

Computer-Aided Molecular Design with
Multi-Dimensional Characterization

by

Robert Hartwell Herring III

A dissertation submitted to the Graduate Faculty of

Auburn University
in partial fulfillment of the

requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama

12/13/2014

Keywords: molecular design, informatics, descriptors

Copyright 2014 by Robert Hartwell Herring III

Approved by

Mario R. Eden, Chair, Professor of Chemical Engineering
Maria L. Auad, Associate Professor of Polymer and Fiber Engineering

Allan E. David, Assistant Professor of Chemical Engineering
Christopher B. Roberts, Dean, Professor of Chemical Engineering

ii

Abstract

In this work, a methodology for the solution of computer-aided molecular design (CAMD)

problems with property models utilizing descriptors of varying dimensionality has been

presented. The problems encountered within this field typically require the selection, or

design, of pure chemicals, as well as mixtures, exhibiting a desired set of properties and

attributes. These properties and attributes are captured through property models, which

have widely varying forms. These property models are most often a function of molecular

descriptors, which provide a quantitative reference to the structural features in a molecule.

There are multitudes of descriptor types, each which can be immediately categorized

based on the dimensionality of information they capture. This is one of the strengths of

computer aided molecular design, the flexibility to develop a specific model for each

property of interest. However, it often leads to the selection of very complex and widely

differing property models for each property of interest. An ideal CAMD methodology

would not restrict the property modelling stage to certain types of independent variables,

and as such, could solve these problems on a single platform. The problem with

developing such an algorithm is that the descriptors chosen are often of varying

dimensionalities. Inclusion of descriptors beyond two-dimensional requires some

consideration of the potential energy surface, or conformational space, for each candidate

solution. In addition, the region in which to search for solutions becomes difficult to

identify because each property model has its own applicability domain, within which

predictions can be made with increased confidence.

The approach presented within this dissertation, aimed at solving such problems,

utilizes a fragment based descriptor known as the signature descriptor. Previous

applications using this descriptor were shown to be successful in terms of solving the

problem in an efficient manner while identifying novel solutions. Extension of this

descriptor to include spatial information, along with the techniques necessary for using

this data, is presented. This has allowed for the estimation of likely local energy minima

without the conventional conformational analysis for each potential solution, which has

been shown to be computationally intensive. The nature of signature descriptors, being

fragment based, allows for an efficient description of which region in chemical space to

search for solutions and also facilitates reconstruction of solutions matching a set of

descriptor values. A description of previous approaches taken to solve problems of this

nature has been outlined such that the benefits of the proposed technique could be

exemplified. In addition, several studies have been provided to verify the proposed

methodology.

Acknowledgements

Foremost, my success in the graduate program at Auburn University would not have been

possible without the support and guidance provided by my advisor Dr. Mario Eden as

well as the former department head, Dr. Chris Roberts. They were extremely helpful to

me throughout my stay at Auburn and had unquestioning faith in my ability to perform as

a graduate student. Mario accepted me into his group during a transitional phase for me

and has provided an environment in which I was able to thrive as a researcher and

develop as a professional. He also provided the opportunity for me to travel the world

presenting my work and was there for support every step of the way. I am forever

grateful for his guidance as an advisor and the friendship that has developed alongside it.

I would also like to acknowledge the support provided by my committee members, Dr.

Maria Auad and Dr. Allan David. Their feedback and support during the development of

my dissertation was invaluable and allowed me to maximize the quality of my work. I

was fortunate to have an incredible group of students within my research group from

which I could bounce ideas off of and also provide an occasional distraction from work

when it was called for. This includes Dr. Subin Hada, Dr. Susilpa Bommareddy, Dr.

Nishanth Chemmangattuvalappil, Dr. Wei Yuan, Dr. Charles C. Solvason, Dr. Zheng Liu,

Mr. Colin Haser, Mr. Narendra Sadhwani, Mr. Vikrant Dev, Mrs. Sarah Davis, and Mr.

Shounak Datta. I have a special appreciation for one of the closest friendships I have

developed in my lifetime with Dr. Subin Hada. We came from a small college in Mobile,

AL and were destined to conduct research together here at Auburn.

Finally, I have to acknowledge the support provided to me by my family. My mother and

father, Vicki Herring and Robert Herring Jr., have always been there for me along with

my two sisters, Juli and Shelly, and step father, Bo Olsen. When the stresses of graduate

life became too heavy, they were there for me and without them I could not have

succeeded. Last but not least, my girlfriend, Lyssa Youngblood, was supportive and

understanding of my long hours and late nights spent meeting the various challenges I

encountered throughout my research.

Table of Contents

Abstract ... ii

Acknowledgements .. i

List of Figures .. i

List of Tables ... i

1. Introduction ..2

1.1 Challenges and Motivation ...3

1.2 Scope and Objectives ...5

1.3 Significance of Research ..7

1.4 Organization ...9

2. Background ..13

2.1 Computer-Aided Molecular Design Approach ..14

2.2 Molecular Descriptors ..18

2.2.1 0D-1D Descriptors ...20

2.2.2 2D Descriptors ...21

2.2.3 3D Descriptors ...25

2.3 Molecular Modeling ...35

2.3.1 Molecular Mechanics ..36

2.3.2 Quantum Chemical Methods ...38

2.3.3 Geometry Optimization ...41

2.4 QSAR/QSPR ..44

2.4.1 Variable Selection Techniques ..45

2.4.2 Mapping Descriptors into Attribute Space ..50

2.5 Fragment Based Property Models ..58

2.5.1 Group Contribution Method ..60

2.5.2 Pharmacophore Models ...63

2.5.3 Signature Descriptor ..64

2.6 Solution Techniques in CAMD ..70

2.6.1 Database Search ...70

2.6.2 Generate and Test ..75

2.6.3 Programming and Optimization ..78

3. Methodology ..84

3.1 Deterministic Solution Approach ...87

3.1.1 Identification of Property Models ...88

3.1.2 Data Set Selection..89

3.1.3 Conformational Analysis ...90

3.1.4 Spatial Signature Development ...91

ii

3.1.5 Compression of Spatial Information ...91

3.1.6 Creation of Bonding Network ...94

3.1.7 Generation of Structural Isomers ...95

3.1.8 Generation of Conformational Isomers ...98

3.1.9 Extension to More Complex Structures ..104

3.2 Stochastic Solution Approach ..107

3.2.1 Overall Genetic Algorithm Methodology ...110

3.2.2 Generation of Starting Population ...113

3.2.3 Fitness Calculation ..115

3.2.4 Genetic Operators ..117

4. Case Studies ...122

4.1 Solvent Design Study ...123

4.1.1 Conclusions ...127

4.2 Design of Alkyl Substituent for Rice Plant Fungicide ...128

4.2.1 Conclusions ...132

4.3 Geometry Estimation Technique Analysis ...133

4.3.1 Analysis of Methodology in Organic Space ..134

4.4 Structure Based Design of Non-Peptide Mimetics ..139

4.4.1 Pharmacophore and Non-Peptide Mimetics ..139

4.4.2 Model Information ...140

iii

4.4.3 Atomic Signature Development ..141

4.4.4 Combinatorial Optimization ..143

4.4.5 Conclusions ...145

4.5 Solvent Design with Genetic Algorithm ..145

4.5.1 Development of Spatial Signatures ...147

4.5.2 Parameters Utilized ...148

4.5.3 Results and Conclusions ..149

5. Conclusions and Future Direction ...153

5.1 Improved Simulation Techniques ..155

5.2 Consideration of Proteins ...157

5.3 Simulated Annealing ..160

References ..162

Appendix A – Python Code for Proposed Methodology ...173

A.1 – Creation of Spatial Atomic Signatures from Directory173

A.2 – Network Generation ...179

A.3 – Molecular Signature Class with Feasibility Functions183

A.4 – Genetic Algorithm ..194

A.5 – Code for Expedited Molecular Mechanics Analysis ..224

A.6 – Geometry Verification Code ..226

Appendix B – Solutions to Pharmacophore Case Study ..240

List of Figures

Figure 2.1 - Example of constitutional descriptor correlation. ... 21

Figure 2.2 - Example calculations of Wiener index. .. 23

Figure 2.3 - Overview of geometrical descriptors. ... 27

Figure 2.4 - Outline of CoMFA approach. ... 33

Figure 2.5 - Visualization of SAR approach. .. 45

Figure 2.6 - Mean centering and scaling in PCA. ... 53

Figure 2.7 - Dimensionality reduction achieved with PCA. ... 54

Figure 2.8 - PLS regression visualization. .. 55

Figure 2.9 - Classification through the use of a decision tree. .. 57

Figure 2.10 - Overview of inverse property prediction. ... 59

Figure 2.11 – Examples of first and second order groups .. 61

Figure 2.12 - Examples of a pharmacophore model. .. 64

Figure 2.13 - Example of atomic signature descriptors of varying height. 65

Figure 2.14 - Development of atomic signature up to height 3. 67

Figure 2.15 - Example of height three molecular signature enumeration. 68

Figure 2.16 - Results of 2D and 3D similarity searches. .. 75

Figure 2.17 - Linkage of CAMD and molecular modeling. ... 78

Figure 2.18 - Flowchart for inverse QSPR workflow optimization approach. 80

Figure 3.1 - Overview of methodology developed. .. 87

Figure 3.2 – Cutoff criterion example. .. 92

Figure 3.3- Example of compatible ‘bonding network’ edge. .. 94

Figure 3.4- Example of consistency equation for nitroglycerine. 96

Figure 3.5 – Generation of structural isomers. ... 97

Figure 3.6 – Example of fragment selection for geometry development. 100

Figure 3.7– Utilization of developed conformational isomers. 103

Figure 3.8 – Common Genetic Algorithm Methodology.. 109

Figure 3.9 – Proposed Genetic Algorithm Utilizing Spatial Signature Descriptors 111

Figure 3.10 – Atomic signatures for nodes in molecular graph 112

Figure 3.11 – Effect of α on Fitness Distribution ... 116

Figure 3.12 – Effect of Crossover on Size Distribution .. 118

Figure 3.13– Selection of Type of Mutation Operator ... 119

Figure 3.14 – Implementation of Crossover Operator .. 121

Figure 4.1 - Fungicide structure. ... 128

Figure 4.2 – Geometry verification data set. ... 135

Figure 4.3 – Geometry verification test set. .. 135

Figure 4.4- Example potential energy diagrams for (A) butane and (B) butene 137

Figure 4.5 - Conformers after compression. ... 138

Figure 4.6 - Pharmacophore Model for 5-HT6. .. 141

Figure 4.7- Example pharmacophore groups. ... 143

Figure 4.8 - Solutions to antagonist design case study. .. 144

Figure 4.9 – Fitness as a Function of Generation ... 150

Figure 5.1 - Examples of Common Ionic Liquid Cations and Anions 157

List of Tables

Table 2.1 - Definitions of Tanimoto Coefficient and Euclidean Distance. 73

Table 3.1 – Cutoff criterion compression example. .. 93

Table 4.1 - Property constraints for solvent design study. .. 123

Table 4.2 - Property models for solvent design study. ... 123

Table 4.3 - All height-2 atomic signatures for linear alkanes. .. 125

Table 4.4 - Solutions for solvent design study. ... 127

Table 4.5 - Fungicide substituent property constraints. .. 129

Table 4.6 - Fungicide study property models. .. 129

Table 4.7 - Molecular signature solutions to fungicide problem. 131

Table 4.8 - Substituent solution isomers. .. 132

Table 4.9 - Conformers identified with MC search. ... 136

Table 4.10 – Common Solutions Identified During Solvent Design Case Study 150

2

1. Introduction

The field of computer-aided molecular design (CAMD) has seen an exponential increase

in the complexity of problems considered, which has been made possible through a

paralleled increase in algorithms and hardware available to solve these problems. This

area has such humble origins and has expanded through continued contributions from

many fields including medicinal chemistry, computer sciences, computational chemistry,

bioinformatics and chemical engineering. Problems ranging from the identification of

optimal solid state catalysts to the synthesis of potent HIV-1 protease inhibitors have

benefited from CAMD techniques and studies with ever-increasing complexity are being

considered.

The ability to describe molecular structures accurately and uniquely is possible

through the utilization of molecular descriptors. These descriptors can capture a variety

of aspects such as charge distribution, globularity, size, and complexity of structures

under consideration. These are the details necessary for correlation to the various

properties and activities of interest, which is done through the generation of mappings

between descriptor space and attribute space. What descriptors offer is the ability to

translate the characteristics of a molecular structure into a numerical domain. With this

information, one is able to apply the established techniques of numerical analysis towards

solving CAMD problems. However, one limitation to these increasingly informative

models is the ability to use them in an efficient manner. The original property models

typically considered very simple descriptors, such as molecular weights or atom counts.

This was sufficient for correlation to common physico-chemical properties, however, to

3

capture the variance of more complex properties, it became necessary to use more

complex descriptors. This increase in complexity demands improved CAMD solution

techniques. Some techniques benefited from a unique description of the problem such

that various programming and optimization algorithms could be applied to scan larger

chemical search spaces. Others relied on efficient handling and consideration of data for

solving these more complex problems. However, the most successful techniques have

taken advantage of both approaches.

1.1 Challenges and Motivation

The improved ability to accurately model molecular structures and their interactions with

each other has provided a wealth of information which was previously unattainable. This

new information is now being produced with incredible accuracy such that its correlation

with experimental properties is resulting in models which can be successfully

interpolated and extrapolated around the original data set. This provides an opportunity to

identify chemical solutions, with a set of desired properties, which have not been

included in the original data set. The search space, known as chemical space, for these

potential solutions is vast as the number of just small organic structures has been

estimated to be around 1060 (Kirkpatrick and Ellis, 2004). Chemical space represents all

possible collections and arrangements of atoms producing unique molecular structures.

Such a large search area demands efficient methods of scanning for solutions. In addition,

the varying applicability of these models, or the confidence associated with a models

prediction for a specific region of chemical space, must be taken into consideration to

produce reliable results.

4

 These improved molecular modelling techniques, in addition to providing

increasingly accurate information, are also providing much more complex information.

For example, the spatial characteristics, or three-dimensional information, of molecules

under study are now accessible through simulation. Such information has necessitated the

creation of new independent variables capable of systematically representing this data

across a variety of molecules. The ability to utilize these models in a CAMD approach

requires some technique for estimating these values in an efficient manner such that a

larger region of chemical space can be considered for improved solutions. While it is

possible to thoroughly examine the spatial characteristics of each structure in a given data

set, such that a more accurate and predictive model can be produced, the benefits of being

able to quickly estimate this information during the solution process are obvious. In

addition, the conformational characteristics of a given molecule are often incredibly

complex, having multiple accessible conformers. This must be taken into consideration

during the solution process as well.

Alongside improved molecular modelling techniques, which have introduced new

ways to characterize molecules, improvements in model development techniques have

followed. Specifically, variable selection techniques, which identify the optimal set of

independent variables useful in characterizing an attribute of interest, have become very

important. With the introduction of spatial molecular descriptors, a multitude of

topological and topochemical descriptors with increased complexity have been designed

as well. Because of this, there are thousands of molecular descriptors available today, of

which any combination could produce the optimal set of independent variables useful for

characterizing a chosen attribute. With these improved variable selection techniques we

5

are finding that the optimal set of descriptors is often varying in the dimensionality of

information captured. This means that we often have topological, or two dimensional,

and topographic, or three dimensional, indices in one equation. This creates a challenge

for designing a CAMD approach capable of handling these models efficiently. One can

imagine that each type of property or attribute will have its own unique combination of

molecular descriptors. The ability to handle multiple models at once, each with a widely

varying set of information, creates a powerful CAMD technique as a more globally

optimal solution can be identified when compared to considering only one property at a

time. In addition, solving these equations in a single pass would allow for a more

efficient search method than one that is iterative in nature.

1.2 Scope and Objectives

The requirements placed on a CAMD approach capable of handling the latest techniques

in molecular modelling and model development include:

1) The ability to quickly estimate spatial capabilities of a molecule under

consideration without extensive simulation efforts would allow for consideration

of a larger region of chemical space.

2) The decision of which region of chemical space to scan, such that each potential

solution would fall under or within the applicability domain of each property

model utilized, must be made.

3) The ability to simultaneously consider descriptors of widely varying nature,

ranging from topological to topographic, is a necessity.

6

Within this dissertation, a methodology for the solution of CAMD problems with

multi-dimensional characterization is proposed. This technique utilizes a fragment based

descriptor, known as a spatial atomic signature, to build solution structures with targeted

properties and attributes. Previous approaches for solving problems of this nature were

limited to database searches and inefficient generate and test techniques which relied on

time consuming analysis of the potential energy surface of each potential solution. This

technique will allow for the consideration of a much larger region of chemical space,

with minimal compromise on the accuracy of estimation made for higher dimensional

information. The approach applies a graph based representation of molecular structures in

which fragments are utilized to build potential solutions, which allows for a very efficient

representation and consideration of a defined region in chemical space along with its

associated conformational capabilities.

The spatial information used during the CAMD algorithm is initially generated

through an extensive conformational analysis of a given data set. Much of this

information is overlapping, or over-defined, and a compression algorithm has been

introduced to minimize the potential for combinatorial explosion. Combinatorial

explosion is an effect seen quite often in the solution of combinatorial optimization

problems of this nature. These extensive molecular modelling efforts are done up front as

opposed to within the CAMD approach, which saves time and allows for a larger region

of chemical space to be searched.

In addition, the canonical fragment based representation of molecular structures

through the atomic signature convention allows for an efficient search through a defined

region of chemical space. A canonical representation ensures that a given molecular

7

fragment can only be represented in one way, which ensures that potential solutions are

only visited once and minimizes the computational load of a given CAMD problem. Also,

since the fragments are developed from an overlapping data set, which consider

structures familiar to all property models utilized, the likelihood of a solution falling

within the applicability domain of all models is significantly increased.

It is the overall goal of this research to be able to solve CAMD problems utilizing

multiple property models, each with descriptors of varying complexity. Specifically, the

inclusion of spatial descriptors is focused upon and the efficient spatial characterization

of molecules considered is established. The approach is based on a canonical fragment

based descriptor to allow for a combinatorial optimization based approach which

minimizes the potential for combinatorial explosion so larger regions of chemical space

can be considered. The approach is designed so that a deterministic or stochastic search

for chemical solutions can be applied for searching specific regions of chemical space

with varying degrees of completeness and speed.

1.3 Significance of Research

Previously, the solution of problems of this nature was done in an iterative manner where

the property models were tackled with increasing complexity. This is an inefficient

technique for solving CAMD problems with multiple properties of interest. The presented

methodology is able to efficiently consider all of these models at once, on a single

platform, such that the problem can be solved in a single pass regardless of the number

and complexity of molecular descriptors utilized. The space in which these problems are

tackled also becomes very well defined with the nature of the proposed techniques. This

space is defined in an efficient manner, such as to avoid the combinatorial explosion

8

often associated with previous attempts at searching a comparable region of chemical

space.

In addition, the consideration of spatial characteristics within the chosen search

space is often lacking. The typical approach was to identify a single conformer, which

was identified as being a potential local conformational isomer. This information was

then utilized in establishing the molecule’s spatial characteristics and ultimately its

likelihood of exhibiting the properties of interest. It has been established that the actual

conformational status of a given molecule is best represented by a collection of

conformers, each with a varying likelihood of existing in solutions. This likelihood was

based on the internal, or conformational, energy associated with this conformer. As such,

the most realistic representation of the spatial characteristics for a given molecule would

consider several potential conformational isomers. This methodology allows for the

consideration of multiple conformers, which have been shown to be representative of the

given local energy minima. This is done in an efficient manner, such that thorough

molecular modelling techniques are not necessary.

With the consideration of increasingly complex problems, a CAMD approach

capable of handling this information has become necessary. The ability to model

interactions between groups of molecules such as ligands and receptors has allowed for

the development of interesting spatial descriptions of these phenomena. Also, the

traditional descriptors, which are efficient and effective at characterizing simple physic-

chemical properties, still have a place in the arena of CAMD. This methodology can

handle previously established ideologies as well as state of the art descriptions of

molecules, thus allowing for the solution of a wide range of CAMD problems.

9

1.4 Organization

The format of this dissertation is such that the background is first introduced to

provide the reader with enough knowledge to skeptically interpret the proposed

methodology. This background, in chapter two, includes topics such as molecular

modeling, property models, molecular descriptors and CAMD solution techniques with

many convenient examples provided. The first section in chapter two introduces the

fundamentals of computer-aided molecular design. This develops the “big picture” from

which increasing levels of detail can be uncovered. The second section discusses

molecular descriptors, which provide the ability to mathematically represent molecular

structures. These descriptors can be immediately categorized by the dimensionality of

information they capture, ranging from 0-D to 4-D, and each of these dimensions are

further discussed. The third section introduces molecular modelling techniques, which are

necessary to develop molecular descriptors with dimensionality higher than two. These

techniques can be based on molecular mechanical simulations, where classical mechanics

are used to model molecular systems, or quantum mechanical simulations, which

explicitly consider the electrons within the system being studied. Further, the application

of molecular and quantum mechanics towards estimating the geometry of a given

molecule is considered within the geometry optimization section of chapter two. Sections

four and five of chapter two address the concept of property models as well as how they

are developed. The model types considered include quantitative structure-property

relationships and fragment based property models. Each unique model type has its own

requirements for application within a computer-aided molecular design problem, often

10

requiring several solution techniques. These techniques are discussed within the final

section of chapter two, and several examples are provided.

The developed methodology is covered next in chapter three and provides the details

of the proposed technique. This includes the initial steps necessary for setting up the

problem as well as the subsequent steps taken, ultimately leading to a solution set of

molecular structures. Two distinct approaches were developed, and each is best suited for

a specific type of molecular design problem. A deterministic approach was developed for

smaller problems and this allows for the problem to be thoroughly considered as the

entire solution space is searched. In addition, a stochastic technique was developed for

larger studies in which it would be too time consuming to consider the entire search space.

Within both approaches it is first necessary to identify the appropriate property models,

select a data set, perform a conformational analysis on this data set, compress this

information and ultimately arrive at a set of molecular fragments with which to proceed

in generating solutions. Section one of chapter three covers these initial steps along with

the proposed deterministic approach and section two covers the stochastic solution

approach. The stochastic approach is an evolutionary algorithm which applies concepts

familiar to natural selection. This requires the generation of a starting population along

with several operators which alter the population through acts of crossover and mutation.

The goal is to apply selective pressure and guide/transform the population to ultimately

converge into a set of molecules with the desired characteristics.

This method is exemplified in chapter four, which introduces several case studies

including: solvent design, fungicide substituent design and non-peptide mimetic inhibitor

design. In addition to these case studies, another section has been included which

11

provides verification of the underlying assumption associated with this methodology.

This assumption is that one can generate an estimation of a potential energy surface, by

identifying several likely conformational energy minima, through the use of fragment

geometry information. This is one key idea responsible for the increased efficiency

associated with the novel approach. Within the appendix, python code for application of

each of the discussed techniques can be found.

The deterministic approach towards solving computer-aided molecular design

(CAMD) problems with multidimensional descriptors has been published in Computer

Aided Chemical Engineering (Herring et al., 2012a; Herring et al., 2012b). This initial

work allows for the solution of CAMD problems, utilizing descriptors of varying

complexity and dimensionality, on a single platform. This approach was extended to

consider more complex structures and design characteristics with the structure based

design of non-peptide mimetics (Herring et al., 2013), which was published in Computer

Aided Chemical Engineering. In addition the stochastic approach was exemplified

through two publications in Computer Aided Chemical Engineering (Herring and Eden,

2014 a,b). Many of the underlying techniques associated with this thesis were also

applied in several related studies. For example, an interesting technique for the

development of a quantitative structure-property model relating solvent structure to

crystal morphology was also developed (Haser et al., 2014) and provides an excellent

example of property model development techniques. Also, some concepts of generating

solution structures, relating to ionic liquids, from molecular fragments using computer-

aided techniques have also been developed (Hada et al., 2013). In addition the quantum

chemical characterization of ionic liquid properties has been utilized within a molecular

12

design application (Davis et al., 2014). Additionally, an invited publication encompassing

the techniques and application of the developed stochastic evolutionary molecular design

approach will soon be published in a special issue of Computers & Chemical Engineering.

13

2. Background

The background section of this dissertation will present the ideas and techniques

necessary for an understanding of the proposed methodology. In addition, it will provide

a comparison through which to exemplify the benefits and novel techniques within this

approach. The first section introduces the concept of computer-aided molecular design

and covers the basic steps seen in problems approached within this field. The second

section discusses the various types of molecular descriptors utilized, each of which has its

own strengths and weaknesses in characterizing molecules. Descriptors can be

categorized based upon the dimensionality of information they capture and this ranges

from 0D to 4D, so far. This section is important as it compares each descriptor type,

while offering several examples, such that the requirements for developing and using

these descriptors can be addressed. The third section introduces various concepts in

molecular modeling, including molecular mechanics, quantum mechanics, and geometry

optimization. These techniques are necessary for estimation of spatial and electronic

properties for molecules in a molecular design study. The fourth background section

covers the various types of quantitative structure property (activity) models, and the

techniques used to develop these. The approach taken to develop a model of this type can

be broken into a few basic steps including variable selection, mapping (e.g. regression

analysis), and model verification. Without these models, the design of molecules with

desired properties and activities would be much more limited. The fifth section discusses

the concept of fragment based property models. The three types covered in detail here are

group contribution, pharmacophore and atomic signature based models. Fragment based

14

property models are considered separately for two reasons: (1) They have a special

usefulness in the inverse property model approach since molecular fragments allow the

enumeration of solution structures to be done in a much more efficient manner and (2)

The methodology proposed in this thesis is based on the utilization of fragment based

descriptors, namely the signature descriptor. The final section presented within the

background covers the various techniques useful for solving molecular design problems.

These have been broadly categorized as being database searches, generate and test

approaches and programming/optimization. Several modern examples have been

provided for each approach type for a hands on explanation of the pros and cons of each

technique. It is the author’s intent that, after reviewing these sections, consideration of the

proposed methodology will become more tangible and its novel techniques will be more

readily noticed.

2.1 Computer-Aided Molecular Design Approach

Computer-aided molecular design (CAMD) involves the selection or identification of

molecules with an increased likelihood of exhibiting a set of desired characteristics or

attributes. This area falls under the more generalized category of product design, which

can further include the consideration of mixture design and sometimes process design.

Cussler and Moggridge [1] have suggested these four steps in the product design process:

1. Define needs;

2. Generate ideas to meet needs;

3. Select among ideas;

4. Manufacture product.

15

The first step is to identify the consumer/customer needs and this can be anything

from common macroscopic molecular properties to less tangible attributes such as feel,

smell, or color. Physicochemical properties represent explicit property constraints

because their values can be determined directly through a model or even determined

experimentally. Another form of property constraint includes those which are less

tangible, as mentioned earlier, and is referred to as an implicit property. These properties

cannot be measured or predicted by a model and must be inferred through databases, past

knowledge, and other measured or predicted properties. Once the relevant properties have

been identified, it is also necessary to set certain bounds on their acceptable values. This

is often done by establishing lower and upper bounds on the properties considered,

although sometimes only one bound is necessary. For example, toxicity is often

represented by the concentration resulting in a fifty percent mortality rate, LC50, for a

given test set and this property only requires a lower bound since an increased value

represents increased chemical safety. Other properties, such as the boiling point of a

solvent, must fall within certain acceptable limits and are more adequately constrained

with an upper and lower bound. It is necessary to ultimately relate these attributes to the

underlying chemical structures. The first through third steps represent the core of the

molecular design approach, which is where mixture design problems would be

considered in addition to single-component molecular design. The inclusion of mixture

design necessitates the use of certain models for estimating the mixture properties, often a

function of the individual component properties. The fourth step involves the design of a

process which can create the desired product in a safe and economic manner. When

product and process design are done simultaneously this is known as an integrated

16

approach and it allows for the identification of optimal component and process

specifications. For the purposes of this defense, CAMD will consist of the first through

third steps while excluding any mixture design applications.

Once the desired attributes, e.g. property bounds, have been decided, what remains

is to identify solutions exhibiting these attributes and choose the optimal solution(s). To

do this, structure-attribute relationships, also referred to as property models, are utilized.

There are many types of property models but they all aim to create a mathematical

relationship between the underlying chemical structure and the property of interest.

Molecular descriptors, which capture various features of the molecular structure, are used

as independent variables and the properties are dependent variables in this case. When

used in a forward manner, these models can predict the property exhibited by a certain

molecule within the applicable domain (AD) of that model. The AD can be defined in

many different ways and it represents a region of space where an increased confidence in

the predicted property value can be expected, as long as the molecule lies within this

space. This is pointed out as being important in the CAMD approach since many times

the molecules of interest are not available in the test set, meaning their properties are

unknown and reliable property estimations are crucial.

Achenie et al. (2003) have provided the following generic mathematical

programming representation of the typical CAMD problem:

ை஻௃ܨ	 ൌ ݕ்ܥሼݔܽ݉ ൅ ݂ሺݔሻሽ (1)

s.t.

 ݄ଵሺݔሻ ൌ 0 …process design specs (2)

17

 ݄ଶሺݔሻ ൌ 0 …process model equations (3)

 ݄ଷሺݔሻ ൌ 0 …CAMD specifications (4)

 ݈ଵ ൑ ଵ݃ሺݔሻ ൑ ଵ …process design constraints (5)ݑ

 ݈ଶ ൑ ݃ଶሺݔሻ ൑ ଶ …CAMD constraints (6)ݑ

 ݈ଵ ൑ ݕܤ ൅ ݔܥ ൑ ଷ …logical constraints (7)ݑ

In the equations above, x represents a vector of continuous variables and y represents the

vector of binary integer variables. Harper et al. (1999) have provided a classification for

the various CAMD approaches and this includes (a) Database search, (b) Generate and

Test, and (c) Mathematical programming and genetic algorithm. The equations utilized in

each type of approach will help clarify the techniques through mathematical examination.

A database search would satisfy only equation (6) above and this approach would be

limited to the consideration of only existing molecules. The generate and test approach

relies on equation (4) to generate feasible molecules and equation (6) to test if they are

within the property bounds desired. This approach, while more computationally intensive

than the conventional database search, introduces the opportunity to consider novel

structures. With this new opportunity comes a challenge, which is to decide how to

generate these new structures such that they fall reasonably within the AD of any

property models utilized. Most attempts at this have come from fragment based

approaches in which molecular fragments are used as building blocks to generate

molecules within a controlled region of chemical space. The generate and test approach is

most simply an exhaustive effort such that all feasible molecules, within the chemical

space designated by the chosen building blocks, are tested. This often leads to what has

been termed ‘combinatorial explosion’, which results from a combinatorial mathematics

18

problem becoming too large to solve in a reasonable amount of time because of the sheer

number of possible combinations. When this is the case, many have turned to the third

approach type, mathematical programming and genetic algorithm, which aim to alleviate

this problem. The programming approach takes many different forms depending on the

nature of the constraint equations involved, e.g. being linear or nonlinear. When the

CAMD problem can be defined in terms of linear equations, this often allows for the

identification of a globally optimal solution through methods such as the Simplex Method

(Nelder and Mead, 1965). Otherwise, there are equivalently many techniques for the

solution of non-linear programming problems including an array of stochastic techniques

which are adept at handling the combinatorially large and highly non-linear problems

encountered in CAMD. Overall, the adoption of CAMD methodologies has proven a very

fruitful effort in terms of identifying and understanding the effects of varying molecular

structure and has also saved time and expenses in the development of new chemical

solutions.

2.2 Molecular Descriptors

Molecular descriptors provide a way to numerically represent certain features of a

molecule, allowing for the mathematical characterization of structures such that the

desired properties and activities are defined as a function of these descriptors. This is

more formally expressed by Todeschini and Consonni (2009) as: "The molecular

descriptor is the final result of a logic and mathematical procedure which transforms

chemical information encoded within a symbolic representation of a molecule into a

useful number or the result of some standardized experiment." Descriptors can be initially

separated into two distinct categories: experimental measurements, often

19

physicochemical properties like boiling point, and theoretical molecular descriptors,

which are derived from symbolic representations of a molecular structure. While the

physicochemical properties might not be available for all compounds, theoretical

descriptors can be calculated for any possible chemical structure and contain no statistical

error due to experimental noise. Theoretical molecular descriptors can further be

classified by the dimensionality of information they capture. This classification scheme

results in the following categories of theoretical descriptors: 1) 0D-descriptors (i.e.

constitutional and count descriptors), 2) 1D-descriptors (i.e. list of structural fragments),

3) 2D-descriptors (i.e. graph invariants) 4) 3D-descriptors (e.g. quantum-chemical

descriptors and surface descriptors) 5) 4D-descriptors (e.g. CoMFA derived descriptors).

Comparative molecular field analysis (CoMFA) was developed by Cramer et al. (1988)

and generates a structure/activity correlation based upon the three-dimensional steric and

electrostatic fields of a molecule. Extension of descriptors to include four-dimensional

information typically requires the three-dimensional analysis of a set of conformational

isomers; This information can then be collectively utilized to generate the respective

four-dimensional descriptors. In addition, there can be theoretical descriptors which are

not cleanly categorized as above. One example of this would be the weighting of

conventional topological indices by geometric information as applied in the method of

ideal symmetry (Toropov, 1998). These indices were utilized in a predictive manner to

calculate the boiling points of a series of alkanes and showed a better performance than

the original topological descriptors.

Molecular descriptors have an inherent level of degeneracy that depicts how well

individual molecules are differentiated based solely upon their descriptor values. This

20

feature is very important when the model developed will be utilized in an inverse manner

to predict structures meeting the desired property/attribute value. Models built with

descriptors higher in degeneracy would have many more solution structures than one

built with less degenerate descriptors. Since the search space for such applications can

often be extremely large, it is desirable to reduce the solution set as much as possible. A

general trend of decreasing degeneracy with increasing descriptor dimensionality can be

observed. This trend is followed by an often significant increase in computational

demands brought about by the inclusion of 3D and 4D descriptors.

In addition to having a certain level of degeneracy, descriptors can also be

characterized by their invariance properties. Invariance refers to the ability of the

descriptor calculation algorithm to give a consistent value regardless of the form of

molecular representation utilized. A minimal requirement for molecular descriptors is

invariance to molecular numbering or labeling. The specific case of chemical invariance

considers whether or not the various atom types of a structure affect the descriptor value.

For example, topological descriptors utilizing atom type in their calculation are known as

topochemical indices, and those relying solely on connectivity information are known as

topostructural indices.

2.2.1 0D-1D Descriptors

0D-descriptors, also known as constitutional descriptors, are the simplest to compute and

still offer reasonable discrimination power for specific situations. Some example of

descriptors of this nature would be molecular weight, bond counts, atom counts, and

fragment counts. The example shown in Fig. 2.1 represents the utilization of carbon count,

a 0D descriptor, in creating a linear property model for the boiling point of a series of

a

i

m

s

c

‘

t

2

M

t

d

t

s

alkanes (C1

in the data.

1D-des

molecules u

substituents

chemical da

‘similarity’

towards a ce

2.2.2 2D De

Molecules c

theory (Bal

described by

the bonds. I

sub-graphs

-C7). This

Figure 2.1

scriptors ess

under consid

s, etc. This

atabases in

(e.g. conta

ertain biolog

escriptors

can be repre

aban, 1976

y a set of ve

In addition,

in the sam

simple tech

1 - Example

sentially acc

deration. Th

method of

an expedite

aining the d

gical activit

esented as g

; Trinajstic,

ertices V, re

the fragme

me manner. A

21

hnique was a

e of constitu

count for ce

his can be a

molecular

ed manner t

desired phar

ty).

graphs and th

, 1992; Rou

presenting t

ents present

A number

1

able to acco

utional desc

ertain struct

complete or

classificatio

to identify s

rmacophoric

his approach

uvray, 1971

the atoms, a

in a molecu

of descripto

ount for 97%

criptor cor

tural fragme

r partial list

on is often

structures w

c groups id

h is often te

1). A molec

and a set of

ular graph c

ors can ulti

% of the vari

relation.

ents found w

of function

used to sea

with a certai

dentified as

ermed chem

cular graph

edges E, rep

can be repre

imately be

iance seen

within the

nal groups,

arch large

in level of

important

mical graph

G can be

presenting

esented as

calculated

22

from this representation of a molecule and they are collectively known as graph

theoretical or topological indices.

Two vertices connected by an edge are considered to be adjacent and the adjacency

matrix A can uniquely describe a molecular graph. The adjacency matrix has elements aij

equal to 1 for all adjacent vertices and 0 otherwise. A path, in this context, is a succession

of non-repeating edges such that there is no discontinuity from one point to another. With

this in mind, for each pair of vertices in a chemical graph there exists at least one path

connecting them. The distance matrix D represents the shortest path dij between all pairs

of vertices in a graph. Both matrices are symmetrical with respect to their main diagonals

and have diagonal entries of zero since a vertex is unique and cannot be connected to

itself. These matrices are often utilized as the intermediate representation of a pure

chemical graph from which topological indices are derived.

The Wiener index (Wiener, 1947a,b), denoted by W, was among the first, and most

successful, topological indices utilized in structure property correlations. This topological

index is calculated from the distance matrix and is essentially the half-sum of all entries

in this matrix, being symmetric. As developed in Fig. 2.2, it can be seen that more

compact molecular graphs will have a smaller W value.

t

d

t

f

a

C

p

n

a

a

i

n

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 1
1 0
2 1
3 2
3 2
2 1
1 2
2 1

Anothe

the connect

different for

these indice

further defin

any positive

CH) specifi

path/cluster

noted. Each

and these at

adjacent no

index is cal

non-hydrog

߯	ଵ

2 3 3 2
1 2 2 1
0 1 1 2
1 0 2 3
1 2 0 3
2 3 3 0
3 4 4 3
2 3 3 2

Figur

er widely us

tivity index

rms. A spec

es which are

ne the index

e integer and

ies the subc

r, or chain-ty

h index calcu

toms are rep

on-hydrogen

lculated as

gen atoms an

ൌ෍ሺߜ௜ ௝ߜ

1 2
2 1
3 2
4 3
4 3
3 2
0 3
3 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ܹ ൌ	
ଵ

ଶ

re 2.2 - Exa

sed descript

x, which is

cific nomen

e all denote

x type. The

d designate

lass of mol

ype. The pat

ulation is ba

presented by

n atoms. Fo

shown in E

nd the summ

 ି଴.ହ	௝ሻߜ

23

ଵ

ଶ
∗ ሺ∑݀௜௝ሻ = 61

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
1
2
3
2
3
2
3

ample calcu

tor type wit

considered

clature has

d by χ. Two

left-side su

s the index

ecular conn

th type inde

ased only on

y their atom

or example

Eq. (2.1) wh

mation is ov

3

0 1 2 3 2
1 0 1 2 1
2 1 0 1 2
3 2 1 0 3
2 1 2 3 0
3 2 1 2 3
2 1 2 3 2
3 2 1 2 3

ulations of W

thin the 2D,

d the most

been develo

o superscrip

uperscript ca

order. The

nectivity ind

ex is assume

n the non-hy

mic δ value,

, the first-o

here i and j

er all bonds

3 2 3
2 1 2
1 2 1
2 3 2
3 2 3
0 3 2
3 0 3
2 3 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ܹ

Wiener ind

, or topolog

successful

oped to diff

pts and one

an attain a v

right side su

dex which c

ed when no

ydrogen ato

which is eq

order 1χ mo

 correspond

s in the grap

ܹ ൌ	
ଵ

ଶ
∗ ሺ∑݀௜௝ሻ ൌ

dex.

gical index,

index and

ferentiate an

subscript a

value of eith

ubscript (P,

could be pat

right side su

ms within a

qual to the n

olecular co

d to pairs o

ph.

ൌ 58

domain is

has many

nd identify

are used to

her zero or

C, PC, or

th, cluster,

ubscript is

a molecule

number of

onnectivity

f adjacent

(2.1)

24

The valence connectivity index is an extension to the original connectivity index and

represents an attempt to account for the chemical nature of vertices, or atoms, in a

molecular graph. In this case, vertices are no longer represented by their degree and are

weighted by valence delta values δi, which are calculated as shown in Eq. (2.2) where Zi
v

is the number of valence electrons in atom i, Zi is its atomic number, and Hi is the number

of hydrogen atoms attached to atom i. The most recent extension of the original

connectivity index is the electrotopological state index (Kier and Hall, 1999). The idea

with this new index is to consider that each atom within the molecule resides in a field

composed of every other atom and the result of these interactions is modification of the

intrinsic state of that atom to produce its bonded state within the context of the whole

molecule. The resulting electrotopological index combines the electronic and topological

effects acting on each atom within its field. The electrotopological state (E-state) of an

atom in a molecule is formulated as an intrinsic value, Ii, plus a perturbation term, ΔIi,

arising from the electronic interaction and modified by the molecular topological

environment of each atom in the molecule. The intrinsic value is calculated as shown in

Eq. (2.3) where δ and δv are the previously discussed delta and valence

௜ߜ ൌ ሺܼ௜ െ ௜ሻ/ሺܼ௜ܪ െ ܼ௜
௩ െ 1ሻ (2.2)

ܫ ൌ ቈ൬
2
ܰ
൰
ଶ

௩ߜ ൅ 1቉ (2.3) ߜ/

25

delta values while N represents the principal quantum number. The field effects are

calculated as a perturbation on the original atoms intrinsic value as shown in Eq. (2.4)

where N represents all atoms in the structure and rij is the topological distance, or number

of bond, between atoms i and j. The resulting electrotopological state of each atom, Si, is

then calculated as a summation of its intrinsic value and perturbation value. This

descriptor is differentiated from the previously applied ‘whole molecule’ descriptors in

that its value for specific atoms was utilized by itself, while the rest of the structure was

captured through the perturbation adjustment.

