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Abstract

This research presents a sailfanizing system for engineering consensus among
cooperating, distributed processes and studying conse@gotiation in natural systems
that use the quorum sensing mechanism. The presented method combines metaheuristic
techniques and a negotiation protocol based on honey bee nest site selection behavior in
order to optimize the collective social utility @ group decision. Unlike existing
negotiation and voting protocols, the proposed metaheuristic accommodates negotiation of
consensus from among two or more decision values. It is decentralizeokgselizing,
and does not require a fulbonnected netw&rin which each process can communicate
directly with eachother. Benefits of these attributes are that there is no central point of
failure, and processes can make informed decisions using only information acquired from
immediate neighbors, rather tharmquéing the consolidation and evaluation of global
preferences. The proposed metaheuristic is modeled as arbagedtsystem using the
Repast modeling and simulation framework, and this model is used to conduct simulation
experiments in accordance wittiet Design of Experiments methodology to analyze the
Honey Bee Consensus metaheuristic and its performance on multiple social network
models. As the Honey Bee Consensus metaheuristic is an extension and new application
of a recentlyproposed agerdriented Quorum Sensing pattern, the presented
understanding of its parameter and topology influence is of value in steering the behavior
of selforganizing systems based on the Quorum Sensing pattern language. Additionally,
understanding how network topology irdglices consensus formation has applications
spanning decision theory, social choice theory, network science, and control theory.
Significant outcomes of this research include a description of the proposed metaheuristic
and the identification of a quorum eizo population ratio that provides optimal speed

accuracy tradeoff for a range of population sizes and social network models.
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1. Introduction

It is often necessary for the various components of a system to agree on a single
value, or set of values, that indicates amoaceéach of the components should perform or
that is a computational result the system should return; this is known as the consensus
problem(Barborak, Dahbura, & Malek, 1993; Fischer, Lynch, & Paterson, 198&)e
recently, the problem has also been farmat ed as t he fADemocr at i ¢
(DPP) (Kearns & Tan, 2008) subsequently renamed the AN
Pr obl e mo (Tdn\N2B1Q)Rvjth respect to achieving agreement on a value among
individuals in a social network, in this case a paggdidate for an election. The study of
consensus formation encompasses both uncovering the mechanisms and processes by
which social groups form consensus to solve problems and creating the ability to engineer
consensus in artificial applications. Thediseof this dissertation is that a metaheuristic
based on the technique used by honey bees to select a new nest site is feasible for
engineering distributed consensus negotiation in social networks and yields insight into the
influence of the quorum sengipattern on consensus negotiation in social groups.

Examples of the application of engineering consensus for automated tasks include
vehicle control, in which the vehicles must agree on the center of the formation or other
control variablegFax & Murray, 2004; Ren, Beard, & Atkins, 20Q059greement among
distributed databases on whether or not to commit a trans&Giibord, 1979; Pandey &

Tripathi, 2012; Thomas, 1979agreement among energy producers and consumers in a
smart grid on factors related the amount of energy to produce or consume at a particular

time (Ziang & Mo-Yuen, 2011; Ziang, Xichun, & M uen, 2011)agreement among road
segments in a smart highway on the best combination of speed limits to reduce congestion;
agreement among didttited sensors on the correct value to refi®ntton & Sacks, 2004,

Wokoma, Sacks, & Marshall, 2003nd agreement among agents or processes on another
agent or processo6s r(apbint&Xdng, 2003)Thare atermmanyt wo r t
other possiblexamples, but, in all of these cases, when individual components disagree

on the value to act upon or report they must use a mechanism to negotiate a consensus on

a single value.



The mechanisms by which this consensus is reached, its optimality widttrésp
the individuals and the collective, the application of the consensus, and the role of the
underlying communication network in the formation of consensus spans several fields of
study. Decision theory is concerned with the factors relevant to reaahmtional or
optimal decision, sometimes under uncertainty or in situations with complex relationships
between the decision factofslorvitz, Breese, & Henrion, 1988)his may involve
multiple decision makers; however, in the case of competing agéhtatieast partially
conflicting interests, the problem becomes one also related to game theory, and in the case
of combining individual, possibly differing or erroneous, preferences to reach the best
decision for the collective as a whole, it relatesdoial choice theorgShoham & Leyton
Brown, 2009; Wooldridge, 2009)Control theory studies, in part, the application of
consensus to directing the control of dynamic systems with respect tofelalemng and
system convergence to, and stability innsensus. Meanwhile, the study of the influence
of the underl ying communication network tof
and the influence of individual voters and their locations in the network is of interest in the
field of network scieoe, which studies network representations of physical, biological, and
social phenomena (such as communication and social interaction) with the goal of creating

predictive models of these phenoméNatwork Scienge2005)

1.1.Motivation and Scope

This research approaches consensus negotiation as a decision optimization
problem, primarily from the perspective of social choice theory. Thus, it is assumed that
individuals may have differing preferences duedli-mterest, uncertainty, or error, but
the overall goal of each individual is to achieve cooperative social welfare and consensus
upon a decision that yields the highest utility for the collective. Traditionally, the solution
to this problem is frequentimplemented through the use of various negotiation or voting
protocols; however, a weakness of most of these protocols is that they require a centralized
mediator or centralized consolidation and evaluation of individual votes. These centralized

solutiors fail to scale wel/l as the centralize



number of participants, they introduce the requirement for a way to select the coordinator,
and the selected coordinator becomes a central point of potential failure. 1&olatio
consensus without centralized control have their own weaknesses. Chief among these is
the need for a fulhconnected communication network so that each participant can
communicate directly with every other one. Mesh networks like this are simypssible

in all applications. Furthermore, the feasibility of pairwise negotiation or matidet
solutions, which allow participants to directly negotiate individual agreements with others,
decreases as the population size increases because eachepagmsment must be
reconciled with all the previouslyegotiated agreements. Meanwhile, existing consensus
negotiation techniques that work on rfoily-connected networks are not designed to
handle formation of consensus from among more than two possitgiemes.

In addition to these weaknesses, both centralized solutions and decentralized
solutions in which negotiating parties expect consistency in the underlying communication
network are unsuitable for use in communication networks with switchirgogips,
where an individual 6s neighbors change ove
regimes, the path to the coordinator is constantly changing, so efficiently ensuring that all
votes reach the coordinator nahdedsiohto@bdcast
participants becomes challenging as the ne
with each topology change. I n decentralize
the negotiator loses track of previouslggotiated agreeents and, with that, awareness of
the progress being made toward consensus.

A protocol that facilitates distributed, selfganizing consensus formation without
the requirement for a central coordinato@ fully-connected communications network is
desred. It is also desired that this protocol have the capability of allowing consensus
negotiation on two or more possible outcomes. To this end, this research applies
metaheuristic techniques, often used for hard optimization problems, to the described
prodem of optimizing distributed consensus negotiation, because the distributed, iterative,
populationbased characteristics of metaheuristics share many similarities with the

distributed negotiation process. Commouked metaheuristic techniques are augatent



with a negotiation protocol inspired by nature that provides insight into possible ways to
overcome the problems with propagation and combination of preferences.

The scope of this dissertation is to define and describe a proposedinsured
metaleuristic for distributed, cooperative, selfganizing consensus negotiation. The
relationships between the parameters of the protocol and the underlying social network are
studied in order to understand t lomsensusef f ec
under the influence of the metaheuristic. This understanding allows the considerations
important to applying a more broaeiyplicable agenbriented design pattern, the

guorumsensing design pattern, to be characterized.

1.2.Quorum Sensing: A &tural Mechanism for Negotiation and Compromise
In the search for solutions involving complex systems, it is common to look to ways
in which nature solves similgroblems from which inspiration can be derived. Indeed, it
is the case that many natural systems exhibit the ability to form decentralized, distributed,
self-organized consensykarissa Conradt & Roper, 2005)n all instances, it is obvious
that an essial requirement for a successful negotiation is that there must exist at least
one option that all individuals are willing to accept as the final decision, otherwise
consensus is impossible. The crux of the problem, then, is to define under what genditio
an individual should change its preferred outcome in order to prevent deadlock due to
intransigence. A common natural mechanism for determining this conditiguorsim
sensingA quorum is a group of individuals with the same preference, the sizealf ish
sufficient to exceed a predetermined threshold value that defines the point at which another
individual, with a preference different th
guorumbés preference as its own without fur
Quaum sensing has been shown to be used foraghinization by bacteria to
regulate gene expressi(Bassler, 1999by antgPratt, Mallon, Sumpter, & Franks, 2002)
and beeg¢Seeley & Visscher, 2003) select new nest sites, and by fish to coordinaie the
shoal movementd@Vard, Sumpter, Couzin, Hart, & Krause, 200B)ese natural systems

often use iteration, stochasticity, and feedback loops (e.g., local activaticreioge



inhibition) to solve the consensus problem, resulting in decentralized, aemhesgé
organizing, and selidaptive collective behavior that yields acceptable results through
many individual applications of simple rules. Composed of mobile individuals situated in
the chaos of uncertain natural environments, the negotiation protased by these
collectives must tolerate changing neighborhood topologies, individual errors, and possible
loss of individuals from the collective. This robustness under uncertainty is also a highly
desirable trait for artificial applications of distriledt consensus negotiation. It has also
been shown that the quorum sensing pattern can be used to tune thacspeacy tradeoff
through manipulation of the quorum sig€hittka, Skorupski, & Raine, 2009; Larissa
Conradt & Roper, 2005; Passino & Seeley)@0Sumpter & Pratt, 2009)

Inspired by these natural applications, quorum sensing is increasingly being applied
in distributed systems to guide selfganization. Examples include its application in sensor
clustering(Wokoma et al., 2003nd server popation managemer{Peysakhov & Reqgli,
2005) The prevalence of this technique in natural and artificial systems has led to its
identification as an ageitriented design pattern by Fernandéarquez et al(2012) The
metaheuristic presented in this resbaimplements this design pattern using what is

known about how honey bees negotiate consensus when selecting new nest site locations.

1.3.Overview of the Proposed Metaheuristic and Implementation Method

When a honey bee colony must select a new nest site, a swarm collects at an interim
location near the old nest, and a subset of several hundred bees in the swarm (scouts) are
responsible for searching for and evaiug candidate nest locatio(Seeley & Buhrman,
1999) Initially, none of the scouts know any potential locations, so they are all
uncommitted and start exploring. Some of the scouts will find candidate sites and become
committed scouts. Others will be sautcessful in finding viable sites and return to the
swarm as uncommitted scouts. Committed scouts share their evaluations of the sites they
found by performing dances that direct other scouts to the candidate locations. The
intensity of iangsciorudi chaeteefss tdhaencscout 6s per

discovers(Seeley & Buhrman, 1999)n this way, uncommitted scouts are recruited to



confirm or reject the nominations and evaluations of the committed scouts. Uncommitted
scouts are able to obsergnly the dances of the committed scouts within their sight. Given
the choice between different dances, they choose a dance at random proportional to the
number of observed dancers for each dafj\Gescher & Camazine, 1999After an
independent evaluatioof the site, the uncommitted bees return to the swarm and, if the
site was found suitable, become committed scouts and dance for the site.

When a committed scout dances for a candidate site, the intensity of the dance
decays (i.e., produces negativedieack) over time, even when the scout is dancing for a
popular sitgSeeley, 2003; Seeley & Buhrman, 1998)hile this was previously thought
to have been due to purely internal influen(®seley & Buhrman, 1999)ecent research
has shown thatbeesprade a fist op signal 6 that causes
site (Seeley et al., 2012)This provides a mechanism for compromise and prevents
stubbornness from causing deadlock. When a bee stops dancing for a site, it becomes an
uncommitted scout; hower, it is relatively uncommon for formerly committed scouts to
dance for more than one site, and even more uncommon for them to dance for three or
more sitegSeeley & Buhrman, 1999)

Committed scouts alternate between dancing for their chosen sigesatdhm and
visiting the nest site location for which they are dancing. Recent research has shown that
once a certain number of bees (a quorum) are detected at a candidate nest site by a scout,
the scout begins Apipingo ttilepwaordwheniit relgrnsa s o u
(Seeley & Visscher, 2003This piping signals to the swarm that the end of deliberations
is near and, as the piping increases as more bees join in the activity, eventually a level of
piping is reached that triggers liftoff di¢ swarm for the selected nest site.

To translate this observed honey bee behavior into a genapgilicable algorithm
for distributed consensus, it is useful to represent the behavior exhibited by individual bees
during the negotiation process as adfetimple rules encapsulated by agents in an agent
based model. In agebtised modeling, agents are situated in a context that defines an
environment, which agents sense and modify in accordance with their defined behaviors.

In this particular applicatigrnthe context is the underlying communication network that



connects the agents and the distribution of individual decision preferences at a given point
in time. Peers to which an agent is direct/|
neighborsAgents sense and modify their environment by exchanging messages with their
neighbors. The objective is to create a model in which the simple rules followed by the
agents in response to neighbor interactions result in a context where the individual
prefeences have converged and stabilized at a single, uniform value. Due to this choice of
representation, and for the sake of consistency, the f@&gend or findividualo will be

used throughout the rest of this dissertation to represent, in abstractaarimdividual
member of a collective seeking consensus with the understanding that, in an actual
application requiring consensus negotiation, an agent could actually be a process in
software, a node in a distributed system, a single sensor, a vehiclg adher autonomous
entity.

The described ageiiased model has been implemented using the Repast
Simphony modeling and simulation framewd@M. North et al., 2013)This has enabled
simulation and study of the alegadcontexteés be
and the formulation of conclusions about the factors that influence the successful formation

of consensus.

1.4.Research Questions

In addition to describing and implementing a new metaheurddgorithm for
distributed, seHorganizing consensus negotiation, this research tests a simulation model
implementation of the algorithm to evaluate its performance and understand the
fundamental conditions required for quorlb@sed consensus. This elegb the
identification of guidelines for the conditions under which quorum sensing is most
appropriate and parameter values to use for the best performance in various applications.

In consideration of these goals, this research addresses the followitigrtgies

1. How can honey bee nest site selection behavior be implemented as a metaheuristic

for reaching a decision that optimizes the social welfare of a group of agents?



2. How well does such a metaheuristic work, overall, for achieving so@atiynal
consesus in commonhstudied social network models?

3. Does the quorum size parameter have a significant impact on the speed of
distributed consensus formation and, if so, how does the choice of quorum size
value affect the balance and tradeoffs between successiggnsus formation, the
speed of consensus, and the quality of consensus?

4. How does the social network model influence consensus dynamics?

5. What lessons can be generalized from this research for use in future applications of

the agenbased quorum sensipattern?

1.5.Contributions

The primary contribution made by this research is the specification of a novel
metaheuristic for optimal, distributed, selfganizing consensus negotiation suitable for
negotiation of cnsensus on multiple decision values. This metaheuristic is applicable to
solving consensus problems in the distributed systems andrgeliizing systems
communities. As the Honey Bee Consensus metaheuristic uses the quorum sensing pattern,
two importantcontributions in the agefiitased patterns field are made regarding the

guorum sensing pattern:

1. itis shown that a quorum size of 25% of the total population size is -@ptaral
value to use for balancing the spemxturacy tradeoff with Honey Bee Consas
2. it is observed that Honey Bee Consensus performs similarly for quorums of

intermediate size, regardless of the underlying social network model

1.6.Outline of the Dissertation

This dissertation iorganized as follows. Chapter 2 provides the basis for the
consensus problem, its variants, and relevant theoretical results. The state of the art in
distributed consensus negotiation and current challenges are reviewed, exemplars of

quorum sensing in nate and the current state of its codification as an aggerted



design pattern are described, and it is explained how existing metaheuristic optimization
techniques contribute to the proposed metaheuristic. Chapter 3 presents the formal model
for the agntbased implementation of the metaheuristic. Chapter 4 describes the evaluation
methodology and experiment design. Chapter 5 presents the experiment results. Chapter 6
provides a discussion of the experiment results and their broader applicationy, Finall

Chapter 7 summarizes the research and proposes future work.



2. Literature Review
2.1.The Consensus Problem
2.1.1.Background

In its most basic form, the consensus problem is simply the problem of driving a
system comprised of members preferring different outcomes, called decision values, to a
state in which all system members agree on the same decision value. Thus, th@essrrec
of result lies in reachingny valid agreement, rather than the comparison of the value
agreed upon to an ideal value or in accordance with the majority opinion. Atueikd
probabilistic stochastic process for opinion diffusion expected to reaahimity in
networks is the voter modéClifford & Sudbury, 1973)In the voter model, an individual
nodeii n the network is picked uniformly at I
neighbors is selected uniformly at random asdts its decisionalue in accord with the
randomly selected neighbordéds. This process
the same decision value.

