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Abstract 
 

In this work, a methodology for the solution of computer-aided molecular design (CAMD) 

problems with property models utilizing descriptors of varying dimensionality has been 

presented. The problems encountered within this field typically require the selection, or 

design, of pure chemicals, as well as mixtures, exhibiting a desired set of properties and 

attributes. These properties and attributes are captured through property models, which 

have widely varying forms. These property models are most often a function of molecular 

descriptors, which provide a quantitative reference to the structural features in a molecule. 

There are multitudes of descriptor types, each which can be immediately categorized 

based on the dimensionality of information they capture. This is one of the strengths of 

computer aided molecular design, the flexibility to develop a specific model for each 

property of interest. However, it often leads to the selection of very complex and widely 

differing property models for each property of interest. An ideal CAMD methodology 

would not restrict the property modelling stage to certain types of independent variables, 

and as such, could solve these problems on a single platform. The problem with 

developing such an algorithm is that the descriptors chosen are often of varying 

dimensionalities. Inclusion of descriptors beyond two-dimensional requires some 

consideration of the potential energy surface, or conformational space, for each candidate 

solution. In addition, the region in which to search for solutions becomes difficult to 



 

identify because each property model has its own applicability domain, within which 

predictions can be made with increased confidence. 

The approach presented within this dissertation, aimed at solving such problems, 

utilizes a fragment based descriptor known as the signature descriptor. Previous 

applications using this descriptor were shown to be successful in terms of solving the 

problem in an efficient manner while identifying novel solutions. Extension of this 

descriptor to include spatial information, along with the techniques necessary for using 

this data, is presented. This has allowed for the estimation of likely local energy minima 

without the conventional conformational analysis for each potential solution, which has 

been shown to be computationally intensive. The nature of signature descriptors, being 

fragment based, allows for an efficient description of which region in chemical space to 

search for solutions and also facilitates reconstruction of solutions matching a set of 

descriptor values. A description of previous approaches taken to solve problems of this 

nature has been outlined such that the benefits of the proposed technique could be 

exemplified. In addition, several studies have been provided to verify the proposed 

methodology.
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1. Introduction 

 

The field of computer-aided molecular design (CAMD) has seen an exponential increase 

in the complexity of problems considered, which has been made possible through a 

paralleled increase in algorithms and hardware available to solve these problems. This 

area has such humble origins and has expanded through continued contributions from 

many fields including medicinal chemistry, computer sciences, computational chemistry, 

bioinformatics and chemical engineering. Problems ranging from the identification of 

optimal solid state catalysts to the synthesis of potent HIV-1 protease inhibitors have 

benefited from CAMD techniques and studies with ever-increasing complexity are being 

considered. 

The ability to describe molecular structures accurately and uniquely is possible 

through the utilization of molecular descriptors. These descriptors can capture a variety 

of aspects such as charge distribution, globularity, size, and complexity of structures 

under consideration. These are the details necessary for correlation to the various 

properties and activities of interest, which is done through the generation of mappings 

between descriptor space and attribute space. What descriptors offer is the ability to 

translate the characteristics of a molecular structure into a numerical domain. With this 

information, one is able to apply the established techniques of numerical analysis towards 

solving CAMD problems. However, one limitation to these increasingly informative 

models is the ability to use them in an efficient manner. The original property models 

typically considered very simple descriptors, such as molecular weights or atom counts. 

This was sufficient for correlation to common physico-chemical properties, however, to 
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capture the variance of more complex properties, it became necessary to use more 

complex descriptors. This increase in complexity demands improved CAMD solution 

techniques. Some techniques benefited from a unique description of the problem such 

that various programming and optimization algorithms could be applied to scan larger 

chemical search spaces. Others relied on efficient handling and consideration of data for 

solving these more complex problems. However, the most successful techniques have 

taken advantage of both approaches. 

1.1 Challenges and Motivation 

The improved ability to accurately model molecular structures and their interactions with 

each other has provided a wealth of information which was previously unattainable. This 

new information is now being produced with incredible accuracy such that its correlation 

with experimental properties is resulting in models which can be successfully 

interpolated and extrapolated around the original data set. This provides an opportunity to 

identify chemical solutions, with a set of desired properties, which have not been 

included in the original data set. The search space, known as chemical space, for these 

potential solutions is vast as the number of just small organic structures has been 

estimated to be around 1060 (Kirkpatrick and Ellis, 2004). Chemical space represents all 

possible collections and arrangements of atoms producing unique molecular structures. 

Such a large search area demands efficient methods of scanning for solutions. In addition, 

the varying applicability of these models, or the confidence associated with a models 

prediction for a specific region of chemical space, must be taken into consideration to 

produce reliable results. 
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 These improved molecular modelling techniques, in addition to providing 

increasingly accurate information, are also providing much more complex information. 

For example, the spatial characteristics, or three-dimensional information, of molecules 

under study are now accessible through simulation. Such information has necessitated the 

creation of new independent variables capable of systematically representing this data 

across a variety of molecules. The ability to utilize these models in a CAMD approach 

requires some technique for estimating these values in an efficient manner such that a 

larger region of chemical space can be considered for improved solutions. While it is 

possible to thoroughly examine the spatial characteristics of each structure in a given data 

set, such that a more accurate and predictive model can be produced, the benefits of being 

able to quickly estimate this information during the solution process are obvious. In 

addition, the conformational characteristics of a given molecule are often incredibly 

complex, having multiple accessible conformers. This must be taken into consideration 

during the solution process as well.  

Alongside improved molecular modelling techniques, which have introduced new 

ways to characterize molecules, improvements in model development techniques have 

followed. Specifically, variable selection techniques, which identify the optimal set of 

independent variables useful in characterizing an attribute of interest, have become very 

important. With the introduction of spatial molecular descriptors, a multitude of 

topological and topochemical descriptors with increased complexity have been designed 

as well. Because of this, there are thousands of molecular descriptors available today, of 

which any combination could produce the optimal set of independent variables useful for 

characterizing a chosen attribute. With these improved variable selection techniques we 
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are finding that the optimal set of descriptors is often varying in the dimensionality of 

information captured. This means that we often have topological, or two dimensional, 

and topographic, or three dimensional, indices in one equation. This creates a challenge 

for designing a CAMD approach capable of handling these models efficiently. One can 

imagine that each type of property or attribute will have its own unique combination of 

molecular descriptors. The ability to handle multiple models at once, each with a widely 

varying set of information, creates a powerful CAMD technique as a more globally 

optimal solution can be identified when compared to considering only one property at a 

time. In addition, solving these equations in a single pass would allow for a more 

efficient search method than one that is iterative in nature.  

1.2 Scope and Objectives 

The requirements placed on a CAMD approach capable of handling the latest techniques 

in molecular modelling and model development include: 

1) The ability to quickly estimate spatial capabilities of a molecule under 

consideration without extensive simulation efforts would allow for consideration 

of a larger region of chemical space. 

2)  The decision of which region of chemical space to scan, such that each potential 

solution would fall under or within the applicability domain of each property 

model utilized, must be made. 

3)  The ability to simultaneously consider descriptors of widely varying nature, 

ranging from topological to topographic, is a necessity. 
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Within this dissertation, a methodology for the solution of CAMD problems with 

multi-dimensional characterization is proposed. This technique utilizes a fragment based 

descriptor, known as a spatial atomic signature, to build solution structures with targeted 

properties and attributes. Previous approaches for solving problems of this nature were 

limited to database searches and inefficient generate and test techniques which relied on 

time consuming analysis of the potential energy surface of each potential solution. This 

technique will allow for the consideration of a much larger region of chemical space, 

with minimal compromise on the accuracy of estimation made for higher dimensional 

information. The approach applies a graph based representation of molecular structures in 

which fragments are utilized to build potential solutions, which allows for a very efficient 

representation and consideration of a defined region in chemical space along with its 

associated conformational capabilities.  

The spatial information used during the CAMD algorithm is initially generated 

through an extensive conformational analysis of a given data set. Much of this 

information is overlapping, or over-defined, and a compression algorithm has been 

introduced to minimize the potential for combinatorial explosion. Combinatorial 

explosion is an effect seen quite often in the solution of combinatorial optimization 

problems of this nature. These extensive molecular modelling efforts are done up front as 

opposed to within the CAMD approach, which saves time and allows for a larger region 

of chemical space to be searched. 

In addition, the canonical fragment based representation of molecular structures 

through the atomic signature convention allows for an efficient search through a defined 

region of chemical space. A canonical representation ensures that a given molecular 
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fragment can only be represented in one way, which ensures that potential solutions are 

only visited once and minimizes the computational load of a given CAMD problem. Also, 

since the fragments are developed from an overlapping data set, which consider 

structures familiar to all property models utilized, the likelihood of a solution falling 

within the applicability domain of all models is significantly increased. 

It is the overall goal of this research to be able to solve CAMD problems utilizing 

multiple property models, each with descriptors of varying complexity. Specifically, the 

inclusion of spatial descriptors is focused upon and the efficient spatial characterization 

of molecules considered is established. The approach is based on a canonical fragment 

based descriptor to allow for a combinatorial optimization based approach which 

minimizes the potential for combinatorial explosion so larger regions of chemical space 

can be considered. The approach is designed so that a deterministic or stochastic search 

for chemical solutions can be applied for searching specific regions of chemical space 

with varying degrees of completeness and speed.  

1.3 Significance of Research 

Previously, the solution of problems of this nature was done in an iterative manner where 

the property models were tackled with increasing complexity. This is an inefficient 

technique for solving CAMD problems with multiple properties of interest. The presented 

methodology is able to efficiently consider all of these models at once, on a single 

platform, such that the problem can be solved in a single pass regardless of the number 

and complexity of molecular descriptors utilized. The space in which these problems are 

tackled also becomes very well defined with the nature of the proposed techniques. This 

space is defined in an efficient manner, such as to avoid the combinatorial explosion 
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often associated with previous attempts at searching a comparable region of chemical 

space.  

In addition, the consideration of spatial characteristics within the chosen search 

space is often lacking. The typical approach was to identify a single conformer, which 

was identified as being a potential local conformational isomer. This information was 

then utilized in establishing the molecule’s spatial characteristics and ultimately its 

likelihood of exhibiting the properties of interest. It has been established that the actual 

conformational status of a given molecule is best represented by a collection of 

conformers, each with a varying likelihood of existing in solutions. This likelihood was 

based on the internal, or conformational, energy associated with this conformer. As such, 

the most realistic representation of the spatial characteristics for a given molecule would 

consider several potential conformational isomers. This methodology allows for the 

consideration of multiple conformers, which have been shown to be representative of the 

given local energy minima. This is done in an efficient manner, such that thorough 

molecular modelling techniques are not necessary. 

With the consideration of increasingly complex problems, a CAMD approach 

capable of handling this information has become necessary. The ability to model 

interactions between groups of molecules such as ligands and receptors has allowed for 

the development of interesting spatial descriptions of these phenomena. Also, the 

traditional descriptors, which are efficient and effective at characterizing simple physic-

chemical properties, still have a place in the arena of CAMD. This methodology can 

handle previously established ideologies as well as state of the art descriptions of 

molecules, thus allowing for the solution of a wide range of CAMD problems.  



9 
 

1.4 Organization 

The format of this dissertation is such that the background is first introduced to 

provide the reader with enough knowledge to skeptically interpret the proposed 

methodology. This background, in chapter two, includes topics such as molecular 

modeling, property models, molecular descriptors and CAMD solution techniques with 

many convenient examples provided. The first section in chapter two introduces the 

fundamentals of computer-aided molecular design. This develops the “big picture” from 

which increasing levels of detail can be uncovered. The second section discusses 

molecular descriptors, which provide the ability to mathematically represent molecular 

structures. These descriptors can be immediately categorized by the dimensionality of 

information they capture, ranging from 0-D to 4-D, and each of these dimensions are 

further discussed. The third section introduces molecular modelling techniques, which are 

necessary to develop molecular descriptors with dimensionality higher than two. These 

techniques can be based on molecular mechanical simulations, where classical mechanics 

are used to model molecular systems, or quantum mechanical simulations, which 

explicitly consider the electrons within the system being studied. Further, the application 

of molecular and quantum mechanics towards estimating the geometry of a given 

molecule is considered within the geometry optimization section of chapter two. Sections 

four and five of chapter two address the concept of property models as well as how they 

are developed. The model types considered include quantitative structure-property 

relationships and fragment based property models. Each unique model type has its own 

requirements for application within a computer-aided molecular design problem, often 
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requiring several solution techniques. These techniques are discussed within the final 

section of chapter two, and several examples are provided.  

The developed methodology is covered next in chapter three and provides the details 

of the proposed technique. This includes the initial steps necessary for setting up the 

problem as well as the subsequent steps taken, ultimately leading to a solution set of 

molecular structures. Two distinct approaches were developed, and each is best suited for 

a specific type of molecular design problem. A deterministic approach was developed for 

smaller problems and this allows for the problem to be thoroughly considered as the 

entire solution space is searched. In addition, a stochastic technique was developed for 

larger studies in which it would be too time consuming to consider the entire search space. 

Within both approaches it is first necessary to identify the appropriate property models, 

select a data set, perform a conformational analysis on this data set, compress this 

information and ultimately arrive at a set of molecular fragments with which to proceed 

in generating solutions. Section one of chapter three covers these initial steps along with 

the proposed deterministic approach and section two covers the stochastic solution 

approach. The stochastic approach is an evolutionary algorithm which applies concepts 

familiar to natural selection. This requires the generation of a starting population along 

with several operators which alter the population through acts of crossover and mutation. 

The goal is to apply selective pressure and guide/transform the population to ultimately 

converge into a set of molecules with the desired characteristics.  

This method is exemplified in chapter four, which introduces several case studies 

including: solvent design, fungicide substituent design and non-peptide mimetic inhibitor 

design. In addition to these case studies, another section has been included which 
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provides verification of the underlying assumption associated with this methodology. 

This assumption is that one can generate an estimation of a potential energy surface, by 

identifying several likely conformational energy minima, through the use of fragment 

geometry information. This is one key idea responsible for the increased efficiency 

associated with the novel approach. Within the appendix, python code for application of 

each of the discussed techniques can be found. 

The deterministic approach towards solving computer-aided molecular design 

(CAMD) problems with multidimensional descriptors has been published in Computer 

Aided Chemical Engineering (Herring et al., 2012a; Herring et al., 2012b). This initial 

work allows for the solution of CAMD problems, utilizing descriptors of varying 

complexity and dimensionality, on a single platform. This approach was extended to 

consider more complex structures and design characteristics with the structure based 

design of non-peptide mimetics (Herring et al., 2013), which was published in Computer 

Aided Chemical Engineering. In addition the stochastic approach was exemplified 

through two publications in Computer Aided Chemical Engineering (Herring and Eden, 

2014 a,b). Many of the underlying techniques associated with this thesis were also 

applied in several related studies. For example, an interesting technique for the 

development of a quantitative structure-property model relating solvent structure to 

crystal morphology was also developed (Haser et al., 2014) and provides an excellent 

example of property model development techniques. Also, some concepts of generating 

solution structures, relating to ionic liquids, from molecular fragments using computer-

aided techniques have also been developed (Hada et al., 2013). In addition the quantum 

chemical characterization of ionic liquid properties has been utilized within a molecular 
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design application (Davis et al., 2014). Additionally, an invited publication encompassing 

the techniques and application of the developed stochastic evolutionary molecular design 

approach will soon be published in a special issue of Computers & Chemical Engineering. 
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2. Background 

 

The background section of this dissertation will present the ideas and techniques 

necessary for an understanding of the proposed methodology. In addition, it will provide 

a comparison through which to exemplify the benefits and novel techniques within this 

approach. The first section introduces the concept of computer-aided molecular design 

and covers the basic steps seen in problems approached within this field. The second 

section discusses the various types of molecular descriptors utilized, each of which has its 

own strengths and weaknesses in characterizing molecules. Descriptors can be 

categorized based upon the dimensionality of information they capture and this ranges 

from 0D to 4D, so far. This section is important as it compares each descriptor type, 

while offering several examples, such that the requirements for developing and using 

these descriptors can be addressed. The third section introduces various concepts in 

molecular modeling, including molecular mechanics, quantum mechanics, and geometry 

optimization. These techniques are necessary for estimation of spatial and electronic 

properties for molecules in a molecular design study. The fourth background section 

covers the various types of quantitative structure property (activity) models, and the 

techniques used to develop these. The approach taken to develop a model of this type can 

be broken into a few basic steps including variable selection, mapping (e.g. regression 

analysis), and model verification. Without these models, the design of molecules with 

desired properties and activities would be much more limited. The fifth section discusses 

the concept of fragment based property models. The three types covered in detail here are 

group contribution, pharmacophore and atomic signature based models. Fragment based 
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property models are considered separately for two reasons: (1) They have a special 

usefulness in the inverse property model approach since molecular fragments allow the 

enumeration of solution structures to be done in a much more efficient manner and (2) 

The methodology proposed in this thesis is based on the utilization of fragment based 

descriptors, namely the signature descriptor. The final section presented within the 

background covers the various techniques useful for solving molecular design problems. 

These have been broadly categorized as being database searches, generate and test 

approaches and programming/optimization. Several modern examples have been 

provided for each approach type for a hands on explanation of the pros and cons of each 

technique. It is the author’s intent that, after reviewing these sections, consideration of the 

proposed methodology will become more tangible and its novel techniques will be more 

readily noticed. 

2.1 Computer-Aided Molecular Design Approach 

Computer-aided molecular design (CAMD) involves the selection or identification of 

molecules with an increased likelihood of exhibiting a set of desired characteristics or 

attributes. This area falls under the more generalized category of product design, which 

can further include the consideration of mixture design and sometimes process design. 

Cussler and Moggridge [1] have suggested these four steps in the product design process: 

1. Define needs; 

2. Generate ideas to meet needs; 

3. Select among ideas; 

4. Manufacture product. 



15 
 

The first step is to identify the consumer/customer needs and this can be anything 

from common macroscopic molecular properties to less tangible attributes such as feel, 

smell, or color. Physicochemical properties represent explicit property constraints 

because their values can be determined directly through a model or even determined 

experimentally. Another form of property constraint includes those which are less 

tangible, as mentioned earlier, and is referred to as an implicit property. These properties 

cannot be measured or predicted by a model and must be inferred through databases, past 

knowledge, and other measured or predicted properties. Once the relevant properties have 

been identified, it is also necessary to set certain bounds on their acceptable values. This 

is often done by establishing lower and upper bounds on the properties considered, 

although sometimes only one bound is necessary. For example, toxicity is often 

represented by the concentration resulting in a fifty percent mortality rate, LC50, for a 

given test set and this property only requires a lower bound since an increased value 

represents increased chemical safety. Other properties, such as the boiling point of a 

solvent, must fall within certain acceptable limits and are more adequately constrained 

with an upper and lower bound. It is necessary to ultimately relate these attributes to the 

underlying chemical structures. The first through third steps represent the core of the 

molecular design approach, which is where mixture design problems would be 

considered in addition to single-component molecular design. The inclusion of mixture 

design necessitates the use of certain models for estimating the mixture properties, often a 

function of the individual component properties. The fourth step involves the design of a 

process which can create the desired product in a safe and economic manner. When 

product and process design are done simultaneously this is known as an integrated 
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approach and it allows for the identification of optimal component and process 

specifications. For the purposes of this defense, CAMD will consist of the first through 

third steps while excluding any mixture design applications. 

Once the desired attributes, e.g. property bounds, have been decided, what remains 

is to identify solutions exhibiting these attributes and choose the optimal solution(s). To 

do this, structure-attribute relationships, also referred to as property models, are utilized. 

There are many types of property models but they all aim to create a mathematical 

relationship between the underlying chemical structure and the property of interest. 

Molecular descriptors, which capture various features of the molecular structure, are used 

as independent variables and the properties are dependent variables in this case. When 

used in a forward manner, these models can predict the property exhibited by a certain 

molecule within the applicable domain (AD) of that model. The AD can be defined in 

many different ways and it represents a region of space where an increased confidence in 

the predicted property value can be expected, as long as the molecule lies within this 

space. This is pointed out as being important in the CAMD approach since many times 

the molecules of interest are not available in the test set, meaning their properties are 

unknown and reliable property estimations are crucial. 

Achenie et al. (2003) have provided the following generic mathematical 

programming representation of the typical CAMD problem: 

ை஻௃ܨ	  ൌ ݕ்ܥሼݔܽ݉ ൅ ݂ሺݔሻሽ (1)

s.t.  

 ݄ଵሺݔሻ ൌ 0                                                    …process design specs (2)
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 ݄ଶሺݔሻ ൌ 0                                                    …process model equations (3)

 ݄ଷሺݔሻ ൌ 0                                                    …CAMD specifications (4)

 ݈ଵ ൑ ଵ݃ሺݔሻ ൑ ଵ                                          …process design constraints (5)ݑ

 ݈ଶ ൑ ݃ଶሺݔሻ ൑ ଶ                                          …CAMD constraints (6)ݑ

 ݈ଵ ൑ ݕܤ ൅ ݔܥ ൑ ଷ                                      …logical constraints (7)ݑ

In the equations above, x represents a vector of continuous variables and y represents the 

vector of binary integer variables. Harper et al. (1999) have provided a classification for 

the various CAMD approaches and this includes (a) Database search, (b) Generate and 

Test, and (c) Mathematical programming and genetic algorithm. The equations utilized in 

each type of approach will help clarify the techniques through mathematical examination. 

A database search would satisfy only equation (6) above and this approach would be 

limited to the consideration of only existing molecules. The generate and test approach 

relies on equation (4) to generate feasible molecules and equation (6) to test if they are 

within the property bounds desired. This approach, while more computationally intensive 

than the conventional database search, introduces the opportunity to consider novel 

structures. With this new opportunity comes a challenge, which is to decide how to 

generate these new structures such that they fall reasonably within the AD of any 

property models utilized. Most attempts at this have come from fragment based 

approaches in which molecular fragments are used as building blocks to generate 

molecules within a controlled region of chemical space. The generate and test approach is 

most simply an exhaustive effort such that all feasible molecules, within the chemical 

space designated by the chosen building blocks, are tested. This often leads to what has 

been termed ‘combinatorial explosion’, which results from a combinatorial mathematics 
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problem becoming too large to solve in a reasonable amount of time because of the sheer 

number of possible combinations. When this is the case, many have turned to the third 

approach type, mathematical programming and genetic algorithm, which aim to alleviate 

this problem. The programming approach takes many different forms depending on the 

nature of the constraint equations involved, e.g. being linear or nonlinear. When the 

CAMD problem can be defined in terms of linear equations, this often allows for the 

identification of a globally optimal solution through methods such as the Simplex Method 

(Nelder and Mead, 1965). Otherwise, there are equivalently many techniques for the 

solution of non-linear programming problems including an array of stochastic techniques 

which are adept at handling the combinatorially large and highly non-linear problems 

encountered in CAMD. Overall, the adoption of CAMD methodologies has proven a very 

fruitful effort in terms of identifying and understanding the effects of varying molecular 

structure and has also saved time and expenses in the development of new chemical 

solutions. 

2.2 Molecular Descriptors 

Molecular descriptors provide a way to numerically represent certain features of a 

molecule, allowing for the mathematical characterization of structures such that the 

desired properties and activities are defined as a function of these descriptors. This is 

more formally expressed by Todeschini and Consonni (2009) as: "The molecular 

descriptor is the final result of a logic and mathematical procedure which transforms 

chemical information encoded within a symbolic representation of a molecule into a 

useful number or the result of some standardized experiment." Descriptors can be initially 

separated into two distinct categories: experimental measurements, often 
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physicochemical properties like boiling point, and theoretical molecular descriptors, 

which are derived from symbolic representations of a molecular structure. While the 

physicochemical properties might not be available for all compounds, theoretical 

descriptors can be calculated for any possible chemical structure and contain no statistical 

error due to experimental noise. Theoretical molecular descriptors can further be 

classified by the dimensionality of information they capture. This classification scheme 

results in the following categories of theoretical descriptors: 1) 0D-descriptors (i.e. 

constitutional and count descriptors), 2) 1D-descriptors (i.e. list of structural fragments), 

3) 2D-descriptors (i.e. graph invariants) 4) 3D-descriptors (e.g. quantum-chemical 

descriptors and surface descriptors) 5) 4D-descriptors (e.g. CoMFA derived descriptors). 

Comparative molecular field analysis (CoMFA) was developed by Cramer et al. (1988) 

and generates a structure/activity correlation based upon the three-dimensional steric and 

electrostatic fields of a molecule. Extension of descriptors to include four-dimensional 

information typically requires the three-dimensional analysis of a set of conformational 

isomers; This information can then be collectively utilized to generate the respective 

four-dimensional descriptors. In addition, there can be theoretical descriptors which are 

not cleanly categorized as above. One example of this would be the weighting of 

conventional topological indices by geometric information as applied in the method of 

ideal symmetry (Toropov, 1998). These indices were utilized in a predictive manner to 

calculate the boiling points of a series of alkanes and showed a better performance than 

the original topological descriptors. 

Molecular descriptors have an inherent level of degeneracy that depicts how well 

individual molecules are differentiated based solely upon their descriptor values. This 
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feature is very important when the model developed will be utilized in an inverse manner 

to predict structures meeting the desired property/attribute value. Models built with 

descriptors higher in degeneracy would have many more solution structures than one 

built with less degenerate descriptors. Since the search space for such applications can 

often be extremely large, it is desirable to reduce the solution set as much as possible. A 

general trend of decreasing degeneracy with increasing descriptor dimensionality can be 

observed. This trend is followed by an often significant increase in computational 

demands brought about by the inclusion of 3D and 4D descriptors. 

In addition to having a certain level of degeneracy, descriptors can also be 

characterized by their invariance properties. Invariance refers to the ability of the 

descriptor calculation algorithm to give a consistent value regardless of the form of 

molecular representation utilized. A minimal requirement for molecular descriptors is 

invariance to molecular numbering or labeling. The specific case of chemical invariance 

considers whether or not the various atom types of a structure affect the descriptor value. 

For example, topological descriptors utilizing atom type in their calculation are known as 

topochemical indices, and those relying solely on connectivity information are known as 

topostructural indices. 

2.2.1 0D-1D Descriptors 

0D-descriptors, also known as constitutional descriptors, are the simplest to compute and 

still offer reasonable discrimination power for specific situations. Some example of 

descriptors of this nature would be molecular weight, bond counts, atom counts, and 

fragment counts. The example shown in Fig. 2.1 represents the utilization of carbon count, 

a 0D descriptor, in creating a linear property model for the boiling point of a series of 
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from this representation of a molecule and they are collectively known as graph 

theoretical or topological indices. 

Two vertices connected by an edge are considered to be adjacent and the adjacency 

matrix A can uniquely describe a molecular graph. The adjacency matrix has elements aij 

equal to 1 for all adjacent vertices and 0 otherwise. A path, in this context, is a succession 

of non-repeating edges such that there is no discontinuity from one point to another. With 

this in mind, for each pair of vertices in a chemical graph there exists at least one path 

connecting them. The distance matrix D represents the shortest path dij between all pairs 

of vertices in a graph. Both matrices are symmetrical with respect to their main diagonals 

and have diagonal entries of zero since a vertex is unique and cannot be connected to 

itself. These matrices are often utilized as the intermediate representation of a pure 

chemical graph from which topological indices are derived. 

The Wiener index (Wiener, 1947a,b), denoted by W, was among the first, and most 

successful, topological indices utilized in structure property correlations. This topological 

index is calculated from the distance matrix and is essentially the half-sum of all entries 

in this matrix, being symmetric. As developed in Fig. 2.2, it can be seen that more 

compact molecular graphs will have a smaller W value. 
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The valence connectivity index is an extension to the original connectivity index and 

represents an attempt to account for the chemical nature of vertices, or atoms, in a 

molecular graph. In this case, vertices are no longer represented by their degree and are 

weighted by valence delta values δi, which are calculated as shown in Eq. (2.2) where Zi
v 

is the number of valence electrons in atom i, Zi is its atomic number, and Hi is the number 

of hydrogen atoms attached to atom i. The most recent extension of the original 

connectivity index is the electrotopological state index (Kier and Hall, 1999). The idea 

with this new index is to consider that each atom within the molecule resides in a field 

composed of every other atom and the result of these interactions is modification of the 

intrinsic state of that atom to produce its bonded state within the context of the whole 

molecule. The resulting electrotopological index combines the electronic and topological 

effects acting on each atom within its field. The electrotopological state (E-state) of an 

atom in a molecule is formulated as an intrinsic value, Ii, plus a perturbation term, ΔIi, 

arising from the electronic interaction and modified by the molecular topological 

environment of each atom in the molecule. The intrinsic value is calculated as shown in 

Eq. (2.3) where δ and δv are the previously discussed delta and valence  

௜ߜ  ൌ ሺܼ௜ െ ௜ሻ/ሺܼ௜ܪ െ ܼ௜
௩ െ 1ሻ (2.2)

ܫ  ൌ ቈ൬
2
ܰ
൰
ଶ

௩ߜ ൅ 1቉ (2.3) ߜ/
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delta values while N represents the principal quantum number. The field effects are 

calculated as a perturbation on the original atoms intrinsic value as shown in Eq. (2.4)  

where N represents all atoms in the structure and rij is the topological distance, or number 

of bond, between atoms i and j. The resulting electrotopological state of each atom, Si, is 

then calculated as a summation of its intrinsic value and perturbation value. This 

descriptor is differentiated from the previously applied ‘whole molecule’ descriptors in 

that its value for specific atoms was utilized by itself, while the rest of the structure was 

captured through the perturbation adjustment. 

2.2.3 3D Descriptors 

Just as 2D descriptors were termed topological indices, 3D descriptors are known as 

topographic indices and they represent geometry dependent invariants of molecular 

graphs. These descriptors were introduced because conventional topological indices 

could not account for spatial molecular information such as stereoisomerism (e.g. cis and 

trans) and molecular geometry estimations became more feasible through improvements 

in computational power and geometry development algorithms. These descriptors require 

information about the three dimensional, or geometric, arrangement of atoms in a 

molecule and there are multiple techniques, with varying accuracy, available to estimate 

this information. Experimentally, the molecular geometry can be obtained by various 

spectroscopic and diffraction methods. Infra-red, microwave and Raman spectroscopy 

can be used to obtain information about the geometry of a molecule based upon the 

vibrational and rotational absorbance detected by these techniques. In addition, x-ray 

 Δܫ௜ ൌ෍ሺܫ௜ െ ௝ܫ

ே

௝ୀଵ

ሻ/ݎ௜௝
ଶ  (2.4)
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crystallography, neutron diffraction and electron diffraction can be used to obtain 

information about the structure of crystalline solids based on the distance between nuclei 

and concentration of electron density. There are many techniques in the field of 

molecular modeling that can be used for the computational based determination of 

molecular geometry. These techniques can generally be categorized as empirical (e.g. 

molecular mechanics), semi-empirical and ab-initio techniques. Empirical applications 

use classical mechanics to model molecular systems and rely on force fields to provide 

information about the feasibility of a suggested molecular structure. These methods are 

termed ‘empirical’ because the force-field utilized has been parameterized to fit 

experimental data. Semi-empirical quantum chemistry methods often have increased 

accuracy over purely empirical methods because they consider some form of electron 

correlation, whereas this information is not explicitly considered in an empirical approach. 

Semi-empirical methods offer a nice middle ground for molecular geometry 

determination with reasonable accuracy and computational complexity. The ‘semi-‘ part 

of semi-empirical refers to the fact that the two-electron part of the Hamiltonian is not 

explicitly included, yet has been parameterized to fit either experimental or ab-initio 

results. This leads to the most computationally demanding, and often most accurate, 

technique for molecular geometry determination, termed ab-initio quantum chemistry. 

Ab-initio means ‘from first principles’ and was a term first coined by Allen et al. (1960). 

These techniques do not rely on experimental data and electrons are explicitly 

represented as the Schrodinger equation is solved to obtain very accurate geometry 

estimations. The details of these various techniques will be covered in further detail in 
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al. (1989). However, a study by Castro et al. (2002) considers the relationship between 

these descriptors in the context of utilization in property correlation. It was found that 

there is a strong linear correlation between the original Wiener index and each of its 

modified forms. This leads to the conclusion that the original definition of this descriptor 

is sufficient for property correlation, and the introduction of variants on this technique 

introduce the possibility for only slight improvements in a given QSPR model. This study 

reinforces the concept that descriptors, when utilized in structure property correlations, 

should be linearly independent. 

Many of the topographic descriptors were developed as an extension upon existing 

topological based concepts. This was the case for Diudea et al. (1995) who proposed two 

types of topographic indices of centricity and centrocomplexity which were based on 3D 

distances provided by molecular mechanics calculations. The topological counterparts to 

these types of descriptors begin with the ‘through bond’, topological distance matrix as 

well as the layer matrix, LM. The topological distance matrix is a symmetric matrix D 

whose entries, dij, correspond to the number of bonds between atoms i and j. The 

‘through space’ matrix utilized to develop these novel topographic descriptors is 

symmetric just like the original topological matrix, however, Euclidean distances are 

used in place of the number of bonds between two respective atoms. The layer matrix is a 

bit more complex than the distance matrix and it collects the properties of vertices u 

located on concentric shells (layers) G(u)j, at a distance j around the vertex i in the graph 

G, and can be defined as seen in Eq.(2.5) and (2.6): 

 ݈݉௜௝ ൌ ෍ ݉௨

௨∈ீሺ௨ሻೕ

 (2.5)
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In the above equations, m and M are labels for a given property and the corresponding 

matrix, respectively; n is the number of vertices in the graph; and d stands for the 

diameter of the graph, which is the largest topological distance in the graph. The new 

three-dimensional layer matrix follows the same convention as its topological counterpart 

as seen in Eq.(2.5) and Eq.(2.6), however, mu is now defined as in Eq.(2.7). 

 The two new local vertex invariants (LOVI’s) of c (centricity) and x (centrocomplexity) 

have been defined as shown in Eq.(2.8) and Eq.(2.9), respectively. 

ሻܩሺܯܮ  ൌ 	 ൛݈݉௜௝; ݅ ∈ ሾ1, ݊ሿ; ݆ ∈ ሾ0, ݀ሿൟ (2.6)

 ݉௨ ൌ ෍ 3݀௨௩ ൌ ௨ܦ3
௔௟௟	௩∈ீ

 (2.7)

 ܿሺܯܮሻ௜ ൌ ቎෍ሺ݈݉௜௝ሻ௝/ௗ௦௣
௘௖௖೔

௝ୀଵ

቏

ିଵ

 (2.8)

ሻ௜ܯܮሺݔ  ൌ ቎෍ ݈݉௜௝10ି௭௝
௘௖௖ೕ

௝ୀ଴

േ ݈௜቏

േଵ

௜ (2.9)ݐ

 ݈௜ ൌ ௜݂ሺ
݈݉௜଴

10
൅
݈݉௜ଵ

100
ሻ (2.10)

 ௜݂ ൌ ෍ ሺܿ௜௨ െ 1ሻ
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In the above equations, ecci is the eccentricity of vertex I (the maximal topological 

distance from vertex I to any vertices in the graph); dsp is a specified topological distance, 

usually larger than the diameter of the graph; z is the number of digits of the max lmij 

value in the graph; li is a local parameter for multiple bonds; fi is a multigraph factor, with 

ciu being the conventional bond order; ti is a weighting factor accounting for heteroatoms. 

These new indices were able to correlate well with the van der Waals surface area for a 

set of 17 geometric heptane isomers, thus exemplifying their ability to differentiate 

conformational isomers. In addition, the indices were able to correlate with the toxicity of 

ethers on mice. This exemplifies the complexity of topographic descriptors that have 

been developed in the last few decades as well as their abilities to correlate well with 

various properties and activities of interest. 