2.2.3 3D Descriptors

Just as 2D descriptors were termed topological indices, 3D descriptors are known as

topographic indices and they represent geometry dependent invariants of molecular

graphs. These descriptors were introduced because conventional topological indices

could not account for spatial molecular information such as stereoisomerism (e.g. cis and

trans) and molecular geometry estimations became more feasible through improvements

in computational power and geometry development algorithms. These descriptors require

information about the three dimensional, or geometric, arrangement of atoms in a

molecule and there are multiple techniques, with varying accuracy, available to estimate

this information. Experimentally, the molecular geometry can be obtained by various

spectroscopic and diffraction methods. Infra-red, microwave and Raman spectroscopy

can be used to obtain information about the geometry of a molecule based upon the

vibrational and rotational absorbance detected by these techniques. In addition, x-ray

 Δܫ௜ ൌ෍ሺܫ௜ െ ௝ܫ

ே

௝ୀଵ

ሻ/ݎ௜௝
ଶ (2.4)

26

crystallography, neutron diffraction and electron diffraction can be used to obtain

information about the structure of crystalline solids based on the distance between nuclei

and concentration of electron density. There are many techniques in the field of

molecular modeling that can be used for the computational based determination of

molecular geometry. These techniques can generally be categorized as empirical (e.g.

molecular mechanics), semi-empirical and ab-initio techniques. Empirical applications

use classical mechanics to model molecular systems and rely on force fields to provide

information about the feasibility of a suggested molecular structure. These methods are

termed ‘empirical’ because the force-field utilized has been parameterized to fit

experimental data. Semi-empirical quantum chemistry methods often have increased

accuracy over purely empirical methods because they consider some form of electron

correlation, whereas this information is not explicitly considered in an empirical approach.

Semi-empirical methods offer a nice middle ground for molecular geometry

determination with reasonable accuracy and computational complexity. The ‘semi-‘ part

of semi-empirical refers to the fact that the two-electron part of the Hamiltonian is not

explicitly included, yet has been parameterized to fit either experimental or ab-initio

results. This leads to the most computationally demanding, and often most accurate,

technique for molecular geometry determination, termed ab-initio quantum chemistry.

Ab-initio means ‘from first principles’ and was a term first coined by Allen et al. (1960).

These techniques do not rely on experimental data and electrons are explicitly

represented as the Schrodinger equation is solved to obtain very accurate geometry

estimations. The details of these various techniques will be covered in further detail in

s

F

f

t

(

i

v

l

section 2.3.

Figure 2.3.

The in

first introdu

turning poin

(1989), who

its original

variants of t

lengths betw

. An overvi

Figu

nclusion of s

uced by Ra

nt in the dev

o calculated

topological

the original

ween respec

iew of the

ure 2.3 - Ov

spatial mole

andić (1987

velopment o

d the three-d

l counterpar

l Weiner ind

ctive atoms a

27

various typ

verview of g

ecular infor

) who used

of topograph

dimensiona

rt. There ar

dex which m

as well as E

7

pes of geom

geometrica

rmation in g

d the term t

hic descripto

l Wiener nu

re several o

might includ

Euclidean di

metric descr

al descriptor

graph theore

topographic

ors was give

umber, whic

other possib

de using the

istances, as

riptors is pr

rs.

etical descri

c descriptor

en by Bogda

ch is an ext

bilities for c

e summatio

done by Bo

rovided in

iptors was

r. Another

anov et al.

tension of

calculating

on of bond

ogdanov et

28

al. (1989). However, a study by Castro et al. (2002) considers the relationship between

these descriptors in the context of utilization in property correlation. It was found that

there is a strong linear correlation between the original Wiener index and each of its

modified forms. This leads to the conclusion that the original definition of this descriptor

is sufficient for property correlation, and the introduction of variants on this technique

introduce the possibility for only slight improvements in a given QSPR model. This study

reinforces the concept that descriptors, when utilized in structure property correlations,

should be linearly independent.

Many of the topographic descriptors were developed as an extension upon existing

topological based concepts. This was the case for Diudea et al. (1995) who proposed two

types of topographic indices of centricity and centrocomplexity which were based on 3D

distances provided by molecular mechanics calculations. The topological counterparts to

these types of descriptors begin with the ‘through bond’, topological distance matrix as

well as the layer matrix, LM. The topological distance matrix is a symmetric matrix D

whose entries, dij, correspond to the number of bonds between atoms i and j. The

‘through space’ matrix utilized to develop these novel topographic descriptors is

symmetric just like the original topological matrix, however, Euclidean distances are

used in place of the number of bonds between two respective atoms. The layer matrix is a

bit more complex than the distance matrix and it collects the properties of vertices u

located on concentric shells (layers) G(u)j, at a distance j around the vertex i in the graph

G, and can be defined as seen in Eq.(2.5) and (2.6):

 ݈݉௜௝ ൌ ෍ ݉௨

௨∈ீሺ௨ሻೕ

 (2.5)

29

In the above equations, m and M are labels for a given property and the corresponding

matrix, respectively; n is the number of vertices in the graph; and d stands for the

diameter of the graph, which is the largest topological distance in the graph. The new

three-dimensional layer matrix follows the same convention as its topological counterpart

as seen in Eq.(2.5) and Eq.(2.6), however, mu is now defined as in Eq.(2.7).

 The two new local vertex invariants (LOVI’s) of c (centricity) and x (centrocomplexity)

have been defined as shown in Eq.(2.8) and Eq.(2.9), respectively.

ሻܩሺܯܮ ൌ 	 ൛݈݉௜௝; ݅ ∈ ሾ1, ݊ሿ; ݆ ∈ ሾ0, ݀ሿൟ (2.6)

 ݉௨ ൌ ෍ 3݀௨௩ ൌ ௨ܦ3
௔௟௟	௩∈ீ

 (2.7)

 ܿሺܯܮሻ௜ ൌ ቎෍ሺ݈݉௜௝ሻ௝/ௗ௦௣
௘௖௖೔

௝ୀଵ

቏

ିଵ

 (2.8)

ሻ௜ܯܮሺݔ ൌ ቎෍ ݈݉௜௝10ି௭௝
௘௖௖ೕ

௝ୀ଴

േ ݈௜቏

േଵ

௜ (2.9)ݐ

 ݈௜ ൌ ௜݂ሺ
݈݉௜଴

10
൅
݈݉௜ଵ

100
ሻ (2.10)

 ௜݂ ൌ ෍ ሺܿ௜௨ െ 1ሻ
௨

 (2.11)

30

In the above equations, ecci is the eccentricity of vertex I (the maximal topological

distance from vertex I to any vertices in the graph); dsp is a specified topological distance,

usually larger than the diameter of the graph; z is the number of digits of the max lmij

value in the graph; li is a local parameter for multiple bonds; fi is a multigraph factor, with

ciu being the conventional bond order; ti is a weighting factor accounting for heteroatoms.

These new indices were able to correlate well with the van der Waals surface area for a

set of 17 geometric heptane isomers, thus exemplifying their ability to differentiate

conformational isomers. In addition, the indices were able to correlate with the toxicity of

ethers on mice. This exemplifies the complexity of topographic descriptors that have

been developed in the last few decades as well as their abilities to correlate well with

various properties and activities of interest.

The previously described topographic descriptors were all based upon the Euclidean

distance matrix. One approach by Estrada and Ramirez (1996) introduces a new

topographic index derived from the three-dimensional analogue of the conventional

topological edge matrix. The edge matrix E is a square and symmetric matrix in which

the rows and columns correspond to edges, or chemical bonds, within a molecular graph

G. The non-diagonal entries of this matrix are either ones or zeroes depending on whether

the corresponding bonds are touching or not, respectively. This approach uses molecular

graphs with edges weighted by bond orders calculated from quantum chemical methods.

The bond orders in this method are called valence indexes and are calculated as shown in

Eq.(2.12)

31

where,

are the elements of the density matrix and eigenvectors Ciλ sum is over all occupied

orbitals. Elements of the edge adjacency matrix for the weighted molecular graph are

defined in a more complex way. Let ei and ej be two adjacent edges in G. If ei is incident

with vertices va and vb, and ej is incident with vb and vc , then the elements eij and eji of the

E matrix are ρBC and ρAB, respectively. With bond orders defined in this manner, edge

degrees, ρ(ei), are defined as the sum of elements of ith row in E matrix as in Eq.(2.14):

The topographic edge connectivity index ϵ(ρ) was developed from this new matrix and is

calculated as shown in Eq.(2.15):

This descriptor was utilized to generate regressions for the molar refractivity of a series

of 69 C5-C9 alkanes. Calculation of the index was performed by using bond orders

஺஻ߩ ൌ෍2݌ఒఒ

஺

ఒ

െ෍෍݌ఒఙ
ଶ

஻

ఙ

஺

ఒ

 (2.12)

ఒఙ݌ ൌ 2෍ܥ௜ఒ

௢௖௖

ଵ

௜ఙ (2.13)ܥ

ሺ݁௜ሻߜ ൌ෍݁௜௝
௝

 (2.14)

 ߳ሺߩሻ ൌ෍ൣߜሺ݁௜ሻߜሺ ௝݁ሻ൧௦
ିଵ/ଶ

௦

 (2.15)

32

calculated from the quantum chemical semi-empirical method PM3 (Stewart, 1991).

Molar refractivity was chosen as an important property because of its ability to model the

steric and hydrophobic interaction between drugs and biological receptors. This

descriptor was also applied in a QSAR study in which the cumulative urinary excretion,

in humans, of unchanged drug expressed as a percentage of the administered dose was

regressed against this variable. The model was able to more accurately characterize the

phenomena utilizing the topographic descriptor when compared to previous studies

(Testa and Salvesen, 1980) which used the n-heptane-water partition coefficient as an

independent variable.

In addition to the plethora of alignment-independent topographic descriptors

mentioned before, there exists a group of descriptors which require some degree of

alignment between each molecule in a data set. One prominent example would be the

comparative molecular field analysis (CoMFA) technique (Cramer et al., 1988). This

work began with the realization that, at the molecular level, the interactions which

produce an observed biological effect are usually non-covalent; and molecular mechanics

force fields, which account for these non-covalent interactions as steric and electrostatic

forces, can account for a great variety of molecular properties. The CoMFA approach has

been outlined in Figure 2.4.

s

h

s

T

t

l

r

p

i

Steric a

seen in Fig.

has the van

summation

This inform

than rows (c

least-square

relationship

projecting th

important a

F

and electros

(2.4), betwe

n der Waals

of attractiv

mation is stor

compounds)

es (PLS) m

p. PLS regre

he predicted

aspect of an

Figure 2.4 -

static interac

een the com

properties

ve/repulsive

red in a tabl

). Such a da

methodology

ession is a st

d variables

n alignment

33

- Outline of

ction energi

mpound of in

of an sp3 ca

forces seen

le, in which

ata format is

y for develo

tatistical me

and the obs

t-dependent

3

f CoMFA a

ies are calcu

nterest and a

arbon atom,

n within thi

h there are m

s well-suited

opment of

ethod that fi

servable var

t model is

approach.

ulated at eac

a “probe ato

, which incl

s carbon, w

many more c

d to the app

a quantitati

inds a linear

riables to a

the actual

ch of the latt

om.” This p

ludes the vo

with a charg

columns (da

plication of t

ive structur

r regression

new space.

molecular

tice points,

robe atom

olume and

ge of +1.0.

ata points)

the partial

re activity

n model by

The most

alignment

34

process. Previous applications relied on a chemist to align the molecules, however, this

methodology has implemented a new “Field Fit” procedure in which the RMS difference

in the sum of steric and electrostatic interaction energies, averaged across all lattice

points, between one molecule and some template or set of molecules, is minimized with

respect to the six rigid-body degrees of freedom and/or any user-specified torsion angles.

This approach was tested (Cramer et al., 1988) on a data set of 21 various steroids, which

have experimentally determined affinities to corticosteroid- and testosterone-binding

globulins. Since the goal of the CoMFA methodology is to generate models capable of

predicting the activities, or binding affinities, of compounds not in the training set, the

binding affinity of ten steroids (not in the original training set) was predicted by the

model developed. The predictive R2 value for this example was 0.65, which was higher

than any model developed using the conventional QSAR methodology with various

descriptors. In this case, the descriptors are not as ‘clear cut’ as previous approaches but

they are initially represented as the energies of repulsion (steric and electrostatic)

between the test molecule and the probe atom, calculated at the various lattice points.

This information is further turned into latent variables, which captures the most important

aspects, within the lattice, accounting for variance in the predictor variables (i.e. affinities

in this case).

The Comparative Molecular Similarity Indices (CoMSIA) (Klebe et al., 1994)

approach is similar to CoMFA in that an atomic probing throughout a grid lattice is

utilized. However, CoMSIA uses a different potential function, which is Gaussian-type,

to model the repulsion. The use of a Gaussian-type potential function instead of the

previously applied Lennard-Jones and Coulombic functions allows for more accurate

35

information to be obtained from points within the molecular structure. This was one

drawback with the CoMFA approach because unusually large energy values were

obtained at these points, because of the nature of the potential function used, and cut-offs

had to be applied so the data wasn’t skewed. There are several other probe based

techniques available for characterizing a set of molecular structures with respect to a

predictor variable (typically a biological property) and these include Comparative

Molecular Moment Analysis (CoMMA) (Silverman and Platt, 1996), VolSurf (Cruciani

et al., 2000), and Grid-Independent Descriptors (GRIND) (Pastor et al., 2000). Each

technique has its own strong points and limitations, but they all represent the realization

that shape based descriptors excel at describing interaction based properties (e.g. binding

affinity).

2.3 Molecular Modeling

Molecular modeling encompasses all of the techniques and tools useful for modeling the

motions and interaction of molecules. These techniques are used in the fields of

computational chemistry, drug design, computational biology, materials science, and now

many engineering fields for studying molecular systems ranging from single small

molecules in the gas phase to large biological molecules (e.g. receptor ligand complexes)

and material assemblies. There are many approaches available for the treatment of

molecular structures ranging from modeling atoms as the smallest individual unit (in the

molecular mechanics approach) to explicitly modeling the electrons in each atom (in the

quantum chemistry approach). The information gained from these techniques is useful in

the development of three-dimensional descriptors, which have applications in a wide

variety of structure-activity (property) correlations.

36

2.3.1 Molecular Mechanics

Molecular mechanics refers to the use of classical mechanics in describing the motions of

atoms and molecules. These models treat atoms as point charges with the nucleus and

associated electrons combined as one. The energy associated with a molecular structure,

which is used to measure its likelihood of occurrence, is calculated through the means of

a force-field. Within this force-field, otherwise known as a potential function, varying

terms are used to summarize the potential energy associated with a collection of atoms.

Each atom in the molecule is represented by its coordinates, which can be internal or

external. External coordinate systems simply provide an x, y and z coordinate value for

each atom within a Cartesian coordinate system. Internal coordinates make use of the

inherent nature of these many body systems by referring to bond-lengths, bond angles,

and torsional angles. Force-fields are most often defined in terms of internal coordinates,

whereby energetic penalties are associated with the deviation of bonds and angles away

from their ‘preferred’ or ‘equilibrium’ values. In addition, the force field contains terms

that describe the non-bonded interactions between each atom. A simplified representation

of a typical force-field can be seen in Eq.(2.16).

It can be seen that the total internal energy, as provided by the force field, consists of

terms related to bond lengths, angles, dihedral angles as well as non-bonded interaction.

These non-bonded interactions, as shown in Eq.(2.17), represent the summation of

electrostatic and van der Waals forces. Van der Waals forces are typically modeled by the

௢௧௔௟்ܧ ൌ ௕௢௡ௗ௦ܧ ൅ ௔௡௚௟௘ܧ ൅ ௗ௜௛௘ௗ௥௔௟ܧ ൅ ௡௢௡ି௕௢௡ௗ௘ௗ (2.16)ܧ

௡௢௡ି௕௢௡ௗ௘ௗܧ ൌ ௘௟௘௖௧௥௢௦௧௔௧௜௖ܧ ൅ ௩௔௡ܧ ௗ௘௥ ௐ௔௔௟௦ (2.17)

37

Lennard-Jones potential, which adequately describes the forces of attraction and

repulsion felt between two atoms. Furthermore, the electrostatic forces are typically

modeled by Coulomb’s Law, which accounts for interactions between electrically

charged atoms. A more expanded form of a generalized force-field can be found in

Eq.(2.18).

In Eq.(2.18) E stands for the potential energy of the system, consisting of a collection of

atoms and/or molecules, and rN represents the coordinates of all N atoms within this

system. The first term represents the energy contribution from all bonded atoms in the

system, and these are modeled by a harmonic potential function. li,0 stands for the

equilibrium bond length between any two atoms. The second term, which represents the

energy contribution from three consecutive atoms connected by two bonds, also has an

equilibrium angle which is dependent on the atoms involved. Any deviation from this

angle represents an increased contribution to the total energy of the system. The third

term accounts for energy contributed by all torsional angles within the system. Last but

not least, the fourth term summarizes all energy contributions from non-bonded atomic

interactions. The fourth term is a summation of the previously mentioned van der Waals

and electrostatic forces and accounts for ‘through space’ interactions.

A force-field is typically parameterized, which means that the variables in Eq.(2.18)

are calculated, with a specific set of structures and properties. The goal of this

ேሻݎሺܧ ൌ

	∑
௞೔
ଶ௕௢௡ௗ௦ ൫݈௜ െ ݈௜,଴൯

ଶ
൅ ∑ ௞೔

ଶ௔௡௚௟௘௦ ൫ߠ௜ െ ௜,଴൯ߠ ൅ ∑ ௏೙
ଶ
ሺ1 ൅௧௢௥௦௜௢௡௦

cosሺ݊߱ െ ሻሻߛ ൅ ∑ ∑ ሺ4ߝ௜௝ሾሺ
ఙ೔ೕ
௥೔ೕ

ே
௝ୀ௜ାଵ

ே
௜ୀଵ ሻଵଶ െ ሺ

ఙ೔ೕ
௥೔ೕ
ሻ଺ሿ ൅

௤೔௤ೕ
ସగఌబ௥೔ೕ

)

(2.18)

38

parameterization is to be able to most accurately reproduce the given properties within

the region of chemical space represented by chosen set of molecular structures. This

might be, for example, useful for accurately deciding the geometries of a series of

hydrocarbons or predicting the infra-red spectra for a set of ionic liquids. The point is that

the information within these parameterized force-fields is only useful for the task around

which it was designed. It is more common to develop a force-field for a set of molecules

than for a single molecule due to the considerable effort required. As such, the ability of a

single force-field to accurately model a larger group of structures is known as its

transferability. Often times, an increase in transferability leads to a decrease in accuracy.

Therein lies one of the fundamental trade-offs when developing a given force-field. Also,

the format of Eq.(2.18) is not the only way to represent this model and is by no means the

most accurate. These models are ‘empirical’ and as such the model format is developed

to have the most accurate results possible. (Leach, 2001)

2.3.2 Quantum Chemical Methods

Quantum mechanics (QM) attempts to describe molecules in terms of interactions

between nuclei and electrons. The molecular geometry is determined through identifying

a minimum energy arrangement of nuclei in a molecule or set of molecules. This process

has been made much more reasonable through a series of approximations upon the

original formulation based upon the Schrodinger equation shown in Eq.(2.19).

෡Ψܪ ൌ EΨ (2.19)

39

In Eq.(2.19), Ψ is a many-electron wavefunction and Ĥ is the Hamiltonian operator, also

known more simply as the Hamiltonian, which can also be represented as in Eq.(2.20).

In Eq.(2.20) Z is the nuclear charge, MA is the ratio of mass of nucleus A to the mass of an

electron, RAB is the distance between nuclei A and B, rij is the distance between electrons i

and j and riA is the distance between electron i and nucleus A. This equation cannot be

solved exactly for even a simple two-electron system such as a helium atom or a

hydrogen molecule and approximations must be introduced. One such short-cut is known

as the Born-Oppenheimer Approximation (Born and Huang, 1988), which assumes that

the motion of the electrons is much faster than that of the nuclei thus decoupling the two

and producing the “electronic” Schrodinger equation. Even with this simplification, the

electronic Schrodinger equation is still intractable and further approximations must be

made. The Hartree-Fock approximation (Slater, 1930) was made and insists that the

electrons move independently of each other. This results in the total wavefunction being

written in the form of a single determinant, also known as a Slater determinant. This also

leads to a set of coupled differential equations known as the Hartree-Fock equations, each

involving the coordinates of a single electron. At this point, the numerical solution to

these equations is possible, however further approximations have been introduced to

transform them into a set of algebraic equations. The linear combination of atomic

෡ܪ ൌ െ
1
2

෍ ௜׏
ଶ

௘௟௘௖௧௥௢௡௦

௜

െ
1
2
෍

1
஺ܯ

஺ߘ
ଶ

௡௨௖௟௘௜

஺

െ ෍ ෍ ஺ܼ

௜஺ݎ

௡௨௖௟௘௜

஺

௘௟௘௖௧௥௢௡௦

௜

									൅ ෍ ෍
1
௜௝ݎ

	

௝

௘௟௘௖௧௢௡௦

௜ழ

൅ ෍ ෍ ஺ܼܼ஻
ܴ஺஻

	

஻

௡௨௖௟௘௜

஺

(2.20)

40

orbitals (LCAO) (Clark and Koch, 1999) was the next step on the road to creating a more

tractable representation of a molecule through the quantum chemical formalism. The

Hartree-Fock and LCAO approximations, when applied to the electronic Schrodinger

equation, ultimately lead to the Roothaan-Hall equations (Roothaan, 1951). Methods

resulting from the solution of the Roothaan-Hall equations are termed Hartree-Fock

models as well as Ab Initio (“from the beginning”). These models allow for the

evaluation of first and second derivatives of energy which make both geometry

optimization and determination of vibrational frequencies, respectively, possible.

Often times, solutions generated through means of a Hartree-Fock model result in an

overestimation of electron-electron repulsion energies because pair-wise electron

interactions are not directly considered and they have a tendency to “get in each other’s

way.” This situation is corrected for through electron correlation, which accounts for

coupling of electron motions and leads to a lessening of the electron-electron repulsion

energy. There are many different techniques for this approach. One is known as a Density

Functional model (Becke, 1988) which introduces an approximate correlation term in an

explicit manner without being significantly more costly than Hartree-Fock models.

Configuration interaction models (Sherrill and Schaefer, 1999) and Moller-Plesset

models (Moller and Plesset, 1934) extend the flexibility of Hartree-Fock models by

mixing ground-state and excited-state wavefunction, however they are significantly more

costly than the Hartree-Fock models.

Semi-empirical models follow directly from the original Hartree-Fock models and

represent a simplification that allows the solution of much larger problems. The size of

the problem is greatly reduced by only considering valence electrons and ignoring the

41

core electrons. The central approximation, which allows greatest reduction in overall

computation, insists that atomic orbital residing on different atomic centers do no overlap

and this is referred to as the Neglect of Diatomic Differential Overlap (NDDO)

approximation (Pople et al., 1967). Additional approximations are introduced to further

simplify calculations and provide a framework for the introduction of empirical

parameters. These parameters can be fitted to experimental data as well as ab initio

calculations. Some popular examples of semi-empirical models include Austin-Model 1

(AM1) (Dewar et al., 1985) and Paremeterized Model number 3 (PM3) (Stewart,1989).

2.3.3 Geometry Optimization

The way in which the potential energy of a molecule varies with its atomic coordinates is

known as the potential energy surface. Geometry optimization, also known as energy

minimization, encompasses various techniques useful for exploring this very complicated

potential energy surface (PES) in search of a minimum energy conformation, or

arrangement of atoms. For a system with N atoms, the energy is a function of the 3N-6

internal or 3N Cartesian coordinates which is a highly dimensional set of information.

There is particular interest in minimum points on the PES as they represent the most

stable conformations associated with a molecule. In most cases, there are many local

minima; however, there is only one global minimum. In addition to minima, another

point of interest on a PES is known as a saddle point, which corresponds to the highest

point on the pathway between two minima where the arrangement of atoms is known as a

transition structure. (Leach, 2001)

There are many methods useful for the exploration of a PES, which can be defined

in terms of internal or Cartesian coordinates. Minima are typically found using numerical

42

methods since the application of analytical methods becomes too computationally

demanding for most systems. These techniques are applicable in both molecular and

quantum mechanical representations and can initially be differentiated based upon

whether or not derivatives of the energy with respect to coordinates are calculated.

Various techniques are adept at exploring the PES in their own unique way. For example,

some methods may only be able to move ‘downhill’, corresponding to a decrease in

energy, but others may move in either direction. One example of a non-derivative

minimization method is known as the simplex method (Nelder and Mead, 1965), which

moves around the PES in a fashion that has been likened to the motion of amoeba. This

method is most suitable for determination of an energy minimum when the starting point

configuration is very high in energy; however, it is rarely able to escape local minima

traps. The techniques in which derivatives are utilized can be immediately differentiated

based on whether or not they calculate the first or second order derivative of the PES.

First order minimization algorithms that are most frequently used in molecular modeling

are the method of steepest descents and the conjugate gradient method. The starting point

for most of these techniques is generated from user input, typically with the help of

experimental data. The steepest descent method (Curry, 1944) moves in the direction

parallel to the net force, which corresponds to walking straight downhill. In the conjugate

gradients method (Reeves and Reeves, 1964), the gradients at each point are orthogonal

but the directions are conjugate. Second order derivative methods utilize the second order

derivative, which provides information about the curvature of a function, in addition to

the first order derivative of the PES. The Newton-Raphson method (Roger, 1987) is the

simplest second-order method and is more suited towards smaller molecules.

43

These are the techniques available for aid in the determination of conformational

minima. This information is useful in the development of three-dimensional descriptors

and structure-property (activity) relationships as well a plethora of other applications.

Conformational analysis is the study of the conformations of a molecule and their

influence on its properties. The various conformations that a molecule can obtain are

interconverted by rotation about a single bond, or a collection of bonds. A conformational

search has the objective of identifying the preferred conformations of a molecule, which

determine its behavior. There are many techniques for conducting these searches and they

can be categorized as systematic or stochastic. While the systematic approach is often

more likely to identify a complete collection of minima, a stochastic approach is more

easily applied when the PES is very complicated. The relative populations of a

molecule’s conformations can be estimated though statistical mechanics via the

Boltzmann distribution, which is also known as a Gibbs distribution (Gibbs, 1902).

However, it must be noted that many of these simulations, in their most basic form,

correspond to phenomena in the gas phase at relatively low temperatures and thus do not

account for many solvation or interaction effects. In addition, in the case of spatially

active molecules (e.g. ligand receptor complexes), the active conformation may not even

correspond to any of the identified local minima. Fortunately, there are many techniques

available for increasing the ‘realness’ of these simulations and they are becoming

increasingly applied in studies today as computational capabilities are rapidly improving.

(Leach, 2001)

44

2.4 QSAR/QSPR

The purpose of a structure activity relationship (SAR) is to create a mapping between the

structural characteristics of a group of compounds and a desired activity. The same can

be said for structure property relationships (SPR’s), which aim to characterize the effect

of molecular structure on the bulk properties exhibited by the molecules under

consideration. Corwin Hansch can be considered the first pioneer in this field as his work

expanded the boundaries of how these relationships were formulated. Hansch et al. (1962)

initially suspected that the partition coefficient of various compounds, along with other

parameters, could be used to characterize their relative biological activity. Though, his

greatest contribution to the field follows in the persistent manner in which he applied this

concept to develop models in drastically new and more accurate ways than ever

attempted before. His realization that SAR’s should not be limited to certain independent

variables and fits, such as expanding from linear to parabolic models, paved the way for a

successful marriage between the development of these models with various

mathematical/statistical techniques (Hansch, 1969). This trend has continued into modern

day approaches such that developments from various fields, including pattern recognition,

machine learning, artificial intelligence and molecular modeling etc., have been borrowed

for the improvement of property/activity models. Another turning point in the

development of SAR’s was initiated by Kier et al. (1975) when the molecular

connectivity index was introduced and shown to have strong correlations to

physicochemical properties (Hall et al., 1975) as well as biological activities (Kier and

Murray, 1975). This ushered in a genre of many new molecular descriptors and paved the

w

m

t

f

a

p

2

T

u

w

t

c

T

t

way for a p

mathematic

Regard

the process

for structure

and 3) utiliz

property/act

2.4.1 Varia

The autom

ultimately f

wrapper app

the creation

construct m

This is a ne

the large nu

plethora of

al invariant

dless of the

can be brok

es in the tra

zing the cho

tivity space

F

able Selectio

mated select

fall into tw

proach, invo

n and rankin

models in th

cessary step

umber of des

techniques

ts in addition

sophisticati

ken into thr

aining set 2

osen descrip

. This appro

Figure 2.5 -

on Techniq

tion of des

wo categori

olves the ide

ng of a seri

he selection

p in the dev

scriptors ava

45

aimed at d

n the previo

ion of steps

ree distinct p

2) choosing

ptors as ind

oach is visua

Visualizati

ques

scriptor var

es (Guyon

entification

ies of mode

process as

elopment of

ailable for c

5

differentiatin

ously used p

s taken to d

phases: 1) c

the most in

ependent va

alized in Fig

ion of SAR

riables for

and Elisse

of an optim

els. The oth

features ar

f most struc

correlation w

ng molecul

physico-chem

develop and

calculating m

nformative m

ariables to c

g. (2.5) (Du

approach.

use in a

eeff, 2003).

mal subset of

her, known

re evaluated

cture activity

with the resu

ar structure

mical prope

utilize thes

molecular d

molecular d

create a map

dek et al., 2

property m

 One techn

f descriptors

as filtering,

d using othe

y relationsh

ult of intere

es through

erties.

se models,

descriptors

descriptors

pping into

2006).

model can

nique, the

s based on

, does not

er criteria.

hips due to

st.

46

The feature reduction technique applied by Merkwirth et al. (2004) utilizes the

principle of clustering, whereby variables are pooled into clusters based on similarity.

They begin by initially removing all constant and low-entropy variables, and variables

are then divided into clusters in which the absolute value of the pairwise correlation

coefficients exceeds 0.98. The next step is to discard all variables, except a randomly

chosen one, from each of the developed clusters. This approach is beneficial when the

number of input variables is large compared to the number of observations. In addition,

many machine learning techniques have a larger time complexity than linear in the

number of observations and/or input variables which prohibits the consideration of large

data sets. The next step is a forward stagewise selection procedure, which is a greedy-

type algorithm that iteratively constructs a subset of relevant variables. The approach

begins by selection of a random variable from the initially reduced set. Next, the leave-

one-out (LOO) error for all combinations of one of the remaining variables with the

variables in the current subset is calculated. The variable which improves the LOO error

the most is selected and the process is repeated until either a predefined number of

variables have been selected or there is no further improvement in the calculated error.

(Merkwirth, 2004)

In a study by Venkatraman et al. (2004), the use of information-theoretic approaches

based on the concept of mutual information gain has been applied to identify an optimal

subset of descriptors for further correlation with a given biological activity. Since mutual

information is a nonlinear statistical criterion, it is able to measure the interdependence of

random variables without relying on established assumptions about their underlying

relationships. This approach relies on two heuristic criteria during feature selection,

47

namely: (1) Feature should be comparatively informative about the output and (2) Feature

should not be strongly dependent on other features selected. The measure of mutual

information between two random variables A and B represents the amount of information

about A contained in B and vice versa. When the random variables are independent of

each other, the mutual information, defined in Eq.(2.21), is zero. The marginal

probabilities for the two features are represented by P(a) and P(b),

while P(a,b) gives the joint probability. Mutual information measures the distance

between the joint probability and the joint probability under the assumption of

independence, P(a)P(b). This technique is most suitable to problems where both

descriptors and activities are categorical. In such a case where the continuous numerical

variables are utilized, discretization schemes must be applied to approximate the

variables.

The above techniques are examples of filtering methods for variable selection. This

approach is quite useful for the selection of variables with decreased interdependence (i.e.

colinearity) while maintaining a strong correlation with the property or activity of interest.

However, a more rigorous approach for model development, known as the wrapper

method, exists. These descriptor selection techniques operate in conjunction with a

mapping algorithm. One prominent technique, known as Genetic Algorithm (Siedlecki

and Sklansky, 1988), stands out for this approach and is an efficient method for sampling

large descriptor spaces. Genetic algorithm mimics the process of natural evolution

,ܣሺܫ ሻܤ ൌ෍ܲሺܽ, ܾሻ݈݃݋
ܲሺܽ, ܾሻ
ܲሺܽሻܲሺܾሻ

௔,௕

 (2.21)

48

whereby a population is guided towards a higher degree of fitness, as often measured by

the error of the model generated, through operations of mutation and crossover. Each

member of the population is represented by a chromosome, within which each position

usually corresponds to the absence or presence of a specific variable through the binary

notation. Individual chromosomes with an increased measure of fitness, typically

measured by the prediction capabilities of the model resulting from the descriptors

represented within the chromosome, are selected for the conventional operations of

crossover and mutation. Mutation typically involved the change of binary variables

within the chromosome to either a 0 or 1, the opposite of its initial state; and crossover

involves the selection of two chromosomes which are cut and recombined at one (single-

point crossover) or more points. However, the success of a GA relies on the careful

tuning of several probability parameters such that the solution space can be effectively

explored and early convergence to a homogenous population, occupying a local

minimum, is not met.

The genetic algorithm falls into a category known as ‘stochastic programming’, in

which several successful techniques have been developed for the solution of problems

with large, multivariate solution spaces. Another similar technique for variable selection

is known as simulated annealing (SA) (Kirkpatrick et al., 1983), which is also a

stochastic technique, has had great success in QSAR development (Sutter et al., 1995;

Itskowitz and Tropsha, 2005). SA was inspired by the physical process of annealing in

metallurgy, which involves the heating and cooling of a material to increase the size of its

crystals and reduce their defects. The rate at which a material is cooled will affect the

decrease in free energy associated with the underlying crystals, which also affects their

49

size and purity. The effect of slow cooling within the SA algorithm allows for a slow

decrease in the probability of accepting worse solutions as it explores the solution space.

With such an approach, the algorithm is initially allowed to move more freely around the

solution space to avoid being trapped in local minima. As the algorithm proceeds it has

an increased “strictness” for accepting new solutions. Just as in the genetic algorithm

approach, SA aims to minimize the error of a resultant model by iteratively changing the

subset of selected descriptors. In this case, some percentage of features (e.g. descriptors)

is exchanged for others and this new subset is tested for its ability to model the desired

output. The decision of whether or not to utilize the newly chosen set of descriptors

depends on a probability function based on the Boltzmann distribution. The power of the

SA method stems from altering the temperature term in the Boltzmann distribution. As

the algorithm proceeds, the temperature is decreased so that the acceptance of worse

solutions becomes less likely. This often results in the identification very high quality

solutions to the problem at hand.

The two previously mentioned approaches of GA and SA were stochastic in nature.

In contrast, there are several deterministic approaches which more thoroughly explore the

descriptor space under consideration. Forward Feature Selection (Kittler, 1978) is one

such technique and begins with identification of a single feature that leads to the best

prediction. Features are subsequently added to the current subset and the errors associated

with each model are quantified. The feature which results in the lowest error for the

resultant model is selected to be included in the current subset and the process ends when

a specified number of features have been identified. Sequential Backward Feature

Elimination (Kittler, 1978) could be considered the inverse of this approach. In this

50

approach, the full set of features is used as a starting point and all subsets of features

resulting from removal of a single feature are analyzed for error. The feature that leads to

a model with the highest error is removed from the current subset, which is initially large

and decreases in size as the algorithm proceeds. The algorithm eventually ends when the

specified number of features has been eliminated. This approach, while much more

computationally vigorous, often leads to better models than its counterpart, Forward

Feature Selection.

2.4.2 Mapping Descriptors into Attribute Space

Once a set of descriptors has been decided upon, the next step is to create a mapping

between the activity/property of interest and the descriptor values. The variety of

mapping methods available can be initially categorized based on whether a linear or non-

linear relationship is created. Another distinction can be made based upon the nature of

the property/activity; when this value is a continuous variable, a regression must be done,

whereas when the result is a category (e.g. active or inactive) this is known as a

classification problem. In a regression, the dependent variable is modeled as a function of

the molecular descriptors. In a classification scheme, the resulting model is defined by a

decision boundary, which separates the various classes within the descriptor space.

Linear models are usually sufficient for creating activity relationships for a dataset

of similar compounds. They have the benefit of being much easier to develop and

interpret when compared to other methods. The most common technique for the creation

of a linear property model has been Multiple Linear Regression (MLR). This approach

models the predicted response, Y, by means of a set of descriptor variables, X, through

the relationship shown in Eq.(2.22).

51

where, M = the number of rows of sample readings of observations

 L = the number of columns of measured response properties

 K = the number of columns of descriptor variables

 β = the regression coefficients or sensitivities matrix

 E = the error or residual matrix

There have been three cases, as described by Geladi and Kowalski (1986), for the

solution of ߚ in Eq.(2.19):

1. K>M: There is no unique solution for β as infinite numbers of solutions exist,

unless on deletes predictor variables.

2. K=M: There is one unique solution provided that X has full rank.

E = Y - X· β = 0

3. K<M: There is no exact solution for β, however, a solution can be achieved by

minimizing the residual in the following equation:

E = Y - X· β

 The most popular technique, known as the ordinary least-square (OLS) method,

identifies the regression coefficients by maximizing the model sum of squares and

minimizing the residual sum of squares. Using this approach, β can be estimated by:

where the superscript T symbolizes the transpose of a matrix.

When the number of X-variables, or descriptors, is large compared to the number of

observations, this can lead to a singular (XTX) matrix whose inverse does not exist. This

 ெܻൈ௅ ൌ ܺெൈ௄ ∙ ௄ൈ௅ߚ ൅ ெൈ௅ (2.22)ܧ

መߚ ൌ ሺ்ܺ ∙ 	Xሻିଵ ∙ 	X் ∙ Y (2.23)

52

happens when the number of unknown variables is greater than the number of equations,

leading to an underdetermined equation system which has an infinite number of solutions

for β. One solution to this problem would be to apply various variable selection

techniques. In addition, multivariate projection methods like PCA (principal component

analysis) and PLS (partial least squares) can also be utilized to overcome such a difficulty.

PLS and PCA are methods suitable for overcoming problems in MLR associated

with multicollinear or over-abundant descriptors. These techniques compress a large

quantity of data and extract the information by projecting them into a low-dimensional

subspace that summarizes the most relevant information (Wold et al., 1996; MacGregor

et al., 1995). When the data set used is highly dimensional and very noisy with a small

number of samples, PCA is an appropriate method for dimensionality reduction after

which the regression model can be developed with the new latent variables through

principal component regression (PCR). Prior to PCA, the data often needs to be pre-

treated through a variety of techniques such that it becomes more suitable for further

analysis. It is common practice to initially mean-center and scale the property variables,

which is visually represented in Figure 2.6 (Eriksson et al., 2006).

T

i

v

a

t

f

g

s

o

o

t

9

This techni

importance,

values) or

analysis, th

transformin

first PC is

greatest po

standardized

orthogonal

orthogonalit

the first thre

90%). Figur

Figu

ique ensure

, over anoth

mean value

he PCA pro

ng the origin

the linear c

ossible varia

d original

to and ha

ty constrain

ee PCs capt

re 2.7 helps

ure 2.6 - M

es that no

her because

e. Once the

ocess then

nal, correlat

combination

ance and e

variables th

aving zero

nt ensures th

ture most o

visualize th

53

Mean centeri

variable is

of an increa

e data has

calculates

ted, variable

n of the sta

each subseq

hat have th

correlation

hat each var

f the varian

he dimensio

3

ing and sca

s allowed

ased length

been prepa

a set of p

es into a ne

andardized

quent PC i

he greatest

n with all

riance-based

nce seen in

nality reduc

aling in PCA

to dominat

(difference

ared, or pr

principal co

ew set of un

original va

is a linear

possible v

previously

d axis is ind

the original

ction achiev

A.

te, in its i

in highest a

e-treated, f

omponents

ncorrelated

ariables that

combinatio

ariance, wh

defined P

dependent. T

l data set (a

ved through

nterpreted

and lowest

for further

(PCs) by

ones. The

t have the

on of the

hile being

C’s. This

Typically,

around 80-

PCA.

T

v

W

P

c

a

m

t

The loading

variables de

Where, T =

 P =

PLS is a re

combines d

addition to r

models the

those obtain

Figure 2

g matrix co

efining the P

 the score m

= the loading

egression ex

different fea

relating the

common s

ned with th

ெൈ௄ࢄ ൌ

2.7 - Dimens

ontains the

PCs. This ca

matrix with m

g matrix wit

xtension of

atures from

two data m

structure be

he tradition

ଵݐ ∙ ଵ݌
் ൅ ଶݐ

54

sionality re

coefficients

an be mathe

mutually ort

th mutually

f principal c

both PCA

matrices, of d

etween them

nal multiple

∙ ଶ݌
் ൅ ࡷ⋯

4

eduction ac

s in the lin

ematically re

thonormal c

orthonorma

component

and multip

descriptors a

m which of

regression

ࡷ ൌ෍ݐ௜

௄

௜ୀଵ

∙ ݌

hieved with

near combin

epresented a

columns

al columns

analysis an

ple linear re

and respons

ften provide

approach.

௜݌
் ൌ ெൈ௄ࢀ

h PCA.

nation of th

as shown in

nd it genera

egressions (

se variables,

es better re

Figure 8 p

௄ ∙ ௄ൈ௄ࡼ
்

he original

n Eq.(2.24).

alizes and

(MLR). In

, PLS also

esults than

provides a

(2.24)

v

d

r

T

p

i

s

b

o

F

a

A

s

visualization

descriptor

relationship

The score p

principal co

identify clu

shows a line

be non-linea

of the princ

Figure 8 rep

Both te

allow one to

A comparis

similar pred

n of the PLS

and respon

p to provide

plot, which

omponent sc

usters and u

ear relation

arities. Thi

cipal comp

presents the

echniques o

o work with

son of the t

diction capa

S process w

nse informa

the PLS mo

Figure 2.8

is a two-di

core against

unusual obs

ship betwee

is plot can a

onent score

projection i

of PCR and

h a number

two techniq

abilities, how

55

whereby two

ation whic

odel.

- PLS regr

imensional r

t the first pr

ervations in

en predictor

also be used

es. The das

if PCA were

d PLS aim t

of variables

ques (Wentz

wever, PCR

5

o “PCA-like

h are then

ression visu

representati

rincipal com

n the datase

rs (x) and re

d to rank the

shed-dot lin

e performed

to avoid col

s that is grea

zell and Veg

R tends to y

” models ar

n connected

alization.

ion of the d

mponent sco

et. The scor

esponses (y)

e observatio

ne seen in t

d on X and Y

llinearity pr

ater than the

ga Montoto

yield higher

re created fo

d through

data, plots th

re and can b

re plot in F

), however,

ons accordin

the outer p

Y individual

roblems wh

e number o

o, 2003) has

r precision (

or both the

an inner

he second

be used to

Figure 2.8

there may

ng to each

pictures of

lly.

ich would

f samples.

s revealed

(degree of

56

closeness of the measured values to each other) while PLS yields higher accuracy (degree

of closeness of a measured value to the actual value).