The voter model 6s key weakness is its a
obtained. More frequently, not only unanimity desired, but there is a correct decision
value that should be obtained. Traditional applications of consensus in computing include
maintaining concurrency in distributed databases in which multiple copies of the database
are kept in sync thrggh agreement among the databases on which operations are
committed(Thomas, 1979)clock synchronization, and sensor agreernfieease, Shostak,
& Lamport, 1980) In these types of applications, assuming the patrticipation of only non
faulty processes (i.eprocess that produce correct output), it is sufficient to consider a
consensus algorithm correct if, at the end of the algorithm, all processes agree on the final
value. Unfortunately, in most realorld cases it is unlikely that all participating proses
and their communications links will be faditee; therefore, there is a significant body of
work exploring the limits of how much faultiness (and of what types) can exist in systems
under various constraints and still admit consensus(Brgcha &Toueg, 1983; Lamport,
Shostak, & Pease, 1982; Pease et al., 19B@n with correctly operating processes,

distributed systems can comprise different states that need to be resolved. Some solutions
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to these problems include ensuring that each processocamunicate with a sufficient
number of norfaulty processe@Barborak et al., 1993nd using a majority opinion as the
decision value(Gifford, 1979; Thomas, 1979Both of these are examples of using
guorums to overcome faulty or diverse opinions ireotd reach consensus on a decision
value that is best for the system overall.

When the size threshold required to obtain a quorum is defined as a simple plurality,
a new version of the consensus problem known as the majority consensus (or majority
coordnation) problem is obtained. In this problem, the correct decision value is that which
is in accordance with the majority of the participants at the outset of negotiations. Mossel
and SchoenebedR010)propose several models for solving this problem doahot use
qguorums; however, all of their proposed solutions are limited to achieving majority
consensus on only two possible decision values. Furthermore, none of the solutions
discussed thus far take into consideration preference weighting, or biaadditien of

this capability was one of the main contributions of the Networked Biased Voter Problem.

2.1.2.The Networked Biased Voter Problem

The version of the consensus problem known a&s NIBVP (Tan, 2010)is
mentioned in the introduction. It deserves special attention here because it represents the
version of the consensus problem most directly applicable to the solution proposed by this
research.

In the NBVP, there are two competingoates. Each voter prefers each choice with
a reatvalued weight, which sum to 1. It is assumed that one choice is always collectively
preferred to the other and that the preferred opinion is not known a priori to anyone. The
objective is to determine thialue through a distributed algorithm that is simple and local,
and converges in time polynomial in the number of voters to the collectively preferred
consensugKearns & Tan, 2008)

We revisit the NBVP in more detail later. Table 2.1 summarizes theatiffes
between the methods described and the contributions of Honey Bee Cor{si8Gus
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Table 2.1 Comparison of distributed consensus techniques.

Technique Consensus Reachd Number of Decisior] Supports Wighted
Values Supported | Preferences
Consensus Problel .
. Any unanimous Many No
Techniques
Majority Consensus Plurality 2 No
NBVP Plurality 2 Yes
HBC Highest social utility Many Yes

2.2.Distributed Artificial Intelligence and Agent Rationality

As described in the previous section, the standard consensus problem is only
concerned with ensuring that all participants reach any valid consensus. In majority
consensus or NBVP, however, diffateoutcomes have different utility values when
considered in relation to the desires of the collective as a whole, and the appropriate goal
is to reach a consensus that matches the preference of the majority at the beginning of
negotiations. When there arere than two possible outcomes, a majority consensus may
be sought or, alternatively, one could seek a consensus that maximizes the collective utility.

The latter situation can be further divided into two cases:

Case 1: Each agent has the same utilibcfion. All agents will view the
consensus result equally favorably (or unfavorably) because they are all
evaluating it with respect to the same metric. In this scenario, the agents
are considered to be cooperating because they all seek the same goal
(maximum collective utility) and they all agree on the utility values of the
available choices due to using the same utility function.

Case 2: Agents have different utility functions. Agents may disagree on

the favorability of an outcome due to differencethigir utility functions.

In this scenario, agents may be in competition with respect to their

individual preferences but still need to cooperate for the sake of reaching

coll ective goals. This patroagpdeaxiitciaolnosi t u
(Nalebuff& Brandenburger, 1996)
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A field in computer science that has focused on addressing these issues-in agent
based systems is Distributed Artificial Intelligence (DAI). Historically, the first case
described above was the focus of the distributed problevmgqDPS) research agenda,
and the second case was the focus of MAdent Systems (MASDurfee & Rosenschein,

1994; Ephrati & Rosenschein, 1996)ore recently, however, the term MAS has come to
encompass all systems composed of multiple agents, whethperating, competing, or

a mixture of the twqWooldridge, 2009)Regardless of the underlying research agenda,
though, it is not surprising that these scenarios in dggsed computing were preceded by
their humarinteractive counterparts in sociaience, economics, and game theory. These
fields have contributed to the underlying assumption that artificial agents should behave
rationally and to methods for defining and evaluating rationéliyrfee & Rosenschein,
1994) One particular difficulty iimeasuring rationality in order to judge actions or choices
is that the Acorrecto or rational action t
agent has global or partial knowledge of the factors relevant to the decision. Economic
rationality pravides a way to evaluate decisions made in the presence of uncertainty and
heuristics used in those decisidb®yle, 1992)

Doyle (1992) summarizes concepts from economic rationality as they apply to
artificially intelligedheseasohi mgtioneya
decisiontheoretic and gamtheoretic approaches, and provides references to the
economic literature on which artificially intelligent rationality is based. Decithenretic
approaches to problems in artificial intelligerare described {freldman & Sproull, 1977;
Gmytrasiewicz, Durfee, & Wehe, 1991; Horvitz et al., 1988; Jacobs & Kiefer, 18a8)

a gametheoretic approach to consensus is presenteMang et al., 2013)These
approaches give various examples of hawiul i ty can be i ncorpora

reasoning process.
2.3.Social Choice Theory and Voting

Now the application of rational agents to the problem of determining secially

optimal consensuss considered Since each rational agent will seek to maximize its
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individual utility, reaching consensus in Case 1 from the previous section is trivial. In Case
2, however, the differences of opinion between agents as to which outcome is the best and
the ned to choose only one of several possible outcomes, as dictated by the consensus
problem, necessarily introduces a conflict in which some agents must acceptisus
outcomes from their perspectives. Nevertheless, due to the paradoxopétdmn, it
remains rational for some agents to acquiesce to the preferences of other agents since we
are operating under the assumption that the utility for anycoasensual outcome is zero
for all agents. The critical question is: which agents should changetb&rences, and
which alternative outcome should they prefer?

To answer this questioit, must firstbe undersbod how the optimality of a final
group decision can be defined. Social welfare theory distinguishes between assigning an
ordering over the saif possible alternatives based on individual preferences, obtained
through the application of a social welfare function (SWF), and settling on one of the
possible alternatives, obtained by the application of a social choice function(EDFati
& Roserschein, 1996)In other words, SWFs aggregate individual preferences, and SCFs
are formal representations of voting procedures. Shoham et al. provide formal definitions
of these functiongShoham & LeytorBrown, 2009)Taylor (2008)and, especially, Brams
et al.(2002)give detailed descriptions of a wide range of voting procedures that have been
developed within this field of study. A key observation here is that optimality is subject to
the SWF and/or SCF applied; therefore, it is important to acknowlindgehere is no
perfect voting procedure. Indeed, it has been proven that there is no SWF that satisfies all
reasonably desirable properties that SWFs should/Aoldw, 1950) therefore SCFs must
be chosen with consideration given to the SWF propdtiegcan ensure. Nevertheless,
it is reasonable to conclude that a potential answer to the critical question, above, is that a
Agoodo consensus protocol should result
with the maximum preference from a seoa SWF or that matches the outcome that would
result from applying a chosen SCF to all
solution is to either consolidate all of the agent preferences and apply the chosen SWF or

hold an election; howevegthis introduces the problem of centralized control in the election
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coordinator, resulting in a single point of potential failure. These methods also require that
all agents publicly disclose their preferences, which may not be desirable in all cases
(Heiskanen, 1999) Finally, depending on the voting procedure chosen, strongly
opinionated minorities or pooryformed majorities could unduly influence the results of
the election, possibly leading to a sojstimal final choice, and this, too, must be

consdered.

2.4. Automated Negotiation

I n game theory ter minol esghyo,t vgoatmen.go pTrhoact
agents make their choices, the outcome is evaluated, and the election result is binding.
S nce the election is not repeated, agents
past actions to improve their performance in future rounds. While there are some voting
procedures that use iterative removal of candidate outcomes, all votegideptioeir
complete preferences in advance of the election, so voters cannot benefit from new
knowledge partvay through the electio(Brams & Fishburn, 2002)As was seen in the
previous section, one of the weaknesses of elections is that stopigignated minorities
or poorlyinformed majorities can unduly influence elections and, in asbio¢ scenario,
the agents are committed to these results, even if they ai@ptaial. It may be more
desirable to allow agent s Dbyadterativelyf dhariegn ce e
information and coming to a more gradual consensus. This can be achieved with automated
negotiation.

Jennings et al(2001) provide a thorough introduction to automated negotiation
issues and discuss game theoretic impacts on a#gatistrategies. They characterize
negotiation as an iterative process, requiring the minimal capabilities of proposal of a
solution and response (accept or rejédtnnings et al., 2001\Vhile their paper focuses
on game theoretic and heuristic aspedftaegotiation, many actual implementations of
negotiation protocols make extensive use of the aforementioned social utility foundations
to enable agents to reason rationally about the values of deals and compromises.
Chevaleyre et a(2006)and(Endriss Maudet, Sadri, & Toni, 200@yesent the application
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of social welfare theories to the medtgjent resource allocation problem, but many of the
issues affecting that problem are the same as those in distributed consensus in that both
problems seek to negate a sociallyoptimal solution in a distributed environment.

A common weakness of many negotiation protocols proposed thus far are that they
focus on combinatorial auctiorfgEndriss et al., 2006which requires a fulhconnected
communication networkand becomes increasingly infeasible as the number of agents
increases; they only allow for pairwise negotiati@nhtamo, Verkama, & Hamalainen,

1999; R. G. Smith, 1980)r they require a trusted mediatEhtamo et al., 1999;
Heiskanen, 1999; Heiskandehtamo, & Hamalainen, 2001; Li, Vo, & Kowalczyk, 2009;
LopezCarmona, Marsdaestre, & Klein, 2011; Vo, Padgham, & Cavedon, 2007; Ziang

& Mo-Yuen, 2011; Ziang et al., 2012which can be both prohibitive in uncontrolled
environments and, again, introducgspotential single point of failure. Finally, many
negotiation techniques require some sort of capability to transfer utility between agents
which is typically thought of in terms of payments between agents. This may be used as a
mechanism to encourage rfddehavior as, for example, in the use of the Clarke tax
mechanism i(Ephrati & Rosenschein, 199&)r simply as a mechanism for persuasion,
which enables more efficient negotiation over protocols that simply allow agents to accept
or reject proposal&lennings et al., 2001)

In addition to these weaknesses, very little work has been done on automated
negotiation of complex contracts, focusing instead on negotiation of contracts involving
only one or a small number of independent issues. As a sampfeegantative work that
has been done, Klein et 003)pr opose At he first negotiat.i
complex contracts. o0 They present t wo versi
mediator, and one that does not. Ito e(2008)preent a mediated multssue negotiation
protocol. Both of these approaches use simulated annealing as a metaheuristic for finding

Pareto optimal solutions to complex contracts.

2.5 Self-Organization
Unfortunately automated negotiation in the sense of iterated proposals versus

counterproposals is not going to be effective in forming consensus in large, decentralized,
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autonomous systems. It has been identified that using voting procedures to make a
collective choie is too centralized, requiring consolidation of global information in order

to reach a decision. Automated negotiation is, in a sense, too decendrdalizedumber

of pairwise agreements between agents that must be negotiated (agotiated as other,

new negotiations are made) quickly becomes infeasible. Additionally, without a
mechanism for the transfer of utility, the system would require some awareness of the
global utility of each option, which is exactly the unknown being sought. Instead of
attemping to purposefully design a system to reach consensus by directed interactions
between all agents, a system that arrives naturally at the consensus decision by following
simple rules that govern each agentos I N
considered. Recall from secti@rl.2that one of the criteria of a NBVP solution is that it
shoul d be s iKegpns & Tan,n2808)Anoticern driterion imposed by the

NBVP, as formulated by Kearns et §2008) is that agents update only thewro
preferences based on observation of their
encode detailed i nfor mat (Keams&Tan, 2088hd fsi gna

These goals and criteria strongly suggest the incorporation ebrgahization
principles. Parunak et g2011)defineaselor gani zi ng system-as a 0
adaptive systemoO characterized, primarily,
particular, seHorganizing systems should not require centralized manragieta reach
their goals or any explicit representation of system goals or architq@®aranak &
Brueckner, 2011)Thus, agents that decrease the entropy of the system, in this case by
organizing the alignment of agents to the sociafiyimal consensusglf-organize. Their
rule set governing purely local interactions does not require any knowledge of the system
goal, per se.

In searching for selbrganizing solutions, it is common to look to nature for
inspiration and understanding of the underlyingyamizational principles of self
organization(Couzin & Krause, 2003Knoester et ak2013)and Knoester & McKinley
(2009) use digital evolution to evolve an algorithm for forming consensus in a group;

however, this research adapts a consensus protoeatiglfound in nature to the NBVP.
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2.6.Natural Consensus, Quorum Sensing, and A@ergnted Design Patterns
2.6.1.Consensus Formation in Nature

How groups of animals make decisions has been an interest of biologists for some
time, although, even until recently, little has been known about the processes animals use
(L. Conradt & Roper, 2003)Conradt efal. (2003) modeled and studied the differences
between despotic and democratic decision making in animal groups in outcome fitness.
They determined that the synchronization costs for democratic decision making were
usually lower than those for despotic troh (L. Conradt & Roper, 2003)Couzin et al.
(2005) introduce a simple model for direction of travel consensus in animal groups in
which the group settled on average preferences when the differences in preferences
between individuals were small, but amhed consensus for the majority option in the
presence of large differences. They also showed the impact of a weighted feedback
mechanism to allow consensus, rather than averaging, in cases with small differences
(Couzin et al., 2005)To categorize the mg decision making techniques in uflearissa
Conradt & Roper, 2005present a classification scheme for animal decision making
techniques and argue that better understanding of how animals achieve consensus could
Ayield 1 nsights i petatoon, tommuniecatoo and group mecisioh ¢ o0 o
making in humans. 0

While Conradt et al2005)focus on the properties of consensus formation in many
different species, other researchers have worked on determining the consensus mechanisms
used by specific spaxs. Of particular inspiration to this proposed research is the regulation
of gene expression in bacte(Bassler, 1999)ransfer of information in fish shogM/ard
et al., 2008)ant nest site selectigNigel R. Franks, Mallon, Bray, Hamilton, & Mislgr,
2003) and honey bee nest site seleci{iNiven, 2012; Seeley, 2003; Seeley & Buhrman,
1999; Seeley & Visscher, 2003; Seeley et al., 2012; Visscher & Camazine, 1999)

I n these studies, many factors armnoe sugg
reach consensus. (Kearns, Judd, Tan, & Wortman, 2009; Kearns & Tan, 2008; Seeley,

2003) the authors cite the importance of undecided voters in reaching consensus, and this
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is further supported bgCouzin et al., 2011)One commonality among theshniques

that stands out, however, is their use of quorum sensing.

