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Abstract

Impact with granular matter has been of great interest to researchers for decades, mainly

because the material, as a conglomeration of discrete solids, behaves as a fluid until a solid like

behavior becomes established. As a result, a resistance force that would account for these charac-

teristics during impact has been difficult to model. For this study, the resistance force is modeled

as a linear superposition of a static (depth-dependent) resistance force and a dynamic (velocity-

dependent) frictional force. Impact is defined from the moment the end point of the system comes

in contact with the granular matter surface until the moment when the vertical linear velocity of

the end point is zero. The variables of interest are the final depth at the end of the penetration

phase and the stopping time. The results for two experimental designs: a free round-ended link

and a two-link kinematic chain with two points of contact were compared to the results obtained

by applying the resistance force formulation developed to corresponding CAD simulation models.

The simulation and experimental results revealed that the final displacement increases with initial

velocity, while the stopping time decreases for all models. The sensitivity to impact angle and ini-

tial velocity were studied and as a result an improvement to the resistance force was formulated. A

series of expressions are proposed for the resistance force coefficients to test the dependency of the

impact of the free round-ended link on the initial conditions, specifically impact angle and initial

velocity. The resistance force and its components were studied as they reacted during impact. The

outcomes of this study have a potentially great significance in robotic design, military applications,

and prosthetics.
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Chapter 1

Introduction

The dynamics associated with the motion and interaction of rigid bodies with Newtonian

fluids is a classical problem in fluid mechanics. In recent years, however, non-Newtonian fluids

and the dynamics of the interaction of an object with such fluids have captured the attention of

researchers. Granular media in particular stand out due to their poorly understood dynamics and

static behavior. Granular materials are collections of polydisperse grains and exhibit complex fluid

behaviors. This means that the rheology of the medium is comparable to that of a solid under

a critical shear stress, although it performs like a fluid above it. Granular materials have been

studied for potential applications in multiple areas. In earth science, for example, problems such

as avalanches involve the flow of granular matter [12, 13, 43] and a better understanding of their

behavior would greatly facilitate those seeking to model the effects of earthquakes [38], meteorite

impact cratering and low-speed impact cratering [28, 49, 50]. Industrial processes such as mixing,

stirring and drilling would also benefit [22, 23], as would biologists studying animal locomotion

in sand [33, 35, 37, 39] and the associated biomechanical studies related to the design of robots

[33, 34, 48] that can travel on granular ground. For human locomotion alone, granular matter

studies are contributing to numerous applications in sport, robots, prosthetics and the formation

of footprints.

To appreciate the larger perspective that is involved in these applications, the impact of an

object with granular matter is being explored through experiment, simulation and theory. However

because of the solid-fluid like behavior of the granular matter, a great deal remains to be explored,

especially from a theoretical perspective. The focus of much of the current research on the impact

of a rigid body on granular matter is on describing the force experienced due to the reorganization

of the grains that are opposing the motion of the intruder. A good understanding of these forces

can aid in the design of tools and the design and control of robots designed to maneuver in granular

environments. Due to the lack of a universal accepted theoretical model, experiments have generally
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sought to demonstrate the variation of the drag force in terms of a number of different parameters:

impact velocity [2], the diameter of the penetrating object [12, 13, 2], the packing volume [6],

and the shape [7] of the penetrating object, for example cylinders [2, 11, 22, 35, 36] or spheres

[24, 20, 38, 42]. Others have adopted a slightly different approach by performing their analysis

using discrete element methods (DEM) for the same purpose [12, 13, 21, 52].

The penetration of granular matter at high speeds and low speeds has been studied in recent

years [4, 20, 25, 49, 50]. In particular, studies of impact cratering have looked at parameters such as

the depth and size of the crater, as well as how the form of the crater is affected by the initial impact

conditions of the impacting rigid body. To study the motion of a sphere through granular matter

resistance force models were created that treated the problem as the sum of a velocity dependent

force and a static resistance force which is depth dependent [49]. For example, Ambroso et al. [4]

suggested that the stopping time of a projectile in granular matter depends on the geometry and

density of the rigid body, and the initial impact velocity.

Lee and Marghitu [29] extended the work of Katsuragi and Durian [28] to provide the first

mathematical model for an oblique impact. They demonstrated that for an oblique impact of a

compound pendulum the stopping time in the granular matter increases with decreasing initial

impact velocity using a force model that consists of a linear superposition of the static resistance

force and drag force. Their results are consistent for a two link chain [31], which indicates that the

time it takes for a rigid body to come to rest in a granular medium becomes shorter as the impact

forces increase.

The earliest study of the characteristics of the interaction of humans with granular matter was

in 1972, when Soule and Goldman [44] studied how much energy was lost when humans carried

loads on different types of terrain, including loose sand. They showed that the energy cost depends

on a terrain factor, and that the value of this factor was highest for sand. Twenty years later,

Zamparo et al., [54] compared the energy cost of locomotion in terms of the oxygen uptake during

running and walking on a sandy beach versus that required on a firm surface.

The work of Lejeune et al. [32] is widely cited by those working on the mechanics and energetics

of human locomotion in sand. Through a series of experiments, these authors showed that because

of the work done by the foot on sand and the resulting decrease in the muscle-tendon efficiency,

there is a higher metabolic cost. Compared to the total work done while walking on sand, the
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work done on sand itself is the greatest contributor to the total work done, easily surpassing the

sum of the work done by the center of mass and the internal work. However, while running on

sand, which represents the case of a bouncing mechanism, the work consists almost entirely of the

work done on sand. Similar results have been reported more recently [19] by analyzing sprinting on

sand. Though higher energy is dissipated in a granular matter environment than on other surfaces,

maximum speed is not acquired but smaller impact shocks are registered. This result is significant

from the point of view of training or injury prevention or rehabilitation, when higher efficiency is

required but is preferably accompanied with less stress on the musculoskeletal system [3, 26, 27].

Ferris and Farley [14] determined that the total stiffness of the leg and the surface for human

hopping is the same regardless of the stiffness of the surface, suggesting that there is some adjust-

ment in leg stiffness to compensate for the surface stiffness. In 1998 Ferris et al. come to the same

conclusion in the case of human running. Humans adjust their leg stiffness rapidly and smoothly if

the transition is expected while running when there is a transition in surface stiffness [15]. These

experiments also showed that the entire sole of the runner’s shoe was in contact with the surface

when the center of mass was at its lowest position, even though the center of pressure is usually

under the head area of the metatarsal bones.

The center of mass of the human body does not change its trajectory with time in the case of

a runner on sand [15] or a human hopping on the same surface [40]. This behavior is attributed

to the mechanics of the leg-surface combination, which acts as a controlled spring-like mechanism.

Moritz and Farley [40] used a damping force that was solely velocity dependent.

Looking at the energy expenditure, Muramatsu et al. found [41] that it is higher when jumping

on sand than on a firm surface. The experimental outcomes for energy cost in terms of oxygen

uptake is comparable to those reported in previous studies [32, 54] for running, indicating that

jumping on sand is similar to running in this regard.

D’Aout et al. studied a footprint generated by a human while walking in sand [9], demon-

strating quantitatively that the depth of a footprint does not depend on the mass of the body.

During their experiments, the authors noticed that the knee flexes more while walking in sand than

on hard ground, which supports the findings of previous research [40, 3] that concluded that when

running/walking on sand, the subject has to adjust his or her technique. The depth of the footprint
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indentation created by the fifth metatarsal head can be correlated with the velocity, but the depth

of the heel depends largely on the pressure in the heel region [9].

In all these studies of human locomotion on sand, the nature of the contact force between

the granular matter and the bipedal foot was not analytically addressed. Instead, the force was

measured experimentally using a force plate [14].

Tsakiris et al. [48] advanced our understanding of undulatory motion as a result of their study

of the rowing-like action of the lateral appendages of segmented marine worms in a terrestrial

environment. Of the three available models (viscous damping, Coulomb model, and fluid drag

model), the authors chose to use the Coulomb model as this depends only on the direction of the

velocity and applied it to each individual segment of the polychaete. From experiments using a

polychaete-like robotic prototype, the authors were able to extract values for the dynamic coefficient

of friction. In a later study by other researchers, the results of their analysis of the data collected

on the leg motion of a running zebra-tailed lizard [35] indicated that substantially more energy was

lost during locomotion on granular matter, with the lizard displaying a spring-mass-like center of

mass kinematics.

Maladen et al. [37] developed an empirical model to describe the forces on undulatory swim-

ming animals in dense granular beds. In their simulations, the organism was approximated with

a stainless steel cylindrical rod. The authors consider a “frictional fluid” in which the thrust and

drag forces are given by the grain-grain flow and grain-body friction. The force was expressed in

terms of the length l and radius r of the segment, its angle ψ with the velocity vector and drag

material constants Cs, CF . The normal component is FN = 2 l r (Cs sinβ0 + CF sinψ), and the

lateral force FL = 2 l r CF sinψ. However, the normal force registered a difference that was not

well approximated by the sine function; it increased faster with an angle ψ smaller than 30o.

Because of the solidification properties of granular matter during various phases of a stance,

some aspects of an organism’s locomotion on sand can be comparable to that on solid surface [39].

The yield stress of the sand surface is given by the first maximum in the drag force and depends on

the square of the penetration depth and linearly with the velocity of the flipper of the turtle. For

an inertial force smaller than the yield stress, there is some solidification of the material at each

stoke and a thrust force is generated.
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These conclusions and results obtained by implementing a model based on the legged locomo-

tion of a zebra-tailed lizard [35, 36] to a C-legged robot [33, 53] underline the importance of having

a good analytical expression for the drag force in the granular medium for impacting objects, ani-

mal locomotion and human locomotion on granular matter. The new insights expected as a result

of this study will provide valuable information that can be applied to future research designed to

improve outcomes in applications such as sports (gymnastics landing, long jumps), training, injury

recovery, prosthetics, and new robotics developments.

To the best of our knowledge the contact force incurred during the impact of a bipedal mammal

with granular matter has not previously been studied. However extensive studies (both simulation

and experiments) have been done on jumping [45], hopping, walking and running on hard surfaces.

Until now there has been no analytical expression of the contact force between bipedal motion and

granular matter. This study will develop an expression for such a force using as its foundation an

analytical expression developed for the impact of rigid bodies with granular matter [29, 31] and

compare the analytical results with those obtained experimentally.
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Chapter 2

Problem Statement

2.1 Purpose of the Study

The focus of this study is on the oblique impact of rigid bodies and human impact with granular

matter. The research outlined in the introductory chapter shows that the study of the impact of

rigid bodies with granular matter is potentially of great significance. As yet, to the best of our

knowledge there has been no comprehensive universally accepted expression for the penetration

resistive force of a rigid projectile into a granular medium. The most important aspect of this

analysis is therefore to develop an analytical expression for the resistant force that is valid for low-

speed impact both vertical and at an angle. Researchers have analyzed the impact of spherical and

cylindrical shaped rigid bodies through experiments and numerical simulation. It was concluded

that the drag force [20] should include a quadratic velocity dependent term [28, 49], is depended on

the depth of penetration [2, 7, 22, 39, 42, 43]. Research has also shown that the resistant force and

depth of penetration for plunging rigid bodies into granular matter depend on other parameters as

well. The resistant force during impact scales with impact velocity [20], diameter of the impacting

object [1, 2, 43], and packing fraction [6, 43, 51]. Only a few studies have been reported for oblique

angle impact [29], but have shown that the impact angle has an influence on the value of the

resistant force [11, 13, 30, 33, 35, 52].

The first mathematical model for the impact of an object with granular matter at a specific

angle was proposed by Lee and Marghitu [29] based on the force model proposed by Tsimring and

Volfson [49], and verified experimentally for a sphere by Katsuragi and Durian [28]. The resistance

force proposed, takes into account both the rate-dependent force (dynamic frictional force) and the

displacement dependent force (static resistance force).

Fr = Fd(v) + Fs(y) (2.1)
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The dynamic force Fd(v) is due to the velocity of the intruder in the granular matter, which

is made possible by the fluid-like characteristics of the material, up to the point at which the

granular material begins to act like a solid surrounding the object, stopping its motion. Hence,

the expression for this can take the same form as that for the drag force: Fd = bv. However,

it has been shown that the rate-dependent force is proportional to the velocity squared [2, 51]:

Fd = 0.5ρACdv
2, where ρ is the density of the medium, A is the reference area, and Cd is the drag

coefficient. Consequently, the dynamic force used in this work is:

Fd = − v

|v|
ηdAr ρg v · v (2.2)

The force is opposing the motion of the penetrating body, therefore the force expression includes

the term − v
|v| . The term ηd is a constant and Ar is the reference area.

The static force, Fs in Eq. (2.1) represents the force that appears due to the hydrostatic

pressure [6] and is based primarily on the reorganization of the particles of matter and grain

friction. Thus, this force depends on the material properties, the packing of the matter [21, 43, 51],

gravitation and size and shape of the penetrating object. This will tend to lead to the stress

increasing with depth according to the scaling factor in one direction, and according to a power

law for depth in another direction.

The horizontal static force increases with the granular pressure [1, 2, 12, 24] that is acting on

the surface of the body in the horizontal direction. From experiments conducted [2] at very low

speeds of v0 < 5 mm/s, the yield force is of the form F = ηgρH2dc where η is a constant that

depends on the media properties, g is the gravitation acceleration, H is the immersed dimension

of the intruder and dc is the diameter of the object. For the purposes of this study, the direction

in which the force acts will be given by the ratio − vh
|vh| and the immersed length of the rigid body

is given by the displacement in the granular matter of the tip of the cylinder, dyT . Therefore the

generalized horizontal static force is

Fsh = − vh
|vh|

ηh g ρg dc d
2
yT , (2.3)

The vertical component of the static force is the resistant force of the granular medium to

the immersion of the intruder in the vertical direction. Experiments conducted for vertical impact

7



[24, 38, 42] revealed a nonlinear dependency of the force on the depth of penetration and attempted

to formulate a power law to describe this force. The power law form was proven to arise due to the

dispersed quality of the grain size of the granular matter found in nature, so that the force chain

structure between the grains and the grain-intruder exhibits a homogenous distribution. Thus, the

expression for the vertical static force is

Fsv = − vv
|vv|

ηv (dyT /L)λ g ρg V, (2.4)

where L is the length of the rigid body, vv is the vertical term of the velocity of the center of mass

of the immersed volume (V ) and, as in the previous two cases, the ratio − vv
|vv | shows how the force

acts in the opposite direction to the motion.

