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Abstract

In this work, a methodology for the solution of computer-aided molecular design (CAMD)
problems with property models utilizing descriptors of varying dimensionality has been
presented. The problems encountered within this field typically require the selection, or
design, of pure chemicals, as well as mixtures, exhibiting a desired set of properties and
attributes. These properties and attributes are captured through property models, which
have widely varying forms. These property models are most often a function of molecular
descriptors, which provide a quantitative reference to the structural features in a molecule.
There are multitudes of descriptor types, each which can be immediately categorized
based on the dimensionality of information they capture. This is one of the strengths of
computer aided molecular design, the flexibility to develop a specific model for each
property of interest. However, it often leads to the selection of very complex and widely
differing property models for each property of interest. An ideal CAMD methodology
would not restrict the property modelling stage to certain types of independent variables,
and as such, could solve these problems on a single platform. The problem with
developing such an algorithm is that the descriptors chosen are often of varying
dimensionalities. Inclusion of descriptors beyond two-dimensional requires some
consideration of the potential energy surface, or conformational space, for each candidate

solution. In addition, the region in which to search for solutions becomes difficult to



identify because each property model has its own applicability domain, within which

predictions can be made with increased confidence.

The approach presented within this dissertation, aimed at solving such problems,
utilizes a fragment based descriptor known as the signature descriptor. Previous
applications using this descriptor were shown to be successful in terms of solving the
problem in an efficient manner while identifying novel solutions. Extension of this
descriptor to include spatial information, along with the techniques necessary for using
this data, is presented. This has allowed for the estimation of likely local energy minima
without the conventional conformational analysis for each potential solution, which has
been shown to be computationally intensive. The nature of signature descriptors, being
fragment based, allows for an efficient description of which region in chemical space to
search for solutions and also facilitates reconstruction of solutions matching a set of
descriptor values. A description of previous approaches taken to solve problems of this
nature has been outlined such that the benefits of the proposed technique could be
exemplified. In addition, several studies have been provided to verify the proposed

methodology.



Acknowledgements

Foremost, my success in the graduate program at Auburn University would not have been
possible without the support and guidance provided by my advisor Dr. Mario Eden as
well as the former department head, Dr. Chris Roberts. They were extremely helpful to
me throughout my stay at Auburn and had unquestioning faith in my ability to perform as
a graduate student. Mario accepted me into his group during a transitional phase for me
and has provided an environment in which I was able to thrive as a researcher and
develop as a professional. He also provided the opportunity for me to travel the world
presenting my work and was there for support every step of the way. I am forever

grateful for his guidance as an advisor and the friendship that has developed alongside it.

I would also like to acknowledge the support provided by my committee members, Dr.
Maria Auad and Dr. Allan David. Their feedback and support during the development of
my dissertation was invaluable and allowed me to maximize the quality of my work. I
was fortunate to have an incredible group of students within my research group from
which I could bounce ideas off of and also provide an occasional distraction from work
when it was called for. This includes Dr. Subin Hada, Dr. Susilpa Bommareddy, Dr.
Nishanth Chemmangattuvalappil, Dr. Wei Yuan, Dr. Charles C. Solvason, Dr. Zheng Liu,
Mr. Colin Haser, Mr. Narendra Sadhwani, Mr. Vikrant Dev, Mrs. Sarah Davis, and Mr.

Shounak Datta. I have a special appreciation for one of the closest friendships I have



developed in my lifetime with Dr. Subin Hada. We came from a small college in Mobile,

AL and were destined to conduct research together here at Auburn.

Finally, I have to acknowledge the support provided to me by my family. My mother and
father, Vicki Herring and Robert Herring Jr., have always been there for me along with
my two sisters, Juli and Shelly, and step father, Bo Olsen. When the stresses of graduate
life became too heavy, they were there for me and without them I could not have
succeeded. Last but not least, my girlfriend, Lyssa Youngblood, was supportive and
understanding of my long hours and late nights spent meeting the various challenges I

encountered throughout my research.



Table of Contents

ADSITACE ...ttt b et b ettt i
ACKNOWIEAZEMENLS.......cuvieuiieiieiieieert ettt ettt e st esttesteesseessaessaessaesssessaessseensesnsesnsenns i
LSt OF FIUIES ...eeviiiieeiieeie ettt ettt ettt et e et e et e e e esb e enaeesseenseenseensaenseenseenseenses i
LSt OF TADIES ...ttt ettt i
L INEEOAUCTION ...ttt ettt sttt st eaees 2
1.1 Challenges and MOtIVAtION. .......cccuieeriieeriieerieerie et eieeeieeeieeestee e e e aeesneeesaeesnseeans 3
1.2 SCOPE aNd ODJECLIVES ....veeeueieeiieeiieeiieeiee et et et e et e eteeeteeestaeessseessteesnseesnseesnneeans 5
1.3 Significance of RESEArCh ........c.coouiiiiiiiiie e 7
1.4 OTANIZALION ...eouviiniieniieieeieeee sttt ettt sttt eat e st e sate et e sabeeateeabeenees 9

2. BaCKEIOUNA .....oooiieeiiieceeee et ettt eennae s 13
2.1 Computer-Aided Molecular Design Approach .........ccceeveevienienienieneeneeneeieeeen 14
2.2 Molecular DESCTIPLOTS .....ccuveieiieeiieeiieeeieeeeieeeieeeae et e eteeestaeeeaeeesaaeesnseesaseesaseeenneas 18
2.2.1 OD-1D DESCIIPLOTS. ...eecuvieirieeiiieeitieeiieeiteeeteeesteeeeeeesaeesareessbeesseeereeenseeenseeennes 20
2.2.2 21D DIESCIIPLOTS ... veeerieeerieeiteeeteeesteeeetteesreeeseeeteeeseeesaeessaeessseessseeessesenseeensaeennes 21
2.2.3 3D DIESCIIPLOTS ....veeevieeerieeitieeieeeeteeeeteeeeteeeseeeteeeaeeeseeesseessseesssaesssasensseensaeennes 25

2.3 Molecular MOA@ING........cccueeriieeiieiiie ettt e eeee s 35



2.3.1 Molecular MECRANICS .....oooeeeieeeeeeee e 36

2.3.2 Quantum Chemical MethodsS...........cccuviiiiiiiiiiiiicec e 38
2.3.3 Geometry OPtimiZatiOn .......ceeueerueerieriienienieniie st ste ettt ene e 41
2.4 QSAR/JQSPR ..ottt ettt sttt 44
2.4.1 Variable Selection TeChNIQUES .........cccueeiiiiiiiiiiiiiieiieeeeeceeeeeee e 45
2.4.2 Mapping Descriptors into Attribute SPace.........ccoecveveerierieniienienieeieeeeeee 50
2.5 Fragment Based Property Models .........cccoevieriierienienienieieieeeeee e 58
2.5.1 Group Contribution Method...........ccceeeiiieiiiiiiiiieeceeeeeeeeeee e 60
2.5.2 Pharmacophore MOdeIS.........ccueeiiiiiiiieiiiciie et 63
2.5.3 Signature DESCIIPLOT ... .ccueeuieriieiierierteeiieseeeteeetteeeeesreeeaeeeeeaeeaeesseensesnseenseenns 64
2.6 Solution Techniques N CAMD .......cccoiiiiiiiiiieieee e 70
2.6.1 Database Search...........cooiiiiiiiiiiiii e 70
2.6.2 Generate and TeSt......c.eevuiiiuiiriieiieiiericeeeese ettt e 75
2.6.3 Programming and OptimiZation ............ccceeveeriieniienieenieeneeneeieenieeieese e 78
IR\ (11 T Yo [o) Y.y 2SRRI 84
3.1 Deterministic SOIUtion APProach..........ccceevuiirieriiiiiierieieeiieieeieeieeeee e 87
3.1.1 Identification of Property Models ...........ccceeviiriieniriiieiieieccececeeeeeeee 88
3.1.2 Data Set SElECION. ......ccuiriiiiiiieeieiente ettt &9
3.1.3 Conformational ANAlYSIS.......ccccueerieriierieniienieniereeree sttt 90

3.1.4 Spatial Signature Development ............ccceeueeriiecieeiieeieeieeie e 91



3.1.5 Compression of Spatial Information ...........ccccceeevieeiieenieenieeeeeeee e 91

3.1.6 Creation of Bonding NetWork .........ccceocueeiiiiiiiieiie e 94
3.1.7 Generation of Structural ISOMETS.........ccceevierierieriiiiieiereee e 95
3.1.8 Generation of Conformational ISOMETS...........cccuevvierieriinieniiiiiciiceceeeeeee, 98
3.1.9 Extension to More Complex StrucCtures .........cccceveerierieniennienienieeieeeeeiens 104
3.2 Stochastic Solution APproach .........cc.ccoeeiiiiiiiiiiiinieeeeeee e 107
3.2.1 Overall Genetic Algorithm Methodology .........cceveevienieniiniinierieceieee 110
3.2.2 Generation of Starting Population ............cccoecueeiiieiiniiieniiieeicceeieee e 113
3.2.3 Fitness Calculation ...........cccoirieiiininiiniininiceseeee e 115
3.2.4 GENELIC OPCIALOTS ...ecuvietierrieieetieieeteeieenteenseeseesseeseesseeseenseenseesseenseesseenseenns 117

4. CaSE STUAILS ..ottt ettt sttt sttt et et 122
4.1 Solvent Design StudY ......ccceeeviieiiiiiiieeieee e 123
4.1.1 CONCIUSIONS ..ottt et st ettt b e e eaean 127
4.2 Design of Alkyl Substituent for Rice Plant Fungicide..........c.ccoecueriiiieniiniennenne 128
4.2.1 CONCIUSIONS ....eeniiiiiiieiiieieeie ettt sttt sttt ettt ebeeaean 132
4.3 Geometry Estimation Technique ANalysis........ccccoeeerierierieniienienienieseeee e 133
4.3.1 Analysis of Methodology in Organic Space.........ccccevvereerienienieneeneeneennnn. 134
4.4 Structure Based Design of Non-Peptide Mimetics ..........cceeeevuiereieniernieenieeieeienne, 139
4.4.1 Pharmacophore and Non-Peptide MIimeticCs.........cccccoeeevueeecieerieenieeeieeeiieenns 139
4.4.2 Model INfOrmation..........cc.evueeieiieniiiiienieet e 140



4.4.3 Atomic Signature Development ............coeeviieriiiiiiiiieeeeeeeeeee e 141

4.4.4 Combinatorial OptimiZation...........cccueerviieriiieriiieniieeieeeeeeiee e seeeesaeeeseeeenes 143
4.4.5 CONCIUSIONS ..ottt sttt st sttt ettt ebeeneas 145

4.5 Solvent Design with Genetic AIOTithm ...........coceviiiiiiiiiiiiiiiee 145
4.5.1 Development of Spatial SIZNatures ..........ceceevveerieeiieenieneereeeeeeeeseenee e 147
4.5.2 Parameters UtIHZEd ......c.oovuiiiiiiiiiiiiiece s 148
4.5.3 Results and CONCIUSIONS.......co.eveeueriiieniineetiieeieeee et 149

5. Conclusions and Future DIreCtion ..........cocceceevieririinienieeieieneeiciesieeeese e 153
5.1 Improved Simulation TeChNIQUES .........ccecviieiiieiiieeiiecee e 155
5.2 Consideration Of PIOtEINS ......cc.eeeeieriiriiiiiiiiieiesteeee e 157
5.3 Simulated ANNEAIING ......coccveeiiieiieeiee e 160
RETEIENCES ...ttt e 162
Appendix A — Python Code for Proposed Methodology ...........cccceviiniiiiiniiniiniinne 173
A.1 — Creation of Spatial Atomic Signatures from Directory..........ccccoevuerveercierieennenne 173
A2 — NetWork GENETAtION ......cccueiuviiiieiieiieiiet ettt ettt et e e 179
A.3 — Molecular Signature Class with Feasibility Functions...........ccccccccevieniinienenn. 183
A4 — Genetic AIOTIRIM ......oouiiiiiiiiiee e 194
A.5 — Code for Expedited Molecular Mechanics Analysis.........ccecceeviereenieneeneenncans 224
A.6 — Geometry Verification Code .........covverieiiiniiniieeie et 226
Appendix B — Solutions to Pharmacophore Case Study.........cccceevveriienveneenienieenieenene 240



List of Figures

Figure 2.1 - Example of constitutional descriptor correlation. ............ceceeeveveneereenennnne. 21
Figure 2.2 - Example calculations of Wiener indeX. .......cccceceveriiiieninienicnineeicncneenne, 23
Figure 2.3 - Overview of geometrical desCriptors. ........ccceevueerieerienienienienieneesee e 27
Figure 2.4 - Outline of COMFA approach. ..........cccooeiiiiiiiiiiiiieeeeeeeee e, 33
Figure 2.5 - Visualization of SAR approach...........ccecceveviiiiiieniiiciecece e 45
Figure 2.6 - Mean centering and scaling in PCA...........ccccooiiiriiiiiiicece e 53
Figure 2.7 - Dimensionality reduction achieved with PCA...........c.ccccoiiiiniininiiieee. 54
Figure 2.8 - PLS regression visualiZation. ..........cocceoeeviererienenenieniesieeeeiesieeee e 55
Figure 2.9 - Classification through the use of a decision tree...........cccceceevverercvcnenennenne. 57
Figure 2.10 - Overview of inverse property prediction. .........cccceeveereereeneeneeneeneennennes 59
Figure 2.11 — Examples of first and second order groups ..........ccceevveevveerieeecieeeireeesieeene 61
Figure 2.12 - Examples of a pharmacophore model. ...........ccceevviieiiieiiiieciiecie e 64
Figure 2.13 - Example of atomic signature descriptors of varying height........................ 65
Figure 2.14 - Development of atomic signature up to height 3. ..........cccoeoiieiiiinieennnne 67
Figure 2.15 - Example of height three molecular signature enumeration......................... 68
Figure 2.16 - Results of 2D and 3D similarity searches. ........c..ccccevevieneniniencnenieene. 75
Figure 2.17 - Linkage of CAMD and molecular modeling. ..........ccccocoeveniniininincnenne. 78
Figure 2.18 - Flowchart for inverse QSPR workflow optimization approach.................. 80
Figure 3.1 - Overview of methodology developed. .........ccoceiiiiriiiiniiniiieiee, 87
Figure 3.2 — Cutoff criterion eXample.........c..ooeerieriinieniinie e 92
Figure 3.3- Example of compatible ‘bonding network’ edge. ..........ccceevveveririiencnennenne. 94
Figure 3.4- Example of consistency equation for nitroglycerine............c.ccoecvevververnnennee. 96
Figure 3.5 — Generation of structural ISOMETS. .........ceceereririerenieieneeeeeneeeeee e 97
Figure 3.6 — Example of fragment selection for geometry development. ...................... 100

Figure 3.7— Utilization of developed conformational iSOMETS. ........cccccceevuerereenienennnes 103



Figure 3.8 — Common Genetic Algorithm Methodology..........ccceevveriirienienienienieene 109

Figure 3.9 — Proposed Genetic Algorithm Utilizing Spatial Signature Descriptors....... 111
Figure 3.10 — Atomic signatures for nodes in molecular graph..........c.cccocceevieiirnenncnn. 112
Figure 3.11 — Effect of o on Fitness Distribution ...........c.ccoeeeeciiriieeiieniieeieeieeieeieeee 116
Figure 3.12 — Effect of Crossover on Size Distribution..........cccceceevervieeniennieenienneenienn. 118
Figure 3.13— Selection of Type of Mutation Operator ...........c..ceceeveeneeneeneeneeneeneenn 119
Figure 3.14 — Implementation of Crossover Operator..........cccoccveeecveerueesiieeenieeeneeeerenens 121
Figure 4.1 - FUn@Iicide StIUCLUTIE. .....ccuieriieeiieeiie ettt et e e ns 128
Figure 4.2 — Geometry verification data Set............cccervuereiieiiieiieiieeieeie e 135
Figure 4.3 — Geometry verification test SEt...........cevvierieriierienieeieeieeie e e e eie e 135
Figure 4.4- Example potential energy diagrams for (A) butane and (B) butene ............ 137
Figure 4.5 - Conformers after COMPIeSSION. .......ceveeierieriieieeiieie et 138
Figure 4.6 - Pharmacophore Model for S-HT6. .........cccccocvieviieiiieiieiiecieeeeeeeeees 141
Figure 4.7- Example pharmacophore groups. ........cccccveeiererieeieeenieeneeesiieesveesveesneenns 143
Figure 4.8 - Solutions to antagonist design case study. ........ccceevveeriiieriiieniieniieeiie s 144
Figure 4.9 — Fitness as a Function of GEneration ............ccceccueevieerieenieeniienieesiee s 150

Figure 5.1 - Examples of Common Ionic Liquid Cations and Anions ..........cc.ccceeueenee 157



List of Tables

Table 2.1 - Definitions of Tanimoto Coefficient and Euclidean Distance. ...................... 73
Table 3.1 — Cutoff criterion compression eXample.........ccceeveereerieriieniiienieenieneeseeseee e 93
Table 4.1 - Property constraints for solvent design study..........ccceeeveevieenieenieeniiennnn. 123
Table 4.2 - Property models for solvent design study. ........ccceevveeriieniiieniiieeieeieeeee 123
Table 4.3 - All height-2 atomic signatures for linear alkanes...........c..cccceveriencncnnenens 125
Table 4.4 - Solutions for solvent design Study..........ccoecveeviieiiieiienieiieieeeeeeeeeiane 127
Table 4.5 - Fungicide substituent property CONStraints. ...........ccueevveerveerueesueesieeneeeneeneeens 129
Table 4.6 - Fungicide study property models. ..........ccoeueriiriiniiniieiiieieeieeieeeeieeiene 129
Table 4.7 - Molecular signature solutions to fungicide problem. .............ccccecvveeeiveennnens 131
Table 4.8 - Substituent SOIULION 1SOMETS. .......cevuteruieriieriieniieniienieree sttt 132
Table 4.9 - Conformers identified with MC search. .......c...ccccoooeiiiniiniiiiiniiiiiecee 136

Table 4.10 — Common Solutions Identified During Solvent Design Case Study........... 150



1. Introduction

The field of computer-aided molecular design (CAMD) has seen an exponential increase
in the complexity of problems considered, which has been made possible through a
paralleled increase in algorithms and hardware available to solve these problems. This
area has such humble origins and has expanded through continued contributions from
many fields including medicinal chemistry, computer sciences, computational chemistry,
bioinformatics and chemical engineering. Problems ranging from the identification of
optimal solid state catalysts to the synthesis of potent HIV-1 protease inhibitors have
benefited from CAMD techniques and studies with ever-increasing complexity are being

considered.

The ability to describe molecular structures accurately and uniquely is possible
through the utilization of molecular descriptors. These descriptors can capture a variety
of aspects such as charge distribution, globularity, size, and complexity of structures
under consideration. These are the details necessary for correlation to the various
properties and activities of interest, which is done through the generation of mappings
between descriptor space and attribute space. What descriptors offer is the ability to
translate the characteristics of a molecular structure into a numerical domain. With this
information, one is able to apply the established techniques of numerical analysis towards
solving CAMD problems. However, one limitation to these increasingly informative
models is the ability to use them in an efficient manner. The original property models
typically considered very simple descriptors, such as molecular weights or atom counts.

This was sufficient for correlation to common physico-chemical properties, however, to



capture the variance of more complex properties, it became necessary to use more
complex descriptors. This increase in complexity demands improved CAMD solution
techniques. Some techniques benefited from a unique description of the problem such
that various programming and optimization algorithms could be applied to scan larger
chemical search spaces. Others relied on efficient handling and consideration of data for
solving these more complex problems. However, the most successful techniques have

taken advantage of both approaches.

1.1 Challenges and Motivation

The improved ability to accurately model molecular structures and their interactions with
each other has provided a wealth of information which was previously unattainable. This
new information is now being produced with incredible accuracy such that its correlation
with experimental properties is resulting in models which can be successfully
interpolated and extrapolated around the original data set. This provides an opportunity to
identify chemical solutions, with a set of desired properties, which have not been
included in the original data set. The search space, known as chemical space, for these
potential solutions is vast as the number of just small organic structures has been
estimated to be around 10° (Kirkpatrick and Ellis, 2004). Chemical space represents all
possible collections and arrangements of atoms producing unique molecular structures.
Such a large search area demands efficient methods of scanning for solutions. In addition,
the varying applicability of these models, or the confidence associated with a models
prediction for a specific region of chemical space, must be taken into consideration to

produce reliable results.



These improved molecular modelling techniques, in addition to providing
increasingly accurate information, are also providing much more complex information.
For example, the spatial characteristics, or three-dimensional information, of molecules
under study are now accessible through simulation. Such information has necessitated the
creation of new independent variables capable of systematically representing this data
across a variety of molecules. The ability to utilize these models in a CAMD approach
requires some technique for estimating these values in an efficient manner such that a
larger region of chemical space can be considered for improved solutions. While it is
possible to thoroughly examine the spatial characteristics of each structure in a given data
set, such that a more accurate and predictive model can be produced, the benefits of being
able to quickly estimate this information during the solution process are obvious. In
addition, the conformational characteristics of a given molecule are often incredibly
complex, having multiple accessible conformers. This must be taken into consideration

during the solution process as well.

Alongside improved molecular modelling techniques, which have introduced new
ways to characterize molecules, improvements in model development techniques have
followed. Specifically, variable selection techniques, which identify the optimal set of
independent variables useful in characterizing an attribute of interest, have become very
important. With the introduction of spatial molecular descriptors, a multitude of
topological and topochemical descriptors with increased complexity have been designed
as well. Because of this, there are thousands of molecular descriptors available today, of
which any combination could produce the optimal set of independent variables useful for

characterizing a chosen attribute. With these improved variable selection techniques we



are finding that the optimal set of descriptors is often varying in the dimensionality of
information captured. This means that we often have topological, or two dimensional,
and topographic, or three dimensional, indices in one equation. This creates a challenge
for designing a CAMD approach capable of handling these models efficiently. One can
imagine that each type of property or attribute will have its own unique combination of
molecular descriptors. The ability to handle multiple models at once, each with a widely
varying set of information, creates a powerful CAMD technique as a more globally
optimal solution can be identified when compared to considering only one property at a
time. In addition, solving these equations in a single pass would allow for a more

efficient search method than one that is iterative in nature.

1.2 Scope and Objectives
The requirements placed on a CAMD approach capable of handling the latest techniques

in molecular modelling and model development include:

1) The ability to quickly estimate spatial capabilities of a molecule under
consideration without extensive simulation efforts would allow for consideration

of a larger region of chemical space.

2) The decision of which region of chemical space to scan, such that each potential
solution would fall under or within the applicability domain of each property

model utilized, must be made.

3) The ability to simultaneously consider descriptors of widely varying nature,

ranging from topological to topographic, is a necessity.



Within this dissertation, a methodology for the solution of CAMD problems with
multi-dimensional characterization is proposed. This technique utilizes a fragment based
descriptor, known as a spatial atomic signature, to build solution structures with targeted
properties and attributes. Previous approaches for solving problems of this nature were
limited to database searches and inefficient generate and test techniques which relied on
time consuming analysis of the potential energy surface of each potential solution. This
technique will allow for the consideration of a much larger region of chemical space,
with minimal compromise on the accuracy of estimation made for higher dimensional
information. The approach applies a graph based representation of molecular structures in
which fragments are utilized to build potential solutions, which allows for a very efficient
representation and consideration of a defined region in chemical space along with its

associated conformational capabilities.

The spatial information used during the CAMD algorithm is initially generated
through an extensive conformational analysis of a given data set. Much of this
information is overlapping, or over-defined, and a compression algorithm has been
introduced to minimize the potential for combinatorial explosion. Combinatorial
explosion is an effect seen quite often in the solution of combinatorial optimization
problems of this nature. These extensive molecular modelling efforts are done up front as
opposed to within the CAMD approach, which saves time and allows for a larger region

of chemical space to be searched.

In addition, the canonical fragment based representation of molecular structures
through the atomic signature convention allows for an efficient search through a defined

region of chemical space. A canonical representation ensures that a given molecular



fragment can only be represented in one way, which ensures that potential solutions are
only visited once and minimizes the computational load of a given CAMD problem. Also,
since the fragments are developed from an overlapping data set, which consider
structures familiar to all property models utilized, the likelihood of a solution falling

within the applicability domain of all models is significantly increased.

It is the overall goal of this research to be able to solve CAMD problems utilizing
multiple property models, each with descriptors of varying complexity. Specifically, the
inclusion of spatial descriptors is focused upon and the efficient spatial characterization
of molecules considered is established. The approach is based on a canonical fragment
based descriptor to allow for a combinatorial optimization based approach which
minimizes the potential for combinatorial explosion so larger regions of chemical space
can be considered. The approach is designed so that a deterministic or stochastic search
for chemical solutions can be applied for searching specific regions of chemical space

with varying degrees of completeness and speed.

1.3 Significance of Research

Previously, the solution of problems of this nature was done in an iterative manner where
the property models were tackled with increasing complexity. This is an inefficient
technique for solving CAMD problems with multiple properties of interest. The presented
methodology is able to efficiently consider all of these models at once, on a single
platform, such that the problem can be solved in a single pass regardless of the number
and complexity of molecular descriptors utilized. The space in which these problems are
tackled also becomes very well defined with the nature of the proposed techniques. This
space is defined in an efficient manner, such as to avoid the combinatorial explosion

7



often associated with previous attempts at searching a comparable region of chemical

space.

In addition, the consideration of spatial characteristics within the chosen search
space is often lacking. The typical approach was to identify a single conformer, which
was identified as being a potential local conformational isomer. This information was
then utilized in establishing the molecule’s spatial characteristics and ultimately its
likelihood of exhibiting the properties of interest. It has been established that the actual
conformational status of a given molecule is best represented by a collection of
conformers, each with a varying likelihood of existing in solutions. This likelihood was
based on the internal, or conformational, energy associated with this conformer. As such,
the most realistic representation of the spatial characteristics for a given molecule would
consider several potential conformational isomers. This methodology allows for the
consideration of multiple conformers, which have been shown to be representative of the
given local energy minima. This is done in an efficient manner, such that thorough

molecular modelling techniques are not necessary.

With the consideration of increasingly complex problems, a CAMD approach
capable of handling this information has become necessary. The ability to model
interactions between groups of molecules such as ligands and receptors has allowed for
the development of interesting spatial descriptions of these phenomena. Also, the
traditional descriptors, which are efficient and effective at characterizing simple physic-
chemical properties, still have a place in the arena of CAMD. This methodology can
handle previously established ideologies as well as state of the art descriptions of

molecules, thus allowing for the solution of a wide range of CAMD problems.



1.4 Organization

The format of this dissertation is such that the background is first introduced to
provide the reader with enough knowledge to skeptically interpret the proposed
methodology. This background, in chapter two, includes topics such as molecular
modeling, property models, molecular descriptors and CAMD solution techniques with
many convenient examples provided. The first section in chapter two introduces the
fundamentals of computer-aided molecular design. This develops the “big picture” from
which increasing levels of detail can be uncovered. The second section discusses
molecular descriptors, which provide the ability to mathematically represent molecular
structures. These descriptors can be immediately categorized by the dimensionality of
information they capture, ranging from 0-D to 4-D, and each of these dimensions are
further discussed. The third section introduces molecular modelling techniques, which are
necessary to develop molecular descriptors with dimensionality higher than two. These
techniques can be based on molecular mechanical simulations, where classical mechanics
are used to model molecular systems, or quantum mechanical simulations, which
explicitly consider the electrons within the system being studied. Further, the application
of molecular and quantum mechanics towards estimating the geometry of a given
molecule is considered within the geometry optimization section of chapter two. Sections
four and five of chapter two address the concept of property models as well as how they
are developed. The model types considered include quantitative structure-property
relationships and fragment based property models. Each unique model type has its own

requirements for application within a computer-aided molecular design problem, often



requiring several solution techniques. These techniques are discussed within the final

section of chapter two, and several examples are provided.

The developed methodology is covered next in chapter three and provides the details
of the proposed technique. This includes the initial steps necessary for setting up the
problem as well as the subsequent steps taken, ultimately leading to a solution set of
molecular structures. Two distinct approaches were developed, and each is best suited for
a specific type of molecular design problem. A deterministic approach was developed for
smaller problems and this allows for the problem to be thoroughly considered as the
entire solution space is searched. In addition, a stochastic technique was developed for
larger studies in which it would be too time consuming to consider the entire search space.
Within both approaches it is first necessary to identify the appropriate property models,
select a data set, perform a conformational analysis on this data set, compress this
information and ultimately arrive at a set of molecular fragments with which to proceed
in generating solutions. Section one of chapter three covers these initial steps along with
the proposed deterministic approach and section two covers the stochastic solution
approach. The stochastic approach is an evolutionary algorithm which applies concepts
familiar to natural selection. This requires the generation of a starting population along
with several operators which alter the population through acts of crossover and mutation.
The goal is to apply selective pressure and guide/transform the population to ultimately

converge into a set of molecules with the desired characteristics.

This method is exemplified in chapter four, which introduces several case studies
including: solvent design, fungicide substituent design and non-peptide mimetic inhibitor

design. In addition to these case studies, another section has been included which
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provides verification of the underlying assumption associated with this methodology.
This assumption is that one can generate an estimation of a potential energy surface, by
identifying several likely conformational energy minima, through the use of fragment
geometry information. This is one key idea responsible for the increased efficiency
associated with the novel approach. Within the appendix, python code for application of

each of the discussed techniques can be found.

The deterministic approach towards solving computer-aided molecular design
(CAMD) problems with multidimensional descriptors has been published in Computer
Aided Chemical Engineering (Herring et al., 2012a; Herring et al., 2012b). This initial
work allows for the solution of CAMD problems, utilizing descriptors of varying
complexity and dimensionality, on a single platform. This approach was extended to
consider more complex structures and design characteristics with the structure based
design of non-peptide mimetics (Herring et al., 2013), which was published in Computer
Aided Chemical Engineering. In addition the stochastic approach was exemplified
through two publications in Computer Aided Chemical Engineering (Herring and Eden,
2014 a,b). Many of the underlying techniques associated with this thesis were also
applied in several related studies. For example, an interesting technique for the
development of a quantitative structure-property model relating solvent structure to
crystal morphology was also developed (Haser et al., 2014) and provides an excellent
example of property model development techniques. Also, some concepts of generating
solution structures, relating to ionic liquids, from molecular fragments using computer-
aided techniques have also been developed (Hada et al., 2013). In addition the quantum

chemical characterization of ionic liquid properties has been utilized within a molecular
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design application (Davis et al., 2014). Additionally, an invited publication encompassing
the techniques and application of the developed stochastic evolutionary molecular design

approach will soon be published in a special issue of Computers & Chemical Engineering.
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2. Background

The background section of this dissertation will present the ideas and techniques
necessary for an understanding of the proposed methodology. In addition, it will provide
a comparison through which to exemplify the benefits and novel techniques within this
approach. The first section introduces the concept of computer-aided molecular design
and covers the basic steps seen in problems approached within this field. The second
section discusses the various types of molecular descriptors utilized, each of which has its
own strengths and weaknesses in characterizing molecules. Descriptors can be
categorized based upon the dimensionality of information they capture and this ranges
from OD to 4D, so far. This section is important as it compares each descriptor type,
while offering several examples, such that the requirements for developing and using
these descriptors can be addressed. The third section introduces various concepts in
molecular modeling, including molecular mechanics, quantum mechanics, and geometry
optimization. These techniques are necessary for estimation of spatial and electronic
properties for molecules in a molecular design study. The fourth background section
covers the various types of quantitative structure property (activity) models, and the
techniques used to develop these. The approach taken to develop a model of this type can
be broken into a few basic steps including variable selection, mapping (e.g. regression
analysis), and model verification. Without these models, the design of molecules with
desired properties and activities would be much more limited. The fifth section discusses
the concept of fragment based property models. The three types covered in detail here are

group contribution, pharmacophore and atomic signature based models. Fragment based
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property models are considered separately for two reasons: (1) They have a special
usefulness in the inverse property model approach since molecular fragments allow the
enumeration of solution structures to be done in a much more efficient manner and (2)
The methodology proposed in this thesis is based on the utilization of fragment based
descriptors, namely the signature descriptor. The final section presented within the
background covers the various techniques useful for solving molecular design problems.
These have been broadly categorized as being database searches, generate and test
approaches and programming/optimization. Several modern examples have been
provided for each approach type for a hands on explanation of the pros and cons of each
technique. It is the author’s intent that, after reviewing these sections, consideration of the
proposed methodology will become more tangible and its novel techniques will be more

readily noticed.

2.1 Computer-Aided Molecular Design Approach

Computer-aided molecular design (CAMD) involves the selection or identification of
molecules with an increased likelihood of exhibiting a set of desired characteristics or
attributes. This area falls under the more generalized category of product design, which
can further include the consideration of mixture design and sometimes process design.

Cussler and Moggridge [1] have suggested these four steps in the product design process:

1. Define needs;
2. Generate ideas to meet needs;
3. Select among ideas;

4. Manufacture product.
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The first step is to identify the consumer/customer needs and this can be anything
from common macroscopic molecular properties to less tangible attributes such as feel,
smell, or color. Physicochemical properties represent explicit property constraints
because their values can be determined directly through a model or even determined
experimentally. Another form of property constraint includes those which are less
tangible, as mentioned earlier, and is referred to as an implicit property. These properties
cannot be measured or predicted by a model and must be inferred through databases, past
knowledge, and other measured or predicted properties. Once the relevant properties have
been identified, it is also necessary to set certain bounds on their acceptable values. This
is often done by establishing lower and upper bounds on the properties considered,
although sometimes only one bound is necessary. For example, toxicity is often
represented by the concentration resulting in a fifty percent mortality rate, LCs, for a
given test set and this property only requires a lower bound since an increased value
represents increased chemical safety. Other properties, such as the boiling point of a
solvent, must fall within certain acceptable limits and are more adequately constrained
with an upper and lower bound. It is necessary to ultimately relate these attributes to the
underlying chemical structures. The first through third steps represent the core of the
molecular design approach, which is where mixture design problems would be
considered in addition to single-component molecular design. The inclusion of mixture
design necessitates the use of certain models for estimating the mixture properties, often a
function of the individual component properties. The fourth step involves the design of a
process which can create the desired product in a safe and economic manner. When

product and process design are done simultaneously this is known as an integrated
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approach and it allows for the identification of optimal component and process
specifications. For the purposes of this defense, CAMD will consist of the first through

third steps while excluding any mixture design applications.

Once the desired attributes, e.g. property bounds, have been decided, what remains
is to identify solutions exhibiting these attributes and choose the optimal solution(s). To
do this, structure-attribute relationships, also referred to as property models, are utilized.
There are many types of property models but they all aim to create a mathematical
relationship between the underlying chemical structure and the property of interest.
Molecular descriptors, which capture various features of the molecular structure, are used
as independent variables and the properties are dependent variables in this case. When
used in a forward manner, these models can predict the property exhibited by a certain
molecule within the applicable domain (AD) of that model. The AD can be defined in
many different ways and it represents a region of space where an increased confidence in
the predicted property value can be expected, as long as the molecule lies within this
space. This is pointed out as being important in the CAMD approach since many times
the molecules of interest are not available in the test set, meaning their properties are

unknown and reliable property estimations are crucial.

Achenie et al. (2003) have provided the following generic mathematical

programming representation of the typical CAMD problem:

Fopy = max{C"y + f(x)} (D
s.t.

h;(x)=0 ...process design specs )
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h,(x) =0 ...process model equations 3)

hs(x) =0 ...CAMD specifications 4)
L<gi(x)=uy ...process design constraints (5)
I, <g,(x)<u, ...CAMD constraints (6)
I, £By+(Cx <uj ...logical constraints (7

In the equations above, x represents a vector of continuous variables and y represents the
vector of binary integer variables. Harper et al. (1999) have provided a classification for
the various CAMD approaches and this includes (a) Database search, (b) Generate and
Test, and (c) Mathematical programming and genetic algorithm. The equations utilized in
each type of approach will help clarify the techniques through mathematical examination.
A database search would satisfy only equation (6) above and this approach would be
limited to the consideration of only existing molecules. The generate and test approach
relies on equation (4) to generate feasible molecules and equation (6) to test if they are
within the property bounds desired. This approach, while more computationally intensive
than the conventional database search, introduces the opportunity to consider novel
structures. With this new opportunity comes a challenge, which is to decide how to
generate these new structures such that they fall reasonably within the AD of any
property models utilized. Most attempts at this have come from fragment based
approaches in which molecular fragments are used as building blocks to generate
molecules within a controlled region of chemical space. The generate and test approach is
most simply an exhaustive effort such that all feasible molecules, within the chemical
space designated by the chosen building blocks, are tested. This often leads to what has

been termed ‘combinatorial explosion’, which results from a combinatorial mathematics
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problem becoming too large to solve in a reasonable amount of time because of the sheer
number of possible combinations. When this is the case, many have turned to the third
approach type, mathematical programming and genetic algorithm, which aim to alleviate
this problem. The programming approach takes many different forms depending on the
nature of the constraint equations involved, e.g. being linear or nonlinear. When the
CAMD problem can be defined in terms of linear equations, this often allows for the
identification of a globally optimal solution through methods such as the Simplex Method
(Nelder and Mead, 1965). Otherwise, there are equivalently many techniques for the
solution of non-linear programming problems including an array of stochastic techniques
which are adept at handling the combinatorially large and highly non-linear problems
encountered in CAMD. Overall, the adoption of CAMD methodologies has proven a very
fruitful effort in terms of identifying and understanding the effects of varying molecular
structure and has also saved time and expenses in the development of new chemical

solutions.