2.6.2.Quorum Sensing

In (Baarslag & Jonker, 2011)he authors discuss in detail the conditions under
which negotiated conditions should be gted, but these are all based on endogenous
factors. Quorum sensing is an exogenous acceptance condition requiring an individual to
transition to one of its legsreferred choices when a threshold number of neighbors are
aligned with that choicéSumpter& Pratt, 2009)examine quorum responses in detail and
argue its central importance in decision making; its use has several benefits. In contrast to
(Jennings et al., 2002ywhich advocates the use of a critique (counterproposal) capability,
guorum sensingllows consensus without this mechanism. It also allows a system to make
a tradeoff between time to reach consensus and accuracy of consensus by tuning the
guorum threshol@Chittka et al., 2009; Larissa Conradt & Roper, 2005; Passino & Seeley,
2006; Sumpter & Pratt, 2009)

2.6.3.AgentOriented Design Patterns

The identification, categorization, and formalization of recurring patterns in
software design was pioneered (@3amma, Helm, Johnson, ¥issides, 1994 with the
intent of facilitating the reuse of best practices in software construction and creating a
common language for use in discussion of object oriented software designs. Since then, the
use of design patterns has spread to othere sypecific, application areas. Within agent
based modeling, simulation, and engineering, alone, there have been multiple areas of
focus including general applications of patteiusdor & Lange, 1998; Ferreira de Aradjo
Lima, Duarte de Lima Machado, Abtas de Figueiredo, & Sampaio, 2003; Kendall,
Krishna, Pathak, & Suresh, 1998glforganization and coordinatigitom De Wolf &
Holvoet, 2006; Tom De Wolf & Holvoet, 2007; Deugo, Weiss, & Kendall, 2001; Gardelli,
Viroli, & Omicini, 2007; Gatti, de Lucena& Garcia, 2009; T. Holvoet, Weyns, &

Valckenaers, 2009; Tom Holvoet, Weyns, & Valckenaers, 2010; Kasinger, Bauer, &
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Denzinger, 2009; Snyder, Valetta, Fernanblezrquez, & Serugendo, 2012and bie
inspired patterngBabaoglu et al., 2006; Fernanedarquez et al., 2012)North et al.
(2011)make the key distinction between agbased and agewotiented design patterns.
The former is focused on the software design patterns used to implemenbasggoht
models, whereas the latter is focused on the pattérmgent behaviors and interactions.

Quorum sensing, as described above, has been used iragaiiti applications
including sensor network@ritton & Sacks, 2004; Wokoma et al., 200&)d server
population managemer{Peysakhov & Regli, 2005)These aplications and quorum
sensingbébs frequent recurrence in nature ha
an agenbriented design pattern kfFernandeaMarquez et al., 2012however, these
authors were not able to describe the implementatidregsdttern in a generalized manner,
stating instead that Athere is no specific
(FernandeaMarquez et al., 2012Not only does this feel unsatisfactory in the sense of
being able to use the pattern in a modwlay to solve problems, it also results in an
inability to identify the considerations that should be used in the application of the pattern,
as is done for patterns in the style(@Gamma et al., 1994)herefore, although there is
significant agreemerih the prevalence of quorum sensing and how it works in general,
there is still significant work to be done in understanding the dynamics of quorum sensing
systems, especially if it is intended to use quorum sensing as a generalizable pattern for

engineemg selforganizing consensus.

2.7.Metaheuristic Influences and Eusocial Insect Models

In addition to using the quorumensing pattern as a basis for a-seffanized
solution b the problem of forming distributed consensus, the solution proposed in this
research also leverages ideas from metaheuristic optimization techniques and lessons
learned from existing models of eusocial insects. Negotiation and consensus formation
both hae similarities to hard optimization, a major application area for metaheuristics, and
eusocial insect models provide insight into how nature has evolved the values for

parameters related to quortrased consensus.
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2.7.1.Metaheuristics

Consensus formation can be thought of as a search for the combination of choice
and preference pairs for a set of agents that maximizes the utility of the collective, when
all preferences for a single choice are considered togetheording to(Jennings et al.,
2001) Anegotiation can be viewed as a distr
agreementso with the goal of optimizing t he
that these search spaces are-lmogarsuch that greedy hitllimbing algorithms searching
for the optimal configuration are susceptible to stalling at local maxima. These sorts of
nortlinear search applications are exactly the types of situations in which metaheuristics
excel at finding solut n s , so long as there is some wa
possible solutions (e.g., using their utilities) and there is a heuristic for how to modify a
possible solution in such a way that it is likely to be closer to the final solution. Thus,
metahedstics iteratively sample the solution space, using heuristics and stochasticity to
incrementally adjust the search to random, but hopefully better, locations in the search
space and updating the solution with better solutions as they are found. Tisrallg a
parameter that balances exploration and exploitation such that during the exploration phase
bigger moves through the search space are allowed, and during exploitation searches are
constrained to remain close to the best solutions found so fae 8iese techniques are
randomly sampling the search space and do not perform an exhaustive search they are not
guaranteed to find the optimal solution. Instead, they are technigues that usually give a
good solution, that is, they are heuristics thathesgistics in their processing, giving rise
to the t er m(Diém®étrawsle, Siariy, K Taillard, 2006)

The iterative nature of the honey bee consensus protocol from séc3jate
presence of utility values, and the ability to heuristicatonitor the global formation of
consensus through local observations suggest that the Honey Bee Consensus protocol
would be a suitable candidate for a metaheuristic implementation. The stochasticity of
natural systems is believed to be an important adpeselforganization patterns as well

(Couzin & Krause, 2003)and highly compatible with metaheuristic techniques. For
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example, simulated annealif{&irkpatrick, Jr., & Vecchi, 1983has been applied to
contract negotiation irflto et al., 2008; Klein teal., 2003) In addition to simulated
annealing techniques, striking similarities are also seen between natural honey bee

consensus and particle swarm optimizatiéannedy & Eberhart, 1995)

2.7.2.Eusocial Insect Models

Several models of eusocial insect colonies have been developed f¢Patts
Sumpter, Mallon, & Franks, 2008nd beegList, Elsholtz, & Seeley, 2009; Passino &
Seeley, 2006)These models are not directly applicable to general nsaosegormation
because they seek to reproduce ant and bee behavior that involves actual insect movement
in a spatial context. Nevertheless, choices made in these models regarding interaction
protocols and parameter value choices are valuable in provideigesal idea of where to
start with metaheuristic variables and values. In the next chapter, the model proposed in

this research is formalized and described in detail where it differs from natural systems.

2.8.Chapter Summary

The previous sections of this chapter situates this research precisely in the literature.
It is desired to develop a metaheuristic that solves a modified form of the NBVP that, unlike
the canonical NBVP, allows for tied preference weightergnoutcomes and more than
two possible outcomes. The problem is further relaxed to allow a limited amount of
information encoding and signal passing, specifically, information related to quorum size
and membership.

Significant use is made of the concepfspreference, utility, and tools from
decision theory as described (Doyle, 1992)in order to evaluate the goodness of the
consensus reached by the Honey Bee Consensus protocol. Unlike traditional DPS
solutions, the presented technique does not retjuiteeach agent use the same utility
function in its computation.

The implementation and analysis of the model allows inferences to be drawn about

relationships between parameters related to quorum sensing and network topologies
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influencing consensus. Ehwill have applications in behavioral sciences and network
sciences. It will also contribute to the ageniknted pattern literature by providing a
generalized quorum sensing pattern and associated considerations for its application. The
next chapter mvides the formal model upon which the implementation will be based.
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3. Formal Model of Honey Bee Consensus

In this section, following the Overvie®esignDetails (ODD) model specification
protocol (Grimm et al., 2006)the adaptation of agebised honey bee models to a general
purpose metaheuristic called Honey Bee Consensus (HBC) and the rationale for
corresponding design decisions is described in detail. In this description, the model actors
in HBC are referred to as fiagentbhasedmadeld t he
origins that inform the design decisions are referred to. Much of the content of this chapter
is an updated version of work previously publishe(Mentis & Yilmaz,2013)

3.1. Purpose
The purpose of the model is to create a madent system of voting agents that can
solve the NBVP, modified to accommodate more thandecsion valuesin a manner

similar to the way in which hondyees form consensus on a new nest site location.

3.2. State Variables and Scales

The model consists of three hierarchical levels: agent, population, and social
network. Agents encapsulate an identjfiar set of neighboring agents in the social
network; a set of preferences for the possible outcomes; a cupeettyreddecision
value (choice); a commitment duration remaining for the curreptbferred outcome; a
commitment decay (evaporation) ratan evaporation threshold, below which the
commitment duration triggers an agent to become uncommitted to any choice; and a
guorum size threshold that is used by uncommitted agents to determine a new choice to
which to commit. Agents also contailQaorumDda object that contains their current state
of belief about the global consensus progress as learned from their local neighbors.

The population provides the global aggregation of individual preference data for
the purposes of calculating the preferredconte if all agents had perfect, global
information about the preferences of their peers. The population also plays a role in
determining the global distribution of preferences during model initialization, as discussed

in section3.5.
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The social networkid ef i ned by t he set ofneighbdogses ¢
set. In other words, there is an edge in the social network between AgemiB if agent
B is a member of the set of agentsAimeighboror viceversa. In the model, the network
is an undiected graph so, for this example, ag&ntould be inB.neighborsand agenB
would be inA.neighbors The network structure will be maintained in a data structure
provided by the simulation framework.

These state variables and their relationships goetde in the UML diagram of
Figure 3.1

3.3. Process Overview and Scheduling

The model proceeds in simulation ticks. A simulatiick does not represent any
realworld time, it is simply a syncbnization barrier for agent activation. Agents are
activated in an asynchronous random manner, and agent actions are broken into two phases
at each simulation tick: a neighbor polling phase and a decay phase. At the beginning of
every simulation tick, angent is committed to one of the possidéxision values

In the neighbor polling phase, an agent asks for the quorum data from all of its
neighbors, but it only incorporates information from neighbors that it agrees with. This is
a positive feedback meahism similar to a honey bee seeing other bees when it visits the
site it prefers, as described in section 3.7.4.1 for committed agents.

In the second phase, the decay phase, the agents apply the decay function to their
remaining commitment duration asauplication of evaporation from section 3.7.4.3. This
is the systembébs negative feedback mechani
for a site over time. When the result of this evaporation falls below the evaporation
threshold and results sn agent becoming undecided, the agent follows the aggregation
rules for neutral agents, as described in section 3.7.4.1. This triggeobing of all
neighbors, but unlike in the first phase, the newly uncommitted agent takes into
consideration all oits neighbors quorums. Which neighbors the agent aligns its choices

with depend on if there is a unique quorum among its neighbors, in which case it aligns
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Figure3.1 UML class diagram of implementation.
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with the choice bthat quorum, or else it is probabilistic based on fithess proportionate
selection. In either case, the agent is guaranteed to become committed to one of the possible
outcomes, maintaining the loop invariant for the beginning of every simulationTtck.

clarify these interactions, UML activity diagrams and pseudocode for them are provided in

the following sections. Further details of the submodels are provided in section 3.7.4.

3.3.1. UML Activity Diagrams

Consensus Formation Metaheuristic

Agent Currently-Selected Neighbor

Get neighbor
quorum data

[yed

| Send copy of
1 quorum data

More neighborg®

[recievedQuorunthoice=

[na] agentchoicg

Merge received
guorum data with
agent quorum data

Neighbor Polling

Figure3.2 UML activity diagram for neighbor polling (positive feedback) phase.
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Consensus Formation Metaheuristic
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Decay
agentduration

R dzNJ quy X SORLRN

Decay all member
of agent quorum (nd]
data

Wﬁ
) ( Send copy of ]

I A2y ¢KNBaK2t R

Get nelghbor |
quorum data ) k quorum data
A

[yed

Merge received
More neighbors]  AUOTUM data with
temp copy of
guorum data for
same choice

ved Set agenguorum
to unique quorum
Set agenguorum
to fithess

[no] .
proportionate
selection

Unique quorurf?

of agentquorum
1

Set agenturation

based on

agentquorum.choice

[Decay all member

Add agent to
agentquorum

Set agenthoice to
agentquorum.choice

Figure3.3. UML activity diagram for decay/evaporation (negative feedback) phase

Decay

28



3.3.2.Pseudocode

Pseudocode for the agent actions at each simulation tick is as follows:

while tick | maxlterations
for each agent a: // update with positive feedback
for each neighbor n in a.neighbors
receivedQuorum = n.copyQuorumData()
if receivedQuorum.choice = a.choice :
merge receivedQuorum and a.quorum as fo llows:
perform the set union of their agent sets;
if an agent is in more than one Q.A keep the

largest d value for that agent

for each agent a: // apply decay function (negative feedback)
apply fgecay to a.duration
if a.duration _ evaporationThreshold :// become undecided
collect quorum objects from all neighbors, merging quorum
objects sharing the same choice, as above
if a unique merged quorum object meets the quorum threshold:
a.quoru m = unique merged quorum
else:
a.quorum = result of fitness proportionate selection
apply fgecay to all members of a.guorum
a.duration = finit (A.p aquorum.choice )

a.guorum.add(a)

a.choice = a.quorum. choice
else:
apply fgecay to all members of a.quorum

tick ++
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3.4. Design Concepts
3.4.1. Emergence

Consensus on one of the possible outcomes emerges as the ragdiiy their
commitments based on interactions with their neighbors and evaluation of propagated
information. Individual response to local information is entirely represented by
probabilistic rules. Fitnesseeking is therefore not modeled explicitiyycg an individual
cannot accurately evaluate the fitness of its own choice without global knowledge. Instead,
the probabilistic responses to local interactions drive the agent toward thétrolosice.

3.4.2. Sensing
Individuals are assumed to know their own preferences for each of the possible
outcomes, to which outcomes they are currently committed, and which agents are their

neighbors.

3.4.3. Interaction

Explicit interactionconsists of polling neighbors and receiving the quorum data in
response to the polls. Persuasion of neighbors is modeled implicitly by an agent refusing
to incorporate the preferences of a neighbor until the agent becomes uncommitted. The
agent whose comnment decays first, due to lower preference, becomes subject to the
persuasion of its neighbors whose commitments have not yet decayed below the

evaporation threshold.

3.4.4. Stochasticity

As is typical in metaheistic algorithms, stochastic behavior is an integral part of
this solution. It is used to determine the order of agent activation; the order in which the
decay function is applied to agents and their quorum data; and the uncommitted agent
choice alignmeninh the absence of a unique quorum, as described in section 3.7.4.1. All of

these random values are drawn from the uniform distribution; however, uncommitted agent
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preference alignment applies the random value probabilistically to perform a fitness

proporionate selection from among neighbor preferences.

3.4.5. Observation

For model anal ysi s, each runds model p a
weights for the possible outcomes, and the populdéieel aggrgation of preferences in
accordance with the reference voting protocols described in Chapter 4 are recorded. At the
end of the run, the number of simulation ticks executed, whether or not a consensus was

reached, and the consensus value agreed upon ljfape) are also recorded.

3.5. Initialization

The pseudoandom generation of agent preferenteperformed in two stages.
First, a target probability distributiom) for the outcomess generated from the
uniform distributior> Tip . This determingwhat probability eacbutcomehas of being
the preferred choice of an agent. For examplg, a of ¢0.16, 0.04, 0.09, 0.68, 0.83
would indicate that approximately 68% of the agents should agzritgomes their highest
preference, whereas approximately 3% should ag3igoome5 their highst preference.

In generalg random values in the interval (0, 1) that sum to 1 are desired, where
is the number of possible outcomes. As Smith & Tromble sha&df@4), however, it is
not possible to just choosevalues and normalize them by dividing by their sum, since
that introduces bias. Instead, following (N. A. Smith & Tromble, 2004), piityab
distribution are constructed as follows:

Samplew 8 o uniformly at random frompF8 Fp 1t Twithout replacement.

Let w mandw p m.TDefinen be the"@ value in the target probability
distribution. Thenn) ——H "® phB Rt . Division by 100 transforms the

integer preferences into percentages. If desired, the precision of the preferences could be
increased by using a larger value, e.g. 1,000 to get three decimalgflpecesision. This
algorithm has the limitation of not allowing any index of the distribution function to equal

0.00, but in the target problem space, this is exactly what is necessary. If any of the
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outcomes were to have 0% chance of being preferred lagemt, then it should not be
under consideration by the group.

Second, having obtained the target probability distributemoulette wheel
selection based on is usedto assigneach agent itpreferencegor each of the
outcomes Using the same method as the first step, a new pseudorandom probability
distribution is created representing all of the possible preferences an agent could have for
an outcome. These values represent the wei
versus the others, so they sum to 1, since the sum of these values captures all possible
outcome preferences. Again, zero values are not allowed since that woultchBviadf
a stubborn agent that refused to consider one of the outcomes, and that could lead to a
failure in consensus.These preference weights are sorted and iterated through from
largest to smallest, assigning them, in turn, to the outcome returrtbd byulette wheel
selection. Roulette wheel selection will return unassigned outcomes proportionate to their
probabilities inr) , SO it is most probable that the highest preference weights will be
assigned to the outcomes that are supptusbd the most popular.