The previously described topographic descriptors were all based upon the Euclidean 

distance matrix. One approach by Estrada and Ramirez (1996) introduces a new 

topographic index derived from the three-dimensional analogue of the conventional 

topological edge matrix. The edge matrix E is a square and symmetric matrix in which 

the rows and columns correspond to edges, or chemical bonds, within a molecular graph 

G. The non-diagonal entries of this matrix are either ones or zeroes depending on whether 

the corresponding bonds are touching or not, respectively. This approach uses molecular 

graphs with edges weighted by bond orders calculated from quantum chemical methods. 

The bond orders in this method are called valence indexes and are calculated as shown in 

Eq.(2.12) 
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where, 

are the elements of the density matrix and eigenvectors Ciλ sum is over all occupied 

orbitals. Elements of the edge adjacency matrix for the weighted molecular graph are 

defined in a more complex way. Let ei and ej be two adjacent edges in G. If ei is incident 

with vertices va and vb, and ej  is incident with vb and vc , then the elements eij and eji of the 

E matrix are ρBC and ρAB, respectively. With bond orders defined in this manner, edge 

degrees, ρ(ei), are defined as the sum of elements of ith row in E matrix as in Eq.(2.14): 

The topographic edge connectivity index ϵ(ρ) was developed from this new matrix and is 

calculated as shown in Eq.(2.15): 

This descriptor was utilized to generate regressions for the molar refractivity of a series 

of 69 C5-C9 alkanes. Calculation of the index was performed by using bond orders 
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calculated from the quantum chemical semi-empirical method PM3 (Stewart, 1991). 

Molar refractivity was chosen as an important property because of its ability to model the 

steric and hydrophobic interaction between drugs and biological receptors. This 

descriptor was also applied in a QSAR study in which the cumulative urinary excretion, 

in humans, of unchanged drug expressed as a percentage of the administered dose was 

regressed against this variable. The model was able to more accurately characterize the 

phenomena utilizing the topographic descriptor when compared to previous studies 

(Testa and Salvesen, 1980) which used the n-heptane-water partition coefficient as an 

independent variable. 

In addition to the plethora of alignment-independent topographic descriptors 

mentioned before, there exists a group of descriptors which require some degree of 

alignment between each molecule in a data set. One prominent example would be the 

comparative molecular field analysis (CoMFA) technique (Cramer et al., 1988). This 

work began with the realization that, at the molecular level, the interactions which 

produce an observed biological effect are usually non-covalent; and molecular mechanics 

force fields, which account for these non-covalent interactions as steric and electrostatic 

forces, can account for a great variety of molecular properties. The CoMFA approach has 

been outlined in Figure 2.4. 
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process. Previous applications relied on a chemist to align the molecules, however, this 

methodology has implemented a new “Field Fit” procedure in which the RMS difference 

in the sum of steric and electrostatic interaction energies, averaged across all lattice 

points, between one molecule and some template or set of molecules, is minimized with 

respect to the six rigid-body degrees of freedom and/or any user-specified torsion angles. 

This approach was tested (Cramer et al., 1988) on a data set of 21 various steroids, which 

have experimentally determined affinities to corticosteroid- and testosterone-binding 

globulins. Since the goal of the CoMFA methodology is to generate models capable of 

predicting the activities, or binding affinities, of compounds not in the training set, the 

binding affinity of ten steroids (not in the original training set) was predicted by the 

model developed. The predictive R2 value for this example was 0.65, which was higher 

than any model developed using the conventional QSAR methodology with various 

descriptors. In this case, the descriptors are not as ‘clear cut’ as previous approaches but 

they are initially represented as the energies of repulsion (steric and electrostatic) 

between the test molecule and the probe atom, calculated at the various lattice points. 

This information is further turned into latent variables, which captures the most important 

aspects, within the lattice, accounting for variance in the predictor variables (i.e. affinities 

in this case). 

The Comparative Molecular Similarity Indices (CoMSIA) (Klebe et al., 1994) 

approach is similar to CoMFA in that an atomic probing throughout a grid lattice is 

utilized. However, CoMSIA uses a different potential function, which is Gaussian-type, 

to model the repulsion. The use of a Gaussian-type potential function instead of the 

previously applied Lennard-Jones and Coulombic functions allows for more accurate 
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information to be obtained from points within the molecular structure. This was one 

drawback with the CoMFA approach because unusually large energy values were 

obtained at these points, because of the nature of the potential function used, and cut-offs 

had to be applied so the data wasn’t skewed. There are several other probe based 

techniques available for characterizing a set of molecular structures with respect to a 

predictor variable (typically a biological property) and these include Comparative 

Molecular Moment Analysis (CoMMA) (Silverman and Platt, 1996), VolSurf (Cruciani 

et al., 2000), and Grid-Independent Descriptors (GRIND) (Pastor et al., 2000). Each 

technique has its own strong points and limitations, but they all represent the realization 

that shape based descriptors excel at describing interaction based properties (e.g. binding 

affinity). 

2.3 Molecular Modeling 

Molecular modeling encompasses all of the techniques and tools useful for modeling the 

motions and interaction of molecules. These techniques are used in the fields of 

computational chemistry, drug design, computational biology, materials science, and now 

many engineering fields for studying molecular systems ranging from single small 

molecules in the gas phase to large biological molecules (e.g. receptor ligand complexes) 

and material assemblies. There are many approaches available for the treatment of 

molecular structures ranging from modeling atoms as the smallest individual unit (in the 

molecular mechanics approach) to explicitly modeling the electrons in each atom (in the 

quantum chemistry approach). The information gained from these techniques is useful in 

the development of three-dimensional descriptors, which have applications in a wide 

variety of structure-activity (property) correlations.  
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2.3.1 Molecular Mechanics 

Molecular mechanics refers to the use of classical mechanics in describing the motions of 

atoms and molecules. These models treat atoms as point charges with the nucleus and 

associated electrons combined as one. The energy associated with a molecular structure, 

which is used to measure its likelihood of occurrence, is calculated through the means of 

a force-field. Within this force-field, otherwise known as a potential function, varying 

terms are used to summarize the potential energy associated with a collection of atoms. 

Each atom in the molecule is represented by its coordinates, which can be internal or 

external. External coordinate systems simply provide an x, y and z coordinate value for 

each atom within a Cartesian coordinate system. Internal coordinates make use of the 

inherent nature of these many body systems by referring to bond-lengths, bond angles, 

and torsional angles. Force-fields are most often defined in terms of internal coordinates, 

whereby energetic penalties are associated with the deviation of bonds and angles away 

from their ‘preferred’ or ‘equilibrium’ values. In addition, the force field contains terms 

that describe the non-bonded interactions between each atom. A simplified representation 

of a typical force-field can be seen in Eq.(2.16). 

It can be seen that the total internal energy, as provided by the force field, consists of 

terms related to bond lengths, angles, dihedral angles as well as non-bonded interaction. 

These non-bonded interactions, as shown in Eq.(2.17), represent the summation of 

electrostatic and van der Waals forces. Van der Waals forces are typically modeled by the 

௢௧௔௟்ܧ  ൌ ௕௢௡ௗ௦ܧ ൅ ௔௡௚௟௘ܧ ൅ ௗ௜௛௘ௗ௥௔௟ܧ ൅ ௡௢௡ି௕௢௡ௗ௘ௗ (2.16)ܧ

௡௢௡ି௕௢௡ௗ௘ௗܧ  ൌ ௘௟௘௖௧௥௢௦௧௔௧௜௖ܧ ൅ ௩௔௡ܧ ௗ௘௥ ௐ௔௔௟௦ (2.17)
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Lennard-Jones potential, which adequately describes the forces of attraction and 

repulsion felt between two atoms. Furthermore, the electrostatic forces are typically 

modeled by Coulomb’s Law, which accounts for interactions between electrically 

charged atoms. A more expanded form of a generalized force-field can be found in 

Eq.(2.18). 

In Eq.(2.18) E stands for the potential energy of the system, consisting of a collection of 

atoms and/or molecules, and rN represents the coordinates of all N atoms within this 

system. The first term represents the energy contribution from all bonded atoms in the 

system, and these are modeled by a harmonic potential function. li,0 stands for the 

equilibrium bond length between any two atoms. The second term, which represents the 

energy contribution from three consecutive atoms connected by two bonds, also has an 

equilibrium angle which is dependent on the atoms involved. Any deviation from this 

angle represents an increased contribution to the total energy of the system. The third 

term accounts for energy contributed by all torsional angles within the system. Last but 

not least, the fourth term summarizes all energy contributions from non-bonded atomic 

interactions. The fourth term is a summation of the previously mentioned van der Waals 

and electrostatic forces and accounts for ‘through space’ interactions. 

A force-field is typically parameterized, which means that the variables in Eq.(2.18) 

are calculated, with a specific set of structures and properties. The goal of this 
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parameterization is to be able to most accurately reproduce the given properties within 

the region of chemical space represented by chosen set of molecular structures. This 

might be, for example, useful for accurately deciding the geometries of a series of 

hydrocarbons or predicting the infra-red spectra for a set of ionic liquids. The point is that 

the information within these parameterized force-fields is only useful for the task around 

which it was designed. It is more common to develop a force-field for a set of molecules 

than for a single molecule due to the considerable effort required. As such, the ability of a 

single force-field to accurately model a larger group of structures is known as its 

transferability. Often times, an increase in transferability leads to a decrease in accuracy. 

Therein lies one of the fundamental trade-offs when developing a given force-field. Also, 

the format of Eq.(2.18) is not the only way to represent this model and is by no means the 

most accurate. These models are ‘empirical’ and as such the model format is developed 

to have the most accurate results possible. (Leach, 2001) 

2.3.2 Quantum Chemical Methods 

Quantum mechanics (QM) attempts to describe molecules in terms of interactions 

between nuclei and electrons. The molecular geometry is determined through identifying 

a minimum energy arrangement of nuclei in a molecule or set of molecules. This process 

has been made much more reasonable through a series of approximations upon the 

original formulation based upon the Schrodinger equation shown in Eq.(2.19). 

෡Ψܪ  ൌ EΨ (2.19)
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In Eq.(2.19), Ψ is a many-electron wavefunction and Ĥ is the Hamiltonian operator, also 

known more simply as the Hamiltonian, which can also be represented as in Eq.(2.20). 

In Eq.(2.20) Z is the nuclear charge, MA is the ratio of mass of nucleus A to the mass of an 

electron, RAB is the distance between nuclei A and B, rij is the distance between electrons i 

and j and riA is the distance between electron i and nucleus A. This equation cannot be 

solved exactly for even a simple two-electron system such as a helium atom or a 

hydrogen molecule and approximations must be introduced. One such short-cut is known 

as the Born-Oppenheimer Approximation (Born and Huang, 1988), which assumes that 

the motion of the electrons is much faster than that of the nuclei thus decoupling the two 

and producing the “electronic” Schrodinger equation. Even with this simplification, the 

electronic Schrodinger equation is still intractable and further approximations must be 

made. The Hartree-Fock approximation (Slater, 1930) was made and insists that the 

electrons move independently of each other. This results in the total wavefunction being 

written in the form of a single determinant, also known as a Slater determinant. This also 

leads to a set of coupled differential equations known as the Hartree-Fock equations, each 

involving the coordinates of a single electron. At this point, the numerical solution to 

these equations is possible, however further approximations have been introduced to 

transform them into a set of algebraic equations. The linear combination of atomic 
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orbitals (LCAO) (Clark and Koch, 1999) was the next step on the road to creating a more 

tractable representation of a molecule through the quantum chemical formalism. The 

Hartree-Fock and LCAO approximations, when applied to the electronic Schrodinger 

equation, ultimately lead to the Roothaan-Hall equations (Roothaan, 1951). Methods 

resulting from the solution of the Roothaan-Hall equations are termed Hartree-Fock 

models as well as Ab Initio (“from the beginning”). These models allow for the 

evaluation of first and second derivatives of energy which make both geometry 

optimization and determination of vibrational frequencies, respectively, possible. 

Often times, solutions generated through means of a Hartree-Fock model result in an 

overestimation of electron-electron repulsion energies because pair-wise electron 

interactions are not directly considered and they have a tendency to “get in each other’s 

way.” This situation is corrected for through electron correlation, which accounts for 

coupling of electron motions and leads to a lessening of the electron-electron repulsion 

energy. There are many different techniques for this approach. One is known as a Density 

Functional model (Becke, 1988) which introduces an approximate correlation term in an 

explicit manner without being significantly more costly than Hartree-Fock models. 

Configuration interaction models (Sherrill and Schaefer, 1999) and Moller-Plesset 

models (Moller and Plesset, 1934) extend the flexibility of Hartree-Fock models by 

mixing ground-state and excited-state wavefunction, however they are significantly more 

costly than the Hartree-Fock models. 

Semi-empirical models follow directly from the original Hartree-Fock models and 

represent a simplification that allows the solution of much larger problems. The size of 

the problem is greatly reduced by only considering valence electrons and ignoring the 
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core electrons. The central approximation, which allows greatest reduction in overall 

computation, insists that atomic orbital residing on different atomic centers do no overlap 

and this is referred to as the Neglect of Diatomic Differential Overlap (NDDO) 

approximation (Pople et al., 1967). Additional approximations are introduced to further 

simplify calculations and provide a framework for the introduction of empirical 

parameters. These parameters can be fitted to experimental data as well as ab initio 

calculations. Some popular examples of semi-empirical models include Austin-Model 1 

(AM1) (Dewar et al., 1985) and Paremeterized Model number 3 (PM3) (Stewart,1989). 

2.3.3 Geometry Optimization 

The way in which the potential energy of a molecule varies with its atomic coordinates is 

known as the potential energy surface. Geometry optimization, also known as energy 

minimization, encompasses various techniques useful for exploring this very complicated 

potential energy surface (PES) in search of a minimum energy conformation, or 

arrangement of atoms. For a system with N atoms, the energy is a function of the 3N-6 

internal or 3N Cartesian coordinates which is a highly dimensional set of information. 

There is particular interest in minimum points on the PES as they represent the most 

stable conformations associated with a molecule. In most cases, there are many local 

minima; however, there is only one global minimum. In addition to minima, another 

point of interest on a PES is known as a saddle point, which corresponds to the highest 

point on the pathway between two minima where the arrangement of atoms is known as a 

transition structure. (Leach, 2001) 

There are many methods useful for the exploration of a PES, which can be defined 

in terms of internal or Cartesian coordinates. Minima are typically found using numerical 
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methods since the application of analytical methods becomes too computationally 

demanding for most systems. These techniques are applicable in both molecular and 

quantum mechanical representations and can initially be differentiated based upon 

whether or not derivatives of the energy with respect to coordinates are calculated. 

Various techniques are adept at exploring the PES in their own unique way. For example, 

some methods may only be able to move ‘downhill’, corresponding to a decrease in 

energy, but others may move in either direction. One example of a non-derivative 

minimization method is known as the simplex method (Nelder and Mead, 1965), which 

moves around the PES in a fashion that has been likened to the motion of amoeba. This 

method is most suitable for determination of an energy minimum when the starting point 

configuration is very high in energy; however, it is rarely able to escape local minima 

traps. The techniques in which derivatives are utilized can be immediately differentiated 

based on whether or not they calculate the first or second order derivative of the PES. 

First order minimization algorithms that are most frequently used in molecular modeling 

are the method of steepest descents and the conjugate gradient method. The starting point 

for most of these techniques is generated from user input, typically with the help of 

experimental data. The steepest descent method (Curry, 1944) moves in the direction 

parallel to the net force, which corresponds to walking straight downhill. In the conjugate 

gradients method (Reeves and Reeves, 1964), the gradients at each point are orthogonal 

but the directions are conjugate. Second order derivative methods utilize the second order 

derivative, which provides information about the curvature of a function, in addition to 

the first order derivative of the PES. The Newton-Raphson method (Roger, 1987) is the 

simplest second-order method and is more suited towards smaller molecules. 
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These are the techniques available for aid in the determination of conformational 

minima. This information is useful in the development of three-dimensional descriptors 

and structure-property (activity) relationships as well a plethora of other applications. 

Conformational analysis is the study of the conformations of a molecule and their 

influence on its properties. The various conformations that a molecule can obtain are 

interconverted by rotation about a single bond, or a collection of bonds. A conformational 

search has the objective of identifying the preferred conformations of a molecule, which 

determine its behavior. There are many techniques for conducting these searches and they 

can be categorized as systematic or stochastic. While the systematic approach is often 

more likely to identify a complete collection of minima, a stochastic approach is more 

easily applied when the PES is very complicated. The relative populations of a 

molecule’s conformations can be estimated though statistical mechanics via the 

Boltzmann distribution, which is also known as a Gibbs distribution (Gibbs, 1902). 

However, it must be noted that many of these simulations, in their most basic form, 

correspond to phenomena in the gas phase at relatively low temperatures and thus do not 

account for many solvation or interaction effects. In addition, in the case of spatially 

active molecules (e.g. ligand receptor complexes), the active conformation may not even 

correspond to any of the identified local minima. Fortunately, there are many techniques 

available for increasing the ‘realness’ of these simulations and they are becoming 

increasingly applied in studies today as computational capabilities are rapidly improving. 

(Leach, 2001) 
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2.4 QSAR/QSPR 

The purpose of a structure activity relationship (SAR) is to create a mapping between the 

structural characteristics of a group of compounds and a desired activity. The same can 

be said for structure property relationships (SPR’s), which aim to characterize the effect 

of molecular structure on the bulk properties exhibited by the molecules under 

consideration. Corwin Hansch can be considered the first pioneer in this field as his work 

expanded the boundaries of how these relationships were formulated. Hansch et al. (1962) 

initially suspected that the partition coefficient of various compounds, along with other 

parameters, could be used to characterize their relative biological activity. Though, his 

greatest contribution to the field follows in the persistent manner in which he applied this 

concept to develop models in drastically new and more accurate ways than ever 

attempted before. His realization that SAR’s should not be limited to certain independent 

variables and fits, such as expanding from linear to parabolic models, paved the way for a 

successful marriage between the development of these models with various 

mathematical/statistical techniques (Hansch, 1969). This trend has continued into modern 

day approaches such that developments from various fields, including pattern recognition, 

machine learning, artificial intelligence and molecular modeling etc., have been borrowed 

for the improvement of property/activity models. Another turning point in the 

development of SAR’s was initiated by Kier et al. (1975) when the molecular 

connectivity index was introduced and shown to have strong correlations to 

physicochemical properties (Hall et al., 1975) as well as biological activities (Kier and 

Murray, 1975). This ushered in a genre of many new molecular descriptors and paved the 
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The feature reduction technique applied by Merkwirth et al. (2004) utilizes the 

principle of clustering, whereby variables are pooled into clusters based on similarity. 

They begin by initially removing all constant and low-entropy variables, and variables 

are then divided into clusters in which the absolute value of the pairwise correlation 

coefficients exceeds 0.98. The next step is to discard all variables, except a randomly 

chosen one, from each of the developed clusters. This approach is beneficial when the 

number of input variables is large compared to the number of observations. In addition, 

many machine learning techniques have a larger time complexity than linear in the 

number of observations and/or input variables which prohibits the consideration of large 

data sets. The next step is a forward stagewise selection procedure, which is a greedy-

type algorithm that iteratively constructs a subset of relevant variables. The approach 

begins by selection of a random variable from the initially reduced set. Next, the leave-

one-out (LOO) error for all combinations of one of the remaining variables with the 

variables in the current subset is calculated. The variable which improves the LOO error 

the most is selected and the process is repeated until either a predefined number of 

variables have been selected or there is no further improvement in the calculated error. 

(Merkwirth, 2004) 

In a study by Venkatraman et al. (2004), the use of information-theoretic approaches 

based on the concept of mutual information gain has been applied to identify an optimal 

subset of descriptors for further correlation with a given biological activity. Since mutual 

information is a nonlinear statistical criterion, it is able to measure the interdependence of 

random variables without relying on established assumptions about their underlying 

relationships. This approach relies on two heuristic criteria during feature selection, 
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namely: (1) Feature should be comparatively informative about the output and (2) Feature 

should not be strongly dependent on other features selected. The measure of mutual 

information between two random variables A and B represents the amount of information 

about A contained in B and vice versa. When the random variables are independent of 

each other, the mutual information, defined in Eq.(2.21), is zero. The marginal 

probabilities for the two features are represented by P(a) and P(b),  

while P(a,b) gives the joint probability. Mutual information measures the distance 

between the joint probability and the joint probability under the assumption of 

independence, P(a)P(b). This technique is most suitable to problems where both 

descriptors and activities are categorical. In such a case where the continuous numerical 

variables are utilized, discretization schemes must be applied to approximate the 

variables. 

The above techniques are examples of filtering methods for variable selection. This 

approach is quite useful for the selection of variables with decreased interdependence (i.e. 

colinearity) while maintaining a strong correlation with the property or activity of interest. 

However, a more rigorous approach for model development, known as the wrapper 

method, exists. These descriptor selection techniques operate in conjunction with a 

mapping algorithm. One prominent technique, known as Genetic Algorithm (Siedlecki 

and Sklansky, 1988), stands out for this approach and is an efficient method for sampling 

large descriptor spaces. Genetic algorithm mimics the process of natural evolution 

,ܣሺܫ  ሻܤ ൌ෍ܲሺܽ, ܾሻ݈݃݋
ܲሺܽ, ܾሻ
ܲሺܽሻܲሺܾሻ

௔,௕

 (2.21)
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whereby a population is guided towards a higher degree of fitness, as often measured by 

the error of the model generated, through operations of mutation and crossover. Each 

member of the population is represented by a chromosome, within which each position 

usually corresponds to the absence or presence of a specific variable through the binary 

notation. Individual chromosomes with an increased measure of fitness, typically 

measured by the prediction capabilities of the model resulting from the descriptors 

represented within the chromosome, are selected for the conventional operations of 

crossover and mutation. Mutation typically involved the change of binary variables 

within the chromosome to either a 0 or 1, the opposite of its initial state; and crossover 

involves the selection of two chromosomes which are cut and recombined at one (single-

point crossover) or more points. However, the success of a GA relies on the careful 

tuning of several probability parameters such that the solution space can be effectively 

explored and early convergence to a homogenous population, occupying a local 

minimum, is not met. 

The genetic algorithm falls into a category known as ‘stochastic programming’, in 

which several successful techniques have been developed for the solution of problems 

with large, multivariate solution spaces. Another similar technique for variable selection 

is known as simulated annealing (SA) (Kirkpatrick et al., 1983), which is also a 

stochastic technique, has had great success in QSAR development (Sutter et al., 1995; 

Itskowitz and Tropsha, 2005). SA was inspired by the physical process of annealing in 

metallurgy, which involves the heating and cooling of a material to increase the size of its 

crystals and reduce their defects. The rate at which a material is cooled will affect the 

decrease in free energy associated with the underlying crystals, which also affects their 
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size and purity. The effect of slow cooling within the SA algorithm allows for a slow 

decrease in the probability of accepting worse solutions as it explores the solution space. 

With such an approach, the algorithm is initially allowed to move more freely around the 

solution space to avoid being trapped in local minima. As the algorithm proceeds it has 

an increased “strictness” for accepting new solutions. Just as in the genetic algorithm 

approach, SA aims to minimize the error of a resultant model by iteratively changing the 

subset of selected descriptors. In this case, some percentage of features (e.g. descriptors) 

is exchanged for others and this new subset is tested for its ability to model the desired 

output. The decision of whether or not to utilize the newly chosen set of descriptors 

depends on a probability function based on the Boltzmann distribution. The power of the 

SA method stems from altering the temperature term in the Boltzmann distribution. As 

the algorithm proceeds, the temperature is decreased so that the acceptance of worse 

solutions becomes less likely. This often results in the identification very high quality 

solutions to the problem at hand. 

The two previously mentioned approaches of GA and SA were stochastic in nature. 

In contrast, there are several deterministic approaches which more thoroughly explore the 

descriptor space under consideration. Forward Feature Selection (Kittler, 1978) is one 

such technique and begins with identification of a single feature that leads to the best 

prediction. Features are subsequently added to the current subset and the errors associated 

with each model are quantified. The feature which results in the lowest error for the 

resultant model is selected to be included in the current subset and the process ends when 

a specified number of features have been identified. Sequential Backward Feature 

Elimination (Kittler, 1978) could be considered the inverse of this approach. In this 
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approach, the full set of features is used as a starting point and all subsets of features 

resulting from removal of a single feature are analyzed for error. The feature that leads to 

a model with the highest error is removed from the current subset, which is initially large 

and decreases in size as the algorithm proceeds. The algorithm eventually ends when the 

specified number of features has been eliminated. This approach, while much more 

computationally vigorous, often leads to better models than its counterpart, Forward 

Feature Selection. 

2.4.2 Mapping Descriptors into Attribute Space 

Once a set of descriptors has been decided upon, the next step is to create a mapping 

between the activity/property of interest and the descriptor values. The variety of 

mapping methods available can be initially categorized based on whether a linear or non-

linear relationship is created. Another distinction can be made based upon the nature of 

the property/activity; when this value is a continuous variable, a regression must be done, 

whereas when the result is a category (e.g. active or inactive) this is known as a 

classification problem. In a regression, the dependent variable is modeled as a function of 

the molecular descriptors. In a classification scheme, the resulting model is defined by a 

decision boundary, which separates the various classes within the descriptor space. 

Linear models are usually sufficient for creating activity relationships for a dataset 

of similar compounds. They have the benefit of being much easier to develop and 

interpret when compared to other methods. The most common technique for the creation 

of a linear property model has been Multiple Linear Regression (MLR). This approach 

models the predicted response, Y, by means of a set of descriptor variables, X, through 

the relationship shown in Eq.(2.22). 
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where, M = the number of rows of sample readings of observations 

  L = the number of columns of measured response properties 

  K = the number of columns of descriptor variables 

  β = the regression coefficients or sensitivities matrix 

  E = the error or residual matrix 

There have been three cases, as described by Geladi and Kowalski (1986), for the 

solution of ߚ in Eq.(2.19): 

1. K>M: There is no unique solution for β as infinite numbers of solutions exist, 

unless on deletes predictor variables. 

2. K=M: There is one unique solution provided that X has full rank. 

E = Y - X· β = 0 

3. K<M: There is no exact solution for β, however, a solution can be achieved by 

minimizing the residual in the following equation: 

E = Y - X· β 

 The most popular technique, known as the ordinary least-square (OLS) method, 

identifies the regression coefficients by maximizing the model sum of squares and 

minimizing the residual sum of squares. Using this approach, β can be estimated by: 

where the superscript T symbolizes the transpose of a matrix. 

When the number of X-variables, or descriptors, is large compared to the number of 

observations, this can lead to a singular (XTX) matrix whose inverse does not exist. This 

 ெܻൈ௅ ൌ ܺெൈ௄ ∙ ௄ൈ௅ߚ ൅ ெൈ௅ (2.22)ܧ

መߚ  ൌ ሺ்ܺ ∙ 	Xሻିଵ ∙ 	X் ∙ Y (2.23)
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happens when the number of unknown variables is greater than the number of equations, 

leading to an underdetermined equation system which has an infinite number of solutions 

for β. One solution to this problem would be to apply various variable selection 

techniques. In addition, multivariate projection methods like PCA (principal component 

analysis) and PLS (partial least squares) can also be utilized to overcome such a difficulty.  

PLS and PCA are methods suitable for overcoming problems in MLR associated 

with multicollinear or over-abundant descriptors. These techniques compress a large 

quantity of data and extract the information by projecting them into a low-dimensional 

subspace that summarizes the most relevant information (Wold et al., 1996; MacGregor 

et al., 1995). When the data set used is highly dimensional and very noisy with a small 

number of samples, PCA is an appropriate method for dimensionality reduction after 

which the regression model can be developed with the new latent variables through 

principal component regression (PCR). Prior to PCA, the data often needs to be pre-

treated through a variety of techniques such that it becomes more suitable for further 

analysis. It is common practice to initially mean-center and scale the property variables, 

which is visually represented in Figure 2.6 (Eriksson et al., 2006). 
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closeness of the measured values to each other) while PLS yields higher accuracy (degree 

of closeness of a measured value to the actual value). 

Support vector machines (SVM’s) (Cortes and Vladimir, 1995) are one type of 

supervised learning model with an associated learning algorithm that can analyze data 

and recognize patterns. This technique can be used in both classification and regression 

analysis, both linear and nonlinear, and as such is very flexible. An SVM constructs a 

hyperplane, or set of hyperplanes, in a highly dimensional space such that the distance to 

the nearest training data point is maximized. Often times, the data set might not be 

linearly separable and the option of mapping the original finite-dimensional space into a 

much higher-dimensional space is made possible through the use of kernel functions. 

These functions lower the computational load associated with moving between the two 

mapped spaces by ensuring that dot products are easily computed in terms of the original 

variable space. Also, slack variables are introduced and they are subject to optimization 

to allow for a better fit than linear approaches in many cases. Even though erroneous 

classification cannot be avoided, it is penalized and the misclassified compounds become 

support vectors themselves. By training a linear classifier in kernel space a classifier, 

which is nonlinear with respect to descriptor space, is obtained. SVM methods have also 

been extended to handle regression type problems (Smola and Scholkopf, 2004). 

Contrary to typical regression methods, however, the predicted values are penalized only 

if their absolute error exceeds a certain user-specified threshold. Thus, the regression 

model developed by these means is not optimal in terms of the least-square error.  

Decision trees (Quinlan, 1986), another type of non-linear mapping technique 

available for the development of structure-activity (property) relationships, differ from 
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creating several more nodes. Each node is considered for classification as a leaf when the 

majority (ideally all) of compounds passing through that testing route is correctly 

classified. One important decision that needs to be made in the development of these 

trees is which test should be introduced at which point. This can be restated as ‘which 

descriptor would provide the best discrimination criteria at this point’, and in this case 

descriptor ranking is typically applied. Once this descriptor, or test, has been decided 

upon, it is next necessary to introduce a decision rule that separates the compounds into 

various activity classes. Decision tree methods typically lead to suboptimal error rates 

when compared to other non-linear methods, most likely due to the reliance on a single 

feature in each node. While the conventional application of decision trees is for 

classification type problems, they can also handle regression problems (Breiman et al., 

1984) by associating each leaf with a numerical value instead of the categorical class. 

This methodology has been tested in a study (Svetnik et al., 2005) on a wide range of 

targets, including COX-2 inhibition, blood-brain barrier permeability, CDK-2 antagonist 

activity, dopamine binding affinity, logD and toxicity. While they were outperformed by 

support vector machines and ensembles of decision trees, they did often perform better 

than PLS of naive bayes classifier, which is a simple probabilistic classifier based on 

application of Bayes’ theorem with strong independence assumptions between the 

features. 

2.5 Fragment Based Property Models 

In reference to Figure 2.10, it can be see that there is a link between property space and 

chemical space, seen on the left, through the use of molecular descriptors. It is of special 

interest when the intermediate variables that link these two spaces have some structural 
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structures, subject to structural constraints, from these fragments as if they were building 

blocks. Several techniques taking advantage of this concept will be discussed in the 

sections below. 

2.5.1 Group Contribution Method 

One of the most widely used property prediction techniques, which has had widespread 

success in modeling and predicting a plethora of properties, is known as the group 

contribution method (Joback and Reid, 1983; Constantinou and Gani, 1994). This 

technique is based on the concept that the summation of contributions from various 

functional groups, or structural fragments, can account for the property of a molecule. 

This allows one to develop and train a model on an existing data set, which can then be 

used to predict the properties of molecules not in the original training set. This is a very 

attractive idea since it is unlikely that we will ever synthesize and characterize even a 

fraction of the accessible chemical space in the near future. The simplest form of group 

contribution method is the determination of a component property by simply summing up 

the group contributions as in the example for boiling point shown in Eq.(2.25). 

Eq.(2.25) takes on a linear form where Gi represents the summation of contributions from 

each group i. These contributions can be any positive or negative real number. This 

approach works well in a limited range of components but, unfortunately, leads to large 

errors when applied outside its applicability domain. The smallest structural fragment 

represented within the group contribution methodology is known as a first-order group. 

In addition to containing first-order groups, a group contribution property model can also 

 ஻ܶ ൌ 198.2 ൅෍ܩ௜ (2.25)
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 Mj = the number of occurrences of second-order group j 

 Ek = the contribution from third-order group k 

 Ok = the number of occurrences of third-order group k 

 

In the above formulation, second order groups can be estimated from first order 

groups and correct for the interactions between first order groups. Also, third order 

groups can be derived in a similar manner and will help to correct for poly-functional 

compounds with more than four carbon atoms in the main chain. In addition to 

introducing higher order groups for improved accuracy, there are also group interaction 

parameters available. This technique is useful when a simple additive method is not 

sufficient to capture the property of interest; however, it requires many more model 

parameters to be enumerated in exchange for this accuracy. One example of such an 

approach is known as the UNIFAC (UNIQUAC Functional-group Activity Coefficients) 

method, which estimates activity coefficients (Fredenslund et al., 1975).  

There are specific techniques available for the enumeration of structures matching a 

set of structural fragments. One such approach by Constantinou et al. (1996) treats the 

initial set of first order groups as a vector in what could be considered a ‘fragment-space’. 

The feasibility of this collection of fragments towards generating a complete molecular 

structure is tested against graph-theoretical rules based on chemistry concepts. If 

determined to be a feasible structure, the vector refers to at least one structural isomer and 

there are often several which need to be enumerated. This concept is known as 

degeneracy, and while it is usually undesirable in molecular descriptors it is often quite 
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necessary to generate a model with some degree of conciseness and transferability. This 

problem becomes much more difficult with the consideration of higher order groups. 

2.5.2 Pharmacophore Models 

A pharmacophore model can be considered a fragment based model as is often specifies a 

set of structural features necessary for a certain biological activity. The IUPAC definition 

of a pharmacophore is “an ensemble of steric and electronic features that is necessary to 

ensure the optimal supramolecular interactions with a specific biological target and to 

trigger (or block) its biological response (Wermuth et al., 1998).” These models provide 

information on how a set of structurally diverse ligands can ultimately have the same 

effect on a given receptor. Additionally, pharmacophore models are extremely useful in 

the identification of novel compounds with an increased likelihood of exhibiting the 

desired binding characteristics. Some typical pharmacophore features include 

hydrophobic centroids, aromatic rings, hydrogen bond acceptors or donors, cations and 

anions. These points may be located on the ligand itself or sometimes projected to points 

around the ligand. The steps necessary to develop a pharmacophore, such as the one 

shown in Figure 2.12 are: 1) Select a set of molecules with varying bioactivity; 2) 

Perform a conformational analysis and identify the most likely bioactive conformations; 

3) Superimpose the chosen conformers; 4) Develop and abstract representation of the 

most common features identifying during the superimpose step; 5) Validate the chosen 

model on a chosen set of molecules with known bioactivity. Often times a three-

dimensional model can be developed by calculating the optimal distances between each 

of the identified pharmacophoric features as shown in Figure 2.12(A). Figure 2.12(B) 
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2. All the atoms (vertices) in the graph are labeled in a canonical order starting with 

atom x. 

3. Construct the tree that spans over all edges in the subgraph. The root of the tree is 

the atom x itself. The tree is constructed one layer at a time up to level h. It is 

possible to have one vertex more than once in the graph. However, no edge 

should be repeated in the same graph. 

4. After constructing the signature tree, all the canonical labels that appear only once 

in the graph are to be removed and the repeating labels are to be re-labeled in the 

order that they appear in the graph. 

5. The signature can be written by reading the tree from the atom x. The vertex color 

must be enclosed in a parenthesis in each level. For a vertex that appears more 

than once, the vertex labels should also be included in the parenthesis. 

One example for the construction of atomic signatures is shown in Figure 2.13. Here 

the stepwise procedure for obtaining the atomic signature of atom x up to height three in 

ethyl benzene is illustrated. In the first step, all the atoms at distance 3 from atom x are 

extracted. In the second step, the subgraph is canonized with atom x having label 1. In the 

third step, a tree spanning all the edges is constructed up to height 3 from the subgraph. 