Support vector machines (SVM’s) (Cortes and Vladimir, 1995) are one type of

supervised learning model with an associated learning algorithm that can analyze data

and recognize patterns. This technique can be used in both classification and regression

analysis, both linear and nonlinear, and as such is very flexible. An SVM constructs a

hyperplane, or set of hyperplanes, in a highly dimensional space such that the distance to

the nearest training data point is maximized. Often times, the data set might not be

linearly separable and the option of mapping the original finite-dimensional space into a

much higher-dimensional space is made possible through the use of kernel functions.

These functions lower the computational load associated with moving between the two

mapped spaces by ensuring that dot products are easily computed in terms of the original

variable space. Also, slack variables are introduced and they are subject to optimization

to allow for a better fit than linear approaches in many cases. Even though erroneous

classification cannot be avoided, it is penalized and the misclassified compounds become

support vectors themselves. By training a linear classifier in kernel space a classifier,

which is nonlinear with respect to descriptor space, is obtained. SVM methods have also

been extended to handle regression type problems (Smola and Scholkopf, 2004).

Contrary to typical regression methods, however, the predicted values are penalized only

if their absolute error exceeds a certain user-specified threshold. Thus, the regression

model developed by these means is not optimal in terms of the least-square error.

Decision trees (Quinlan, 1986), another type of non-linear mapping technique

available for the development of structure-activity (property) relationships, differ from

m

c

a

n

d

s

b

t

i

t

t

c

s

most algori

consists of a

a hierarchic

node with n

descriptor a

specific chil

based on th

the classific

inactive.

Trainin

test is chos

their activi

compounds

several mor

ithms by th

a tree-like s

cal pattern, w

no children

and a test is

ld node. Th

e activity cl

cation of a

Figure 2.9

ng a decisio

en on the b

ty classes.

then the tr

re tests are m

heir connec

structure con

with several

is referred

s made suc

his continues

lass associat

compound,

9 - Classific

on tree mode

basis of its

If the ini

ee is finaliz

made, spann

57

ction to log

ntaining the

l child node

d to as a lea

ch that the r

s towards th

ted with tha

, based on

cation throu

el begins w

ability to c

tial root n

zed, howeve

ning out fro

7

gic-based an

e convention

es stemming

af. Each no

results of th

he leaves of

at leaf. The

three descr

ugh the use

with choosing

categorize c

node test is

er, this is m

om the origi

nd expert s

nal nodes an

g from a com

ode typically

he test dire

f the tree and

diagram in

riptors, as b

e of a decisi

g the test fo

compounds

s able to c

most often n

inal node, in

systems. Th

nd links. No

mmon paren

y refers to

ct the algor

d the final d

Figure 2.9

being either

ion tree.

or the root n

most effect

correctly cl

not the case.

n an iterativ

his model

odes form

nt node. A

a specific

rithm to a

decision is

represents

r active or

node. This

tively into

lassify all

. As such,

ve manner

58

creating several more nodes. Each node is considered for classification as a leaf when the

majority (ideally all) of compounds passing through that testing route is correctly

classified. One important decision that needs to be made in the development of these

trees is which test should be introduced at which point. This can be restated as ‘which

descriptor would provide the best discrimination criteria at this point’, and in this case

descriptor ranking is typically applied. Once this descriptor, or test, has been decided

upon, it is next necessary to introduce a decision rule that separates the compounds into

various activity classes. Decision tree methods typically lead to suboptimal error rates

when compared to other non-linear methods, most likely due to the reliance on a single

feature in each node. While the conventional application of decision trees is for

classification type problems, they can also handle regression problems (Breiman et al.,

1984) by associating each leaf with a numerical value instead of the categorical class.

This methodology has been tested in a study (Svetnik et al., 2005) on a wide range of

targets, including COX-2 inhibition, blood-brain barrier permeability, CDK-2 antagonist

activity, dopamine binding affinity, logD and toxicity. While they were outperformed by

support vector machines and ensembles of decision trees, they did often perform better

than PLS of naive bayes classifier, which is a simple probabilistic classifier based on

application of Bayes’ theorem with strong independence assumptions between the

features.

2.5 Fragment Based Property Models

In reference to Figure 2.10, it can be see that there is a link between property space and

chemical space, seen on the left, through the use of molecular descriptors. It is of special

interest when the intermediate variables that link these two spaces have some structural

r

o

T

u

O

t

g

d

s

d

i

reference. T

of inverse p

This techniq

useful for th

Often times

the resulting

generate a

desired attri

space. Ther

design. How

in the gener

This signific

property pre

que will be

he introduct

Figure

s, the molec

g solutions

structure, o

ibutes, this m

rein lies on

wever, when

ration of the

cantly aids i

ediction, wh

covered in

tion of fragm

e 2.10 - Ove

cular design

will be in t

or set of st

means that

ne of the m

n these mol

ese solution

59

in the ident

hich is one

detail in se

ment based p

erview of in

problem is

terms of the

tructures, w

these soluti

more difficu

lecular desc

ns. This allo

9

tification of

technique i

ction 2.6, h

property mo

nverse prop

solved in d

ese descripto

with an incr

ions will hav

ult sub-prob

criptors hav

ows one to

f solutions d

in the field

however, its

odels.

perty predic

descriptor sp

ors. Since th

reased likel

ve to be tra

lems assoc

ve a structur

assemble th

during the a

of molecul

considerati

ction.

pace. This m

he ultimate

lihood of h

anslated into

iated with

ral reference

he possible

application

lar design.

ion here is

means that

goal is to

having the

o chemical

molecular

e this aids

molecular

60

structures, subject to structural constraints, from these fragments as if they were building

blocks. Several techniques taking advantage of this concept will be discussed in the

sections below.

2.5.1 Group Contribution Method

One of the most widely used property prediction techniques, which has had widespread

success in modeling and predicting a plethora of properties, is known as the group

contribution method (Joback and Reid, 1983; Constantinou and Gani, 1994). This

technique is based on the concept that the summation of contributions from various

functional groups, or structural fragments, can account for the property of a molecule.

This allows one to develop and train a model on an existing data set, which can then be

used to predict the properties of molecules not in the original training set. This is a very

attractive idea since it is unlikely that we will ever synthesize and characterize even a

fraction of the accessible chemical space in the near future. The simplest form of group

contribution method is the determination of a component property by simply summing up

the group contributions as in the example for boiling point shown in Eq.(2.25).

Eq.(2.25) takes on a linear form where Gi represents the summation of contributions from

each group i. These contributions can be any positive or negative real number. This

approach works well in a limited range of components but, unfortunately, leads to large

errors when applied outside its applicability domain. The smallest structural fragment

represented within the group contribution methodology is known as a first-order group.

In addition to containing first-order groups, a group contribution property model can also

 ஻ܶ ൌ 198.2 ൅෍ܩ௜ (2.25)

c

S

b

m

E

o

w

contain high

Second orde

between tho

molecules in

Eq.(2.26) re

order group

where, Ci =

Ni =

Dj =

݂ሺݔ

her order co

er groups co

ose groups.

n Figure 2.1

Figure 2

epresents a

ps.

the contribu

= the number

= the contrib

ሻݔ ൌ෍ ௜ܰ

௜

ontributions

ontain colle

Examples o

11.

2.11 – Exam

generalized

ution for fir

r of occurre

bution from

௜ ௜ܥ ൅෍ܯ
௝

61

s which can

ections of fir

of first and

mples of fir

d group con

rst-order gro

ences of first

second-orde

௝ܯ ௝ܦ ൅෍ܱ
௞

1

improve th

rst order gro

second ord

rst and seco

ntribution m

oup i

t-order grou

er group j

ܱ௞ ௞ܧ

he overall ac

oups and ca

der groups a

ond order g

model which

up i

ccuracy of t

apture the in

are shown f

groups

h accounts f

the model.

nteractions

for several

for higher

(2.26)

62

 Mj = the number of occurrences of second-order group j

 Ek = the contribution from third-order group k

 Ok = the number of occurrences of third-order group k

In the above formulation, second order groups can be estimated from first order

groups and correct for the interactions between first order groups. Also, third order

groups can be derived in a similar manner and will help to correct for poly-functional

compounds with more than four carbon atoms in the main chain. In addition to

introducing higher order groups for improved accuracy, there are also group interaction

parameters available. This technique is useful when a simple additive method is not

sufficient to capture the property of interest; however, it requires many more model

parameters to be enumerated in exchange for this accuracy. One example of such an

approach is known as the UNIFAC (UNIQUAC Functional-group Activity Coefficients)

method, which estimates activity coefficients (Fredenslund et al., 1975).

There are specific techniques available for the enumeration of structures matching a

set of structural fragments. One such approach by Constantinou et al. (1996) treats the

initial set of first order groups as a vector in what could be considered a ‘fragment-space’.

The feasibility of this collection of fragments towards generating a complete molecular

structure is tested against graph-theoretical rules based on chemistry concepts. If

determined to be a feasible structure, the vector refers to at least one structural isomer and

there are often several which need to be enumerated. This concept is known as

degeneracy, and while it is usually undesirable in molecular descriptors it is often quite

63

necessary to generate a model with some degree of conciseness and transferability. This

problem becomes much more difficult with the consideration of higher order groups.

2.5.2 Pharmacophore Models

A pharmacophore model can be considered a fragment based model as is often specifies a

set of structural features necessary for a certain biological activity. The IUPAC definition

of a pharmacophore is “an ensemble of steric and electronic features that is necessary to

ensure the optimal supramolecular interactions with a specific biological target and to

trigger (or block) its biological response (Wermuth et al., 1998).” These models provide

information on how a set of structurally diverse ligands can ultimately have the same

effect on a given receptor. Additionally, pharmacophore models are extremely useful in

the identification of novel compounds with an increased likelihood of exhibiting the

desired binding characteristics. Some typical pharmacophore features include

hydrophobic centroids, aromatic rings, hydrogen bond acceptors or donors, cations and

anions. These points may be located on the ligand itself or sometimes projected to points

around the ligand. The steps necessary to develop a pharmacophore, such as the one

shown in Figure 2.12 are: 1) Select a set of molecules with varying bioactivity; 2)

Perform a conformational analysis and identify the most likely bioactive conformations;

3) Superimpose the chosen conformers; 4) Develop and abstract representation of the

most common features identifying during the superimpose step; 5) Validate the chosen

model on a chosen set of molecules with known bioactivity. Often times a three-

dimensional model can be developed by calculating the optimal distances between each

of the identified pharmacophoric features as shown in Figure 2.12(A). Figure 2.12(B)

r

e

2

T

b

d

b

s

represents a

each point o

2.5.3 Signa

The signatu

based descr

defined heig

being node

subgraph of

an overlay o

of interest sh

Figur

ture Descri

ure descripto

riptor which

ght, h. In th

s and bond

f its complet

of a given ph

hown in an

re 2.12 - Ex

iptor

or, originall

h encodes

he context o

ds being ed

te parent gra

64

harmacopho

example mo

xamples of a

ly proposed

the environ

of chemical

dges, an ato

aph. An exa

4

ore model w

olecule.

a pharmaco

d by Visco e

nment aroun

graph theor

omic signatu

ample of thi

with a structu

ophore mo

et al. (2002

nd a centra

ry (Trinajsti

ure descript

is is shown b

ural represe

del.

, 2003) is a

al atom up

ic, 1983), w

tor can be

below in Fig

entation of

a fragment

to a pre-

with atoms

seen as a

gure 2.13.

l

r

o

s

s

s

h

b

T

V

Figur

In Figu

left is repr

representati

one atomic

signature sh

signature an

signature. T

hαi is the nu

base vector,

The system

Visco et al.

1. For

will

௛	ߪ

re 2.13 - Ex

ure 2.13, the

esented by

on of this a

 signature

hown below

nd the summ

This is mathe

umber of ato

, hKG is the n

matic procedu

(2002) and

the atom x f

be shown u

ሻܩሺߪ ൌ ෍
௫∈௏ಸ

xample of a

e height two

the graph

atomic sign

for this ca

w as well. Ea

mation of t

ematically r

oms having

number of b

ure for the

is explained

for which th

up to the hei

ሻݔሺீߪ ൌ	
௛

ಸ

65

atomic sign

o atomic sig

shown in

nature is sho

arbon atom

ach atom wi

these atomic

represented

g the signatu

base vectors

construction

d below:

he atomic g

ight h in the

෍ ௜ߙ 	ீߪ
௛

	
௛

௄ಸ೓

௜ୀଵ

5

ature descr

gnature of t

the middle

own below

is seen on

ithin a mole

c signatures

in Eq.(2.27

ure of each

s and hσG rep

n of an atom

raph is cons

e subgraph, h

ሺ ௜ܺሻ	
௛

riptors of v

the carbon a

e. In additi

its respectiv

n the far ri

ecule would

s would rep

7) where hσG

fragment re

presents the

mic signatu

structed, all

hG(x).

varying heig

atom encirc

ion, the str

ve graph. T

ight, with i

d have its ow

present the

G(hXi) is a b

epresented w

molecular s

ure was dev

l the atoms a

ght.

led on the

ing based

The height

its atomic

wn atomic

molecular

ase vector,

within the

signature.

veloped by

and bonds

(2.27)

66

2. All the atoms (vertices) in the graph are labeled in a canonical order starting with

atom x.

3. Construct the tree that spans over all edges in the subgraph. The root of the tree is

the atom x itself. The tree is constructed one layer at a time up to level h. It is

possible to have one vertex more than once in the graph. However, no edge

should be repeated in the same graph.

4. After constructing the signature tree, all the canonical labels that appear only once

in the graph are to be removed and the repeating labels are to be re-labeled in the

order that they appear in the graph.

5. The signature can be written by reading the tree from the atom x. The vertex color

must be enclosed in a parenthesis in each level. For a vertex that appears more

than once, the vertex labels should also be included in the parenthesis.

One example for the construction of atomic signatures is shown in Figure 2.13. Here

the stepwise procedure for obtaining the atomic signature of atom x up to height three in

ethyl benzene is illustrated. In the first step, all the atoms at distance 3 from atom x are

extracted. In the second step, the subgraph is canonized with atom x having label 1. In the

third step, a tree spanning all the edges is constructed up to height 3 from the subgraph.

In the fourth step, the labels that appear only once in the tree are removed and the rest of

the labels are renumbered in the order of their appearance. In the final step, the signature

is generated in the required orders from the tree by starting from atom x

(Chemmangattuvalappil, 2008).

2

u

p

o

w

r

a

a

An exa

2.15 for hei

using a Dre

parameters

of atoms. W

which stand

represents t

alternate ch

atoms in the

Figure 2.1

ample for th

ights rangin

eiding force

restricted to

Within this fo

d for the at

the number

haracteristic

e graph, a tr

14 - Develop

he determin

ng from zero

e field (May

o simple ru

orce field, a

tom type. T

of implicit

s of the ato

ree spanning

67

pment of at

nation of a

o to three. I

yo et al., 19

les which e

atoms are re

The third ch

hydrogen a

om such as

g all edges i

7

tomic signa

molecular s

In this case

990). Dreidi

enable the p

presented b

haracter repr

atoms and t

s formal ox

s generated

ature up to

signature is

 the vertex

ing is a gen

prediction o

by five chara

resents hyb

the fifth cha

idation stat

.

height 3.

s illustrated

elements ar

neric force

f novel com

acters, the fi

bridization,

aracter repr

te. After co

in Figure

re colored

field with

mbinations

first two of

the fourth

resents the

loring the

m

u

a

T

c

a

Figu

The sig

models for a

utilization t

and represe

The second

compounds

attempt to

re 2.15 - Ex

gnature des

a variety of

two distinct

nted measu

d, much larg

. These two

create a

xample of h

scriptor has

f properties a

t data sets (

urements of

ger set, was

o studies ut

model wit

68

height three

proven its

and activitie

Faulon, 200

activity for

s for the oc

tilized heigh

th characte

8

e molecular

usefulness

es. The first

03). One se

r 121 comp

ctanol/water

ht-0, height-

ristics com

r signature

in the deve

t test conduc

et came from

ounds used

r partition c

-1 and heig

mparable to

enumerati

elopment of

cted was ba

m a biologic

d as HIV-1 i

coefficient,

ght-2 signatu

o those ma

ion.

f property

sed on the

cal source

inhibitors.

of 12,865

ures in an

ade using

69

conventional descriptors, which were available within the Molconn-Z software (Hall et

al., 1991). All models were developed to follow a linear form, and parametrization was

performed using the forward-stepping regression technique of multiple linear regression.

The 121 HIV-1 protease inhibitors had experimental activity reported in units of pIC50,

representing the negative logarithm half maximal inhibitory concentration, which

spanned 7 orders of magnitude. Nine of these compounds were chosen as test set

compounds and were not utilized in the creation of any models, but were used to evaluate

the predictive ability of each model. For this case, the model developed using height-2

signatures was best able to capture the phenomena with a training set R2 of 1.0. For the

log(P), which represents the logarithm of the experimentally measured octanol/water

partition coefficient, model development, 123 of the original data set were left of for

model validation and the rest were utilized for model training. In this study, the signature

descriptor of height-1 was able to outperform all other property models based on other

descriptors.

In addition to being useful for developing accurate and predictive property models,

the signature descriptor is also ideal for application in the inverse property model

approach to molecular design. The ability of the signature descriptor to define most any

topological index has been shown (Faulon, 2003). In addition, the signature descriptor

has been proven to have low degeneracy when enumerating solutions. The combination

of these features with signature’s link to structural fragments is what makes it ideal for

molecular design applications. Specific methodologies for its use in molecular design

studies will be covered in detail in section 2.6.

70

2.6 Solution Techniques in CAMD

Over the decades there have been many methodologies developed for the solution of

molecular design problems. The particular technique applied is strongly dependent on the

nature of information available for the problem at hand. For instance, does one of the

property models utilized have a non-linear relationship or perhaps it is in the form of a

neural network. Often times, an increase in model complexity will bring about an

increase in computational complexity which is not commensurate to the increase in

accuracy or differentiation of potential solutions. In any manner, techniques have been

developed that are capable of handling many of the problems encountered within this

field. These approaches have been broadly categorized as database searches, generate-

and-test and programming/optimization. Each approach has its own strengths and

weaknesses, some of which will be covered in the following sections.

2.6.1 Database Search

The most straightforward technique for computer-aided molecular design is known as a

database search. This approach, which is usually quite fast, consists of testing each

molecule within a database against certain criteria while identifying structures with the

desired characteristics. These criteria can be a wide range of things such as adherence to

given property models with varying descriptors or it could be a molecular similarity

search, which could also be based on descriptors or molecular fragments. The main

limitation to this approach is that it cannot consider molecular which are not available

within the database; however, it does not require the often computationally intensive step

of structure generation and as such is usually much faster.

71

Similarity searching has been one of the most widely applied techniques for

identifying potential drug candidates with a database of existing molecules. This

approach typically describes the molecules encountered with descriptors which capture

the underlying nature of the structure. The molecules considered are typically compared

to one structure with a known, usually very high, activity such that those with a high

measure of similarity are hoped to also have a desirable activity. One such study by Chen

and Reynolds (2002) assesses the effectiveness of utilizing various sets of 2D linear

fragment descriptors along with varying measures of comparison. They focused their

methods on two large public databases, one of which was NCI anti-AIDS (NCI

Developmental Therapeutics Program) and the other MDDR (MDL Information Systems

Inc). The underlying assumption with these techniques, and most of molecular design in

general, is known as the similar property principle, which states that similar chemical

structures should lead to similar physicochemical properties and biological activities. The

descriptors used as a measure of similarity, and the technique used for comparison of

these descriptors, are what make these approaches so different. Four sets of 2D linear

fragment descriptors, based on the original definition of atom pairs and atom sequences,

were used in this study as were three forms of the Tanimoto coefficient and the Euclidean

distance. The Tanimoto coefficient is a distance measure, or more conveniently a

measure of similarity, between two molecules structures. When each molecular structure

is represented as a vector of k dimensions, with each dimension representing the

occurrence of a particular molecular feature, the Tanimoto coefficient between two points,

a and b, is shown in Eq.(2.28). The influence of these structural descriptors and similarity

coefficients on the effectiveness of retrieving active structural analogues was

72

systematically studied. The Euclidean distance is another type of measure which is

similar to the Tanimoto coefficient and its calculation, between vectors a and b, is shown

in Eq.(2.29), where n represents the dimensionality of each vector.

Of the four structural descriptors utilized in this study, the first is known as MACCS

keys (Molecular Design Ltd.), which are a set of questions about a chemical structure.

These questions determine the nature of the underlying structure and produce a list of

binary values by which that structure is described. The second is represented by Daylight

fingerprints (Daylight Chemical Information, Inc.), which enumerate all linear chemical

substructures of a predefined range of lengths. These fragments are typically

hashed/folded into a bit string with the length fixed to save memory space. This, however,

often leads to a loss of certain structural information and introduces additional noise into

subsequent calculations. The third, exemplified by the work of Carhart et al. (1985) is

very similar to the Daylight fingerprints however no information is compressed. The

similarity coefficients, which would derived as a function of the above mentioned

descriptors for pairs of atoms, can be divided into two major classes: association and

∑ ௝ܽ ൈ
௞
௝ୀଵ ௝ܾ

∑ ௝ܽ
ଶ ൅௞

௝ୀଵ ∑ ௝ܾ
ଶ െ ∑ ௝ܽ ൈ௞

௝ୀଵ ௝ܾ
௞
௝ୀଵ

(2.28)

 ݀ሺܽ, ܾሻ ൌ ݀ሺܾ, ܽሻ ൌ ඨ෍ ሺܽ௜ െ ܾ௜ሻଶ
௡

௜ୀଵ
(2.29)

73

distance coefficients. The main difference between these two is that distance coefficients

consider the absence of certain structural features as evidence of similarity whereas

association coefficients do not. The various forms of coefficients utilized in this study are

summarized in Table 2.1.

Table 2.1 - Definitions of Tanimoto Coefficient and Euclidean Distance.

 Tanimoto coefficient Euclidean distance

Binary form
஺ܵ,஻ ൌ

ܿ
ܽ ൅ ܾ െ ܿ

஺,஻ܦ ൌ ሾܽ ൅ ܾ െ 2ܿሿଵ/ଶ

Algebraic form
஺ܵ,஻ ൌ

∑ ݊஺,௜݊஻,௜
௠
௜ୀଵ

∑ ݊஺,௜ଶ௠
௜ୀଵ ൅ ∑ ݊஻,௜ଶ௠

௜ୀଵ െ ∑ ݊஺,௜݊஻,௜௠
௜ୀଵ

஺,஻ܦ ൌ ሾ෍ሺ݊஺,௜ െ ݊஻,௜ሻଶሿ

௠

௜ୀଵ

ଵ/ଶ

Set-theoretic form
஺ܵ,஻ ൌ

∑ minሺ݊஺,௜݊஻,௜ሻ
௠
௜ୀଵ

∑ ݊஺,௜௠
௜ୀଵ ൅ ∑ ݊஻,௜௠

௜ୀଵ െ ∑ minሺ݊஺,௜݊஻,௜ሻ௠
௜ୀଵ

஺,஻ܦ ൌ෍ห݊஺,௜ െ ݊஻,௜ห

௠

௜ୀଵ

In Table 2.1, a represents the number of unique fragments in compound A, b

represents the number of unique fragments in compound B and c represents the number

of unique fragments shared by both compounds A and B. Also, nA,i is the number of

fragment i in compound A, and nB,i is the number of fragment i in compound B.

It was found that the Tanimoto coefficient gave considerably better results than the

Euclidean distance for both data sets. This is interesting because it reveals that the

presence of certain structural fragments is a better measure of similarity than the

combined consideration of presence and absence of these same features. The major

difference in these two methods lies in their ability to distinguish moderately similar

structures. It was also found that the binary form of storing the structural information did

not account for much memory saving when compared to the increase in discrimination

74

power seen in including information about the number of each fragment, as done in a set-

theoretic approach. In terms of the optimal structural descriptor, it was found that a

balance between “fuzzy” and “specific” descriptor types allows for an optimal

identification of true hits. They noted that descriptors that were too “fuzzy”, or non-

specific, tended to produce more false positives and descriptors that were too specific

tended to identify more false negatives.

The previous technique was a good introduction to the potential of database

searching using 2D descriptors. However, in the domain of drug design, another very

important database searching approach is based on the consideration of 3D similarity.

This allows for the identification of molecules that match a hypothesis of 3D

requirements for bioactivity. The interest in such an approach was fueled by the

availability of tools for molecular modeling and pharmacophore mapping and by the

increasing numbers of 3D protein structures as targets for new drugs (Martin, 1992).

There are several types of 3D structure searching and they can be differentiated by the

source of 3D information used for searching, how this information is described, how the

3D requirements are established as well as the results of the search. The source of 3D

information can be developed as a pharmacophore from several active molecules, a

proposed bioactive conformation of a single ligand, a low-energy conformation of a

ligand with desired affinity, or the actual 3D structure of the protein or DNA binding site.

This information is usually defined by geometric constraints such as superposition rules

of points or spheres, locations of specific functional groups, potential energies of bound

ligands and CoMFA coefficients. Pepperrell et al. (1990) have explored the ability of

different definition of 3D similarity to detect molecules which might have an activity

s

m

i

q

s

i

s

2

T

t

d

d

h

similar to th

most effecti

in atomic nu

query molec

similarity se

in Figure 2.

shown as 31

2.6.2 Gener

The generat

to generate

done by fo

developed f

however the

he input mo

ive. This me

umber and m

cule selecte

earch with t

.16. In this

1-35, where

Figure

rate and Te

te and test a

molecular

ollowing a

from a fragm

e size of sai

olecule. Th

ethod identi

most simila

ed. They act

those found

Figure, the

as the result

e 2.16 - Resu

est

approach to

structures f

set of rule

ment library

id library w

75

ey found th

ifies atoms w

r in the intr

tually comp

in a 2D sim

results for

ts from a 2D

ults of 2D a

 molecular

for consider

es and com

y. This libra

will have a h

5

hat a metho

within a dat

a-atomic di

pared the mo

milarity sear

a 3D simila

D similarity

and 3D sim

design relie

ration as can

mbinatorially

ary can be a

huge effect

od called ato

tabase mole

stance profi

olecules ide

rch and this

arity search

search are

ilarity sear

es on the ab

ndidate mo

y considerin

as variant o

on the comp

om mappin

cule that are

ile to the ato

entified thro

information

, on molecu

shown as 36

rches.

bility of the

lecules. Thi

ng sets of

or focused a

putational d

ng was the

e identical

oms in the

ough a 3D

n is shown

ule 30, are

6-38.

algorithm

is is often

fragments

as desired,

demand of

76

generating structures. A situation known as ‘combinatorial explosion’ is well known in

combinatorial optimization and refers to the overwhelming consideration of a large

number of potential solutions based on a large initial fragment library. In addition, there

are deterministic and stochastic techniques for the creation of structures from fragments.

Stochastic techniques provide one solution to the combinatorial explosion problem that is

often encountered. One interesting observation is that the size of molecules in the

fragment library has an effect on the ultimate number of unique structural isomers that

are able to be created. This has been seen in the systematic development of structures

from signature descriptor fragments. The smaller size fragments, approaching the limit of

single atoms, ultimately create more structures, while larger fragments produce fewer

structures in a deterministic manner. This approach allows for the consideration novel

structures which may not have even been synthesized yet and is attractive because this

structure generation can be controlled by the presence of absence of various fragments

within the initial fragment library.

One example of the implementation of a generate and test CAMD approach, among

many, can be found in Harper et al. (1999). This approach is unique in that it combines

the conventional, and very successful, design of molecules based on the group

contribution methodology with molecular modeling. Their approach, which aims at

avoiding combinatorial explosion, employs a structured generate and test approach,

where, every level generates and tests structures with the lower levels using molecular

representation and the higher levels using atomic representations. The most time-

consuming calculations will be held at the higher levels where the lowest number of

acceptable structures has been passed to.

77

In the first level, groups, or vectors, of first order fragments are considered and the

specified properties are tested using the group contribution method. Level two considers

the generation of isomers from these fragment vectors and rules are applied so that only

feasible chemical compounds are generated. This level allows the consideration of

properties which could not be calculated at level one, thus further refining the set of

potential solutions. Level three represents a highly diminished set of potential structure

with implicitly described connectivity. Here, the connectivity is fully established, and

specified through a connectivity matrix, and a detailed microscopic description is

recognized. At the beginning of level four, for each molecule surviving the previous steps,

a three-dimensional structure is generated using default bond lengths and angles. This

information is directly transferred into a molecular modeling program, in which it

undergoes an energy minimization calculation to identify a more stable conformation.

This process is visually represented in Figure 2.17.

r

a

s

b

2

T

i

m

a

Q

This m

replacement

an extractiv

solutions in

both group c

2.6.3 Progr

The two pre

in a forward

molecule a

associated w

QSAR, or p

Figure 2

methodology

t solvent fo

ve distillati

n both cases

contribution

ramming an

evious appro

d manner. T

and these d

with that m

property mo

2.17 - Linka

y was tested

or removal o

ion agent. T

s and repres

n and molec

nd Optimiz

oaches to co

That is to s

descriptors

molecule is

odel, would

78

age of CAM

d on two c

of phenol fr

The approa

sents and im

cular modeli

zation

omputer-aid

say that they

are fed in

calculated.

d begin with

8

MD and mo

case studies

rom a waste

ach was su

mproved me

ing in molec

ded molecul

y generate a

nto the pro

In compari

h certain de

lecular mod

, namely th

e water strea

uccessful in

ethodology

cular design

lar design ap

a set of des

operty mod

ison, the rev

esirable char

deling.

he identifica

am and the

n identifying

for the util

n application

pply proper

scriptors for

del and the

verse utiliz

racteristics

ation of a

design of

g feasible

lization of

ns.

rty models

r a known

e property

ation of a

which are

79

typically expressed in terms of acceptable property ranges. Using these acceptable

property limits, molecules are designed by enumerating an acceptable descriptor space

and subsequently calculating which structures fall within this space. The unique

characteristic of this inverse approach to molecular design is that it allows for the

application of programming and optimization in a very effective manner. One such

approach utilizing this concept lies in a study on the application of inverse QSPR using

multiobjective optimization (Brown et al., 2006). This study uses a variety of tools which

are pulled together to develop a novel workflow for the solution of inverse QSPR

problems. The compound generator is a genetic algorithm (GA) that operates directly on

graph-based chromosomes that represent molecules in the population. New molecules are

optimized by iteratively scoring, sampling and perturbing the current population of

molecules, which is common in the GA approach.

The molecular descriptors used in this study are known as Fingal (Fingerprinting

Algorithm) (Brown et al., 2005) and represent a molecular hash-key fingerprint which

can be rapidly generated and also have proven to be highly applicable to predictive

modeling. The Fingal descriptor, while also containing topological information, has

geometric information which has been calculated. This geometric information provides

immediate estimates on the upper and lower bounds between specific atoms in a

molecule. Property models were developed using the PLS regression technique, and these

models were utilized to identify properties of the newly generated structures, developed

through GA. This model was also continuously updated as the algorithm ran. Pareto

ranking, which determines a rank position for each candidate solution according to the

number of other solutions that dominate it in all objectives, was utilized to achieve a

b

a

T

w

a

a

a

Q

s

f

balanced op

associated w

Figure

Two case-s

which aime

aqueous sol

a wide varie

able to iden

QSPR mod

simultaneou

for evolving

ptimization o

with this nov

e 2.18 - Flow

tudies were

ed to optim

lubility. The

ety of descr

ntify solutio

dels can be

us optimizat

g multiple n

of all three o

vel approach

wchart for i

e conducted

mize the pro

ese studies w

riptors, as a

ons within

effectively

tion of mul

novel compo

80

objectives c

h can be see

inverse QS

d to analyze

operty of m

were compa

a validation

the desired

y integrated

ltiple object

ounds.

0

considered. A

en in Figure

PR workflo

e the effecti

mean molecu

ared to a mo

technique.

property r

d into an in

tives appear

A flowchart

e 2.18.

ow optimiz

iveness of t

ular polariz

odel develo

In both cas

ange. This

nverse CAM

rs to provid

t visualizing

zation appro

this approac

zability and

oped in Drag

ses, the appr

proved tha

MD strategy

de an effecti

g the steps

oach.

ch, one of

the other

gon, using

roach was

at multiple

y, and the

ive means

81

This previous study was a good example of a stochastic optimization approach,

utilizing the genetic algorithm, towards the solution of a CAMD problem. However,

when the problem can be defined in terms of linear relationships this allows for the

deterministic solution of such problems in an efficient manner. This was the situation for

a methodology presented by Churchwell et al. (2004) in which the signature molecular

descriptor was used to identify novel potent LFA-1/ICAM-1 peptide inhibitors. The

nature of signature descriptor is covered in detail in section 2.5.3, but in general it is a

fragment based descriptor with low degeneracy which has proven to be useful in the

inverse QSAR scheme because of its ability to generate solutions structures in an

efficient manner. This study is quite useful in the introduction and development of the

methodology presented in this dissertation, which is also based upon an extended version

of the signature descriptor. Initially, a QSAR is developed using a forward selection

procedure in multilinear regression with signature descriptors representing the

independent variables. In addition to the property model developed, there are some

constraint equations that are needed, as in the group contribution approach, to ensure the

feasibility of structures considered. There are two types of equations within this category

and they are the graphicality equation and the consistency equations. The graphicality

equation is developed directly from graph theory and ensure that at least one molecular

graph can be created form a set of atomic signatures. In order to build a connected graph,

it is required that (1) the sum of all the vertex degrees must be even and (2) the number of

vertices of odd degree must be even. The resulting equation can be expressed in terms of

a degree sequence N = {n1,n2,…,nk} where ni is the number of vertices of degree i. In

82

such a situation, the degree sequence is graphical if and only if there exists an integer z ≥

0 such that:

The graphicality equation can be analyzed directly from the height zero molecular

signatures, which conveniently offers the degree of each vertex, or atom, in the molecular

graph. The consistency equations ensure that, since the atomic signature overlap with

each other, the interdependency of each signature upon the others is mathematically

feasible. Together, the property model and constraint equations represent a system of

equations with unknowns corresponding to the occurrence of various atomic signatures.

They represent a set of linear equations which is more specifically labeled a linear

Diophantine system since the solutions are limited to positive integer values.

Once a set of solutions has been generated in terms of vectors representing a group

of atomic signatures, it remains necessary to establish the various structural isomers

which these vectors refer to. This study represents one of the first attempts to enumerate

these isomers in a deterministic manner, which means that all of them were identified.

There are two primary steps in the identification of structural isomers of a set of isolated

nodes within a graph G: (1) determine the orbits or atoms with equivalent atomic

signatures of G, and (2) saturate each atom of a chosen orbit. This process is repeated

until all vertices have been saturated where a saturated subgraph is not generated in the

process. The case study chosen to exemplify this methodology resulted in the

identification of 223 compounds matching the established criteria. 14 of these were found

 ෍ሺ݅ െ 2ሻ݊௜ െ ݊ଵ ൅ 2 ൌ ݖ2

௞

௜ୀଶ

 (2.30)

83

in the original training set and two were within the test set. 77 of these peptides identified

were classified as strong inhibitors, and two of these were synthesized and are the

strongest inhibiting peptides to date that work in-vivo as well. This shows the strength in

such an approach, which is also computationally feasible, being represented as a set of

linear equations.

84

3. Methodology

2D molecular descriptors have predominantly, and very successfully (Katritzky and

Gordeeva, 1993), been used in the development of models describing bulk properties

such as boiling point, viscosity, density etc. Their applicability in modeling molecular

binding interactions, such as ligand receptor affinity, is often limited to data sets of high

similarity. Thus, a natural extension to this problem was to include spatial descriptors,

which have since proven useful in the design of pharmaceuticals and agrochemicals

(Verma et al., 2010). The usefulness seen in this wide variety of descriptors was further

applied with the advent of powerful variable selection techniques such as the ones

covered in section 2.4.1. These methods have revealed that the optimal subset of

descriptors for capturing the structure activity (property) relationships (SARs) for a

variety of properties and biological activities includes descriptors with varying

dimensionality (Kar and Roy, 2010; Nettles et al., 2006).

The inclusion of spatial, 3D and 4D, descriptors necessitates a method for capturing

the conformational capabilities of candidate molecules. Although there are many methods

available for conformational sampling, these are typically infeasible for the consideration

of a large chemical search space, as is often desired. As a result, often only one local

energy minima is supplied to a given model when used in a predictive manner. It has

been shown that the actual structure of a bound ligand is often not found in the set of

local minima identified through a quick conformational search of the unbound ligand

(Perola and Charifson, 2004). This seems especially true when only one conformer is

considered. This provides another motivation behind the development of a systematic

85

algorithm, proposed in this dissertation, towards the solution of molecular design

problems with multi-dimensional criteria. The goal is to be able to solve problems of this

nature in a computationally efficient manner, while still considering, to a reasonable

degree, the conformational capabilities of candidate molecules within the defined

chemical search space. The derivation of this spatial information relies on atomic scale

simulations, from which the accessible conformations of each atomic signature can be

considered. The following sections will reveal how this approach is accomplished.

The use of signature descriptors alone in characterizing properties of interest has

proven a successful endeavor (Faulon and Churchwell, 2003), but the power of this

technique lies in the ability to reconstruct solution structures, with low degeneracy, for

any given set of atomic signatures. This idea was introduced in section 2.5.3, and will be

covered in further detail in the following sections. The reason that signature descriptors

are so useful during the reconstruction of solutions is that they are, by definition,

overlapping fragments. This allows for the systematic application of specific rules to

enumerate their connectivity. For a given set of signatures, for which it has been

confirmed that there exists at least one structural isomer, there are often multiple isomers

that can be created, each of which refers to the same original set of atomic signatures.

This feature allows for the systematic consideration of a region of chemical space in

which no two structural isomers are considered more than once. In addition, the height of

atomic signatures utilized in the study can be controlled such that the resulting solutions

generated have a pre-defined degree of similarity to the original data set, from which the

signatures were generated. This follows the pattern of smaller signatures resulting in a

larger search space while considering more diverse structures and larger signatures doing

86

just the opposite. This becomes useful when the applicability domain of property models

utilized has certain limits, based on similarity to the structures used to develop the model,

beyond which the predictivity is less reliable.

Most descriptors between 0D and 2D can be derived from molecular signatures.

This allows one to solve existing SARs in signature space, while maintaining the

predictability of the original SAR along with the low degeneracy attributed to signature

descriptors in enumerating potential solutions. Extension of the signature descriptor to

include spatial information maintains the combinatorial efficiencies seen in previous

applications while offering the discriminatory power of including descriptors of higher

dimensionality in the property models. The general approach, develop within this

dissertation, for using these descriptors in a CAMD application has been outlined in

Figure 3.1. This approach can be categorized as a generate-and-test CAMD methodology

with a very efficient generation step that quickly identifies structural isomers, which are

later subjected to conformational analyses.

87

Figure 3.1 - Overview of methodology developed.

3.1 Deterministic Solution Approach

A deterministic algorithm is one in which, given a particular input, the output always

remains the same. In addition, the underlying machine always passes through the same

sequence of states. These are the most familiar kind of algorithms and are also the most

Choose necessary

property models.

Decide on data set for

signature development.

Perform conformational

analysis on data set.

Dissect conformers into

atomic signatures.

Consolidate

conformational

information.

Establish bonding

network.

Scan through signature

space for solutions.

Feasible

solutions

88

well studied. Deterministic approaches are suitable to problems which have a small

search space or perhaps have highly complex nonlinear equations involved such that

linear and nonlinear programming are not feasible techniques. When applied within the

field of computer aided molecular design this typically means that every possible solution

is visited such that the search space is entirely considered. This offers the benefit of

identifying a globally optimal solution, in addition to several other potential candidates,

but can suffer from increased running times.

3.1.1 Identification of Property Models

The first step in setting up a problem, within this methodology and most any CAMD

approach, involves identification of the necessary property models. There are many types

of property models available, which are created using a variety of regression and

mapping techniques. The nature of these models, whether they are fragment based or

non-linear etc., will help decide the solution approach that must be taken. When a group

contribution model is chosen, this information must be written in terms of atomic

signatures. Depending on the order of group contributions utilized, varying height

signatures will be necessary. Higher order groups will often require larger, higher height,

signatures. If all of the models involved are linear and no 3D descriptors are utilized, the

problem can be solved using LP (linear programming) techniques. However, all studies

considered within this dissertation include 3D descriptors, and as such, various

deterministic and stochastic approaches must be applied. Once the necessary property

models have been identified, or developed, a data set must be decided upon from which

the signatures will be derived.

89

3.1.2 Data Set Selection

Selection of an appropriate data set for this approach is a very important step because the

building blocks for generating candidate molecules are the atomic signatures found in the

original set. This means that all solution molecules generated represent a controlled

interpolation, or extrapolation, of the chemical space spanned by molecules in the data set.

This search is ‘controlled’ by the fact that the atomic signatures generated can have a

variable height. Selecting a larger height would result in molecules generated with higher

structural similarity to the data set, whereas using a smaller height would allow for more

degrees of freedom upon recombination resulting in less similar structures. The tradeoff

would be that, in generating more molecules from a smaller height atomic signature,

these structures would have an increased likelihood of falling outside the applicability

domain for a given property model.

Utilizing the training set on which the property models were developed as a pool for

atomic signature development does offer the advantage of generating solutions with

increased similarity, however this is no guarantee that these structures will fall within the

applicability domain (AD) of the given property models. Sheridan et al. (2004) found that

molecules with higher similarity to the training set resulted in the best predicted

properties, as measured by root-mean-square difference between observed and predicted

activity, for narrow training sets with minimal diversity. However, for more diverse

training sets, it becomes unreasonable to define the AD in terms of similarity and

alternate methods are necessary. These methods often require projection of the training

set into descriptor space with subsequent specification of the AD, now represented by a

convex hull in multivariate descriptor space, through various approaches. A review of

90

these techniques can be found in Jaworska et al. (2005). For these reasons, when using a

property model generated from a diverse training set, it is possible and potentially

beneficial to utilize an alternate set of molecules for atomic signature development. These

molecules could be chosen from a library of compounds with established drug-likeness or

perhaps other desirable traits and the generated candidates could be tested against the

previously established AD.

3.1.3 Conformational Analysis

The conformational space for each molecule in the data set is explored to identify

energetically accessible conformations corresponding to local energy minima on the

potential energy surface (PES) for that structure. There are several techniques available

for identifying these conformers and they can be generally categorized as being either

systematic or stochastic. The choice between these two techniques is typically a function

of the anticipated complexity of a given PES. Stochastic techniques, such as those based

on Monte Carlo (Metropolis and Ulam, 1949) or molecular dynamics simulations

(Karplus and McCammon, 2002), have proven beneficial towards quickly identifying

local energy minima for more complicated PES’s. Whereas systematic conformational

analyses are much more likely to identify a global energy minimum, at the expense of

increased computational time (Beusen et al., 1996). Regardless of the chosen method, the

goal is to utilize the information obtained through conformational analysis on the data set

to estimate spatial characteristics of each molecule considered within the CAMD

approach. In doing so, it alleviates the necessity to explore the PES of each molecule

considered during the search. This approach will help minimize the time taken to estimate

the 3D characteristics of each candidate molecule considered, such that a larger search

91

space can be explored within reasonable time constraints. Molecules meeting this initial

estimation of spatial criteria can be further explored with more accurate simulations.

