ".debug" section in some image files. The format of the debug information is

dependent on the specific vendor debug tool that is designed to read it; however, this

data commonly consists of line numbers, indices in the symbol table, and indices in the

string table.

The program stores the debug table data in a vector. The winnt.h header file describes

the format of a debug record, which is the member of the vector. The Type field in this

record serves as an indicator for various debug tools.

4.3.2.16 FileChanger Class

The FileChanger class contains methods to change the value of any designated byte in a

file. The class provides services for the "-C" change option. The class works on any

kind of file and writes data in byte, ASCII string, Unicode string, 16-bit word, and 32-

bit word formats. The purpose of these methods is to give a security analyst the ability

to easily change a value in a file in order to test the behavior of a file or to correct an

anomaly detected in a file.

4.3.2.17 ValueDisplayer Class

The ValueDisplayer class contains methods to display the values in a range of byte

addresses in a file. The class provides services for the "-D" display option. The

ValueDisplayer works on any kind of file and displays the values in byte, ASCII string,

Unicode string, 16-bit word, or 32-bit word formats. The purpose of these methods is to

give a security analyst the ability to quickly display the contents of any byte addresses

 79

in a file in a variety of formats. If the file is a PE or COFF file, the analyst can use the

"-M" map option to first see the layout of a file, and then use the "-D" display option to

see what values are stored in certain interesting file locations such as those marked as

"Contents not known."

4.3.2.18 PatternFinder Class

The PatternFinder class contains methods to search for a value in a file. The class

provides services for the "-S" search option. It works on any kind of file and looks for

data in byte, ASCII string, Unicode string, 16-bit word, and 32-bit word formats. The

purpose of these methods is to give a security analyst the ability to quickly search for

the existence and location of a value in a file. If the file is a PE or COFF file, the

analyst can note the address where a value was found and then use the "-M" option to

find the name of the header, section, or table in which the value appears. The analyst

can also use the "-D" option to display the range of values surrounding a value. When

an ASCII or Unicode value pattern is searched for, the program displays the location of

the matching pattern along with the context (i.e., other surrounding characters) in which

it was found.

4.4 A Methodology for Finding Software Security Vulnerabilities in a PE File

This methodology describes how to statically analyze a PE file to provide useful

information to a security analyst. When analyzing the file, the methodology categorizes

its findings as facts, anomalies, or vulnerabilities. The methodology described in the

following paragraphs is organized around these three categories.

 80

4.4.1.1 Creating a File Fact Summary

Based on the administrative information stored in the DOS header, file header, and

optional header, a file fact summary is generated. These facts include the actual file

size in bytes, the target CPU and operating system, an indication that the file is a DLL

file or not, an indication that the file has a symbol table or string table, the names of the

text files containing the program source code, and a list of optional tables found in the

file.

By examining the import table, a fact list is built of the DLLs required by a program.

[Whittaker and Thompson 2004] describe how a hacker can exploit the user security

level of an application by finding out the DLLs that a program uses, crafting a look-

alike DLL with the same name and similar interface, and then placing that DLL in the

application’s current working directory. Now the program has the ability to use the

same privilege level granted to the original DLL.

4.4.1.2 Detecting Anomalies When Reading the File

As stated earlier in this section, anomalies can be detected in the process of reading a

PE file. One interesting anomaly is the mismatch between the size of a table as stated in

the optional header and the actual size of the table in the file. Such anomalies may

indicate an error in the linker or possibly manual tampering with the file contents.

 81

4.4.1.3 Detecting Anomalies When Mapping the File Contents

Another interesting anomaly is the detection of regions in the file that contain either

unknown information or possibly compressed files used in a software installation.

Mapping the contents of the bytes of a file from the first byte to the last makes this

possible. As each header, table, or section is read from the file, its start and stop

location are recorded (i.e., mapped). After mapping the locations of every known entity

in a PE file, a complete pass is made through the map to find byte regions between

entities that are unaccounted for. Such a region is marked as "contents not known" if it

falls outside the bounds of any known entity, or it is marked as "no additional details" if

it is inside a section containing an optional table but not also inside the bounds of the

table itself.

The detection of compressed files is found by comparing an unknown region's size to a

maximum acceptable size constant. Based on a survey we made of the average

maximum size of known regions in a variety of image files, we found that 200,000

bytes is a good constant. During the survey we also found that such large unknown

areas occur in executable installation files where the files to be installed are stored in a

compressed format in the executable file. These areas occur most often before or after

the last known section in a file. Some also occur as part of the ".rsrc" resource section

or a ".winzip" section. The loader ignores any bytes in a file that are not part of one of

the listed headers, sections, or tables; consequently, an executable installation file can

act as its own repository of hidden data.

 82

4.4.1.4 Detecting Software Security Vulnerabilities

Our research has revealed three kinds of security vulnerabilities that can be detected

when statically analyzing an image file (without doing any disassembling): sections in a

file whose contents can be both written to and also executed, large unused zero-filled

regions in a file, and the use of functions susceptible to buffer overflow attacks. The

ways for detecting these vulnerabilities are described in the following paragraphs.

4.4.1.4.1 Detecting Sections That are Both Writable and Executable

Earlier in this document when we described the section table, we pointed out that each

entry in the table contains bits in a 64-bit word that indicate the read, write, and execute

characteristics of the contents of the corresponding section. A security vulnerability can

be detected by finding the simultaneous occurrence of both the write and execute

characteristics for a section. Such an occurrence may indicate an error in a linker. It

may also indicate tampering by malicious software in an effort to later modify the

program's executable code when it is loaded into memory and executed.

4.4.1.4.2 Detecting Large Unused File Regions

When mapping the regions of a file, the zero-filled regions are also tracked and a total is

kept of the number of total zero bytes that are encountered. Based on a survey we made

of the average size of a contiguous region of zero-filled bytes in a variety of image files,

we found that a value less than or equal to 50 is acceptable. Any size above this

constant indicates the vulnerability of malicious software employing these unused areas

to store hidden code or data.

 83

4.4.1.4.3 Detecting Vulnerable C Library Functions

Earlier in this section we described how examination of the symbol table and the import

table could reveal the names of many of the functions used by a program. [Viega and

McGraw 2002] provide a list of 31 commonly-recognized C library functions that are

vulnerable to buffer overflow attacks on their character string parameters. We create a

list of vulnerable functions used by a software program by comparing the function

names found in the symbol table and import table to those found in the list of known

vulnerable functions. We then store the matching names.

4.4.1.4.4 Understanding the Consequences of no Symbol Table or Import Table

The ability to detect the use of functions vulnerable to buffer overflow attacks

obviously depends on the presence of the symbol table and/or the import table in the PE

file. If the software developer had the linker strip the symbol table when the executable

file was built, then that source of information does not exist in a PE file. Also, if the

linker placed the function definitions in the executable file rather than arrange to have

them be accessed through a dynamic link library, then the import table will not contain

the names of the vulnerable functions. This finding is very important to understand.

Without it, a person can get a false sense of security if no vulnerable function calls are

found when statically analyzing a PE file using this approach. In other words, an empty

list of vulnerable functions can only safely indicate the lack of enough information to

detect any function names at all.

 84

4.5 Automation of the Methodology: the findssv Software Utility

From a practical point of view it would be very difficult to manually apply the

methodology described above to even the smallest of PE files. This is because of the

tens of thousands of bytes in PE administrative information and runtime environment

code included in the file. Instead, we incorporated the methodology into the PE

dissecting software tool developed earlier to create a greatly enhanced version called

"findssv", where "ssv" means software security vulnerabilities. Its purpose is to assist a

person in performing a static analysis of executable and dynamic link library files.

Findssv operates similar to an MS-DOS command line utility and is designed to detect

anomalies and certain software security vulnerabilities in files that run on Windows NT.

It also works with object code files that use the Microsoft Common Object File Format

(COFF). Findssv accepts an executable or object code file name (or a wildcard form of

the file name) on the command line, followed by zero or more options. It displays

information about each of the PE and COFF files in a report that is sent to the standard

output device (i.e., the screen). It can be used to automatically check for security

vulnerabilities in a single file or in a whole directory of files in just a few seconds.

4.5.1 Program Features

The findssv program has a variety of features to help a security analyst detect what is in

a PE file. The following paragraphs describe each of the options available in findssv.

Figure 3 contains the help screen that the program displays when only “findssv” is

entered on the command line. Note that a file name entered on the command line can be

 85

either a specific file name or a wildcard file name such as *.exe. If such a wildcard file

name is entered, it must be enclosed in double quotes so that the MS-DOS command

interpreter won't attempt to expand the asterisk.

===
Usage: findssv <filename> [-L] [-T] [-M] [-F] [-AV] [-P[<parts>]]
 findssv <filename> -C <format> <start> <new>
 findssv <filename> -D <format> <start> <#values>
 findssv <filename> -S <format> <pattern>
 findssv <filename> -S {ascii | unicode} <#chars> <start> <stop>

Explanation:

 filename : binary file name or wildcard name (Example: "*.exe")
 -AV : display the anomalies and security vulnerabilities
 (default)
 -C : permanently change specific values in a file (Use with
 care!)
 format : format of changed value: byte | ascii | unicode |
 word | dword
 new : new value to replace current value in the file
 start : starting byte location of the value to change
 -D : display a range of file values in various data formats
 start : starting byte location of the first value to display
 #values : number of total values to display
 format : format of values: byte | ascii | unicode |
 word | dword
 -F : display a summary of facts about the file (default)
 -L : filename is a file containing a list of binary files
 to read
 -M : display an address map of the file
 -MZ : map all zero regions, then display address map
 -P : Display one or more standard parts found in a file
 parts : one or more parts to display; if none then display all
 parts
 d - DOS header y - symbol table
 f - file header t - string table
 o - optional header e - export table
 s - section table i - import table
 c - COFF relocations b - debug table
 -S : search for a specific pattern of bytes in the file
 pattern : the pattern to find
 format : format of pattern: byte | ascii | unicode |
 word | dword
 #chars : minimum number of characters in a string
 start : starting address of string search
 stop : stopping address of string search
 -T : Turn program trace on

Figure 3 – Findssv Help Screen

Anomalies and Vulnerabilities. The “-AV” option is used to display a list of anomalies

and security vulnerabilities that findssv discovered while reading through and analyzing

 86

the file contents. This list is also displayed by default if only findssv and a file name

are entered on the command line. There may be other anomalies or vulnerabilities in a

file, but these are the ones that findssv is currently designed to detect.

Change. The “-C” option is used to permanently change a specific value starting at a

certain byte position in a file. When making the change, findssv will first display the

current value and then the success or failure of replacing it with the new value. The

format of the value can be a single byte, an ASCII string, an ASCII string converted

internally into Unicode, a 16-bit word, or a 32-bit double word. This option can be used

on any type of file, not just executable or object code files.

Display. The “-D” option is used to display the values located at a range of byte

addresses in a file. The output of the values can be displayed as bytes, ASCII values,

Unicode values, 16-bit words, or 32-bit double words. The number of values is format-

dependent in that it refers to the actual number of values using that format rather than

the number of bytes in the range of displayed values. This option can be used on any

type of file, not just executable or object code files.

Facts. The “-F” option is used to display a list of facts that findssv discovered while

reading through and analyzing the file contents. This list is also displayed if only

findssv and a file name are entered on the command line.

 87

List. The "-L" option is used to submit a specific list of executable or object code files

to findssv. The list is contained in a text file that is submitted to findssv on the

command line. This approach to supplying file names to findssv can be used when a

wildcard file name will not select the desired files to analyze.

Map. The “-M” option is used to display a diagram that acts similar to an x-ray of a

file. The diagram shows the byte location and size of every header, table, and section in

an executable or object code file. Each byte location from the start to the end of a file is

examined. If a file does not contain enough information for findssv to use when

describing a part of a file, the program instead displays “Contents not known” in that

location in the file map.

Map Zero. The “-MZ” option performs the same function as the “-M” option. In

addition, it checks for and notes zero-filled regions in a file before displaying the map

diagram. For a zero-filled region to qualify, it must contain a certain minimum number

of bytes. Currently that minimum number is 50.

Parts. The “-P” option is used to display the contents of one or more standard parts

located in an executable file. These parts are the DOS header, the file header, the

optional header, the section table, the COFF relocations, the symbol table, the string

table, the export table, the import table, and the debug table. If only “-P” is entered

with no part letter, then the contents of all of the parts are displayed; otherwise, a user

may designate which part or parts to display. The order of the part letters makes no

 88

difference in the order in which the data is displayed. Instead, the parts are displayed in

the order that they normally appear in a file.

Search. The “-S” option has two separate forms. The first form of this option is used to

search for the starting byte location of a specific pattern of information in a file. The

format of the pattern may be a byte, an ASCII string, a Unicode string, a 16-bit word, or

a 32-bit double word. When the ASCII or Unicode format is specified, findssv will

display the starting locations of the pattern and the context of characters in which the

pattern was found. The second form of this option is used to search for any ASCII or

Unicode character strings in a file. The user specifies the minimum length of a string

and the range of byte addresses to search in the file. The “-S” option in either of its

forms can be used on any type of file, not just executable or object code files.

Trace. The “-T” option directs findssv to display a number of messages indicating the

sequence of activities it performs when reading through and analyzing a file. It is

mainly used to display details on problems that may have occurred when reading a

specific file.

4.5.2 Program Classes

We built the findssv software features onto the existing version of the PE dissecting

utility. The capability to automatically detect anomalies and software security

vulnerabilities added 1100 source lines of code and six class definitions to the program.

The subsections below describe the six new classes.

 89

4.5.2.1 UserOptions Class

The UserOptions class contains methods to set and get the user options requested by a

user on the command line. The user options fall into two categories. The first category

contains the display choices of the various parts of a file using the "-P" parts option.

The second category contains options to select the "-T" trace output, the "-M" file

mapping functionality, the "-MZ" zero-region mapping functionality, the "-F" facts

output, the "-AV" anomalies and vulnerabilities output, the "-C" change value

functionality, the "-D" display value functionality, the "-S" search functionality, the "-

H" hide data functionality, and the "-E" extract data functionality.

4.5.2.2 Analysis Manager Class

The Analysis Manager class contains methods to collect the names of all the files to

analyze, submit those names one by one to the PECOFF_Partitioner, and then

summarize the results of the analysis after all the files have been read and analyzed.

This allows findssv to analyze multiple files one after another in a single run of the

program.

4.5.2.3 DiscoveryTracker Class

The DiscoveryTracker class is implemented as a singleton. It serves as a collector and

displayer of fact, anomaly, and security vulnerability information. Findssv discovers

this information either while reading through a file or when analyzing and correlating

the data gathered from a file. As soon as findssv comes upon a discovery, it enters the

 90

category of the discovery and a description of the discovery in the DiscoveryTracker.

After the file is completely read, findssv displays all of the fact, anomaly and security

vulnerability findings it contains depending on the display desires requested in the user

options.

The fact category contains information that describes the size, creation date, target cpu,

and operating system for the file. It also contains a list of the dynamic link libraries

(DLLs) needed by the file. If the symbol table and string table are present in the file,

the fact category will also contain the names of the source code files that were used

when building this file.

The anomaly category contains mismatches of totals and pointers that findssv detects

while reading through a file. These findings don’t point out vulnerabilities, but rather

indicate something that is inconsistent in the file such as a section entry but no

corresponding section, or a stated size of a table when it is actually a different size.

These anomalies may be caused by logical errors in linkers or possibly manual

tampering with the file that occurred after the link stage.

The vulnerability category contains specific software security vulnerabilities that

findssv looks for after reading all the data from a file. Findssv does no disassembling of

object code to find these vulnerabilities. Instead, it analyzes and correlates the data

collected from the various headers, sections, and tables in a file.

 91

Findssv stores the discovery tracker data in a vector. Each member of the vector

contains four fields: the category of the discovery, the location of the discovery, an

occurrence count, and a description of the discovery. Findssv only displays the location

of a discovery when the "-T" trace option is used in conjunction with the "-AV" option

on the command line.

4.5.2.4 FileMapper Class

The FileMapper class is implemented as a singleton. The class provides services for the

"-M" map option and the "-MZ" map zero-filled regions option. It contains methods to

collect, analyze, and display the byte-for-byte layout information of an object code file

or image file. The map output shows the location and size of every header, section, and

table in the file. It also points out the areas of the file whose contents are unknown and

the areas of the file containing only a series of zeros. Appendix C contains examples of

file maps created by findssv.

Findssv stores the file map information in a map data structure. The key for each entry

in the map is the start address of a region (e.g., a header, section, or table) in the file.

The corresponding data part of each entry contains the size of the region and a short

description of its contents. Findssv detects any attempt to place an entry in the file map

that matches a key (i.e., a starting address) already in the map. When such an event

occurs, findssv makes adjustments in the map contents depending on the size of the

original region and the size of the new region. It also keeps track of each of these

occurrences and displays them in a summary after the end of a map display.

 92

The FileMapper class contains complicated algorithms to locate and map unknown data

regions in a file, to locate and map the zero-filled regions in a file, and to display the

layout of all the regions in a file in a hierarchical format. This hierarchical format is

necessary because some regions of a file may be contained within other regions. For

example, the ".text" or ".data" section of a file may contain the import table or the

export table along with other information.

The algorithm to locate and map unknown regions looks for byte ranges in the file that

are unaccounted for in the file map. Findssv performs this action after all of the known

regions of a file have been read and mapped. This process involves the tracking of the

start and stop addresses of large regions in a file that may contain smaller regions.

After findssv detects an unknown region, it enters the region in the file map. If the

region is outside of any other region, it describes the region as "Contents not known";

otherwise it describes the region as "No additional details". This is because it occurs

inside an already-mapped region.

The algorithm to locate and map zero-filled regions looks for byte ranges in the

"Contents not known" regions of a file that contain a minimum number of consecutive

zero bytes. Consequently, this algorithm is run after the algorithm to locate and map

unknown regions. The minimum number of zeros allowed is defined as a constant in

the FileMapper class. When findssv detects a "Contents not known" region exceeding

this minimum, it inserts this information into the file map.

 93

The algorithm to display the map layout of a file takes its information directly from the

contents of the file map structure. In doing so, it keeps track of any smaller regions that

are mapped inside of any larger regions. The resulting map display gives a security

analyst an eye-opening view of how the contents of the file are structured. It also

reveals areas, such as the regions marked as "Contents not known", that may require

manual investigation using the "-D" display option.

4.5.2.5 FunctionCollector Class

The FunctionCollector class contains methods to collect the names of functions that are

used by a program. Findssv gathers this information from a combination of data

obtained from the symbol table, string table, and import table. As the FunctionCollector

gathers names, it looks for functions that are known to be vulnerable to buffer overflow

attacks and other hacker actions [McGraw and Viega]. When it finds such functions, it

stores them along with one of the following risk levels: low, medium, high, very high,

and ultra high.

Findssv stores both the list of all functions found and the list of vulnerable functions

found in map data structures. The key for each map is the function name.

4.5.2.6 DLL Librarian Class

The DLL Librarian Class contains a table of DLL file names and descriptions along

with methods to look up a description. The table currently contains the descriptions of

 94

over 200 DLLs. Findssv uses this information in the file fact summary when it displays

the names of DLLs used by a program.

4.6 Results from Testing the Automated Methodology

4.6.1 The Test Platform and Test Files

The test platform consisted of a Hewlett-Packard 531w personal computer with a

1.3GHz Intel Celeron processor, 512MB RAM, 40GB hard drive, running the Windows

XP Home Edition operating system. The test files consisted of 2725 image files (i.e., PE

files) already installed on the computer and used frequently for home office use,

computer science research, personal entertainment, and software development.

4.6.2 Three Test Objectives

We had three test objectives. Our first was to test that findssv could detect the

anomalies and security vulnerabilities that we had identified in the methodology. Our

second was to test if findssv could correctly read a varied assortment of PE formatted

files. Our third was to test if the automated methodology would produce meaningful

and useful test data on the anomalies and security vulnerabilities detected in the test

files.

4.6.3 Test Approach

To achieve our first objective, we tested findssv on a set of specific example files. This

also allowed us to fine-tune the findssv software and the automated methodology. In

addition, it allowed us to see what facts, anomalies, and security vulnerabilities we

 95

could discover about software for which we had a special interest. To achieve our

second and third objectives, we identified six categories of PE files: executable

installation files, software development files, Windows XP operating system files,

Microsoft application files, security-centric application files, and miscellaneous

application files. The results of all of these tests are described in the rest of this

subsection.

4.6.4 General Contents of the Test Results

The test results from the specific example files contain a fact summary, display of file

parts, and file mapping output along with information on the detection of any anomalies

and security vulnerabilities. The test results from the six test categories only contain

information on the detection of anomalies and security vulnerabilities. Some of the test

results for the six categories became extremely lengthy when hundreds of files were

analyzed in the category. In such cases, the test results in Appendices C through I only

contain the names of the files analyzed and the total number of anomalies and/or

vulnerabilities detected in the files.

Paragraphs marked by the words “Key Finding” appear within many of the test result

descriptions. These paragraphs highlight noteworthy findings about executable files

that we discovered as a result of performing the tests and analyzing the results.

Each subsection of test results contains a results table with seven columns. The

columns have the following meanings for the entries in each row:

 96

• A short description of the kinds of files tested

• The total number of files tested

• The total number of files with one or more anomalies

• The total number of files with one to three security vulnerabilities

• The total number of files with four or more security vulnerabilities

• The total number of anomalies in all of the files

• The total number of security vulnerabilities in all of the files

A "*" found in the cell in a vulnerability column signifies that not enough information

was available to test for security vulnerabilities in those file(s). This is mainly due to

the absence of a symbol table or import table in the files.

4.6.5 Testing Specific Example Files

This subsection covers the results we obtained from testing findssv on specific example

files. We selected these files for several reasons. First, the files demonstrate the overall

features of findssv. This includes the fact summaries and the display of the contents of

each header and table. Second, the files show how the C++ compiling and linking tools

from three different vendors (Borland, Cygwin, and Microsoft) generate three different

executable files, file maps, and test results for the same source code files. Third, the

files are important to the actual software development for this research effort. This is

described in more detail below. Table 2 lists a summary of the test results. The

detailed test results are in Appendix C.

 97

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
 (1-3)

Total
with
Vul.
 (4+)

Total
no. of
Anom.

Total
no. of
Vul.

Vulnerable – Borland C++ 1 1 * * 3 *
Vulnerable – Cygwin Gnu C++ 1 1 0 1 1 24
Vulnerable – Microsoft VS C++ 1 1 * * 3 *
Helloworld – Borland C++ 1 1 * * 3 *
Helloworld – Cygwin Gnu C++ 1 1 0 1 1 7
Helloworld – Microsoft VS C++ 1 1 * * 3 *
findssv – Borland C++ 1 1 * * 3 *
findssv – Cygwin Gnu C++ 1 1 0 1 1 7
findssv – Microsoft C++ 1 1 * * 3 *
Cygwin Gnu Cygwin1.dll 1 1 0 1 3 12
Microsoft Windows XP kernel32.dll 1 1 1 0 5 2
JGRASP 1.7.5 IDE (.exe files) 3 3 * * 12 *

Table 2 – Test Summary of Specific Example Files

4.6.5.1 Results from Testing for Functions Susceptible to Buffer Overflow Attacks

We tested findssv on a C++ program named vulnerable.cpp (that we created) to see if

findssv would detect the use of functions susceptible to buffer overflow. The program

had only a main function that contained calls to each of the vulnerable functions listed

in [McGraw Viega and McGraw 2002]. We compiled and linked the file into different

executable versions using three separate vendor products.

When findssv analyzed the executable file built by the Cygwin Gnu compiler and linker

[Cygwin 2004], it was able to detect the use of the vulnerable functions by examining

both the symbol table and the import table. The import table was available because the

Gnu linker arranges for the program to use the standard cygwin1.dll dynamic link

library rather than include the function code in the executable file. When findssv

analyzed the executable file built by the Borland compiler and linker [Borland 2004], it

 98

did not detect the use of any vulnerable functions. The same negative results occurred

with the Visual Studio compiler and linker [Visual Studio 2004]. This is because both

linkers automatically strip the symbol table from the executable file and include any

standard C library code as a part of the executable file. This occurrence is made more

evident by comparing the sizes of the three executable files:

• vulnerable.exe (built using the Gnu linker): 7,168 bytes

• vulnerable.exe (built using the Borland linker): 66,560 bytes

• vulnerable.exe (built using the Visual Studio linker): 45,056 bytes

Key Finding: It is possible for an executable file to reveal less information about the

functions it uses to hackers by having its symbol table stripped and by having the linker

include the language's standard function definitions in the executable file rather than

reference functions in a dynamic link library.

4.6.5.2 Results from Testing a "Hello World" Program

We tested findssv on a hello world source code file that consisted simply of a main()

function definition containing one C++ "cout" function call to print "Hello World"

followed by one statement to return 0 from the function. We compiled and linked this

file into different executable versions using three separate vendor products. The results

shown in Appendix C were rather surprising. Findssv detected no vulnerabilities in the

Borland and Visual Studio versions; however, it detected seven vulnerable functions in

the Cygwin Gnu version. This means that the Gnu compiler used those seven

 99

vulnerable functions either in its implementation of the C++ source code for "Hello

World" or in its runtime environment included with the hello world program.

Key Finding: A program compiled and linked using the Cygwin Gnu tools will have

standard C functions in it that are susceptible to buffer overflow attacks even when

these functions are not explicitly used by the software developer.

4.6.5.3 Results from Testing the findssv Program

An obvious candidate to run the findssv software against is itself. When we did this, the

test results showed that findssv contained no software security vulnerabilities, at least

when compiled and linked using either the Borland or Microsoft Visual Studio tools.

This was expected based on the evidence gained after compiling and linking the

"vulnerable" program described above. However, the version of findssv generated using

the Cygwin Gnu compiler and linker contained seven vulnerable functions: getc(),

memcpy(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy(). A text search of the

findssv source code files for these function names resulted in no matches. These results

were consistent with those for the hello world program.

Key Finding: The Cygwin Gnu C++ compiler and linker injected seven vulnerable

function calls into the executable program of the findssv program.

 100

4.6.5.4 Detection of Vendor-Specific Patterns in File Maps

We noticed something interesting in the file maps created by findssv for the

vulnerable.cpp, helloworld.cpp, and findssv programs. Each set of compiler and linker

tools created a different arrangement of sections and optional tables in the executable

file. In other words, the executable code created by a certain vendor's linker had a

pattern to it that was not dependent on the purpose of the application.

Key Finding: It may be possible to analyze the general layout of the sections and tables

in a file map in order to detect a pattern that indicates the compiling and linking tools

used to generate an executable file.

4.6.5.5 Results from Testing the Cygwin1.dll File

The apparent security weakness of the Cygwin C++ compiler to inject vulnerable

functions into a software application extends beyond the compiler. Each executable

program generated using the Cygwin C++ compiler and linker uses the Cygwin1.dll

dynamic link library. When we tested findssv against Cygwin1.dll, it detected 12

sections in the file with attributes set that allow the contents of the 12 sections to be

both written to and executed. This is a hacker's dream to find such an error because the

sections in an executable program that contain executable code should have the read

only attribute set instead. This stops hackers from placing executable code in these

sections when the program is loaded in memory. The security concerns of Cygwin even

get worse than this. Many of the software products that come bundled with Cygwin

 101

contain software security vulnerabilities. For more details, see the upcoming subsection

on the test results from the software development files.

Key Finding: The Cygwin1.dll file contains security vulnerabilities that allow

executable code to be modified after the program is loaded into memory and executed.

4.6.5.6 Results from Testing the Kernel32.dll File

Almost every executable program that we tested findssv against uses the Kernel32.dll

dynamic link library. It serves as a common DLL to provide a path to other DLLs on a

computer system that may not have standard names. Findssv detected that kernel32.dll

contains calls to two vulnerable functions: sprintf() and strncpy().

Key Finding: The Kernel32.dll contains functions that are susceptible to buffer

overflow attacks.

4.6.5.7 Results from Testing the jGRASP Files

We used jGRASP as the main integrated development environment for the findssv

software. Most of jGRASP is written in Java; consequently, we only tested findssv on

the executable files that jGRASP uses as wedges to run compiler and linkers. Findssv

detected no security vulnerabilities in the jGRASP executable files. However, if the

jGRASP executable files were linked using the Borland or the Visual Studio linker, then

these results could be misleading because findssv found no symbol table or import table

in any of the files.

 102

4.6.6 Testing Executable Installation Files

This subsection covers the results we obtained from testing findssv on executable

installation files. The files in this test category all serve the same purpose: to act as a

repository and a means for the installation of one or more files on a computer. Table 3

lists a summary of the test results. The detailed test results are in Appendix D.

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Adobe Acrobat Reader 5.0 installation
file

 1 1 * * 3 *

Earthlink TotalAccess 5.0 installation file 1 1 * * 4 *
Java SDK 1.4.2 installation file 1 1 1 0 4 1
Java SDK 1.5 installation file 1 1 1 0 4 1
JGRASP 1.7.5 installation file 1 1 * * 4 *
JGRASP 1.7.5 (with JRE) installation file 1 1 * * 4 *
Windows Media Player 9.0 installation
file

 1 1 * * 4 *

Real One Player (Windows XP)
installation file

 1 1 * * 4 *

Table 3 – Test Summary of Executable Installation Files

4.6.6.1 The Mechanics of Executable Installation Files

Executable installation files call either the Windows InstallShield program or their own

internal functions to uncompress files that are stored in the file and then copy these files

into specific subdirectories on a hard drive. They also contain function calls to the

advapi32.dll dynamic link library to create and update information in the Windows

registry.

 103

4.6.6.2 Results from Testing Executable Installation Files

When we tested findssv on the installation files, only the Java SDK files revealed any

security vulnerabilities. The Java SDK 1.4.2 installation file contained the use of the

sprintf() function that is vulnerable to buffer overflow attack. The Java SDK 1.5

installation file contained 4492 bytes of unused zero-filled bytes that could be used to

store malicious code or data.

4.6.6.3 Results from Testing for Compressed Files

Near the middle or end of each executable installation file, findssv detected a large

region containing millions of bytes of compressed data (i.e., compressed files). Some

of these regions were in a separate section of their own named ".winzip" or in the ".rsrc"

section. Other regions were not in a specific section at all, but instead were located at

the end of a file after all the sections and tables. This is possible because the Windows

loader only loads specific section and table information into memory when a program is

run. Any other information in an image file that does not conflict with the PE format is

ignored.

Key Finding: An image file can take advantage of the flexibility of the PE format and

serve as its own storehouse for millions of bytes of data.

 104

4.6.7 Testing Software Development Files

This subsection covers the results we obtained from testing findssv on software

development files. The files in this test category contain the executable programs and

dynamic link libraries used by a programmer to create software using various vendor

software tools. They consist of integrated development environments, compilers,

linkers, debuggers, and other utilities. Table 4 lists a summary of the test results. The

detailed test results are in Appendix E.

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Borland C++ Builder 5 executable files 22 22 * * 79 *
Borland C++ Builder 5 DLL files 20 20 * * 46 *
Cygwin executable files 325 325 107 177 331 1448
Cygwin DLL files 56 56 19 32 122 234
Sun Java 4.2 executable files 15 15 12 2 46 32
Sun Java 4.2 DLL files 41 41 27 1 181 44
Microsoft VS SDK executable files 29 29 5 2 117 25
Microsoft VS SDK DLL files 3 3 1 0 14 1
Microsoft VS VC7 executable files 15 15 5 3 64 27
Microsoft VS VC7 DLL files 6 6 2 3 34 21

Table 4 – Test Summary of Software Development Files

4.6.7.1 Results from Testing the Borland Files

When we tested findssv on the Borland software development files, it detected many

anomalies but no security vulnerabilities. The anomalies dealt with inconsistencies in

the actual sizes for the optional tables compared to the size values given in the data

directory of the optional header. The lack of any security vulnerabilities is consistent

 105

with our earlier findings when we tested the specific example files. It appears that

Borland uses its own compiler and linker to build its software development tools.

4.6.7.2 Results from Testing the Cygwin Files

We tested findssv on the complete suite of software development files that come with

the Cygwin download. This includes many directory and file utility programs in

addition to software development files. Our tests detected a wealth of anomalies and

vulnerabilities. Of the 325 executable files that we tested, findssv found vulnerabilities

in 284 of them. Of those, 21 had 10 or more vulnerabilities. Some of these programs

were: as, captoinfo, cvs, expect, ftp, gdb, gprof, info, infotocap, insight, ld, less,

makinfo, mutt, ncftp, squid, tic, and wget. The gcc and g++ compilers both had six

vulnerabilities. Of the 56 DLL files that we tested, findssv found vulnerabilities in 51

of them. Of those, four of the files had nine or more vulnerabilities. This included

cygwin1.dll with 12 vulnerabilities.

Findssv detected not only calls to functions susceptible to buffer overflow attacks, but

also found the following vulnerabilities:

• A writeable and executable ".idata" (import table) section in cyghistory4.dll,

cygreadline4.dll, chgrp.exe, chmod.exe, chown.exe, cp.exe, data.exe, dd.exe,

df.exe, dir.exe, dircolors.exe, du.exe, install.exe, ln.exe, ls .exe, mkdir.exe,

mkfifo.exe, mknod.exe, mktemp.exe, mv.exe, rm.exe, rmdir.exe, and shred.exe

 106

• A writeable and executable ".text" section in cygform6.dll, cyggdbm,

cyggettextsrc-0-12-1.dll, cyggettextsrc-0-12-1.dll, cygmenu6.dll,

cygncurses++6.dll, cygpanel6.dll, cygpcreposix-0.dll, Cygwin1.dll, fileman.exe,

less.exe, mutt.exe, ncftp.exe, ncftpbookmarks.exe, rcp.exe, rl.exe, rlogin.exe,

rlvsersion.exe, rsh.exe, scp.exe, sftp.exe, ssh-add.exe, and ssh-agent.exe

• A writeable and executable ".text" section and source code file names in

cygform7.dll, cygmenu7.dll, cygpanel7.dll, clearn.exe, infocmp.exe,

infotocap.exe, reset.exe, tack.exe, tic.exe, toe.exe, tput.exe, and tset.exe

In addition, findssv detected six executable files that listed the names of their source

code files. These executable files were cygncurses7.dll, mingwm10.dll, awk.exe,

captoinfo.exe, gawk.exe, and pgawk.exe

Key Finding: The Cygwin software development files and utility programs contain

scores of security vulnerabilities. Therefore, we do not recommend them for secure

programming activities.

4.6.7.3 Results from Testing the Sun Microsystems Java Files

We tested findssv on 15 executable files and 41 DLLs that are part of the Sun

Microsystems Java development suite. Findssv detected security vulnerabilities in 14 of

the executable files. This includes java.exe, the Java interpreter. The vulnerabilities

that occurred most often were the use of the fgets() and sprintf() functions, which are

susceptible to buffer overflow attacks. Many of the executable files also contained calls

 107

to the fgetc() and sscanf() functions. Findssv detected security vulnerabilities in 28 of

the DLL files. These mostly involved the use of one of more of the following

functions: sprintf() sscanf(), fgets(), and fgetc().