In the fourth step, the labels that appear only once in the tree are removed and the rest of 

the labels are renumbered in the order of their appearance. In the final step, the signature 

is generated in the required orders from the tree by starting from atom x 

(Chemmangattuvalappil, 2008). 
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conventional descriptors, which were available within the Molconn-Z software (Hall et 

al., 1991). All models were developed to follow a linear form, and parametrization was 

performed using the forward-stepping regression technique of multiple linear regression. 

The 121 HIV-1 protease inhibitors had experimental activity reported in units of pIC50, 

representing the negative logarithm half maximal inhibitory concentration, which 

spanned 7 orders of magnitude. Nine of these compounds were chosen as test set 

compounds and were not utilized in the creation of any models, but were used to evaluate 

the predictive ability of each model. For this case, the model developed using height-2 

signatures was best able to capture the phenomena with a training set R2 of 1.0. For the 

log(P), which represents the logarithm of the experimentally measured octanol/water 

partition coefficient, model development, 123 of the original data set were left of for 

model validation and the rest were utilized for model training. In this study, the signature 

descriptor of height-1 was able to outperform all other property models based on other 

descriptors. 

In addition to being useful for developing accurate and predictive property models, 

the signature descriptor is also ideal for application in the inverse property model 

approach to molecular design. The ability of the signature descriptor to define most any 

topological index has been shown (Faulon, 2003). In addition, the signature descriptor 

has been proven to have low degeneracy when enumerating solutions. The combination 

of these features with signature’s link to structural fragments is what makes it ideal for 

molecular design applications. Specific methodologies for its use in molecular design 

studies will be covered in detail in section 2.6. 
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2.6 Solution Techniques in CAMD 

Over the decades there have been many methodologies developed for the solution of 

molecular design problems. The particular technique applied is strongly dependent on the 

nature of information available for the problem at hand. For instance, does one of the 

property models utilized have a non-linear relationship or perhaps it is in the form of a 

neural network. Often times, an increase in model complexity will bring about an 

increase in computational complexity which is not commensurate to the increase in 

accuracy or differentiation of potential solutions. In any manner, techniques have been 

developed that are capable of handling many of the problems encountered within this 

field. These approaches have been broadly categorized as database searches, generate-

and-test and programming/optimization. Each approach has its own strengths and 

weaknesses, some of which will be covered in the following sections. 

2.6.1 Database Search 

The most straightforward technique for computer-aided molecular design is known as a 

database search. This approach, which is usually quite fast, consists of testing each 

molecule within a database against certain criteria while identifying structures with the 

desired characteristics. These criteria can be a wide range of things such as adherence to 

given property models with varying descriptors or it could be a molecular similarity 

search, which could also be based on descriptors or molecular fragments. The main 

limitation to this approach is that it cannot consider molecular which are not available 

within the database; however, it does not require the often computationally intensive step 

of structure generation and as such is usually much faster. 



71 
 

Similarity searching has been one of the most widely applied techniques for 

identifying potential drug candidates with a database of existing molecules. This 

approach typically describes the molecules encountered with descriptors which capture 

the underlying nature of the structure. The molecules considered are typically compared 

to one structure with a known, usually very high, activity such that those with a high 

measure of similarity are hoped to also have a desirable activity. One such study by Chen 

and Reynolds (2002) assesses the effectiveness of utilizing various sets of 2D linear 

fragment descriptors along with varying measures of comparison. They focused their 

methods on two large public databases, one of which was NCI anti-AIDS (NCI 

Developmental Therapeutics Program) and the other MDDR (MDL Information Systems 

Inc). The underlying assumption with these techniques, and most of molecular design in 

general, is known as the similar property principle, which states that similar chemical 

structures should lead to similar physicochemical properties and biological activities. The 

descriptors used as a measure of similarity, and the technique used for comparison of 

these descriptors, are what make these approaches so different. Four sets of 2D linear 

fragment descriptors, based on the original definition of atom pairs and atom sequences, 

were used in this study as were three forms of the Tanimoto coefficient and the Euclidean 

distance. The Tanimoto coefficient is a distance measure, or more conveniently a 

measure of similarity, between two molecules structures. When each molecular structure 

is represented as a vector of k dimensions, with each dimension representing the 

occurrence of a particular molecular feature, the Tanimoto coefficient between two points, 

a and b, is shown in Eq.(2.28). The influence of these structural descriptors and similarity 

coefficients on the effectiveness of retrieving active structural analogues was 
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systematically studied. The Euclidean distance is another type of measure which is 

similar to the Tanimoto coefficient and its calculation, between vectors a and b, is shown 

in Eq.(2.29), where n represents the dimensionality of each vector. 

 

 

Of the four structural descriptors utilized in this study, the first is known as MACCS 

keys (Molecular Design Ltd.), which are a set of questions about a chemical structure. 

These questions determine the nature of the underlying structure and produce a list of 

binary values by which that structure is described. The second is represented by Daylight 

fingerprints (Daylight Chemical Information, Inc.), which enumerate all linear chemical 

substructures of a predefined range of lengths. These fragments are typically 

hashed/folded into a bit string with the length fixed to save memory space. This, however, 

often leads to a loss of certain structural information and introduces additional noise into 

subsequent calculations. The third, exemplified by the work of Carhart et al. (1985) is 

very similar to the Daylight fingerprints however no information is compressed. The 

similarity coefficients, which would derived as a function of the above mentioned 

descriptors for pairs of atoms, can be divided into two major classes: association and 
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distance coefficients. The main difference between these two is that distance coefficients 

consider the absence of certain structural features as evidence of similarity whereas 

association coefficients do not. The various forms of coefficients utilized in this study are 

summarized in Table 2.1. 

Table 2.1 - Definitions of Tanimoto Coefficient and Euclidean Distance. 

 Tanimoto coefficient Euclidean distance 

Binary form 
஺ܵ,஻ ൌ

ܿ
ܽ ൅ ܾ െ ܿ

஺,஻ܦ  ൌ ሾܽ ൅ ܾ െ 2ܿሿଵ/ଶ 

Algebraic form 
஺ܵ,஻ ൌ

∑ ݊஺,௜݊஻,௜
௠
௜ୀଵ

∑ ݊஺,௜ଶ௠
௜ୀଵ ൅ ∑ ݊஻,௜ଶ௠

௜ୀଵ െ ∑ ݊஺,௜݊஻,௜௠
௜ୀଵ

 
஺,஻ܦ ൌ ሾ෍ሺ݊஺,௜ െ ݊஻,௜ሻଶሿ

௠

௜ୀଵ

ଵ/ଶ

 

Set-theoretic form 
஺ܵ,஻ ൌ

∑ minሺ݊஺,௜݊஻,௜ሻ
௠
௜ୀଵ

∑ ݊஺,௜௠
௜ୀଵ ൅ ∑ ݊஻,௜௠

௜ୀଵ െ ∑ minሺ݊஺,௜݊஻,௜ሻ௠
௜ୀଵ

஺,஻ܦ  ൌ෍ห݊஺,௜ െ ݊஻,௜ห

௠

௜ୀଵ

 

 

In Table 2.1, a represents the number of unique fragments in compound A, b 

represents the number of unique fragments in compound B and c represents the number 

of unique fragments shared by both compounds A and B. Also, nA,i is the number of 

fragment i in compound A, and nB,i is the number of fragment i in compound B. 

It was found that the Tanimoto coefficient gave considerably better results than the 

Euclidean distance for both data sets. This is interesting because it reveals that the 

presence of certain structural fragments is a better measure of similarity than the 

combined consideration of presence and absence of these same features. The major 

difference in these two methods lies in their ability to distinguish moderately similar 

structures. It was also found that the binary form of storing the structural information did 

not account for much memory saving when compared to the increase in discrimination 
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power seen in including information about the number of each fragment, as done in a set-

theoretic approach. In terms of the optimal structural descriptor, it was found that a 

balance between “fuzzy” and “specific” descriptor types allows for an optimal 

identification of true hits. They noted that descriptors that were too “fuzzy”, or non-

specific, tended to produce more false positives and descriptors that were too specific 

tended to identify more false negatives. 

The previous technique was a good introduction to the potential of database 

searching using 2D descriptors. However, in the domain of drug design, another very 

important database searching approach is based on the consideration of 3D similarity. 

This allows for the identification of molecules that match a hypothesis of 3D 

requirements for bioactivity. The interest in such an approach was fueled by the 

availability of tools for molecular modeling and pharmacophore mapping and by the 

increasing numbers of 3D protein structures as targets for new drugs (Martin, 1992). 

There are several types of 3D structure searching and they can be differentiated by the 

source of 3D information used for searching, how this information is described, how the 

3D requirements are established as well as the results of the search. The source of 3D 

information can be developed as a pharmacophore from several active molecules, a 

proposed bioactive conformation of a single ligand, a low-energy conformation of a 

ligand with desired affinity, or the actual 3D structure of the protein or DNA binding site. 

This information is usually defined by geometric constraints such as superposition rules 

of points or spheres, locations of specific functional groups, potential energies of bound 

ligands and CoMFA coefficients. Pepperrell et al. (1990) have explored the ability of 

different definition of 3D similarity to detect molecules which might have an activity 
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generating structures. A situation known as ‘combinatorial explosion’ is well known in 

combinatorial optimization and refers to the overwhelming consideration of a large 

number of potential solutions based on a large initial fragment library. In addition, there 

are deterministic and stochastic techniques for the creation of structures from fragments. 

Stochastic techniques provide one solution to the combinatorial explosion problem that is 

often encountered. One interesting observation is that the size of molecules in the 

fragment library has an effect on the ultimate number of unique structural isomers that 

are able to be created. This has been seen in the systematic development of structures 

from signature descriptor fragments. The smaller size fragments, approaching the limit of 

single atoms, ultimately create more structures, while larger fragments produce fewer 

structures in a deterministic manner. This approach allows for the consideration novel 

structures which may not have even been synthesized yet and is attractive because this 

structure generation can be controlled by the presence of absence of various fragments 

within the initial fragment library. 

One example of the implementation of a generate and test CAMD approach, among 

many, can be found in Harper et al. (1999). This approach is unique in that it combines 

the conventional, and very successful, design of molecules based on the group 

contribution methodology with molecular modeling. Their approach, which aims at 

avoiding combinatorial explosion, employs a structured generate and test approach, 

where, every level generates and tests structures with the lower levels using molecular 

representation and the higher levels using atomic representations. The most time-

consuming calculations will be held at the higher levels where the lowest number of 

acceptable structures has been passed to. 
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In the first level, groups, or vectors, of first order fragments are considered and the 

specified properties are tested using the group contribution method. Level two considers 

the generation of isomers from these fragment vectors and rules are applied so that only 

feasible chemical compounds are generated. This level allows the consideration of 

properties which could not be calculated at level one, thus further refining the set of 

potential solutions. Level three represents a highly diminished set of potential structure 

with implicitly described connectivity. Here, the connectivity is fully established, and 

specified through a connectivity matrix, and a detailed microscopic description is 

recognized. At the beginning of level four, for each molecule surviving the previous steps, 

a three-dimensional structure is generated using default bond lengths and angles. This 

information is directly transferred into a molecular modeling program, in which it 

undergoes an energy minimization calculation to identify a more stable conformation. 

This process is visually represented in Figure 2.17. 
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typically expressed in terms of acceptable property ranges. Using these acceptable 

property limits, molecules are designed by enumerating an acceptable descriptor space 

and subsequently calculating which structures fall within this space. The unique 

characteristic of this inverse approach to molecular design is that it allows for the 

application of programming and optimization in a very effective manner. One such 

approach utilizing this concept lies in a study on the application of inverse QSPR using 

multiobjective optimization (Brown et al., 2006). This study uses a variety of tools which 

are pulled together to develop a novel workflow for the solution of inverse QSPR 

problems. The compound generator is a genetic algorithm (GA) that operates directly on 

graph-based chromosomes that represent molecules in the population. New molecules are 

optimized by iteratively scoring, sampling and perturbing the current population of 

molecules, which is common in the GA approach.  

The molecular descriptors used in this study are known as Fingal (Fingerprinting 

Algorithm) (Brown et al., 2005) and represent a molecular hash-key fingerprint which 

can be rapidly generated and also have proven to be highly applicable to predictive 

modeling. The Fingal descriptor, while also containing topological information, has 

geometric information which has been calculated. This geometric information provides 

immediate estimates on the upper and lower bounds between specific atoms in a 

molecule. Property models were developed using the PLS regression technique, and these 

models were utilized to identify properties of the newly generated structures, developed 

through GA. This model was also continuously updated as the algorithm ran. Pareto 

ranking, which determines a rank position for each candidate solution according to the 

number of other solutions that dominate it in all objectives, was utilized to achieve a 
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This previous study was a good example of a stochastic optimization approach, 

utilizing the genetic algorithm, towards the solution of a CAMD problem. However, 

when the problem can be defined in terms of linear relationships this allows for the 

deterministic solution of such problems in an efficient manner. This was the situation for 

a methodology presented by Churchwell et al. (2004) in which the signature molecular 

descriptor was used to identify novel potent LFA-1/ICAM-1 peptide inhibitors. The 

nature of signature descriptor is covered in detail in section 2.5.3, but in general it is a 

fragment based descriptor with low degeneracy which has proven to be useful in the 

inverse QSAR scheme because of its ability to generate solutions structures in an 

efficient manner. This study is quite useful in the introduction and development of the 

methodology presented in this dissertation, which is also based upon an extended version 

of the signature descriptor. Initially, a QSAR is developed using a forward selection 

procedure in multilinear regression with signature descriptors representing the 

independent variables. In addition to the property model developed, there are some 

constraint equations that are needed, as in the group contribution approach, to ensure the 

feasibility of structures considered. There are two types of equations within this category 

and they are the graphicality equation and the consistency equations. The graphicality 

equation is developed directly from graph theory and ensure that at least one molecular 

graph can be created form a set of atomic signatures. In order to build a connected graph, 

it is required that (1) the sum of all the vertex degrees must be even and (2) the number of 

vertices of odd degree must be even. The resulting equation can be expressed in terms of 

a degree sequence N = {n1,n2,…,nk} where ni is the number of vertices of degree i. In 
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such a situation, the degree sequence is graphical if and only if there exists an integer z ≥ 

0 such that: 

The graphicality equation can be analyzed directly from the height zero molecular 

signatures, which conveniently offers the degree of each vertex, or atom, in the molecular 

graph. The consistency equations ensure that, since the atomic signature overlap with 

each other, the interdependency of each signature upon the others is mathematically 

feasible. Together, the property model and constraint equations represent a system of 

equations with unknowns corresponding to the occurrence of various atomic signatures. 

They represent a set of linear equations which is more specifically labeled a linear 

Diophantine system since the solutions are limited to positive integer values. 

Once a set of solutions has been generated in terms of vectors representing a group 

of atomic signatures, it remains necessary to establish the various structural isomers 

which these vectors refer to. This study represents one of the first attempts to enumerate 

these isomers in a deterministic manner, which means that all of them were identified. 

There are two primary steps in the identification of structural isomers of a set of isolated 

nodes within a graph G: (1) determine the orbits or atoms with equivalent atomic 

signatures of G, and (2) saturate each atom of a chosen orbit. This process is repeated 

until all vertices have been saturated where a saturated subgraph is not generated in the 

process. The case study chosen to exemplify this methodology resulted in the 

identification of 223 compounds matching the established criteria. 14 of these were found 

 ෍ሺ݅ െ 2ሻ݊௜ െ ݊ଵ ൅ 2 ൌ ݖ2

௞

௜ୀଶ

 (2.30)
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in the original training set and two were within the test set. 77 of these peptides identified 

were classified as strong inhibitors, and two of these were synthesized and are the 

strongest inhibiting peptides to date that work in-vivo as well. This shows the strength in 

such an approach, which is also computationally feasible, being represented as a set of 

linear equations.  
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3. Methodology 

 

2D molecular descriptors have predominantly, and very successfully (Katritzky and 

Gordeeva, 1993), been used in the development of models describing bulk properties 

such as boiling point, viscosity, density etc. Their applicability in modeling molecular 

binding interactions, such as ligand receptor affinity, is often limited to data sets of high 

similarity. Thus, a natural extension to this problem was to include spatial descriptors, 

which have since proven useful in the design of pharmaceuticals and agrochemicals 

(Verma et al., 2010). The usefulness seen in this wide variety of descriptors was further 

applied with the advent of powerful variable selection techniques such as the ones 

covered in section 2.4.1. These methods have revealed that the optimal subset of 

descriptors for capturing the structure activity (property) relationships (SARs) for a 

variety of properties and biological activities includes descriptors with varying 

dimensionality (Kar and Roy, 2010; Nettles et al., 2006). 

The inclusion of spatial, 3D and 4D, descriptors necessitates a method for capturing 

the conformational capabilities of candidate molecules. Although there are many methods 

available for conformational sampling, these are typically infeasible for the consideration 

of a large chemical search space, as is often desired. As a result, often only one local 

energy minima is supplied to a given model when used in a predictive manner. It has 

been shown that the actual structure of a bound ligand is often not found in the set of 

local minima identified through a quick conformational search of the unbound ligand 

(Perola and Charifson, 2004). This seems especially true when only one conformer is 

considered. This provides another motivation behind the development of a systematic 
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algorithm, proposed in this dissertation, towards the solution of molecular design 

problems with multi-dimensional criteria. The goal is to be able to solve problems of this 

nature in a computationally efficient manner, while still considering, to a reasonable 

degree, the conformational capabilities of candidate molecules within the defined 

chemical search space. The derivation of this spatial information relies on atomic scale 

simulations, from which the accessible conformations of each atomic signature can be 

considered. The following sections will reveal how this approach is accomplished. 

The use of signature descriptors alone in characterizing properties of interest has 

proven a successful endeavor (Faulon and Churchwell, 2003), but the power of this 

technique lies in the ability to reconstruct solution structures, with low degeneracy, for 

any given set of atomic signatures. This idea was introduced in section 2.5.3, and will be 

covered in further detail in the following sections. The reason that signature descriptors 

are so useful during the reconstruction of solutions is that they are, by definition, 

overlapping fragments. This allows for the systematic application of specific rules to 

enumerate their connectivity. For a given set of signatures, for which it has been 

confirmed that there exists at least one structural isomer, there are often multiple isomers 

that can be created, each of which refers to the same original set of atomic signatures. 

This feature allows for the systematic consideration of a region of chemical space in 

which no two structural isomers are considered more than once. In addition, the height of 

atomic signatures utilized in the study can be controlled such that the resulting solutions 

generated have a pre-defined degree of similarity to the original data set, from which the 

signatures were generated. This follows the pattern of smaller signatures resulting in a 

larger search space while considering more diverse structures and larger signatures doing 
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just the opposite. This becomes useful when the applicability domain of property models 

utilized has certain limits, based on similarity to the structures used to develop the model, 

beyond which the predictivity is less reliable. 

Most descriptors between 0D and 2D can be derived from molecular signatures. 

This allows one to solve existing SARs in signature space, while maintaining the 

predictability of the original SAR along with the low degeneracy attributed to signature 

descriptors in enumerating potential solutions. Extension of the signature descriptor to 

include spatial information maintains the combinatorial efficiencies seen in previous 

applications while offering the discriminatory power of including descriptors of higher 

dimensionality in the property models. The general approach, develop within this 

dissertation, for using these descriptors in a CAMD application has been outlined in 

Figure 3.1. This approach can be categorized as a generate-and-test CAMD methodology 

with a very efficient generation step that quickly identifies structural isomers, which are 

later subjected to conformational analyses. 
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Figure 3.1 - Overview of methodology developed. 
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well studied. Deterministic approaches are suitable to problems which have a small 

search space or perhaps have highly complex nonlinear equations involved such that 

linear and nonlinear programming are not feasible techniques. When applied within the 

field of computer aided molecular design this typically means that every possible solution 

is visited such that the search space is entirely considered. This offers the benefit of 

identifying a globally optimal solution, in addition to several other potential candidates, 

but can suffer from increased running times. 

3.1.1 Identification of Property Models 

The first step in setting up a problem, within this methodology and most any CAMD 

approach, involves identification of the necessary property models. There are many types 

of property models available, which are created using a variety of regression and 

mapping techniques. The nature of these models, whether they are fragment based or 

non-linear etc., will help decide the solution approach that must be taken. When a group 

contribution model is chosen, this information must be written in terms of atomic 

signatures. Depending on the order of group contributions utilized, varying height 

signatures will be necessary. Higher order groups will often require larger, higher height, 

signatures. If all of the models involved are linear and no 3D descriptors are utilized, the 

problem can be solved using LP (linear programming) techniques. However, all studies 

considered within this dissertation include 3D descriptors, and as such, various 

deterministic and stochastic approaches must be applied. Once the necessary property 

models have been identified, or developed, a data set must be decided upon from which 

the signatures will be derived. 



89 
 

3.1.2 Data Set Selection 

Selection of an appropriate data set for this approach is a very important step because the 

building blocks for generating candidate molecules are the atomic signatures found in the 

original set. This means that all solution molecules generated represent a controlled 

interpolation, or extrapolation, of the chemical space spanned by molecules in the data set. 

This search is ‘controlled’ by the fact that the atomic signatures generated can have a 

variable height. Selecting a larger height would result in molecules generated with higher 

structural similarity to the data set, whereas using a smaller height would allow for more 

degrees of freedom upon recombination resulting in less similar structures. The tradeoff 

would be that, in generating more molecules from a smaller height atomic signature, 

these structures would have an increased likelihood of falling outside the applicability 

domain for a given property model. 

Utilizing the training set on which the property models were developed as a pool for 

atomic signature development does offer the advantage of generating solutions with 

increased similarity, however this is no guarantee that these structures will fall within the 

applicability domain (AD) of the given property models. Sheridan et al. (2004) found that 

molecules with higher similarity to the training set resulted in the best predicted 

properties,  as measured by root-mean-square difference between observed and predicted 

activity, for narrow training sets with minimal diversity. However, for more diverse 

training sets, it becomes unreasonable to define the AD in terms of similarity and 

alternate methods are necessary. These methods often require projection of the training 

set into descriptor space with subsequent specification of the AD, now represented by a 

convex hull in multivariate descriptor space, through various approaches. A review of 
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these techniques can be found in Jaworska et al. (2005). For these reasons, when using a 

property model generated from a diverse training set, it is possible and potentially 

beneficial to utilize an alternate set of molecules for atomic signature development. These 

molecules could be chosen from a library of compounds with established drug-likeness or 

perhaps other desirable traits and the generated candidates could be tested against the 

previously established AD. 

3.1.3 Conformational Analysis 

The conformational space for each molecule in the data set is explored to identify 

energetically accessible conformations corresponding to local energy minima on the 

potential energy surface (PES) for that structure. There are several techniques available 

for identifying these conformers and they can be generally categorized as being either 

systematic or stochastic. The choice between these two techniques is typically a function 

of the anticipated complexity of a given PES. Stochastic techniques, such as those based 

on Monte Carlo (Metropolis and Ulam, 1949) or molecular dynamics simulations 

(Karplus and McCammon, 2002), have proven beneficial towards quickly identifying 

local energy minima for more complicated PES’s. Whereas systematic conformational 

analyses are much more likely to identify a global energy minimum, at the expense of 

increased computational time (Beusen et al., 1996). Regardless of the chosen method, the 

goal is to utilize the information obtained through conformational analysis on the data set 

to estimate spatial characteristics of each molecule considered within the CAMD 

approach. In doing so, it alleviates the necessity to explore the PES of each molecule 

considered during the search. This approach will help minimize the time taken to estimate 

the 3D characteristics of each candidate molecule considered, such that a larger search 
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space can be explored within reasonable time constraints. Molecules meeting this initial 

estimation of spatial criteria can be further explored with more accurate simulations.  

3.1.4 Spatial Signature Development 

As covered earlier, the molecular signature of a given structure is a linear combination of 

its constituent atomic signatures, which can be seen as atom-centered subgraphs of their 

respective complete molecular graph. The Signature Translator Program (v. 3.0), 

developed by Faulon et al. (2003), is implemented in Unix to calculate the set of 

canonical atomic signatures found in each conformer, which were identified through the 

previously mentioned conformational search. The program accepts as input a .mol 

formatted file and the desired signature height and returns an output text file containing 

the respective atomic signatures. Structural isomers are quickly identified, through 

matching atomic signature strings, and grouped together along with the cartesian 

coordinates of each atom found within the structure. The spatial information for each 

atomic signature was developed in this manner, as opposed to isolated atomic signature 

simulations, such that the resultant geometry information was derived from the signatures 

embedded within various molecular structures found within the data set. The goal is to 

obtain the most realistic, and accessible, conformations for the fragments, which would 

likely not be seen in isolation. 

3.1.5 Compression of Spatial Information 

The complete set of atomic signatures, developed from the individual conformers 

identified through a conformational analysis of the chosen data set, must now be reduced 

to eliminate conformational redundancies. The technique developed for this task is to 

compare all pairwise distances between atoms for the given structural isomers. The 
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isomers of each other, such that pairwise distances can be directly compared. It is first 

necessary to generate a graph occurrence for each unique atomic signature string and this 

is done through application of an in-house python script which takes advantage of the 

Python regular expression operations. This script was created to facilitate the conversion 

of information within a molecular signature into a graph object and links together 

modules from varying software to facilitate such a task. This approach results in 

compressing the spatial information calculated in the conformational analysis step, and 

the end result is a set of canonical atomic signatures, or unique structural isomers, with 

their accessible conformations stored in the form of cartesian coordinates for each atom 

involved. Table 3.1 reveals the compression of information of a set of common industrial 

solvents, which resulted in 73 unique structural isomers, as the cutoff criterion is changed. 

Table 3.1 – Cutoff criterion compression example. 

Cutoff Criterion 
(Angstrom) 

Conformers Remaining 
(387 initially) 

0.05 282 

0.1 271 

0.2 257 

0.3 240 

1.0 199 

2.0 182 
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Inclusion of pre-calculated bonding capabilities between fragments generated from 

the initial data set is one of the novel implementations found within this methodology 

which has proven useful in speeding up the CAMD approach. Atomic signatures are 

essentially over-defined, such that they overlap when recombined, and this is taken 

advantage of to expedite the structural isomer enumeration process. Each set of fragments, 

or atomic signatures, can typically be used to build several unique structural isomers and 

as such this network comes in handy. 

3.1.7 Generation of Structural Isomers 

The calculation of 3D descriptors makes the approach much more complicated as the 

connectivity of atomic signatures must be established first such that a global geometry 

can be calculated from the combination of local geometry information provided by each 

fragment. Atomic signatures, by definition, are overlapping subgraphs of the complete 

molecular graph, which they collectively reference. For a group of atomic signatures to 

generate at least one structural isomer there are several feasibility constraints that must be 

met. There are two types of equations within this category and they are the graphicality 

equation and the consistency equations. The graphicality equation is developed directly 

from graph theory and ensure that at least one molecular graph can be created form a set 

of atomic signatures. In order to build a connected graph, it is required that (1) the sum of 

all the vertex degrees must be even and (2) the number of vertices of odd degree must be 

even. The graphicality equation, Eq.(2.30), can be analyzed directly from the height zero 

molecular signatures, which conveniently offers the degree of each vertex, or atom, in the 

molecular graph. The consistency equations ensure that, since the atomic signature 
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least degree of unsaturation is chosen to be saturated. Typically, this first group of nodes 

would have hydrogen as the root atom, thus containing only one degree of unsaturation 

(the neighbor of this hydrogen). All nodes in this group are saturated in all possible, and 

unique, ways such that a new graph is created for each possibility. Each of these new 

graphs will contain several connected subgraphs, which are partitioned, as before, into 

groups representing unique isomorphisms. This task is facilitated through the NetworkX 

connected_components function, which takes the graph G as input and returns the various 

connected subgraphs. The summation of unsaturated neighbor atoms, for each node, or 

atomic signature, in these new subgraphs would represent the total degree of unsaturation 

for the given subgraph. Each of these unsaturated neighbors would then be saturated in 

all possible ways, creating a new set of graphs stemming from the previous set, each 

containing their own connected subgraphs. This process continues until one of two 

conditions is met: 

1) The graph G is completely connected, with the connected_components function 

returning one item, and fully saturated. This graph is returned as a feasible 

structural isomer. 

2) The graph G contains a connected subgraph component with a degree of 

unsaturation equal to zero. This represents a saturated subgraph and G is 

discarded from further iteration. 

 

3.1.8 Generation of Conformational Isomers 

The global geometry of molecular graphs with feasible connectivity must now be 

established for the calculation of higher dimensional descriptor values. The goal for this 
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step is to minimize the computational complexity of such an operation by utilizing only 

those signatures necessary for the establishment of a complete geometry. As mentioned 

previously, the atomic signatures for a respective molecule overlap with each other and 

this can be taken advantage of when transforming individual fragment coordinates 

towards a consistent coordinate space. Not all atomic signatures for a given molecular 

signature are necessary for this approach, and the steps taken to choose those required are 

outlined below: 

1. The largest signature, based on number of atoms, is selected as a reference frame. 

If more than one exists with same size, the signature with the least number of 

unsaturated nodes is chosen. Beyond this, a random signature is chosen among 

several which have the same size and number of unsaturated nodes. 

2. All atomic signatures sharing at least three atoms in common (identified through 

an isomorphism mapping) with the initial signature are determined. Three atoms 

are necessary for docking the two fragments together in Cartesian space. 

3. From this set, the signature defining the largest amount of new atoms is selected. 

In the case that several signatures are equivalent in this measure, a random one is 

selected. 

4. The transformation matrix is established and applied to all atoms in the second 

signature such that consistent coordinate frame is established. 

5. Signatures having at least three nodes in common with the graph represented by 

the combination of the first two signatures are enumerated. 
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This signature would be the one centered at the carbon at labeled ‘D’ as it contains 16 

atoms, within the fragment established by its atomic signature, with the carbon atom 

labeled ‘G’ being the only unsaturated atom. Step two would necessitate identifying 

another signature overlapping by at least three and identifying the most new atoms. The 

atoms labelled ‘A’, ‘B’, ‘C’, ‘E’, ‘F’, and ‘G’ all satisfy the three common atoms rule, 

however, the atomic signature centered at atom ‘G’ defines the largest number of new 

atoms, being 2. Within the structure created by linking these first two atomic signatures 

lies only one unsaturated carbon, which is labeled ‘I’. The signatures overlapping this 

growing fragment, created by linking the first two, by at least three atoms include all 

atoms labeled ‘A’ through ‘I’. Out of those, ‘I’ would define the most new atoms, thus 

completing the structure with zero degrees of unsaturation remaining. 

The steps outlined previously chose fragments to be transformed into a consistent 

coordinate system, and this information was stored in the form of a ‘superposition map’. 

A subgraph isomorphism mapping is stored within each compatible bond, as a dictionary, 

in the bonding network established previously. It was required that each pair considered 

for superposition has at least three atoms in common within this mapping. For the first 

two signatures in the superposition map, an equivalent pair of atoms is randomly chosen 

from the set of mapped atoms and a translation vector is calculated from the difference in 

their coordinate vectors. A second pair of mapped nodes is chosen, along with the first 

pair, to form an axis in each fragment for development of a rotation matrix. Since these 

two vectors have one point in common, or one overlapping point after the original 

translation, the Euler rotation theorem can be utilized to develop a rotation matrix which 
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The ensemble of conformers generated can be used to calculate an average value for 

3D descriptors of a given structural isomer, as shown with the three-dimensional Weiner 

index. They could also be individually tested against the given criteria since the actual 

molecule in solution would be represented, to some degree, by a collection of various 

accessible conformations, which might not be well captured through averaging. In any 

manner, this approach aims at estimating the accessible conformational space of a given 

molecular signature while avoiding an extensive conformational analysis for each 

candidate molecule. 

 

3.1.9 Extension to More Complex Structures 

The initial studies, which were used to demonstrate the feasibility and applicability of the 

proposed methodologies, were based upon simplistic structures. These were relatively 

simplistic in the fact that they were medium sized organic molecules containing no ring 

structures. This was acceptable since the main motivation was to exemplify the proposed 

methodology’s ability to solve computer-aided molecular design problems with multi-

dimensional constraints. However, once proven, the next step would be to test the limits 

of this technique against problems of increasing complexity. Extension to consider more 

complex molecules with advanced characteristics would necessitate the formulation of 

new structural constraints. In addition to topological considerations, the conformational 

complexity associated with larger structures is also more evident. This topographic 

burden would show itself in the form of more complex potential energy surfaces and 

would require an adapted technique to handle such a case. The steps taken to handle such 

situations will be covered in the following paragraphs. 
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To foreshadow the possibilities of applying this methodology to more interesting 

case studies, it would be worthwhile to present some information on how the signature 

descriptor itself has performed when applied to complex case studies. Signature 

descriptors have been used as independent variables in the design of novel polymers with 

targeted properties (Brown et al., 2006). One of the unique characteristics of this 

descriptor is the ability to vary its ‘height’, which corresponds to capturing atoms at a 

further distance from the central atom. The height chosen for generating signature 

descriptors from a given data set has a direct effect on the resulting chemical search space, 

which is where novel solutions are identified. The immediate solution to considering case 

studies with larger molecules might be to use a larger height signature, however, this 

would have the effect of limiting potential solutions to having a very high similarity to 

the original data set. In addition, using a smaller height signature would result in 

combinatorial explosion. This was well recognized within the polymer design study by 

Brown et al. (2006), and they were able to select an ideal height for the design of novel 

polymers, which generated solutions as large as 45 atoms while using height one 

signatures. While this was feasible for a study with only topological constraints, the 

development of global geometric properties from signature fragments requires at least 

height two signatures. 

The ability of a descriptor to be mapped back to a given number of potential 

solutions is determined by its degeneracy. Descriptors with high degeneracy will map to a 

larger number of solutions, which becomes computationally intensive to enumerate all 

possible structures. The degeneracy associated with the signature descriptor, with respect 

to varying types of molecules with varying complexity, has been studied (Faulon and 
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Churchwell, 2003). With respect to alkanes, using height two signatures, 57.5% of 

structures had no degeneracy, meaning that they referred to only one structural isomer. 

As for alcohols with the same height two signatures, 99.2% of structures showed no 

degeneracy at this height. These were relatively simplistic structures, however, when 

extended to consider fullerene-type structures, 99.7% were uniquely identified at a height 

of three. In addition, 98.9% of peptides were non-degenerate when a height three 

signature was applied. This establishes a boundary when applying the signature 

descriptor in molecular design case studies, beyond which would allow for a more similar 

set of solutions or a larger search space. In any case, this boundary can be identified for 

each unique case study even when applied to more complex structures. 

Molecular complexity comes not only in the form of larger structures but also more 

interesting structural features. One such example would be the inclusion of ring like 

structures, which are found in chemicals across all fields. The signature descriptor is 

adept at handling such features and is enabled through its foundation in graph theoretical 

concepts. In addition to the extra topological constraints, there will also be some 

differences in the topographic characteristics of more complex molecules. The potential 

energy surface of a given molecule can quickly become very complex based on the size 

of the structures. The degrees of freedom for such a surface can be calculated as 3N – 6, 

with N being the number of atoms in a molecule. Fortunately, many of these features are 

quite rigid and the only real complexity arises in the torsional bonds found with a given 

structure. This can still lead to extremely complex potential energy surfaces, which are 

explored to estimate the spatial capabilities of atomic signatures, and the resultant 

solution structures, within this methodology. As such, to handle larger structures, it 



107 
 

would become necessary to conduct a more thorough conformational analysis of the 

original data set. This could also lead to many more structural isomers associated with 

each atomic signature, representing a unique structural isomer. To avoid the 

computational complexity associated with such a situation, as well as the potential 

combinatorial explosion, it would become necessary to increase the cutoff value while 

compressing the spatial information as discussed in section 3.1.5. This would be a trade 

off in the quality of each estimated geometry, but with an optimized cutoff value would 

still generate reasonable geometries. Additionally, it would also be possible to relax to 

topographic constraints associated with a given case study and perform a more thorough 

conformational analysis of the solutions identified. These techniques could be adopted to 

approach studies with more complex structures.  