3.1.4 Spatial Signature Development

As covered earlier, the molecular signature of a given structure is a linear combination of

its constituent atomic signatures, which can be seen as atom-centered subgraphs of their

respective complete molecular graph. The Signature Translator Program (v. 3.0),

developed by Faulon et al. (2003), is implemented in Unix to calculate the set of

canonical atomic signatures found in each conformer, which were identified through the

previously mentioned conformational search. The program accepts as input a .mol

formatted file and the desired signature height and returns an output text file containing

the respective atomic signatures. Structural isomers are quickly identified, through

matching atomic signature strings, and grouped together along with the cartesian

coordinates of each atom found within the structure. The spatial information for each

atomic signature was developed in this manner, as opposed to isolated atomic signature

simulations, such that the resultant geometry information was derived from the signatures

embedded within various molecular structures found within the data set. The goal is to

obtain the most realistic, and accessible, conformations for the fragments, which would

likely not be seen in isolation.

3.1.5 Compression of Spatial Information

The complete set of atomic signatures, developed from the individual conformers

identified through a conformational analysis of the chosen data set, must now be reduced

to eliminate conformational redundancies. The technique developed for this task is to

compare all pairwise distances between atoms for the given structural isomers. The

a

v

c

a

s

s

T

i

g

l

t

u

f

u

absolute dif

value. Two

cutoff value

are found to

shown in Fi

since the dif

The cutoff c

information

generated to

language so

theoretical a

used to turn

fragment en

used to qui

fference betw

conformers

e are both m

o be too ali

igure 3.2, w

fference in t

criterion can

n ultimately

o facilitate

oftware pack

analysis of m

n each atom

ncoded with

ickly gener

ween pairw

s exhibiting

maintained a

ike and one

where one o

their interat

Figure 3.

n be varied t

y stored. A

such a com

kage contai

molecules, a

mic signatur

hin the signa

rate the ma

92

wise distance

a difference

s being uniq

e is discarde

of these two

omic distan

2 – Cutoff

to increase

An isomorph

mparison. Ne

ning many

as well as c

re into a gr

ature. The i

apping betw

2

e values is a

e in spatial

que, wherea

ed from fur

o conformer

nce chosen i

criterion ex

or decrease

hism mappi

etworkX (H

modules an

ountless oth

aph object,

isomorphism

ween two co

analyzed sub

features gre

as those with

rther use. T

rs would be

s less than t

xample.

the ‘finene

ing betwee

Hagberg et a

nd functions

her applicati

which repr

m algorithm

onformers,

bject to a giv

eater than th

h all similar

This is exem

 discarded a

the cutoff va

ss’ of confo

en the conf

al., 2008) is

s useful for

ions. This s

resents the

m within Ne

which are

ven cutoff

he selected

r distances

mplified as

at random

alue.

ormational

formers is

s a python

the graph

software is

molecular

tworkX is

structural

93

isomers of each other, such that pairwise distances can be directly compared. It is first

necessary to generate a graph occurrence for each unique atomic signature string and this

is done through application of an in-house python script which takes advantage of the

Python regular expression operations. This script was created to facilitate the conversion

of information within a molecular signature into a graph object and links together

modules from varying software to facilitate such a task. This approach results in

compressing the spatial information calculated in the conformational analysis step, and

the end result is a set of canonical atomic signatures, or unique structural isomers, with

their accessible conformations stored in the form of cartesian coordinates for each atom

involved. Table 3.1 reveals the compression of information of a set of common industrial

solvents, which resulted in 73 unique structural isomers, as the cutoff criterion is changed.

Table 3.1 – Cutoff criterion compression example.

Cutoff Criterion
(Angstrom)

Conformers Remaining
(387 initially)

0.05 282

0.1 271

0.2 257

0.3 240

1.0 199

2.0 182

3

T

m

r

o

T

E

n

p

a

t

s

b

i

r

t

h

3.1.6 Creat

Throughout

made for th

repeatedly c

of bonding

The Networ

Each atomic

network’. T

pairwise to

and hσ (y), i

the h-1σ (y)

subgraph, w

being isomo

is visually r

represented

these two no

h-1σ (y) sign

tion of Bond

t the isome

he same two

calculating

capabilities

rkX softwar

c signature

This network

establish a

is possible w

signature. T

with radius

orphic to the

represented

by their u

odes becaus

nature.

Figure 3.3

ding Netwo

er enumerat

o signatures

the same in

s between fr

re is employ

is initiated

k initially co

all possible

when the h-1

This can al

h-1 centere

e radius h-1

in Figure 3.

underlying a

se the h-1σ (z

3- Example

94

ork

tion approac

s multiple ti

nformation,

fragments in

yed to assist

as a node in

ontains no e

bonds. A b

1σ (z) signat

lso be stated

ed at an atom

1 subgraph c

.3 where tw

atomic sign

(z) signature

e of compat

4

ch, the test

mes. To av

this algorith

n the establi

t in develop

n what is fu

dges and sig

bond betwee

ture of atom

d, from a g

m neighbor

centered at t

o nodes in t

natures. A b

 of atom z,

tible ‘bondi

t of bond c

void the unn

hm initially

ished atomi

ping and sto

urther referr

gnatures, or

en two atom

m z, neighbo

graph theore

ring the x-si

the y-signat

the bonding

bond would

neighboring

ing networ

compatibilit

necessary ex

y generates

ic signature

ring this inf

red to as the

r nodes, are

mic signatur

oring atom x

etical viewp

ignature cen

ture center a

 network, x

d be created

g atom x, m

k’ edge.

ty will be

xpenses of

a network

 basis set.

formation.

e ‘bonding

compared

res, hσ (x)

x, matches

point, as a

nter atom,

atom. This

and y, are

d between

matches the

95

Inclusion of pre-calculated bonding capabilities between fragments generated from

the initial data set is one of the novel implementations found within this methodology

which has proven useful in speeding up the CAMD approach. Atomic signatures are

essentially over-defined, such that they overlap when recombined, and this is taken

advantage of to expedite the structural isomer enumeration process. Each set of fragments,

or atomic signatures, can typically be used to build several unique structural isomers and

as such this network comes in handy.

3.1.7 Generation of Structural Isomers

The calculation of 3D descriptors makes the approach much more complicated as the

connectivity of atomic signatures must be established first such that a global geometry

can be calculated from the combination of local geometry information provided by each

fragment. Atomic signatures, by definition, are overlapping subgraphs of the complete

molecular graph, which they collectively reference. For a group of atomic signatures to

generate at least one structural isomer there are several feasibility constraints that must be

met. There are two types of equations within this category and they are the graphicality

equation and the consistency equations. The graphicality equation is developed directly

from graph theory and ensure that at least one molecular graph can be created form a set

of atomic signatures. In order to build a connected graph, it is required that (1) the sum of

all the vertex degrees must be even and (2) the number of vertices of odd degree must be

even. The graphicality equation, Eq.(2.30), can be analyzed directly from the height zero

molecular signatures, which conveniently offers the degree of each vertex, or atom, in the

molecular graph. The consistency equations ensure that, since the atomic signature

o

m

F

c

s

a

c

i

t

t

t

s

i

s

t

overlap wit

mathematic

Figure 3.4,

carbon-oxyg

signature w

atomic sign

connected t

instance of

the sum of t

F

Once i

the previous

these isome

saturation a

implemente

stemming fr

time and in

th each oth

ally feasible

where the n

gen single

with an oxyg

natures with

to a single b

a carbon-ox

these, which

Figure 3.4-

it has been

sly mention

ers. The ap

algorithm e

ed as a Py

from subgra

n all possib

her, the int

e. An exam

number of o

bonds. In

gen root sin

h a single b

bonded oxy

xygen singl

h is 3.

- Example o

established

ned structura

pproach tak

established

thon script

aph isomorp

ble ways u

96

terdependen

mple of one

oxygen-carb

the case fo

ngle-bonded

bonded carb

gen atom sh

e bond in b

of consisten

that at leas

al feasibility

ken to esta

by Faulon

t. The algo

phisms, and

until a com

6

ncy of each

such consis

bon single b

or nitroglyc

d to a carbo

bon root. In

hown with

both signatur

ncy equatio

st one struct

y constraint

ablish conn

n and Chu

orithm takes

saturates e

mplete satur

h signature

stency equa

bonds must

cerine there

n atom. Ho

n each case

a dashed lin

res, so the o

n for nitrog

tural isomer

ts in, the tas

nectivity is

urchwell (2

s advantage

quivalent su

rated structu

e upon the

ation is repre

equal the n

e is only on

owever, ther

e, the carbo

ne. There is

occurrence

glycerine.

r is possible

sk remains t

based on

003), and

e of the d

ubgraphs at

ure is obta

others is

esented in

number of

ne atomic

re are two

on root is

s only one

number is

e, through

to identify

the orbit

has been

degeneracy

t the same

ained. The

a

c

w

t

c

O

t

d

s

i

g

approach b

containing n

will contain

this central

creating a b

Once the lis

the same sh

done, and th

speed of the

is visually r

The co

groups cont

egins by re

no bonds, or

n a central a

atom. The

bond in G a

st of neighb

hould be don

he criteria f

e algorithm

represented

Fig

onnected sub

taining equi

epresenting

r edges. The

atom with o

ese neighbo

and eliminat

ors for a no

ne for all re

for acceptan

and are exp

in Figure 3.

gure 3.5 – G

bgraphs of

ivalent isom

97

each atom

e underlying

one or more

ors must eac

ting this ne

ode in G is e

emaining un

nce of a pote

plored in fu

.5.

Generation

G, initially

morphisms a

7

mic signature

g atomic sig

e neighbors

ch be mapp

eighbor from

empty, this n

nsaturated n

ential bond

urther detail

n of structur

all isolated

and the grou

e as a node

gnature repr

, all atoms

ped to anot

m further m

node is said

nodes. The o

in G, have

l below. In

ral isomers

d nodes, are

up containin

e within a

resented by

one bond a

ther node i

mapping requ

d to be ‘satu

order in wh

a huge imp

addition, th

s.

e first partiti

ng member

graph, G,

each node

away from

n G, thus

uirements.

urated’ and

hich this is

pact on the

his process

ioned into

s with the

98

least degree of unsaturation is chosen to be saturated. Typically, this first group of nodes

would have hydrogen as the root atom, thus containing only one degree of unsaturation

(the neighbor of this hydrogen). All nodes in this group are saturated in all possible, and

unique, ways such that a new graph is created for each possibility. Each of these new

graphs will contain several connected subgraphs, which are partitioned, as before, into

groups representing unique isomorphisms. This task is facilitated through the NetworkX

connected_components function, which takes the graph G as input and returns the various

connected subgraphs. The summation of unsaturated neighbor atoms, for each node, or

atomic signature, in these new subgraphs would represent the total degree of unsaturation

for the given subgraph. Each of these unsaturated neighbors would then be saturated in

all possible ways, creating a new set of graphs stemming from the previous set, each

containing their own connected subgraphs. This process continues until one of two

conditions is met:

1) The graph G is completely connected, with the connected_components function

returning one item, and fully saturated. This graph is returned as a feasible

structural isomer.

2) The graph G contains a connected subgraph component with a degree of

unsaturation equal to zero. This represents a saturated subgraph and G is

discarded from further iteration.

3.1.8 Generation of Conformational Isomers

The global geometry of molecular graphs with feasible connectivity must now be

established for the calculation of higher dimensional descriptor values. The goal for this

99

step is to minimize the computational complexity of such an operation by utilizing only

those signatures necessary for the establishment of a complete geometry. As mentioned

previously, the atomic signatures for a respective molecule overlap with each other and

this can be taken advantage of when transforming individual fragment coordinates

towards a consistent coordinate space. Not all atomic signatures for a given molecular

signature are necessary for this approach, and the steps taken to choose those required are

outlined below:

1. The largest signature, based on number of atoms, is selected as a reference frame.

If more than one exists with same size, the signature with the least number of

unsaturated nodes is chosen. Beyond this, a random signature is chosen among

several which have the same size and number of unsaturated nodes.

2. All atomic signatures sharing at least three atoms in common (identified through

an isomorphism mapping) with the initial signature are determined. Three atoms

are necessary for docking the two fragments together in Cartesian space.

3. From this set, the signature defining the largest amount of new atoms is selected.

In the case that several signatures are equivalent in this measure, a random one is

selected.

4. The transformation matrix is established and applied to all atoms in the second

signature such that consistent coordinate frame is established.

5. Signatures having at least three nodes in common with the graph represented by

the combination of the first two signatures are enumerated.

b

t

6. From

and

mole

7. Step

defin

The

‘sup

This p

below. The

the largest a

Figu

m this set, t

a transform

ecular graph

ps 5-6 are c

ned in the

resulting s

perposition m

procedure ca

steps have

atomic signa

ure 3.6 – Ex

the signature

mation matr

h.

continued un

consistent c

set of signa

map.’

an be visua

been labele

ature having

xample of f

100

e defining t

rix is estab

ntil every n

coordinate

atures, with

alized throu

ed for the ch

g the fewest

fragment se

0

the largest a

lished to d

node in the

system esta

their order

ugh the exa

hosen exam

t degrees of

election for

amount of n

ock this ato

given mole

ablished by

r fixed, wil

ample seen

mple, which

unsaturatio

geometry d

new atoms i

om into the

ecular graph

the initial

ll be referre

in Figure 3

begins with

n.

developmen

is selected

e growing

h has been

signature.

ed to as a

3.6 shown

h selecting

nt.

101

This signature would be the one centered at the carbon at labeled ‘D’ as it contains 16

atoms, within the fragment established by its atomic signature, with the carbon atom

labeled ‘G’ being the only unsaturated atom. Step two would necessitate identifying

another signature overlapping by at least three and identifying the most new atoms. The

atoms labelled ‘A’, ‘B’, ‘C’, ‘E’, ‘F’, and ‘G’ all satisfy the three common atoms rule,

however, the atomic signature centered at atom ‘G’ defines the largest number of new

atoms, being 2. Within the structure created by linking these first two atomic signatures

lies only one unsaturated carbon, which is labeled ‘I’. The signatures overlapping this

growing fragment, created by linking the first two, by at least three atoms include all

atoms labeled ‘A’ through ‘I’. Out of those, ‘I’ would define the most new atoms, thus

completing the structure with zero degrees of unsaturation remaining.

The steps outlined previously chose fragments to be transformed into a consistent

coordinate system, and this information was stored in the form of a ‘superposition map’.

A subgraph isomorphism mapping is stored within each compatible bond, as a dictionary,

in the bonding network established previously. It was required that each pair considered

for superposition has at least three atoms in common within this mapping. For the first

two signatures in the superposition map, an equivalent pair of atoms is randomly chosen

from the set of mapped atoms and a translation vector is calculated from the difference in

their coordinate vectors. A second pair of mapped nodes is chosen, along with the first

pair, to form an axis in each fragment for development of a rotation matrix. Since these

two vectors have one point in common, or one overlapping point after the original

translation, the Euler rotation theorem can be utilized to develop a rotation matrix which

e

b

a

a

w

s

t

c

t

m

i

e

f

i

r

c

a

a

c

effectively

between the

angle specif

angle of rot

which mini

systematica

the remaini

calculations

translates a

matrix R is

identified w

established

frame.

For ea

isomer and

respective t

conformatio

at least one

analysis pe

combinatori

superpositio

ese two vec

fied by the

tation aroun

imizes diffe

ally scanning

ing mapped

s is a transf

and rotates

exemplifie

within the

which effec

ach molecul

meeting lo

transformati

ons this ens

e set of coo

erformed o

ial manner,

ons the frag

ctors provid

dot product

nd the axis,

erence betw

g through an

d atoms co

formation m

a given ato

ed in Equati

superpositio

ctively brin

lar signatur

ower dimen

ion matrice

emble of fr

ordinates wh

on the giv

along with

102

gments to o

des a perpin

t between th

, represente

ween the re

ngles by a g

oordinates

matrix, repre

omic signat

on 3.2. Thi

on map su

ngs the indiv

re identified

nsional crite

es, is utilize

ragments co

hich has be

ven data s

the respecti

2

obey the giv

ndicular axi

he vectors.

ed by the fi

emaining m

given increm

has been

esented in h

ture into th

s procedure

uch that set

vidual fragm

d as having

eria, the sup

ed to estim

ould attain.

een derived

et. These

ive transform

ven mappin

is around w

The next st

irst two pai

mapped atom

ment until a

identified.

homogenou

e desired r

e is perform

t of transfo

ments into a

g at least o

perposition

mate the ene

Each atomi

from the i

conformers

mation matr

ng. The cros

which to rot

tep is to cal

irs of mapp

ms. This is

minimal de

The result

us coordinat

eference fra

med for each

ormation m

a consistent

one unique

map, along

ergetically

ic signature

initial confo

s are utiliz

rices, to dev

ss product

tate by an

lculate the

ped atoms,

s done by

eviation in

of these

tes, which

ame. This

h fragment

matrices is

t reference

structural

g with the

accessible

will have

ormational

zed in a

velop a set

(3.2)

o

f

(

F

s

a

f

c

of conforme

for scientifi

(Oliphant, 2

There a

Figure 3.7.

signature fr

atomic sign

from signa

conformatio

ers which a

ic computin

2007).

are multiple

This examp

agments ne

nature will h

atures label

onal isomers

Figure 3.7

are tested ag

ng within Py

e options in

ple follows

cessary to e

have its ow

ed ‘A’, ‘G

s for the cho

7– Utilizatio

103

gainst the ne

ython, is use

 using this i

 the notatio

establish a g

wn set of co

G’, and ‘I’

osen molecu

on of develo

3

ecessary 3D

ed to handl

information

on from Fig

global geom

onformation

’ will be u

ule.

oped confo

D constraint

e the coord

n and two ex

gure 3.6, wh

metry were id

al isomers,

used to de

ormational i

s. NumPy,

dinate transf

xamples are

here the thr

dentified. W

only the co

evelop the

isomers.

a package

formations

e shown in

ree atomic

While each

onformers

complete

104

The ensemble of conformers generated can be used to calculate an average value for

3D descriptors of a given structural isomer, as shown with the three-dimensional Weiner

index. They could also be individually tested against the given criteria since the actual

molecule in solution would be represented, to some degree, by a collection of various

accessible conformations, which might not be well captured through averaging. In any

manner, this approach aims at estimating the accessible conformational space of a given

molecular signature while avoiding an extensive conformational analysis for each

candidate molecule.

3.1.9 Extension to More Complex Structures

The initial studies, which were used to demonstrate the feasibility and applicability of the

proposed methodologies, were based upon simplistic structures. These were relatively

simplistic in the fact that they were medium sized organic molecules containing no ring

structures. This was acceptable since the main motivation was to exemplify the proposed

methodology’s ability to solve computer-aided molecular design problems with multi-

dimensional constraints. However, once proven, the next step would be to test the limits

of this technique against problems of increasing complexity. Extension to consider more

complex molecules with advanced characteristics would necessitate the formulation of

new structural constraints. In addition to topological considerations, the conformational

complexity associated with larger structures is also more evident. This topographic

burden would show itself in the form of more complex potential energy surfaces and

would require an adapted technique to handle such a case. The steps taken to handle such

situations will be covered in the following paragraphs.

105

To foreshadow the possibilities of applying this methodology to more interesting

case studies, it would be worthwhile to present some information on how the signature

descriptor itself has performed when applied to complex case studies. Signature

descriptors have been used as independent variables in the design of novel polymers with

targeted properties (Brown et al., 2006). One of the unique characteristics of this

descriptor is the ability to vary its ‘height’, which corresponds to capturing atoms at a

further distance from the central atom. The height chosen for generating signature

descriptors from a given data set has a direct effect on the resulting chemical search space,

which is where novel solutions are identified. The immediate solution to considering case

studies with larger molecules might be to use a larger height signature, however, this

would have the effect of limiting potential solutions to having a very high similarity to

the original data set. In addition, using a smaller height signature would result in

combinatorial explosion. This was well recognized within the polymer design study by

Brown et al. (2006), and they were able to select an ideal height for the design of novel

polymers, which generated solutions as large as 45 atoms while using height one

signatures. While this was feasible for a study with only topological constraints, the

development of global geometric properties from signature fragments requires at least

height two signatures.

The ability of a descriptor to be mapped back to a given number of potential

solutions is determined by its degeneracy. Descriptors with high degeneracy will map to a

larger number of solutions, which becomes computationally intensive to enumerate all

possible structures. The degeneracy associated with the signature descriptor, with respect

to varying types of molecules with varying complexity, has been studied (Faulon and

106

Churchwell, 2003). With respect to alkanes, using height two signatures, 57.5% of

structures had no degeneracy, meaning that they referred to only one structural isomer.

As for alcohols with the same height two signatures, 99.2% of structures showed no

degeneracy at this height. These were relatively simplistic structures, however, when

extended to consider fullerene-type structures, 99.7% were uniquely identified at a height

of three. In addition, 98.9% of peptides were non-degenerate when a height three

signature was applied. This establishes a boundary when applying the signature

descriptor in molecular design case studies, beyond which would allow for a more similar

set of solutions or a larger search space. In any case, this boundary can be identified for

each unique case study even when applied to more complex structures.

Molecular complexity comes not only in the form of larger structures but also more

interesting structural features. One such example would be the inclusion of ring like

structures, which are found in chemicals across all fields. The signature descriptor is

adept at handling such features and is enabled through its foundation in graph theoretical

concepts. In addition to the extra topological constraints, there will also be some

differences in the topographic characteristics of more complex molecules. The potential

energy surface of a given molecule can quickly become very complex based on the size

of the structures. The degrees of freedom for such a surface can be calculated as 3N – 6,

with N being the number of atoms in a molecule. Fortunately, many of these features are

quite rigid and the only real complexity arises in the torsional bonds found with a given

structure. This can still lead to extremely complex potential energy surfaces, which are

explored to estimate the spatial capabilities of atomic signatures, and the resultant

solution structures, within this methodology. As such, to handle larger structures, it

107

would become necessary to conduct a more thorough conformational analysis of the

original data set. This could also lead to many more structural isomers associated with

each atomic signature, representing a unique structural isomer. To avoid the

computational complexity associated with such a situation, as well as the potential

combinatorial explosion, it would become necessary to increase the cutoff value while

compressing the spatial information as discussed in section 3.1.5. This would be a trade

off in the quality of each estimated geometry, but with an optimized cutoff value would

still generate reasonable geometries. Additionally, it would also be possible to relax to

topographic constraints associated with a given case study and perform a more thorough

conformational analysis of the solutions identified. These techniques could be adopted to

approach studies with more complex structures.

3.2 Stochastic Solution Approach

Often times, the nature of CAMD problems involving higher dimensional descriptors is

such that linear programming cannot be applied. The transformation from property space

to descriptor space can be non-linear as well as that from descriptor space to chemical

space, which is where our solutions lie. In addition, the search space for a given CAMD

problem is necessarily large, which makes the implementation of deterministic search

methods infeasible due to combinatorial explosion. Combinatorial explosion arises within

this field because of the utilization of molecular fragments as building blocks. There are

so many potential arrangements of these building blocks which can lead to novel

solutions.

 A stochastic solution approach can circumvent this problem by searching a

smaller subset of the original space, with guidance by an appropriate algorithm. This

108

allows for a much faster search algorithm, albeit at the expense of not considering the

entire chemical search space. A stochastic approach can be completely random, or more

beneficially, guided towards certain regions of the search space by a given convention.

One such approach, as applied in this document, is known as a genetic algorithm

(Holland, 1975). Genetic algorithms, GAs, apply a search heuristic which mimics nature

by evolving a population of candidates towards an improved ‘fitness’ by means of several

operators. This fitness is often measured as a candidate’s closeness to a given set of

properties. Those within the desired property range have a higher fitness, whereas those

falling outside this range are penalized and have a lower fitness. This satisfies the ‘natural

selection’ part of the algorithm while candidates are altered through various operations

which can be categorized as mutation, acting on a single candidate, or crossover,

typically involving two candidates. These operations allow for the population to evolve

towards an improved overall fitness. One of the benefits of GA applications is that

multiple solution are often found even if the algorithm does not converge. For this reason,

GA has been applied very successfully in several CAMD applications

(Venkatasubramanian et al., 1995; Douguet et al., 2000; Pegg et al., 2001; Kamphausen

et al., 2002). The following Figure 3.8, exemplifies the typical structure of a GA

approach.

d

M

v

s

p

t

s

b

a

c

c

Within

developed a

Most often

various stru

structure m

process of s

the compon

selection. T

be categoriz

and breaks

containing f

chosen mol

Figure

n this genera

and evaluat

this criteria

uctural con

matches the

selection is

nent of pres

The more ‘fit

zed as muta

them at on

features fro

lecular struc

3.8 – Comm

alized metho

ted by the

a comes in

nstraints. A

criteria, an

based on th

ssure as pa

t’ populatio

ation or cro

ne or more p

om each of

cture by sub

109

mon Genet

odology it c

criteria esta

the form o

value is a

nd this is f

his fitness v

aralleled by

on members

ossover. Th

points, then

its parents.

bstitution, d

9

tic Algorith

can be seen

ablished by

of one or m

associated w

facilitated t

value previou

y survival fr

then underg

he crossover

n recombine

The mutati

deletion, or

hm Method

that an init

y the molecu

more propert

with how c

through a f

usly establi

from the en

go various o

r technique

es them to f

ion operato

addition of

ology

tial populati

ular design

ty models a

close each

fitness func

ished, which

nvironment

operations, w

takes two

form a new

r changes p

f molecular

ion is first

n problem.

as well as

candidate

ction. The

h provides

in natural

which can

structures

w molecule

part of the

fragments

110

ranging from simple atoms to larger molecular groups. Termination of the algorithm is

decided upon when the overall fitness of the resulting population has reached a certain

threshold or when a specific number of iterations have been implemented and the final

solution set is what remains.

 This generalized methodology has been implemented within the previously

covered CAMD algorithm such that a stochastic solution approach could be applied. The

initial steps for this new methodology are the same as before in that the desired properties

along with their respective models must first be identified. In addition to this, a

conformational analysis must be performed in the same manner such that the spatial

capabilities of the respective region in chemical space can be captured. Following this,

the generated conformational isomers are dissected into spatial signature descriptor

fragments for use in creating solution structures in a combinatorial manner. The

following steps include application of a GA which has been adapted to satisfy the use of

spatial signature descriptors. New operators have been developed which facilitate the use

of spatial signature descriptors since they are overlapping in nature. A single point

crossover, in addition to insertion, deletion, and random mutations, has been developed.

This methodology is useful for solving complex non-linear CAMD problems utilizing

molecular descriptors of varying dimensionality while searching a large region of

chemical space in an efficient manner.

3.2.1 Overall Genetic Algorithm Methodology

Figure 3.6 provides a depiction of the proposed GA algorithm for the solution of multi-

dimensional CAMD problems utilizing spatial signature descriptors.

F

h

a

w

p

v

v

d

r

o

H

r

Figure 3.

From Figur

have been

addition, th

which enum

proceeds in

various ope

values. An

desired ave

representati

of binary v

However, s

representati

9 – Propos

re 3.9, it can

characterize

he algorithm

merates all

nto the creat

erators into

end point is

rage fitness

on of an ind

values, each

since molec

on would

ed Genetic

n be seen t

ed using th

m is informe

possible b

tion of an i

successive

s reached w

s has been

dividual wit

h associated

cules often

be quite li

11

Algorithm

that the spat

he methodo

ed by the b

bonds betw

initial popu

generation

when the des

reached wit

thin the GA

d with the

n contain in

imiting. Ex

1

m Utilizing S

tial capabili

logy covere

bonding net

ween each p

ulation, whic

s with pote

sired numbe

thin the fin

A scheme is

presence or

ndividual f

xtension to

Spatial Sign

ities of the

ed in sectio

twork, cove

pair of atom

ch is then e

entially imp

er of iteratio

nal populatio

typically re

r absence o

features mu

include int

nature Desc

desired sea

ons 3.1.3 –

ered in sect

mic signatu

evolved by

proved over

ons has pas

on. The con

epresented a

of a specifi

ultiple time

teger occur

criptors

arch space

– 3.1.5. In

tion 3.1.6,

ures. This

means of

rall fitness

sed or the

nventional

as a string

ic feature.

s, such a

rrences of

s

f

t

w

v

n

J

f

s

b

m

a

structural f

fragments w

the individu

where each

visualized in

nodes within

Just as thes

for the exam

signature. N

by the bond

molecular g

associated w

fragments w

which do no

ual members

node within

n Figure 3.

n a chemica

Figure 3.1

e two atom

mple nodes,

Nodes are ad

ding network

graphs are

with problem

would likely

ot represent

s of this GA

n this graph

10 where th

al graph.

0 – Atomic

mic signature

 each node

dded in a sy

k mentioned

considered,

ms of this na

112

y lead to

a feasible s

A approach

h represents

he height tw

c signatures

es, along wi

within the g

ystematic ma

d previously

, which hel

ature.

2

the conside

structure wh

are represen

an underlyi

wo atomic si

s for nodes

ith the fragm

graph would

anner along

y. This ensu

lps alleviat

eration of

hen combine

nted as a ty

ing atomic s

ignatures ar

in molecula

ments they

d have its o

g with bonds

ures that only

e the comb

many colle

ed. For thes

ype of chem

signature. T

e represente

ar graph

represent, a

wn respecti

s, which are

y structurall

binatorial c

ections of

se reasons,

mical graph

his can be

ed for two

are shown

ive atomic

e informed

ly feasible

omplexity

113

3.2.2 Generation of Starting Population

An initial generation of molecules is selected at random to develop a population, which

encompasses a variety of structural features spanning the chosen chemical space, on

which to begin reproduction. The input required for this step consists of an upper and

lower limit on atom count as well as a population size. For each member of the chosen

population size, a target atom count is selected at random from the acceptable size range.

Then a node is selected at random from the bonding network and the possible neighbor

list is developed, from which the subsequent signature fragment is chosen. This process

continues for a growing graph while the selection of signature fragments is a function of

the current graph size. Equation 3.3 is utilized as a probability function for the selection

of a signature which would either maintain graph unsaturation or effectively cap the

growing molecule when nearing the desired size. In Equation 3.3, Pcap is the probably of

selecting a signature fragment which would saturate the growing graph, NT is the target

number of atoms and NC is the current number of atoms.

This constraint helps adhere to the desired range of graph sizes for the starting population.

It is possible for the probability to exceed a value of one, in which case graph growth

would be terminated as soon as possible. The following pseudo-code outlines the

algorithmic approach to generating an initial population:

 pop_size = 100

 size_lower = 10

 size_upper = 30

 size_list = [x for x in range(size_lower,size_upper+1)]

 Pୡୟ୮ ൌ 1 െ ቈ
ሺN୘ െ Nେሻ

N୘
቉ (3.3)

114

 for x in range pop_size:

 select random node

 select random desired size

 for growing_graph in population:

 while unsaturated == true:

 identify cap probability

 if cap == true:

 identify nodes facilitating saturation

 else:

 identify nodes facilitating growth

 else:

 saturated graph created

The desired population size is first chosen, along with the desired upper and lower limit

on the size of molecular graphs generated. For each member of the population an initial

signature is chosen at random along with the desired size, which is chosen from the

developed size list. The molecular graphs are then ‘grown’ by selecting adjacent nodes,

which have signatures capable of overlapping with the previous nodes signature. During

the growing process, the probability of choosing a node which effectively ‘caps’ the

graph by generating a fully saturated molecular structure, is calculated as shown in

Equation 3.3. The value of Pcap can range from zero to one, and the closer this value is to

zero the more likely the algorithm is to ‘cap’ the graph. This leaves some degree of

randomness in the selection of whether or not to terminate growth of the molecular graph.

Once the operation of cap or grow is chosen, all nodes facilitating this operation are

identified and one is chosen at random from this list. This continues until a population of

fully saturated molecular graphs has been created.

 The chosen methodology of generating a starting population has an inherent

degree of randomness such that the diversity of the chosen chemical space has an equal

115

opportunity of representation. However, control over the size of these individuals has

been maintained. This has been done by choosing a desired size distribution within which

the population should be maintained such that runaway growth does not occur. In

addition, it is also undesirable for the generated population to have members with a graph

size that is too small. While this does require some knowledge on the desired size

distribution for a given problem, this can be circumvented by selecting a wider size range

for situations in which this information is unknown. The graphs generated by this method

will provide the population on which subsequent mutation and crossover operations are

applied to create potentially improved solutions. As such, these graphs can be seen as

points in chemical space which serve as starting points for the further interpolation type

search throughout the remaining regions of chemical space.

3.2.3 Fitness Calculation

The fitness function plays a vital role in the guidance of a genetic algorithm towards a set

of improved solutions, especially within a large search space. The best fitness functions

will help a GA explore the search space more efficiently and effectively. However, a bad

fitness function could result in the GA being trapped within a local minimum, lacking the

power to explore other regions. The fitness function chosen for this application is

expressed as shown in Equation 3.4.

This format was chosen as suitable for a molecular design application because the

problem is most often expressed in terms of a set of desired property ranges. In this case,

 ௜݂ ൌ ߙ൭െ	݌ݔ݁ ൥෍
ሺ ௜ܲ െ పܲഥሻଶ

ሺ ௜ܲ௠௔௫ െ ௜ܲ௠௜௡ሻଶ

௡

௜

൩൱ (3.4)

116

the fitness of each molecular graph is calculated with a Gaussian-like function over the

range of desired property constraints. Within this equation, ௜ܲ is the calculated property

value, ௜ܲ௠௔௫ and ௜ܲ௠௜௡ are the upper and lower property range values, and పܲഥ is simply the

average of these two values. The constant, α, is known as the Gaussian fitness decay rate

and characterizes how quickly the fitness falls as it leaves the desired property range.

This effect is exemplified in Figure 3.11, where the value of α has been varied with its

effect on the fitness distribution shown graphically.

Figure 3.11 – Effect of α on Fitness Distribution

 The values produced by this fitness function essentially determine how desirable a

given molecular graph is with respect to the chosen property ranges. Structures falling

outside these ranges in one or more property category are penalized, resulting in a lower

fitness value. Fitness values range from zero to one, with one being considered an

optimal solution. Functionally, the way fitness values are used to select optimal

candidates is that larger values have a higher likelihood of being chosen for mating or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effect of Gaussian Fitness Decay Rate

α = 0.05

α = 0.1

α = 0.3

117

mutation, and this is a probability based approach. While ‘more fit’ solutions do have an

increased likelihood of being chosen, less optimal solutions can be also be represented to

a varying degree by altering the alpha value mentioned earlier. A smaller alpha value

would allow for the increased likelihood of selecting less optimal solutions, while a larger

value would be very strict in only selecting the best structures. Some degree of sensitivity

analysis is necessary to identify a value that’s optimal for a given case study and this

depends on the nature of chemical space considered, as well as its relationship to the

chosen properties of interest.

3.2.4 Genetic Operators

Various genetic operators are applied to maintain diversity within the population and

effectively explore the available chemical space. New techniques were developed to

tackle the unique format of the problem addressed here, namely the stochastic graph

based approach to a multi-dimensional molecular design problem. The two main types of

operators are mutation and crossover. Within the category of mutation operators, three

types were created: reduction, insertion, and fragment mutation. The decision between

selecting either a mutation or crossover operation is based upon a split value, which is to

be decided upon before the algorithm runs. This split provides a probability based

selection between a mutation or crossover operator. While the mutation operations have

been designed to control the size of a resultant graph, by either inserting or removing

fragments if necessary, the crossover is unbiased towards the size of a child graph.

Because of this, problems with a higher probability of selecting a crossover operation

often have a wider size range of solutions whereas those with a higher probability of

selecting a mutation operator have a more narrow size distribution. This concept is well

118

exemplified in Figure 3.12, which plots the size distribution as a function of the crossover

probability.

Figure 3.12 – Effect of Crossover on Size Distribution

Once a mutation has been decided upon, the probability based decision of which

mutation operator to utilize is a function of the current graph size, in addition to a

parameter, Nopt, which represents the current optimal graph size derived from previous

data. Nopt is continuously updated as generations are analyzed and is calculated as shown

in Equation 3.5, where ௜݂ is the fitness for a previously created molecular graph and ௜ܰ is

its size. This technique allows for dynamic size control, which adjusts itself to the

information gained previously throughout the stochastic algorithm.

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

P
o
p
u
la
ti
o
n
 S
iz
e
 D
is
tr
ib
u
ti
o
n

Crossover Probability

 ௢ܰ௣௧ ൌ
∑ ሺ ௜݂ ∙ ௜ܰሻ௜

∑ ௜݂௜
 (3.5)

T

m

p

a

(

p

T

w

h

b

This format

molecular

properties o

alkanes can

(Needham e

possibility t

This can be

within whic

has been de

based upon

t was chosen

design algo

often have a

n be linearl

et al., 1987

to loosen co

done by co

ch a molecu

ecided upon,

this β value

Figure

n to maintai

orithm. Pre

a correlation

ly correlate

7). However

ontrol over th

ontrolling th

ular graph c

, the remain

e by the con

e 3.13– Sele

119

in strict con

evious stud

n to molecu

ed to the m

r, it is reali

he size of m

e β value, w

can be cons

ning decision

nvention sho

ection of Ty

9

ntrol over the

dies have r

ular size; fo

mass of the

ized that th

molecular gr

which charac

sidered opti

n between i

own in Figur

ype of Mut

e size of gra

revealed th

or example,

underlying

his is often

raphs genera

cterizes the

imal. Once

insertion, de

re 3.13.

ation Oper

aphs genera

hat physico

, the boiling

g molecular

not the cas

ated has bee

acceptable

a mutation

eletion, or m

rator

ated by the

o-chemical

g point of

r structure

se and the

en allowed.

size range

operation

mutation is

120

Graphs within a certain percentage, β, of the optimal size undergo a signature

mutation such that the size of the graph is preserved, while graphs above and below this

range undergo reduction and insertion, respectively. Signature mutation involves the

selection of a random node, which is then exchanged based on bond compatibility

information available in the bonding network. Graph reduction involves the random

selection of two or more bonded signatures, which is then replaced by a shorter path

identified within the bonding network. Similarly, graph insertion involves the selection of

a random bond between two signatures, in which a compatible signature is inserted to

increase the size of the resultant molecular graph.

Upon selection of the crossover operator, two parent graphs are selected from the

population and are cut/recombined at compatible points just as in conventional crossover

operations. For a pair of bonds, one from each graph, to be compatible, the bonding

network must establish that each node involved in these bonds can also be bonded to its

counterpart in the other graph. Each of these operators rely heavily on information stored

within the bonding network, which is why this information is pre-calculated for the

signature space developed from the initial data set. The concept of a single-point

crossover can be seen in Figure 3.14, where two graphs are selected and cut at a

compatible bond. One fragment from each parent is then recombined in a compatible

manner to produce the resultant child graph. It is worth noting that, with a single point

crossover, there are two possible child graphs that can be produced and one is chosen at

random with no bias to the resultant sizes.

Figuree 3.14 – Im

12

plementati

1

ion of Crosssover Operrator

122

4. Case Studies

The following case studies are meant to exemplify the usefulness of the above proposed

algorithm. The first two case studies included the design of a solvent and a fungicide, for

which the substituents were designed. These examples represent an initial attempt at

including spatial information within the signature descriptor and molecular design

methodology presented here. The search space for both problems was small enough to be

solved in a deterministic manner, however, the nature of the problem definition allowed

for a linear optimization approach to be taken. Utilizing optimization would allow for a

much larger search space to be considered. In addition, the nature of the resulting

solutions, being smaller in size on a molecular level, allowed for the spatial information

for each potential solution to be derived from a single atomic signature, often the largest

one. This is an inherent limitation in the solution of CAMD problems, and the technique

for solving studies with larger solutions has been described earlier. This necessitates the

development of a global geometry from fragment geometries. Unfortunately, the nature

of these calculations does not allow for a linear approximation of the geometry. In

addition, most any spatial descriptor utilized is not a linear function of the atomic

coordinates or interatomic distances. This being said, what remains is to find an approach

whereby the potential energy surface of candidate molecules can be estimated without

conducting time consuming scans of this space. This would allow for the consideration of

much larger search spaces. The third case study presented analyzes the ability of the

proposed algorithm to estimate the PES for a given molecule. This verification was

necessary for further studies utilizing this methodology. Once verified, the next step was

to consider a study with a much larger search space. This is where the fourth case study,

123

which included the design of non-peptide mimetics matching a pharmacophore model,

came in to play. The development of this dissertation can be seen in the consideration of

case studies with increasing complexity, as they have been presented in this section.

4.1 Solvent Design Study

The initial case study is simplistic in nature and represents the design of a solvent with

desired properties. The target in this design is to identify an alkane molecule with

minimum soil sorption coefficient (log Koc). The property constraints to be satisfied by

the solvents are boiling point (BP) and toxic limit concentration (TLC). The constraints

are listed in Table 4.1 and the property models are described in Table 4.2.

Table 4.1 - Property constraints for solvent design study.

Property Upper Bound Lower Bound

Boiling Point, BP (°C) 85 55

Log(TLC) (ppm) - 1

Log(Koc) Minimum

Table 4.2 - Property models for solvent design study.

Property Property Model

log(Koc) 66.0)(72.0)(25.1)(53.0)log(011   ocK

Boiling Point, BP 682)(395 0986.03  WBP D

log(TLC))(9915.0066.4)log(1 TLC

124

For boiling point, a QSPR (Mihalic and Trinajstic, 1991) that makes use of the 3D

Weiner index has been used. The three-dimensional Weiner index (3DW) is computed

directly from the geometric distance matrix as follows, where di,j is the geometric

distance between atoms i and j:

The property model correlating the first order valence connectivity index to toxicity

was developed by Koch (1982). The objective constraint in this study was to design a

molecule with a minimal soil sorption coefficient. Koc represents the soil sorption

coefficient, which is a strong indicator of the fate of an organic chemical introduced into

the environment. A lower value here would represent a decrease in the potential harm this

solvent could do if released into the soil. The model (Bahnick and Doucette, 1988)

utilized to estimate this property has been correlated to various molecular connectivity

indices and the optimal model is shown in Table 4.2. For this study, since only alkane

structures were considered, the delta valence connectivity indices within this equation are

equal to zero.