Key Finding: 42 of the 56 Sun Microsystems Java software development files that we

tested (including the Java interpreter) contained one or more functions that are

susceptible to buffer overflow attacks.

4.6.7.4 Results from Testing the Microsoft Visual Studio SDK Files

We tested findssv on 29 executable files and three DLLs that are part of the Microsoft

Visual Studio SDK. Findssv detected security vulnerabilities in seven of the executable

files. The most severe was the ildasm.exe program (the MSIL disassembler), where

findssv found the use of seven functions susceptible to buffer overflow attacks: fgets(),

memcpy(), sprintf(), strcat(), strcpy(), strncpy(), and vsnprintf(). Findssv detected a

security vulnerability in only one of the DLL files. This vulnerability was the use of the

sprintf() function, which is also susceptible to a buffer overflow attack.

Key Finding: 8 of the 32 Microsoft Visual Studio SDK files that we tested (including

the MSIL disassembler) contained one or more functions that are susceptible to buffer

overflow attacks.

 108

4.6.7.5 Results from Testing the Microsoft Visual C/C++ 7.0 Files

We tested findssv on 15 executable files and six DLLs that are part of the Microsoft

Visual Studio SDK. Findssv detected security vulnerabilities in eight of the executable

files. The two most severe were the cl.exe program and the link.exe program. The

cl.exe program is the Visual C/C++ compiler. In this file findssv found the use of

eight functions susceptible to buffer overflow attacks: fgets(), getchar() memcpy(),

sprintf(), sscanf(), strcat(), strcpy(), and strncpy(). The link.exe program is the Visual

C/C++ linker. In this file findssv found the use of seven vulnerable functions: fgets(),

getc(), getchar(), read(), sprintf(), sscanf(), and strncpy(). Findssv detected a security

vulnerability in five of the DLL files. The most severe was the c1xx.dll file. In this file

findssv found the use of seven vulnerable functions: fgets(), read(), snprintf(), sprintf(),

sscanf(), strncpy(), and vsnprintf().

Key Finding: 13 of the 21 Microsoft Visual Studio C/C++ 7.0 files that we tested

(including the compiler and linker) contained one or more functions that are susceptible

to buffer overflow attacks.

4.6.8 Testing Windows XP Home Edition Operating System Files

This subsection covers the results we obtained from testing findssv on Windows XP

Home Edition operating system files. We tested all of the images files located in the

c:\windows directory, the c:\windows\system directory, and the c:\windows\system32

directory. This included executable files, dynamic link libraries, and driver files.

 109

Table 5 lists a summary of the findings. Appendix F contains the actual test results.

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Windows executable files (in c:\windows) 20 20 4 0 108 5
Windows DLL files (in c:\windows) 2 2 1 0 10 2
Windows System32 executable files (in
c:\windows\system32)

 279 279 57 9 1135 123

Windows System32 DLL files (in
c:\windows\system32)

1304 1304 317 49 6245 743

Windows System32 DRV files (in
c:\windows\system32)

5 5 * * 26 *

Windows System DLL files (in
c:\windows\system)

2 2 * * 7 *

Windows System DRV files (in
c:\windows\system)

1 1 * * 6 *

Table 5 – Test Summary of Windows XP Operating System Files

4.6.8.1 Results from Testing Files in the C:\windows and C:\windows\system
Directories

When we tested findssv on the executable and DLL files in the c:\windows directory, it

detected very few security vulnerabilities. Of the 20 executable files, only four

contained any vulnerabilities and these were all three or less occurrences. When we

tested findssv on the files in the c:\windows\system directory, it was not able to identify

any vulnerability information because of the missing symbol tables and import tables.

 110

4.6.8.2 Results from Testing Files in the C:\windows\system32 Directory

We tested findssv on 279 executable files in the c:\windows\system32 directory.

Findssv detected four or more security vulnerabilities in nine of the files. The most

severe of these were the Ntsd.exe file and the MsPMSPSv.exe file. The

MsPMSPSv.exe file uses seven functions susceptible to buffer overflow attacks:

memcpy(), sprintf(), sscanf(), strcat(), strcpy(), strncpy(), and vcprintf(). The file

Ntsd.exe also uses seven functions susceptible to buffer overflow attacks: fgetc(),

fgets(), snprintf(), sprintf(), sscanf(), strncpy(), and vsnprintf().

We tested findssv on 1304 DLL files in the c:\windows\system32 directory. Findssv

detected four or more security vulnerabilities in 49 of the files. The most severe of

these were dbgeng.dll, drmv2clt.dll, LibZkr.dll, python15.dll, vsinit.dll, vsutil.dll, with

eight vulnerabilities each, and ipebase12.dll with nine security vulnerabilities. These

nine vulnerabilities consisted of nine functions susceptible to buffer overflow attacks:

fgets(), fscanf(), getc(), read(), sprintf(), sscanf(), strncpy(), vsnprintf(), and vsprintf().

Findssv found one file named exsec32.dll in the C:\windows\system32 directory that

revealed the names of the six source code files that were used to build it. This

information was stored in the symbol table of the file.

Key Finding: In the Windows XP Home Edition c:\windows\system32 directory,

approximately 25% of the executable files and dynamic link libraries use one or more

standard C functions that are susceptible to buffer overflow attacks.

 111

4.6.9 Testing Microsoft Application Files

This subsection covers the results we obtained from testing findssv on a variety of

heavily-used Microsoft application files. This includes Microsoft Office software,

multimedia software, and network-enabled applications. Table 6 lists a summary of the

findings. Appendix G contains the actual test results.

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Microsoft Office 2000 executable files 14 14 5 1 59 10
Microsoft Office 2000 DLL files 48 48 17 3 253 42
Microsoft Outlook Express executable
files

5 5 * * 20 *

Microsoft Outlook Express DLL files 6 6 * * 29 *
Windows Internet Explorer executable
files

1 1 * * 4 *

Windows Internet Explorer DLL plugin
files

 7 7 1 1 35 8

Windows Media Player 9 executable files 5 5 2 1 21 9
Windows Media Player 9 DLL files 8 8 2 0 45 4
Windows Messenger executable files 2 2 * * 9 *
Windows Messenger DLL files 3 3 * * 14 *
Windows MovieMaker executable files 1 1 0 1 5 5
Windows MovieMaker DLL files 3 3 2 0 15 3
Windows NetMeeting executable files 3 3 * * 12 *
Windows NetMeeting DLL files 15 15 1 0 77 1

Table 6 – Test Summary of Microsoft Application Files

4.6.9.1 Results from Testing Microsoft Office Files

We tested findssv on 14 executable files and 48 dynamic link library files that are part

of Microsoft Office. Findssv found no standard C functions susceptible to buffer

 112

overflow attacks in excel.exe (Excel), outlook.exe (Outlook), powerpnt.exe

(PowerPoint), winproj.exe (Project), or winword.exe (Word). It did detect four such

vulnerabilities in the wavtoasf.exe file. These consisted of function calls to fgets(),

sprintf(), sscanf(), and strncpy().

4.6.9.2 Results from Testing Network-Enabled Files

When we tested findssv on the executable files for Outlook Express, Internet Explorer,

Messenger, and NetMeeting, it was unable to detect any security vulnerabilities. This

was partially because the symbol tables and import tables are not present. However,

findssv also searched for code sections with writable characteristics and large unused

file regions in these files. Neither of these vulnerabilities was found. However, findssv

did find seven security vulnerabilities in the NPDocBox.dll file, which is a DLL for

Internet Explorer. This file uses calls to seven functions susceptible to buffer overflow

attacks: memcpy(), snprintf(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy().

4.6.9.3 Results from Testing Windows Media Player and MovieMaker Files

We tested findssv on five executable files and eight dynamic link library files that are

part of Windows Media Player. Findssv found no security vulnerabilities in the

wmplayer.exe file, but it did find four vulnerabilities in the migrate.exe file. That file

contains calls to four vulnerable functions: memcpy(), strcat(), strcpy(), and strncpy().

Findssv found three security vulnerabilities in the npdrmv2.dll file. That file contains

calls to three vulnerable functions: memcpy(), strcat(), and strcpy().

 113

When we tested findssv on the moviemk.exe file, which is the major file for

MovieMaker, it detected five security vulnerabilities. These consisted of calls to the

following functions vulnerable to buffer overflow attacks: memcpy(), sprintf(), sscanf(),

strcpy(), and strncpy().

4.6.10 Testing Security-Centric Application Files

This subsection covers the results we obtained from testing findssv on security-centric

application files. The files in this test category consist of programs whose main purpose

is to improve the security of the computing environment of a personal computer.

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Network Associates Common Framework
executable files

7 7 4 1 28 19

Network Associates Common Framework
DLL files

35 35 24 5 175 70

Network Associates VirusScan 7.0
executable files

11 11 1 0 45 1

Network Associates VirusScan 7.0 DLL
files

16 16 * * 81 *

Secure CRT 4.0 executable files 5 5 1 2 23 12
Secure CRT 4.0 DLL files 5 5 3 1 30 10
SpyBot 1.2 executable files 4 4 * * 16 *
SpyBot 1.2 DLL files 7 7 * * 12 *
WinSCP executable file 1 1 1 0 5 2
Zero Knowledge Freedom 3.0 executable
files

5 5 1 0 19 1

Zero Knowledge Freedom 3.0 DLL files 34 34 23 1 173 42
Zone Alarm Pro 4 executable files 6 6 1 1 23 6
Zone Alarm Pro 4 DLL files 3 3 1 2 15 11

Table 7 – Test Summary of Security-Centric Application Files

 114

Before testing this category, we had thought that these files would be our shining stars

for secure programming and contain no security vulnerabilities; however, the results

showed otherwise. Table 7 lists a summary of the findings. Appendix H contains the

actual test results.

4.6.10.1 Results from Testing Network Associates' Virus Scanning Files

We tested findssv on both the Common Framework files and the VirusScan files that

are part of the Network Associates software installation. The VirusScan files faired

well, but one of the Common Framework executable files and five of the Common

Framework dynamic link library files contained four or more security vulnerabilities.

The executable file is McScript.exe. It contains the use of ten functions that are

susceptible to buffer overflow: getc(), memcpy(), read(), snprintf(), sprintf(), sscanf(),

strcat(), strcpy(), strncpy(), and vsnprintf().The DLL files are InternetManager,dll,

ListenServer.dll, naCmnLib.dll, naisign.dll, and Scheduler.dll. All contain calls to

vulnerable functions.

Key Finding: In the Network Associates Common Framework software installation that

accompanies the VirusScan software installation, approximately 75% of the executable

files and dynamic link libraries use one or more standard C functions that are

susceptible to buffer overflow attacks.

 115

4.6.10.2 Results from Testing SecureCRT Files

We tested findssv on five executable files and five dynamic link library files that are a

part of SecureCRT. It found four or more security vulnerabilities in two of the

executable files and one of the dynamic link library files. The SecureCRT.exe file

contains calls to three vulnerable functions. The Vcp.exe file contains calls to four

vulnerable functions. The Vsh.exe file contains calls to five vulnerable functions:

gets(), sprintf(), sscanf(), strncpy(), and vsprintf(). One of these, the gets() function, is

considerable an ultra high risk function for buffer overflow attacks, and its use is never

recommended. The Mfc42.dll file contains 3409 unused zero-filled bytes that could be

used to store malicious code or data. It also contains the use of four functions

susceptible to buffer overflow attacks: fgets(), memcpy(), sprintf(), and vsprintf().

Key Finding: The SecureCRT 4.0 software contains executable files and DLL files that

are highly vulnerable to buffer overflow attacks.

4.6.10.3 Results from Testing Zero Knowledge Freedom Files

Zero Knowledge Freedom is designed to be a firewall software product. When we

tested findssv on the DLL files for Zero Knowledge Freedom, it found security

vulnerabilities in 24 of the 34 files. The most severe was the NetworkR.dll file that

contained the use of four vulnerable functions: memcpy(), snprintf(), strcat(), and

strcpy().

 116

Key Finding: In the Zero Knowledge Freedom software, approximately 70% of the

dynamic link library files contain standard C functions that are susceptible to buffer

overflow attacks.

4.6.10.4 Results from Testing Zone Alarm Pro Files

Zone Alarm Pro is also designed to be a firewall software product. When we tested

findssv on Zone Alarm Pro files it faired better than Zero Knowledge Freedom; one

executable file and two dynamic link libraries contained four or more security

vulnerabilities. The executable file is zapro.exe, which is the main program for Zone

Alarm Pro. It contains calls to five vulnerable functions: memcpy(), sprintf(), strcat(),

strcpy(), and strncpy(). The two dynamic link library files are expert.dll and

framewrk.dll. Both contain five calls to vulnerable functions.

Key Finding: In the Zone Alarm Pro software, all three of the dynamic link library files

contain standard C functions that are susceptible to buffer overflow attacks.

4.6.11 Testing Miscellaneous Application Files

This subsection covers the results we obtained from testing findssv on a variety of

miscellaneous application files that did not fit in any of the previous test categories.

Table 8 lists a summary of the findings. Appendix I contains the actual test results.

 117

Description of File(s) Total
no. of
Files

Total
with

Anom.
(1+)

Total
with
Vul.
(1-3)

Total
with
Vul.
(4+)

Total
no. of
Anom.

Total
no. of
Vul.

Adobe Acrobat Reader 5.0 executable
files

1 1 * * 5 *

Adobe Acrobat Reader 5.0 DLL files 7 7 1 1 31 11
Earthlink TotalAccess 5.0 executable files 13 13 8 1 56 27
Earthlink TotalAccess 5.0 DLL files 54 54 31 11 273 114
HP PC CoreTech executable files 1 1 1 0 4 2
HP PC CoreTech DLL files 7 7 2 0 34 4
Iomega ZIP Disk executable files 4 4 * * 15 *
MusicMatch Jukebox executable files 11 11 2 3 43 17
MusicMatch Jukebox DLL files 44 44 18 11 219 78
OpenOffice 1.1 executable files 8 8 4 0 28 8
OpenOffice 1.1 DLL files 193 193 38 12 1002 123
Real One Player executable files 4 4 1 0 14 2
Real One Player DLL files 15 15 12 2 73 32
Veritas Update Manager image files 9 9 5 0 43 9
WinZIP 8.0 executable files 2 2 * * 8 *
WinZIP 8.0 DLL files 7 7 * * 32 *

Table 8 – Test Summary of Miscellaneous Application Files

4.6.11.1 Observing the State of Secure Programming Practices in Commercial
Software

These test results gives us an indication of the state of secure programming practices in

commercial software. As has been observed already in the previous tables, what really

stands out in the test results are those programs in which findssv detected a large

number of vulnerabilities and those in which it detects only a few. As for the programs

in which findssv found no vulnerabilities, we must be cautious about give them a high

rating. Recall that findssv can only detect the presence of security vulnerabilities, not

confirm they don't exist. Nevertheless, when findssv does detect vulnerabilities, it is

worth noticing as we point out concerning the DLL files below.

 118

In Earthlink TotalAccess, findssv detected security vulnerabilities in 42 of the 54 DLL

files. In MusicMatch Jukebox, findssv detected security vulnerabilities in 29 of the 44

DLL files. Of the 29 files, 11 have four or more vulnerabilities. In OpenOffice, findssv

detected security vulnerabilities in only 50 of the 193 DLL files. But of those 50 files,

12 have four or more vulnerabilities. In Real One Player, findssv detected security

vulnerabilities in 14 of the 15 DLL files.

This indicates a major lack of secure programming practices by the programmers who

developed the dynamic link libraries for these application programs. This is in sharp

contrast to the very low number of security vulnerabilities detected by findssv in the

DLL files of the Windows application files. However, this high number of

vulnerabilities corresponds closely to the large number of vulnerabilities found in the

executable files and the DLL files in the c:\windows\system32 directory.

 119

5. CONCLUSION

Our main goal throughout this research effort has been to devise and test techniques to

automatically detect software security vulnerabilities in executable program files

through static code analysis. Published open source auditing techniques only describe

automated static code analysis of source code files. Because of the results of this

research effort, a second approach directed at executable files now exists for the

security analyst, the software developer and the computer user. This new approach

takes a time-consuming manual process that required weeks to complete and replaces it

with an automated methodology that not only finishes in just seconds, but until this

research effort occurred, was not available in open source.

5.1 Proof of the Dissertation Hypothesis

5.1.1 The Hypothesis

This research effort involved the automatic scanning of executable files. Specifically, it

involved the scanning of files that conform to the portable executable (PE) format

designed for software running on Windows NT/XP computers. This effort set out to

prove the following hypothesis:

A methodology can be devised that uses information located in the headers, sections,

and tables of an executable file, along with information derived from the overall

 120

contents of the file, as a means to detect specific software security vulnerabilities

without having to disassemble the code. Such a methodology can be instantiated in a

software utility program that automatically detects certain software security

vulnerabilities before installing and running the executable file.

5.1.2 Achievement of Research Objectives

We proved our hypothesis by achieving four research objectives: identification of PE

file information useful in a security vulnerability analysis, formulation of a

methodology for conducting the analysis, automation of the methodology, and testing of

the automated methodology.

5.1.2.1 Identification of PE File Information

We identified specific information in the PE file format that was useful in a security

vulnerability analysis. The characteristics for each section entry in the section table can

reveal executable code that can be written to during program execution. The

mismatches in the number of expected entries and the number of actual entries in the

section table can reveal hidden sections or sections that are listed but don't actually

exist. Occurrences of C standard function names in the symbol table and import table

can reveal the use of functions that are susceptible to buffer overflow attacks. A byte-

for-byte mapping of the complete file contents can reveal areas of unused zero-filled

space that could be used to store malicious code or data.

 121

5.1.2.2 Formulation of a Methodology

Using the information discussed in the paragraph above, we formulated a methodology

for conducting the analysis and identifying certain security vulnerabilities. These are

the steps of the methodology:

• Create a file fact summary to understand the general layout of the file

• Detect anomalies when reading in the parts of a PE file

• Detect anomalies when mapping the complete file contents

• Detect sections that are both writable and executable

• Detect non-existent or spurious sections

• Detect large unused regions in the file

• Detect the use of C library functions that are susceptible to buffer overflow attack

• Report the anomalies and vulnerabilities that were found

5.1.2.3 Automation of the Methodology

We incorporated this methodology into a software application called findssv that

dissects a PE file and analyzes its contents for anomalies and security vulnerabilities.

The findssv software consists of 3800 source lines of C++ code. It has a driver module,

a utility module, and 22 classes. The program runs in MS-DOS text mode and accepts a

variety of options on the command line to assist the security analyst in checking either

one executable file or a complete directory of files. The program produces results after

only a few seconds of operation for each file.

 122

5.1.2.4 Testing of the Automated Methodology

We ran the findssv software on seven categories of executable files totaling 2700 files

in all. Findssv was able to automatically detect the kinds of anomalies and

vulnerabilities that we had identified when examining the PE file format. Findssv also

correctly read a varied assortment of PE formatted files. In addition, findssv produced

meaningful and useful test data on the anomalies and security vulnerabilities detected in

the test files.

5.1.3 Key Findings Extracted From the Test Results

We extracted the following sixteen key findings from analyzing the test results

produced by findssv:

• It is possible for an executable file to reveal less information about the functions it

uses to hackers by having its symbol table stripped and by having the linker include

the language's standard function definitions in the executable file rather than

reference the functions in a dynamic link library

• A program compiled and linked using the Cygwin Gnu tools will have standard C

functions in it that are susceptible to buffer overflow attacks even when these

functions are not explicitly used by the software developer

• The Cygwin Gnu C++ compiler and linker injected seven vulnerable function calls

into the executable program of the findssv program

• It may be possible to analyze the general layout of the sections and tables in a file

map of an executable file in order to detect a pattern that indicates the compiling

and linking tools used to generate the file

 123

• The Cygwin1.dll file contains security vulnerabilities that allow executable code to

be modified after the program is loaded into memory and executed

• The Kernel32.dll file contains functions that are susceptible to buffer overflow

attacks

• An executable or dynamic link library file can take advantage of the flexibility of

the PE format and serve as its own storehouse for millions of bytes of data

• The Cygwin software development files and utility programs contain scores of

security vulnerabilities. Therefore, we do not recommend them for secure

programming activities

• 42 of the 56 Sun Microsystems Java software development files that we tested

(including the Java interpreter) contained one or more functions that are susceptible

to buffer overflow attacks

• 8 of the 32 Microsoft Visual Studio SDK files that we tested (including the MSIL

disassembler) contained one or more functions that are susceptible to buffer

overflow attacks

• 13 of the 21 Microsoft Visual Studio C/C++ 7.0 files that we tested (including the

compiler and linker) contained one or more functions that are susceptible to buffer

overflow attacks

• In the “c:\windows\system32” directory of the Windows XP Home Edition,

approximately 25% of the executable files and dynamic link libraries use one or

more standard C functions that are susceptible to buffer overflow attacks

 124

• In the Network Associates Common Framework software installation that

accompanies the VirusScan software installation, approximately 75% of the

executable files and dynamic link libraries use one or more standard C functions

that are susceptible to buffer overflow attacks

• The SecureCRT 4.0 software contains executable files and DLL files that are highly

vulnerable to buffer overflow attacks

• In the Zero Knowledge Freedom software, approximately 70% of the dynamic link

library files contain standard C functions that are susceptible to buffer overflow

attacks

• In the Zone Alarm Pro 4.0 software, all three of the dynamic link library files

contain standard C functions that are susceptible to buffer overflow attacks

These key findings show that it is possible and advisable to analyze executable files in

an effort to detect security vulnerabilities. They also confirm that findssv can detect a

certain subset of software security vulnerabilities by directly interrogating executable

files in a static manner.

5.1.4 The Immediate Practical Uses of Findssv

Given a set of executable files, findssv provides a security analyst with the ability to

quickly pare down those files to the ones in which secure programming was not an

objective of the developers. This was made most evident in our test results of the

Microsoft Office files compared to those of the other standard Microsoft application

files and dynamic link libraries. It was clear that the Microsoft security experts had

 125

gone through the Microsoft Office software with a fine-tooth comb looking for and

removing security vulnerabilities. On the other hand, the other Microsoft applications

were virtually ignored by their security specialists. Findssv can produce these same

useful and focused results upon analyzing applications from any software development

project. In addition, it can eliminate the occurrence of false positives because its

approach to an analysis is purely a fact-finding approach. Consequently, findssv will

answer the question, "Was secure programming a primary goal of the software

development team?"

With findssv, a security analyst can do in seconds what could take days or weeks of

semi-automated analysis using hex editors and file dump utilities. This is possible

because it knows where to look in a PE file and what to look for. In addition, it knows

when to stop looking for certain vulnerabilities when the indicators of those

vulnerabilities do not exist in the file. An example is the absence of a symbol table, a

string table, and an import table. When these three tables are missing from a file,

findssv skips its search for buffer overflow vulnerabilities. This does not mean that

such vulnerabilities do not exist in the file. Instead, it means that disassembling the

executable sections of the code or searching those sections for unique function call

signatures is the only other means of finding these vulnerabilities if they exist.

 126

5.2 Performance of Findssv in a Real-World Security Vulnerability Analysis

5.2.1 Results Obtained by the Information Assurance Laboratory at Auburn
University

Last year, the security research group in the Information Assurance Laboratory at

Auburn University performed a security vulnerability assessment on simulation

software used by the Department of Defense. Their goal was to determine if the

executable files contained any classified information. In addition, they attempted to

find buffer overflow vulnerabilities in the software. Using the automated file utilities

currently available in Cygwin, Windows, and the Internet, the research group looked for

indications of classified information in eighteen executable files (141 million total

bytes) by running the software, disassembling and decompiling the software, and

statically analyzing the executable files.

When running the software they discovered one unhandled exception from the use of a

tab key. When using freeware decompilers, the utilities mostly produced unreadable or

invalid code. When disassembling the software, the utilities produced 9.3 million lines

of raw assembly code, which they attempted to analyze manually. When statically

analyzing the executable files, they searched for the occurrence of character strings

containing classified information.

5.2.2 Results Obtained by Using Findssv

At the close of this research effort we were given the opportunity to run findssv on these

same simulation software files to look for security vulnerabilities. It took findssv less

 127

than a minute to analyze all eighteen files and produce results. Table 9 contains a

summary of the results.

File
Nbr

File Size
(bytes)

Total
Vul.

Large
Unknown

Region
(bytes)

Unused
Zero-
filled
Bytes

Import
Table

Anomaly

Symbol
and

String
Tables

Debug
Table

 1 6,622,124 12 4,381,612 100,726 80/1620 no yes
 2 4,961,816 12 3,356,184 56,560 80/1620 no yes
 3 34,304 0 0 0 40/927 no no
 4 4,841,964 13 3,269,100 76,212 80/1694 no yes
 5 34,816 0 0 0 40/927 no no
 6 23,255,612 14 16,046,652 314,600 180/4663 no yes
 7 23,043,168 12 15,219,658 364,746 100/2495 yes yes
 8 26,864,140 14 19,544,588 413,280 160/8341 no yes
 9 27,627,392 14 19,791,744 443,924 160/5339 no yes
10 6,041,004 12 4,124,076 72,142 80/1556 no yes
11 942,138 0 0 0 60/2533 no yes
12 31,232 0 0 0 40/898 no no
13 4,207,940 13 2,856,260 68,720 80/1570 no yes
14 7,696,928 12 5,083,680 98,792 80/1623 no yes
15 33,280 0 0 0 40/908 no no
16 16,384 1 0 0 80/432 no no
17 4,385,052 13 2,951,452 64,918 80/1594 no yes
18 374,436 10 280,228 5022 40/1026 no yes

Table 9 – Test Summary of Simulation Software Files

The first column in the table is a unique number identifier for each of the files. Because

of security reasons, the actual file names were removed in this document. The second

column is the size of the file in bytes. The sizes range from 16KB to 27MB.

The third column contains the total number of security vulnerabilities that findssv

detected in each file. These vulnerabilities consisted of regions of unused zero-filled

bytes and the use of functions susceptible to buffer overflow attacks. The fgetc(),

fgets(), fscanf(), scanf(), sprintf(), sscanf(), strcat(), strcpy(), and strncpy() functions

 128

were used in twelve of the files. The getchar() and memcpy() functions were used in

eleven of the files. The read() function was used in four of the files. The getc()

function was used in three of the files. The function with the highest risk of buffer

overflow attack, gets(), was used in three of the files.

The fourth column contains the size in bytes of large unknown regions found in many

of the files. These regions all appeared at the end of the files. The regions were not a

part of any known section or table. This is very peculiar to have such large unknown

regions in files that are not intended to install software. The fifth column contains the

total number of bytes in unused zero-filled regions found throughout a file. We

consider this a security vulnerability because these regions could be used to store

malicious code or data.

The sixth column contains values related to an anomaly found with the import table in

each of the files. The first value refers to the size in bytes for the import table as stated

in the data directory in the optional header. The second value refers to the actual size of

the table as found by findssv upon reading the import table contents. This anomaly

could be an error in the linker used to build each one of the files. If an object code

dump utility or program loader trusts the size value in the data directory, the

information read from the import table will be incomplete.

The seventh column tells if the file contained a symbol table and a string table. Only

File #7 contained the two tables. In all of the other files, the linker used by the

 129

simulation development team must have removed the string tables and symbol tables.

Either the programmers requested this using a command line option or it is a default

action by the linker. The eighth column tells if the file contained a debug table.

Thirteen of the files contained debug tables.

Findssv also detected eleven files that used functions from the dynamic link library

intended for Windows socket programming. Such functions permit the transmission

and receipt of information between programs over a network connection.

In summary, these results provide one example of how findssv detected anomalies and

security vulnerabilities in real-world executable files consisting of tens of millions of

bytes in less than a minute of operation. One member of the Auburn security group

who worked on the analysis of the simulation software gave the following comment

after experimenting later with findssv:

"The findssv software would have been very helpful during the analysis of the

simulation software…The findssv software would have been useful in order to help

determine critical portions of the simulation software and what values were contained in

the program. This is especially important when the source code of the simulation model

is not available and the executable itself must be examined for specific values [Chatam

2005]."

 130

5.3 Future Work

The creation of the findssv software and the automation of our security vulnerability

detection methodology is our first success at performing static analysis of executable

files. It showed that a useful analysis could be done; however, we believe there is more

security-related information that can be gleaned from executable files. Further research

in the analysis of executable files is needed to identify more key indicators of software

security vulnerabilities that can be detected by automated means through static file

analysis. In the paragraphs below, we summarize some of our future research initiatives

in this area.

5.3.1 Determining the Compiler and Linker used to build an Executable File

In Section 4 of this document we noted that it may be possible to analyze the general

layout of the sections and tables in a file map of an executable file in order to detect a

pattern that indicates the compiling and linking tools used to generate the file. This

observation needs to be turned into a feature of findssv. First, we could study the layout

patterns in the file maps of executable files generated by known compiler and linker

utilities. Findssv is currently the only software we know of that generates a map of an

executable file. Consequently, we would use findssv to discover information in order to

expand the features of findssv. (This may seem unusual, but we used the early version

of findssv when it was just a PE dissecting tool to figure out where sections and tables

were stored in a PE file.) Second , we could draw relationships between the compiler

and linker utility vendors and the layout patterns. Third, we could formulate a way to

 131

incorporate this logic into findssv so it could report that an executable file was built

using a certain compiler and linker.

5.3.2 Relationship of DLL Function Use to Program Purpose

Findssv only uses the import table as a place to check for the names of functions that

are susceptible to buffer overflow attacks. These function names and their

corresponding DLL files could also be used to determine the general activities

performed by a program. The DLLs and functions used by known programs could be

analyzed and relationships could be drawn among the purpose of the program and the

DLLs and functions it uses. These relationships could then be incorporated into findssv

and searched for in unknown executable files to ascertain their purpose.

5.3.3 More Details on Unknown Regions

We know how to use the start location, size, and relative virtual addresses in the PE file

to build a file map. We also know how to scan that map to detect large unknown

regions. The next step is to study the bytes in those regions to find out what they

contain. Is it executable code or is it data? If it is code, does the program use it? If it is

data, is it in some special format and does it belong to a table that is not a standard

component of the PE format? In other words, do some linkers create their own unique

tables of administrative information and place them at the end of executable files? All

of these questions need to be answered.

 132

5.3.4 Individual Names of Files Stored in Compressed File Regions

Findssv is able to detect regions in an executable file that most likely contain

compressed files used by an installation program. We need to learn about the

compression formats used in those regions so that findssv can uncompress enough of

the data in order to report the list of individual file names and the proposed storage

locations for those files.

5.3.5 Detecting the Use of Standard Functions By Way of Function Call Signatures

The only way that findssv can detect the use of standard C functions that are susceptible

to buffer overflow attacks is by checking the function names in the symbol table and the

import table. If neither of these tables is present in an executable file, findssv cannot

perform the check for buffer overflow vulnerabilities.

An approach is needed that matches a series of particular byte values to a standard

function call in binary code. This series of bytes could then be used as a signature to

detect the use of certain vulnerable functions. Findssv could search for these signatures

in the executable code sections of a PE file and report the use of the corresponding

functions. This feature would allow us to remove the asterisks in the test result tables in

Section 4 of this document and replace them with actual numbers. We could then

analyze the executable files built with Borland and Microsoft linkers to see if those files

contain any buffer overflow vulnerabilities.

 133

Although this approach sounds promising, it has a major dependency. It can only detect

the use of standard C functions for which we have identified a unique call signature. If

a software application uses its own I/O function calls rather than those from the

standard C library, then this approach will reap little benefit.

 134

6. REFERENCES

[@stake 2004a]. @stake. SmartRisk Analyzer Press Release. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[@stake 2004b]. @stake. Technical Specifications for SmartRisk Analyzer. @stake

Inc. www.atstake.com. Accessed on August 28, 2004.

[@stake 2004c]. @stake. SmartRisk Analyzer Product Datasheet. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[@stake 2004d]. @stake. SmartRisk Analyzer Product Whitepaper. @stake Inc.

www.atstake.com. Accessed on August 28, 2004.

[Acar and Michener 2002] Acar, T. and Michener, J. Risk in Features vs. Assurance.

Communications of the ACM, (Aug 2002), 112.

[Ahmad 2003] Ahmad, D. The Rising Threat of Vulnerabilities Due to Integer Errors.

IEEE Security and Privacy, (Jul./Aug. 2003), 77-82.

[Anderson 2001] Anderson, R. Security Engineering. Wiley Computer Publishing,

New York, NY, 2001.

[Andress 2002] Andress, M. Surviving Security. Sams Publishing, Indianapolis, IN,

2002.

[Arbaugh, Fithen and McHugh 2000] Arbaugh, B.; Fithen, B., and McHugh J.

Windows of Vulnerability: A Case Study Analysis. IEEE Computer, 33 (10), Dec

2000.

 135

[Arce 2004] Arce, I. The Kernel Kraze. IEEE Security and Privacy, (May/Jun. 2004).

[Arce and McGraw 2004] Arce, I. and McGraw, G. Why Attacking Systems Is a Good

Idea. IEEE Security and Privacy, (Jul./Aug. 2004).

[Arora and Telang 2005] Arora, A. and Telang, R.. Economics of software

vulnerability disclosure. IEEE Security and Privacy, (Jan./Feb. 2005).

[Barrantes et al. 2003] Barrantes, E.; Palmer, T.; Ackley, D.; Stefanovic, D.; Forrest, S.

and Dai Zovi, D. Randomized instruction set emulation to disrupt binary code injection

attacks. In the Proceedings of the 10th ACM Conference on Computer and

Communication Security (Washington, DC, 2003). ACM, New York, NY, 2003.

[Bhatkar, DuVarney, and Sekar 2003] Bhatkar, S.; DuVarney, D. and Sekar, R.

Address obfuscation: an efficient approach to combat a broad range of memory error

exploits. In the Proceedings of the 12th USENIX Security Symposium (Washington, DC,

August 2003). USENIX, Berkeley, CA, 2003.

[Bishop 2005] Bishop, M. Introduction to Computer Security. Addison Wesley,

Boston, MA, 2005.

[Borland 2004] Borland. C++ Builder. Borland Website. www.borland.com. Accessed

on Dec. 10, 2004.

[Castro 2001] Castro, E. PERL and CGI for the World Wide Web. Peachpit Press,

Berkeley, CA, 2001.

[CERT 2002] CERT Coordination Center. Module 8: Threats, Vulnerabilities, and

Attacks. Information Security for Technical Staff. Carnegie Mellon University.

http://www.andrew.cmu.edu/. Accessed on August 30, 2004.

 136

[Chatam 2005] Chatam W. E-mail message received at my Auburn University account

on January 14, 2005.

[Chen and Wagner 2002] Chen, H. and Wagner, D. MOPS: An Infrastructure for

Examining Security Properties of Software. In the Proceedings of the 2002 Conference

on Computer Communications and Security (Washington, DC, Nov. 17-21). ACM,

New York, NY, 2002.

[Chess and McGraw 2004] Chess, B. and McGraw G. Static analysis for security.

IEEE Security and Privacy, (Nov./Dec. 2004).

[Christey et al. 1999] Christey, S., Baker, D., Hill, W. and Mann, D. The Development

of a Common Vulnerabilities and Exposures List. In the Proceedings of the 2nd

International Workshop on Recent Advances in Intrusion Detection (West Lafayette,

IN, September 1999).