3.2 Stochastic Solution Approach 

Often times, the nature of CAMD problems involving higher dimensional descriptors is 

such that linear programming cannot be applied. The transformation from property space 

to descriptor space can be non-linear as well as that from descriptor space to chemical 

space, which is where our solutions lie. In addition, the search space for a given CAMD 

problem is necessarily large, which makes the implementation of deterministic search 

methods infeasible due to combinatorial explosion. Combinatorial explosion arises within 

this field because of the utilization of molecular fragments as building blocks. There are 

so many potential arrangements of these building blocks which can lead to novel 

solutions. 

 A stochastic solution approach can circumvent this problem by searching a 

smaller subset of the original space, with guidance by an appropriate algorithm. This 
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allows for a much faster search algorithm, albeit at the expense of not considering the 

entire chemical search space. A stochastic approach can be completely random, or more 

beneficially, guided towards certain regions of the search space by a given convention. 

One such approach, as applied in this document, is known as a genetic algorithm 

(Holland, 1975). Genetic algorithms, GAs, apply a search heuristic which mimics nature 

by evolving a population of candidates towards an improved ‘fitness’ by means of several 

operators. This fitness is often measured as a candidate’s closeness to a given set of 

properties. Those within the desired property range have a higher fitness, whereas those 

falling outside this range are penalized and have a lower fitness. This satisfies the ‘natural 

selection’ part of the algorithm while candidates are altered through various operations 

which can be categorized as mutation, acting on a single candidate, or crossover, 

typically involving two candidates. These operations allow for the population to evolve 

towards an improved overall fitness. One of the benefits of GA applications is that 

multiple solution are often found even if the algorithm does not converge. For this reason, 

GA has been applied very successfully in several CAMD applications 

(Venkatasubramanian et al., 1995; Douguet et al., 2000; Pegg et al., 2001; Kamphausen 

et al., 2002). The following Figure 3.8, exemplifies the typical structure of a GA 

approach. 
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ranging from simple atoms to larger molecular groups. Termination of the algorithm is 

decided upon when the overall fitness of the resulting population has reached a certain 

threshold or when a specific number of iterations have been implemented and the final 

solution set is what remains. 

 This generalized methodology has been implemented within the previously 

covered CAMD algorithm such that a stochastic solution approach could be applied. The 

initial steps for this new methodology are the same as before in that the desired properties 

along with their respective models must first be identified. In addition to this, a 

conformational analysis must be performed in the same manner such that the spatial 

capabilities of the respective region in chemical space can be captured. Following this, 

the generated conformational isomers are dissected into spatial signature descriptor 

fragments for use in creating solution structures in a combinatorial manner. The 

following steps include application of a GA which has been adapted to satisfy the use of 

spatial signature descriptors. New operators have been developed which facilitate the use 

of spatial signature descriptors since they are overlapping in nature. A single point 

crossover, in addition to insertion, deletion, and random mutations, has been developed. 

This methodology is useful for solving complex non-linear CAMD problems utilizing 

molecular descriptors of varying dimensionality while searching a large region of 

chemical space in an efficient manner. 

3.2.1 Overall Genetic Algorithm Methodology 

Figure 3.6 provides a depiction of the proposed GA algorithm for the solution of multi-

dimensional CAMD problems utilizing spatial signature descriptors. 
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3.2.2 Generation of Starting Population 

An initial generation of molecules is selected at random to develop a population, which 

encompasses a variety of structural features spanning the chosen chemical space, on 

which to begin reproduction. The input required for this step consists of an upper and 

lower limit on atom count as well as a population size. For each member of the chosen 

population size, a target atom count is selected at random from the acceptable size range. 

Then a node is selected at random from the bonding network and the possible neighbor 

list is developed, from which the subsequent signature fragment is chosen. This process 

continues for a growing graph while the selection of signature fragments is a function of 

the current graph size. Equation 3.3 is utilized as a probability function for the selection 

of a signature which would either maintain graph unsaturation or effectively cap the 

growing molecule when nearing the desired size. In Equation 3.3, Pcap is the probably of 

selecting a signature fragment which would saturate the growing graph, NT is the target 

number of atoms and NC is the current number of atoms. 

This constraint helps adhere to the desired range of graph sizes for the starting population. 

It is possible for the probability to exceed a value of one, in which case graph growth 

would be terminated as soon as possible. The following pseudo-code outlines the 

algorithmic approach to generating an initial population: 

 pop_size = 100 

 size_lower = 10 

 size_upper = 30 

 size_list = [x for x in range(size_lower,size_upper+1)] 

 Pୡୟ୮ ൌ 1 െ ቈ
ሺN୘ െ Nେሻ

N୘
቉ (3.3)
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 for x in range pop_size: 

  select random node 

  select random desired size 

 for growing_graph in population: 

  while unsaturated == true: 

   identify cap probability 

   if cap == true: 

    identify nodes facilitating saturation 

   else: 

    identify nodes facilitating growth 

  else: 

   saturated graph created 

 

The desired population size is first chosen, along with the desired upper and lower limit 

on the size of molecular graphs generated. For each member of the population an initial 

signature is chosen at random along with the desired size, which is chosen from the 

developed size list. The molecular graphs are then ‘grown’ by selecting adjacent nodes, 

which have signatures capable of overlapping with the previous nodes signature. During 

the growing process, the probability of choosing a node which effectively ‘caps’ the 

graph by generating a fully saturated molecular structure, is calculated as shown in 

Equation 3.3. The value of Pcap can range from zero to one, and the closer this value is to 

zero the more likely the algorithm is to ‘cap’ the graph. This leaves some degree of 

randomness in the selection of whether or not to terminate growth of the molecular graph. 

Once the operation of cap or grow is chosen, all nodes facilitating this operation are 

identified and one is chosen at random from this list. This continues until a population of 

fully saturated molecular graphs has been created.  

 

 The chosen methodology of generating a starting population has an inherent 

degree of randomness such that the diversity of the chosen chemical space has an equal 
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opportunity of representation. However, control over the size of these individuals has 

been maintained. This has been done by choosing a desired size distribution within which 

the population should be maintained such that runaway growth does not occur. In 

addition, it is also undesirable for the generated population to have members with a graph 

size that is too small. While this does require some knowledge on the desired size 

distribution for a given problem, this can be circumvented by selecting a wider size range 

for situations in which this information is unknown. The graphs generated by this method 

will provide the population on which subsequent mutation and crossover operations are 

applied to create potentially improved solutions. As such, these graphs can be seen as 

points in chemical space which serve as starting points for the further interpolation type 

search throughout the remaining regions of chemical space. 

3.2.3 Fitness Calculation 

The fitness function plays a vital role in the guidance of a genetic algorithm towards a set 

of improved solutions, especially within a large search space. The best fitness functions 

will help a GA explore the search space more efficiently and effectively. However, a bad 

fitness function could result in the GA being trapped within a local minimum, lacking the 

power to explore other regions. The fitness function chosen for this application is 

expressed as shown in Equation 3.4. 

This format was chosen as suitable for a molecular design application because the 

problem is most often expressed in terms of a set of desired property ranges. In this case, 

 ௜݂ ൌ ߙ൭െ	݌ݔ݁ ൥෍
ሺ ௜ܲ െ పܲഥሻଶ

ሺ ௜ܲ௠௔௫ െ ௜ܲ௠௜௡ሻଶ

௡

௜

൩൱ (3.4)
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the fitness of each molecular graph is calculated with a Gaussian-like function over the 

range of desired property constraints. Within this equation, ௜ܲ is the calculated property 

value, ௜ܲ௠௔௫ and ௜ܲ௠௜௡ are the upper and lower property range values, and పܲഥ  is simply the 

average of these two values. The constant, α, is known as the Gaussian fitness decay rate 

and characterizes how quickly the fitness falls as it leaves the desired property range. 

This effect is exemplified in Figure 3.11, where the value of α has been varied with its 

effect on the fitness distribution shown graphically. 

 

Figure 3.11 – Effect of α on Fitness Distribution 

 

 The values produced by this fitness function essentially determine how desirable a 

given molecular graph is with respect to the chosen property ranges. Structures falling 

outside these ranges in one or more property category are penalized, resulting in a lower 

fitness value. Fitness values range from zero to one, with one being considered an 

optimal solution. Functionally, the way fitness values are used to select optimal 

candidates is that larger values have a higher likelihood of being chosen for mating or 
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mutation, and this is a probability based approach. While ‘more fit’ solutions do have an 

increased likelihood of being chosen, less optimal solutions can be also be represented to 

a varying degree by altering the alpha value mentioned earlier. A smaller alpha value 

would allow for the increased likelihood of selecting less optimal solutions, while a larger 

value would be very strict in only selecting the best structures. Some degree of sensitivity 

analysis is necessary to identify a value that’s optimal for a given case study and this 

depends on the nature of chemical space considered, as well as its relationship to the 

chosen properties of interest.  

3.2.4 Genetic Operators 

Various genetic operators are applied to maintain diversity within the population and 

effectively explore the available chemical space. New techniques were developed to 

tackle the unique format of the problem addressed here, namely the stochastic graph 

based approach to a multi-dimensional molecular design problem. The two main types of 

operators are mutation and crossover. Within the category of mutation operators, three 

types were created: reduction, insertion, and fragment mutation. The decision between 

selecting either a mutation or crossover operation is based upon a split value, which is to 

be decided upon before the algorithm runs. This split provides a probability based 

selection between a mutation or crossover operator. While the mutation operations have 

been designed to control the size of a resultant graph, by either inserting or removing 

fragments if necessary, the crossover is unbiased towards the size of a child graph. 

Because of this, problems with a higher probability of selecting a crossover operation 

often have a wider size range of solutions whereas those with a higher probability of 

selecting a mutation operator have a more narrow size distribution. This concept is well 
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exemplified in Figure 3.12, which plots the size distribution as a function of the crossover 

probability. 

 

Figure 3.12 – Effect of Crossover on Size Distribution 

 

Once a mutation has been decided upon, the probability based decision of which 

mutation operator to utilize is a function of the current graph size, in addition to a 

parameter, Nopt, which represents the current optimal graph size derived from previous 

data. Nopt is continuously updated as generations are analyzed and is calculated as shown 

in Equation 3.5, where ௜݂  is the fitness for a previously created molecular graph and ௜ܰ is 

its size. This technique allows for dynamic size control, which adjusts itself to the 

information gained previously throughout the stochastic algorithm. 
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Graphs within a certain percentage, β, of the optimal size undergo a signature 

mutation such that the size of the graph is preserved, while graphs above and below this 

range undergo reduction and insertion, respectively. Signature mutation involves the 

selection of a random node, which is then exchanged based on bond compatibility 

information available in the bonding network. Graph reduction involves the random 

selection of two or more bonded signatures, which is then replaced by a shorter path 

identified within the bonding network. Similarly, graph insertion involves the selection of 

a random bond between two signatures, in which a compatible signature is inserted to 

increase the size of the resultant molecular graph.  

Upon selection of the crossover operator, two parent graphs are selected from the 

population and are cut/recombined at compatible points just as in conventional crossover 

operations. For a pair of bonds, one from each graph, to be compatible, the bonding 

network must establish that each node involved in these bonds can also be bonded to its 

counterpart in the other graph. Each of these operators rely heavily on information stored 

within the bonding network, which is why this information is pre-calculated for the 

signature space developed from the initial data set. The concept of a single-point 

crossover can be seen in Figure 3.14, where two graphs are selected and cut at a 

compatible bond. One fragment from each parent is then recombined in a compatible 

manner to produce the resultant child graph. It is worth noting that, with a single point 

crossover, there are two possible child graphs that can be produced and one is chosen at 

random with no bias to the resultant sizes.  
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4. Case Studies 

 

The following case studies are meant to exemplify the usefulness of the above proposed 

algorithm. The first two case studies included the design of a solvent and a fungicide, for 

which the substituents were designed. These examples represent an initial attempt at 

including spatial information within the signature descriptor and molecular design 

methodology presented here. The search space for both problems was small enough to be 

solved in a deterministic manner, however, the nature of the problem definition allowed 

for a linear optimization approach to be taken. Utilizing optimization would allow for a 

much larger search space to be considered. In addition, the nature of the resulting 

solutions, being smaller in size on a molecular level, allowed for the spatial information 

for each potential solution to be derived from a single atomic signature, often the largest 

one. This is an inherent limitation in the solution of CAMD problems, and the technique 

for solving studies with larger solutions has been described earlier. This necessitates the 

development of a global geometry from fragment geometries. Unfortunately, the nature 

of these calculations does not allow for a linear approximation of the geometry. In 

addition, most any spatial descriptor utilized is not a linear function of the atomic 

coordinates or interatomic distances. This being said, what remains is to find an approach 

whereby the potential energy surface of candidate molecules can be estimated without 

conducting time consuming scans of this space. This would allow for the consideration of 

much larger search spaces. The third case study presented analyzes the ability of the 

proposed algorithm to estimate the PES for a given molecule. This verification was 

necessary for further studies utilizing this methodology. Once verified, the next step was 

to consider a study with a much larger search space. This is where the fourth case study, 
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which included the design of non-peptide mimetics matching a pharmacophore model, 

came in to play. The development of this dissertation can be seen in the consideration of 

case studies with increasing complexity, as they have been presented in this section.  

4.1 Solvent Design Study 

The initial case study is simplistic in nature and represents the design of a solvent with 

desired properties. The target in this design is to identify an alkane molecule with 

minimum soil sorption coefficient (log Koc). The property constraints to be satisfied by 

the solvents are boiling point (BP) and toxic limit concentration (TLC). The constraints 

are listed in Table 4.1 and the property models are described in Table 4.2. 

Table 4.1 - Property constraints for solvent design study. 

Property Upper Bound Lower Bound 

Boiling Point, BP (°C) 85 55 

Log(TLC) (ppm) - 1 

Log(Koc) Minimum  

 

 

Table 4.2 - Property models for solvent design study. 

Property Property Model 

log(Koc)  66.0)(72.0)(25.1)(53.0)log( 011   ocK
 

Boiling Point, BP   682)(395 0986.03  WBP D
 

log(TLC)   )(9915.0066.4)log( 1 TLC  
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For boiling point, a QSPR (Mihalic and Trinajstic, 1991) that makes use of the 3D 

Weiner index has been used. The three-dimensional Weiner index (3DW) is computed 

directly from the geometric distance matrix as follows, where di,j  is the geometric 

distance between atoms  i and j: 

The property model correlating the first order valence connectivity index to toxicity 

was developed by Koch (1982). The objective constraint in this study was to design a 

molecule with a minimal soil sorption coefficient. Koc represents the soil sorption 

coefficient, which is a strong indicator of the fate of an organic chemical introduced into 

the environment. A lower value here would represent a decrease in the potential harm this 

solvent could do if released into the soil. The model (Bahnick and Doucette, 1988) 

utilized to estimate this property has been correlated to various molecular connectivity 

indices and the optimal model is shown in Table 4.2. For this study, since only alkane 

structures were considered, the delta valence connectivity indices within this equation are 

equal to zero. 

To form molecular building blocks, signatures of height 2 are used. There are 65 

unique molecular signatures of height 2 that can be developed from linear alkane 

structures. These signatures have been listed in Table 4.3 below. 

 

 

 ܹ ൌ
1
2
෍݀௜,௝
௜,௝

	
ଷ஽  (4.1)
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Table 4.3 - All height-2 atomic signatures for linear alkanes. 

C1(C2(C)) 

C1(C3(CC)) 

C1(C4(CCC)) 

C2(C2(C)C1) 

C2(C3(CC)C1) 

C2(C4(CCC)C1) 

C2(C2(C)C2(C)) 

C2(C3(CC)C2(C)) 

C2(C4(CCC)C2(C)) 

C2(C4(CCC)C4(CCC)) 

C2(C3(CC)C3(CC)) 

C2(C4(CCC)C3(CC)) 

C3(C4(CCC)C4(CCC)C4(CCC)) 

C3(C4(CCC)C4(CCC)C3(CC)) 

C3(C4(CCC)C4(CCC)C2(C)) 

C3(C4(CCC)C4(CCC)C1) 

C3(C4(CCC)C3(CC)C3(CC)) 

C3(C4(CCC)C3(CC)C2(C)) 

C3(C4(CCC)C3(CC)C1) 

C3(C4(CCC)C2(C)C2(C)) 

C3(C4(CCC)C2(C)C1) 

C3(C4(CCC)C1C1) 

C3(C3(CC)C3(CC)C3(CC)) 

C3(C3(CC)C3(CC)C2(C)) 

C4(C4(CCC)C4(CCC)C4(CCC)C1) 

C4(C4(CCC)C4(CCC)C3(CC)C3(CC)) 

C4(C4(CCC)C4(CCC)C3(CC)C2(C)) 

C4(C4(CCC)C4(CCC)C3(CC)C1) 

C4(C4(CCC)C4(CCC)C2(C)C2(C)) 

C4(C4(CCC)C4(CCC)C2(C)C1) 

C4(C4(CCC)C4(CCC)C1C1) 

C4(C4(CCC)C3(CC)C3(CC)C3(CC)) 

C4(C4(CCC)C3(CC)C3(CC)C2(C)) 

C4(C4(CCC)C3(CC)C3(CC)C1) 

C4(C4(CCC)C3(CC)C2(C)C2(C)) 

C4(C4(CCC)C3(CC)C2(C)C1) 

C4(C4(CCC)C3(CC)C1C1) 

C4(C4(CCC)C2(C)C2(C)C2(C)) 

C4(C4(CCC)C2(C)C2(C)C1) 

C4(C4(CCC)C2(C)C1C1) 

C4(C4(CCC)C1C1C1) 

C4(C3(CC)C3(CC)C3(CC)C3(CC)) 

C4(C3(CC)C3(CC)C3(CC)C2(C)) 

C4(C3(CC)C3(CC)C3(CC)C1) 

C4(C3(CC)C3(CC)C2(C)C2(C)) 

C4(C3(CC)C3(CC)C2(C)C1) 

C4(C3(CC)C3(CC)C1C1) 

C4(C3(CC)C2(C)C2(C)C2(C)) 
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C3(C3(CC)C3(CC)C1) 

C3(C3(CC)C2(C)C2(C)) 

C3(C3(CC)C2(C)C1) 

C3(C3(CC)C1C1) 

C3(C2(C)C2(C)C2(C)) 

C3(C2(C)C2(C)C1) 

C3(C2(C)C1C1) 

C4(C4(CCC)C4(CCC)C4(CCC)C4(CCC)) 

C4(C4(CCC)C4(CCC)C4(CCC)C3(CC)) 

C4(C4(CCC)C4(CCC)C4(CCC)C2(C)) 

C4(C3(CC)C2(C)C2(C)C1) 

C4(C3(CC)C2(C)C1C1) 

C4(C3(CC)C1C1C1) 

C4(C2(C)C2(C)C2(C)C2(C)) 

C4(C2(C)C2(C)C2(C)C1) 

C4(C2(C)C2(C)C1C1) 

C4(C2(C)C1C1C1) 

 

The signatures used as building blocks to develop candidate molecular structures were 

optimized at the AM1 (Austin Model 1) (Dewar et al., 1985) quantum mechanical level, 

as it was shown to generate reasonable bond lengths and angles for the chosen data set. In 

the context of chemical graph theory, these signatures are described as sub-graphs and the 

optimized Cartesian coordinates of each atom were used to derive interatomic Euclidean 

distances. Together, these interatomic distances represent individual entries in the 

symmetric geometric distance matrix. An optimization problem has been set up using the 

given property models with relevant structural constraints and solved for the minimum 

value of soil sorption coefficient. The best three candidates and their respective atomic 

signatures have been listed in Table 4.4. 
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Table 4.4 - Solutions for solvent design study. 

Molecule Atomic Signatures BP (°C) log(TLC) 
(ppm) 

log(Koc) 

CH3CH2CH(CH3)CH2

CH3 

2x C1(C2(C3)) 
2x C2(C1C3(C1C2)) 
1x C1(C3(C2C2)) 
1x 
C3(C1C2(C1)C2(C1) 

62.3 3.4 1.54 

(CH3)2CH(CH2)2(CH3) 2x C1(C3(C2)) 
1x C3(C1C1C2(C2)) 
1x 
C2(C3(C1C1)C2(C1)) 
1x C2(C1C2(C3)) 
1x C1(C2(C2)) 

61.0 2.3 1.72 

(CH3)2CHCH(CH3)2 4x C1(C3(C1C3)) 
2x C3(C1C1C3(C1C1))

58.1 1.9 1.76 

 

 

4.1.1 Conclusions 

The solvent design case study presented here represents an initial attempt at utilizing 

signature descriptors containing geometry information for the solution of molecular 

design problems with descriptors of varying dimensionality. The signatures themselves 

were optimized as isolated fragments without consideration of surrounding or attached 

atoms. In this study, only the minimum energy conformers were accepted for 

consideration within the optimization problem. The nature of the solution space allowed 

for the complete molecular geometry of structures considered to be determined from the 

largest atomic signature within the molecular signature vector. While the approach may 

be feasible within this study, where the three-dimensional descriptor was not a strong 

function of the finer details of the conformational information available, improved 

methodologies are necessary for more complex applications. Studies with larger 
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structures existing within the chemical search space will require the development of 

global molecular geometry from several fragments. In addition, there may be many local 

conformational minima possible with spatial descriptors that are very sensitive to these 

varying atomic arrangements. For these reasons, the following studies will consider such 

cases along with the methodologies useful for tackling problems with increased 

complexity. 

4.2 Design of Alkyl Substituent for Rice Plant Fungicide 

Application of the molecular signature descriptor in accounting for topological, 

topographical and information indices is illustrated through the optimal substituent 

selection for dialkyldithiolanylidenemalonate (DD). DD has been shown to have 

eradicant and protectant activity against rice blast disease. Uchida (1980) enumerated the 

effectiveness of this fungicide in terms of affinity (log(VE)), mobility (log(μ)) and 

retention (log(R/(100-R))). These three attributes have been linearly related to the 

lipophilicity (log(Poct/wat)) of the chosen substituents. A QSPR was developed (Basak et 

al., 1996) to model log(P) as a function of several different descriptors. Index values are 

calculated only for the substituent regions of the fungicide. The structure of this fungicide 

is shown in Figure 4.1. 

S

S

C C

COOR2

COOR1

 

Figure 4.1 - Fungicide structure. 
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Raman and Maranas (1998) previously visited this problem while correlating log(P) 

values to the first order molecular connectivity index. The same upper and lower bounds 

on mobility and retention are applied in this study, while the objective function is to 

maximize substituent affinity to the rice plant. These property constraints can be found in 

Table 4.5. Property models utilized in this study are shown in Table 4.6. The information 

content (IC) indices infer a measure of molecular symmetry, and this formulation was 

originally introduced by Shannon (1948). Another information theoretical invariant 

utilized in the log(P) QSPR is the complementary information content (CIC) index 

(Magnuson et al., 1983). 

Table 4.5 - Fungicide substituent property constraints. 

Property Upper Bound Lower Bound 

Retention, log(R/100-R) -2.04 -2.48 

Mobility, log(μ) 0.3 -0.3 

Affinity, log(VE) Maximum  

   

 

Table 4.6 - Fungicide study property models. 

Property Property Model
Retention log(R/100-R)=0.72*log(P)-1.93 

Mobility log(μ)=-0.64*log(P)+1.95 

Affinity log(VE)=0.53*log(P)-0.24 

Hydrophobicity 
log(P)=-5.60+0.19(P10)-1.46(IC0)+1.09(CIC2)-0.77(CIC3)-

1.36(6χb) 
+5.34(0χv)-3.41(1χv)+0.55(4χv)-0.41(3χv

C)+1.10(VW)-0.17(3DW) 
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The atomic signatures used in this study were hydrogen suppressed and were allowed to 

exhibit one degree of unsaturation such that a bond to the existing fungicide structure 

could be allowed.  Given the above property constraints, each estimated through property 

models utilizing varying descriptor types, the top three solutions were identified as shown 

in Table 4.7, which shows the respective molecular signature vectors. 
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Table 4.7 - Molecular signature solutions to fungicide problem. 

Atomic Signatures Occurrence #’s 

C1(C2) 

C1(C3) 

C2(C2C1) 

C2(C3C1) 

C2(C3C2) 

C3(C2C2C1) 

2 

1 

1 

1 

1 

1 

C1(C2) 

C1(C3) 

C2(C3C1) 

C3(C3C2C1) 

C3(C3C1C1) 

1 

3 

1 

1 

1 

C1(C2) 

C1(C4) 

C2(C4C1) 

C4(C2C2C1C1) 

2 

2 

2 

1 

 

As mentioned previously, each set of atomic signatures can refer to more than one 

molecular signature. This is the case for solutions in the fungicide substituent design 

study since several solutions can actually satisfy more than one resulting structure. The 
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structural isomers have been enumerated for each solution, along with their respective 

estimated properties in Table 4.8. 

Table 4.8 - Substituent solution isomers. 

Properties R1 R2 

Affinity Mobility Retention   

1.480 -0.292 -2.094 

methyl 

methyl 

ethyl 

3-methyl-butyl 

2-pentyl 

sec-butyl 

1.521 -0.193 -2.326 methyl 
2-methyl-2-

butyl 

1.704 -0.138 -2.163 methyl tert-pentyl 

 

4.2.1 Conclusions 

This study was an extension of the previous solvent design study in that it considered 

more complex property models. Several of the solutions identified within the first study 

(Chemmangattuvalippil, 2008) were also found in this case study. However, the inclusion 

of spatial properties allowed for a different perspective on each property relationship, 

which was not captured in the previous application. In addition to spatial descriptors, 

information theoretic descriptors were also included in this analysis. While the solution 

was deterministic in nature, the problem could have been potentially solved utilizing 

linear programming techniques. This problem also addressed the issue of structural 

isomers arising from degeneracy seen in the use of atomic signatures as a platform 

deriving all other descriptors. The next step will be to solve problems in which the 
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solutions are large enough to require geometry development from multiple fragments. 

However, the proposed technique will need to be verified first to ensure that reasonable 

molecular geometries are produced. 

4.3 Geometry Estimation Technique Analysis 

The solution of problems relying on spatial, or three-dimensional, descriptors for 

structure characterization necessitates the consideration of molecular geometries. The 

most straight-forward and thorough approach is to carefully evaluate the potential energy 

surface (PES) of each structure considered within the search space for a given molecular 

design problem. However, this approach is computationally demanding and limits the 

region of chemical space that can be searched. While this technique is feasible for lead 

optimization stages in drug design studies, where the potential candidates have been 

substantially narrowed down to just a few structures, its application in many virtual 

screening situations becomes limited. As such, techniques for quickly estimating the PES 

of candidate molecules, or perhaps identifying likely conformational minima, become 

beneficial in the solution of these problems. The simplest approach, and most limited in 

producing realistic geometries, would be to utilize a database of conventional bond 

lengths and angles etc. to estimate the resulting geometry. Another technique, as 

discussed in the first case study on solvent design, could be to use fragment geometries to 

develop a global molecular geometry. The limitations of this approach have been 

addressed. To overcome these limitations, an approach has been developed which applies 

the same concept, however, with more detail. The fragment based approach for 

developing an estimation of the PES for structures considered within a CAMD problem 

has been explained in the background section of this dissertation. However, what remains 
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is verification of this technique. The approach taken to verify the aforementioned 

methodology will be as follows: 

1. Choose a data set on which to develop spatial atomic signatures. 

2. Leave out structures within the chemical space of the test set from step one for 

comparison. 

3. Develop an estimated set of conformers from the initially obtained atomic 

signatures using the proposed methodology. 

4. Independently develop a set of local energy minima, utilizing the same level of 

theory for geometry optimization, with which to compare against the estimated 

PES. 

5. Compare the two sets of conformational isomers for structures in the test set to 

see what percentage of this information was captured in the PES analysis. 

4.3.1 Analysis of Methodology in Organic Space 

The initial verification of the geometry development methodology was chosen for a data 

set of organic structures. Within the data set exists linear alkane structures, as well as 

structures containing double bonds and branched alkanes. This data set is chosen such 

that the effect of the proposed technique could be studied on structures with varying 

potential energy surfaces, with some structures having less conformational flexibility 

than others. The data used to develop the respective atomic signature basis set can be 

seen in Figure 4.2, with the hydrogen-suppressed structures shown. In addition, the test 

set is shown in Figure 4.3.  



 

 

 

m

f

d

w

i

w

c

T

Both s

molecular m

for its abili

descent algo

was the tec

input to the 

was used a

conformatio

Tirado-Rive

F

F

sets of stru

mechanics w

ity to repro

orithm was 

chnique used

conformati

as input to

onal search 

es, 2005). T

Figure 4.2 –

Figure 4.3 –

ctures were

with the MM

oduce accur

utilized wit

d to develo

ional analys

o create a 

could be p

The Monte C

135

– Geometry

– Geometry

e initially d

MFF94 forc

rate geomet

th 10000 ste

op a consist

sis step. This

z-matrix fi

performed w

Carlo metho

5 

y verificatio

y verificatio

drawn into 

ce field (Ha

tries for alk

eps and a co

tent initial g

s initial geo

file for whi

within the 

d has been 

on data set. 

 

on test set. 

Avogadro 

algren, 1996

kanes and a

onvergence 

geometry, w

ometry, in th

ich a subse

BOSS prog

shown to qu

 

and optimi

6), which w

alkenes. Th

criterion of 

which was u

he form of a

equent Mo

gram (Jorge

uickly and e

ized using 

was chosen 

e steepest 

f 10-7. This 

utilized as 

a .mol file, 

nte Carlo 

ensen and 

effectively 



136 
 

explore the conformation space for a range of molecular structures (Chang et al., 1989). 

The conformational search began with 100 starting structures and those with a 

conformational strain energy within 5 kcal/mol of the lowest conformer identified were 

kept. Table 4.9 lists the number of conformers identified in this range for each molecule 

in the data and test sets. 

Table 4.9 - Conformers identified with MC search. 

Structure 
(type) 

Conformers Identified 
(within 5 kcal/mol) 

T1 
(alkane) 

7 

T2 
(alkene) 

5 

T3 
(branched)

9 

D1 
(alkane) 

4 

D2 
(alkane) 

9 

D3 
(alkene) 

5 

D4 
(alkene) 

5 

D5 
(branched)

16 

D6 
(branched)

9 

 

As can be seen in Table 4.9, the branched structures typically have a more 

complicated potential energy surface. This could partially be a result of the fact that the 

branched alkanes have more atoms, on average, than the linear structures used in this 

study. However, the trend of alkenes having a less complex potential energy surface, 

identified by the lower number of conformers found during a comparable PES scan, is 

consistent here. This is likely a result of the double bonds decreasing the rotational 
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have a much more complicated potential energy surface and a smaller cutoff criterion for 

developing spatial atomic signatures would be required. This can be done by selecting a 

few structures, representative of the chosen data set, and running the algorithm discussed 

above, which tests how many conformers can be recreated for a given cutoff. There is an 

inherent ‘sweet spot’ that is specific to each data set chosen and must be identified such 

that the algorithm is most effective. This could be done by repeating the previously 

covered geometry verification methodology until a desired number of conformational 

isomers are captured with the chosen cutoff value. 

4.4 Structure Based Design of Non-Peptide Mimetics 

This contribution outlines an algorithm for the design of mimetics based on information 

from existing pharmacophore models. Ideally, these techniques could be implemented 

alongside conventional high-throughput screening (HTS) efforts to alleviate the time and 

costs required to develop new therapeutic drugs with improved processability. This study 

represents a first attempt at solving problems necessitating geometry estimation from 

fragment geometries.  

4.4.1 Pharmacophore and Non-Peptide Mimetics 

The IUPAC definition for a pharmacophore is given as ‘… the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions 

with a specific biological target structure and to trigger (or to block) its biological 

response’ (Wermuth, 1998). These models can be developed with or without geometric 

characterization of the targeted receptor. If the receptor structure is known, several 

computer-assisted docking techniques can be utilized to develop the pharmacophore 

model. When the receptor structure is unavailable, there are various superpositioning 
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techniques available for comparing the spatial features found in ligands and using this 

information for model development. These alignment techniques are often limited by 

their inability to capture the conformational flexibility of ligands under consideration. 

Several algorithms have been developed to overcome this limitation and most are based 

on pre-calculation of ligand conformations, and/or distance geometry (e.g. the geometric 

distance between important structural/electrostatic features) (Wolber et al., 2008). Many 

attempts at utilizing pharmacophore models to develop novel mimetics have focused on 

replacing the peptide backbone with a non-peptidic framework, or identifying cyclic 

peptide derivatives (Olson et al., 1993). The limitation of these solutions in regards to 

oral-bioavailability, drug-likeness, and stability leads to the consideration of alternative 

approaches. A trend towards models built with more generalized features and a thorough 

conformational analysis, with rotational and translational invariance, could allow for the 

extension of in-silico screening to include potential non-peptide candidate mimetics. 

Properties related to drug-likeness, such as those established in Lipinski's rule of 5, 

provide a quick estimation as to the potential pharmacokinetics in the human body as 

well as other important properties like absorption, distribution, metabolism and excretion 

(ADME) (Lipinski et al., 2001). These rules can place limits on something as simple as 

the molecular weight or as complex as the molar refractivity or molecular polar surface 

area. 

4.4.2 Model Information 

The case study chosen to test this algorithm is based on a 3D pharmacophore model 

developed for 5-Hydroxytryptamine6 (5-HT6) receptor antagonists (Lopez-Rodriguez et 

al., 2005). Evidence suggests that this receptor may be involved in memory impairment, 



 

p

s

d

s

r

r

h

(

 

4

A

p

a

w

D

w

psychosis, 

system dise

developmen

structurally 

regions we

receptor bl

hydrophobic

(HBA). Res

4.4.3 Atom

A sub-set 

pharmacoph

atomic sign

with improv

Draw 4.0 pr

was importe

convulsive 

eases. This 

nt software 

diverse an

re identifie

ocking, and

c site (AR)

spective euc

Fig

ic Signatur

of 22 stru

hore trainin

natures to b

ved bioavai

rogram (Ac

ed into Avo

disorders, 

pharmacop

called Cat

ntagonists a

ed (Lopez-R

d these inc

), a positive

clidean dista

gure 4.6 - P

re Developm

uctures, ch

ng set, was 

e utilized in

ilability. Th

celerys Inc.

ogadro for e

14

appetite c

phore mode

alyst (Kuro

and the opt

Rodriguez e

clude: a hy

e ionizable 

ances (Å) be

Pharmacoph

ment 

hosen to r

chosen as t

n the in-sil

hese structur

., 2001) and

estimation o

1 

control, and

el was deve

ogi et al., 2

timal mode

et al., 2005

ydrophobic 

atom (PI), 

etween mod

hore Model

epresent di

the basis se

ico design 

res were in

d the resultin

of an initial

d other rela

eloped with

2001) from 

el is represe

5) to be ne

site (HYD

and a hyd

del features a

 

l for 5-HT6

iversity fou

t for the de

of a potent

nitially draw

ng 2-Dimen

 geometry, 

ated centra

h the pharm

a training 

ented Fig. 

ecessary fo

D), an arom

drogen bond

are also sho

6. 

und in the

evelopment 

tial 5-HT6 a

wn into the 

nsional MDL

for which t

al nervous 

macophore 

set of 45 

4.4. Four 

or optimal 

matic ring 

d acceptor 

own. 

e original 

of spatial 

antagonist 

Accelerys 

L mol file 

the Merck 



142 
 

Molecular Force Field (Halgren, 1996) was utilized as a suitable candidate to develop a 

rough initial geometry. A Monte Carlo conformational search, with 200 starting 

geometries, was performed for each structure and all isomers within 20 kcal/mol of the 

lowest energy conformer were accepted for further calculations. This conformational 

analysis was performed in the Biochemical and Organic Simulation System (BOSS) 

software (Jorgensen and Tirado-Rives, 2005) through application of the xCS200 script, 

which performs a conformational analysis with 200 starting structures. From the original 

22 structures, 508 conformational isomers were ultimately accepted. In house software, 

facilitated through the use of Faulon’s signature software (Faulon, 2014), was developed 

for the conversion of input mol files, for each conformational isomer, to their respective 

height 3 atomic signatures. This software was written in Python and the results for the 

signature software were used as input to the program. From the 23,368 atomic signatures 

derived from the data set, 254 of these were identified as being unique structural isomers. 