To form molecular building blocks, signatures of height 2 are used. There are 65

unique molecular signatures of height 2 that can be developed from linear alkane

structures. These signatures have been listed in Table 4.3 below.

 ܹ ൌ
1
2
෍݀௜,௝
௜,௝

	
ଷ஽ (4.1)

125

Table 4.3 - All height-2 atomic signatures for linear alkanes.

C1(C2(C))

C1(C3(CC))

C1(C4(CCC))

C2(C2(C)C1)

C2(C3(CC)C1)

C2(C4(CCC)C1)

C2(C2(C)C2(C))

C2(C3(CC)C2(C))

C2(C4(CCC)C2(C))

C2(C4(CCC)C4(CCC))

C2(C3(CC)C3(CC))

C2(C4(CCC)C3(CC))

C3(C4(CCC)C4(CCC)C4(CCC))

C3(C4(CCC)C4(CCC)C3(CC))

C3(C4(CCC)C4(CCC)C2(C))

C3(C4(CCC)C4(CCC)C1)

C3(C4(CCC)C3(CC)C3(CC))

C3(C4(CCC)C3(CC)C2(C))

C3(C4(CCC)C3(CC)C1)

C3(C4(CCC)C2(C)C2(C))

C3(C4(CCC)C2(C)C1)

C3(C4(CCC)C1C1)

C3(C3(CC)C3(CC)C3(CC))

C3(C3(CC)C3(CC)C2(C))

C4(C4(CCC)C4(CCC)C4(CCC)C1)

C4(C4(CCC)C4(CCC)C3(CC)C3(CC))

C4(C4(CCC)C4(CCC)C3(CC)C2(C))

C4(C4(CCC)C4(CCC)C3(CC)C1)

C4(C4(CCC)C4(CCC)C2(C)C2(C))

C4(C4(CCC)C4(CCC)C2(C)C1)

C4(C4(CCC)C4(CCC)C1C1)

C4(C4(CCC)C3(CC)C3(CC)C3(CC))

C4(C4(CCC)C3(CC)C3(CC)C2(C))

C4(C4(CCC)C3(CC)C3(CC)C1)

C4(C4(CCC)C3(CC)C2(C)C2(C))

C4(C4(CCC)C3(CC)C2(C)C1)

C4(C4(CCC)C3(CC)C1C1)

C4(C4(CCC)C2(C)C2(C)C2(C))

C4(C4(CCC)C2(C)C2(C)C1)

C4(C4(CCC)C2(C)C1C1)

C4(C4(CCC)C1C1C1)

C4(C3(CC)C3(CC)C3(CC)C3(CC))

C4(C3(CC)C3(CC)C3(CC)C2(C))

C4(C3(CC)C3(CC)C3(CC)C1)

C4(C3(CC)C3(CC)C2(C)C2(C))

C4(C3(CC)C3(CC)C2(C)C1)

C4(C3(CC)C3(CC)C1C1)

C4(C3(CC)C2(C)C2(C)C2(C))

126

C3(C3(CC)C3(CC)C1)

C3(C3(CC)C2(C)C2(C))

C3(C3(CC)C2(C)C1)

C3(C3(CC)C1C1)

C3(C2(C)C2(C)C2(C))

C3(C2(C)C2(C)C1)

C3(C2(C)C1C1)

C4(C4(CCC)C4(CCC)C4(CCC)C4(CCC))

C4(C4(CCC)C4(CCC)C4(CCC)C3(CC))

C4(C4(CCC)C4(CCC)C4(CCC)C2(C))

C4(C3(CC)C2(C)C2(C)C1)

C4(C3(CC)C2(C)C1C1)

C4(C3(CC)C1C1C1)

C4(C2(C)C2(C)C2(C)C2(C))

C4(C2(C)C2(C)C2(C)C1)

C4(C2(C)C2(C)C1C1)

C4(C2(C)C1C1C1)

The signatures used as building blocks to develop candidate molecular structures were

optimized at the AM1 (Austin Model 1) (Dewar et al., 1985) quantum mechanical level,

as it was shown to generate reasonable bond lengths and angles for the chosen data set. In

the context of chemical graph theory, these signatures are described as sub-graphs and the

optimized Cartesian coordinates of each atom were used to derive interatomic Euclidean

distances. Together, these interatomic distances represent individual entries in the

symmetric geometric distance matrix. An optimization problem has been set up using the

given property models with relevant structural constraints and solved for the minimum

value of soil sorption coefficient. The best three candidates and their respective atomic

signatures have been listed in Table 4.4.

127

Table 4.4 - Solutions for solvent design study.

Molecule Atomic Signatures BP (°C) log(TLC)
(ppm)

log(Koc)

CH3CH2CH(CH3)CH2

CH3

2x C1(C2(C3))
2x C2(C1C3(C1C2))
1x C1(C3(C2C2))
1x
C3(C1C2(C1)C2(C1)

62.3 3.4 1.54

(CH3)2CH(CH2)2(CH3) 2x C1(C3(C2))
1x C3(C1C1C2(C2))
1x
C2(C3(C1C1)C2(C1))
1x C2(C1C2(C3))
1x C1(C2(C2))

61.0 2.3 1.72

(CH3)2CHCH(CH3)2 4x C1(C3(C1C3))
2x C3(C1C1C3(C1C1))

58.1 1.9 1.76

4.1.1 Conclusions

The solvent design case study presented here represents an initial attempt at utilizing

signature descriptors containing geometry information for the solution of molecular

design problems with descriptors of varying dimensionality. The signatures themselves

were optimized as isolated fragments without consideration of surrounding or attached

atoms. In this study, only the minimum energy conformers were accepted for

consideration within the optimization problem. The nature of the solution space allowed

for the complete molecular geometry of structures considered to be determined from the

largest atomic signature within the molecular signature vector. While the approach may

be feasible within this study, where the three-dimensional descriptor was not a strong

function of the finer details of the conformational information available, improved

methodologies are necessary for more complex applications. Studies with larger

128

structures existing within the chemical search space will require the development of

global molecular geometry from several fragments. In addition, there may be many local

conformational minima possible with spatial descriptors that are very sensitive to these

varying atomic arrangements. For these reasons, the following studies will consider such

cases along with the methodologies useful for tackling problems with increased

complexity.

4.2 Design of Alkyl Substituent for Rice Plant Fungicide

Application of the molecular signature descriptor in accounting for topological,

topographical and information indices is illustrated through the optimal substituent

selection for dialkyldithiolanylidenemalonate (DD). DD has been shown to have

eradicant and protectant activity against rice blast disease. Uchida (1980) enumerated the

effectiveness of this fungicide in terms of affinity (log(VE)), mobility (log(μ)) and

retention (log(R/(100-R))). These three attributes have been linearly related to the

lipophilicity (log(Poct/wat)) of the chosen substituents. A QSPR was developed (Basak et

al., 1996) to model log(P) as a function of several different descriptors. Index values are

calculated only for the substituent regions of the fungicide. The structure of this fungicide

is shown in Figure 4.1.

S

S

C C

COOR2

COOR1

Figure 4.1 - Fungicide structure.

129

Raman and Maranas (1998) previously visited this problem while correlating log(P)

values to the first order molecular connectivity index. The same upper and lower bounds

on mobility and retention are applied in this study, while the objective function is to

maximize substituent affinity to the rice plant. These property constraints can be found in

Table 4.5. Property models utilized in this study are shown in Table 4.6. The information

content (IC) indices infer a measure of molecular symmetry, and this formulation was

originally introduced by Shannon (1948). Another information theoretical invariant

utilized in the log(P) QSPR is the complementary information content (CIC) index

(Magnuson et al., 1983).

Table 4.5 - Fungicide substituent property constraints.

Property Upper Bound Lower Bound

Retention, log(R/100-R) -2.04 -2.48

Mobility, log(μ) 0.3 -0.3

Affinity, log(VE) Maximum

Table 4.6 - Fungicide study property models.

Property Property Model
Retention log(R/100-R)=0.72*log(P)-1.93

Mobility log(μ)=-0.64*log(P)+1.95

Affinity log(VE)=0.53*log(P)-0.24

Hydrophobicity
log(P)=-5.60+0.19(P10)-1.46(IC0)+1.09(CIC2)-0.77(CIC3)-

1.36(6χb)
+5.34(0χv)-3.41(1χv)+0.55(4χv)-0.41(3χv

C)+1.10(VW)-0.17(3DW)

130

The atomic signatures used in this study were hydrogen suppressed and were allowed to

exhibit one degree of unsaturation such that a bond to the existing fungicide structure

could be allowed. Given the above property constraints, each estimated through property

models utilizing varying descriptor types, the top three solutions were identified as shown

in Table 4.7, which shows the respective molecular signature vectors.

131

Table 4.7 - Molecular signature solutions to fungicide problem.

Atomic Signatures Occurrence #’s

C1(C2)

C1(C3)

C2(C2C1)

C2(C3C1)

C2(C3C2)

C3(C2C2C1)

2

1

1

1

1

1

C1(C2)

C1(C3)

C2(C3C1)

C3(C3C2C1)

C3(C3C1C1)

1

3

1

1

1

C1(C2)

C1(C4)

C2(C4C1)

C4(C2C2C1C1)

2

2

2

1

As mentioned previously, each set of atomic signatures can refer to more than one

molecular signature. This is the case for solutions in the fungicide substituent design

study since several solutions can actually satisfy more than one resulting structure. The

132

structural isomers have been enumerated for each solution, along with their respective

estimated properties in Table 4.8.

Table 4.8 - Substituent solution isomers.

Properties R1 R2

Affinity Mobility Retention

1.480 -0.292 -2.094

methyl

methyl

ethyl

3-methyl-butyl

2-pentyl

sec-butyl

1.521 -0.193 -2.326 methyl
2-methyl-2-

butyl

1.704 -0.138 -2.163 methyl tert-pentyl

4.2.1 Conclusions

This study was an extension of the previous solvent design study in that it considered

more complex property models. Several of the solutions identified within the first study

(Chemmangattuvalippil, 2008) were also found in this case study. However, the inclusion

of spatial properties allowed for a different perspective on each property relationship,

which was not captured in the previous application. In addition to spatial descriptors,

information theoretic descriptors were also included in this analysis. While the solution

was deterministic in nature, the problem could have been potentially solved utilizing

linear programming techniques. This problem also addressed the issue of structural

isomers arising from degeneracy seen in the use of atomic signatures as a platform

deriving all other descriptors. The next step will be to solve problems in which the

133

solutions are large enough to require geometry development from multiple fragments.

However, the proposed technique will need to be verified first to ensure that reasonable

molecular geometries are produced.

4.3 Geometry Estimation Technique Analysis

The solution of problems relying on spatial, or three-dimensional, descriptors for

structure characterization necessitates the consideration of molecular geometries. The

most straight-forward and thorough approach is to carefully evaluate the potential energy

surface (PES) of each structure considered within the search space for a given molecular

design problem. However, this approach is computationally demanding and limits the

region of chemical space that can be searched. While this technique is feasible for lead

optimization stages in drug design studies, where the potential candidates have been

substantially narrowed down to just a few structures, its application in many virtual

screening situations becomes limited. As such, techniques for quickly estimating the PES

of candidate molecules, or perhaps identifying likely conformational minima, become

beneficial in the solution of these problems. The simplest approach, and most limited in

producing realistic geometries, would be to utilize a database of conventional bond

lengths and angles etc. to estimate the resulting geometry. Another technique, as

discussed in the first case study on solvent design, could be to use fragment geometries to

develop a global molecular geometry. The limitations of this approach have been

addressed. To overcome these limitations, an approach has been developed which applies

the same concept, however, with more detail. The fragment based approach for

developing an estimation of the PES for structures considered within a CAMD problem

has been explained in the background section of this dissertation. However, what remains

134

is verification of this technique. The approach taken to verify the aforementioned

methodology will be as follows:

1. Choose a data set on which to develop spatial atomic signatures.

2. Leave out structures within the chemical space of the test set from step one for

comparison.

3. Develop an estimated set of conformers from the initially obtained atomic

signatures using the proposed methodology.

4. Independently develop a set of local energy minima, utilizing the same level of

theory for geometry optimization, with which to compare against the estimated

PES.

5. Compare the two sets of conformational isomers for structures in the test set to

see what percentage of this information was captured in the PES analysis.

4.3.1 Analysis of Methodology in Organic Space

The initial verification of the geometry development methodology was chosen for a data

set of organic structures. Within the data set exists linear alkane structures, as well as

structures containing double bonds and branched alkanes. This data set is chosen such

that the effect of the proposed technique could be studied on structures with varying

potential energy surfaces, with some structures having less conformational flexibility

than others. The data used to develop the respective atomic signature basis set can be

seen in Figure 4.2, with the hydrogen-suppressed structures shown. In addition, the test

set is shown in Figure 4.3.

m

f

d

w

i

w

c

T

Both s

molecular m

for its abili

descent algo

was the tec

input to the

was used a

conformatio

Tirado-Rive

F

F

sets of stru

mechanics w

ity to repro

orithm was

chnique used

conformati

as input to

onal search

es, 2005). T

Figure 4.2 –

Figure 4.3 –

ctures were

with the MM

oduce accur

utilized wit

d to develo

ional analys

o create a

could be p

The Monte C

135

– Geometry

– Geometry

e initially d

MFF94 forc

rate geomet

th 10000 ste

op a consist

sis step. This

z-matrix fi

performed w

Carlo metho

5

y verificatio

y verificatio

drawn into

ce field (Ha

tries for alk

eps and a co

tent initial g

s initial geo

file for whi

within the

d has been

on data set.

on test set.

Avogadro

algren, 1996

kanes and a

onvergence

geometry, w

ometry, in th

ich a subse

BOSS prog

shown to qu

and optimi

6), which w

alkenes. Th

criterion of

which was u

he form of a

equent Mo

gram (Jorge

uickly and e

ized using

was chosen

e steepest

f 10-7. This

utilized as

a .mol file,

nte Carlo

ensen and

effectively

136

explore the conformation space for a range of molecular structures (Chang et al., 1989).

The conformational search began with 100 starting structures and those with a

conformational strain energy within 5 kcal/mol of the lowest conformer identified were

kept. Table 4.9 lists the number of conformers identified in this range for each molecule

in the data and test sets.

Table 4.9 - Conformers identified with MC search.

Structure
(type)

Conformers Identified
(within 5 kcal/mol)

T1
(alkane)

7

T2
(alkene)

5

T3
(branched)

9

D1
(alkane)

4

D2
(alkane)

9

D3
(alkene)

5

D4
(alkene)

5

D5
(branched)

16

D6
(branched)

9

As can be seen in Table 4.9, the branched structures typically have a more

complicated potential energy surface. This could partially be a result of the fact that the

branched alkanes have more atoms, on average, than the linear structures used in this

study. However, the trend of alkenes having a less complex potential energy surface,

identified by the lower number of conformers found during a comparable PES scan, is

consistent here. This is likely a result of the double bonds decreasing the rotational

d

s

o

a

c

r

c

degree of fr

single bond

one degree

associated w

can be exte

rotate aroun

complex tha

\Figure

reedom for a

ds. A visual

of freedom

with the hig

ended, when

nd, to hypot

an similar al

4.4- Examp

a given alke

ization of t

m, can be see

gher degrees

n considerin

thesize that

lkenes or al

ple potentia

137

ene structure

the potential

en in Figure

s of freedom

ng that a br

their potent

kanes.

al energy di

7

e when com

l energy su

e 4.4. This r

m, resulting

ranched alk

tial energy s

iagrams for

mpared to a

urface for bu

reveals the

from more

kane would

surface wou

r (A) butan

similar stru

utane and b

increased c

rotatable bo

have more

uld be relativ

ne and (B) b

cture with

butane, for

omplexity

onds. This

e bonds to

vely more

butene

t

c

m

a

s

d

c

c

i

p

d

a

This g

the likely lo

criterion of

method was

addition, it i

spatial atom

discards con

conformers

complete de

This ap

in an exped

problems re

dimensional

analysis bas

eometry est

ocal energy

f 5.5 angstr

s able to rep

is helpful to

mic signatu

nformers fo

being disca

escription of

F

pproach rep

dited manne

equiring spa

l descriptor

sed on the n

timation me

minima as

rom and a

produce all

o consider th

ures left aft

or being too

arded and a

f the PES of

Figure 4.5 -

presents a co

er. Such a t

atial inform

rs. However

nature of a c

138

ethodology

sociated wi

conformer

21 conform

he results in

fter compre

o similar). A

smaller val

f each atom

Conformer

onvenient e

technique w

ation, such

r, it is neces

chosen data

8

was shown

th a set of a

comparison

mers identifi

n Figure 4.5

ession using

A larger cu

ue would m

mic signature

rs after com

estimation o

will prove u

as those us

ssary to per

a set. Larger

n to be succ

alkanes and

n criterion o

ied within t

. This chart

g various c

utoff value w

maintain mor

e.

mpression.

of the PES f

useful in the

sing propert

rform some

r, more com

cessful in id

d alkenes. A

of 3.2 angs

the previous

shows the n

cutoff value

would resul

re of them f

for various m

e solution o

ty models w

degree of s

mplex structu

dentifying

At a cutoff

strom, the

s study. In

number of

es (which

lt in more

for a more

molecules

of CAMD

with three-

sensitivity

ures could

139

have a much more complicated potential energy surface and a smaller cutoff criterion for

developing spatial atomic signatures would be required. This can be done by selecting a

few structures, representative of the chosen data set, and running the algorithm discussed

above, which tests how many conformers can be recreated for a given cutoff. There is an

inherent ‘sweet spot’ that is specific to each data set chosen and must be identified such

that the algorithm is most effective. This could be done by repeating the previously

covered geometry verification methodology until a desired number of conformational

isomers are captured with the chosen cutoff value.

4.4 Structure Based Design of Non-Peptide Mimetics

This contribution outlines an algorithm for the design of mimetics based on information

from existing pharmacophore models. Ideally, these techniques could be implemented

alongside conventional high-throughput screening (HTS) efforts to alleviate the time and

costs required to develop new therapeutic drugs with improved processability. This study

represents a first attempt at solving problems necessitating geometry estimation from

fragment geometries.

4.4.1 Pharmacophore and Non-Peptide Mimetics

The IUPAC definition for a pharmacophore is given as ‘… the ensemble of steric and

electronic features that is necessary to ensure the optimal supramolecular interactions

with a specific biological target structure and to trigger (or to block) its biological

response’ (Wermuth, 1998). These models can be developed with or without geometric

characterization of the targeted receptor. If the receptor structure is known, several

computer-assisted docking techniques can be utilized to develop the pharmacophore

model. When the receptor structure is unavailable, there are various superpositioning

140

techniques available for comparing the spatial features found in ligands and using this

information for model development. These alignment techniques are often limited by

their inability to capture the conformational flexibility of ligands under consideration.

Several algorithms have been developed to overcome this limitation and most are based

on pre-calculation of ligand conformations, and/or distance geometry (e.g. the geometric

distance between important structural/electrostatic features) (Wolber et al., 2008). Many

attempts at utilizing pharmacophore models to develop novel mimetics have focused on

replacing the peptide backbone with a non-peptidic framework, or identifying cyclic

peptide derivatives (Olson et al., 1993). The limitation of these solutions in regards to

oral-bioavailability, drug-likeness, and stability leads to the consideration of alternative

approaches. A trend towards models built with more generalized features and a thorough

conformational analysis, with rotational and translational invariance, could allow for the

extension of in-silico screening to include potential non-peptide candidate mimetics.

Properties related to drug-likeness, such as those established in Lipinski's rule of 5,

provide a quick estimation as to the potential pharmacokinetics in the human body as

well as other important properties like absorption, distribution, metabolism and excretion

(ADME) (Lipinski et al., 2001). These rules can place limits on something as simple as

the molecular weight or as complex as the molar refractivity or molecular polar surface

area.

4.4.2 Model Information

The case study chosen to test this algorithm is based on a 3D pharmacophore model

developed for 5-Hydroxytryptamine6 (5-HT6) receptor antagonists (Lopez-Rodriguez et

al., 2005). Evidence suggests that this receptor may be involved in memory impairment,

p

s

d

s

r

r

h

(

4

A

p

a

w

D

w

psychosis,

system dise

developmen

structurally

regions we

receptor bl

hydrophobic

(HBA). Res

4.4.3 Atom

A sub-set

pharmacoph

atomic sign

with improv

Draw 4.0 pr

was importe

convulsive

eases. This

nt software

diverse an

re identifie

ocking, and

c site (AR)

spective euc

Fig

ic Signatur

of 22 stru

hore trainin

natures to b

ved bioavai

rogram (Ac

ed into Avo

disorders,

pharmacop

called Cat

ntagonists a

ed (Lopez-R

d these inc

), a positive

clidean dista

gure 4.6 - P

re Developm

uctures, ch

ng set, was

e utilized in

ilability. Th

celerys Inc.

ogadro for e

14

appetite c

phore mode

alyst (Kuro

and the opt

Rodriguez e

clude: a hy

e ionizable

ances (Å) be

Pharmacoph

ment

hosen to r

chosen as t

n the in-sil

hese structur

., 2001) and

estimation o

1

control, and

el was deve

ogi et al., 2

timal mode

et al., 2005

ydrophobic

atom (PI),

etween mod

hore Model

epresent di

the basis se

ico design

res were in

d the resultin

of an initial

d other rela

eloped with

2001) from

el is represe

5) to be ne

site (HYD

and a hyd

del features a

l for 5-HT6

iversity fou

t for the de

of a potent

nitially draw

ng 2-Dimen

 geometry,

ated centra

h the pharm

a training

ented Fig.

ecessary fo

D), an arom

drogen bond

are also sho

6.

und in the

evelopment

tial 5-HT6 a

wn into the

nsional MDL

for which t

al nervous

macophore

set of 45

4.4. Four

or optimal

matic ring

d acceptor

own.

e original

of spatial

antagonist

Accelerys

L mol file

the Merck

142

Molecular Force Field (Halgren, 1996) was utilized as a suitable candidate to develop a

rough initial geometry. A Monte Carlo conformational search, with 200 starting

geometries, was performed for each structure and all isomers within 20 kcal/mol of the

lowest energy conformer were accepted for further calculations. This conformational

analysis was performed in the Biochemical and Organic Simulation System (BOSS)

software (Jorgensen and Tirado-Rives, 2005) through application of the xCS200 script,

which performs a conformational analysis with 200 starting structures. From the original

22 structures, 508 conformational isomers were ultimately accepted. In house software,

facilitated through the use of Faulon’s signature software (Faulon, 2014), was developed

for the conversion of input mol files, for each conformational isomer, to their respective

height 3 atomic signatures. This software was written in Python and the results for the

signature software were used as input to the program. From the 23,368 atomic signatures

derived from the data set, 254 of these were identified as being unique structural isomers.

Upon bonding network generation, about 2.96% of the pairwise signatures were

identified as being capable of bond formation. Conformational isomerism data was stored

in the respective structural isomers as a dictionary of Cartesian coordinates representing

the relative positions of all atoms in each conformer. The measure of similarity used for

comparing conformational isomers, or graph isomorphisms, was the root mean square

difference in inter-atomic distance values. By setting a limit of 0.2 Å as the maximum

acceptable difference between equivalent inter-atomic distances in conformational

isomers, the number of signature fragment conformers was reduced by 73%, from around

23,000 to 6,340. This reveals a high degree of spatial similarity between conformational

isomers for each type of signature. Since these atomic signatures were derived from a set

o

u

4

T

p

m

T

s

i

m

i

A

a

i

w

of structura

using fragm

4.4.4 Comb

The applica

placed on th

maximal nu

The Python

signatures w

initially tes

multi-dimen

identified as

A five perc

allow for p

isomer iden

was perform

lly diverse

ment geomet

binatorial O

ability doma

he signature

umber of rep

n itertools m

within the

sted against

nsional crite

s meeting th

Fi

cent relaxati

potentially

ntified as m

med on the e

molecules,

tries to build

Optimizatio

ain for this

e occurrenc

peats for a

module was u

AD define

t structural

eria covered

he various p

igure 4.7- E

ion was pla

strained ge

meeting the

estimated g

143

this provide

d global mol

on

 study was

e vector. Th

specific ato

utilized to g

d. Each mo

feasibility

d in section

pharmacopho

Example ph

aced on spat

eometries to

required co

geometry. In

3

es some ver

lecular geom

 defined in

hese bound

omic signatu

generate all

olecular sig

constraints

3.3. Some

oric sites ar

harmacopho

tial criteria

o be consid

onstraints a

n addition, t

rification fo

metries.

n terms upp

s were set b

ure as ident

possible co

gnature vec

s and subs

example of

re shown in

ore groups.

in the phar

dered. For

single poin

this initial g

or the reason

er and low

between zer

tified in the

mbinations

ctor encoun

equently ag

f structural

Figure 4.5.

.

rmacophore

each confo

nt energy c

geometry un

nability of

er bounds

ro and the

 basis set.

of atomic

ntered was

gainst the

fragments

e model to

ormational

calculation

nderwent a

m

e

c

f

c

e

g

c

c

a

w

A

t

molecular m

et al., 198

calculation

from the in

candidate so

energy min

geometry in

criteria plac

conformatio

acceptable s

with respec

All of the s

them, can b

mechanics e

85) semi-em

was made.

nitially deve

olutions. Th

nimum, wh

n solution.

ced on this

onal isomers

spatial char

t to the nea

solutions ide

e found with

Figure

energy mini

mpirical for

A ratio of m

eloped geom

he idea here

hich would

The final

s study was

s of structur

racteristics,

arest local c

entified for

thin

e 4.8 - Solut

144

imization, u

rce field,

minimized s

metry was u

e is to award

indicate a

number of

s 22. Sever

res used in t

as well as

onformation

this case st

tions to ant

4

utilizing the

after which

strain energ

utilized as a

d candidate

an increase

f structures

ral of the h

the test set.

a favorable

nal minima

tudy, along

tagonist des

Austin Mo

h another

gy to the str

a metric wi

e structures

d likelihoo

s meeting t

highest ran

The top thr

e measure o

have been

with the m

sign case st

odel 1 (AM

single poin

ain energy

ith which to

for lying ne

od of achie

the multidim

nked candid

ree isomers

of single-poi

shown in F

metric utilize

tudy.

1) (Dewar

nt energy

calculated

o rank the

ear a local

eving this

mensional

dates were

exhibiting

int energy

Figure 4.8.

ed to rank

145

4.4.5 Conclusions

The following methodology has been developed for the solution of multi-dimensional

inverse molecular design problems while quickly estimating the conformational space of

each structural isomer presented. The use of a fragment-based, spatial Signature

descriptor was chosen for its compatibility with such a combinatorial algorithm aimed at

scanning a large region of chemical space. The algorithm takes the approach of satisfying

lower dimensional criteria first so that the computational expenses associated with

developing/analyzing more complex criteria, such as that associated with geometric

analysis, is minimized. Flexibility in the use of varying data sets for spatial signature

development could allow for the application of this methodology at various stages of

molecular design, or more specifically drug development.

The case study chosen to exemplify the benefits of this approach was the design of a

receptor antagonist with potential therapeutic benefits. Several candidate solutions were

identified that were not part of the initial training set. Based on the signature height used

in this study, and the nature of the data set with many cyclic structures, the structures

tested were fairly similar to the original set.

4.5 Solvent Design with Genetic Algorithm

The case study chosen to exemplify this stochastic approach involves the design of a

molecule with a specified boiling point temperature. Basak et al. (1996) developed a

structure activity relationship correlating various 2D and 3D molecular descriptors to the

normal boiling point for a data set of 1023 chemicals from the Toxic Substances Control

Act (TSCA) Inventory. Only those molecules with a listed normal boiling point value and

where the hydrogen bonding potential was estimated to be equal to zero were chosen.

146

The goal of this study was to determine the optimal combination of descriptors between

2D, 3D, and 2D+3D. Most of the topological indices for each chemical within the chosen

dataset were calculated utilizing the computer program POLLY (Basak et al., 1988).

Because of the varying nature of descriptor values, topological indices were transformed

by the natural logarithm of the index plus one. One was added since many of the indices

were found to be zero. Geometric parameters were transformed by the natural logarithm

of the parameter. Two different regression techniques were utilized. When the number of

independent variables was large, stepwise regression was chosen. However, when the

number of independent variables was small, all possible subsets regression was used. To

include both sets of descriptors, each capturing varying dimensionality, the following

model development procedure was chosen. First, only topological indices were utilized to

identify the best model. The topological indices utilized within this model were then

added to a set of topochemical indices and the best model from this combined set of

indices was developed. Finally, the best topological/topochemical indices were then

added to the set of geometrical descriptors, from which an optimal model was once again

created using a subset of these.

 The model containing only topological indices utilized 11 parameters and resulted

in an explained variance (R2) of 80.8% and standard error (s) of 40.9°C. With the addition

of topochemical parameters, a model using two topological and seven topochemical

parameters was identified as best, having an R2 of 96.5% and s of 17.4°C. The best fit

model, shown in Equation 4.2, resulted from a combination of 2D topological, 2D

topochemical, and 3D descriptors with an R2 of 0.967 and an s of 16.8°C.

147

This model contains descriptors of varying nature, each capturing a unique aspect of

molecular architecture. As far as topological indices, the sixth order path connectivity

index (6χ) and number of paths of length 10 (P10) are included. For topochemical indices,

the information content based on the zeroth order neighborhood (IC0), the sixth order

bond path connectivity index (6χb), the third order bond cluster connectivity index (3χb
C),

the zeroth order valence path connectivity index (0χv), the second order valence path

connectivity index (2χv), and the fifth order valence path-cluster connectivity index were

utilized. As for geometric indices, the three-dimensional Wiener index (3DW) was used in

both its hydrogen suppressed and hydrogen inclusive format. The summation of this

information was found to be optimal in capturing the variance seen within the data set

with respect to boiling point. This situation fits the criteria of the established method in

that descriptors of varying dimensionality have been utilized for a large set of molecular

structures. As such, it was chosen as being suitable for the description of boiling point

and used within the stochastic molecular design framework previously established.

4.5.1 Development of Spatial Signatures

A subset of 245 molecules was chosen from the initial 1023 utilized to develop the

boiling point property model with the aim of maintaining the original variance in

structural features. These structures were initially drawn into the Avogadro molecular

modelling program and were quickly optimized to provide a starting point geometry. The

force field utilized for this initial optimization was MMFF94, which was chosen by its

ܲܤ

ൌ െ285.7 ൅ 125.3ሺ ߯	଺ ሻ	 ൅ 10.9ሺ ଵܲ଴ሻ ൅ 74.5ሺܥܫ଴ሻ

െ 125.0ሺ 	߯
௕

	
଺ ሻ	 െ 86.3ሺ ߯஼

௕
	
ଷ ሻ	 ൅ 175.3ሺ ߯௩଴ ሻ ൅ 49.1ሺ ߯ଶ ௩ሻ ൅ 18.7ሺ ߯௉஼

௩ହ ሻ െ 9.1ሺ ுܹ
ଷ஽ ሻ	 ൅ 8.1ሺ ܹ	ଷ஽ ሻ

(4.2)

148

ability to produce reasonable geometries for the chosen data set, and the steepest descent

algorithm was applied for 10,000 steps or until a convergence of 10-7 was met. This step

was fairly quick with an average optimization time of about 4-6 seconds. The method

utilized for conformational analysis, within the BOSS molecular modelling software, was

the AM1 molecular mechanics force field. A conformational analysis was performed for

these molecules with an acceptance criterion of each conformer being within 15 kcal/mol

of the identified conformational minimum. These conformers were dissected into 194

unique height-2 atomic signatures, or structural isomers. The conformational information

for each signature was further compressed by removing conformers exhibiting a

similarity limited to 0.2 angstrom for each pairwise inter-atomic distance comparison.

4.5.2 Parameters Utilized

The parameters necessary for this design problem include a lower (10) and upper (25)

bound placed on the number of atoms allowed in candidate molecular graphs. In addition

the lower and upper limits on acceptable boiling points were placed at 75 and 80 °C,

respectively. The steady state population size was chosen to be 100 graphs and each run,

of which there were 10 total, continued for 100 generations. The probability of mutation

and crossover operators were both set to 0.5. The β variable discussed in section 2.3.2

was set to 0.15 and the gaussian fitness decay rate, α, was set to 0.1. The β variable was

chosen such that the size of solutions could be preserved within a reasonable range,

which was chosen to be within 15 percent of the identified optimal size. The gaussian

fitness decay rate, α, was chosen with consideration of the expected distribution in

potential solutions. The variable essentially determines how quickly a solution’s fitness

value drops off as it leaves the desired property range. In this case, the desired property

149

range was very small, being only a difference of 5 °C. As such, a larger α value created a

fitness function which was ‘harsh’ enough to discriminate between very close property

values for such a short property range. This effect can be seen in Figure 3.11. The

probability of selection between mutation and crossover operators was chosen to be 0.5

based upon an initial size control study. Within this study, the probability was varied

between 0.1 and 0.9 and the criterion for the algorithm was to approach a desired preset

molecular size, from which fitness was derived based upon closeness to this size. It was

found that larger probability values, which favored crossover operations more heavily,

were less effective at guiding the algorithm towards this desired size. The reason for this

is that the crossover operator has no discrimination towards the size of the resultant

molecular graph. As such, it was also found that a value of 0.5 was acceptable at driving

the algorithm towards the optimal size while still visiting a reasonable size range around

the optimal size.

4.5.3 Results and Conclusions

The exhaustive combinatorial search for solutions in a chemical space of this size would

have been much more time consuming, whereas the genetic algorithm applied here was

able to identify satisfactory solutions more quickly. This approach could benefit from

inclusion of new types of mutation operators; however the techniques utilized here were

effective in controlling the size and diversity of solutions generated. The following graph,

shown in Figure 4.9, exemplifies the typical progression of average population fitness as

a function of the generation number. A trend of steadily increasing fitness can be seen as

the progression of mutation and mating between previous generations is facilitated

through the various operators.

150

Figure 4.9 – Fitness as a Function of Generation

Many of the solutions were repeated throughout the algorithm, leading to a smaller

number of solution structures than initially estimated, and the average number for the ten

trials conducted was around 20. Some of the more common solutions have been shown

below in Table 4.10.

Table 4.10 – Common Solutions Identified During Solvent Design Case Study

Chemical Estimated Boiling
Point (°C)

Experimental
Boiling Point (°C)

Relative
Difference (%)

carbon tetrachloride 75.9 76.8 1.2

ethanol 78.7 78.5 0.3

2-methyl-1,3-pentadiene 76.4 79.0 3.3

2,2,3-trimethylbutane 80.0 80.9 1.1

2-butanone 79.5 79.6 0.1

1,3,5-hexatriene 78.8 78.0 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

A
vg
. F
it
n
e
ss
 o
f
G
e
n
e
ra
ti
o
n

Generation

Fitness of Generations

151

1,2-hexadiene 75.0 76.0 1.3

ethyl acetate 77.3 77.0 0.4

2,2-dimethylpentane 77.8 79.0 1.5

2,4-dimethylpentane 80.1 81.0 1.1

2,2,2-trifluoroethanol 79.3 78.0 1.7

2,3,3-trimethyl-1-butene 78.3 79.0 0.9

acetonitrile 79.7 81.6 2.4

2-methyl-2-propanol 79.5 82.2 3.3

isopropyl alcohol 78.0 82.5 5.6

4,4-dimethyl-2-pentene 79.4 79.0 0.5

3,4-dimethyl-1-pentene 78.1 80.0 2.4

1-butanal 75.5 74.8 0.9

2,3-dimethyl-2-butene 76.7 73.0 4.9

A stochastic molecular design algorithm, in the form of a genetic algorithm, was chosen

for solving problems containing large search spaces with complicated multi-dimensional

descriptor sets. The technique was successful in identifying several unique solutions for

the problem at hand. Several parameters, including α, β, and the Gaussian decay rate

variable, must be optimized before allowing the algorithm to run to completion. This

would ensure that the search is optimized for the specific property models utilized as well

as the search space chosen. Overall, this method was found to be promising at solving

such complicated CAMD problems and the development of more complex operators,

152

including a double point crossover, could prove to be beneficial at tackling more diverse

data sets.

153

5. Conclusions and Future Direction

A methodology for the solution of computer-aided molecular design problems with

multi-dimensional characterization has been presented within this dissertation. This

technique has allowed for the solution of such problems in a more efficient manner when

compared to many of the techniques previously utilized. The reason for this is that

molecular design problems utilizing varying property models with descriptors of different

dimensionalities can now be solved on a common platform. This provides the freedom to

choose the optimal property models for each problem without limitation to the types of

descriptors utilized. The signature descriptor, while initially developed (Faulon, 2003) to

solve problems containing a maximum dimensionality of two, was extended to include

spatial information. The use of this fragment based descriptor facilitated reconstruction of

potential solutions, being rooted in graph theoretical concepts, which allowed quick

identification of all possible structural isomers relating to a group of molecular fragments.

Further, conformational isomers could be estimated conveniently from fragment

geometries since the signature descriptors overlap with each other by design, which

eliminated the need for excessive conformational analysis of all potential solutions.

The initial methodology was developed to solve the problems presented in a

deterministic manner, which considers the entire search space and guarantees

identification of a global optimal solution. While thorough, this was seen as a limitation

in solving larger molecular design problems with a bigger search space. As such, a

stochastic evolutionary methodology was developed, along with the operators necessary

to guide a population of solutions towards a set of desired property values. These

operators included a single point crossover, deletion mutation, insertion mutation, and

154

fragment mutation. This technique was found to be effective at quickly identifying

solutions meeting the desired criteria. In addition, it was able to identify several likely

candidates instead of just searching for one global optimal solution, which is often the

case in the solution of non-linear optimization problems such as these.

Within these two approaches at solving multi-dimensional molecular design

problems it was necessary to develop many new methodologies for handling problems of

this nature. The extension of signature descriptors to include spatial information

necessitated molecular modelling techniques, from which the information had to be

compressed for efficient usage within the algorithm. Additionally, both the stochastic and

deterministic approaches described within this dissertation were coded and can be found

within the attached appendix. Several different sources of software were utilized in a

unique manner to generate the necessary information and new modules had to be

developed to transform this information into a suitable format. The programming written

to complete these tasks was written in Python, and occasionally shell scripts were written

to transport this information into Python and automate molecular modelling tasks.

Several case studies have been presented to exemplify the applicability of this

technique ranging from solvent design to the design of non-peptide mimetics. While a

successful approach to molecular design, there are several limitations which need to be

addressed. These limitations ultimately lead to the proposed future direction of the

project, which can be found in the following sections.

155

5.1 Improved Simulation Techniques

The conformational analysis of molecular structures in all studies presented within

this dissertation was done in a vacuum using varying levels of theory within the

molecular and quantum mechanical approaches. In reality, this is not an optimal

representation of molecular structures which are typically in solution or bound to form

molecular complexes. Extension of this technique to generate molecular conformations

which would more likely be found in these situations could be beneficial to the solution

of more complex CAMD problems. This could perhaps be done by developing the initial

spatial atomic signature data set from simulations of structure in solution or interacting

with other molecules. One such approach could take advantage of the data generated

through molecular dynamics simulations, to provide more realistic estimations of the

geometry of potential solutions.

Molecular dynamics (MD) is a computer simulation of the physical movements of

atoms and molecules within the simulation. The trajectories of atoms and molecules are

determined by numerically solving Newton’s equations of motion for a system of

particles. The forces between atoms and molecules are determined by application of a

molecular mechanics force field. Since it is currently impossible to solve for the

properties of complex systems through analytical means, MD simulations afford the

possibility of numerical analysis. These simulations have been applied successfully to the

modelling of very large systems including: simulation of the complete satellite tobacco

mosaic virus (Freddolino et al., 2006), which allowed researchers to probe the

mechanisms of viral assembly; simulation of protein folding events such as that of the

Villin Headpiece (Yong et al., 1998), which is an actin-binding protein; simulation of

156

nano-scale events such as the exfoliation of grapheme layers (Buddhika and Subbiah,

2011).

What these simulations provide with respect to the proposed methodology is a more

accurate simulation/estimation of the spatial properties for a collection of molecules. This

information is much closer to reality when compared to the conventional gas phase

simulations utilized to gain insight into a molecule’s preferred spatial conformations.

This is because gas phase simulations often consider a single molecule isolated in

vacuum space, whereas MD simulations consider the environmental interactions and how

they affect preferred conformations.

There are several notable examples within the CAMD community where MD

simulations have been successfully applied in the characterization and prediction of

properties/attributes. One such example involves the prediction of ionic liquid properties

including density, viscosity, diffusivity, melting point, enthalpy of vaporization and

surface tension. Ionic liquids are salts which are liquid at room temperature and they

possess at least one asymmetric unit comprised of a large organic cation and an organic

or inorganic anion. The structural asymmetry makes their crystallization difficult and

because of this they have an extremely low vapor pressure, high chemical stability, and

good solvating capacity for organic and inorganic compounds and even biopolymers.

Some examples of the most common cations and anions found in literature are shown in

Figure 5.1.

p

a

e

q

o

t

a

r

5

T

o

r

Fig

While

provided ex

a wealth of

example, th

quite useful

of this, MD

the force fi

associated w

realistic esti

5.2 Conside

The signatu

of proteins

relationship

gure 5.1 - E

atomic sca

xcellent corr

f informatio

he radial dist

l for estimat

D simulation

ield utilized

with molecu

imation of t

eration of P

ure descripto

s (Churchw

p (QSAR) ap

Examples of

ale descripto

relations in

on which is

tribution fun

ting the den

ns are able to

d has been

ules in a con

the spatial p

Proteins

or has alread

well et al.,

pproach wa

157

f Common

ors, such as

the past, lar

not capture

nction can b

sity of a giv

o provide im

optimized

ndensed pha

roperties se

dy been used

, 2004). T

as applied to

7

Ionic Liqu

s topologica

rger scale si

ed by studie

be estimated

ven solvent,

mproved est

for the giv

ase are cons

een for a giv

d to success

The inverse

o a small se

uid Cations

al and topog

imulations,

es at a sma

d through M

pure or eve

timates for

ven case. Th

sidered and

ven structure

sfully explo

e quantitati

et of inhibit

and Anion

graphic ind

such as MD

aller length

MD simulati

en a mixture

bulk proper

he interactio

d this provid

e.

re the chem

ive structur

tory peptide

s

ices, have

D, provide

scale. For

ons and is

e. Because

rties when

on effects

des a more

mical space

re-activity

es directed

158

against leukocyte trafficking and localization. The forward approach of developing a

QSAR was first conducted to develop a property model relating the occurrence of atomic

signatures to the potency of a given peptide as measured by IC50, which is the

concentration that leads to half-maximal inhibition of receptor to ligand. A forward

stepping algorithm was applied to select the most statistically significant signatures,

which were then correlated to the logarithm of IC50 values. A Diophantine solver was

applied to solve this equation in terms of the optimal set of atomic signatures. The next

step was to generate all possible molecular structures containing these chosen signatures.