[Christodorescu and Jha 2003] Christodorescu, M. and Jha, S. Static Analysis of

Executables to Detect Malicious Patterns. In the Proceedings of the 13th USENIX

Security Symposium (Washington, DC, August 2003). USENIX, Berkeley, CA, 2003.

[Cohen 1986] Cohen, N. Ada as a second language. McGraw-Hill, New York City,

NY, 1986.

[Cowan et al. 1998] Cowan, C.; Pu, C.; Maier, D.; Hinton, H.; Walpole, J.; Bakke, P.;

Beattie, S.; Grier, A.; Wagle, P. and Zhang Q. StackGuard: Automatic Detection and

Prevention of Buffer-Overflow Attacks. In the Proceedings of the 7th USENIX Security

Symposium (San Antonio, TX, January 1998). USENIX, Berkeley, CA, 1998.

[Cygwin 2004] Cygwin. Cygwin Website. www.Cygwin.com. Accessed on Dec. 10,

2004.

 137

[Dabak, Borate, and Phadke 1999] Dabak, P.; Borate M. and Phadke, S. Undocumented

Windows NT. Wiley and Sons, New York, NY, 1999.

[Dekok 2003] Dekok, A. PScan. Striker-On-Line.

www.striker.ottawa.on.ca/~aland/pscan/. Accessed Oct. 28, 2003.

[Dor, Rodeh, and Sagiv 2003] Dor, N., Rodeh, M., Sagiv, M. CSSV: Towards a

realistic tool for statically detecting all buffer overflows in C. In the Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation (San Diego, CA, 2003). ACM, New York, NY, 2003.

[Du 1998] Du, W. Categorization of Software Errors That Led to Security Breaches. In

the Proceedings of the 21st National Information Systems Security Conference (Crystal

City, VA, 1998).

[DuVarney, Bhatkar, and Venkatakrishnan 2003] DuVarney, D.; Bhatkar, S. and

Venkatakrishnan, V. SELF: A Transparent Security Extension for ELF Binaries. In the

Proceedings of the 2002 New Security Paradigms Workshop (Ascona, Switzerland,

Aug. 18-21, 2003).

[Erickson 2003] Erickson, J. Hacking: The Art of Exploitation. No Starch Press, San

Francisco, CA, 2003.

[Evans 2004] Evans, D. Secure Programming Lint (SPLINT). Department of

Computer Science, University of Virginia. www.splint.org, accessed on Feb. 22, 2004.

[Evans and Larochelle 2002] Evans, D. and D. Larochelle. Improving Security Using

Extensible Lightweight Static Analysis. IEEE Software, no. 2 (Jan./Feb. 2002), 42-51.

[Fusco 2004] Fusco, J. Ten Commands Every Linux Developer Should Know. LINUX

Journal, September 2004.

 138

[Ghosh and McGraw 1998] Ghosh, A. and McGraw G. An approach for certifying

security in software components. In the Proceedings of the 21st National Information

Systems Security Conference (Crystal City, VA, October 1998).

[Ghosh, O’Connor and McGraw 1998] Ghosh, A.; O’Connor, T. and McGraw, G. An

automated approach for identifying potential vulnerabilities in software. In the

Proceedings of the IEEE Symposium on Security and Privacy (Oakland, CA, May

1998).

[Gimpel 2003] Gimpel. PC-Lint Software. Gimpel Software. www.gimpel.com.

Accessed Nov. 1, 2003.

[Goth 2002] Goth, G. Federal Government Calls for More Secure Software Design.

IEEE Software, (Jan./Feb. 2002), 90-94.

[Graff and van Wyk 2003] Graff, M. and van Wyk, K. Secure Coding: Principles and

Practices. O'Reilly and Associates, Sebastopol, CA, 2003.

[Grimes 2001] Grimes, R. Malicious Mobile Code. O'Reilly and Associates,

Sebastopol, CA, 2001.

[Hall and Chapman 2002] Hall, A. and Chapman, R. Correctness by Construction:

Developing a Commercial Secure System. IEEE Software, (Jan./Feb. 2002), 18-25.

[Hamilton, Greaney, and Evans 2003] Hamilton J.; Greaney K.; and Evans G. Defining

a Process for Simulation Software Vulnerability Assessments. CrossTalk, (November

2003).

[Hankerson et al. 2000] Hankerson, D. et al. Coding Theory and Cryptography: The

Essentials, 2nd Edition. Marcel-Dekker, New York, NY, 2000.

 139

[Haugh and Bishop 2003] Haugh, E. and Bishop, M. Testing C programs for buffer

overflow vulnerabilities. In the Proceedings of the 2003 Symposium on Network and

Distributed System Security (San Diego, CA, February 2003).

[HBGary 2004a] HBGary. BugScan 2003 Press Release on July 31, 2003. HBGary

Inc. www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004b] HBGary. BugScan Technical White Paper. HBGary Inc.

www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004c] HBGary. BugScan 2003 User’s Manual. HBGary Inc.

www.hbgary.com. Accessed on 22 July 2004.

[HBGary 2004d] HBGary. BugScan FAQ. HBGary Inc. www.hbgary.com. Accessed

on 22 July 2004.

[Hoglund and McGraw 2004] Hoglund, G. and McGraw, G. Exploiting Software: How

to Break Code. Addison Wesley, Boston, MA, 2004.

[Holzmann 2003] Holzmann, G. UNO Software. Bell Labs.

www.spinroot.com/gerard/. Accessed Nov. 1, 2003.

[Howard 2004] Howard, M. Building more secure software with improved

development processes. IEEE Security and Privacy, (Nov./Dec. 2004).

[Howard and LeBlanc 2002] Howard, M. and LeBlanc, D. Writing Secure Code.

Microsoft Press, Redmond, WA, 2002.

[Huang 2003] Huang, Y. Vulnerabilities in Portable Executable (PE) File Format for

Win32 Architecture. OS Security. www.ossecurity.ca. Accessed on August 30, 2004.

 140

[Hunt and Brubacher 1999] Hunt, G. and Brubacher, D. Detours: Binary Interception

of Win32 Functions. In the Proceedings of the third USENIX NT Symposium (Seattle,

WA, July 12-15, 1999).

[Immix Technology 2004] Immix Technology. GSA Schedule Pricing. Immix

Technology. www.immixtechnology.com. Accessed August 31, 2004.

[InfoWorld 2004]. InfoWorld. Code Catcher in a Box. InfoWorld.

www.infoworld.com. Accessed on August 28, 2004.

[Intel 2004] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual,

Volumes 1-3. http://developer.intel.com/design. Accessed on August 30, 2004.

[Irvine 2003] Irvine, K. Assembly Language for Intel-Based Computers. Prentice Hall,

Upper Saddle River, NJ, 2003.

[Jaworski and Perrone 2000] Jaworski, J. and Perrone, P. Java Security Handbook.

Sams Publishing. Indianapolis, IN, 2000.

[Jim et al. 2002] Jim, T.; Morrisett, G.; Grossman, D.; Hicks, M.; Cheney, J. and

Wang, Y. Cyclone: A safe dialect of C. In the Proceedings of the USENIX Annual

Technical Conference (Monterey, CA, June 2002). USENIX, Berkeley, CA, 2002.

[Jiwnani and Zelkowitz 2004] Jiwnani, K. and Zelkowitz, M. Susceptibility Matrix: A

New Aid to Software Auditing. IEEE Security and Privacy, (Mar./Apr. 2004).

[Kahn and Han 2002] Kahn, K. and Han, J. Composing Security-Aware Software.

IEEE Software, (Jan./Feb. 2002), 34-40.

[Kaspersky 2003] Kaspersky, K. Hacker Disassembling Uncovered. A-List, Wayne,

PA, 2003.

 141

[Khalilzad, White, and Marshall 1999] Khalilzad, Z.; White, J.; and Marshall, A.

Strategic Appraisal: The Changing Role of Information in Warfare. Rand Corporation.

Santa Monica, CA, 1999.

[Kirovski, Drinic, and Potkonjak 2002] Kirovski, D., Drinic, M., and Potkonjak, M.

Enabling trusted software integrity. In the Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating

Systems (San Jose, CA, October 2002).

[Koziol et al. 2004] Koziol, J. et al. The Shellcoder's Handbook. Wiley Publishing,

Indianapolis, IN, 2004.

[Landwehr 1994] Landwehr, C. et al. A Taxonomy of Computer Program Security

Flaws with Examples. ACM Computing Surveys, (Sep 1994).

[Larochelle and Evans 2001] Larochelle, D. and Evans, D. Statistically detecting likely

buffer overflow vulnerabilities. In the Proceedings of the 10th USENIX Security

Symposium (Washington, DC, August 2001).

[LDRA 2003] LDRA. LDRA Testbed Software. LDRA Software Technology.

www.ldra.co.uk/. Accessed Nov. 1, 2003.

[Leveson 1995] Leveson, N. Safeware: System Safety and Computers. Addison

Wesley, Reading, MA, 1995.

[Lewis and Loftus 2005] Lewis, J., and Loftus, W. Java Software Solutions. Addison

Wesley, Boston, MA, 2005.

[Lhee and Chapin 2002] Lhee, K. and Chapin, S. Type-Assisted Dynamic Buffer

Overflow Detection. In the Proceedings of the 2002 USENIX Conference (San

Francisco, CA, Aug. 5-9, 2002).

 142

[Louden 2003] Louden, K. Programming Languages: Principles and Practice, 2nd

Edition. Thomson Brooks/Cole, Pacific Grove, CA, 2003.

[McComb 1997] McComb, G. Web Programming Languages. Wiley and Sons, New

York, NY, 1997.

[McGraw 1998] McGraw, G. Testing for Security During Development: Why we

should scrap penetrate-and-patch. IEEE Aerospace and Electronic Systems, April 1998.

[Microsoft Corporation 1999] Microsoft Corporation. Microsoft Portable Executable

and Common Object File Format Specification Revision 6.0 February 1999. Microsoft

Corporation. www.microsoft.com/whdc/system/platform/firmware. Accessed on Aug.

28, 2004.

[Miller and DeRaadt 1999] Miller, T. and DeRaadt, T. strlcpy and strlcat—consistent,

safe, string copy and concatenation. In the Proceedings of the 1999 USENIX

Conference (Monterey, CA, June 1999). USENIX, Berkeley, CA, 1999.

[Minasi 2001] Minasi, M. Mastering Windows XP Professional. Sybex, San Francisco,

CA, 2001.

[Nazario 2002] Nazario, J. Source Code Scanners for Better Code. LinuxJournal.Com.

www.linuxjournal.com//article.php?sid=5673. Accessed January 26, 2002.

[Neumann 2003] Neumann, P. Information System Security Redux. Communications

of the ACM, (Oct 2003), 126.

[Nutt 2002] Nutt, G. Operating Systems: A Modern Perspective. Addison Wesley,

Boston, MA, 2002.

[Onley 2004] Onley, D. NMCI launches prototype for apps testing. Government

Computer News, (Aug 2004).

 143

[Parasoft 2003] Parasoft. CodeWizard. Parasoft Inc. www.parasoft.com. Accessed

November 1, 2003.

[PC Magazine 2004] PC Magazine. Review of SmartRisk Analyzer 1.0. PC Magazine.

www.pcmag.com. Accessed on August 28, 2004.

[Perry 2004] Perry, M. Introduction to Reverse Engineering Software. Mike Perry

Website. www.acm.uiuc.edu/sigmil/RevEng. Accessed on Dec. 22, 2004.

[Petron 2000] Petron, E. Linux Essential Reference. New Riders Publishing,

Indianapolis, IN, 2000.

[Pietrek 2002a] Pietrek, M. An In-Depth Look into the Win32 Portable Executable File

Format, Part 1. MSDN Magazine, (Feb 2002).

[Pietrek 2002b] Pietrek, M. An In-Depth Look into the Win32 Portable Executable File

Format, Part 2. MSDN Magazine, (Mar 2002).

[Pincus and Baker 2004] Pincus, J. and Baker, B. Beyond Stack Smashing: Recent

Advances in Exploiting Buffer Overruns. IEEE Security and Privacy, (Jul./Aug. 2004).

[Potter and McGraw 2004] Potter, B. and McGraw G. Software security testing. IEEE

Security and Privacy, (Nov./Dec. 2004).

[Prasad and Chiueh 2003] Prasad, M. and Chieueh, T. A Binary Rewriting Defense

Against Stack-based Buffer Overflow Attacks. In the Proceedings of the 2003 USENIX

Conference (San Antonio, TX, Jun. 9-14, 2003).

[Pressman 2005] Pressman, R. Software Engineering: A Practitioner's Approach, 6th

Edition. McGraw-Hill, Boston, MA., 2005.

[Reasoning 2003] Reasoning. Illuma Software. Reasoning Inc. www.reasoning.com.

Accessed November 1, 2003.

 144

[Rescorla 2005] Rescorla, E. Is finding security holes a good idea. IEEE Security and

Privacy, (Jan./Feb. 2005).

[Scambray, McClure, and Kurtz 2001] Scambray, J.; McClure, S.; and Kurtz, G.

Hacking Exposed, 3rd Edition. Osborne/McGraw-Hill, Berkeley, CA., 2001.

[Schaeffer 2002] Schaeffer, F. Surfing Anonymously. Data Becker, Newton, MA.,

2002.

[Schiffman 2001] Schiffman, M. Hacker's Challenge. Osborne/McGraw-Hill,

Berkeley, CA., 2001.

[Schildt 2000] Schildt, H. C: The Complete Reference, 4th Edition. McGraw-Hill,

Berkeley, CA., 2000.

[Schwarz, Debray, and Andrews 2002] Schwarz, B.; Debray, S.; and Andrews, G.

Disassembly of executable code revisited. In the Proceedings of the 2002 Working

Conference on Reverse Engineering (Richmond, VA, Oct. 29-Nov.1, 2002).

[Secure Software 2004a] Secure Software. Rough Auditing Tool for Security (RATS).

Secure Software Inc. www.securesoftware.com. Accessed July 22, 2004.

[Secure Software 2004b] Secure Software. Code Security Evaluation. Secure Software

Inc. www.securesoftware.com. Accessed August 31, 2004.

[Shah 2004] Shah, S. One-Way Web Hacking: Attacking Web and Application Servers.

Net Square. http://www.net-square.com/papers/one_way/one_way.html. net-

square, 2004.

[Short 2002] Short, C. Source Code Revelation Vulnerabilities. SANS Institute.

www.sans.org. SANS Institute, 2002.

 145

[Sommerville 2001] Sommerville, I. Software Engineering, 6th Edition. Addison-

Wesley, New York, NY., 2001.

[Soo Hoo, Sudbury and Jaquith 2001] Soo Hoo, K.; Sudbury, A. and Jaquith, A.

Tangible ROI through Secure Software Engineering. Secure Business Quarterly, (Vol

1:2).

[Spafford and Weeber 1992] Spafford, E. and Weeber, S. Software forensics: can we

track code to its authors. In the Proceedings of the 15th National Information Systems

Security Conference (Washington, DC, October 1992).

[SPI Dynamics 2003] SPI Dynamics. WebInspect Software. SPI Dynamics Inc.

www.spidynamics.com. Accessed November 1, 2003.

[Splaine 2002] Splaine, S. Testing Web Security. Wiley Publishing, Indianapolis, IN,

2002.

[Utimaco 2004] Utimaco Safeware. White Paper on Vulnerabilities in Pure Software

Security Systems. Utimaco Safeware. www.utimaco.com. Accessed on August 30,

2004.

[Viega et al. 2000] Viega, J.; Block, J.; Kohno, T.; and McGraw, G. ITS4: A Static

Vulnerability Scanner for C and C++ Code. Cigital Inc. www.cigital.com/its4/. 2000.

[Viega and McGraw 2002] Viega, J. and McGraw, G. Building Secure Software.

Addison-Wesley, Boston, MA, 2002.

[Viega and Messier 2003] Viega, J. and Messier, M. Secure Programming Cookbook

for C and C++. O'Reilly, Sebastopol, CA, 2003.

[Visual Studio 2004] Visual Studio. Microsoft Visual Studio Website.

msdn.microsoft.com/visualc. Accessed on Dec. 10, 2004.

 146

[Wagner 2003] Wagner, D. Modelchecking Program for Security Properties (MOPS).

Computer Science Division, University of California Berkeley.

www.cs.berkeley.edu/~daw/mops/. Accessed October 28, 2003.

[Wagner et al. 2000] Wagner, D.; J. Foster; E. Brewer; and A. Aiken. A First Step

Towards Automated Detection of Buffer Overrun Vulnerabilities. In the Proceedings of

the 2000 Network and Distributed Security Symposium (San Diego, CA, Feb. 3-4,

2000). ISOC.

[Wall, Watson, and Whitis 1999] Wall, K.; Watson, M.; and Whitis, M. Linux

Programming Unleashed. Sams Publishing, Indianapolis, IN, 1999.

[Wheeler 2003] Wheeler, D. Flawfinder. David A. Wheeler.

www.dwheeler.com/flawfinder/. Accessed October 28, 2003.

[Wheeler 2004] Wheeler, D. Secure Programming for Linux and Unix. David Wheeler

Website. www.dwheeler.com. Accessed on Feb. 22, 2004.

[Whittaker 2004] Whittaker, K. Why Secure Applications are Difficult to Write. IEEE

Security and Privacy, (Jan./Feb. 2003).

[Whittaker and Thompson 2004] Whittaker, J. and Thompson, H. How to Break

Software Security. Addison Wesley, Boston, MA, 2004

[Wilander and Kamkar 2002] Wilander, J. and Kamkar, M. A comparison of publicly

available tools for static intrusion prevention. In the Proceedings of the 7th Nordic

Workshop on Secure IT Systems (Karlstad, Sweden, November 2002).

[Wong 2001] Wong, K. Introduction to Hacking Methods and Ways of Counter-

Measure. Internet Industry Association. www.security.iia.net.au. October 21, 2001.

Accessed on August 30, 2004.

 147

[Woodmann 2004] Woodmann, C. Reverser’s Archive Pages of Reverse Engineering.

Woodman Website. www.woodmann.com/fravia. Accessed on Dec. 12, 2004.

[Yoder and Barcalow 1997] Yoder, J. and Barcalow, J. Architectural Patterns for

Enabling Application Security. In the Proceedings of the Fourth Conference on Pattern

Languages of Programming Conference (Monticello, IL, September 1997).

[Yong and Horwitz 2003] Yong, S. and Horwitz, S. Protecting C programs from

attacks via invalid pointer dereferences. In the Proceedings of the 9th European

Software Engineering Conference (Helsinki, Finland, 2003).

[Zacker 2001] Zacker, C. PC Hardware: The Complete Reference. McGraw-Hill,

Berkelely, CA, 2001.

 148

APPENDICES

 149

7. APPENDIX A – INSECURE CODING PRACTICES TO AVOID [Graff and
van Wyk 2003]

1) Don't write code that uses relative filenames. Such names can be redirected to
another location.

2) Don't refer to a file by its name twice in the same program. Such code can cause

race conditions on which physical file is being referenced.

3) Don't invoke untrusted programs from within trusted ones.

4) Avoid using setuid or similar mechanisms whenever possible. In particular, do
not setuid to an existing identity/profile that has interactive login capabilities.

5) Don't assume that your users are not malicious. This means to double-check

every piece of external information read by your software.

6) Don't dump core. Instead, design your program to degrade gracefully.

7) Don't assume success. In other words, check the return status of all functions
calls.

8) Don't confuse random with pseudo-random. Any cryptological algorithm

requires a sound random number generator.

9) Don't invoke a shell or a command line from within your program.

10) Don't authenticate on untrusted criteria. This means to not blindly accept the
identity of a user or process based on an IP address, a MAC address, or an e-
mail address.

11) Don't use world-writable storage, even temporarily. This refers to a common

storage area offered by an operating system.

12) Don't trust the integrity of user-writable storage. Hackers can tamper with it.

13) Don't keep sensitive data in a database without password protection.

 150

14) Don't echo passwords or display them on the user's screen for any reason.

15) Don't issue passwords via e-mail.

16) Don't programmatically distribute sensitive information via e-mail.

17) Don't code user names or passwords into an application.

18) Don't store unencrypted passwords (or other highly sensitive information) on
disk in an easy-to-read format, such as straight unencrypted text.

19) Don't transmit unencrypted passwords (or other highly sensitive information)

between systems in an easy-to-read format, such as straight (unencrypted) text.

20) Don't rely on host-level file protection mechanisms as the sole means of
preventing unauthorized file access. Such controls can be easily compromised.

21) Don't make access decisions based on environment variables or command-line

parameters passed in at run-time.

22) Avoid, if reasonable, storing the application or key data on an NFS-mounted
structure.

23) Avoid, as much as you can, relying on third-party software or services

for critical operations. Such decisions result in dependencies and additional
risks

 151

8. APPENDIX B – LIST OF COMMONLY USED HACKER TOOLS
 [Erickson 2003, Fusco 2004, Hoglund and McGraw 2004, Petron 2000]

NAME PLATFORM OBTAIN HACKER PURPOSE
ADMutate Linux Freeware XOR encrypt shellcode
APISpy Windows Freeware Log function calls made by running

programs
DebugView Windows Freeware Monitor kernel mode and Win32

debug output
depends Windows Windows Show a dll dependency tree
disasm Windows Microsoft Disassemble an instruction in your

own program
dissembler Linux Freeware Generate printable ASCII bytecode

from an existing piece of bytecode
dsniff Linux Freeware Sniff packets and looks for user

names and passwords
dumpbin Windows Microsoft Identify functions imported by a

program
DyninstAPI Multiple Freeware Insert code patches in running

programs
exehdr Linux Linux Display header of an executable file
fenris Linux Linux Show runtime trace of a process
filemon Windows Freeware Monitor and display file system

activity
ffp Linux Freeware Use fuzzy footprint technology to

alter crypto keys
file Linux Linux Identify the general type of

information in a file
fuser Linux Linux Tell what processes have opened a

given file
gdb Linux Linux Disassemble and debug binary files
IDA 4.1 Windows Freeware Disassemble Intel32 binary code
John the
Ripper

Linux Freeware Detect weak passwords

ltrace Linux Linux Show dll calls from a process
nasm Both Freeware Assemble 80x86 instructions into

many Windows and Linux formats
netcat Linux Linux Read and write data across network

 152

connections using TCP/IP
netstat Windows Windows Audit a system for local sockets
nemesis Linux Freeware Inject packets from the command

line
nm Linux Linux List symbols in an object code or

executable file
objdump Linux Linux Display contents and disassemble

object code
od Linux Linux Convert a binary file's contents to

octal, decimal or hex format (See
xxd)

OllyObg Windows Freeware Analyze binary code through dumps
ps -o Linux Linux Access many details of a running

process
regmon Windows Freeware Monitor which applications access

the registry
SoftICE Windows Compuware Provide kernel mode debugging
Speedbreak Linux Freeware Set breakpoints in process and data

areas
strace Linux Linux Show system calls from a process
strings Linux Linux Look for ASCII strings embedded in

executable files
tcpdump Linux Freeware Print headers of packets sensed on a

network interface (packet sniffer)
tdump Windows Borland Identify functions imported by a

program
time Linux Linux Use to understand the runtime

performance of a process
truss Solaris Solaris Track library API calls of a process
windump Windows Freeware Print headers of packets sensed on a

network interface (packet sniffer)
xxd Linux Linux Convert a binary file's contents to

octal, decimal or hexadecimal
format, without disturbing the byte
ordering (See od tool)

 153

9. APPENDIX C – TEST RESULTS FROM ANALYZING SPECIFIC
EXAMPLE FILES

9.1 vulnerable - Object code compiled using Cygwin Gnu g++

__

FILE NAME: vulnerable-gpp.o

==== File Fact Summary ====

 - Object code file in Windows NT common object file format (COFF)
 - Actual file size: 1657 bytes
 - Created on Wed Dec 31 18:00:00 1969
 - Target CPU: Intel 386 or later compatibles
 - Not an executable image file
 - Targeted for a 32-bit-word architecture
 - Contains a string table with 6 entries
 - Contains a symbol table with 25 entries

==== End of File Fact Summary ====

No anomalies were found

!!!! Security Vulnerabilities and Risks!!!!

 - Reveals that it was built from one source code file:
vulnerable.cpp
 - Uses 13 standard C functions susceptible to buffer overflow
attacks: fscanf (Very high risk), getopt (Very high risk), gets (Ultra
high risk), realpath (Very high risk), scanf (Very high risk), sprintf
(Very high risk), sscanf (Very high risk), strcat (Very high risk),
strcpy (Very high risk), vfscanf (Very high risk), vscanf (Very high
risk), vsprintf (Very high risk), vsscanf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

 154

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 0 14 vulnerable-gpp.o

9.2 vulnerable - Compiled and linked using Borland C++ Builder 5

__

FILE NAME: vulnerable-borland.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 66560 bytes
 - Created on Tue Feb 1 16:25:56 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Export, Import,
Resource, Relocation, TLS
 - Contains no string table
 - Contains no symbol table
 - Exports functions using the file name vulnerable.exe
 - Imports functions from
 -- KERNEL32.DLL (WinNT base API client)
 -- USER32.DLL (Windows NT user API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
TLS Table (.tls section) (?) is 4 bytes in size when actually it is
512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2460 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

 155

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 vulnerable-borland.exe

9.3 vulnerable - Compiled and linked using Cygwin Gnu g++

__

FILE NAME: vulnerable-gpp.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 7168 bytes
 - Created on Tue Feb 1 16:01:34 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- cygwin1.dll (CYGWIN GNU base dynamic link library)
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 128 bytes for that section

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 24 standard C functions susceptible to buffer overflow
attacks: bcopy (Low risk), fgetc (Medium risk), fgets (Low risk),

 156

fscanf (Very high risk), getc (Medium risk), getopt (Very high risk),
getopt_long (Very high risk), getpass (Very high risk), gets (Ultra
high risk), memcpy (Low risk), read (Medium risk), realpath (Very high
risk), scanf (Very high risk), snprintf (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk), vfscanf (Very high risk), vscanf (Very
high risk), vsnprintf (Low risk), vsprintf (Very high risk), vsscanf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 1 24 vulnerable-gpp.exe

9.4 vulnerable - Compiled and linked using Microsoft Visual Studio

__

FILE NAME: vulnerable-vs.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 45056 bytes
 - Created on Tue Feb 1 16:17:17 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import, Import
Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

**** Anomalies ****

 157

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 212 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1165 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 vulnerable-vs.exe

9.5 findssv - Compiled and linked using Borland C++ Builder 5

__

FILE NAME: findssv.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [56 bytes]
 119 +--+
 120 +--+
 (** Zero-filled region **) [392 bytes]
 511 +--+
 512 +--+
 PE Signature [4 bytes]
 515 +--+
 516 +--+
 File Header [20 bytes]
 535 +--+
 536 +--+

 158

 Optional Header [224 bytes]

 759 +--+
 760 +--+
 Section Table [320 bytes]
 1079 +--+
 1080 +--+
 (** Zero-filled region **) [456 bytes]
 1535 +--+
 1536 +--+
 .text section [973312 bytes]
 974847 +--+
 974848 +--+
 .data section [167424 bytes]
 1142271 +--+
 1142272 +--+
 .tls section [512 bytes]
 1142783 +--+
 1142784 +--+
 .rdata section [512 bytes]
 1143295 +--+
 1143296 +--+
 .idata section [1660 bytes]
 1144955 +--+
 1144956 +--+
 (** Zero-filled region **) [388 bytes]
 1145343 +--+
 1145344 +--+
 .edata section [107 bytes]
 1145450 +--+
 1145451 +--+
 (** Zero-filled region **) [405 bytes]
 1145855 +--+
 1145856 +--+
 .rsrc section [512 bytes]
 1146367 +--+
 1146368 +--+
 .reloc section [31744 bytes]
 1178111 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Export Table (.edata section) [107 bytes]" at address
1145344
 by inserting ".edata section [107 bytes]"
 - Changed "Import Table (.idata section) [1660 bytes]" at address
1143296
 by inserting ".idata section [1660 bytes]"
 - Changed "TLS Table (.tls section) (?) [4 bytes]" at address
1142784
 by inserting ".rdata section [512 bytes]"
 - Changed "Resource Table (.rsrc section) [512 bytes]" at address
1145856
 by inserting ".rsrc section [512 bytes]"

 159

 - Changed "Relocation Table (.reloc section) [31724 bytes]" at
address 1146368
 by inserting ".reloc section [31744 bytes]"
 - Changed "(Contents not known) [392 bytes]" at address 120
 by inserting "(** Zero-filled region **) [392 bytes]"
 - Changed "(Contents not known) [456 bytes]" at address 1080
 by inserting "(** Zero-filled region **) [456 bytes]"
 - Changed "(Contents not known) [388 bytes]" at address 1144956
 by inserting "(** Zero-filled region **) [388 bytes]"
 - Changed "(Contents not known) [405 bytes]" at address 1145451
 by inserting "(** Zero-filled region **) [405 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 1178112 bytes
 - Created on Wed Jan 26 21:12:31 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Export, Import,
Resource, Relocation, TLS
 - Contains no string table
 - Contains no symbol table
 - Exports functions using the file name findssv.exe
 - Imports functions from
 -- KERNEL32.DLL (WinNT base API client)
 -- USER32.DLL (Windows NT user API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
TLS Table (.tls section) (?) is 4 bytes in size when actually it is
512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 31724 bytes in size when actually
it is 31744 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

 160

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 findssv.exe

9.6 findssv - Compiled and linked using Cygwin Gnu g++

__

FILE NAME: findssv.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [7 bytes]
 127 +--+
 128 +--+
 PE Signature [4 bytes]
 131 +--+
 132 +--+
 File Header [20 bytes]
 151 +--+
 152 +--+
 Optional Header [224 bytes]
 375 +--+
 376 +--+
 Section Table [200 bytes]
 575 +--+
 576 +--+
 (** Zero-filled region **) [448 bytes]
 1023 +--+
 1024 +--+
 .text section [594944 bytes]
 595967 +--+
 595968 +--+
 .data section [4608 bytes]
 600575 +--+
 600576 +--+

 161

 .rdata section [78848 bytes]
 679423 +--+
 679424 +--+
 .idata section [1387 bytes]
 680810 +--+
 680811 +--+
 More of Import Table (.idata section) [281 bytes]
 681091 +--+
 681092 +--+
 (** Zero-filled region **) [380 bytes]
 681471 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [1668 bytes]" at address
679424
 by inserting ".idata section [1387 bytes]"
 - Changed "(Contents not known) [448 bytes]" at address 576
 by inserting "(** Zero-filled region **) [448 bytes]"
 - Changed "(Contents not known) [380 bytes]" at address 681092
 by inserting "(** Zero-filled region **) [380 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 681472 bytes
 - Created on Tue Jan 25 19:32:32 2005
 - Target CPU: Intel 386 or later compatibles
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- cygwin1.dll (CYGWIN GNU base dynamic link library)
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 5392 bytes for that section

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 162

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 1 7 findssv.exe

9.7 findssv - Compiled and linked using Microsoft Visual Studio

__

FILE NAME: findssv.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [95 bytes]
 215 +--+
 216 +--+
 PE Signature [4 bytes]
 219 +--+
 220 +--+
 File Header [20 bytes]
 239 +--+
 240 +--+
 Optional Header [224 bytes]
 463 +--+
 464 +--+
 Section Table [120 bytes]
 583 +--+

 163

 584 +--+
 (Contents not known) [3512 bytes]
 4095 +--+
 4096 +--+
 .text section [331776 bytes]
 335871 +--+
 335872 +--+
 .rdata section [32768 bytes]
 368639 +--+
 335872 +--+
 (No additional details) [28968 bytes]
 364839 +--+
 364840 +--+
 Import Table (.idata section) [1626 bytes]
 366465 +--+
 366466 +--+
 (No additional details) [2174 bytes]
 368639 +--+
 368640 +--+
 .data section [53248 bytes]
 421887 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [40 bytes]" at address
364840
 by inserting "Import Table (.idata section) [1626 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 421888 bytes
 - Created on Fri Jan 28 13:34:56 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import, Import
Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 164

 - The file indicates an import address table consisting of 292 bytes
exists starting at address 335872; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1626 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 findssv.exe

9.8 Cygwin Gnu cygwin1.dll Dynamic Link Library

__

FILE NAME: cygwin1.dll

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 226272 bytes for that
section
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1104 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 43792 bytes in size when actually
it is 44032 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Has a section named .advapi32_text whose contents can be both
written to and executed

 165

 - Has a section named .netapi32_text whose contents can be both
written to and executed
 - Has a section named .ntdll_text whose contents can be both written
to and executed
 - Has a section named .psapi_text whose contents can be both written
to and executed
 - Has a section named .secur32_text whose contents can be both
written to and executed
 - Has a section named .user32_text whose contents can be both
written to and executed
 - Has a section named .wsock32_text whose contents can be both
written to and executed
 - Has a section named .ws2_32_text whose contents can be both
written to and executed
 - Has a section named .iphlpapi_text whose contents can be both
written to and executed
 - Has a section named .ole32_text whose contents can be both written
to and executed
 - Has a section named .kernel32_text whose contents can be both
written to and executed
 - Has a section named .winmm_text whose contents can be both written
to and executed

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 12 cygwin1.dll

9.9 helloworld - Compiled and linked using Borland C++ Builder 5

__

FILE NAME: helloworld-borland.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]

 166

 63 +--+
 64 +--+
 MS-DOS Stub [56 bytes]
 119 +--+
 120 +--+
 (** Zero-filled region **) [392 bytes]
 511 +--+
 512 +--+
 PE Signature [4 bytes]
 515 +--+
 516 +--+
 File Header [20 bytes]
 535 +--+
 536 +--+
 Optional Header [224 bytes]
 759 +--+
 760 +--+
 Section Table [320 bytes]
 1079 +--+
 1080 +--+
 (** Zero-filled region **) [456 bytes]
 1535 +--+
 1536 +--+
 .text section [79872 bytes]
 81407 +--+
 81408 +--+
 .data section [23040 bytes]
 104447 +--+
 104448 +--+
 .tls section [512 bytes]
 104959 +--+
 104960 +--+
 .rdata section [512 bytes]
 105471 +--+
 105472 +--+
 .idata section [1450 bytes]
 106921 +--+
 106922 +--+
 (** Zero-filled region **) [86 bytes]
 107007 +--+
 107008 +--+
 .edata section [110 bytes]
 107117 +--+
 107118 +--+
 (** Zero-filled region **) [402 bytes]
 107519 +--+
 107520 +--+
 .rsrc section [512 bytes]
 108031 +--+
 108032 +--+
 .reloc section [4608 bytes]
 112639 +--+