This methodology allowthe pseudoandom gearation ofpreferences across all
agents that result in collective preference sets ¢hatyield winners, losers, and ties,
depending on the social rules by which tteeg evaluatedlt also allows that multiple
agents can prefer the same outcome despite different preference weights for that outcome.
Were the n distribution for preference assignmemit generatedthe uniformly
random agent preferences wobklistributed so uniformly that each of the options would
receiveapproximately equatiotal utility. Essentially, all choices would be edjyagood
and thus the efficacy of the algorithm for finding optimal solutions would not be evaluable.

3.6. Input
3.6.1. Social Network Topology

There are several classegyodiphs that have characteristics of particular interest in
the study of social networks. The NetworkX Python pacKaiggberg, Schult, & Swart,

2008)is used to generate random graphs from several classic graph classesEsuath &ss
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Rényi graphs and graphs that exhibit small world and power law characteristics. For this
research, it Iis the intent to test and com
types of graphs in order to derive generalizations about consemmegion in networks

that have these characteristics. It is expected that this information will be of interest to
researchers who focus on problems involving these topology classes. The social network

models studied are explained in detail in Chapter 4.

3.6.2. Quorum Size

The central mechanism of HBC is quorsensing; therefore, the impact of the
guorum size parameter on algorithm performance is of particular interest in this research,
both for developing guidelind&sor t hi s al gorithmdéds use in c
as well as for general applicability to solutions incorporating the qusemaing pattern.
For the classes of graphs just mentioned, it is of interest to determine if quorum size affects
successfukonsensus formation and, if so, how the quorum size should be adjusted to

successfully achieve consensus.
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3.7. Submodels

3.7.1. Model Parameters

The parameters listed Feble 3.1 have been incorporated into the model.

Table3.1 Model parameters.

Parameter

Description

Impact

Agent Count

Number of agents that
must reach consensus.

Higher numbers are expected to
make consensus harder to reach.

Quorum Size

The number of agents tha

Once a quorum is formed, it has thg

Threshold must agree in order to potential to force other agents to
reach a quorum. align themselves with its choice if it
is the only quorum, otherwise,
alignment is fitness proponate.
Decay Rate A value by which agent | Agent preference must decay to
commitment is decreased allow agents to become uncommitt
at each round. Can be andopen to compromise, either by
modified to select a decay being influenced by their neighbors
function, e.g., one that or, if a uniqgue quorum has formed,
produces a geometric by committing to
decay rate, if desired. choice.
Evaporation The value below whicharf When an agatehad s
Threshold agent 6s pr e flloweredits commitment below this
indicates non value, the agent becomes
commitment. uncommitted and open to persuasi
to different outcomes.
Network Allows the use of a This allows the use of different
Topology Type | various social network network topologies creedl externally

models.

to the model.

Random Seed

The seed for the PRNG
controlling agent
activation order and
stochastic actions.

Randomizes initial states and
behavior on multiple runs.

3.7.2. Metaheuristic Foundation

Fundamentally, distributed decision making is viewed as an optimization problem
in which the aim is to decide on a value that maximizes the collective utility of all the
agents in the group. In the case of honey bees, they are seeking the tiestisiperceived

by the collective to be the best of several possible choices.
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As described previously, honey bees arrive at their nest site decision through a
process that comprises a mix of independent site evaluation and influence from peer
opiniors. Several features of the Particle Swarm Optimization (PSO) metaheuristic
(Kennedy & Eberhart, 1995re recognized that are similar to the honey bee decision
making process or that provide a solution to some of the problems that must be solved by
HBC. Although the PSO metaheuristic is designed for optimizing continuoubnean
functions, which is different from the con
interaction within a neighborhood of peers in a connected network; stochasticity, @hd soci
(external) and cognitive (internal) influences; and iterabiaged termination conditions
are useful for consensus purposes.

In PSO each particle has a current location in the solution space (analogous to a
decision in the consensus problem) and ivesato new locations (decisions) by combining
information it knows about its preferences with those of its neighbors. Similarly,
uncommitted bees obtain information from their dancing neighbors that push the
uncommitted bees toward a decision. This impineg HBC must define a neighborhood
of peers for each agent and provide a way to share preferences. The original PSO
description called for all of the particles to be fully interconnected in a mesh topology, and
it is also common in the PSO literature floe particles to be connected in a ring topology;
however, neither of these topologies is particularly realistic for bee colonies or the potential
application areas. Instead, the idea of connecting agents to a neighborhood of peers is
retained, but the me&ork topology is made to be a configurable parameter and allows more
natural topologies such as random, séede, and hierarchical network topologies. As in
PSO, however, at each iteration of HBC, each agent polls all of its neighbors for influence.

The influence of stochasticity, and social (external) and cognitive (internal) factors
drives how each particle in PSO responds to the influences it receives from its neighbors.
Similar forces are used, explained in the Agent Attributes and Stigmergic i@uoru
Detection sections, to direct how agents with expired commitments determine a decision

for recommitment.
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Finally, the common technique of iteratibased termination, in which particles
continuously refine their best values up to a certain numberrafides, is also a feature
for adaptation. Bees use a piping signal that, upon reaching a certain threshold, causes the
bees to take flight, effectively terminating the decision making process. Unfortunately,
implementing this requires some sort of glopatcessible variable, which is undesirable
in applications for distributed systems, or a broadcast propagation that would be time and
message intensive. Instead, a configurable parameter is used to limit the time the system is
allowed to attempt to readonsensus. The factors that influence the number of iterations

required to routinely reach a consensus is then determined.

3.7.3. Agent Attributes

As described, when bees in nature start their search, all eofs¢buts are
uncommitted; only some of them find potential nest sites and become committed scouts.
The adaptation to Honey Bee Consensus must differ here, since it operates under the
assumption that all agents in the system have a preferred course ofadhe start of
deliberations. The first attribute of the agents is defined as a set of fixed values representing

the preference weights for each of thepossible outcomes:

[ nmBm

wheren is the preference weight for tf@h decision option.

The weight of each preference is used to calculate the duration for which the agent
will remain committed to a decision before reconsiderisgpisition. This is done by
applying a functionQ that translates a preference weight into an integer representing the
number of iterations to maintain commitment. In the simplest case, the preference weights
are limited to integer values andad directly, but using a function allows the weight
representation and translation operations to be easily as desired.

Agentibs i ni ti al c¢ onmsihenmet bytapplgingr #otthe largest

value in ||

36



Q Qi NIA @
The commitment of a scout to its chosen site wanes over time, so each agent needs an
evaporation parametex, which is applied td\ at timeo by some decay functici®

such that:

The details of this decay function in HBC are subject to future experimentation, but
observed bee behavior suggests that it should be linear, on a(®eaigy, 2003; Seeley
& Buhrman, 1999)Thefollowing is an example for the decay function:

Q Q tp |

wherg p | andm | p.

WhenQ T, the scout becomes uncommitted and seeks a new decision to which
to commit, as described later in the section on Stigmé&)gorum Detection. For now, it
is only important to note that the agent could recommit to the same preference for which
its commitment just expired, or it could change to a different preference because, unlike
the initial decision value, recommitments anfluenced by neighbor preferences and
aggregated quorum information. This is different than the way natural bees act, since most
bees will not change allegiances once their enthusiasm for their chosen sites expires;
however, the process retains similatio the way bees that have never found a site base
their exploration of new sites upon neighbor (social) information, but evaluate the quality
of the new site upon internal (cognitive) information as emphasizgdgksiret al., 2009)

This repetitive ppcess of commitment decaying to rommmitment provides the
mechanism required for the expiration of dissent that is important in preventing deadlock

in the decision making proce¢Rassino & Seeley, 2006}t also provides a way to
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artificiaildfyorcmeedadt eagiaamt s i n a popul ation
with personal preferences for each decision. This injection of uninformedness is desirable
because recent research has suggested that the presence of uninformed agents is an
important compnent to swarm decision making in natural syst@@mizin et al., 2011)

3.7.4. Stigmergic Quorum Detection
Bees not only advertise a preferred site, but they visit it periodically. This is a form
of stigmergy in that the number of bees present at a candidate site informs a visiting bee
about how widespread the preference for the site is throughout the swarm. That is to say,
while one bee might not have seen a second bee dancing at the swarmt, biee foan
infer the second beeds commitment to a can
The stigmergic data is important for an agent to be able to detect a quorum among
distributed agents throughout the hive and detect the convergence to a carseRRC
uses the stigmergy design patt¢Babaoglu et al., 2006p adapt bee behavior to agent
behavior. In the absence of a globally accessible variable or mobile agents, this information
must be propagated through the network somehow. In engingettedhs this is usually
achieved through message passing between network (Batesoglu et al., 2006y arious
agentbased design patterns for system communication and distributed coordination agree
that this communication typically consists of aggregatwopagation, and evaporation of
the relevant datéBabaoglu et al., 2006; Tom De Wolf & Holvoet, 2006; Gardelli et al.,
2007; Gatti et al., 2009; Kasinger et al., 2009)
The relevant data for quorum detection is encapsulate@umoaum Dataobject,
0, that contains the identifier of the candidate choice it encapsulats] a set of agents
that are known by thiQuorum Datao bj ect t o prefer its choi cc¢

remaining commitment duration for the choibecan be represented as

0 avo

ando as
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This object is the message to be passed in the implementation of the stigmergy

pattern and supports aggregation, propagation, and evaporation as follows:

3.7.4.1. Aggregation

Aggregation occurs when an agent adds itself to the set of agents contained in the
object. There are two possibilities here: the receiving agent is either committed to a choice
or it is neutral. It will be explain how an agentbmes neutral shortly.

If a committed agent receives a@yorum Dataobjects from its neighbors for the
candidate choice it prefers, it performs a set union on the agent member sets and adds itself
to the resultant set of agents in the object along with remaining duration of its
commitmentA . In the process of the set union the commitment durations of all agents are
updated to the most current value. Thus, when an agent recé€ueswam Dataobject for
a site it prefers and views tset of agents it contains, it is analogous to a bee visiting its
preferred site and observing the other bees that are visiting it. If the agent was already a
member of the set, it updates its associated commitment duration with its current value for
that dhoice. Committed scout bees do not visit sites to which they are not committed, so
they do not have visibility of quorum data for Rpreferred sites; therefore, committed
agents simply ignor®uorum Dataobjects for sites they do not prefer.

A neutral agnt, on the other hand, is uncommitted. An uncommitted agent
considers the quorum data of all of its neighbors. If, after combining all of the received
guorum data, it detects a unigQeiorum Dataobject that has accumulated a quorum (i.e.
sufficient numbe) of agents in its membership set, defined by a model parameter, the agent
will commit to that option¢s, at the level determined B 1 - . This behavior is meant
to simulate t he r(8ezleyiepat, 20dBsseatialiy ®rcimy@n agentg n a |
to join the quorum. On the other hand, if there is no unique quorum, the agent must become

committed to one of the decision options before joiniiuarum Dateobject. Following
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the findings concerning dance selection (Misscher & Camazine, 1999and the
relationship between independence and interdependeritesiret al., 2009) the agent

makes this commitment probabilistically based on the number of neighboring agents that
prefer a decision using fitness proportionatectela, for example, tournament or roulette
wheel selection. The agent then commits to that optoat, the level determined Ky

n-) and behaves as committed to the selected decision until its enthusiasm expires and the

process reyats.

3.7.4.2. Propagation

Propagation of quorum data occurs when an agent is polled for its opinion by a
neighboring agent. In response to the polling, an agent will return a §uogleim Data
object appropriatto its preferences, created from the aggregation of the last@abaim

Data objects it created from the polling of its neighbors.

3.7.4.3. Evaporation

Evaporation in ®uorum Dateobject is related to the almentioned commitment
duration associated with each agent inQuerum Datastructure. The length of time a bee
remains committed to and dances for a preferred site is based upon the perceived quality
of the site(Seeley & Buhrman, 1999Because bees pedically revisit the site to which
they are committed, this value also factors into the number of times the bee returns to the
preferred site and its likelihood of being perceived by other agents as a member of the
quorum for it. In other words, an agestiould remain a member of tiiguorum Data
objects it has joined and that are being propagated through the network only about as long
as the agent is committed to the sites contained by thoseum Dataobjects. This can

be approximated by applyif®  to the valueA associated with each agedt 0 & at
each iteration and refreshirf@ with the current value every time an agent receives a

Quorum Dateobject in which it is already a member.
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3.8. Chapter Summary

In this chapterthe Honey Bee Consensus model has been described following the
ODD template.The observed behavior of honey bées been mapped Honey Bee
Consensusules, especially with regard to information progamabetween neighbors and
reaction to quorum formatioit.has #sobeendescribed how the aggregation, propagation,
and evaporation patterns are applied to replicate the stigmergic effects achieved through
the mobility of bees in natural environmentsthie next chapter, the methoasbeusel
to implement and evaluate tperformance of Honey Bee Consensus is explained
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4. Evaluation Methodology and Experiment Design
4.1 Overview

In this chapter, the experiments conducted with HBC to determine its feasibility for
use in distributed negotiation and consensus formation are explained. The experiments

were designed to answer the following research quresti

1. How well does HBC work, overall, for achieving sociatigtimal consensus in
commonlystudied social network models? The performance metrics in this
regard are whether or not a consensus is reached in the allotted number of
negotiation rounds, the mber of negotiation rounds required to reach
consensus, and the social utility of the resulting consensus.

2. Does the quorum size parameter have a significant impact on the speed of
distributed consensus formation in HBC, and, if so, how does the choice of
guorum size value affect the balance and tradeoffs between successful
consensus formation, the number of negotiation rounds required to reach
consensus, and the quality of the final consensus as measured by its social
utility?

3. How does the social network el and topology affect the performance of
HBC?

4.2 Methodology
4.2.1 Evaluating the Overall Performance of Honey Bee Consensus

Toeval uate HBCOs performance an algorith
presented and compared to the time complexity analyses of established techniques for
di stributed consensus negotiation ov-er two
case prformance with respect to negotiation rounds required to attempt to reach consensus
and allows the practicality of using the compared methods for solving the Networked
Biased Voter and Majority Coordination problems to be determined.
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As discussed in Chégr 2, however, one of the key benefits of HBC over other
techniques is its ability to negotiate consensus from among more than two possible choices
in addition to considering the agentsod wei
research has fmsed not on competing with twiutcome distributed consensus
techniques, but on gathering empirical performance data for HBC on problems with more
than two possible choices on a variety of social network topologies.

General trends in network topologfeée ct s on HBCOGs perfor man
with respect to speed, accuracy, and failure rates. Performance metrics were measured for
all trials performed on a given social network model at the same population size and
combined, regardless of the parametessduto construct the individual random graphs.
Using this data, the average number of ticks to consensus (discarding the outlier cases
where the metaheuristic failed to achieve consensus in the allotted time); the percentage of
times a given topology regatl in the desired outcome, given that a consensus was reached
in the allotted time; and the percentage of times the topology failed, either because it
resulted in an undesired consensus or failed to reach consensus at all, were plotted, each
with 95% conidence intervals.

Since all of the underlying social networks for these plots were created using
different model parameters, this data view provided insight about how HBC performed on
a given social network model in general, regardless of the specifimptars chosen for
the model. In particular, trends in the plots of the performance metrics versus the quorum
size were examined, since one of the research objectives was to be able to provide quorum
size parameter guidance for the quorum sensing desitgrparhe confidence intervals
allowed determination of the statistical significance of performance differences at the
tested quorum size thresholds and examine the variance in performance for different social
network topologies. As HBC yields heuristasults, the confidence intervals also allowed
inference of the expected performance of the technique for a given class of social networks.

These evaluations necessitated that an appropriate set of models be selected to
construct the social networks andtl way to determine the correct, or desired, consensus

result, given the initial preferences and weighted biases of the social network members, be
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defined. The decisions and rationale for these choices are explained in the next two

sections.