2.2 Molecular Descriptors

Molecular descriptors provide a way to numerically represent certain features of a
molecule, allowing for the mathematical characterization of structures such that the
desired properties and activities are defined as a function of these descriptors. This is
more formally expressed by Todeschini and Consonni (2009) as: "The molecular
descriptor is the final result of a logic and mathematical procedure which transforms
chemical information encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiment." Descriptors can be initially

separated into two distinct categories: experimental measurements, often
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physicochemical properties like boiling point, and theoretical molecular descriptors,
which are derived from symbolic representations of a molecular structure. While the
physicochemical properties might not be available for all compounds, theoretical
descriptors can be calculated for any possible chemical structure and contain no statistical
error due to experimental noise. Theoretical molecular descriptors can further be
classified by the dimensionality of information they capture. This classification scheme
results in the following categories of theoretical descriptors: 1) OD-descriptors (i.e.
constitutional and count descriptors), 2) 1D-descriptors (i.e. list of structural fragments),
3) 2D-descriptors (i.e. graph invariants) 4) 3D-descriptors (e.g. quantum-chemical
descriptors and surface descriptors) 5) 4D-descriptors (e.g. CoOMFA derived descriptors).
Comparative molecular field analysis (CoMFA) was developed by Cramer et al. (1988)
and generates a structure/activity correlation based upon the three-dimensional steric and
electrostatic fields of a molecule. Extension of descriptors to include four-dimensional
information typically requires the three-dimensional analysis of a set of conformational
isomers; This information can then be collectively utilized to generate the respective
four-dimensional descriptors. In addition, there can be theoretical descriptors which are
not cleanly categorized as above. One example of this would be the weighting of
conventional topological indices by geometric information as applied in the method of
ideal symmetry (Toropov, 1998). These indices were utilized in a predictive manner to
calculate the boiling points of a series of alkanes and showed a better performance than

the original topological descriptors.

Molecular descriptors have an inherent level of degeneracy that depicts how well

individual molecules are differentiated based solely upon their descriptor values. This
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feature is very important when the model developed will be utilized in an inverse manner
to predict structures meeting the desired property/attribute value. Models built with
descriptors higher in degeneracy would have many more solution structures than one
built with less degenerate descriptors. Since the search space for such applications can
often be extremely large, it is desirable to reduce the solution set as much as possible. A
general trend of decreasing degeneracy with increasing descriptor dimensionality can be
observed. This trend is followed by an often significant increase in computational

demands brought about by the inclusion of 3D and 4D descriptors.

In addition to having a certain level of degeneracy, descriptors can also be
characterized by their invariance properties. Invariance refers to the ability of the
descriptor calculation algorithm to give a consistent value regardless of the form of
molecular representation utilized. A minimal requirement for molecular descriptors is
invariance to molecular numbering or labeling. The specific case of chemical invariance
considers whether or not the various atom types of a structure affect the descriptor value.
For example, topological descriptors utilizing atom type in their calculation are known as
topochemical indices, and those relying solely on connectivity information are known as

topostructural indices.

2.2.1 0D-1D Descriptors

0D-descriptors, also known as constitutional descriptors, are the simplest to compute and
still offer reasonable discrimination power for specific situations. Some example of
descriptors of this nature would be molecular weight, bond counts, atom counts, and
fragment counts. The example shown in Fig. 2.1 represents the utilization of carbon count,

a 0D descriptor, in creating a linear property model for the boiling point of a series of
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alkanes (C1-C7). This simple technique was able to account for 97% of the variance seen

in the data.
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Figure 2.1 - Example of constitutional descriptor correlation.

1D-descriptors essentially account for certain structural fragments found within the
molecules under consideration. This can be a complete or partial list of functional groups,
substituents, etc. This method of molecular classification is often used to search large
chemical databases in an expedited manner to identify structures with a certain level of
‘similarity’ (e.g. containing the desired pharmacophoric groups identified as important

towards a certain biological activity).

2.2.2 2D Descriptors

Molecules can be represented as graphs and this approach is often termed chemical graph
theory (Balaban, 1976; Trinajstic, 1992; Rouvray, 1971). A molecular graph G can be
described by a set of vertices V, representing the atoms, and a set of edges E, representing
the bonds. In addition, the fragments present in a molecular graph can be represented as

sub-graphs in the same manner. A number of descriptors can ultimately be calculated
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from this representation of a molecule and they are collectively known as graph

theoretical or topological indices.

Two vertices connected by an edge are considered to be adjacent and the adjacency
matrix A can uniquely describe a molecular graph. The adjacency matrix has elements a;
equal to 1 for all adjacent vertices and 0 otherwise. A path, in this context, is a succession
of non-repeating edges such that there is no discontinuity from one point to another. With
this in mind, for each pair of vertices in a chemical graph there exists at least one path
connecting them. The distance matrix D represents the shortest path d;; between all pairs
of vertices in a graph. Both matrices are symmetrical with respect to their main diagonals
and have diagonal entries of zero since a vertex is unique and cannot be connected to
itself. These matrices are often utilized as the intermediate representation of a pure

chemical graph from which topological indices are derived.

The Wiener index (Wiener, 1947a,b), denoted by W, was among the first, and most
successful, topological indices utilized in structure property correlations. This topological
index is calculated from the distance matrix and is essentially the half-sum of all entries
in this matrix, being symmetric. As developed in Fig. 2.2, it can be seen that more

compact molecular graphs will have a smaller W value.
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Figure 2.2 - Example calculations of Wiener index.

Another widely used descriptor type within the 2D, or topological index, domain is
the connectivity index, which is considered the most successful index and has many
different forms. A specific nomenclature has been developed to differentiate and identify
these indices which are all denoted by y. Two superscripts and one subscript are used to
further define the index type. The left-side superscript can attain a value of either zero or
any positive integer and designates the index order. The right side subscript (P, C, PC, or
CH) specifies the subclass of molecular connectivity index which could be path, cluster,
path/cluster, or chain-type. The path type index is assumed when no right side subscript is
noted. Each index calculation is based only on the non-hydrogen atoms within a molecule
and these atoms are represented by their atomic o value, which is equal to the number of
adjacent non-hydrogen atoms. For example, the first-order 'y molecular connectivity
index is calculated as shown in Eq. (2.1) where i and j correspond to pairs of adjacent

non-hydrogen atoms and the summation is over all bonds in the graph.

= (6:6)70 .
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6 =(Zi—H)/(Zi—Z] = 1) (2.2)

The valence connectivity index is an extension to the original connectivity index and
represents an attempt to account for the chemical nature of vertices, or atoms, in a
molecular graph. In this case, vertices are no longer represented by their degree and are
weighted by valence delta values d;, which are calculated as shown in Eq. (2.2) where Z;"
is the number of valence electrons in atom i, Z;is its atomic number, and H;is the number
of hydrogen atoms attached to atom i. The most recent extension of the original
connectivity index is the electrotopological state index (Kier and Hall, 1999). The idea
with this new index is to consider that each atom within the molecule resides in a field
composed of every other atom and the result of these interactions is modification of the
intrinsic state of that atom to produce its bonded state within the context of the whole
molecule. The resulting electrotopological index combines the electronic and topological
effects acting on each atom within its field. The electrotopological state (E-state) of an
atom in a molecule is formulated as an intrinsic value, /;, plus a perturbation term, 417,
arising from the electronic interaction and modified by the molecular topological
environment of each atom in the molecule. The intrinsic value is calculated as shown in

Eq. (2.3) where 6 and 0" are the previously discussed delta and valence

I = [(%) 57 + 1] /6 2.3)
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delta values while N represents the principal quantum number. The field effects are

calculated as a perturbation on the original atoms intrinsic value as shown in Eq. (2.4)

N
AL = ) (I; - I)/r# (2.4)
jZl J J

where N represents all atoms in the structure and r; is the topological distance, or number
of bond, between atoms i and j. The resulting electrotopological state of each atom, S,, is
then calculated as a summation of its intrinsic value and perturbation value. This
descriptor is differentiated from the previously applied ‘whole molecule’ descriptors in
that its value for specific atoms was utilized by itself, while the rest of the structure was

captured through the perturbation adjustment.

2.2.3 3D Descriptors

Just as 2D descriptors were termed topological indices, 3D descriptors are known as
topographic indices and they represent geometry dependent invariants of molecular
graphs. These descriptors were introduced because conventional topological indices
could not account for spatial molecular information such as stereoisomerism (e.g. cis and
trans) and molecular geometry estimations became more feasible through improvements
in computational power and geometry development algorithms. These descriptors require
information about the three dimensional, or geometric, arrangement of atoms in a
molecule and there are multiple techniques, with varying accuracy, available to estimate
this information. Experimentally, the molecular geometry can be obtained by various
spectroscopic and diffraction methods. Infra-red, microwave and Raman spectroscopy
can be used to obtain information about the geometry of a molecule based upon the
vibrational and rotational absorbance detected by these techniques. In addition, x-ray
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crystallography, neutron diffraction and electron diffraction can be used to obtain
information about the structure of crystalline solids based on the distance between nuclei
and concentration of electron density. There are many techniques in the field of
molecular modeling that can be used for the computational based determination of
molecular geometry. These techniques can generally be categorized as empirical (e.g.
molecular mechanics), semi-empirical and ab-initio techniques. Empirical applications
use classical mechanics to model molecular systems and rely on force fields to provide
information about the feasibility of a suggested molecular structure. These methods are
termed ‘empirical’ because the force-field utilized has been parameterized to fit
experimental data. Semi-empirical quantum chemistry methods often have increased
accuracy over purely empirical methods because they consider some form of electron
correlation, whereas this information is not explicitly considered in an empirical approach.
Semi-empirical methods offer a nice middle ground for molecular geometry
determination with reasonable accuracy and computational complexity. The ‘semi-‘ part
of semi-empirical refers to the fact that the two-electron part of the Hamiltonian is not
explicitly included, yet has been parameterized to fit either experimental or ab-initio
results. This leads to the most computationally demanding, and often most accurate,
technique for molecular geometry determination, termed ab-initio quantum chemistry.
Ab-initio means ‘from first principles’ and was a term first coined by Allen et al. (1960).
These techniques do not rely on experimental data and electrons are explicitly
represented as the Schrodinger equation is solved to obtain very accurate geometry

estimations. The details of these various techniques will be covered in further detail in
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section 2.3. An overview of the various types of geometric descriptors is provided in

Figure 2.3.
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Figure 2.3 - Overview of geometrical descriptors.

The inclusion of spatial molecular information in graph theoretical descriptors was
first introduced by Randi¢ (1987) who used the term topographic descriptor. Another
turning point in the development of topographic descriptors was given by Bogdanov et al.
(1989), who calculated the three-dimensional Wiener number, which is an extension of
its original topological counterpart. There are several other possibilities for calculating
variants of the original Weiner index which might include using the summation of bond

lengths between respective atoms as well as Euclidean distances, as done by Bogdanov et

27



al. (1989). However, a study by Castro et al. (2002) considers the relationship between
these descriptors in the context of utilization in property correlation. It was found that
there is a strong linear correlation between the original Wiener index and each of its
modified forms. This leads to the conclusion that the original definition of this descriptor
is sufficient for property correlation, and the introduction of variants on this technique
introduce the possibility for only slight improvements in a given QSPR model. This study
reinforces the concept that descriptors, when utilized in structure property correlations,

should be linearly independent.

Many of the topographic descriptors were developed as an extension upon existing
topological based concepts. This was the case for Diudea et al. (1995) who proposed two
types of topographic indices of centricity and centrocomplexity which were based on 3D
distances provided by molecular mechanics calculations. The topological counterparts to
these types of descriptors begin with the ‘through bond’, topological distance matrix as
well as the layer matrix, LM. The topological distance matrix is a symmetric matrix D
whose entries, dj;, correspond to the number of bonds between atoms i and j. The
‘through space’ matrix utilized to develop these novel topographic descriptors is
symmetric just like the original topological matrix, however, Euclidean distances are
used in place of the number of bonds between two respective atoms. The layer matrix is a
bit more complex than the distance matrix and it collects the properties of vertices u
located on concentric shells (layers) G(u);, at a distance j around the vertex 7 in the graph

G, and can be defined as seen in Eq.(2.5) and (2.6):

Im;; = Z my, (2.5)

uEG(u)j
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LM(G) = {lm;;i € [1,n];j € [0,d]} (2.6)

In the above equations, m and M are labels for a given property and the corresponding
matrix, respectively; n is the number of vertices in the graph; and d stands for the
diameter of the graph, which is the largest topological distance in the graph. The new
three-dimensional layer matrix follows the same convention as its topological counterpart

as seen in Eq.(2.5) and Eq.(2.6), however, m, is now defined as in Eq.(2.7).

my = z 3dyy, = 3Dy 2.7)

all veG

The two new local vertex invariants (LOVI’s) of ¢ (centricity) and x (centrocomplexity)

have been defined as shown in Eq.(2.8) and Eq.(2.9), respectively.

-1

[ecci
c(LM); = Z(lmij)f/dsr’ 2.8)
/=1
recc; +1
X(LM)l = Z lmUlO_ZJ i li ti (29)
j=0
[ = lmio lmil (2 10)
i = fil 10 100) '
fi = z (cw—1) (2.11)
u
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In the above equations, ecc; is the eccentricity of vertex / (the maximal topological
distance from vertex / to any vertices in the graph); dsp is a specified topological distance,
usually larger than the diameter of the graph; z is the number of digits of the max /m;
value in the graph; /; is a local parameter for multiple bonds; f£; is a multigraph factor, with
ci, being the conventional bond order; ¢; is a weighting factor accounting for heteroatoms.
These new indices were able to correlate well with the van der Waals surface area for a
set of 17 geometric heptane isomers, thus exemplifying their ability to differentiate
conformational isomers. In addition, the indices were able to correlate with the toxicity of
ethers on mice. This exemplifies the complexity of topographic descriptors that have
been developed in the last few decades as well as their abilities to correlate well with

various properties and activities of interest.

The previously described topographic descriptors were all based upon the Euclidean
distance matrix. One approach by Estrada and Ramirez (1996) introduces a new
topographic index derived from the three-dimensional analogue of the conventional
topological edge matrix. The edge matrix E is a square and symmetric matrix in which
the rows and columns correspond to edges, or chemical bonds, within a molecular graph
G. The non-diagonal entries of this matrix are either ones or zeroes depending on whether
the corresponding bonds are touching or not, respectively. This approach uses molecular
graphs with edges weighted by bond orders calculated from quantum chemical methods.
The bond orders in this method are called valence indexes and are calculated as shown in

Eq.(2.12)
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A A B
par = ) 2032 = ) > vk, 2.12)
A A o

where,

Pio =2 CiaCig 2.13)

are the elements of the density matrix and eigenvectors C;; sum is over all occupied
orbitals. Elements of the edge adjacency matrix for the weighted molecular graph are
defined in a more complex way. Let e; and e;be two adjacent edges in G. If e;is incident
with vertices v, and vy, and e; is incident with v, and v, then the elements e; and e;; of the
E matrix are pgc and p4p, respectively. With bond orders defined in this manner, edge

degrees, p(e;), are defined as the sum of elements of ith row in E matrix as in Eq.(2.14):

6(e) = z €ij (2.14)
J
The topographic edge connectivity index €(p) was developed from this new matrix and is

calculated as shown in Eq.(2.15):

ep) = ) [6enscep] 2.15)

This descriptor was utilized to generate regressions for the molar refractivity of a series

of 69 Cs-Cy alkanes. Calculation of the index was performed by using bond orders
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calculated from the quantum chemical semi-empirical method PM3 (Stewart, 1991).
Molar refractivity was chosen as an important property because of its ability to model the
steric and hydrophobic interaction between drugs and biological receptors. This
descriptor was also applied in a QSAR study in which the cumulative urinary excretion,
in humans, of unchanged drug expressed as a percentage of the administered dose was
regressed against this variable. The model was able to more accurately characterize the
phenomena utilizing the topographic descriptor when compared to previous studies
(Testa and Salvesen, 1980) which used the n-heptane-water partition coefficient as an

independent variable.

In addition to the plethora of alignment-independent topographic descriptors
mentioned before, there exists a group of descriptors which require some degree of
alignment between each molecule in a data set. One prominent example would be the
comparative molecular field analysis (CoMFA) technique (Cramer et al., 1988). This
work began with the realization that, at the molecular level, the interactions which
produce an observed biological effect are usually non-covalent; and molecular mechanics
force fields, which account for these non-covalent interactions as steric and electrostatic
forces, can account for a great variety of molecular properties. The CoMFA approach has

been outlined in Figure 2.4.
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Figure 2.4 - Outline of CoOMFA approach.

Steric and electrostatic interaction energies are calculated at each of the lattice points,

seen in Fig.(2.4), between the compound of interest and a “probe atom.” This probe atom

has the van der Waals properties of an sp’ carbon atom, which includes the volume and

summation of attractive/repulsive forces seen within this carbon, with a charge of +1.0.

This information is stored in a table, in which there are many more columns (data points)

than rows (compounds). Such a data format is well-suited to the application of the partial

least-squares (PLS) methodology for development of a quantitative structure activity

relationship. PLS regression is a statistical method that finds a linear regression model by

projecting the predicted variables and the observable variables to a new space. The most

important aspect of an alignment-dependent model is the actual molecular alignment
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process. Previous applications relied on a chemist to align the molecules, however, this
methodology has implemented a new “Field Fit” procedure in which the RMS difference
in the sum of steric and electrostatic interaction energies, averaged across all lattice
points, between one molecule and some template or set of molecules, is minimized with
respect to the six rigid-body degrees of freedom and/or any user-specified torsion angles.
This approach was tested (Cramer et al., 1988) on a data set of 21 various steroids, which
have experimentally determined affinities to corticosteroid- and testosterone-binding
globulins. Since the goal of the CoOMFA methodology is to generate models capable of
predicting the activities, or binding affinities, of compounds not in the training set, the
binding affinity of ten steroids (not in the original training set) was predicted by the
model developed. The predictive R? value for this example was 0.65, which was higher
than any model developed using the conventional QSAR methodology with various
descriptors. In this case, the descriptors are not as ‘clear cut’ as previous approaches but
they are initially represented as the energies of repulsion (steric and electrostatic)
between the test molecule and the probe atom, calculated at the various lattice points.
This information is further turned into latent variables, which captures the most important
aspects, within the lattice, accounting for variance in the predictor variables (i.e. affinities

in this case).

The Comparative Molecular Similarity Indices (CoMSIA) (Klebe et al., 1994)
approach is similar to CoMFA in that an atomic probing throughout a grid lattice is
utilized. However, COMSIA uses a different potential function, which is Gaussian-type,
to model the repulsion. The use of a Gaussian-type potential function instead of the

previously applied Lennard-Jones and Coulombic functions allows for more accurate
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information to be obtained from points within the molecular structure. This was one
drawback with the CoMFA approach because unusually large energy values were
obtained at these points, because of the nature of the potential function used, and cut-offs
had to be applied so the data wasn’t skewed. There are several other probe based
techniques available for characterizing a set of molecular structures with respect to a
predictor variable (typically a biological property) and these include Comparative
Molecular Moment Analysis (CoOMMA) (Silverman and Platt, 1996), VolSurf (Cruciani
et al., 2000), and Grid-Independent Descriptors (GRIND) (Pastor et al., 2000). Each
technique has its own strong points and limitations, but they all represent the realization
that shape based descriptors excel at describing interaction based properties (e.g. binding

affinity).

2.3 Molecular Modeling

Molecular modeling encompasses all of the techniques and tools useful for modeling the
motions and interaction of molecules. These techniques are used in the fields of
computational chemistry, drug design, computational biology, materials science, and now
many engineering fields for studying molecular systems ranging from single small
molecules in the gas phase to large biological molecules (e.g. receptor ligand complexes)
and material assemblies. There are many approaches available for the treatment of
molecular structures ranging from modeling atoms as the smallest individual unit (in the
molecular mechanics approach) to explicitly modeling the electrons in each atom (in the
quantum chemistry approach). The information gained from these techniques is useful in
the development of three-dimensional descriptors, which have applications in a wide

variety of structure-activity (property) correlations.
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2.3.1 Molecular Mechanics

Molecular mechanics refers to the use of classical mechanics in describing the motions of
atoms and molecules. These models treat atoms as point charges with the nucleus and
associated electrons combined as one. The energy associated with a molecular structure,
which is used to measure its likelihood of occurrence, is calculated through the means of
a force-field. Within this force-field, otherwise known as a potential function, varying
terms are used to summarize the potential energy associated with a collection of atoms.
Each atom in the molecule is represented by its coordinates, which can be internal or
external. External coordinate systems simply provide an x, y and z coordinate value for
each atom within a Cartesian coordinate system. Internal coordinates make use of the
inherent nature of these many body systems by referring to bond-lengths, bond angles,
and torsional angles. Force-fields are most often defined in terms of internal coordinates,
whereby energetic penalties are associated with the deviation of bonds and angles away
from their ‘preferred’ or ‘equilibrium’ values. In addition, the force field contains terms
that describe the non-bonded interactions between each atom. A simplified representation

of a typical force-field can be seen in Eq.(2.16).

ETotal = Ebonds + Eangle + Edihedral + Enon—bonded (2-16)

Enon—bonded = Eelectrostatic + Evan der Waals (2-17)

It can be seen that the total internal energy, as provided by the force field, consists of
terms related to bond lengths, angles, dihedral angles as well as non-bonded interaction.
These non-bonded interactions, as shown in Eq.(2.17), represent the summation of

electrostatic and van der Waals forces. Van der Waals forces are typically modeled by the
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Lennard-Jones potential, which adequately describes the forces of attraction and
repulsion felt between two atoms. Furthermore, the electrostatic forces are typically
modeled by Coulomb’s Law, which accounts for interactions between electrically
charged atoms. A more expanded form of a generalized force-field can be found in

Eq.(2.18).

E(rN) =

ki 2 ki Vi
Ebonds; (li - li,O) + Eanyles? (91' - 91’,0) + Ztorsions? (1 + (2_18)

— N yN r(Ziyiz _ (Ziye 4i4;
cos(nw =) + BiLy T (e [CH' - CHOT + 70

In Eq.(2.18) E stands for the potential energy of the system, consisting of a collection of
atoms and/or molecules, and " represents the coordinates of all N atoms within this
system. The first term represents the energy contribution from all bonded atoms in the
system, and these are modeled by a harmonic potential function. /iy stands for the
equilibrium bond length between any two atoms. The second term, which represents the
energy contribution from three consecutive atoms connected by two bonds, also has an
equilibrium angle which is dependent on the atoms involved. Any deviation from this
angle represents an increased contribution to the total energy of the system. The third
term accounts for energy contributed by all torsional angles within the system. Last but
not least, the fourth term summarizes all energy contributions from non-bonded atomic
interactions. The fourth term is a summation of the previously mentioned van der Waals

and electrostatic forces and accounts for ‘through space’ interactions.

A force-field is typically parameterized, which means that the variables in Eq.(2.18)

are calculated, with a specific set of structures and properties. The goal of this
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parameterization is to be able to most accurately reproduce the given properties within
the region of chemical space represented by chosen set of molecular structures. This
might be, for example, useful for accurately deciding the geometries of a series of
hydrocarbons or predicting the infra-red spectra for a set of ionic liquids. The point is that
the information within these parameterized force-fields is only useful for the task around
which it was designed. It is more common to develop a force-field for a set of molecules
than for a single molecule due to the considerable effort required. As such, the ability of a
single force-field to accurately model a larger group of structures is known as its
transferability. Often times, an increase in transferability leads to a decrease in accuracy.
Therein lies one of the fundamental trade-offs when developing a given force-field. Also,
the format of Eq.(2.18) is not the only way to represent this model and is by no means the
most accurate. These models are ‘empirical’ and as such the model format is developed

to have the most accurate results possible. (Leach, 2001)

2.3.2 Quantum Chemical Methods

Quantum mechanics (QM) attempts to describe molecules in terms of interactions
between nuclei and electrons. The molecular geometry is determined through identifying
a minimum energy arrangement of nuclei in a molecule or set of molecules. This process
has been made much more reasonable through a series of approximations upon the

original formulation based upon the Schrodinger equation shown in Eq.(2.19).

AY = E¥ (2.19)
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In Eq.(2.19), ¥ is a many-electron wavefunction and H is the Hamiltonian operator, also

known more simply as the Hamiltonian, which can also be represented as in Eq.(2.20).

electrons nuclei electrons nuclel
2 - b2 MA Tia
i A
(2.20)
electons nuclei

DI LD) Zzﬁf

In Eq.(2.20) Z is the nuclear charge, M, is the ratio of mass of nucleus 4 to the mass of an
electron, R4z 1s the distance between nuclei 4 and B, r;;1s the distance between electrons i
and j and ;4 is the distance between electron i and nucleus A. This equation cannot be
solved exactly for even a simple two-electron system such as a helium atom or a
hydrogen molecule and approximations must be introduced. One such short-cut is known
as the Born-Oppenheimer Approximation (Born and Huang, 1988), which assumes that
the motion of the electrons is much faster than that of the nuclei thus decoupling the two
and producing the “electronic” Schrodinger equation. Even with this simplification, the
electronic Schrodinger equation is still intractable and further approximations must be
made. The Hartree-Fock approximation (Slater, 1930) was made and insists that the
electrons move independently of each other. This results in the total wavefunction being
written in the form of a single determinant, also known as a Slater determinant. This also
leads to a set of coupled differential equations known as the Hartree-Fock equations, each
involving the coordinates of a single electron. At this point, the numerical solution to
these equations is possible, however further approximations have been introduced to

transform them into a set of algebraic equations. The linear combination of atomic
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orbitals (LCAO) (Clark and Koch, 1999) was the next step on the road to creating a more
tractable representation of a molecule through the quantum chemical formalism. The
Hartree-Fock and LCAO approximations, when applied to the electronic Schrodinger
equation, ultimately lead to the Roothaan-Hall equations (Roothaan, 1951). Methods
resulting from the solution of the Roothaan-Hall equations are termed Hartree-Fock
models as well as Ab Initio (“from the beginning”). These models allow for the
evaluation of first and second derivatives of energy which make both geometry

optimization and determination of vibrational frequencies, respectively, possible.

Often times, solutions generated through means of a Hartree-Fock model result in an
overestimation of electron-electron repulsion energies because pair-wise electron
interactions are not directly considered and they have a tendency to “get in each other’s
way.” This situation is corrected for through electron correlation, which accounts for
coupling of electron motions and leads to a lessening of the electron-electron repulsion
energy. There are many different techniques for this approach. One is known as a Density
Functional model (Becke, 1988) which introduces an approximate correlation term in an
explicit manner without being significantly more costly than Hartree-Fock models.
Configuration interaction models (Sherrill and Schaefer, 1999) and Moller-Plesset
models (Moller and Plesset, 1934) extend the flexibility of Hartree-Fock models by
mixing ground-state and excited-state wavefunction, however they are significantly more

costly than the Hartree-Fock models.

Semi-empirical models follow directly from the original Hartree-Fock models and
represent a simplification that allows the solution of much larger problems. The size of

the problem is greatly reduced by only considering valence electrons and ignoring the
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core electrons. The central approximation, which allows greatest reduction in overall
computation, insists that atomic orbital residing on different atomic centers do no overlap
and this is referred to as the Neglect of Diatomic Differential Overlap (NDDO)
approximation (Pople et al., 1967). Additional approximations are introduced to further
simplify calculations and provide a framework for the introduction of empirical
parameters. These parameters can be fitted to experimental data as well as ab initio
calculations. Some popular examples of semi-empirical models include Austin-Model 1

(AM1) (Dewar et al., 1985) and Paremeterized Model number 3 (PM3) (Stewart,1989).

2.3.3 Geometry Optimization

The way in which the potential energy of a molecule varies with its atomic coordinates is
known as the potential energy surface. Geometry optimization, also known as energy
minimization, encompasses various techniques useful for exploring this very complicated
potential energy surface (PES) in search of a minimum energy conformation, or
arrangement of atoms. For a system with N atoms, the energy is a function of the 3N-6
internal or 3N Cartesian coordinates which is a highly dimensional set of information.
There is particular interest in minimum points on the PES as they represent the most
stable conformations associated with a molecule. In most cases, there are many local
minima; however, there is only one global minimum. In addition to minima, another
point of interest on a PES is known as a saddle point, which corresponds to the highest
point on the pathway between two minima where the arrangement of atoms is known as a

transition structure. (Leach, 2001)

There are many methods useful for the exploration of a PES, which can be defined

in terms of internal or Cartesian coordinates. Minima are typically found using numerical
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methods since the application of analytical methods becomes too computationally
demanding for most systems. These techniques are applicable in both molecular and
quantum mechanical representations and can initially be differentiated based upon
whether or not derivatives of the energy with respect to coordinates are calculated.
Various techniques are adept at exploring the PES in their own unique way. For example,
some methods may only be able to move ‘downhill’, corresponding to a decrease in
energy, but others may move in either direction. One example of a non-derivative
minimization method is known as the simplex method (Nelder and Mead, 1965), which
moves around the PES in a fashion that has been likened to the motion of amoeba. This
method is most suitable for determination of an energy minimum when the starting point
configuration is very high in energy; however, it is rarely able to escape local minima
traps. The techniques in which derivatives are utilized can be immediately differentiated
based on whether or not they calculate the first or second order derivative of the PES.
First order minimization algorithms that are most frequently used in molecular modeling
are the method of steepest descents and the conjugate gradient method. The starting point
for most of these techniques is generated from user input, typically with the help of
experimental data. The steepest descent method (Curry, 1944) moves in the direction
parallel to the net force, which corresponds to walking straight downhill. In the conjugate
gradients method (Reeves and Reeves, 1964), the gradients at each point are orthogonal
but the directions are conjugate. Second order derivative methods utilize the second order
derivative, which provides information about the curvature of a function, in addition to
the first order derivative of the PES. The Newton-Raphson method (Roger, 1987) is the

simplest second-order method and is more suited towards smaller molecules.
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These are the techniques available for aid in the determination of conformational
minima. This information is useful in the development of three-dimensional descriptors
and structure-property (activity) relationships as well a plethora of other applications.
Conformational analysis is the study of the conformations of a molecule and their
influence on its properties. The various conformations that a molecule can obtain are
interconverted by rotation about a single bond, or a collection of bonds. A conformational
search has the objective of identifying the preferred conformations of a molecule, which
determine its behavior. There are many techniques for conducting these searches and they
can be categorized as systematic or stochastic. While the systematic approach is often
more likely to identify a complete collection of minima, a stochastic approach is more
easily applied when the PES is very complicated. The relative populations of a
molecule’s conformations can be estimated though statistical mechanics via the
Boltzmann distribution, which is also known as a Gibbs distribution (Gibbs, 1902).
However, it must be noted that many of these simulations, in their most basic form,
correspond to phenomena in the gas phase at relatively low temperatures and thus do not
account for many solvation or interaction effects. In addition, in the case of spatially
active molecules (e.g. ligand receptor complexes), the active conformation may not even
correspond to any of the identified local minima. Fortunately, there are many techniques
available for increasing the ‘realness’ of these simulations and they are becoming
increasingly applied in studies today as computational capabilities are rapidly improving.

(Leach, 2001)
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2.4 QSAR/QSPR

The purpose of a structure activity relationship (SAR) is to create a mapping between the
structural characteristics of a group of compounds and a desired activity. The same can
be said for structure property relationships (SPR’s), which aim to characterize the effect
of molecular structure on the bulk properties exhibited by the molecules under
consideration. Corwin Hansch can be considered the first pioneer in this field as his work
expanded the boundaries of how these relationships were formulated. Hansch et al. (1962)
initially suspected that the partition coefficient of various compounds, along with other
parameters, could be used to characterize their relative biological activity. Though, his
greatest contribution to the field follows in the persistent manner in which he applied this
concept to develop models in drastically new and more accurate ways than ever
attempted before. His realization that SAR’s should not be limited to certain independent
variables and fits, such as expanding from linear to parabolic models, paved the way for a
successful marriage between the development of these models with various
mathematical/statistical techniques (Hansch, 1969). This trend has continued into modern
day approaches such that developments from various fields, including pattern recognition,
machine learning, artificial intelligence and molecular modeling etc., have been borrowed
for the improvement of property/activity models. Another turning point in the
development of SAR’s was initiated by Kier et al. (1975) when the molecular
connectivity index was introduced and shown to have strong correlations to
physicochemical properties (Hall et al., 1975) as well as biological activities (Kier and

Murray, 1975). This ushered in a genre of many new molecular descriptors and paved the
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way for a plethora of techniques aimed at differentiating molecular structures through

mathematical invariants in addition the previously used physico-chemical properties.

Regardless of the sophistication of steps taken to develop and utilize these models,
the process can be broken into three distinct phases: 1) calculating molecular descriptors
for structures in the training set 2) choosing the most informative molecular descriptors
and 3) utilizing the chosen descriptors as independent variables to create a mapping into

property/activity space. This approach is visualized in Fig. (2.5) (Dudek et al., 2006).

Figure 2.5 - Visualization of SAR approach.

2.4.1 Variable Selection Techniques

The automated selection of descriptor variables for use in a property model can
ultimately fall into two categories (Guyon and Elisseeff, 2003). One technique, the
wrapper approach, involves the identification of an optimal subset of descriptors based on
the creation and ranking of a series of models. The other, known as filtering, does not
construct models in the selection process as features are evaluated using other criteria.
This is a necessary step in the development of most structure activity relationships due to

the large number of descriptors available for correlation with the result of interest.
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The feature reduction technique applied by Merkwirth et al. (2004) utilizes the
principle of clustering, whereby variables are pooled into clusters based on similarity.
They begin by initially removing all constant and low-entropy variables, and variables
are then divided into clusters in which the absolute value of the pairwise correlation
coefficients exceeds 0.98. The next step is to discard all variables, except a randomly
chosen one, from each of the developed clusters. This approach is beneficial when the
number of input variables is large compared to the number of observations. In addition,
many machine learning techniques have a larger time complexity than linear in the
number of observations and/or input variables which prohibits the consideration of large
data sets. The next step is a forward stagewise selection procedure, which is a greedy-
type algorithm that iteratively constructs a subset of relevant variables. The approach
begins by selection of a random variable from the initially reduced set. Next, the leave-
one-out (LOO) error for all combinations of one of the remaining variables with the
variables in the current subset is calculated. The variable which improves the LOO error
the most is selected and the process is repeated until either a predefined number of
variables have been selected or there is no further improvement in the calculated error.

(Merkwirth, 2004)

In a study by Venkatraman et al. (2004), the use of information-theoretic approaches
based on the concept of mutual information gain has been applied to identify an optimal
subset of descriptors for further correlation with a given biological activity. Since mutual
information is a nonlinear statistical criterion, it is able to measure the interdependence of
random variables without relying on established assumptions about their underlying

relationships. This approach relies on two heuristic criteria during feature selection,
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namely: (1) Feature should be comparatively informative about the output and (2) Feature
should not be strongly dependent on other features selected. The measure of mutual
information between two random variables A and B represents the amount of information
about A contained in B and vice versa. When the random variables are independent of
each other, the mutual information, defined in Eq.(2.21), is zero. The marginal

probabilities for the two features are represented by P(a) and P(b),

P(a, b)

I(A,B) = ZP(a b)logp( YP(b) (2.21)

while P(a,b) gives the joint probability. Mutual information measures the distance
between the joint probability and the joint probability under the assumption of
independence, P(a)P(b). This technique is most suitable to problems where both
descriptors and activities are categorical. In such a case where the continuous numerical
variables are utilized, discretization schemes must be applied to approximate the

variables.