---- End of File Map ----

 167

NOTES ON FILE MAP CHANGES:
 - Changed "Export Table (.edata section) [110 bytes]" at address
107008
 by inserting ".edata section [110 bytes]"
 - Changed "Import Table (.idata section) [1450 bytes]" at address
105472
 by inserting ".idata section [1450 bytes]"
 - Changed "TLS Table (.tls section) (?) [4 bytes]" at address 104960
 by inserting ".rdata section [512 bytes]"
 - Changed "Resource Table (.rsrc section) [512 bytes]" at address
107520
 by inserting ".rsrc section [512 bytes]"
 - Changed "Relocation Table (.reloc section) [4412 bytes]" at
address 108032
 by inserting ".reloc section [4608 bytes]"
 - Changed "(Contents not known) [392 bytes]" at address 120
 by inserting "(** Zero-filled region **) [392 bytes]"
 - Changed "(Contents not known) [456 bytes]" at address 1080
 by inserting "(** Zero-filled region **) [456 bytes]"
 - Changed "(Contents not known) [86 bytes]" at address 106922
 by inserting "(** Zero-filled region **) [86 bytes]"
 - Changed "(Contents not known) [402 bytes]" at address 107118
 by inserting "(** Zero-filled region **) [402 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 112640 bytes
 - Created on Wed Jan 26 17:27:01 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Export, Import,
Resource, Relocation, TLS
 - Contains no string table
 - Contains no symbol table
 - Exports functions using the file name helloworld.exe
 - Imports functions from
 -- KERNEL32.DLL (WinNT base API client)
 -- USER32.DLL (Windows NT user API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped

 168

 - The data directory table in the optional header states that the
TLS Table (.tls section) (?) is 4 bytes in size when actually it is
512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4412 bytes in size when actually
it is 4608 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

---------- DOS Header ----------
DOS signature: MZ
Bytes on last page of file: 80
Pages in file: 2
Relocations: 0
Size of header in paragraphs: 4
Minimum extra paragraphs: 15
Maximum extra paragraphs: 65535
Initial (relative) SS value: 0
Initial SP value: 184
Checksum: 0
Initial IP value: 0
Initial (relative) CS value: 0
File address of relocation table: 64
Overlay number: 26
Reserved words: 0 0 0 0
OEM identifier: 0
OEM information: 0
Reserved words: 0 0
Offset to PE signature and header: 512

-------- End of DOS Header --------

---------- File Header ----------
Target CPU: Intel 386 or later compatibles
Number of Sections: 8
Time Date Stamp: Wed Jan 26 17:27:01 2005
Ptr to Symbol Table: 0
Number of Symbols: 0
Size of Optional Header: 224
Characteristics:
 - This is an executable image
 - COFF line numbers have been removed
 - COFF symbol table entries for local symbols have been removed
 - Software is targeted for a 32-bit-word architecture
 - Debugging information has been removed from the image file

--------- End of File Header -------

---------- Optional Header ----------
Magic: 267 (PE32 executable)
Linker Version: 5.0

 169

Size of Code: 81920
Size of Initialized Data: 28672
Size of Uninitialized Data: 0
Address of Entry Point: 4096
Base of Code: 4096
Base of Data: 86016
Image Base: 4194304
Section Alignment: 4096
File Alignment: 512
OS Version: 4.0
Major Image Version: 0
Minor Image Version: 0
Major Subsystem Version: 4
Minor Subsystem Version: 0
Size of Image: 143360
Size of Headers: 1536
Check Sum: 0
Required Windows Subsystem: Runs in the Windows character subsystem
DLL Characteristics: 0
Size of Stack Reserve: 1048576
Size of Stack Commit: 8192
Size of Heap Reserve: 1048576
Size of Heap Commit: 4096
Loader Flags: 0
Nbr of RVS and Sizes: 16
Data Directory:
 Export Table RVA: 0126976 Size: 110
 Import Table RVA: 0122880 Size: 1450
 Resource Table RVA: 0131072 Size: 512
 Exception Table RVA: 0000000 Size: 0
 Certificate Table RVA: 0000000 Size: 0
 Base Relocation Table RVA: 0135168 Size: 4412
 Debug RVA: 0000000 Size: 0
 Architecture RVA: 0000000 Size: 0
 Global Ptr RVA: 0000000 Size: 0
 TLS Table RVA: 0118784 Size: 24
 Load Config Table RVA: 0000000 Size: 0
 Bound Import RVA: 0000000 Size: 0
 Import Address Table RVA: 0000000 Size: 0
 Delay Import Descriptor RVA: 0000000 Size: 0
 COM+ Runtime Header RVA: 0000000 Size: 0
 Reserved RVA: 0000000 Size: 0

-------- End of Optional Header --------

---- Section Table (8 entries) ----

Entry#0:
 Full Name: .text
 Stored name: .text
 Virtual Size: 81920
 Virtual Address: 4096
 Size of Raw Data: 79872
 Ptr to Raw Data: 1536
 Ptr to Relocations: 0

 170

 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains executable code
 - Can be executed as code
 - Can be read from
 - Cannot be written to

Entry#1:
 Full Name: .data
 Stored name: .data
 Virtual Size: 28672
 Virtual Address: 86016
 Size of Raw Data: 23040
 Ptr to Raw Data: 81408
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

Entry#2:
 Full Name: .tls
 Stored name: .tls
 Virtual Size: 4096
 Virtual Address: 114688
 Size of Raw Data: 512
 Ptr to Raw Data: 104448
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

Entry#3:
 Full Name: .rdata
 Stored name: .rdata
 Virtual Size: 4096
 Virtual Address: 118784
 Size of Raw Data: 512
 Ptr to Raw Data: 104960
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be shared in memory

 171

 - Can be read from
 - Cannot be written to

Entry#4:
 Full Name: .idata
 Stored name: .idata
 Virtual Size: 4096
 Virtual Address: 122880
 Size of Raw Data: 1536
 Ptr to Raw Data: 105472
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Cannot be written to

Entry#5:
 Full Name: .edata
 Stored name: .edata
 Virtual Size: 4096
 Virtual Address: 126976
 Size of Raw Data: 512
 Ptr to Raw Data: 107008
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Cannot be written to

Entry#6:
 Full Name: .rsrc
 Stored name: .rsrc
 Virtual Size: 4096
 Virtual Address: 131072
 Size of Raw Data: 512
 Ptr to Raw Data: 107520
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Cannot be written to

Entry#7:
 Full Name: .reloc
 Stored name: .reloc
 Virtual Size: 8192

 172

 Virtual Address: 135168
 Size of Raw Data: 4608
 Ptr to Raw Data: 108032
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be shared in memory
 - Can be read from
 - Cannot be written to

-------- End of Section Table --------

No Symbol Table to display

No String Table to display

---- Export Table ----

Directory Table:
 Characteristics: 0
 Time Date Stamp: Wed Dec 31 18:00:00 1969
 Major Version: 0
 Major Version: 0
 Name of DLL: helloworld.exe
 Starting Ordinal Number: 1
 Number of Function Addresses: 2
 Number of Names: 2
 Location of Address Table: 0x1f028
 Location of Name Ptr Table: 0x1f030
 Location of Ordinal Table: 0x1f038

Export Name Table (2 names):
 Entry#1: __GetExceptDLLinfo
 Entry#2: ___CPPdebugHook

Forwarder Name Table (0 names):

---- End of Export Table ----

---- Import Table ----
Import Directory Table:

Entry#0:
 RVA of Lookup Table: 122940
 Time Date Stamp: Tue Apr 14 17:09:36 1970
 Start Index of Forwarder Chain: 25886720
 DLL Name: KERNEL32.DLL
 RVA of Import Lookup Table: 0x1e10c
 Import Lookup Table Contents:
 CloseHandle
 CreateFileA
 EnterCriticalSection

 173

 ExitProcess
 GetACP
 GetCPInfo
 GetCommandLineA
 GetCurrentThreadId
 GetEnvironmentStrings
 GetFileType
 GetLastError
 GetLocalTime
 GetLocaleInfoA
 GetModuleFileNameA
 GetModuleHandleA
 GetOEMCP
 GetProcAddress
 GetProcessHeap
 GetStartupInfoA
 GetStdHandle
 GetStringTypeA
 GetStringTypeW
 GetSystemDefaultLangID
 GetUserDefaultLCID
 GetVersion
 GetVersionExA
 GlobalMemoryStatus
 HeapAlloc
 HeapFree
 IsValidLocale
 LCMapStringA
 LeaveCriticalSection
 LoadLibraryA
 MultiByteToWideChar
 RaiseException
 ReadFile
 RtlUnwind
 SetConsoleCtrlHandler
 SetFilePointer
 SetHandleCount
 SetLastError
 SetThreadLocale
 TlsAlloc
 TlsFree
 TlsGetValue
 TlsSetValue
 UnhandledExceptionFilter
 VirtualAlloc
 VirtualFree
 WideCharToMultiByte
 WriteFile

Entry#1:
 RVA of Lookup Table: 123356
 Time Date Stamp: Wed Dec 31 20:16:32 1969
 Start Index of Forwarder Chain: 4305980
 DLL Name: USER32.DLL
 RVA of Import Lookup Table: 0x1e1ec

 174

 Import Lookup Table Contents:
 EnumThreadWindows
 MessageBoxA
 wsprintfA

---- End of Import Table ----

No Debug Table data to display

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 helloworld-borland.exe

9.10 helloworld - Compiled and linked using Cygwin Gnu g++

__

FILE NAME: helloworld-gnu.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [7 bytes]
 127 +--+
 128 +--+
 PE Signature [4 bytes]
 131 +--+
 132 +--+
 File Header [20 bytes]
 151 +--+
 152 +--+
 Optional Header [224 bytes]
 375 +--+
 376 +--+
 Section Table [200 bytes]

 175

 575 +--+
 576 +--+
 (** Zero-filled region **) [448 bytes]
 1023 +--+
 1024 +--+
 .text section [176128 bytes]
 177151 +--+
 177152 +--+
 .data section [4608 bytes]
 181759 +--+
 181760 +--+
 .rdata section [35840 bytes]
 217599 +--+
 217600 +--+
 .idata section [1183 bytes]
 218782 +--+
 218783 +--+
 More of Import Table (.idata section) [241 bytes]
 219023 +--+
 219024 +--+
 (** Zero-filled region **) [112 bytes]
 219135 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [1424 bytes]" at address
217600
 by inserting ".idata section [1183 bytes]"
 - Changed "(Contents not known) [448 bytes]" at address 576
 by inserting "(** Zero-filled region **) [448 bytes]"
 - Changed "(Contents not known) [112 bytes]" at address 219024
 by inserting "(** Zero-filled region **) [112 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 219136 bytes
 - Created on Wed Jan 26 17:24:34 2005
 - Target CPU: Intel 386 or later compatibles
 - Debugging information has been removed
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- cygwin1.dll (CYGWIN GNU base dynamic link library)
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

 176

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 4464 bytes for that section

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

---------- DOS Header ----------
DOS signature: MZ
Bytes on last page of file: 144
Pages in file: 3
Relocations: 0
Size of header in paragraphs: 4
Minimum extra paragraphs: 0
Maximum extra paragraphs: 65535
Initial (relative) SS value: 0
Initial SP value: 184
Checksum: 0
Initial IP value: 0
Initial (relative) CS value: 0
File address of relocation table: 64
Overlay number: 0
Reserved words: 0 0 0 0
OEM identifier: 0
OEM information: 0
Reserved words: 0 0
Offset to PE signature and header: 128

-------- End of DOS Header --------

---------- File Header ----------
Target CPU: Intel 386 or later compatibles
Number of Sections: 5
Time Date Stamp: Wed Jan 26 17:24:34 2005
Ptr to Symbol Table: 0
Number of Symbols: 0
Size of Optional Header: 224
Characteristics:
 - Base relocations have been stripped (default linker action),
 so file must be loaded at preferred base address
 - This is an executable image
 - COFF line numbers have been removed

 177

 - COFF symbol table entries for local symbols have been removed
 - Debugging information has been removed from the image file

--------- End of File Header -------

---------- Optional Header ----------
Magic: 267 (PE32 executable)
Linker Version: 2.56
Size of Code: 176128
Size of Initialized Data: 218112
Size of Uninitialized Data: 4608
Address of Entry Point: 4096
Base of Code: 4096
Base of Data: 180224
Image Base: 4194304
Section Alignment: 4096
File Alignment: 512
OS Version: 4.0
Major Image Version: 1
Minor Image Version: 0
Major Subsystem Version: 4
Minor Subsystem Version: 0
Size of Image: 237568
Size of Headers: 1024
Check Sum: 235824
Required Windows Subsystem: Runs in the Windows character subsystem
DLL Characteristics: 0
Size of Stack Reserve: 2097152
Size of Stack Commit: 4096
Size of Heap Reserve: 1048576
Size of Heap Commit: 4096
Loader Flags: 0
Nbr of RVS and Sizes: 16
Data Directory:
 Export Table RVA: 0000000 Size: 0
 Import Table RVA: 0233472 Size: 1424
 Resource Table RVA: 0000000 Size: 0
 Exception Table RVA: 0000000 Size: 0
 Certificate Table RVA: 0000000 Size: 0
 Base Relocation Table RVA: 0000000 Size: 0
 Debug RVA: 0000000 Size: 0
 Architecture RVA: 0000000 Size: 0
 Global Ptr RVA: 0000000 Size: 0
 TLS Table RVA: 0000000 Size: 0
 Load Config Table RVA: 0000000 Size: 0
 Bound Import RVA: 0000000 Size: 0
 Import Address Table RVA: 0000000 Size: 0
 Delay Import Descriptor RVA: 0000000 Size: 0
 COM+ Runtime Header RVA: 0000000 Size: 0
 Reserved RVA: 0000000 Size: 0

-------- End of Optional Header --------

---- Section Table (5 entries) ----

 178

Entry#0:
 Full Name: .text
 Stored name: .text
 Virtual Size: 176112
 Virtual Address: 4096
 Size of Raw Data: 176128
 Ptr to Raw Data: 1024
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains executable code
 - Contains initialized data
 - Can be executed as code
 - Can be read from
 - Cannot be written to

Entry#1:
 Full Name: .data
 Stored name: .data
 Virtual Size: 4508
 Virtual Address: 180224
 Size of Raw Data: 4608
 Ptr to Raw Data: 177152
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

Entry#2:
 Full Name: .rdata
 Stored name: .rdata
 Virtual Size: 35484
 Virtual Address: 188416
 Size of Raw Data: 35840
 Ptr to Raw Data: 181760
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

Entry#3:
 Full Name: .bss
 Stored name: .bss
 Virtual Size: 4464
 Virtual Address: 225280

 179

 Size of Raw Data: 0
 Ptr to Raw Data: 0
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains uninitialized data
 - Can be read from
 - Can be written to

Entry#4:
 Full Name: .idata
 Stored name: .idata
 Virtual Size: 1424
 Virtual Address: 233472
 Size of Raw Data: 1536
 Ptr to Raw Data: 217600
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

-------- End of Section Table --------

No Symbol Table to display

No String Table to display

No Export Table to display

---- Import Table ----
Import Directory Table:

Entry#0:
 RVA of Lookup Table: 233536
 Time Date Stamp: Wed Dec 31 18:00:00 1969
 Start Index of Forwarder Chain: 0
 DLL Name: cygwin1.dll
 RVA of Import Lookup Table: 0x39124
 Import Lookup Table Contents:
 __errno
 __main
 ctype
 abort
 atoi
 calloc
 cygwin_internal
 dll_crt0__FP11per_process
 fclose
 fdopen

 180

 fflush
 fileno
 fopen
 fprintf
 fread
 free
 fseek
 ftell
 fwrite
 getc
 malloc
 memchr
 memcpy
 memmove
 memset
 printf
 pthread_mutex_lock
 pthread_mutex_unlock
 pthread_once
 realloc
 setlocale
 setvbuf
 sprintf
 sscanf
 strcat
 strcmp
 strcoll
 strcpy
 strdup
 strftime
 strlen
 strncpy
 strtod
 strtol
 strtoll
 strtoul
 strtoull
 strxfrm
 ungetc

Entry#1:
 RVA of Lookup Table: 233740
 Time Date Stamp: Wed Dec 31 18:00:00 1969
 Start Index of Forwarder Chain: 0
 DLL Name: KERNEL32.dll
 RVA of Import Lookup Table: 0x391f0
 Import Lookup Table Contents:
 AddAtomA
 FindAtomA
 GetAtomNameA
 GetModuleHandleA

---- End of Import Table ----

No Debug Table data to display

 181

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 1 7 helloworld-gnu.exe

9.11 helloworld - Compiled and linked using Microsoft Visual Studio

__

FILE NAME: helloworld-vs.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [87 bytes]
 207 +--+
 208 +--+
 PE Signature [4 bytes]
 211 +--+
 212 +--+
 File Header [20 bytes]
 231 +--+
 232 +--+
 Optional Header [224 bytes]
 455 +--+
 456 +--+
 Section Table [120 bytes]
 575 +--+
 576 +--+
 (Contents not known) [3520 bytes]
 4095 +--+
 4096 +--+
 .text section [131072 bytes]
 135167 +--+
 135168 +--+

 182

 .rdata section [28672 bytes]
 163839 +--+
 135168 +--+
 (No additional details) [24056 bytes]
 159223 +--+
 159224 +--+
 Import Table (.idata section) [1546 bytes]
 160769 +--+
 160770 +--+
 (No additional details) [3070 bytes]
 163839 +--+
 163840 +--+
 .data section [8192 bytes]
 172031 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [40 bytes]" at address
159224
 by inserting "Import Table (.idata section) [1546 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 172032 bytes
 - Created on Fri Jan 28 13:40:30 2005
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Import, Import
Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 292 bytes
exists starting at address 335872; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1626 bytes in size

**** End of Anomalies ****

 183

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

 List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 helloworld-vs.exe

9.12 jGRASP IDE 1.7.5 Executable Files

__

FILE NAME: jgrasp.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1232
bytes exists starting at address 131072; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
6545 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 7904 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: jGRASPjava.exe

**** Anomalies ****

 184

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 268 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
592 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8600 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: winconfig.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 916 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4819 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8960 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 jgrasp.exe
 4 0 jGRASPjava.exe
 4 0 winconfig.exe

 185

9.13 Microsoft Windows XP kernel32.dll Dynamic Link Library

__

FILE NAME: \windows\system32\kernel32.dll

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [127 bytes]
 247 +--+
 248 +--+
 PE Signature [4 bytes]
 251 +--+
 252 +--+
 File Header [20 bytes]
 271 +--+
 272 +--+
 Optional Header [224 bytes]
 495 +--+
 496 +--+
 Section Table [160 bytes]
 655 +--+
 656 +--+
 Bound Import Table [28 bytes]
 683 +--+
 684 +--+
 (** Zero-filled region **) [340 bytes]
 1023 +--+
 1024 +--+
 .text section [477184 bytes]
 478207 +--+
 1024 +--+
 (No additional details) [135488 bytes]
 136511 +--+
 136512 +--+
 Export Table (.edata section) [26300 bytes]
 162811 +--+
 162812 +--+
 More of Export Table (.edata section) [716 bytes]
 163527 +--+
 163528 +--+
 (No additional details) [303868 bytes]
 467395 +--+
 467396 +--+

 186

 Import Table (.idata section) [10330 bytes]
 477725 +--+
 477726 +--+
 (No additional details) [2 bytes]
 477727 +--+
 477728 +--+
 Debug Table (.debug section) [56 bytes]
 477783 +--+
 477784 +--+
 (No additional details) [424 bytes]
 478207 +--+
 478208 +--+
 .data section [9216 bytes]
 487423 +--+
 478208 +--+
 (No additional details) [1704 bytes]
 479911 +--+
 479912 +--+
 Load Config Table [64 bytes]
 479975 +--+
 479976 +--+
 (No additional details) [7448 bytes]
 487423 +--+
 487424 +--+
 .rsrc section [417792 bytes]
 905215 +--+
 905216 +--+
 .reloc section [21504 bytes]
 926719 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Export Table (.edata section) [27016 bytes]" at address
136512
 by inserting "Export Table (.edata section) [26300 bytes]"
 - Changed "Import Table (.idata section) [40 bytes]" at address
467396
 by inserting "Import Table (.idata section) [10330 bytes]"
 - Changed "Debug Table (.debug section) [56 bytes]" at address
477728
 by inserting "Debug Table (.debug section) [56 bytes]"
 - Changed "Resource Table (.rsrc section) [417496 bytes]" at address
487424
 by inserting ".rsrc section [417792 bytes]"
 - Changed "Relocation Table (.reloc section) [21264 bytes]" at
address 905216
 by inserting ".reloc section [21504 bytes]"
 - Changed "(Contents not known) [340 bytes]" at address 684
 by inserting "(** Zero-filled region **) [340 bytes]"

==== File Fact Summary ====

 187

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 926720 bytes
 - Created on Sat Aug 18 00:33:02 2001
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Image file is a dynamic link library (DLL)
 - Designed for Windows Operating System version 5.1
 - Runs in the Windows character subsystem
 - Lists these table names in the data directory: Export, Import,
Resource, Relocation, Debug, Load Config, Bound Import, Import Address
 - Contains no string table
 - Contains no symbol table
 - Exports functions using the file name KERNEL32.dll
 - Imports functions from
 -- ntdll.dll (NT layer)
 - Contains a large area of 303868 bytes starting at address 163528
which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1544
bytes exists starting at address 1024; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
10330 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 417496 bytes in size when actually
it is 417792 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 21264 bytes in size when actually
it is 21504 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

---------- DOS Header ----------
DOS signature: MZ
Bytes on last page of file: 144
Pages in file: 3

 188

Relocations: 0
Size of header in paragraphs: 4
Minimum extra paragraphs: 0
Maximum extra paragraphs: 65535
Initial (relative) SS value: 0
Initial SP value: 184
Checksum: 0
Initial IP value: 0
Initial (relative) CS value: 0
File address of relocation table: 64
Overlay number: 0
Reserved words: 0 0 0 0
OEM identifier: 0
OEM information: 0
Reserved words: 0 0
Offset to PE signature and header: 248

-------- End of DOS Header --------

---------- File Header ----------
Target CPU: Intel 386 or later compatibles
Number of Sections: 4
Time Date Stamp: Sat Aug 18 00:33:02 2001
Ptr to Symbol Table: 0
Number of Symbols: 0
Size of Optional Header: 224
Characteristics:
 - This is an executable image
 - COFF line numbers have been removed
 - COFF symbol table entries for local symbols have been removed
 - Software is targeted for a 32-bit-word architecture
 - This image file is a dynamic link library (DLL)

--------- End of File Header -------

---------- Optional Header ----------
Magic: 267 (PE32 executable)
Linker Version: 7.0
Size of Code: 477184
Size of Initialized Data: 450048
Size of Uninitialized Data: 0
Address of Entry Point: 107073
Base of Code: 4096
Base of Data: 462848
Image Base: 2011561984
Section Alignment: 4096
File Alignment: 512
OS Version: 5.1
Major Image Version: 5
Minor Image Version: 1
Major Subsystem Version: 4
Minor Subsystem Version: 0
Size of Image: 937984
Size of Headers: 1024
Check Sum: 952210

 189

Required Windows Subsystem: Runs in the Windows character subsystem
DLL Characteristics: 0
Size of Stack Reserve: 262144
Size of Stack Commit: 4096
Size of Heap Reserve: 1048576
Size of Heap Commit: 4096
Loader Flags: 0
Nbr of RVS and Sizes: 16
Data Directory:
 Export Table RVA: 0139584 Size: 27016
 Import Table RVA: 0470468 Size: 40
 Resource Table RVA: 0495616 Size: 417496
 Exception Table RVA: 0000000 Size: 0
 Certificate Table RVA: 0000000 Size: 0
 Base Relocation Table RVA: 0913408 Size: 21264
 Debug RVA: 0480800 Size: 56
 Architecture RVA: 0000000 Size: 0
 Global Ptr RVA: 0000000 Size: 0
 TLS Table RVA: 0000000 Size: 0
 Load Config Table RVA: 0485032 Size: 64
 Bound Import RVA: 0656 Size: 28
 Import Address Table RVA: 04096 Size: 1544
 Delay Import Descriptor RVA: 0000000 Size: 0
 COM+ Runtime Header RVA: 0000000 Size: 0
 Reserved RVA: 0000000 Size: 0

-------- End of Optional Header --------

---- Section Table (4 entries) ----

Entry#0:
 Full Name: .text
 Stored name: .text
 Virtual Size: 476760
 Virtual Address: 4096
 Size of Raw Data: 477184
 Ptr to Raw Data: 1024
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains executable code
 - Can be executed as code
 - Can be read from
 - Cannot be written to

Entry#1:
 Full Name: .data
 Stored name: .data
 Virtual Size: 10442
 Virtual Address: 483328
 Size of Raw Data: 9216
 Ptr to Raw Data: 478208
 Ptr to Relocations: 0

 190

 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Can be written to

Entry#2:
 Full Name: .rsrc
 Stored name: .rsrc
 Virtual Size: 417496
 Virtual Address: 495616
 Size of Raw Data: 417792
 Ptr to Raw Data: 487424
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be read from
 - Cannot be written to

Entry#3:
 Full Name: .reloc
 Stored name: .reloc
 Virtual Size: 21264
 Virtual Address: 913408
 Size of Raw Data: 21504
 Ptr to Raw Data: 905216
 Ptr to Relocations: 0
 Ptr to Line Numbers: No COFF line numbers
 Number of Relocations: 0
 Number of Linenumbers: 0
 Characteristics:
 - Contains initialized data
 - Can be discarded as needed
 - Can be read from
 - Cannot be written to

-------- End of Section Table --------

No Symbol Table to display

No String Table to display

---- Export Table ----

Directory Table:
 Characteristics: 0
 Time Date Stamp: Fri Aug 17 22:24:08 2001
 Major Version: 0
 Major Version: 0
 Name of DLL: KERNEL32.dll

 191

 Starting Ordinal Number: 1
 Number of Function Addresses: 928
 Number of Names: 928
 Location of Address Table: 0x22168
 Location of Name Ptr Table: 0x22fe8
 Location of Ordinal Table: 0x23e68

Export Name Table (928 names):
 Entry#1: ActivateActCtx
 Entry#2: AddAtomA
 Entry#3: AddAtomW
 . . .
 Entry#926: lstrlen
 Entry#927: lstrlenA
 Entry#928: lstrlenW

Forwarder Name Table (0 names):

---- End of Export Table ----

---- Import Table ----
Import Directory Table:

Entry#0:
 RVA of Lookup Table: 470518
 Time Date Stamp: Wed Dec 31 17:59:59 1969
 Start Index of Forwarder Chain: 4294967295
 DLL Name: ntdll.dll
 RVA of Import Lookup Table: 0x1000
 Import Lookup Table Contents:
 _wcsnicmp
 NtFsControlFile
 NtCreateFile
 . . .
 NtQueryDefaultLocale
 _strlwr
 RtlUnwind

---- End of Import Table ----

---- Debug Table ----
Debug Directory Table (2 entries):

Entry#0:
 Characteristics: 0
 Time Date Stamp: Fri Aug 17 22:24:08 2001
 Format Major Version: 0
 Format Minor Version: 0
 Debug Type: CodeView debug information
 Size of Debug Data: 29
 Image Address of Raw Data: 470180
 File Pointer to Raw Data: 467108

Entry#1:

 192

 Characteristics: 0
 Time Date Stamp: Fri Aug 17 22:24:08 2001
 Format Major Version: 0
 Format Minor Version: 0
 Debug Type: Unknown information (10)
 Size of Debug Data: 0
 Image Address of Raw Data: 0
 File Pointer to Raw Data: 0

---- End of Debug Table ----

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 \windows\system32\kernel32.dll

 193

10. APPENDIX D – TEST RESULTS FROM ANALYZING EXECUTABLE
INSTALLATION FILES

10.1 Adobe Acrobat Reader 5.0 Installation File

__

FILE NAME: rp500enu.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 10236296 bytes
 - Created on Thu Mar 26 08:31:20 1998
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- GDI32.dll (Graphics device interface client)
 -- COMCTL32.dll (Custom controls library)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- SHELL32.dll (Windows shell common)
 -- LZ32.dll (LZ expand/compress API)
 - Contains a large area of 10078496 bytes starting at address 130560
which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The file indicates an import address table consisting of 588 bytes
exists starting at address 85228; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3174 bytes in size

 194

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41640 bytes in size when actually it
is 41984 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 rp500enu.exe

10.2 Earthlink TotalAccess 5.0 Installation File

__
FILE NAME: TA2005_1.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 427096 bytes
 - Created on Sat Jun 19 00:10:13 2004
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- GDI32.dll (Graphics device interface client)
 -- comdlg32.dll (Common dialogs)
 -- WINSPOOL.DRV (Purpose unknown)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- SHELL32.dll (Windows shell common)
 -- COMCTL32.dll (Custom controls library)
 -- SHLWAPI.dll (Purpose unknown)
 -- WININET.dll (Purpose unknown)

 195

 -- OLEAUT32.dll (OLE 2.20 for Windows NT and Windows 95)
 -- OLEACC.dll (Purpose unknown)
 - Contains an unusual area of 212992 bytes starting at address
192512 which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1324
bytes exists starting at address 147456; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
7206 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 227664 bytes in size when actually
it is 229376 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 TA2005_1.exe

10.3 Java 1.4.2 Installation Files

__

FILE NAME: j2re-1_4_2_01-windows-i586-iftw.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 1418120 bytes
 - Created on Tue Aug 19 21:32:03 2003
 - Target CPU: Intel 386 or later compatibles

 196

 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Certificate, Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- WININET.dll (Purpose unknown)
 -- MSVCRT.dll (C runtime library)

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 208 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
972 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1394544 bytes in size when actually
it is 1396736 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: j2sdk-1_4_2_01-windows-i586-iftw.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 364544 bytes
 - Created on Tue Aug 19 21:34:40 2003
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0

 197

 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- WININET.dll (Purpose unknown)
 -- MSVCRT.dll (C runtime library)

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 208 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
972 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 345680 bytes in size when actually
it is 348160 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: jdk-1_5_0-beta2-windows-i586.exe

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 45836078 bytes
 - Created on Wed Feb 4 10:43:10 2004
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem

 198

 - Lists these table names in the data directory: Import, Resource,
Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- VERSION.dll (Version checking and file installation)
 -- SHELL32.dll (Windows shell common)
 -- COMCTL32.dll (Custom controls library)
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- GDI32.dll (Graphics device interface client)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- ole32.dll (OLE 2.1 16/32 interoperability library)
 -- OLEAUT32.dll (OLE 2.20 for Windows NT and Windows 95)
 - Contains an unknown region of 45610798 bytes starting at address
225280 which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1084
bytes exists starting at address 143360; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4682 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41696 bytes in size when actually it
is 45056 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 4492 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 199

 A V/R Filename
 - --- --------
 4 1 j2re-1_4_2_01-windows-i586-iftw.exe
 4 1 j2sdk-1_4_2_01-windows-i586-iftw.exe
 4 1 jdk-1_5_0-beta2-windows-i586.exe

10.4 jGRASP 1.7.5 Installation File

__

FILE NAME: jgrasp175.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [87 bytes]
 207 +--+
 208 +--+
 PE Signature [4 bytes]
 211 +--+
 212 +--+
 File Header [20 bytes]
 231 +--+
 232 +--+
 Optional Header [224 bytes]
 455 +--+
 456 +--+
 Section Table [200 bytes]
 655 +--+
 656 +--+
 (** Zero-filled region **) [368 bytes]
 1023 +--+
 1024 +--+
 .text section [24064 bytes]
 25087 +--+
 25088 +--+
 .rdata section [4608 bytes]
 29695 +--+
 25088 +--+
 (No additional details) [816 bytes]
 25903 +--+
 25904 +--+
 Import Table (.idata section) [3637 bytes]

 200

 29540 +--+
 29541 +--+
 (No additional details) [155 bytes]
 29695 +--+
 29696 +--+
 .data section [1024 bytes]
 30719 +--+
 30720 +--+
 .rsrc section [12800 bytes]
 43519 +--+
 43520 +--+
 More of Resource Table (.rsrc section) [3584 bytes]
 47103 +--+
 47104 +--+
 (Contents not known) [2053221 bytes]
 2100324 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [180 bytes]" at address
25904
 by inserting "Import Table (.idata section) [3637 bytes]"
 - Changed "Resource Table (.rsrc section) [16384 bytes]" at address
30720
 by inserting ".rsrc section [12800 bytes]"
 - Changed "(Contents not known) [368 bytes]" at address 656
 by inserting "(** Zero-filled region **) [368 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 2100325 bytes
 - Created on Sat Feb 7 11:26:28 2004
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- COMCTL32.dll (Custom controls library)
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- GDI32.dll (Graphics device interface client)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- SHELL32.dll (Windows shell common)
 -- ole32.dll (OLE 2.1 16/32 interoperability library)
 -- VERSION.dll (Version checking and file installation)

 201

 - Contains an unknown region of 2053221 bytes starting at address
47104 which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 672 bytes
exists starting at address 25088; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3637 bytes in size
 - A section entry named .ndata appears in the section table, but the
table doesn't contain the location of the 61440 bytes for that section

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 jgrasp175.exe

10.5 jGRASP 1.7.5 (with JRE) Installation File

__

FILE NAME: jgraspjre175.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+

 202

 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [87 bytes]
 207 +--+
 208 +--+
 PE Signature [4 bytes]
 211 +--+
 212 +--+
 File Header [20 bytes]
 231 +--+
 232 +--+
 Optional Header [224 bytes]
 455 +--+
 456 +--+
 Section Table [200 bytes]
 655 +--+
 656 +--+
 (** Zero-filled region **) [368 bytes]
 1023 +--+
 1024 +--+
 .text section [24064 bytes]
 25087 +--+
 25088 +--+
 .rdata section [4608 bytes]
 29695 +--+
 25088 +--+
 (No additional details) [816 bytes]
 25903 +--+
 25904 +--+
 Import Table (.idata section) [3637 bytes]
 29540 +--+
 29541 +--+
 (No additional details) [155 bytes]
 29695 +--+
 29696 +--+
 .data section [1024 bytes]
 30719 +--+
 30720 +--+
 .rsrc section [12800 bytes]
 43519 +--+
 43520 +--+
 More of Resource Table (.rsrc section) [3584 bytes]
 47103 +--+
 47104 +--+
 (Contents not known) [17384875 bytes]
17431978 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [180 bytes]" at address
25904
 by inserting "Import Table (.idata section) [3637 bytes]"

 203

 - Changed "Resource Table (.rsrc section) [16384 bytes]" at address
30720
 by inserting ".rsrc section [12800 bytes]"
 - Changed "(Contents not known) [368 bytes]" at address 656
 by inserting "(** Zero-filled region **) [368 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 17431979 bytes
 - Created on Sat Feb 7 11:26:28 2004
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- COMCTL32.dll (Custom controls library)
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- GDI32.dll (Graphics device interface client)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- SHELL32.dll (Windows shell common)
 -- ole32.dll (OLE 2.1 16/32 interoperability library)
 -- VERSION.dll (Version checking and file installation)
 - Contains an unknown region of 17384875 bytes starting at address
47104 which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 672 bytes
exists starting at address 25088; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3637 bytes in size
 - A section entry named .ndata appears in the section table, but the
table doesn't contain the location of the 61440 bytes for that section