The constants ηv and λ depend on the shape of the body, the container the medium, the

volume fraction of the granular matter, and the direction of motion of the penetrating object, i.e.

whether it is plunging in or withdrawing. These constants are expressed based on empirical data.

These experiments [24, 38, 42] focused specifically on the vertical impact of spheres at low speed

v0 ≤ 5 mm/s, but it is also important that the medium used for the experiments in all three studies

consisted of monodisperse glass beads. The recent work of Li et al. [36] has shown that the grain

type has a considerable influence on the error obtained for their model. For natural sand, they

observed an error that was 11% higher than the results obtained in glass beads.

The power law coefficient has been shown to be independent of both the impact speed and

diameter of the intruder, but it does depend on grain size and container size, and hence the density

of the medium [38]. For a cylinder intruder, λ is smaller than 1.3 under the conditions described

above for the plunging motion and greater than 1.7 for withdrawal [24, 42]. The work of Bruyn

et al. [6] has shown a clear dependency of the power law on grain size, and found values for the

power λ that are less than 1. The scaling coefficient for the vertical static force was measured

[24] to be approximatively 10 for plunging and 0.5 for withdrawing motion, but other studies that

used cylinders as probes for impacting a granular medium consisting of glass spheres [7] found the

coefficient ηh to be as high as 70, while Albert et al. [1] recorded values as low as 2.43 for cylinders

of diameter up to 11.9 mm. For the scaling of a drag force similar to the static vertical resistant

force, Constantino et al. [8] observed a value for ηh of approximatively 2.7.
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In the recent work of Wang et al. [52], which utilized a force similar to the one used in this

study, the authors concluded that all the scaling factors involved in the expression of the resistant

force depend primarily on the angle of impact. Analyses of the dependency of the resistant force

exerted by granular media onto a penetrating rigid body on the impact angle [33, 52] has clearly

demonstrated the existence of a critical angle. However, for low impact angles the total resistance

force involved in an impact with granular matter presents more complicated features.

The purpose of this study is therefore two fold. The first objective is to examine all the

characteristics of the resistance force presented above to develop a model that takes into account

the influence of the impact angle and the granular properties of the medium when computing of the

coefficients ηd, ηh, ηv and λ. Until now, these coefficients have been determined experimentally. A

series of mathematical expressions will be proposed for each of these coefficients and then validated

by comparing the simulation results for depth and stopping time for single and double impact

points at different angles with the experimental results. The second objective for this study is

to verify the expression for the resistance force shown in Eq. (2.1) to describe the impact of

human feet with granular matter in free fall. To the best of our knowledge such an expression

has not previously been proposed. The experimental results will be compared with the simulation

results for depth of impact and stopping time to develop a new approach to simulating impact with

granular matter. Based on an extensive review of the literature in this field, this study is the first

to use a computer-aided design software package (SolidWorks 2014) that includes motion analysis

capabilities.

2.2 Organization of the Study

This study is organized by the type of impact. Chapter three discusses the impact of a free

round-ended rigid body with granular matter, and the analytical expressions proposed for the

non-dimensional coefficients ηd, ηh, ηv and λ presented. The simulation model and results are

observed and compared to the experimental results. It is expected that applying these expressions

will produce a force that is decreasing with the angle. The force values will be extracted from the

simulation results. Chapter four presents the simulation and experimental results for an impact with

two contact points with the granular matter. New expressions for the coefficients are developed
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and used for the simulation model in SolidWorks and the results obtained are compared to the

experimental results. Chapter five addresses the impact of a human lower body with granular

material. The same simulation software is employed and the forces used to simulate the contact

are the static and dynamic resistance forces described above. The simulation results for depth and

stopping time are then compared to the experimental results for the same variables. Chapter six

outlines the conclusions of this study.

2.3 Significance of the Study

This study is of great importance on multiple fronts. First, a set of mathematical expressions

for estimating the values of the scaling that should be used is proposed for each component of the

resistance force. In this work, a resistance force is proposed for the impact of the human foot with

granular matter. Until now, researchers have focused on either the rate-dependent force, by sub-

merging an object in flowing sand, or the depth-dependent component, by performing experiments

at very low speeds. The force model presented in this study shows that the two components are

not independent of each other and should thus not be treated separately. The depth depends on

impact velocity, therefore the static force will be influenced by the dynamic force.

This study also presents a CAD model to be used in simulating the impact of rigid bodies and

the human feet with granular matter by using an equation model that will reduce computational

time in comparison to other numerical models and discreet element methods. The results of this

study will be of particular value in robotic design, prosthetics, sports training, and injury recovery.
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Chapter 3

Impact of a Free Rigid Body

This chapter discusses the impact of a free rigid link on a volume of granular matter for

several initial conditions. Experimental results regarding the depth of penetration and velocity

during impact are presented, as well as simulation results for the same variables. The simulation

setup will also provide numerical results for the resistance force during impact. An analysis of the

dependency of the depth and stopping time with the angle of impact is also provided.

3.1 Model of the Impact of a Round-Ended Free Link

T

y

H

L
d

x

q

Figure 3.1: Free round-ended link

The motion of a free round-ended cylinder (Fig. 3.1) is considered in 2D (planar motion). A

fixed reference frame can be used to describe the planar motion of the model. The origin of the

11



fixed reference frame is on the surface of the granular bed, and the model will move in the x y

plane. The impact is constrained to a plane parallel to the vertical plane defined by the x and y

axes. The positive y axis is considered downward, and the positive x axis is to the right. The unit

vector attached to the Cartesian 2D reference frame is ı0 for the x axis and 0 for y axis. Therefore

the yaw (rotation about the y axis) is assumed negligible.

A general representation of the round-ended free cylinder impacting the granular surface is

shown in Fig. 3.2. The link is of length L and diameter d. H is the height with respect to which

the initial impact velocity v0 =
√

2gH is defined according to energy conservation laws. For all the

models in this study, the impact is starts when the tip of the bar T contacts the granular surface

(vT is maximum), and ends when the vertical component of the velocity of the point T is zero.

The penetration depth, dyT is the distance between the surface of the granular bed and the end

tip of the cylinder. The initial conditions are given by the initial impact angle q and initial impact

velocity v0. Angle q is the angle of the bar with the vertical axis y, and α = π/2 − q.

E

q

Granular matter

yTd
T
/2

d

d
y

T

Figure 3.2: Free link penetration notations
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3.2 Experimental Results for Round Ended Free Link

3.2.1 Experimental Setup

A round ended bar of length L = 0.190 m is considered for the study of impact with granular

matter. The steel bar illustrated in Fig. 3.1 has a diameter dc = 0.0127 m and mass m = 0.184 kg.

The free link is released from rest at height H by relaxing the grab of the CRS A255 Robot (Fig.

3.4). The motion capture system used for this study is the Northern Digital Inc. OPTOTRAK

3020. The system consists of IR markers, a strober, position sensors (IR cameras), a Control Unit

and a PC (Fig. 3.4). The OPTOTRAK 3020 can track up to 256 inferred markers connected

through the strober to the control unit. The control unit is connected to the position sensors to

measure changes in the position of the markers with time. The user has access to the data recorded

through the NDI ToolBench software (Appendix A), which also controls the system hardware.

Two infrared markers are attached to the rigid link (Fig. 3.3). Marker M1 is positioned in the

center of mass of the bar, the second marker M2 is at the top end of the bar and the third marker

M3 is located on the surface of the granular matter. The pipeline in Appendix A extracts the three

position components of each marker during the fall, calculates the initial angle of the link, and

provides a 3D view of the markers (Appendix B).

The motion capture system in Fig. 3.4 records the position of the markers with a RMS accuracy

of 0.1 mm [5] and does not require calibration. The 3D position in time of the two markers attached

to the rigid free link is captured during the free fall at a sample rate of 650 frames/s.

The granular medium utilized for the experiments in this study was “Play sand” (Quikrete

1113-51). This kind of sand was chosen over glass beads or monodisperse beads due to its properties

being more appropriate for applications involving multi-legged robots that must move across many

different types of terrain. Li et al. [36] performed tests on dry granular media with various particle

sizes and properties. They reported large errors between tests on natural sand and glass beads

and poppy seeds. For the purpose of this study, natural polydisperse grains represent the optimum

choice. A box of dimensions 0.45×0.32×0.09 m ( L ×W× H) was filled with the granular matter.

The dimensions of the box were sufficiently larger than the intruder to ensure that no Jansen effect

would to occur. In order to preserve the integrity of the results for each data collection, the sand
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Figure 3.3: Position of the IR markers on the free link during recording

was stirred and leveled before each drop of the rigid free link. This procedure was utilized to

maintain volume fraction and eliminate history effects.

3.2.2 Experimental Results

Using the set-up and procedure described in section 3.2.1, the impact with granular matter was

inspected under several initial conditions. Two variables were adjusted: impact angle and initial

velocity. The impact angle q is defined relative to the upward vertical axis. The initial velocity was

defined as the linear velocity of the end of the bar T , vyT . Four cases were considered:

• For q(0) = 0o : v01(0) = 2.21 m/s; v02(0) = 1.82 m/s; v03(0) = 1.25 m/s.

• For q(0) = 45o : v01(0) = 2.27 m/s; v02(0) = 1.88 m/s; v03(0) = 1.26 m/s.

• For q(0) = 60o : v01(0) = 2.08 m/s; v02(0) = 1.52 m/s; v03(0) = 0.64 m/s.

• For q(0) = 75o : v01(0) = 2.21 m/s; v02(0) = 1.74 m/s; v03(0) = 1.08 m/s.

For each case, five recordings were analyzed. The recordings utilized 700 frames/s for q = 0o,

600 frames/s for q = 45o, 650 frames/s for q = 60o and 650 frames/s for q = 75o, with an expected
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Figure 3.4: Optotrak 3020 experimental set-up for the impact of a free link
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ts (s) dyT (m) vyT0 (m/s)

0.040 ± 0.001 0.051 ± 0.001 2.211 ± 0.021

q = 0o 0.043 ± 0.002 0.045 ± 0.002 1.817 ± 0.066

0.047 ± 0.003 0.033 ±0.003 1.244 ± 0.046

0.027 ± 0.004 0.030 ± 0.005 2.270± 0.045

q = 45o 0.029 ± 0.003 0.026 ± 0.004 1.882 ± 0.043

0.035 ± 0.002 0.022 ± 0.003 1.264 ± 0.035

0.020 ± 0.001 0.030 ± 0.002 2.080 ± 0.064

q = 60o 0.022 ± 0.002 0.025 ± 0.002 1.526 ± 0.021

0.036 ± 0.003 0.021 ± 0.001 0.638 ± 0.034

0.009 ± 0.002 0.015 ± 0.002 2.208 ± 0.024

q = 75o 0.011 ± 0.001 0.014 ± 0.001 1.737 ± 0.034

0.017 ± 0.001 0.013 ± 0.001 1.068 ± 0.043

Table 3.1: Experimental results for free round-ended link oblique impact

accuracy of 0.001s. The impact data extracted is the displacement for the end point T of the free

link. The impact starts at dyT (0) = 0 and the end of the penetration phase is taken to be the time

at which the linear vertical velocity of the tip of the bar is zero, vyT (t) = 0. The stopping time

represents the time it takes the link to burrow into the granular matter volume up to the point

when vyT (ts) = 0.

Figures 3.5, 3.7, 3.9 and 3.11 present the experimental average displacement results for impact

angles q(0) = 0o; q(0) = 45o; q(0) = 60o and q(0) = 75o respectively, while Figures 3.6, 3.8, 3.10

and 3.12 present the corresponding experimental results for the decrease in velocity during impact

for the same impact angles. The data shows that increasing of the initial impact velocity leads to

a decrease in stopping time. This means that for lower impact velocities, it takes longer for the

penetrating object to stop moving, even though the distance traveled is shorter. Table 3.1 shows

the recorded stopping time, ts; final displacement, dyT (ts) for the impact angles; and the initial

impact velocities chosen vyT0 , as well as the standard deviation values for the five series of data for

each initial velocity.
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Figure 3.5: Experimental results for displacement for impact at q = 0o
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Figure 3.7: Experimental results for displacement for impact at q = 45o
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Figure 3.9: Experimental results for displacement for impact at q = 60o
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3.3 Simulation of the Impact of a Free Round-Ended Cylinder

3.3.1 Simulation Model

The link described in section 3.1 was modeled in the CAD software package SolidWorks R©

2014 [18] (Fig. 3.13), which incorporates motion study capabilities for accurately simulating and

analyzing the effects of different motion components, including forces [17]. SolidWorks was chosen

because it allows kinematic analysis with user input force expressions that use real time motion

study results.

Figure 3.13: The SolidWorks model for the experimental rigid free link
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The part modeled in SolidWorks has the same dimensions and material properties as the link

used for the experiments. The part is allowed to move in a planar reference frame, with the positive

x axis to the right and positive y upward. The results presented in this analysis are the absolute

values for displacement and velocity.