The above techniques are examples of filtering methods for variable selection. This
approach is quite useful for the selection of variables with decreased interdependence (i.e.
colinearity) while maintaining a strong correlation with the property or activity of interest.
However, a more rigorous approach for model development, known as the wrapper
method, exists. These descriptor selection techniques operate in conjunction with a
mapping algorithm. One prominent technique, known as Genetic Algorithm (Siedlecki
and Sklansky, 1988), stands out for this approach and is an efficient method for sampling

large descriptor spaces. Genetic algorithm mimics the process of natural evolution
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whereby a population is guided towards a higher degree of fitness, as often measured by
the error of the model generated, through operations of mutation and crossover. Each
member of the population is represented by a chromosome, within which each position
usually corresponds to the absence or presence of a specific variable through the binary
notation. Individual chromosomes with an increased measure of fitness, typically
measured by the prediction capabilities of the model resulting from the descriptors
represented within the chromosome, are selected for the conventional operations of
crossover and mutation. Mutation typically involved the change of binary variables
within the chromosome to either a 0 or 1, the opposite of its initial state; and crossover
involves the selection of two chromosomes which are cut and recombined at one (single-
point crossover) or more points. However, the success of a GA relies on the careful
tuning of several probability parameters such that the solution space can be effectively
explored and early convergence to a homogenous population, occupying a local

minimum, is not met.

The genetic algorithm falls into a category known as ‘stochastic programming’, in
which several successful techniques have been developed for the solution of problems
with large, multivariate solution spaces. Another similar technique for variable selection
is known as simulated annealing (SA) (Kirkpatrick et al., 1983), which is also a
stochastic technique, has had great success in QSAR development (Sutter et al., 1995;
Itskowitz and Tropsha, 2005). SA was inspired by the physical process of annealing in
metallurgy, which involves the heating and cooling of a material to increase the size of its
crystals and reduce their defects. The rate at which a material is cooled will affect the

decrease in free energy associated with the underlying crystals, which also affects their
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size and purity. The effect of slow cooling within the SA algorithm allows for a slow
decrease in the probability of accepting worse solutions as it explores the solution space.
With such an approach, the algorithm is initially allowed to move more freely around the
solution space to avoid being trapped in local minima. As the algorithm proceeds it has
an increased ‘“strictness” for accepting new solutions. Just as in the genetic algorithm
approach, SA aims to minimize the error of a resultant model by iteratively changing the
subset of selected descriptors. In this case, some percentage of features (e.g. descriptors)
is exchanged for others and this new subset is tested for its ability to model the desired
output. The decision of whether or not to utilize the newly chosen set of descriptors
depends on a probability function based on the Boltzmann distribution. The power of the
SA method stems from altering the temperature term in the Boltzmann distribution. As
the algorithm proceeds, the temperature is decreased so that the acceptance of worse
solutions becomes less likely. This often results in the identification very high quality

solutions to the problem at hand.

The two previously mentioned approaches of GA and SA were stochastic in nature.
In contrast, there are several deterministic approaches which more thoroughly explore the
descriptor space under consideration. Forward Feature Selection (Kittler, 1978) is one
such technique and begins with identification of a single feature that leads to the best
prediction. Features are subsequently added to the current subset and the errors associated
with each model are quantified. The feature which results in the lowest error for the
resultant model is selected to be included in the current subset and the process ends when
a specified number of features have been identified. Sequential Backward Feature

Elimination (Kittler, 1978) could be considered the inverse of this approach. In this
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approach, the full set of features is used as a starting point and all subsets of features
resulting from removal of a single feature are analyzed for error. The feature that leads to
a model with the highest error is removed from the current subset, which is initially large
and decreases in size as the algorithm proceeds. The algorithm eventually ends when the
specified number of features has been eliminated. This approach, while much more
computationally vigorous, often leads to better models than its counterpart, Forward
Feature Selection.

2.4.2 Mapping Descriptors into Attribute Space

Once a set of descriptors has been decided upon, the next step is to create a mapping
between the activity/property of interest and the descriptor values. The variety of
mapping methods available can be initially categorized based on whether a linear or non-
linear relationship is created. Another distinction can be made based upon the nature of
the property/activity; when this value is a continuous variable, a regression must be done,
whereas when the result is a category (e.g. active or inactive) this is known as a
classification problem. In a regression, the dependent variable is modeled as a function of
the molecular descriptors. In a classification scheme, the resulting model is defined by a

decision boundary, which separates the various classes within the descriptor space.

Linear models are usually sufficient for creating activity relationships for a dataset
of similar compounds. They have the benefit of being much easier to develop and
interpret when compared to other methods. The most common technique for the creation
of a linear property model has been Multiple Linear Regression (MLR). This approach
models the predicted response, Y, by means of a set of descriptor variables, X, through

the relationship shown in Eq.(2.22).
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Yuxr = Xmxk * Brxr + EmxL (2.22)

where, M = the number of rows of sample readings of observations
L = the number of columns of measured response properties
K = the number of columns of descriptor variables
[ = the regression coefficients or sensitivities matrix
E = the error or residual matrix

There have been three cases, as described by Geladi and Kowalski (1986), for the

solution of 8 in Eq.(2.19):
1. K>M: There is no unique solution for  as infinite numbers of solutions exist,
unless on deletes predictor variables.
2. K=M: There is one unique solution provided that X has full rank.
E=Y-X =0
3. K<M: There is no exact solution for £, however, a solution can be achieved by

minimizing the residual in the following equation:

E=Y-Xp
The most popular technique, known as the ordinary least-square (OLS) method,
identifies the regression coefficients by maximizing the model sum of squares and

minimizing the residual sum of squares. Using this approach, B can be estimated by:

f=&T-xX)"t-XT-Y (2.23)
where the superscript 7 symbolizes the transpose of a matrix.

When the number of X-variables, or descriptors, is large compared to the number of

observations, this can lead to a singular (X"X) matrix whose inverse does not exist. This
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happens when the number of unknown variables is greater than the number of equations,
leading to an underdetermined equation system which has an infinite number of solutions
for . One solution to this problem would be to apply various variable selection
techniques. In addition, multivariate projection methods like PCA (principal component

analysis) and PLS (partial least squares) can also be utilized to overcome such a difficulty.

PLS and PCA are methods suitable for overcoming problems in MLR associated
with multicollinear or over-abundant descriptors. These techniques compress a large
quantity of data and extract the information by projecting them into a low-dimensional
subspace that summarizes the most relevant information (Wold et al., 1996; MacGregor
et al., 1995). When the data set used is highly dimensional and very noisy with a small
number of samples, PCA is an appropriate method for dimensionality reduction after
which the regression model can be developed with the new latent variables through
principal component regression (PCR). Prior to PCA, the data often needs to be pre-
treated through a variety of techniques such that it becomes more suitable for further
analysis. It is common practice to initially mean-center and scale the property variables,

which is visually represented in Figure 2.6 (Eriksson et al., 2006).
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Figure 2.6 - Mean centering and scaling in PCA.

This technique ensures that no variable is allowed to dominate, in its interpreted
importance, over another because of an increased length (difference in highest and lowest
values) or mean value. Once the data has been prepared, or pre-treated, for further
analysis, the PCA process then calculates a set of principal components (PCs) by
transforming the original, correlated, variables into a new set of uncorrelated ones. The
first PC is the linear combination of the standardized original variables that have the
greatest possible variance and each subsequent PC is a linear combination of the
standardized original variables that have the greatest possible variance, while being
orthogonal to and having zero correlation with all previously defined PC’s. This
orthogonality constraint ensures that each variance-based axis is independent. Typically,
the first three PCs capture most of the variance seen in the original data set (around 80-

90%). Figure 2.7 helps visualize the dimensionality reduction achieved through PCA.
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Figure 2.7 - Dimensionality reduction achieved with PCA.

The loading matrix contains the coefficients in the linear combination of the original

variables defining the PCs. This can be mathematically represented as shown in Eq.(2.24).

K
XMxK:t1'P1T+t2'p2T+"'K:Zti'PiT:TMxK'PﬂxK 224)
i=1 2.24

Where, T = the score matrix with mutually orthonormal columns

P = the loading matrix with mutually orthonormal columns
PLS is a regression extension of principal component analysis and it generalizes and
combines different features from both PCA and multiple linear regressions (MLR). In
addition to relating the two data matrices, of descriptors and response variables, PLS also
models the common structure between them which often provides better results than

those obtained with the traditional multiple regression approach. Figure 8 provides a
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visualization of the PLS process whereby two “PCA-like” models are created for both the
descriptor and response information which are then connected through an inner

relationship to provide the PLS model.

Attribute & Physical-Chemical PLS Regression Pl'g}pgrl}-‘ Sm_u:ture
Property Variables (¥) Model Descriptive Variables ()

Figure 2.8 - PLS regression visualization.

The score plot, which is a two-dimensional representation of the data, plots the second
principal component score against the first principal component score and can be used to
identify clusters and unusual observations in the dataset. The score plot in Figure 2.8
shows a linear relationship between predictors (x) and responses ()), however, there may
be non-linearities. This plot can also be used to rank the observations according to each
of the principal component scores. The dashed-dot line seen in the outer pictures of

Figure 8 represents the projection if PCA were performed on X and Y individually.

Both techniques of PCR and PLS aim to avoid collinearity problems which would
allow one to work with a number of variables that is greater than the number of samples.
A comparison of the two techniques (Wentzell and Vega Montoto, 2003) has revealed

similar prediction capabilities, however, PCR tends to yield higher precision (degree of
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closeness of the measured values to each other) while PLS yields higher accuracy (degree

of closeness of a measured value to the actual value).

Support vector machines (SVM’s) (Cortes and Vladimir, 1995) are one type of
supervised learning model with an associated learning algorithm that can analyze data
and recognize patterns. This technique can be used in both classification and regression
analysis, both linear and nonlinear, and as such is very flexible. An SVM constructs a
hyperplane, or set of hyperplanes, in a highly dimensional space such that the distance to
the nearest training data point is maximized. Often times, the data set might not be
linearly separable and the option of mapping the original finite-dimensional space into a
much higher-dimensional space is made possible through the use of kernel functions.
These functions lower the computational load associated with moving between the two
mapped spaces by ensuring that dot products are easily computed in terms of the original
variable space. Also, slack variables are introduced and they are subject to optimization
to allow for a better fit than linear approaches in many cases. Even though erroneous
classification cannot be avoided, it is penalized and the misclassified compounds become
support vectors themselves. By training a linear classifier in kernel space a classifier,
which is nonlinear with respect to descriptor space, is obtained. SVM methods have also
been extended to handle regression type problems (Smola and Scholkopf, 2004).
Contrary to typical regression methods, however, the predicted values are penalized only
if their absolute error exceeds a certain user-specified threshold. Thus, the regression

model developed by these means is not optimal in terms of the least-square error.

Decision trees (Quinlan, 1986), another type of non-linear mapping technique

available for the development of structure-activity (property) relationships, differ from
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most algorithms by their connection to logic-based and expert systems. This model
consists of a tree-like structure containing the conventional nodes and links. Nodes form
a hierarchical pattern, with several child nodes stemming from a common parent node. A
node with no children is referred to as a leaf. Each node typically refers to a specific
descriptor and a test is made such that the results of the test direct the algorithm to a
specific child node. This continues towards the leaves of the tree and the final decision is
based on the activity class associated with that leaf. The diagram in Figure 2.9 represents
the classification of a compound, based on three descriptors, as being either active or

inactive.

Yes @
Yes N
(Active)  (nactive)  (Inactive) <

( Active ) (inactive)

Figure 2.9 - Classification through the use of a decision tree.

Training a decision tree model begins with choosing the test for the root node. This
test is chosen on the basis of its ability to categorize compounds most effectively into
their activity classes. If the initial root node test is able to correctly classify all
compounds then the tree is finalized, however, this is most often not the case. As such,

several more tests are made, spanning out from the original node, in an iterative manner
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creating several more nodes. Each node is considered for classification as a leaf when the
majority (ideally all) of compounds passing through that testing route is correctly
classified. One important decision that needs to be made in the development of these
trees is which test should be introduced at which point. This can be restated as ‘which
descriptor would provide the best discrimination criteria at this point’, and in this case
descriptor ranking is typically applied. Once this descriptor, or test, has been decided
upon, it is next necessary to introduce a decision rule that separates the compounds into
various activity classes. Decision tree methods typically lead to suboptimal error rates
when compared to other non-linear methods, most likely due to the reliance on a single
feature in each node. While the conventional application of decision trees is for
classification type problems, they can also handle regression problems (Breiman et al.,
1984) by associating each leaf with a numerical value instead of the categorical class.
This methodology has been tested in a study (Svetnik et al., 2005) on a wide range of
targets, including COX-2 inhibition, blood-brain barrier permeability, CDK-2 antagonist
activity, dopamine binding affinity, logD and toxicity. While they were outperformed by
support vector machines and ensembles of decision trees, they did often perform better
than PLS of naive bayes classifier, which is a simple probabilistic classifier based on
application of Bayes’ theorem with strong independence assumptions between the

features.

2.5 Fragment Based Property Models

In reference to Figure 2.10, it can be see that there is a link between property space and
chemical space, seen on the left, through the use of molecular descriptors. It is of special

interest when the intermediate variables that link these two spaces have some structural
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reference. This significantly aids in the identification of solutions during the application
of inverse property prediction, which is one technique in the field of molecular design.
This technique will be covered in detail in section 2.6, however, its consideration here is

useful for the introduction of fragment based property models.

Property
Space

Molecular
Descriptors

0D/1D &2 3D 4D
Simple global Topological Topographic Conformational
descriptors Descriptors Descriptors descriptors

e.g. MW, #C’s e.g. x index e.g. Wy, (multiple conf’s)

Figure 2.10 - Overview of inverse property prediction.

Often times, the molecular design problem is solved in descriptor space. This means that
the resulting solutions will be in terms of these descriptors. Since the ultimate goal is to
generate a structure, or set of structures, with an increased likelihood of having the
desired attributes, this means that these solutions will have to be translated into chemical
space. Therein lies one of the more difficult sub-problems associated with molecular
design. However, when these molecular descriptors have a structural reference this aids

in the generation of these solutions. This allows one to assemble the possible molecular
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structures, subject to structural constraints, from these fragments as if they were building
blocks. Several techniques taking advantage of this concept will be discussed in the

sections below.

2.5.1 Group Contribution Method

One of the most widely used property prediction techniques, which has had widespread
success in modeling and predicting a plethora of properties, is known as the group
contribution method (Joback and Reid, 1983; Constantinou and Gani, 1994). This
technique is based on the concept that the summation of contributions from various
functional groups, or structural fragments, can account for the property of a molecule.
This allows one to develop and train a model on an existing data set, which can then be
used to predict the properties of molecules not in the original training set. This is a very
attractive idea since it is unlikely that we will ever synthesize and characterize even a
fraction of the accessible chemical space in the near future. The simplest form of group
contribution method is the determination of a component property by simply summing up

the group contributions as in the example for boiling point shown in Eq.(2.25).

T, = 198.2 + Z G, (2.25)

Eq.(2.25) takes on a linear form where G, represents the summation of contributions from
each group i. These contributions can be any positive or negative real number. This
approach works well in a limited range of components but, unfortunately, leads to large
errors when applied outside its applicability domain. The smallest structural fragment
represented within the group contribution methodology is known as a first-order group.

In addition to containing first-order groups, a group contribution property model can also
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contain higher order contributions which can improve the overall accuracy of the model.
Second order groups contain collections of first order groups and capture the interactions
between those groups. Examples of first and second order groups are shown for several

molecules in Figure 2.11.

Second-order: CH(CH,)CH(CH,)

(second-order)
[overlapping]

Second-order: (CH,),

.
@ Second?der: CH,.-CH,

,2.4-trimethylpentane
' n-propylcyclohexane

Figure 2.11 — Examples of first and second order groups

Eq.(2.26) represents a generalized group contribution model which accounts for higher

order groups.

)= ) NiCi+ ) M;D;+ ) OyFy (226)
i j k

where, C; = the contribution for first-order group i
N; = the number of occurrences of first-order group i

D; = the contribution from second-order group j
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M; = the number of occurrences of second-order group j
Ej = the contribution from third-order group &

Oy = the number of occurrences of third-order group k&

In the above formulation, second order groups can be estimated from first order
groups and correct for the interactions between first order groups. Also, third order
groups can be derived in a similar manner and will help to correct for poly-functional
compounds with more than four carbon atoms in the main chain. In addition to
introducing higher order groups for improved accuracy, there are also group interaction
parameters available. This technique is useful when a simple additive method is not
sufficient to capture the property of interest; however, it requires many more model
parameters to be enumerated in exchange for this accuracy. One example of such an
approach is known as the UNIFAC (UNIQUAC Functional-group Activity Coefficients)

method, which estimates activity coefficients (Fredenslund et al., 1975).

There are specific techniques available for the enumeration of structures matching a
set of structural fragments. One such approach by Constantinou et al. (1996) treats the
initial set of first order groups as a vector in what could be considered a ‘fragment-space’.
The feasibility of this collection of fragments towards generating a complete molecular
structure is tested against graph-theoretical rules based on chemistry concepts. If
determined to be a feasible structure, the vector refers to at least one structural isomer and
there are often several which need to be enumerated. This concept is known as

degeneracy, and while it is usually undesirable in molecular descriptors it is often quite
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necessary to generate a model with some degree of conciseness and transferability. This
problem becomes much more difficult with the consideration of higher order groups.
2.5.2 Pharmacophore Models

A pharmacophore model can be considered a fragment based model as is often specifies a
set of structural features necessary for a certain biological activity. The [UPAC definition
of a pharmacophore is “an ensemble of steric and electronic features that is necessary to
ensure the optimal supramolecular interactions with a specific biological target and to
trigger (or block) its biological response (Wermuth et al., 1998).” These models provide
information on how a set of structurally diverse ligands can ultimately have the same
effect on a given receptor. Additionally, pharmacophore models are extremely useful in
the identification of novel compounds with an increased likelihood of exhibiting the
desired binding characteristics. Some typical pharmacophore features include
hydrophobic centroids, aromatic rings, hydrogen bond acceptors or donors, cations and
anions. These points may be located on the ligand itself or sometimes projected to points
around the ligand. The steps necessary to develop a pharmacophore, such as the one
shown in Figure 2.12 are: 1) Select a set of molecules with varying bioactivity; 2)
Perform a conformational analysis and identify the most likely bioactive conformations;
3) Superimpose the chosen conformers; 4) Develop and abstract representation of the
most common features identifying during the superimpose step; 5) Validate the chosen
model on a chosen set of molecules with known bioactivity. Often times a three-
dimensional model can be developed by calculating the optimal distances between each

of the identified pharmacophoric features as shown in Figure 2.12(A). Figure 2.12(B)
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represents an overlay of a given pharmacophore model with a structural representation of

each point of interest shown in an example molecule.

Figure 2.12 - Examples of a pharmacophore model.

2.5.3 Signature Descriptor
The signature descriptor, originally proposed by Visco et al. (2002, 2003) is a fragment

based descriptor which encodes the environment around a central atom up to a pre-
defined height, /. In the context of chemical graph theory (Trinajstic, 1983), with atoms
being nodes and bonds being edges, an atomic signature descriptor can be seen as a

subgraph of its complete parent graph. An example of this is shown below in Figure 2.13.
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Figure 2.13 - Example of atomic signature descriptors of varying height.

In Figure 2.13, the height two atomic signature of the carbon atom encircled on the
left is represented by the graph shown in the middle. In addition, the string based
representation of this atomic signature is shown below its respective graph. The height
one atomic signature for this carbon atom is seen on the far right, with its atomic
signature shown below as well. Each atom within a molecule would have its own atomic
signature and the summation of these atomic signatures would represent the molecular
signature. This is mathematically represented in Eq.(2.27) where "6¢("X;) is a base vector,
"a;is the number of atoms having the signature of each fragment represented within the

base vector, hKG is the number of base vectors and ho-G represents the molecular signature.

hi g
'a(@) = )t = ) haiop("X) (2.27)
X€EVg i=1

The systematic procedure for the construction of an atomic signature was developed by

Visco et al. (2002) and is explained below:

1. For the atom x for which the atomic graph is constructed, all the atoms and bonds

will be shown up to the height h in the subgraph, "G(x).
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2. All the atoms (vertices) in the graph are labeled in a canonical order starting with
atom x.

3. Construct the tree that spans over all edges in the subgraph. The root of the tree is
the atom x itself. The tree is constructed one layer at a time up to level 4. It is
possible to have one vertex more than once in the graph. However, no edge
should be repeated in the same graph.

4. After constructing the signature tree, all the canonical labels that appear only once
in the graph are to be removed and the repeating labels are to be re-labeled in the
order that they appear in the graph.

5. The signature can be written by reading the tree from the atom x. The vertex color
must be enclosed in a parenthesis in each level. For a vertex that appears more

than once, the vertex labels should also be included in the parenthesis.

One example for the construction of atomic signatures is shown in Figure 2.13. Here
the stepwise procedure for obtaining the atomic signature of atom x up to height three in
ethyl benzene is illustrated. In the first step, all the atoms at distance 3 from atom x are
extracted. In the second step, the subgraph is canonized with atom x having label 1. In the
third step, a tree spanning all the edges is constructed up to height 3 from the subgraph.
In the fourth step, the labels that appear only once in the tree are removed and the rest of
the labels are renumbered in the order of their appearance. In the final step, the signature
is generated in the required orders from the tree by starting from atom x

(Chemmangattuvalappil, 2008).
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Figure 2.14 - Development of atomic signature up to height 3.

An example for the determination of a molecular signature is illustrated in Figure

2.15 for heights ranging from zero to three. In this case the vertex elements are colored
using a Dreiding force field (Mayo et al., 1990). Dreiding is a generic force field with
parameters restricted to simple rules which enable the prediction of novel combinations
of atoms. Within this force field, atoms are represented by five characters, the first two of
which stand for the atom type. The third character represents hybridization, the fourth
represents the number of implicit hydrogen atoms and the fifth character represents the

alternate characteristics of the atom such as formal oxidation state. After coloring the

atoms in the graph, a tree spanning all edges is generated.
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Figure 2.15 - Example of height three molecular signature enumeration.

The signature descriptor has proven its usefulness in the development of property
models for a variety of properties and activities. The first test conducted was based on the
utilization two distinct data sets (Faulon, 2003). One set came from a biological source
and represented measurements of activity for 121 compounds used as HIV-1 inhibitors.
The second, much larger set, was for the octanol/water partition coefficient, of 12,865
compounds. These two studies utilized height-0, height-1 and height-2 signatures in an

attempt to create a model with characteristics comparable to those made using
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conventional descriptors, which were available within the Molconn-Z software (Hall et
al., 1991). All models were developed to follow a linear form, and parametrization was
performed using the forward-stepping regression technique of multiple linear regression.
The 121 HIV-1 protease inhibitors had experimental activity reported in units of pIC50,
representing the negative logarithm half maximal inhibitory concentration, which
spanned 7 orders of magnitude. Nine of these compounds were chosen as test set
compounds and were not utilized in the creation of any models, but were used to evaluate
the predictive ability of each model. For this case, the model developed using height-2
signatures was best able to capture the phenomena with a training set R* of 1.0. For the
log(P), which represents the logarithm of the experimentally measured octanol/water
partition coefficient, model development, 123 of the original data set were left of for
model validation and the rest were utilized for model training. In this study, the signature
descriptor of height-1 was able to outperform all other property models based on other

descriptors.

In addition to being useful for developing accurate and predictive property models,
the signature descriptor is also ideal for application in the inverse property model
approach to molecular design. The ability of the signature descriptor to define most any
topological index has been shown (Faulon, 2003). In addition, the signature descriptor
has been proven to have low degeneracy when enumerating solutions. The combination
of these features with signature’s link to structural fragments is what makes it ideal for
molecular design applications. Specific methodologies for its use in molecular design

studies will be covered in detail in section 2.6.
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2.6 Solution Techniques in CAMD

Over the decades there have been many methodologies developed for the solution of
molecular design problems. The particular technique applied is strongly dependent on the
nature of information available for the problem at hand. For instance, does one of the
property models utilized have a non-linear relationship or perhaps it is in the form of a
neural network. Often times, an increase in model complexity will bring about an
increase in computational complexity which is not commensurate to the increase in
accuracy or differentiation of potential solutions. In any manner, techniques have been
developed that are capable of handling many of the problems encountered within this
field. These approaches have been broadly categorized as database searches, generate-
and-test and programming/optimization. Each approach has its own strengths and
weaknesses, some of which will be covered in the following sections.

2.6.1 Database Search

The most straightforward technique for computer-aided molecular design is known as a
database search. This approach, which is usually quite fast, consists of testing each
molecule within a database against certain criteria while identifying structures with the
desired characteristics. These criteria can be a wide range of things such as adherence to
given property models with varying descriptors or it could be a molecular similarity
search, which could also be based on descriptors or molecular fragments. The main
limitation to this approach is that it cannot consider molecular which are not available
within the database; however, it does not require the often computationally intensive step

of structure generation and as such is usually much faster.
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Similarity searching has been one of the most widely applied techniques for
identifying potential drug candidates with a database of existing molecules. This
approach typically describes the molecules encountered with descriptors which capture
the underlying nature of the structure. The molecules considered are typically compared
to one structure with a known, usually very high, activity such that those with a high
measure of similarity are hoped to also have a desirable activity. One such study by Chen
and Reynolds (2002) assesses the effectiveness of utilizing various sets of 2D linear
fragment descriptors along with varying measures of comparison. They focused their
methods on two large public databases, one of which was NCI anti-AIDS (NCI
Developmental Therapeutics Program) and the other MDDR (MDL Information Systems
Inc). The underlying assumption with these techniques, and most of molecular design in
general, is known as the similar property principle, which states that similar chemical
structures should lead to similar physicochemical properties and biological activities. The
descriptors used as a measure of similarity, and the technique used for comparison of
these descriptors, are what make these approaches so different. Four sets of 2D linear
fragment descriptors, based on the original definition of atom pairs and atom sequences,
were used in this study as were three forms of the Tanimoto coefficient and the Euclidean
distance. The Tanimoto coefficient is a distance measure, or more conveniently a
measure of similarity, between two molecules structures. When each molecular structure
is represented as a vector of k dimensions, with each dimension representing the
occurrence of a particular molecular feature, the Tanimoto coefficient between two points,
a and b, is shown in Eq.(2.28). The influence of these structural descriptors and similarity

coefficients on the effectiveness of retrieving active structural analogues was
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systematically studied. The Euclidean distance is another type of measure which is
similar to the Tanimoto coefficient and its calculation, between vectors a and b, is shown

in Eq.(2.29), where n represents the dimensionality of each vector.

I.€= a; X b;
— j{l L (2.28)
jo1 4% + X5 b — X, a; X b
n
d(a,b) = d(b,a) = Z (a; — by)? (2.29)
i=1

Of the four structural descriptors utilized in this study, the first is known as MACCS
keys (Molecular Design Ltd.), which are a set of questions about a chemical structure.
These questions determine the nature of the underlying structure and produce a list of
binary values by which that structure is described. The second is represented by Daylight
fingerprints (Daylight Chemical Information, Inc.), which enumerate all linear chemical
substructures of a predefined range of lengths. These fragments are typically
hashed/folded into a bit string with the length fixed to save memory space. This, however,
often leads to a loss of certain structural information and introduces additional noise into
subsequent calculations. The third, exemplified by the work of Carhart et al. (1985) is
very similar to the Daylight fingerprints however no information is compressed. The
similarity coefficients, which would derived as a function of the above mentioned

descriptors for pairs of atoms, can be divided into two major classes: association and
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distance coefficients. The main difference between these two is that distance coefficients
consider the absence of certain structural features as evidence of similarity whereas
association coefficients do not. The various forms of coefficients utilized in this study are

summarized in Table 2.1.

Table 2.1 - Definitions of Tanimoto Coefficient and Euclidean Distance.

Tanimoto coefficient Euclidean distance
Binary form Sup = _ ¢ Dyp =[a+b—2c]"?
B a+b—c
Algebraic form s i1 MaiNp,i UL 1z
AB = Tm m m — _ 2
iz Mai® + Xt npi® — L2 nainp, Dap = [Z(nA'i n5,0)°]
i=1
Set-theoretic form P Xty min(ngng;) -
AB = Tm m m Dyp = Ny —Np;
i=1Mai + Xt Mg — X2y min(ny ing,;) 4B Z' a0~ T
i=1

In Table 2.1, a represents the number of unique fragments in compound A, b
represents the number of unique fragments in compound B and c represents the number
of unique fragments shared by both compounds A and B. Also, n4; is the number of

fragment 7 in compound A, and np; is the number of fragment i in compound B.

It was found that the Tanimoto coefficient gave considerably better results than the
Euclidean distance for both data sets. This is interesting because it reveals that the
presence of certain structural fragments is a better measure of similarity than the
combined consideration of presence and absence of these same features. The major
difference in these two methods lies in their ability to distinguish moderately similar
structures. It was also found that the binary form of storing the structural information did

not account for much memory saving when compared to the increase in discrimination

73




power seen in including information about the number of each fragment, as done in a set-
theoretic approach. In terms of the optimal structural descriptor, it was found that a
balance between “fuzzy” and “specific” descriptor types allows for an optimal
identification of true hits. They noted that descriptors that were too “fuzzy”, or non-
specific, tended to produce more false positives and descriptors that were too specific

tended to identify more false negatives.

The previous technique was a good introduction to the potential of database
searching using 2D descriptors. However, in the domain of drug design, another very
important database searching approach is based on the consideration of 3D similarity.
This allows for the identification of molecules that match a hypothesis of 3D
requirements for bioactivity. The interest in such an approach was fueled by the
availability of tools for molecular modeling and pharmacophore mapping and by the
increasing numbers of 3D protein structures as targets for new drugs (Martin, 1992).
There are several types of 3D structure searching and they can be differentiated by the
source of 3D information used for searching, how this information is described, how the
3D requirements are established as well as the results of the search. The source of 3D
information can be developed as a pharmacophore from several active molecules, a
proposed bioactive conformation of a single ligand, a low-energy conformation of a
ligand with desired affinity, or the actual 3D structure of the protein or DNA binding site.
This information is usually defined by geometric constraints such as superposition rules
of points or spheres, locations of specific functional groups, potential energies of bound
ligands and CoMFA coefficients. Pepperrell et al. (1990) have explored the ability of

different definition of 3D similarity to detect molecules which might have an activity
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similar to the input molecule. They found that a method called atom mapping was the
most effective. This method identifies atoms within a database molecule that are identical
in atomic number and most similar in the intra-atomic distance profile to the atoms in the
query molecule selected. They actually compared the molecules identified through a 3D
similarity search with those found in a 2D similarity search and this information is shown
in Figure 2.16. In this Figure, the results for a 3D similarity search, on molecule 30, are

shown as 31-35, whereas the results from a 2D similarity search are shown as 36-38.

Figure 2.16 - Results of 2D and 3D similarity searches.

2.6.2 Generate and Test

The generate and test approach to molecular design relies on the ability of the algorithm
to generate molecular structures for consideration as candidate molecules. This is often
done by following a set of rules and combinatorially considering sets of fragments
developed from a fragment library. This library can be as variant or focused as desired,

however the size of said library will have a huge effect on the computational demand of
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generating structures. A situation known as ‘combinatorial explosion’ is well known in
combinatorial optimization and refers to the overwhelming consideration of a large
number of potential solutions based on a large initial fragment library. In addition, there
are deterministic and stochastic techniques for the creation of structures from fragments.
Stochastic techniques provide one solution to the combinatorial explosion problem that is
often encountered. One interesting observation is that the size of molecules in the
fragment library has an effect on the ultimate number of unique structural isomers that
are able to be created. This has been seen in the systematic development of structures
from signature descriptor fragments. The smaller size fragments, approaching the limit of
single atoms, ultimately create more structures, while larger fragments produce fewer
structures in a deterministic manner. This approach allows for the consideration novel
structures which may not have even been synthesized yet and is attractive because this
structure generation can be controlled by the presence of absence of various fragments

within the initial fragment library.

One example of the implementation of a generate and test CAMD approach, among
many, can be found in Harper et al. (1999). This approach is unique in that it combines
the conventional, and very successful, design of molecules based on the group
contribution methodology with molecular modeling. Their approach, which aims at
avoiding combinatorial explosion, employs a structured generate and test approach,
where, every level generates and tests structures with the lower levels using molecular
representation and the higher levels using atomic representations. The most time-
consuming calculations will be held at the higher levels where the lowest number of

acceptable structures has been passed to.
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In the first level, groups, or vectors, of first order fragments are considered and the
specified properties are tested using the group contribution method. Level two considers
the generation of isomers from these fragment vectors and rules are applied so that only
feasible chemical compounds are generated. This level allows the consideration of
properties which could not be calculated at level one, thus further refining the set of
potential solutions. Level three represents a highly diminished set of potential structure
with implicitly described connectivity. Here, the connectivity is fully established, and
specified through a connectivity matrix, and a detailed microscopic description is
recognized. At the beginning of level four, for each molecule surviving the previous steps,
a three-dimensional structure is generated using default bond lengths and angles. This
information is directly transferred into a molecular modeling program, in which it
undergoes an energy minimization calculation to identify a more stable conformation.

This process is visually represented in Figure 2.17.
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Figure 2.17 - Linkage of CAMD and molecular modeling.

This methodology was tested on two case studies, namely the identification of a
replacement solvent for removal of phenol from a waste water stream and the design of
an extractive distillation agent. The approach was successful in identifying feasible
solutions in both cases and represents and improved methodology for the utilization of
both group contribution and molecular modeling in molecular design applications.

2.6.3 Programming and Optimization

The two previous approaches to computer-aided molecular design apply property models
in a forward manner. That is to say that they generate a set of descriptors for a known
molecule and these descriptors are fed into the property model and the property
associated with that molecule is calculated. In comparison, the reverse utilization of a

QSAR, or property model, would begin with certain desirable characteristics which are
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typically expressed in terms of acceptable property ranges. Using these acceptable
property limits, molecules are designed by enumerating an acceptable descriptor space
and subsequently calculating which structures fall within this space. The unique
characteristic of this inverse approach to molecular design is that it allows for the
application of programming and optimization in a very effective manner. One such
approach utilizing this concept lies in a study on the application of inverse QSPR using
multiobjective optimization (Brown et al., 2006). This study uses a variety of tools which
are pulled together to develop a novel workflow for the solution of inverse QSPR
problems. The compound generator is a genetic algorithm (GA) that operates directly on
graph-based chromosomes that represent molecules in the population. New molecules are
optimized by iteratively scoring, sampling and perturbing the current population of

molecules, which is common in the GA approach.

The molecular descriptors used in this study are known as Fingal (Fingerprinting
Algorithm) (Brown et al., 2005) and represent a molecular hash-key fingerprint which
can be rapidly generated and also have proven to be highly applicable to predictive
modeling. The Fingal descriptor, while also containing topological information, has
geometric information which has been calculated. This geometric information provides
immediate estimates on the upper and lower bounds between specific atoms in a
molecule. Property models were developed using the PLS regression technique, and these
models were utilized to identify properties of the newly generated structures, developed
through GA. This model was also continuously updated as the algorithm ran. Pareto
ranking, which determines a rank position for each candidate solution according to the

number of other solutions that dominate it in all objectives, was utilized to achieve a
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balanced optimization of all three objectives considered. A flowchart visualizing the steps

associated with this novel approach can be seen in Figure 2.18.
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Figure 2.18 - Flowchart for inverse QSPR workflow optimization approach.

Two case-studies were conducted to analyze the effectiveness of this approach, one of
which aimed to optimize the property of mean molecular polarizability and the other
aqueous solubility. These studies were compared to a model developed in Dragon, using
a wide variety of descriptors, as a validation technique. In both cases, the approach was
able to identify solutions within the desired property range. This proved that multiple
QSPR models can be effectively integrated into an inverse CAMD strategy, and the
simultaneous optimization of multiple objectives appears to provide an effective means

for evolving multiple novel compounds.
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This previous study was a good example of a stochastic optimization approach,
utilizing the genetic algorithm, towards the solution of a CAMD problem. However,
when the problem can be defined in terms of linear relationships this allows for the
deterministic solution of such problems in an efficient manner. This was the situation for
a methodology presented by Churchwell et al. (2004) in which the signature molecular
descriptor was used to identify novel potent LFA-1/ICAM-1 peptide inhibitors. The
nature of signature descriptor is covered in detail in section 2.5.3, but in general it is a
fragment based descriptor with low degeneracy which has proven to be useful in the
inverse QSAR scheme because of its ability to generate solutions structures in an
efficient manner. This study is quite useful in the introduction and development of the
methodology presented in this dissertation, which is also based upon an extended version
of the signature descriptor. Initially, a QSAR is developed using a forward selection
procedure in multilinear regression with signature descriptors representing the
independent variables. In addition to the property model developed, there are some
constraint equations that are needed, as in the group contribution approach, to ensure the
feasibility of structures considered. There are two types of equations within this category
and they are the graphicality equation and the consistency equations. The graphicality
equation is developed directly from graph theory and ensure that at least one molecular
graph can be created form a set of atomic signatures. In order to build a connected graph,
it is required that (1) the sum of all the vertex degrees must be even and (2) the number of
vertices of odd degree must be even. The resulting equation can be expressed in terms of

a degree sequence N = {n;,n,,...,n;} where n; is the number of vertices of degree i. In
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such a situation, the degree sequence is graphical if and only if there exists an integer z >

0 such that:

k
Z(i _n - 4+2=22 (2.30)
i=2

The graphicality equation can be analyzed directly from the height zero molecular
signatures, which conveniently offers the degree of each vertex, or atom, in the molecular
graph. The consistency equations ensure that, since the atomic signature overlap with
each other, the interdependency of each signature upon the others is mathematically
feasible. Together, the property model and constraint equations represent a system of
equations with unknowns corresponding to the occurrence of various atomic signatures.
They represent a set of linear equations which is more specifically labeled a linear

Diophantine system since the solutions are limited to positive integer values.