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

 204

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 jgraspjre175.exe

10.6 Windows Media Player 9.0 Installation File

__

FILE NAME: MPSetupXP-9.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [79 bytes]
 199 +--+
 200 +--+
 PE Signature [4 bytes]
 203 +--+
 204 +--+
 File Header [20 bytes]
 223 +--+
 224 +--+
 Optional Header [224 bytes]
 447 +--+
 448 +--+
 Section Table [120 bytes]
 567 +--+
 568 +--+
 (** Zero-filled region **) [456 bytes]
 1023 +--+
 1024 +--+
 .text section [34816 bytes]
 35839 +--+
 1024 +--+

 205

 (No additional details) [528 bytes]
 1551 +--+
 1552 +--+
 Debug Table (.debug section) [28 bytes]
 1579 +--+
 1580 +--+
 (No additional details) [30852 bytes]
 32431 +--+
 32432 +--+
 Import Table (.idata section) [2834 bytes]
 35265 +--+
 35266 +--+
 (No additional details) [574 bytes]
 35839 +--+
 35840 +--+
 .data section [1024 bytes]
 36863 +--+
 36864 +--+
 .rsrc section [10092032 bytes]
10128895 +--+
 36864 +--+
 (No additional details) [10079744 bytes]
 10116607 +--+
 10116608 +--+
 Certificate Table [6792 bytes]
 10123399 +--+
 10123400 +--+
 (No additional details) [12288 bytes]
 10135687 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [140 bytes]" at address
32432
 by inserting "Import Table (.idata section) [2834 bytes]"
 - Changed "Debug Table (.debug section) [28 bytes]" at address 1552
 by inserting "Debug Table (.debug section) [28 bytes]"
 - Changed "Resource Table (.rsrc section) [10092012 bytes]" at
address 36864
 by inserting ".rsrc section [10092032 bytes]"
 - Changed "(Contents not known) [456 bytes]" at address 568
 by inserting "(** Zero-filled region **) [456 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 10135688 bytes
 - Created on Fri Aug 17 20:42:57 2001
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 5.1
 - Runs in the Windows GUI subsystem

 206

 - Lists these table names in the data directory: Import, Resource,
Certificate, Debug, Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- KERNEL32.dll (WinNT base API client)
 -- GDI32.dll (Graphics device interface client)
 -- USER32.dll (Windows NT user API client)
 -- COMCTL32.dll (Custom controls library)
 -- VERSION.dll (Version checking and file installation)
 - Contains an unusual area of 10079744 bytes starting at address
36864 which may indicate a group of compressed files

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 528 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2834 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10092012 bytes in size when actually
it is 10092032 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 MPSetupXP-9.exe

10.7 Real One Player (ME/XP) Installation File

__

 207

FILE NAME: RealPlayer10-5GOLD_bb.exe

---- File Map ----

 ADDRESS DESCRIPTION

 0 +--+
 DOS Header [64 bytes]
 63 +--+
 64 +--+
 MS-DOS Stub [57 bytes]
 120 +--+
 121 +--+
 (Contents not known) [111 bytes]
 231 +--+
 232 +--+
 PE Signature [4 bytes]
 235 +--+
 236 +--+
 File Header [20 bytes]
 255 +--+
 256 +--+
 Optional Header [224 bytes]
 479 +--+
 480 +--+
 Section Table [160 bytes]
 639 +--+
 640 +--+
 (** Zero-filled region **) [3456 bytes]
 4095 +--+
 4096 +--+
 .text section [98304 bytes]
 102399 +--+
 102400 +--+
 .rdata section [12288 bytes]
 114687 +--+
 102400 +--+
 (No additional details) [688 bytes]
 103087 +--+
 103088 +--+
 Debug Table (.debug section) [28 bytes]
 103115 +--+
 103116 +--+
 (No additional details) [6556 bytes]
 109671 +--+
 109672 +--+
 Import Table (.idata section) [2665 bytes]
 112336 +--+
 112337 +--+
 (No additional details) [2351 bytes]
 114687 +--+
 114688 +--+
 .data section [20480 bytes]

 208

 135167 +--+
 135168 +--+
 .rsrc section [10354688 bytes]
10489855 +--+
 135168 +--+
 (No additional details) [10346544 bytes]
 10481711 +--+
 10481712 +--+
 Certificate Table [5616 bytes]
 10487327 +--+
 10487328 +--+
 (No additional details) [8192 bytes]
 10495519 +--+

---- End of File Map ----

NOTES ON FILE MAP CHANGES:
 - Changed "Import Table (.idata section) [140 bytes]" at address
109672
 by inserting "Import Table (.idata section) [2665 bytes]"
 - Changed "Debug Table (.debug section) [28 bytes]" at address
103088
 by inserting "Debug Table (.debug section) [28 bytes]"
 - Changed "Resource Table (.rsrc section) [10351928 bytes]" at
address 135168
 by inserting ".rsrc section [10354688 bytes]"
 - Changed "(Contents not known) [3456 bytes]" at address 640
 by inserting "(** Zero-filled region **) [3456 bytes]"

==== File Fact Summary ====

 - Image file in Windows NT portable executable (PE) format
 - Actual file size: 10495520 bytes
 - Created on Tue Oct 19 18:51:27 2004
 - Target CPU: Intel 386 or later compatibles
 - Targeted for a 32-bit-word architecture
 - Designed for Windows Operating System version 4.0
 - Runs in the Windows GUI subsystem
 - Lists these table names in the data directory: Import, Resource,
Certificate, Debug, Import Address
 - Contains no string table
 - Contains no symbol table
 - Imports functions from
 -- KERNEL32.dll (WinNT base API client)
 -- USER32.dll (Windows NT user API client)
 -- ADVAPI32.dll (Routines to read and modify the Windows NT
registry)
 -- GDI32.dll (Graphics device interface client)
 -- COMCTL32.dll (Custom controls library)
 -- VERSION.dll (Version checking and file installation)
 - Contains an unusual area of 10346544 bytes starting at address
135168 which may indicate a group of compressed files

 209

==== End of File Fact Summary ====

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 676 bytes
exists starting at address 102400; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2665 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10351928 bytes in size when actually
it is 10354688 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 RealPlayer10-5GOLD_bb.exe

 210

11. APPENDIX E – TEST RESULTS FROM ANALYZING SOFTWARE
DEVELOPMENT FILES

11.1 Dynamic Link Library (DLL) files for Borland CBuilder 5

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 20

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 bcbedit.dll
 2 0 bcbmm.dll
 2 0 borlndmm.dll
 1 0 brcide.dll
 6 0 cc3250.dll
 6 0 cc3250mt.dll
 1 0 comp32p.dll
 3 0 dcc50.dll
 2 0 delphimm.dll
 1 0 ilink32.dll
 4 0 imged32.dll
 1 0 ixxml50.dll
 2 0 lnkdfm50.dll
 1 0 rlink32.dll
 3 0 rw32core.dll
 1 0 typelibimport.dll
 2 0 vcltest3.dll
 1 0 xmlide.dll
 4 0 xprtfltr.dll

11.2 Executable (EXE) files for Borland CBuilder 5

__

---------- Summary of File Security Analysis ----------

 211

Total number of files submitted: 22

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 2 0 bcb.exe
 3 0 bcc32.exe
 4 0 bpr2mak.exe
 5 0 brc32.exe
 5 0 brcc32.exe
 4 0 coff2omf.exe
 4 0 convert.exe
 3 0 cpp32.exe
 5 0 dcc32.exe
 3 0 grep.exe
 3 0 ilink32.exe
 4 0 imagedit.exe
 5 0 impdef.exe
 5 0 implib.exe
 3 0 instreg.exe
 5 0 make.exe
 5 0 tdump.exe
 3 0 tlib.exe
 3 0 touch.exe
 5 0 tregsvr.exe

11.3 Dynamic Link Library (DLL) files for Cygwin

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 56

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 2 2 cygbz2-1.dll
 6 9 cygcrypto-0.9.7.dll
 2 9 cygcrypto.dll
 2 8 cygdb-3.1.dll
 2 9 cygdb_cxx-3.1.dll
 2 4 cygform5.dll
 2 5 cygform6.dll
 2 6 cygform7.dll
 2 3 cyggdbm-3.dll
 2 3 cyggdbm-4.dll
 2 4 cyggdbm.dll

 212

 2 3 cyggdbm_compat-3.dll
 2 3 cyggdbm_compat-4.dll
 2 6 cyggettextlib-0-12-1.dll
 2 0 cyggettextpo-0.dll
 2 4 cyggettextsrc-0-12-1.dll
 2 5 cyghistory4.dll
 2 4 cyghistory5.dll
 2 4 cygiconv-2.dll
 2 6 cygintl-1.dll
 2 6 cygintl-2.dll
 2 0 cygjbig1.dll
 2 3 cygjpeg-62.dll
 2 3 cygjpeg6b.dll
 2 2 cygmenu5.dll
 2 3 cygmenu6.dll
 2 4 cygmenu7.dll
 2 4 cygminires.dll
 3 5 cygncurses++5.dll
 2 6 cygncurses++6.dll
 2 9 cygncurses5.dll
 2 9 cygncurses6.dll
 2 11 cygncurses7.dll
 2 0 cygpanel5.dll
 2 1 cygpanel6.dll
 2 2 cygpanel7.dll
 2 1 cygpcre-0.dll
 2 1 cygpcre.dll
 2 3 cygpcreposix-0.dll
 2 3 cygpcreposix.dll
 2 7 cygperl5_8_0.dll
 2 3 cygpng12.dll
 2 6 cygpopt-0.dll
 2 7 cygreadline4.dll
 2 6 cygreadline5.dll
 2 1 cygssl-0.9.7.dll
 2 1 cygssl.dll
 2 4 cygtiff3.dll
 2 4 cygtiff4.dll
 3 12 cygwin1.dll
 2 5 cygz.dll
 5 0 glut32.dll
 2 1 mingwm10.dll
 3 4 tcl84.dll
 1 0 tclpip84.dll
 3 6 tk84.dll

11.4 Executable (EXE) files for Cygwin

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 325

 213

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 1 5 a2p.exe
 1 6 addftinfo.exe
 1 8 addr2line.exe
 1 8 ar.exe
 1 10 as.exe
 1 1 ascii.exe
 1 8 awk.exe
 1 0 banner.exe
 1 0 basename.exe
 1 9 bash.exe
 1 4 bison.exe
 1 4 bunzip2.exe
 1 4 bzcat.exe
 1 4 bzip2.exe
 1 4 bzip2recover.exe
 1 6 c++.exe
 1 7 c++filt.exe
 1 1 cal.exe
 1 10 captoinfo.exe
 1 1 cat.exe
 1 5 chgrp.exe
 1 5 chmod.exe
 1 6 chown.exe
 1 0 chroot.exe
 1 3 cjpeg.exe
 1 1 cksum.exe
 1 2 clearn.exe
 1 7 client.exe
 1 2 cmp.exe
 1 1 col.exe
 1 2 colcrt.exe
 1 1 colrm.exe
 1 1 column.exe
 1 2 comm.exe
 1 3 conv.exe
 1 9 cp.exe
 1 8 cpio.exe
 1 6 cpp.exe
 1 0 crypt.exe
 1 5 csplit.exe
 1 2 cut.exe
 1 11 cvs.exe
 1 5 cygcheck.exe
 1 4 cygpath.exe
 1 7 cygrunsrv.exe
 1 6 cygserver.exe
 1 1 cygstart.exe
 1 3 d2u.exe
 1 2 date.exe

 214

 1 5 dd.exe
 1 2 ddate.exe
 1 8 df.exe
 1 5 diff.exe
 1 2 diff3.exe
 1 7 dir.exe
 1 5 dircolors.exe
 1 1 dirname.exe
 1 2 djpeg.exe
 1 9 dlltool.exe
 1 7 dllwrap.exe
 1 3 dos2unix.exe
 1 7 du.exe
 1 1 dump.exe
 1 9 dumper.exe
 1 3 dumpgdbm.exe
 1 0 echo.exe
 1 0 env.exe
 1 7 eqn.exe
 1 1 expand.exe
 1 10 expect.exe
 1 3 expr.exe
 1 2 factor.exe
 1 0 false.exe
 1 1 fax2ps.exe
 1 0 fax2tiff.exe
 1 7 file.exe
 1 6 fileman-stat.exe
 1 3 fileman.exe
 1 5 find.exe
 1 6 flex++.exe
 1 6 flex.exe
 1 1 fmt.exe
 1 2 fold.exe
 1 11 ftp.exe
 1 4 funzip.exe
 1 6 g++.exe
 1 6 g77.exe
 1 8 gawk.exe
 1 6 gcc.exe
 1 6 gcj.exe
 1 5 gcjh.exe
 1 6 gcov.exe
 2 13 gdb.exe
 1 0 getclip.exe
 1 2 getfacl.exe
 1 1 getopt.exe
 1 1 gettext.exe
 1 1 gif2tiff.exe
 1 8 gij.exe
 1 10 gprof.exe
 1 4 grep.exe
 1 5 grepjar.exe
 1 9 grn.exe
 1 8 grodvi.exe

 215

 1 8 groff.exe
 1 8 grolbp.exe
 1 8 grolj4.exe
 1 8 grops.exe
 1 8 grotty.exe
 1 5 gunzip.exe
 1 5 gzip.exe
 1 1 head.exe
 1 0 hostname.exe
 1 6 hpftodit.exe
 1 6 i686-pc-cygwin-c++.exe
 1 6 i686-pc-cygwin-g++.exe
 1 6 i686-pc-cygwin-gcc.exe
 1 0 id.exe
 1 6 indxbib.exe
 1 10 info.exe
 1 8 infocmp.exe
 1 9 infokey.exe
 1 10 infotocap.exe
 2 13 insight.exe
 1 6 install-info.exe
 1 9 install.exe
 1 6 jar.exe
 1 0 jbgtopbm.exe
 1 5 jcf-dump.exe
 1 2 join.exe
 1 3 jpegtran.exe
 1 8 jv-convert.exe
 1 4 jv-scan.exe
 1 1 kill.exe
 1 11 ld.exe
 1 11 less.exe
 1 0 lessecho.exe
 1 3 lesskey.exe
 1 6 lkbib.exe
 1 8 ln.exe
 1 3 loadgdbm.exe
 1 2 locate.exe
 1 3 logger.exe
 1 7 login.exe
 1 0 logname.exe
 1 7 lookbib.exe
 1 7 lpr.exe
 1 7 ls.exe
 1 8 m4.exe
 1 7 make.exe
 1 11 makeinfo.exe
 1 9 man.exe
 1 3 man2html.exe
 1 2 mcookie.exe
 1 2 md5sum.exe
 1 6 mkdir.exe
 1 4 mkfifo.exe
 1 3 mkgroup.exe
 1 4 mknod.exe

 216

 1 3 mkpasswd.exe
 1 4 mkshortcut.exe
 1 4 mktemp.exe
 1 2 mount.exe
 1 13 mutt.exe
 1 9 mv.exe
 1 0 namei.exe
 1 13 ncftp.exe
 1 8 ncftpbatch.exe
 1 10 ncftpbookmarks.exe
 1 10 ncftpget.exe
 1 10 ncftpls.exe
 1 9 ncftpput.exe
 1 8 ncftpspooler.exe
 1 1 ngettext.exe
 1 0 nice.exe
 1 5 nl.exe
 1 8 nm.exe
 1 8 objcopy.exe
 1 8 objdump.exe
 1 2 od.exe
 1 8 openssl.exe
 1 0 pal2rgb.exe
 1 2 passwd.exe
 1 1 paste.exe
 1 5 patch.exe
 1 1 pathchk.exe
 1 3 pbmtojbg.exe
 1 0 perl.exe
 1 0 perl5.8.0.exe
 1 1 pfbtops.exe
 1 8 pgawk.exe
 1 0 pgpewrap.exe
 1 7 pgpring.exe
 1 7 pic.exe
 1 5 pinky.exe
 1 8 post-grohtml.exe
 1 2 ppm2tiff.exe
 1 3 pr.exe
 1 8 pre-grohtml.exe
 1 0 printenv.exe
 1 4 printf.exe
 1 3 ps.exe
 1 3 ptx.exe
 1 2 putclip.exe
 1 0 pwd.exe
 1 8 ranlib.exe
 1 0 ras2tiff.exe
 1 1 raw2tiff.exe
 1 4 rcp.exe
 1 1 rdjpgcom.exe
 1 8 readelf.exe
 1 1 readlink.exe
 1 1 realpath.exe
 1 7 refer.exe

 217

 1 1 regtool.exe
 1 9 reset.exe
 1 1 rev.exe
 1 1 rgb2ycbcr.exe
 1 6 rl-stat.exe
 1 1 rl.exe
 1 3 rlogin.exe
 1 6 rltest-stat.exe
 1 0 rltest.exe
 1 6 rlversion-stat.exe
 1 1 rlversion.exe
 1 6 rm.exe
 1 4 rmdir.exe
 1 8 rmic.exe
 1 8 rmiregistry.exe
 1 3 rsh.exe
 1 6 scp.exe
 1 3 sdiff.exe
 1 5 sed.exe
 1 1 seq.exe
 1 1 setfacl.exe
 1 8 sftp.exe
 1 4 sh.exe
 1 2 sha1sum.exe
 1 6 shred.exe
 1 7 size.exe
 1 0 sleep.exe
 1 5 soelim.exe
 1 3 sort.exe
 1 2 split.exe
 1 12 squid.exe
 1 8 ssh-add.exe
 1 7 ssh-agent.exe
 1 8 ssh-keygen.exe
 1 9 ssh-keyscan.exe
 1 9 ssh.exe
 1 1 ssp.exe
 1 6 strace.exe
 1 7 strings.exe
 1 8 strip.exe
 1 2 stty.exe
 1 2 su.exe
 1 3 sum.exe
 1 4 sync.exe
 1 3 syslog.exe
 1 4 tac.exe
 1 8 tack.exe
 1 4 tail.exe
 1 8 talk.exe
 1 9 tar.exe
 1 6 tbl.exe
 2 0 tclsh.exe
 2 0 tclsh84.exe
 1 3 tcsh.exe
 1 1 tee.exe

 218

 1 6 telnet.exe
 1 0 test.exe
 1 3 testdbm.exe
 1 4 testgdbm.exe
 1 2 testndbm.exe
 1 8 texindex.exe
 1 6 tfmtodit.exe
 1 6 tftp.exe
 1 0 thumbnail.exe
 1 10 tic.exe
 1 1 tiff2bw.exe
 1 1 tiff2ps.exe
 1 0 tiff2rgba.exe
 1 0 tiffcmp.exe
 1 0 tiffcp.exe
 1 1 tiffdither.exe
 1 1 tiffdump.exe
 1 0 tiffinfo.exe
 1 0 tiffmedian.exe
 1 0 tiffset.exe
 1 2 tiffsplit.exe
 1 8 toe.exe
 1 4 touch.exe
 1 6 tput.exe
 1 3 tr.exe
 1 8 troff.exe
 1 0 true.exe
 1 9 tset.exe
 1 3 tsort.exe
 1 0 tty.exe
 1 3 u2d.exe
 1 0 umount.exe
 1 0 uname.exe
 1 1 unexpand.exe
 1 1 uniq.exe
 1 3 unix2dos.exe
 1 6 unzip.exe
 1 5 unzipsfx.exe
 1 1 users.exe
 1 7 vdir.exe
 1 2 wc.exe
 1 10 wget.exe
 1 2 which.exe
 1 3 who.exe
 1 0 whoami.exe
 1 8 windres.exe
 2 1 wish.exe
 2 1 wish84.exe
 1 3 wrjpgcom.exe
 1 3 xargs.exe
 1 0 yes.exe
 1 5 zcat.exe
 1 8 zip.exe
 1 3 zipcloak.exe
 1 4 zipnote.exe

 219

 1 5 zipsplit.exe

11.5 Dynamic Link Library (DLL) files for Java 1.4.2

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 41

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 awt.dll
 5 1 axbridge.dll
 4 1 cmm.dll
 4 0 dcpr.dll
 4 1 dt_shmem.dll
 4 1 dt_socket.dll
 5 0 eula.dll
 4 2 fontmanager.dll
 4 3 hpi.dll
 4 2 hprof.dll
 4 0 ioser12.dll
 4 0 jaas_nt.dll
 4 4 java.dll
 4 0 jawt.dll
 4 3 jcov.dll
 4 1 JdbcOdbc.dll
 4 2 jdwp.dll
 4 1 jpeg.dll
 5 0 jpicom32.dll
 5 1 jpiexp32.dll
 4 0 jpins4.dll
 4 0 jpins6.dll
 4 0 jpins7.dll
 5 2 jpinsp.dll
 5 2 jpishare.dll
 4 2 jsound.dll
 6 1 msvcrt.dll
 4 2 net.dll
 4 0 nio.dll
 5 1 NPJava11.dll
 5 1 NPJava12.dll
 5 1 NPJava13.dll
 5 1 NPJava14.dll
 5 1 NPJava32.dll
 5 1 NPJPI142_01.dll
 5 1 NPOJI610.dll
 5 2 RegUtils.dll
 4 0 rmi.dll

 220

 4 0 verify.dll
 4 0 w2k_lsa_auth.dll
 4 1 zip.dll

11.6 Executable (EXE) files for Java 1.4.2

__

FILE NAME: java.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: javaw.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 216 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
974 bytes in size

**** End of Anomalies ****

 221

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: jpicpl32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 92 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
419 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: jucheck.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 932 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 280 bytes in size when actually it is
4566 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 166192 bytes in size when actually
it is 167936 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 222

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: jusched.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 364 bytes
exists starting at address 20480; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1780 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: keytool.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

 223

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: kinit.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: klist.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

 224

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: ktab.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: orbd.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

 225

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: policytool.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rmid.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

 226

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rmiregistry.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: servertool.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

 227

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tnameserv.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 180 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
800 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 2 java.exe
 3 2 javaw.exe

 228

 3 0 jpicpl32.exe
 4 4 jucheck.exe
 3 4 jusched.exe
 3 2 keytool.exe
 3 2 kinit.exe
 3 2 klist.exe
 3 2 ktab.exe
 3 2 orbd.exe
 3 2 policytool.exe
 3 2 rmid.exe
 3 2 rmiregistry.exe
 3 2 servertool.exe
 3 2 tnameserv.exe

11.7 Dynamic Link Library (DLL) files for Microsoft Visual Studio SDK

__

FILE NAME: Microsoft.VisualStudio.Designer.Interfaces.dll

**** Anomalies ****

 - The file indicates an import address table consisting of 8 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a COM runtime header consisting of 72 bytes
exists starting at address 1032; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
512 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1640 bytes in size when actually it
is 2048 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Microsoft.VisualStudio.dll

**** Anomalies ****

 229

 - The file indicates an import address table consisting of 8 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a COM runtime header consisting of 72 bytes
exists starting at address 4104; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1520 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msdis130.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 188 bytes
exists starting at address 102400; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1954 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 21728 bytes in size when actually
it is 24576 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

 230

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 Microsoft.VisualStudio.Designer.Interfaces.dll
 4 0 Microsoft.VisualStudio.dll
 5 1 msdis130.dll

11.8 Executable (EXE) files for Microsoft Visual Studio SDK

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 29

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 AxImp.exe
 4 0 cert2spc.exe
 4 1 certmgr.exe
 4 0 ChkTrust.exe
 4 6 cordbg.exe
 4 0 disco.exe
 5 0 FUSLOGVW.exe
 4 0 gacutil.exe
 4 7 ildasm.exe
 4 0 lc.exe
 4 0 makecert.exe
 4 0 MgmtClassGen.exe
 4 0 mscordmp.exe
 4 3 nmake.exe
 4 2 PermView.exe
 4 3 PEVerify.exe
 4 0 ResGen.exe
 4 0 SecUtil.exe
 4 0 setreg.exe
 4 0 signcode.exe
 4 3 sn.exe
 4 0 SoapSuds.exe
 4 0 StoreAdm.exe
 4 0 TlbExp.exe

 231

 4 0 TlbImp.exe
 4 0 WinCV.exe
 4 0 WinRes.exe
 4 0 wsdl.exe
 4 0 xsd.exe

11.9 Dynamic Link Library (DLL) files for Microsoft Visual Studio VC7

__

FILE NAME: atlprov.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 364 bytes
exists starting at address 159744; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 192848; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1189 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42272 bytes in size when actually it
is 45056 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 11300 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: c1.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 608 bytes
exists starting at address 405504; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 96
bytes exists starting at address 474284; this item often does not
appear in an image file so it was not read and it was also not mapped

 232

 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2764 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 265384 bytes in size when actually
it is 266240 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 37796 bytes in size when actually
it is 40960 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), snprintf (Low risk),
sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: c1xx.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 764 bytes
exists starting at address 1314816; this table often does not appear
in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 1515864; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
3400 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 269632 bytes in size when actually
it is 270336 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 102648 bytes in size when
actually it is 106496 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 233

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), snprintf (Low risk),
sprintf (Very high risk), sscanf (Very high risk), strncpy (Low risk),
vsnprintf (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: c2.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 416 bytes
exists starting at address 1359872; this table often does not appear
in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 128
bytes exists starting at address 1453448; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1946 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 17440 bytes in size when actually it
is 20480 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 64036 bytes in size when actually
it is 65536 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), strncpy (Low risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rcdll.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 234

 - The file indicates an import address table consisting of 292 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1176 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27496 bytes in size when actually it
is 27648 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6504 bytes in size when actually
it is 7168 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), sscanf (Very
high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: wmiscriptutils.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 304 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1603 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5576 bytes in size when actually it
is 5632 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1332 bytes in size when actually
it is 2048 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 235

 - Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 6 0 atlprov.dll
 6 5 c1.dll
 6 7 c1xx.dll
 6 5 c2.dll
 5 3 rcdll.dll
 5 1 wmiscriptutils.dll

11.10 Executable (EXE) files for Microsoft Visual Studio VC7

__

FILE NAME: bscmake.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 328 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1441 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5352 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 236

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), read (Medium risk), sprintf (Very high
risk), vsnprintf (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: cl.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 548 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 51700; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2529 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 16280 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 8 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getchar (Medium risk), memcpy (Low risk),
sprintf (Very high risk), sscanf (Very high risk), strcat (Very high
risk), strcpy (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: clstencil.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 237

 - The file indicates an import address table consisting of 612 bytes
exists starting at address 131072; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2362 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3064 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: cvtres.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 288 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1304 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2616 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: dumpbin.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 238

 - The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: editbin.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: h2inc.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 388 bytes
exists starting at address 278956; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
2150 bytes in size

 239

 - The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
8192 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1670 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: lib.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 136 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
680 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 920 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: link.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 812 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 592608; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2516 bytes in size

 240

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 37504 bytes in size when actually it
is 40960 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getc (Medium risk), getchar (Medium risk),
read (Medium risk), sprintf (Very high risk), sscanf (Very high risk),
strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: ml.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 276 bytes
exists starting at address 278528; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1545 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 20680 bytes in size when actually it
is 24576 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: nmake.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 448 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped

 241

 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1900 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10280 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), getc (Medium risk), sprintf (Very high
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rc.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 88 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
445 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: sproxy.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 242

 - The file indicates an import address table consisting of 408 bytes
exists starting at address 89600; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1223 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27320 bytes in size when actually it
is 27648 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: undname.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 152 bytes
exists starting at address 3072; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
699 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 984 bytes in size when actually it
is 1024 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

 243

FILE NAME: vcdeploy.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 632 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2553 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9208 bytes in size when actually it
is 9216 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 4 bscmake.exe
 6 8 cl.exe
 4 0 clstencil.exe
 4 2 cvtres.exe
 4 0 dumpbin.exe
 4 0 editbin.exe
 5 0 h2inc.exe
 4 0 lib.exe
 5 7 link.exe
 4 0 ml.exe
 4 3 nmake.exe
 4 0 rc.exe
 4 1 sproxy.exe
 4 1 undname.exe
 4 1 vcdeploy.exe

 244

12. APPENDIX F – TEST RESULTS FROM ANALYZING WINDOWS XP
HOME EDITION OPERATING SYSTEM FILES

12.1 Dynamic Link Library (DLL) Files for Windows XP (C:\windows
directory)

__

FILE NAME: twain_32.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 328 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1259 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4728 bytes in size when actually it
is 5120 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2008 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: vmmreg32.dll

 245

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 100 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
489 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1008 bytes in size when actually it
is 1024 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 344 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 twain_32.dll
 5 0 vmmreg32.dll

12.2 Executable (EXE) Files for Windows XP (C:\windows directory)

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 26

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 delttsul.exe
 6 0 explorer.exe
 4 0 GPInstall.exe
 4 0 hh.exe

 246

 4 0 ieuninst.exe
 4 0 IsUninst.exe
 4 0 muninst.exe
 4 0 NOTEPAD.EXE
 4 0 oeuninst.exe
 4 0 Q330994.exe
 4 0 regedit.exe
 4 1 rmud.exe
 5 0 setdebug.exe
 4 0 TASKMAN.EXE
 4 1 twunk_32.exe
 4 0 uinst001.exe
 4 0 uninst.exe
 4 0 unvise32.exe
 4 0 unvise32qt.exe
 4 1 winhlp32.exe

12.3 Dynamic Link Library (DLL) Files for Windows XP (C:\windows\system
directory)

__

FILE NAME: CTL3D32.DLL

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 0 bytes for that section
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2384 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 568 bytes in size when actually
it is 5120 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: CW3215.DLL

**** Anomalies ****

 - The length of 256 forwarder name(s) in the export table exceeded
the buffer size of 255 bytes
 - Tried to read a directory table entry in the import table but
didn't find the amount of data expected

 247

 - The data directory table in the optional header states that the
Import Table (.idata section) is 2256 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5640 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 18

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 CTL3D32.DLL
 4 0 CW3215.DLL

12.4 Driver (DRV) Files for Windows XP (C:\windows\system directory)

__

FILE NAME: WINSPOOL.DRV

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 708 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 112252; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4041 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2512 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5260 bytes in size when actually
it is 5632 bytes in size

**** End of Anomalies ****

 248

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 6 0 WINSPOOL.DRV

12.5 Dynamic Link Library (DLL) Files for Windows XP (C:\windows\system32
directory)

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1348

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 6to4svc.dll
 5 0 aaaamon.dll
 3 0 acctres.dll
 5 0 acledit.dll
 6 0 aclui.dll
 5 1 activeds.dll
 6 0 actxprxy.dll
 5 0 admparse.dll
 5 0 adptif.dll
 5 1 adsldp.dll
 5 0 adsldpc.dll
 5 1 adsmsext.dll
 5 0 adsnt.dll
 6 2 advapi32.dll
 5 0 advpack.dll
 5 0 alrsvc.dll
 5 0 amstream.dll
 5 3 apcups.dll
 6 3 apphelp.dll
 3 0 asferror.dll
 5 0 asfsipc.dll
 5 2 asycfilt.dll
 5 0 atkctrs.dll

 249

 6 0 atl.dll
 6 0 atl70.dll
 6 1 atmfd.dll
 5 2 atmlib.dll
 5 0 atmpvcno.dll
 5 1 atrace.dll
 5 0 audiosrv.dll
 6 0 authz.dll
 6 0 autodisc.dll
 5 0 avicap32.dll
 5 0 avifil32.dll
 5 1 avmeter.dll
 5 0 avtapi.dll
 5 0 avwav.dll
 5 0 basesrv.dll
 5 0 batmeter.dll
 6 0 batt.dll
 2 0 bcbmm.dll
 5 4 bfc42.dll
 5 5 bfc42d.dll
 6 0 bidispl.dll
 5 0 bitsprx2.dll
 5 0 bitsprx3.dll
 5 3 blackbox.dll
 4 1 Bocof.dll
 6 1 bootvid.dll
 2 0 borlndmm.dll
 3 0 browselc.dll
 4 0 browser.dll
 6 0 BROWSEUI.DLL
 5 0 browsewm.dll
 5 0 cabinet.dll
 5 0 cabview.dll
 5 0 camocx.dll
 5 0 capesnpn.dll
 6 0 cards.dll
 5 0 catsrv.dll
 5 0 catsrvps.dll
 5 0 catsrvut.dll
 6 0 cc3250.dll
 6 0 cc3250mt.dll
 5 0 ccfgnt.dll
 5 0 cddbcontrol.dll
 6 0 cdfview.dll
 6 1 cdm.dll
 5 1 cdmodem.dll
 5 4 cdosys.dll
 5 2 cehelper.dll
 5 3 certcli.dll
 5 0 certmgr.dll
 5 0 CEWMDM.dll
 5 0 cfgbkend.dll
 4 0 cfgmgr32.dll
 5 0 ciadmin.dll
 5 0 cic.dll

 250

 5 0 ciodm.dll
 5 0 clb.dll
 5 0 clbcatex.dll
 5 1 clbcatq.dll
 6 2 cliconfg.dll
 5 5 ClientBR.dll
 5 0 clusapi.dll
 5 0 cmcfg32.dll
 5 0 cmdial32.dll
 6 0 cmpbk32.dll
 5 0 cmprops.dll
 5 0 cmutil.dll
 5 1 cnbjmon.dll
 5 0 cnetcfg.dll
 4 0 cnvfat.dll
 6 1 colbact.dll
 5 0 comaddin.dll
 4 0 comcat.dll
 5 0 comctl32.dll
 5 0 comdlg32.dll
 5 0 compatUI.dll
 5 0 compstui.dll
 5 0 comrepl.dll
 6 0 comres.dll
 5 0 comsnap.dll
 5 1 comsvcs.dll
 5 0 comuid.dll
 5 1 confmsp.dll
 5 0 console.dll
 5 0 corpol.dll
 3 0 cpuinf32.dll
 6 0 credui.dll
 4 0 crtdll.dll
 6 2 crypt32.dll
 5 0 cryptdlg.dll
 5 0 cryptdll.dll
 6 1 cryptext.dll
 5 1 cryptnet.dll
 6 0 cryptsvc.dll
 6 1 cryptui.dll
 6 2 cscdll.dll
 6 0 cscui.dll
 5 2 csrsrv.dll
 5 0 csseqchk.dll
 4 0 ctl3d32.dll
 5 4 d3d8.dll
 6 0 d3d8thk.dll
 5 3 d3d9.dll
 5 2 d3dim.dll
 6 0 d3dpmesh.dll
 4 0 d3dramp.dll
 5 1 d3drm.dll
 5 2 d3dxof.dll
 5 1 danim.dll
 5 0 dataclen.dll

 251

 5 0 datime.dll
 5 0 davclnt.dll
 6 8 dbgeng.dll
 5 4 dbghelp.dll
 6 1 dbmsadsn.dll
 5 2 dbmsrpcn.dll
 5 1 dbmsvinn.dLL
 5 2 DBnetlib.dll
 5 1 dbnmpntw.dll
 5 0 dciman32.dll
 5 0 ddraw.dll
 5 0 ddrawex.dll
 2 0 delphimm.dll
 5 0 deskadp.dll
 5 0 deskmon.dll
 5 0 deskperf.dll
 5 0 devenum.dll
 6 0 devmgr.dll
 2 0 dfrgres.dll
 5 0 dfrgsnap.dll
 5 0 dfrgui.dll
 5 0 dfsshlex.dll
 4 0 dgnet.dll
 5 0 dgrpsetu.dll
 5 0 dgsetup.dll
 5 1 dhcpcsvc.dll
 5 2 dhcpmon.dll
 5 0 dhcpsapi.dll
 4 0 diactfrm.dll
 6 0 digest.dll
 5 1 dimap.dll
 5 0 dinput.dll
 5 0 dinput8.dll
 5 0 diskcopy.dll
 5 0 dispex.dll
 5 0 dmband.dll
 5 0 dmcompos.dll
 5 3 dmconfig.dll
 5 0 dmdlgs.dll
 5 0 dmdskmgr.dll
 4 0 dmdskres.dll
 5 0 dmime.dll
 5 0 dmintf.dll
 5 0 dmloader.dll
 5 0 dmocx.dll
 5 0 dmscript.dll
 5 1 dmserver.dll
 5 0 dmstyle.dll
 5 0 dmsynth.dll
 5 0 dmusic.dll
 5 1 dmutil.dll
 6 6 dnsapi.dll
 5 4 dnsrslvr.dll
 5 0 docprop.dll
 5 0 docprop2.dll