The goal was to identify a novel inhibitory peptide possessing a lower IC50 value than

any other structure within the training set. The group was able to identify and synthesize

two peptides which were found to be the strongest inhibiting peptides to date, and they

were measured as being very close to their estimated values. This study exemplifies the

applicability of using atomic signatures towards exploring the chemical space of a set of

proteins and identifying novel solutions with improved properties. While the descriptors

utilized were the atomic signatures themselves, which simply contain two-dimensional

information, a strong correlation was identified nonetheless.

It is well known that the association between ligands and receptors are strongly

influenced by the spatial properties of both molecules involved. As such it would be

useful to include such information in the CAMD efforts associated with identifying

inhibitors with improved binding affinity. The problem with this approach is that,

especially for protein structures, the conformational space associated with these potential

inhibitors is very complex and requires much computational effort. In addition to having

local geometry information such as bond lengths and angles, proteins also contain higher

159

order structural features known as secondary and tertiary structures. This information is

difficult to capture at a local fragment-based level, however there are techniques

available for estimating protein tertiary structures from fragment geometries. One such

approach by Simons et al. (1997) develops this higher order structural information from

fragments using simulated annealing and Bayesian scoring functions. In this technique,

they are able to assemble native-like structures from fragments of unrelated protein

structures with similar local sequences using these Bayesian scoring functions.

Previous applications, within this dissertation, have shown that the global geometry

of a given molecules can be successfully estimated by the individual contributions from

local fragment geometries. However, this was studied for only smaller organic structures.

The secondary and tertiary structures associated with proteins are much more difficult to

estimate and applying the methods utilized before would lead to protein structures which

are considerably more expanded than native proteins. To account for this, one could

initially assemble a set of protein conformers using fragments, and this would provide a

reasonable starting point for further exploration of the protein’s torsional space.

Exploration of the torsional space could be guided by the process of conformational

space annealing, such as that which was successfully applied in the Simons et al. (1997)

study. This allows the algorithm to search a wide area within the conformational space of

each protein, and ultimately/quickly converge on a set of likely local energy minima.

Conformational space annealing has been applied in other optimization studies (Lee et al.,

1997) and was successful in exploring the conformational space of reasonably complex

protein structures.

160

5.3 Simulated Annealing

Simulated annealing (Van Laarhoven and Aarts, 1987) represents a class of solution

methods applied for combinatorial optimization problems with analogies applied from the

physical process of annealing. Annealing is the physical thermal process of melting a

solid by heating it, followed by slow cooling and crystallization into a stable state. This

approach has been applied to CAMD studies (Ourique and Telles, 1998) and

conformational analysis studies (Kleber and Tsallis, 1996) with much success. Starting at

a higher “temperature” the search algorithm is allowed to explore less favorable solution

spaces, denoted by a higher conformational energy or being further away from the

desired properties with respect to a CAMD problem, such that it does not get stuck in a

local metastable state. The temperature is slowly dropped, or cooled, so that the structures

generated have in increased likelihood of exhibiting the desired properties.

It has been established within this dissertation that the nature of many CAMD

problems is highly nonlinear such that linear programming techniques cannot be applied.

In addition, the complexity of many descriptors and property models utilized make

application of an MINLP technique very difficult. As such, the application of stochastic

optimization techniques was necessitated because of these reasons, in addition to the

large search space considered by most ambitious CAMD problems. One technique

presented within this dissertation is known as genetic algorithm, and it was shown to be

successful towards solving problems of this nature. However, it would be beneficial to

explore additional stochastic optimization approaches, such as simulated annealing,

because of their success in similar applications.

161

One application of simulated annealing (SA) within the CAMD community can be

found in study by Ourique and Telles (1998). This work solved problems identifying pure

substances or mixtures that satisfied a set of chemical or physical properties by

representing molecules as chemical graphs and applying a simulated annealing algorithm.

Molecules were represented as hydrogen-suppressed graphs with bonding and atom type

information stored within a structure-composition matrix. Within this square matrix,

group identities were stored in the main diagonal with zeroes and ones in the remaining

entries corresponding to bonds between these groups. In this case, the representation of

molecules was provided in the matrix; however, the defined search space would be vast

utilizing an atom based description of molecules. The utilization of signature fragments

as molecular building blocks would further contain the search space such that structures

would be more likely to fall within the applicability domain of the chosen property

models. In addition, extension to consider conformational information would fall in line

with the simulated annealing approach. While the SA algorithm could act on the initial

graph itself, estimation of likely conformational minima could be processed in the same

manner. This would provide a common algorithm with which to analyze the feasibility of

various molecules for a given CAMD problem, while also exploring the structural and

conformational capabilities of a chosen search space. Such an approach could prove to be

beneficial in identified novel chemical solutions unattainable within the GA approach

because of the initial exploration of unfavorable regions in chemical space.

162

References

Achenie, L., Gani, R., & Venkatasubramanian, V. (2003). Computer Aided Molecular
Design: Theory and Practice. Amsterdam, The Netherlands: Elsevier Science.

Allen, L., & Karo, A. (1960). Basis Functions for Ab Initio Calculations. Revs. Mod.
Phys., 275-285.

Balaban, A. (1976). Chemical application of graph theory. Academic Press.

Basak, S., Gute, B., & Grunwald, G. (1996). A comparative study of topological and
geometrical parameters in estimating normal boiling point and octanol/water
partition coefficient. Journal of Chemical Information and Computer Sciences,
1054-1060.

Basak, S., Gute, B., & Grunwald, G. (1996). A Comparative Study of Topological and
Geometrical Parameters in Estimating Normal Boiling Point and Octanol/Water
Partition Coefficient. J. Chem. Inf. Comput. Sci., 1054-1060.

Basak, S., Roy, A., & Ghosh, J. (1988). Proceedings of the IInd International Conference
on Mathematical Modeling. Minnesota: University of Minnesota.

Becke, A. (1988). Density-functional exchange-energy approximation with correct
asymptotic behavior. Physical Reviews A, 3098-3100.

Beusen, D., Shands, E., & Karasek, S. (1996). Systematic search in conformational
analysis. J. Mol. Struc., 157-171.

Bogdanov, B., Nikolic, S., & Trinajstic, N. (1989). On the Three-Dimensional Wiener
Number. J. Math. Chem., 299-309.

Born, M., & Huang, K. (1988). Dynamical Theory of Crystal Lattices. Oxford: Clarendon
Press.

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression
trees. CRC press.

Brown, N., McKat, B., & Gasteiger, J. (2006). A novel workflow for the inverse QSPR
problem using multiobjective optimization. J. Comput Aided Mol Des, 333-341.

Brown, N., McKay, B., & Gasteiger, J. (2005). Fingal: A Noverl Approach to Geometric
Fingerprinting and a Comparative Study of Its Application to 3D-QSAR
Modelling. QSAR & Combinatorial Science, 480-484.

163

Buddhika, J., & Subbiah, S. (2011). A novel mechanical cleavage method for
synthesizing few-layer graphenes. Nanoscale Res. Lett., 95-101.

Carhard, R., Smith, D., & Venkataraghavan, R. (1985). Atom Pairs as Molecular Features
in Structure-Activity Studies: Definition and Applications. J. Chem. Inf. Comp.
Sci., 64-73.

Castro, E., Gutman, I., Marino, D., & Peruzzo, P. (2002). Upgrading the Wiener index. J.
Serb. Chem. Soc., 647-651.

Chang, G., Guida, W., & Still, W. (1989). An internal-coordinate Monte Carlo method
for searching conformational space. Journal of the American Chemical Society,
4379-4386.

Chemmangattuvalippil, N. (2008). A Systematic Property Based Approach for Molecular
Synthesis using Higher Order Molecular Groups and Molecular Descriptors.
Auburn: Auburn University.

Chen, X., & Reynolds, C. (2002). Performance of Similarity Measures in 2D Fragment-
Based Similarity Searching: Comparison of Structural Descriptors and Similarity
Coefficients. J. Chem. Inf. Comput. Sci., 1407-1414.

Churchwell, C., Rintoul, M., Martin, S., Visco Jr., D., Kotu, A., Larson, R., . . . Faulon,
J.-L. (2004). The signature molecular descriptor 3. Inverse-quantitative structure-
activity relationship of ICAM-1 inhibitory peptides. Journal of Molecular
Graphics and Modellingq, 263-273.

Clark, T., & Koch, R. (1999). Linear Combination of Atomic Orbitals. Berlin: Springer.

Constantinou, L., & Gani, R. (1994). New group contribution method for estimating
properties of pure compounds. AIChE Journal, 1697-1710.

Constantinou, L., Bagherpour, K., Gani, R., Klein, J., & Wu, D. (1996). Computer aided
product design: problem formulations, methodology and applications. Computers
Chem. Eng., 685-702.

Cortes, C., & Vladimir, V. (1995). Support-vector networks. Machine learning, 273-297.

Cramer, R., Patterson, D., & Bunce, J. (1988). Comparative Molecular Field Analysis
(CoMFA) 1. Effect of Shape on Binding of Steroids to Carrier Proteins. Journal
of the American Chemical Society, 5959-5967.

Cramer, R., Patterson, D., & Bunce, J. (1988). Comparative Molecular Field Analysis
(CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. AM.
Chem. Soc., 5959-5967.

164

Cruciani, G., Vrivori, P., Carrupt, P.-A., & Testa, B. (2000). Molecular fields in
quantitative structure-permeation relationships: the VolSurf approach. Journal of
Molecular Structure: THEOCHEM, 17-30.

Curry, H. (1944). The method of steepest descent for nonlinear minimization problems.
Quarterly of Applied Mathematics, 250-261.

Cussler, E., & Moggridge, G. (2001). Chemical Product Design. Cambridge, UK: The
Press Syndicate of the University of Cambridge.

Davis, S., Hada, S., Herring, R., & Eden, M. (2014). Characterization Based Reverse
Design of Ionic Liquids. Computer Aided Chemical Engineering, 285-290.

Daylight Chemical Information, I. (n.d.). MedChem ver 3.54. Mission Viejo, CA, USA:
Daylight Chemical Information, Inc.

Dewar, M., Zoebisch, E., Healy, E., & Stewart, J. (1985). Development and use of
quantum mechanical molecular models. 76. AM1: a new general purpose
quantum mechanics molecular model. Journal of the American Chemical Society,
3902-3909.

Dewar, M., Zoebisch, E., Healy, E., & Stewart, J. (1985). Development and use of
quantum molecular models. 75. Comparative tests of theoretical procedures for
studying chemical reactions. The Journal of the American Chemical Society,
3902-3909.

Diudea, M., Horvath, D., & Graovac, A. (1995). Molecular Topology. 15. 3D Distance
Matrices and Related Topological Indices. J. Chem. Inf. Comput. Sci., 129-135.

Douguet, D., Throeau, E., & Grassy, G. (2000). A genetic algorithm for the automated
generation of small organic molecules: Drug design using an evolutionary
algorithm. Journal of computer-aided molecular design, 449-466.

Dudek, A., Arodz, T., & Galvez, J. (2006). Computational Methods in Developing
Quantitative Structure-Activity Relationships (QSAR): A Review. Combinatorial
Chemistry & Hight Throughput Screening, 213-228.

Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstron, C., & Wold, S.
(2006). Multi- and Megavariate Data Analysis: Basic Principles and Applications
(Part I). Umea: Umetrics Academy.

Faulon, J.-L. (2003). The Signature Molecular Descriptor. 1. Using Extended Valence
Sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci., 707-720.

165

Faulon, J.-L. (2014, 8 26). Molecular Signature Software. Retrieved from Jean-Loup
Faulon WikiSpace:
http://jfaulon.wikispaces.com/Signature+publications+%26+downloads

Faulon, J.-L., & Churchwell, C. (2003). The Signature Molecular Descriptor 2.
Enumerating Molecules from Their Extended Valence Sequences. J. Chem. Inf.
Comput. Sci., 721-734.

Fletcher, R. (1987). Practical methods of optimization. New York: John Wiley & Sons.

Freddolino, P., Arkhipov, S., Larson, S., McPherson, A., & Schulten, K. (2006).
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure, 437-449.

Fredenslund, A., Jones, R., & Prausnitz, J. (1975). Grouop-Contribution Estimation of
Activity Coefficients in Nonideal Liquid Mixtures. AIChE Journal, 1086.

Geladi, P., & Kowalski, B. (1986). Partial least-squares regression: a tutorial. Analytica
chmica acta, 1-17.

Gibbs, J. (1902). Elementary Principles in Statistical Mechanics. New York: Charles
Scribner's Sons.

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 1157-1182.

Hada, S., Herring, R., & Eden, M. (2013). Design of Ionic Liquids Using Property
Clurtering and Decomposition Techniques. Computer Aided Chemical
Engineering, 955-960.

Halgren, T. (1996). Merck molecular force field. I. Basis, form, scope, parameterization,
and performance of MMFF94. Journal of Computational Chemistry, 490-519.

Hall, L., Kellogg, G., & Haney, D. (1991). MOLCONN-Z. Quincy, MA: Hall Associates
Consulting.

Hall, L., Kier, L., & Murray, W. (1975). Molecular connectivity II: Relationship to water
solubility and boiling point. Journal of pharmaceutical sciences, 1974-1977.

Hansch, C. (1969). A Quantitative Approach to Biochemical Structure-Activity
Relationships. Acc. Chem. Res., 232-239.

Hansch, C., Maloney, P., Fujita, T., & Muir, R. (1962). Correlation of biological activity
of phenoxyacetic acids with Hammett substituent constants and partition
coefficients. Nature, 178-180.

166

Harper, P. M., Gani, R., Kolar, P., & Ishikawa, T. (1999). Computer-aided molecular
design with combined molecular modeling and group contribution. Fluid Phase
Equilibria, 337-347.

Haser, J., Herring, R., Datta, S., & Eden, M. (2014). Development of QSPR Model
Relating Solvent Structure to Crystal Morphology. Computer Aided Chemical
Engineering, 321-326.

Herring, R., & Eden, M. (2014b). Graph-Based Genetic Algorithm for De Novo
Molecular Design. Computer Aided Chemical Engineering, 327-332.

Herring, R., & Eden, R. (2014). De Novo Molecular Design using a Graph-Based
Genetic Algorithm Approach. Computer Aided Chemical Engineering, 7-12.

Herring, R., Haser, J., Hada, S., & Eden, M. (2013). Structure Based Design of Non-
Peptide Mimetics. Computer Aided Chemical Engineering, 175-180.

Herring, R., Namikis, R., Chemmangattuvalappil, N., Roberts, C., & Eden, M. (2012).
Incorporating Topographical Characteristics in Molecular Signature Descriptors.
Computer Aided Chemical Engineering, 497-501.

Herring, R., Namikis, R., Chemmangattuvalappil, N., Roberts, C., & Eden, M. (2012).
Molecular Design using Three-Dimensional Descriptors. Computer Aided
Chemical Engineering, 225-229.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of
Michigan Press.

Insight, I. (2001). Accelerys Software. San Diego, CA, USA.

Itskowitz, P., & Tropsha, A. (2005). k Nearest Neighbors QSAR Modeling as a
Variational Problem: Theory and Applications. J. Chem. Inf. Model., 777-785.

Jaworska, J., Nikolova-Jeliazkova, N., & Aldenberg, T. (2005). QSAR Applicability
Domain Estimation by Projection of the Training Set in Descriptor Space: A
review. ATLA, 445-459.

Joback, K., & Reid, R. (1983). Estimation of Pure-Component Properties from Group
Contributions. Chemical Engineering Communication, 233.

Jorgensen, W., & Tirado-Rives, J. (2005). Molecular modeling of organic and
biomolecular systems using BOSS and MCPRO. Journal of Computational
Chemistry, 1689-1700.

167

Kar, S., & Roy, K. (2010). QSAR modeling of toxicity of diverse organic chemicals to
Daphnia magna using 2D and 3D descriptors. Journal of Hazardous Materials,
344-351.

Karplus, M., & McCammon, A. (2002). Molecular dynamics simulations of biomolecules.
Nature, 646-652.

Katritzky, A., & Gordeeva, E. (1993). Traditional Toplogical Indices vs. Electronic,
Geometrical, and Combined Molecular Descriptors in QSAR/QSPR Research. J.
Chem. Inf. Comput. Sci., 835-857.

Kier, L., & Hall, L. (1999). Molecular Structure Description: The Electrotopological
State. New York: Academic Press.

Kier, L., & Murray, W. (1975). Molecular Connectivity. 4. Relationships to Biological
Activity. Journal of Medicinal Chemistry, 1272-1274.

Kier, L., Murray, W., Randic, M., & Hall, L. (1975). Molecular connectivity. I.
Relationship to nonspecific local anesthesia. Journal of Pharmaceutical Sciences,
1971-1974.

Kirkpatrick, P., & Ellis, C. (2004). Chemical Space. nature insight, 823-865.

Kittler, J. (1978). Feature set search algorithms. Pattern recognition and signal
processing, 41-60.

Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular Similarity Indices in a
Comparative Analysis (CoMSIA) of Drug Molecules To Correlate and Predict
Their Biological Activity. J. Med. Chem., 4130-4146.

Kleber, M., & Tsallis, C. (1996). Geometry optimization and conformational analysis
through generatlized simulated annealing. International Journal of Quantum
Chemistry, 373-381.

Koch, R. (1982). Molecular Connectivity and Acute Toxicity of Environmental
Pollutants. Chemosphere, 925-931.

Kurogi, Y., & Guner, O. (2001). Pharmacophore modeling and three-dimensional
database searching for drug design using catalyst. Current medicinal chemistry,
1035-1055.

Leach, A. (2001). Empirical Force Field Models: Molecular Mechanics. In A. Leach,
Molecular Modelling: principles and applications (pp. 165-252). Harlow: Pearson
Education Limited.

168

Lee, J., Scheraga, H., & Rackovsky, S. (1997). New Optimization Method for
Conformational Energy Calculations on Polypeptides: Conformational Space
Annealing. Journal of Computational Chemistry, 1222-1232.

Lipinski, C., Lombardo, F., Dominy, B., & Feeney, P. (2001). Experimental and
Computational Approaches to Estimate Solubility and Permeability in Drug
Discovery and Development Settings. Advanced Drug Delivery Reviews, 3-26.

Lopez-Rodriguez, M., Benhamu, B., de la Fuenta, T., Sanz, A., Pardo, L., & Campillo, M.
(2005). A Three-Dimensional Pharmacophore Model for 5-Hydroxytryptamine
(5-HT6) Receptor Antagonists. Journal of Medicinal Chemistry, 4216-4219.

Ltd., M. D. (n.d.). Maccs II. San Leandro, CA, USA.

MacGregor, J., & Kourti, T. (1995). Statistical process control of multivariate process.
Control Engineering Practive, 403-414.

Magnuson, V., Harriss, D., & Basak, S. (1983). Information indices. Studies in Physical
and Theoretical Chemistry, 178-191.

Martin, Y. (1992). 3D Database Searching in Drug Design. Journal of Medicinal
Chemistry, 2145-2154.

Mayo, S., Olafson, B., & Goddard, W. (1990). DREIDING: a generic force field for
molecular simulations. Journal of Physical Chemistry, 8897-8909.

Merkwirth, C., Mauser, H., Schulz-Gasch, T., Roche, O., Stahl, M., & Lengauer, T.
(2004). Ensemble Methods for Classification in Cheminformatics. J. Chem. Inf.
Comput. Sci., 1971-1978.

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. J. Am. Stat. Assoc., 335-
341.

Mihalic, Z., & Trinajstic, N. (1991). The Algebraic Modelling of Chemical Structures:
On the Development of Three-Dimensional Molecular Descriptors. Journal of
Molecular Structure, 65-78.

Moller, C., & Plesset, M. (1934). Note on an approximation treatment for many-electron
systems. Physical Reviews, 618-622.

NCI AIDS Data Set. (2002). Retrieved from NCI Developmental:
(http://dtp.nci.nih.gov/docs/aids/aids-

Needham, D., Wei, I., & Seybold, P. (1988). Molecular Modeling of the Physical
Properties of the Alkanes. Journal of the American Chemical Society, 4186-4194.

169

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The
Computer Journal, 308-313.

Nelder, J., & Mead, R. (1965). A simplex method for function minimization. The
computer journal, 308-313.

Nettles, J., Jenkins, J., Bender, A., Deng, Z., Davies, J., & Glick, M. (2006). Bridging
Chemical and Biological Space: "Target Fishing" Using 2D and 3D Molecular
Descriptors. J. Med. Chem., 6802-6810.

Oliphant, T. (2007). Python for Scientific Computing. Comp. in Sci. and Eng., 10-20.

Olson, G., Bolin, D., Bonner, M., Bos, M., Cook, C., Fry, D., . . . Hill, D. (1993).
Concepts and Progress in the Developmetn of Peptide Mimetics. Journal of
Medicinal Chemistry, 3039-3049.

Ourique, J., & Telles, A. (1998). Computer-aided molecular design with simulated
annealing and molecular graphs. Computers and Chemical Engineering, 615-618.

Pastor, M., Cruciani, G., McLay, I., Pickett, S., & Clementi, S. (2000). GRid-
INdependent Descriptors (GRIND): A Novel Class of Alighment-Independent
Three-Dimensional Molecular Descriptors. J. Med. Chem., 3233-3243.

Pegg, S., Haresco, J., & Kuntz, I. (2001). A genetic algorithm for structure-based de novo
design. Journal of computer-aided molecular design, 911-933.

Pepperrell, C., Taylor, R., & Willett, P. (1990). Implementation and use of an atom-
mapping procedure for similarity searching in databases of 3-D chemical
structures. Tetrahedron Computer Methodology, 575-593.

Perola, E., & Charifson, P. (2004). Conformational Analysis of Drug-Like Molecules
Bound to Proteins: An Extensive Study of Ligand Reorganization upon Binding. J.
Med. Chem., 2499-2510.

Pople, J., Beveridge, D., & Dobosh, P. (1967). Approximate Self-Consistent Molecular-
Orbital Theory. V. Intermediate Neglect of Differential Ocerlap. The Journal of
Chemical Physics, 2026-2033.

Quinlan, J. (1986). Induction of decision trees. Machine learning, 81-106.

Raman, V., & Maranas, C. (1998). Optimization in product design with properties
correlated with topological indices. Computers and Chemical Engineering, 747-
763.

Randic, M. (1987). In R. Lacher. Amsterdam: Elsevier.

170

Reeves, F., & Reeves, C. (1964). Function minimization by conjugate gradients. The
computer journal, 149-154.

Rish, I. (2001). An empirical study of the naive Bayes classifier. IJCAI 2001 workship of
empirical methods in artificial intelligence, 41-46.

Roothaan, C. (1951). New Developments in Molecular Orbital Theory. Reviews of
Modern Physics, 69-89.

Rouvray, D. (1971). Graph theory in chemistry. Royal Inst. Chem. Revs., 173-195.

Shannon, C. (1948). A note on the concept of entropy. Bell System Tech, 379-423.

Sheridan, R., Feuston, R., Maiorov, V., & Kearsley, S. (2004). Similarity to molecule sin
the training set is a good discriminator for prediction accuracy in QSAR. J. Chem.
Inf. Comput. Sci., 1912-1928.

Sherrill, D., & Schaefer III, H. (1999). The Configuration Interaction Method: Advances
in Highly Correlated Approaches. Advances in Quantum Chemistry, 143-269.

Siedlecki, W., & Sklansky, J. (1988). On Automatic Feature Selection. Internatinoal
Journal of Pattern Recognition and Artificial Intelligence, 197-220.

Silverman, B., & Platt, D. (1996). Comparative Molecular Moment Analysis (CoMMA):
3D-QSAR without Molecular Superposition. J. Med. Chem., 2129-2140.

Simons, K., Kooperberg, C., Huang, E., & Baker, D. (1997). Assembly of protein tertiary
structures from fragments with similar local sequences using simulated annealing
and Bayesion scoring functions. Journal of Molecular Biology, 209-225.

Slater, J. (1930). Atomic Shielding constants. Physical reviews, 57.

Smola, A., & Scholkopf, B. (2004). A tutorial on support vector regression. Statistics and
computing, 199-222.

Stewart, J. (1989). Optimization of parameters for semiempirical methods I. Method. The
Journal of Computational Chemistry, 209-220.

Stewart, J. (1991). Optimization and Application of Magnesium Parameters for PM3.
Journal of Computational Chemistry, 320-328.

Sutter, M., Dixon, S., & Jurs, P. (1995). Automated Descriptor Selection for Quantitative
Structure-Activity Relationships Using Generalized Simulated Annealing. J.
Chem. Inf. Comput. Sci., 77-84.

171

Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R., & Song, Q. (2005). Boosting:
An ensemble learning tool for compound classification and QSAR modeling.
Journal of Chemical Information and Modeling, 786-799.

Systems, M. I. (2002). MDDR Data Set. San Leandro, CA, USA.

Testa, B., & Salvesen, B. (1980). Quantitative Structure-Activity Relationships in Drug
Metabolism and Disposition: Pharmacokinetics of N-substituted Amphetamines
in Humans. J. Pharm. Sci., 497-501.

Todeschini, R., & Consonni, V. (2009). Molecular Descriptors for Chemoinformatics.
Weinheim: Wiley-VCH.

Toropov, A., Toropova, A., Ismailov, T., & Bonchev, D. (1998). 3D weighting of
molecular descriptors for QSPR/QSAR by the method of ideal symmetry (MIS).
1.Application to boiling points of alkanes. Journal of Molecular Structure, 237-
247.

Trinajstic, N. (1983). Chemical graph theory. Boca Raton, FL: CRC Press.

Uchida, M. (1980). Affinity and Mobility of Fungicidal
Dialkyldithiolanylidenemalonates in rice plants. Pesticide Biochemistry and
Physiology, 249-255.

Van Laarhoven, P., & Aarts, E. (1987). Simulated annealing. Netherlands: Springer.

Venkatasubramanian, V., Chan, K., & Caruthers, J. (1995). Evolutionary Design of
Molecules with Desired Properties Using the Genetic Algorithm. J. Chem. Inf.
Comp. Sci., 188-195.

Verma, J., & Khedkar, V. (2010). 3D-QSAR in Drug Design- A Review. Curr. Top. in
Med. Chem., 95-115.

Visco Jr., D., Pophale, R., & Faulon, J.-L. (2003). The signature molecular descriptor. 1.
Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf.
Comp. Sci., 707-720.

Visco Jr., D., Pophale, R., Rintoul, M., & Faulon, J.-L. (2002). Developing a
methodology for an inverse quantitative structure-activity relationship using the
signature molecular descriptor. Journal of Computer Graphics and Modelling,
429-438.

Weiner, H. (1947). Structural Determination of paraffin boiling points. Journal of
American Chemical Society, 17-20.

172

Weiner, H. (1947a). Structural determination of paraffin boiling points. Journal of
American Chemical Society, 17-20.

Weiner, H. (1947b). Correlation of heats of isomerization and differences in heats of
vaporization of isomers among the paraffin hydrocarbons. Journal of American
Chemical Society, 2636-2638.

Wentzell, P., & Vega Montoto, L. (2003). Comparison of principal components
regression and partial least squares regression through generic simulations of
complex mixtures. Chemometrics adn Intelligent Laboratory Systems, 257-279.

Wermuth. (1998). Glossary of terms used in medicinal chemistry (IUPAC
Reccomendations 1997). Annual Reports in Medicinal Chemistry, 385-395.

Wermuth, C., Ganellin, C., Lindberg, P., & Mitscher, L. (1998). Glossary of terms used
in medicinal chemistry (IUPAC Recommendations). Pure and Applied Chemistry,
1129-1143.

Wolber, G., Seidel, T., Bendix, F., & Langer, T. (2008). Molecule-pharmacopore
superpositioning and pattern matching in computational drug design. Drug
discovery today, 23-29.

Wold, S., Kettaneh, N., & Tjessem, K. (1996). Hierarchical multiblock PLS and PC
models for Easier Model interpretation and as an alternative to variable selection.
Journal of Chemometrics, 463-482.

Yong, D., Wang, L., & Killman, P. (1998). The early stage of folding of villin headpiece
subdomain observed in a 200-nanosecond fully solvated molecular dynamics
simulation. Proceedings of the National Academy of Sciences, 9897-9902.

A

A

T

d

g

t

T

t

Appendix A

A.1 – Creat

The format

directory co

graph and s

the flow of

Figure A

The followi

technique fo

A – Python

tion of Spa

chosen for

ontaining th

subsequently

information

A.1.1 – Flow

ing code ex

or generatin

 Code for P

tial Atomic

developing

he mol files

y their respe

n can be seen

wchart for t

xemplifies h

ng hydrogen

173

Proposed M

c Signature

g atomic sign

of the data

ective atom

n in Figure

the generat

how this is

n suppressed

3

Methodology

es from Dire

natures from

set and turn

mic signature

A.1.1.

tion of atom

achieved w

d molecular

y

ectory

m a given d

rn each of th

e graphs. A

mic signatur

within a pyt

graphs is al

data set is to

hese molecu

flowchart e

res from m

thon framew

lso shown.

o specify a

ules into a

explaining

ol files.

work. The

174

import networkx as nx

import networkx.algorithms.isomorphism as iso

import math

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict

from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter

import random

valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1}

bond_dictionary = {1:1,2:2,4:1.5}

class Directory:

 def __init__(self,full_parent_directory):

 self.full_parent_directory = full_parent_directory

 def create_signatures(self,height):

 """This function canonizes the mol files in directory and stores signatures in self.signatures dictionary"""

 self.height = height

 self.signatures = defaultdict(lambda:defaultdict(list))

 self.subgraphs = []

 self.compressed_subgraphs = []

 self.working_signature = ''

 if self.full_parent_directory[-1] == '/':

 self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1]

 mol_files = self.full_parent_directory + '/*.mol'

 file_iter = glob.iglob(mol_files)

 total_subgraphs = 0

 signatures_stored = 0

 graph_count = 0

 for fn in file_iter:

175

 # Creating a nx.Graph from the mol file

 G = nx.Graph()

 if 'OpenBabel' in str(linecache.getline(fn,2)):

 atom_bond_number_line = 4

 else:

 atom_bond_number_line = 5

 atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip())

 bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip())

 coordinate_begin_line = atom_bond_number_line + 1

 coordinate_end_line = atom_bond_number_line + atomn

 bond_begin_line = coordinate_end_line +1

 bond_end_line = coordinate_end_line + bondn

 for i in range(bond_begin_line, bond_end_line + 1):

 atom1 = int((linecache.getline(fn,i)[0:4]).strip())

 atom2 = int((linecache.getline(fn,i)[4:8]).strip())

 bondtype = int((linecache.getline(fn,i)[8:10]).strip())

 G.add_edge(atom1, atom2, type=bondtype)

 for i in range(coordinate_begin_line,coordinate_end_line + 1):

 j = i - (atom_bond_number_line)

 G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
 float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip())])

 G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())

 # Now breaking this graph into subgraphs

 nodes = G.nodes_iter()

 for node in nodes:

 subgraph=nx.ego_graph(G, node, radius=self.height)

 subgraph.graph['degree'] = subgraph.degree(node)

 subgraph.graph['center'] = node

 subgraph.graph['atom'] = G.node[node]['atom']

 subgraph.graph['rebuild'] = graph_count

 self.subgraphs.append(subgraph)

 graph_count += 1

 print 'Subgraphs created:',len(self.subgraphs)

 for subgraph in self.subgraphs:

 match_status = 0

176

 if len(self.compressed_subgraphs) > 0:

 for subgraph_list in self.compressed_subgraphs:

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 4)

 GM = iso.GraphMatcher(subgraph,subgraph_list[0],node_match = nm, edge_match = em)

 if GM.is_isomorphic():

 match_status = 1

 new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True)

 subgraph_list.append(new_graph)

 break

 if match_status == 0:

 new_list = []

 new_list.append(subgraph)

 self.compressed_subgraphs.append(new_list)

 else:

 new_list = []

 new_list.append(subgraph)

 self.compressed_subgraphs.append(new_list)

 conformers = 0

 signatures = 0

 for each_list in self.compressed_subgraphs:

 signatures += 1

 conformers += len(each_list)

 print 'Subgraphs stored:', conformers

 print 'Overall there were:', signatures, 'unique signatures identified.'

 def create_suppressed_signatures(self,height):

 """This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures
dictionary"""

 self.height = height

 self.signatures = defaultdict(lambda:defaultdict(list))

 self.subgraphs = []

 self.compressed_subgraphs = []

 self.working_signature = ''

 if self.full_parent_directory[-1] == '/':

 self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1]

 mol_files = self.full_parent_directory + '/*.mol'

177

 file_iter = glob.iglob(mol_files)

 total_subgraphs = 0

 signatures_stored = 0

 graph_count = 0

 for fn in file_iter:

 # Creating a nx.Graph from the mol file

 G = nx.Graph()

 if 'OpenBabel' in str(linecache.getline(fn,2)):

 atom_bond_number_line = 4

 else:

 atom_bond_number_line = 5

 atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip())

 bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip())

 coordinate_begin_line = atom_bond_number_line + 1

 coordinate_end_line = atom_bond_number_line + atomn

 bond_begin_line = coordinate_end_line +1

 bond_end_line = coordinate_end_line + bondn

 for i in range(bond_begin_line, bond_end_line + 1):

 atom1 = int((linecache.getline(fn,i)[0:4]).strip())

 atom2 = int((linecache.getline(fn,i)[4:8]).strip())

 bondtype = int((linecache.getline(fn,i)[8:10]).strip())

 G.add_edge(atom1, atom2, type=bondtype)

 for i in range(coordinate_begin_line,coordinate_end_line + 1):

 j = i - (atom_bond_number_line)

 G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
 float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip()), 1])

 G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())

 # Now breaking this graph into subgraphs

 edges_to_remove = []

 for edge in G.edges_iter():

 if G.node[edge[0]]['atom']=='H' or G.node[edge[1]]['atom']=='H':

 edges_to_remove.append(edge)

 for edge in edges_to_remove:

 G.remove_edge(edge[0],edge[1])

 nodes_to_remove = []

178

 for node in G.nodes_iter():

 if G.node[node]['atom'] == 'H':

 nodes_to_remove.append(node)

 for node in nodes_to_remove:

 G.remove_node(node)

 for node in G.nodes_iter():

 subgraph=nx.ego_graph(G, node, radius=self.height)

 subgraph.graph['degree'] = subgraph.degree(node)

 subgraph.graph['center'] = node

 subgraph.graph['atom'] = G.node[node]['atom']

 subgraph.graph['rebuild'] = graph_count

 self.subgraphs.append(subgraph)

 graph_count += 1

 print 'Subgraphs created:',len(self.subgraphs)

 for subgraph in self.subgraphs:

 match_status = 0

 if len(self.compressed_subgraphs) > 0:

 for subgraph_list in self.compressed_subgraphs:

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 4)

 GM = iso.GraphMatcher(subgraph,subgraph_list[0],node_match = nm, edge_match = em)

 if GM.is_isomorphic():

 match_status = 1

 new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True)

 subgraph_list.append(new_graph)

 break

 if match_status == 0:

 new_list = []

 new_list.append(subgraph)

 self.compressed_subgraphs.append(new_list)

 else:

 new_list = []

 new_list.append(subgraph)

 self.compressed_subgraphs.append(new_list)

 conformers = 0

A

T

g

n

v

b

 signatur

 for each

 sig

 con

 print 'Su

 print 'O

A.2 – Netw

The bondin

generation o

network com

visualized a

bonding net

F

res = 0

h_list in self.comp

gnatures += 1

nformers += len(e

ubgraphs stored:',

Overall there were

work Genera

ng network

of this netw

mpression i

as shown in

twork are sh

Figure A.2.

pressed_subgraph

each_list)

, conformers

:', signatures, 'uni

ation

k is discuss

work is estab

is also show

n Figure A.2

hown in Fig

.1 – Visuali

179

hs:

ique signatures id

sed extensiv

blished here

wn. The ste

2.1. Additio

ure A.2.2.

ization of b

9

dentified.'

vely throug

e. In additio

eps taken to

onally, the

bonding net

ghout the d

on, the algo

o first create

steps neces

twork creat

dissertation

orithm respo

e the netwo

ssary to com

tion steps.

, and the

onsible for

ork can be

mpress the

T

c

Figure A.2

The code

compression

 def create_ne

 self.netw

 n = 0

 for subg

 gra

 reb

 for

 sel

 sel

 sel

 sel

 sel

 con

2.2 – Flowch

written to

n, is shown

etwork(self):

work = nx.Graph

graph_list in self.

aph = subgraph_l

build_list = []

r subgraph in subg

 rebuild_list.app

lf.network.add_no

lf.network.node[n

lf.network.node[n

lf.network.node[n

lf.network.node[n

nformer_center =

hart depict

achieve th

below.

()

compressed_subg

ist[0]

graph_list:

pend(subgraph.gr

ode(n)

n]['conformers'] =

n]['atom'] = graph

n]['rebuild_list'] =

n]['canonical'] = n

= graph.graph['cen

180

ting steps in

he creation

graphs:

raph['rebuild'])

= subgraph_list

h.graph['atom']

= rebuild_list

n

nter']

0

nvolved in b

n of a bon

bonding ne

nding netw

twork com

work, along

mpression.

g with its

181

 self.network.node[n]['degree'] = graph.degree(conformer_center)

 self.network.node[n]['conformer_center'] = conformer_center

 self.network.node[n]['conformer_neighbors'] = [x for x in graph.neighbors(conformer_center)]

 n += 1

 print 'All signatures stored in network...'

 print 'Establishing connectivity information...'

 bonds_created = 0

 possible = 0

 for pair in itertools.combinations_with_replacement(self.network.nodes(data=False), 2):

 possible += 1

 bond_status = 0

 G1 = self.network.node[pair[0]]['conformers'][0]

 G1_center = self.network.node[pair[0]]['conformers'][0].graph['center']

 G2 = self.network.node[pair[1]]['conformers'][0]

 G2_center = self.network.node[pair[1]]['conformers'][0].graph['center']

 G2_ego = nx.ego_graph(G2,G2_center,radius = self.height-1)

 map_dict = defaultdict(list)

 bond_type_dict = defaultdict(int)

 for adjacent_node in G1.neighbors(G1_center):

 G1_neighbor_ego = nx.ego_graph(G1,adjacent_node,radius = self.height-1)

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GM2 = iso.GraphMatcher(G1_neighbor_ego,G2_ego,node_match = nm,edge_match = em)

 if GM2.is_isomorphic():

 bond_status = 1

 for dict_j in GM2.isomorphisms_iter():

 bond_type = G1.edge[G1_center][adjacent_node]['type']

 taken_G1_node = adjacent_node

 taken_G2_node = dict_j[G1_center]

 map_dict[(pair[0],taken_G1_node)].append((pair[1],taken_G2_node))

 map_dict[(pair[1],taken_G2_node)].append((pair[0],taken_G1_node))

 if bond_status == 1:

 bonds_created += 1

 self.network.add_edge(pair[0],pair[1])

 self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict

182

 self.network.edge[pair[0]][pair[1]]['type'] = bond_type

 print 'Bonding information established...'

 print possible, 'bonds were analyzed.'

 print (bonds_created)*100.00/possible , 'percent of these were feasible.'

 def compress_network(self,cutoff):

 """This function compares the conformers for each node in the network and consolidates them based on a
 pairwise distance based comparison with tolerance of cutoff value specified in funciton call"""

 original_conformers = 0

 for node in self.network.nodes():

 old_list = self.network.node[node]['conformers'][:]

 original_conformers += len(old_list)

 for pair in itertools.combinations(old_list,2):

 status = 0

 graph_1 = pair[0]

 graph_2 = pair[1]

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GM = iso.GraphMatcher(graph_1,graph_2,node_match=nm,edge_match=em)

 if GM.is_isomorphic():

 for atom_pair in itertools.combinations(graph_1.nodes(data=False),2):

 node0 = atom_pair[0]

 node1 = atom_pair[1]

 node2 = GM.mapping[node0]

 node3 = GM.mapping[node1]

 d1_squared = (graph_1.node[node0]['xyz'] - graph_1.node[node1]['xyz'])**2

 d1 = (d1_squared.sum())**0.5

 d2_squared = (graph_2.node[node2]['xyz']-graph_2.node[node3]['xyz'])**2

 d2 = (d2_squared.sum())**0.5

 if fabs(d1-d2) > float(cutoff):

 status = 1

 break

 if status == 0:

 if graph_1 in self.network.node[node]['conformers']:

 if graph_2 in self.network.node[node]['conformers']:

 unlucky_one = random.randint(1,2)

183

 if unlucky_one == 1:

 self.network.node[node]['conformers'].remove(graph_1)

 else:

 self.network.node[node]['conformers'].remove(graph_2)

 elif not graph_1 in self.network.node[node]['conformers']:

 if not graph_2 in self.network.node[node]['conformers']:

 chosen_one = random.randint(1,2)

 if chosen_one == 1:

 self.network.node[node]['conformers'].append(graph_1)

 else:

 self.network.node[node]['conformers'].append(graph_2)

 final_conformers = 0

 for node in self.network.nodes_iter():

 final_conformers += len(self.network.node[node]['conformers'])

 print 'We started with:', original_conformers, 'and consolidated down to:', final_conformers, 'conformer based on a cutoff
 of:', cutoff, 'Angstroms'

 print 'This means we removed:', (original_conformers - final_conformers)*100/(original_conformers),'percent from the
 original set.'