Once a set of solutions has been generated in terms of vectors representing a group
of atomic signatures, it remains necessary to establish the various structural isomers
which these vectors refer to. This study represents one of the first attempts to enumerate
these isomers in a deterministic manner, which means that all of them were identified.
There are two primary steps in the identification of structural isomers of a set of isolated
nodes within a graph G: (1) determine the orbits or atoms with equivalent atomic
signatures of G, and (2) saturate each atom of a chosen orbit. This process is repeated
until all vertices have been saturated where a saturated subgraph is not generated in the
process. The case study chosen to exemplify this methodology resulted in the

identification of 223 compounds matching the established criteria. 14 of these were found

82



in the original training set and two were within the test set. 77 of these peptides identified
were classified as strong inhibitors, and two of these were synthesized and are the
strongest inhibiting peptides to date that work in-vivo as well. This shows the strength in
such an approach, which is also computationally feasible, being represented as a set of

linear equations.

83



3. Methodology

2D molecular descriptors have predominantly, and very successfully (Katritzky and
Gordeeva, 1993), been used in the development of models describing bulk properties
such as boiling point, viscosity, density etc. Their applicability in modeling molecular
binding interactions, such as ligand receptor affinity, is often limited to data sets of high
similarity. Thus, a natural extension to this problem was to include spatial descriptors,
which have since proven useful in the design of pharmaceuticals and agrochemicals
(Verma et al., 2010). The usefulness seen in this wide variety of descriptors was further
applied with the advent of powerful variable selection techniques such as the ones
covered in section 2.4.1. These methods have revealed that the optimal subset of
descriptors for capturing the structure activity (property) relationships (SARs) for a
variety of properties and biological activities includes descriptors with varying

dimensionality (Kar and Roy, 2010; Nettles et al., 2006).

The inclusion of spatial, 3D and 4D, descriptors necessitates a method for capturing
the conformational capabilities of candidate molecules. Although there are many methods
available for conformational sampling, these are typically infeasible for the consideration
of a large chemical search space, as is often desired. As a result, often only one local
energy minima is supplied to a given model when used in a predictive manner. It has
been shown that the actual structure of a bound ligand is often not found in the set of
local minima identified through a quick conformational search of the unbound ligand
(Perola and Charifson, 2004). This seems especially true when only one conformer is

considered. This provides another motivation behind the development of a systematic
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algorithm, proposed in this dissertation, towards the solution of molecular design
problems with multi-dimensional criteria. The goal is to be able to solve problems of this
nature in a computationally efficient manner, while still considering, to a reasonable
degree, the conformational capabilities of candidate molecules within the defined
chemical search space. The derivation of this spatial information relies on atomic scale
simulations, from which the accessible conformations of each atomic signature can be

considered. The following sections will reveal how this approach is accomplished.

The use of signature descriptors alone in characterizing properties of interest has
proven a successful endeavor (Faulon and Churchwell, 2003), but the power of this
technique lies in the ability to reconstruct solution structures, with low degeneracy, for
any given set of atomic signatures. This idea was introduced in section 2.5.3, and will be
covered in further detail in the following sections. The reason that signature descriptors
are so useful during the reconstruction of solutions is that they are, by definition,
overlapping fragments. This allows for the systematic application of specific rules to
enumerate their connectivity. For a given set of signatures, for which it has been
confirmed that there exists at least one structural isomer, there are often multiple isomers
that can be created, each of which refers to the same original set of atomic signatures.
This feature allows for the systematic consideration of a region of chemical space in
which no two structural isomers are considered more than once. In addition, the height of
atomic signatures utilized in the study can be controlled such that the resulting solutions
generated have a pre-defined degree of similarity to the original data set, from which the
signatures were generated. This follows the pattern of smaller signatures resulting in a

larger search space while considering more diverse structures and larger signatures doing
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just the opposite. This becomes useful when the applicability domain of property models
utilized has certain limits, based on similarity to the structures used to develop the model,

beyond which the predictivity is less reliable.

Most descriptors between 0D and 2D can be derived from molecular signatures.
This allows one to solve existing SARs in signature space, while maintaining the
predictability of the original SAR along with the low degeneracy attributed to signature
descriptors in enumerating potential solutions. Extension of the signature descriptor to
include spatial information maintains the combinatorial efficiencies seen in previous
applications while offering the discriminatory power of including descriptors of higher
dimensionality in the property models. The general approach, develop within this
dissertation, for using these descriptors in a CAMD application has been outlined in
Figure 3.1. This approach can be categorized as a generate-and-test CAMD methodology
with a very efficient generation step that quickly identifies structural isomers, which are

later subjected to conformational analyses.
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Figure 3.1 - Overview of methodology developed.

3.1 Deterministic Solution Approach
A deterministic algorithm is one in which, given a particular input, the output always
remains the same. In addition, the underlying machine always passes through the same

sequence of states. These are the most familiar kind of algorithms and are also the most
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well studied. Deterministic approaches are suitable to problems which have a small
search space or perhaps have highly complex nonlinear equations involved such that
linear and nonlinear programming are not feasible techniques. When applied within the
field of computer aided molecular design this typically means that every possible solution
is visited such that the search space is entirely considered. This offers the benefit of
identifying a globally optimal solution, in addition to several other potential candidates,

but can suffer from increased running times.

3.1.1 Identification of Property Models

The first step in setting up a problem, within this methodology and most any CAMD
approach, involves identification of the necessary property models. There are many types
of property models available, which are created using a variety of regression and
mapping techniques. The nature of these models, whether they are fragment based or
non-linear etc., will help decide the solution approach that must be taken. When a group
contribution model is chosen, this information must be written in terms of atomic
signatures. Depending on the order of group contributions utilized, varying height
signatures will be necessary. Higher order groups will often require larger, higher height,
signatures. If all of the models involved are linear and no 3D descriptors are utilized, the
problem can be solved using LP (linear programming) techniques. However, all studies
considered within this dissertation include 3D descriptors, and as such, various
deterministic and stochastic approaches must be applied. Once the necessary property
models have been identified, or developed, a data set must be decided upon from which

the signatures will be derived.
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3.1.2 Data Set Selection

Selection of an appropriate data set for this approach is a very important step because the
building blocks for generating candidate molecules are the atomic signatures found in the
original set. This means that all solution molecules generated represent a controlled
interpolation, or extrapolation, of the chemical space spanned by molecules in the data set.
This search is ‘controlled’ by the fact that the atomic signatures generated can have a
variable height. Selecting a larger height would result in molecules generated with higher
structural similarity to the data set, whereas using a smaller height would allow for more
degrees of freedom upon recombination resulting in less similar structures. The tradeoff
would be that, in generating more molecules from a smaller height atomic signature,
these structures would have an increased likelihood of falling outside the applicability

domain for a given property model.

Utilizing the training set on which the property models were developed as a pool for
atomic signature development does offer the advantage of generating solutions with
increased similarity, however this is no guarantee that these structures will fall within the
applicability domain (AD) of the given property models. Sheridan et al. (2004) found that
molecules with higher similarity to the training set resulted in the best predicted
properties, as measured by root-mean-square difference between observed and predicted
activity, for narrow training sets with minimal diversity. However, for more diverse
training sets, it becomes unreasonable to define the AD in terms of similarity and
alternate methods are necessary. These methods often require projection of the training
set into descriptor space with subsequent specification of the AD, now represented by a

convex hull in multivariate descriptor space, through various approaches. A review of
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these techniques can be found in Jaworska et al. (2005). For these reasons, when using a
property model generated from a diverse training set, it is possible and potentially
beneficial to utilize an alternate set of molecules for atomic signature development. These
molecules could be chosen from a library of compounds with established drug-likeness or
perhaps other desirable traits and the generated candidates could be tested against the

previously established AD.

3.1.3 Conformational Analysis

The conformational space for each molecule in the data set is explored to identify
energetically accessible conformations corresponding to local energy minima on the
potential energy surface (PES) for that structure. There are several techniques available
for identifying these conformers and they can be generally categorized as being either
systematic or stochastic. The choice between these two techniques is typically a function
of the anticipated complexity of a given PES. Stochastic techniques, such as those based
on Monte Carlo (Metropolis and Ulam, 1949) or molecular dynamics simulations
(Karplus and McCammon, 2002), have proven beneficial towards quickly identifying
local energy minima for more complicated PES’s. Whereas systematic conformational
analyses are much more likely to identify a global energy minimum, at the expense of
increased computational time (Beusen et al., 1996). Regardless of the chosen method, the
goal is to utilize the information obtained through conformational analysis on the data set
to estimate spatial characteristics of each molecule considered within the CAMD
approach. In doing so, it alleviates the necessity to explore the PES of each molecule
considered during the search. This approach will help minimize the time taken to estimate

the 3D characteristics of each candidate molecule considered, such that a larger search
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space can be explored within reasonable time constraints. Molecules meeting this initial
estimation of spatial criteria can be further explored with more accurate simulations.

3.1.4 Spatial Signature Development

As covered earlier, the molecular signature of a given structure is a linear combination of
its constituent atomic signatures, which can be seen as atom-centered subgraphs of their
respective complete molecular graph. The Signature Translator Program (v. 3.0),
developed by Faulon et al. (2003), is implemented in Unix to calculate the set of
canonical atomic signatures found in each conformer, which were identified through the
previously mentioned conformational search. The program accepts as input a .mol
formatted file and the desired signature height and returns an output text file containing
the respective atomic signatures. Structural isomers are quickly identified, through
matching atomic signature strings, and grouped together along with the cartesian
coordinates of each atom found within the structure. The spatial information for each
atomic signature was developed in this manner, as opposed to isolated atomic signature
simulations, such that the resultant geometry information was derived from the signatures
embedded within various molecular structures found within the data set. The goal is to
obtain the most realistic, and accessible, conformations for the fragments, which would
likely not be seen in isolation.

3.1.5 Compression of Spatial Information

The complete set of atomic signatures, developed from the individual conformers
identified through a conformational analysis of the chosen data set, must now be reduced
to eliminate conformational redundancies. The technique developed for this task is to

compare all pairwise distances between atoms for the given structural isomers. The
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absolute difference between pairwise distance values is analyzed subject to a given cutoff
value. Two conformers exhibiting a difference in spatial features greater than the selected
cutoff value are both maintained as being unique, whereas those with all similar distances
are found to be too alike and one is discarded from further use. This is exemplified as
shown in Figure 3.2, where one of these two conformers would be discarded at random

since the difference in their interatomic distance chosen is less than the cutoff value.

Cutoff = 1 Angstrom

Figure 3.2 — Cutoff criterion example.

The cutoff criterion can be varied to increase or decrease the ‘fineness’ of conformational
information ultimately stored. An isomorphism mapping between the conformers is
generated to facilitate such a comparison. NetworkX (Hagberg et al., 2008) is a python
language software package containing many modules and functions useful for the graph
theoretical analysis of molecules, as well as countless other applications. This software is
used to turn each atomic signature into a graph object, which represents the molecular
fragment encoded within the signature. The isomorphism algorithm within NetworkX is

used to quickly generate the mapping between two conformers, which are structural
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isomers of each other, such that pairwise distances can be directly compared. It is first
necessary to generate a graph occurrence for each unique atomic signature string and this
is done through application of an in-house python script which takes advantage of the
Python regular expression operations. This script was created to facilitate the conversion
of information within a molecular signature into a graph object and links together
modules from varying software to facilitate such a task. This approach results in
compressing the spatial information calculated in the conformational analysis step, and
the end result is a set of canonical atomic signatures, or unique structural isomers, with
their accessible conformations stored in the form of cartesian coordinates for each atom
involved. Table 3.1 reveals the compression of information of a set of common industrial

solvents, which resulted in 73 unique structural isomers, as the cutoff criterion is changed.

Table 3.1 — Cutoff criterion compression example.

Cutoff Criterion Conforme'l‘s.l?emaining
(Angstrom) (387 initially)
0.05 282
0.1 271
0.2 257
0.3 240
1.0 199
2.0 182
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3.1.6 Creation of Bonding Network

Throughout the isomer enumeration approach, the test of bond compatibility will be
made for the same two signatures multiple times. To avoid the unnecessary expenses of
repeatedly calculating the same information, this algorithm initially generates a network
of bonding capabilities between fragments in the established atomic signature basis set.
The NetworkX software is employed to assist in developing and storing this information.
Each atomic signature is initiated as a node in what is further referred to as the ‘bonding
network’. This network initially contains no edges and signatures, or nodes, are compared
pairwise to establish all possible bonds. A bond between two atomic signatures, "o (x)
and "o (v), 1s possible when the "5 (z) signature of atom z, neighboring atom x, matches
the "' (y) signature. This can also be stated, from a graph theoretical viewpoint, as a
subgraph, with radius A-1 centered at an atom neighboring the x-signature center atom,
being isomorphic to the radius 4-1 subgraph centered at the y-signature center atom. This
is visually represented in Figure 3.3 where two nodes in the bonding network, x and y, are
represented by their underlying atomic signatures. A bond would be created between
these two nodes because the "o (z) signature of atom z, neighboring atom x, matches the
"I (y) signature.

(x)

P o\

H H C

L L

C H H C

Figure 3.3- Example of compatible ‘bonding network’ edge.
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Inclusion of pre-calculated bonding capabilities between fragments generated from
the initial data set is one of the novel implementations found within this methodology
which has proven useful in speeding up the CAMD approach. Atomic signatures are
essentially over-defined, such that they overlap when recombined, and this is taken
advantage of to expedite the structural isomer enumeration process. Each set of fragments,
or atomic signatures, can typically be used to build several unique structural isomers and

as such this network comes in handy.

3.1.7 Generation of Structural Isomers

The calculation of 3D descriptors makes the approach much more complicated as the
connectivity of atomic signatures must be established first such that a global geometry
can be calculated from the combination of local geometry information provided by each
fragment. Atomic signatures, by definition, are overlapping subgraphs of the complete
molecular graph, which they collectively reference. For a group of atomic signatures to
generate at least one structural isomer there are several feasibility constraints that must be
met. There are two types of equations within this category and they are the graphicality
equation and the consistency equations. The graphicality equation is developed directly
from graph theory and ensure that at least one molecular graph can be created form a set
of atomic signatures. In order to build a connected graph, it is required that (1) the sum of
all the vertex degrees must be even and (2) the number of vertices of odd degree must be
even. The graphicality equation, Eq.(2.30), can be analyzed directly from the height zero
molecular signatures, which conveniently offers the degree of each vertex, or atom, in the

molecular graph. The consistency equations ensure that, since the atomic signature
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overlap with each other, the interdependency of each signature upon the others is
mathematically feasible. An example of one such consistency equation is represented in
Figure 3.4, where the number of oxygen-carbon single bonds must equal the number of
carbon-oxygen single bonds. In the case for nitroglycerine there is only one atomic
signature with an oxygen root single-bonded to a carbon atom. However, there are two
atomic signatures with a single bonded carbon root. In each case, the carbon root is
connected to a single bonded oxygen atom shown with a dashed line. There is only one
instance of a carbon-oxygen single bond in both signatures, so the occurrence number is

the sum of these, which is 3.

's (Nitroglycerine)

3o (nc) #(o_—>c )=#(c_—>0)
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3n (0o 0=0=) 3o = 2¢ + lc

5h (c) ’ p
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lc (ohcce) n c_ oh h¢c ohhc

Figure 3.4- Example of consistency equation for nitroglycerine.

Once it has been established that at least one structural isomer is possible, through
the previously mentioned structural feasibility constraints in, the task remains to identify
these isomers. The approach taken to establish connectivity is based on the orbit
saturation algorithm established by Faulon and Churchwell (2003), and has been
implemented as a Python script. The algorithm takes advantage of the degeneracy
stemming from subgraph isomorphisms, and saturates equivalent subgraphs at the same

time and in all possible ways until a complete saturated structure is obtained. The
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approach begins by representing each atomic signature as a node within a graph, G,
containing no bonds, or edges. The underlying atomic signature represented by each node
will contain a central atom with one or more neighbors, all atoms one bond away from
this central atom. These neighbors must each be mapped to another node in G, thus
creating a bond in G and eliminating this neighbor from further mapping requirements.
Once the list of neighbors for a node in G is empty, this node is said to be ‘saturated’ and
the same should be done for all remaining unsaturated nodes. The order in which this is
done, and the criteria for acceptance of a potential bond in G, have a huge impact on the
speed of the algorithm and are explored in further detail below. In addition, this process

is visually represented in Figure 3.5.
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Figure 3.5 — Generation of structural isomers.

The connected subgraphs of G, initially all isolated nodes, are first partitioned into

groups containing equivalent isomorphisms and the group containing members with the
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least degree of unsaturation is chosen to be saturated. Typically, this first group of nodes
would have hydrogen as the root atom, thus containing only one degree of unsaturation
(the neighbor of this hydrogen). All nodes in this group are saturated in all possible, and
unique, ways such that a new graph is created for each possibility. Each of these new
graphs will contain several connected subgraphs, which are partitioned, as before, into
groups representing unique isomorphisms. This task is facilitated through the NetworkX
connected _components function, which takes the graph G as input and returns the various
connected subgraphs. The summation of unsaturated neighbor atoms, for each node, or
atomic signature, in these new subgraphs would represent the total degree of unsaturation
for the given subgraph. Each of these unsaturated neighbors would then be saturated in
all possible ways, creating a new set of graphs stemming from the previous set, each
containing their own connected subgraphs. This process continues until one of two
conditions is met:

1) The graph G is completely connected, with the connected components function
returning one item, and fully saturated. This graph is returned as a feasible
structural isomer.

2) The graph G contains a connected subgraph component with a degree of
unsaturation equal to zero. This represents a saturated subgraph and G is

discarded from further iteration.

3.1.8 Generation of Conformational Isomers
The global geometry of molecular graphs with feasible connectivity must now be

established for the calculation of higher dimensional descriptor values. The goal for this
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step is to minimize the computational complexity of such an operation by utilizing only
those signatures necessary for the establishment of a complete geometry. As mentioned
previously, the atomic signatures for a respective molecule overlap with each other and
this can be taken advantage of when transforming individual fragment coordinates
towards a consistent coordinate space. Not all atomic signatures for a given molecular
signature are necessary for this approach, and the steps taken to choose those required are
outlined below:

1. The largest signature, based on number of atoms, is selected as a reference frame.
If more than one exists with same size, the signature with the least number of
unsaturated nodes is chosen. Beyond this, a random signature is chosen among
several which have the same size and number of unsaturated nodes.

2. All atomic signatures sharing at least three atoms in common (identified through
an isomorphism mapping) with the initial signature are determined. Three atoms
are necessary for docking the two fragments together in Cartesian space.

3. From this set, the signature defining the largest amount of new atoms is selected.
In the case that several signatures are equivalent in this measure, a random one is
selected.

4. The transformation matrix is established and applied to all atoms in the second
signature such that consistent coordinate frame is established.

5. Signatures having at least three nodes in common with the graph represented by

the combination of the first two signatures are enumerated.
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6. From this set, the signature defining the largest amount of new atoms is selected
and a transformation matrix is established to dock this atom into the growing
molecular graph.

7. Steps 5-6 are continued until every node in the given molecular graph has been
defined in the consistent coordinate system established by the initial signature.
The resulting set of signatures, with their order fixed, will be referred to as a
‘superposition map.’

This procedure can be visualized through the example seen in Figure 3.6 shown

below. The steps have been labeled for the chosen example, which begins with selecting

the largest atomic signature having the fewest degrees of unsaturation.
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Figure 3.6 — Example of fragment selection for geometry development.
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This signature would be the one centered at the carbon at labeled ‘D’ as it contains 16
atoms, within the fragment established by its atomic signature, with the carbon atom
labeled ‘G’ being the only unsaturated atom. Step two would necessitate identifying
another signature overlapping by at least three and identifying the most new atoms. The
atoms labelled ‘A’, ‘B’, ‘C’, ‘E’, ‘F’, and ‘G’ all satisfy the three common atoms rule,
however, the atomic signature centered at atom ‘G’ defines the largest number of new
atoms, being 2. Within the structure created by linking these first two atomic signatures
lies only one unsaturated carbon, which is labeled ‘I’. The signatures overlapping this
growing fragment, created by linking the first two, by at least three atoms include all
atoms labeled ‘A’ through ‘I’. Out of those, ‘I’ would define the most new atoms, thus

completing the structure with zero degrees of unsaturation remaining.

The steps outlined previously chose fragments to be transformed into a consistent
coordinate system, and this information was stored in the form of a ‘superposition map’.
A subgraph isomorphism mapping is stored within each compatible bond, as a dictionary,
in the bonding network established previously. It was required that each pair considered
for superposition has at least three atoms in common within this mapping. For the first
two signatures in the superposition map, an equivalent pair of atoms is randomly chosen
from the set of mapped atoms and a translation vector is calculated from the difference in
their coordinate vectors. A second pair of mapped nodes is chosen, along with the first
pair, to form an axis in each fragment for development of a rotation matrix. Since these
two vectors have one point in common, or one overlapping point after the original

translation, the Euler rotation theorem can be utilized to develop a rotation matrix which
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effectively superpositions the fragments to obey the given mapping. The cross product
between these two vectors provides a perpindicular axis around which to rotate by an
angle specified by the dot product between the vectors. The next step is to calculate the
angle of rotation around the axis, represented by the first two pairs of mapped atoms,
which minimizes difference between the remaining mapped atoms. This is done by
systematically scanning through angles by a given increment until a minimal deviation in
the remaining mapped atoms coordinates has been identified. The result of these
calculations is a transformation matrix, represented in homogenous coordinates, which
translates and rotates a given atomic signature into the desired reference frame. This
matrix R is exemplified in Equation 3.2. This procedure is performed for each fragment
identified within the superposition map such that set of transformation matrices is
established which effectively brings the individual fragments into a consistent reference
frame.
cosf 4+ u? (1 — cosf) uziy (1 — cosf) — u.sinf  wu u. (1 —cosf) + u,sinf

R= |uyu, (1 — cosfl) + u.sinf cost + ni, (1 —cosf) uu. (1 — cosf) —u,sinf|,
u.uy (1 —cosfl) — u,sinf  wu.uy, (1 — cosf) + u,sinf cosf +u? (1 — cosb) (3.2)

For each molecular signature identified as having at least one unique structural
isomer and meeting lower dimensional criteria, the superposition map, along with the
respective transformation matrices, is utilized to estimate the energetically accessible
conformations this ensemble of fragments could attain. Each atomic signature will have
at least one set of coordinates which has been derived from the initial conformational
analysis performed on the given data set. These conformers are utilized in a

combinatorial manner, along with the respective transformation matrices, to develop a set
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of conformers which are tested against the necessary 3D constraints. NumPy, a package
for scientific computing within Python, is used to handle the coordinate transformations
(Oliphant, 2007).

There are multiple options in using this information and two examples are shown in
Figure 3.7. This example follows the notation from Figure 3.6, where the three atomic
signature fragments necessary to establish a global geometry were identified. While each
atomic signature will have its own set of conformational isomers, only the conformers
from signatures labeled ‘A’, ‘G’, and ‘I’ will be used to develop the complete

conformational isomers for the chosen molecule.
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Figure 3.7— Utilization of developed conformational isomers.
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The ensemble of conformers generated can be used to calculate an average value for
3D descriptors of a given structural isomer, as shown with the three-dimensional Weiner
index. They could also be individually tested against the given criteria since the actual
molecule in solution would be represented, to some degree, by a collection of various
accessible conformations, which might not be well captured through averaging. In any
manner, this approach aims at estimating the accessible conformational space of a given
molecular signature while avoiding an extensive conformational analysis for each

candidate molecule.

3.1.9 Extension to More Complex Structures

The initial studies, which were used to demonstrate the feasibility and applicability of the
proposed methodologies, were based upon simplistic structures. These were relatively
simplistic in the fact that they were medium sized organic molecules containing no ring
structures. This was acceptable since the main motivation was to exemplify the proposed
methodology’s ability to solve computer-aided molecular design problems with multi-
dimensional constraints. However, once proven, the next step would be to test the limits
of this technique against problems of increasing complexity. Extension to consider more
complex molecules with advanced characteristics would necessitate the formulation of
new structural constraints. In addition to topological considerations, the conformational
complexity associated with larger structures is also more evident. This topographic
burden would show itself in the form of more complex potential energy surfaces and
would require an adapted technique to handle such a case. The steps taken to handle such

situations will be covered in the following paragraphs.
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To foreshadow the possibilities of applying this methodology to more interesting
case studies, it would be worthwhile to present some information on how the signature
descriptor itself has performed when applied to complex case studies. Signature
descriptors have been used as independent variables in the design of novel polymers with
targeted properties (Brown et al., 2006). One of the unique characteristics of this
descriptor is the ability to vary its ‘height’, which corresponds to capturing atoms at a
further distance from the central atom. The height chosen for generating signature
descriptors from a given data set has a direct effect on the resulting chemical search space,
which is where novel solutions are identified. The immediate solution to considering case
studies with larger molecules might be to use a larger height signature, however, this
would have the effect of limiting potential solutions to having a very high similarity to
the original data set. In addition, using a smaller height signature would result in
combinatorial explosion. This was well recognized within the polymer design study by
Brown et al. (2006), and they were able to select an ideal height for the design of novel
polymers, which generated solutions as large as 45 atoms while using height one
signatures. While this was feasible for a study with only topological constraints, the
development of global geometric properties from signature fragments requires at least

height two signatures.

The ability of a descriptor to be mapped back to a given number of potential
solutions is determined by its degeneracy. Descriptors with high degeneracy will map to a
larger number of solutions, which becomes computationally intensive to enumerate all
possible structures. The degeneracy associated with the signature descriptor, with respect

to varying types of molecules with varying complexity, has been studied (Faulon and
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Churchwell, 2003). With respect to alkanes, using height two signatures, 57.5% of
structures had no degeneracy, meaning that they referred to only one structural isomer.
As for alcohols with the same height two signatures, 99.2% of structures showed no
degeneracy at this height. These were relatively simplistic structures, however, when
extended to consider fullerene-type structures, 99.7% were uniquely identified at a height
of three. In addition, 98.9% of peptides were non-degenerate when a height three
signature was applied. This establishes a boundary when applying the signature
descriptor in molecular design case studies, beyond which would allow for a more similar
set of solutions or a larger search space. In any case, this boundary can be identified for

each unique case study even when applied to more complex structures.

Molecular complexity comes not only in the form of larger structures but also more
interesting structural features. One such example would be the inclusion of ring like
structures, which are found in chemicals across all fields. The signature descriptor is
adept at handling such features and is enabled through its foundation in graph theoretical
concepts. In addition to the extra topological constraints, there will also be some
differences in the topographic characteristics of more complex molecules. The potential
energy surface of a given molecule can quickly become very complex based on the size
of the structures. The degrees of freedom for such a surface can be calculated as 3N — 6,
with N being the number of atoms in a molecule. Fortunately, many of these features are
quite rigid and the only real complexity arises in the torsional bonds found with a given
structure. This can still lead to extremely complex potential energy surfaces, which are
explored to estimate the spatial capabilities of atomic signatures, and the resultant

solution structures, within this methodology. As such, to handle larger structures, it
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would become necessary to conduct a more thorough conformational analysis of the
original data set. This could also lead to many more structural isomers associated with
each atomic signature, representing a unique structural isomer. To avoid the
computational complexity associated with such a situation, as well as the potential
combinatorial explosion, it would become necessary to increase the cutoff value while
compressing the spatial information as discussed in section 3.1.5. This would be a trade
off in the quality of each estimated geometry, but with an optimized cutoff value would
still generate reasonable geometries. Additionally, it would also be possible to relax to
topographic constraints associated with a given case study and perform a more thorough
conformational analysis of the solutions identified. These techniques could be adopted to

approach studies with more complex structures.

3.2 Stochastic Solution Approach
Often times, the nature of CAMD problems involving higher dimensional descriptors is
such that linear programming cannot be applied. The transformation from property space
to descriptor space can be non-linear as well as that from descriptor space to chemical
space, which is where our solutions lie. In addition, the search space for a given CAMD
problem is necessarily large, which makes the implementation of deterministic search
methods infeasible due to combinatorial explosion. Combinatorial explosion arises within
this field because of the utilization of molecular fragments as building blocks. There are
so many potential arrangements of these building blocks which can lead to novel
solutions.

A stochastic solution approach can circumvent this problem by searching a

smaller subset of the original space, with guidance by an appropriate algorithm. This
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allows for a much faster search algorithm, albeit at the expense of not considering the
entire chemical search space. A stochastic approach can be completely random, or more
beneficially, guided towards certain regions of the search space by a given convention.
One such approach, as applied in this document, is known as a genetic algorithm
(Holland, 1975). Genetic algorithms, GAs, apply a search heuristic which mimics nature
by evolving a population of candidates towards an improved ‘fitness’ by means of several
operators. This fitness is often measured as a candidate’s closeness to a given set of
properties. Those within the desired property range have a higher fitness, whereas those
falling outside this range are penalized and have a lower fitness. This satisfies the ‘natural
selection’ part of the algorithm while candidates are altered through various operations
which can be categorized as mutation, acting on a single candidate, or crossover,
typically involving two candidates. These operations allow for the population to evolve
towards an improved overall fitness. One of the benefits of GA applications is that
multiple solution are often found even if the algorithm does not converge. For this reason,
GA has been applied very successfully in several CAMD applications
(Venkatasubramanian et al., 1995; Douguet et al., 2000; Pegg et al., 2001; Kamphausen
et al.,, 2002). The following Figure 3.8, exemplifies the typical structure of a GA

approach.
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Initialise
Populstion

Figure 3.8 — Common Genetic Algorithm Methodology

Within this generalized methodology it can be seen that an initial population is first
developed and evaluated by the criteria established by the molecular design problem.
Most often this criteria comes in the form of one or more property models as well as
various structural constraints. A value is associated with how close each candidate
structure matches the criteria, and this is facilitated through a fitness function. The
process of selection is based on this fitness value previously established, which provides
the component of pressure as paralleled by survival from the environment in natural
selection. The more ‘fit’ population members then undergo various operations, which can
be categorized as mutation or crossover. The crossover technique takes two structures
and breaks them at one or more points, then recombines them to form a new molecule
containing features from each of its parents. The mutation operator changes part of the

chosen molecular structure by substitution, deletion, or addition of molecular fragments
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ranging from simple atoms to larger molecular groups. Termination of the algorithm is
decided upon when the overall fitness of the resulting population has reached a certain
threshold or when a specific number of iterations have been implemented and the final

solution set is what remains.

This generalized methodology has been implemented within the previously
covered CAMD algorithm such that a stochastic solution approach could be applied. The
initial steps for this new methodology are the same as before in that the desired properties
along with their respective models must first be identified. In addition to this, a
conformational analysis must be performed in the same manner such that the spatial
capabilities of the respective region in chemical space can be captured. Following this,
the generated conformational isomers are dissected into spatial signature descriptor
fragments for use in creating solution structures in a combinatorial manner. The
following steps include application of a GA which has been adapted to satisfy the use of
spatial signature descriptors. New operators have been developed which facilitate the use
of spatial signature descriptors since they are overlapping in nature. A single point
crossover, in addition to insertion, deletion, and random mutations, has been developed.
This methodology is useful for solving complex non-linear CAMD problems utilizing
molecular descriptors of varying dimensionality while searching a large region of

chemical space in an efficient manner.

3.2.1 Overall Genetic Algorithm Methodology
Figure 3.6 provides a depiction of the proposed GA algorithm for the solution of multi-

dimensional CAMD problems utilizing spatial signature descriptors.
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Figure 3.9 — Proposed Genetic Algorithm Utilizing Spatial Signature Descriptors

From Figure 3.9, it can be seen that the spatial capabilities of the desired search space
have been characterized using the methodology covered in sections 3.1.3 — 3.1.5. In
addition, the algorithm is informed by the bonding network, covered in section 3.1.6,
which enumerates all possible bonds between each pair of atomic signatures. This
proceeds into the creation of an initial population, which is then evolved by means of
various operators into successive generations with potentially improved overall fitness
values. An end point is reached when the desired number of iterations has passed or the
desired average fitness has been reached within the final population. The conventional
representation of an individual within the GA scheme is typically represented as a string
of binary values, each associated with the presence or absence of a specific feature.
However, since molecules often contain individual features multiple times, such a
representation would be quite limiting. Extension to include integer occurrences of
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structural fragments would likely lead to the consideration of many collections of
fragments which do not represent a feasible structure when combined. For these reasons,
the individual members of this GA approach are represented as a type of chemical graph
where each node within this graph represents an underlying atomic signature. This can be
visualized in Figure 3.10 where the height two atomic signatures are represented for two

nodes within a chemical graph.

€3(C3(=0C1)C1C1) C3(C3(=0C1)C2(C1)N1)

Figure 3.10 — Atomic signatures for nodes in molecular graph

Just as these two atomic signatures, along with the fragments they represent, are shown
for the example nodes, each node within the graph would have its own respective atomic
signature. Nodes are added in a systematic manner along with bonds, which are informed
by the bonding network mentioned previously. This ensures that only structurally feasible
molecular graphs are considered, which helps alleviate the combinatorial complexity

associated with problems of this nature.
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3.2.2 Generation of Starting Population

An initial generation of molecules is selected at random to develop a population, which
encompasses a variety of structural features spanning the chosen chemical space, on
which to begin reproduction. The input required for this step consists of an upper and
lower limit on atom count as well as a population size. For each member of the chosen
population size, a target atom count is selected at random from the acceptable size range.
Then a node is selected at random from the bonding network and the possible neighbor
list is developed, from which the subsequent signature fragment is chosen. This process
continues for a growing graph while the selection of signature fragments is a function of
the current graph size. Equation 3.3 is utilized as a probability function for the selection
of a signature which would either maintain graph unsaturation or effectively cap the
growing molecule when nearing the desired size. In Equation 3.3, P, is the probably of
selecting a signature fragment which would saturate the growing graph, N7 is the target

number of atoms and N is the current number of atoms.

e (33)

This constraint helps adhere to the desired range of graph sizes for the starting population.
It is possible for the probability to exceed a value of one, in which case graph growth
would be terminated as soon as possible. The following pseudo-code outlines the

algorithmic approach to generating an initial population:

pop_size = 100
size_lower = 10
size_upper = 30

size_list = [x for x in range(size lower,size upper+1)]
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for x in range pop_size:
select random node
select random desired size
for growing_graph in population:
while unsaturated == true:
identify cap probability
if cap == true:
identify nodes facilitating saturation
else:
identify nodes facilitating growth
else:

saturated graph created

The desired population size is first chosen, along with the desired upper and lower limit
on the size of molecular graphs generated. For each member of the population an initial
signature is chosen at random along with the desired size, which is chosen from the
developed size list. The molecular graphs are then ‘grown’ by selecting adjacent nodes,
which have signatures capable of overlapping with the previous nodes signature. During
the growing process, the probability of choosing a node which effectively ‘caps’ the
graph by generating a fully saturated molecular structure, is calculated as shown in
Equation 3.3. The value of P, can range from zero to one, and the closer this value is to
zero the more likely the algorithm is to ‘cap’ the graph. This leaves some degree of
randomness in the selection of whether or not to terminate growth of the molecular graph.
Once the operation of cap or grow is chosen, all nodes facilitating this operation are
identified and one is chosen at random from this list. This continues until a population of

fully saturated molecular graphs has been created.