Upon bonding network generation, about 2.96% of the pairwise signatures were 

identified as being capable of bond formation. Conformational isomerism data was stored 

in the respective structural isomers as a dictionary of Cartesian coordinates representing 

the relative positions of all atoms in each conformer. The measure of similarity used for 

comparing conformational isomers, or graph isomorphisms, was the root mean square 

difference in inter-atomic distance values. By setting a limit of 0.2 Å as the maximum 

acceptable difference between equivalent inter-atomic distances in conformational 

isomers, the number of signature fragment conformers was reduced by 73%, from around 

23,000 to 6,340. This reveals a high degree of spatial similarity between conformational 

isomers for each type of signature. Since these atomic signatures were derived from a set 
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4.4.5 Conclusions 

The following methodology has been developed for the solution of multi-dimensional 

inverse molecular design problems while quickly estimating the conformational space of 

each structural isomer presented. The use of a fragment-based, spatial Signature 

descriptor was chosen for its compatibility with such a combinatorial algorithm aimed at 

scanning a large region of chemical space. The algorithm takes the approach of satisfying 

lower dimensional criteria first so that the computational expenses associated with 

developing/analyzing more complex criteria, such as that associated with geometric 

analysis, is minimized. Flexibility in the use of varying data sets for spatial signature 

development could allow for the application of this methodology at various stages of 

molecular design, or more specifically drug development. 

The case study chosen to exemplify the benefits of this approach was the design of a 

receptor antagonist with potential therapeutic benefits. Several candidate solutions were 

identified that were not part of the initial training set. Based on the signature height used 

in this study, and the nature of the data set with many cyclic structures, the structures 

tested were fairly similar to the original set. 

4.5 Solvent Design with Genetic Algorithm 

The case study chosen to exemplify this stochastic approach involves the design of a 

molecule with a specified boiling point temperature. Basak et al. (1996) developed a 

structure activity relationship correlating various 2D and 3D molecular descriptors to the 

normal boiling point for a data set of 1023 chemicals from the Toxic Substances Control 

Act (TSCA) Inventory. Only those molecules with a listed normal boiling point value and 

where the hydrogen bonding potential was estimated to be equal to zero were chosen. 
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The goal of this study was to determine the optimal combination of descriptors between 

2D, 3D, and 2D+3D. Most of the topological indices for each chemical within the chosen 

dataset were calculated utilizing the computer program POLLY (Basak et al., 1988). 

Because of the varying nature of descriptor values, topological indices were transformed 

by the natural logarithm of the index plus one. One was added since many of the indices 

were found to be zero. Geometric parameters were transformed by the natural logarithm 

of the parameter. Two different regression techniques were utilized. When the number of 

independent variables was large, stepwise regression was chosen. However, when the 

number of independent variables was small, all possible subsets regression was used. To 

include both sets of descriptors, each capturing varying dimensionality, the following 

model development procedure was chosen. First, only topological indices were utilized to 

identify the best model. The topological indices utilized within this model were then 

added to a set of topochemical indices and the best model from this combined set of 

indices was developed. Finally, the best topological/topochemical indices were then 

added to the set of geometrical descriptors, from which an optimal model was once again 

created using a subset of these. 

 The model containing only topological indices utilized 11 parameters and resulted 

in an explained variance (R2) of 80.8% and standard error (s) of 40.9°C. With the addition 

of topochemical parameters, a model using two topological and seven topochemical 

parameters was identified as best, having an R2 of 96.5% and s of 17.4°C. The best fit 

model, shown in Equation 4.2, resulted from a combination of 2D topological, 2D 

topochemical, and 3D descriptors with an R2 of 0.967 and an s of 16.8°C. 
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This model contains descriptors of varying nature, each capturing a unique aspect of 

molecular architecture. As far as topological indices, the sixth order path connectivity 

index (6χ) and number of paths of length 10 (P10) are included. For topochemical indices, 

the information content based on the zeroth order neighborhood (IC0), the sixth order 

bond path connectivity index (6χb), the third order bond cluster connectivity index (3χb
C), 

the zeroth order valence path connectivity index (0χv), the second order valence path 

connectivity index (2χv), and the fifth order valence path-cluster connectivity index were 

utilized. As for geometric indices, the three-dimensional Wiener index (3DW) was used in 

both its hydrogen suppressed and hydrogen inclusive format. The summation of this 

information was found to be optimal in capturing the variance seen within the data set 

with respect to boiling point. This situation fits the criteria of the established method in 

that descriptors of varying dimensionality have been utilized for a large set of molecular 

structures. As such, it was chosen as being suitable for the description of boiling point 

and used within the stochastic molecular design framework previously established. 

4.5.1 Development of Spatial Signatures 

A subset of 245 molecules was chosen from the initial 1023 utilized to develop the 

boiling point property model with the aim of maintaining the original variance in 

structural features. These structures were initially drawn into the Avogadro molecular 

modelling program and were quickly optimized to provide a starting point geometry. The 

force field utilized for this initial optimization was MMFF94, which was chosen by its 
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ability to produce reasonable geometries for the chosen data set, and the steepest descent 

algorithm was applied for 10,000 steps or until a convergence of 10-7 was met. This step 

was fairly quick with an average optimization time of about 4-6 seconds. The method 

utilized for conformational analysis, within the BOSS molecular modelling software, was 

the AM1 molecular mechanics force field. A conformational analysis was performed for 

these molecules with an acceptance criterion of each conformer being within 15 kcal/mol 

of the identified conformational minimum. These conformers were dissected into 194 

unique height-2 atomic signatures, or structural isomers. The conformational information 

for each signature was further compressed by removing conformers exhibiting a 

similarity limited to 0.2 angstrom for each pairwise inter-atomic distance comparison. 

4.5.2 Parameters Utilized 

The parameters necessary for this design problem include a lower (10) and upper (25) 

bound placed on the number of atoms allowed in candidate molecular graphs. In addition 

the lower and upper limits on acceptable boiling points were placed at 75 and 80 °C, 

respectively. The steady state population size was chosen to be 100 graphs and each run, 

of which there were 10 total, continued for 100 generations. The probability of mutation 

and crossover operators were both set to 0.5. The β variable discussed in section 2.3.2 

was set to 0.15 and the gaussian fitness decay rate, α, was set to 0.1. The β variable was 

chosen such that the size of solutions could be preserved within a reasonable range, 

which was chosen to be within 15 percent of the identified optimal size. The gaussian 

fitness decay rate, α, was chosen with consideration of the expected distribution in 

potential solutions. The variable essentially determines how quickly a solution’s fitness 

value drops off as it leaves the desired property range. In this case, the desired property 
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range was very small, being only a difference of 5 °C. As such, a larger α value created a 

fitness function which was ‘harsh’ enough to discriminate between very close property 

values for such a short property range. This effect can be seen in Figure 3.11. The 

probability of selection between mutation and crossover operators was chosen to be 0.5 

based upon an initial size control study. Within this study, the probability was varied 

between 0.1 and 0.9 and the criterion for the algorithm was to approach a desired preset 

molecular size, from which fitness was derived based upon closeness to this size. It was 

found that larger probability values, which favored crossover operations more heavily, 

were less effective at guiding the algorithm towards this desired size. The reason for this 

is that the crossover operator has no discrimination towards the size of the resultant 

molecular graph. As such, it was also found that a value of 0.5 was acceptable at driving 

the algorithm towards the optimal size while still visiting a reasonable size range around 

the optimal size. 

4.5.3 Results and Conclusions 

The exhaustive combinatorial search for solutions in a chemical space of this size would 

have been much more time consuming, whereas the genetic algorithm applied here was 

able to identify satisfactory solutions more quickly. This approach could benefit from 

inclusion of new types of mutation operators; however the techniques utilized here were 

effective in controlling the size and diversity of solutions generated. The following graph, 

shown in Figure 4.9, exemplifies the typical progression of average population fitness as 

a function of the generation number. A trend of steadily increasing fitness can be seen as 

the progression of mutation and mating between previous generations is facilitated 

through the various operators. 
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Figure 4.9 – Fitness as a Function of Generation 

 

Many of the solutions were repeated throughout the algorithm, leading to a smaller 

number of solution structures than initially estimated, and the average number for the ten 

trials conducted was around 20. Some of the more common solutions have been shown 

below in Table 4.10. 

Table 4.10 – Common Solutions Identified During Solvent Design Case Study 

Chemical Estimated Boiling 
Point (°C) 

Experimental 
Boiling Point (°C) 

Relative 
Difference (%) 

carbon tetrachloride 75.9 76.8 1.2 

ethanol 78.7 78.5 0.3 

2-methyl-1,3-pentadiene 76.4 79.0 3.3 

2,2,3-trimethylbutane 80.0 80.9 1.1 

2-butanone 79.5 79.6 0.1 

1,3,5-hexatriene 78.8 78.0 1.0 
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1,2-hexadiene 75.0 76.0 1.3 

ethyl acetate 77.3 77.0 0.4 

2,2-dimethylpentane 77.8 79.0 1.5 

2,4-dimethylpentane 80.1 81.0 1.1 

2,2,2-trifluoroethanol 79.3 78.0 1.7 

2,3,3-trimethyl-1-butene 78.3 79.0 0.9 

acetonitrile 79.7 81.6 2.4 

2-methyl-2-propanol 79.5 82.2 3.3 

isopropyl alcohol 78.0 82.5 5.6 

4,4-dimethyl-2-pentene 79.4 79.0 0.5 

3,4-dimethyl-1-pentene 78.1 80.0 2.4 

1-butanal 75.5 74.8 0.9 

2,3-dimethyl-2-butene 76.7 73.0 4.9 

 

A stochastic molecular design algorithm, in the form of a genetic algorithm, was chosen 

for solving problems containing large search spaces with complicated multi-dimensional 

descriptor sets. The technique was successful in identifying several unique solutions for 

the problem at hand. Several parameters, including α, β, and the Gaussian decay rate 

variable, must be optimized before allowing the algorithm to run to completion. This 

would ensure that the search is optimized for the specific property models utilized as well 

as the search space chosen. Overall, this method was found to be promising at solving 

such complicated CAMD problems and the development of more complex operators, 
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including a double point crossover, could prove to be beneficial at tackling more diverse 

data sets. 
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5. Conclusions and Future Direction 
 

A methodology for the solution of computer-aided molecular design problems with 

multi-dimensional characterization has been presented within this dissertation. This 

technique has allowed for the solution of such problems in a more efficient manner when 

compared to many of the techniques previously utilized. The reason for this is that 

molecular design problems utilizing varying property models with descriptors of different 

dimensionalities can now be solved on a common platform. This provides the freedom to 

choose the optimal property models for each problem without limitation to the types of 

descriptors utilized. The signature descriptor, while initially developed (Faulon, 2003) to 

solve problems containing a maximum dimensionality of two, was extended to include 

spatial information. The use of this fragment based descriptor facilitated reconstruction of 

potential solutions, being rooted in graph theoretical concepts, which allowed quick 

identification of all possible structural isomers relating to a group of molecular fragments. 

Further, conformational isomers could be estimated conveniently from fragment 

geometries since the signature descriptors overlap with each other by design, which 

eliminated the need for excessive conformational analysis of all potential solutions.  

The initial methodology was developed to solve the problems presented in a 

deterministic manner, which considers the entire search space and guarantees 

identification of a global optimal solution. While thorough, this was seen as a limitation 

in solving larger molecular design problems with a bigger search space. As such, a 

stochastic evolutionary methodology was developed, along with the operators necessary 

to guide a population of solutions towards a set of desired property values. These 

operators included a single point crossover, deletion mutation, insertion mutation, and 
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fragment mutation. This technique was found to be effective at quickly identifying 

solutions meeting the desired criteria. In addition, it was able to identify several likely 

candidates instead of just searching for one global optimal solution, which is often the 

case in the solution of non-linear optimization problems such as these. 

Within these two approaches at solving multi-dimensional molecular design 

problems it was necessary to develop many new methodologies for handling problems of 

this nature. The extension of signature descriptors to include spatial information 

necessitated molecular modelling techniques, from which the information had to be 

compressed for efficient usage within the algorithm. Additionally, both the stochastic and 

deterministic approaches described within this dissertation were coded and can be found 

within the attached appendix. Several different sources of software were utilized in a 

unique manner to generate the necessary information and new modules had to be 

developed to transform this information into a suitable format. The programming written 

to complete these tasks was written in Python, and occasionally shell scripts were written 

to transport this information into Python and automate molecular modelling tasks.   

Several case studies have been presented to exemplify the applicability of this 

technique ranging from solvent design to the design of non-peptide mimetics. While a 

successful approach to molecular design, there are several limitations which need to be 

addressed. These limitations ultimately lead to the proposed future direction of the 

project, which can be found in the following sections.  
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5.1 Improved Simulation Techniques 

The conformational analysis of molecular structures in all studies presented within 

this dissertation was done in a vacuum using varying levels of theory within the 

molecular and quantum mechanical approaches. In reality, this is not an optimal 

representation of molecular structures which are typically in solution or bound to form 

molecular complexes. Extension of this technique to generate molecular conformations 

which would more likely be found in these situations could be beneficial to the solution 

of more complex CAMD problems. This could perhaps be done by developing the initial 

spatial atomic signature data set from simulations of structure in solution or interacting 

with other molecules. One such approach could take advantage of the data generated 

through molecular dynamics simulations, to provide more realistic estimations of the 

geometry of potential solutions. 

Molecular dynamics (MD) is a computer simulation of the physical movements of 

atoms and molecules within the simulation. The trajectories of atoms and molecules are 

determined by numerically solving Newton’s equations of motion for a system of 

particles. The forces between atoms and molecules are determined by application of a 

molecular mechanics force field. Since it is currently impossible to solve for the 

properties of complex systems through analytical means, MD simulations afford the 

possibility of numerical analysis. These simulations have been applied successfully to the 

modelling of very large systems including: simulation of the complete satellite tobacco 

mosaic virus (Freddolino et al., 2006), which allowed researchers to probe the 

mechanisms of viral assembly; simulation of protein folding events such as that of the 

Villin Headpiece (Yong et al., 1998), which is an actin-binding protein; simulation of 
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nano-scale events such as the exfoliation of grapheme layers (Buddhika and Subbiah, 

2011). 

What these simulations provide with respect to the proposed methodology is a more 

accurate simulation/estimation of the spatial properties for a collection of molecules. This 

information is much closer to reality when compared to the conventional gas phase 

simulations utilized to gain insight into a molecule’s preferred spatial conformations. 

This is because gas phase simulations often consider a single molecule isolated in 

vacuum space, whereas MD simulations consider the environmental interactions and how 

they affect preferred conformations. 

There are several notable examples within the CAMD community where MD 

simulations have been successfully applied in the characterization and prediction of 

properties/attributes. One such example involves the prediction of ionic liquid properties 

including density, viscosity, diffusivity, melting point, enthalpy of vaporization and 

surface tension. Ionic liquids are salts which are liquid at room temperature and they 

possess at least one asymmetric unit comprised of a large organic cation and an organic 

or inorganic anion. The structural asymmetry makes their crystallization difficult and 

because of this they have an extremely low vapor pressure, high chemical stability, and 

good solvating capacity for organic and inorganic compounds and even biopolymers. 

Some examples of the most common cations and anions found in literature are shown in 

Figure 5.1. 
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against leukocyte trafficking and localization. The forward approach of developing a 

QSAR was first conducted to develop a property model relating the occurrence of atomic 

signatures to the potency of a given peptide as measured by IC50, which is the 

concentration that leads to half-maximal inhibition of receptor to ligand. A forward 

stepping algorithm was applied to select the most statistically significant signatures, 

which were then correlated to the logarithm of IC50 values. A Diophantine solver was 

applied to solve this equation in terms of the optimal set of atomic signatures. The next 

step was to generate all possible molecular structures containing these chosen signatures. 

The goal was to identify a novel inhibitory peptide possessing a lower IC50 value than 

any other structure within the training set. The group was able to identify and synthesize 

two peptides which were found to be the strongest inhibiting peptides to date, and they 

were measured as being very close to their estimated values. This study exemplifies the 

applicability of using atomic signatures towards exploring the chemical space of a set of 

proteins and identifying novel solutions with improved properties. While the descriptors 

utilized were the atomic signatures themselves, which simply contain two-dimensional 

information, a strong correlation was identified nonetheless. 

It is well known that the association between ligands and receptors are strongly 

influenced by the spatial properties of both molecules involved. As such it would be 

useful to include such information in the CAMD efforts associated with identifying 

inhibitors with improved binding affinity. The problem with this approach is that, 

especially for protein structures, the conformational space associated with these potential 

inhibitors is very complex and requires much computational effort. In addition to having 

local geometry information such as bond lengths and angles, proteins also contain higher 
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order structural features known as secondary and tertiary structures. This information is 

difficult to capture at a local fragment-based level, however there are techniques 

available for estimating protein tertiary structures from fragment geometries. One such 

approach by Simons et al. (1997) develops this higher order structural information from 

fragments using simulated annealing and Bayesian scoring functions. In this technique, 

they are able to assemble native-like structures from fragments of unrelated protein 

structures with similar local sequences using these Bayesian scoring functions. 

Previous applications, within this dissertation, have shown that the global geometry 

of a given molecules can be successfully estimated by the individual contributions from 

local fragment geometries. However, this was studied for only smaller organic structures. 

The secondary and tertiary structures associated with proteins are much more difficult to 

estimate and applying the methods utilized before would lead to protein structures which 

are considerably more expanded than native proteins. To account for this, one could 

initially assemble a set of protein conformers using fragments, and this would provide a 

reasonable starting point for further exploration of the protein’s torsional space. 

Exploration of the torsional space could be guided by the process of conformational 

space annealing, such as that which was successfully applied in the Simons et al. (1997) 

study. This allows the algorithm to search a wide area within the conformational space of 

each protein, and ultimately/quickly converge on a set of likely local energy minima. 

Conformational space annealing has been applied in other optimization studies (Lee et al., 

1997) and was successful in exploring the conformational space of reasonably complex 

protein structures. 



160 
 

5.3 Simulated Annealing 

Simulated annealing (Van Laarhoven and Aarts, 1987) represents a class of solution 

methods applied for combinatorial optimization problems with analogies applied from the 

physical process of annealing. Annealing is the physical thermal process of melting a 

solid by heating it, followed by slow cooling and crystallization into a stable state. This 

approach has been applied to CAMD studies (Ourique and Telles, 1998) and 

conformational analysis studies (Kleber and Tsallis, 1996) with much success. Starting at 

a higher “temperature” the search algorithm is allowed to explore less favorable solution 

spaces, denoted by a higher conformational energy or being further away from the 

desired properties with respect to a CAMD problem, such that it does not get stuck in a 

local metastable state. The temperature is slowly dropped, or cooled, so that the structures 

generated have in increased likelihood of exhibiting the desired properties. 

It has been established within this dissertation that the nature of many CAMD 

problems is highly nonlinear such that linear programming techniques cannot be applied. 

In addition, the complexity of many descriptors and property models utilized make 

application of an MINLP technique very difficult. As such, the application of stochastic 

optimization techniques was necessitated because of these reasons, in addition to the 

large search space considered by most ambitious CAMD problems. One technique 

presented within this dissertation is known as genetic algorithm, and it was shown to be 

successful towards solving problems of this nature. However, it would be beneficial to 

explore additional stochastic optimization approaches, such as simulated annealing, 

because of their success in similar applications. 
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One application of simulated annealing (SA) within the CAMD community can be 

found in study by Ourique and Telles (1998). This work solved problems identifying pure 

substances or mixtures that satisfied a set of chemical or physical properties by 

representing molecules as chemical graphs and applying a simulated annealing algorithm. 

Molecules were represented as hydrogen-suppressed graphs with bonding and atom type 

information stored within a structure-composition matrix. Within this square matrix, 

group identities were stored in the main diagonal with zeroes and ones in the remaining 

entries corresponding to bonds between these groups. In this case, the representation of 

molecules was provided in the matrix; however, the defined search space would be vast 

utilizing an atom based description of molecules. The utilization of signature fragments 

as molecular building blocks would further contain the search space such that structures 

would be more likely to fall within the applicability domain of the chosen property 

models. In addition, extension to consider conformational information would fall in line 

with the simulated annealing approach. While the SA algorithm could act on the initial 

graph itself, estimation of likely conformational minima could be processed in the same 

manner. This would provide a common algorithm with which to analyze the feasibility of 

various molecules for a given CAMD problem, while also exploring the structural and 

conformational capabilities of a chosen search space. Such an approach could prove to be 

beneficial in identified novel chemical solutions unattainable within the GA approach 

because of the initial exploration of unfavorable regions in chemical space. 
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import networkx as nx 
 
import networkx.algorithms.isomorphism as iso 
 
import math 
 
from math import fabs 
 
import itertools 
 
import re 
 
import glob 
 
import subprocess 
 
import linecache 
 
from  collections import defaultdict 
 
from operator import eq 
 
from pprint import pprint 
 
import numpy 
 
from operator import itemgetter 
 
import random 
 
valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1} 
 
bond_dictionary = {1:1,2:2,4:1.5} 
 
class Directory: 

        def __init__(self,full_parent_directory): 
 
                self.full_parent_directory = full_parent_directory 
 
        def create_signatures(self,height): 
 
                """This function canonizes the mol files in directory and stores signatures in self.signatures dictionary""" 
 
                self.height = height 
 
                self.signatures = defaultdict(lambda:defaultdict(list)) 
 
                self.subgraphs = [] 
 
                self.compressed_subgraphs = [] 
 
                self.working_signature = '' 
 
                if self.full_parent_directory[-1] == '/': 
 
                        self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1] 
 
                mol_files = self.full_parent_directory + '/*.mol' 
 
                file_iter = glob.iglob(mol_files) 
 
                total_subgraphs = 0 
 
                signatures_stored = 0 
 
                graph_count = 0 
 
                for fn in file_iter: 
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                        # Creating a nx.Graph from the mol file 
 
                        G = nx.Graph() 
 
                        if 'OpenBabel' in str(linecache.getline(fn,2)): 
 
                                atom_bond_number_line = 4 
 
                        else: 
 
                                atom_bond_number_line = 5 
 
                        atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip()) 
 
                        bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip()) 
 
                        coordinate_begin_line = atom_bond_number_line + 1 
 
                        coordinate_end_line = atom_bond_number_line + atomn 
 
                        bond_begin_line = coordinate_end_line +1 
 
                        bond_end_line = coordinate_end_line + bondn 
 
                        for i in range(bond_begin_line, bond_end_line + 1): 
 
                                atom1 = int((linecache.getline(fn,i)[0:4]).strip()) 
 
                                atom2 = int((linecache.getline(fn,i)[4:8]).strip()) 
 
                                bondtype = int((linecache.getline(fn,i)[8:10]).strip()) 
 
                                G.add_edge(atom1, atom2, type=bondtype) 
 
                        for i in range(coordinate_begin_line,coordinate_end_line + 1): 
 
                                j = i - (atom_bond_number_line) 
 
                                G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()), 
                                                              float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip())]) 
 
                                G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip()) 
 
                        # Now breaking this graph into subgraphs 
 
                        nodes = G.nodes_iter() 
 
                        for node in nodes: 
 
                                subgraph=nx.ego_graph(G, node, radius=self.height) 
 
                                subgraph.graph['degree'] = subgraph.degree(node) 
 
                                subgraph.graph['center'] = node 
 
                                subgraph.graph['atom'] = G.node[node]['atom'] 
 
                                subgraph.graph['rebuild'] = graph_count 
 
                                self.subgraphs.append(subgraph) 
 
                        graph_count += 1 
 
                print 'Subgraphs created:',len(self.subgraphs) 
 
                for subgraph in self.subgraphs: 
 
                        match_status = 0 
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                        if len(self.compressed_subgraphs) > 0: 
 
                                for subgraph_list in self.compressed_subgraphs: 
 
                                        nm = iso.categorical_node_match('atom', 'C') 
 
                                        em = iso.numerical_edge_match('type', 4) 
 
                                        GM = iso.GraphMatcher(subgraph,subgraph_list[0],node_match = nm, edge_match = em) 
 
                                        if GM.is_isomorphic(): 
 
                                                match_status = 1 
 
                                                new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True) 
 
                                                subgraph_list.append(new_graph) 
 
                                                break 
 
                                if match_status == 0: 
 
                                        new_list = [] 
 
                                        new_list.append(subgraph) 
 
                                        self.compressed_subgraphs.append(new_list) 
 
                        else: 
 
                                new_list = [] 
 
                                new_list.append(subgraph) 
 
                                self.compressed_subgraphs.append(new_list) 
 
                conformers = 0 
 
                signatures = 0 
 
                for each_list in self.compressed_subgraphs: 
 
                        signatures += 1 
 
                        conformers += len(each_list) 
 
                print 'Subgraphs stored:', conformers 
 
                print 'Overall there were:', signatures, 'unique signatures identified.' 
 
        def create_suppressed_signatures(self,height): 
 
                """This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures 
dictionary""" 
 
                self.height = height 
 
                self.signatures = defaultdict(lambda:defaultdict(list)) 
 
                self.subgraphs = [] 
 
                self.compressed_subgraphs = [] 
 
                self.working_signature = '' 
 
                if self.full_parent_directory[-1] == '/': 
 
                        self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1] 
 
                mol_files = self.full_parent_directory + '/*.mol' 
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                file_iter = glob.iglob(mol_files) 
 
                total_subgraphs = 0 
 
                signatures_stored = 0 
 
                graph_count = 0 
 
                for fn in file_iter: 
 
                        # Creating a nx.Graph from the mol file 
 
                        G = nx.Graph() 
 
                        if 'OpenBabel' in str(linecache.getline(fn,2)): 
 
                                atom_bond_number_line = 4 
 
                        else: 
 
                                atom_bond_number_line = 5 
 
                        atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip()) 
 
                        bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip()) 
 
                        coordinate_begin_line = atom_bond_number_line + 1 
 
                        coordinate_end_line = atom_bond_number_line + atomn 
 
                        bond_begin_line = coordinate_end_line +1 
 
                        bond_end_line = coordinate_end_line + bondn 
 
                        for i in range(bond_begin_line, bond_end_line + 1): 
 
                                atom1 = int((linecache.getline(fn,i)[0:4]).strip()) 
 
                                atom2 = int((linecache.getline(fn,i)[4:8]).strip()) 
 
                                bondtype = int((linecache.getline(fn,i)[8:10]).strip()) 
 
                                G.add_edge(atom1, atom2, type=bondtype) 
 
                        for i in range(coordinate_begin_line,coordinate_end_line + 1): 
 
                                j = i - (atom_bond_number_line) 
 
                                G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()), 
                                                              float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip()), 1]) 
 
                                G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip()) 
 
                        # Now breaking this graph into subgraphs 
 
                        edges_to_remove = [] 
 
                        for edge in G.edges_iter(): 
 
                                if G.node[edge[0]]['atom']=='H' or G.node[edge[1]]['atom']=='H': 
 
                                        edges_to_remove.append(edge) 
 
                        for edge in edges_to_remove: 
 
                                G.remove_edge(edge[0],edge[1]) 
 
                        nodes_to_remove = [] 
 



178 
 

                        for node in G.nodes_iter(): 
 
                                if G.node[node]['atom'] == 'H': 
 
                                        nodes_to_remove.append(node) 
 
                        for node in nodes_to_remove: 
 
                                G.remove_node(node) 
 
                        for node in G.nodes_iter(): 
 
                                subgraph=nx.ego_graph(G, node, radius=self.height) 
 
                                subgraph.graph['degree'] = subgraph.degree(node) 
 
                                subgraph.graph['center'] = node 
 
                                subgraph.graph['atom'] = G.node[node]['atom'] 
 
                                subgraph.graph['rebuild'] = graph_count 
 
                                self.subgraphs.append(subgraph) 
 
                        graph_count += 1 
 
                print 'Subgraphs created:',len(self.subgraphs) 
 
                for subgraph in self.subgraphs: 
 
                        match_status = 0 
 
                        if len(self.compressed_subgraphs) > 0: 
 
                                for subgraph_list in self.compressed_subgraphs: 
 
                                        nm = iso.categorical_node_match('atom', 'C') 
 
                                        em = iso.numerical_edge_match('type', 4) 
 
                                        GM = iso.GraphMatcher(subgraph,subgraph_list[0],node_match = nm, edge_match = em) 
 
                                        if GM.is_isomorphic(): 
 
                                                match_status = 1 
 
                                                new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True) 
 
                                                subgraph_list.append(new_graph) 
 
                                                break 
 
                                if match_status == 0: 
 
                                        new_list = [] 
 
                                        new_list.append(subgraph) 
 
                                        self.compressed_subgraphs.append(new_list) 
 
                        else: 
 
                                new_list = [] 
 
                                new_list.append(subgraph) 
 
                                self.compressed_subgraphs.append(new_list) 
 
                conformers = 0 
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                        self.network.node[n]['degree'] = graph.degree(conformer_center) 
 
                        self.network.node[n]['conformer_center'] = conformer_center 
 
                        self.network.node[n]['conformer_neighbors'] = [x for x in graph.neighbors(conformer_center)] 
 
                        n += 1 
 
                print 'All signatures stored in network...' 
 
                print 'Establishing connectivity information...' 
 
                bonds_created = 0 
 
                possible = 0 
 
                for pair in itertools.combinations_with_replacement(self.network.nodes(data=False), 2): 
 
                        possible += 1 
 
                        bond_status = 0 
 
                        G1 = self.network.node[pair[0]]['conformers'][0] 
 
                        G1_center = self.network.node[pair[0]]['conformers'][0].graph['center'] 
 
                        G2 = self.network.node[pair[1]]['conformers'][0] 
 
                        G2_center = self.network.node[pair[1]]['conformers'][0].graph['center'] 
 
                        G2_ego = nx.ego_graph(G2,G2_center,radius = self.height-1) 
 
                        map_dict = defaultdict(list) 
 
                        bond_type_dict = defaultdict(int) 
 
                        for adjacent_node in G1.neighbors(G1_center): 
 
                                G1_neighbor_ego = nx.ego_graph(G1,adjacent_node,radius = self.height-1) 
 
                                nm = iso.categorical_node_match('atom', 'C') 
 
                                em = iso.numerical_edge_match('type', 1) 
 
                                GM2 = iso.GraphMatcher(G1_neighbor_ego,G2_ego,node_match = nm,edge_match = em) 
 
                                if GM2.is_isomorphic(): 
 
                                        bond_status = 1 
 
                                        for dict_j in GM2.isomorphisms_iter(): 
 
                                                bond_type = G1.edge[G1_center][adjacent_node]['type'] 
 
                                                taken_G1_node = adjacent_node 
 
                                                taken_G2_node = dict_j[G1_center] 
 
                                                map_dict[(pair[0],taken_G1_node)].append((pair[1],taken_G2_node)) 
 
                                                map_dict[(pair[1],taken_G2_node)].append((pair[0],taken_G1_node)) 
 
                        if bond_status == 1: 
 
                                bonds_created += 1 
 
                                self.network.add_edge(pair[0],pair[1])         
 
                                self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict 
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                                self.network.edge[pair[0]][pair[1]]['type'] = bond_type 
 
                print 'Bonding information established...' 
 
                print possible, 'bonds were analyzed.' 
 
                print (bonds_created)*100.00/possible , 'percent of these were feasible.' 
 
        def compress_network(self,cutoff): 
 
                """This function compares the conformers for each node in the network and consolidates them based on a 
                      pairwise distance based comparison with tolerance of cutoff value specified in funciton call""" 
 
                original_conformers = 0 
 
                for node in self.network.nodes(): 
 
                        old_list = self.network.node[node]['conformers'][:] 
 
                        original_conformers += len(old_list) 
 
                        for pair in itertools.combinations(old_list,2): 
 
                                status = 0 
 
                                graph_1 = pair[0] 
 
                                graph_2 = pair[1] 
 
                                nm = iso.categorical_node_match('atom', 'C') 
 
                                em = iso.numerical_edge_match('type', 1) 
 
                                GM = iso.GraphMatcher(graph_1,graph_2,node_match=nm,edge_match=em) 
 
                                if GM.is_isomorphic(): 
 
                                        for atom_pair in itertools.combinations(graph_1.nodes(data=False),2): 
 
                                                node0 = atom_pair[0] 
 
                                                node1 = atom_pair[1] 
 
                                                node2 = GM.mapping[node0] 
 
                                                node3 = GM.mapping[node1] 
 
                                                d1_squared = (graph_1.node[node0]['xyz'] - graph_1.node[node1]['xyz'])**2 
 
                                                d1 = (d1_squared.sum())**0.5 
 
                                                d2_squared = (graph_2.node[node2]['xyz']-graph_2.node[node3]['xyz'])**2 
 
                                                d2 = (d2_squared.sum())**0.5 
 
                                                if fabs(d1-d2) > float(cutoff): 
 
                                                        status = 1 
 
                                                        break 
 
                                        if status == 0: 
 
                                                if graph_1 in self.network.node[node]['conformers']: 
 
                                                        if graph_2 in self.network.node[node]['conformers']: 
 
                                                                unlucky_one = random.randint(1,2) 
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                                                                if unlucky_one == 1: 
 
                                                                        self.network.node[node]['conformers'].remove(graph_1) 
 
                                                                else: 
 
                                                                        self.network.node[node]['conformers'].remove(graph_2) 
 
                                                elif not graph_1 in self.network.node[node]['conformers']: 
 
                                                        if not graph_2 in self.network.node[node]['conformers']: 
 
                                                                chosen_one = random.randint(1,2) 
 
                                                                if chosen_one == 1: 
 
                                                                        self.network.node[node]['conformers'].append(graph_1) 
 
                                                                else: 
 
                                                                        self.network.node[node]['conformers'].append(graph_2) 
 
                final_conformers = 0 
 
                for node in self.network.nodes_iter(): 
 
                        final_conformers += len(self.network.node[node]['conformers']) 
 
                print 'We started with:', original_conformers, 'and consolidated down to:', final_conformers, 'conformer based on a cutoff   
                         of:', cutoff, 'Angstroms' 
 
                print 'This means we removed:', (original_conformers - final_conformers)*100/(original_conformers),'percent from the  
                         original set.' 