4.2.1.1 Social Network Models

The social network models upon which the experiments were ran were the Watts
StrogatzWatts & Strogatz, 1998BarabasiAlbert (Barabasi & Albert, 1999) and- Er dRs
Rényi(Erdos & Réni, 1959; Gilbert, 1959)nodels due to their common use in the study
of social and complex network$&trogatz, 2001)Each of these models provides an
algorithm for randomly generating networks with short average path lengths, also known
as fH-wma | dworksnhowever, they result in different connectivity structures with
respect to the degree distribution of the nodes and/or the clustering coefiameanal,

Scala, Barthélémy, & Stanley, 2000; Porter, 208pkecifically, the WattStrogatz model

yields networks with normal degree distribution and high clustering coefficients, the
BarabasiAlbert model yields scalree networks (networks in which the degree

di stribution f ol l owsRéryimpdelwields rahdammnetworkswitth t h e
clustering coefficients that are related to the number of edges in the network. By comparing
HBC6s performance on each of these topol og
characteristics that appear in naturadlycurring social networks do or do noflirence

consensus formation can be determined.

The Python NetworkX librarfHagberg et al., 2008)as used to create the random
networks with a variety of parameter values, as described in the Experiment Design section.
The library was also used to ensthiat each randomigenerated network was connected
(i.e., that there was at least one path between any two nodes of the network), since this
property is required to ensure consensus. Each of the social network models uses different
parameters to guide iteandom construction of a social network with the desired
characteristics. Generally speaking, the models are configured by parameters and rules that
determine the number of nodes in the network, the number of edges in the network, and
the probability of stablishing an edge between two nodes. Helzief overview of these

well-known models is provided.
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E r dREsyi Model

T h e ERejiRmdel may refer to either of two model variants for constructing
random graphs: thé(n, M) model or the5(n, p) model(West, 2001)In both models, the
parametenindicates the number of nodes in the graph.GfmM) model yields a random
graph from the set of all graphs wittnodes and! edges. Th&(n, p) model, on the other
hand, connects every pair of nodes with a fixed probalplitifor the purposes of this
research, th&(n, M) model was primarily used becaube ability to specify the number
of edges in the network all owed f®Rényia mor e
random graphs and those created with the \A&ittsgatz model, which also produces
social networks with a fixed number of edges. As desd in the section on the Watts
Strogatz model, it can easily be used to ye(d, M)-s t y | e-RéRy rdnBasn networks
by fixing the rewiring parameter. The only exception to this was the usage G{rthp)
model for the random networks of 200 agesgisking consensus from two outcomes. This
variation all owed testi ng -RéBiCahdom graphsfwithr ma n c

varying edge counts in a single trial group.

Watts Strogatz Model

The WattsStrogatz model provides a way to algorithmigailteate a family of
social networks that have a small average path length and high clustering coefficient. It is
constructed by connecting each node on the circumference of a ring Koet@rest
neighbors. Then, each edge in the network is removed witform, independent
probabilitypand fArewiredo to connect a p@®aorter, of no
2012) Figure4.1 depicts an example starting network constructed ke and what the

network might look like after four random-vérings.
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(a) A .v—\._"' ; (b)

Figure 4.1 Starting graph for WattStrogatz model witlk = 6 (a) and after 4 random-re
wirings (b)(Porter, 2012)
For this model, ag © p the clustering coefficient approaches zero as the number

of nodeg © Ho Atr) p, the resulting structure is the equivalent of a network constructed

with theG(n,M) v ar i a n t-Rényi modeh wherié r diR(Porter, 2012)

BarabasiAlbert Model

The BarabasAlbert model decides the existing nodes to which new nodeddshou
connect using preferential attachrm@modes with a high number of neighbors are more
likely to be connected to a new node than those with low numbers of neighbors. The
parameter that affects this choicariswhich dictates the initial number of (unceated)
nodes in the starting graph and also the number of new, preferentially attached edges added
with each additional node, up to thth node. The result of this model is a network in
which the nodal degree distribution follows a power law where ttrera amall number
of nodes with high degree and a small number with very low degree. This approximates
the condition in social networks where there are a small number of very popular or

influential individuals, but most individuals only have a fairly snwdhl community.

4.2.1.2 Evaluation Metrics
As discussed in the literature review, the rationality of an outcome can be judged
in different ways. FollowindgEndriss et al., 2006)n this research outcomare evaluated

with respect to the resultant social welfare of the artificial rag@nt society. A number
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of possible social welfare metrics are presentg@rams & Fishburn, 2002; Chevaleyre
et al., 2006; Shoham & LeyteBrown, 2009; Taylor, 2008; Wadridge, 2009) plurality
voting, Borda veing, andrange wting are the three used in the presentation of these results.
Since each of these voting protocols can yield a different winning result under the
same conditions, there is no definitive wayetiablish one method as more correct than
any of the others. In light of this, the desired consensus, with respect to social utility, is
defined to be that consensus which would agree with the results of the majority of these
three voting protocols for aivgen preference initialization. The remainder of this section
consists of a description of each voting protocol used as evaluation metrics and an example
illustrating how they can yield different winners under the same conditions. One difference
is noted n the application of these voting protocols in that in HBC the agents are allowed
to rank options equally if they both have the same utility. Allowing ties departs from what
is tradtionally allowed in Borda and rang®ting where each outcome must be gssd a
distinct ranking; however, this rule is not enforced due to the differences in the goal of
voting, in which one is trying to determine a definitive winner, and consensus formation,
in which one is concerned with determining any acceptable outcomglo$ocial utility

and, therefore, where ties are not a problem.

Plurality Voting

In plurality voting, each decision maker casts a vote for their top choice. The choice
that receives the most votes wins. In this data collection, tied choices adecedsiqually
good; therefore, if HBC picks any of the tied choices we consider it to have picked an
acceptable outcome with respect to plurality voting.

An interesting case with plurality voting is that the result may not yield the highest
utility for the collective because it does not take into account any of the individual
preference weights for the outcomes, it gives full weight only to the top choice. Consider
the weighted voter preferencesTiable 4.1 In this example, Candidate A would win the

election in plurality voting because it is the first choice of Voters A and B. By some
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measures, however, Candidate B would yield a higher collective utility because that
candidate is relatively acceptable to Voters A and B while being much more acceptable to

Voter C than Candidate A. The next two methods attempt to address this apparent paradox.

Table4.1 Example of voters with weighted preferences.

Candidate A | Candidate B | Candidate C
Voter A 0.50 0.40 0.10
Voter B 0.40 0.35 0.25
Voter C 0.05 0.60 0.35

Borda Voting

In Borda voting, each voter rank orders all of the candidates. Each rank is given a
fixed weight. The accumulated weights for each candidate are summed, and the candidate
with the highest weighting wins. Usimgprda voting with the preference weightsTiable

would result in the weightings shownTiable 4.2

Table 4.2 The Borda weights resulting from the preference weighitabie 4.1

Candidate A | Candidate B | Candidate C
Voter A 3 2 1
Voter B 3 2 1
Voter C 1 3 2
Sum 7 7 4

In this particular case, it can be seen that Candidates A and B would be tied. This results
in better representati on o fakeMmotaecount@dies pr e f
Cbs |l arge relative preference for Candidat

incorporated with the next voting protocol.
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Range Voting

The reason Borda voting results in a tie between Candidates A and B is because,

even though the ranks are weighted, the weighted difference in preferences between

outcomes is ignored. With range voting, all candidates are rank ordered, just as in Borda

voting, but each candidate receives a weight, chosen by the voter, within a spacdied

In HBC, weights between 1 and 99 are assigned, corresponding to the preference value, so

the preference weights able 4.1lresult in the range voting resultsTiable 4.3

Table4.3 The range voting weights resuljifrom the preference weightsTable 4.1

Candidate A | Candidate B | Candidate C
Voter A 50 40 10
Voter B 40 35 25
Voter C 5 60 35
Average 31.67 45 21.67

As shown, the weights are averaged to get the final result, showing that Candidate B is the

mostacceptable to all voters when considering global preferences and relative weights.

4.2.2 Determining the Impact of the Quorum Size Parameter

To determine whetherornottheu or um si z e

has

a

signific

to consensus metric, and to discover any confounding effects on consensus speed from the

social networkmodel parameters, the Minitab Statisticaft®are packag€'Minitab 17

Statistical Software," 2010@yas used to perform analyses of variance (ANOVA) setting

simulation tickgi.e., negotiation rounds) as the response variablgaodim sizeand the

applicable social network model parameters as the independent variables defined by factors

in the ANOVA malel. The ANOVA analysis was performed for each class of social

network, combined across all tested network sizes to allow the analysis to be valid for

describing the significance of factor impacts on social networks of the class in general.

Since the posBle values for quorum size and model parameters are limited in range by the

size of the social network, the factor levels were normalized across different sized networks
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of the same class by considering the factor levels in ranges determined by peroentage
the social network population. These ranges were labeled low, medium, and high and these

ranges are defined in Appendix A.

4.2.3 Determining the Impact of the Social Network Model

The previously described ANOVAs examine factor impacts within a particular
social network model. To determine the impact of the individual social network models on
HBC6s consensus formation, additional ANOV
data for different network models of similar population sizes. Since different social
network models use different parameters in network construction, the only factors that

could be examined in these ANOVAs were model type and quorum size.

4.2.4 Verification and Validation

The correctness of simulations based on a model is usually described in terms of
verification and validation. Verification is the process of ensuring the model is
implemented correlst with respect to its specificatiof¥ilmaz, 2006) in other words,
whet her or not one i(Balcifilb86)iValidation ig the pnoeessmob d e |
ensuring the model produces results accurate enough to serve its intended(Ropede
G.Srgent,1996) I n this case, ensuri(@Bgci,©86¢ has @b
A model 6s validity is considered relative
its response accuracy. For the proposed research, the intended purposearfehis to
allow distributed, autonomous agents to reach a desired consensus in a decentralized, self
organizing way. The creation of the right model can be validated if it produces the expected
result with sufficient degree of accuracy. The definitondie Aopt i mal 0 r es u!
is variable, as is the minimum frequency of consensus formation needed to declare success.

In (Tan, 2010)the optimal result of the NBVP is the result held by the majority of
the voters at the beginning of the deliberatiobut the canonical NBVP only considers
two possibledecision valuesAs it has been shown, additional possibéeision values

create a condition where the optimal choice can be defined differently than just the majority
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opinion. In these experimentsetllesired consensus result is considered to be one that
agrees with a majority of the three centralized social cho@eguls mentioned in section
4.21.2, and any case that results in a consensus that is not in the majority result returned
by the socialwelfare metrics, including cases where the metaheuristic fails to reach a
consensus in the allotted time, is considered an undesirable result. Based on these
definitions, comparison to other models is being used, as descrifiedbart G Sargent,

2005) as the validation technique.

Similarly, it is not specified how frequently an appropriate outcome must be chosen
in order for the algorithm to be considered successful because, as observed by Dréo et al.
(2006) there is no straightforward way to compéerative optimization methods; the
quality of the result is often dependent upon the length of time the algorithm is allowed to
run, which can be freely chosen by the user, and the runtime characteristics of
metaheuristics are strongly tied to the choparameter values. Instead, the goal is to
characterize how frequently the algorithm results in consensus, given a specific amount of
allotted negotiation rounds, for different experimental conditions such as network
topology, number of voters, and quorumesin order to allow those implementing the
algorithm to engineer its performance in accordance with their needs. As a general
benchmark, however, it is clear that a success ratio at least significantly greatexthan 1/
wherex is the number of choicesould be desired, since a value close toviduld be
expected to be obtained by random chance.

With regard to verification, it must be ensured that the entities, processes, and
associated constraints and assumptions of the programmed model are an accurate
realization of the proposed design. This can be achieved with model analysis and testing.
Model analysis is a static analysis of the software to predict control andlaata
properties of interest. Model testing is achieved by subjecting the implerpantiatiest
cases for which the expected result in known and comparing the actual output to the
expected outputyilmaz, 2006)

Prior to conducting experiments with HBC, validation and verification was

performed by repeatedly running HBC on trial netwaakd preference distributions and
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using the simulation frameworkoés visualiz
negotiation and consensus formation in the network. A histogram of the number of agents
preferring each possible outcome providedsaal indication of the preference distribution

upon initialization and as the simulation progressed to completion. -Cadiong of the

agents in the network visualization showed which agents preferred which outcomes at
different times. Observation of thesisualizations provided face validation that HBC was
performing as intended. Comparison of the initial preference distribution to the resulting
consensus, as shown in FiguWe, allowed verification that the expected result was
routinely returned, eithhdoy way of returning the clear majority winner or, in some cases,
forming consensus for an option that was a close rummemdicating the return of a

consensusHely to be favored by Borda oamgevoting.

P00 wFeOONGARAER - R Tk Court: 240
- o o| T 0 x| oo -odx||

Agent Choices Agent Choices

Figure4.2. Histogram and network visualization showing initial and final agent
preferences and distribution. In this run, the clear majority preference at initializati
chosen by all agents after only 84 negotiation rounds.

4.3 Experiment Design

Honey Bee Consensus was evaluated on social networks ofesjzal to 25, 200,
and 1,000 agents. These values were chosen in order to provide a sample of network sizes
that spanned several orders of magnitude so thaifisent differences could be detected
as the network size grew and to test the scalability of the technique. For each network size,
a set of random social networks was produced using the three aforementioned models.

Some of the model parameters are bodraethe number of nodes in the network (e.g.:
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neighbors per node in WatBirogatz and number of initiagonnected nodes in Barabasi
Albert), therefore, for these parameters, values from a predefined range of low, medium,
and high values from betweerathdn/2 were chosen. These range definitions are provided
in Appendix A.

Choosing parameters for the rewiring probability parameigin the Watts
Strogatz models was less straightforward. Initial sensitivity tests showed tmat 200
and k = 20, p values in the range [0, 1] at steps of 0.1 produced almost identical
metaheuristic performance fgr 7. It was determined that the cause of this was the
fact that thes@ values did not yield social networks with a sufficiently diverse range of
diametes for producing different results. In order to remedy this, values faere
generated in the range (0, 1] such that each network at a lgivane had a different
diameter. The valup = 0 was excluded, since, by the We&itsogatz model, this would
realt in ak-regular largeworld ring network different than the structures to be studied.
WattsStrogatz models generated wgle 1 s i mp | yRéryiirandooh graphsdik s
accordance -Rényi @B, N)Iimedel o thifvgas the technique used to create
t h e -Reéndi Rael social networks. Appendix A contains a comprehensive table of the
social network parameter configions used in experiments.

As indicated by the research questions, the effects of the quorum size parameter
value was of particular interest. By definition, a quorum size greatentBarpresents a
simple majority, but it is desired to achieve conssnwith considerably less global
knowledge; therefore, testing of quorum size values was limited to those less than or equal
to half of the social network population. In the cases of population sizes 50 and 200,
guorum sizes were tested in increments biUb as the size of the population reached 1,000
this became infeasible due to the time required to run many random trials, so quorum sizes
in increments of 25 were used for these trials.

Experimenting with common random numbers, for a given network3fzeets of
random preference weight configurations were used, and these preference weights were
initialized to the same network locations, with the same neighbors, for each of the random

social network models created of that network size, as listed ienflpp A. Using the
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metaheuristic, trials were run on each of these 30 configurations for each of the social
network configurations for every quorum level, giving a totalofit £ 6 & Q0 0 € i Qi
€006 €106 QL @ials foreach of the social network model and population size
combinations. The results from these trials were used to calculate the average performance
and variance of the metaheuristic over a range of social network modeilovesr i@t each
guorum size level.

For all of the experiments, the evaporation rate and evaporation threshold were
maintained as control variables. While these variables guide the propagation of consensus
through the social network, initial sensitivity tests suggested that they did not have a
significant impact on the results when the values were the same for all agents, and adding
experimentation levels would have added independent variable complexity in excess of
that required for the scope of this research. Further exploration of the smgdatiese

parameters is proposed as future work, however.

4.4. Chapter Summary

This chapter has described the social network topological conditions under which
HBCOs performance was te é¢valuhte that pedanmnthnce. fileas cr i t
been explained how the parameter values for the metaheuristic model, described in the
previous chapter, were chosen and how the experimental design was structured for the
simulation trials in order to answer the resbajuestions regarding the performance of the
metaheuristicTable 4.4 provides a summary of the design variafilae. next chapter

presents the results of these experiments.
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Table4.4. Summary of experiment design variables

Dependent Variables

Negotiation Rounds
(Simulation Ticks)

The number of rounds of negotiation required to reach a
consensus.

Percent Desired
Outcome Returned
Given Consensus
Reached

The percentage of trials resulting in a consensus in accof
with themajority of the reference voting protocols, given t
a consensus was returned.

Percent Desired
Outcome Returned
Overall

The percentage of trials resulting in a consensus in accof
with the majority of the reference voting protocols out of &
attemptsjncluding failures.