The chosen methodology of generating a starting population has an inherent
degree of randomness such that the diversity of the chosen chemical space has an equal
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opportunity of representation. However, control over the size of these individuals has
been maintained. This has been done by choosing a desired size distribution within which
the population should be maintained such that runaway growth does not occur. In
addition, it is also undesirable for the generated population to have members with a graph
size that is too small. While this does require some knowledge on the desired size
distribution for a given problem, this can be circumvented by selecting a wider size range
for situations in which this information is unknown. The graphs generated by this method
will provide the population on which subsequent mutation and crossover operations are
applied to create potentially improved solutions. As such, these graphs can be seen as
points in chemical space which serve as starting points for the further interpolation type
search throughout the remaining regions of chemical space.

3.2.3 Fitness Calculation

The fitness function plays a vital role in the guidance of a genetic algorithm towards a set
of improved solutions, especially within a large search space. The best fitness functions
will help a GA explore the search space more efficiently and effectively. However, a bad
fitness function could result in the GA being trapped within a local minimum, lacking the
power to explore other regions. The fitness function chosen for this application is

expressed as shown in Equation 3.4.

P, — P, 2
Ji=exw (‘“ Z(meax lzm-n)ZD G4

This format was chosen as suitable for a molecular design application because the

problem is most often expressed in terms of a set of desired property ranges. In this case,
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the fitness of each molecular graph is calculated with a Gaussian-like function over the
range of desired property constraints. Within this equation, P; is the calculated property
value, Pjyq, and Pipin are the upper and lower property range values, and P, is simply the
average of these two values. The constant, a, is known as the Gaussian fitness decay rate
and characterizes how quickly the fitness falls as it leaves the desired property range.
This effect is exemplified in Figure 3.11, where the value of a has been varied with its

effect on the fitness distribution shown graphically.

Effect of Gaussian Fitness Decay Rate

a=0.05

=0 =0.1
=0 =0.3

Figure 3.11 — Effect of a on Fitness Distribution

The values produced by this fitness function essentially determine how desirable a
given molecular graph is with respect to the chosen property ranges. Structures falling
outside these ranges in one or more property category are penalized, resulting in a lower
fitness value. Fitness values range from zero to one, with one being considered an
optimal solution. Functionally, the way fitness values are used to select optimal

candidates is that larger values have a higher likelihood of being chosen for mating or
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mutation, and this is a probability based approach. While ‘more fit” solutions do have an
increased likelihood of being chosen, less optimal solutions can be also be represented to
a varying degree by altering the alpha value mentioned earlier. A smaller alpha value
would allow for the increased likelihood of selecting less optimal solutions, while a larger
value would be very strict in only selecting the best structures. Some degree of sensitivity
analysis is necessary to identify a value that’s optimal for a given case study and this
depends on the nature of chemical space considered, as well as its relationship to the

chosen properties of interest.

3.2.4 Genetic Operators

Various genetic operators are applied to maintain diversity within the population and
effectively explore the available chemical space. New techniques were developed to
tackle the unique format of the problem addressed here, namely the stochastic graph
based approach to a multi-dimensional molecular design problem. The two main types of
operators are mutation and crossover. Within the category of mutation operators, three
types were created: reduction, insertion, and fragment mutation. The decision between
selecting either a mutation or crossover operation is based upon a split value, which is to
be decided upon before the algorithm runs. This split provides a probability based
selection between a mutation or crossover operator. While the mutation operations have
been designed to control the size of a resultant graph, by either inserting or removing
fragments if necessary, the crossover is unbiased towards the size of a child graph.
Because of this, problems with a higher probability of selecting a crossover operation
often have a wider size range of solutions whereas those with a higher probability of

selecting a mutation operator have a more narrow size distribution. This concept is well
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exemplified in Figure 3.12, which plots the size distribution as a function of the crossover

probability.
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Figure 3.12 — Effect of Crossover on Size Distribution

Once a mutation has been decided upon, the probability based decision of which
mutation operator to utilize is a function of the current graph size, in addition to a
parameter, N,,;, which represents the current optimal graph size derived from previous
data. NV, is continuously updated as generations are analyzed and is calculated as shown
in Equation 3.5, where f; is the fitness for a previously created molecular graph and N; is
its size. This technique allows for dynamic size control, which adjusts itself to the
information gained previously throughout the stochastic algorithm.

2i(fi - Ny

A (3.5)

Nopt =
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This format was chosen to maintain strict control over the size of graphs generated by the
molecular design algorithm. Previous studies have revealed that physico-chemical
properties often have a correlation to molecular size; for example, the boiling point of
alkanes can be linearly correlated to the mass of the underlying molecular structure
(Needham et al., 1987). However, it is realized that this is often not the case and the
possibility to loosen control over the size of molecular graphs generated has been allowed.
This can be done by controlling the £ value, which characterizes the acceptable size range
within which a molecular graph can be considered optimal. Once a mutation operation
has been decided upon, the remaining decision between insertion, deletion, or mutation is

based upon this f value by the convention shown in Figure 3.13.

Insertion Mutation Deletion Mutation

If N < Nope(1-B) If N > N, (1+8)

Optimal Molecular Size

E

M

2i(fi - Np)
Nopt = z];ft

.

LI

Figure 3.13— Selection of Type of Mutation Operator
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Graphs within a certain percentage, f, of the optimal size undergo a signature
mutation such that the size of the graph is preserved, while graphs above and below this
range undergo reduction and insertion, respectively. Signature mutation involves the
selection of a random node, which is then exchanged based on bond compatibility
information available in the bonding network. Graph reduction involves the random
selection of two or more bonded signatures, which is then replaced by a shorter path
identified within the bonding network. Similarly, graph insertion involves the selection of
a random bond between two signatures, in which a compatible signature is inserted to

increase the size of the resultant molecular graph.

Upon selection of the crossover operator, two parent graphs are selected from the
population and are cut/recombined at compatible points just as in conventional crossover
operations. For a pair of bonds, one from each graph, to be compatible, the bonding
network must establish that each node involved in these bonds can also be bonded to its
counterpart in the other graph. Each of these operators rely heavily on information stored
within the bonding network, which is why this information is pre-calculated for the
signature space developed from the initial data set. The concept of a single-point
crossover can be seen in Figure 3.14, where two graphs are selected and cut at a
compatible bond. One fragment from each parent is then recombined in a compatible
manner to produce the resultant child graph. It is worth noting that, with a single point
crossover, there are two possible child graphs that can be produced and one is chosen at

random with no bias to the resultant sizes.
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Figure 3.14 — Implementation of Crossover Operator
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4. Case Studies

The following case studies are meant to exemplify the usefulness of the above proposed
algorithm. The first two case studies included the design of a solvent and a fungicide, for
which the substituents were designed. These examples represent an initial attempt at
including spatial information within the signature descriptor and molecular design
methodology presented here. The search space for both problems was small enough to be
solved in a deterministic manner, however, the nature of the problem definition allowed
for a linear optimization approach to be taken. Utilizing optimization would allow for a
much larger search space to be considered. In addition, the nature of the resulting
solutions, being smaller in size on a molecular level, allowed for the spatial information
for each potential solution to be derived from a single atomic signature, often the largest
one. This is an inherent limitation in the solution of CAMD problems, and the technique
for solving studies with larger solutions has been described earlier. This necessitates the
development of a global geometry from fragment geometries. Unfortunately, the nature
of these calculations does not allow for a linear approximation of the geometry. In
addition, most any spatial descriptor utilized is not a linear function of the atomic
coordinates or interatomic distances. This being said, what remains is to find an approach
whereby the potential energy surface of candidate molecules can be estimated without
conducting time consuming scans of this space. This would allow for the consideration of
much larger search spaces. The third case study presented analyzes the ability of the
proposed algorithm to estimate the PES for a given molecule. This verification was
necessary for further studies utilizing this methodology. Once verified, the next step was
to consider a study with a much larger search space. This is where the fourth case study,
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which included the design of non-peptide mimetics matching a pharmacophore model,
came in to play. The development of this dissertation can be seen in the consideration of

case studies with increasing complexity, as they have been presented in this section.

4.1 Solvent Design Study

The initial case study is simplistic in nature and represents the design of a solvent with
desired properties. The target in this design is to identify an alkane molecule with
minimum soil sorption coefficient (log K,). The property constraints to be satisfied by
the solvents are boiling point (BP) and toxic limit concentration (TLC). The constraints

are listed in Table 4.1 and the property models are described in Table 4.2.

Table 4.1 - Property constraints for solvent design study.

Property Upper Bound Lower Bound
Boiling Point, BP (°C) 85 55
Log(TLC) (ppm) - 1
Log(Koc) Minimum

Table 4.2 - Property models for solvent design study.

Property

Property Model

log(Kyc)

logK,,)=0.53"y)—125A x")—0.72A 5")+0.66

Boiling Point, BP

BP:395(3DW)0.0986_682

log(TLC)

loglL(=4066-09915%")
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For boiling point, a QSPR (Mihalic and Trinajstic, 1991) that makes use of the 3D
Weiner index has been used. The three-dimensional Weiner index (*’W) is computed
directly from the geometric distance matrix as follows, where d;; is the geometric

distance between atoms i and j:

1
W = Ez dj (4.1)
Lj

The property model correlating the first order valence connectivity index to toxicity
was developed by Koch (1982). The objective constraint in this study was to design a
molecule with a minimal soil sorption coefficient. K, represents the soil sorption
coefficient, which is a strong indicator of the fate of an organic chemical introduced into
the environment. A lower value here would represent a decrease in the potential harm this
solvent could do if released into the soil. The model (Bahnick and Doucette, 1988)
utilized to estimate this property has been correlated to various molecular connectivity
indices and the optimal model is shown in Table 4.2. For this study, since only alkane
structures were considered, the delta valence connectivity indices within this equation are

equal to zero.

To form molecular building blocks, signatures of height 2 are used. There are 65
unique molecular signatures of height 2 that can be developed from linear alkane

structures. These signatures have been listed in Table 4.3 below.
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Table 4.3 - All height-2 atomic signatures for linear alkanes.

C1(C2(C))

C1(C3(CC))

C1(C4(CCC))

C2(C2(C)C1)

C2(C3(CC)C)
C2(C4(CCO)Cl)
C2(C2(C)C2(C))
C2(C3(CC)C2(C))
C2(C4(CCC)C2(C))
C2(C4(CCC)C4(CCC))
C2(C3(CC)C3(CC))
C2(C4(CCC)C3(CC))
C3(C4(CCC)C4(CCC)CHCCCT))
C3(C4(CCC)C4(CCC)C3(CC))
C3(C4(CCC)C4(CCC)C2(C))
C3(C4(CCC)C4(CCC)C)
C3(C4(CCC)C3(CC)C3(CC))
C3(C4(CCC)C3(CC)C2(C))
C3(C4(CCC)C3(CC)CI)
C3(C4(CCC)C2(C)C2(C))
C3(C4(CCC)C2(C)C)
C3(C4(CCC)CICI)
C3(C3(CC)C3(CC)C3(CC))

C3(C3(CC)C3(CC)C2(C))

C4(C4(CCC)C4(CCC)C4(CCC)CI)
C4(C4(CCC)C4(CCC)C3(CC)C3(CC))
C4(C4(CCC)C4(CCC)C3(CC)C2(C))
C4(C4(CCC)C4(CCC)C3(CO)CT)
C4(C4(CCC)C4(CCC)C2(C)C2(C))
C4(C4(CCC)C4(CCC)C2(C)C)
C4(C4(CCC)C4(CCC)CIC)
C4(C4(CCC)C3(CC)C3(CC)C3(CC))
C4(C4(CCC)C3(CC)C3(CC)C2(C))
C4(C4(CCC)C3(CC)C3(CC)C)
C4(C4(CCC)C3(CC)C2(C)C2(C))
C4(C4(CCC)C3(CC)C2(C)CI)
C4(C4(CCC)C3(CC)CIC)
C4(C4(CCC)C2(C)C2(C)C2(C))
C4(C4(CCC)C2(C)C2(C)C)
C4(C4(CCC)C2(C)CICI)
C4(C4(CCC)CICICI)
C4(C3(CC)C3(CC)C3(CC)C3(CO))
C4(C3(CC)C3(CC)C3(CC)C2(C))
C4(C3(CC)C3(CC)C3(CO)CI)
C4(C3(CC)C3(CC)C2(C)C2(C))
C4(C3(CC)C3(CC)C2(C)C)
C4(C3(CC)C3(CC)CICI)

C4(C3(CC)C2(C)C2(C)C2(C))
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C3(C3(CC)C3(CO)C)
C3(C3(CC)C2(C)C2(C))
C3(C3(CC)C2(C)C)

C3(C3(CC)CIC)

C3(C2(C)C2(C)C2(C))
C3(C2(C)C2(C)C1)

C3(C2(C)CICI)
C4(C4(CCC)C4(CCC)CA(CCC)CAH(CCC))
C4(C4(CCC)C4(CCC)CACCC)C3(CC))

C4(C4(CCC)C4(CCC)CA(CCC)C2(C))

C4(C3(CC)C2(C)C2(C)C)
C4(C3(CC)C2(C)CIC)
C4(C3(CC)CICICI)
C4(C2(C)C2(C)C2(C)C2(C))
C4(C2(C)C2(C)C2(C)C1)
C4(C2(C)C2(C)CICI)

C4(C2(C)C1CIC1)

The signatures used as building blocks to develop candidate molecular structures were
optimized at the AM1 (Austin Model 1) (Dewar et al., 1985) quantum mechanical level,
as it was shown to generate reasonable bond lengths and angles for the chosen data set. In
the context of chemical graph theory, these signatures are described as sub-graphs and the
optimized Cartesian coordinates of each atom were used to derive interatomic Euclidean
distances. Together, these interatomic distances represent individual entries in the
symmetric geometric distance matrix. An optimization problem has been set up using the
given property models with relevant structural constraints and solved for the minimum

value of soil sorption coefficient. The best three candidates and their respective atomic

signatures have been listed in Table 4.4.
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Table 4.4 - Solutions for solvent design study.

Molecule Atomic Signatures BP (°C) | log(TLC) log(Koc)
(ppm)
CH;CH,CH(CH3)CH, | 2x C1(C2(C3)) 62.3 34 1.54
2x C2(C1C3(C1C2))
CH; 1x CI1(C3(C2C2))

1x
C3(C1C2(C1)C2(C1)
(CH3),CH(CH;)>(CH3) | 2x C1(C3(C2)) 61.0 2.3 1.72
Ix C3(C1C1C2(C2))
1x
C2(C3(CIC1)C2(C1))
1x C2(C1C2(C3))

1x C1(C2(C2))
(CH3),CHCH(CHys), 4x C1(C3(C1C3)) 58.1 1.9 1.76
2x C3(C1C1C3(CIC1))

4.1.1 Conclusions

The solvent design case study presented here represents an initial attempt at utilizing
signature descriptors containing geometry information for the solution of molecular
design problems with descriptors of varying dimensionality. The signatures themselves
were optimized as isolated fragments without consideration of surrounding or attached
atoms. In this study, only the minimum energy conformers were accepted for
consideration within the optimization problem. The nature of the solution space allowed
for the complete molecular geometry of structures considered to be determined from the
largest atomic signature within the molecular signature vector. While the approach may
be feasible within this study, where the three-dimensional descriptor was not a strong
function of the finer details of the conformational information available, improved

methodologies are necessary for more complex applications. Studies with larger
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structures existing within the chemical search space will require the development of
global molecular geometry from several fragments. In addition, there may be many local
conformational minima possible with spatial descriptors that are very sensitive to these
varying atomic arrangements. For these reasons, the following studies will consider such
cases along with the methodologies useful for tackling problems with increased
complexity.

4.2 Design of Alkyl Substituent for Rice Plant Fungicide

Application of the molecular signature descriptor in accounting for topological,
topographical and information indices is illustrated through the optimal substituent
selection for dialkyldithiolanylidenemalonate (DD). DD has been shown to have
eradicant and protectant activity against rice blast disease. Uchida (1980) enumerated the
effectiveness of this fungicide in terms of affinity (log(VE)), mobility (log(x)) and
retention (log(R/(100-R))). These three attributes have been linearly related to the
lipophilicity (10g(Pociwar)) Of the chosen substituents. A QSPR was developed (Basak et
al., 1996) to model log(P) as a function of several different descriptors. Index values are
calculated only for the substituent regions of the fungicide. The structure of this fungicide

is shown in Figure 4.1.
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Figure 4.1 - Fungicide structure.
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Raman and Maranas (1998) previously visited this problem while correlating log(P)
values to the first order molecular connectivity index. The same upper and lower bounds
on mobility and retention are applied in this study, while the objective function is to
maximize substituent affinity to the rice plant. These property constraints can be found in
Table 4.5. Property models utilized in this study are shown in Table 4.6. The information
content (IC) indices infer a measure of molecular symmetry, and this formulation was
originally introduced by Shannon (1948). Another information theoretical invariant
utilized in the log(P) QSPR is the complementary information content (CIC) index

(Magnuson et al., 1983).

Table 4.5 - Fungicide substituent property constraints.

Property Upper Bound Lower Bound
Retention, log(R/100-R) -2.04 -2.48
Mobility, log(u) 0.3 -0.3
Affinity, log(Vg) Maximum

Table 4.6 - Fungicide study property models.

Property Property Model
Retention log(R/100-R)=0.72*log(P)-1.93
Mobility log(u)=-0.64*1og(P)+1.95

Affinity log(VE)=0.53*log(P)-0.24

log(P)=-5.60+0.19(P;)-1.46(ICy)+1.09(CIC5)-0.77(CIC3)-
Hydrophobicity 1.36(%")
+5.34("")-3.41("7")+0.55(%")-0.41Cx )+ 1.10(Vy)-0.17CP W)

129



The atomic signatures used in this study were hydrogen suppressed and were allowed to
exhibit one degree of unsaturation such that a bond to the existing fungicide structure
could be allowed. Given the above property constraints, each estimated through property
models utilizing varying descriptor types, the top three solutions were identified as shown

in Table 4.7, which shows the respective molecular signature vectors.
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Table 4.7 - Molecular signature solutions to fungicide problem.

Atomic Signatures Occurrence #’s
C1(C2) 2
C1(C3) 1
C2(C2C1) 1
C2(C3C1) 1
C2(C3C2) 1
C3(C2C2C1) 1
C1(C2) i
C1(C3) 3
C2(C3C1) 1
C3(C3C2C1) 1
C3(C3CICI) 1
C1(C2) 2
C1(C4) 2
C2(C4C1) 2
C4(C2C2CIC1) 1

As mentioned previously, each set of atomic signatures can refer to more than one
molecular signature. This is the case for solutions in the fungicide substituent design

study since several solutions can actually satisfy more than one resulting structure. The
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structural isomers have been enumerated for each solution, along with their respective

estimated properties in Table 4.8.

Table 4.8 - Substituent solution isomers.

Properties R1 R2
Affinity | Mobility | Retention

methyl 3-methyl-butyl
1.480 | -0.292 | -2.094 methyl 2-pentyl

ethyl sec-butyl

2-methyl-2-
1.521 | -0.193 | -2.326 methyl
butyl

1.704 | -0.138 | -2.163 methyl tert-pentyl

4.2.1 Conclusions

This study was an extension of the previous solvent design study in that it considered
more complex property models. Several of the solutions identified within the first study
(Chemmangattuvalippil, 2008) were also found in this case study. However, the inclusion
of spatial properties allowed for a different perspective on each property relationship,
which was not captured in the previous application. In addition to spatial descriptors,
information theoretic descriptors were also included in this analysis. While the solution
was deterministic in nature, the problem could have been potentially solved utilizing
linear programming techniques. This problem also addressed the issue of structural
isomers arising from degeneracy seen in the use of atomic signatures as a platform

deriving all other descriptors. The next step will be to solve problems in which the
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solutions are large enough to require geometry development from multiple fragments.
However, the proposed technique will need to be verified first to ensure that reasonable
molecular geometries are produced.

4.3 Geometry Estimation Technique Analysis

The solution of problems relying on spatial, or three-dimensional, descriptors for
structure characterization necessitates the consideration of molecular geometries. The
most straight-forward and thorough approach is to carefully evaluate the potential energy
surface (PES) of each structure considered within the search space for a given molecular
design problem. However, this approach is computationally demanding and limits the
region of chemical space that can be searched. While this technique is feasible for lead
optimization stages in drug design studies, where the potential candidates have been
substantially narrowed down to just a few structures, its application in many virtual
screening situations becomes limited. As such, techniques for quickly estimating the PES
of candidate molecules, or perhaps identifying likely conformational minima, become
beneficial in the solution of these problems. The simplest approach, and most limited in
producing realistic geometries, would be to utilize a database of conventional bond
lengths and angles etc. to estimate the resulting geometry. Another technique, as
discussed in the first case study on solvent design, could be to use fragment geometries to
develop a global molecular geometry. The limitations of this approach have been
addressed. To overcome these limitations, an approach has been developed which applies
the same concept, however, with more detail. The fragment based approach for
developing an estimation of the PES for structures considered within a CAMD problem

has been explained in the background section of this dissertation. However, what remains
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is verification of this technique. The approach taken to verify the aforementioned

methodology will be as follows:

1. Choose a data set on which to develop spatial atomic signatures.

2. Leave out structures within the chemical space of the test set from step one for

comparison.

3. Develop an estimated set of conformers from the initially obtained atomic

signatures using the proposed methodology.

4. Independently develop a set of local energy minima, utilizing the same level of
theory for geometry optimization, with which to compare against the estimated

PES.

5. Compare the two sets of conformational isomers for structures in the test set to

see what percentage of this information was captured in the PES analysis.

4.3.1 Analysis of Methodology in Organic Space

The initial verification of the geometry development methodology was chosen for a data
set of organic structures. Within the data set exists linear alkane structures, as well as
structures containing double bonds and branched alkanes. This data set is chosen such
that the effect of the proposed technique could be studied on structures with varying
potential energy surfaces, with some structures having less conformational flexibility
than others. The data used to develop the respective atomic signature basis set can be
seen in Figure 4.2, with the hydrogen-suppressed structures shown. In addition, the test

set is shown in Figure 4.3.
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Figure 4.2 — Geometry verification data set.

Figure 4.3 — Geometry verification test set.
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Both sets of structures were initially drawn into Avogadro and optimized using
molecular mechanics with the MMFF94 force field (Halgren, 1996), which was chosen
for its ability to reproduce accurate geometries for alkanes and alkenes. The steepest
descent algorithm was utilized with 10000 steps and a convergence criterion of 107, This
was the technique used to develop a consistent initial geometry, which was utilized as
input to the conformational analysis step. This initial geometry, in the form of a .mol file,
was used as input to create a z-matrix file for which a subsequent Monte Carlo
conformational search could be performed within the BOSS program (Jorgensen and

Tirado-Rives, 2005). The Monte Carlo method has been shown to quickly and effectively




explore the conformation space for a range of molecular structures (Chang et al., 1989).
The conformational search began with 100 starting structures and those with a
conformational strain energy within 5 kcal/mol of the lowest conformer identified were
kept. Table 4.9 lists the number of conformers identified in this range for each molecule

in the data and test sets.

Table 4.9 - Conformers identified with MC search.

Structure | Conformers Identified
(type) (within 5 kcal/mol)
T1 7
(alkane)
T2 5
(alkene)
T3 9
(branched)
D1 4
(alkane)
D2 9
(alkane)
D3 5
(alkene)
D4 5
(alkene)
D5 16
(branched)
D6 9
(branched)

As can be seen in Table 4.9, the branched structures typically have a more
complicated potential energy surface. This could partially be a result of the fact that the
branched alkanes have more atoms, on average, than the linear structures used in this
study. However, the trend of alkenes having a less complex potential energy surface,
identified by the lower number of conformers found during a comparable PES scan, is

consistent here. This is likely a result of the double bonds decreasing the rotational
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degree of freedom for a given alkene structure when compared to a similar structure with
single bonds. A visualization of the potential energy surface for butane and butane, for
one degree of freedom, can be seen in Figure 4.4. This reveals the increased complexity
associated with the higher degrees of freedom, resulting from more rotatable bonds. This
can be extended, when considering that a branched alkane would have more bonds to
rotate around, to hypothesize that their potential energy surface would be relatively more

complex than similar alkenes or alkanes.
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This geometry estimation methodology was shown to be successful in identifying
the likely local energy minima associated with a set of alkanes and alkenes. At a cutoff
criterion of 5.5 angstrom and a conformer comparison criterion of 3.2 angstrom, the
method was able to reproduce all 21 conformers identified within the previous study. In
addition, it is helpful to consider the results in Figure 4.5. This chart shows the number of
spatial atomic signatures left after compression using various cutoff values (which
discards conformers for being too similar). A larger cutoff value would result in more
conformers being discarded and a smaller value would maintain more of them for a more

complete description of the PES of each atomic signature.
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Figure 4.5 - Conformers after compression.

This approach represents a convenient estimation of the PES for various molecules
in an expedited manner. Such a technique will prove useful in the solution of CAMD
problems requiring spatial information, such as those using property models with three-
dimensional descriptors. However, it is necessary to perform some degree of sensitivity

analysis based on the nature of a chosen data set. Larger, more complex structures could
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have a much more complicated potential energy surface and a smaller cutoff criterion for
developing spatial atomic signatures would be required. This can be done by selecting a
few structures, representative of the chosen data set, and running the algorithm discussed
above, which tests how many conformers can be recreated for a given cutoff. There is an
inherent ‘sweet spot’ that is specific to each data set chosen and must be identified such
that the algorithm is most effective. This could be done by repeating the previously
covered geometry verification methodology until a desired number of conformational

isomers are captured with the chosen cutoff value.

4.4 Structure Based Design of Non-Peptide Mimetics

This contribution outlines an algorithm for the design of mimetics based on information
from existing pharmacophore models. Ideally, these techniques could be implemented
alongside conventional high-throughput screening (HTS) efforts to alleviate the time and
costs required to develop new therapeutic drugs with improved processability. This study
represents a first attempt at solving problems necessitating geometry estimation from
fragment geometries.

4.4.1 Pharmacophore and Non-Peptide Mimetics

3

The TUPAC definition for a pharmacophore is given as ‘... the ensemble of steric and
electronic features that is necessary to ensure the optimal supramolecular interactions
with a specific biological target structure and to trigger (or to block) its biological
response’ (Wermuth, 1998). These models can be developed with or without geometric
characterization of the targeted receptor. If the receptor structure is known, several

computer-assisted docking techniques can be utilized to develop the pharmacophore

model. When the receptor structure is unavailable, there are various superpositioning
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techniques available for comparing the spatial features found in ligands and using this
information for model development. These alignment techniques are often limited by
their inability to capture the conformational flexibility of ligands under consideration.
Several algorithms have been developed to overcome this limitation and most are based
on pre-calculation of ligand conformations, and/or distance geometry (e.g. the geometric
distance between important structural/electrostatic features) (Wolber et al., 2008). Many
attempts at utilizing pharmacophore models to develop novel mimetics have focused on
replacing the peptide backbone with a non-peptidic framework, or identifying cyclic
peptide derivatives (Olson et al., 1993). The limitation of these solutions in regards to
oral-bioavailability, drug-likeness, and stability leads to the consideration of alternative
approaches. A trend towards models built with more generalized features and a thorough
conformational analysis, with rotational and translational invariance, could allow for the
extension of in-silico screening to include potential non-peptide candidate mimetics.
Properties related to drug-likeness, such as those established in Lipinski's rule of 5,
provide a quick estimation as to the potential pharmacokinetics in the human body as
well as other important properties like absorption, distribution, metabolism and excretion
(ADME) (Lipinski et al., 2001). These rules can place limits on something as simple as
the molecular weight or as complex as the molar refractivity or molecular polar surface

arca.

4.4.2 Model Information

The case study chosen to test this algorithm is based on a 3D pharmacophore model
developed for 5-Hydroxytryptamine6 (5-HT6) receptor antagonists (Lopez-Rodriguez et

al., 2005). Evidence suggests that this receptor may be involved in memory impairment,

140



psychosis, convulsive disorders, appetite control, and other related central nervous
system diseases. This pharmacophore model was developed with the pharmacophore
development software called Catalyst (Kurogi et al., 2001) from a training set of 45
structurally diverse antagonists and the optimal model is represented Fig. 4.4. Four
regions were identified (Lopez-Rodriguez et al., 2005) to be necessary for optimal
receptor blocking, and these include: a hydrophobic site (HYD), an aromatic ring
hydrophobic site (AR), a positive ionizable atom (PI), and a hydrogen bond acceptor

(HBA). Respective euclidean distances (A) between model features are also shown.

Figure 4.6 - Pharmacophore Model for 5-HT6.

4.4.3 Atomic Signature Development

A sub-set of 22 structures, chosen to represent diversity found in the original
pharmacophore training set, was chosen as the basis set for the development of spatial
atomic signatures to be utilized in the in-silico design of a potential 5-HT6 antagonist
with improved bioavailability. These structures were initially drawn into the Accelerys
Draw 4.0 program (Accelerys Inc., 2001) and the resulting 2-Dimensional MDL mol file

was imported into Avogadro for estimation of an initial geometry, for which the Merck
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Molecular Force Field (Halgren, 1996) was utilized as a suitable candidate to develop a
rough initial geometry. A Monte Carlo conformational search, with 200 starting
geometries, was performed for each structure and all isomers within 20 kcal/mol of the
lowest energy conformer were accepted for further calculations. This conformational
analysis was performed in the Biochemical and Organic Simulation System (BOSS)
software (Jorgensen and Tirado-Rives, 2005) through application of the xCS200 script,
which performs a conformational analysis with 200 starting structures. From the original
22 structures, 508 conformational isomers were ultimately accepted. In house software,
facilitated through the use of Faulon’s signature software (Faulon, 2014), was developed
for the conversion of input mol files, for each conformational isomer, to their respective
height 3 atomic signatures. This software was written in Python and the results for the
signature software were used as input to the program. From the 23,368 atomic signatures
derived from the data set, 254 of these were identified as being unique structural isomers.
Upon bonding network generation, about 2.96% of the pairwise signatures were
identified as being capable of bond formation. Conformational isomerism data was stored
in the respective structural isomers as a dictionary of Cartesian coordinates representing
the relative positions of all atoms in each conformer. The measure of similarity used for
comparing conformational isomers, or graph isomorphisms, was the root mean square
difference in inter-atomic distance values. By setting a limit of 0.2 A as the maximum
acceptable difference between equivalent inter-atomic distances in conformational
isomers, the number of signature fragment conformers was reduced by 73%, from around
23,000 to 6,340. This reveals a high degree of spatial similarity between conformational

isomers for each type of signature. Since these atomic signatures were derived from a set
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of structurally diverse molecules, this provides some verification for the reasonability of

using fragment geometries to build global molecular geometries.

4.4.4 Combinatorial Optimization

The applicability domain for this study was defined in terms upper and lower bounds
placed on the signature occurrence vector. These bounds were set between zero and the
maximal number of repeats for a specific atomic signature as identified in the basis set.
The Python itertools module was utilized to generate all possible combinations of atomic
signatures within the AD defined. Each molecular signature vector encountered was
initially tested against structural feasibility constraints and subsequently against the
multi-dimensional criteria covered in section 3.3. Some example of structural fragments

identified as meeting the various pharmacophoric sites are shown in Figure 4.5.

HYD HBA AR P1
=N NV, N TN N
Ll /N [l |
X~ i P i S

[\ 7/ 25NN f
7z~ /S | | | NN
l ~
| Il NN
> -
=) / /\\
T

\\ -7 e
- | Il

=

Figure 4.7- Example pharmacophore groups.

A five percent relaxation was placed on spatial criteria in the pharmacophore model to
allow for potentially strained geometries to be considered. For each conformational
isomer identified as meeting the required constraints a single point energy calculation

was performed on the estimated geometry. In addition, this initial geometry underwent a
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molecular mechanics energy minimization, utilizing the Austin Model 1 (AM1) (Dewar
et al., 1985) semi-empirical force field, after which another single point energy
calculation was made. A ratio of minimized strain energy to the strain energy calculated
from the initially developed geometry was utilized as a metric with which to rank the
candidate solutions. The idea here is to award candidate structures for lying near a local
energy minimum, which would indicate an increased likelihood of achieving this
geometry in solution. The final number of structures meeting the multidimensional
criteria placed on this study was 22. Several of the highest ranked candidates were
conformational isomers of structures used in the test set. The top three isomers exhibiting
acceptable spatial characteristics, as well as a favorable measure of single-point energy
with respect to the nearest local conformational minima have been shown in Figure 4.8.
All of the solutions identified for this case study, along with the metric utilized to rank

them, can be found within
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Figure 4.8 - Solutions to antagonist design case study.
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4.4.5 Conclusions

The following methodology has been developed for the solution of multi-dimensional
inverse molecular design problems while quickly estimating the conformational space of
each structural isomer presented. The use of a fragment-based, spatial Signature
descriptor was chosen for its compatibility with such a combinatorial algorithm aimed at
scanning a large region of chemical space. The algorithm takes the approach of satisfying
lower dimensional criteria first so that the computational expenses associated with
developing/analyzing more complex criteria, such as that associated with geometric
analysis, is minimized. Flexibility in the use of varying data sets for spatial signature
development could allow for the application of this methodology at various stages of

molecular design, or more specifically drug development.

The case study chosen to exemplify the benefits of this approach was the design of a
receptor antagonist with potential therapeutic benefits. Several candidate solutions were
identified that were not part of the initial training set. Based on the signature height used
in this study, and the nature of the data set with many cyclic structures, the structures

tested were fairly similar to the original set.

4.5 Solvent Design with Genetic Algorithm

The case study chosen to exemplify this stochastic approach involves the design of a
molecule with a specified boiling point temperature. Basak et al. (1996) developed a
structure activity relationship correlating various 2D and 3D molecular descriptors to the
normal boiling point for a data set of 1023 chemicals from the Toxic Substances Control
Act (TSCA) Inventory. Only those molecules with a listed normal boiling point value and

where the hydrogen bonding potential was estimated to be equal to zero were chosen.
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The goal of this study was to determine the optimal combination of descriptors between
2D, 3D, and 2D+3D. Most of the topological indices for each chemical within the chosen
dataset were calculated utilizing the computer program POLLY (Basak et al., 1988).
Because of the varying nature of descriptor values, topological indices were transformed
by the natural logarithm of the index plus one. One was added since many of the indices
were found to be zero. Geometric parameters were transformed by the natural logarithm
of the parameter. Two different regression techniques were utilized. When the number of
independent variables was large, stepwise regression was chosen. However, when the
number of independent variables was small, all possible subsets regression was used. To
include both sets of descriptors, each capturing varying dimensionality, the following
model development procedure was chosen. First, only topological indices were utilized to
identify the best model. The topological indices utilized within this model were then
added to a set of topochemical indices and the best model from this combined set of
indices was developed. Finally, the best topological/topochemical indices were then
added to the set of geometrical descriptors, from which an optimal model was once again

created using a subset of these.

The model containing only topological indices utilized 11 parameters and resulted
in an explained variance (R”) of 80.8% and standard error (s) of 40.9°C. With the addition
of topochemical parameters, a model using two topological and seven topochemical
parameters was identified as best, having an R of 96.5% and s of 17.4°C. The best fit
model, shown in Equation 4.2, resulted from a combination of 2D topological, 2D

topochemical, and 3D descriptors with an R of 0.967 and an s of 16.8°C.
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This model contains descriptors of varying nature, each capturing a unique aspect of
molecular architecture. As far as topological indices, the sixth order path connectivity
index (%) and number of paths of length 10 (P;) are included. For topochemical indices,
the information content based on the zeroth order neighborhood (ICy), the sixth order
bond path connectivity index (°"), the third order bond cluster connectivity index (*y°c),
the zeroth order valence path connectivity index (“y"), the second order valence path
connectivity index (*"), and the fifth order valence path-cluster connectivity index were
utilized. As for geometric indices, the three-dimensional Wiener index (*°W) was used in
both its hydrogen suppressed and hydrogen inclusive format. The summation of this
information was found to be optimal in capturing the variance seen within the data set
with respect to boiling point. This situation fits the criteria of the established method in
that descriptors of varying dimensionality have been utilized for a large set of molecular
structures. As such, it was chosen as being suitable for the description of boiling point

and used within the stochastic molecular design framework previously established.