A.3 – Molecular Signature Class with Feasibility Functions 

This section represents how the various molecular signatures are identified, in a 

deterministic manner, as well as their feasibility verification. Molecular signatures, 

representing collections of atomic signatures, must pass several tests of feasibility before 

it is verified that a complete molecule can be recreated. The tests included within this 

section include the graphicality equation, graph connectivity, the hand-shaking lemma, 

and a short test used to verify that the maximum number of one type of atomic signature 

has not been passed for any given molecular signature. An overview of the steps taken to 

develop an exhaustive list of unique structural isomers matching a given molecular 

signature can be found in section 3.1.7 of this dissertation.  

import networkx as nx 
 
import networkx.algorithms.isomorphism as iso 
 
import math 
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from math import fabs 
 
import itertools 
 
import re 
 
import glob 
 
import subprocess 
 
import linecache 
 
from  collections import defaultdict 
 
from operator import eq 
 
from pprint import pprint 
 
import numpy 
 
from operator import itemgetter 
 
import random 
 
valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1} 
 
bond_dictionary = {1:1,2:2,4:1.5} 
 
class Potential_Graph: 
 
        def __init__(self,signatures): 
 
                self.signatures = signatures 
 
                self.complete_bond_list = [] 
 
                self.orbit_dict = defaultdict(list) 
 
class AutoVivification(dict): 
 
        """Implementation of perl's autivivification feature""" 
 
        def __getitem__(self,item): 
 
                try: 
 
                        return dict.__getitem__(self,item) 
 
                except KeyError: 
 
                        value = self[item] = type(self)() 
 
                        return value 
 
class Molecular_Signature: 
 
        def __init__(self,height,mother_graph,atomic_signature_list): 
 
                self.atomic_signatures = atomic_signature_list 
 
                self.mother_graph = mother_graph 
 
                self.height = height 
 
                self.structural_isomers = [] 
 
        def is_repeat_satisfied(self,max): 
 
                self.max = max 
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                self.repeat_status = 0 
 
                for each in self.atomic_signatures: 
 
                        appearances = self.atomic_signatures.count(each) 
 
                        if appearances > self.max: 
 
                                self.repeat_status = 1 
 
                                return False 
 
                                break 
 
                        else: 
 
                                pass 
 
                if self.repeat_status == 0: 
 
                        return True 
 
        def is_graphical(self): 
 
                degree_list = [self.mother_graph.node[n]['degree'] for n in self.atomic_signatures] 
 
                graphicality = (2*degree_list.count(4) + degree_list.count(3) - degree_list.count(1) + 2)%2 
 
                if graphicality==0: 
 
                        return True 
 
                else: 
 
                        return False 
 
 
        def is_connected(self): 
 
                self.compressed_signatures = [] 
 
                for i in self.atomic_signatures: 
 
                        if not i in self.compressed_signatures: 
 
                                self.compressed_signatures.append(i) 
 
                test = self.mother_graph.subgraph(self.compressed_signatures) 
 
                if nx.is_connected(test): 
 
                        return True 
 
                else: 
 
                        return False 
 
# Hand Shaking Lemma 
 
        def hand_shaking_lemma(self): 
 
                height_one_edge_list = [] 
 
                height_two_path_list = [] 
 
                height_three_path_list = [] 
 
                isomer_status = 0 
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                for each in self.atomic_signatures: 
 
                        graph = self.mother_graph.node[each]['conformers'][0] 
 
                        center = graph.graph['center'] 
 
                        center_atom = graph.node[center]['atom'] 
 
                        neighbor_list = graph.neighbors(center) 
 
                        for neighbor in neighbor_list: 
 
                                first_edge = graph[center][neighbor]['type'] 
 
                                neighbor_atom = graph.node[neighbor]['atom'] 
 
                                height_one_edge_list.append((center_atom,first_edge,neighbor_atom)) 
 
                                for third_node in [x for x in graph.neighbors(neighbor) if not x==center]: 
 
                                        third_atom = graph.node[third_node]['atom'] 
 
                                        second_edge = graph[neighbor][third_node]['type'] 
 
                                        height_two_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom)) 
 
                                        if self.height == 3: 
 
                                                for fourth_node in [x for x in graph.neighbors(third_node) if not x == neighbor]: 
 
                                                        fourth_atom = graph.node[fourth_node]['atom'] 
 
                                                        third_edge = graph[third_node][fourth_node]['type'] 
 
                                                        
height_three_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom,third_edge,fourth_atom)) 
 
                height_one_edge_set = set(height_one_edge_list) 
 
                for each_bond in height_one_edge_set: 
 
                        if each_bond[0] == each_bond[2]: 
 
                                if height_one_edge_list.count(each_bond)%2 == 0: 
 
                                        pass 
 
                                else: 
 
                                        return False 
 
                        else: 
 
                                matched_bond = (each_bond[2],each_bond[1],each_bond[0]) 
 
                                if height_one_edge_list.count(each_bond) == height_one_edge_list.count(matched_bond): 
 
                                        pass 
 
                                else: 
 
                                        return False 
 
                height_two_path_set = set(height_two_path_list) 
 
                for each_path in height_two_path_set: 
 
                        if (each_path[0] == each_path[2]) and (each_path[2]== each_path[4]) and (each_path[1] == each_path[3]): 
 
                                if height_two_path_list.count(each_path)%2 == 0: 
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                                        pass 
 
                                else: 
 
                                        return False 
 
                        else: 
 
                                if (height_two_path_list.count((each_path[4],each_path[3],each_path[2],each_path[1],each_path[0])) ==    
 
                                     height_two_path_list.count(each_path)): 
 
                                        pass 
 
                                else: 
 
                                        return False 
 
                height_three_path_set = set(height_three_path_list) 
 
                for each_path in height_three_path_set: 
 
                        if ((each_path[0] == each_path[2]) and (each_path[2] == each_path[4]) and (each_path[4] == each_path[6]) and  
 
                        (each_path[1] == each_path[3]) and (each_path[3] == each_path[5])): 
 
                                if (height_three_path_list.count(each_path))% 2 == 0: 
 
                                        pass 
 
                                else: 
 
                                        return False 
 
                        else: 
 
                                if (height_three_path_list.count((each_path[6],each_path[5],each_path[4],each_path[3],each_path[2],each_path[1], 
                                                                                    each_path[0]))==height_three_path_list.count(each_path)): 
 
                                        pass 
 
                                else: 
 
                                        return False 
 
                return True 
 
        def exhaustive_structural_isomers(self): 
 
                def saturation_algorithm(graph): 
 
                         connected_components = nx.connected_components(graph) 
 
                        length = len(connected_components) 
 
                        unsat_deg_list = [] 
 
                        for x in range(len(connected_components)): 
 
                                total_degree_of_unsat = 0 
 
                                for node in connected_components[x]: 
 
                                        desired_sat = valence_dictionary[graph.node[node]['atom']] 
 
                                        sig_one = graph.node[node]['sig'] 
 
                                        actual_sat = 0 
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                                        if not graph.node[node].keys(): 
 
                                                print 'Boolean worked' 
 
                                                actual_sat = 0 
 
                                        else: 
 
                                                for neighbor in graph.neighbors(node): 
 
                                                        sig_two = graph.node[neighbor]['sig'] 
 
                                                        bond_type = self.mother_graph.edge[sig_one][sig_two]['type'] 
 
                                                        actual_sat += bond_dictionary[bond_type] 
 
                                        degree_of_unsat = desired_sat - actual_sat 
 
                                        if degree_of_unsat < 0: 
 
                                                return 'saturated subgraph' 
 
                                        graph.graph['unsat_dict'][node]=degree_of_unsat 
 
                                        total_degree_of_unsat += degree_of_unsat 
 
                                unsat_deg_list.append(total_degree_of_unsat) 
 
                        if (0 in unsat_deg_list) and (length == 1): 
 
                                return 'solution found' 
 
                        elif 0 in unsat_deg_list: 
 
                                return 'saturated subgraph' 
 
                        else: 
 
                                automorphism_groups = [] 
 
                                free_atom_lists = [] 
 
                                smallest_degree = min(unsat_deg_list) 
 
                                # Just pulls the first connected component with the min. degree of unsat 
 
                                desired_index = unsat_deg_list.index(smallest_degree) 
 
                                desired_subgraph = graph.subgraph(connected_components[desired_index]) 
 
                                unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0] 
 
                                if len(unsat_atoms) == 0: 
 
                                        return 'saturated subgraph' 
 
                                unsat_atom_1 = unsat_atoms[0] 
 
                                free_atom_lists.append(unsat_atom_1) 
 
                                automorphism_groups.append(connected_components[desired_index]) 
 
                                for component_list in connected_components: 
 
                                        if connected_components.index(component_list) != desired_index: 
 
                                                tested_subgraph = graph.subgraph(component_list) 
 
                                                nm = iso.numerical_node_match('sig', 1) 
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                                                GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm) 
 
                                                if GM.is_isomorphic(): 
 
                                                        automorphism_groups.append(component_list) 
 
                                                        mapped_atom_1 = GM.mapping[unsat_atom_1] 
 
                                                        free_atom_lists.append(mapped_atom_1) 
 
                                return (automorphism_groups,free_atom_lists) 
 

        def exhaustive_structural_isomers(self): 
 
                def saturation_algorithm(graph): 
 
                         connected_components = nx.connected_components(graph) 
 
                        length = len(connected_components) 
 
                        unsat_deg_list = [] 
 
                        for x in range(len(connected_components)): 
 
                                total_degree_of_unsat = 0 
 
                                for node in connected_components[x]: 
 
                                        desired_sat = valence_dictionary[graph.node[node]['atom']] 
 
                                        sig_one = graph.node[node]['sig'] 
 
                                        actual_sat = 0 
 
                                        if not graph.node[node].keys(): 
 
                                                print 'Boolean worked' 
 
                                                actual_sat = 0 
 
                                        else: 
 
                                                for neighbor in graph.neighbors(node): 
 
                                                        sig_two = graph.node[neighbor]['sig'] 
 
                                                        bond_type = self.mother_graph.edge[sig_one][sig_two]['type'] 
 
                                                        actual_sat += bond_dictionary[bond_type] 
 
                                        degree_of_unsat = desired_sat - actual_sat 
 
                                        if degree_of_unsat < 0: 
 
                                                return 'saturated subgraph' 
 
                                        graph.graph['unsat_dict'][node]=degree_of_unsat 
 
                                        total_degree_of_unsat += degree_of_unsat 
 
                                unsat_deg_list.append(total_degree_of_unsat) 
 
                        if (0 in unsat_deg_list) and (length == 1): 
 
                                return 'solution found' 
 
                        elif 0 in unsat_deg_list: 
 
                                return 'saturated subgraph' 
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                        else: 
 
                                automorphism_groups = [] 
 
                                free_atom_lists = [] 
 
                                smallest_degree = min(unsat_deg_list) 
 
                                # Just pulls the first connected component with the min. degree of unsat 
 
                                desired_index = unsat_deg_list.index(smallest_degree) 
 
                                desired_subgraph = graph.subgraph(connected_components[desired_index]) 
 
                                unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0] 
 
                                if len(unsat_atoms) == 0: 
 
                                        return 'saturated subgraph' 
 
                                unsat_atom_1 = unsat_atoms[0] 
 
                                free_atom_lists.append(unsat_atom_1) 
 
                                automorphism_groups.append(connected_components[desired_index]) 
 
                                for component_list in connected_components: 
 
                                        if connected_components.index(component_list) != desired_index: 
 
                                                tested_subgraph = graph.subgraph(component_list) 
 
                                                nm = iso.numerical_node_match('sig', 1) 
 
                                                GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm) 
 
                                                if GM.is_isomorphic(): 
 
                                                        automorphism_groups.append(component_list) 
 
                                                        mapped_atom_1 = GM.mapping[unsat_atom_1] 
 
                                                        free_atom_lists.append(mapped_atom_1) 
 
                                return (automorphism_groups,free_atom_lists) 
 
                def generate_new_graphs(graph,automorphism_list,mapped_unsat_atoms_list): 
 
                        new_graph_list = [] 
 
                        automor_count = len(automorphism_list) 
 
                        possible_bonded_to_nodes = [] 
 
                        node1 = mapped_unsat_atoms_list[0] 
 
                        for keyi in graph.graph['m_dict'].keys(): 
 
                                for seti in graph.graph['m_dict'][keyi].keys(): 
 
                                        if node1 in seti: 
 
                                                for x in range(graph.graph['m_dict'][keyi][seti]): 
 
                                                        possible_bonded_to_nodes.append(keyi) 
 
                        check_list = [] 
 
                        for group in itertools.combinations(possible_bonded_to_nodes,automor_count): 
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                                new_graph = graph.copy() 
 
                                check_group = [] 
 
                                for x in range(len(group)): 
 
                                        sig = graph.node[group[x]]['sig'] 
 
                                        check_group.append(sig) 
 
                                check_group.sort() 
 
                                if not check_group in check_list: 
 
                                        check_list.append(check_group) 
 
                                        for x in range(len(group)): 
 
                                                node1 = group[x] 
 
                                                node2 = mapped_unsat_atoms_list[x] 
 
                                                new_graph.add_edge(node1,node2) 
 
                                                for set_j in new_graph.graph['m_dict'][node1]: 
 
                                                        if node2 in set_j: 
 
                                                                graph.graph['m_dict'][node1][set_j] += -1 
 
                                                for set_k in new_graph.graph['m_dict'][node2]: 
 
                                                        if node1 in set_k: 
 
                                                                graph.graph['m_dict'][node2][set_k] += -1 
 
                                        match_status = 0 
 
                                        for graph_2 in new_graph_list: 
 
                                                nm = iso.numerical_node_match('sig', 1) 
 
                                                GM2 = iso.GraphMatcher(new_graph,graph_2,node_match = nm) 
 
                                                if GM2.is_isomorphic(): 
 
                                                        match_status = 1 
 
                                                        break 
 
                                        if match_status == 0: 
 
                                                new_graph_list.append(new_graph) 
 
                        return new_graph_list 
 
# This first step creates a bonding dict with full signatures references 
 
                signature_set = set(self.atomic_signatures) 
 
                bonding_dict = defaultdict(set) 
 
                for pair in itertools.combinations_with_replacement(signature_set,2): 
 
                        if self.mother_graph.has_edge(pair[0],pair[1]): 
 
                                dict_i = self.mother_graph.edge[pair[0]][pair[1]]['map_dict'] 
 
                                for key,entry in dict_i.items(): 
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                                        for sig in entry: 
 
                                                bonding_dict[key].add(sig) 
 
                                                bonding_dict[sig].add(key) 
 
# Now I am creating the n and m occurance dictionaries 
 
                # I need to create the max occurance dictionary 
 
                m_dict = defaultdict(lambda:defaultdict(int)) 
 
                for entry,list_i in bonding_dict.items(): 
 
                        second_list = [] 
 
                        for each in list_i: 
 
                                second_list.append(each[0]) 
 
                        second_set = set(second_list) 
 
                        second_tuple = tuple(second_set) 
 
                        m_dict[entry[0]][second_tuple] += 1 
 
# I will be creating a graph with no bonds to start with as a 'base graph' 
 
# This graph will maintain the equivalent n12 and m12 dictionaries as referenced in Faulon's paper 
 
                sig_to_node_dictionary = defaultdict(list) 
 
                base_graph = nx.Graph() 
 
                n = 0 
 
                for each in signature_set: 
 
                        for x in range(self.atomic_signatures.count(each)): 
 
                                base_graph.add_node(n) 
 
                                base_graph.node[n]['sig'] = each 
 
                                base_graph.node[n]['atom'] = self.mother_graph.node[each]['atom'] 
 
                                sig_to_node_dictionary[each].append(n) 
 
                                n += 1 
 
                base_graph.graph['unsat_dict'] = defaultdict(int) 
 
# Now I need to translate the previously generated occurance dictionaries into the given base graph with appropriate node references 
 
                base_graph.graph['m_dict'] = defaultdict(lambda:defaultdict(int)) 
 
                for sig1 in m_dict.keys(): 
 
                        for node1 in sig_to_node_dictionary[sig1]: 
 
                                for sig2_list in m_dict[sig1].keys(): 
 
                                        node2_list = [] 
 
                                        for sig2 in sig2_list: 
 
                                                for node2 in sig_to_node_dictionary[sig2]: 
 
                                                        node2_list.append(node2) 
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                                        node2_set = set(node2_list) 
 
                                        node2_tuple = tuple(node2_set) 
 
                                        base_graph.graph['m_dict'][node1][node2_tuple] = m_dict[sig1][sig2_list] 
 
# I will create a simple bonding dict here for estimating all possible bonds 
 
                simple_bonds = defaultdict(set) 
 
                for node1 in base_graph.nodes(): 
 
                        sig1 = base_graph.node[node1]['sig'] 
 
                        for neighbor in self.mother_graph.neighbors(sig1): 
 
                                for node2 in base_graph.nodes(): 
 
                                        if neighbor == base_graph.node[node2]['sig']: 
 
                                                simple_bonds[node1].add(node2) 
 
# This is where I'm actually running the while loop to generate all graphs 
 
                final_isomers = 0 
 
                old_list = [] 
 
                self.final_isomers = [] 
 
                self.potential_isomers = [] 
 
                z = saturation_algorithm(base_graph) 
 
                y = generate_new_graphs(base_graph,z[0],z[1]) 
 
                old_list.extend(y) 
 
                iterations = 0 
 
                while len(old_list) > 0 and iterations < 150: 
 
                        iterations += 1 
 
                        for graph in old_list: 
 
                                z = saturation_algorithm(graph) 
 
                                if z == 'solution found': 
 
                                        self.final_isomers.append(graph) 
 
                                elif z == 'saturated subgraph': 
 
                                        pass 
 
                                elif type(z) is tuple: 
 
                                        y = generate_new_graphs(graph,z[0],z[1]) 
 
                                        self.potential_isomers.extend(y) 
 
                        old_list = self.potential_isomers[:] 
 
                        self.potential_isomers[:] = [] 
 
                        if len(self.final_isomers) > 0: 
 
                                break 
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The approach taken to identify candidates feasible for crossover mutation can be found in 

section 3.2.4 of this dissertation. The code written for each of these operations is shown 

below. 

import networkx as nx 
 
import networkx.algorithms.isomorphism as iso 
 
import math 
 
from math import fabs 
 
import itertools 
 
import re 
 
import glob 
 
import subprocess 
 
import linecache 
 
from  collections import defaultdict 
 
from operator import eq 
 
from pprint import pprint 
 
import numpy 
 
from operator import itemgetter 
 
from random import * 
 
from random import randint 
 
from bisect import bisect 
 
sin = numpy.sin 
 
cos = numpy.cos 
 
valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1,'P':5} 
 
bond_dictionary = {1:1,2:2,4:1.5} 
 
#################################################################### 
 
# Just a couple of algebraic operations 
 
#################################################################### 
 
def unit_vector(vector): 
 
        return vector/numpy.linalg.norm(vector) 
 
def angle_between(v1, v2): 
 
        v1_u = unit_vector(v1) 
 
        v2_u = unit_vector(v2) 
 
        angle = numpy.arccos(numpy.dot(v1_u,v2_u)) 
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        if numpy.isnan(angle): 
 
                if (v1_u == v2_u).all(): 
 
                        return 0.0 
 
                else: 
 
                        return numpy.pi 
 
        return angle 
 
#################################################################### 
 
# These are some operators for the selection process in genetic algorithm 
 
#################################################################### 
 
def weighted_choice(choices): 
 
        values, weights = zip(*choices) 
 
        total = 0 
 
        cum_weights = [] 
 
        for w in weights: 
 
                total += w 
 
                cum_weights.append(total) 
 
        x = random() * total 
 
        i = bisect(cum_weights, x) 
 
        return values[i] 
 
def choose_operation(network,city,fitness_list,optimal_size,beta,split): 
 
        randy = random() 
 
        if randy > split: 
 
                # This is a mutation and I must choose one based on fitness 
 
                chosen_index = weighted_choice(fitness_list) 
 
                chosen_graph = city[chosen_index] 
 
                chosen_graph_size = len( chosen_graph.graph['conformers'][0].nodes() ) 
 
                if chosen_graph_size > optimal_size*(1 + beta): 
 
                        return ('mutation','deletion',chosen_graph.copy()) 
 
                elif chosen_graph_size < optimal_size*(1 - beta): 
 
                        return ('mutation','insertion',chosen_graph.copy()) 
 
                else: 
 
                        return ('mutation','node',chosen_graph.copy()) 
 
        else: 
 
                found_pair = 'no' 
 
                while found_pair == 'no': 
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                        chosen_index_1 = weighted_choice(fitness_list) 
 
                        chosen_index_2 = weighted_choice(fitness_list) 
 
                        while chosen_index_2 == chosen_index_1: 
 
                                chosen_index_2 = weighted_choice(fitness_list) 
 
                        chosen_graph_1 = city[chosen_index_1].copy() 
 
                        chosen_graph_2 = city[chosen_index_2].copy() 
 
                        # I must verify that crossover is possible first 
 
                        edges_in_1 = chosen_graph_1.edges() 
 
                        edges_in_2 = chosen_graph_2.edges() 
 
                        possible_edge_pairs = list( itertools.product( edges_in_1 , edges_in_2 ) ) 
 
                        for edge_pair in possible_edge_pairs: 
 
                                # Try switching node ones 
 
                                edge_in_1 = edge_pair[0] 
 
                                edge_in_2 = edge_pair[1] 
 
                                node_1_2 = edge_in_2[0] 
 
                                node_2_2 = edge_in_2[1] 
 
                                node_1_1 = edge_in_1[0] 
 
                                node_2_1 = edge_in_1[1] 
 
                                sig_1_2 = chosen_graph_2.node[node_1_2]['sig'] 
 
                                sig_2_2 = chosen_graph_2.node[node_2_2]['sig'] 
 
                                sig_1_1 = chosen_graph_1.node[node_1_1]['sig'] 
 
                                sig_2_1 = chosen_graph_1.node[node_2_1]['sig'] 
 
                                if network.has_edge(sig_1_2,sig_2_1): 
 
                                        node_1_2_unsats = [ x[1] for x in chosen_graph_2.edge[edge_in_2[0]][edge_in_2[1]]['unsat_info'] if x[0] ==   
                                                                          sig_1_2 ] 
 
                                        node_2_1_unsats = [ x[1] for x in chosen_graph_1.edge[edge_in_1[0]][edge_in_1[1]]['unsat_info'] if x[0] ==  
                                                                          sig_2_1 ] 
 
                                        move_list = [ x for x in chosen_graph_1.graph['move_list'] if node_1_1 in x and node_2_1 in x ] 
 
                                        if len(move_list) == 0: 
 
                                                break 
 
                                        move = [ x for x in chosen_graph_1.graph['move_list'] if node_1_1 in x and node_2_1 in x ][0] 
 
                                        if move[1] == node_2_1: 
 
                                                # This means that the maps should be keyed by (sig 2 in 1) 
 
                                                for map_key in network.edge[sig_1_2][sig_2_1]['map_dict'].keys(): 
 
                                                        if map_key[0] == sig_2_1: 
 
                                                                for map in network.edge[sig_1_2][sig_2_1]['map_dict'][map_key]: 
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                                                                        # If it's keyed by sig2in1 then those will be the entries 
 
                                                                        map_1_items = [ x[1] for x in map.items() ] 
 
                                                                        missing_node_2_1_unsats = [ x for x in node_2_1_unsats if x not in map_1_items ] 
 
                                                                        missing_node_1_2_unsats = [ x for x in node_1_2_unsats if x not in map.keys() ] 
 
                                                                        if len(missing_node_2_1_unsats) == 0 and len(missing_node_1_2_unsats) == 0: 
 
                                                                                found_pair = 'yes' 
 
                                                                                return ( 'crossover', chosen_graph_2, edge_in_2 , node_1_2,  
                                                                                             chosen_graph_1, edge_in_1,  node_2_1, map ) 
 
                                        else: 
 
                                                # This means that the maps should be keyed by (sig 1 in 2) 
 
                                                for map_key in network.edge[sig_1_2][sig_2_1]['map_dict'].keys(): 
 
                                                        if map_key[0] == sig_1_2: 
 
                                                                for map in network.edge[sig_1_2][sig_2_1]['map_dict'][map_key]: 
 
                                                                        # If it's keyed by sig1in2 then those will be the entries 
 
                                                                        map_1_items = [ x[1] for x in map.items() ] 
 
                                                                        missing_node_1_2_unsats = [ x for x in node_1_2_unsats if x not in map_1_items ] 
 
                                                                        missing_node_2_1_unsats = [ x for x in node_2_1_unsats if x not in map.keys() ] 
 
                                                                        if len(missing_node_2_1_unsats) == 0 and len(missing_node_1_2_unsats) == 0: 
 
                                                                                found_pair = 'yes' 
 
                                                                                return ( 'crossover', chosen_graph_1, edge_in_1, node_2_1, chosen_graph_2,   
                                                                                              edge_in_2, node_1_2, map ) 
 
        def create_network(self): 
 
                self.network = nx.Graph() 
 
                n = 0 
 
                for subgraph_list in self.compressed_subgraphs: 
 
                        graph = subgraph_list[0] 
 
                        self.network.add_node(n) 
 
                        self.network.node[n]['conformers'] = subgraph_list 
 
                        self.network.node[n]['atom'] = graph.graph['atom'] 
 
                        self.network.node[n]['atom_count'] = len(graph.nodes()) 
 
                        conformer_center = graph.graph['center'] 
 
                        self.network.node[n]['degree'] = graph.degree(conformer_center) 
 
                        self.network.node[n]['conformer_center'] = conformer_center 
 
                        self.network.node[n]['unsaturated_nodes'] = [] 
 
                        # This step will determine which neighbors to the central  
 
                        for node_1 in graph.nodes(): 
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                                neighbors = graph.neighbors(node_1) 
 
                                required_valence = valence_dictionary[graph.node[node_1]['atom']] 
 
                                node_1_degree = 0 
 
                                for node_2 in graph.neighbors(node_1): 
 
                                        node_1_degree += bond_dictionary[graph.edge[node_1][node_2]['type']] 
 
                                if node_1_degree < required_valence: 
 
                                        self.network.node[n]['unsaturated_nodes'].append(node_1) 
 
                        n += 1 
 
                print 'All signatures stored in network...' 
 
                print 'Establishing connectivity information...' 
 
                bonds_created = 0 
 
                possible = 0 
 
                for pair in itertools.combinations_with_replacement(self.network.nodes(), 2): 
 
                        bond_status = 0 
 
                        possible += 1 
 
                        map_dict = defaultdict(list) 
 
                        map_dict.clear() 
 
                        sig_a = self.network.node[pair[0]]['conformers'][0] 
 
                        sig_a_center = self.network.node[pair[0]]['conformers'][0].graph['center'] 
 
                        sig_b = self.network.node[pair[1]]['conformers'][0] 
 
                        sig_b_center = self.network.node[pair[1]]['conformers'][0].graph['center'] 
 
                        # This is for one side where sig_a is G2 and sig_b is G1 
 
                        G1 = sig_b 
 
                        for unsat_node in self.network.node[pair[0]]['unsaturated_nodes']: 
 
                                G2 = nx.ego_graph(sig_a,unsat_node,radius = 2) 
 
                                nm = iso.categorical_node_match('atom', 'C') 
 
                                em = iso.numerical_edge_match('type', 1) 
 
                                GM1 = iso.GraphMatcher(G1,G2,node_match = nm,edge_match = em) 
 
                                if GM1.subgraph_is_isomorphic(): 
 
                                        for dict_j in GM1.subgraph_isomorphisms_iter(): 
 
                                                if ( len(dict_j.keys()) >= 3 and sig_b_center in dict_j.keys() and dict_j[sig_b_center] == unsat_node): 
 
                                                        bond_status = 1 
 
                                                        map_dict[(pair[0],unsat_node)].append(dict_j) 
 
                        # This is for the other side where sig_b is G2 and sig_a is G1 
 
                        G1 = sig_a 
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                        for unsat_node in self.network.node[pair[1]]['unsaturated_nodes']: 
 
                                G2 = nx.ego_graph(sig_b,unsat_node,radius = 2) 
 
                                nm = iso.categorical_node_match('atom', 'C') 
 
                                em = iso.numerical_edge_match('type', 1) 
 
                                GM2 = iso.GraphMatcher(G1,G2,node_match = nm,edge_match = em)                  
 
                                if GM2.subgraph_is_isomorphic(): 
 
                                        for dict_k in GM2.subgraph_isomorphisms_iter(): 
 
                                                if (len(dict_k.keys()) >= 3 and sig_a_center in dict_k.keys() and dict_k[sig_a_center] == unsat_node): 
 
                                                        bond_status = 1 
 
                                                        map_dict[(pair[1],unsat_node)].append(dict_k) 
 
                        if bond_status == 1: 
 
                                bonds_created += 1 
 
                                self.network.add_edge(pair[0],pair[1]) 
 
                                self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict 
 
                print 'Bonding information established...' 
 
                print possible, 'bonds were analyzed.' 
 
                print (bonds_created)*100.00/possible , 'percent of these were feasible.' 
 
############################################################################################################ 
 
        def create_starting_population(self,size,atom_count_lower,atom_count_upper): 
 
                self.size = size 
 
                self.city = [] 
 
                size_list = [x for x in range(atom_count_lower,atom_count_upper+1)] 
 
                for x in range(self.size): 
 
                        first_sig = choice(self.network.nodes()) 
 
                        # I will use indices in case a signature is used more than once 
 
                        index = 0 
 
                        target_size = choice(size_list) 
 
                        signature_graph = nx.Graph() 
 
                        signature_graph.graph['target_size'] = target_size 
 
                        signature_graph.add_node(index) 
 
                        signature_graph.node[index]['sig'] = first_sig 
 
                        signature_graph.node[index]['unsat_nodes'] = self.network.node[first_sig]['unsaturated_nodes'][:] 
 
                        signature_graph.graph['current_size'] = self.network.node[first_sig]['atom_count'] 
 
                        signature_graph.graph['index'] = 1 
 
                        signature_graph.graph['conformers'] = [] 
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                        signature_graph.graph['move_list'] = [] 
 
                        self.city.append(signature_graph) 
 
                print 'Initial population size:', len(self.city) 
 
                for graph in self.city: 
 
                        total_unsat = sum([len(graph.node[x]['unsat_nodes']) for x in graph.nodes()]) 
 
                        while total_unsat > 0: 
 
                                P_cap = 1-( (graph.graph['target_size']-graph.graph['current_size']) / ( float(graph.graph['target_size']) ) ) 
 
                                if P_cap >= 1.0: 
 
                                        cap = 'yes' 
 
                                else: 
 
                                        rand = random() 
 
                                        if rand <= P_cap: 
 
                                                cap = 'yes' 
 
                                        else: 
 
                                                cap = 'no' 
 
                                # First I want to identify potential nodes to bond with their new degree of unsat 
 
                                unsat_nodes = [] 
 
                                for node in graph.nodes(): 
 
                                        if len(graph.node[node]['unsat_nodes']) > 0: 
 
                                                for node2 in graph.node[node]['unsat_nodes']: 
 
                                                        unsat_nodes.append((node,graph.node[node]['sig'],node2)) 
 
                                chosen_unsat_node = choice(unsat_nodes) 
 
                                graph.node[chosen_unsat_node[0]]['unsat_nodes'].remove(chosen_unsat_node[2]) 
 
                                chosen_unsat_point = (chosen_unsat_node[1],chosen_unsat_node[2]) 
 
                                potential_new_node_list = [] 
 
                                new_unsat_degree_list = [] 
 
                                for neighbor in self.network.neighbors(chosen_unsat_node[1]): 
 
                                        if (chosen_unsat_point in self.network.edge[chosen_unsat_node[1]][neighbor]['map_dict'].keys() and   
                                             len(self.network.node[neighbor]['unsaturated_nodes']) > 0): 
 
                                                potential_new_node_list.append(neighbor) 
 
                                                new_unsat_degree_list.append(len(self.network.node[neighbor]['unsaturated_nodes']) - 1) 
 
                                if cap =='no' and len([x for x in new_unsat_degree_list if x != 0]) == 0: 
 
                                        cap = 'yes' 
 
                                if cap == 'yes': 
 
                                        best = min(new_unsat_degree_list) 
 
                                        best_options = [new_unsat_degree_list.index(x) for x in new_unsat_degree_list if x == best] 
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                                        chosen_partner = potential_new_node_list[choice(best_options)] 
 
                                        graph.add_node(graph.graph['index']) 
 
                                        graph.node[graph.graph['index']]['sig'] = chosen_partner 
 
                                        graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated_nodes'][:] 
 
                                        graph.add_edge( chosen_unsat_node[0] , graph.graph['index'] ) 
 
                                        graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'] = [] 
 
                                        graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(  
                                        (chosen_unsat_node[1],chosen_unsat_node[2]) ) 
 
                                        # If there are multiple mappings here I could choose one at random or have some other criteria 
 
                                        chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict']   
                                                                [chosen_unsat_point][0].copy() 
 
                                        unsats_to_remove = [x for x in chosen_map.keys() if x in self.network.node[chosen_partner] 
                                                                          ['unsaturated_nodes'] ] 
 
                                        graph.graph['move_list'].append((graph.graph['index'],chosen_unsat_node[0],chosen_map)) 
 
                                        for unsat_node in unsats_to_remove: 
 
                                                graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node) 
 
                                                graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(  
                                                (chosen_partner,unsat_node) ) 
 
                                        nodes_added = self.network.node[chosen_partner]['atom_count'] - len(chosen_map.keys()) 
 
                                        graph.graph['current_size'] += nodes_added 
 
                                        graph.graph['index'] += 1 
 
                                elif cap == 'no': 
 
                                        best_options = [] 
 
                                        index = 0 
 
                                        for x in new_unsat_degree_list: 
 
                                                if x != 0: 
 
                                                        best_options.append(potential_new_node_list[index]) 
 
                                                index += 1 
 
                                        chosen_partner = choice(best_options) 
 
                                        graph.add_node(graph.graph['index']) 
 
                                        graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated_nodes'][:] 
 
                                        graph.node[graph.graph['index']]['sig'] = chosen_partner 
 
                                        graph.add_edge( chosen_unsat_node[0] , graph.graph['index']) 
 
                                        graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'] = [] 
 
                                          
                                       graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append( (chosen_unsat_node[1], 
                                                         chosen_unsat_node[2]) ) 
 
                                        # If there are lots of mappings here I could choose one at random or have some other criteria 
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                                        chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict'] 
                                                                 [chosen_unsat_point][0].copy() 
 
                                        unsats_to_remove = [ x for x in chosen_map.keys() if x in self.network.node[chosen_partner] 
                                                                          ['unsaturated_nodes'] ] 
 
                                        graph.graph['move_list'].append((graph.graph['index'],chosen_unsat_node[0],chosen_map)) 
 
                                        for unsat_node in unsats_to_remove: 
 
                                                graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node) 
 
                                                graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(  
                                                (chosen_partner,unsat_node) ) 
 
                                        nodes_added = self.network.node[chosen_partner]['atom_count'] - len(chosen_map.keys()) 
 
                                        graph.graph['current_size'] += nodes_added 
 
                                        graph.graph['index'] += 1 
 
                                total_unsat = sum([len(graph.node[x]['unsat_nodes']) for x in graph.nodes()]) 
 
                        else: 
 
                                print 'Graph created with size:', graph.graph['current_size'] 
 
                        iterations = 0 
 
                        mapping_condition = 'yes' 
 
                        zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                        one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                        zero_set = set ( zero_list ) 
 
                        for each in zero_set: 
 
                                if each in one_list: 
 
                                        if one_list.index(each) < zero_list.index(each): 
 
                                                shuffle(graph.graph['move_list']) 
 
                                                mapping_condition = 'no' 
 
                                                break 
 
                        while mapping_condition == 'no': 
 
                                iterations += 1 
 
                                mapping_condition = 'yes' 
 
                                zero_list = [ x[0] for x in graph.graph['move_list'] ]  
 
                                one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                zero_set = set ( zero_list ) 
 
                                for each in zero_set: 
 
                                        if each in one_list: 
 
                                                if one_list.index(each) < zero_list.index(each): 
 
                                                        shuffle(graph.graph['move_list']) 
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                                                        mapping_condition = 'no' 
 
                                                        break 
 
        def create_new_population(self,new_size,beta,split): 
 
                node_mutation_count = 0 
 
                insertion_mutation_count = 0 
 
                deletion_mutation_count = 0 
 
                crossover_count = 0 
 
                new_pop = 0 
 
                new_city = [] 
 
                while new_pop < new_size: 
 
                        operation = choose_operation(self.network,self.city,self.fitness_list,self.optimal_size,beta,split) 
 
                        if operation[0] == 'mutation' and operation[1] == 'node': 
 