 252

 5 1 dpcdll.dll
 5 0 dplay.dll
 5 0 dplayx.dll
 5 0 dpmodemx.dll
 4 0 dpnaddr.dll
 5 2 dpnet.dll
 5 0 dpnhpast.dll
 5 0 dpnhupnp.dll
 3 0 dpnlobby.dll
 5 0 dpnmodem.dll
 5 1 dpnwsock.dll
 5 0 dpserial.dll
 5 0 dpvacm.dll
 5 2 dpvoice.dll
 5 0 dpvvox.dll
 5 0 dpwsock.dll
 5 0 dpwsockx.dll
 5 7 drmclien.dll
 5 0 drmstor.dll
 5 8 drmv2clt.dll
 5 0 drprov.dll
 6 0 ds32gt.dll
 5 0 dsauth.dll
 5 1 dsdmo.dll
 5 1 dsdmoprp.dll
 5 0 dskquota.dll
 5 0 dskquoui.dll
 5 0 dsound.dll
 6 0 dsound3d.dll
 5 0 dsprop.dll
 5 0 dsquery.dll
 5 0 dssdata.dll
 5 0 dssec.dll
 6 0 dssenh.dll
 5 0 dsuiext.dll
 5 0 dswave.dll
 6 1 duser.dll
 4 0 dx3j.dll
 5 0 dx7vb.dll
 5 4 dx8vb.dll
 5 0 dxdiagn.dll
 6 4 dxmasf.dll
 5 3 dxmrtp.dll
 5 0 dxtmsft.dll
 5 0 dxtrans.dll
 5 0 els.dll
 5 0 encapi.dll
 5 0 EqnClass.Dll
 5 0 ersvc.dll
 5 1 es.dll
 5 6 esent.dll
 5 5 esent97.dll
 5 1 esentprf.dll
 5 1 eventcls.dll
 6 0 eventlog.dll

 253

 5 0 expsrv.dll
 5 2 EXSEC32.DLL
 5 3 exts.dll
 5 1 faultrep.dll
 5 0 feclient.dll
 5 0 filemgmt.dll
 5 0 fldrclnr.dll
 4 0 FLORA32.DLL
 5 0 FM20.DLL
 3 0 FM20ENU.DLL
 5 0 fmifs.dll
 5 2 fontext.dll
 5 0 fontsub.dll
 6 1 framebuf.dll
 5 3 fsusd.dll
 5 0 ftsrch.dll
 5 0 fxsapi.dll
 5 0 fxscfgwz.dll
 5 0 fxsclntR.dll
 5 0 fxscom.dll
 5 0 fxscomex.dll
 5 0 fxsdrv.dll
 6 0 fxsevent.dll
 6 0 fxsext32.dll
 5 0 fxsmon.dll
 5 0 fxsperf.dll
 5 0 fxsres.dll
 5 0 fxsroute.dll
 5 0 fxsst.dll
 5 3 fxst30.dll
 6 0 fxstiff.dll
 5 0 fxsui.dll
 5 1 fxswzrd.dll
 5 0 fxsxp32.dll
 5 0 gcdef.dll
 5 1 gdi32.dll
 6 0 getuname.dll
 5 2 glmf32.dll
 5 0 glu32.dll
 5 1 gpkcsp.dll
 3 0 gpkrsrc.dll
 5 1 h323msp.dll
 4 3 hal.dll
 5 0 hccutils.dll
 5 4 HfxClasses45.dll
 5 1 HfxGui45.dll
 5 2 hhsetup.dll
 5 0 hid.dll
 5 0 hlink.dll
 4 0 hlp25632.dll
 4 0 hlp95en.dll
 6 0 hnetcfg.dll
 5 0 hnetmon.dll
 5 0 hnetwiz.dll
 6 0 hotplug.dll

 254

 5 0 hpaghlpr.dll
 5 0 Hpgdtppg.dll
 5 0 hpgdtt.dll
 5 1 hpgdtuu.dll
 5 2 hpgreg32.dll
 4 4 hpgt34.dll
 5 1 hpgt34tk.dll
 5 0 hpgtmcro.dll
 5 3 hpREG.DLL
 5 0 hpsj32.dll
 5 0 hpsjvset.dll
 5 0 HPUNINST.DLL
 5 0 hpvaut32.dll
 7 3 hpvcp70.dll
 5 0 hpvcr70.dll
 5 0 hpzcoi09.dll
 5 0 hpzcon09.dll
 5 0 hpzlnt09.dll
 5 0 hticons.dll
 5 0 htui.dll
 5 5 hypertrm.dll
 4 0 i81xcoin.dll
 6 1 i81xdnt5.dll
 5 0 i81xgdev.dll
 5 0 i81xgicd.dll
 5 0 iasacct.dll
 5 0 iasads.dll
 5 0 iashlpr.dll
 5 0 iasnap.dll
 5 0 iaspolcy.dll
 5 0 iasrad.dll
 5 0 iasrecst.dll
 5 1 iassam.dll
 5 0 iassdo.dll
 5 0 iassvcs.dll
 4 2 icaapi.dll
 2 0 iccvid.dll
 6 0 icfgnt5.dll
 5 0 icm32.dll
 4 0 icmp.dll
 5 0 icmui.dll
 5 0 icwdial.dll
 5 0 icwphbk.dll
 5 0 idq.dll
 1 0 IDUNINST.DLL
 5 0 ieakeng.dll
 5 0 ieaksie.dll
 3 0 ieakui.dll
 6 0 iedkcs32.dll
 5 0 iepeers.dll
 5 0 iernonce.dll
 5 0 iesetup.dll
 5 1 ifmon.dll
 5 1 ifsutil.dll
 5 0 igfxdev.dll

 255

 4 0 igfxdgps.dll
 5 0 igfxdo.dll
 5 0 igfxeud.dll
 5 0 igfxhk.dll
 5 0 igfxpph.dll
 5 0 igfxres.dll
 5 0 igfxsrvc.dll
 5 0 igmpagnt.dll
 5 0 ils.dll
 6 3 imagehlp.dll
 6 1 imeshare.dll
 5 0 imgutil.dll
 5 0 imm32.dll
 5 0 inetcfg.dll
 5 0 INETCOMM.DLL
 3 0 inetcplc.dll
 5 0 inetmib1.dll
 6 0 inetpp.dll
 5 0 inetppui.dll
 3 0 inetres.dll
 5 0 INETWH32.DLL
 5 4 infosoft.dll
 5 0 initpki.dll
 3 0 INLOADER.DLL
 5 0 input.dll
 5 0 inseng.dll
 5 0 InstAdm.dll
 5 0 InstExp.dll
 3 0 iologmsg.dll
 5 0 ioRdyUI.dll
 5 0 ioReady.dll
 5 1 ipeapi12.dll
 5 9 ipebase12.dll
 5 1 ipeistor12.dll
 6 2 iphlpapi.dll
 5 0 ipl.dll
 5 0 ipla6.dll
 5 0 iplm5.dll
 5 0 iplm6.dll
 5 0 iplp6.dll
 5 0 iplpx.dll
 5 0 iplw7.dll
 5 1 ipmontr.dll
 5 2 ipnathlp.dll
 5 1 ippromon.dll
 4 0 iprop.dll
 5 0 iprtprio.dll
 5 2 iprtrmgr.dll
 5 0 ipsecsnp.dll
 5 0 ipsecsvc.dll
 5 0 ipsmsnap.dll
 5 0 ipv6mon.dll
 5 1 ipxmontr.dll
 5 0 ipxpromn.dll
 5 0 ipxrip.dll

 256

 5 0 ipxrtmgr.dll
 5 1 ipxsap.dll
 5 0 ipxwan.dll
 3 0 ir32_32.dll
 5 0 ir41_qc.dll
 4 0 ir41_qcx.dll
 5 0 ir50_32.dll
 5 0 ir50_qc.dll
 5 0 ir50_qcx.dll
 5 0 irclass.dll
 5 0 isign32.dll
 5 0 isrdbg32.dll
 5 0 itircl.dll
 5 0 itss.dll
 5 1 iuctl.dll
 5 1 iuengine.dll
 5 0 ixsso.dll
 5 0 iyuv_32.dll
 5 0 javacypt.dll
 5 0 javaee.dll
 5 0 javaprxy.dll
 5 0 javart.dll
 5 2 jet500.dll
 4 0 jgaw400.dll
 4 0 jgdw400.dll
 3 0 jgmd400.dll
 3 0 jgpl400.dll
 3 0 jgsd400.dll
 3 0 jgsh400.dll
 5 0 jit.dll
 5 1 jobexec.dll
 5 1 jscript.dll
 5 0 jsproxy.dll
 3 0 KBDAL.DLL
 2 0 kbdaze.dll
 3 0 kbdazel.dll
 3 0 kbdbe.dll
 3 0 kbdbene.dll
 3 0 kbdblr.dll
 3 0 kbdbr.dll
 3 0 kbdbu.dll
 2 0 kbdca.dll
 3 0 kbdcan.dll
 2 0 kbdcr.dll
 3 0 kbdcz.dll
 3 0 kbdcz1.dll
 2 0 kbdcz2.dll
 3 0 kbdda.dll
 3 0 kbddv.dll
 3 0 kbdes.dll
 3 0 kbdest.dll
 3 0 kbdfc.dll
 3 0 kbdfi.dll
 3 0 kbdfo.dll
 3 0 kbdfr.dll

 257

 3 0 kbdgae.dll
 3 0 kbdgkl.dll
 3 0 kbdgr.dll
 3 0 kbdgr1.dll
 3 0 kbdhe.dll
 2 0 kbdhe220.dll
 2 0 kbdhe319.dll
 3 0 kbdhela2.dll
 3 0 kbdhela3.dll
 2 0 kbdhept.dll
 3 0 kbdhu.dll
 2 0 kbdhu1.dll
 3 0 kbdic.dll
 3 0 kbdir.dll
 3 0 kbdit.dll
 3 0 kbdit142.dll
 3 0 kbdkaz.dll
 3 0 kbdkyr.dll
 3 0 kbdla.dll
 3 0 kbdlt.dll
 3 0 kbdlt1.dll
 3 0 kbdlv.dll
 3 0 kbdlv1.dll
 3 0 kbdmac.dll
 3 0 kbdmon.dll
 3 0 kbdne.dll
 3 0 kbdnec.dll
 3 0 kbdno.dll
 3 0 kbdpl.dll
 2 0 kbdpl1.dll
 3 0 kbdpo.dll
 3 0 kbdro.dll
 3 0 kbdru.dll
 2 0 kbdru1.dll
 3 0 kbdsf.dll
 3 0 kbdsg.dll
 3 0 kbdsl.dll
 3 0 kbdsl1.dll
 3 0 kbdsp.dll
 3 0 kbdsw.dll
 3 0 kbdtat.dll
 3 0 kbdtuf.dll
 3 0 kbdtuq.dll
 3 0 kbduk.dll
 3 0 kbdur.dll
 3 0 kbdus.dll
 3 0 kbdusl.dll
 3 0 kbdusr.dll
 2 0 kbdusx.dll
 3 0 kbduzb.dll
 2 0 kbdycc.dll
 3 0 kbdycl.dll
 6 2 kd1394.dll
 6 1 kdcom.dll
 6 3 kerberos.dll

 258

 5 2 kernel32.dll
 6 0 keymgr.dll
 5 0 ksuser.dll
 5 0 langwrbk.dll
 5 0 laprxy.dll
 3 0 lfavi80n.dll
 3 0 lfawd80n.dll
 4 0 lfbmp11n.dll
 3 0 lfbmp80n.dll
 3 0 lfcal80n.dll
 5 0 LFCMP11n.DLL
 3 0 LFCMP70n.DLL
 3 0 Lfcmp80n.dll
 3 0 Lfdic80n.dll
 4 0 lfeps11n.dll
 3 0 lfeps80n.dll
 4 0 lffax11n.dll
 3 0 lffax70n.dll
 3 0 Lffax80n.dll
 4 1 Lffpx7.dll
 3 0 lffpx70n.dll
 3 0 lffpx80n.dll
 4 0 lfgif11n.dll
 3 0 lfgif70n.dll
 3 0 lfgif80n.dll
 3 0 lfica80n.dll
 3 0 lfimg80n.dll
 3 0 Lfkodak.dll
 3 0 lflma80n.dll
 3 0 lflmb80n.dll
 3 0 lfmac80n.dll
 3 0 lfmsp80n.dll
 4 0 lfpcd11n.dll
 3 0 lfpcd80n.dll
 3 0 lfpct80n.dll
 4 0 lfpcx11n.dll
 3 0 lfpcx70n.dll
 3 0 lfpcx80n.dll
 5 0 Lfpng11n.dll
 3 0 lfpng70n.dll
 3 0 lfpng80n.dll
 4 0 lfpsd11n.dll
 3 0 lfpsd80n.dll
 3 0 lfras80n.dll
 4 0 lftga11n.dll
 3 0 lftga80n.dll
 4 0 lftif11n.dll
 3 0 lftif70n.dll
 3 0 Lftif80n.dll
 3 0 lfwfx80n.dll
 4 0 lfwmf11n.dll
 3 0 lfwmf80n.dll
 3 0 lfwpg80n.dll
 6 5 libeay32.dll
 4 0 libmred204_000.dll

 259

 4 0 libmzgc204_000.dll
 4 0 libmzsch204_000.dll
 5 0 libthrdR.dll
 5 8 LibZkR.dll
 5 1 LibZkTestR.dll
 5 0 licdll.dll
 5 0 licmgr10.dll
 5 0 licwmi.dll
 6 0 linkinfo.dll
 4 1 lmhsvc.dll
 5 1 lmrt.dll
 5 2 loadperf.dll
 5 0 localsec.dll
 6 0 localspl.dll
 5 0 localui.dll
 5 0 loghours.dll
 5 0 lpk.dll
 5 2 lprhelp.dll
 5 0 lprmonui.dll
 6 3 lsasrv.dll
 3 0 ltann80n.dll
 4 0 LTDIS11n.dll
 3 0 Ltefx80n.dll
 4 0 ltfil11n.DLL
 3 0 ltfil70n.DLL
 3 0 ltfil80n.DLL
 4 0 ltimg11n.dll
 3 0 Ltimg80n.dll
 4 0 ltkrn11n.dll
 3 0 ltkrn70n.dll
 3 0 Ltkrn80n.dll
 3 0 Lttwn80n.dll
 3 0 LTWND80n.DLL
 7 0 Ltwvc11n.dll
 3 0 lz32.dll
 4 0 mag_hook.dll
 5 0 mapi32.dll
 5 0 mapistub.dll
 5 0 mcastmib.dll
 5 0 mcd32.dll
 6 1 mcdsrv32.dll
 5 0 mchgrcoi.dll
 5 0 mciavi32.dll
 5 0 mcicda.dll
 5 0 mciole32.dll
 5 0 mciqtz32.dll
 5 0 mciseq.dll
 5 0 mciwave.dll
 5 0 mdhcp.dll
 5 0 mdminst.dll
 5 2 mdwmdmsp.dll
 5 0 mf3216.dll
 8 5 mfc40.dll
 8 2 mfc40u.dll
 9 5 mfc42.dll

 260

 3 0 MFC42ENU.DLL
 9 2 mfc42u.dll
 8 6 mfc70.dll
 8 2 mfc70u.dll
 5 0 mfcsubs.dll
 5 0 mgmtapi.dll
 5 0 midimap.dll
 5 0 miglibnt.dll
 5 1 mimefilt.dll
 5 4 mindex.dll
 5 1 mlang.dll
 5 0 mll_hp.dll
 5 0 mll_mtf.dll
 5 0 mll_qic.dll
 5 0 mmcbase.dll
 5 0 mmcndmgr.dll
 5 0 mmcshext.dll
 5 0 mmdrv.dll
 5 0 mmfutil.dll
 5 0 mmutilse.dll
 6 1 mnmdd.dll
 5 0 mobsync.dll
 5 0 modemui.dll
 6 1 modex.dll
 3 0 moricons.dll
 5 1 mp43dmod.dll
 5 1 mp4sdmod.dll
 5 1 mpg4dmod.dll
 6 0 mpr.dll
 5 2 mprapi.dll
 5 1 mprddm.dll
 6 3 mprdim.dll
 5 0 mprmsg.dll
 6 0 mprui.dll
 5 1 msaatext.dll
 5 0 msacm32.dll
 4 0 msafd.dll
 5 2 msapsspc.dll
 5 0 msasn1.dll
 3 0 msaudite.dll
 5 0 msawt.dll
 6 0 mscat32.dll
 5 0 mscms.dll
 5 0 msconf.dll
 3 0 mscpx32r.dLL
 5 0 mscpxl32.dLL
 5 0 msctf.dll
 5 0 MSCTFP.dll
 5 1 msdart.dll
 5 2 msdmo.dll
 5 2 msdtclog.dll
 5 3 msdtcprx.dll
 5 4 msdtctm.dll
 5 2 msdtcuiu.dll
 5 0 msdvdopt.dll

 261

 4 0 msdxmlc.dll
 5 0 msencode.dll
 6 0 msexch40.dll
 6 1 msexcl40.dll
 6 1 msgina.dll
 5 1 msgsvc.dll
 5 0 MSHTML.DLL
 5 0 mshtmled.dll
 3 0 mshtmler.dll
 5 0 msi.dll
 5 0 msident.dll
 5 0 msidle.dll
 3 0 msidntld.dll
 6 0 msieftp.dll
 5 0 msihnd.dll
 5 0 msimg32.dll
 4 0 MSIMRT.DLL
 4 0 MSIMRT32.DLL
 3 0 msimsg.dll
 5 0 MSIMTF.dll
 4 0 MSIMUSIC.DLL
 5 1 msisam11.dll
 5 0 msisip.dll
 5 0 msjava.dll
 6 0 msjdbc10.dll
 5 1 msjet35.dll
 6 1 msjet40.dll
 6 1 msjetoledb40.dll
 4 0 MSJINT32.DLL
 4 0 msjint35.dll
 6 0 msjint40.dll
 6 2 MSJT3032.DLL
 4 1 MSJTER32.DLL
 5 1 msjter35.dll
 5 0 msjter40.dll
 6 1 msjtes40.dll
 5 0 mslbui.dll
 2 0 msls2.dll
 3 0 msls31.dll
 5 0 msltus40.dll
 5 3 msnetobj.dll
 5 2 msnsspc.dll
 3 0 msobjs.dll
 5 0 msoeacct.dll
 5 0 msoert2.dll
 3 0 msorc32r.dll
 5 2 msorcl32.dll
 5 0 mspatcha.dll
 6 1 mspbde40.dll
 5 6 mspmsnsv.dll
 5 6 mspmsp.dll
 5 6 mspmspsv.dll
 5 0 msports.dll
 3 0 msprivs.dll
 4 1 msr2c.dll

 262

 4 0 msr2cenu.dll
 3 0 msratelc.dll
 5 0 msrating.dll
 5 0 msrclr40.dll
 4 0 MSRD2X32.DLL
 5 0 MSRD2X35.DLL
 6 1 msrd2x40.dll
 6 1 msrd3x40.dll
 7 0 MSRDO20.DLL
 4 0 MSRECR40.DLL
 7 1 msrepl35.dll
 6 1 msrepl40.dll
 5 0 msrle32.dll
 5 3 msscp.dll
 5 1 mssign32.dll
 6 0 mssip32.dll
 6 0 msstdfmt.dll
 6 0 MSSTKPRP.DLL
 6 0 msswch.dll
 5 0 mstask.dll
 6 1 mstext40.dll
 5 0 mstime.dll
 5 1 mstlsapi.dll
 5 0 mstscax.dll
 5 0 mstvca.dll
 5 0 mstvgs.dll
 6 1 msuni11.dll
 5 0 msutb.dll
 6 3 msv1_0.dll
 5 1 msvbvm50.dll
 5 1 msvbvm60.dll
 5 3 msvcirt.dll
 6 2 msvcp50.dll
 8 4 msvcp60.dll
 7 3 msvcp70.dll
 5 0 msvcr70.dll
 5 0 msvcrt.dll
 2 0 Msvcrt10.dll
 4 0 msvcrt20.dll
 6 0 msvcrt40.dll
 5 0 msvfw32.dll
 5 0 msvidc32.dll
 6 0 msvidctl.dll
 5 0 msw3prt.dll
 5 0 mswdat10.dll
 4 0 mswebdvd.dll
 5 1 mswmdm.dll
 6 4 mswsock.dll
 6 1 mswstr10.dll
 6 1 msxbde40.dll
 6 0 msxml.dll
 6 0 msxml2.dll
 4 0 msxml2r.dll
 6 0 msxml3.dll
 3 0 msxml3r.dll

 263

 6 0 MSXML4.dll
 3 0 MSXML4a.dll
 3 0 MSXML4r.dll
 3 0 msxmlr.dll
 5 0 msyuv.dll
 5 2 mtxclu.dll
 4 0 mtxdm.dll
 4 0 mtxex.dll
 5 0 mtxlegih.dll
 5 1 mtxoci.dll
 5 0 mycomput.dll
 5 0 mydocs.dll
 5 0 narrhook.dll
 5 0 nbicdnt.dll
 5 0 ncobjapi.dll
 5 0 ncxpnt.dll
 5 1 nddeapi.dll
 5 4 nddenb32.dll
 6 3 netapi32.dll
 6 2 netcfgx.dll
 3 0 netevent.dll
 3 0 neth.dll
 5 0 netid.dll
 5 2 netlogon.dll
 6 1 netman.dll
 3 0 netmsg.dll
 6 0 netplwiz.dll
 5 1 netrap.dll
 6 0 netshell.dll
 5 1 netui0.dll
 5 0 netui1.dll
 7 0 netui2.dll
 5 0 newdev.dll
 5 0 nlhtml.dll
 3 0 nmevtmsg.dll
 5 0 nmmkcert.dll
 4 0 npplg80n.dll
 5 3 npptools.dll
 5 2 npwmsdrm.dll
 4 0 ntdll.dll
 6 1 ntdsapi.dll
 5 0 ntlanman.dll
 5 0 ntlanui.dll
 4 0 ntlanui2.dll
 5 0 ntlsapi.dll
 6 0 ntmarta.dll
 5 0 ntmsapi.dll
 6 3 ntmsdba.dll
 6 0 ntmsevt.dll
 5 0 ntmsmgr.dll
 5 1 ntmssvc.dll
 5 0 ntprint.dll
 5 2 ntsdexts.dll
 5 0 ntshrui.dll
 5 0 ntvdmd.dll

 264

 5 1 nv4.dll
 5 0 nvcpl.dll
 5 0 nvdesk32.dll
 5 0 nvdmcpl.dll
 5 0 nvinstnt.dll
 5 0 nvoglnt.dll
 5 0 nvqtwk.dll
 3 0 nvrsda.dll
 3 0 nvrsde.dll
 3 0 nvrseng.dll
 3 0 nvrses.dll
 3 0 nvrsfi.dll
 3 0 nvrsfr.dll
 3 0 nvrsit.dll
 3 0 nvrsja.dll
 3 0 nvrsko.dll
 3 0 nvrsnl.dll
 3 0 nvrsno.dll
 3 0 nvrsptb.dll
 3 0 nvrssv.dll
 3 0 nvrszhc.dll
 3 0 nvrszht.dll
 5 0 nwprovau.dll
 5 1 oakley.dll
 5 0 objsel.dll
 8 6 OC30.DLL
 6 0 occache.dll
 4 0 ochlp30e.dll
 6 1 ocmanage.dll
 5 2 ODBC32.dll
 6 0 odbc32gt.dll
 5 0 odbcbcp.dll
 6 0 odbcconf.dll
 5 1 ODBCCP32.dll
 5 0 odbccr32.dll
 5 0 odbccu32.dll
 3 0 odbcint.dll
 5 0 odbcji32.dll
 5 3 odbcjt32.dll
 5 0 ODBCMON.DLL
 3 0 odbcp32r.dll
 5 3 odbctrac.dll
 6 0 oddbse32.dll
 6 0 odexl32.dll
 6 0 odfox32.dll
 6 0 odpdx32.dll
 6 0 odtext32.dll
 5 4 OemLibR.dll
 5 1 offfilt.dll
 4 1 ole32.dll
 5 0 oleacc.dll
 3 0 oleaccrc.dll
 5 1 oleaut32.dll
 5 0 olecli32.dll
 5 0 olecnv32.dll

 265

 5 0 oledlg.dll
 6 0 oleprn.dll
 5 0 olepro32.dll
 5 0 olesvr32.dll
 5 0 olethk32.dll
 5 0 opengl32.dll
 5 2 osuninst.dll
 6 4 OUTLWAB.DLL
 5 0 panmap.dll
 5 2 paqsp.dll
 5 0 pautoenr.dll
 3 0 PCDLIB32.DLL
 5 2 pdh.dll
 5 1 perfctrs.dll
 5 0 perfdisk.dll
 5 0 perfnet.dll
 5 0 perfos.dll
 5 0 perfproc.dll
 5 0 perfts.dll
 5 0 PGPhk.dll
 5 0 photowiz.dll
 5 0 pid.dll
 5 0 pidgen.dll
 3 0 pifmgr.dll
 5 1 pjlmon.dll
 5 2 PlugFile.dll
 5 0 plustab.dll
 5 0 pncrt.dll
 4 0 pndx5032.dll
 5 0 PNGFILT.DLL
 5 0 polstore.dll
 2 0 POLVGA.DLL
 5 0 powrprof.dll
 3 0 prflbmsg.dll
 5 0 printui.dll
 5 0 profmap.dll
 6 1 psapi.dll
 5 0 psbase.dll
 5 0 pschdprf.dll
 5 0 psisdecd.dll
 5 0 psnppagn.dll
 5 0 pstorec.dll
 5 0 pstorsvc.dll
 7 0 px.dll
 5 0 pxdrv.dll
 5 0 pxmas.dll
 5 0 pxwave.dll
 5 0 pxwma.dll
 6 8 python15.dll
 5 1 PythonCOM15.dll
 5 0 PyWinTypes15.dll
 5 0 qasf.dll
 5 0 qcap.dll
 5 0 qdv.dll
 5 0 qdvd.dll

 266

 6 1 qedit.dll
 3 0 qedwipes.dll
 6 2 qmgr.dll
 5 0 qmgrprxy.dll
 5 0 qosname.dll
 6 2 quartz.dll
 5 3 query.dll
 4 0 racpldlg.dll
 5 0 rasadhlp.dll
 6 1 rasapi32.dll
 5 1 rasauto.dll
 5 0 raschap.dll
 5 0 rasctrs.dll
 6 2 rasdlg.dll
 5 0 rasman.dll
 5 1 rasmans.dll
 5 0 rasmontr.dll
 5 2 rasmxs.dll
 5 3 rasppp.dll
 5 0 rasrad.dll
 5 0 rassapi.dll
 4 1 rasser.dll
 4 2 rastapi.dll
 5 0 rastls.dll
 5 0 rcbdyctl.dll
 1 0 RDBios32.DLL
 5 0 rdchost.dll
 7 0 RDOCURS.DLL
 4 0 rdpcfgex.dll
 6 1 rdpdd.dll
 5 0 rdpsnd.dll
 5 1 rdpwsx.dll
 6 0 regapi.dll
 5 0 regsvc.dll
 5 2 regwizc.dll
 5 0 remotepg.dll
 5 0 rend.dll
 4 0 resutils.dll
 3 0 RHMMPLAY.DLL
 6 0 riched20.dll
 5 0 riched32.dll
 5 4 rmoc3260.dll
 4 0 rnr20.dll
 5 0 Roboex32.dll
 6 0 routetab.dll
 5 0 rpcns4.dll
 4 1 rpcrt4.dll
 5 0 rpcss.dll
 6 0 rsaenh.dll
 6 0 rshx32.dll
 5 0 rsmps.dll
 3 0 rsvpmsg.dll
 5 1 rsvpperf.dll
 5 3 rsvpsp.dll
 5 4 rtcdll.dll

 267

 4 1 rtipxmib.dll
 5 1 rtm.dll
 5 0 rtutils.dll
 5 0 s3appdll.dll
 5 0 S3Gamma.dll
 6 1 s3gNB.dll
 5 0 s3swtch2.dll
 5 1 safrcdlg.dll
 5 0 safrdm.dll
 5 0 safrslv.dll
 5 0 samlib.dll
 6 4 samsrv.dll
 5 0 scarddlg.dll
 5 0 scardssp.dll
 5 0 sccbase.dll
 5 0 sccsccp.dll
 5 0 scecli.dll
 7 0 scesrv.dll
 5 0 schannel.dll
 6 0 schedsvc.dll
 5 0 sclgntfy.dll
 2 0 SCP32.DLL
 5 0 scredir.dll
 5 1 scripto.dll
 5 1 scrobj.dll
 5 2 scrrun.dll
 5 1 sdpblb.dll
 5 0 seclogon.dll
 6 1 secur32.dll
 5 0 security.dll
 5 0 sendcmsg.dll
 5 0 sendmail.dll
 6 0 sens.dll
 5 0 sensapi.dll
 6 0 senscfg.dll
 5 0 serialui.dll
 5 0 servdeps.dll
 5 0 serwvdrv.dll
 6 0 setupapi.dll
 5 3 setupdll.dll
 5 0 sfc.dll
 5 0 sfcfiles.dll
 6 0 sfc_os.dll
 5 0 sfmapi.dll
 3 0 shdoclc.dll
 6 0 SHDOCVW.DLL
 6 0 shell32.dll
 4 0 shellstyle.dll
 5 0 shfolder.dll
 6 0 shgina.dll
 4 3 shimeng.dll
 6 1 shimgvw.dll
 6 0 SHLWAPI.DLL
 6 0 shmedia.dll
 6 0 shscrap.dll

 268

 6 0 shsvcs.dll
 5 0 sigtab.dll
 5 0 sisbkup.dll
 5 0 skdll.dll
 5 0 slayerxp.dll
 5 1 slbcsp.dll
 6 0 slbiop.dll
 4 0 slbrccsp.dll
 5 0 smlogcfg.dll
 5 2 snmpapi.dll
 5 0 snmpsnap.dll
 6 0 softpub.dll
 3 0 spmsg.dll
 5 2 spnike.dll
 5 0 spoolss.dll
 5 0 SPORDER.DLL
 5 2 sprio600.dll
 5 2 sprio800.dll
 5 1 spxcoins.dll
 5 2 SQLSRV32.dll
 5 3 sqlunirl.dll
 5 0 sqlwid.dll
 5 1 sqlwoa.dll
 5 0 srclient.dll
 5 0 srrstr.dll
 5 0 srsvc.dll
 5 0 srvsvc.dll
 5 0 ssdpapi.dll
 6 0 ssdpsrv.dll
 4 0 ssleay32.dll
 5 0 stclient.dll
 2 0 stdvcl32.dll
 2 0 stdvcl40.dll
 5 3 sti.dll
 5 3 sti_ci.dll
 6 0 stobject.dll
 5 0 storprop.dll
 5 0 streamci.dll
 5 4 strmdll.dll
 6 0 svcpack.dll
 5 1 swprv.dll
 5 2 sxlrt232.dll
 6 3 sxs.dll
 5 0 synceng.dll
 5 0 syncui.dll
 5 0 syscontr.dll
 5 0 sysinv.dll
 6 0 syssetup.dll
 5 0 t2embed.dll
 5 1 tapi3.dll
 5 1 tapi32.dll
 5 0 tapiperf.dll
 5 1 tapisrv.dll
 3 0 tapiui.dll
 5 2 tcpmib.dll

 269

 5 2 tcpmon.dll
 6 0 tcpmonui.dll
 5 1 termmgr.dll
 6 2 termsrv.dll
 6 0 themeui.dll
 5 0 traffic.dll
 5 0 trkwks.dll
 6 1 tsappcmp.dll
 5 0 tsbyuv.dll
 5 0 tscfgwmi.dll
 5 0 tsd32.dll
 6 1 tsddd.dll
 4 0 TV_ENG32.DLL
 3 4 Twain_32.dll
 5 1 txflog.dll
 5 1 udhisapi.dll
 5 1 ufat.dll
 5 1 ulib.dll
 5 0 umandlg.dll
 6 0 umdmxfrm.dll
 5 0 umloader.dll
 5 0 umpnpmgr.dll
 5 0 unimdmat.dll
 5 0 uniplat.dll
 5 1 untfs.dll
 6 1 upnp.dll
 6 1 upnphost.dll
 6 0 upnpui.dll
 6 0 ureg.dll
 6 0 url.dll
 6 0 URLMON.DLL
 5 0 usbmon.dll
 6 0 usbui.dll
 6 1 user32.dll
 6 0 userenv.dll
 5 0 usp10.dll
 5 0 usrcntra.dll
 5 0 usrcoina.dll
 5 0 usrdpa.dll
 5 0 usrdtea.dll
 5 0 usrfaxa.dll
 5 0 usrlbva.dll
 5 0 usrrtosa.dll
 5 0 usrsdpia.dll
 5 0 usrsvpia.dll
 5 0 usrv42a.dll
 5 0 usrv80a.dll
 5 0 usrvoica.dll
 5 0 usrvpa.dll
 5 1 utildll.dll
 5 0 uxtheme.dll
 6 3 VB40032.DLL
 5 0 VB5DB.DLL
 4 0 VB5STKIT.DLL
 5 0 vbajet32.dll

 270

 5 0 VBAME.DLL
 4 1 VBAR2232.DLL
 5 0 VBAR332.DLL
 5 1 vbscript.dll
 5 0 vcdex.dll
 3 0 vcfidl32.dll
 3 0 vcfiwz32.dll
 5 0 vdmdbg.dll
 5 1 vdmredir.dll
 5 1 verifier.dll
 5 1 version.dll
 6 0 vfpodbc.dll
 6 1 vga.dll
 6 1 vga256.dll
 6 1 vga64k.dll
 5 0 vjoy.dll
 5 0 vmhelper.dll
 5 1 vsdata.dll
 6 8 vsinit.dll
 5 1 vsmonapi.dll
 3 0 vspell32.dll
 5 4 vspubapi.dll
 6 1 vssapi.dll
 5 0 vss_ps.dll
 6 8 vsutil.dll
 5 1 vsxml.dll
 5 1 VXBLOCK.dll
 5 0 VxDMDcDlg.dll
 5 0 w32time.dll
 4 0 w32topl.dll
 5 1 wavemsp.dll
 5 0 WBDBT32I.DLL
 8 1 WBDBV32I.DLL
 6 1 wdigest.dll
 6 0 webcheck.dll
 5 1 webclnt.dll
 5 1 webhits.dll
 5 0 webvw.dll
 5 0 wh2robo.dll
 5 0 wiadefui.dll
 5 3 wiadss.dll
 6 0 wiafbdrv.dll
 5 1 wiascr.dll
 5 3 wiaservc.dll
 6 0 wiashext.dll
 5 3 wiavideo.dll
 5 3 wiavusd.dll
 5 0 win32spl.dll
 6 0 winfax.dll
 5 1 winhttp.dll
 6 2 WINHTTP5.DLL
 6 1 WININET.DLL
 5 0 winipsec.dll
 5 1 winmm.dll
 5 0 winntbbu.dll