4.5.1 Development of Spatial Signatures

A subset of 245 molecules was chosen from the initial 1023 utilized to develop the
boiling point property model with the aim of maintaining the original variance in
structural features. These structures were initially drawn into the Avogadro molecular
modelling program and were quickly optimized to provide a starting point geometry. The
force field utilized for this initial optimization was MMFF94, which was chosen by its
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ability to produce reasonable geometries for the chosen data set, and the steepest descent
algorithm was applied for 10,000 steps or until a convergence of 107 was met. This step
was fairly quick with an average optimization time of about 4-6 seconds. The method
utilized for conformational analysis, within the BOSS molecular modelling software, was
the AM1 molecular mechanics force field. A conformational analysis was performed for
these molecules with an acceptance criterion of each conformer being within 15 kcal/mol
of the identified conformational minimum. These conformers were dissected into 194
unique height-2 atomic signatures, or structural isomers. The conformational information
for each signature was further compressed by removing conformers exhibiting a
similarity limited to 0.2 angstrom for each pairwise inter-atomic distance comparison.
4.5.2 Parameters Utilized

The parameters necessary for this design problem include a lower (10) and upper (25)
bound placed on the number of atoms allowed in candidate molecular graphs. In addition
the lower and upper limits on acceptable boiling points were placed at 75 and 80 °C,
respectively. The steady state population size was chosen to be 100 graphs and each run,
of which there were 10 total, continued for 100 generations. The probability of mutation
and crossover operators were both set to 0.5. The f variable discussed in section 2.3.2
was set to 0.15 and the gaussian fitness decay rate, a, was set to 0.1. The f variable was
chosen such that the size of solutions could be preserved within a reasonable range,
which was chosen to be within 15 percent of the identified optimal size. The gaussian
fitness decay rate, a, was chosen with consideration of the expected distribution in
potential solutions. The variable essentially determines how quickly a solution’s fitness

value drops off as it leaves the desired property range. In this case, the desired property
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range was very small, being only a difference of 5 °C. As such, a larger a value created a
fitness function which was ‘harsh’ enough to discriminate between very close property
values for such a short property range. This effect can be seen in Figure 3.11. The
probability of selection between mutation and crossover operators was chosen to be 0.5
based upon an initial size control study. Within this study, the probability was varied
between 0.1 and 0.9 and the criterion for the algorithm was to approach a desired preset
molecular size, from which fitness was derived based upon closeness to this size. It was
found that larger probability values, which favored crossover operations more heavily,
were less effective at guiding the algorithm towards this desired size. The reason for this
is that the crossover operator has no discrimination towards the size of the resultant
molecular graph. As such, it was also found that a value of 0.5 was acceptable at driving
the algorithm towards the optimal size while still visiting a reasonable size range around

the optimal size.

4.5.3 Results and Conclusions

The exhaustive combinatorial search for solutions in a chemical space of this size would
have been much more time consuming, whereas the genetic algorithm applied here was
able to identify satisfactory solutions more quickly. This approach could benefit from
inclusion of new types of mutation operators; however the techniques utilized here were
effective in controlling the size and diversity of solutions generated. The following graph,
shown in Figure 4.9, exemplifies the typical progression of average population fitness as
a function of the generation number. A trend of steadily increasing fitness can be seen as
the progression of mutation and mating between previous generations is facilitated

through the various operators.
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Figure 4.9 — Fitness as a Function of Generation

Many of the solutions were repeated throughout the algorithm, leading to a smaller
number of solution structures than initially estimated, and the average number for the ten
trials conducted was around 20. Some of the more common solutions have been shown

below in Table 4.10.

Table 4.10 — Common Solutions Identified During Solvent Design Case Study

Chemical Estimated Boiling Experimental Relative
Point (°C) Boiling Point (°C) | Difference (%)
carbon tetrachloride 75.9 76.8 1.2
ethanol 78.7 78.5 0.3
2-methyl-1,3-pentadiene 76.4 79.0 3.3
2,2, 3-trimethylbutane 80.0 80.9 1.1
2-butanone 79.5 79.6 0.1
1,3,5-hexatriene 78.8 78.0 1.0
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1,2-hexadiene 75.0 76.0 1.3
ethyl acetate 77.3 77.0 0.4
2,2-dimethylpentane 77.8 79.0 1.5
2,4-dimethylpentane 80.1 81.0 1.1
2,2,2-trifluoroethanol 79.3 78.0 1.7
2,3,3-trimethyl-1-butene 78.3 79.0 0.9
acetonitrile 79.7 81.6 2.4
2-methyl-2-propanol 79.5 82.2 33
isopropyl alcohol 78.0 82.5 5.6
4,4-dimethyl-2-pentene 79.4 79.0 0.5
3,4-dimethyl-1-pentene 78.1 80.0 2.4
1-butanal 75.5 74.8 0.9
2,3-dimethyl-2-butene 76.7 73.0 4.9

A stochastic molecular design algorithm, in the form of a genetic algorithm, was chosen
for solving problems containing large search spaces with complicated multi-dimensional
descriptor sets. The technique was successful in identifying several unique solutions for
the problem at hand. Several parameters, including a, f, and the Gaussian decay rate
variable, must be optimized before allowing the algorithm to run to completion. This
would ensure that the search is optimized for the specific property models utilized as well
as the search space chosen. Overall, this method was found to be promising at solving

such complicated CAMD problems and the development of more complex operators,
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including a double point crossover, could prove to be beneficial at tackling more diverse

data sets.
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5. Conclusions and Future Direction

A methodology for the solution of computer-aided molecular design problems with
multi-dimensional characterization has been presented within this dissertation. This
technique has allowed for the solution of such problems in a more efficient manner when
compared to many of the techniques previously utilized. The reason for this is that
molecular design problems utilizing varying property models with descriptors of different
dimensionalities can now be solved on a common platform. This provides the freedom to
choose the optimal property models for each problem without limitation to the types of
descriptors utilized. The signature descriptor, while initially developed (Faulon, 2003) to
solve problems containing a maximum dimensionality of two, was extended to include
spatial information. The use of this fragment based descriptor facilitated reconstruction of
potential solutions, being rooted in graph theoretical concepts, which allowed quick
identification of all possible structural isomers relating to a group of molecular fragments.
Further, conformational isomers could be estimated conveniently from fragment
geometries since the signature descriptors overlap with each other by design, which

eliminated the need for excessive conformational analysis of all potential solutions.

The initial methodology was developed to solve the problems presented in a
deterministic manner, which considers the entire search space and guarantees
identification of a global optimal solution. While thorough, this was seen as a limitation
in solving larger molecular design problems with a bigger search space. As such, a
stochastic evolutionary methodology was developed, along with the operators necessary
to guide a population of solutions towards a set of desired property values. These

operators included a single point crossover, deletion mutation, insertion mutation, and
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fragment mutation. This technique was found to be effective at quickly identifying
solutions meeting the desired criteria. In addition, it was able to identify several likely
candidates instead of just searching for one global optimal solution, which is often the

case in the solution of non-linear optimization problems such as these.

Within these two approaches at solving multi-dimensional molecular design
problems it was necessary to develop many new methodologies for handling problems of
this nature. The extension of signature descriptors to include spatial information
necessitated molecular modelling techniques, from which the information had to be
compressed for efficient usage within the algorithm. Additionally, both the stochastic and
deterministic approaches described within this dissertation were coded and can be found
within the attached appendix. Several different sources of software were utilized in a
unique manner to generate the necessary information and new modules had to be
developed to transform this information into a suitable format. The programming written
to complete these tasks was written in Python, and occasionally shell scripts were written

to transport this information into Python and automate molecular modelling tasks.

Several case studies have been presented to exemplify the applicability of this
technique ranging from solvent design to the design of non-peptide mimetics. While a
successful approach to molecular design, there are several limitations which need to be
addressed. These limitations ultimately lead to the proposed future direction of the

project, which can be found in the following sections.
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5.1 Improved Simulation Techniques

The conformational analysis of molecular structures in all studies presented within
this dissertation was done in a vacuum using varying levels of theory within the
molecular and quantum mechanical approaches. In reality, this is not an optimal
representation of molecular structures which are typically in solution or bound to form
molecular complexes. Extension of this technique to generate molecular conformations
which would more likely be found in these situations could be beneficial to the solution
of more complex CAMD problems. This could perhaps be done by developing the initial
spatial atomic signature data set from simulations of structure in solution or interacting
with other molecules. One such approach could take advantage of the data generated
through molecular dynamics simulations, to provide more realistic estimations of the

geometry of potential solutions.

Molecular dynamics (MD) is a computer simulation of the physical movements of
atoms and molecules within the simulation. The trajectories of atoms and molecules are
determined by numerically solving Newton’s equations of motion for a system of
particles. The forces between atoms and molecules are determined by application of a
molecular mechanics force field. Since it is currently impossible to solve for the
properties of complex systems through analytical means, MD simulations afford the
possibility of numerical analysis. These simulations have been applied successfully to the
modelling of very large systems including: simulation of the complete satellite tobacco
mosaic virus (Freddolino et al., 2006), which allowed researchers to probe the
mechanisms of viral assembly; simulation of protein folding events such as that of the

Villin Headpiece (Yong et al., 1998), which is an actin-binding protein; simulation of
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nano-scale events such as the exfoliation of grapheme layers (Buddhika and Subbiah,

2011).

What these simulations provide with respect to the proposed methodology is a more
accurate simulation/estimation of the spatial properties for a collection of molecules. This
information is much closer to reality when compared to the conventional gas phase
simulations utilized to gain insight into a molecule’s preferred spatial conformations.
This is because gas phase simulations often consider a single molecule isolated in
vacuum space, whereas MD simulations consider the environmental interactions and how

they affect preferred conformations.

There are several notable examples within the CAMD community where MD
simulations have been successfully applied in the characterization and prediction of
properties/attributes. One such example involves the prediction of ionic liquid properties
including density, viscosity, diffusivity, melting point, enthalpy of vaporization and
surface tension. Ionic liquids are salts which are liquid at room temperature and they
possess at least one asymmetric unit comprised of a large organic cation and an organic
or inorganic anion. The structural asymmetry makes their crystallization difficult and
because of this they have an extremely low vapor pressure, high chemical stability, and
good solvating capacity for organic and inorganic compounds and even biopolymers.
Some examples of the most common cations and anions found in literature are shown in

Figure 5.1.

156



Yy o

Q) O Qg Ao

1-butyl-3-methylimidazolium I-butyl-3-methylpyridium I-butyl-3-methylpyrrolidinium tricthylsulphonium tetracthylammonium
0 N
F 3 N F cl
| i - V4 chloride
A —F
F—P=—F g—B = /c F
b N (o] Br”
F F F - F
i : bromide
hexafluorophosphate tetrafluoroborate dicyanamide trifluoroacetate
N= s
N N N
o \\ // Q o I , thiocyanate
\\ fo \\s/ ,
N—F5 B \ 0
- sC F hY e i
= N
Fo/ o 7 N / \ o= Ne
0 F F N / N N ' \\\\“\‘N \Ej

bis(trifluoromethylsulfonly))imide tetracyanoborate tosylate tricyanomethane nitrate

Figure 5.1 - Examples of Common lonic Liquid Cations and Anions

While atomic scale descriptors, such as topological and topographic indices, have
provided excellent correlations in the past, larger scale simulations, such as MD, provide
a wealth of information which is not captured by studies at a smaller length scale. For
example, the radial distribution function can be estimated through MD simulations and is
quite useful for estimating the density of a given solvent, pure or even a mixture. Because
of this, MD simulations are able to provide improved estimates for bulk properties when
the force field utilized has been optimized for the given case. The interaction effects
associated with molecules in a condensed phase are considered and this provides a more

realistic estimation of the spatial properties seen for a given structure.

5.2 Consideration of Proteins
The signature descriptor has already been used to successfully explore the chemical space
of proteins (Churchwell et al., 2004). The inverse quantitative structure-activity

relationship (QSAR) approach was applied to a small set of inhibitory peptides directed
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against leukocyte trafficking and localization. The forward approach of developing a
QSAR was first conducted to develop a property model relating the occurrence of atomic
signatures to the potency of a given peptide as measured by ICsp, which is the
concentration that leads to half-maximal inhibition of receptor to ligand. A forward
stepping algorithm was applied to select the most statistically significant signatures,
which were then correlated to the logarithm of ICsy values. A Diophantine solver was
applied to solve this equation in terms of the optimal set of atomic signatures. The next
step was to generate all possible molecular structures containing these chosen signatures.
The goal was to identify a novel inhibitory peptide possessing a lower ICsy value than
any other structure within the training set. The group was able to identify and synthesize
two peptides which were found to be the strongest inhibiting peptides to date, and they
were measured as being very close to their estimated values. This study exemplifies the
applicability of using atomic signatures towards exploring the chemical space of a set of
proteins and identifying novel solutions with improved properties. While the descriptors
utilized were the atomic signatures themselves, which simply contain two-dimensional

information, a strong correlation was identified nonetheless.

It is well known that the association between ligands and receptors are strongly
influenced by the spatial properties of both molecules involved. As such it would be
useful to include such information in the CAMD efforts associated with identifying
inhibitors with improved binding affinity. The problem with this approach is that,
especially for protein structures, the conformational space associated with these potential
inhibitors is very complex and requires much computational effort. In addition to having

local geometry information such as bond lengths and angles, proteins also contain higher
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order structural features known as secondary and tertiary structures. This information is
difficult to capture at a local fragment-based level, however there are techniques
available for estimating protein tertiary structures from fragment geometries. One such
approach by Simons et al. (1997) develops this higher order structural information from
fragments using simulated annealing and Bayesian scoring functions. In this technique,
they are able to assemble native-like structures from fragments of unrelated protein

structures with similar local sequences using these Bayesian scoring functions.

Previous applications, within this dissertation, have shown that the global geometry
of a given molecules can be successfully estimated by the individual contributions from
local fragment geometries. However, this was studied for only smaller organic structures.
The secondary and tertiary structures associated with proteins are much more difficult to
estimate and applying the methods utilized before would lead to protein structures which
are considerably more expanded than native proteins. To account for this, one could
initially assemble a set of protein conformers using fragments, and this would provide a
reasonable starting point for further exploration of the protein’s torsional space.
Exploration of the torsional space could be guided by the process of conformational
space annealing, such as that which was successfully applied in the Simons et al. (1997)
study. This allows the algorithm to search a wide area within the conformational space of
each protein, and ultimately/quickly converge on a set of likely local energy minima.
Conformational space annealing has been applied in other optimization studies (Lee et al.,
1997) and was successful in exploring the conformational space of reasonably complex

protein structures.
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5.3 Simulated Annealing

Simulated annealing (Van Laarhoven and Aarts, 1987) represents a class of solution
methods applied for combinatorial optimization problems with analogies applied from the
physical process of annealing. Annealing is the physical thermal process of melting a
solid by heating it, followed by slow cooling and crystallization into a stable state. This
approach has been applied to CAMD studies (Ourique and Telles, 1998) and
conformational analysis studies (Kleber and Tsallis, 1996) with much success. Starting at
a higher “temperature” the search algorithm is allowed to explore less favorable solution
spaces, denoted by a higher conformational energy or being further away from the
desired properties with respect to a CAMD problem, such that it does not get stuck in a
local metastable state. The temperature is slowly dropped, or cooled, so that the structures

generated have in increased likelihood of exhibiting the desired properties.

It has been established within this dissertation that the nature of many CAMD
problems is highly nonlinear such that linear programming techniques cannot be applied.
In addition, the complexity of many descriptors and property models utilized make
application of an MINLP technique very difficult. As such, the application of stochastic
optimization techniques was necessitated because of these reasons, in addition to the
large search space considered by most ambitious CAMD problems. One technique
presented within this dissertation is known as genetic algorithm, and it was shown to be
successful towards solving problems of this nature. However, it would be beneficial to
explore additional stochastic optimization approaches, such as simulated annealing,

because of their success in similar applications.
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One application of simulated annealing (SA) within the CAMD community can be
found in study by Ourique and Telles (1998). This work solved problems identifying pure
substances or mixtures that satisfied a set of chemical or physical properties by
representing molecules as chemical graphs and applying a simulated annealing algorithm.
Molecules were represented as hydrogen-suppressed graphs with bonding and atom type
information stored within a structure-composition matrix. Within this square matrix,
group identities were stored in the main diagonal with zeroes and ones in the remaining
entries corresponding to bonds between these groups. In this case, the representation of
molecules was provided in the matrix; however, the defined search space would be vast
utilizing an atom based description of molecules. The utilization of signature fragments
as molecular building blocks would further contain the search space such that structures
would be more likely to fall within the applicability domain of the chosen property
models. In addition, extension to consider conformational information would fall in line
with the simulated annealing approach. While the SA algorithm could act on the initial
graph itself, estimation of likely conformational minima could be processed in the same
manner. This would provide a common algorithm with which to analyze the feasibility of
various molecules for a given CAMD problem, while also exploring the structural and
conformational capabilities of a chosen search space. Such an approach could prove to be
beneficial in identified novel chemical solutions unattainable within the GA approach

because of the initial exploration of unfavorable regions in chemical space.
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Appendix A — Python Code for Proposed Methodology
A.1 — Creation of Spatial Atomic Signatures from Directory

The format chosen for developing atomic signatures from a given data set is to specify a
directory containing the mol files of the data set and turn each of these molecules into a
graph and subsequently their respective atomic signature graphs. A flowchart explaining

the flow of information can be seen in Figure A.1.1.

For each .mol file identified within the
chosen directory

|

Create a networkx graph
encompassing the entire molecule and
import atomic signature for each node

within graph

1

For each node within the graph

|

Initiate the respective sub-graph of
height corresponding to chosen
atomic signature height

1

Append the subgraph to the
appropriate bin according to its atomic
signature

Figure A.1.1 — Flowchart for the generation of atomic signatures from mol files.

The following code exemplifies how this is achieved within a python framework. The

technique for generating hydrogen suppressed molecular graphs is also shown.
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import networkx as nx

import networkx.algorithms.isomorphism as iso
import math

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict

from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter

import random

valence dictionary = {'C"4,'0"2,'H":1,'N":3,'S":2,'CI':1,'F":1,'Br":1}
bond_dictionary = {1:1,2:2,4:1.5}

class Directory:

def init (self,full parent directory):
self.full_parent_directory = full_parent directory
def create_signatures(self,height):
"""This function canonizes the mol files in directory and stores signatures in self.signatures dictionary"""
self.height = height
self.signatures = defaultdict(lambda:defaultdict(list))
self.subgraphs = []
self.compressed_subgraphs = []
self.working_signature ="
if self.full parent directory[-1]=="/":
self.full_parent directory = self.full parent_directory[:len(self.full_parent directory)-1]
mol_files = self.full_parent_directory + '/*.mol'
file_iter = glob.iglob(mol_files)
total_subgraphs = 0
signatures_stored = 0
graph_count =0

for fn in file_iter:
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# Creating a nx.Graph from the mol file
G = nx.Graph()
if 'OpenBabel' in str(linecache.getline(fn,2)):
atom_bond_number_line =4
else:
atom_bond_number_line =5
atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip())
bondn = int((linecache.getline(fn,atom_bond_number line)[4:8]).strip())
coordinate_begin_line = atom_bond_number_line + 1
coordinate_end line = atom_bond number line + atomn
bond_begin_line = coordinate_end_line +1
bond end line = coordinate_end_line + bondn
for i in range(bond_begin_line, bond_end_line + 1):
atom1 = int((linecache.getline(fn,i)[0:4]).strip())
atom?2 = int((linecache.getline(fn,i)[4:8]).strip())
bondtype = int((linecache.getline(fn,i)[8:10]).strip())
G.add_edge(atom]1, atom2, type=bondtype)
for i in range(coordinate_begin_line,coordinate_end_line + 1):
j=1-(atom_bond_number_line)

G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
float((linecache.getline(fn,i)[ 14:21]).strip()),float((linecache.getline(fn,1)[24:317).strip())])

G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())
# Now breaking this graph into subgraphs
nodes = G.nodes _iter()
for node in nodes:
subgraph=nx.ego_graph(G, node, radius=self.height)
subgraph.graph['degree'] = subgraph.degree(node)
subgraph.graph['center'] = node
subgraph.graph['atom'] = G.node[node]['atom']
subgraph.graph['rebuild'] = graph_count
self.subgraphs.append(subgraph)
graph_count += 1
print 'Subgraphs created:',len(self.subgraphs)
for subgraph in self.subgraphs:

match_status =0
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if len(self.compressed_subgraphs) > 0:
for subgraph_list in self.compressed_subgraphs:
m = iso.categorical_node_match('atom’, 'C')
m = iso.numerical_edge match('type', 4)
GM = iso.GraphMatcher(subgraph,subgraph_list[0],node match = nm, edge match = em)
if GM.is_isomorphic():
match_status = 1
new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True)
subgraph_list.append(new_graph)
break
if match_status == 0:
new_list =[]
new_list.append(subgraph)
self.compressed subgraphs.append(new_list)
else:
new_list =[]
new_list.append(subgraph)
self.compressed_subgraphs.append(new _list)
conformers = 0
signatures = 0
for each_list in self.compressed subgraphs:
signatures += 1
conformers += len(each_list)
print 'Subgraphs stored:', conformers
print 'Overall there were:', signatures, 'unique signatures identified.'
def create_suppressed_signatures(self,height):

"""This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures
dictionary™""

self.height = height
self.signatures = defaultdict(lambda:defaultdict(list))
self.subgraphs =[]
self.compressed_subgraphs =[]
self.working_signature ="
if self.full parent_directory[-1]=="/":
self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1]

mol_files = self.full_parent directory +'/*.mol'
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file_iter = glob.iglob(mol_files)
total_subgraphs = 0
signatures_stored = 0
graph_count =0
for fn in file_iter:
# Creating a nx.Graph from the mol file
G = nx.Graph()
if 'OpenBabel' in str(linecache.getline(fn,2)):
atom_bond_number_line =4
else:
atom_bond_number line =35
atomn = int((linecache.getline(fn,atom_bond number line)[1:4]).strip())
bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip())
coordinate_begin_line = atom_bond_number_line + 1
coordinate_end_line = atom_bond_number_line + atomn
bond_begin_line = coordinate_end_line +1
bond end line = coordinate_end_line + bondn
for i in range(bond_begin_line, bond_end_line + 1):
atom] = int((linecache.getline(fn,1)[0:4]).strip())
atom?2 = int((linecache.getline(fn,i)[4:8]).strip())
bondtype = int((linecache.getline(fn,i)[8:10]).strip())
G.add_edge(atoml, atom2, type=bondtype)
for i in range(coordinate begin_line,coordinate_end line + 1):
j=1-(atom_bond number line)

G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
float((linecache.getline(fn,i)[ 14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip()), 1])

G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())
# Now breaking this graph into subgraphs
edges_to_remove =[]
for edge in G.edges_iter():
if G.node[edge[0]]['atom']=="H' or G.node[edge[1]]['atom']=="H":
edges _to_remove.append(edge)
for edge in edges_to_remove:
G.remove_edge(edge[0],edge[1])

nodes_to_remove = []
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for node in G.nodes_iter():
if G.node[node]['atom'] == "H":
nodes_to_remove.append(node)
for node in nodes_to_remove:
G.remove node(node)
for node in G.nodes_iter():
subgraph=nx.ego_graph(G, node, radius=self.height)
subgraph.graph['degree'] = subgraph.degree(node)
subgraph.graph['center'] = node
subgraph.graph['atom'] = G.node[node]['atom']
subgraph.graph['rebuild'] = graph _count
self.subgraphs.append(subgraph)
graph_count += 1
print 'Subgraphs created:',len(self.subgraphs)
for subgraph in self.subgraphs:
match_status =0
if len(self.compressed_subgraphs) > 0:
for subgraph _list in self.compressed subgraphs:
m = iso.categorical_node_match(‘atom’, 'C')
em = iso.numerical _edge match('type', 4)
GM = iso.GraphMatcher(subgraph,subgraph_list[0],node_match = nm, edge_match = em)
if GM.is_isomorphic():
match_status = 1
new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True)
subgraph_list.append(new_graph)
break
if match_status == 0:
new_list =[]
new_list.append(subgraph)
self.compressed subgraphs.append(new _list)
else:
new_list =[]
new_list.append(subgraph)
self.compressed_subgraphs.append(new _list)

conformers = 0
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signatures = 0

for each_list in self.compressed_subgraphs:
signatures += 1
conformers += len(each_list)

print 'Subgraphs stored:', conformers

print 'Overall there were:', signatures, 'unique signatures identified.'

A.2 — Network Generation

The bonding network is discussed extensively throughout the dissertation, and the
generation of this network is established here. In addition, the algorithm responsible for
network compression is also shown. The steps taken to first create the network can be
visualized as shown in Figure A.2.1. Additionally, the steps necessary to compress the

bonding network are shown in Figure A.2.2.

For each atomic signature bin
established from the data set

|

Initialize a node within the bonding For each pair of nodes within the
network and attach the conformer bin complete bonding network

| !

Identify all possible overlaps between
the respective atomic signatures
involving at least three common atoms

3

If overlap possible Else

|

Create bond between chosen nodes
and store overlap mapping
information

Figure A.2.1 — Visualization of bonding network creation steps.
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For each node within the bonding
network

|

For each pair of conformers within the
stored atomic signature bin

¥

Compare spatial properties for
unigueness

I | 1 §

If conf.orrners too Else
similar
Discard one at random Keep both conformers

Figure A.2.2 — Flowchart depicting steps involved in bonding network compression.

The code written to achieve the creation of a bonding network, along with its

compression, is shown below.

def create network(self):
self.network = nx.Graph()
n=0
for subgraph_list in self.compressed_subgraphs:
graph = subgraph_list[0]
rebuild_list =]
for subgraph in subgraph_list:
rebuild_list.append(subgraph.graph['rebuild'])
self.network.add_node(n)
self.network.node[n]['conformers'] = subgraph_list
self.network.node[n]['atom'] = graph.graph['atom']
self.network.node[n]['rebuild_list'] = rebuild_list
self.network.node[n]['canonical'] = n

conformer_center = graph.graph['center']
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self.network.node[n]['degree'] = graph.degree(conformer_center)
self.network.node[n]['conformer_center'] = conformer_center
self.network.node[n]['conformer_neighbors'] = [x for x in graph.neighbors(conformer_center)]
n+=1
print 'All signatures stored in network...'
print 'Establishing connectivity information..."
bonds_created = 0
possible =0
for pair in itertools.combinations_with_replacement(self.network.nodes(data=False), 2):
possible += 1
bond_status =0
G1 = self.network.node[pair[0]]['conformers'][0]
G1_center = self.network.node[pair[0]]['conformers'][0].graph['center']
G2 = self.network.node[pair[ 1]]['conformers'][0]
G2_center = self.network.node[pair[1]]['conformers'][0].graph['center']
G2_ego =nx.ego_graph(G2,G2_center,radius = self.height-1)
map_dict = defaultdict(list)
bond_type_dict = defaultdict(int)
for adjacent_node in G1.neighbors(G1_center):
G1_neighbor_ego = nx.ego_graph(Gl,adjacent_node,radius = self.height-1)
nm = iso.categorical_node match(‘atom’, 'C')
m = iso.numerical_edge match('type’, 1)
GM2 = iso.GraphMatcher(G1_neighbor ego,G2 ego,node match = nm,edge match = em)
if GM2.is_isomorphic():
bond_status = 1
for dict_j in GM2.isomorphisms_iter():
bond_type = Gl.edge[G1_center][adjacent_node]['type']
taken_G1_node = adjacent node
taken_G2_node = dict_j[{G1_center]
map_dict[(pair[0],taken_G1 node)].append((pair[1],taken G2 node))
map_dict[(pair[1],taken_G2_node)].append((pair[0],taken_G1_node))
if bond_status == 1:
bonds_created += 1
self.network.add_edge(pair[0],pair[1])

self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict
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self.network.edge[pair[0]][pair[ 1]]['type'] = bond_type
print 'Bonding information established...'
print possible, 'bonds were analyzed.'
print (bonds_created)*100.00/possible , 'percent of these were feasible.'
def compress_network(self,cutoff):

"""This function compares the conformers for each node in the network and consolidates them based on a
pairwise distance based comparison with tolerance of cutoff value specified in funciton call"""

original _conformers =0
for node in self.network.nodes():
old_list = self.network.node[node]['conformers'][:]
original_conformers += len(old_list)
for pair in itertools.combinations(old_list,2):
status = 0
graph_1 = pair[0]
graph_2 = pair[1]
nm = iso.categorical_node match(‘atom’, 'C")
m = iso.numerical_edge match('type', 1)
GM = iso.GraphMatcher(graph_1,graph 2,node match=nm,edge match=em)
if GM.is_isomorphic():
for atom_pair in itertools.combinations(graph_1.nodes(data=False),2):
node0 = atom_pair[0]
nodel = atom_pair[1]
node2 = GM.mapping[node0]
node3 = GM.mapping[nodel]
d1_squared = (graph_1.node[node0]['xyz'] - graph_1.node[nodel]['xyz'])**2
d1 = (d1_squared.sum())**0.5
d2 squared = (graph_2.node[node2]['xyz']-graph_2.node[node3]['xyz'])**2
d2 = (d2_squared.sum())**0.5
if fabs(d1-d2) > float(cutoff):
status = 1
break
if status == 0:
if graph_1 in self.network.node[node]['conformers']:
if graph_2 in self.network.node[node]['conformers']:

unlucky_one = random.randint(1,2)
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if unlucky one == 1:
self.network.node[node]['conformers'].remove(graph_1)
else:
self.network.node[node]['conformers'].remove(graph_2)
elif not graph_1 in self.network.node[node]['conformers']:
if not graph_2 in self.network.node[node]['conformers']:
chosen_one = random.randint(1,2)
if chosen_one == 1:
self.network.node[node]['conformers'].append(graph 1)
else:
self.network.node[node]['conformers'].append(graph_2)
final _conformers =0
for node in self.network.nodes_iter():
final conformers += len(self.network.node[node]['conformers'])

print 'We started with:', original conformers, 'and consolidated down to:', final conformers, 'conformer based on a cutoff
of!', cutoff, 'Angstroms'

print 'This means we removed:', (original_conformers - final_conformers)*100/(original_conformers),'percent from the
original set.'

A.3 — Molecular Signature Class with Feasibility Functions

This section represents how the various molecular signatures are identified, in a
deterministic manner, as well as their feasibility verification. Molecular signatures,
representing collections of atomic signatures, must pass several tests of feasibility before
it is verified that a complete molecule can be recreated. The tests included within this
section include the graphicality equation, graph connectivity, the hand-shaking lemma,
and a short test used to verify that the maximum number of one type of atomic signature
has not been passed for any given molecular signature. An overview of the steps taken to
develop an exhaustive list of unique structural isomers matching a given molecular

signature can be found in section 3.1.7 of this dissertation.

import networkx as nx
import networkx.algorithms.isomorphism as iso

import math
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from math import fabs
import itertools
import re
import glob
import subprocess
import linecache
from collections import defaultdict
from operator import eq
from pprint import pprint
import numpy
from operator import itemgetter
import random
valence_dictionary = {'C":4,'0"2,'H":1,'N":3,'S"2,'CI":1,'F":1,'Br":1}
bond_dictionary = {1:1,2:2,4:1.5}
class Potential Graph:
def _init_ (self,signatures):
self.signatures = signatures
self.complete_bond_list =[]
self.orbit_dict = defaultdict(list)
class AutoVivification(dict):
"""Implementation of perl's autivivification feature"""
def _ getitem__(self,item):
try:
return dict._ getitem__ (selfitem)
except KeyError:
value = self[item] = type(self)()
return value
class Molecular_Signature:
def _init_ (self,height,mother_graph,atomic_signature_list):
self.atomic_signatures = atomic_signature list
self.mother_graph = mother graph
self.height = height
self.structural isomers =[]
defis_repeat_satisfied(self,max):

self.max = max
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self.repeat_status =0
for each in self.atomic_signatures:
appearances = self.atomic_signatures.count(each)
if appearances > self.max:
self.repeat_status = 1
return False
break
else:
pass
if self.repeat_status == 0:
return True

defis_graphical(self):

degree_list = [self.mother_graph.node[n]['degree'] for n in self.atomic_signatures]

graphicality = (2*degree_list.count(4) + degree_list.count(3) - degree_list.count(1) + 2)%2

if graphicality==0:
return True
else:

return False

defis_connected(self):
self.compressed_signatures = []
for i in self.atomic_signatures:
if not i in self.compressed_signatures:

self.compressed_signatures.append(i)

test = self.mother_graph.subgraph(self.compressed_signatures)

if nx.is_connected(test):
return True
else:
return False
# Hand Shaking Lemma
def hand_shaking lemmag(self):
height_one_edge list =[]
height two_path_list =]
height_three path_list =[]

isomer_status = 0



for each in self.atomic_signatures:
graph = self.mother_graph.node[each]['conformers'][0]
center = graph.graph['center']
center_atom = graph.node[center]['atom']
neighbor list = graph.neighbors(center)
for neighbor in neighbor_list:
first_edge = graph[center][neighbor]['type']
neighbor_atom = graph.node[neighbor]['atom']
height one edge list.append((center_atom,first edge,neighbor atom))
for third_node in [x for x in graph.neighbors(neighbor) if not x==center]:
third_atom = graph.node[third node]['atom']
second_edge = graph[neighbor][third_node]['type']
height_two_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom))
if self.height == 3:
for fourth_node in [x for x in graph.neighbors(third_node) if not x == neighbor]:
fourth atom = graph.node[fourth node]['atom']

third_edge = graph[third_node][fourth node]['type']

height three_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom,third_edge,fourth_atom))
height one edge set = set(height one edge list)
for each_bond in height_one_edge_set:
if each_bond[0] == each bond[2]:
if height one_edge_list.count(each_bond)%?2 == 0:
pass
else:
return False
else:
matched_bond = (each_bond[2],each_bond[1],each_bond[0])
if height one edge list.count(each bond) == height one edge list.count(matched bond):
pass
else:
return False
height two_path_set = set(height two_path_list)
for each_path in height_two_path_set:
if (each_path[0] == each_path[2]) and (each_path[2]== each path[4]) and (each_path[1] == each_path[3]):

if height two_path_list.count(each_path)%2 == 0:
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pass
else:
return False
else:
if (height_two_path_list.count((each_path[4],each_path[3],each_path[2],each_path[1],each_path[0])) ==
height two_path_list.count(each_path)):
pass
else:
return False
height three path set = set(height three path_list)
for each_path in height three_path_set:
if ((each_path[0] == each_path[2]) and (each path[2] == each_path[4]) and (each_path[4] == each_path[6]) and
(each_path[1] == each_path[3]) and (each_path[3] == each_path[5])):
if (height_three_path_list.count(each_path))% 2 == 0:
pass
else:
return False
else:

if (height three path_list.count((each path[6],each path[5],each path[4],each path[3],each path[2],each path[1],
each path[0]))==height three path list.count(each path)):

pass
else:
return False
return True
def exhaustive_structural isomers(self):
def saturation_algorithm(graph):
connected_components = nx.connected_components(graph)
length = len(connected_components)
unsat_deg_list =]
for x in range(len(connected_components)):
total_degree_of unsat=0
for node in connected_components[x]:
desired_sat = valence_dictionary[graph.node[node]['atom']]
sig_one = graph.node[node]['sig']

actual_sat=0
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if not graph.node[node].keys():
print 'Boolean worked'
actual_sat=0
else:
for neighbor in graph.neighbors(node):
sig_two = graph.node[neighbor]['sig']
bond type = self.mother graph.edge[sig_one][sig_two]['type']
actual_sat += bond_dictionary[bond_type]
degree of unsat = desired_sat - actual_sat
if degree_of unsat <0:
return 'saturated subgraph'
graph.graph['unsat_dict'][node]=degree_of unsat
total_degree_of unsat += degree_of unsat
unsat_deg_list.append(total_degree of unsat)
if (0 in unsat_deg_list) and (length == 1):
return 'solution found'
elif 0 in unsat_deg_list:
return 'saturated subgraph'
else:
automorphism_groups = []
free_atom_lists =[]
smallest_degree = min(unsat_deg_list)
# Just pulls the first connected component with the min. degree of unsat
desired_index = unsat_deg_list.index(smallest_degree)
desired_subgraph = graph.subgraph(connected components[desired_index])
unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0]
if len(unsat_atoms) == 0:
return 'saturated subgraph'
unsat_atom_1 = unsat_atoms[0]
free_atom_lists.append(unsat_atom_1)
automorphism_groups.append(connected_components[desired_index])
for component_list in connected_components:
if connected_components.index(component_list) != desired_index:
tested_subgraph = graph.subgraph(component _list)

nm = iso.numerical_node match('sig', 1)
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GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm)
if GM.is_isomorphic():
automorphism_groups.append(component_list)
mapped_atom_1 = GM.mapping[unsat_atom_1]
free_atom_lists.append(mapped _atom 1)

return (automorphism_groups,free_atom_lists)

def exhaustive_structural isomers(self):
def saturation_algorithm(graph):
connected_components = nx.connected_components(graph)
length = len(connected components)
unsat_deg_list =]
for x in range(len(connected_components)):
total _degree of unsat=0
for node in connected_components[x]:
desired sat = valence dictionary[graph.node[node]['atom']]
sig_one = graph.node[node]['sig']
actual sat=0
if not graph.node[node].keys():
print 'Boolean worked'
actual_sat=0
else:
for neighbor in graph.neighbors(node):
sig_two = graph.node[neighbor]['sig']
bond_type = self.mother_graph.edge[sig_one][sig_two]['type']
actual_sat += bond_dictionary[bond_type]
degree of unsat = desired_sat - actual_sat
if degree_of unsat <O0:
return 'saturated subgraph'
graph.graph['unsat_dict'][node]=degree of unsat
total_degree_of unsat += degree_of unsat
unsat_deg_list.append(total degree of unsat)
if (0 in unsat_deg_list) and (length == 1):
return 'solution found'
elif 0 in unsat_deg_list:

return 'saturated subgraph'
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else:
automorphism_groups = []
free_atom_lists =[]
smallest_degree = min(unsat_deg_list)
# Just pulls the first connected component with the min. degree of unsat
desired_index = unsat_deg_list.index(smallest_degree)
desired_subgraph = graph.subgraph(connected_components[desired_index])
unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0]
if len(unsat_atoms) == 0:
return 'saturated subgraph'
unsat_atom_1 = unsat_atoms[0]
free_atom_lists.append(unsat atom 1)
automorphism_groups.append(connected_components[desired_index])
for component_list in connected_components:
if connected_components.index(component_list) != desired_index:
tested_subgraph = graph.subgraph(component_list)
nm = iso.numerical node match('sig', 1)
GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm)
if GM.is_isomorphic():
automorphism_groups.append(component_list)
mapped _atom_1 = GM.mapping[unsat atom_ 1]
free_atom_lists.append(mapped_atom_1)
return (automorphism_groups,free_atom_lists)
def generate_new_graphs(graph,automorphism_list,mapped unsat atoms_list):
new_graph_list =]
automor_count = len(automorphism_list)
possible_bonded_to_nodes =[]
nodel = mapped _unsat_atoms_list[0]
for keyi in graph.graph['m_dict'].keys():
for seti in graph.graph['m_dict'][keyi].keys():
if nodel in seti:
for x in range(graph.graph['m_dict'][keyi][seti]):
possible_bonded to nodes.append(keyi)
check_list =]

for group in itertools.combinations(possible_bonded_to_nodes,automor_count):
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new_graph = graph.copy()
check group =[]
for x in range(len(group)):
sig = graph.node[group[x]]['sig']
check_group.append(sig)
check_group.sort()
if not check_group in check_list:
check list.append(check group)
for x in range(len(group)):
nodel = group[x]
node2 = mapped_unsat_atoms_list[x]
new_graph.add_edge(nodel,node2)
for set_j in new_graph.graph['m_dict'][nodel]:
if node2 in set_j:
graph.graph['m_dict'][nodel][set j]+=-1
for set_k in new_graph.graph['m_dict'][node2]:
if nodel in set k:
graph.graph['m_dict'][node2][set k] +=-1
match_status =0
for graph_2 in new_graph_list:
nm = iso.numerical node match('sig', 1)
GM2 = iso.GraphMatcher(new_graph,graph 2,node_match = nm)
if GM2.is_isomorphic():
match_status = 1
break
if match_status == 0:
new_graph_list.append(new_graph)
return new_graph_list
# This first step creates a bonding dict with full signatures references
signature_set = set(self.atomic_signatures)
bonding_dict = defaultdict(set)
for pair in itertools.combinations with replacement(signature set,2):
if self.mother_graph.has edge(pair[0],pair[1]):
dict i = self.mother graph.edge[pair[0]][pair[1]]['map_dict']

for key,entry in dict_i.items():
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for sig in entry:
bonding_dict[key].add(sig)
bonding_dict[sig].add(key)