                                # This is going to be where I perform a node mutation 
 
                                # First I will choose a random node 
 
                                original_graph = operation[2] 
 
                                nodes = original_graph.nodes()[:] 
 
                                found_node = 'no' 
 
                                graph_added = 'no' 
 
                                while len(nodes) > 0 and graph_added == 'no': 
 
                                        shuffle(nodes) 
 
                                        random_node = nodes.pop() 
 
                                        random_nodes_sig = original_graph.node[random_node]['sig'] 
 
                                        edges_from_random_node = nx.edges(original_graph,random_node) 
 
                                        unsat_to_satisfy = [] 
 
                                        unsat_to_satisfy_dict = defaultdict(int) 
 
                                        for edge in edges_from_random_node: 
 
                                                for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']: 
 
                                                        if unsat[0] != random_nodes_sig: 
 
                                                                unsat_to_satisfy.append(unsat) 
 
                                        # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this 
 
                                        unsat_to_satisfy_set = set(unsat_to_satisfy) 
 
                                        for unsat in unsat_to_satisfy_set: 
 
                                                unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat) 
 
                                        list_of_unsat_potential_lists = [] 
 
                                        for unsat in unsat_to_satisfy_dict.keys(): 
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                                                unsat_potentials = [] 
 
                                                for neighbor in self.network.neighbors(unsat[0]): 
 
                                                        if neighbor != random_nodes_sig: 
 
                                                                if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys(): 
 
                                                                        if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]: 
 
                                                                                unsat_potentials.append(neighbor) 
 
                                                list_of_unsat_potential_lists.append(unsat_potentials) 
 
                                        if len(list_of_unsat_potential_lists) > 1: 
 
                                                optimal_nodes = [] 
 
                                                for x in list_of_unsat_potential_lists[0]: 
 
                                                        present = 'no' 
 
                                                        for y in range(len(list_of_unsat_potential_lists)): 
 
                                                                if x in list_of_unsat_potential_lists[y]: 
 
                                                                        present = 'yes' 
 
                                                                else: 
 
                                                                        present = 'no' 
 
                                                                        break 
 
                                                        if present == 'yes': 
 
                                                                optimal_nodes.append(x) 
 
                                        elif len(list_of_unsat_potential_lists) == 1: 
 
                                                optimal_nodes = set(list_of_unsat_potential_lists[0]) 
 
                                        elif len(list_of_unsat_potential_lists) == 0: 
 
                                                continue 
 
                                        move_list_tuples = [ x for x in original_graph.graph['move_list'] if x[0] == random_node or x[1] ==   
                                                                          random_node] 
 
                                        while len(optimal_nodes) > 0 and graph_added == 'no': 
 
                                                chosen_replacement_node = optimal_nodes.pop() 
 
                                                graph = original_graph.copy() 
 
                                                new_move_list = [ x for x in graph.graph['move_list'] if x not in move_list_tuples ] 
 
                                                # Depending on the first two entries of the map i need to decide if the map is keyed or entried by the  
                                                   new node 
 
                                                for edge in move_list_tuples: 
 
                                                        if edge[0] == random_node: 
 
                                                                # This means the dictionary list is keyed by the other node 
 
                                                                other_node = edge[1] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
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                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                map_found = 'no' 
 
                                                                for other_unsat in other_unsats: 
 
                                                                        for map in self.network.edge[chosen_replacement_node][other_sig] 
                                                                                                                         ['map_dict'][(other_sig,other_unsat)]: 
 
                                                                                map_items_1 = [ x[1] for x in map.items() ] 
 
                                                                                missing_other_unsats = [ x for x in other_unsats if x not in map_items_1 ] 
 
                                                                                if len(missing_other_unsats) == 0: 
 
                                                                                        map_found = 'yes' 
 
                                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                                        new_randy_unsats = [x for x in map.keys() if x in self.network.node 
                                                                                                                           [chosen_replacement_node]['unsaturated_nodes']] 
 
                                                                                        for randy_unsat in new_randy_unsats: 
 
                                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( 
                                                                                                ( chosen_replacement_node ,  randy_unsat )) 
 
                                                                                        break 
 
                                                                        if map_found == 'yes': 
 
                                                                                break 
 
                                                                if map_found == 'yes': 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and x[1] ==   
                                                                                              edge[1] ][0] 
 
                                                                        new_move_list.append( ( random_node, other_node, map.copy() ) ) 
 
                                                        else: 
 
                                                                # This means the dictionary list is keyed by the random node 
 
                                                                other_node = edge[0] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
 
                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                # Now I'll search through all map keys and maps to search for one which covers all other   
                                                                   unsats 
 
                                                                map_found = 'no' 
 
                                                                for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']: 
 
                                                                        if self.network.has_edge(chosen_replacement_node,other_sig): 
 
                                                                                for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict'] 
                                                                                                                              [(chosen_replacement_node,random_unsat)]: 
 
                                                                                        uncovered_other_unsats = [ x for x in other_unsats if x not in map.keys() ] 
 
                                                                                        if len(uncovered_other_unsats) == 0: 
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                                                                                                map_found = 'yes' 
 
                                                                                                break 
 
                                                                                if map_found == 'yes': 
 
                                                                                        break 
 
                                                                if map_found == 'yes': 
 
                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat ) ) 
 
                                                                        random_unsats = [  x for x in map.keys() if x in self.network.node 
                                                                                                     [chosen_replacement_node]['unsaturated_nodes'] ] 
 
                                                                        for randy_unsat in random_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append(  
                                                                                                  (chosen_replacement_node, randy_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==   
                                                                                               other_node ][0] 
 
                                                                        new_move_list.append( ( other_node, random_node, map.copy() ) ) 
 
                                                if map_found == 'yes': 
 
                                                        graph.graph['move_list'] = new_move_list 
 
                                                        mapping_condition = 'yes' 
 
                                                        zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                        one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                        zero_set = set ( zero_list ) 
 
                                                        for each in zero_set: 
 
                                                                if each in one_list:           
 
                                                                        if one_list.index(each) < zero_list.index(each): 
 
                                                                                shuffle(graph.graph['move_list']) 
 
                                                                                mapping_condition = 'no' 
 
                                                                                break 
 
                                                        while mapping_condition == 'no': 
 
                                                                mapping_condition = 'yes'   
 
                                                                zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                                one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                                zero_set = set ( zero_list ) 
 
                                                                for each in zero_set: 
 
                                                                        if each in one_list: 
 
                                                                                if one_list.index(each) < zero_list.index(each): 
 
                                                                                        shuffle(graph.graph['move_list']) 
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                                                                                        mapping_condition = 'no' 
 
                                                                                        break 
 
                                                        graph_added = 'yes' 
 
                                                        graph.graph['conformers'][:] = [] 
 
                                                        graph.node[random_node]['sig'] = chosen_replacement_node 
 
                                                        move_test = 'good' 
 
                                                        for move in graph.graph['move_list']: 
 
                                                                if move[0] not in graph.nodes() or move[1] not in graph.nodes(): 
 
                                                                        move_test = 'bad' 
 
                                                                        print 'Uh oh there was a move without a bond for a node mutation graph' 
 
                                                                        break 
 
                                                        if move_test == 'good': 
 
                                                                print 'New graph added to city by node mutation.' 
 
                                                                new_city.append(graph) 
 
                                                                new_pop += 1 
 
                                                                node_mutation_count += 1 
 
                                                else: 
 
                                                        continue 
 
# Deletion Mutation 
 
                        elif operation[0] == 'mutation' and operation[1] == 'deletion': 
 
                                original_graph = operation[2] 
 
                                nodes = original_graph.nodes()[:] 
 
                                found_node = 'no' 
 
                                graph_added = 'no' 
 
                                while len(nodes) > 0 and graph_added == 'no': 
 
                                        shuffle(nodes) 
 
                                        random_node = nodes.pop() 
 
                                        random_nodes_sig = original_graph.node[random_node]['sig'] 
 
                                        edges_from_random_node = nx.edges(original_graph,random_node) 
 
                                        unsat_to_satisfy = [] 
 
                                        unsat_to_satisfy_dict = defaultdict(int) 
 
                                        for edge in edges_from_random_node: 
 
                                                for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']: 
 
                                                        if unsat[0] != random_nodes_sig: 
 
                                                                unsat_to_satisfy.append(unsat) 
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                                        # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this 
 
                                        unsat_to_satisfy_set = set(unsat_to_satisfy) 
 
                                        for unsat in unsat_to_satisfy_set: 
 
                                                unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat) 
 
                                        list_of_unsat_potential_lists = [] 
 
                                        for unsat in unsat_to_satisfy_dict.keys(): 
 
                                                unsat_potentials = [] 
 
                                                for neighbor in self.network.neighbors(unsat[0]): 
 
                                                        if neighbor != random_nodes_sig: 
 
                                                                if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys(): 
 
                                                                        if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]: 
 
                                                                                unsat_potentials.append(neighbor) 
 
                                                list_of_unsat_potential_lists.append(unsat_potentials) 
 
                                        if len(list_of_unsat_potential_lists) > 1: 
 
                                                optimal_nodes_original = [] 
 
                                                for x in list_of_unsat_potential_lists[0]: 
 
                                                        present = 'no' 
 
                                                        for y in range(len(list_of_unsat_potential_lists)): 
 
                                                                if x in list_of_unsat_potential_lists[y]: 
 
                                                                        present = 'yes' 
 
                                                                else: 
 
                                                                        present = 'no' 
 
                                                                        break 
 
                                                        if present == 'yes': 
 
                                                                optimal_nodes_original.append(x) 
 
                                        elif len(list_of_unsat_potential_lists) == 1: 
 
                                                optimal_nodes_original = set(list_of_unsat_potential_lists[0]) 
 
                                        elif len(list_of_unsat_potential_lists) == 0: 
 
                                                continue 
 
                                        optimal_nodes = [ x for x in optimal_nodes_original if self.network.node[x]['atom_count'] <   
                                                                      self.network.node[random_nodes_sig]['atom_count'] ] 
 
                                        move_list_tuples = [ x for x in original_graph.graph['move_list'] if x[0] == random_node  
                                                                         or x[1] == random_node] 
 
                                        while len(optimal_nodes) > 0 and graph_added == 'no': 
 
                                                new_move_list = [ x for x in original_graph.graph['move_list'] if x not in move_list_tuples ] 
 
                                                graph = original_graph.copy() 
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                                                chosen_replacement_node = optimal_nodes.pop() 
 
                                                for edge in move_list_tuples: 
 
                                                        if edge[0] == random_node: 
 
                                                                # This means the dictionary list is keyed by the other node 
 
                                                                other_node = edge[1] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
 
                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                map_found = 'no' 
 
                                                                # Might need to keep track of other unsats utilized so that they're only hit once 
 
                                                                for other_unsat in other_unsats: 
 
                                                                        if self.network.has_edge(chosen_replacement_node,other_sig): 
 
                                                                                for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict'] 
                                                                                                                              [(other_sig,other_unsat)]: 
 
                                                                                        map_items_1 = [ x[1] for x in map.items() ] 
 
                                                                                        missing_other_unsats = [ x for x in other_unsats if x not in map_items_1 ] 
 
                                                                                        if len(missing_other_unsats) == 0: 
 
                                                                                                map_found = 'yes' 
 
                                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                                                new_randy_unsats = [x for x in map.keys() if x in self.network.node 
                                                                                                                                  [chosen_replacement_node]['unsaturated_nodes']] 
 
                                                                                                for randy_unsat in new_randy_unsats: 
 
                                                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'].append( 
                                                                                                        ( chosen_replacement_node ,   randy_unsat )) 
 
                                                                                                break 
 
                                                                                if map_found == 'yes': 
 
                                                                                        break 
 
                                                                if map_found == 'yes': 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and  
                                                                                               x[1] == edge[1] ][0] 
 
                                                                        new_move_list.append( ( random_node, other_node, map.copy() ) ) 
 
                                                                elif map_found == 'no': 
 
                                                                        print 'Map not found' 
 
                                                                        break 
 
                                                        else: 
 
                                                                # This means the dictionary list is keyed by the random node 
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                                                                other_node = edge[0] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
 
                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                map_found = 'no' 
 
                                                                for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']: 
 
                                                                        if self.network.has_edge(chosen_replacement_node,other_sig): 
 
                                                                                for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict'] 
                                                                                                                              [(chosen_replacement_node,random_unsat)]: 
 
                                                                                        uncovered_other_unsats = [ x for x in other_unsats if x not in map.keys() ] 
 
                                                                                        if len(uncovered_other_unsats) == 0: 
 
                                                                                                map_found = 'yes' 
 
                                                                                                break 
 
                                                                                if map_found == 'yes': 
 
                                                                                        break 
 
                                                                if map_found == 'yes': 
 
                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat ) ) 
 
                                                                        random_unsats = [ x for x in map.keys() if x in self.network.node[ 
                                                                                                     chosen_replacement_nodes['unsaturated_nodes'] ] 
 
                                                                        for randy_unsat in random_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (chosen_replacement_node,  
                                                                                                                                                                     randy_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==   
                                                                                               other_node ][0] 
 
                                                                        new_move_list.append( ( other_node, random_node, map.copy() ) ) 
 
                                                                else: 
 
                                                                        print 'Map not found' 
 
                                                                        break 
 
                                                if map_found == 'yes': 
 
                                                        graph.graph['move_list'] = new_move_list 
 
                                                        mapping_condition = 'yes' 
 
                                                        zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                        one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                        zero_set = set ( zero_list ) 
 
                                                        for each in zero_set: 
 
                                                                if each in one_list: 
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                                                                        if one_list.index(each) < zero_list.index(each): 
 
                                                                                shuffle(graph.graph['move_list']) 
 
                                                                                mapping_condition = 'no' 
 
                                                                                break 
 
                                                        while mapping_condition == 'no': 
 
                                                                mapping_condition = 'yes' 
 
                                                                zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                                one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                                zero_set = set ( zero_list ) 
 
                                                                for each in zero_set: 
 
                                                                        if each in one_list: 
 
                                                                                if one_list.index(each) < zero_list.index(each): 
 
                                                                                        shuffle(graph.graph['move_list']) 
 
                                                                                        mapping_condition = 'no' 
 
                                                                                        break 
 
                                                        graph_added = 'yes'                   
 
                                                        graph.graph['conformers'][:] = []      
 
                                                        graph.node[random_node]['sig'] = chosen_replacement_node 
 
                                                        move_status = 'good' 
 
                                                        for move in graph.graph['move_list']: 
 
                                                                if move[0] not in graph.nodes() or move[1] not in graph.nodes(): 
 
                                                                        print 'Uh oh there was a move without a bond for a deletion mutation' 
 
                                                                        move_status = 'bad' 
 
                                                                        break 
 
                                                        if move_status == 'good': 
 
                                                                print 'New graph added to city by deletion mutation.' 
 
                                                                new_city.append(graph) 
 
                                                                new_pop += 1 
 
                                                                deletion_mutation_count += 1 
 
                                                else: 
 
                                                        continue 
 
# Insertion Mutation 
 
                        elif operation[0] == 'mutation' and operation[1] == 'insertion': 
 
                                original_graph = operation[2] 
 
                                nodes = original_graph.nodes()[:] 
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                                found_node = 'no' 
 
                                graph_added = 'no' 
 
                                while len(nodes) > 0 and graph_added == 'no': 
 
                                        shuffle(nodes) 
 
                                        random_node = nodes.pop() 
 
                                        random_nodes_sig = original_graph.node[random_node]['sig'] 
 
                                        edges_from_random_node = nx.edges(original_graph,random_node) 
 
                                        unsat_to_satisfy = [] 
 
                                        unsat_to_satisfy_dict = defaultdict(int) 
 
                                        for edge in edges_from_random_node: 
 
                                                for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']: 
 
                                                        if unsat[0] != random_nodes_sig: 
 
                                                                unsat_to_satisfy.append(unsat) 
 
                                        # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this 
 
                                        unsat_to_satisfy_set = set(unsat_to_satisfy) 
 
                                        for unsat in unsat_to_satisfy_set: 
 
                                                unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat) 
 
                                        list_of_unsat_potential_lists = [] 
 
                                        for unsat in unsat_to_satisfy_dict.keys(): 
 
                                                unsat_potentials = [] 
 
                                                for neighbor in self.network.neighbors(unsat[0]): 
 
                                                        if neighbor != random_nodes_sig: 
 
                                                                if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys(): 
 
                                                                        if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]: 
 
                                                                                unsat_potentials.append(neighbor) 
 
                                                list_of_unsat_potential_lists.append(unsat_potentials) 
 
                                        if len(list_of_unsat_potential_lists) > 1: 
 
                                                optimal_nodes_original = [] 
 
                                                for x in list_of_unsat_potential_lists[0]: 
 
                                                        present = 'no' 
 
                                                        for y in range(len(list_of_unsat_potential_lists)): 
 
                                                                if x in list_of_unsat_potential_lists[y]: 
 
                                                                        present = 'yes' 
 
                                                                else: 
 
                                                                        present = 'no' 
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                                                                        break 
 
                                                        if present == 'yes': 
 
                                                                optimal_nodes_original.append(x) 
 
                                        elif len(list_of_unsat_potential_lists) == 1: 
 
                                                optimal_nodes_original = set(list_of_unsat_potential_lists[0]) 
 
                                        elif len(list_of_unsat_potential_lists) == 0: 
 
                                                continue 
 
                                        optimal_nodes = [ x for x in optimal_nodes_original if self.network.node[x]['atom_count'] >  
                                                                      self.network.node[random_nodes_sig]['atom_count'] ] 
 
                                        move_list_tuples = [ x for x in original_graph.graph['move_list'] if x[0] == random_node  
                                                                          or x[1] == random_node] 
 
                                        while len(optimal_nodes) > 0 and graph_added == 'no': 
 
                                                new_move_list = [ x for x in original_graph.graph['move_list'] if x not in move_list_tuples ] 
 
                                                graph = original_graph.copy() 
 
                                                chosen_replacement_node = optimal_nodes.pop() 
 
                                     # Depending on the first two entries of the map i need to decide if the map is keyed or entried by the new node 
 
                                                for edge in move_list_tuples: 
 
                                                        if edge[0] == random_node: 
 
                                                                # This means the dictionary list is keyed by the other node 
 
                                                                other_node = edge[1] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
 
                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                map_found = 'no' 
 
                                                                # Might need to keep track of other unsats utilized so that they're only hit once 
 
                                                                for other_unsat in other_unsats: 
 
                                                                        for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict'] 
                                                                                                                      [(other_sig,other_unsat)]: 
 
                                                                                map_items_1 = [ x[1] for x in map.items() ] 
 
                                                                                missing_other_unsats = [ x for x in other_unsats if x not in map_items_1 ] 
 
                                                                                if len(missing_other_unsats) == 0: 
 
                                                                                        map_found = 'yes' 
 
                                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                                        new_randy_unsats = [x for x in map.keys() if x in self.network.node 
                                                                                                                           [chosen_replacement_node]['unsaturated_nodes']] 
 
                                                                                        for randy_unsat in new_randy_unsats: 
 
                                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( 
                                                                                                            ( chosen_replacement_node ,  randy_unsat )) 
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                                                                                        break 
 
                                                                        if map_found == 'yes': 
 
                                                                                break 
 
                                                                if map_found == 'yes': 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[0] == edge[0] and  
                                                                                               x[1] == edge[1] ][0] 
 
                                                                        new_move_list.append( ( random_node, other_node, map.copy() ) ) 
 
                                                                elif map_found == 'no': 
 
                                                                        print 'Map not found' 
 
                                                                        break 
 
                                                        else: 
 
                                                                # This means the dictionary list is keyed by the random node 
 
                                                                other_node = edge[0] 
 
                                                                other_sig = graph.node[other_node]['sig'] 
 
                                                                other_unsats = [ x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig ] 
 
                                                                # Now I'll search through all map keys and maps to search for one which covers all unsats 
 
                                                                map_found = 'no' 
 
                                                                for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']: 
 
                                                                        if self.network.has_edge(chosen_replacement_node,other_sig): 
 
                                                                                for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict'] 
                                                                                                                               [(chosen_replacement_node,random_unsat)]: 
 
                                                                                        uncovered_other_unsats = [ x for x in other_unsats if x not in map.keys() ] 
 
                                                                                        if len(uncovered_other_unsats) == 0: 
 
                                                                                                map_found = 'yes' 
 
                                                                                                break 
 
                                                                                if map_found == 'yes': 
 
                                                                                        break 
 
                                                                if map_found == 'yes': 
 
                                                                        graph.edge[edge[0]][edge[1]]['unsat_info'][:] = [] 
 
                                                                        for other_unsat in other_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append( (other_sig,other_unsat ) ) 
 
                                                                        random_unsats = [x for x in map.keys() if x in  self.network.node 
                                                                                                     [chosen_replacement_node]['unsaturated_nodes'] ] 
 
                                                                        for randy_unsat in random_unsats: 
 
                                                                                graph.edge[edge[0]][edge[1]]['unsat_info'].append(  
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                                                                                (chosen_replacement_node, randy_unsat) ) 
 
                                                                        to_remove = [ x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==  
                                                                                                other_node ][0] 
 
                                                                        new_move_list.append( ( other_node, random_node, map.copy() ) ) 
 
                                                if map_found == 'yes': 
 
                                                        graph.graph['move_list'] = new_move_list 
 
                                                        mapping_condition = 'yes' 
 
                                                        zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                        one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                        zero_set = set ( zero_list ) 
 
                                                        for each in zero_set: 
 
                                                                if each in one_list: 
 
                                                                        if one_list.index(each) < zero_list.index(each): 
 
                                                                                shuffle(graph.graph['move_list']) 
 
                                                                                mapping_condition = 'no' 
 
                                                                                break 
 
                                                        while mapping_condition == 'no': 
 
                                                                mapping_condition = 'yes' 
 
                                                                zero_list = [ x[0] for x in graph.graph['move_list'] ] 
 
                                                                one_list = [ x[1] for x in graph.graph['move_list'] ] 
 
                                                                zero_set = set ( zero_list ) 
 
                                                                for each in zero_set: 
 
                                                                        if each in one_list: 
 
                                                                                if one_list.index(each) < zero_list.index(each): 
 
                                                                                        shuffle(graph.graph['move_list']) 
 
                                                                                        mapping_condition = 'no' 
 
                                                                                        break 
 
                                                        graph_added = 'yes' 
 
                                                        graph.graph['conformers'][:] = [] 
 
                                                        graph.node[random_node]['sig'] = chosen_replacement_node 
 
                                                        move_status = 'good' 
 
                                                        for move in graph.graph['move_list']: 
 
                                                                if move[0] not in graph.nodes() or move[1] not in graph.nodes(): 
 
                                                                        print 'Uh oh a move was found without a bond for an insertion mutaiton' 
 
                                                                        move_status = 'bad' 
 
                                                                        break 
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                                                        if move_status == 'good': 
 
                                                                print 'New graph added to city by insertion mutation.' 
 
                                                                new_city.append(graph) 
 
                                                                new_pop += 1 
 
                                                                insertion_mutation_count += 1 
 
                                                        else: 
 
                                                                print 'This one was not connected and was created by insertion mutation!' 
 
                                                else: 
 
                                                        continue 
 
# Crossover Mutation 
 
 
                        elif operation[0] == 'crossover': 
 
                                graph_1 = operation[1] 
 
                                graph_1.remove_edge(operation[2][0],operation[2][1]) 
 
                                two_graphs1 = nx.connected_components(graph_1) 
 
                                list_to_remove1 = [ x for x in two_graphs1 if operation[3] not in x ][0] 
 
                                print 'Graph 1 before:', graph_1.nodes(), graph_1.edges() 
 
                                for node in list_to_remove1: 
 
                                        graph_1.remove_node(node) 
 
                                        for move in graph_1.graph['move_list']: 
 
                                                if node == move[0] or node == move[1]: 
 
                                                        graph_1.graph['move_list'].remove(move) 
 
                                print 'Graph 1 after:', graph_1.nodes(), graph_1.edges() 
 
                                graph_2 = operation[4] 
 
                                print 'Graph 2 before:', graph_2.nodes(), graph_2.edges() 
 
                                graph_2.remove_edge(operation[5][0],operation[5][1]) 
 
                                two_graphs2 = nx.connected_components(graph_2) 
 
                                list_to_remove2 = [ x for x in two_graphs2 if operation[6] not in x ][0] 
 
                                for node in list_to_remove2: 
 
                                        graph_2.remove_node(node) 
 
                                        for move in graph_2.graph['move_list']: 
 
                                                if node == move[0] or node == move[1]: 
 
                                                        graph_2.graph['move_list'].remove(move) 
 
                                print 'Graph 2 after:', graph_2.nodes(), graph_2.edges() 
 
                          # Now I have these two graph with corrected move lists but I need to combine then and potentially change node labels 
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                                # Along with these node label changes I will also need to change the respective move list 
 
                                max_in_1 = max( [x for x in graph_1.nodes()] ) 
 
                                node_change_dict = defaultdict(int) 
 
                                node_change_dict.clear() 
 
                                new_label = max_in_1 + 1 
 
                                for node in graph_2.nodes(): 
 
                                        node_change_dict[node] = new_label 
 
                                        new_label += 1 
 
                                # Now I have a dictionary with new labels 
 
                                # I want to start by making the link between the two adjoined graphs 
 
                                node_in_1 = operation[3] 
 
                                sig_in_1 = graph_1.node[node_in_1]['sig'] 
 
                                node_in_2 = operation[6] 
 
                                sig_in_2 = graph_2.node[node_in_2]['sig'] 
 
                                map = operation[7] 
 
                                graph_1.add_node(node_change_dict[node_in_2]) 
 
                                graph_1.node[ node_change_dict[node_in_2] ]['sig'] = sig_in_2 
 
                                graph_1.add_edge(node_change_dict[node_in_2],node_in_1) 
 
                                node_in_1_nodes = [ x for x in self.network.node[sig_in_1]['conformers'][0].nodes() ] 
 
                                # Now I need to add all of the unsaturated nodes associated with the new map 
 
                                # Sig in one should be the keys 
 
                                unsat_for_sig_1 = [ (node_in_1,x) for x in self.network.node[sig_in_1]['unsaturated_nodes'] if x in map.keys() ] 
 
                                map_ones = [ x[1] for x in map.items() ] 
 
                                unsat_for_sig_2 = [ (node_change_dict[node_in_2],x) for x in self.network.node[sig_in_2]['unsaturated_nodes'] if   
                                                               x in  map_ones ] 
 
                                total_new_unsat = [] 
 
                                for each in unsat_for_sig_1: 
 
                                        total_new_unsat.append(each) 
 
                                for each in unsat_for_sig_2: 
 
                                        total_new_unsat.append(each) 
 
                                graph_1.edge[node_change_dict[node_in_2]][node_in_1]['unsat_info'] = total_new_unsat[:] 
 
                                for move in graph_2.graph['move_list']: 
 
                                        node_1 = node_change_dict[move[0]] 
 
                                        node_2 = node_change_dict[move[1]] 
 
                                        graph_1.add_node(node_1) 
 
                                        graph_1.node[node_1]['sig'] = graph_2.node[move[0]]['sig'] 
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                                        graph_1.add_node(node_2) 
 
                                        graph_1.node[node_2]['sig'] = graph_2.node[move[1]]['sig'] 
 
                                        graph_1.add_edge(node_1,node_2) 
 
                                        graph_1.edge[node_1][node_2]['unsat_info'] = graph_2.edge[move[0]][move[1]]['unsat_info'][:] 
 
                                        new_move = ( node_change_dict[move[0]], node_change_dict[move[1]], move[2] ) 
 
                                        graph_1.graph['move_list'].append(new_move) 
 
                                # This piece will determine if there is a move that doesn't correspond to a node in the graph 
 
                                map_status = 'continue' 
 
                                for move in graph_1.graph['move_list']: 
 
                                        if move[0] not in graph_1.nodes() or move[1] not in graph_1.nodes(): 
 
                                                print 'Uh oh a move didnt have a edge for a crossover graph!' 
 
                                                map_status = 'break' 
 
                                                break 
 
                                if map_status != 'break': 
 
                                        iterations = 0 
 
                                        mapping_condition = 'yes' 
 
                                        zero_list = [ x[0] for x in graph_1.graph['move_list'] ] 
 
                                        one_list = [ x[1] for x in graph_1.graph['move_list'] ] 
 
                                        zero_set = set ( zero_list ) 
 
                                        for each in zero_set: 
 
                                                if each in one_list: 
 
                                                        if one_list.index(each) < zero_list.index(each): 
 
                                                                shuffle(graph_1.graph['move_list']) 
 
                                                                mapping_condition = 'no' 
 
                                                                break 
 
                                        while mapping_condition == 'no': 
 
                                                iterations += 1 
 
                                                mapping_condition = 'yes' 
 
                                                zero_list = [ x[0] for x in graph_1.graph['move_list'] ] 
 
                                                one_list = [ x[1] for x in graph_1.graph['move_list'] ] 
 
                                                zero_set = set ( zero_list ) 
 
                                                for each in zero_set: 
 
                                                        if each in one_list: 
 
                                                                if one_list.index(each) < zero_list.index(each): 
 
                                                                        shuffle(graph_1.graph['move_list']) 
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                                                                        mapping_condition = 'no' 
 
                                                                        break 
 
                                        print 'New graph added to city by crossover.' 
 
                                        graph_1.graph['conformers'][:] = [] 
 
                                        new_city.append(graph_1) 
 
                                        new_pop += 1 
 
                                        crossover_count += 1 
 
                        list_of_conformer_indices = [] 
 
                        for node in graph.nodes(): 
 
                                sig = graph.node[node]['sig'] 
 
                                # I will have to change this later when I'm looking at conformational ensembles 
 
                                graph.node[node]['sig_graph'] = self.network.node[sig]['conformers'][0].copy() 
 
                                conf_count = len(self.network.node[sig]['conformers']) 
 
                                index_list = [x for x in range(conf_count)] 
 
                                list_of_conformer_indices.append(index_list) 
 
                        # I'm throwing this in for later when I want to look at a conformational ensemble 
 
                        subgraph_permutations = list(itertools.product(*list_of_conformer_indices)) 
 
                       for permutation in subgraph_permutations: 
 
                        permutation = subgraph_permutations[0] 
 
                        node_with_conformer_tuples = [] 
 
                        for node in graph.nodes(): 
 
                                node_index = graph.nodes().index(node) 
 
                                node_with_conformer_tuples.append((node,permutation[node_index])) 
 
                        changed_nodes = [] 
 
                        xi = 0 
 
                        # I need to rearrange the move list  
 
                        for move in graph.graph['move_list']: 
 
                                node1 = move[1] 
 
                                node2 = move[0] 
 
                                map = move[2] 
 
                                sig2_index = 0 
 
                                sig2 = graph.node[node2]['sig'] 
 
                                sig2_graph = self.network.node[sig2]['conformers'][sig2_index].copy() 
 
                                # This is basically saying that if this is my first iteration then I need to begin the graph 
 
                                if graph.graph['move_list'].index(move) == 0: 
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                                        sig1 = graph.node[node1]['sig'] 
 
                                        sig1_graph = self.network.node[sig1]['conformers'][0] 
 
                                        conformer = sig1_graph.copy() 
 
                                else: 
 
                                        sig1_graph = graph.node[node1]['sig_graph'] 
 
                                node_2a = choice( map.keys() ) 
 
                                node_1a = [ x[1] for x in map.items() if x[0] == node_2a ][0] 
 
                                node_2a_coordinates = sig2_graph.node[node_2a]['xyz'] 
 
                                node_1a_coordinates = sig1_graph.node[node_1a]['xyz'] 
 
                                translation_vector = numpy.subtract(node_1a_coordinates,node_2a_coordinates) 
 
                                translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]], 
                                                                                        [0,0,1,translation_vector[2]],[0,0,0,1]]) 
 
                                # Now I need to translate all nodes in the second signature copy 
 
                                for node in sig2_graph.nodes(): 
 
                                        new_coordinates = numpy.dot( translation_matrix , sig2_graph.node[node]['xyz'] ) 
 
                                        new_coordinates_t = numpy.transpose(new_coordinates) 
 
                                        sig2_graph.node[node]['xyz'] = new_coordinates_t 
 
                                # Now I need to choose a second mapped node to create a rotation 
 
                                node2b_choices = [x for x in map.keys() if not x ==node_2a] 
 
                                node_2b = choice(node2b_choices) 
 
                                node_1b = map[node_2b] 
 
                                node_1b_coordinates = sig1_graph.node[node_1b]['xyz'] 
 
                                node_2b_coordinates = sig2_graph.node[node_2b]['xyz'] 
 
                                nodes_1ab_vector = numpy.subtract(node_1b_coordinates[:3],node_1a_coordinates[:3]) 
 
                                nodes_2ab_vector = numpy.subtract(node_2b_coordinates[:3],node_2a_coordinates[:3]) 
 
                                angle_1 = angle_between(numpy.transpose(nodes_1ab_vector),nodes_2ab_vector) 
 
                                axis_1 = numpy.cross(nodes_1ab_vector,nodes_2ab_vector) 
 
                                # I still need to normalize this axis 
 
                                if numpy.linalg.norm(axis_1) == 0: 
 
                                        axis_1u = axis_1 
 
                                else: 
 
                                        axis_1u = axis_1/numpy.linalg.norm(axis_1) 
 
                                x = axis_1u[0] 
 
                                y = axis_1u[1] 
 
                                z = axis_1u[2] 
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                                a = angle_1 
 
                                rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)], 
 
                                                                [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)], 
 
                                                                [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]]) 
 
                                for node in sig2_graph.nodes(): 
 
                                        new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose(sig2_graph.node[node]['xyz'][:3])) 
 
                                        new_coordinates_t = numpy.transpose(new_coordinates) 
 
                                        new_coordinates_t_a = numpy.append(new_coordinates_t,1) 
 
                                        sig2_graph.node[node]['xyz'] = new_coordinates_t_a 
 
                                     # Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom   
                                           coordinates is a minimum 
 
                                        # First, I'll have to define the new axis of rotation 
 
                                        # This will be the difference vector between points a1 and a2 or b1 and b2 
 
                                axis_2u = nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector) 
 
                                x = axis_2u[0] 
 
                                y = axis_2u[1] 
 
                                z = axis_2u[2] 
 
                                rotation_list = [] 
 
                                for d in range(0,360,2): 
 
                                        a = numpy.radians(d) 
 
                                        rotation_matrix_2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-  
                                        cos(a))+y*sin(a)], [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)], 
                                        [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]]) 
 
                                        temp_node_dictionary = defaultdict(numpy.array) 
 
                                        # Now im going to create a list of all mapped nodes in the second signature 
 
                                        node_list = map.keys() 
 
                                        for node in node_list: 
 
                                                new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_2,numpy.transpose( 
                                                                               sig2_graph.node[node]['xyz'][:3]))) 
 
                                                temp_node_dictionary[node] = new_coordinates 
 
                                        total_distance = 0 
 
                                        for node in node_list: 
 
                                                sig_1_node = map[node] 
 
                                                total_distance += numpy.linalg.norm(temp_node_dictionary[node]-sig1_graph.node 
                                                                            [sig_1_node]['xyz'][:3]) 
 
                                        temp_node_dictionary.clear() 
 
                                        rotation_list.append((d,a,total_distance)) 
 
                                # Now I must identify the lowest total distance 
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                                best_radian = min(rotation_list, key=itemgetter(2))[1] 
 
                                a = best_radian 
 
                                # Now I need to actually rotate all of the atoms in the second signature 
 
                                rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)], 
 
                                                                [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)], 
 
                                                                [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]]) 
 
                                for node in sig2_graph.nodes(): 
 
                                        new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose( 
                                                                       sig2_graph.node[node]['xyz'][:3]))) 
 
                                        new_coordinates_a = numpy.append(new_coordinates,1) 
 
                                        sig2_graph.node[node]['xyz'] = new_coordinates_a 
 
                                graph.node[node2]['sig_graph'] = sig2_graph.copy() 
 
                                # Now I need to add to the growing graph 
 
                                # First, I'll add the nodes not involved in docking 
 
                                nodes_to_add = [x for x in sig2_graph.nodes() if x not in map.keys()] 
 
                                for node in nodes_to_add: 
 
                                        # Adding in label change because of conflicting fragments with the same labels 
 
                                        new_node_id = 100*(xi+1) + node 
 
                                        conformer.add_node(new_node_id, atom= sig2_graph.node[node]['atom'],  
                                                                          xyz = sig2_graph.node[node]['xyz'], old_id =   node) 
 
                                # Next, I'll need to add all edges located in signature two which don't involve docking nodes 
 
                                edges_to_add = [edge for edge in sig2_graph.edges() if edge[0] not in map.keys() and edge[1] not in map.keys()] 
 
                                for edge in edges_to_add: 
 
                                        new_edge_0 = edge[0] + 100*(xi+1) 
 
                                        new_edge_1 = edge[1] + 100*(xi+1) 
 
                                        conformer.add_edge(new_edge_1, new_edge_0, type = sig2_graph.edge[edge[0]][edge[1]]['type']) 
 
                         # Now I need to add edges within the docking zone involving one node from signature two and one from signature one 
 
                                next_edges_to_add = [] 
 
                                for edge in sig2_graph.edges(): 
 
                                        if ( edge[0] not in map.keys() and edge[1] in map.keys() ): 
 
                                                if xi == 0: 
 
                                                        node_in_1 = map[ edge[1] ] 
 
                                                else: 
 
                                                        node_in_1 = map[ edge[1] ] + (100*xi) 
 
                                                        new_edge_0 = 100*(xi+1) + edge[0] 
 
                                                        next_edges_to_add.append( ( new_edge_0 , node_in_1 ,  sig2_graph.edge[ 
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                                                                                                        edge[0]][edge[1]]['type']) ) 
 
                                        elif ( edge[0] in map.keys() and edge[1] not in map.keys() ): 
 
                                                if xi == 0: 
 
                                                        node_in_1 = map [ edge[0] ] 
 
                                                else: 
 
                                                        node_in_1 = map[ edge[0] ] + (100*xi) 
 
                                                        new_edge_1 = 100*(xi+1) + edge[1] 
 
                                                        next_edges_to_add.append ( ( node_in_1 , new_edge_1 , sig2_graph.edge[ 
                                                                                                         edge[0]][edge[1]]['type']) ) 
 
                                        else: 
 
                                                pass 
 
                                for edge in next_edges_to_add: 
 
                                        conformer.add_edge(edge[0],edge[1],type = edge[2]) 
 
                                xi += 1 
 
                        graph.graph['conformers'].append(conformer) 
 
                        print 'Conformer created!' 
 