The impact with sand (density ρg = 1650 kg/m3) was simulated using the mathematical

expression for the resistance force described in Chapter 2. For the model proposed, Eqs. 3.23,

2.3, 2.4 can be applied with no restrictions because the dynamic friction force and static resistance

force proposed have the same point of application. The point of application is considered to be the

centroid of the immersed volume. If the unit vector u = ı +  is attached to the Cartesian reference

frame used, the terms of the resistance force become:

Fd = − vE
|vE |

ηd ρg Ar vE · vE = −vE ηd ρg Ar |vE |, (3.1)

Fsh = − vEx

|vEx |
ηh g ρg d

2
yT dc =

[
−sign(vEx) ηh g ρg d

2
yT dc

]
ı, (3.2)

Fsv = −
vEy

|vEy |
ηv (dyT /L)λ g ρg V =

[
−sign(vEy) ηv (dyT /l)

λ g ρg V
]

, (3.3)

where L is the lateral dimension of the link, dc is the diameter, and ρg is the density of the granular

medium. Because of the proven dependency of the resistance force of the packing fraction of the

granular matter, ρg is the density of the medium and the packing fraction is factored into the value

of ρg. Velocity vE is the linear velocity vector of the centroid of the immersed volume, with vEx

being the horizontal component of the velocity vE and vEy the vertical component of the velocity

of the centroid vE .

The velocity of point E can be expressed in terms of the velocity of the end point T , vT , angle

of impact q and angular velocity of the bar, ω.

vE = vT + ω × (rE − rT), (3.4)
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where rE and rT are the position vectors of points E and T .

rT = dyT , (3.5)

rE =

(
dyT
2
· tan(q)

)
ı +

dyT
2

. (3.6)

Then

rE − rT =

(
dyT
2
· tan(q)

)
ı +

dyT
2

− dyT , (3.7)

rE − rT =
dyT
2
· tan(q) ı− dyT

2
. (3.8)

Substituting Eq. 3.8 into Eq. 3.4 and with ω = ω k, the expression for vE becomes:

vE = vT + ω k×
(
dyT
2
· tan(q) ı− dyT

2


)
(3.9)

vE = vT +
dyT
2

tan(q)ω  +
dyT
2
ω ı. (3.10)

Therefore the expressions for vEx and vEy to be used in Eqs. 3.1, 3.2, 3.3 are:

vEx = vTx +
dyT
2
ω, (3.11)

vEy = vTy +
dyT
2

tan(q)ω. (3.12)

The term Ar in Eq. 3.1 represents the reference area of the rigid body as represented in Fig.

3.14. Because the impact in this model will be express in terms of the impact angle, then the

reference area will change as the angle changes during impact. The expression for the reference

area is:

Ar = dc
dyT
cos q

| sin (q − qm)| , (3.13)

qm = tan−1
(
vEx
vEy

)
, (3.14)
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Figure 3.14: The reference area and the physical parameters of the free link

where q is the angle between the cylinder and the vertical axis and qm is the moving angle (see Fig.

3.14) of the intruder. The volume V of the immersed rigid body can also be calculated in terms of

the impact angle:

V =
π dc

2

4

dyT
cos q

. (3.15)

Substituting Eqs. 3.1-3.15 into Eq. 2.1 and separating the components of the vectors per their

respective unit vector, the resistance force during impact becomes:

FR = Fd + Fsh + Fsv

=

[
−
(
vTx +

dyT
2
ω

)
ηd ρg dc

dyT
cos q

·

∣∣∣∣∣ sin
(
q − tan−1

(
vTx +

dyT
2 ω

vTy +
dyT
2 tan(q)ω

))∣∣∣∣∣ ·√(
vTx +

dyT
2
ω

)2

+

(
vTy +

dyT
2

tan(q)ω

)2

− sign(vEx) ηh g ρg d
2
yT dc

]
ı +[

−
(
vTy +

dyT
2

tan(q)ω

)
ηd ρg dc

dyT
cos q

·

∣∣∣∣∣ sin
(
q − tan−1

(
vTx +

dyT
2 ω

vTy +
dyT
2 tan(q)ω

))∣∣∣∣∣ ·√(
vTx +

dyT
2
ω

)2

+

(
vTy +

dyT
2

tan(q)ω

)2

−

sign(vEy) ηv (dyT /L)λ g ρg
π dc

2

4

dyT
cos q

]
. (3.16)
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Breaking down Eq. 3.16, the four components of the resistance force are

Fdx = −
(
vTx +

dyT
2
ω

)
ηd ρg dc

dyT
cos q

·∣∣∣∣∣ sin
(
q − tan−1

(
vTx +

dyT
2 ω

vTy +
dyT
2 tan(q)ω

))∣∣∣∣∣ ·√(
vTx +

dyT
2
ω

)2

+

(
vTy +

dyT
2

tan(q)ω

)2

, (3.17)

Fdy = −
(
vTy +

dyT
2

tan(q)ω

)
ηd ρg dc

dyT
cos q

·∣∣∣∣∣ sin
(
q − tan−1

(
vTx +

dyT
2 ω

vTy +
dyT
2 tan(q)ω

))∣∣∣∣∣ ·√(
vTx +

dyT
2
ω

)2

+

(
vTy +

dyT
2

tan(q)ω

)2

, (3.18)

Fsx = − vEx

|vEx |
ηh g ρg d

2
yT dc, (3.19)

Fsy = −
vEy

|vEz |
ηv (dyT /L)λ g ρg

π dc
2

4

dyT
cos q

. (3.20)

It is now possible to propose a series of expressions for the impact with granular matter

developed empirically, for the scaling constants and power law in the resistance force: ηd, ηh, ηv

and λ. The expressions presented in Table 3.2 provide approximate values for the constants that

can be implemented in the force model used in the simulations.

The changes in the expressions for the constants for angles of approximatively 30o are consistent

with the phenomena observed in recent impact investigations with respect to the impact angle

[12, 33, 36, 52]. Though there is no consensus regarding the exact value for the critical angle (30o,

15o), it is generally agreed that at small angles the expressions for the impact forces become more

complex. Note that the impact angle q or α = π/2 − q used in the expressions in Table 3.2 must

be expressed in radians to ensure that the unit measure of the force remains in Newtons.

3.3.2 Comparison of Simulation and Experimental Results

For the free link model designed in SolidWorks, the impact was simulated in Motion Analysis

mode. In this model the forces are applied at the contact point of the bar with the horizontal plane.

The link is set to free fall so that the forces in Eq. 3.16 are active when dyT = 0 (Appendix C)

25



Angle α = π/2− q ηh ηd ηv λ

90
ρg

α2100
3
2
ηh α 10ηhα

3 ρg
α
· 10−4

85
ρg

α2100
3
2
ηh α 10ηhα

3 ρg
α
· 10−4

75
ρg

α2100
3
2
ηh α 10ηhα

3 ρg
α
· 10−4

65
ρg

α2100
3
2
ηh α 10ηhα

3 2ρg α · 10−4

55
ρg α

2

100
2
3
ηh q 10ηh α

3 2ρg α · 10−4

45
ρg α

2

100
2
3
ηh q 10ηh α

3 2ρg α · 10−4

35
ρg α

2

100
2
3
ηh q 10ηh q

3 2ρg α · 10−4

25
ρg α

2

100
2
3
ηh q 10ηh q

3 2ρg α · 10−4

15
ρg α

2

10
2
3
ηh α 10ηh q

3 2ρg q · 10−4

5
ρg α

2

10
2
3
ηh α 10ηh q

3 2ρg q · 10−4

Table 3.2: The analytical expressions for the constants ηd, ηh, ηv and λ in the resistance force
formulation
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and the velocity of the rigid body reaches the initial impact velocity measured in the experiments.

Appendix C shows the expressions for the four components (Eq. 3.17 - 3.20) of the resistance

force as they were entered in SolidWorks for q = 0o. Similar expressions were used for all cases of

different impact angles and initial impact velocity. The difference in these expressions are due to

the coefficients ηd, ηh, ηv and λ that are approximated in accordance to Table 3.2 for each angle.

The values for these coefficients used in the simulations are given in Table 3.4.

The calculations for the simulations were performed at 10000 frames/s and with 0.0001m

accuracy. The gravity acting on y is also turned on for the Motion Analysis. The first step in this

study of oblique impact with granular matter was to extract the data for the displacement and

velocity at the end point T . Motion Analysis was run for three impact angles, q = 0o, q = 45o and

q = 75o, at three different initial velocities. The impact angles used for the models in SolidWorks

were the same as the impact angles extracted from the experimental data. The colored curves in

Figs. 3.15 - 3.20 show the simulation results for penetration depth and velocity with the following

initial conditions:
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Figure 3.15: SolidWorks and experimental displacement results for impact at q = 0o
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Figure 3.16: SolidWorks and experimental velocity results for impact at q = 0o
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Figure 3.17: SolidWorks and experimental displacement results for impact at q = 45o
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Figure 3.18: SolidWorks and experimental velocity results for impact at q = 45o
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Figure 3.19: SolidWorks and experimental displacement results for impact at q = 75o
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Figure 3.20: SolidWorks and experimental velocity results for impact at q = 75o

• For q(0) ' 0o : v01(0) = 2.21 m/s at q(0) = 0.29o ; v02(0) = 1.82 m/s at q(0) = −0.51o;

v03(0) = 1.24 m/s at q(0) = −0.48.

• For q(0) ' 45o : v01(0) = 2.27 m/s at q(0) = 43.5o; v02(0) = 1.88 m/s at q(0) = 44.9o;

v03(0) = 1.19 m/s at q(0) = 43.72o.

• For q(0) ' 75o : v01(0) = 2.21 m/s at q(0) = 75.6o; v02(0) = 1.73 m/s at q(0) = 75.5o;

v03(0) = 1.05 m/s at q(0) = 75.6o.

With the higher impact velocity the rigid body traveled farther into the granular volume,

although the intruder stopped faster due to the higher initial impact velocity. Figures 3.15 -

3.20 present the simulation and experimental results for the free link impact for different initial

conditions: three velocities and q = 0o, 45o and 75o. The simulation curves (colored) are close

to the experimental curves (black) for both displacement and velocity. The simulation results are

thus verified by the experimental results in Figs. 3.15 - 3.20, endorsing the use of CAD software to

simulate an impact with granular matter and the use of the expressions proposed for coefficients

ηh, ηv, ηd, λ. The relative error between the simulation initial velocity and experimental initial
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velocity, ε is given by

ε =

∣∣∣∣deyT (ts)− dsyT (ts)

deyT (ts)

∣∣∣∣ , (3.21)

where deyT is the final displacement extracted from experiments, and dsyT is the final displacement

from simulation analysis when vyT (ts) = 0. Table 3.3 contains the calculated relative errors between

the simulation results and the experimental results for penetration depth. The Motion Analysis

feature in SolidWorks produced results that were very close in terms of burrowing depth to the

experimental results, but the stopping times differed significantly from the experimental measure-

ments (see Figs. 3.15 - 3.20). These conclusions are consistent with the earlier results reported by

Lee and Marghitu [30].

3.4 Analysis of the Angle Dependent Impact of a Free Rigid Link

This section takes a closer look at the effect of the angle at impact on the motion of the

rigid body within the granular matter until it comes to a halt. The non-dimensional coefficients

in the resistance force were the focus here, as this analysis was designed to validate the proposed

expressions for ηd, ηh, ηv and λ listed in Table 3.2.

Several models were built in SolidWorks (Fig. 3.21), one for each angle of impact α(0) =

90o, 85o, 75o, 65o, 55o, 45o, 35o, 25o, 15o, 5o, where α is defined as π/2− q. For each case, the impact

was simulated for the same three initial impact velocities as those used in the experiments for

α(0) = 90o, 45o and 15o:

• For α(0) = 90o : v01(0) = 2.21 m/s; v02(0) = 1.82 m/s; v03(0) = 1.24 m/s.

vyT (0) (m/s) ε (%)
2.21 0.25

q = 0o 1.82 3.92
1.24 3.02
2.27 0.08

q = 45o 1.88 0.51
1.19 5.05
2.21 2.07

q = 75o 1.73 3.67
1.05 1.56

Table 3.3: Relative error between the experimental and simulation results for penetration depth
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Figure 3.21: SolidWorks models for a range of angles of impact

• For α(0) = 85o : v01(0) = 2.25 m/s; v02(0) = 1.79 m/s; v03(0) = 1.17 m/s.

• For α(0) = 75o : v01(0) = 2.25 m/s; v02(0) = 1.77 m/s; v03(0) = 1.16 m/s.

• For α(0) = 65o : v01(0) = 2.24 m/s; v02(0) = 1.77 m/s; v03(0) = 1.12 m/s.

• For α(0) = 55o : v01(0) = 2.24 m/s; v02(0) = 1.77 m/s; v03(0) = 1.15 m/s.

• For α(0) = 45o : v01(0) = 2.27 m/s; v02(0) = 1.88 m/s; v03(0) = 1.19 m/s.

• For α(0) = 35o : v01(0) = 2.24 m/s; v02(0) = 1.77 m/s; v03(0) = 1.12 m/s.

• For α(0) = 25o : v01(0) = 2.24 m/s; v02(0) = 1.75 m/s; v03(0) = 1.12 m/s.

• For α(0) = 15o : v01(0) = 2.21 m/s; v02(0) = 1.73 m/s; v03(0) = 1.05 m/s.

• For α(0) = 05o : v01(0) = 2.25 m/s; v02(0) = 1.78 m/s; v03(0) = 1.13 m/s.

The four components of the resistance force (Eqs. 3.17 - 3.20) were applied at the tip of the

link, as this is the first point that contacts the granular matter surface at impact. The values

for the coefficients ηd, ηh, ηv and λ were estimated using the expressions proposed in Table 3.2.
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The density of the play sand in the container used was ρg = 1650 kg/m3 (packing was taken into

consideration). Adjustments such as rounding were made for velocity; changes were too small to be

considered significant. In the simulations, where the values were regulated, are done by adjusting

the value of ηh, as all the other coefficients this was calculated in terms of this coefficient. The

resulting values that were used in the force expressions in SolidWorks are presented in Table 3.4.