# Now I am creating the n and m occurance dictionaries
# I need to create the max occurance dictionary
m_dict = defaultdict(lambda:defaultdict(int))
for entry,list_i in bonding_dict.items():

second_list =]

for each in list_i:
second_list.append(each[0])

second_set = set(second_list)

second_tuple = tuple(second_set)

m_dict[entry[0]][second_tuple] +=1

# 1 will be creating a graph with no bonds to start with as a 'base graph'

# This graph will maintain the equivalent n12 and m12 dictionaries as referenced in Faulon's paper
sig_to_node_dictionary = defaultdict(list)
base_graph = nx.Graph()
n=0
for each in signature_set:

for x in range(self.atomic_signatures.count(each)):
base_graph.add node(n)
base_graph.node[n]['sig'] = each
base graph.node[n]['atom'] = self.mother graph.node[each]['atom']
sig_to_node_dictionary[each].append(n)
n+=1
base graph.graph['unsat_dict'] = defaultdict(int)

# Now I need to translate the previously generated occurance dictionaries into the given base graph with appropriate node references
base graph.graph['m_dict'] = defaultdict(lambda:defaultdict(int))
for sigl in m_dict.keys():

for nodel in sig_to node dictionary[sigl]:
for sig2_list in m_dict[sigl].keys():
node2 list=1[]
for sig2 in sig2 _list:
for node2 in sig_to node dictionary[sig2]:

node2_list.append(node2)
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node2_set = set(node2_list)
node2_tuple = tuple(node2_set)
base_graph.graph['m_dict'][nodel][node2_tuple] = m_dict[sigl][sig2_list]
# 1 will create a simple bonding dict here for estimating all possible bonds
simple_bonds = defaultdict(set)
for nodel in base_graph.nodes():
sigl = base_graph.node[nodel]['sig']
for neighbor in self.mother_graph.neighbors(sigl):
for node2 in base_graph.nodes():
if neighbor == base_graph.node[node2]['sig']:
simple_bonds[nodel].add(node2)
# This is where I'm actually running the while loop to generate all graphs
final_isomers =0
old_list=]
self.final_isomers = []
self.potential_isomers = []
z = saturation_algorithm(base graph)
y = generate_new_graphs(base_graph,z[0],z[1])
old list.extend(y)
iterations = 0
while len(old_list) > 0 and iterations < 150:
iterations += 1
for graph in old_list:
z = saturation_algorithm(graph)
if z=="solution found':
self.final_isomers.append(graph)
elif z == 'saturated subgraph':
pass
elif type(z) is tuple:
y = generate_new_graphs(graph,z[0],z[1])
self.potential_isomers.extend(y)
old list = self.potential isomers[:]
self.potential _isomers[:] =[]
if len(self.final_isomers) > 0:

break

193



else:

print 'Final number of structural isomers:', len(self.final_isomers)

A.4 — Genetic Algorithm

The genetic algorithm was proposed to handle larger and more complex CAMD problems
and its coding is shown in this section. In addition to generation of a starting population,
the mutation operators are also included. A unique bonding network, specific to the GA
approach, must also be created and this code is included as well. Finally, the generation

of conformational isomers from atomic signatures is shown. The generalized approach to

implementing mutation operators is shown in Figure A .4.1.

Create a list of graph nodes, or atomic
signatures.

 §

While this list is populated.

Eise, choose
different operator.

Select and remove one node
at random.

|

Identify all other nodes
bonded to the chosen node
within the graph

|

Are there any other nodes

within network capable of

forming bonds with these
nodes

I | |

If no. random for
replacement.

If yes choose one at

Figure A.4.1 — Generalized approach to implementing mutation operators.
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The approach taken to identify candidates feasible for crossover mutation can be found in
section 3.2.4 of this dissertation. The code written for each of these operations is shown

below.

import networkx as nx

import networkx.algorithms.isomorphism as iso
import math

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict
from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter
from random import *

from random import randint

from bisect import bisect

sin = numpy.sin

€OS = numpy.cos
valence_dictionary = {'C":4,'0":2,’'H":1,'N":3,'S":2,'CI":1,'F":1,'Br":1,'P":5}
bond_dictionary = {1:1,2:2,4:1.5}
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# Just a couple of algebraic operations
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def unit_vector(vector):

return vector/numpy.linalg.norm(vector)
def angle between(vl, v2):

vl _u=unit_vector(vl)

v2_u = unit_vector(v2)

angle = numpy.arccos(numpy.dot(vl_u,v2 u))
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if numpy.isnan(angle):
if (v1_u==v2_u).all():
return 0.0
else:
return numpy.pi
return angle
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# These are some operators for the selection process in genetic algorithm
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def weighted_choice(choices):
values, weights = zip(*choices)
total = 0
cum_weights =[]
for w in weights:
total +=w
cum_weights.append(total)
x = random() * total
i=bisect(cum_weights, Xx)
return values[i]
def choose_operation(network,city,fitness_list,optimal_size,beta,split):
randy = random()
if randy > split:
# This is a mutation and I must choose one based on fitness
chosen_index = weighted_choice(fitness_list)
chosen_graph = city[chosen_index]
chosen_graph_size = len( chosen_graph.graph['conformers'][0].nodes() )
if chosen_graph_size > optimal_size*(1 + beta):
return (‘'mutation’,'deletion’,chosen_graph.copy())
elif chosen_graph_size < optimal_size*(1 - beta):
return ('mutation','insertion',chosen_graph.copy())
else:
return (‘mutation’,'node',chosen_graph.copy())
else:
found_pair = 'no’

while found_pair == 'no":
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chosen_index_1 = weighted_choice(fitness_list)
chosen_index_2 = weighted_choice(fitness_list)
while chosen_index_2 == chosen_index_1:

chosen_index_2 = weighted_choice(fitness_list)
chosen_graph 1 = city[chosen_index_1].copy()
chosen_graph_2 = city[chosen_index_2].copy()
# I must verify that crossover is possible first
edges_in_1 = chosen_graph_1.edges()
edges in_ 2 =chosen graph 2.edges()
possible_edge_pairs = list( itertools.product( edges_in_1, edges_in 2))
for edge pair in possible_edge pairs:

# Try switching node ones

edge in_1 =edge pair[0]

edge in 2 =edge_pair[1]

node 1 2 =edge in_2[0]

node 2 2=-edge in 2[1]

node 1 _1=edge in_1[0]

node 2 1=-edge in I[1]

sig 1 2 =chosen_graph 2.node[node 1 2]['sig']

sig 2 2 =chosen_graph 2.node[node 2 2]['sig']

sig 1 1=chosen_graph 1.node[node 1 1]['sig']

sig 2 1 =chosen_graph_1l.node[node_2_1]['sig']

if network.has_edge(sig_1 2,sig 2 1):

node 1 2 unsats = [ x[1] for x in chosen_graph_2.edge[edge in 2[0]][edge in_2[1]]['unsat_info'] if x[0] ==
sig 1 2]

node 2 1 unsats = [ x[1] for x in chosen_graph_1.edge[edge_in_1[0]][edge_in_1[1]]['unsat_info'] if x[0] ==
sig 2 1]

move_list =[ x for x in chosen_graph_1.graph['move_list'] if node 1 _1inxandnode 2 1inx ]
if len(move_list) == 0:

break
move = [ x for x in chosen_graph_1.graph['move list'] if node 1 1inx and node 2 1inx ][0]
if move[l]==node_2 1:

# This means that the maps should be keyed by (sig 2 in 1)

for map_key in network.edge[sig_1_2][sig_2 1]['map_dict'].keys():

if map_key[0] ==sig 2 1:

for map in network.edge[sig 1 2][sig 2 1]['map_dict'][map_key]:
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# If it's keyed by sig2inl then those will be the entries

map_1_items = [ x[1] for x in map.items() ]

missing_node_2_1_unsats = [ x for x in node_2_1_unsats if x not in map_1_items ]

missing_node_1_2 unsats = [ x for x innode_1_2 unsats if x not in map.keys() ]

if len(missing node 2 1 unsats) == 0 and len(missing_node 1 2 unsats) == 0:
found_pair = "yes'

return ( 'crossover', chosen_graph 2, edge in 2 ,node 1 2,
chosen_graph_1, edge in_1, node 2 1, map)

else:
# This means that the maps should be keyed by (sig 1 in 2)
for map_key in network.edge[sig 1 2][sig 2 1]['map_dict'].keys():
if map_key[0] ==sig_1 2:
for map in network.edge[sig 1 2][sig 2 1]['map dict'][map key]:
# If it's keyed by siglin2 then those will be the entries
map_1_items = [ x[1] for x in map.items() ]
missing_node 1 2 unsats =[ x for x innode 1 2 unsats if x not in map_1_items ]
missing_node 2 1 unsats = [ x for x in node_2_1_unsats if x not in map.keys() ]
if len(missing_node 2 1 unsats) == 0 and len(missing_node 1 2 unsats) == 0:
found_pair ="yes'

return ( 'crossover', chosen_graph 1, edge in_1,node 2 1, chosen graph 2,
edge_in_2,node 1_2, map )

def create_network(self):

self.network = nx.Graph()

n=0

for subgraph_list in self.compressed_subgraphs:
graph = subgraph_list[0]
self.network.add_node(n)
self.network.node[n]['conformers'] = subgraph_list
self.network.node[n]['atom'] = graph.graph['atom']
self.network.node[n]['atom_count'] = len(graph.nodes())
conformer_center = graph.graph['center']
self.network.node[n]['degree'] = graph.degree(conformer_center)
self.network.node[n]['conformer center'] = conformer center
self.network.node[n]['unsaturated_nodes'] =[]
# This step will determine which neighbors to the central

for node_1 in graph.nodes():
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neighbors = graph.neighbors(node_1)
required_valence = valence_dictionary[graph.node[node_1]['atom']]
node_1_degree =0
for node_2 in graph.neighbors(node_1):
node 1 degree +=bond dictionary[graph.edge[node 1][node 2]['type']]
ifnode 1_degree <required valence:
self.network.node[n]['unsaturated_nodes'].append(node_1)
n+=1
print 'All signatures stored in network...'
print 'Establishing connectivity information..."
bonds_created =0
possible =0
for pair in itertools.combinations_with_replacement(self.network.nodes(), 2):
bond_status = 0
possible +=1
map_dict = defaultdict(list)
map_dict.clear()
sig_a = self.network.node[pair[0]]['conformers'][0]
sig_a_center = self.network.node[pair[0]]['conformers'][0].graph['center']
sig_b = self.network.node[pair[1]]['conformers'][0]
sig_b_center = self.network.node[pair[1]]['conformers'][0].graph['center']
# This is for one side where sig_a is G2 and sig_b is G1
Gl =sig b
for unsat_node in self.network.node[pair[0]]['unsaturated nodes']:
G2 =nx.ego_graph(sig_a,unsat_node,radius = 2)
m = iso.categorical_node_match('atom'’, 'C')
em = iso.numerical edge match('type', 1)
GM1 = iso.GraphMatcher(G1,G2,node_match = nm,edge _match = em)
if GM1.subgraph_is_isomorphic():
for dict_j in GM1.subgraph_isomorphisms_iter():
if (len(dict_j.keys()) >= 3 and sig_b_center in dict_j.keys() and dict_j[sig_b_center] == unsat_node):
bond_status =1
map_dict[(pair[0],unsat_node)].append(dict_j)
# This is for the other side where sig_b is G2 and sig_a is G1

Gl =sig_a
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for unsat_node in self.network.node[pair[1]]['unsaturated nodes']:
G2 =nx.ego_graph(sig_b,unsat_node,radius = 2)
nm = iso.categorical_node_match('atom’, 'C")
m = iso.numerical_edge match('type', 1)
GM2 = iso.GraphMatcher(G1,G2,node_match = nm,edge match = em)
if GM2.subgraph_is_isomorphic():
for dict_k in GM2.subgraph_isomorphisms_iter():
if (len(dict_k.keys()) >= 3 and sig_a_center in dict_k.keys() and dict k[sig_a center] == unsat_node):
bond status = 1
map_dict[(pair[1],unsat_node)].append(dict_k)
if bond_status == 1:
bonds_created += 1
self.network.add_edge(pair[0],pair[1])
self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict
print 'Bonding information established...'
print possible, 'bonds were analyzed.'

print (bonds_created)*100.00/possible , 'percent of these were feasible.'
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def create_starting_population(self,size,atom_count lower,atom_count_upper):

self.size = size

self.city =[]

size_list = [x for x in range(atom_count_lower,atom_count_upper+1)]

for x in range(self.size):
first_sig = choice(self.network.nodes())
# 1 will use indices in case a signature is used more than once
index =0
target_size = choice(size_list)
signature_graph = nx.Graph()
signature_graph.graph['target_size'] = target_size
signature_graph.add_node(index)
signature_graph.node[index]['sig'] = first_sig
signature_graph.node[index]['unsat_nodes'] = self.network.node[first_sig]['unsaturated nodes'][:]
signature_graph.graph['current_size'] = self.network.node[first_sig]['atom_count']
signature_graph.graph['index'] = 1

signature_graph.graph['conformers'] = []
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signature_graph.graph['move_list'] =[]
self.city.append(signature_graph)
print 'Initial population size:', len(self.city)
for graph in self.city:
total unsat = sum([len(graph.node[x]['unsat nodes']) for x in graph.nodes()])
while total unsat > 0:
P_cap = 1-( (graph.graph['target_size']-graph.graph['current_size']) / ( float(graph.graph['target size'l) ) )
if P_cap >=1.0:
cap ='yes'
else:
rand = random()
ifrand <=P_cap:
cap ='"yes'
else:
cap = 'no'
# First I want to identify potential nodes to bond with their new degree of unsat
unsat_nodes = []
for node in graph.nodes():
if len(graph.node[node]['unsat_nodes']) > 0:
for node2 in graph.node[node]['unsat nodes']:
unsat_nodes.append((node,graph.node[node]['sig'],node2))
chosen_unsat_node = choice(unsat_nodes)
graph.node[chosen _unsat node[0]]['unsat_nodes'].remove(chosen_unsat node[2])
chosen_unsat_point = (chosen_unsat_node[1],chosen_unsat_node[2])
potential new_node_list =[]
new_unsat_degree_list =[]
for neighbor in self.network.neighbors(chosen_unsat node[1]):

if (chosen_unsat_point in self.network.edge[chosen_unsat_node[1]][neighbor]['map_dict'].keys() and
len(self.network.node[neighbor]['unsaturated nodes']) > 0):

potential_new_node_list.append(neighbor)
new_unsat_degree list.append(len(self.network.node[neighbor]['unsaturated nodes']) - 1)
if cap =="no' and len([x for x in new_unsat_degree_list if x !=0]) == 0:
cap ='yes'
if cap == "yes":
best = min(new_unsat_degree_list)

best_options = [new_unsat_degree list.index(x) for x in new_unsat_degree list if x == best]
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chosen_partner = potential new_node_list[choice(best_options)]

graph.add_node(graph.graph['index'])

graph.node[graph.graph['index']]['sig'] = chosen_partner

graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated nodes'][:]
graph.add_edge( chosen_unsat_node[0] , graph.graph['index'] )
graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'] =[]

graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(
(chosen_unsat_node[1],chosen_unsat_node[2]) )

# If there are multiple mappings here I could choose one at random or have some other criteria

chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict']
[chosen_unsat point][0].copy()

unsats_to_remove = [x for x in chosen_map.keys() if x in self.network.node[chosen_partner]
['unsaturated_nodes'] ]

graph.graph['move_list'].append((graph.graph['index'],chosen_unsat node[0],chosen_map))
for unsat_node in unsats_to_remove:
graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node)

graph.edge[chosen_unsat node[0]][graph.graph['index']]['unsat_info'].append(
(chosen_partner,unsat_node) )

nodes_added = self.network.node[chosen partner]['atom count'] - len(chosen_map.keys())
graph.graph['current_size'] += nodes_added
graph.graph['index'] += 1
elif cap =="no":
best_options =[]
index =0
for x in new_unsat degree list:
ifx 1=0:
best_options.append(potential new_node_list[index])
index +=1
chosen_partner = choice(best_options)
graph.add_node(graph.graph['index'])
graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated_nodes'][:]
graph.node[graph.graph['index']]['sig'] = chosen_partner
graph.add_edge( chosen_unsat_node[0] , graph.graph['index'])
graph.edge[chosen_unsat node[0]][graph.graph['index']]['unsat _info'] =[]
graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append( (chosen_unsat node[1],
chosen_unsat node[2]) )

# If there are lots of mappings here I could choose one at random or have some other criteria
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chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict']
[chosen_unsat_point][0].copy()

unsats_to_remove = [ x for x in chosen_map.keys() if x in self.network.node[chosen_partner]
['unsaturated_nodes'] ]

graph.graph['move_list'].append((graph.graph['index'],chosen_unsat node[0],chosen_map))
for unsat_node in unsats_to_remove:
graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node)

graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(
(chosen_partner,unsat_node) )

nodes_added = self.network.node[chosen_partner]['atom_count'] - len(chosen_map.keys())
graph.graph['current_size'] += nodes_added
graph.graph['index'] += 1
total_unsat = sum([len(graph.node[x]['unsat_nodes']) for x in graph.nodes()])
else:
print 'Graph created with size:', graph.graph['current_size']
iterations = 0
mapping_condition = "yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one list =[ x[1] for x in graph.graph['move list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
while mapping_condition == 'no":
iterations += 1
mapping_condition = 'yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list=[ x[1] for x in graph.graph['move_list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):

shuffle(graph.graph['move_list'])
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mapping_condition = 'no’
break
def create_new_population(self,new_size,beta,split):
node_mutation_count =0
insertion_mutation_count =0
deletion_mutation_count = 0
crossover_count =0
new_pop =0
new_city =[]
while new_pop < new_size:
operation = choose_operation(self.network,self.city,self.fitness _list,self.optimal size,beta,split)
if operation[0] == 'mutation' and operation[1] == 'node":
# This is going to be where I perform a node mutation
# First I will choose a random node
original graph = operation[2]
nodes = original graph.nodes()[:]
found_node = "no'
graph_added = 'no'
while len(nodes) > 0 and graph_added == 'no":
shuffle(nodes)
random_node = nodes.pop()
random_nodes_sig = original_graph.node[random_node]['sig']
edges from random node = nx.edges(original graph,random_node)
unsat_to_satisfy =[]
unsat_to_satisfy dict = defaultdict(int)
for edge in edges_from_random_node:
for unsat in original graph.edge[edge[0]][edge[1]]['unsat info']:
if unsat[0] !=random_nodes_sig:
unsat_to_satisfy.append(unsat)
# The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this
unsat_to_satisfy set = set(unsat_to_satisfy)
for unsat in unsat to_satisfy_set:
unsat_to_satisfy dict[unsat] =unsat_to_satisfy.count(unsat)
list_of unsat_potential lists =[]

for unsat in unsat_to_satisfy_dict.keys():
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unsat_potentials = []
for neighbor in self.network.neighbors(unsat[0]):
if neighbor !=random_nodes_sig:
if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():
if len(self.network.edge[unsat[0]][neighbor]['map dict']) >= unsat to_satisfy dict[unsat]:
unsat_potentials.append(neighbor)
list of unsat potential lists.append(unsat_potentials)
if len(list_of unsat potential lists) > 1:
optimal nodes =[]
for x in list_of unsat potential lists[0]:
present = 'no’
for y in range(len(list_of unsat_potential_lists)):
if x in list_of unsat_potential_lists[y]:
present = 'yes'
else:
present = 'no'
break
if present =="yes":
optimal_nodes.append(x)
elif len(list_of unsat potential lists) == 1:
optimal_nodes = set(list_of unsat potential lists[0])
elif len(list_of unsat_potential_lists) == 0:
continue

move_list_tuples = [ x for x in original graph.graph['move_list'] if x[0] == random_node or x[1] ==
random_node]

while len(optimal_nodes) > 0 and graph_added == 'no":
chosen_replacement node = optimal nodes.pop()
graph = original_graph.copy()
new_move list = [ x for x in graph.graph['move _list'] if x not in move list tuples ]

# Depending on the first two entries of the map i need to decide if the map is keyed or entried by the
new node

for edge in move_list_tuples:
if edge[0] == random_node:
# This means the dictionary list is keyed by the other node
other_node = edge[1]

other_sig = graph.node[other_node]['sig']
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else:

other unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ]
map_found = "no'
for other_unsat in other unsats:

for map in self.network.edge[chosen_replacement_node][other_sig]
['map_dict'][(other_sig,other unsat)]:

map_items_1 = [ x[1] for x in map.items() ]
missing_other unsats = [ x for x in other_unsats if X not in map_items 1 ]
if len(missing_other_unsats) == 0:

map_found = "yes'

graph.edge[edge[0]][edge[1]]['unsat_info'][:] =[]

new_randy unsats = [x for x in map.keys() if x in self.network.node
[chosen_replacement node]['unsaturated nodes']]

for randy_unsat in new_randy_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append(
( chosen_replacement_node, randy unsat ))

break
if map_found =="yes"
break
if map_found =="yes"
for other_unsat in other unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and x[1] ==
edge[1]][0]

new_move_list.append( ( random_node, other_node, map.copy() ) )

# This means the dictionary list is keyed by the random node

other_node = edge[0]

other_sig = graph.node[other_node]['sig']

other unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other sig ]

# Now I'll search through all map keys and maps to search for one which covers all other
unsats

map_found = "no'
for random_unsat in self.network.node[chosen_replacement node]['unsaturated nodes']:
if self.network.has_edge(chosen_replacement_node,other_sig):

for map in self.network.edge[chosen_replacement node][other sig]['map_dict']
[(chosen_replacement_node,random_unsat)]:

uncovered_other unsats = [ x for x in other unsats if x not in map.keys() ]

if len(uncovered_other unsats) == 0:

206



map_found ="yes'
break
if map found =="yes"
break
if map_found =="yes":
graph.edge[edge[0]][edge[1]]['unsat_info'][:] =[]
for other_unsat in other unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat ) )

random_unsats = [ x for x in map.keys() if x in self.network.node
[chosen_replacement_node]['unsaturated_nodes'] ]

for randy_unsat in random_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append(
(chosen_replacement node, randy unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
other_node ][0]

new_move_list.append( ( other_node, random_node, map.copy() ) )
if map_found == "yes"
graph.graph['move_list'] = new_move_list
mapping_condition = "yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list = [ x[1] for x in graph.graph['move_list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
while mapping_condition == "no":
mapping_condition = yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list =[ x[1] for x in graph.graph['move_list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):

shuffle(graph.graph['move_list'])
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mapping_condition = 'no’
break
graph_added ="yes'
graph.graph['conformers'][:] =[]
graph.node[random_node]['sig'] = chosen_replacement_node
move_test ='good'
for move in graph.graph['move_list']:
if move[0] not in graph.nodes() or move[1] not in graph.nodes():
move_test = 'bad'
print 'Uh oh there was a move without a bond for a node mutation graph'
break
if move_test =="'good"
print 'New graph added to city by node mutation.'
new_city.append(graph)
new_pop +=1
node_mutation_count += 1
else:
continue
# Deletion Mutation
elif operation[0] == 'mutation’ and operation[1] == 'deletion":
original graph = operation[2]
nodes = original_graph.nodes()[:]
found node = "no'
graph_added = 'no'
while len(nodes) > 0 and graph_added =='no":
shuffle(nodes)
random_node = nodes.pop()
random nodes_sig = original graph.node[random_node]['sig']
edges_from_random_node = nx.edges(original_graph,random_node)
unsat_to_satisfy =[]
unsat_to_satisfy dict = defaultdict(int)
for edge in edges from random node:
for unsat in original graph.edge[edge[0]][edge[1]]['unsat_info']:
if unsat[0] != random_nodes_sig:

unsat_to_satisfy.append(unsat)
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# The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this
unsat_to_satisfy set = set(unsat_to_satisfy)
for unsat in unsat_to_satisfy_set:
unsat_to_satisfy dict[unsat] =unsat_to_satisfy.count(unsat)
list_of unsat_potential_lists = []
for unsat in unsat_to_satisfy dict.keys():
unsat_potentials = []
for neighbor in self.network.neighbors(unsat[0]):
if neighbor !=random_nodes_sig:
if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():
if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]:
unsat_potentials.append(neighbor)
list_of unsat_potential_lists.append(unsat_potentials)
if len(list_of unsat_potential lists) > 1:
optimal_nodes_original =[]
for x in list_of unsat_potential_lists[0]:
present = 'no’
for y in range(len(list_of unsat_potential_lists)):
if x in list of unsat potential lists[y]:
present = 'yes'
else:
present = 'no'
break
if present == "yes":
optimal_nodes_original.append(x)
elif len(list_of unsat potential lists) == 1:
optimal_nodes_original = set(list_of unsat_potential_lists[0])
elif len(list_of unsat potential lists) == 0:
continue

optimal_nodes = [ x for x in optimal_nodes_original if self.network.node[x]['atom_count'] <
self.network.node[random_nodes_sig]['atom_count'] ]

move_list_tuples = [ x for x in original graph.graph['move_list'] if x[0] == random_node
or x[1] == random_node]

while len(optimal nodes) > 0 and graph _added == 'no":
new_move_list = [ x for x in original_graph.graph['move_list'] if x not in move_list_tuples ]

graph = original_graph.copy()
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chosen_replacement_node = optimal nodes.pop()
for edge in move_list_tuples:
if edge[0] == random_node:
# This means the dictionary list is keyed by the other node
other_node = edge[1]
other_sig = graph.node[other_node]['sig']
other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ]
map_found = "no'
# Might need to keep track of other unsats utilized so that they're only hit once
for other_unsat in other_unsats:
if self.network.has_edge(chosen_replacement_node,other_sig):

for map in self.network.edge[chosen_replacement node][other sig]['map_dict']
[(other_sig,other unsat)]:

map_items_1 = [ x[1] for x in map.items() ]
missing_other_unsats = [ x for x in other_unsats if x not in map_items_1 ]
if len(missing_other unsats) == 0:

map_found ="yes'

graph.edge[edge[0]][edge[1]]['unsat_info'][:] =[]

new_randy unsats = [x for x in map.keys() if x in self.network.node
[chosen_replacement node]['unsaturated nodes']]

for randy_unsat in new_randy_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append(
( chosen_replacement node, randy unsat))

break
if map_found =="yes"
break
if map_found =="yes":
for other_unsat in other unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and
X[1] == edge[1] ][0]

new_move_list.append( ( random_node, other node, map.copy() ) )
elif map_found == no":
print 'Map not found'
break
else:

# This means the dictionary list is keyed by the random node
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other_node = edge[0]
other_sig = graph.node[other_node]['sig']
other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ]
map_found = "no'
for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']:
if self.network.has_edge(chosen_replacement node,other_sig):

for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
[(chosen_replacement_node,random_unsat)]:

uncovered_other unsats = [ x for x in other unsats if x not in map.keys() ]
if len(uncovered_other_unsats) == 0:
map_found = "yes'
break
if map_found =="yes"
break
if map_found =="yes":
graph.edge[edge[0]][edge[1]]['unsat_info'][:] =[]
for other_unsat in other_unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat ) )

random_unsats = [ x for x in map.keys() if x in self.network.node[
chosen_replacement nodes['unsaturated nodes'] ]

for randy_unsat in random_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append( (chosen replacement node,
randy_unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
other node ][0]

new_move_list.append( ( other_node, random_node, map.copy() ) )
else:
print 'Map not found'
break
if map_found =="yes"

graph.graph['move_list'] = new_move_list
mapping_condition = "yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list =[ x[1] for x in graph.graph['move list'] ]
zero_set = set ( zero_list )
for each in zero_set:

if each in one_list:
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if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
while mapping_condition =="no":
mapping_condition = "yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list=[ x[1] for x in graph.graph['move list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
graph_added ="yes'
graph.graph['conformers'][:] =[]
graph.node[random_node]['sig'] = chosen_replacement_node
move_status = 'good'
for move in graph.graph['move_list']:
if move[0] not in graph.nodes() or move[1] not in graph.nodes():
print 'Uh oh there was a move without a bond for a deletion mutation'
move_status = 'bad'
break
if move_status == 'good":
print 'New graph added to city by deletion mutation.'
new_city.append(graph)
new_pop += 1
deletion_mutation_count += 1
else:
continue
# Insertion Mutation
elif operation[0] == 'mutation' and operation[1] == "insertion'":
original_graph = operation[2]

nodes = original graph.nodes()[:]
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found_node = "no'
graph_added = 'no'
while len(nodes) > 0 and graph_added =='no":
shuffle(nodes)
random_node = nodes.pop()
random_nodes_sig = original graph.node[random_node]['sig']
edges_from_random_node = nx.edges(original_graph,random_node)
unsat_to_satisfy =[]
unsat_to_satisfy dict = defaultdict(int)
for edge in edges_from random node:
for unsat in original graph.edge[edge[0]][edge[1]]['unsat_info']:
if unsat[0] != random_nodes_sig:
unsat_to_satisfy.append(unsat)
# The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this
unsat_to_satisfy set = set(unsat_to_satisfy)
for unsat in unsat_to_satisfy_set:
unsat_to_satisfy dict[unsat] = unsat _to_satisfy.count(unsat)
list_of unsat_potential_lists = []
for unsat in unsat_to_satisfy dict.keys():
unsat_potentials = []
for neighbor in self.network.neighbors(unsat[0]):
if neighbor !=random_nodes_sig:
if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():
if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_ dict[unsat]:
unsat_potentials.append(neighbor)
list_of unsat potential lists.append(unsat_potentials)
if len(list_of unsat_potential lists) > 1:
optimal nodes_original =[]
for x in list_of unsat_potential_lists[0]:
present = 'no’
for y in range(len(list_of unsat potential lists)):
if x in list of unsat potential lists[y]:
present = 'yes'
else:

present = 'no'

213



break
if present == "yes":
optimal_nodes_original.append(x)
elif len(list_of unsat potential lists) == 1:
optimal_nodes_original = set(list_of unsat_potential_lists[0])
elif len(list_of unsat potential lists) == 0:
continue

optimal_nodes = [ x for x in optimal nodes_original if self.network.node[x]['atom_count'] >
self.network.node[random_nodes_sig]['atom_count'] ]

move_list_tuples = [ x for x in original graph.graph['move_list'] if x[0] == random_node
or x[1] == random_node]

while len(optimal_nodes) > 0 and graph_added == 'no":
new_move list=[ x for x in original graph.graph['move _list'] if x not in move list tuples ]
graph = original_graph.copy()
chosen_replacement_node = optimal_nodes.pop()
# Depending on the first two entries of the map i need to decide if the map is keyed or entried by the new node
for edge in move_list_tuples:
if edge[0] == random_node:
# This means the dictionary list is keyed by the other node
other node = edge[1]
other_sig = graph.node[other_node]['sig']
other unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other sig ]
map_found = "no'
# Might need to keep track of other unsats utilized so that they're only hit once
for other_unsat in other unsats:

for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
[(other_sig,other unsat)]:

map_items_1 = [ x[1] for x in map.items() ]
missing_other_unsats = [ x for x in other_unsats if x not in map_items 1 ]
if len(missing_other_unsats) == 0:

map_found = "yes'

graph.edge[edge[0]][edge[1]]['unsat_info'][:] =[]

new_randy unsats = [x for x in map.keys() if x in self.network.node
[chosen_replacement node]['unsaturated nodes']]

for randy unsat in new_randy_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append(
( chosen_replacement_node, randy_unsat ))
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break
if map_found =="yes"
break
if map_found =="yes":
for other_unsat in other unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and
X[1] == edge[1] ][0]

new_move_list.append( ( random_node, other _node, map.copy() ) )
elif map_found == 'no":
print 'Map not found'
break
else:
# This means the dictionary list is keyed by the random node
other_node = edge[0]
other_sig = graph.node[other_node]['sig']
other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ]
# Now I'll search through all map keys and maps to search for one which covers all unsats
map_found = "no'
for random_unsat in self.network.node[chosen_replacement node]['unsaturated nodes']:
if self.network.has_edge(chosen_replacement_node,other_sig):

for map in self.network.edge[chosen_replacement node][other sig]['map_dict']
[(chosen_replacement_node,random_unsat)]:

uncovered_other unsats = [ x for x in other unsats if x not in map.keys() ]
if len(uncovered_other unsats) == 0:
map_found ="yes'
break
if map_found =="yes"
break
if map_found =="yes":
graph.edge[edge[0]][edge[1]]['unsat_info'][:] =]
for other_unsat in other unsats:
graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other sig,other unsat ) )

random_unsats = [x for x in map.keys() if x in self.network.node
[chosen_replacement node]['unsaturated nodes'] ]

for randy_unsat in random_unsats:

graph.edge[edge[0]][edge[1]]['unsat_info'].append(
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(chosen_replacement_node, randy unsat) )

to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
other_node ][0]

new_move_list.append( ( other_node, random_node, map.copy() ) )
if map_found == "yes"
graph.graph['move_list'] = new_move_list
mapping_condition = 'yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list = [ x[1] for x in graph.graph['move list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
while mapping_condition =="no":
mapping_condition = "yes'
zero_list = [ x[0] for x in graph.graph['move_list'] ]
one_list = [ x[1] for x in graph.graph['move_list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph.graph['move_list'])
mapping_condition = 'no'
break
graph_added ="yes'
graph.graph['conformers'][:] =[]
graph.node[random_node]['sig'] = chosen_replacement_node
move_status = 'good'
for move in graph.graph['move_list']:
if move[0] not in graph.nodes() or move[1] not in graph.nodes():
print 'Uh oh a move was found without a bond for an insertion mutaiton'
move_status = 'bad'

break
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if move_status == 'good"
print 'New graph added to city by insertion mutation.'
new_city.append(graph)
new_pop +=1
insertion_mutation_count += 1
else:
print 'This one was not connected and was created by insertion mutation!'
else:
continue