A.3 – Molecular Signature Class with Feasibility Functions

This section represents how the various molecular signatures are identified, in a

deterministic manner, as well as their feasibility verification. Molecular signatures,

representing collections of atomic signatures, must pass several tests of feasibility before

it is verified that a complete molecule can be recreated. The tests included within this

section include the graphicality equation, graph connectivity, the hand-shaking lemma,

and a short test used to verify that the maximum number of one type of atomic signature

has not been passed for any given molecular signature. An overview of the steps taken to

develop an exhaustive list of unique structural isomers matching a given molecular

signature can be found in section 3.1.7 of this dissertation.

import networkx as nx

import networkx.algorithms.isomorphism as iso

import math

184

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict

from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter

import random

valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1}

bond_dictionary = {1:1,2:2,4:1.5}

class Potential_Graph:

 def __init__(self,signatures):

 self.signatures = signatures

 self.complete_bond_list = []

 self.orbit_dict = defaultdict(list)

class AutoVivification(dict):

 """Implementation of perl's autivivification feature"""

 def __getitem__(self,item):

 try:

 return dict.__getitem__(self,item)

 except KeyError:

 value = self[item] = type(self)()

 return value

class Molecular_Signature:

 def __init__(self,height,mother_graph,atomic_signature_list):

 self.atomic_signatures = atomic_signature_list

 self.mother_graph = mother_graph

 self.height = height

 self.structural_isomers = []

 def is_repeat_satisfied(self,max):

 self.max = max

185

 self.repeat_status = 0

 for each in self.atomic_signatures:

 appearances = self.atomic_signatures.count(each)

 if appearances > self.max:

 self.repeat_status = 1

 return False

 break

 else:

 pass

 if self.repeat_status == 0:

 return True

 def is_graphical(self):

 degree_list = [self.mother_graph.node[n]['degree'] for n in self.atomic_signatures]

 graphicality = (2*degree_list.count(4) + degree_list.count(3) - degree_list.count(1) + 2)%2

 if graphicality==0:

 return True

 else:

 return False

 def is_connected(self):

 self.compressed_signatures = []

 for i in self.atomic_signatures:

 if not i in self.compressed_signatures:

 self.compressed_signatures.append(i)

 test = self.mother_graph.subgraph(self.compressed_signatures)

 if nx.is_connected(test):

 return True

 else:

 return False

Hand Shaking Lemma

 def hand_shaking_lemma(self):

 height_one_edge_list = []

 height_two_path_list = []

 height_three_path_list = []

 isomer_status = 0

186

 for each in self.atomic_signatures:

 graph = self.mother_graph.node[each]['conformers'][0]

 center = graph.graph['center']

 center_atom = graph.node[center]['atom']

 neighbor_list = graph.neighbors(center)

 for neighbor in neighbor_list:

 first_edge = graph[center][neighbor]['type']

 neighbor_atom = graph.node[neighbor]['atom']

 height_one_edge_list.append((center_atom,first_edge,neighbor_atom))

 for third_node in [x for x in graph.neighbors(neighbor) if not x==center]:

 third_atom = graph.node[third_node]['atom']

 second_edge = graph[neighbor][third_node]['type']

 height_two_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom))

 if self.height == 3:

 for fourth_node in [x for x in graph.neighbors(third_node) if not x == neighbor]:

 fourth_atom = graph.node[fourth_node]['atom']

 third_edge = graph[third_node][fourth_node]['type']

height_three_path_list.append((center_atom,first_edge,neighbor_atom,second_edge,third_atom,third_edge,fourth_atom))

 height_one_edge_set = set(height_one_edge_list)

 for each_bond in height_one_edge_set:

 if each_bond[0] == each_bond[2]:

 if height_one_edge_list.count(each_bond)%2 == 0:

 pass

 else:

 return False

 else:

 matched_bond = (each_bond[2],each_bond[1],each_bond[0])

 if height_one_edge_list.count(each_bond) == height_one_edge_list.count(matched_bond):

 pass

 else:

 return False

 height_two_path_set = set(height_two_path_list)

 for each_path in height_two_path_set:

 if (each_path[0] == each_path[2]) and (each_path[2]== each_path[4]) and (each_path[1] == each_path[3]):

 if height_two_path_list.count(each_path)%2 == 0:

187

 pass

 else:

 return False

 else:

 if (height_two_path_list.count((each_path[4],each_path[3],each_path[2],each_path[1],each_path[0])) ==

 height_two_path_list.count(each_path)):

 pass

 else:

 return False

 height_three_path_set = set(height_three_path_list)

 for each_path in height_three_path_set:

 if ((each_path[0] == each_path[2]) and (each_path[2] == each_path[4]) and (each_path[4] == each_path[6]) and

 (each_path[1] == each_path[3]) and (each_path[3] == each_path[5])):

 if (height_three_path_list.count(each_path))% 2 == 0:

 pass

 else:

 return False

 else:

 if (height_three_path_list.count((each_path[6],each_path[5],each_path[4],each_path[3],each_path[2],each_path[1],
 each_path[0]))==height_three_path_list.count(each_path)):

 pass

 else:

 return False

 return True

 def exhaustive_structural_isomers(self):

 def saturation_algorithm(graph):

 connected_components = nx.connected_components(graph)

 length = len(connected_components)

 unsat_deg_list = []

 for x in range(len(connected_components)):

 total_degree_of_unsat = 0

 for node in connected_components[x]:

 desired_sat = valence_dictionary[graph.node[node]['atom']]

 sig_one = graph.node[node]['sig']

 actual_sat = 0

188

 if not graph.node[node].keys():

 print 'Boolean worked'

 actual_sat = 0

 else:

 for neighbor in graph.neighbors(node):

 sig_two = graph.node[neighbor]['sig']

 bond_type = self.mother_graph.edge[sig_one][sig_two]['type']

 actual_sat += bond_dictionary[bond_type]

 degree_of_unsat = desired_sat - actual_sat

 if degree_of_unsat < 0:

 return 'saturated subgraph'

 graph.graph['unsat_dict'][node]=degree_of_unsat

 total_degree_of_unsat += degree_of_unsat

 unsat_deg_list.append(total_degree_of_unsat)

 if (0 in unsat_deg_list) and (length == 1):

 return 'solution found'

 elif 0 in unsat_deg_list:

 return 'saturated subgraph'

 else:

 automorphism_groups = []

 free_atom_lists = []

 smallest_degree = min(unsat_deg_list)

 # Just pulls the first connected component with the min. degree of unsat

 desired_index = unsat_deg_list.index(smallest_degree)

 desired_subgraph = graph.subgraph(connected_components[desired_index])

 unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0]

 if len(unsat_atoms) == 0:

 return 'saturated subgraph'

 unsat_atom_1 = unsat_atoms[0]

 free_atom_lists.append(unsat_atom_1)

 automorphism_groups.append(connected_components[desired_index])

 for component_list in connected_components:

 if connected_components.index(component_list) != desired_index:

 tested_subgraph = graph.subgraph(component_list)

 nm = iso.numerical_node_match('sig', 1)

189

 GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm)

 if GM.is_isomorphic():

 automorphism_groups.append(component_list)

 mapped_atom_1 = GM.mapping[unsat_atom_1]

 free_atom_lists.append(mapped_atom_1)

 return (automorphism_groups,free_atom_lists)

 def exhaustive_structural_isomers(self):

 def saturation_algorithm(graph):

 connected_components = nx.connected_components(graph)

 length = len(connected_components)

 unsat_deg_list = []

 for x in range(len(connected_components)):

 total_degree_of_unsat = 0

 for node in connected_components[x]:

 desired_sat = valence_dictionary[graph.node[node]['atom']]

 sig_one = graph.node[node]['sig']

 actual_sat = 0

 if not graph.node[node].keys():

 print 'Boolean worked'

 actual_sat = 0

 else:

 for neighbor in graph.neighbors(node):

 sig_two = graph.node[neighbor]['sig']

 bond_type = self.mother_graph.edge[sig_one][sig_two]['type']

 actual_sat += bond_dictionary[bond_type]

 degree_of_unsat = desired_sat - actual_sat

 if degree_of_unsat < 0:

 return 'saturated subgraph'

 graph.graph['unsat_dict'][node]=degree_of_unsat

 total_degree_of_unsat += degree_of_unsat

 unsat_deg_list.append(total_degree_of_unsat)

 if (0 in unsat_deg_list) and (length == 1):

 return 'solution found'

 elif 0 in unsat_deg_list:

 return 'saturated subgraph'

190

 else:

 automorphism_groups = []

 free_atom_lists = []

 smallest_degree = min(unsat_deg_list)

 # Just pulls the first connected component with the min. degree of unsat

 desired_index = unsat_deg_list.index(smallest_degree)

 desired_subgraph = graph.subgraph(connected_components[desired_index])

 unsat_atoms = [x for x in desired_subgraph.nodes() if graph.graph['unsat_dict'][x] > 0]

 if len(unsat_atoms) == 0:

 return 'saturated subgraph'

 unsat_atom_1 = unsat_atoms[0]

 free_atom_lists.append(unsat_atom_1)

 automorphism_groups.append(connected_components[desired_index])

 for component_list in connected_components:

 if connected_components.index(component_list) != desired_index:

 tested_subgraph = graph.subgraph(component_list)

 nm = iso.numerical_node_match('sig', 1)

 GM = iso.GraphMatcher(desired_subgraph,tested_subgraph,node_match = nm)

 if GM.is_isomorphic():

 automorphism_groups.append(component_list)

 mapped_atom_1 = GM.mapping[unsat_atom_1]

 free_atom_lists.append(mapped_atom_1)

 return (automorphism_groups,free_atom_lists)

 def generate_new_graphs(graph,automorphism_list,mapped_unsat_atoms_list):

 new_graph_list = []

 automor_count = len(automorphism_list)

 possible_bonded_to_nodes = []

 node1 = mapped_unsat_atoms_list[0]

 for keyi in graph.graph['m_dict'].keys():

 for seti in graph.graph['m_dict'][keyi].keys():

 if node1 in seti:

 for x in range(graph.graph['m_dict'][keyi][seti]):

 possible_bonded_to_nodes.append(keyi)

 check_list = []

 for group in itertools.combinations(possible_bonded_to_nodes,automor_count):

191

 new_graph = graph.copy()

 check_group = []

 for x in range(len(group)):

 sig = graph.node[group[x]]['sig']

 check_group.append(sig)

 check_group.sort()

 if not check_group in check_list:

 check_list.append(check_group)

 for x in range(len(group)):

 node1 = group[x]

 node2 = mapped_unsat_atoms_list[x]

 new_graph.add_edge(node1,node2)

 for set_j in new_graph.graph['m_dict'][node1]:

 if node2 in set_j:

 graph.graph['m_dict'][node1][set_j] += -1

 for set_k in new_graph.graph['m_dict'][node2]:

 if node1 in set_k:

 graph.graph['m_dict'][node2][set_k] += -1

 match_status = 0

 for graph_2 in new_graph_list:

 nm = iso.numerical_node_match('sig', 1)

 GM2 = iso.GraphMatcher(new_graph,graph_2,node_match = nm)

 if GM2.is_isomorphic():

 match_status = 1

 break

 if match_status == 0:

 new_graph_list.append(new_graph)

 return new_graph_list

This first step creates a bonding dict with full signatures references

 signature_set = set(self.atomic_signatures)

 bonding_dict = defaultdict(set)

 for pair in itertools.combinations_with_replacement(signature_set,2):

 if self.mother_graph.has_edge(pair[0],pair[1]):

 dict_i = self.mother_graph.edge[pair[0]][pair[1]]['map_dict']

 for key,entry in dict_i.items():

192

 for sig in entry:

 bonding_dict[key].add(sig)

 bonding_dict[sig].add(key)

Now I am creating the n and m occurance dictionaries

 # I need to create the max occurance dictionary

 m_dict = defaultdict(lambda:defaultdict(int))

 for entry,list_i in bonding_dict.items():

 second_list = []

 for each in list_i:

 second_list.append(each[0])

 second_set = set(second_list)

 second_tuple = tuple(second_set)

 m_dict[entry[0]][second_tuple] += 1

I will be creating a graph with no bonds to start with as a 'base graph'

This graph will maintain the equivalent n12 and m12 dictionaries as referenced in Faulon's paper

 sig_to_node_dictionary = defaultdict(list)

 base_graph = nx.Graph()

 n = 0

 for each in signature_set:

 for x in range(self.atomic_signatures.count(each)):

 base_graph.add_node(n)

 base_graph.node[n]['sig'] = each

 base_graph.node[n]['atom'] = self.mother_graph.node[each]['atom']

 sig_to_node_dictionary[each].append(n)

 n += 1

 base_graph.graph['unsat_dict'] = defaultdict(int)

Now I need to translate the previously generated occurance dictionaries into the given base graph with appropriate node references

 base_graph.graph['m_dict'] = defaultdict(lambda:defaultdict(int))

 for sig1 in m_dict.keys():

 for node1 in sig_to_node_dictionary[sig1]:

 for sig2_list in m_dict[sig1].keys():

 node2_list = []

 for sig2 in sig2_list:

 for node2 in sig_to_node_dictionary[sig2]:

 node2_list.append(node2)

193

 node2_set = set(node2_list)

 node2_tuple = tuple(node2_set)

 base_graph.graph['m_dict'][node1][node2_tuple] = m_dict[sig1][sig2_list]

I will create a simple bonding dict here for estimating all possible bonds

 simple_bonds = defaultdict(set)

 for node1 in base_graph.nodes():

 sig1 = base_graph.node[node1]['sig']

 for neighbor in self.mother_graph.neighbors(sig1):

 for node2 in base_graph.nodes():

 if neighbor == base_graph.node[node2]['sig']:

 simple_bonds[node1].add(node2)

This is where I'm actually running the while loop to generate all graphs

 final_isomers = 0

 old_list = []

 self.final_isomers = []

 self.potential_isomers = []

 z = saturation_algorithm(base_graph)

 y = generate_new_graphs(base_graph,z[0],z[1])

 old_list.extend(y)

 iterations = 0

 while len(old_list) > 0 and iterations < 150:

 iterations += 1

 for graph in old_list:

 z = saturation_algorithm(graph)

 if z == 'solution found':

 self.final_isomers.append(graph)

 elif z == 'saturated subgraph':

 pass

 elif type(z) is tuple:

 y = generate_new_graphs(graph,z[0],z[1])

 self.potential_isomers.extend(y)

 old_list = self.potential_isomers[:]

 self.potential_isomers[:] = []

 if len(self.final_isomers) > 0:

 break

A

T

a

t

a

o

i

 else:

 pri

A.4 – Gene

The genetic

and its codi

the mutation

approach, m

of conforma

implementin

Figure

int 'Final number

etic Algorith

c algorithm w

ing is shown

n operators

must also be

ational isom

ng mutation

e A.4.1 – G

of structural isom

hm

was propose

n in this sec

are also inc

e created an

mers from at

n operators i

Generalized

194

mers:', len(self.fin

ed to handle

ction. In add

cluded. A u

nd this code

tomic signat

is shown in

approach t

4

nal_isomers)

e larger and

dition to gen

unique bond

 is included

tures is show

Figure A.4.

to impleme

more comp

neration of

ding networ

d as well. F

wn. The gen

.1.

enting muta

plex CAMD

a starting p

rk, specific t

inally, the g

neralized ap

ation opera

D problems

opulation,

to the GA

generation

pproach to

tors.

195

The approach taken to identify candidates feasible for crossover mutation can be found in

section 3.2.4 of this dissertation. The code written for each of these operations is shown

below.

import networkx as nx

import networkx.algorithms.isomorphism as iso

import math

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict

from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter

from random import *

from random import randint

from bisect import bisect

sin = numpy.sin

cos = numpy.cos

valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1,'P':5}

bond_dictionary = {1:1,2:2,4:1.5}

Just a couple of algebraic operations

def unit_vector(vector):

 return vector/numpy.linalg.norm(vector)

def angle_between(v1, v2):

 v1_u = unit_vector(v1)

 v2_u = unit_vector(v2)

 angle = numpy.arccos(numpy.dot(v1_u,v2_u))

196

 if numpy.isnan(angle):

 if (v1_u == v2_u).all():

 return 0.0

 else:

 return numpy.pi

 return angle

These are some operators for the selection process in genetic algorithm

def weighted_choice(choices):

 values, weights = zip(*choices)

 total = 0

 cum_weights = []

 for w in weights:

 total += w

 cum_weights.append(total)

 x = random() * total

 i = bisect(cum_weights, x)

 return values[i]

def choose_operation(network,city,fitness_list,optimal_size,beta,split):

 randy = random()

 if randy > split:

 # This is a mutation and I must choose one based on fitness

 chosen_index = weighted_choice(fitness_list)

 chosen_graph = city[chosen_index]

 chosen_graph_size = len(chosen_graph.graph['conformers'][0].nodes())

 if chosen_graph_size > optimal_size*(1 + beta):

 return ('mutation','deletion',chosen_graph.copy())

 elif chosen_graph_size < optimal_size*(1 - beta):

 return ('mutation','insertion',chosen_graph.copy())

 else:

 return ('mutation','node',chosen_graph.copy())

 else:

 found_pair = 'no'

 while found_pair == 'no':

197

 chosen_index_1 = weighted_choice(fitness_list)

 chosen_index_2 = weighted_choice(fitness_list)

 while chosen_index_2 == chosen_index_1:

 chosen_index_2 = weighted_choice(fitness_list)

 chosen_graph_1 = city[chosen_index_1].copy()

 chosen_graph_2 = city[chosen_index_2].copy()

 # I must verify that crossover is possible first

 edges_in_1 = chosen_graph_1.edges()

 edges_in_2 = chosen_graph_2.edges()

 possible_edge_pairs = list(itertools.product(edges_in_1 , edges_in_2))

 for edge_pair in possible_edge_pairs:

 # Try switching node ones

 edge_in_1 = edge_pair[0]

 edge_in_2 = edge_pair[1]

 node_1_2 = edge_in_2[0]

 node_2_2 = edge_in_2[1]

 node_1_1 = edge_in_1[0]

 node_2_1 = edge_in_1[1]

 sig_1_2 = chosen_graph_2.node[node_1_2]['sig']

 sig_2_2 = chosen_graph_2.node[node_2_2]['sig']

 sig_1_1 = chosen_graph_1.node[node_1_1]['sig']

 sig_2_1 = chosen_graph_1.node[node_2_1]['sig']

 if network.has_edge(sig_1_2,sig_2_1):

 node_1_2_unsats = [x[1] for x in chosen_graph_2.edge[edge_in_2[0]][edge_in_2[1]]['unsat_info'] if x[0] ==
 sig_1_2]

 node_2_1_unsats = [x[1] for x in chosen_graph_1.edge[edge_in_1[0]][edge_in_1[1]]['unsat_info'] if x[0] ==
 sig_2_1]

 move_list = [x for x in chosen_graph_1.graph['move_list'] if node_1_1 in x and node_2_1 in x]

 if len(move_list) == 0:

 break

 move = [x for x in chosen_graph_1.graph['move_list'] if node_1_1 in x and node_2_1 in x][0]

 if move[1] == node_2_1:

 # This means that the maps should be keyed by (sig 2 in 1)

 for map_key in network.edge[sig_1_2][sig_2_1]['map_dict'].keys():

 if map_key[0] == sig_2_1:

 for map in network.edge[sig_1_2][sig_2_1]['map_dict'][map_key]:

198

 # If it's keyed by sig2in1 then those will be the entries

 map_1_items = [x[1] for x in map.items()]

 missing_node_2_1_unsats = [x for x in node_2_1_unsats if x not in map_1_items]

 missing_node_1_2_unsats = [x for x in node_1_2_unsats if x not in map.keys()]

 if len(missing_node_2_1_unsats) == 0 and len(missing_node_1_2_unsats) == 0:

 found_pair = 'yes'

 return ('crossover', chosen_graph_2, edge_in_2 , node_1_2,
 chosen_graph_1, edge_in_1, node_2_1, map)

 else:

 # This means that the maps should be keyed by (sig 1 in 2)

 for map_key in network.edge[sig_1_2][sig_2_1]['map_dict'].keys():

 if map_key[0] == sig_1_2:

 for map in network.edge[sig_1_2][sig_2_1]['map_dict'][map_key]:

 # If it's keyed by sig1in2 then those will be the entries

 map_1_items = [x[1] for x in map.items()]

 missing_node_1_2_unsats = [x for x in node_1_2_unsats if x not in map_1_items]

 missing_node_2_1_unsats = [x for x in node_2_1_unsats if x not in map.keys()]

 if len(missing_node_2_1_unsats) == 0 and len(missing_node_1_2_unsats) == 0:

 found_pair = 'yes'

 return ('crossover', chosen_graph_1, edge_in_1, node_2_1, chosen_graph_2,
 edge_in_2, node_1_2, map)

 def create_network(self):

 self.network = nx.Graph()

 n = 0

 for subgraph_list in self.compressed_subgraphs:

 graph = subgraph_list[0]

 self.network.add_node(n)

 self.network.node[n]['conformers'] = subgraph_list

 self.network.node[n]['atom'] = graph.graph['atom']

 self.network.node[n]['atom_count'] = len(graph.nodes())

 conformer_center = graph.graph['center']

 self.network.node[n]['degree'] = graph.degree(conformer_center)

 self.network.node[n]['conformer_center'] = conformer_center

 self.network.node[n]['unsaturated_nodes'] = []

 # This step will determine which neighbors to the central

 for node_1 in graph.nodes():

199

 neighbors = graph.neighbors(node_1)

 required_valence = valence_dictionary[graph.node[node_1]['atom']]

 node_1_degree = 0

 for node_2 in graph.neighbors(node_1):

 node_1_degree += bond_dictionary[graph.edge[node_1][node_2]['type']]

 if node_1_degree < required_valence:

 self.network.node[n]['unsaturated_nodes'].append(node_1)

 n += 1

 print 'All signatures stored in network...'

 print 'Establishing connectivity information...'

 bonds_created = 0

 possible = 0

 for pair in itertools.combinations_with_replacement(self.network.nodes(), 2):

 bond_status = 0

 possible += 1

 map_dict = defaultdict(list)

 map_dict.clear()

 sig_a = self.network.node[pair[0]]['conformers'][0]

 sig_a_center = self.network.node[pair[0]]['conformers'][0].graph['center']

 sig_b = self.network.node[pair[1]]['conformers'][0]

 sig_b_center = self.network.node[pair[1]]['conformers'][0].graph['center']

 # This is for one side where sig_a is G2 and sig_b is G1

 G1 = sig_b

 for unsat_node in self.network.node[pair[0]]['unsaturated_nodes']:

 G2 = nx.ego_graph(sig_a,unsat_node,radius = 2)

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GM1 = iso.GraphMatcher(G1,G2,node_match = nm,edge_match = em)

 if GM1.subgraph_is_isomorphic():

 for dict_j in GM1.subgraph_isomorphisms_iter():

 if (len(dict_j.keys()) >= 3 and sig_b_center in dict_j.keys() and dict_j[sig_b_center] == unsat_node):

 bond_status = 1

 map_dict[(pair[0],unsat_node)].append(dict_j)

 # This is for the other side where sig_b is G2 and sig_a is G1

 G1 = sig_a

200

 for unsat_node in self.network.node[pair[1]]['unsaturated_nodes']:

 G2 = nx.ego_graph(sig_b,unsat_node,radius = 2)

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GM2 = iso.GraphMatcher(G1,G2,node_match = nm,edge_match = em)

 if GM2.subgraph_is_isomorphic():

 for dict_k in GM2.subgraph_isomorphisms_iter():

 if (len(dict_k.keys()) >= 3 and sig_a_center in dict_k.keys() and dict_k[sig_a_center] == unsat_node):

 bond_status = 1

 map_dict[(pair[1],unsat_node)].append(dict_k)

 if bond_status == 1:

 bonds_created += 1

 self.network.add_edge(pair[0],pair[1])

 self.network.edge[pair[0]][pair[1]]['map_dict'] = map_dict

 print 'Bonding information established...'

 print possible, 'bonds were analyzed.'

 print (bonds_created)*100.00/possible , 'percent of these were feasible.'

 def create_starting_population(self,size,atom_count_lower,atom_count_upper):

 self.size = size

 self.city = []

 size_list = [x for x in range(atom_count_lower,atom_count_upper+1)]

 for x in range(self.size):

 first_sig = choice(self.network.nodes())

 # I will use indices in case a signature is used more than once

 index = 0

 target_size = choice(size_list)

 signature_graph = nx.Graph()

 signature_graph.graph['target_size'] = target_size

 signature_graph.add_node(index)

 signature_graph.node[index]['sig'] = first_sig

 signature_graph.node[index]['unsat_nodes'] = self.network.node[first_sig]['unsaturated_nodes'][:]

 signature_graph.graph['current_size'] = self.network.node[first_sig]['atom_count']

 signature_graph.graph['index'] = 1

 signature_graph.graph['conformers'] = []

201

 signature_graph.graph['move_list'] = []

 self.city.append(signature_graph)

 print 'Initial population size:', len(self.city)

 for graph in self.city:

 total_unsat = sum([len(graph.node[x]['unsat_nodes']) for x in graph.nodes()])

 while total_unsat > 0:

 P_cap = 1-((graph.graph['target_size']-graph.graph['current_size']) / (float(graph.graph['target_size'])))

 if P_cap >= 1.0:

 cap = 'yes'

 else:

 rand = random()

 if rand <= P_cap:

 cap = 'yes'

 else:

 cap = 'no'

 # First I want to identify potential nodes to bond with their new degree of unsat

 unsat_nodes = []

 for node in graph.nodes():

 if len(graph.node[node]['unsat_nodes']) > 0:

 for node2 in graph.node[node]['unsat_nodes']:

 unsat_nodes.append((node,graph.node[node]['sig'],node2))

 chosen_unsat_node = choice(unsat_nodes)

 graph.node[chosen_unsat_node[0]]['unsat_nodes'].remove(chosen_unsat_node[2])

 chosen_unsat_point = (chosen_unsat_node[1],chosen_unsat_node[2])

 potential_new_node_list = []

 new_unsat_degree_list = []

 for neighbor in self.network.neighbors(chosen_unsat_node[1]):

 if (chosen_unsat_point in self.network.edge[chosen_unsat_node[1]][neighbor]['map_dict'].keys() and
 len(self.network.node[neighbor]['unsaturated_nodes']) > 0):

 potential_new_node_list.append(neighbor)

 new_unsat_degree_list.append(len(self.network.node[neighbor]['unsaturated_nodes']) - 1)

 if cap =='no' and len([x for x in new_unsat_degree_list if x != 0]) == 0:

 cap = 'yes'

 if cap == 'yes':

 best = min(new_unsat_degree_list)

 best_options = [new_unsat_degree_list.index(x) for x in new_unsat_degree_list if x == best]

202

 chosen_partner = potential_new_node_list[choice(best_options)]

 graph.add_node(graph.graph['index'])

 graph.node[graph.graph['index']]['sig'] = chosen_partner

 graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated_nodes'][:]

 graph.add_edge(chosen_unsat_node[0] , graph.graph['index'])

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'] = []

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(
 (chosen_unsat_node[1],chosen_unsat_node[2]))

 # If there are multiple mappings here I could choose one at random or have some other criteria

 chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict']
 [chosen_unsat_point][0].copy()

 unsats_to_remove = [x for x in chosen_map.keys() if x in self.network.node[chosen_partner]
 ['unsaturated_nodes']]

 graph.graph['move_list'].append((graph.graph['index'],chosen_unsat_node[0],chosen_map))

 for unsat_node in unsats_to_remove:

 graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node)

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(
 (chosen_partner,unsat_node))

 nodes_added = self.network.node[chosen_partner]['atom_count'] - len(chosen_map.keys())

 graph.graph['current_size'] += nodes_added

 graph.graph['index'] += 1

 elif cap == 'no':

 best_options = []

 index = 0

 for x in new_unsat_degree_list:

 if x != 0:

 best_options.append(potential_new_node_list[index])

 index += 1

 chosen_partner = choice(best_options)

 graph.add_node(graph.graph['index'])

 graph.node[graph.graph['index']]['unsat_nodes'] = self.network.node[chosen_partner]['unsaturated_nodes'][:]

 graph.node[graph.graph['index']]['sig'] = chosen_partner

 graph.add_edge(chosen_unsat_node[0] , graph.graph['index'])

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'] = []

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append((chosen_unsat_node[1],
 chosen_unsat_node[2]))

 # If there are lots of mappings here I could choose one at random or have some other criteria

203

 chosen_map = self.network.edge[chosen_unsat_node[1]][chosen_partner]['map_dict']
 [chosen_unsat_point][0].copy()

 unsats_to_remove = [x for x in chosen_map.keys() if x in self.network.node[chosen_partner]
 ['unsaturated_nodes']]

 graph.graph['move_list'].append((graph.graph['index'],chosen_unsat_node[0],chosen_map))

 for unsat_node in unsats_to_remove:

 graph.node[graph.graph['index']]['unsat_nodes'].remove(unsat_node)

 graph.edge[chosen_unsat_node[0]][graph.graph['index']]['unsat_info'].append(
 (chosen_partner,unsat_node))

 nodes_added = self.network.node[chosen_partner]['atom_count'] - len(chosen_map.keys())

 graph.graph['current_size'] += nodes_added

 graph.graph['index'] += 1

 total_unsat = sum([len(graph.node[x]['unsat_nodes']) for x in graph.nodes()])

 else:

 print 'Graph created with size:', graph.graph['current_size']

 iterations = 0

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 while mapping_condition == 'no':

 iterations += 1

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

204

 mapping_condition = 'no'

 break

 def create_new_population(self,new_size,beta,split):

 node_mutation_count = 0

 insertion_mutation_count = 0

 deletion_mutation_count = 0

 crossover_count = 0

 new_pop = 0

 new_city = []

 while new_pop < new_size:

 operation = choose_operation(self.network,self.city,self.fitness_list,self.optimal_size,beta,split)

 if operation[0] == 'mutation' and operation[1] == 'node':

 # This is going to be where I perform a node mutation

 # First I will choose a random node

 original_graph = operation[2]

 nodes = original_graph.nodes()[:]

 found_node = 'no'

 graph_added = 'no'

 while len(nodes) > 0 and graph_added == 'no':

 shuffle(nodes)

 random_node = nodes.pop()

 random_nodes_sig = original_graph.node[random_node]['sig']

 edges_from_random_node = nx.edges(original_graph,random_node)

 unsat_to_satisfy = []

 unsat_to_satisfy_dict = defaultdict(int)

 for edge in edges_from_random_node:

 for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']:

 if unsat[0] != random_nodes_sig:

 unsat_to_satisfy.append(unsat)

 # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this

 unsat_to_satisfy_set = set(unsat_to_satisfy)

 for unsat in unsat_to_satisfy_set:

 unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat)

 list_of_unsat_potential_lists = []

 for unsat in unsat_to_satisfy_dict.keys():

205

 unsat_potentials = []

 for neighbor in self.network.neighbors(unsat[0]):

 if neighbor != random_nodes_sig:

 if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():

 if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]:

 unsat_potentials.append(neighbor)

 list_of_unsat_potential_lists.append(unsat_potentials)

 if len(list_of_unsat_potential_lists) > 1:

 optimal_nodes = []

 for x in list_of_unsat_potential_lists[0]:

 present = 'no'

 for y in range(len(list_of_unsat_potential_lists)):

 if x in list_of_unsat_potential_lists[y]:

 present = 'yes'

 else:

 present = 'no'

 break

 if present == 'yes':

 optimal_nodes.append(x)

 elif len(list_of_unsat_potential_lists) == 1:

 optimal_nodes = set(list_of_unsat_potential_lists[0])

 elif len(list_of_unsat_potential_lists) == 0:

 continue

 move_list_tuples = [x for x in original_graph.graph['move_list'] if x[0] == random_node or x[1] ==
 random_node]

 while len(optimal_nodes) > 0 and graph_added == 'no':

 chosen_replacement_node = optimal_nodes.pop()

 graph = original_graph.copy()

 new_move_list = [x for x in graph.graph['move_list'] if x not in move_list_tuples]

 # Depending on the first two entries of the map i need to decide if the map is keyed or entried by the
 new node

 for edge in move_list_tuples:

 if edge[0] == random_node:

 # This means the dictionary list is keyed by the other node

 other_node = edge[1]

 other_sig = graph.node[other_node]['sig']

206

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 map_found = 'no'

 for other_unsat in other_unsats:

 for map in self.network.edge[chosen_replacement_node][other_sig]
 ['map_dict'][(other_sig,other_unsat)]:

 map_items_1 = [x[1] for x in map.items()]

 missing_other_unsats = [x for x in other_unsats if x not in map_items_1]

 if len(missing_other_unsats) == 0:

 map_found = 'yes'

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 new_randy_unsats = [x for x in map.keys() if x in self.network.node
 [chosen_replacement_node]['unsaturated_nodes']]

 for randy_unsat in new_randy_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append(
 (chosen_replacement_node , randy_unsat))

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[0] == edge[0] and x[1] ==
 edge[1]][0]

 new_move_list.append((random_node, other_node, map.copy()))

 else:

 # This means the dictionary list is keyed by the random node

 other_node = edge[0]

 other_sig = graph.node[other_node]['sig']

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 # Now I'll search through all map keys and maps to search for one which covers all other
 unsats

 map_found = 'no'

 for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']:

 if self.network.has_edge(chosen_replacement_node,other_sig):

 for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
 [(chosen_replacement_node,random_unsat)]:

 uncovered_other_unsats = [x for x in other_unsats if x not in map.keys()]

 if len(uncovered_other_unsats) == 0:

207

 map_found = 'yes'

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 random_unsats = [x for x in map.keys() if x in self.network.node
 [chosen_replacement_node]['unsaturated_nodes']]

 for randy_unsat in random_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append(
 (chosen_replacement_node, randy_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
 other_node][0]

 new_move_list.append((other_node, random_node, map.copy()))

 if map_found == 'yes':

 graph.graph['move_list'] = new_move_list

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 while mapping_condition == 'no':

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

208

 mapping_condition = 'no'

 break

 graph_added = 'yes'

 graph.graph['conformers'][:] = []

 graph.node[random_node]['sig'] = chosen_replacement_node

 move_test = 'good'

 for move in graph.graph['move_list']:

 if move[0] not in graph.nodes() or move[1] not in graph.nodes():

 move_test = 'bad'

 print 'Uh oh there was a move without a bond for a node mutation graph'

 break

 if move_test == 'good':

 print 'New graph added to city by node mutation.'

 new_city.append(graph)

 new_pop += 1

 node_mutation_count += 1

 else:

 continue

Deletion Mutation

 elif operation[0] == 'mutation' and operation[1] == 'deletion':

 original_graph = operation[2]

 nodes = original_graph.nodes()[:]

 found_node = 'no'

 graph_added = 'no'

 while len(nodes) > 0 and graph_added == 'no':

 shuffle(nodes)

 random_node = nodes.pop()

 random_nodes_sig = original_graph.node[random_node]['sig']

 edges_from_random_node = nx.edges(original_graph,random_node)

 unsat_to_satisfy = []

 unsat_to_satisfy_dict = defaultdict(int)

 for edge in edges_from_random_node:

 for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']:

 if unsat[0] != random_nodes_sig:

 unsat_to_satisfy.append(unsat)

209

 # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this

 unsat_to_satisfy_set = set(unsat_to_satisfy)

 for unsat in unsat_to_satisfy_set:

 unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat)

 list_of_unsat_potential_lists = []

 for unsat in unsat_to_satisfy_dict.keys():

 unsat_potentials = []

 for neighbor in self.network.neighbors(unsat[0]):

 if neighbor != random_nodes_sig:

 if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():

 if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]:

 unsat_potentials.append(neighbor)

 list_of_unsat_potential_lists.append(unsat_potentials)

 if len(list_of_unsat_potential_lists) > 1:

 optimal_nodes_original = []

 for x in list_of_unsat_potential_lists[0]:

 present = 'no'

 for y in range(len(list_of_unsat_potential_lists)):

 if x in list_of_unsat_potential_lists[y]:

 present = 'yes'

 else:

 present = 'no'

 break

 if present == 'yes':

 optimal_nodes_original.append(x)

 elif len(list_of_unsat_potential_lists) == 1:

 optimal_nodes_original = set(list_of_unsat_potential_lists[0])

 elif len(list_of_unsat_potential_lists) == 0:

 continue

 optimal_nodes = [x for x in optimal_nodes_original if self.network.node[x]['atom_count'] <
 self.network.node[random_nodes_sig]['atom_count']]

 move_list_tuples = [x for x in original_graph.graph['move_list'] if x[0] == random_node
 or x[1] == random_node]

 while len(optimal_nodes) > 0 and graph_added == 'no':

 new_move_list = [x for x in original_graph.graph['move_list'] if x not in move_list_tuples]

 graph = original_graph.copy()

210

 chosen_replacement_node = optimal_nodes.pop()

 for edge in move_list_tuples:

 if edge[0] == random_node:

 # This means the dictionary list is keyed by the other node

 other_node = edge[1]

 other_sig = graph.node[other_node]['sig']

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 map_found = 'no'

 # Might need to keep track of other unsats utilized so that they're only hit once

 for other_unsat in other_unsats:

 if self.network.has_edge(chosen_replacement_node,other_sig):

 for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
 [(other_sig,other_unsat)]:

 map_items_1 = [x[1] for x in map.items()]

 missing_other_unsats = [x for x in other_unsats if x not in map_items_1]

 if len(missing_other_unsats) == 0:

 map_found = 'yes'

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 new_randy_unsats = [x for x in map.keys() if x in self.network.node
 [chosen_replacement_node]['unsaturated_nodes']]

 for randy_unsat in new_randy_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append(
 (chosen_replacement_node , randy_unsat))

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[0] == edge[0] and
 x[1] == edge[1]][0]

 new_move_list.append((random_node, other_node, map.copy()))

 elif map_found == 'no':

 print 'Map not found'

 break

 else:

 # This means the dictionary list is keyed by the random node

211

 other_node = edge[0]

 other_sig = graph.node[other_node]['sig']

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 map_found = 'no'

 for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']:

 if self.network.has_edge(chosen_replacement_node,other_sig):

 for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
 [(chosen_replacement_node,random_unsat)]:

 uncovered_other_unsats = [x for x in other_unsats if x not in map.keys()]

 if len(uncovered_other_unsats) == 0:

 map_found = 'yes'

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 random_unsats = [x for x in map.keys() if x in self.network.node[
 chosen_replacement_nodes['unsaturated_nodes']]

 for randy_unsat in random_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((chosen_replacement_node,
 randy_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
 other_node][0]

 new_move_list.append((other_node, random_node, map.copy()))

 else:

 print 'Map not found'

 break

 if map_found == 'yes':

 graph.graph['move_list'] = new_move_list

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

212

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 while mapping_condition == 'no':

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 graph_added = 'yes'

 graph.graph['conformers'][:] = []

 graph.node[random_node]['sig'] = chosen_replacement_node

 move_status = 'good'

 for move in graph.graph['move_list']:

 if move[0] not in graph.nodes() or move[1] not in graph.nodes():

 print 'Uh oh there was a move without a bond for a deletion mutation'

 move_status = 'bad'

 break

 if move_status == 'good':

 print 'New graph added to city by deletion mutation.'

 new_city.append(graph)

 new_pop += 1

 deletion_mutation_count += 1

 else:

 continue

Insertion Mutation

 elif operation[0] == 'mutation' and operation[1] == 'insertion':

 original_graph = operation[2]

 nodes = original_graph.nodes()[:]

213

 found_node = 'no'

 graph_added = 'no'

 while len(nodes) > 0 and graph_added == 'no':

 shuffle(nodes)

 random_node = nodes.pop()

 random_nodes_sig = original_graph.node[random_node]['sig']

 edges_from_random_node = nx.edges(original_graph,random_node)

 unsat_to_satisfy = []

 unsat_to_satisfy_dict = defaultdict(int)

 for edge in edges_from_random_node:

 for unsat in original_graph.edge[edge[0]][edge[1]]['unsat_info']:

 if unsat[0] != random_nodes_sig:

 unsat_to_satisfy.append(unsat)

 # The unsat to satisfy might occur more than once...if so, I must find a node which can acccomodate this

 unsat_to_satisfy_set = set(unsat_to_satisfy)

 for unsat in unsat_to_satisfy_set:

 unsat_to_satisfy_dict[unsat] = unsat_to_satisfy.count(unsat)

 list_of_unsat_potential_lists = []

 for unsat in unsat_to_satisfy_dict.keys():

 unsat_potentials = []

 for neighbor in self.network.neighbors(unsat[0]):

 if neighbor != random_nodes_sig:

 if unsat in self.network.edge[unsat[0]][neighbor]['map_dict'].keys():

 if len(self.network.edge[unsat[0]][neighbor]['map_dict']) >= unsat_to_satisfy_dict[unsat]:

 unsat_potentials.append(neighbor)

 list_of_unsat_potential_lists.append(unsat_potentials)

 if len(list_of_unsat_potential_lists) > 1:

 optimal_nodes_original = []

 for x in list_of_unsat_potential_lists[0]:

 present = 'no'

 for y in range(len(list_of_unsat_potential_lists)):

 if x in list_of_unsat_potential_lists[y]:

 present = 'yes'

 else:

 present = 'no'

214

 break

 if present == 'yes':

 optimal_nodes_original.append(x)

 elif len(list_of_unsat_potential_lists) == 1:

 optimal_nodes_original = set(list_of_unsat_potential_lists[0])

 elif len(list_of_unsat_potential_lists) == 0:

 continue

 optimal_nodes = [x for x in optimal_nodes_original if self.network.node[x]['atom_count'] >
 self.network.node[random_nodes_sig]['atom_count']]

 move_list_tuples = [x for x in original_graph.graph['move_list'] if x[0] == random_node
 or x[1] == random_node]

 while len(optimal_nodes) > 0 and graph_added == 'no':

 new_move_list = [x for x in original_graph.graph['move_list'] if x not in move_list_tuples]

 graph = original_graph.copy()

 chosen_replacement_node = optimal_nodes.pop()

 # Depending on the first two entries of the map i need to decide if the map is keyed or entried by the new node

 for edge in move_list_tuples:

 if edge[0] == random_node:

 # This means the dictionary list is keyed by the other node

 other_node = edge[1]

 other_sig = graph.node[other_node]['sig']

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 map_found = 'no'

 # Might need to keep track of other unsats utilized so that they're only hit once

 for other_unsat in other_unsats:

 for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
 [(other_sig,other_unsat)]:

 map_items_1 = [x[1] for x in map.items()]

 missing_other_unsats = [x for x in other_unsats if x not in map_items_1]

 if len(missing_other_unsats) == 0:

 map_found = 'yes'

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 new_randy_unsats = [x for x in map.keys() if x in self.network.node
 [chosen_replacement_node]['unsaturated_nodes']]

 for randy_unsat in new_randy_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append(
 (chosen_replacement_node , randy_unsat))

215

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[0] == edge[0] and
 x[1] == edge[1]][0]

 new_move_list.append((random_node, other_node, map.copy()))

 elif map_found == 'no':

 print 'Map not found'

 break

 else:

 # This means the dictionary list is keyed by the random node

 other_node = edge[0]

 other_sig = graph.node[other_node]['sig']

 other_unsats = [x[1] for x in graph.edge[edge[0]][edge[1]]['unsat_info'] if x[0] == other_sig]