Empirical data [24] indicated that for a round ended cylinder type rigid body, ηv ' 10 and λ ' 1.4

[38] for burrowing motion. For the withdrawing motion, ηv is significantly smaller: ηv ' 0.5 and λ

larger λ ' 1.7. The experiments that produced these results were performed at very low speeds:

v0 = 0.5, 1, 5 mm/s, allowing for the velocity dependent force to be ignored. Although few studies

have examined the coefficient of a non-quasi static regime, the values estimated for the dynamic

friction force are generally consistent with these results as ηd is significantly higher than 0.5 (which

is an estimated value for a withdrawing motion) and closer to 10 (for a plunging motion). The value

for ηh has been reported [7] to depend on the shape and size of the rigid body, as well as on the

packing. The higher the volume fraction, the higher the coefficient. Low values for ηh = 2.7± 0.4

have been found at very low speeds [8]. The experiments [38] that led to the proposed values for

the power law λ were performed at very low speeds using glass beads as the medium, and the

dependence on the shape of the intruder was not considered. However the work reported here

demonstrates the importance of the container size for the power law values.

3.4.1 Final Displacement and Stopping Time

Applying the resistance force (Eq. 3.16) and the initial velocity conditions above to the ten

models proposed, it is possible to obtain the penetration depth and stopping time for each case are

given in Table 3.5.

Figure 3.22 shows that the final displacement is higher for increasing α, the angle with the

negative horizontal. The penetration depth thus increases with the angle. The results also show

that the initial velocity has a larger influence on the penetration depth of the burrowing rigid

cylinder for higher angles, as demonstrated by the change in slope of the fitting curves for different

velocities. The fitting curve of depth with impact angle for the initial velocity vyT (0) = 1.15 m/s

loses its linearity and instead assumes a positive curvature.
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Angle α = π/2− q ηh ηd ηv λ

90 6.5 15.2 248 0.106

85 7.5 16.6 245 0.12

75 9 17.5 213 0.14

65 13.5 9 197 0.37

55 15.5 6.5 137 0.3

45 5.5 11 53 0.25

35 6.5 4.5 57 0.2

25 3.5 2.65 51 0.15

15 12 2 242 0.435

5 2 2 65 0.45

Table 3.4: The values for ηd, ηh, ηv and λ coefficients used in the resistance force
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Figure 3.22: Simulation results for penetration depth with angle of impact α

34



ts (s) dyT (m) vyT0 (m/s)
0.034 0.051 2.214

q = 0o 0.035 0.044 1.826
0.037 0.032 1.245
0.031 0.045 2.245

q = 05o 0.034 0.040 1.788
0.037 0.030 1.171
0.031 0.042 2.214

q = 15o 0.033 0.036 1.826
0.036 0.028 1.244
0.029 0.039 2.245

q = 25o 0.032 0.036 1.766
0.036 0.028 1.120
0.028 0.036 2.245

q = 35o 0.031 0.033 1.766
0.036 0.027 1.154
0.026 0.030 2.27

q = 45o 0.027 0.026 1.880
0.034 0.023 1.188
0.022 0.028 2.245

q = 55o 0.024 0.025 1.766
0.030 0.022 1.120
0.025 0.030 2.147

q = 60o 0.027 0.026 1.534
0.046 0.022 0.656
0.018 0.024 2.245

q = 65o 0.020 0.021 1.754
0.025 0.018 1.119
0.011 0.0151 2.214

q = 75o 0.014 0.0148 1.726
0.018 0.013 1.048
0.007 0.011 2.257

q = 85o 0.009 0.010 1.787
0.012 0.009 1.127

Table 3.5: Simulation results for the stopping time, ts penetration depth, dyT for a free round-ended
link oblique impact at initial velocity vyT0
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The stopping time, defined as the time it takes the rigid body to cease all forward motion

into the granular volume, varies nonlinearly with increasing in angle, as displayed in Fig. 3.23. A

comparison of the stopping times for different impact angles in a quadrant with distance traveled,

shown in Fig. 3.24, indicates that the stopping time changes from an almost linear dependency at

high velocity to supralinear at lower velocity. These results show that for low velocities the time

tends to saturate at higher angles with horizontal. Therefore a smaller difference in stopping time

will appear at higher angles.
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Figure 3.23: Simulation results for stopping time with angle of impact α

3.4.2 Change in Angle and Angular Velocity During Impact Analysis

During the surface penetration phase, the angle of the rigid link with the vertical changes

according to the impact angle. This change, ∆q = q(ts) − q(0), is shown in Fig. 3.25. The figure

shows the fitted curve for the simulation results in ∆q. For angles of impact α < 45o the change in

angle increases in a linear fashion with increasing the angle. As the initial impact velocity increases

the slope also increases, resulting in higher final angles at the end of penetration phase. For angles
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Figure 3.25: The change in angle during impact due to the angle of impact α
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α > 45o, the change in angle decreases, but not linearly. The maximum change is at 45o for all

three initial velocities.

The change of angle in time during the penetration phase increases for angles from α = 90o to

α = 45o. From impact angles lower than 45o, the angular velocity ω stabilizes and does not exhibit

an angle dependency (see Fig. 3.26). However, increasing initial velocity, the value of ω increases.
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Figure 3.26: The angular velocity at the end of the penetration phase due to the angle of impact α

3.4.3 Resistance Force Analysis

Using a SolidWorks results feature, the reaction forces for the four components of the resistance

force defined in Eqs. 3.17 - 3.20 can be extracted for the cases considered in this section. Appendix

D contains the graphs of these terms as they act on the rigid body throughout the impact event.

These graphs show how the horizontal and vertical dynamic forces, as well as the horizontal and

vertical static forces depend on both the initial velocity and the impact angle. The values for the

maximum dynamic friction force, static resistance force, at the end of the penetration phase and

the total resistance force at the end of the impact are given in Table 3.6.

The static force is the displacement dependent component of the resistance force. This force is

due to gravitation as the rigid body will tend to sink in a granular matter volume even at an initial
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Fd (N) Fs (N) Fr (N)
0.12 22.87 22.87

q = 0o 0.50 18.55 18.57
0.06 13.40 13.40
5.22 19.13 19.27

q = 05o 1.92 17.22 17.22
0.70 12.10 12.10
7.44 15.45 15.62

q = 15o 4.16 13.63 13.74
1.60 10.14 10.21
8.94 10.56 12.00

q = 25o 5.67 9.29 10.22
2.28 9.13 7.58
8.00 9.91 11.00

q = 35o 4.80 8.92 9.52
1.99 6.90 7.20
9.74 3.68 5.62

q = 45o 7.34 3.80 5.21
3.44 3.64 4.22
6.69 5.08 7.08

q = 55o 4.33 4.53 5.68
1.73 3.42 3.84
5.71 6.48 8.40

q = 65o 3.53 5.86 6.75
1.25 4.12 4.38
5.10 15.36 16.65

q = 75o 4.34 7.83 9.03
1.09 5.51 5.72
29.98 9.45 39.43

q = 85o 15.31 8.62 23.93
3.89 6.79 10.67

Table 3.6: Simulation results for the resistance force and its components for oblique impact of a
free round-ended link
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velocity v(0) = 0. The static resistant force acts on the body in reaction to the reorganization of

the grains around the diameter of the intruder. Therefore, this force will depend on the direction of

motion of the body in both the vertical and horizontal directions. The total static frictional force

Fs is defined by Eq. 3.22.

Fs =
√
F 2
sy + F 2

sx . (3.22)

Figure 3.27 displays the static resistance force as it acts in time during the impact until the

velocity of the rigid body drops to zero. It can be concluded that the force increases nonlinearly

during impact, and tends to saturate before the end of the penetration phase. The magnitude

of the static force is higher with increasing velocity. Given that the results presented in previous

sections demonstrated that the intrusion ends faster at higher velocities, this means that at higher

velocities, the static force will also reach higher values faster, and hence the grains will rearrange

faster to oppose the intrusion motion.

Figures 3.27 and 3.28 show that α = 45o is a critical angle for the reaction static force. At

α = 45o, velocity appears to lose its influence as the magnitude of Fs for the three velocities

considered are very close: Fs at v01 = 3.67 N , Fs at v02 = 3.79 N and Fs at v03 = 3.63 N.

The magnitude of the static force decreases for angles that are closer to a vertical impact, but

at α ' 45o the static force starts increasing. For impact angles α > 45o the values of the static

force appear to increase faster with increasing angle than the slope of the function Fs with α for

smaller angles.

The dynamic resistance force, Fd arises due to the fluid properties of the granular matter

and is therefore similar to the drag force in fluid dynamics. As a consequence, Fd represents the

nonuniform distributed reaction from the polydisperse grains as they move, impeding the rigid

body’s motion and is thus highly sensitive to the velocity in both the horizontal and vertical

directions. The total magnitude of FD is defined by Eq. 3.23. The drag force is a reaction chain

force between not only the grains in close proximity to the moving object but also subsequent

layers, as a large scale reorganization of the grains is necessary [2].

Fd =
√
F 2
dy

+ F 2
dx
. (3.23)
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Figure 3.27: a) The static friction force for α = 0o − 90o during the link’s drive at v01 = 2.24 m/s;
b) The static force for α = 0o − 90o during the link’s drive at v02 = 1.77 m/s; c) The static force
for α = 0o − 90o during the link’s drive at v03 = 1.15 m/s.
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When the moving object first enters the medium, the granular material will behave according to

its fluid properties by engaging in a large-scale reorganization of the grains. The dynamic force

increases until the repositioning transforms the medium and it starts to behave as a solid and the

dynamic force decreases, as shown in Fig. 3.29.

Figures 3.29 and 3.30 illustrate how the magnitude of Fd depends on the impact angle. Note

that for vertical impact and those that are close to horizontal the dynamic force exhibits unchar-

acteristic behavior. For a vertical impact the maximum Fd ≤ 0.5, which is significantly less than

its value in the other cases, while for α = 5o the dynamic force does not decrease in value, but

only changes inflection. For 10o > α < 80o the maximum magnitude of the dynamic force does not

seem to be highly dependent on the impact angle, although it does present as highly dependent on

the velocity as the maximum magnitude of Fd increases with velocity. The maximum value for the

dynamic force in this interval for an impact angle α = 45o is higher than the static force for the

higher impact velocities.

In the model studied here, both rate-dependent and displacement dependent phenomena must

be taken into consideration. Therefore the total magnitude of the resistance force during an impact
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Figure 3.29: a) The dynamic force for α = 0o − 90o during the link’s drive at v01 = 2.24 m/s; b)
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with granular matter is defined by Eq. 3.24.

Fr =
√

(Fsx + Fdx)2 + (Fsy + Fdy)2. (3.24)

The effects of both the velocity and depth dependency of the resistant force are evident in Fig.

3.32. The resistant force increases with time, although Fd has a greater influence on the resistance

force at the beginning of immersion at higher velocities (Fig. 3.32(a) ), the resistance force does

not decrease to zero, as the static force compensates. For lower velocities, the dynamic force ( Fig.

3.32 (c)) is not as obvious, but is present.

Due to the generally greater magnitudes of the static friction force, this force will have a major

influence when considering how Fr depends on the impact angle. Figure 3.32 shows three fitted

curves, one for each velocity, that characterize the resistance force as a function of angle. Each of

these curves presents a minimum, but there is no axis of symmetry. The minimum for v01 = 2.24

m/s appears at α ' 40o and that for v02 = 1.78 m/s appears at α ' 35o, with Fr = 5 N. The

minimum Fr = 4.5 N for v03 = 1.15 m/s appears at α ' 30o. The maximum resistance force for

v01 = 2.24 m/s appears at α = 5o and is in the range of 40 N. Fr = 13 N is the maximum for the

force due to a vertical impact when the initial velocity v03 = 1.15 m/s.
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Figure 3.31: a) The resistance force for α = 0o − 90o during the link’s drive at v01 = 2.24 m/s; b)
The resistance force for α = 0o − 90o during the link’s drive at v02 = 1.77 m/s; c) The resistance
force for α = 0o − 90o during the link’s drive at v03 = 1.15 m/s.
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Figure 3.32: The resistance force at the end of the penetration phase for α = 0o − 90o

3.4.4 Energy Analysis

Using the kinematics results presented above, this subsection discusses the mechanical ener-

getics of the impact of a free rigid link with granular matter. Examining the mechanical energy

dissipated in the granular matter substrate involves a study of the change in kinetic energy (∆ K.

E.) and the change in potential energy (∆ P. E.) resulting form the immersion.

The total kinetic energy is the energy due to the motion of the link and includes both trans-

lational and rotational components, as defined in Eq. 3.25. The total potential energy represents

the energy released during impact due to the change in position of the rigid body, as defined by

Eq. 3.26.

∆KE =
1

2
m∆ v2COM +

1

2
I ∆ω2, (3.25)

∆PE = mg∆h, (3.26)
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where m is the mass of the rigid body, vCOM is the velocity of the center of mass of the rigid

body, I is the mass moment of inertia with respect to the center of mass, ω represents the angular

velocity of the rigid body during impact, g is the gravitational acceleration and h represents the

vertical displacement of the rigid body during impact. To calculate the change in energy, the first

state, s1 is considered the moment when the tip of the bar comes in contact with the surface of

the granular matter, and the final state, s2 is defined as the moment when the velocity of the tip

of the rigid body drops to zero. Therefore ∆ = s2 − s1.

The absolute values for the total kinetic energy, total potential energy and total energy dissi-

pated during impact are given in Table 3.7 for the three initial velocities and all the impact angles

simulated.