# Crossover Mutation

elif operation[0] == 'crossover':

graph_1 = operation[1]
graph_1.remove_edge(operation[2][0],operation[2][1])
two_graphsl = nx.connected_components(graph_1)
list to_removel = [ x for x in two_graphs]1 if operation[3] not in x ][0]
print 'Graph 1 before:', graph_1.nodes(), graph_1.edges()
for node in list to_removel:

graph_1.remove_node(node)

for move in graph 1.graph['move list']:

if node == move[0] or node == move[1]:
graph_1.graph['move_list'].remove(move)

print 'Graph 1 after:', graph_1.nodes(), graph_1.edges()
graph_2 = operation[4]
print 'Graph 2 before:', graph_2.nodes(), graph_2.edges()
graph_2.remove_edge(operation[5][0],operation[5][1])
two_graphs2 = nx.connected_components(graph_2)
list_to_remove2 = [ x for x in two_graphs?2 if operation[6] not in x ][0]
for node in list_to_remove2:

graph_2.remove_node(node)

for move in graph_2.graph['move_list']:

if node == move[0] or node == move[1]:
graph_2.graph['move_list'].remove(move)

print 'Graph 2 after:', graph_2.nodes(), graph_2.edges()

# Now I have these two graph with corrected move lists but I need to combine then and potentially change node labels
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# Along with these node label changes I will also need to change the respective move list
max_in_1 = max( [x for x in graph_1.nodes()] )
node_change_dict = defaultdict(int)
node_change_dict.clear()
new_label =max_in_1+ 1
for node in graph_2.nodes():

node change dict[node] =new_label

new_label += 1
# Now I have a dictionary with new labels
# I want to start by making the link between the two adjoined graphs
node in_1 = operation[3]
sig_in_1 = graph_1.node[node in_1]['sig"]
node_in_2 = operation[6]
sig_in_2 = graph 2.node[node in 2]['sig']
map = operation[7]
graph_1.add node(node change dict[node in 27)
graph_1.node[ node change dict[node in_2] ]['sig'] = sig_in_2
graph_1.add edge(node change dict[node in 2],node in 1)
node in_1 nodes = x for x in self.network.node[sig_in 1]['conformers'][0].nodes() ]
# Now I need to add all of the unsaturated nodes associated with the new map
# Sig in one should be the keys
unsat_for_sig_1 =[ (node_in_1,x) for x in self.network.node[sig_in_1]['unsaturated_nodes'] if x in map.keys() ]
map_ones = [ x[1] for x in map.items() ]

unsat_for_sig_2 =[ (node_change dict[node_in_2],x) for x in self.network.node[sig_in_2]['unsaturated nodes'] if
X in map_ones ]

total_new_unsat = []
for each in unsat_for sig_1:
total_new_unsat.append(each)
for each in unsat_for sig 2:
total_new_unsat.append(each)
graph_1.edge[node change dict[node in 2]][node in 1]['unsat info'] = total new unsat[:]
for move in graph_2.graph['move_list']:
node 1=node change dictfmove[0]]
node 2 =node change dictfmove[l]]
graph_l.add node(node 1)

graph_1l.node[node 1]['sig'] = graph_2.node[move[0]]['sig']
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graph_1l.add_node(node_2)
graph_1l.node[node 2]['sig'] = graph_2.node[move[1]]['sig']
graph_1.add_edge(node_1,node 2)
graph_1.edge[node_1][node 2]['unsat info'] = graph_2.edge[move[0]][move[l]]['unsat_info'][:]
new_move = ( node_change_dict[move[0]], node_change_dict[move[1]], move[2] )
graph_1.graph['move_list'].append(new_move)
# This piece will determine if there is a move that doesn't correspond to a node in the graph
map_status = 'continue’'
for move in graph_1.graph['move_list']:
if move[0] not in graph_1.nodes() or move[1] not in graph 1.nodes():
print 'Uh oh a move didnt have a edge for a crossover graph!'
map_status = 'break’
break
if map_status !='break":
iterations = 0
mapping_condition = 'yes'
zero_list = [ x[0] for x in graph_1.graph['move_list'] ]
one_list = x[1] for x in graph_1.graph['move_list'] ]
zero_set = set ( zero_list)
for each in zero_set:
if each in one_list:
if one_list.index(each) < zero_list.index(each):
shuffle(graph_1.graph['move list'])
mapping_condition = 'no’
break
while mapping_condition == 'no":
iterations += 1
mapping_condition = "yes'
zero_list = [ x[0] for x in graph_1.graph['move_list'] ]
one_list =[ x[1] for x in graph_1.graph['move list'] ]
zero_set = set ( zero_list )
for each in zero_set:
if each in one_list:
if one list.index(each) < zero_list.index(each):

shuffle(graph_1.graph['move_list'])

219



mapping_condition = 'no’
break
print 'New graph added to city by crossover.'
graph_1.graph['conformers'][:] =[]
new_city.append(graph_1)
new_pop +=1
crossover_count += 1
list_of conformer indices = []
for node in graph.nodes():
sig = graph.node[node]['sig']
# I will have to change this later when I'm looking at conformational ensembles
graph.node[node]['sig_graph'] = self.network.node[sig]['conformers'][0].copy()
conf_count = len(self.network.node[sig]['conformers'])
index_list = [x for x in range(conf_count)]
list_of conformer_indices.append(index_list)
# I'm throwing this in for later when I want to look at a conformational ensemble
subgraph_permutations = list(itertools.product(*list_of conformer indices))
for permutation in subgraph_permutations:
permutation = subgraph_permutations[0]
node_with_conformer_tuples =[]
for node in graph.nodes():
node_index = graph.nodes().index(node)
node with conformer tuples.append((node,permutation[node_index]))
changed_nodes =[]
xi=0
# 1 need to rearrange the move list
for move in graph.graph['move_list']:
nodel = move[1]
node2 = move[0]
map = move[2]
sig2_index =0
sig2 = graph.node[node2]['sig']
sig2_graph = self.network.node[sig2]['conformers'][sig2_index].copy()
# This is basically saying that if this is my first iteration then I need to begin the graph

if graph.graph['move_list'].index(move) == 0:
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sigl = graph.node[nodel]['sig']
sigl_graph = self.network.node[sig1]['conformers'][0]
conformer = sigl_graph.copy()
else:
sigl_graph = graph.node[nodel]['sig_graph']
node 2a = choice( map.keys() )
node_la = x[1] for x in map.items() if x[0] == node_2a ][0]
node_2a_coordinates = sig2_graph.node[node_2a]['xyz']
node_la_coordinates = sigl _graph.node[node_la]['xyz']
translation_vector = numpy.subtract(node la coordinates,node 2a coordinates)

translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]],
[0,0,1,translation_vector[2]],[0,0,0,11])

# Now I need to translate all nodes in the second signature copy
for node in sig2_graph.nodes():
new_coordinates = numpy.dot( translation_matrix , sig2_graph.node[node]['xyz'] )
new_coordinates_t = numpy.transpose(new_coordinates)
sig2_graph.node[node]['xyz'] = new_coordinates_t
# Now I need to choose a second mapped node to create a rotation
node2b_choices = [x for x in map.keys() if not x ==node 2a]
node 2b = choice(node2b_choices)
node_1b = map[node 2b]
node_1b_coordinates = sigl _graph.node[node_1b]['xyz']
node 2b_coordinates = sig2 _graph.node[node 2b]['xyz']
nodes_lab_vector = numpy.subtract(node_1b_coordinates[:3],node_la_coordinates[:3])
nodes_2ab_vector = numpy.subtract(node 2b_coordinates[:3],node 2a_coordinates[:3])
angle 1 = angle between(numpy.transpose(nodes_lab_vector),nodes 2ab_vector)
axis_1 = numpy.cross(nodes_lab vector,nodes 2ab_vector)
# I still need to normalize this axis
if numpy.linalg.norm(axis_1) == 0:
axis_lu=axis 1
else:
axis_lu = axis_1/numpy.linalg.norm(axis_1)
x = axis_lu[0]
y =axis_lu[l]

z = axis_lu[2]
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a=angle 1
rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)],
[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],
[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])
for node in sig2 graph.nodes():
new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose(sig2_graph.node[node]['xyz'][:3]))
new_coordinates_t = numpy.transpose(new_coordinates)
new_coordinates_t a =numpy.append(new_coordinates_t,1)
sig2 graph.node[node]['xyz'] = new_coordinates t a

# Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom
coordinates is a minimum

# First, I'll have to define the new axis of rotation
# This will be the difference vector between points al and a2 or bl and b2
axis_2u =nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector)
x = axis_2u[0]
y = axis_2u[l]
z = axis_2u[2]
rotation_list =[]
for d in range(0,360,2):
a = numpy.radians(d)
rotation_matrix_2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
cos(a))+y*sin(a)], [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],
[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])
temp_node_dictionary = defaultdict(numpy.array)
# Now im going to create a list of all mapped nodes in the second signature
node_list = map.keys()
for node in node_list:

new_coordinates = numpy.transpose(numpy.dot(rotation _matrix_2,numpy.transpose(
sig2 graph.node[node]['xyz'][:3])))

temp_node_dictionary[node] = new_coordinates
total_distance = 0
for node in node_list:

sig_1_node = map[node]

total_distance += numpy.linalg.norm(temp_node_dictionary[node]-sigl graph.node
[sig_1_node]['xyz'][:3])

temp_node_dictionary.clear()
rotation_list.append((d,a,total distance))

# Now I must identify the lowest total distance
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best_radian = min(rotation_list, key=itemgetter(2))[1]

a=Dbest_radian

# Now I need to actually rotate all of the atoms in the second signature

rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)],
[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],
[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])

for node in sig2_graph.nodes():

new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose(
sig2 graph.node[node]['xyz'][:3])))

new_coordinates_a = numpy.append(new_coordinates,1)
sig2 graph.node[node]['xyz'] = new_coordinates a
graph.node[node2]['sig_graph'] = sig2 graph.copy()
# Now I need to add to the growing graph
# First, I'll add the nodes not involved in docking
nodes_to_add = [x for x in sig2_graph.nodes() if x not in map.keys()]
for node in nodes_to_add:
# Adding in label change because of conflicting fragments with the same labels
new node id = 100*(xi+1) + node

conformer.add_node(new_node_id, atom= sig2_graph.node[node]['atom'],
xyz = sig2_graph.node[node]['xyz'], old_id = node)

# Next, I'll need to add all edges located in signature two which don't involve docking nodes
edges to add = [edge for edge in sig2 graph.edges() if edge[0] not in map.keys() and edge[1] not in map.keys()]
for edge in edges_to_add:
new_edge 0=edge[0] + 100*(xi+1)
new_edge 1 =-edge[l]+ 100*(xi+1)
conformer.add_edge(new_edge 1, new_edge 0, type = sig2_graph.edge[edge[0]][edge[1]]['type'])
# Now I need to add edges within the docking zone involving one node from signature two and one from signature one
next_edges_to_add =[]
for edge in sig2 graph.edges():
if (edge[0] not in map.keys() and edge[1] in map.keys() ):
ifxi==0:
node_in_1 = map[ edge[1] ]
else:
node in_1 =map[ edge[1] ] + (100*xi)
new_edge 0= 100*(xi+1) + edge[0]

next_edges to_add.append( (new_edge 0,node in 1, sig2 graph.edge[
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edge[O0]][edge[1]]['type']) )
elif ( edge[0] in map.keys() and edge[1] not in map.keys() ):
if xi==0:
node_in_1=map [ edge[0] ]
else:
node_in_1=map[ edge[0] ] + (100*xi)
new_edge 1=100*(xi+1) + edge[1]

next_edges_to_add.append ( (node _in_1,new_edge 1, sig2 graph.edge[
edge[0]][edge[1]]['type]) )

else:
pass
for edge in next_edges to_add:
conformer.add edge(edge[0],edge[1],type = edge[2])
xi+=1
graph.graph['conformers'].append(conformer)

print 'Conformer created!"

A.5 — Code for Expedited Molecular Mechanics Analysis

The following piece of code was created to handle large data sets when performing
conformational analysis using the BOSS program. The code scans the conformational
space of each mol file in a directory and creates a file with each identified conformational

isomer while cleaning up the remaining log files.

import subprocess
import glob
import linecache
from decimal import *
class Directory:

def init (self,full parent directory):

self.full_parent_directory = full_parent_directory
def conformational analysis(self,cutoff):
"""This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures dictionary"""

cutoff _decimal = Decimal(cutoff)

if self.full parent_directory[-1]=="/":
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self.full parent directory = self.full parent directory[:len(self.full _parent directory)-1]
mol_files = self.full_parent_directory + '/*.mol'
file iter = glob.iglob(mol_files)
subprocess.call('mkdir conformers',shell=True,cwd=self.full_parent directory)
import_cs_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xCS100 '+ self.full _parent directory +'/' +'xCS100'
import_xmolz_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xMOLZ '+ self.full parent_directory +'/' + 'xMOLZ'
import_xcsmol command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/’xCSMOL+tself.full parent directory +'/' + 'xCSMOL'
subprocess.call(import_xmolz_command,shell=True)
subprocess.call(import_cs_command,shell=True)
subprocess.call(import_xcsmol command,shell=True)
for fn in file iter:
mol_file = fn.replace(self.full_parent directory,")
mol_file =mol_file.replace('/',")
mol_file =mol _file.replace('.mol',")
xmolz_command ='xMOLZ '+ mol_file
xmolz_subprocess = subprocess.Popen(xmolz_command,shell=True,cwd=self.full_parent directory)
xmolz_subprocess.wait()
rm_log ="rm' +'log'
rm_optzmat = 'rm' + ' optzmat'
rm_out='rm'+'out'
rm_plt="rm' + ' plt.pdb’'

' 1

rm_sum='rm'+ 'sum
subprocess.Popen(rm_log,shell=True,cwd=self.full parent directory)
subprocess.Popen(rm_optzmat,shell=True,cwd=self.full parent_directory)
subprocess.Popen(rm_out,shell=True,cwd=self.full parent directory)
subprocess.Popen(rm_plt,shell=True,cwd=self.full_parent_directory)
subprocess.Popen(rm_sum,shell=True,cwd=self.full parent directory)
xcs_command ='xCS100 '+ mol_file

xcs_subprocess = subprocess.Popen(xcs_command,shell=True,cwd=self.full_parent_directory)
xcs_subprocess.wait()

rm_z="rm'+ mol_file +'z'

rm_cs ='rm"'+ mol_file +"'.cs.CSV'

rm_cs_sum ='rm "'+ mol_file +".cs.sum'

rm_csz='"rm"'+ mol_file + ".cs.z'

rm_cs_out='"rm '+ mol_file +".cs.out'
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subprocess.Popen(rm_z,shell=True,cwd=self.full_parent directory)
subprocess.Popen(rm_cs,shell=True,cwd=self.full_parent_directory)
subprocess.Popen(rm_cs_sum,shell=True,cwd=self.full parent directory)
subprocess.Popen(rm_csz,shell=True,cwd=self.full_parent_directory)
subprocess.Popen(rm_cs_out,shell=True,cwd=self.full parent directory)
subprocess.Popen('rm log',shell=True,cwd=self.full parent directory)
xcsmol_subprocess = subprocess.Popen('’xCSMOL',cwd=self.full parent directory,stdin=subprocess.PIPE)
input_text =mol_file +".cs.mol'
xcsmol_subprocess.communicate(input = input_text)[0]
xcsmol_subprocess.wait()
rm_csmol ='rm '+ mol_file +'.cs.mol'
subprocess.call(rm_csmol,shell=True,cwd=self.full_parent directory)
first_conformer = self.full_parent_directory +'/cs001.mol'
lowest_energy = Decimal((linecache.getline(first_conformer,3)[43:51]).strip())
print 'Lowest energy:', lowest_energy
mv_best_conformer ='mv ' +'./cs001.mol "' +'./conformers/' + mol_file +'.1.mol'
cs_files = self.full parent directory + '/cs*.mol'
file_iter 2 = glob.iglob(cs_files)
subprocess.call(mv_best_conformer,shell=True,cwd=self.full parent directory)
n=2
for fn in file iter 2:

energy = Decimal((linecache.getline(fn,3)[45:51]).strip())

if energy < lowest_energy + cutoff decimal:

mv_conformer cmd ='mv '+ fn+"'"+ self.full_parent directory+'/conformers/' + mol_file + ".'+str(n)+ '.mol'

subprocess.call(mv_conformer cmd,shell=True)

else:
rm_conformer_cmd ='rm"' + fn
subprocess.call(rm_conformer_cmd,shell=True)
n+=1

lowest_energy =0

A.6 — Geometry Verification Code
The following code was written to verify the geometry generation process for a given

data set. It is formatted such that it can be used for sensitivity analysis when choosing the
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optimal cutoff value for network compression such that significant conformational

isomers are still created during the search.

import networkx as nx
import networkx.algorithms.isomorphism as iso
import math
from math import fabs
import itertools
import re
import glob
import subprocess
import linecache
from collections import defaultdict
from operator import eq
from pprint import pprint
import numpy
from operator import itemgetter
from random import choice
sin = numpy.sin
COS = nuMmpy.cos
valence_dictionary = {'C":4,'0"2,'H":1,'N"3,'S"2,'CI":1,'F":1,'Br":1}
bond_dictionary = {1:1,2:2,4:1.5}
def unit_vector(vector):

return vector/numpy.linalg.norm(vector)
def angle between(vl, v2):

vl_u=unit_vector(vl)

v2_u=unit_vector(v2)

angle = numpy.arccos(numpy.dot(vl_u,v2_u))

if numpy.isnan(angle):

if (v1_u==v2_u).all():
return 0.0
else:
return numpy.pi
return angle

class Directory:
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def init  (self,full parent directory):
self.full_parent_directory = full_parent_directory
def create_graphs(self,height):
"""This function will create nx graphs with underlying signatures stored in each node"""
self.height = height
self.graphs =[]
if self.full_parent_directory[-1]=="/":
self.full parent directory = self.full parent directory[:len(self.full parent directory)-1]
mol_files = self.full_parent_directory + '/*.mol'
file_iter = glob.iglob(mol _files)
for fn in file_iter:
# Creating a nx.Graph from the mol file
G = nx.Graph()
G.graph['fn'] = fn
if 'OpenBabel' in str(linecache.getline(fn,2)):
atom_bond_number_line =4
else:
atom_bond_number_line =35
atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip())
bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip())
coordinate_begin_line = atom_bond number line + 1
coordinate_end_line = atom_bond_number_line + atomn
bond begin_line = coordinate end line +1
bond_end_line = coordinate_end_line + bondn
for i in range(bond_begin_line, bond_end_line + 1):
atom] = int((linecache.getline(fn,1)[0:4]).strip())
atom?2 = int((linecache.getline(fn,i)[4:8]).strip())
bondtype = int((linecache.getline(fn,i)[8:10]).strip())
G.add_edge(atom1, atom2, type=bondtype)
for i in range(coordinate begin_line,coordinate_end line + 1):
j=1-(atom_bond number line)

G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
float((linecache.getline(fn,i)[ 14:21]).strip()),float((linecache.getline(fn,1)[24:31]).strip())])

G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())

# Now assigning subgraphs to each node
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nodes = G.nodes_iter()
for node in nodes:
subgraph=nx.ego_graph(G, node, radius=self height)
atom = G.node[node]['atom']
unsaturated nodes = []
for node2 in subgraph.nodes():
actual_saturation = 0
desired_saturation = valence_dictionary[subgraph.node[node2]['atom']]
for neighbor in subgraph.neighbors(node2):
actual_saturation += bond_dictionary[subgraph.edge[node2][neighbor]['type']]
if actual_saturation < desired_saturation:
unsaturated_nodes.append(node2)
subgraph.graph['unsaturated nodes'] = unsaturated_nodes
G.node[node]['atomic_signature'] = subgraph
self.graphs.append(G)

print "Graph created for: ", fn

print 'All',len(self.graphs),'graphs have been imported.'

print 'Compressing graphs...'

self.compressed graphs =[]

for graph in self.graphs:

match_status =0
if len(self.compressed_graphs) > 0:
for graph_list in self.compressed_graphs:
m = iso.categorical_node match('atom', 'C')
m = iso.categorical _edge match('type', 4)
GM = iso.GraphMatcher(graph,graph_list[0],node_match = nm, edge match = em)
if GM.is_isomorphic():
match_status = 1
new_graph = graph.copy()
new_graph=nx.relabel nodes(subgraph, GM.mapping, copy=True)
graph_list.append(new_graph)
break
if match_status == 0:
new_list =[]

new_graph = graph.copy()
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new_list.append(new_graph)
self.compressed_graphs.append(new_list)
else:
new_list =[]
new_graph = graph.copy()
new_list.append(new_graph)
self.compressed graphs.append(new _list)
total_graphs_after compression =0
for graph_list in self.compressed graphs:
total_graphs_after compression += len(graph_list)
print 'Graphs compressed.'

print 'Number of unique graphs is', len(self.compressed_graphs), 'with', total_graphs_after compression, 'graphs accounted
for.'

def identify _move_lists(self):
def create_first_size list(graph):
subgraph_size_list =[]
for node in graph.nodes_iter():
unsat_nodes = len(graph.node[node]['atomic_signature'].graph['unsaturated nodes'])
subgraph_size = len(graph.node[node]['atomic_signature'].nodes())
if unsat_nodes == 0:
return False
break
else:
size_metric = subgraph_size/unsat_nodes
subgraph_size list.append((node,size metric))
return subgraph_size list
for graph_list in self.compressed_graphs:
graph = graph_list[0]
move_list =[]
required_nodes = [x for x in graph.nodes()]
defined nodes =[]
utilized_nodes =[]
graph.graph['move _list'] =[]
a = create_first_size list(graph)
if a == False:

print "This graph is too small for this methodology."
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continue
else:
subgraph_size list=a
# Now I have developed a subgraph size list and will identify the largest size
max_metric = max(subgraph_size_list,key=itemgetter(1))[1]
largest_node_list = [x[0] for x in subgraph_size list if x[1] == max_metric]
if len(largest_node_list) > 1:
#randomly choose one
first_node = choice(largest_node_list)
else:
#choose the only one
first node = largest node list[0]
for node in graph.node[first node]['atomic_signature'].nodes():
defined_nodes.append(node)
utilized_nodes.append(first_node)
undefined = [x for x in required_nodes if x not in defined_nodes]
last node used = first node
while len(undefined) > 0:
# Now I need to identify all atoms having at least three in common with the defined graph
unused_nodes =[x for x in graph.nodes() if x not in utilized_nodes]
overlapping_signatures = []
for unused_node in unused_nodes:
common_nodes = [x for x in graph.node[unused node]['atomic_signature'].nodes() if x in defined nodes]

unsaturated_nodes = [x for x in graph.node[unused node]['atomic_signature'].graph['unsaturated nodes'] if x
not in common_nodes]

newly_defined_nodes = [x for x in graph.node[unused_node]['atomic_signature'].nodes() if x not in
common_nodes]

if len(common_nodes) >= 3:
if len(newly_defined_nodes)>0:

overlapping_signatures.append((unused_node, len(newly_defined_nodes), len(unsaturated_nodes),
common_nodes))

# Now I have defined all possible overlapping signatures

# The task remains to choose one which minimizes unsaturated nodes while having the most in common
least unsat_remaining = min(overlapping_signatures,key=itemgetter(2))[2]

tuples with_least_unsat remaining = [x for x in overlapping_signatures if x[2] == least_unsat_remaining])

most_newly defined = max(tuples_with_least unsat_remaining,key=itemgetter(1))[1]
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tuples_with_most_newly defined = [x for x in tuples_with_least unsat_remaining if x[1] == most_newly_defined]
if len(tuples_with_most_newly_defined) > 1:

chosen_tuple = choice(tuples_with most newly defined)

next_signature = chosen_tuple[0]

utilized nodes.append(next_signature)

move_list.append((last_node_used, next_signature, chosen_tuple[3]))

newly defined nodes = [x for x in graph.node[next signature]['atomic_signature'].nodes() if x not in
chosen_tuple[3]]

for x in newly_defined_nodes:
defined_nodes.append(x)
last node used = next_signature
undefined = [x for x in required_nodes if X not in defined_nodes]
elif len(tuples_with_most newly defined) == 1:
chosen_tuple = tuples_with_most newly defined[0]
next_signature = chosen_tuple[0]
utilized_nodes.append(next_signature)
move_list.append((last_node used, next_signature, chosen_tuple[3]))

newly defined nodes = [x for x in graph.node[next signature]['atomic_signature'].nodes() if x not in
chosen_tuple[3]]

for x in newly_defined nodes:
defined nodes.append(x)
last_node_used = next_signature
undefined = [x for x in required_nodes if x not in defined_nodes]
graph.graph['move_list'] = move_list
def create_docking_map(self,network):
# The first step is to identify the graphs necessary for docking in the network
self.network = network
for graph_list in self.compressed graphs:
graph = graph_list[0]
graph.graph['docking_map_list'] =[]
for move in graph.graph['move_list']:
working_list =[]
node 1 =move[0]
node 2 =move[l]
signature 1 = graph.node[node 1]['atomic_signature']

signature_2 = graph.node[node 2]['atomic_signature']
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# Identifying signature 1 in network
for node in network:
conformer = network.node[node]['conformers'][0]
m = iso.categorical_node_match(‘atom’, 'C')
em = iso.numerical edge match('type', 1)
GM = iso.GraphMatcher(signature 1,conformer,node_match = nm,edge match = em)
if GM.is_isomorphic():
working_list.append(node)
mapped_node_list_1 =]
for node_id in move[2]:
mapped node_id = GM.mapping[node id]
mapped_node_list_1.append(mapped_node_id)
working_list.append(mapped_node_list 1)
break
# Identifying signature 2 in network
for node in network:
conformer = network.node[node]['conformers'][0]
m = iso.categorical node match('atom', 'C")
m = iso.numerical _edge match('type', 1)
GMb = iso.GraphMatcher(signature 2,conformer,node match = nm,edge match = em)
if GMb.is_isomorphic():
working_list.insert(1,node)
mapped_node list 2 =[]
for node_id in move[2]:
mapped_node_id = GMb.mapping[node_id]
mapped_node_list_2.append(mapped_node_id)
working_list.append(mapped_node list 2)
break
graph.graph['docking_map_list'].append(working_list)
def create_conformers(self):
self.conformer_lists =[]
for graph_list in self.compressed_graphs:
conformer_list i =[]
graph = graph_list[0]

number_of docks = len(graph.graph['docking_map_list'])
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# Now I need to calculate all possible permutations of subgraph conformers to utilize here
list_of conformers =[]
list_of conformer_indices = []
conformer_count =0
for each in graph.graph['docking map list']:
if conformer_count == 0:
list of conformers.append(each[0])
list_of conformers.append(each[1])
conformer count += 1
else:
list of conformers.append(each[1])
for conformer in list of conformers:
index_number = len(self.network.node[conformer]['conformers'])
index_list =[x for x in range(index_number)]
list_of conformer_indices.append(index_list)
subgraph_permutations = list(itertools.product(*list_of conformer indices))
permutation_count = 0
for permutation in subgraph_permutations:
permutation_count += 1
print 'There were this many conformers created:', permutation_count
for permutation in subgraph permutations:
for xi in range(number_of docks):
yi=xi+1

if xi==0:

first_signature = self.network.node[list_of conformers[xi]]['conformers'][permutation[xi]]

conformer = first_signature.copy()
else:
first_signature = second_signature.copy()

# I'll keep this as the working graph

#This is where I need to decide on the first point for translation (zero index chosen as place holder)

#Later I could change this to only consider non-H atoms
node 1la = graph.graph['docking_map_list'][xi][2][0]

node la_coordinates = first_signature.node[node la]['xyz']

second_signature = self.network.node[list of conformers[yi]]['conformers'][permutation[yi]].copy()

node 2a = graph.graph['docking_map_list'][xi][3][0]
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node 2a_coordinates = second_signature.node[node_2a]['xyz']
translation_vector = numpy.subtract(node_la_coordinates,node_2a_coordinates)

translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]],
[0,0,1,translation_vector[2]],[0,0,0,1]])

# Now I need to translate all nodes in the second signature copy
for node in second_signature.nodes():
new_coordinates = numpy.dot(translation_matrix,second_signature.node[node]['xyz'])
new_coordinates_t = numpy.transpose(new_coordinates)
second_signature.node[node]['xyz'] = new_coordinates_t
# Now I need to choose a second mapped node to create a rotation
node_1b = graph.graph['docking_map_list'][xi][2][2]
node_1b_coordinates = first_signature.node[node 1b]['xyz']
node 2b = graph.graph['docking map_list'][xi][3][2]
node 2b_coordinates = second_signature.node[node 2b]['xyz']
nodes_lab_vector = numpy.subtract(node_1b_coordinates[:3],node_la_coordinates[:3])
nodes_2ab_vector = numpy.subtract(node_2b_coordinates[:3],node_2a_coordinates[:3])
angle_1 = angle_between(numpy.transpose(nodes_1lab_vector),nodes_2ab_vector)
axis_1 =numpy.cross(nodes_lab vector,nodes 2ab_vector)
# 1 still need to normalize this axis
if numpy.linalg.norm(axis_1) == 0:
axis_lu=axis_1
else:
axis_lu = axis_1/numpy.linalg.norm(axis_1)
x = axis_1u[0]
y =axis_lu[l]
z = axis_lu[2]
a=angle 1
rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
cos(a))ty*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),
y*z*(1-cos(a))-x*sin(a)], [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),
cos(a)H(z*z)*(1-cos(a))]])
for node in second_signature.nodes():

new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose(
second_signature.node[node]['xyz'][:3]))

new_coordinates_t = numpy.transpose(new_coordinates)
new_coordinates_t a =numpy.append(new_coordinates_t,1)
second_signature.node[node]['xyz'] = new_coordinates t a

# Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom coordinates is a
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minimum
# First, I'll have to define the new axis of rotation

# This will be the difference vector between points al and a2 or bl and b2
axis_2u =nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector)
x = axis_2u[0]
y = axis_2u[l]
z = axis_2u[2]
rotation_list =[]
for d in range(0,360,2):
a = numpy.radians(d)
rotation_matrix 2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
cos(a))+y*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),
y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),
cos(a)+(z*z)*(1-cos(a))]])
temp_node_dictionary = defaultdict(numpy.array)
# Now im going to create a list of all mapped nodes in the second signature
node_list = graph.graph['docking_map_list'][xi][3]
for node in node_list:

new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_2,
numpy.transpose(second_signature.node[node]['xyz'][:3])))

temp_node_dictionary[node] = new_coordinates
# This will allow me to identify the mapped nodes in signature one
tuples_list = zip(graph.graph['docking_map_list'][xi][3],graph.graph['docking_map_list'][xi][2])
total distance =0
for node in node_list:
for each_tuple in tuples_list:
if each_tuple[0] == node:
sig_1_node = each_tuple[1]
break

total_distance += numpy.linalg.norm(temp_node_dictionary[node]first_signature.node[sig_1_node]
['xyz'][:3])

temp_node_dictionary.clear()
rotation_list.append((d,a,total_distance))

# Now I must identify the lowest total distance

best_radian = min(rotation_list, key=itemgetter(2))[1]

a=best_radian

# Now I need to actually rotate all of the atoms in the second signature

rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
cos(a))ty*sin(a)], [y*x*(1-cos(a))tz*sin(a), cos(a)+(y*y)*(1-cos(a)),
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y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),

cos(a)+(z*z)*(1-cos(a))]])
for node in second_signature.nodes():

new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose
(second_signature.node[node]['xyz'][:3])))

new_coordinates_a = numpy.append(new_coordinates,1)
second_signature.node[node]['xyz'] = new_coordinates_a
# Now I need to add to the growing graph
# First, I'll add the nodes not involved in docking
nodes to_add = [x for x in second_signature.nodes() if x not in graph.graph['docking map _list'][xi][3]]
for node in nodes_to_add:
# Adding in label change because of conflicting fragments with the same labels
new_node_id = 100*(xi+1) + node

conformer.add_node(new_node_id, atom= second_signature.node[node]['atom'], xyz =
second_signature.node[node]['xyz'], old_id = node)

# Next, I'll need to add all edges located in signature two which don't involve docking nodes

edges_to_add = [edge for edge in second_signature.edges() if edge[0] not in graph.graph['docking_map_list']
[xi][3] and edge[1] not in graph.graph['docking_map_list'][xi][3]]

for edge in edges_to_add:
new_edge 0=edge[0] + 100*(xi+1)
new_edge 1 =-edge[1]+ 100*(xi+1)
conformer.add edge(new_edge 1, new edge 0, type = second_signature.edge[edge[0]][edge[1]]['type'])
# Now I need to add edges within the docking zone involving one node from signature two and one from signature one
next_edges_to_add =[]
for edge in second_signature.edges():

if edge[0] not in graph.graph['docking_map_list'][xi][3] and edge[1] in graph.graph
['docking_map _list'][xi][3]:

node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[1])
if xi==0:
node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index]
else:
node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] + (100*xi)
new_edge 0= 100*(xi+1) + edge[0]

next_edges_to_add.append( (new_edge 0,node in_1, second_signature.edge
[edge[0]][edge[1]]['type']) )

elif edge[0] in graph.graph['docking_map _list'][xi][3] and edge[1] not in graph.graph['docking_map _list']
[xi][3]:

node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[0])

if xi ==0:
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node_in_1 = graph.graph['docking_map_list'][xi][2][node_in 1 index]
else:

node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_I_index]+ (100*xi)
new_edge 1 =100*(xi+1) + edge[1]

next_edges_to_add.append ( (node_in_1,new_edge 1, second_signature.edge[edge[0]]
[edge[1]1['type']) )

else:
pass
for edge in next_edges to add:
conformer.add_edge(edge[0],edge[1],type = edge[2])
conformer list i.append(conformer)

self.conformer _lists.append(conformer list i)
conformer_count =0
conformer_list_count = 0
for list_i in self.conformer _lists:

conformer_list_count += 1

conformer_count += len(list_i)
print 'Overall I have generated:', conformer list count, 'unique graphs with:', conformer count, 'total conformers.'

def quicker geom_test(self):

for x in range(len(self.compressed _graphs)):

graph_1 = self.compressed_graphs[x][1]

graph_2 = self.compressed_graphs[x][0]

m = iso.categorical_node_match('atom','C")
m = iso.categorical_edge match('type',4)
GM = iso.GraphMatcher(graph_1,graph 2, node_match=nm, edge_match=em)
if GM.is_isomorphic():
print 'Isomorphic'

else:
print 'Not Isomorphic'

def quick_geom_test(self,cutoff 2):
for x in range(len(self.compressed_graphs)):
total_graphs = len(self.compressed_graphs[x])
print 'Total graphs', total graphs
matched _graphs =0
for graph_1 in self.compressed graphs[x]:

for graph_2 in self.conformer_lists[x]:
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match = "yes'
m = iso.categorical_node match('atom', 'C')
m = iso.categorical_edge match('type', 4)
GM = iso.GraphMatcher(graph_1,graph_2,node_match=nm,edge_match=em)
if GM.is_isomorphic():
for edge in graph_1.edges():
nodeA = edge[0]
nodeB = edge[1]
nodeC = GM.mapping[nodeA]
nodeD = GM.mapping[nodeB]
d1 = numpy.linalg.norm(graph_1.node[nodeA]['xyz'][:3]-graph_1.node[nodeB]['xyz'][:3])
d2 = numpy.linalg.norm(graph_2.node[nodeC]['xyz'][:3]-graph_2.node[nodeD]['xyz'][:3])
if fabs(d1-d2) > float(cutoff 2):
match = "no’'
break
if match =="yes":
matched graphs += 1
break
else:
continue
else:
print 'These were not isomorphic.'

print 'For graph:', x, '...", matched_graphs*100/total_graphs ,'percent of the graphs were matched.'

239



Appendix B — Solutions to Pharmacophore Case Study
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