 271

 5 0 winrnr.dll
 5 0 winscard.dll
 6 0 winsrv.dll
 5 0 winsta.dll
 6 0 winstrm.dll
 6 0 wintrust.dll
 6 3 wkssvc.dll
 5 0 wldap32.dll
 6 2 wlnotify.dll
 5 1 wmadmod.dll
 5 2 wmadmoe.dll
 5 0 wmasf.dll
 5 0 wmdmlog.dll
 5 0 wmdmps.dll
 3 0 wmerrenu.dll
 3 0 wmerror.dll
 4 0 wmi.dll
 5 0 wmidx.dll
 5 0 wmiprop.dll
 6 5 wmnetmgr.dll
 6 5 wmp.dll
 5 0 wmpasf.dll
 5 0 wmpcd.dll
 5 0 wmpcore.dll
 5 0 wmpdxm.dll
 3 0 wmploc.dll
 5 0 wmpshell.dll
 5 0 wmpui.dll
 5 2 wmsdmod.dll
 5 1 wmsdmoe.dll
 5 2 wmsdmoe2.dll
 5 1 wmspdmod.dll
 5 2 wmspdmoe.dll
 6 4 wmstream.dll
 5 1 wmv8dmod.dll
 5 2 wmv8dmoe.dll
 6 7 wmvcore.dll
 5 2 wmvdmod.dll
 5 1 wmvdmoe.dll
 5 2 wmvdmoe2.dll
 5 2 wow32.dll
 5 1 wowfax.dll
 5 0 wowfaxui.dll
 6 0 ws2help.dll
 6 2 ws2_32.dll
 5 0 wshatm.dll
 5 1 wshcon.dll
 5 1 wshext.dll
 5 0 wship6.dll
 5 0 wshisn.dll
 5 0 wshnetbs.dll
 5 0 WshRm.dll
 5 0 wshtcpip.dll
 5 0 wsnmp32.dll
 5 0 wsock32.dll

 272

 5 2 wstdecod.dll
 5 0 wtsapi32.dll
 5 1 wuaueng.dll
 4 0 wuauserv.dll
 5 0 wupdinfo.dll
 5 2 wuv3is.dll
 5 0 wzcdlg.dll
 5 0 wzcsapi.dll
 5 2 wzcsvc.dll
 5 1 xactsrv.dll
 6 1 xenroll.dll
 5 1 xolehlp.dll
 3 0 xpob2res.dll
 5 0 zipfldr.dll
 5 3 ZKLSPR.dll
 5 2 zlib.dll

12.6 Driver (DRV) Files for Windows XP (C:\windows\system32 directory)

__

FILE NAME: msacm32.drv

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 308 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1560 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 7472 bytes in size when actually it
is 7680 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 492 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msh261.drv

**** Anomalies ****

 273

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 160 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
816 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3816 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2952 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msh263.drv

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 132 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
682 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3816 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4508 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wdmaud.drv

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 274

 - The file indicates an import address table consisting of 232 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1342 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 1024 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1128 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: winspool.drv

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 708 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 224
bytes exists starting at address 112252; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4041 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2512 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5260 bytes in size when actually
it is 5632 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 17

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 275

 A V/R Filename
 - --- --------
 5 0 msacm32.drv
 5 0 msh261.drv
 5 0 msh263.drv
 5 0 wdmaud.drv
 6 0 winspool.drv

12.7 Executable (EXE) Files for Windows XP (C:\windows\system32 directory)

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 301

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 accwiz.exe
 4 0 actmovie.exe
 4 2 ahui.exe
 3 0 alg.exe
 4 2 arp.exe
 4 2 at.exe
 4 1 atmadm.exe
 4 0 attrib.exe
 5 1 autochk.exe
 5 1 autoconv.exe
 5 1 autofmt.exe
 5 0 autolfn.exe
 4 0 bootok.exe
 4 0 bootvrfy.exe
 4 1 cacls.exe
 4 0 calc.exe
 4 0 charmap.exe
 4 0 chkdsk.exe
 4 0 chkntfs.exe
 3 0 cidaemon.exe
 4 0 cisvc.exe
 4 0 ckcnv.exe
 4 0 cleanmgr.exe
 4 0 cliconfg.exe
 4 1 clipbrd.exe
 4 1 clipsrv.exe
 5 0 clspack.exe
 5 1 cmd.exe
 4 0 cmdl32.exe
 5 0 cmmon32.exe
 4 0 cmstp.exe

 276

 4 0 comp.exe
 4 0 compact.exe
 4 0 conime.exe
 4 0 control.exe
 4 0 convert.exe
 4 0 cscript.exe
 5 0 csrss.exe
 4 0 ctfmon.exe
 4 0 dcomcnfg.exe
 4 1 ddeshare.exe
 4 0 defrag.exe
 4 0 dfrgfat.exe
 4 0 dfrgntfs.exe
 4 3 diantz.exe
 4 0 diskpart.exe
 4 0 diskperf.exe
 4 0 dllhost.exe
 4 0 dllhst3g.exe
 4 1 dmadmin.exe
 4 0 dmremote.exe
 4 0 doskey.exe
 3 0 dplaysvr.exe
 4 0 dpnsvr.exe
 4 1 dpvsetup.exe
 5 1 drwtsn32.exe
 4 0 dumprep.exe
 4 0 dvdplay.exe
 4 0 dvdupgrd.exe
 4 0 dwwin.exe
 4 0 dxdiag.exe
 4 0 dxdllreg.exe
 4 1 esentutl.exe
 4 0 eudcedit.exe
 4 0 eventvwr.exe
 4 0 expand.exe
 4 4 extrac32.exe
 4 1 fc.exe
 4 0 find.exe
 4 3 findstr.exe
 4 0 finger.exe
 4 0 fixmapi.exe
 4 0 fontview.exe
 4 1 forcedos.exe
 4 0 freecell.exe
 4 0 fsutil.exe
 4 5 ftp.exe
 4 0 fxsclnt.exe
 4 0 fxscover.exe
 4 0 fxssend.exe
 4 0 fxssvc.exe
 4 0 GkSui18.EXE
 4 0 grpconv.exe
 4 0 help.exe
 4 0 hkcmd.exe
 4 0 hostname.exe

 277

 4 0 ie4uinit.exe
 4 0 iexpress.exe
 4 0 igfxcfg.exe
 4 0 igfxdiag.exe
 4 0 igfxtray.exe
 4 0 imapi.exe
 4 0 InstallDriver.exe
 4 1 InstUtl.exe
 4 1 ipconfig.exe
 4 0 ipsec6.exe
 4 0 ipv6.exe
 4 1 ipxroute.exe
 3 2 java.exe
 3 2 javaw.exe
 5 0 jdbgmgr.exe
 5 0 jview.exe
 4 0 label.exe
 4 0 lights.exe
 4 0 lnkstub.exe
 4 1 locator.exe
 4 0 lodctr.exe
 4 5 logagent.exe
 4 0 logoff.exe
 5 0 logonui.exe
 4 0 lpq.exe
 4 0 lpr.exe
 4 0 lsass.exe
 3 0 ltremove.exe
 4 0 magnify.exe
 4 3 makecab.exe
 4 0 MAPISRVR.EXE
 4 0 migpwd.exe
 4 0 mmc.exe
 4 0 mnmsrvc.exe
 4 1 mobsync.exe
 4 0 mountvol.exe
 4 0 mplay32.exe
 4 1 mpnotify.exe
 4 0 mrinfo.exe
 4 0 msdtc.exe
 4 1 msg.exe
 4 0 mshearts.exe
 3 0 mshta.exe
 4 0 msiexec.exe
 5 0 mspaint.exe
 5 7 MsPMSPSv.exe
 4 0 msswchx.exe
 4 0 mstinit.exe
 4 0 mstsc.exe
 4 0 narrator.exe
 4 3 nbtstat.exe
 4 0 nddeapir.exe
 5 1 net.exe
 4 2 net1.exe
 4 4 netdde.exe

 278

 4 0 netsetup.exe
 4 1 netsh.exe
 4 2 netstat.exe
 4 0 notepad.exe
 4 5 nslookup.exe
 5 1 ntkrnlpa.exe
 5 1 ntoskrnl.exe
 5 7 ntsd.exe
 4 0 ntvdm.exe
 4 0 nvsvc32.exe
 4 1 odbcad32.exe
 4 0 odbcconf.exe
 4 0 osk.exe
 4 0 osuninst.exe
 4 0 packager.exe
 4 0 pathping.exe
 4 1 pentnt.exe
 4 0 perfmon.exe
 4 0 ping.exe
 4 0 ping6.exe
 4 0 print.exe
 4 0 progman.exe
 4 0 proquota.exe
 4 0 ps2.EXE
 3 0 pxhpinst.exe
 4 1 qappsrv.exe
 4 0 qprocess.exe
 3 0 qttask.exe
 4 0 qwinsta.exe
 4 1 rasautou.exe
 4 2 rasdial.exe
 4 0 rasphone.exe
 4 0 rcimlby.exe
 4 2 rcp.exe
 4 1 rdpclip.exe
 4 0 rdsaddin.exe
 4 0 rdshost.exe
 4 0 recover.exe
 4 0 reg.exe
 4 0 regedt32.exe
 4 0 regini.exe
 4 0 regsvr32.exe
 4 0 regwiz.exe
 4 0 replace.exe
 4 0 reset.exe
 4 0 rexec.exe
 4 2 route.exe
 4 0 routemon.exe
 4 0 rsh.exe
 4 0 rsm.exe
 4 0 rsmsink.exe
 4 0 rsmui.exe
 4 4 rsvp.exe
 4 0 rtcshare.exe
 4 0 runas.exe

 279

 4 0 rundll32.exe
 4 0 runonce.exe
 4 0 rwinsta.exe
 4 0 S3tray2.exe
 4 0 S3Uninst.exe
 4 1 savedump.exe
 4 0 sc.exe
 5 1 scardsvr.exe
 4 0 sdbinst.exe
 5 0 services.exe
 4 0 sessmgr.exe
 4 0 sethc.exe
 4 0 setup.exe
 4 0 sfc.exe
 4 0 shadow.exe
 4 0 shmgrate.exe
 4 0 shrpubw.exe
 4 0 shutdown.exe
 4 0 sigverif.exe
 4 0 skeys.exe
 4 0 smlogsvc.exe
 5 1 smss.exe
 4 0 sndrec32.exe
 4 0 sndvol32.exe
 4 0 sol.exe
 4 0 sort.exe
 4 0 spider.exe
 5 0 spoolsv.exe
 4 0 SPORDER.EXE
 6 0 sprestrt.exe
 3 0 stimon.exe
 4 0 subst.exe
 5 0 svchost.exe
 4 0 syncapp.exe
 4 0 syskey.exe
 4 0 sysocmgr.exe
 5 0 systray.exe
 4 0 taskman.exe
 5 0 taskmgr.exe
 4 0 tcmsetup.exe
 4 0 tcpsvcs.exe
 4 1 telnet.exe
 4 3 tftp.exe
 4 0 tourstart.exe
 4 0 tracert.exe
 4 0 tracert6.exe
 4 0 tscon.exe
 4 0 tscupgrd.exe
 4 0 tsdiscon.exe
 4 0 tskill.exe
 4 1 tsshutdn.exe
 4 0 Twunk_32.exe
 4 0 unlodctr.exe
 4 0 upnpcont.exe
 4 0 ups.exe

 280

 5 0 userinit.exe
 4 0 usrmlnka.exe
 4 0 usrprbda.exe
 4 0 usrshuta.exe
 4 0 utilman.exe
 4 0 verifier.exe
 4 1 vssadmin.exe
 4 1 vssvc.exe
 4 0 w32tm.exe
 3 0 wextract.exe
 4 0 wiaacmgr.exe
 4 0 winchat.exe
 4 0 winhlp32.exe
 5 2 winlogon.exe
 4 0 winmine.exe
 4 0 winmsd.exe
 4 0 winver.exe
 5 0 wjview.exe
 4 0 wmpstub.exe
 4 0 wpabaln.exe
 4 0 wpnpinst.exe
 4 0 write.exe
 4 1 wscript.exe
 4 1 wuauclt.exe
 4 0 wupdmgr.exe
 4 0 xcopy.exe
 4 4 XMNT2001.EXE
 4 1 xpsp1hfm.exe

 281

13. APPENDIX G – TEST RESULTS FROM ANALYZING MICROSOFT
APPLICATION FILES

13.1 Dynamic Link Library (DLL) Files for Microsoft Office 2000

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 50

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 ADJDATE.DLL
 5 0 ANLYZTS.DLL
 6 1 ATLCONV.DLL
 5 0 AW.DLL
 5 0 BLNMGR.DLL
 5 0 BLNMGRPS.DLL
 5 0 DBCONV.DLL
 5 4 DLGSETP.DLL
 6 1 ENVELOPE.DLL
 4 0 HLP95EN.DLL
 5 8 IMPMAIL.DLL
 5 0 MDHELPER.DLL
 5 3 MIMEDIR.DLL
 5 0 MLSHEXT.DLL
 5 0 MSDETECT.DLL
 8 1 MSO9.DLL
 4 0 MSO97FX.DLL
 5 0 MSODRAA9.DLL
 5 0 MSOHEV.DLL
 7 1 MSOWC.DLL
 5 0 MSOWCF.DLL
 5 0 MSOWCW.DLL
 5 1 OLKFSTUB.DLL
 5 1 OUTLACCT.DLL
 5 0 OUTLAS9.DLL
 5 2 OUTLCTL.DLL
 8 6 OUTLLIB.DLL
 6 1 OUTLMIME.DLL
 6 2 OUTLRPC.DLL
 5 0 OUTLVBS.DLL

 282

 6 0 OWS.DLL
 5 0 OWSDSC.DLL
 5 0 PDIGRAPH.DLL
 5 0 PERTANL.DLL
 6 1 PJ9OD9.DLL
 6 1 PJ9TM9.DLL
 5 0 PJBKND09.DLL
 5 0 PJPROTS.DLL
 6 1 PRJRES9.DLL
 5 2 RECALL.DLL
 4 0 REFEDIT.DLL
 6 3 RTFHTML.DLL
 4 0 SELFREG.DLL
 6 1 SENDTO9.DLL
 6 1 SERCONV.DLL
 5 0 STARTWIZ.DLL
 5 0 WEBPAGE.DLL
 3 0 XLCALL32.DLL

13.2 Executable (EXE) Files for Microsoft Office 2000

__

FILE NAME: EXCEL.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 5712
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 210 bytes in size when actually it is
15413 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 134076 bytes in size when actually
it is 135168 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3373 bytes in size when actually it is
7468 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3373 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

 283

__

FILE NAME: FINDER.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 140 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
742 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2416 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: GRAPH9.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3200
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 210 bytes in size when actually it is
10939 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 24204 bytes in size when actually it
is 24576 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3373 bytes in size when actually it is
7468 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3373 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

 284

__

FILE NAME: MSO7FTP.EXE

**** Anomalies ****

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1284 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: MSO7FTPA.EXE

**** Anomalies ****

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1284 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: MSO7FTPS.EXE

**** Anomalies ****

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1284 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

 285

__

FILE NAME: MSOHTMED.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 408 bytes
exists starting at address 33276; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1468 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2054 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: OSA9.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 460 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2320 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31512 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: OUTLOOK.EXE

**** Anomalies ****

 286

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 140 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
742 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 26004 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: PJSPOOL.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 676 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3304 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8840 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: POWERPNT.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 4940
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped

 287

 - The data directory table in the optional header states that the
Import Table (.idata section) is 244 bytes in size when actually it is
13650 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 84952 bytes in size when actually it
is 86016 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3333 bytes in size when actually it is
7428 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3333 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: WAVTOASF.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
DOS Header is 64 bytes in size when actually it is 52488 bytes in size
 - The file indicates an import address table consisting of 332 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1529 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4056 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 446 bytes of unused zero-filled space that could be used
to store malicious code or data
 - Uses 4 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), sscanf (Very high
risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

 288

__

FILE NAME: WINPROJ.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3840
bytes exists starting at address 5775360; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 304 bytes in size when actually it is
13945 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 14864 bytes in size when actually it
is 16384 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3201 bytes in size when actually it is
7296 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3201 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: WINWORD.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 6568
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 276 bytes in size when actually it is
17654 bytes in size
 - A section entry named .CRT appears in the section table, but the
table doesn't contain the location of the 8 bytes for that section

 289

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 73592 bytes in size when actually it
is 77824 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3249 bytes in size when actually it is
7344 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3249 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 14

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 1 EXCEL.EXE
 4 0 FINDER.EXE
 5 1 GRAPH9.EXE
 2 0 MSO7FTP.EXE
 2 0 MSO7FTPA.EXE
 2 0 MSO7FTPS.EXE
 4 0 MSOHTMED.EXE
 4 0 OSA9.EXE
 4 0 OUTLOOK.EXE
 4 0 PJSPOOL.EXE
 6 1 POWERPNT.EXE
 5 5 WAVTOASF.EXE
 5 1 WINPROJ.EXE
 7 1 WINWORD.EXE

13.3 Dynamic Link Library (DLL) Files for Microsoft Outlook Express

__

FILE NAME: MSOE.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 290

 - The file indicates an import address table consisting of 2744
bytes exists starting at address 1024; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
13851 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9368 bytes in size when actually it
is 9728 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 49332 bytes in size when actually
it is 55808 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msoeres.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2477960 bytes in size when actually
it is 2478080 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: oeimport.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 588 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3152 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4664 bytes in size when actually it
is 5120 bytes in size

 291

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5960 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: oemiglib.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 328 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1792 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3680 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1288 bytes in size when actually
it is 2048 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wabfind.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 108 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
647 bytes in size
 - A section entry named .data appears in the section table, but the
table doesn't contain the location of the 20 bytes for that section
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 25112 bytes in size when actually it
is 25600 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 216 bytes in size when actually
it is 512 bytes in size

 292

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wabimp.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 316 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1661 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6400 bytes in size when actually it
is 6656 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3028 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 MSOE.DLL
 3 0 msoeres.dll
 5 0 oeimport.dll
 5 0 oemiglib.dll
 6 0 wabfind.dll
 5 0 wabimp.dll

13.4 Executable (EXE) Files for Microsoft Outlook Express

__

 293

FILE NAME: msimn.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 152 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
705 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 48824 bytes in size when actually it
is 49152 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: oemig50.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 460 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2493 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8304 bytes in size when actually it
is 8704 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: setup50.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 294

 - The file indicates an import address table consisting of 464 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2537 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4768 bytes in size when actually it
is 5120 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wab.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 296 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1573 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 26664 bytes in size when actually it
is 27136 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wabmig.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 308 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1387 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2352 bytes in size when actually it
is 2560 bytes in size

 295

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 msimn.exe
 4 0 oemig50.exe
 4 0 setup50.exe
 4 0 wab.exe
 4 0 wabmig.exe

13.5 Dynamic Link Library (DLL) Files for Windows Internet Explorer Plugins

__

FILE NAME: NPDocBox.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 848 bytes
exists starting at address 118784; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3417 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 60952 bytes in size when actually it
is 61440 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10032 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 296

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), snprintf (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: nppdf32.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 412 bytes
exists starting at address 69632; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
2188 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2776 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2788 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 486 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: npqtplugin.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped

 297

 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npqtplugin2.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npqtplugin3.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

 298

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npqtplugin4.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npqtplugin5.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 228 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1240 bytes in size

 299

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4640 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3092 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 7 NPDocBox.dll
 5 1 nppdf32.dll
 5 0 npqtplugin.dll
 5 0 npqtplugin2.dll
 5 0 npqtplugin3.dll
 5 0 npqtplugin4.dll
 5 0 npqtplugin5.dll

13.6 Executable (EXE) Files for Windows Internet Explorer

__

FILE NAME: IEXPLORE.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 280 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1337 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 83784 bytes in size when actually it
is 83968 bytes in size

**** End of Anomalies ****

 300

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 IEXPLORE.EXE

13.7 Dynamic Link Library (DLL) Files for Windows Media Player 9

__

FILE NAME: custsat.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 668 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2650 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 21384 bytes in size when actually it
is 24576 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4160 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npdrmv2.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 301

 - The file indicates an import address table consisting of 348 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1739 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1176 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4124 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: npdsplay.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1228
bytes exists starting at address 225280; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
6372 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11800 bytes in size when actually it
is 12288 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 19200 bytes in size when actually
it is 28672 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: npwmsdrm.dll

 302

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 140 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
633 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1168 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 336 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: pidgen.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 124 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
664 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1784 bytes in size when actually it
is 2048 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 172 bytes in size when actually
it is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

 303

__

FILE NAME: wmpband.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 844 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
4398 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3288 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3860 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wmpns.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 904 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4665 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 984 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7312 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wmpvis.dll

 304

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 328 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1570 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 413032 bytes in size when actually
it is 413696 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2292 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 9

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 custsat.dll
 5 3 npdrmv2.dll
 5 0 npdsplay.dll
 5 1 npwmsdrm.dll
 5 0 pidgen.dll
 5 0 wmpband.dll
 5 0 wmpns.dll
 5 0 wmpvis.dll

13.8 Executable (EXE) Files for Windows Media Player 9

__

FILE NAME: dlimport.exe

**** Anomalies ****

 305

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 984 bytes
exists starting at address 212992; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
4472 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2032 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: migrate.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1444
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
7543 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 992 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcat (Very high risk), strcpy (Very high
risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

 306

__

FILE NAME: mplayer2.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 16 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
114 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2320 bytes in size when actually it
is 2560 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: setup_wm.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1652
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
8539 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 471576 bytes in size when actually
it is 475136 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: strncpy (Low risk), vsnprintf (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

 307

__

FILE NAME: wmplayer.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 192 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 96
bytes exists starting at address 7844; this item often does not appear
in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1055 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 54080 bytes in size when actually it
is 57344 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 3 dlimport.exe
 4 4 migrate.exe
 4 0 mplayer2.exe
 4 2 setup_wm.exe
 5 0 wmplayer.exe

13.9 Dynamic Link Library (DLL) Files for Windows Messenger

__

FILE NAME: msgsc.dll

**** Anomalies ****

 308

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 316 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1666 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1160 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3184 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msgslang.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
4096 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 206056 bytes in size when actually
it is 208896 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: rtcimsp.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 740 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped

 309

 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2361 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31104 bytes in size when actually it
is 31232 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7272 bytes in size when actually
it is 13312 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 msgsc.dll
 4 0 msgslang.dll
 5 0 rtcimsp.dll

13.10 Executable (EXE) Files for Windows Messenger

__
_

FILE NAME: msmsgs.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1876
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 160
bytes exists starting at address 861548; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 280 bytes in size when actually it is
9819 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 571616 bytes in size when actually
it is 573440 bytes in size

 310

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msmsgsin.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 220 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1113 bytes in size
 - A section entry named .data appears in the section table, but the
table doesn't contain the location of the 4 bytes for that section

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 2

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 msmsgs.exe
 4 0 msmsgsin.exe

13.11 Dynamic Link Library (DLL) Files for Windows MovieMaker

__

FILE NAME: wmmfilt.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 311

 - The file indicates an import address table consisting of 468 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 102872; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2485 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2104 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5052 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: wmmres.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Debug Table (.debug section) is 28 bytes in size when actually it is
4096 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 306200 bytes in size when actually
it is 307200 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wmmutil.dll

 312

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 772 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3983 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 944 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2904 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcpy (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 6 1 wmmfilt.dll
 4 0 wmmres.dll
 5 2 wmmutil.dll

13.12 Executable (EXE) Files for Windows MovieMaker

__

FILE NAME: moviemk.exe

**** Anomalies ****

 313

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1188
bytes exists starting at address 688128; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 448
bytes exists starting at address 773624; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
6643 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 27392 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), sscanf (Very
high risk), strcpy (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 5 moviemk.exe

13.13 Dynamic Link Library (DLL) Files for Windows NetMeeting

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 314

 A V/R Filename
 - --- --------
 5 0 callcont.dll
 5 0 confmrsl.dll
 5 0 dcap32.dll
 5 0 h323cc.dll
 5 1 mst120.dll
 6 0 MST123.DLL
 5 0 nac.dll
 5 0 nmas.dll
 6 0 nmasnt.dll
 5 0 nmchat.dll
 5 0 nmcom.dll
 5 0 nmft.dll
 5 0 nmoldwb.dll
 5 0 nmwb.dll
 5 0 rrcm.dll

13.14 Executable (EXE) Files for Windows NetMeeting

__

FILE NAME: cb32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 24 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
129 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1184 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: conf.exe

**** Anomalies ****

 315

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1860
bytes exists starting at address 4096; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 340 bytes in size when actually it is
9818 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 672040 bytes in size when actually
it is 675840 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: wb32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 52 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
281 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1200 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 cb32.exe
 4 0 conf.exe
 4 0 wb32.exe

 316

14. APPENDIX H – TEST RESULTS FROM ANALYZING SECURITY-
CENTRIC APPLICATION FILES

14.1 Dynamic Link Libraries (DLL) Files for Network Associates Common
Framework

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 35

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 Agent.dll
 5 3 AgentPlugin.dll
 4 1 ClientUI.dll
 5 1 ComponentSubSystem.dll
 5 0 ComponentUserInterface.dll
 5 2 FrmPlugin.dll
 6 3 GenEvtInf.dll
 6 5 InternetManager.dll
 5 0 LicWrap.dll
 6 5 ListenServer.dll
 5 2 Logging.dll
 5 2 Management.dll
 5 0 mcurial.dll
 5 5 naCmnLib.dll
 5 2 nagshr32.dll
 5 2 naicrt32.dll
 5 2 nailog.dll
 5 2 naInet.dll
 5 4 naisign.dll
 5 2 naPolicyManager.dll
 5 1 naSPIPE.dll
 5 2 naXML.dll
 5 2 nmcomn32.dll
 2 0 patchw32.dll
 5 0 PcrPlug.dll
 5 3 PoEvtInf.dll
 5 1 PSAPI.dll
 5 4 Scheduler.dll

 317

 5 2 ScriptSubSys.dll
 5 2 SecureFrameworkFactory.dll
 5 0 unicows.dll
 5 2 UpdateSubSys.dll
 5 1 UpdPlug.dll
 6 2 UserSpace.dll
 5 3 XMLWrap.dll

14.2 Exectutable (EXE) Files for Network Associates Common Framework

__

FILE NAME: Cleanup.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 204 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1058 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1032 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: CmdAgent.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 192 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
963 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1000 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

 318

No security vulnerabilities or security risks were found

__

FILE NAME: FrameworkService.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 756 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4965 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10120 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: FrmInst.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 808 bytes
exists starting at address 86016; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
6379 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4736 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

 319

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: McScript.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 988 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
4817 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1192 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 10 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), memcpy (Low risk), read (Medium risk),
snprintf (Low risk), sprintf (Very high risk), sscanf (Very high
risk), strcat (Very high risk), strcpy (Very high risk), strncpy (Low
risk), vsnprintf (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

FILE NAME: naPrdMgr.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 576 bytes
exists starting at address 77824; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
3802 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9208 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

 320

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcpy (Very high risk), strncpy (Low
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: UpdaterUI.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 860 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
5451 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 15000 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 Cleanup.exe
 4 0 CmdAgent.exe
 4 2 FrameworkService.exe
 4 2 FrmInst.exe

 321

 4 10 McScript.exe
 4 3 naPrdMgr.exe
 4 2 UpdaterUI.exe

14.3 Dynamic Link Libraries (DLL) Files for Network Associates VirusScan 7.0

__

FILE NAME: adslokuu.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 372 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
881 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3460 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ftcfg.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 468 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2154 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6572 bytes in size when actually
it is 12288 bytes in size

 322

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ftl.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 348 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1951 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5824 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: midutil.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 512 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2843 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 4096 bytes in size

 323

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3524 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: naeventu.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 860 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
3632 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 944 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7192 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: naiann.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 536 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2940 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5780 bytes in size when actually
it is 8192 bytes in size

 324

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: naievent.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 37640 bytes in size when actually it
is 40960 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: nailite.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 652 bytes
exists starting at address 196608; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2778 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 442880 bytes in size when actually
it is 446464 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12324 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: nakrnlu.dll

 325

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 432 bytes
exists starting at address 69632; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1291 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3904 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: nautilu.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 760 bytes
exists starting at address 126976; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
3101 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8568 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ntclient.dll

**** Anomalies ****

 326

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 416 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1061 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3468 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: scanemal.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 940 bytes
exists starting at address 167936; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 175496; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4167 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9220 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: shext.dll

 327

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 356 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
967 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 904 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1752 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: shutil.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 876 bytes
exists starting at address 143360; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
3560 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 904 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12340 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: VS7Plugin.dll

**** Anomalies ****

 328

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 600 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2205 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3872 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9276 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: vsplugin.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 616 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2245 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3872 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 9408 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 16

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename

 329

 - --- --------
 5 0 adslokuu.dll
 5 0 ftcfg.dll
 6 0 ftl.dll
 6 0 midutil.dll
 5 0 naeventu.dll
 5 0 naiann.dll
 3 0 naievent.dll
 5 0 nailite.dll
 5 0 nakrnlu.dll
 5 0 nautilu.dll
 5 0 ntclient.dll
 6 0 scanemal.dll
 5 0 shext.dll
 5 0 shutil.dll
 5 0 VS7Plugin.dll
 5 0 vsplugin.dll

14.4 Executable (EXE) Files for Network Associates VirusScan 7.0

__

FILE NAME: mcconsol.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1016
bytes exists starting at address 90112; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
5309 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1776 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: mcshield.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 330

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The file indicates an import address table consisting of 876 bytes
exists starting at address 163840; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
4991 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: mcupdate.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 840 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
3311 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1776 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: naiavfin.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 248 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped

 331

 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1169 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 960 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: vsnprintf (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

FILE NAME: scan32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1208
bytes exists starting at address 196608; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
5270 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1784 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: scncfg32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 900 bytes
exists starting at address 114688; this table often does not appear in
an image file so it was not read and it was also not mapped

 332

 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
3808 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1848 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: scnstat.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 540 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2363 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1800 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: shcfg32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 740 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
3877 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1808 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

 333

No security vulnerabilities or security risks were found

__

FILE NAME: shstat.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 860 bytes
exists starting at address 65536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4676 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1816 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: svcpwd.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 388 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
729 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 5576 bytes in size when actually it
is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: vstskmgr.exe

**** Anomalies ****

 334

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 792 bytes
exists starting at address 94208; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
3461 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 976 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 mcconsol.exe
 5 0 mcshield.exe
 4 0 mcupdate.exe
 4 1 naiavfin.exe
 4 0 scan32.exe
 4 0 scncfg32.exe
 4 0 scnstat.exe
 4 0 shcfg32.exe
 4 0 shstat.exe
 4 0 svcpwd.exe
 4 0 vstskmgr.exe

14.5 Dynamic Link Libraries (DLL) Files for Secure CRT 4.0

__

FILE NAME: ConnectDialog10.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 335

 - The file indicates an import address table consisting of 1068
bytes exists starting at address 65536; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2561 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 9504 bytes in size when actually it
is 12288 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4340 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: License33.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1040
bytes exists starting at address 61440; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2312 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 287136 bytes in size when actually
it is 290816 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7132 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: Mfc42.dll

 336

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 2068
bytes exists starting at address 638976; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 896
bytes exists starting at address 648896; this item often does not
appear in an image file so it was not read and it was also not mapped
 - Invalid directory table data found in the export table; 6932
functions are being exported but the maximum allowed by this program
is 2000
 - The file indicates an export table exists but the export data
could not be read
 - The data directory table in the optional header states that the
Import Table (.idata section) is 148 bytes in size when actually it is
7116 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 41600 bytes in size when actually it
is 45056 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 61260 bytes in size when actually
it is 61440 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3409 bytes in size when actually it is
7504 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3409 bytes of unused zero-filled space that could be used
to store malicious code or data
 - Uses 4 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: Msvcrt.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 580 bytes
exists starting at address 192512; this table often does not appear in
an image file so it was not read and it was also not mapped

 337

 - The data directory table in the optional header states that the
Import Table (.idata section) is 54 bytes in size when actually it is
3314 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 936 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8908 bytes in size when actually
it is 12288 bytes in size
 - The data directory table in the optional header states that the
(** Zero-filled region **) is 3433 bytes in size when actually it is
7528 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Contains 3433 bytes of unused zero-filled space that could be used
to store malicious code or data

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: SSH2Client23.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1604
bytes exists starting at address 176128; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
6801 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 21288 bytes in size when actually it
is 24576 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 15960 bytes in size when actually
it is 20480 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: strncpy (Low risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

 338

__
_

---------- Summary of File Security Analysis ----------

Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 ConnectDialog10.dll
 5 2 License33.dll
 9 5 Mfc42.dll
 6 1 Msvcrt.dll
 5 2 SSH2Client23.dll

14.6 Executable (EXE) Files for Secure CRT 4.0

__
_

FILE NAME: ACTIVATOR.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 644 bytes
exists starting at address 57344; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2620 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 16192 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: SecureCRT.EXE

**** Anomalies ****

 339

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3424
bytes exists starting at address 737280; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 881232; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
9035 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 154432 bytes in size when actually
it is 155648 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), strncpy
(Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: UNINSTAL.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 888 bytes
exists starting at address 67072; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3899 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 75424 bytes in size when actually it
is 75776 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: VCP.EXE

 340

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 884 bytes
exists starting at address 266240; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 315568; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4309 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8912 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: gets (Ultra high risk), sscanf (Very high risk), strncpy (Low
risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: VSH.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1000
bytes exists starting at address 262144; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 311288; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4724 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8848 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

 341

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: gets (Ultra high risk), sprintf (Very high risk), sscanf
(Very high risk), strncpy (Low risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 ACTIVATOR.EXE
 5 3 SecureCRT.EXE
 4 0 UNINSTAL.EXE
 5 4 VCP.EXE
 5 5 VSH.EXE

14.7 Dynamic Link Libraries (DLL) Files for SpyBot 1.2

__

FILE NAME: advcheck.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7452 bytes in size when actually
it is 7680 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: borlndmm.dll

**** Anomalies ****

 342

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1216 bytes in size when actually
it is 1536 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 1175 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: delphimm.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 772 bytes in size when actually
it is 1024 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 1113 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: SDHelper.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 32940 bytes in size when actually
it is 33280 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 9725 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Tools.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 24016 bytes in size when actually
it is 24064 bytes in size

 343

 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 9061 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: UnzDll.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3384 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ZipDll.dll