Because the mechanical energy is dissipated into the granular matter during immersion, the

quantities displayed in Fig. 3.33 (a) and (b) are the absolute values of the change in kinetic energy

(Fig. 3.33 (a)) and the change in potential energy (Fig.3.33 (b)) with the angle of impact. The

results shown were extracted for each model using the SolidWorks features for calculating energy.

Intuitively, it was expected that the kinetic energy expenditure would depend on the initial

velocity. Taking into consideration the angle of impact, the maximum kinetic energy (0.5 J) is

dissipated during impact at higher velocities with the bar close to vertical. For angles α > 40o the

impact velocity plays an important role in the amount of kinetic energy as the slope of the fitted

curve decreases with velocity. For angles of impact α < 40o, the fitted curve presents a negative

curvature at v01 = 2.24 m/s, with values for the kinetic energy in the vicinity of 0.1 J (Fig. 3.33

(a)). As the velocity decreases, so does the curvature such that at v03 = 1.15 m/s it is close to

zero, and the change in kinetic energy is near zero for this range of angles.

The potential energy, however, exhibits an opposite behavior. At very low impact angles, close

to horizontal, the initial velocity has little to no influence on the change in potential energy ' 0.025

J (Fig. 3.33 (b)). With the rotation from the horizontal, a dependency on velocity emerges until

the angle of impact is approximatively 45o after which the potential energy gives the impression of

stabilizing for each initial velocity.

Figure 3.34 superimposes the traces for the two types of energy to provide a better understand-

ing of their individual influences on the total energy dissipated during penetration. For an initial

velocity v01 = 2.24 m/s the kinetic energy is most significant with a minimum of 57% contribution
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∆KE (J) ∆PE (J) ∆E (J)
0.460 0.094 0.553

q = 0o 0.310 0.080 0.392
0.145 0.059 0.205
0.465 0.083 0.549

q = 05o 0.296 0.074 0.370
0.127 0.055 0.182
0.432 0.084 0.516

q = 15o 0.264 0.072 0.336
0.111 0.056 0.167
0.344 0.089 0.433

q = 25o 0.206 0.078 0.285
0.072 0.062 0.134
0.276 0.090 0.366

q = 35o 0.165 0.081 0.246
0.059 0.065 0.124
0.197 0.089 0.287

q = 45o 0.123 0.078 0.200
0.036 0.065 0.101
0.119 0.079 0.198

q = 55o 0.058 0.070 0.128
-0.001 0.060 0.060
0.092 0.068 0.160

q = 65o 0.043 0.059 0.102
-0.003 0.050 0.047
0.097 0.04 0.137

q = 75o 0.042 0.042 0.084
0.000 0.034 0.035
0.103 0.028 0.131

q = 85o 0.057 0.027 0.084
0.012 0.024 0.036

Table 3.7: Simulation results for the energy dissipated during the oblique impact of a free round-
ended link with granular matter
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to the total energy at α = 25o and a maximum of 85% for impact closer to vertical. For an inter-

mediate initial velocity v02 = 1.77 m/s the potential energy makes almost the same contribution

as the kinetic energy for angles between 15o and 35o. For a smaller initial velocity v01 = 1.15 m/s,

potential energy is the major contributor to the total energy for angles α < 55o. For 15o > α < 35o

the total energy consists almost entirely of potential energy.

The total energy as a function of impact angle will thus tend to carry the shape of the kinetic

energy, as shown in Fig. 3.35, although there will be slight changes for for impact at lower angles

with lower initial velocities. For v03 = 1.15 m/s, the total energy dissipated during the immersion

of a free link into granular matter increases quasi-linearly with the impact angle.
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Figure 3.35: The change in total energy dissipated during the penetration phase with angle

The maximum mechanical energy the rigid body will dissipate is 0.55 J for a vertical impact

with v01 = 2.24 m/s, while for the same vertical angle the mechanical energy dissipated at impact

with v03 = 1.15 m/s will be 0.14 J. Given that impact at higher velocity will end faster, this means

that the bar will dissipate 0.5 J of energy in 0.034 sec, but it will take 0.0372 sec to dissipate 0.14

J. This may explain a phenomenon commonly observed for impact with granular matter, where

the intruder will stop faster with higher initial velocity because the system will release more energy

(the kinetic energy being the main contributor at high initial velocities) to the granular substrates.
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Thus, the grains will reorganize faster and enter the solid state faster, stopping the immersion of

the rigid body. This study of the energy dissipation mechanism can also help with gauging the

erosive power of the link in the granular matter volume.

3.5 Conclusions

This chapter presented a study on the impact of a free rigid link on granular matter. The

model created in SolidWorks produced results that are comparable to the experimental results for

the penetration depth of the tip of the rigid body. The depth increases with the initial impact

velocity, while the stopping time decreases with increasing velocity, forcing the object to stop more

rapidly. The SolidWorks simulation used a combination of a quadratic velocity dependent term and

a displacement dependent term for the resistance force to simulate the impact with polydispersed

grains. A series of expressions were proposed to approximate the values for the coefficients in the

force terms. These values were estimated for 30 cases in which not only the velocity was varied, but

the impact angle if the rigid body as well. This study showed that the dynamic force plays a major

role in the increase of the resistance force, thus confirming that it is advisable not ignore the velocity

dependent term of the force in such impact. The study also identified critical angles of impact that

produce a change in the reaction force. This result is consistent with other research [52] that has

shown the existence of a critical angle. The analysis of the resistance force in this chapter also

revealed that at small impact angles with the horizontal, the force exhibits more complex features.

The simulation results demonstrated that for a vertical impact, the dynamic force has only a very

small influence on the resistance force. Although the energy dissipation enforced the concept of

critical impact angles, it also introduced the theoretical concept of a critical velocity below which

the potential energy makes greater contribution to the total energy. A similar conclusion can be

drawn for the contribution of the dynamic force to the total resistance force.
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Chapter 4

Impact of a Double-Link Kinematic Chain with Granular Matter

This chapter presents a study of a two link impact, with two contact points, with granular

matter. The penetration depth and velocity analysis is presented for a set of experiments produced

at three different initial velocities. A simulation model was created in SolidWorks. Applying the

analytical force model used for one link impact described in the previous chapter, the displacement,

reaction force and mechanical energy produced by the simulation model were analyzed.

4.1 Model of the Impact of a Double Kinematic Chain

y

H
x

L

d

1 2

T1 T 2

1q q 
2

Figure 4.1: Two link kinematic chain

The schematic of the experimental system used to examine the impact of a kinematic chain

with two impact points is shown in Fig. 4.1. The two round ended steel links in this system were

identical in mass and dimensions: diameter d1 = d2 = 0.0064 m and length L1 = L2 = 0.135 m.

Each link had a plastic washer with a thickness of 0.5 mm around the screw hole. This washer was
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placed between the links to reduce the friction between the two links to a negligible level while at

the same time allowing them to rotate around a screw at the top.

As in the case of the single impact point considered in Chapter 3, the system was constrained

to a planar motion in a fixed Cartesian reference frame. The positive x axis is considered to be

the right and the positive y axis is considered to be downward (Fig. 4.1). The angle between Link

1 and the y axis is q1, and the angle between Link 2 and the vertical y axis is q2. These angles

constitute the impact angles of the system with the granular volume. The angle between the two

links is α = 30o (Fig. 4.1). The system is in free fall from height H so that that impact velocity

for points T1 and T2 is v0T1 = v0T2 =
√

2 q H.

The impact of each link was modeled using the single point impact resistance force expressions

given in Eq. 3.16. One such force exists for each link, therefore FR1 acts in the centroid of the

immersed volume of link 1 and FR2 acts in the centroid of the immersed volume of link 2. Each

of these forces will depend on the impact angle. To estimate the constants ηd, ηh, ηv and λ that

are needed to scale the FRi (i=1,2) forces, expressions from Table 3.2 are utilized with a couple

of compromises insert space. The appropriate expressions form Table 3.2 are used with small

adjustments due to the changed dynamics, as there is a reaction force acting in the pin between the

two links. Lee and Marghitu performed a numerical study of the impact of multiple link kinematic

chains [31] using a symmetric and asymmetric two link model with links. They derived appropriate

equations of motion using the Newton-Euler method, and solved the system numerically, concluding

that just as in the case of a single point impact [31], the stopping time of the penetrating object

decreases with increasing velocity. The expression used for the dynamic force Fd differs from the

expressions used in this study in terms of the way the dependency on the density of the granular

volume is invoked. The Lee and Marghitu expression is Fd = − v
|v| βAv · v. Here the coefficient

β = 1569.9 hides the value for ρg. Thus the expression for Fd (Eq. 3.23) proposed in this study

improves on that expression.
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4.2 Experimental Setup and Results

4.2.1 Experimental Setup

The system used to capture the motion of the two link system is the same Northern Digital

Inc. OPTOTRAK 3020 as that used for the study reported in Chapter 3. Figure 4.2 illustrates

the equipment set-up. For this system, four IR sensors were utilized (Fig. 4.3), with one being

positioned in the center of each link (M1 and M3), one on the top M2 of the screw so that it would

not interfere with the rotation, if necessary, of the links and the fourth on the granular medium

surface. The pipeline used in NDI Toolbench to extract the position in time of the four links is

presented in Appendix E. Appendix F represents a 2D view of the IR markers as their position is

recorded by the NDI Toolbench when the pipeline is evaluated.

Position Sensor

Strober

Granular 

metter

CRS A255

Robot

Rigid bar

P C

Control

Unit

IR Markers

Figure 4.2: OPTOTRAK 3020 equipment setup for impact of a two link kinematic chain with two
points of impact with granular matter
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Figure 4.3: Positioning of the four IR markers on the kinematic chain

vT (0) (m/s) q(0) (o)
2.57 -16.72

Link 1 2.29 -14.70
1.60 -14.08
2.57 13.48

Link 2 2.29 15.50
1.61 16.00

Table 4.1: The angles with the vertical at impact for the two links

The granular medium utilized for the experiments in this study was the same as in the previous

experiment with one free link, “Play sand” (Quikrete 1113-51) . The granular matter was contained

in a box of dimensions 0.45× 0.32× 0.09 m (L × W × H). This container was significantly larger

than the size of the kinematic chain, thus the Jansen effect was not expected to be a factor. The

granular matter was stirred and leveled before each drop to eliminate material history, but still

maintain the same packing characteristics for each run.

4.2.2 Experimental Results

To examine the impact of a two link kinematic chain, the experiments were performed for three

initial velocities. In each case, four sets of data were recorded. Table 4.1 lists the average initial

conditions for all three cases.
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ts (s) dyT (m) vyT (0) (m/s)

0.024 ± 0.003 0.035 ± 0.002 2.58 ± 0.021
Link 1 0.026 ± 0.003 0.030 ± 0.001 2.29 ± 0.118

0.029 ± 0.001 0.025 ±0.0005 1.60 ± 0.036
0.026 ± 0.002 0.037 ± 0.001 2.57± 0.036

Link 2 0.030 ± 0.005 0.031 ± 0.002 2.3 ± 0.095
0.032 ± 0.002 0.025 ± 0.0003 1.61 ± 0.025

Table 4.2: The experimental results for the two end points of the double kinematic chain

For each recording the position data during impact was extracted. The impact for each link

starts when the position of the tip of the respective link is zero (for Link 1 dT1 = 0 and for Link 2

dT2 = 0. The links reach zero displacement with the surface at the same time (for vT1(0), ∆t(0) =

0.0013 s; for vT2(0), ∆t(0) = 0.0005 s; for vT3(0), ∆t(0) = 0.0003, where ∆t(0) = t1(0) − t2(0) is

the difference in the time the tips of the two links start penetrating the surface). Table 4.2 shows

the average recorded stopping time, ts1 for link 1 and ts2 for link 2; final displacement, dyT1(ts1)

for link 1 and dyT2(ts2) for link 2; initial impact velocities vyT1(0) for link 1 and vyT2(0) for link 2,

as well as the standard deviation values for the five series of data for each initial velocity.

Figure 4.4 shows the displacement of the tip of each link during immersion for the three initial

velocities in Table 3.1. For each link, the displacement in the granular medium increases with

increasing of velocity, but the stopping time decreases with higher velocity. These results are

supported by the change in velocity during penetration shown in Fig. 4.5. Interestingly, both links

reach the same displacement at the penetration phase of the impact, although link 2 (see Table

4.2) takes longer to reach it. This can be attributed to the interaction between the two links upon

impact and the slight differences in the velocities at impact for each link.

4.3 Simulation of The Impact of a Double Kinematic Chain with Granular Matter

4.3.1 Simulation Model

SolidWorks R© 2013-2014 was used to simulate the impact of the two-link system employed

in the experiments. The assembly shown in Fig. 4.6 includes the two links (that have the Nylon

101 washers embedded) and the washer between the links. Each part is constructed with the same

dimensions as the actual parts used in the experiment: diameter d1 = d2 = 0.0064 m and length
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(b) Displacement in time of the tip point T2 for Link 2

Figure 4.4: The experimental results for displacement during impact of a double kinematic chain
with two contact points: (b) for link 1, and (b) for link 2
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Figure 4.5: The experimental results for velocity during impact of a double kinematic chain with
two contact points: (a) for link 1, (b) for link 2
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L1 = L2 = 0.135 m . The system is held together by mates of concentric and coincidence type,

so that as in the real system the links are allowed to rotate about the top point with negligible

friction.

The resistance force used to simulate the impact with the granulate matter is given in Eq. 2.1.