 # Now I'll search through all map keys and maps to search for one which covers all unsats

 map_found = 'no'

 for random_unsat in self.network.node[chosen_replacement_node]['unsaturated_nodes']:

 if self.network.has_edge(chosen_replacement_node,other_sig):

 for map in self.network.edge[chosen_replacement_node][other_sig]['map_dict']
 [(chosen_replacement_node,random_unsat)]:

 uncovered_other_unsats = [x for x in other_unsats if x not in map.keys()]

 if len(uncovered_other_unsats) == 0:

 map_found = 'yes'

 break

 if map_found == 'yes':

 break

 if map_found == 'yes':

 graph.edge[edge[0]][edge[1]]['unsat_info'][:] = []

 for other_unsat in other_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append((other_sig,other_unsat))

 random_unsats = [x for x in map.keys() if x in self.network.node
 [chosen_replacement_node]['unsaturated_nodes']]

 for randy_unsat in random_unsats:

 graph.edge[edge[0]][edge[1]]['unsat_info'].append(

216

 (chosen_replacement_node, randy_unsat))

 to_remove = [x for x in graph.graph['move_list'] if x[1] == random_node and x[0] ==
 other_node][0]

 new_move_list.append((other_node, random_node, map.copy()))

 if map_found == 'yes':

 graph.graph['move_list'] = new_move_list

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 while mapping_condition == 'no':

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph.graph['move_list']]

 one_list = [x[1] for x in graph.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph.graph['move_list'])

 mapping_condition = 'no'

 break

 graph_added = 'yes'

 graph.graph['conformers'][:] = []

 graph.node[random_node]['sig'] = chosen_replacement_node

 move_status = 'good'

 for move in graph.graph['move_list']:

 if move[0] not in graph.nodes() or move[1] not in graph.nodes():

 print 'Uh oh a move was found without a bond for an insertion mutaiton'

 move_status = 'bad'

 break

217

 if move_status == 'good':

 print 'New graph added to city by insertion mutation.'

 new_city.append(graph)

 new_pop += 1

 insertion_mutation_count += 1

 else:

 print 'This one was not connected and was created by insertion mutation!'

 else:

 continue

Crossover Mutation

 elif operation[0] == 'crossover':

 graph_1 = operation[1]

 graph_1.remove_edge(operation[2][0],operation[2][1])

 two_graphs1 = nx.connected_components(graph_1)

 list_to_remove1 = [x for x in two_graphs1 if operation[3] not in x][0]

 print 'Graph 1 before:', graph_1.nodes(), graph_1.edges()

 for node in list_to_remove1:

 graph_1.remove_node(node)

 for move in graph_1.graph['move_list']:

 if node == move[0] or node == move[1]:

 graph_1.graph['move_list'].remove(move)

 print 'Graph 1 after:', graph_1.nodes(), graph_1.edges()

 graph_2 = operation[4]

 print 'Graph 2 before:', graph_2.nodes(), graph_2.edges()

 graph_2.remove_edge(operation[5][0],operation[5][1])

 two_graphs2 = nx.connected_components(graph_2)

 list_to_remove2 = [x for x in two_graphs2 if operation[6] not in x][0]

 for node in list_to_remove2:

 graph_2.remove_node(node)

 for move in graph_2.graph['move_list']:

 if node == move[0] or node == move[1]:

 graph_2.graph['move_list'].remove(move)

 print 'Graph 2 after:', graph_2.nodes(), graph_2.edges()

 # Now I have these two graph with corrected move lists but I need to combine then and potentially change node labels

218

 # Along with these node label changes I will also need to change the respective move list

 max_in_1 = max([x for x in graph_1.nodes()])

 node_change_dict = defaultdict(int)

 node_change_dict.clear()

 new_label = max_in_1 + 1

 for node in graph_2.nodes():

 node_change_dict[node] = new_label

 new_label += 1

 # Now I have a dictionary with new labels

 # I want to start by making the link between the two adjoined graphs

 node_in_1 = operation[3]

 sig_in_1 = graph_1.node[node_in_1]['sig']

 node_in_2 = operation[6]

 sig_in_2 = graph_2.node[node_in_2]['sig']

 map = operation[7]

 graph_1.add_node(node_change_dict[node_in_2])

 graph_1.node[node_change_dict[node_in_2]]['sig'] = sig_in_2

 graph_1.add_edge(node_change_dict[node_in_2],node_in_1)

 node_in_1_nodes = [x for x in self.network.node[sig_in_1]['conformers'][0].nodes()]

 # Now I need to add all of the unsaturated nodes associated with the new map

 # Sig in one should be the keys

 unsat_for_sig_1 = [(node_in_1,x) for x in self.network.node[sig_in_1]['unsaturated_nodes'] if x in map.keys()]

 map_ones = [x[1] for x in map.items()]

 unsat_for_sig_2 = [(node_change_dict[node_in_2],x) for x in self.network.node[sig_in_2]['unsaturated_nodes'] if
 x in map_ones]

 total_new_unsat = []

 for each in unsat_for_sig_1:

 total_new_unsat.append(each)

 for each in unsat_for_sig_2:

 total_new_unsat.append(each)

 graph_1.edge[node_change_dict[node_in_2]][node_in_1]['unsat_info'] = total_new_unsat[:]

 for move in graph_2.graph['move_list']:

 node_1 = node_change_dict[move[0]]

 node_2 = node_change_dict[move[1]]

 graph_1.add_node(node_1)

 graph_1.node[node_1]['sig'] = graph_2.node[move[0]]['sig']

219

 graph_1.add_node(node_2)

 graph_1.node[node_2]['sig'] = graph_2.node[move[1]]['sig']

 graph_1.add_edge(node_1,node_2)

 graph_1.edge[node_1][node_2]['unsat_info'] = graph_2.edge[move[0]][move[1]]['unsat_info'][:]

 new_move = (node_change_dict[move[0]], node_change_dict[move[1]], move[2])

 graph_1.graph['move_list'].append(new_move)

 # This piece will determine if there is a move that doesn't correspond to a node in the graph

 map_status = 'continue'

 for move in graph_1.graph['move_list']:

 if move[0] not in graph_1.nodes() or move[1] not in graph_1.nodes():

 print 'Uh oh a move didnt have a edge for a crossover graph!'

 map_status = 'break'

 break

 if map_status != 'break':

 iterations = 0

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph_1.graph['move_list']]

 one_list = [x[1] for x in graph_1.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph_1.graph['move_list'])

 mapping_condition = 'no'

 break

 while mapping_condition == 'no':

 iterations += 1

 mapping_condition = 'yes'

 zero_list = [x[0] for x in graph_1.graph['move_list']]

 one_list = [x[1] for x in graph_1.graph['move_list']]

 zero_set = set (zero_list)

 for each in zero_set:

 if each in one_list:

 if one_list.index(each) < zero_list.index(each):

 shuffle(graph_1.graph['move_list'])

220

 mapping_condition = 'no'

 break

 print 'New graph added to city by crossover.'

 graph_1.graph['conformers'][:] = []

 new_city.append(graph_1)

 new_pop += 1

 crossover_count += 1

 list_of_conformer_indices = []

 for node in graph.nodes():

 sig = graph.node[node]['sig']

 # I will have to change this later when I'm looking at conformational ensembles

 graph.node[node]['sig_graph'] = self.network.node[sig]['conformers'][0].copy()

 conf_count = len(self.network.node[sig]['conformers'])

 index_list = [x for x in range(conf_count)]

 list_of_conformer_indices.append(index_list)

 # I'm throwing this in for later when I want to look at a conformational ensemble

 subgraph_permutations = list(itertools.product(*list_of_conformer_indices))

 for permutation in subgraph_permutations:

 permutation = subgraph_permutations[0]

 node_with_conformer_tuples = []

 for node in graph.nodes():

 node_index = graph.nodes().index(node)

 node_with_conformer_tuples.append((node,permutation[node_index]))

 changed_nodes = []

 xi = 0

 # I need to rearrange the move list

 for move in graph.graph['move_list']:

 node1 = move[1]

 node2 = move[0]

 map = move[2]

 sig2_index = 0

 sig2 = graph.node[node2]['sig']

 sig2_graph = self.network.node[sig2]['conformers'][sig2_index].copy()

 # This is basically saying that if this is my first iteration then I need to begin the graph

 if graph.graph['move_list'].index(move) == 0:

221

 sig1 = graph.node[node1]['sig']

 sig1_graph = self.network.node[sig1]['conformers'][0]

 conformer = sig1_graph.copy()

 else:

 sig1_graph = graph.node[node1]['sig_graph']

 node_2a = choice(map.keys())

 node_1a = [x[1] for x in map.items() if x[0] == node_2a][0]

 node_2a_coordinates = sig2_graph.node[node_2a]['xyz']

 node_1a_coordinates = sig1_graph.node[node_1a]['xyz']

 translation_vector = numpy.subtract(node_1a_coordinates,node_2a_coordinates)

 translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]],
 [0,0,1,translation_vector[2]],[0,0,0,1]])

 # Now I need to translate all nodes in the second signature copy

 for node in sig2_graph.nodes():

 new_coordinates = numpy.dot(translation_matrix , sig2_graph.node[node]['xyz'])

 new_coordinates_t = numpy.transpose(new_coordinates)

 sig2_graph.node[node]['xyz'] = new_coordinates_t

 # Now I need to choose a second mapped node to create a rotation

 node2b_choices = [x for x in map.keys() if not x ==node_2a]

 node_2b = choice(node2b_choices)

 node_1b = map[node_2b]

 node_1b_coordinates = sig1_graph.node[node_1b]['xyz']

 node_2b_coordinates = sig2_graph.node[node_2b]['xyz']

 nodes_1ab_vector = numpy.subtract(node_1b_coordinates[:3],node_1a_coordinates[:3])

 nodes_2ab_vector = numpy.subtract(node_2b_coordinates[:3],node_2a_coordinates[:3])

 angle_1 = angle_between(numpy.transpose(nodes_1ab_vector),nodes_2ab_vector)

 axis_1 = numpy.cross(nodes_1ab_vector,nodes_2ab_vector)

 # I still need to normalize this axis

 if numpy.linalg.norm(axis_1) == 0:

 axis_1u = axis_1

 else:

 axis_1u = axis_1/numpy.linalg.norm(axis_1)

 x = axis_1u[0]

 y = axis_1u[1]

 z = axis_1u[2]

222

 a = angle_1

 rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)],

 [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],

 [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])

 for node in sig2_graph.nodes():

 new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose(sig2_graph.node[node]['xyz'][:3]))

 new_coordinates_t = numpy.transpose(new_coordinates)

 new_coordinates_t_a = numpy.append(new_coordinates_t,1)

 sig2_graph.node[node]['xyz'] = new_coordinates_t_a

 # Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom
 coordinates is a minimum

 # First, I'll have to define the new axis of rotation

 # This will be the difference vector between points a1 and a2 or b1 and b2

 axis_2u = nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector)

 x = axis_2u[0]

 y = axis_2u[1]

 z = axis_2u[2]

 rotation_list = []

 for d in range(0,360,2):

 a = numpy.radians(d)

 rotation_matrix_2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
 cos(a))+y*sin(a)], [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],
 [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])

 temp_node_dictionary = defaultdict(numpy.array)

 # Now im going to create a list of all mapped nodes in the second signature

 node_list = map.keys()

 for node in node_list:

 new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_2,numpy.transpose(
 sig2_graph.node[node]['xyz'][:3])))

 temp_node_dictionary[node] = new_coordinates

 total_distance = 0

 for node in node_list:

 sig_1_node = map[node]

 total_distance += numpy.linalg.norm(temp_node_dictionary[node]-sig1_graph.node
 [sig_1_node]['xyz'][:3])

 temp_node_dictionary.clear()

 rotation_list.append((d,a,total_distance))

 # Now I must identify the lowest total distance

223

 best_radian = min(rotation_list, key=itemgetter(2))[1]

 a = best_radian

 # Now I need to actually rotate all of the atoms in the second signature

 rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-cos(a))+y*sin(a)],

 [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)), y*z*(1-cos(a))-x*sin(a)],

 [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a), cos(a)+(z*z)*(1-cos(a))]])

 for node in sig2_graph.nodes():

 new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose(
 sig2_graph.node[node]['xyz'][:3])))

 new_coordinates_a = numpy.append(new_coordinates,1)

 sig2_graph.node[node]['xyz'] = new_coordinates_a

 graph.node[node2]['sig_graph'] = sig2_graph.copy()

 # Now I need to add to the growing graph

 # First, I'll add the nodes not involved in docking

 nodes_to_add = [x for x in sig2_graph.nodes() if x not in map.keys()]

 for node in nodes_to_add:

 # Adding in label change because of conflicting fragments with the same labels

 new_node_id = 100*(xi+1) + node

 conformer.add_node(new_node_id, atom= sig2_graph.node[node]['atom'],
 xyz = sig2_graph.node[node]['xyz'], old_id = node)

 # Next, I'll need to add all edges located in signature two which don't involve docking nodes

 edges_to_add = [edge for edge in sig2_graph.edges() if edge[0] not in map.keys() and edge[1] not in map.keys()]

 for edge in edges_to_add:

 new_edge_0 = edge[0] + 100*(xi+1)

 new_edge_1 = edge[1] + 100*(xi+1)

 conformer.add_edge(new_edge_1, new_edge_0, type = sig2_graph.edge[edge[0]][edge[1]]['type'])

 # Now I need to add edges within the docking zone involving one node from signature two and one from signature one

 next_edges_to_add = []

 for edge in sig2_graph.edges():

 if (edge[0] not in map.keys() and edge[1] in map.keys()):

 if xi == 0:

 node_in_1 = map[edge[1]]

 else:

 node_in_1 = map[edge[1]] + (100*xi)

 new_edge_0 = 100*(xi+1) + edge[0]

 next_edges_to_add.append((new_edge_0 , node_in_1 , sig2_graph.edge[

224

 edge[0]][edge[1]]['type']))

 elif (edge[0] in map.keys() and edge[1] not in map.keys()):

 if xi == 0:

 node_in_1 = map [edge[0]]

 else:

 node_in_1 = map[edge[0]] + (100*xi)

 new_edge_1 = 100*(xi+1) + edge[1]

 next_edges_to_add.append ((node_in_1 , new_edge_1 , sig2_graph.edge[
 edge[0]][edge[1]]['type']))

 else:

 pass

 for edge in next_edges_to_add:

 conformer.add_edge(edge[0],edge[1],type = edge[2])

 xi += 1

 graph.graph['conformers'].append(conformer)

 print 'Conformer created!'

A.5 – Code for Expedited Molecular Mechanics Analysis

The following piece of code was created to handle large data sets when performing

conformational analysis using the BOSS program. The code scans the conformational

space of each mol file in a directory and creates a file with each identified conformational

isomer while cleaning up the remaining log files.

import subprocess

import glob

import linecache

from decimal import *

class Directory:

 def __init__(self,full_parent_directory):

 self.full_parent_directory = full_parent_directory

 def conformational_analysis(self,cutoff):

 """This function canonizes the mol files in directory and stores hydrogen suppressed signatures in self.signatures dictionary"""

 cutoff_decimal = Decimal(cutoff)

 if self.full_parent_directory[-1] == '/':

225

 self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1]

 mol_files = self.full_parent_directory + '/*.mol'

 file_iter = glob.iglob(mol_files)

 subprocess.call('mkdir conformers',shell=True,cwd=self.full_parent_directory)

 import_cs_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xCS100 '+ self.full_parent_directory + '/' + 'xCS100'

 import_xmolz_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xMOLZ '+ self.full_parent_directory + '/' + 'xMOLZ'

 import_xcsmol_command = 'cp /opt/asn/apps/boss_4.6/BOSS/scripts/xCSMOL'+self.full_parent_directory + '/' + 'xCSMOL'

 subprocess.call(import_xmolz_command,shell=True)

 subprocess.call(import_cs_command,shell=True)

 subprocess.call(import_xcsmol_command,shell=True)

 for fn in file_iter:

 mol_file = fn.replace(self.full_parent_directory,'')

 mol_file = mol_file.replace('/', '')

 mol_file = mol_file.replace('.mol','')

 xmolz_command = 'xMOLZ ' + mol_file

 xmolz_subprocess = subprocess.Popen(xmolz_command,shell=True,cwd=self.full_parent_directory)

 xmolz_subprocess.wait()

 rm_log = 'rm' + ' log'

 rm_optzmat = 'rm' + ' optzmat'

 rm_out = 'rm' + ' out'

 rm_plt = 'rm' + ' plt.pdb'

 rm_sum = 'rm' + ' sum'

 subprocess.Popen(rm_log,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_optzmat,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_out,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_plt,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_sum,shell=True,cwd=self.full_parent_directory)

 xcs_command = 'xCS100 ' + mol_file

 xcs_subprocess = subprocess.Popen(xcs_command,shell=True,cwd=self.full_parent_directory)

 xcs_subprocess.wait()

 rm_z = 'rm ' + mol_file + '.z'

 rm_cs = 'rm ' + mol_file + '.cs.CSV'

 rm_cs_sum = 'rm ' + mol_file + '.cs.sum'

 rm_csz = 'rm ' + mol_file + '.cs.z'

 rm_cs_out = 'rm ' + mol_file + '.cs.out'

226

 subprocess.Popen(rm_z,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_cs,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_cs_sum,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_csz,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen(rm_cs_out,shell=True,cwd=self.full_parent_directory)

 subprocess.Popen('rm log',shell=True,cwd=self.full_parent_directory)

 xcsmol_subprocess = subprocess.Popen('xCSMOL',cwd=self.full_parent_directory,stdin=subprocess.PIPE)

 input_text = mol_file + '.cs.mol'

 xcsmol_subprocess.communicate(input = input_text)[0]

 xcsmol_subprocess.wait()

 rm_csmol = 'rm ' + mol_file + '.cs.mol'

 subprocess.call(rm_csmol,shell=True,cwd=self.full_parent_directory)

 first_conformer = self.full_parent_directory + '/cs001.mol'

 lowest_energy = Decimal((linecache.getline(first_conformer,3)[43:51]).strip())

 print 'Lowest energy:', lowest_energy

 mv_best_conformer = 'mv ' + './cs001.mol ' + './conformers/' + mol_file + '.1.mol'

 cs_files = self.full_parent_directory + '/cs*.mol'

 file_iter_2 = glob.iglob(cs_files)

 subprocess.call(mv_best_conformer,shell=True,cwd=self.full_parent_directory)

 n = 2

 for fn in file_iter_2:

 energy = Decimal((linecache.getline(fn,3)[45:51]).strip())

 if energy < lowest_energy + cutoff_decimal:

 mv_conformer_cmd = 'mv ' + fn + ' ' + self.full_parent_directory+'/conformers/' + mol_file + '.'+str(n)+ '.mol'

 subprocess.call(mv_conformer_cmd,shell=True)

 else:

 rm_conformer_cmd = 'rm ' + fn

 subprocess.call(rm_conformer_cmd,shell=True)

 n += 1

 lowest_energy = 0

A.6 – Geometry Verification Code

The following code was written to verify the geometry generation process for a given

data set. It is formatted such that it can be used for sensitivity analysis when choosing the

227

optimal cutoff value for network compression such that significant conformational

isomers are still created during the search.

import networkx as nx

import networkx.algorithms.isomorphism as iso

import math

from math import fabs

import itertools

import re

import glob

import subprocess

import linecache

from collections import defaultdict

from operator import eq

from pprint import pprint

import numpy

from operator import itemgetter

from random import choice

sin = numpy.sin

cos = numpy.cos

valence_dictionary = {'C':4,'O':2,'H':1,'N':3,'S':2,'Cl':1,'F':1,'Br':1}

bond_dictionary = {1:1,2:2,4:1.5}

def unit_vector(vector):

 return vector/numpy.linalg.norm(vector)

def angle_between(v1, v2):

 v1_u = unit_vector(v1)

 v2_u = unit_vector(v2)

 angle = numpy.arccos(numpy.dot(v1_u,v2_u))

 if numpy.isnan(angle):

 if (v1_u == v2_u).all():

 return 0.0

 else:

 return numpy.pi

 return angle

class Directory:

228

 def __init__(self,full_parent_directory):

 self.full_parent_directory = full_parent_directory

 def create_graphs(self,height):

 """This function will create nx graphs with underlying signatures stored in each node"""

 self.height = height

 self.graphs = []

 if self.full_parent_directory[-1] == '/':

 self.full_parent_directory = self.full_parent_directory[:len(self.full_parent_directory)-1]

 mol_files = self.full_parent_directory + '/*.mol'

 file_iter = glob.iglob(mol_files)

 for fn in file_iter:

 # Creating a nx.Graph from the mol file

 G = nx.Graph()

 G.graph['fn'] = fn

 if 'OpenBabel' in str(linecache.getline(fn,2)):

 atom_bond_number_line = 4

 else:

 atom_bond_number_line = 5

 atomn = int((linecache.getline(fn,atom_bond_number_line)[1:4]).strip())

 bondn = int((linecache.getline(fn,atom_bond_number_line)[4:8]).strip())

 coordinate_begin_line = atom_bond_number_line + 1

 coordinate_end_line = atom_bond_number_line + atomn

 bond_begin_line = coordinate_end_line +1

 bond_end_line = coordinate_end_line + bondn

 for i in range(bond_begin_line, bond_end_line + 1):

 atom1 = int((linecache.getline(fn,i)[0:4]).strip())

 atom2 = int((linecache.getline(fn,i)[4:8]).strip())

 bondtype = int((linecache.getline(fn,i)[8:10]).strip())

 G.add_edge(atom1, atom2, type=bondtype)

 for i in range(coordinate_begin_line,coordinate_end_line + 1):

 j = i - (atom_bond_number_line)

 G.node[j]['xyz'] = numpy.array([float((linecache.getline(fn,i)[4:11]).strip()),
 float((linecache.getline(fn,i)[14:21]).strip()),float((linecache.getline(fn,i)[24:31]).strip())])

 G.node[j]['atom'] = ((linecache.getline(fn,i)[31:33]).strip())

 # Now assigning subgraphs to each node

229

 nodes = G.nodes_iter()

 for node in nodes:

 subgraph=nx.ego_graph(G, node, radius=self.height)

 atom = G.node[node]['atom']

 unsaturated_nodes = []

 for node2 in subgraph.nodes():

 actual_saturation = 0

 desired_saturation = valence_dictionary[subgraph.node[node2]['atom']]

 for neighbor in subgraph.neighbors(node2):

 actual_saturation += bond_dictionary[subgraph.edge[node2][neighbor]['type']]

 if actual_saturation < desired_saturation:

 unsaturated_nodes.append(node2)

 subgraph.graph['unsaturated_nodes'] = unsaturated_nodes

 G.node[node]['atomic_signature'] = subgraph

 self.graphs.append(G)

 print "Graph created for: " , fn

 print 'All',len(self.graphs),'graphs have been imported.'

 print 'Compressing graphs...'

 self.compressed_graphs = []

 for graph in self.graphs:

 match_status = 0

 if len(self.compressed_graphs) > 0:

 for graph_list in self.compressed_graphs:

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.categorical_edge_match('type', 4)

 GM = iso.GraphMatcher(graph,graph_list[0],node_match = nm, edge_match = em)

 if GM.is_isomorphic():

 match_status = 1

 new_graph = graph.copy()

 new_graph=nx.relabel_nodes(subgraph, GM.mapping, copy=True)

 graph_list.append(new_graph)

 break

 if match_status == 0:

 new_list = []

 new_graph = graph.copy()

230

 new_list.append(new_graph)

 self.compressed_graphs.append(new_list)

 else:

 new_list = []

 new_graph = graph.copy()

 new_list.append(new_graph)

 self.compressed_graphs.append(new_list)

 total_graphs_after_compression = 0

 for graph_list in self.compressed_graphs:

 total_graphs_after_compression += len(graph_list)

 print 'Graphs compressed.'

 print 'Number of unique graphs is', len(self.compressed_graphs), 'with', total_graphs_after_compression, 'graphs accounted
 for.'

 def identify_move_lists(self):

 def create_first_size_list(graph):

 subgraph_size_list = []

 for node in graph.nodes_iter():

 unsat_nodes = len(graph.node[node]['atomic_signature'].graph['unsaturated_nodes'])

 subgraph_size = len(graph.node[node]['atomic_signature'].nodes())

 if unsat_nodes == 0:

 return False

 break

 else:

 size_metric = subgraph_size/unsat_nodes

 subgraph_size_list.append((node,size_metric))

 return subgraph_size_list

 for graph_list in self.compressed_graphs:

 graph = graph_list[0]

 move_list = []

 required_nodes = [x for x in graph.nodes()]

 defined_nodes = []

 utilized_nodes = []

 graph.graph['move_list'] = []

 a = create_first_size_list(graph)

 if a == False:

 print "This graph is too small for this methodology."

231

 continue

 else:

 subgraph_size_list = a

 # Now I have developed a subgraph size list and will identify the largest size

 max_metric = max(subgraph_size_list,key=itemgetter(1))[1]

 largest_node_list = [x[0] for x in subgraph_size_list if x[1] == max_metric]

 if len(largest_node_list) > 1:

 #randomly choose one

 first_node = choice(largest_node_list)

 else:

 #choose the only one

 first_node = largest_node_list[0]

 for node in graph.node[first_node]['atomic_signature'].nodes():

 defined_nodes.append(node)

 utilized_nodes.append(first_node)

 undefined = [x for x in required_nodes if x not in defined_nodes]

 last_node_used = first_node

 while len(undefined) > 0:

 # Now I need to identify all atoms having at least three in common with the defined graph

 unused_nodes = [x for x in graph.nodes() if x not in utilized_nodes]

 overlapping_signatures = []

 for unused_node in unused_nodes:

 common_nodes = [x for x in graph.node[unused_node]['atomic_signature'].nodes() if x in defined_nodes]

 unsaturated_nodes = [x for x in graph.node[unused_node]['atomic_signature'].graph['unsaturated_nodes'] if x
 not in common_nodes]

 newly_defined_nodes = [x for x in graph.node[unused_node]['atomic_signature'].nodes() if x not in
 common_nodes]

 if len(common_nodes) >= 3:

 if len(newly_defined_nodes)>0:

 overlapping_signatures.append((unused_node, len(newly_defined_nodes), len(unsaturated_nodes),
 common_nodes))

 # Now I have defined all possible overlapping signatures

 # The task remains to choose one which minimizes unsaturated_nodes while having the most in common

 least_unsat_remaining = min(overlapping_signatures,key=itemgetter(2))[2]

 tuples_with_least_unsat_remaining = [x for x in overlapping_signatures if x[2] == least_unsat_remaining]

 most_newly_defined = max(tuples_with_least_unsat_remaining,key=itemgetter(1))[1]

232

 tuples_with_most_newly_defined = [x for x in tuples_with_least_unsat_remaining if x[1] == most_newly_defined]

 if len(tuples_with_most_newly_defined) > 1:

 chosen_tuple = choice(tuples_with_most_newly_defined)

 next_signature = chosen_tuple[0]

 utilized_nodes.append(next_signature)

 move_list.append((last_node_used, next_signature, chosen_tuple[3]))

 newly_defined_nodes = [x for x in graph.node[next_signature]['atomic_signature'].nodes() if x not in
 chosen_tuple[3]]

 for x in newly_defined_nodes:

 defined_nodes.append(x)

 last_node_used = next_signature

 undefined = [x for x in required_nodes if x not in defined_nodes]

 elif len(tuples_with_most_newly_defined) == 1:

 chosen_tuple = tuples_with_most_newly_defined[0]

 next_signature = chosen_tuple[0]

 utilized_nodes.append(next_signature)

 move_list.append((last_node_used, next_signature, chosen_tuple[3]))

 newly_defined_nodes = [x for x in graph.node[next_signature]['atomic_signature'].nodes() if x not in
 chosen_tuple[3]]

 for x in newly_defined_nodes:

 defined_nodes.append(x)

 last_node_used = next_signature

 undefined = [x for x in required_nodes if x not in defined_nodes]

 graph.graph['move_list'] = move_list

 def create_docking_map(self,network):

 # The first step is to identify the graphs necessary for docking in the network

 self.network = network

 for graph_list in self.compressed_graphs:

 graph = graph_list[0]

 graph.graph['docking_map_list'] = []

 for move in graph.graph['move_list']:

 working_list = []

 node_1 = move[0]

 node_2 = move[1]

 signature_1 = graph.node[node_1]['atomic_signature']

 signature_2 = graph.node[node_2]['atomic_signature']

233

 # Identifying signature 1 in network

 for node in network:

 conformer = network.node[node]['conformers'][0]

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GM = iso.GraphMatcher(signature_1,conformer,node_match = nm,edge_match = em)

 if GM.is_isomorphic():

 working_list.append(node)

 mapped_node_list_1 = []

 for node_id in move[2]:

 mapped_node_id = GM.mapping[node_id]

 mapped_node_list_1.append(mapped_node_id)

 working_list.append(mapped_node_list_1)

 break

 # Identifying signature 2 in network

 for node in network:

 conformer = network.node[node]['conformers'][0]

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.numerical_edge_match('type', 1)

 GMb = iso.GraphMatcher(signature_2,conformer,node_match = nm,edge_match = em)

 if GMb.is_isomorphic():

 working_list.insert(1,node)

 mapped_node_list_2 = []

 for node_id in move[2]:

 mapped_node_id = GMb.mapping[node_id]

 mapped_node_list_2.append(mapped_node_id)

 working_list.append(mapped_node_list_2)

 break

 graph.graph['docking_map_list'].append(working_list)

 def create_conformers(self):

 self.conformer_lists = []

 for graph_list in self.compressed_graphs:

 conformer_list_i = []

 graph = graph_list[0]

 number_of_docks = len(graph.graph['docking_map_list'])

234

 # Now I need to calculate all possible permutations of subgraph conformers to utilize here

 list_of_conformers = []

 list_of_conformer_indices = []

 conformer_count = 0

 for each in graph.graph['docking_map_list']:

 if conformer_count == 0:

 list_of_conformers.append(each[0])

 list_of_conformers.append(each[1])

 conformer_count += 1

 else:

 list_of_conformers.append(each[1])

 for conformer in list_of_conformers:

 index_number = len(self.network.node[conformer]['conformers'])

 index_list = [x for x in range(index_number)]

 list_of_conformer_indices.append(index_list)

 subgraph_permutations = list(itertools.product(*list_of_conformer_indices))

 permutation_count = 0

 for permutation in subgraph_permutations:

 permutation_count += 1

 print 'There were this many conformers created:', permutation_count

 for permutation in subgraph_permutations:

 for xi in range(number_of_docks):

 yi = xi + 1

 if xi == 0:

 first_signature = self.network.node[list_of_conformers[xi]]['conformers'][permutation[xi]]

 conformer = first_signature.copy()

 else:

 first_signature = second_signature.copy()

 # I'll keep this as the working graph

 #This is where I need to decide on the first point for translation (zero index chosen as place holder)

 #Later I could change this to only consider non-H atoms

 node_1a = graph.graph['docking_map_list'][xi][2][0]

 node_1a_coordinates = first_signature.node[node_1a]['xyz']

 second_signature = self.network.node[list_of_conformers[yi]]['conformers'][permutation[yi]].copy()

 node_2a = graph.graph['docking_map_list'][xi][3][0]

235

 node_2a_coordinates = second_signature.node[node_2a]['xyz']

 translation_vector = numpy.subtract(node_1a_coordinates,node_2a_coordinates)

 translation_matrix = numpy.array([[1,0,0,translation_vector[0]],[0,1,0,translation_vector[1]],
 [0,0,1,translation_vector[2]],[0,0,0,1]])

 # Now I need to translate all nodes in the second signature copy

 for node in second_signature.nodes():

 new_coordinates = numpy.dot(translation_matrix,second_signature.node[node]['xyz'])

 new_coordinates_t = numpy.transpose(new_coordinates)

 second_signature.node[node]['xyz'] = new_coordinates_t

 # Now I need to choose a second mapped node to create a rotation

 node_1b = graph.graph['docking_map_list'][xi][2][2]

 node_1b_coordinates = first_signature.node[node_1b]['xyz']

 node_2b = graph.graph['docking_map_list'][xi][3][2]

 node_2b_coordinates = second_signature.node[node_2b]['xyz']

 nodes_1ab_vector = numpy.subtract(node_1b_coordinates[:3],node_1a_coordinates[:3])

 nodes_2ab_vector = numpy.subtract(node_2b_coordinates[:3],node_2a_coordinates[:3])

 angle_1 = angle_between(numpy.transpose(nodes_1ab_vector),nodes_2ab_vector)

 axis_1 = numpy.cross(nodes_1ab_vector,nodes_2ab_vector)

 # I still need to normalize this axis

 if numpy.linalg.norm(axis_1) == 0:

 axis_1u = axis_1

 else:

 axis_1u = axis_1/numpy.linalg.norm(axis_1)

 x = axis_1u[0]

 y = axis_1u[1]

 z = axis_1u[2]

 a = angle_1

 rotation_matrix_1 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
 cos(a))+y*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),
 y*z*(1-cos(a))-x*sin(a)], [z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),
 cos(a)+(z*z)*(1-cos(a))]])

 for node in second_signature.nodes():

 new_coordinates = numpy.dot(rotation_matrix_1,numpy.transpose(
 second_signature.node[node]['xyz'][:3]))

 new_coordinates_t = numpy.transpose(new_coordinates)

 new_coordinates_t_a = numpy.append(new_coordinates_t,1)

 second_signature.node[node]['xyz'] = new_coordinates_t_a

Now I need to do the final rotation calculation where I try various angles until the difference in mapped atom coordinates is a

236

 minimum
 # First, I'll have to define the new axis of rotation

 # This will be the difference vector between points a1 and a2 or b1 and b2

 axis_2u = nodes_2ab_vector/numpy.linalg.norm(nodes_2ab_vector)

 x = axis_2u[0]

 y = axis_2u[1]

 z = axis_2u[2]

 rotation_list = []

 for d in range(0,360,2):

 a = numpy.radians(d)

 rotation_matrix_2 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
 cos(a))+y*sin(a)],[y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),
 y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),
 cos(a)+(z*z)*(1-cos(a))]])

 temp_node_dictionary = defaultdict(numpy.array)

 # Now im going to create a list of all mapped nodes in the second signature

 node_list = graph.graph['docking_map_list'][xi][3]

 for node in node_list:

 new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_2,
 numpy.transpose(second_signature.node[node]['xyz'][:3])))

 temp_node_dictionary[node] = new_coordinates

 # This will allow me to identify the mapped nodes in signature one

 tuples_list = zip(graph.graph['docking_map_list'][xi][3],graph.graph['docking_map_list'][xi][2])

 total_distance = 0

 for node in node_list:

 for each_tuple in tuples_list:

 if each_tuple[0] == node:

 sig_1_node = each_tuple[1]

 break

 total_distance += numpy.linalg.norm(temp_node_dictionary[node]first_signature.node[sig_1_node]
 ['xyz'][:3])

 temp_node_dictionary.clear()

 rotation_list.append((d,a,total_distance))

 # Now I must identify the lowest total distance

 best_radian = min(rotation_list, key=itemgetter(2))[1]

 a = best_radian

 # Now I need to actually rotate all of the atoms in the second signature

 rotation_matrix_3 = numpy.array([[cos(a)+(x*x)*(1-cos(a)), x*y*(1-cos(a))-z*sin(a), x*z*(1-
 cos(a))+y*sin(a)], [y*x*(1-cos(a))+z*sin(a), cos(a)+(y*y)*(1-cos(a)),

237

 y*z*(1-cos(a))-x*sin(a)],[z*x*(1-cos(a))-y*sin(a), z*y*(1-cos(a))+x*sin(a),
 cos(a)+(z*z)*(1-cos(a))]])

 for node in second_signature.nodes():

 new_coordinates = numpy.transpose(numpy.dot(rotation_matrix_3,numpy.transpose
 (second_signature.node[node]['xyz'][:3])))

 new_coordinates_a = numpy.append(new_coordinates,1)

 second_signature.node[node]['xyz'] = new_coordinates_a

 # Now I need to add to the growing graph

 # First, I'll add the nodes not involved in docking

 nodes_to_add = [x for x in second_signature.nodes() if x not in graph.graph['docking_map_list'][xi][3]]

 for node in nodes_to_add:

 # Adding in label change because of conflicting fragments with the same labels

 new_node_id = 100*(xi+1) + node

 conformer.add_node(new_node_id, atom= second_signature.node[node]['atom'], xyz =
 second_signature.node[node]['xyz'], old_id = node)

 # Next, I'll need to add all edges located in signature two which don't involve docking nodes

 edges_to_add = [edge for edge in second_signature.edges() if edge[0] not in graph.graph['docking_map_list']
 [xi][3] and edge[1] not in graph.graph['docking_map_list'][xi][3]]

 for edge in edges_to_add:

 new_edge_0 = edge[0] + 100*(xi+1)

 new_edge_1 = edge[1] + 100*(xi+1)

 conformer.add_edge(new_edge_1, new_edge_0, type = second_signature.edge[edge[0]][edge[1]]['type'])

 # Now I need to add edges within the docking zone involving one node from signature two and one from signature one

 next_edges_to_add = []

 for edge in second_signature.edges():

 if edge[0] not in graph.graph['docking_map_list'][xi][3] and edge[1] in graph.graph
 ['docking_map_list'][xi][3]:

 node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[1])

 if xi == 0:

 node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index]

 else:

 node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] + (100*xi)

 new_edge_0 = 100*(xi+1) + edge[0]

 next_edges_to_add.append((new_edge_0 , node_in_1 , second_signature.edge
 [edge[0]][edge[1]]['type']))

 elif edge[0] in graph.graph['docking_map_list'][xi][3] and edge[1] not in graph.graph['docking_map_list']
 [xi][3]:

 node_in_1_index = graph.graph['docking_map_list'][xi][3].index(edge[0])

 if xi == 0:

238

 node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index]

 else:

 node_in_1 = graph.graph['docking_map_list'][xi][2][node_in_1_index] + (100*xi)

 new_edge_1 = 100*(xi+1) + edge[1]

 next_edges_to_add.append ((node_in_1 , new_edge_1 , second_signature.edge[edge[0]]
 [edge[1]]['type']))

 else:

 pass

 for edge in next_edges_to_add:

 conformer.add_edge(edge[0],edge[1],type = edge[2])

 conformer_list_i.append(conformer)

 self.conformer_lists.append(conformer_list_i)

 conformer_count = 0

 conformer_list_count = 0

 for list_i in self.conformer_lists:

 conformer_list_count += 1

 conformer_count += len(list_i)

 print 'Overall I have generated:', conformer_list_count, 'unique graphs with:', conformer_count, 'total conformers.'

 def quicker_geom_test(self):

 for x in range(len(self.compressed_graphs)):

 graph_1 = self.compressed_graphs[x][1]

 graph_2 = self.compressed_graphs[x][0]

 nm = iso.categorical_node_match('atom','C')

 em = iso.categorical_edge_match('type',4)

 GM = iso.GraphMatcher(graph_1,graph_2, node_match=nm, edge_match=em)

 if GM.is_isomorphic():

 print 'Isomorphic'

 else:
 print 'Not Isomorphic'

 def quick_geom_test(self,cutoff_2):

 for x in range(len(self.compressed_graphs)):

 total_graphs = len(self.compressed_graphs[x])

 print 'Total graphs', total_graphs

 matched_graphs = 0

 for graph_1 in self.compressed_graphs[x]:

 for graph_2 in self.conformer_lists[x]:

239

 match = 'yes'

 nm = iso.categorical_node_match('atom', 'C')

 em = iso.categorical_edge_match('type', 4)

 GM = iso.GraphMatcher(graph_1,graph_2,node_match=nm,edge_match=em)

 if GM.is_isomorphic():

 for edge in graph_1.edges():

 nodeA = edge[0]

 nodeB = edge[1]

 nodeC = GM.mapping[nodeA]

 nodeD = GM.mapping[nodeB]

 d1 = numpy.linalg.norm(graph_1.node[nodeA]['xyz'][:3]-graph_1.node[nodeB]['xyz'][:3])

 d2 = numpy.linalg.norm(graph_2.node[nodeC]['xyz'][:3]-graph_2.node[nodeD]['xyz'][:3])

 if fabs(d1-d2) > float(cutoff_2):

 match = 'no'

 break

 if match == 'yes':

 matched_graphs += 1

 break

 else:

 continue

 else:

 print 'These were not isomorphic.'

 print 'For graph:', x, '...', matched_graphs*100/total_graphs ,'percent of the graphs were matched.'

240

Appendix B – Solutions to Pharmacophore Case Study

Solution
Rank

Structure
Metric

(Strain/Local Minima Strain)

1

1.09

2

1.13

3

1.45

241

4

1.47

5

1.55

6

1.61

7

1.61

C

I

C

C

C

C

C

C

N

C

C N

C

C

C

C

C

C O

CCC

N

H

S

O
O

C

C

C

C C

C

S

O
O

N

H

C

N C

N

H

H

N

C

N C

H

CC

C

N

H

H

242

8

1.80

9

1.93

10

1.96

11

2.04

N

H

H C

C

C

C

S

O
O

N

C

C

N C

H

N

C

N C

C

N

H

C

C

C
N

C

C
C

C

C

C

C

Cl

C

N

C

C C

NS
S

O

O

N

H

C

C
C

C
N

C

C
C

C

C

N

H

H C

C

C

C

C

C

C

N

C

N H

C

C

N

H

S

O
O

C

C

N

H

H C

C

C

C

C

C

C

O C

N

C

N H

C

C

N

H

S

O
O

C

C

243

12

2.15

13

2.22

14

2.39

C

Cl
C

C C

C

N

C

C

CC

NC

C C

C

N

H

S

O
O

C

N

S C

C C
N

C

C

C

C

N

C

C

C C

N

C

C

C

C
C

C
C

C

N

H
S

O

O

C

C C

S
C

C

244

15

2.56

16

3.11

17

3.28

18

3.40

C

N

C

C

N

C

C

C

C

C

C

Br

C

C

F

C

Br

N

H

S

O
O

C

C

C

O

C

C

C

C C

C

S

O
O

N

H

C

C C

C

C

C

C
N

H

CC

C

N

H

H

245

19

3.88

20

3.92

21

4.68

22

5.24

C

I

C

C

C S

O

O

N

H

C

C

C

C

C

N

C

N

C

C

C

C

O

C

C

CC

N

H

H C

C

C

C

S

O
O

C

C

C

N C

H

N

C

N C

C

N

H

C

C

C

C

C

C
N

H

C

C C

C

N

H

C

C

N

C

C
C

C
CC

S

O
O

C

C

C

CC

C

C