Independent Variables

Quorum Size

The number of agents that must agree on an outcome
preference to form a quorum that drives undecided agent
go along with their preference.

Population Sizen)

The number of agents in the sociatwork.

Social Network Model

The model used to generate the random social networks
(WattsStrogatz, Barabagh | ber t ,-Réayw). Er d K

Social Network Model
Parameters

The modelspecific parameters controlling random variabi
(e.g.:p andk in WattsStrogatz omin BarabasiAlbert).

Pseudorandom numbel
generation seed.

The seed for the pseudorandom number generator that
determines the initial preference distributions and the
stochastic agent choices in each negotiation round.

Control Variables

Evaporation Rate

Therate atwhichrm agent 6s preferen
currentlypreferred outcome decays toward zero.

Evaporation Threshold

The preference level below which an agent becomes
undecided.

Maximum Negotiation
Rounds

The number of rounds of negotiation allowed before algr|
the simulation.
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5. Experiment Results
5.1 Overview

This chapter presents the results of the experiments conducted. As described in
Chapter 4, a full factorial experimentsign was used to evaluate HBC performance in
terms of speed to consensus, the percentage of desired outcomes when consensus was
reached, and the percentage of failed outcomes out of all the trials with respect to quorum
size, population size, social netihomodel, and 30 pseudorandom number generator
(PRNG) seeds. The experiment design matrix is given in TableQuorum sizes and
social network parameters limited by the population size are divided into low, medium,
and high ranges, as detailed in Appendijxo allow comparison across trials of different

population sizes.

Table5.1. Factorial design matrix.

Factor Levels SubFactor Levels
PRNG Seed 0-29
Population Size 50, 200, 1000 K
Low, Med, P

Quorum Size

High

| \é\{?;tgsay_ h?m;] Med, Low Med, 7////////////
o o ///////////// ///////////////

Experiment results empirically show that HBC performs significantly better than

chance at yielding a socially deslreonsensus from among two or five possible outcomes
on all three of the social network models tested for population sizes ranging from 50 to
1,000. It is also found that the quorum size parameter has a significant impact on the
number of negotiation rousdequired to reach the desired consensus in all of the social
network models. The number of negotiation rounds does not appear to be significantly

impacted by the social network model for small populations, but differences in this metric
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become more pronmced as the population size increases. The plots of the performance

data are presented in the remainder of this chapter.

5.2 Honey Bee Consensus Performance Results

Thefirstmetricusett 0 eval uate HBCG6s performance w
rounds required to reach a consensus, which is the equivalent of the number of simulation
ticks required to reach consensus. Figé& through 5.3contain the plots of the average
number of negmation rounds, with 95% confidence intervals, required for reaching
consensus versus the quorum size parameter value for each of the social network sizes and

models over five choices of outcome.
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Figure5.1. The $% confidence interval plots for average negotiation rounds to con
for all social networkmodels of populatiosize50.
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Figure 5.2 The 95% confidence interval plots for average negotiation rounds to
consenas for all social network models of population size 200.
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Figure 5.3 The 95% confidence interval plots for average negotiation rounds to
consensus for all social network models of population size 1,000.
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These plotshow that, regardless of the social network model and population size,
there is at least one quorum size for each that can be reliably expected to yield consensus
in a reasonable number of rounds of negotiation. It is observed that extremely small quorum
sizes, relative to the total population size, require significantly more negotiation rounds
than larger quorum size values to reach consensus. It is also apparent that the smallest
numbers of rounds required to reach consensus tend to cluster around gzerueiues
slightly greater than one quarter of the total population size. Finally, the general shapes of
the plots often exhibit similar characteristics across different social network models. For
instance, the shapes of all of the plots rior 50 are sikingly similar, and, while the
similarities become less pronounced as the population size increases, similarities are still
noted, such as the performance plateau between quorum size values of 20 and 35 in the
networks of population size 200 and the kseat quorum size values of 200 and 350 in
Watts Strogatz and Barabasibert netvorks of population size 1,000.

While speed to consensus is an important performance metric, the plots irsFigure
5.1 through 5.3are too generous in that they show the nunabenegotiation rounds to
reachanyconsensus, regardless of whether or not it is the desired consensus as defined in
Chapter 4. Figue5.4 through 5.@ontain the plots showing the percentage of trials, with
95% confidence intervals, in which the firmnsensus reached is a desired consensus
versus the quorum size parameter value for cases in which HBC terminates in the allotted
time.

The plots in Figur&.4 through 5.68how that the percentage of consensuses reached
in accord with the desired outcormereases as the population size increases. It is also
observed that, when there is a statistical significance between the results at each quorum
size, the best consensuses are obtained by the smallest quorum sizes, and the range of
guorum sizes yielding aigh percentage of desirable outcomes increases with the
population size. This performance is in contrast with the results in Bigdrthrough 5.3
where the smallest quorum sizes produced the worst results in terms of the number of

negotiation rounds.
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Figure5.5. The $% confidence interval plots for

percentage of success in achievin

desired consensus for all social network and manfgi®pulation size 200
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Figure5.6. The 95% confidence interval plots for percentage of sedneschieving
desired consensus for all social network and manfgé®pulation size 1,000

As explained in Chapter 4, the plots in Figuseisthrough 5.6consider only those
cases in which a consensus was ultimately reached. Trials that exceedsakimeim
number of negotiation rounds are not included. Itis logical to consider these excluded cases
as failures, even though they might have ultimately reached a consensus if allowed to
continue. Plotting the percentage of trials, with 95% confideneevialts, in which either

no consensus or a naesired consensus is reached versus the quorum size parameter

value, the results shown lgures 5.7 through 5.9 are obtained.
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Figure5.7. The 95% confidence intervalgps for percentage of failure in achieving any
consensus or the desired consensualf@ocial network modelsf population size 50
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Figure5.8 The 95% confidence interval plots for percentage of failure in aolgiewny
consensus or the desired consensualf@ocial network modelsf population size 200
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Figure5.9. The 95% confidence interval plots for percentage of failure in achieving
consensus or the desired camsasgs for social network moded$ population size 1,000

In the cases where all trials for a given quorum size parameter terminated with some
consensus, these plots are simply the opposite of those ingbgtiterough 5.6however,
the results in Figres 5.7 through 5.8ontain the additional information of runs that
exceeded the allotted number of negotiation rounds. As opposed to the results from Figure
5.4 through 5.6where the best results were obtained at the smallest quorum sizes, in
Figures 5.7 through 5.8he smallest percentages of failures, when considering trials that
exceeded the allotted time, are observed at generally larger quorum sizes.

From these plots, it can also be seen that each social network model and population
size has a ragye of quorum sizes for which the success rate of HBC is significantly higher
than that which would be expected by rando
for the assigned task. It remains to determine how to select a quorum size that results in

both effective and feasible performance, which is discussed in Chapter 6.
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5.3 Impact of the Quorum Size

Figures 5.1 through 5.3indicatk that the quorum size parameter has a significant
impact on thenumber of negotiation rounds required for HBC to yield a consensus.
ANOVA were conducted for each of the tested social network models in order to confirm
the significance of the quorum size parameter and identify any possible confounding
effects on consens speed introduced by the parameters used to generate the social
networks. Appendix B contains extended ANOVA results; a summary of the ANOVA
results for each class of social network are shown in Figui€s 5.11, and 5.12

In these ANOVA, the null hymthesis is that there is no difference between the
mean number of negotiation rounds required to reach consensus for different combinations
of quorum size values and social network model parameters; however, the results of the
ANOVA show that the quorum =z does have a significant impact on the number of
negotiation rounds required. For each social network mpde.001 for the quorum size
factor, so the null hypothesis is rejected. Theajues for other factors and factor
combinations indicate a sidigiant impact in the ANOVA results as well, but the&ues
of the quorum size level are significantiylg her t han t lauesorakingit f act
more likely that the difference in samples is due mostly to the quorum size factor. The p
values for nost of the model parameters (e.m, andk in the WattsStrogatz, Barabasi
Al ber t , -Remyidnodels,deRpectively) do not appear significant, indicating that
HBCO6s performance characteristics are robu
network models, regardless of the parametsesi o construct them. One exception is the
k parameter in the WattStrogatz model, which affects the number of neighbors each agent

has and thus the size of the small world clusters.
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General Linear Model: ticks versus n, k -level, p -level, gs-level

Method

Factor coding ( -1,0,+1)

Box- Cox transformation

Rounded & - 0.967645

Esti mated a& -0.967645

95% CI for o -0.983145, - 0.953145)

Factor Information

Factor Type Levels Values

n Fixed 3 50, 200, 1000

k- level Fixed 31,2,3

p- level Fixed 31,23
gs- level Fixed 301,2

Analysis of Variance for Transformed Response

Source DF AdjSS AdjMS F -Value P - Value
n 2 0.00405 0.002023 91.03 0.000
k- level 2 0.00145 0.000723 32.54 0.000
p- level 2 0.00006 0.000030 1.36 0.258
gs- level 2 0.02798 0.013992 629.68 0.000
n*k - level 4 0.00106 0 .000265 11.93 0.000
n*p - level 4 0.00032 0.000080 3.62 0.006
n*gs - level 4 0.00101 0.000253 11.40 0.000
k- level*p - level 4 0.00018 0.000044 1.99 0.093
k- level*q s-level 4 0.00339 0.000847 38.11 0.000
p- level*gs - level 4 0.00031 0.000077 3.45 0.008
n*k - level*p - level 8 0.00117 0.000146 6.58 0.000
n*k - level*qs - level 8 0.00197 O. 000247 11.11 0.000
n*p - level*qs - level 8 0.00024 0.000030 1.35 0.211

k-level*p -level*gs - level 8 0.00022 0.000028 1.25 0.265
n*k - level*p -level*qs -level 16 0.00039 0.000025 1.11 0.339
Error 41874 0.93049 0.000022
Total 41954 1.06840

Model Summary for Transformed Response

S R -sg R -sg(adj) R  -sq(pred)
0.0047139 12.91% 12.74%  12.62%

Figure 5.10General ANOVA results for significance of factor impacts on negotiat
rounds required to reach consensus on \A&ttisgatz model random networks.
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General Linear Model: ticks versus n, m -level, gs-level

Method

Factor coding ( -1,0,+1 )

Box- Cox transformation

Rounded & -1.28924

Esti mated a& - 1.28924

95% CI for o -1.30174, -1.276(74)

Factor Information

Factor Type Levels Values

n Fixed 3 50, 200, 1000

m level Fixed 3123

gs- level Fixed 3012

Analysis of Variance for Transformed Response

Source DF AdjSS AdjMS F -Value P -Value
n 2 0.000477 0.000239 184.46 0.000
m level 2 0.000004 0.000002 1.41 O 244
gs- level 2 0.001605 0.000803 620.11 0.000
n*m- level 4 0.000012 0.000003 2.34 0.053
n*gs - level 4 0.000472 0.000118 91.18 0.000
m level*qs - level 4 0.000026 0.000006 4 .98 0.001
n*m- level*qs -level 8 0.000033 0.000004 3.16 0.001

Error 95197 0.123199 0.000001

Total 95223 0.149644

Model Summary for Transformed Response

S R -sq R -sqg(adj) R -sq(pred)
0.001137 6 17.67% 17.65% 17.62%

Figure 511 General ANOVA results for significance of factor impacts on negotiat
rounds required to reach consensus on Barakihsit model random networks.
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General Linear Model: t icks versus n, k-level, gs-level

Method

Factor coding ( -1,0,+1)

Box- Cox transformation

Rounded & -1.11988

Esti mated a& -1.11988

95% CI for o -1.16838, -1.07138)

Factor Information

Factor Type Lev els Values
n Fixed 3 50, 200, 1000

k- level Fixed 31,23

gs- level Fixed 3012

Analysis of Variance for Transformed Response

Source DF AdjSS AdjMS F -Value P -Value
n 2 0.000974 0.000487 91.74 0.000
k- level 2 0.000001 0.000000 0.07 0.937
gs- level 2 0.001841 0.000920 173.32 0.000
n*k - level 4 0.000169 0.000042 7.95 0.000
n*gs - level 4 0.000771 0.000193 36.32 0.000

k- level*qs - level 4 0.000245 0.000061 11.56 0.000
n*k - level*qs -level 8 0.000156 0.000020 3.68 0.000
Error 4778 0.025370 0.000005
Total 4804 0.03157 7

Model Summary for Transformed Response

S R -sq R -sqg(adj) R -sq(pred)
0.0023043 19.66% 19.22% 18.81%

Figure5.12 General ANOVA results for significance of factor impacts on negotiat
roundsrequr ed t o r e ac h -Rényimedelrandos nebworksE r d R

5.4. Impact of the Social Network Model

Each ANOVA in the previous section combined different sizes of social networks

created byhe same model. To determine if the social network model, itself, has any

significant impact on the metaheuristic, results for different social network models of the

same size were combined for ANOVA. These results are presented in FHdiBeS.14,
and 515, with the full ANOVA results presented in Appendix B.
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General Linear Model: ticks versus model, gs -level

Method

Factor coding ( -1,0, +1)

Box- Cox transformation

Rounded & -1.16755

Esti mated a& -1.16755

95% CI for o -1.24005, -1.09705)

Factor Information

Factor Type Levels Values
model  Fixed 3123
gs- level Fixed 3012

Analysis of Variance fo r Transformed Response
Source DF AdjSS AdjMS F -Value P -Value
model 2 0.000030 0.000015 3.14 0.044
gs- level 2 0.001920 0.000960 197.81 0.000
model*gs -level 4 0.000072 0.000018 3. 69 0.005
Error 2520 0.012228 0.000005
Total 2528 0.014544

Model Summary for Transformed Response

S R -sq R -sqg(adj) R -sq(pred)
0.0022028 15.92% 15.65%  15.29%

Figure5.13 General ANOVA results for significance of social network model impe
on negotiation rounds required to reach consensus for social networks of popula
size 50.
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General Linear Model: ticks versus model, gs -level

Method

Factor coding ( -1,0,+1)

Box- Cox transformation

Rounded & -1.21023

Esti mated a& -1.21023

95% CI for o -1.22073, -1.198(3)

Factor Information

Factor Type Levels Values
model Fixed 31,23
gs- level Fixed 30,1,2

Analysis of Variance fo r Transformed Response

Source DF AdjSS AdjMS F -Value P -Value
model 2 0.000592 0.000296 111.18 0.000
gs- level 2 0.011365 0.005683 2133.79 0.000
model*gs - level 4 0.007378 0.00184 4 692.56 0.000

Error 115065 0.306436 0.000003

Total 115073 0.362373

Model Summary for Transformed Response

S R -sq R -sg(adj) R - sq(pred)
0.0016319 15.44% 15.43%  15.42%

Figure5.14 General ANOVA results for significance of social network model imps
on negotiation rounds required to reach consensus for social networks of popula
size 200.
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General Linear Model: ticks versus model, gs -level

Method

Factor codi ng ( -1,0, +1)

Box- Cox transformation

Rounded & -1.65271

Esti mated o -1.65271

95% ClI for o (*, *)

Factor Information

Factor Type Levels Values
model  Fixed 3123
gs- level Fixed 30,1,2

Analysis of Variance for Transformed Response

Source DF AdjSS AdjMS F -Value P -Value
model 2 0.000005 0.000002 52.93 0.000
gs- level 2 0.000055 0.000028 634.03 0.000
model*gs -level 4 0.000012 0.000003 68.40 0.000

Error 8414 0.000365 0.000000

Total 8422 0.000463

Model Summary for Transformed Response

S R -sq R -sqg(adj) R -sq(pred)
0.0002084 21.09% 21.02%  20.94%

Figure 5.15General ANQYA results for significance of social network model impas
on negotiation rounds required to reach consensus for social networks of popula
size 1000.

These results show that the social network model does, in addition to quorum size,

have a signifiant impact on the number of negotiation rounds required to reach consensus,

and this significance increases as the population size increases; however, as shown in

Figure5.16 the model that produces the effect and the quorum size levels at which the

effeds are realized are not consistent for differing population sizes. For population sizes of

1, 000 a g e nRényjmotlehatlowEandchigrsquorum sizes has the largest impact,

whereas for population size 200, Wefits r 0 g a t z-Rémyn hdhve B lardeRRest at low

guorum sizes and Barabadbert has a large effect at high quorum sizes. At population

size 50, none of the models appear significantly better than their peers with the exception
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of slightly worse performance by the Wa8togatz model dtigh quorum sizes. Precise
reasons for these differences require additional experimentation and are proposed as future
work; however, it is hypothesized that small population sizes do not allow significant
differentiation between the models in cluster anfluential hub formation. As the
population size increases the effects of clusters and hubs become more influential, resulting
in random networks outperforming those with highly clustered and-feal¢opologies.