This force acts at the contact point with the surface on each link in the opposite direction to the

motion of each link. Thus for i = 1, 2, the resistance force Fri = Fdi + Fsi , where

Fdi = − vEi

|vEi |
ηdi Ari ρg vEi · vEi , (4.1)

Fsi =
(
−sign(vExi

) ηhi g ρg dc d
2
yTi

)
ı−
(

sign(vEyi
) ηvi (dyT /L)λi g ρg Vi

)
. (4.2)

The reference area, Ari in Eq. 4.1 is defined as the immersed longitudinal area of each link i

and is given by Eq. 3.13. The volume V of the immersed rigid body will be calculated in terms of

the impact angle of each link by Eq. 3.15. The velocity of the center of the immersed volume is

defined according to Eq. 3.4 for each link as

vEi =

(
vxTi +

dyTi
2

ωi

)
ı +

(
vyTi +

dyTi
2

tan(qi)ωi

)
. (4.3)

In the SolidWorks assembly, the resistance force is applied as four components (Fdxi , Fdyi ,

Fsxi , Fsyi ) at the end point of each link (Appendix G). The expressions for these components are

given by Eqs. 4.4- 4.7

Fdxi = −
(
vTxi +

dyTi
2

ωi

)
ηdi ρg dc

dyTi
cos qi

·∣∣∣∣∣∣ sin
qi − tan−1

 vTxi +
dyTi
2 ω

vTyi +
dyTi
2 tan(qi)ωi

∣∣∣∣∣∣ ·√(
vTxi +

dyTi
2

ωi

)2

+

(
vTy +

dyTi
2

tan(qi)ωi

)2

, (4.4)
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Figure 4.6: The double link assembly in SolidWorks
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Fdyi = −
(
vTyi +

dyTi
2

tan(qi)ωi

)
ηdi ρg dc

dyTi
cos qi

·∣∣∣∣∣∣ sin
qi − tan−1

 vTxi +
dyTi
2 ωi

vTyi +
dyTi
2 tan(qi)ωi

∣∣∣∣∣∣ ·√(
vTxi +

dyTi
2

ωi

)2

+

(
vTyi +

dyTi
2

tan(qi)ωi

)2

, (4.5)

Fsxi = −
vExi

|vExi
|
ηhi g ρg d

2
yTi

dc, (4.6)

Fsyi = −
vEyi

|vEyi
|
ηvi (dyTi/L)λi g ρg

π dc
2

4

dyTi
cos qi

. (4.7)

The coefficients ηdi , ηhi , ηvi and λi are constants that depend on the properties of the granular

material, and on the angle of impact (Chapter 3). For the simulation of the resistant force, Fri

the values of the four constants were estimated using Table 4.3, which is similar to the values

suggested in Table 3.2 in Chapter 3. To approximate the necessary values for link 2, where q2 ' 15

is positive (as in the case of the single link analysis), the expressions depend on the impact angle

and ρg used were those corresponding to angle α2 = π/2− q2 ' 75o. For link 1, q1 ' −15o, which

is a negative angle from the single link study, and α1 = pi/2 − abs(q1) the row for α = 15o in

Table 3.2 proved to be more useful. Due to the changes in the settings of the system, adjustments

for the expression proposed were necessary. The most important adjustments come in the form of

changing the multiplying coefficients in the expressions due to the reaction that exists between the

two links. Other slight modifications were due to rounding or adjusting the horizontal static drag

coefficient, ηh. When this coefficient was adjusted, the other three η coefficients also changed since

they are expressed in terms of ηh. The calculated values that were substituted for the coefficients

in the Fri expression are given in Table 4.4.

A few remarks considering these expressions are necessary. The β coefficient in the ηh1 used for

v101 expression appears because the impact angle is significantly (' 12%) larger than the impact

angle α = 15o and there is therefore a change of expression from α = 15o to α = 25o. In this case,
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vTy(0) (m/s) ηh ηd ηv λ

2.60 β · ρg α
2
1

10
3
2ηh α1 1.55ηh α

3
1

ρg
α1
· 10−4

Link 1 2.29
ρg α2

1
10

3
2ηh α1 1.55ηh α

3
1

ρg
α1
· 10−4

1.60
ρg α2

1
10

3
2ηh α1 1.55ηh α

3
1

ρg
α1
· 10−4

2.60 1.25 · ρg
α2
2·100

2
3ηh α2 5ηhα

3
2 ρg α2 · 10−4

Link 2 2.30 1.25 · ρg
α2
2100

2
3ηh α2 5.25ηhα

3
2 ρg α2 · 10−4

1.61 1.25 · ρg
α2
2100

2
3ηh α2 5.25ηhα

3
2 ρg α2 · 10−4

Table 4.3: The expressions for resistance force coefficients ηh, ηd, ηv, λ

β = (25− 15)/q1 = 0.6. The same adjustment is not needed for link 2 with q2 = 13o, since there is

no change in expression suggested from q = 5o to q = 15o for ηh2 in Table 3.2.

4.3.2 Simulation Results and Analysis

The impact was simulated in the Motion Analysis mode in SolidWorks. The resistance forces

FRi became active when dyTi = 0 (see Appendix G) and the velocity reached the initial velocity

set in the experiments. The values for ηhi , ηdi , ηvi and λi are given in Table 4.4. The simulation

calculations were performed at 10000 frames/s and with 10−6 m accuracy and the gravity in the y

direction was turned on.

vTy(0) (m/s) ηh ηd ηv λ

2.60 8 13 33 0.125

Link 1 2.29 9 19 33 0.13

1.60 10 19 38 0.14

2.60 11.8 10 137 0.205

Link 2 2.30 12.5 10.8 144 0.21

1.61 13 12 145 0.22

Table 4.4: The values for the resistance force coefficients ηh, ηd, ηv, λ
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Displacement and Velocity Simulation Results and Analysis

The Motion Analysis was run for three initial velocities and the angles of the two links with

the vertical were the same as in the experimental setup (see Table 4.1). The colored curves in Fig.

4.7 show the simulation results for the immersion of the tip point of link 1 Fig. 4.7 (a) and link 2

Fig. 4.7 (b) conditioned by the initial velocity.

ts (s) dyT (m) vyT (0) (m/s)

0.024 0.034 2.62

Link 1 0.025 0.030 2.29

0.027 0.026 1.60

0.025 0.036 2.61

Link 2 0.026 0.032 2.29

0.027 0.025 1.61

Table 4.5: The simulation results for the two end points of the double kinematic chain

For each link, the phenomenon normally associated with an impact with granular matter

appeared. The final displacement corresponding to zero value for the vertical linear velocity of

the end point Ti increased with initial velocity, but the stopping time for both links decreased

with increasing initial velocity. The displacement in time for each link during simulations was very

similar to the average displacement in time observed in the experimental trials (black curves in Fig.

4.7). The values for the simulation results are displayed in Table 4.5. For

εi =

∣∣∣∣∣deyTi (ts)− dsyTi (ts)deyTi (ts)

∣∣∣∣∣ , (4.8)

i = 1, 2, deyT is the final displacement for experiments, and dsyT is the final displacement for

simulation analysis when vyT (ts) = 0.

The relative error between the simulation results and the experimental final displacement was

calculated using Eq. 4.8 and is shown in Table 4.6.

The relative errors between the experiments and the simulation results for depth are small,

with the highest errors being for v202. As in the case of the free link impact, there is a significant
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(b) Displacement in time of the tip point T2 for Link 2

Figure 4.7: Simulation and experimental impact results for the penetration displacement of a double
kinematic chain with two contact points: (a) for link 1, and (b) for link 2
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(a) Velocity for Link 1
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(b) Velocity for Link 2

Figure 4.8: The simulation and experimental velocity during penetration phase of the impact of a
double kinematic chain with granular matter: (a) for link 1, (b) for link 2
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vyT (0) (m/s) εi (%)
2.62 1.77

i = 1 for Link 1 2.29 0.61
1.60 1.31
2.60 1.77

i = 2 for Link 2 2.29 3.72
1.61 2.39

Table 4.6: Relative error between the experimental and simulation results for penetration depth

difference in stopping times between the simulation and the experimental values. This can be

observed in the displacement graphs in Fig. 4.7 (a) and (b), as well as in the velocity graphs in

Fig. 4.8 (a) and (b).

Resistance Force Simulation Results and Analysis

The SolidWorks results feature was used to extract the reaction forces for the four components

of the resistance force ( Eq. 3.17 - 3.20 ) for the three cases considered in this section. Appendix H

contains the graphs of Fdxi , Fdyi , Fsxi , Fsyi as they act on the rigid body during the immersion

phase. The graphs show how the horizontal and vertical dynamic forces, as well as the horizontal

and vertical static forces, depend on both the initial velocity and impact angle of each link.

The magnitude of the dynamic force Fdi =
√
F 2
dxi

+ F 2
dyi

is displayed in Fig 4.9. For all three

initial velocities, the dynamic force increased with time until it reached a maximum and then

decreased. The time at which the dynamic force reached its maximum value was not constant with

the initial velocity (t1s1 = 7 ms, t2s1 = 7.3 ms,t1s2 = 7.2 ms,t2s2 = 7.1 ms, t1s3 = 9.1 ms, and

t1s1 = 8.7 ms). The magnitude of the dynamic force increased and reached its maximum faster

with increasing initial velocity for each link (Fd1 = 3.5 N at v101, Fd1 = 3.25 N at v102, Fd1 = 1.4

N at v103, Fd2 = 2.5 N at v201, Fd2 = 1.7 N at v202, Fd2 = 0.85 N at v203). At higher velocities,

v01 = 2.6 m/s and v02 = 2.30 m/s, the maximum values for the magnitude of Fd were very close.

An interesting observation is that for link 2, Fd reached its maximum 0.1 ms faster at v02. This

can be explained by the ε = 3.72 error in the displacement for the link at this velocity. Figure 4.9

also shows that at the end of the penetration phase (vyTi (ts) = 0 (m/s)), the vertical dynamic force

reached zero. The different maximum dynamic force values for the two links is consistent with the
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Figure 4.9: The dynamic reaction force during penetration phase on the impacting system: (a) for
link 1, and (b) for link 2
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Figure 4.10: The static force during penetration phase on the impacting system: (a) for link 1, and
(b) for link 2
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results obtained for the study of the oblique impact of a free link discussed in the previous chapter

and shown in Fig. 3.29.

The magnitude of the static force, Fsi =
√
F 2
sxi

+ F 2
syi

increased monolithically at a different

slope with initial velocity until it tended to saturate at the end of the immersion (Fig. 4.10).

Therefore at the end of the penetration phase, the static force at its maximum, which is expected

since this term is the linear displacement dependent component of the resistance force. If for the

dynamic force, the maximum values are higher for link 1, the magnitude for the static force will be

higher for link 2 (Fs1 = 3.1 N at v101, Fs1 = 2.8 N at v102, Fs1 = 2.6 N at v103, Fs2 = 4 N at v201,

Fs2 = 3.7 N at v202, Fs2 = 2.8 N at v203).

The total resistance force Fri =
√

(Fsxi + Fdxi )
2 + (Fsxi + Fdxi )

2 on each link is presented in

Fig. 4.11. The resistance force increases with increasing initial velocity for each link. During the

penetration, the resistance force will increase according to the dynamic force until this component

reaches its maximum and then the resistance force will act more and more under the influence of

the static force. The penetration phase ends with the resistance force having a magnitude equal to

the static force. A similarity in behavior with the free link impact is again noticeable here. The

curves in Fig. 4.11 are comparable with the results obtained for the resistance force of the free link

and an oblique impact shown in Fig. 3.31 for the impact angles considered for the two links. The

two links impact the granular surface at different angles q1 = −15o, corresponding to the impact

angle for free link α = 15o and q2 = 15o for link 2 to α = 72o.

Figure 4.11 shows that the resistance force depends on the dynamic force for longer at higher

initial velocities. This is also depicted in Fig. 4.12, which shows the instant at which the dynamic

and static components interchange influences. For link 2, the dependence of the resistance force on

the dynamic force with initial velocity is more pronounced (Fig. 4.12, (b)) and the dynamic force

will exert an influence on the resistance force for longer at higher velocities. This is reversed at low

velocities, where the displacement dependency will dominate longer. For link 1 (Fig. 4.12, (a)),

the static force will prevail for longer than at higher velocities because for this link, the magnitudes

of the dynamic force for v101 and v102 are so close in value and in appearance in time that the

velocity dependence and displacement velocity will switch dominance almost at the same time.
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Figure 4.11: The resistance force during penetration phase on the impacting system: (a) for Link
1with impact angle q1 = −15o, and (b) for Link 2 with impact angle q2 = 15o
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Figure 4.12: Dynamic and static force percent out of the resistance force for a impact of a two-link
kinematic chain with granular matter during the penetration phase: (a) for link 1, and (b) for link
2
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Mechanical Energy Simulation Results and Analysis

The granular matter will react to the intrusion of the system with the resistance force, Fr

discussed in the previous subsection. The system will release energy to the of granular matter

environment to help the medium transition from exhibiting fluid-like to solid-like properties, thus

halting the intruders. For

∆K.E.i =
1

2
mi ∆ vi2COM +

1

2
Ii ∆ω2

i , (4.9)

∆P.E.i = mi g∆hi, (4.10)

i = 1, 2, mi is the mass of each link, viCOM is the velocity of the center of mass of each link, Ii is the

mass moment of inertia with respect to the center of mass, ωi represents the angular velocity of each

link during impact, g is the gravitational acceleration and h represents the vertical displacement of

the each link during impact. To calculate the change in energy, the first state, s1 is considered to

be the moment when the tip of the bar comes in contact with the surface of the granular matter,

and the final state, s2 is defined as the moment when the linear velocity of the tip of the rigid body

reaches zero. Therefore ∆ = s2 − s1.

The mechanical energy will be dissipated according to a linear displacement dependent term,

namely potential energy (Eq. 4.10), and a quadratic velocity dependent term, kinetic energy (Eq.