A.5 – Code for Expedited Molecular Mechanics Analysis 

The following piece of code was created to handle large data sets when performing 

conformational analysis using the BOSS program. The code scans the conformational 

space of each mol file in a directory and creates a file with each identified conformational 

isomer while cleaning up the remaining log files. 

import subprocess 
 
import glob 
 
import linecache 
 
from decimal import * 
 
class Directory: 
 
        def __init__(self,full_parent_directory): 
 
                self.full_parent_directory = full_parent_directory 
 
        def conformational_analysis(self,cutoff): 
 
            """This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures dictionary""" 
 
                cutoff_decimal = Decimal(cutoff) 
 
                if self.full_parent_directory[-1] == '/': 
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                        self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1] 
 
                mol_files = self.full_parent_directory + '/*.mol' 
 
                file_iter = glob.iglob(mol_files) 
 
                subprocess.call('mkdir conformers',shell=True,cwd=self.full_parent_directory) 
 
                import_cs_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xCS100 '+ self.full_parent_directory + '/' + 'xCS100' 
 
                import_xmolz_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xMOLZ '+ self.full_parent_directory + '/' + 'xMOLZ' 
 
                import_xcsmol_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xCSMOL'+self.full_parent_directory + '/' + 'xCSMOL' 
 
                subprocess.call(import_xmolz_command,shell=True) 
 
                subprocess.call(import_cs_command,shell=True) 
 
                subprocess.call(import_xcsmol_command,shell=True) 
 
                for fn in file_iter: 
 
                        mol_file = fn.replace(self.full_parent_directory,'') 
 
                        mol_file = mol_file.replace('/', '') 
 
                        mol_file = mol_file.replace('.mol','') 
 
                        xmolz_command = 'xMOLZ ' + mol_file 
 
                        xmolz_subprocess = subprocess.Popen(xmolz_command,shell=True,cwd=self.full_parent_directory) 
 
                        xmolz_subprocess.wait() 
 
                        rm_log = 'rm' + ' log' 
 
                        rm_optzmat = 'rm' + ' optzmat' 
 
                        rm_out = 'rm' + ' out' 
 
                        rm_plt = 'rm' + ' plt.pdb' 
 
                        rm_sum = 'rm' +  ' sum' 
 
                        subprocess.Popen(rm_log,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_optzmat,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_out,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_plt,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_sum,shell=True,cwd=self.full_parent_directory) 
 
                        xcs_command = 'xCS100 ' + mol_file 
 
                        xcs_subprocess = subprocess.Popen(xcs_command,shell=True,cwd=self.full_parent_directory) 
 
                        xcs_subprocess.wait() 
 
                        rm_z = 'rm ' + mol_file + '.z' 
 
                        rm_cs = 'rm ' + mol_file + '.cs.CSV' 
 
                        rm_cs_sum = 'rm ' + mol_file + '.cs.sum' 
 
                        rm_csz = 'rm ' + mol_file + '.cs.z' 
 
                        rm_cs_out = 'rm ' + mol_file + '.cs.out' 
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                        subprocess.Popen(rm_z,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_cs,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_cs_sum,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_csz,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen(rm_cs_out,shell=True,cwd=self.full_parent_directory) 
 
                        subprocess.Popen('rm log',shell=True,cwd=self.full_parent_directory) 
 
                        xcsmol_subprocess = subprocess.Popen('xCSMOL',cwd=self.full_parent_directory,stdin=subprocess.PIPE) 
 
                        input_text = mol_file + '.cs.mol' 
 
                        xcsmol_subprocess.communicate(input = input_text)[0] 
 
                        xcsmol_subprocess.wait() 
 
                        rm_csmol = 'rm ' + mol_file + '.cs.mol' 
 
                        subprocess.call(rm_csmol,shell=True,cwd=self.full_parent_directory) 
 
                        first_conformer = self.full_parent_directory + '/cs001.mol' 
 
                        lowest_energy = Decimal((linecache.getline(first_conformer,3)[43:51]).strip()) 
 
                        print 'Lowest energy:', lowest_energy 
 
                        mv_best_conformer = 'mv ' + './cs001.mol ' + './conformers/' + mol_file + '.1.mol' 
 
                        cs_files = self.full_parent_directory + '/cs*.mol' 
 
                        file_iter_2 = glob.iglob(cs_files) 
 
                        subprocess.call(mv_best_conformer,shell=True,cwd=self.full_parent_directory) 
 
                        n = 2 
 
                        for fn in file_iter_2: 
 
                                energy = Decimal((linecache.getline(fn,3)[45:51]).strip()) 
 
                                if energy < lowest_energy + cutoff_decimal: 
 
                                        mv_conformer_cmd = 'mv ' + fn + ' ' + self.full_parent_directory+'/conformers/' + mol_file + '.'+str(n)+ '.mol' 
 
                                        subprocess.call(mv_conformer_cmd,shell=True) 
 
                                else: 
 
                                        rm_conformer_cmd = 'rm ' + fn 
 
                                        subprocess.call(rm_conformer_cmd,shell=True) 
 
                                n += 1 
 
                        lowest_energy = 0 
 

A.6 – Geometry Verification Code 

The following code was written to verify the geometry generation process for a given 

data set. It is formatted such that it can be used for sensitivity analysis when choosing the 
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optimal cutoff value for network compression such that significant conformational 

isomers are still created during the search. 

import networkx as nx 

import networkx.algorithms.isomorphism as iso 
 
import math 
 
from math import fabs 
 
import itertools 
 
import re 
 
import glob 
 
import subprocess 
 
import linecache 
 
from  collections import defaultdict 
 
from operator import eq 
 
from pprint import pprint 
 
import numpy 
 
from operator import itemgetter 
 
from random import choice 
 
sin = numpy.sin 
 
cos = numpy.cos 
 
valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1} 
 
bond_dictionary = {1:1,2:2,4:1.5} 
 
def unit_vector(vector): 
 
        return vector/numpy.linalg.norm(vector) 
 
def angle_between(v1, v2): 
 
        v1_u = unit_vector(v1) 
 
        v2_u = unit_vector(v2) 
 
        angle = numpy.arccos(numpy.dot(v1_u,v2_u)) 
 
        if numpy.isnan(angle): 
 
                if (v1_u == v2_u).all(): 
 
                        return 0.0 
 
                else: 
 
                        return numpy.pi 
 
        return angle 
 
class Directory: 
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        def __init__(self,full_parent_directory): 
 
                self.full_parent_directory = full_parent_directory 
 
        def create_graphs(self,height): 
 
                """This function will create nx graphs with underlying signatures stored in each node""" 
 
                self.height = height 
 
                self.graphs = [] 
 
                if self.full_parent_directory[-1] == '/': 
 
                        self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1] 
 
                mol_files = self.full_parent_directory + '/*.mol' 
 
                file_iter = glob.iglob(mol_files) 
 
                for fn in file_iter: 
 
                        # Creating a nx.Graph from the mol file 
 
                        G = nx.Graph() 
 
                        G.graph['fn'] = fn 
 
                        if 'OpenBabel' in str(linecache.getline(fn,2)): 
 
                                atom_bond_number_line = 4 
 
                        else: 
 
                                atom_bond_number_line = 5 
 
                        atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip()) 
 
                        bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip()) 
 
                        coordinate_begin_line = atom_bond_number_line + 1 
 
                        coordinate_end_line = atom_bond_number_line + atomn 
 
                        bond_begin_line = coordinate_end_line +1 
 
                        bond_end_line = coordinate_end_line + bondn 
 
                        for i in range(bond_begin_line, bond_end_line + 1): 
 
                                atom1 = int((linecache.getline(fn,i)[0:4]).strip()) 
 
                                atom2 = int((linecache.getline(fn,i)[4:8]).strip()) 
 
                                bondtype = int((linecache.getline(fn,i)[8:10]).strip()) 
 
                                G.add_edge(atom1, atom2, type=bondtype) 
 
                        for i in range(coordinate_begin_line,coordinate_end_line + 1): 
 
                                j = i - (atom_bond_number_line) 
 
                                G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()), 
                                                             float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip())]) 
 
                                G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip()) 
 
                        # Now assigning subgraphs to each node 
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                        nodes = G.nodes_iter() 
 
                        for node in nodes: 
 
                                subgraph=nx.ego_graph(G, node, radius=self.height) 
 
                                atom = G.node[node]['atom'] 
 
                                unsaturated_nodes = [] 
 
                                for node2 in subgraph.nodes(): 
 
                                        actual_saturation = 0 
 
                                        desired_saturation = valence_dictionary[subgraph.node[node2]['atom']] 
 
                                        for neighbor in subgraph.neighbors(node2): 
 
                                                actual_saturation += bond_dictionary[subgraph.edge[node2][neighbor]['type']] 
 
                                        if actual_saturation < desired_saturation: 
 
                                                unsaturated_nodes.append(node2) 
 
                                subgraph.graph['unsaturated_nodes'] = unsaturated_nodes 
 
                                G.node[node]['atomic_signature'] = subgraph 
 
                        self.graphs.append(G) 
 
                        print "Graph created for:  " , fn 
 
                print 'All',len(self.graphs),'graphs have been imported.' 
 
                print 'Compressing graphs...' 
 
                self.compressed_graphs = [] 
 
                for graph in self.graphs: 
 
                        match_status = 0 
 
                        if len(self.compressed_graphs) > 0: 
 
                                for graph_list in self.compressed_graphs: 
 
                                        nm = iso.categorical_node_match('atom', 'C') 
 
                                        em = iso.categorical_edge_match('type', 4) 
 
                                        GM = iso.GraphMatcher(graph,graph_list[0],node_match = nm, edge_match = em) 
 
                                        if GM.is_isomorphic(): 
 
                                                match_status = 1 
 
                                                new_graph = graph.copy() 
 
                                                new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True) 
 
                                                graph_list.append(new_graph) 
 
                                                break 
 
                                if match_status == 0: 
 
                                        new_list = [] 
 
                                        new_graph = graph.copy() 
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                                        new_list.append(new_graph) 
 
                                        self.compressed_graphs.append(new_list) 
 
                        else: 
 
                                new_list = [] 
 
                                new_graph = graph.copy() 
 
                                new_list.append(new_graph) 
 
                                self.compressed_graphs.append(new_list) 
 
                total_graphs_after_compression = 0 
 
                for graph_list in self.compressed_graphs: 
 
                        total_graphs_after_compression += len(graph_list) 
 
                print 'Graphs compressed.' 
 
                print 'Number of unique graphs is', len(self.compressed_graphs), 'with', total_graphs_after_compression, 'graphs accounted   
                         for.' 
 
        def identify_move_lists(self): 
 
                def create_first_size_list(graph): 
 
                        subgraph_size_list = [] 
 
                        for node in graph.nodes_iter(): 
 
                                unsat_nodes = len(graph.node[node]['atomic_signature'].graph['unsaturated_nodes']) 
 
                                subgraph_size = len(graph.node[node]['atomic_signature'].nodes()) 
 
                                if unsat_nodes == 0: 
 
                                        return False 
 
                                        break 
 
                                else: 
 
                                        size_metric = subgraph_size/unsat_nodes 
 
                                        subgraph_size_list.append((node,size_metric)) 
 
                        return subgraph_size_list 
 
                for graph_list in self.compressed_graphs: 
 
                        graph = graph_list[0] 
 
                        move_list = [] 
 
                        required_nodes = [x for x in graph.nodes()] 
 
                        defined_nodes = [] 
 
                        utilized_nodes = [] 
 
                        graph.graph['move_list'] = [] 
 
                        a = create_first_size_list(graph) 
 
                        if a == False: 
 
                                print "This graph is too small for this methodology." 
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                                continue 
 
                        else: 
 
                                subgraph_size_list = a 
 
                        # Now I have developed a subgraph size list and will identify the largest size 
 
                        max_metric = max(subgraph_size_list,key=itemgetter(1))[1] 
 
                        largest_node_list = [x[0] for x in subgraph_size_list if x[1] == max_metric] 
 
                        if len(largest_node_list) > 1: 
 
                                #randomly choose one 
 
                                first_node = choice(largest_node_list) 
 
                        else: 
 
                                #choose the only one 
 
                                first_node = largest_node_list[0] 
 
                        for node in graph.node[first_node]['atomic_signature'].nodes(): 
 
                                defined_nodes.append(node) 
 
                        utilized_nodes.append(first_node) 
 
                        undefined = [x for x in required_nodes if x not in defined_nodes] 
 
                        last_node_used = first_node 
 
                        while len(undefined) > 0: 
 
                                # Now I need to identify all atoms having at least three in common with the defined graph 
 
                                unused_nodes = [x for x in graph.nodes() if x not in utilized_nodes] 
 
                                overlapping_signatures = [] 
 
                                for unused_node in unused_nodes: 
 
                                        common_nodes = [x for x in graph.node[unused_node]['atomic_signature'].nodes() if x in defined_nodes] 
 
                                        unsaturated_nodes = [x for x in graph.node[unused_node]['atomic_signature'].graph['unsaturated_nodes'] if x   
                                                                          not in common_nodes] 
 
                                        newly_defined_nodes = [x for x in graph.node[unused_node]['atomic_signature'].nodes() if x not in   
                                                                                common_nodes] 
 
                                        if len(common_nodes) >= 3: 
 
                                                if len(newly_defined_nodes)>0: 
 
                                                        overlapping_signatures.append((unused_node, len(newly_defined_nodes), len(unsaturated_nodes),  
                                                                                                            common_nodes)) 
 
                                # Now I have defined all possible overlapping signatures 
 
                                # The task remains to choose one which minimizes unsaturated_nodes while having the most in common 
 
                                least_unsat_remaining = min(overlapping_signatures,key=itemgetter(2))[2] 
 
                                tuples_with_least_unsat_remaining = [x for x in overlapping_signatures if x[2] == least_unsat_remaining] 
 
                                most_newly_defined = max(tuples_with_least_unsat_remaining,key=itemgetter(1))[1] 
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                                tuples_with_most_newly_defined = [x for x in tuples_with_least_unsat_remaining if x[1] == most_newly_defined] 
 
                                if len(tuples_with_most_newly_defined) > 1: 
 
                                        chosen_tuple = choice(tuples_with_most_newly_defined) 
 
                                        next_signature = chosen_tuple[0] 
 
                                        utilized_nodes.append(next_signature) 
 
                                        move_list.append((last_node_used, next_signature, chosen_tuple[3])) 
 
                                        newly_defined_nodes = [x for x in graph.node[next_signature]['atomic_signature'].nodes() if x not in   
                                                                                chosen_tuple[3]] 
 
                                        for x in newly_defined_nodes: 
 
                                                defined_nodes.append(x) 
 
                                        last_node_used = next_signature 
 
                                        undefined = [x for x in required_nodes if x not in defined_nodes] 
 
                                elif len(tuples_with_most_newly_defined) == 1: 
 
                                        chosen_tuple = tuples_with_most_newly_defined[0] 
 
                                        next_signature = chosen_tuple[0] 
 
                                        utilized_nodes.append(next_signature) 
 
                                        move_list.append((last_node_used, next_signature, chosen_tuple[3])) 
 
                                        newly_defined_nodes = [x for x in graph.node[next_signature]['atomic_signature'].nodes() if x not in  
                                                                                chosen_tuple[3]] 
 
                                        for x in newly_defined_nodes: 
 
                                                defined_nodes.append(x) 
 
                                        last_node_used = next_signature 
 
                                        undefined = [x for x in required_nodes if x not in defined_nodes] 
 
                        graph.graph['move_list'] = move_list 
 
        def create_docking_map(self,network): 
 
                # The first step is to identify the graphs necessary for docking in the network 
 
                self.network = network 
 
                for graph_list in self.compressed_graphs: 
 
                        graph = graph_list[0] 
 
                        graph.graph['docking_map_list'] = [] 
 
                        for move in graph.graph['move_list']: 
 
                                working_list = [] 
 
                                node_1 = move[0] 
 
                                node_2 = move[1] 
 
                                signature_1 = graph.node[node_1]['atomic_signature'] 
 
                                signature_2 = graph.node[node_2]['atomic_signature'] 
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                                # Identifying signature 1 in network 
 
                                for node in network: 
 
                                        conformer = network.node[node]['conformers'][0] 
 
                                        nm = iso.categorical_node_match('atom', 'C') 
 
                                        em = iso.numerical_edge_match('type', 1)   
 
                                        GM = iso.GraphMatcher(signature_1,conformer,node_match = nm,edge_match = em) 
 
                                        if GM.is_isomorphic(): 
 
                                                working_list.append(node) 
 
                                                mapped_node_list_1 = [] 
 
                                                for node_id in move[2]: 
 
                                                        mapped_node_id = GM.mapping[node_id] 
 
                                                        mapped_node_list_1.append(mapped_node_id) 
 
                                                working_list.append(mapped_node_list_1) 
 
                                                break 
 
                                # Identifying signature 2 in network 
 
                                for node in network: 
 
                                        conformer = network.node[node]['conformers'][0] 
 
                                        nm = iso.categorical_node_match('atom', 'C')  
 
                                        em = iso.numerical_edge_match('type', 1) 
 
                                        GMb = iso.GraphMatcher(signature_2,conformer,node_match = nm,edge_match = em)  
 
                                        if GMb.is_isomorphic(): 
 
                                                working_list.insert(1,node) 
 
                                                mapped_node_list_2 = [] 
 
                                                for node_id in move[2]:          
 
                                                        mapped_node_id = GMb.mapping[node_id] 
 
                                                        mapped_node_list_2.append(mapped_node_id) 
 
                                                working_list.append(mapped_node_list_2) 
 
                                                break 
 
                                graph.graph['docking_map_list'].append(working_list) 
 
        def create_conformers(self): 
 
                self.conformer_lists = [] 
 
                for graph_list in self.compressed_graphs: 
 
                        conformer_list_i = [] 
 
                        graph = graph_list[0] 
 
                        number_of_docks = len(graph.graph['docking_map_list']) 
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                        # Now I need to calculate all possible permutations of subgraph conformers to utilize here 
 
                        list_of_conformers = [] 
 
                        list_of_conformer_indices = [] 
 
                        conformer_count = 0 
 
                        for each in graph.graph['docking_map_list']: 
 
                                if conformer_count == 0: 
 
                                        list_of_conformers.append(each[0]) 
 
                                        list_of_conformers.append(each[1]) 
 
                                        conformer_count += 1 
 
                                else: 
 
                                        list_of_conformers.append(each[1]) 
 
                        for conformer in list_of_conformers: 
 
                                index_number = len(self.network.node[conformer]['conformers']) 
 
                                index_list = [x for x in range(index_number)] 
 
                                list_of_conformer_indices.append(index_list) 
 
                        subgraph_permutations = list(itertools.product(*list_of_conformer_indices)) 
 
                        permutation_count = 0 
 
                        for permutation in subgraph_permutations: 
 
                                permutation_count += 1 
 
                        print 'There were this many conformers created:', permutation_count 
 
                        for permutation in subgraph_permutations: 
 
                                for xi in range(number_of_docks): 
 
                                        yi = xi + 1 
 
                                        if xi == 0: 
 
                                                first_signature = self.network.node[list_of_conformers[xi]]['conformers'][permutation[xi]] 
 
                                                conformer = first_signature.copy() 
 
                                        else: 
 
                                                first_signature = second_signature.copy() 
 
                                        # I'll keep this as the working graph 
 
                                        #This is where I need to decide on the first point for translation (zero index chosen as place holder) 
 
                                        #Later I could change this to only consider non-H atoms 
 
                                        node_1a = graph.graph['docking_map_list'][xi][2][0] 
 
                                        node_1a_coordinates = first_signature.node[node_1a]['xyz'] 
 
                                        second_signature = self.network.node[list_of_conformers[yi]]['conformers'][permutation[yi]].copy() 
 
                                        node_2a = graph.graph['docking_map_list'][xi][3][0] 
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                                        node_2a_coordinates = second_signature.node[node_2a]['xyz'] 
 
                                        translation_vector = numpy.subtract(node_1a_coordinates,node_2a_coordinates) 
 
                                        translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]], 
                                                                                                [0,0,1,translation_vector[2]],[0,0,0,1]]) 
 
                                        # Now I need to translate all nodes in the second signature copy 
 
                                        for node in second_signature.nodes(): 
 
                                                new_coordinates = numpy.dot(translation_matrix,second_signature.node[node]['xyz']) 
 
                                                new_coordinates_t = numpy.transpose(new_coordinates) 
 
                                                second_signature.node[node]['xyz'] = new_coordinates_t 
 
                                        # Now I need to choose a second mapped node to create a rotation 
 
                                        node_1b = graph.graph['docking_map_list'][xi][2][2] 
 
                                        node_1b_coordinates = first_signature.node[node_1b]['xyz'] 
 
                                        node_2b = graph.graph['docking_map_list'][xi][3][2] 
 
                                        node_2b_coordinates = second_signature.node[node_2b]['xyz'] 
 
                                        nodes_1ab_vector = numpy.subtract(node_1b_coordinates[:3],node_1a_coordinates[:3]) 
 
                                        nodes_2ab_vector = numpy.subtract(node_2b_coordinates[:3],node_2a_coordinates[:3]) 
 
                                        angle_1 = angle_between(numpy.transpose(nodes_1ab_vector),nodes_2ab_vector) 
 
                                        axis_1 = numpy.cross(nodes_1ab_vector,nodes_2ab_vector) 
 
                                        # I still need to normalize this axis 
 
                                        if numpy.linalg.norm(axis_1) == 0: 
 
                                                axis_1u = axis_1 
 
                                        else: 
 
                                                axis_1u = axis_1/numpy.linalg.norm(axis_1) 
 
                                        x = axis_1u[0] 
 
                                        y = axis_1u[1] 
 
                                        z = axis_1u[2] 
 
                                        a = angle_1 
 
                                        rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1- 
                                                                                              cos(a))+y*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),  
                                                                                              y*z*(1-cos(a))-x*sin(a)], [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),  
                                                                                              cos(a)+(z*z)*(1-cos(a))]]) 
 
                                        for node in second_signature.nodes(): 
 
                                                new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose( 
                                                                                  second_signature.node[node]['xyz'][:3])) 
 
                                                new_coordinates_t = numpy.transpose(new_coordinates) 
 
                                                new_coordinates_t_a = numpy.append(new_coordinates_t,1) 
 
                                                second_signature.node[node]['xyz'] = new_coordinates_t_a 
 
# Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom coordinates is a      
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   minimum 
                                        # First, I'll have to define the new axis of rotation 
 
                                        # This will be the difference vector between points a1 and a2 or b1 and b2 
 
                                        axis_2u = nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector) 
 
                                        x = axis_2u[0] 
 
                                        y = axis_2u[1] 
 
                                        z = axis_2u[2] 
 
                                        rotation_list = [] 
 
                                        for d in range(0,360,2): 
 
                                                a = numpy.radians(d) 
 
                                                rotation_matrix_2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1- 
                                                                                 cos(a))+y*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),  
                                                                                 y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),  
                                                                                 cos(a)+(z*z)*(1-cos(a))]]) 
 
                                                temp_node_dictionary = defaultdict(numpy.array) 
 
                                                # Now im going to create a list of all mapped nodes in the second signature 
 
                                                node_list = graph.graph['docking_map_list'][xi][3] 
 
                                                for node in node_list: 
 
                                                        new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_2, 
                                                                                                                    numpy.transpose(second_signature.node[node]['xyz'][:3]))) 
 
                                                        temp_node_dictionary[node] = new_coordinates 
 
                                                # This will allow me to identify the mapped nodes in signature one 
 
                                                tuples_list = zip(graph.graph['docking_map_list'][xi][3],graph.graph['docking_map_list'][xi][2]) 
 
                                                total_distance = 0 
 
                                                for node in node_list: 
 
                                                        for each_tuple in tuples_list: 
 
                                                                if each_tuple[0] == node: 
 
                                                                        sig_1_node = each_tuple[1] 
 
                                                                        break 
 
                                                        total_distance += numpy.linalg.norm(temp_node_dictionary[node]first_signature.node[sig_1_node] 
                                                                                      ['xyz'][:3]) 
 
                                                temp_node_dictionary.clear() 
 
                                                rotation_list.append((d,a,total_distance)) 
 
                                        # Now I must identify the lowest total distance 
 
                                        best_radian = min(rotation_list, key=itemgetter(2))[1] 
 
                                        a = best_radian 
 
                                        # Now I need to actually rotate all of the atoms in the second signature 
 
                                        rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-  
                                                                         cos(a))+y*sin(a)], [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), 
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                                                                         y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),  
                                                                         cos(a)+(z*z)*(1-cos(a))]]) 
 
                                        for node in second_signature.nodes(): 
 
                                                new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose 
                                                                               (second_signature.node[node]['xyz'][:3]))) 
 
                                                new_coordinates_a = numpy.append(new_coordinates,1) 
 
                                                second_signature.node[node]['xyz'] = new_coordinates_a 
 
                                        # Now I need to add to the growing graph 
 
                                        # First, I'll add the nodes not involved in docking 
 
                                        nodes_to_add = [x for x in second_signature.nodes() if x not in graph.graph['docking_map_list'][xi][3]] 
 
                                        for node in nodes_to_add: 
 
                                                # Adding in label change because of conflicting fragments with the same labels 
 
                                                new_node_id = 100*(xi+1) + node 
 
                                                conformer.add_node(new_node_id, atom= second_signature.node[node]['atom'], xyz =   
                                                                                  second_signature.node[node]['xyz'], old_id = node) 
 
                                        # Next, I'll need to add all edges located in signature two which don't involve docking nodes 
 
                                        edges_to_add = [edge for edge in second_signature.edges() if edge[0] not in graph.graph['docking_map_list'] 
                                                                  [xi][3] and  edge[1] not in graph.graph['docking_map_list'][xi][3]] 
 
                                        for edge in edges_to_add:                                    
 
                                                new_edge_0 = edge[0] + 100*(xi+1) 
 
                                                new_edge_1 = edge[1] + 100*(xi+1) 
 
                                                conformer.add_edge(new_edge_1, new_edge_0, type = second_signature.edge[edge[0]][edge[1]]['type']) 
 
                         # Now I need to add edges within the docking zone involving one node from signature two and one from signature one 
 
                                        next_edges_to_add = [] 
 
                                        for edge in second_signature.edges(): 
 
                                                if edge[0] not in graph.graph['docking_map_list'][xi][3] and edge[1] in graph.graph 
                                                ['docking_map_list'][xi][3]: 
 
                                                        node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[1]) 
 
                                                        if xi == 0: 
 
                                                                node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] 
 
                                                        else: 
 
                                                                node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] + (100*xi) 
 
                                                        new_edge_0 = 100*(xi+1) + edge[0] 
 
                                                        next_edges_to_add.append( ( new_edge_0 , node_in_1 , second_signature.edge 
                                                        [edge[0]][edge[1]]['type']) ) 
 
                                                elif edge[0] in graph.graph['docking_map_list'][xi][3] and edge[1] not in graph.graph['docking_map_list'] 
                                                [xi][3]: 
 
                                                        node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[0]) 
 
                                                        if xi == 0: 
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                                                                node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] 
 
                                                        else: 
 
                                                                node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] + (100*xi) 
 
                                                        new_edge_1 = 100*(xi+1) + edge[1] 
 
                                                        next_edges_to_add.append ( ( node_in_1 , new_edge_1 , second_signature.edge[edge[0]] 
                                                        [edge[1]]['type']) ) 
 
                                                else: 
 
                                                        pass 
 
                                        for edge in next_edges_to_add: 
 
                                                conformer.add_edge(edge[0],edge[1],type = edge[2]) 
 
                                conformer_list_i.append(conformer) 
 
                        self.conformer_lists.append(conformer_list_i) 
 
                conformer_count = 0 
 
                conformer_list_count = 0 
 
                for list_i in self.conformer_lists: 
 
                        conformer_list_count += 1 
 
                        conformer_count += len(list_i) 
 
                print 'Overall I have generated:', conformer_list_count, 'unique graphs with:', conformer_count, 'total conformers.' 
 
        def quicker_geom_test(self): 
 
                for x in range(len(self.compressed_graphs)): 
 
                        graph_1 = self.compressed_graphs[x][1] 
 
                        graph_2 = self.compressed_graphs[x][0] 
 
                        nm = iso.categorical_node_match('atom','C') 
 
                        em = iso.categorical_edge_match('type',4) 
 
                        GM = iso.GraphMatcher(graph_1,graph_2, node_match=nm, edge_match=em) 
 
                        if GM.is_isomorphic(): 
 
                                print 'Isomorphic' 
 
                        else: 
                                print 'Not Isomorphic' 
 
        def quick_geom_test(self,cutoff_2): 
 
                for x in range(len(self.compressed_graphs)): 
 
                        total_graphs = len(self.compressed_graphs[x]) 
 
                        print 'Total graphs', total_graphs 
 
                        matched_graphs = 0 
 
                        for graph_1 in self.compressed_graphs[x]: 
 
                                for graph_2 in self.conformer_lists[x]: 
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                                        match = 'yes' 
 
                                        nm = iso.categorical_node_match('atom', 'C') 
 
                                        em = iso.categorical_edge_match('type', 4) 
 
                                        GM = iso.GraphMatcher(graph_1,graph_2,node_match=nm,edge_match=em) 
 
                                        if GM.is_isomorphic(): 
 
                                                for edge in graph_1.edges(): 
 
                                                        nodeA = edge[0] 
 
                                                        nodeB = edge[1] 
 
                                                        nodeC = GM.mapping[nodeA] 
 
                                                        nodeD = GM.mapping[nodeB] 
 
                                                        d1 = numpy.linalg.norm(graph_1.node[nodeA]['xyz'][:3]-graph_1.node[nodeB]['xyz'][:3]) 
 
                                                        d2 = numpy.linalg.norm(graph_2.node[nodeC]['xyz'][:3]-graph_2.node[nodeD]['xyz'][:3]) 
 
                                                        if fabs(d1-d2) > float(cutoff_2): 
 
                                                                match = 'no' 
 
                                                                break 
 
                                                if match == 'yes': 
 
                                                        matched_graphs += 1 
 
                                                        break 
 
                                                else: 
 
                                                        continue 
 
                                        else: 
 
                                                print 'These were not isomorphic.' 
 
                        print 'For graph:', x, '...', matched_graphs*100/total_graphs ,'percent of the graphs were matched.' 
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Appendix B – Solutions to Pharmacophore Case Study 
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Rank 

Structure 
Metric 

(Strain/Local Minima Strain) 

1 

 

 
 
 

1.09 

2 

 

 
 
 

1.13 

3 

 

 
 
 
 

1.45 



241 
 

4 

 

 
 
 
 

1.47 

5 

 

 
 
 
 
 

1.55 

6 

 

 
 
 
 
 

1.61 

7 

 

 
 
 
 

1.61 

C

I

C

C

C

C

C

C

N

C

C N

C

C

C

C

C

C O

CCC

N

H

S

O
O

C

C

C

C C

C

S

O
O

N

H

C

N C

N

H

H

N

C

N C

H

CC

C

N

H

H



242 
 

8 

 

 
 
 
 
 

1.80 

9 

 

 
 
 
 

1.93 

10 

 

 
 
 
 
 

1.96 

11 

 

 
 
 
 

2.04 

N

H

H C

C

C

C

S

O
O

N

C

C

N C

H

N

C

N C

C

N

H

C

C

C
N

C

C
C

C

C

C

C

Cl

C

N

C

C C

NS
S

O

O

N

H

C

C
C

C
N

C

C
C

C

C

N

H

H C

C

C

C

C

C

C

N

C

N H

C

C

N

H

S

O
O

C

C

N

H

H C

C

C

C

C

C

C

O C

N

C

N H

C

C

N

H

S

O
O

C

C



243 
 

12 

 
 
 
   

 
 
 
 
 
 

2.15 

13 

 

 
 
 
 
 

2.22 

14   
 
 
 
 

2.39 

C

Cl
C

C C

C

N

C

C

CC

NC

C C

C

N

H

S

O
O

C

N

S C

C C
N

C

C

C

C

N

C

C

C C

N

C

C

C

C
C

C
C

C

N

H
S

O

O

C

C C

S
C

C



244 
 

15   
 
 
 
 
 
 

2.56 

16 

 

 
 
 
 
 

3.11 

17 

 

 
 
 
 
 

3.28 

18   
 
 
 
 

3.40 

C

N

C

C

N

C

C

C

C

C

C

Br

C

C

F

C

Br

N

H

S

O
O

C

C

C

O

C

C

C

C C

C

S

O
O

N

H

C

C C

C

C

C

C
N

H

CC

C

N

H

H



245 
 

19 

 

 
 
 
 
 

3.88 

20   
 
 
 
 
 
 

3.92 

21 

 

 
 
 
 
 

4.68 

22 

 

 
 
 
 

5.24 

 

C

I

C

C

C S

O

O

N

H

C

C

C

C

C

N

C

N

C

C

C

C

O

C

C

CC

N

H

H C

C

C

C

S

O
O

C

C

C

N C

H

N

C

N C

C

N

H

C

C

C

C

C

C
N

H

C

C C

C

N

H

C

C

N

C

C
C

C
CC

S

O
O

C

C

C

CC

C

C