These cluster and hub effects are mo@eraby increased quorum sizes, effectively
reducing their influence and causing the networks to behave more like those based on the
E r dR®syi model. One trend that is clear is that medium and high quorum sizes both

perform significantly better than lowugrum sizes across all models and population sizes.
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Figure5.16 Model and quorum size level effect comparisons for different sizes of
populations.
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5.5. Comparisons of Performance on Tecision Values

A key contribution of HBC over existing techniques is its ability to facilitate
distributed consensus negotiation over more than two possietesion values
Nevertheless, examination fBC06s abi | ity t o-chaice rcansenstsl vy ha
provides further validation of the metaheuristic. Here, three existingmedaheuristic
techniques that can only accommodate consensus from among two possible outcomes are
compared to HBC on the ba%i§ expected running time. The first existing technique is
proposed by Tar{2010) as a solution to the Networked Biased Voter Problem. The
remaining two are proposed by Mossel and Schoenef#tl0) as solutions to the
Majority Coordination Problem.

T a nsolgtion consists of a nested iterative solution in which the iterative classic
voter model(Clifford & Sudbury, 1973; Holley & Liggett, 1975Wwhich is expected to
reachsomeconsensus in a finite amount of time, is repeated a number of times sufficient
to expect that the result of the majority of the iterations is the desired majority outcome
with high, userselectable, probability. Tan shows that this nested iterative solution runs in
expected tim& ¢ (Mossel & Schoenebeck, 2010; Tan, 20Mhile this solution is in
polynomial time, the high degree of the polynomial quickly makes this technique infeasible
as population size increases.

Mossel and Schoenebeck propose two techniques withngitinhes faster than
Tanbés solution, although they rely on the
to propagate selected information through
Strong Weak model reaches majority consensus in expteiated ¢ 8Their modified
Wait-And-See model runs in expected time, related to the diamhefehe social network,
of 0 'Q 1 T & ; however, the largest possible diameter for a connected network is
p when the nodes are connected in a straighkt ljiving a worstase time complexity of
0 & . For the faster WaiAnd-See modeit is noted thait may not always converge to a
consensus, in which cases the model should be res(ifttesgel & Schoenebeck, 2010)

The number of restarts that may beguiredto achieve successful consenssisnot

specified.
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In comparison to the previous techniques, HBC runs in expected tigne, which
is faster than Tands solution and Mossel
slower than Mossel and Schioe b e ¢ k -Arsd-Sé¥anpdel.

Proof. The maximum number of edges in a simple, connected graph-s, wheren is

the number of vertices in the graph, or, in this case, agents in the social network. For every
negotiation round, each agent polls eatlits neighbors for information, therefore each
edge in the social network is polled twice per negotiation round. Thus, the maximum
possible number of edge communications per round of negotiations for any social network
is€ € p.

The number of negaition rounds is bounded by a predetermined constant,
giving a total run time of &¢  p for L &, whichis( & .

In practice, most social networks will not be futlgnnected, so the expected

runtime is more precisely stated in terms ofrthenber of edges in the network-ass .

3-Model (n=200) [2 Possible Outcomes] 3-Model (n=200) [2 Possible Outcomes]
95% Cl for the Mean 95% Cl for the Mean
001 1.00 @ <)
- 4
2 ¢ @ §
P 3501 % s %
g 3 0.99+
o 3001 =
x 2
: g
= 2509
g T 0.98
5 $ =
© 5004
g 200 8
o £ 0.97-
Z 1504 T g
< @ @ =
e @ E
1009 e ® 0.96-
T T T T T T T T T T T T T T T T T T T T
5 15 25 35 a5 55 65 7 85 95 5! 15 25 35 a5 55 65 75 85 95
Quorum Size Quorum Size
Individual standard deviations were used to calculate the intervals. Individual standard deviations were used to calculate the intervals.
3-Model (n=200) [2 Possible Outcomes]
95% Cl for the Mean
0.6
os{ &
@
804 s
=
B o3
E 3
502
g e
0.1 @
@ @ < @
0.04 e
T T T T T T T T T T
5 15 25 35 45 55 65 7 85 95
Quorum Size
Individual standard deviations were used to calculate the intervals.

Figure5.17. Consolidated performance metric plots for all three social network mo
200 agents on two possible outcomes.
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Figure 5.17 shows results from empiricaésts of HBC performance over two
potential outcomes for 200 agents. It should be noted, as described in Appendix A, for
these trials the soci al-Rényerandomrn&tworkowhethe u s e d
G(n, p) variant. This variation was choseronaer to obtain an even wider range of random
topologies for study and to ensure that the empirical results presented here were
comprehensive in their depiction of HBC performance on a variety of network models.

Despite the smaller number of possible oune s a n d -Réryiemodélr d R's
variation, the results are substantially similar to those previously presented for population
size 200, although the percentage of trials in which the desired result is obtained, given that
the metaheuristic successfully tenaites in the allotted time, demonstrates a more distinct
phase transition point than what was observed with five possible outcomes. This is a result

more similar to that observed in population sizes of 1,000.

5.6. Scalability to Larger Numbers @fecisian Values

The results presented thus far have demonstrated HBC performance for various
population sizes connected by random networks generated using three different social
network malels and seeking consensus on one of five possible outcomes. For population
sizes of 200, performance has been further explored on the three social network models
when seeking consensus on one of two possible outcomes. In all of these trials, it has been
shown that in the tradeoffs between speed to consensus, desirability of achieved consensus,
and the rate of failure to reach the desired, or even any, consensus is contingent in large
part upon the chosen quorum size, with high quorum sizes yielding éastéess failure
prone results, and lower quorum sizes yielding more desirable results, so long as a
consensus is actually achieved in the allotted time. It has also been shown that there is a
guorum size at which a distinct phase transition point carbbereed for each network
and population combination.

To further determine the strengths of these observed relationships as the number of
possible outcomes varies, further experimentation was performed on networks of

population size 200 with 10 possibletcames. The underlying random networks were
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identical to those used in the trials on two possible outcomes. FBdgl8&ontains the

results of these trials.
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Figure 5.18 Consolidated performance metric plots fortlatee social network models
200 agents on ten possible outcomes.

Figure5.18demonstrates that HBC performance continues to maintain its observed
properties as the number of possible outcomes increases. This third data point also indicates
a trend bat as the number of possible choices increases, thevasespercentage of trials
reaching a desirable consensus, given that a consensus is reached, does move progressively
lower, although low quorum sizes continue to yield highly favorable resultabynetric.

Similarly, higher failure rates are observed at some quorum sizes, but the general trend of
high failure rates for low quorum sizes with a sharp phase transition to more moderate
failure rates continues to hold. These results are intuitivelager number of possible
outcomes to choose from increases the likelihood that the desired outcome will not be the
one chosen, however, the performance of HBC continues to be better than that expected by

random chance.
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5.7. Chapter Summary

This chapter presented both empirical and analytical time complexity results for
HBCO6s performance on three different soci al
numbers of outcomes. An analysis of the significanceiftérdnt independent variable
model parameters such as quorum size and social network model was also presented.

The results show that, of the independent variables tested, the choice of quorum
size has the most significant impact on the number of néigotieounds required to reach
consensus, the accuracy of the consensus obtained, and the rate of failure to reach any or a
desirable consensus. Generally, lower quorum size yields higher accuracy when consensus
is reached, but higher quorum sizes are fastd less likely to completely fail to reach any
consensus. When an appropriate quorum size is selected, HBC returns a desired consensus
more frequently than would be expected by chance.

The social network model is also shown to have a significant imgspecially as
population sizes increase. At larger population sizes, random social networks tend to
perform better than those with Wagsrogatz smallvorld or BarabasAlbert scalefree
structures. It is believed that this is due to the absence dfemluential clusters or hub
i ndi vi du aRérgi model ndwoiksas compared to the other two models.

Honey Bee Consensus performs well in consensus tasks seeking the majority
consensus of two possible outcomes and, for more than two possibtenesicthe
consensus aligned with the majority of three common voting protocols that consider global
preference information. When compared to the runtimes of existing solutions for the
Net worked Biased Voting and Maj-aa®iurtiye Cons e
is more favorable than the majority of the compared expected runtimes; in addition, HBC
provides the capability of handling more than two possible outcomes.

In the next chapter, these results will be examined and explained. The broader

implications and applications of these results will also be presented.
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6. Discussion
6.1 Overview

Empirical results have shown that HBC produces distributed consensus results that
are significatly better than random, as intended. Nevertheless, HBC is a metaheuristic and
cannot claim to be able to guarantee optimal results. Instead, HBC produces results that are
expected to be neaptimal with respect to balancing the time required to reacketsus,
the consensus success rate, and the consensus accuracy as measured by social utility
metrics. As with all metaheuristics, appropriate choice of configuration parameters can
have an impact on the effectiveness of the technique.

In the previous chagr, it was shown that the quorum size and social network model
parameters have significant impact on the success of the Honey Bee Consensus
metaheuristic. Here, these results are further analyzed and explained in order to provide
guidance in the applicatnh of HBC and the parameter selection of the quorum sensing
agentoriented design pattern, described in Chapter 2. This chapter also discusses the
implications of using HBC and quorum sensing on networks conforming to the different

models studied.

6.2 Suitability and Limitations of Honey Bee Consensus

While HBC has been shown in these experiments to perform well for large,
distributed populations with more than two possible eosss values and where it is
impossible or infeasible to centrally collect global vote tallies, it is important to recognize
certain limitations of the technique as well. Study and remediation of many of the
shortcomings described in this section is preplass future work.

Given the metaheuristic and probabilistic nature of HBC, it is not appropriate for
use when direct calculation methods or those with guaranteed performance bounds can be
used if guaranteed results or performance are required. Like atb&heuristic
optimization techniques, it is also not particularly well suited to online or hardimesal
systems due to its iterative nature and the fact that performance depends on the number of

iterations the metaheuristic is allotted.
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One of the keyontributions of HBC is its ability to accommodate more than two
possible consensus outcomes; however HBC effectiveness decreased slightly as possible
consensus outcomes increased. This was expected, since a larger set of possible outcomes
should resultn more diversity of opinion among the population, thus making a desirable
consensus harder to negotiate in a distributed setting. Nevertheless, HBC consistently
resulted in consensus negotiation of the desired outcome more frequently than would be
expectedby random chance, and even for the largest number of possible consensus
outcomes tested, failure rates remained below 20% for quorum sizes in the intermediate
and high ranges. These failure rates decreased as the number of possible consensus
outcomes waseduced.

Due to its basis in natural honey bee consensus negotiation, it is not known how
extensible HBC is to competitive or game theoretic situations. Honey bees are eusocial
insects and consensus on the best nest site location is a goal that ibgladiretembers
of the swarm, thus is it counterproductive for any of the members to selfishly advocate a
poor choice or to lie about the quality of a potential nest site. Furthermore, it is sensible to
expect that all honey bees have evolved to have esberhe same preferences with
regard to potential nest sites. That is to say, two correctly behaving scouts should be
expected to have the same preference for a given potential nest site, within some small
amount of error or subject to a small degredaih or measurement noise. The atrtificial,
stochastic preferences generated for the trials performed in this research allows for wider
variation among individual preferences than might be expected in actual honey bees.
Attempts to deliberately subvert cemsus were not evaluated at all.

Finally, for HBC to work, stubbornness cannot be allowed. Each member of the
population must have some npero preference for each of the possible outcomes and all
possible outcomes must be known prior to the beginnimggétiations. This also implies
a discrete set of possible outcomes from which the population can choosealBedl

consensus was not explored.
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6.3. Optimal Quorum Size

FernandeMarquez (2012) identifies the quorum sensing agemiented design
pattern, but unlike design patterns described@amma et al., 1994the Fernandez
Marquez paper provides no consequences for the use of the pattern. The absence of this
content leaves pattern users uninformetbdsow the pattern parameters can be expected
to influence the performance results and trafie. Also, none of the documentation of
existing seHorganization patterns thoroughly analyze the systemic behavior via simulation
experiments to suggest cortetrategies to influence behavior. One of the primary goals
of this research is to provide guidance in these areas.

Chapter 5 illustrated results showing that the quorum size parameter has a
significant impact on consensus speed and success. Ploth&digures in Chapterlttave
been stacked in Figus®.1af to enable comparison of consensus speed and failure rates
at each quorum size for all of the population sizes tested. In each of these plots, a phase
transition point can be seen at quorum s 25% of the population size, indicated by
the vertical lines, where both the average number of negotiation rounds required to reach
consensus and the percentage of failure cases approach their lowest values. For population
size 50, the phase transit®are clearer and more statistically significant with respect to
the number of negotiation rounds required as compared to the failure rate; however, the
phase transition point for the failure rate becomes more apparent and significant as
population size ioreases. It is hypothesized that this is because achieving consensus in
small populations is intuitively easier than in large populations, so there is less variation in

the rate of success in small populations, regardless of the quorum size used.
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Figure 6.1d Vertical comparison of quorum size vs average negotiation rounds rec
and percentage of failed trials. Vertical lines across plots show the point at which-
guorum size equals 1/4 of theputation size.
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Figure 6.1f Vertical comparison of quorum size vs average negotiation rounds req
and percentage of failed trials. Vertical lines across plots show the point at which-
guorum size equals 16f the population size.

It is frequently the case when evaluating a solution with respect to multiple metrics
that it is not possible to improve performance relative to one metric without causing the
degradation in performance relative to one or mbétbeother metrics. Such a solution is

said to be Pareto optimal, and the set of all possible Pareto optimal solutions constitute the
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Pareto front. By choosing a solution from the Pareto front, one can control the balance of
performance provided by thelstion.

The Pareto optimality of each quorum size, with respect to speed to consensus and
failure rate was examined to see if the observed phase transition point was also an optimal
value. Figure 6.}& depict performance over five possible outcomes.ight ef these
plots, the quorum size of 25% of the total population is equal to, or directly adjacent to, a
guorum size on the Pareto front for negotiation rounds to consensus versus failure rate. The
exception to t hdiRényihetwerk akizeMd®@0 whehedhe @&ty duram
size on the Pareto front occurred at 50% of the population size.

Like the 1,00éme mb e r -Rényi ddiork, for the pair of plots combining all
three network models of size 200 on two possible outcomes, the only pdive Bareto
front occurs near 50% of the population rather than near the phase transition point at 25%.
Despite this, the phase transition point at 25% of population size is still nearly optimal for
these trials and the plots show favorable performancetimaaguorum size. Furthermore,
increasing the number of possible outcomes to 10 for population size 200 results in quorum
sizes on the Pareto front at the quorum size value of 45, 75, 85, and 95 for all social network
models. The inclusion of quorum sid& here continues to reinforce the favorability of
guorum sizes near 25% of the population size.

These results, showing a phase transition in speed and accuracy frequently co
incident with Pareto optimality, indicate that 25% of the population sizeasa@ gfarting
point to use as a heuristic for choosing a quorum size with HBC. The frequency of Pareto
optimality of this quorum size tended to increase with the number of possible outcomes,
while the average number of rounds required to reach consengimiedrio remain low
with respect to other quorum size options. Furthermore, as the number of possible
outcomes increased, more of the quorum size values between 25% and 50% of the
population size fell on the Pareto front. This suggests that as the nofmpessible
outcomes increases, the suitability of HBC also increases as it becomes more likely to

produce Pareto optimal results.
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The explanation for why 25% of the population size is a good guideline for
selecting a quorum size follows directly from tpeemise that the quorum sensing
technique is a method for balancing the tradeoff between speed and accuracy of consensus.
Definition of a quorum size is a way to specify some amount of required agreement that
falls between complete discord and unanin@gnsider the two extremes of a quorum size
of one (complete selletermination) and a quorum size of at least 50% of the population
(simple plurality).

The smallest quorum size is trivial to obtain since all agents are expected to at least
agree with theselves, but it is intuitively obvious that small quorums should be easier to
achieve than larger ones, especially in the presence of fairly uniform preference
distribution. If an agent finds it easy to form a coalition of others in agreement with itself
and sufficient to form a quorum, this results in stubborn behavior between multiple
competing quorums that will delay consensus. If the delay is eventually overcome by one
of the quorums, then the resulting consensus is likely to be a good one withtespeil
utility; however, in a timeconstrained environment, the competition between many small
guorums is more likely to result in a split decision at the end of the allotted time.