4.9 ). The kinetic energy results produced from the simulation for each link includes both linear

and angular motion. The potential energy is determined for each link using a SolidWorks results

feature.

Figure 4.13 shows how the kinetic energy that is dissipated into the granular matter during

impact is higher with a higher initial velocity. The error in the kinetic energy released by the two

links at each initial velocity is defined by ε = (K.E.1−K.E.2)/K.E.1 and is presented in Table 4.7.

This result shows that in terms of energy, the sign of the angle with the vertical is unimportant.

Hence, q1 = |q1| ' 15o. This conclusion is validated by the results for potential energy (Fig. 4.14).

The potential displacement on the vertical axis for the potential energy can be calculated using

the trigonometric function cosine, which is an even function. Thus, the two links should have an

equal influence on the total energy released. The error in potential energy between link 1 and link
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Figure 4.13: The kinetic energy dissipated to the granular environment during the penetration
phase
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Figure 4.14: The potential energy dissipated to the granular environment during the penetration
phase
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2 (Table 4.7), comes from the errors in the final displacement between the two links, but also arises

due to the slight difference in the value of the impact angle with the vertical.

vyT (0) (m/s) εi (%)
2.62 1.16

K.E. 2.29 0.7
1.60 0.1
2.60 -4.2

P.E. 2.29 -0.8
1.61 3.2

Table 4.7: Relative error between the kinetic and potential energy for Link 1 and Link 2

The total energy dissipated to the granular medium by each link ∆Ei = ∆K.E.i + ∆P.E.i is

shown in Fig. 4.15. The error between the two links in total energy dissipated stabilizes to 0.6% for

all three initial velocities. The total energy released to the medium increases with initial velocity

(∆E = 0.24 J at v01 = 2.6 m/s, ∆E = 0.18 J at v02 = 2.3 m/s and ∆E = 0.10 J at v03 = 1.6 m/s).
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Figure 4.15: The total mechanical energy dissipated to the granular environment during penetration
phase

The kinetic energy starts with a concave curvature, but then goes through an inflection point

and changes curvature. Interestingly, the potential energy does not show the same tendency and so
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will have a initial influence on the total energy values. However, due to the approximatively 10 time

higher values for the kinetic energy, the potential energy will present a logarithmic like influence on

the total energy while the kinetic energy will increase and come to dominate the energy dissipation

trend (Fig 4.16). The lower the the velocity, the longer it will take for the percentage of kinetic

energy to increase.

4.4 Conclusions

This chapter has presented both experimental and simulation measurements of the impact of

a two link kinematic system with granular matter. The experiments showed that the system will

stop faster with increasing initial velocity, but will immerse deeper into the volume. The analysis

was performed for each link separately, each with its own contact point. The experimental system

settings were utilized for the simulations and a model was created in SolidWorks. The series of

resistance force components, both for quadratic velocity and for the linear displacement dependent

variables, were used to simulate the impact as for the case of a free link impact with granular matter

discussed in Chapter 3. Appropriate force coefficients ηh, ηd, ηv and λ expressions and values were

proposed, and the expressions for these constants perfected for negative angles with the vertical.

The errors between the simulation and experimental results were low, and the behavior consistent.

The simulations also revealed the impact of the dynamic and static components on the resistance

force and the percentage contribution of each. For increasing velocity, a slower shift in dominance

from dynamic force to static force was both expected and demonstrated during the simulations.

The resulting curves describe the progression of the dynamic and static forces and, in consequence

of the resistance force, are consistent for each link when compared to the forces obtained for the

single link impact angle model at the impact angles used in this study. The total mechanical energy

for each link is preponderantly due to the kinetic energy for higher velocities, with the potential

energy of the system released to the environment about being at the most 10 times smaller than

the kinetic energy. Each link contributes about 50% to the total mechanical energy discharged to

the environment for the system consisting of two identical links positioned at the same angle with

the vertical.
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pation for Link 1
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Figure 4.16: The contribution of the kinetic and potential energy to the total energy dissipation
during the penetration phase by the system to the environment: (a) for link 1, and (b) for link 2
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Chapter 5

Human Bipedal Impact with Granular Matter

This chapter presents a study of lower body human impact with two points of contact with

granular matter. Experiments were designed to enable human subjects to impact granular matter

at two initial velocities and the resulting real time position of the foot during jumps monitored.

Final displacement, stopping time and velocity analysis were then recorded for two different initial

velocities and a SolidWorks model for a human mannequin created. The force model discussed

in the previous two chapters for the impact of a free link and a two link kinematic chain were

then applied to simulate the bipedal impact with granular matter. Final displacement and velocity

analysis were performed and the results are reported in this chapter.

5.1 Model of Human Bipedal Impact

z
x

y

Granular matter

H

Figure 5.1: The human model coordinates

77



The human model developed for this study is considered as a multi-link kinematic chain. Both

for simulations and experiments, the human motion is in 3D (Fig. 5.1). The positive x axis and its

attached unit vector ı is defined along the shoulders. The positive y axis (with the  unit vector)

is vertically upwards, and the positive z axis (with the k unit vector attached) is perpendicular

coming out of the chest. The focus of this study was on the vertical and horizontal motion, so the

analysis of the motion of interest was treated as being restricted to a two axis reference frame.

The quantities measured through experiments and simulation were the depth of penetration of

the foot into the granular matter and the stopping time. The penetration was considered to start

when the foot reaches the granular surface and the displacement were zero and the penetration

phase ended when the vertical velocity of the foot in the sand was zero.

The force model used was based on the model described in chapter four that was validated

for an impact with two contact points. In the case of human bipedal motion, the contact point

at impact is the sole of the foot. Due to the difference in shape of the intruder for each subject,

adjustments to the model were necessary. The frictional resistance force, Fr for a human foot

sinking into a granular bed presents a linear displacement dependency, a static resistance force and

a dynamic rate-dependent force. Therfore,

Fr = Fd + Fsh + Fsv , (5.1)

Fd = − vE
|vE |

ηd ρg Ar vE · vE = −vE ηd ρg Ar |vE |, (5.2)

Fsh = − vEh

|vEh
|
ηh g ρg d

2
yT fs =

[
−sign(vEh

) ηh g ρg d
2
yT fs

]
ı, (5.3)

Fsv = − vEv

|vEv |
ηv (dyT /ll)

λ g ρg V =
[
−sign(vEv) ηv (dyT /ll)

λ g ρg V
]

. (5.4)

where ll is the length of the tibia in m, fs is the foot size of the human subject in m, ρg is the

density of the granular medium as a function of the density of the grains and the packing fraction.

Velocity vE is the linear velocity vector of ankle in m/s, with vEx the horizontal component of the

velocity vE and vEv, the vertical component of the velocity of vE . The term Ar represents the

reference area of the plunged rigid body in m2. Since in this model, the foot was the only part of

the body immersed into the granular media, the reference area was approximated by the shape of

a rectangle with length of the foot size and width of the penetration depth dyT (see Fig. 5.2).
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A r

fs

Figure 5.2: The human foot reference area

For the model in this study, the expression for the reference area is:

Ar = fs
dyT
cos q

| sin (q − qm)| , (5.5)

qm = tan−1
(
vEh
vEv

)
, (5.6)

where q is the impact angle with the horizontal and qm is the moving angle (see Fig. 3.14) of the

intruder. The volume V of the immersed rigid body was also calculated in terms of the immersion

angle:

V = fsws
dyT
sin q

, (5.7)

where ws is the approximate width of the foot in m (see Fig. 5.3).

fs

ws

Figure 5.3: The human sole approximate area

5.2 Experiments for a Human Jumping Onto Granular Matter

5.2.1 Experimental Setup

For this study, kinematic data was collected for the entire body using a 3D motion capture

system (Motion Realty, Inc from the Motion Capture Laboratory of Auburn University). The

motion capture system utilized six 180Hz digital cameras with processing and pattern recognition
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Figure 5.4: The motion capture system setup

capabilities (Fig. 5.4). Each camera recorded the planar motion of a series of reflective markers in

a virtual volume within which the cameras could detect the position of the center of each marker

to within 1/10th of a pixel. The volume covered by the cameras was 2.56 × 2.6 × 2.6 m and the

image produced by the cameras was 640 × 640 pixels, so for a camera magnification factor 2, the

results were accurate to 0.001 m. The 3D motion system (Fig. 5.5) received the 2D coordinates

from each camera and returned the 3D coordinates of all markers in the volume, after which they

were transmitted to the PC. The system required regular calibration, both for fixed points and

random points in the volume for accurate capture. The recorded total error was maintained at

approximatively 0.1 pixels to ensure a consistent accuracy rate.

Thirty-eight high reflective markers were placed at specific locations on the human subject (see

Fig. 5.5). Using specific body dimensions (height, weight, and shoe size) a 3D graphic model (Ap-

pendix I) was created through a scaling operation.The Motion Realty software displays a real-time

view of the model as the human subject performs specific activities and collects nearly instantaneous

information that is then stored and can be recalled at a later time.

The same system has been used for analyzing and improving swing techniques for high-school

baseball players [46, 47], thus confirming its utility. An alternative way of validating the use of this
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Figure 5.5: The placement of the 38 markers on the human subject

system for the purposes of this study was by analyzing the path of the foot during capture for two

different initial velocities (see Fig. 5.6). A clear difference (d1 > d2) was observed in the burrowing

depths, d1 and d2, for jumps from two different heights, h1 and h2, respectively.

The human subjects jumped onto a volume of fine sand (Quikrete 1961-52) in a box of di-

mensions 1.00 × 0.60 × 0.15 m (L × W × H). The dimensions of the container were sufficient for

the Jansen effect to be negligible. The box is positioned in the center of the virtual volume seen

by all six cameras. Before each capture, the sand was stirred and leveled to eliminate history and

maintain consistent packing. Five male subjects (m = 75.35 ± 0.568 kg and h = 1.78 ± 0.032 m)

volunteered for this study. The participants did not report any previous leg injuries and all wore

running shoes. Four participants reported themselves to be right handed and one left handed. The

results obtained in Chapter 4 revealed no significant difference between the impacts of each of the

two identical links with granular matter. Thus, the analysis of a single foot was deemed is sufficient

for the purposes of this experiment. The data studied in here is for the non-dominant leg (four for

the left and one for the right leg). Before each jump, reference data was collected to record the

position of the surface relative to the origin of the capture volume. Each participant was instructed
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d2 d1

Figure 5.6: The foot path during capture for two initial velocities

in how to jump off the platform, to ensure the technique remained consistent throughout. The

subjects steps off the platform and lands with both feet at the same time.

5.2.2 Experiment Results

For each platform height, the subjects performed five jumps. For each jump the position

data was collected for the entire body, but the marker attached to the ankle was especially closely

monitored. The impact data extracted was considered from the point of zero displacement of the

ankle with respect to the reference data collected before the jump, up to the point the linear vertical

velocity of the ankle joint becomes zero.

Table 5.2.2 presents the mean of all the captured stopping times for the impacts (the time

from zero displacement to zero vertical linear velocity), ts, the displacement during impact, dy, and

the initial velocity, v0i (where i = 1, 2 ) for one contact point for each subject. The mean impact

data extracted for each subject (Appendix J) revealed that the faster the impact velocity, the more

rapidly the immersion of the subject’s foot terminates, the deeper the resulting crater. Figure 5.7

shows that each subject registered higher final displacements (Fig. 5.7 (a)) and shorter stopping

times (Fig. 5.7 (b)) with increasing of initial velocity.
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Figure 5.7: Average experimental impact results per subject: (a) depth for the two initial velocities,
and (b) stopping time for the two initial velocities
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ts (s) dy (in) v0(0) (in/s)

0.031 ± 0.002 0.07 ±0.006 3.49 ± 0.098

0.036 ± 0.002 0.09 ± 0.005 3.48 ± 0.111

h1 0.029 ± 0.022 0.05 ±0.005 2.93 ± 0.048

0.022± 0.001 0.04 ± 0.000 3.35± 0.09

0.032 ± 0.002 0.07 ±0.006 3.16 ± 0.32

0.041 ± 0.002 0.059 ±0.005 2.31 ± 0.067

0.042 ± 0.005 0.075 ± 0.008 2.34 ± 0.099

h2 0.032 ± 0.001 0.04 ± 0.003 2.36 ± 0.082

0.026 ± 0.001 0.03 ± 0.004 2.39 ± 0.082

0.034 ± 0.002 0.06 ± 0.010 2.50 ± 0.025

Table 5.1: The experimental results for human bipedal impact

The experimental data was examined using SPSS software to determine whether the differ-

ences between subjects were statistically significant. A multivariate test showed that there was a

statistically significant difference in impact results per initial velocity based on subject, F(12, 34.7)

= 9.7, p < 0.001 for v01 = 3.28 m/s and F(12, 34.7) = 8.9, p < 0.001 for v02 = 2.35 m/s. A one-way

analysis of variance revealed a statistically significant difference between subjects for stopping time,

distance and velocity (Table 5.2.2). There was a very strong correlation between stopping time and

distance traveled into the granular matter (r(20) = 0.939 for v01 = 3.28 m/s and r(2) = 0.934 for

v02 = 2.35 m/s).

Under these conditions, the average impact results for human bipedal impacts across subjects

could provide a good indicator of the impact with sand of the lower human body. The final

displacement for the penetration phase is shown in Fig. 5.8 (a) and the decay of velocity during

impact in Fig. 5.8 (b) for all subjects. The depth of the crater for the human lower body impact

with granular sand is greater with higher initial impact velocity and it is also created more rapidly.