**** Anomalies ****

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3716 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 2 0 advcheck.dll
 2 0 borlndmm.dll
 2 0 delphimm.dll
 2 0 SDHelper.dll
 2 0 Tools.dll
 1 0 UnzDll.dll

 344

 1 0 ZipDll.dll

14.8 Executable (EXE) Files for SpyBot 1.2

__

FILE NAME: blindman.exe

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
.tls section is 0 bytes in size when actually it is 512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 728 bytes in size when actually
it is 1024 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 811 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: SpybotSD.exe

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
.tls section is 0 bytes in size when actually it is 512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 114196 bytes in size when
actually it is 114688 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 13312 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: unins000.exe

 345

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
.tls section is 0 bytes in size when actually it is 512 bytes in size
 - A section entry named .reloc appears in the section table, but the
table doesn't contain the location of the 2588 bytes for that section
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 4608 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Update.exe

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - The data directory table in the optional header states that the
.tls section is 0 bytes in size when actually it is 512 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 22652 bytes in size when actually
it is 23040 bytes in size
 - The data directory table in the optional header states that the
BSS section is 0 bytes in size when actually it is 8704 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 4

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 blindman.exe
 4 0 SpybotSD.exe
 4 0 unins000.exe
 4 0 Update.exe

 346

14.9 Executable (EXE) Files for WinSCP

__

FILE NAME: WinSCP.exe

**** Anomalies ****

 - The file indicates a thread local storage table exists consisting
of 24 bytes; this table usually does not appear in an image file so it
was not read and only its start address was mapped
 - Invalid directory table data found in the export table; 2817015669
functions are being exported but the maximum allowed by this program
is 2000
 - The file indicates an export table exists but the export data
could not be read
 - The data directory table in the optional header states that the
UPX0 section is 0 bytes in size when actually it is 391168 bytes in
size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13872 bytes in size when actually it
is 14848 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Has a section named UPX0 whose contents can be both written to and
executed
 - Has a section named UPX1 whose contents can be both written to and
executed

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 2 WinSCP.exe

 347

14.10 Dynamic Link Libraries (DLL) Files for Zero Knowledge Freedom 3.0

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 34

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 AdblockR.dll
 5 0 BandObjs.dll
 5 0 ClntpR.dll
 4 1 ConvertR.dll
 6 2 CookieR.dll
 6 1 DialogsR.dll
 5 0 DInetR.dll
 5 2 FCryptR.dll
 5 2 FireR.dll
 5 2 FirewallUIR.dll
 5 2 FreeBHOR.dll
 5 1 frkyqryR.dll
 5 2 FrSecR.dll
 5 2 inethlpR.dll
 5 0 IpcSrvR.dll
 5 0 libbz2R.dll
 5 2 LibzkipR.dll
 5 2 libzkmR.dll
 5 4 NetWorkR.dll
 5 1 PacketR.dll
 5 1 PersistR.dll
 5 3 ProxiesR.dll
 5 3 ServiceR.dll
 5 1 SktShimR.dll
 5 1 TConfigR.dll
 5 2 TGenNetR.dll
 5 0 TTInfoR.dll
 6 0 WalletR.dll
 6 1 WordScnR.dll
 5 1 WzSetupR.dll
 5 2 YarrowR.dll
 5 0 zkrandR.dll
 5 1 ZKUIR.dll
 5 0 ZkYarrR.dll

14.11 Executable (EXE) Files for Zero Knowledge Freedom 3.0

__

FILE NAME: AutoStarterR.exe

 348

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 452 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3026 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: DiagR.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1412
bytes exists starting at address 45056; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
7234 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Freedom.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3136
bytes exists starting at address 53248; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 640 bytes in size when actually it is
36172 bytes in size

 349

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: RestoreR.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 708 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3514 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4048 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: zkInstallDriver.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 160 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
883 bytes in size

 350

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1296 bytes in size when actually it
is 1536 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 5

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 AutoStarterR.exe
 4 0 DiagR.exe
 4 1 Freedom.exe
 4 0 RestoreR.exe
 4 0 zkInstallDriver.exe

14.12 Dynamic Link Libraries (DLL) Files for Zone Alarm Pro 4

__

FILE NAME: expert.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 420 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
2071 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 45792 bytes in size when actually it
is 49152 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7004 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

 351

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), snprintf (Low risk), sprintf (Very high
risk), strcpy (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: framewrk.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1320
bytes exists starting at address 241664; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 240 bytes in size when actually it is
6702 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 465456 bytes in size when actually
it is 466944 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 19444 bytes in size when actually
it is 28672 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tutorwiz.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 172 bytes
exists starting at address 20480; this table often does not appear in
an image file so it was not read and it was also not mapped

 352

 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
835 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 637520 bytes in size when actually
it is 638976 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2116 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 3

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 5 expert.dll
 5 5 framewrk.dll
 5 1 tutorwiz.dll

14.13 Executable (EXE) Files for Zone Alarm Pro 4

__

FILE NAME: bbuninst.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 668 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2649 bytes in size

 353

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2632 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: runlink.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 368 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1269 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: zapro.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1020
bytes exists starting at address 135168; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
5343 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 249944 bytes in size when actually
it is 253952 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 354

 - Uses 5 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: zatutor.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 140 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
742 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2464 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: zauninst.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 68 bytes
exists starting at address 1536; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
400 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 165228 bytes in size when actually
it is 165376 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

FILE NAME: zonealarm.exe

 355

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 104 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
374 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 10656 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: strcat (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 6

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 bbuninst.exe
 3 0 runlink.exe
 4 5 zapro.exe
 4 0 zatutor.exe
 4 0 zauninst.exe
 4 1 zonealarm.exe

 356

15. APPENDIX I – TEST RESULTS FROM ANALYZING MISCELLANEOUS
APPLICATION FILES

15.1 Dynamic Link Library (DLL) Files for Adobe Acrobat Reader 5.0

__

FILE NAME: AceLite.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 328 bytes
exists starting at address 290816; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1830 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 968 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 16312 bytes in size when actually
it is 20480 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ACROFX32.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 276 bytes
exists starting at address 30208; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
1263 bytes in size

 357

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2060 bytes in size when actually
it is 3584 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Agm.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 512 bytes
exists starting at address 831488; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1898 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 976 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 60628 bytes in size when actually
it is 69632 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Bib.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 212 bytes
exists starting at address 90112; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
1151 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 968 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 7672 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

 358

No security vulnerabilities or security risks were found

__

FILE NAME: CoolType.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 560 bytes
exists starting at address 1007616; this table often does not appear
in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
2374 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1016 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 66024 bytes in size when actually
it is 77824 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: vdk150.dll

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 260 bytes for that section
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 17992 bytes in size when actually
it is 18432 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: strcat (Very high risk), strcpy (Very high risk), strncpy
(Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: WHA Library.dll

 359

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 572 bytes
exists starting at address 106496; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4635 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11784 bytes in size when actually it
is 12288 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8956 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 8 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), read (Medium risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 AceLite.dll
 4 0 ACROFX32.DLL
 5 0 Agm.dll
 5 0 Bib.dll
 5 0 CoolType.dll
 2 3 vdk150.dll
 5 8 WHA Library.dll

15.2 Executable (EXE) Files for Adobe Acrobat Reader 5.0

__

 360

FILE NAME: AcroRd32.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 2688
bytes exists starting at address 2240512; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 360 bytes in size when actually it is
12831 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 889256 bytes in size when actually
it is 892928 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 140380 bytes in size when
actually it is 167936 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 AcroRd32.exe

15.3 Dynamic Link Library (DLL) Files for EarthLink TotalAccess 5.0

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 54

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 3 AddrBook.dll
 5 2 AuthMgr.dll
 5 1 CntctMgr.dll
 5 2 Dialer.dll

 361

 5 4 E60Cmmon.dll
 5 0 E60MAPI.dll
 5 1 EAuthMgr.dll
 5 3 EConfig.dll
 5 3 Ecrypt.dll
 5 5 EFtp.dll
 5 5 EImpExp.dll
 5 0 ElnIE.dll
 5 2 ElsAol.dll
 5 1 ElsHotmail.dll
 6 1 ElsMain.dll
 5 2 ElsYahoo.dll
 5 4 emsmtp.dll
 6 4 Epic.dll
 5 3 EventLog.dll
 5 2 HSconfig.DLL
 5 1 IdentityMgr.dll
 5 1 imap4.dll
 5 3 Location.dll
 6 0 MagicCtl.dll
 5 8 MailDoc.dll
 5 7 MailEng.dll
 5 0 mailstore.dll
 5 4 MailStoreConverter.DLL
 5 1 MailStoreDB.dll
 5 4 MCE60Cmmon.dll
 5 3 MCEcrypt.dll
 5 3 MCLocation.dll
 5 2 MCUtils.dll
 5 2 MCWin.dll
 5 0 MonIdle.dll
 5 1 Notify.dll
 5 1 Parse822.dll
 5 0 PnEL.dll
 5 0 PnEL_UI.dll
 5 0 PnMsgBlk.dll
 5 0 pop3.dll
 5 3 Register.dll
 4 0 RzTp.dll
 5 5 SetupKrn.dll
 5 1 smtp.dll
 5 1 SpamBlocker.dll
 5 0 Swi_Cdma1x.dll
 5 1 SynchEng.dll
 6 7 tmTools.dll
 5 2 Utils.dll
 5 2 Win.dll
 5 0 WrSetupUtils.dll
 5 1 XMLCol.dll
 5 2 zlib.dll

15.4 Executable (EXE) Files for EarthLink TotalAccess 5.0

 362

__

FILE NAME: elnbonus.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1892
bytes exists starting at address 110592; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
5621 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13072 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsnprintf (Low risk), vsprintf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: ELNhelp.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1492
bytes exists starting at address 86016; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
6245 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 28664 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), strcpy (Very high risk), vsprintf (Very
high risk)

 363

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: FixMail.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1648
bytes exists starting at address 196608; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
8928 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 77280 bytes in size when actually it
is 77824 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: IEAccnt.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 912 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4133 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sscanf (Very high risk), vsprintf (Very
high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: MailClnt.exe

 364

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3352
bytes exists starting at address 581632; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 460 bytes in size when actually it is
18402 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 93840 bytes in size when actually it
is 94208 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: MailSvr.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 660 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
2218 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 29552 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: MsiUtils.exe

**** Anomalies ****

 365

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1180
bytes exists starting at address 126976; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
5895 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 28552 bytes in size when actually it
is 28672 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: PrivacyHelper.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 484 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
1919 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 3944 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: PuB.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 300 bytes
exists starting at address 28672; this table often does not appear in
an image file so it was not read and it was also not mapped

 366

 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
841 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2128 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__
_
FILE NAME: TaskPanl.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 4644
bytes exists starting at address 692224; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 64
bytes exists starting at address 835044; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 440 bytes in size when actually it is
24485 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 31496 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: uninstll.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 367

 - The file indicates an import address table consisting of 2308
bytes exists starting at address 188416; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
6790 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 49184 bytes in size when actually it
is 53248 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 6 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk), vsnprintf (Low risk), vsprintf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: UpdMgr.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1940
bytes exists starting at address 77824; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
8200 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 93088 bytes in size when actually it
is 94208 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sscanf (Very high risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: Webspace.exe

 368

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1580
bytes exists starting at address 40960; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
6304 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 29928 bytes in size when actually it
is 32768 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), sscanf (Very high risk), vsprintf
(Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 14

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 3 elnbonus.exe
 4 3 ELNhelp.exe
 4 0 FixMail.exe
 3 3 IEAccnt.exe
 4 3 MailClnt.exe
 4 0 MailSvr.exe
 4 1 MsiUtils.exe
 4 0 PrivacyHelper.exe
 4 0 PuB.exe
 5 3 TaskPanl.exe
 4 6 uninstll.exe
 4 2 UpdMgr.exe
 4 3 Webspace.exe

 369

15.5 Dynamic Link Library (DLL) Files for Hewlett-Packard PC CoreTech

__

FILE NAME: hpcmpmgr.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 608 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2386 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 11872 bytes in size when actually it
is 12288 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3840 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: hpvaut32.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1092
bytes exists starting at address 8192; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
5570 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 676 bytes in size when actually it
is 4096 bytes in size

 370

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 28360 bytes in size when actually
it is 32768 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: hpvcp70.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 440 bytes
exists starting at address 188416; this table often does not appear in
an image file so it was not read and it was also not mapped
 - Invalid directory table data found in the export table; 2896
functions are being exported but the maximum allowed by this program
is 2000
 - The file indicates an export table exists but the export data
could not be read
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
2221 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 960 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 12448 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), memcpy (Low risk), sprintf (Very high
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: hpvcr70.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 371

 - The file indicates an import address table consisting of 616 bytes
exists starting at address 233472; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 40 bytes in size when actually it is
3467 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 952 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10872 bytes in size when actually
it is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msxml4.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 552 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The file indicates a delay import descriptor consisting of 256
bytes exists starting at address 987372; this item often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2786 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 110512 bytes in size when actually
it is 110592 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 60540 bytes in size when actually
it is 60928 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msxml4a.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 372

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 43368 bytes in size when actually it
is 43520 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: msxml4r.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 81288 bytes in size when actually it
is 81408 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 512 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 1 hpcmpmgr.dll
 5 0 hpvaut32.dll
 7 3 hpvcp70.dll
 5 0 hpvcr70.dll
 6 0 msxml4.dll
 3 0 msxml4a.dll
 3 0 msxml4r.dll

15.6 Executable (EXE) Files for Hewlett-Packard PC CoreTech

 373

__

FILE NAME: hpcmpmgr.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 984 bytes
exists starting at address 147456; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
4015 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 14992 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 1

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 2 hpcmpmgr.exe

15.7 Executable (EXE) Files for Iomega Zip Disk 100 Utilities

__

FILE NAME: ActivityDisk.exe

**** Anomalies ****

 374

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 444 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1557 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1728 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: AppServices.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 452 bytes
exists starting at address 49152; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1565 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1608 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: RegW2KInst.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 196 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
449 bytes in size

 375

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Win2kDrivers.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 336 bytes
exists starting at address 53248; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
987 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1256 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 4

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 ActivityDisk.exe
 4 0 AppServices.exe
 3 0 RegW2KInst.exe
 4 0 Win2kDrivers.exe

15.8 Dynamic Link Library (DLL) Files for MusicMatch Jukebox 7

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 47

 376

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 1 analog.dll
 5 0 CDDBControl.dll
 4 6 cdr.dll
 5 4 cds.dll
 4 0 DestinationWavDll.dll
 5 1 digital.dll
 5 1 EventMgr.dll
 5 1 FileAssoc.dll
 5 1 FileCacheMgr.dll
 5 3 fileco.dll
 5 1 FWRun.dll
 5 4 JewelCasePrinter.dll
 5 1 linein.dll
 5 4 mixer.dll
 5 5 mmdb.dll
 5 0 mmfwloc.dll
 5 2 MMInet.dll
 5 0 mmInstall.dll
 5 0 mmjbloc.dll
 5 5 mmportal.dll
 5 5 MMRadioEngine.dll
 5 1 mmreg.dll
 5 2 mmrio.dll
 5 1 mmsal32.dll
 5 6 MMSecurity.dll
 5 4 mmsiteserv.dll
 5 3 mmuiserv.dll
 5 1 mmzip32.dll
 4 7 mrbupd.dll
 4 0 mscdex32.dll
 8 4 msvcp60.dll
 5 0 ObjectManager.dll
 5 1 PortableDevice.dll
 5 1 PortableDevice2.dll
 5 0 preferences.dll
 5 1 record.dll
 5 1 StgCdr.dll
 5 0 TrackListPrinter.dll
 5 0 unmatch.dll
 5 0 unzip32.dll
 5 0 wnaspint.dll
 5 0 xanalyze.dll
 5 0 xaudio.dll
 5 0 zip32.dll

15.9 Executable (EXE) Files for MusicMatch Jukebox 7

__

 377

FILE NAME: mmdiag.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1392
bytes exists starting at address 32768; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2730 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 12680 bytes in size when actually it
is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strcat (Very high risk), strcpy
(Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: mmjb.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 5564
bytes exists starting at address 1220608; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 440 bytes in size when actually it is
24246 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 306912 bytes in size when actually
it is 307200 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 378

 - Uses 7 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), memcpy (Low risk), sprintf (Very high
risk), sscanf (Very high risk), strcat (Very high risk), strcpy (Very
high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: MMJBBurn.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3024
bytes exists starting at address 425984; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
8137 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 34184 bytes in size when actually it
is 36864 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: MMJBLaunch.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 240 bytes
exists starting at address 1024; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1079 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 32152 bytes in size when actually it
is 32256 bytes in size

 379

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: mmjbrun.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 184 bytes
exists starting at address 16384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
394 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: MmjbUpdt.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 572 bytes
exists starting at address 86016; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2100 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 8824 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: MMPurchase.exe

**** Anomalies ****

 380

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 380 bytes
exists starting at address 12288; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
982 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 920 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: mm_tray.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 676 bytes
exists starting at address 40960; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
4755 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 32872 bytes in size when actually it
is 36864 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), strcat (Very
high risk), strcpy (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

 381

FILE NAME: RefreshIcon.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 240 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
633 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: ti.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 548 bytes
exists starting at address 245760; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1775 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 127080 bytes in size when actually
it is 131072 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: UpdtStub.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information

 382

 - The file indicates an import address table consisting of 232 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1088 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1072 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found
__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 11

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 4 mmdiag.exe
 4 7 mmjb.exe
 4 1 MMJBBurn.exe
 4 0 MMJBLaunch.exe
 3 0 mmjbrun.exe
 4 0 MmjbUpdt.exe
 4 1 MMPurchase.exe
 4 4 mm_tray.exe
 4 0 RefreshIcon.exe
 4 0 ti.exe
 4 0 UpdtStub.exe

15.10 Dynamic Link Library (DLL) Files for OpenOffice 1.1

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 198

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 abp645mi.dll
 5 0 acceptor.uno.dll
 5 0 adabas2.dll

 383

 5 0 ado2.dll
 5 1 analysis645mi.dll
 5 0 basctl645mi.dll
 5 0 bib645mi.dll
 5 0 bridgefac.uno.dll
 5 0 cached1.dll
 5 0 calc645mi.dll
 5 1 cfgmgr2.dll
 5 0 cmdmail.dll
 5 1 cnt645mi.dll
 7 0 comphelp3MSC.dll
 5 0 connector.uno.dll
 5 0 corereflection.uno.dll
 5 0 cppu3.dll
 6 0 cppuhelper3MSC.dll
 5 0 ctl645mi.dll
 5 0 date645mi.dll
 5 0 dba645mi.dll
 5 2 dbase645mi.dll
 5 6 dbghelp.dll
 5 0 dbi645mi.dll
 5 0 dbp645mi.dll
 5 0 dbpool2.dll
 7 1 dbtools2.dll
 5 1 dbu645mi.dll
 5 0 del645mi.dll
 5 0 dict_ja.dll
 5 0 dict_zh.dll
 7 0 dl645mi.dll
 5 0 dnd.dll
 5 0 dtrans.dll
 5 0 emser645mi.dll
 5 0 evtatt.dll
 7 0 file645mi.dll
 5 0 flash645mi.dll
 5 0 flat645mi.dll
 5 0 fop.dll
 5 0 fps.dll
 5 1 frm645mi.dll
 5 0 ftransl.dll
 7 1 fwe645mi.dll
 7 0 fwi645mi.dll
 5 1 fwk645mi.dll
 5 0 fwl645mi.dll
 5 0 go645mi.dll
 5 1 hyphen645mi.dll
 5 0 i18n645mi.dll
 5 1 i18npool645mi.dll
 5 0 i18nregexpMSC.dll
 5 0 i18nsearch.dll
 5 0 i18nutilMSC.dll
 2 0 icudt22l.dll
 5 0 icuin22.dll
 5 0 icule22.dll
 5 4 icuuc22.dll

 384

 5 0 implreg.uno.dll
 5 0 introspection.uno.dll
 5 0 invocadapt.uno.dll
 5 0 invocation.uno.dll
 5 0 j645mi_g.dll
 5 0 javaloader.uno.dll
 5 0 javavm.uno.dll
 5 0 java_uno.dll
 5 0 java_uno_accessbridge.dll
 5 0 jdbc2.dll
 5 0 jpipe.dll
 5 4 js3250.dll
 6 0 juh.dll
 5 0 juhx.dll
 5 0 jvm645mi.dll
 5 1 jvmaccess3MSC.dll
 4 6 libcurl.dll
 5 7 libdb32.dll
 4 2 libdb_java32.dll
 5 1 lng645mi.dll
 5 0 localedata_en.dll
 5 0 localedata_es.dll
 5 0 localedata_euro.dll
 5 0 localedata_others.dll
 5 1 lth645mi.dll
 5 0 mcnttype.dll
 5 0 mozab2.dll
 5 0 mozabdrv2.dll
 5 2 mozreg.dll
 5 1 msci_uno.dll
 5 3 msgbsutl.dll
 7 3 msvcp70.dll
 5 0 msvcr70.dll
 5 0 mysql2.dll
 5 0 namingservice.uno.dll
 5 0 nestedreg.uno.dll
 4 3 nsldap32v50.dll
 4 0 nsldappr32v50.dll
 5 2 nspr4.dll
 5 0 nsreg.dll
 5 0 odbc2.dll
 7 0 odbcbase2.dll
 5 0 ofa645mi.dll
 5 0 offacc645mi.dll
 5 0 officebean.dll
 5 0 oleautobridge.uno.dll
 5 2 opc645mi.dll
 5 0 package2.dll
 5 0 pcr645mi.dll
 5 0 pdffilter645mi.dll
 5 0 pk645mi.dll
 5 0 pkgchk645mi.dll
 5 0 placewaremi.dll
 5 0 plc4.dll
 5 0 plds4.dll

 385

 5 0 preload645mi.dll
 5 0 proxyfac.uno.dll
 5 0 proxyset.dll
 5 8 python22.dll
 5 0 pythonloader.uno.dll
 5 0 pyuno.dll
 5 1 reg3.dll
 5 0 reg4msdoc645mi.dll
 5 0 regactivex645mi.dll
 5 0 regtypeprov.uno.dll
 5 0 remotebridge.uno.dll
 5 0 res645mi.dll
 5 0 rmcxt3.dll
 5 4 sal3.dll
 5 0 salhelper3MSC.dll
 5 0 sax.uno.dll
 7 2 sb645mi.dll
 5 2 sc645mi.dll
 5 0 sch645mi.dll
 5 1 scn645mi.dll
 5 0 sd645mi.dll
 5 0 sdbc2.dll
 5 0 security.uno.dll
 5 0 servicemgr.uno.dll
 7 6 set645mi.dll
 7 3 sfx645mi.dll
 5 0 shlibloader.uno.dll
 5 0 shlxthdl.dll
 5 0 simplereg.uno.dll
 5 1 sm645mi.dll
 5 0 smplmail.dll
 7 1 so645mi.dll
 5 0 sot645mi.dll
 5 2 so_activex.dll
 5 1 spell645mi.dll
 5 0 spl645mi.dll
 5 0 srtrs1.dll
 7 4 stlport_vc745.dll
 5 0 store3.dll
 5 0 streams.uno.dll
 5 0 sts645mi.dll
 5 0 svg645mi.dll
 7 1 svx645mi.dll
 5 1 sw645mi.dll
 5 0 sysdtrans.dll
 5 0 syssh.dll
 5 0 textinstream.uno.dll
 5 0 textoutstream.uno.dll
 7 0 tk645mi.dll
 7 3 tl645mi.dll
 5 0 tplx645mi.dll
 5 0 tvhlp1.dll
 5 0 typeconverter.uno.dll
 5 0 typemgr.uno.dll
 5 0 ucb1.dll

 386

 7 0 ucbhelper2MSC.dll
 5 1 ucpchelp1.dll
 5 6 ucpdav1.dll
 5 0 ucpfile1.dll
 5 0 ucpftp1.dll
 5 0 ucphier1.dll
 5 0 ucppkg1.dll
 5 0 ulingu645mi.dll
 5 0 unicows.dll
 5 0 urp_uno.dll
 5 1 usp645mi.dll
 7 0 utl645mi.dll
 5 0 uui645mi.dll
 5 0 uuresolver.uno.dll
 5 2 uwinapi.dll
 7 2 vcl645mi.dll
 5 0 vos3MSC.dll
 5 0 xcr645mi.dll
 5 0 xmlfa645mi.dll
 5 0 xmlfd645mi.dll
 5 0 xmx645mi.dll
 7 0 xo645mi.dll
 7 5 xpcom.dll
 5 0 xsltdlg645mi.dll
 5 5 zlib.dll

15.11 Executable (EXE) Files for OpenOffice 1.1

__

FILE NAME: crashrep.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 632 bytes
exists starting at address 24576; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
4096 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 197472 bytes in size when actually
it is 200704 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 387

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), sscanf (Very high
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: jvmsetup.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1152
bytes exists starting at address 49152; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
3333 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgetc (Medium risk), sprintf (Very high risk), strncpy (Low
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: pkgchk.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 272 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1452 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

 388

FILE NAME: quickstart.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 220 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
942 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42624 bytes in size when actually it
is 45056 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: regsvrex.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 132 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 60 bytes in size when actually it is
695 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: setup.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 2568
bytes exists starting at address 114688; this table often does not
appear in an image file so it was not read and it was also not mapped

 389

 - The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
4853 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 12200 bytes in size when actually it
is 12288 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

FILE NAME: soffice.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1916
bytes exists starting at address 139264; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
7233 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 239128 bytes in size when actually
it is 241664 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: testtool.exe

**** Anomalies ****

 390

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 3896
bytes exists starting at address 237568; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 300 bytes in size when actually it is
5655 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 8

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 3 crashrep.exe
 3 3 jvmsetup.exe
 3 0 pkgchk.exe
 4 0 quickstart.exe
 3 0 regsvrex.exe
 4 1 setup.exe
 4 1 soffice.exe
 3 0 testtool.exe

15.12 Dynamic Link Library (DLL) Files for Real One Player (ME/XP)

__

FILE NAME: dunzip32.dll

**** Anomalies ****

 - A section entry named .bss appears in the section table, but the
table doesn't contain the location of the 42888 bytes for that section
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2264 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5528 bytes in size when actually
it is 6144 bytes in size

**** End of Anomalies ****

 391

No security vulnerabilities or security risks were found

__

FILE NAME: ierjplug.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 268 bytes
exists starting at address 13824; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1175 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4120 bytes in size when actually it
is 4608 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 788 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: snprintf (Low risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: mmcdda32.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 196 bytes
exists starting at address 15872; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
984 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 760 bytes in size when actually
it is 1536 bytes in size

 392

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rjbres.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 92 bytes
exists starting at address 7168; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
478 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 783208 bytes in size when actually
it is 783360 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 256 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rjbxfade.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 260 bytes
exists starting at address 13312; this table often does not appear in
an image file so it was not read and it was also not mapped

 393

 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
1005 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 42944 bytes in size when actually it
is 43008 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 636 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rjdlg.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1268
bytes exists starting at address 124416; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
8052 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 284984 bytes in size when actually
it is 285184 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 10068 bytes in size when actually
it is 13312 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 6 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), read (Medium risk), sprintf (Very high
risk), sscanf (Very high risk), strncpy (Low risk), vsprintf (Very
high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

 394

FILE NAME: rjprog.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 208 bytes
exists starting at address 11264; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1055 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 2392 bytes in size when actually it
is 2560 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 628 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rmbe3260.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 640 bytes
exists starting at address 336384; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2829 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 36168 bytes in size when actually it
is 36352 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 14356 bytes in size when actually
it is 17920 bytes in size

**** End of Anomalies ****

 395

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 4 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk), strncpy (Low
risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rpau3260.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 264 bytes
exists starting at address 13312; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1388 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4864 bytes in size when actually it
is 5120 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 884 bytes in size when actually
it is 2048 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rpwa3260.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 160 bytes
exists starting at address 7168; this table often does not appear in
an image file so it was not read and it was also not mapped

 396

 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
786 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1064 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 332 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tmdedit.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1020
bytes exists starting at address 73216; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 220 bytes in size when actually it is
7353 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 162416 bytes in size when actually
it is 162816 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 4736 bytes in size when actually
it is 7168 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tnetdtct.dll

 397

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 252 bytes
exists starting at address 8704; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1101 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 608 bytes in size when actually
it is 1024 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tpasdk.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 156 bytes
exists starting at address 22528; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
719 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1056 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1372 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 398

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: fgets (Low risk), sprintf (Very high risk), strncpy (Low
risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: tsasdk.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 140 bytes
exists starting at address 71168; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
544 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1056 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1096 bytes in size when actually
it is 4608 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: read (Medium risk), sprintf (Very high risk), vsprintf (Very
high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: twebbrowse.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 324 bytes
exists starting at address 35840; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
1533 bytes in size

 399

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1048 bytes in size when actually it
is 1536 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2084 bytes in size when actually
it is 2560 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 15

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 dunzip32.dll
 5 2 ierjplug.dll
 5 2 mmcdda32.dll
 5 1 rjbres.dll
 5 1 rjbxfade.dll
 5 6 rjdlg.dll
 5 1 rjprog.dll
 5 4 rmbe3260.dll
 5 1 rpau3260.dll
 5 2 rpwa3260.dll
 5 2 tmdedit.dll
 5 2 tnetdtct.dll
 5 3 tpasdk.dll
 5 3 tsasdk.dll
 5 2 twebbrowse.dll

15.13 Executable (EXE) Files for Real One Player (ME/XP)

__

FILE NAME: fixrjb.exe

**** Anomalies ****

 400

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 100 bytes
exists starting at address 2560; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
528 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: realjbox.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 104 bytes
exists starting at address 2560; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
568 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1936 bytes in size when actually it
is 2048 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: realplay.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 360 bytes
exists starting at address 28160; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
1782 bytes in size

 401

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 94672 bytes in size when actually it
is 94720 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), strncpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: rphelperapp.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 128 bytes
exists starting at address 4096; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 100 bytes in size when actually it is
639 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 4

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 3 0 fixrjb.exe
 4 0 realjbox.exe
 4 2 realplay.exe
 3 0 rphelperapp.exe

15.14 Image Files for Veritas Update Manager

__

 402

FILE NAME: AniGifDisplay.ocx

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1212
bytes exists starting at address 24576; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2007 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6384 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2236 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Archived.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 624 bytes
exists starting at address 81920; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
2448 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 13272 bytes in size when actually it
is 16384 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 5028 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: Graph.ocx

 403

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1076
bytes exists starting at address 16384; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
1611 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4128 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1732 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: sfcwall31.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1220
bytes exists starting at address 188416; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The length of 143 export name(s) in the export table exceeded the
buffer size of 255 bytes
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
9813 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 39152 bytes in size when actually it
is 40960 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 11896 bytes in size when actually
it is 16384 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 3 standard C functions susceptible to buffer overflow
attacks: memcpy (Low risk), sprintf (Very high risk), strcpy (Very
high risk)

 404

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: sgpropsht.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 752 bytes
exists starting at address 40960; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 260 bytes in size when actually it is
4068 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 4072 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3244 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: memcpy (Low risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: sgtray.exe

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 2240
bytes exists starting at address 106496; this table often does not
appear in an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 320 bytes in size when actually it is
10366 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 664 bytes in size when actually it
is 4096 bytes in size

 405

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses one standard C function susceptible to buffer overflow
attack: sprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: sus.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 848 bytes
exists starting at address 98304; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 180 bytes in size when actually it is
9369 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 928 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 6360 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: getc (Medium risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

FILE NAME: trayrenu.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 709408 bytes in size when actually
it is 712704 bytes in size

 406

 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 8 bytes in size when actually it
is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: vxhttp.dll

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 436 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 140 bytes in size when actually it is
3802 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 912 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2488 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

!!!! Security Vulnerabilities and Risks!!!!

 - Uses 2 standard C functions susceptible to buffer overflow
attacks: sprintf (Very high risk), vsprintf (Very high risk)

!!!! End of Security Vulnerabilities and Risks!!!!

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 9

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 AniGifDisplay.ocx
 5 0 Archived.dll
 5 0 Graph.ocx

 407

 6 3 sfcwall31.dll
 5 1 sgpropsht.dll
 4 1 sgtray.exe
 5 2 sus.dll
 3 0 trayrenu.dll
 5 2 vxhttp.dll

15.15 Dynamic Link Library (DLL) Files for WinZIP 8.0

__

FILE NAME: WZ32.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 500 bytes
exists starting at address 184320; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
2745 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 35592 bytes in size when actually it
is 36864 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 14808 bytes in size when actually
it is 20480 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: WZCAB.DLL

**** Anomalies ****

 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 916 bytes in size when actually it
is 1024 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1136 bytes in size when actually
it is 1536 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

 408

__

FILE NAME: WZCAB3.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 312 bytes
exists starting at address 36864; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1617 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 6680 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 2244 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: WZSHLEX1.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 424 bytes
exists starting at address 45056; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 120 bytes in size when actually it is
2315 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 7592 bytes in size when actually it
is 8192 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3060 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: WZSHLSTB.DLL

 409

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 80 bytes
exists starting at address 8192; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
475 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1208 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 144 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: WZVINFO.DLL

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 232 bytes
exists starting at address 32768; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 80 bytes in size when actually it is
1267 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 1352 bytes in size when actually it
is 4096 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 1660 bytes in size when actually
it is 4096 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

FILE NAME: WZZPMAIL.DLL

**** Anomalies ****

 410

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 656 bytes
exists starting at address 61440; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3612 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 18104 bytes in size when actually it
is 20480 bytes in size
 - The data directory table in the optional header states that the
Relocation Table (.reloc section) is 3660 bytes in size when actually
it is 8192 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 7

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 5 0 WZ32.DLL
 2 0 WZCAB.DLL
 5 0 WZCAB3.DLL
 5 0 WZSHLEX1.DLL
 5 0 WZSHLSTB.DLL
 5 0 WZVINFO.DLL
 5 0 WZZPMAIL.DLL

15.16 Executable (EXE) Files for WinZIP 8.0

__

FILE NAME: WINZIP32.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 1628
bytes exists starting at address 487424; this table often does not
appear in an image file so it was not read and it was also not mapped

 411

 - The data directory table in the optional header states that the
Import Table (.idata section) is 200 bytes in size when actually it is
7538 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 865264 bytes in size when actually
it is 868352 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found
__

FILE NAME: WZSEPE32.EXE

**** Anomalies ****

 - The normally small zero-filled region following the MS-DOS Stub
contains some kind of information
 - The file indicates an import address table consisting of 748 bytes
exists starting at address 75776; this table often does not appear in
an image file so it was not read and it was also not mapped
 - The data directory table in the optional header states that the
Import Table (.idata section) is 160 bytes in size when actually it is
3910 bytes in size
 - The data directory table in the optional header states that the
Resource Table (.rsrc section) is 88312 bytes in size when actually it
is 88576 bytes in size

**** End of Anomalies ****

No security vulnerabilities or security risks were found

__

---------- Summary of File Security Analysis ----------

Total number of files submitted: 2

List of files containing anomalies (A), vulnerabilities (V) or risks
(R)

 A V/R Filename
 - --- --------
 4 0 WINZIP32.EXE
 4 0 WZSEPE32.EXE