On the other hand, by definition, achieving a quorum size of more&tarof the
population precludes the remainder of the population from achieving a quorum. Forming a
guorum of this size is relatively hard, especially for more than two possible consensus
outcomes, unless one of the outcomes has an especially large fgllattine outset of
negotiations; therefore, at the beginning of negotiations, in the absence of a clear quorum
establishment, agents choose new preferences with probability proportional to the
preferences of their immediate neighbors. This eventually keettie establishment of a
critical mass of agreement (exposure threshold) that easily cascades to create a quorum of
the requisite size. Unfortunately, this cascade effect can lead to undue marginalization of
minority opinions that results in lower sociallity.

Quorum sizes of 25% of the population strike the balance between these two
extremes. Models of natural honey bee swarms show the same propensity to favor

intermediate quorum sizes for similar reasons. In the honey bee models, low quorum sizes
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result in split or no decisions and failure; high quorum sizes require more time and
communication energy from the bees. Researchers have found that honey bee models
perform best with quorum sizes of between 15% and 25%, which is similar to the findings
preented in this resear¢Rassino & Seeley,2006) The nat ur al honey be
consensus with quorum sizes even smaller than 25% of the population is likely due to two

key differences between actual honey bee swarms and the presented HBC ms@taheur

1) honey bee swarm social networks are not static, and 2) honey bees have a common,
global communications channel. When honey bees detect a quorum at a potential nest site,
they generate a Apipingo signal.Thdpipinhe swa
can be heard by every other bee, which means that, in this respect, honey bees have a fully
connected social network for communication and access to some form of global
information. In contrast, the HBC metaheuristic does not assume adualhected social

network and expressly forbids any analogous functionality, restricting all communication

to immediate neighbors. This enhances the scalability of HBC.

6.4. Social Network Models

As shown in lhe previous chapter in Figure 5.10, within a given quorum size level
of low, medium, or high, HBC frequently performs similarly in speed to consensus,
regardless of the social network topology. The performance of Baralést networks
at highquorumsg | evel s i n popul at-Réoynnetwarks @éow of 20
guorum size levels in populations sizes of 1,000 are the only notable outliers. If the
guideline from the previous section is followed, however, and a moderate quorum size of
25% of the ttal population is used, speed to consensus can be expected to be similar for
the population, regardless of the underlying social network model.

This similar performance across network models with different clustering and
degree distribution propertiesahs that quorum sensing serves to mitigate the influence
of clusters and hubs found in WaBigrogatz and Barabasibert model networks, as long
as communication is not bottlenecked through a cluster or hub. It is trivially possible to

construct networkthat result in poor consensus performance by forcing all communication
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to travel through a single node, for example. A diversity of opinions must be available to
each agent in order for them to be able to properly select some alternative outcome when
the peference for their first outcome expires.

6.5. Chapter Summary

In this chapter, the experiment results from the previous chapter have been
consolidated and analyzed. While, like all metaheuristics, HBC hasnitsitions, its
suitability for purpose has been shown. Performance trends discovered in the experiments
of the previous chapter have been explained with respect to quorum size and social network
model. A guorum size of 25% of the total population has beewn to produce consensus
performance balanced between speed and accuracy, and the application of this knowledge
has been proposed for use in engineering the performance of systems that use the quorum

sensing pattern and understanding the performangearfim sensing systems in nature.
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7. Conclusion
7.1 Summary of Contributions

The thesis of this dissertation is that a metaheuristic based on the technique used by
honey bees to select a new nest site is feasible for engineering distributed consensus
negotiation in social networks and yields insight into the influence of the quorum sensing
pattern on consensus negotiation in social groups. In support of the thesisstitation
presents the Honey Bee Consensus metaheuristic and empirical results on randomized trials
that answer the research questions posed in Chapter 1.

In Chapter 3, it is shown how honey bee nest site selection can be implemented as
a metaheuristienodel for reaching consensus in a distributed-@gjénized way. The
Honey Bee Consensus agém@ised model is formally defined, observed honey bee
behaviors are linked directly to agent behaviors in HBC, and metaheuristic aspects of HBC
are described. Re incorporation of the quorum sensing agmgnted design pattern and
the associated design decisions are explained. Chapter 4 presents the metrics used to judge
the success of the metaheuristic in achieving optimal consensus and describes the model
validation.

Experiment and time complexity results show that HBC is a suitable and feasible
technique for negotiating distributed consensus on more than two decision values in a
population with weighted biases. Experiments on randomly generated social ksetwor
created using the Waifdtrogatz, Barabad#h | b e r t , -R&nyidnodels af population
sizes ranging from 50 to 1,000 agents are presented in Chapters 5 and 6. The results of
these experiments show that HBC results in predictable performance for sumsen
negotiation across all social network models and population scales tested. It is shown that
the selection of the quorum size parameter has a significant impact on thaspeeaty
tradeoff in consensus negotiation and that intermediate quorum sagmoximately 25%
of the total population size yield results approaching the Pareto front. This same quorum
size also moderates the differences in consensus performance in the different social
network models; therefore, it is proposed as a heuristitingtgpoint for the general

application of the quorum sensing pattern.

90



Other general lessons in the application of the abgas¢d quorum sensing pattern
have also been revealed in this implementation. In the application of quorum sensing to
consensus foration, HBC contributes to the understanding ofibgpired design patterns
as formulated iffFernandeMarquez et al., 2012 he pattern relationships presented by
FernandeMarquez are both validated and challenged by HBC. This research validates
FernamezMar quez 6s presentation of guorum sens
fundamentally composed of the basic patterns of evaporation, aggregation, and spreading
(i.e., propagation); howevdfernandesMar quez 6s hi erarchy descri
a hgherlevel version of the gradient pattern with evaporation as an optional component.
This does not reflect the way the quorum sensing pattern has been typically implemented
in practice or observed in naturdoney Bee Consensusapplies the composition of
aggregation and spreading into timermediatdevel gossip pattern and then derives
guorum sensing from theombination of thegossipand evaporatiorpatterns.Since
guorum sensing is a mechanism for obtaining consensus, the evaporation pattern is
essetial to allowing agents to compromiséietefore, theevaporatiorpattern should be
considered a mandatocpmponent of the high level quorum sensing pattern in Fernandez
Mar quezods t airspineddesign pafternd iThasore accurately reflectshe

ways in which the pattern occurs in nagélland artificial systems

7.2 Extension of Results to Other Applications

In addition to the direct application of HBC to the task of-eeifanized, distributed
consensus negotiation and general guidance for quorum size selection for tuning
performance when using the quorum sensing pattern, the results of this research have
applicability to the study of mechanisms of consensus formation ifl setreorks and the
function of quorums within these mechanisms. This study of strategic interactions in
networks encompasses elements of biology, economics, game theory, network science, and
computer science.

The effects of quorums in consensus negaimtnd strategic interaction can be

studied from the perspective of cooperation or competition. In the former case, quorum
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sensing has been shown to be a mechanism for biological systems to tune the balance
between speed and accuracy of decision mgingel R Franks, Dornhaus, Fitzsimmons,

& Stevens, 2003; Passino & Seeley, 20@)me of this research has also demonstrated
biological collectives that dynamically modify quorum sizes based on environmental
factors in order to achieve a desired tradeoftceRe research in this area has raised the
guestion of how this balance can be further calibrated to task requirgi@biitka et al.,

2009) The research presented in this dissertation, showing a correlation between
population sizes and quorum sizes fbage transition points affecting the spaeeduracy
tradeoff can be used to further define the Pareto front along which these optimal values
should be found.

With regard to competitive environments, this research has shown that quorum
sensing can resuih similar performance across social models regardless of clustering,
high-degree hubs, or random connectivity. This is in contrast to research on human
cooperation presented by Kearns which found consensus formation in systems with biased
voting to be easr in preferential attachment netwoilk&earns et al., 2009nd concluded
that this class of probl em w&Rényiboanedidty. t o
For other classes of problems in which clusters and hubs make problem solving more
difficult, the results of this research show that quorum sensing allows HBC to overcome
the effects of clusters and hubs in Wdtsogatz and Barabasibert networks,
respectively. This research did not study intentional manipulation of consensus results. A
potential limitation of this technique is its reliance on the eusocial motivation and
homogeneous social goals of the participants. Further work is proposed to determine if
guorum sensing can be used to counteract purposeful manipulation and, if sdhavhat t
optimal quorum size would be required to do so. This will also serve to identify the limits
of syst e ms 6-orgabizelinithe presencetofoconflia. | f

Finally, observations about the behavioral space of quorum sensing can be
formalized to prowde runtime guidance for adjusting quorum sizes to steer behavior as

context changes. For example, the quorum size can be dynamically adjusted by a self
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adapting system to further optimize the spaeduracy tradeoff or learning behavior can

be incorporatd to facilitate repeated consensus formation.

7.3 Future Work

This research presents many avenues for future work to build on its contributions.
An area of active research involves distributed consensus formatinanestatic social
networks. Honey Bee Consensus is directly modeled on a system in which the
communication network topology is constantly switching, therefore it is predicted that this
problem is an appropriate application for HBC.

The ability for quorumsensing to mitigate the impacts of clusters and hubs in
consensus on social networks implies that the incorporation of quorum definition and
detection could be of use in facilitating human problem solving on distributed networks in
tasks that are inhibiteby social networks exhibiting these structures. To determine this, it
is proposed as future work to apply HBC on social networks and data sets usingrieéal
connectivity and preferences. Furthermore, distributed social cooperation and
differentiationexperiments similar to those performed(iKearns, 2012; Kearns et al.,
2009; Kearns, Suri, & Montfort, 2006puld be conducted in which the user interface also
provides quorum information or allows a quorum size to be set and or adjusted by the
participant. This could provide insight into how humans value quorums in their decision
making process.

Considering HBCO6s basis in a system of
performance under competitive conditions is an area ripe for exploration. How robust
guorum sensing is to malicious manipulation and other game theoretic aspects is an open
guestion and remains to be understood. This exploration also naturally leads to possible
extensions of the system to include behavioral learning anéddaiftation tdfacilitate

consensus.
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Appendix A Social Network Experiment Parameter Configurations and Range Definitions
A.1. Overview

This appendix contains tables showing the random generation parameters used for
each social network model in the experiments andtimber of random graphs created
and tested for each parameter configuration. It also contains tables defining the limits of
the low, medium, and high parameter value ranges for those configuration parameters used
for the ANOVA analyses.

A.2. Social Netvork Model Generation

For most configurations, 30 random trials were executed on one instance of each
configuration, but there are some exceptions. For instance, in early experiments with the
BarabasAlbert model with 200 agents, 30 random trials were conducted on 30 random
social networks created with the same parameters, but the technique of experimenting with
common random numbers was used for the remaining experiments due to the infeasibility
of conducting 900 trials for every tested network configuration, especially for targe
Similarly, when it was determined thavalues greater than or equal to 0.1 for our Watts
Strogatz graphs produced nearly identical performance, much smpallalues wee
selected, two of which (0.1 and 0.5) overlapped with previously collected data.
Nevertheless, the data from these additional runs was kept and analyzed in the final analysis
for the sake of completeness.
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TableA.1. Parameer configurations used for scdiee
networks.

BarabasiAlbert Model
NetworkX function: barabasi_albert_graph(n, m)

n m number of random graphs tested
50 2 1
50 5 1
50 12 |1
50 18 |1
50 25 |1
200 |2 30
200 |6 30
200 |10 |30
200 |20 |30
200 |60 |30
200 | 100 | 30
1000 (15 |1
1000 ({30 |1
1000 (60 |1
1000 [ 250 |1
1000 [ 500 |1

TableA.2. Parameter configurations used for
E r dR®syi G, M=k) random networks.

E r dR®¥syi Model

NetworkX function: watts_strogatz_graph(n, k,

p=1)

n Kk p | number of random graphs
tested

50 5 1|1

50 10 |1 |1

50 25 (1 |1

200 |2 1|1

200 |6 1|1

200 |10 |1 |1

200 |20 |1 |1

200 |60 |1 |1

200 | 100 |1 |1

1000 100 |1 |1

1000 (200 |1 |1

1000 500 |1 |1
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TableA.3. Parameter configurations used for savadirld networks.

Watts Strogatz Model
NetworkX function: watts_strogatz_graph(n, k, p)

n k p numberof random graphs tested
50 5 0.0078125 1
50 5 0.0625 1
50 5 0.5 1
50 10 | 0.0078125 1
50 10 | 0.0625 1
50 10 |05 1
50 25 ]0.0078125 1
50 25 ]0.0625 1
50 25 |05 1
200 |2 0.03125 1
200 |2 0.0625 1
200 |2 0.125 1
200 |2 0.25 1
200 |2 0.5 1
200 |2 0.75 1
200 |6 0.0078125 1
200 |6 0.00390625 1
200 |6 0.015625 1
200 |6 0.03125 1
200 |6 0.0625 1
200 |6 0.125 1
200 |6 0.25 1
200 |10 |0.00390625 1
200 |10 |0.0078125 1
200 |10 |0.015625 1
200 |10 |0.03125 1
200 |10 |0.0625 1
200 |10 |0.125 1
200 |20 |0.005 1
200 |20 |0.006 1
200 |20 |0.015 1
200 (20 |[0.02 1
200 |20 |0.1 2
200 (20 |[0.2 1
200 |20 |0.3 1
200 |20 |04 1
200 (20 |05 2
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200 |20 |0.6

200 |20 |0.7

200 |20 |0.8

200 |20 ]0.9

200 |60 |0.0313717/8632607688
200 |60 |0.0625

200 |60 |0.125

200 |60 ]0.875

200 | 100 | 0.0274873430291838]
200 | 100 | 0.10073719442448524
200 |100 | 0.5

1000 | 100 | 0.0078125

1000 | 100 | 0.0625

1000 | 100 | 0.5

1000 | 200 | 0.0078125

1000 | 200 | 0.0625

1000 | 200 | 0.5

1000 | 500 | 0.0078125

1000 | 500 | 0.0625

1000 | 500 | 0.5

RR R R RRRRIRIRIRIRIRIRIR IR IR R R R

A.3. Social NetworkModel Parameters for2and 10Choice Trials
The trials testing the scalability of HBC to 2 or 10 potential outcomes were
performed exclusively on social networks of si2@0. The same set of 90 graphs,
encompassing 30 random graphs for each of the three social network models, were used
for both the 2and 10choice trials. Tables 4 through 6 show the parameters used for each
of the random networks generated. Values fer garameters were chosen uniformly at
random from the parameter ranges defined in the following sectiororitrast to the
Er dBR&nyi variant used f or-Rénmretwarks bsedrinthesei al s,

trials were constructed with ti&n, p) variant of the model.
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TableA.4. WattsStrogatz model parameters for 28@ent graphs used

in 2- and 106choice trials.

Graph # k p

0 44 0.38497829157803887
1 44 0.44763462653321456
2 76 0.3859939619018211
3 90 0.17150176131261377
4 20 0.4183793975742383
5 35 0.07575130829172926
6 89 0.45455589109109146
7 63 0.1523587689358535
8 86 0.30366233019085853
9 76 0.19658322899815206
10 47 0.37261657195993153
11 82 0.03082574043827434
12 53 0.26962163785748794
13 35 0.06042612329286466
14 69 0.29863359482217133
15 94 0.01806977623964902
16 83 0.08164703692782228
17 39 0.16066764059030406
18 91 0.1987853432074423
19 20 0.04776503012236374
20 58 0.4575071943558304
21 35 0.37645377856781204
22 22 0.18176686714916224
23 93 0.43074981763931675
24 25 0.2619261805016232
25 100 0.4758434144523738
26 64 0.1460665270364314
27 35 0.24925853343142873
28 99 0.4666190257567396
29 16 0.06549377631849304
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TableA.5. BarabasiAlbert model
parameters for 208gent graphs
used in 2and 10choice trials.

Graph #| m
0 38
1 42
2 74
3 39
4 96
5 51
6 8
7 68
8 69
9 25
10 73
11 100
12 34
13 50
14 59
15 94
16 85
17 57
18 11
19 88
20 3
21 61
22 67
23 92
24 90
25 53
26 21
27 95
28 53
29 1
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