Thus, for a human with average mass m = 75.35 ± 0.568 kg and a height h = 1.78 ± 0.032 m

jumping onto a granular volume with v01 = 3.28 m/s, each foot will stop sinking at d = 0.05 m

after ts = 0.030 s. If the impact with the granular matter is somewhat slower, at v02 = 2.35 m/s,

each foot will stop sinking at d = 0.06 m after ts = 0.035 s.
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Figure 5.8: Average, over all subjects, experimental results for human bipedal impact during
penetration phase: (a) depth, and (b) velocity
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Variable Source df Mean Squares F p

Time Between Groups 4 0.000 33.117 0.000

Within Groups 15 0.000

v01 Depth Between Groups 4 2.123 27.644 0.000

Within Groups 15 0.077

Velocity Between Groups 4 345.205 8.081 0.001

Within Groups 15 42.718

Time Between Groups 4 0.000 29.369 0.000

Within Groups 15 0.000

v02 Depth Between Groups 4 1.574 33.708 0.000

Within Groups 15 0.047

Velocity Between Groups 4 32.643 3.711 0.027

Within Groups 15 8.7978

Table 5.2: ANOVA results for human bipedal impacts

5.3 Simulation Model and Results

5.3.1 Simulation Model

A simulation CAD model was created for this study to simulate bipedal impact utilizing

SolidWorks R© 2013-2014. A human model was created using SolidWorks human parts provided

through the GrabCAD Community [16] by Emmanuel Mahay (Fig. 5.9). The parts were scaled

to match the average size and weight of the experimental subjects (m = 75.35 ± 0.568 kg and

h = 1.78± 0.032 m) using proportions defined by Dempster [10]. These parts were connected using

coincident and concentric mates, to preserve the necessary degrees of freedom for each joint.

To model the impact of the human lower body with the granular matter, the equations proposed

for the resistance force in Eqs. 5.1 - 5.4 were applied. Substituting the expressions for the reference

area (Eq. 5.5), moving angle (Eq. 5.6) and immersed volume (Eq. 5.7), the expressions for the

resistance force components become:

Fd = −vE ηd ρg fs
dvT
cos q

∣∣∣∣ sin(q − tan−1
(
vEh
vEv

))∣∣∣∣ |vE |, (5.8)

Fsh =
[
−sign(vEh

) ηh g ρg d
2
vT fs

]
ı, (5.9)

Fsv =

[
−sign(vEv) ηv (dvT /ll)

λ g ρg fsws
dvT
sin q

]
. (5.10)
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Figure 5.9: The SolidWorks human model
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The velocity of the center of the immersed volume,E is defined in terms of the contact point

of the bottom of the shoe, T :

vE =
1

2

dvT
t

tan(q)ı +
1

2

dvT
t

ı. (5.11)

Therefore the equations for static resistance force and the dynamic force used in this simulation

are:

Fdv = −ηd ρg fs
dvT
cos q

∣∣∣∣∣ sin
(
q − tan−1

(
1
2
dvT
t tan q
1
2
dvT
t

))∣∣∣∣∣ ·
1

2

dvT
t

cot

√(
1

2

dvT
t

)2

+

(
1

2

dvT
t

tan q

)2

, (5.12)

Fdh = −ηd ρg fs
dvT
cos q

∣∣∣∣∣ sin
(
q − tan−1

(
1
2
dvT
t tan q

1
2

dvT
t

))∣∣∣∣∣ ·
1

2

dvT
t

tan q cot

√(
1

2

dvT
t

)2

+

(
1

2

dvT
t

tan q

)2

, (5.13)

Fsh = −sign(
1

2

dvT
t

tan q) ηh g ρg d
2
vT fs, (5.14)

Fsv = −sign(
1

2

dvT
t

) ηv (dvT /ll)
λ g ρg fsws

dvT
sin q

. (5.15)

The impact angle q is measured as the angle of the tibia with the vertical axis. Because the human

starts with an angle q close to 0o, the expressions for α = 90o in Table 3.2 can be used as a starting

point to estimate the coefficients ηdi , ηhi , ηvi and λi.

5.3.2 Simulation Results

After assigning values for all the force components in Motion Analysis mode in SolidWorks

based on the realtime results: dvT , q, the resistance force becomes active when dvT = 0. The force

coefficients values used were: ηd1 = 13, ηh1 = 10, ηv1 = 195 and λ1 = 1.05 for v01 = 3.28 m/s and

ηd2 = 6, ηh2 = 12, ηv2 = 215 and λ = 0.9 for v01 = 2.35 m/s. The granular matter density was

ρg = 1600 kg/m3. The other shape properties were scaled in relation to the average human subject

size, with the foot size fs = 0.254 m, the length of the tibia ll = 0.432 m and the shoe width

ws = 0.086 m. Using the metric equivalents of these constants in the Motion Analysis model, the

final displacement for the penetration phase and stopping time (when vvT = 0 m/s) were extracted

and analyzed.

88



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

d
yT

 (m
)

Time (s)

 

 

v02 = 2.35 m/s
v01 = 3.28 m/s

Experiment
Experimentv02

v01

(a) Depth during impact

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

 

 

d
yT

 (m
)

v02 = 2.35 m/s
v01 = 3.28 m/s

Experiment
Experimentv02

v01

(b) Velocity during impact

Figure 5.10: The simulation and the average experimental results for all subjects: (a) depth, and
(b) velocity
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Figure 5.10 (a) presents the simulation results obtained, with the experimental results shown

as dashed lines for comparison. For the initial velocities considered, the depth of immersion of the

foot was higher for the higher velocity, but the stopping time was smaller for the higher velocity.

Thus the foot will stop sinking into the granular matter faster, but it will go deeper at higher

velocity. The simulation results broadly follow the curves obtained experimentally; the relative

error calculated between the experimental results and those of the simulation results, ε, is given by

ε =

∣∣∣∣deyT (ts)− dsyT (ts)

devT (ts)

∣∣∣∣ , (5.16)

where deyT is the final displacement extracted from the experiments, and dsyT is the final displace-

ment from the simulation analysis when vyT (ts) = 0. For v01 = 3.29 m/s, the simulation results

end at ts1 = 0.024 s and produce a depth dyT1 = 0.06 m, with a relative error ε1 = 1.17%. For the

lower initial velocity, v02 = 2.35 m/s, the simulation results end at ts2 = 0.029 s and thus produce

a depth dyT2 = 0.05 m, with a relative error ε1 = 0.1%. The simulation model proposed for the

bipedal impact produces results that are very close for the displacement, although the stopping

times are significantly different. Figure 5.10 (b) shows clearly that the simulation stopping time is

smaller than the stopping time measured experimentally.

5.4 Conclusions

For this study of the impact of the human lower body on granular matter were compared with

those from computer simulations. Using a motion capture system with high accuracy, position

data for the entire body were collected for five male subjects. Displacement during foot impact

up to the point at which the vertical linear velocity of the shoe became zero, was higher for

higher initial velocities. However, the shoe’s immersion phase terminates faster at higher initial

velocities. A statistically significant difference was found between subjects. For the first time, a

CAD model of the human body was used to simulate this type of impact. The force resistance model

proposed includes a dynamic term (quadratic velocity dependent) and a static (linear displacement

dependent) term. The results produced by the simulation are consistent with the experimental

results for displacement. As in the cases of a free link and a two link kinematic chain impact with
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two contact points, the stopping time produced by the simulation predicted significantly different

values than those obtained experimentally.
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Chapter 6

Conclusions

This research examined the dynamics of the impact with granular matter of three different

systems. The focus of the study was the use of a new model for the resistance force that represents

the reaction of the medium to an intrusion, up to the end of the penetration phase. Previous

studies investigating the contact force for such an impact have focused on a single type of impact,

thus constraining the phenomenon, by performing experiments at very low speeds or limiting the

shapes of the impactors. There was therefore a need for a comprehensive analysis of the dynamics

of impact. A very important step is to create a force model that does not limit or constrict the

impact such as the resistance force used in this study, which incorporates components that are

both quadratic velocity dependent and linear depth dependent. The results obtained for this study

establish a series of coefficients that can be used in this formulation. The validation of this force

makes it possible to conduct a more in-depth study of the impact dynamics of complicated systems,

such as two impact point kinematic chains and even human bipedal impacts. Up until now, the

simulation of impacts with granular matter has been complicated and required a lot of computer

power for discrete computational methods, but this study has adopted a new approach by utilizing

the resistance force model to simulate the impact using computer-aided design software. This will

open up valuable new avenues for investigation by enabling researchers to model a much wider and

more diverse range of shapes, properties and initial conditions in studies of impact with granular

matter.

In this research, simulation models for the impact of a free round-ended link were created using

the computer aided design package SolidWorks. This software allows users to follow in real time the

results computed at each step with high accuracy. A series of impact angles (90−05o in increments

of 10o) and initial velocities were inspected and the simulation results revealed that for higher

initial velocities the penetration depth increases and the penetration phase ends faster. This result

is valid not only for vertical impact, but also for impact at an angle. The results were validated by
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comparing them with experimentally measured values for vertical, 45o and 15o impacts. There was

a high dependency on the impact angle and initial velocity for the impact of a round-ended filled

cylinder with granular matter. Both stopping time and depth decreased with the impact angle,

but differently depending on the initial velocity. This study found that at small angles the impact

becomes more complex and a closer analysis of this scenario is required in the future. Examining

the components of the resistance force, the dynamic force increases during impact until it reaches

a maximum and then decreases, while the static force increases uniformly throughout the impact.

In terms of the energy dissipated to the volume during impact, its value also depends on impact

angles and initial velocity. At lower velocities and low impact angles the potential energy is higher

than the kinetic energy, while at higher initial velocities, the kinetic energy is much larger than the

potential energy.

The phenomena whereby the decreased stopping time and increased penetrating distance arises

as a result of the increased initial impact velocity also occur for the case of the impact of a two

link kinematic chain with two points of impact. The simulation results (again obtained using

SolidWorks) were consistent with the experimental results for the same initial velocities, although

each link had a slightly different depth and stopping time at each velocity. These characteristics

were carried through to the simulation because of the sensitivity of the force to the impact angle.

The dynamic force was the dominant contributor to the total resistance force up to the point at

which it reached its maximum, after which the contribution the static force became more significant.

For low velocities, the intersection point at which the crossover between the static force and the

dynamic force occurred was closer to the beginning of the impact event. The potential energy

decreased rapidly, and the kinetic energy took over at higher velocities.

The validation of the force model for the two link kinematic chain facilitated the extension

of the model to describe the impact of the human lower body with granular matter. A human

model was created in SolidWorks and the resistance component forces applied at the ankle joint.

The simulation results for two initial velocities revealed that the behavior of the granular matter

when impacted is consistent with the two simpler cases. For higher velocity impacts, the human

foot sank deeper and faster than for lower initial velocities. The experiments performed with five

male subjects produced results that were statistically significant between subjects and the averaged

results were consistent with those obtained using the simulation. A rigorous model for jumping on
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solid surfaces is not yet available and the work in Chapter 5 represents only the very earliest steps

in this new field of study. The force model proposed here will doubtless be improved as we more

is learned and gain a better understanding of human kinematics. This study of human lower body

impacts is significant as provides a stepping stone towards developing a comprehensive analysis of

energy expenditure, joint stress, tendon and ligaments recovery, and prosthetics.
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Appendix A

NDI ToolBench Pipeline
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Appendix B

NDI ToolBench Two Dimensional View Of The Three Infrared Markers

The figure below shows a 2D view of the three markers used in the free link fall experiment.

The angle that the two markers on the link create with the horizontal is approximatively zero.
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Appendix C

The Expressions of the Resistance Force Components in SolidWorks

Figure C.1: Force builder screen
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Figure C.2: Dynamic force on vertical

Figure C.3: Dynamic force on horizontal
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Figure C.4: Static force on vertical

Figure C.5: Static force on horizontal
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Appendix D

The Resistive Force Components In SolidWorks

D.1 Force Components for q = 0o
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D.2 Force Components for q = 5o
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D.3 Force Components for q = 15o
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D.4 Force Components for q = 25o
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D.5 Force Components for q = 35o
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D.6 Force Components for q = 45o
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D.7 Force Components for q = 55o
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D.8 Force Components for q = 65o
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D.9 Force Components for q = 75o
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D.10 Force Components for q = 85o
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Appendix E

NDI ToolBench Pipeline
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Appendix F

NDI ToolBench 2D-view of the Four IR Markers

The figure below shows the view in 2D of the four markers used in the free link impact

experiment.
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Appendix G

The Four Resistance Force Components Applied at the End Points The Two-Link Kinematic

Chain

Figure G.1: The horizontal dynamic force applied on link 1

127



Figure G.2: The vertical dynamic force applied on link 1
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Figure G.3: The vertical static force applied on link 1
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Figure G.4: The horizontal static force applied on link 1
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Appendix H

The Resistive Force Components in SolidWorks for the Two Links Model

H.1 Force Components for Link 1
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H.2 Force Components for Link 2
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Appendix I

Scaled Human Model for Motion Capture
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Appendix J

Experimental Results: Depth and Velocity with Time During Impact for Each Subject
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(b) Velocity with time for Subject 1

Figure J.1: The average experimental impact results for Subject 1: (a) Displacement during impact,
and (b) Velocity during impact
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Figure J.2: The average experimental impact results for Subject 2: (a) Displacement during impact,
and (b) Velocity during impact
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Figure J.3: The average experimental impact results for Subject 3: (a) Displacement during impact,
and (b) Velocity during impact
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(a) Depth with time for Subject 4

0 0.005 0.01 0.015 0.02 0.025 0.03
0

20

40

60

80

100

120

140

Time (s)

v 
(i

n
/s

)

 

 

 v02 = 93.98 in/s
v01 = 132.04 in/s

(b) Velocity with time for Subject 4

Figure J.4: The average experimental impact results for Subject 4: (a) Displacement during impact,
and (b) Velocity during impact
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(a) Depth with time for Subject 5
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Figure J.5: The average experimental impact results for Subject 5: (a) Displacement during impact,
and (b) Velocity during impact
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