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Abstract 

 

 

 This research presents a self-organizing system for engineering consensus among 

cooperating, distributed processes and studying consensus negotiation in natural systems 

that use the quorum sensing mechanism. The presented method combines metaheuristic 

techniques and a negotiation protocol based on honey bee nest site selection behavior in 

order to optimize the collective social utility of a group decision. Unlike existing 

negotiation and voting protocols, the proposed metaheuristic accommodates negotiation of 

consensus from among two or more decision values. It is decentralized, self-organizing, 

and does not require a fully-connected network in which each process can communicate 

directly with each other. Benefits of these attributes are that there is no central point of 

failure, and processes can make informed decisions using only information acquired from 

immediate neighbors, rather than requiring the consolidation and evaluation of global 

preferences. The proposed metaheuristic is modeled as an agent-based system using the 

Repast modeling and simulation framework, and this model is used to conduct simulation 

experiments in accordance with the Design of Experiments methodology to analyze the 

Honey Bee Consensus metaheuristic and its performance on multiple social network 

models. As the Honey Bee Consensus metaheuristic is an extension and new application 

of a recently-proposed agent-oriented Quorum Sensing pattern, the presented 

understanding of its parameter and topology influence is of value in steering the behavior 

of self-organizing systems based on the Quorum Sensing pattern language. Additionally, 

understanding how network topology influences consensus formation has applications 

spanning decision theory, social choice theory, network science, and control theory. 

Significant outcomes of this research include a description of the proposed metaheuristic 

and the identification of a quorum size to population ratio that provides optimal speed-

accuracy tradeoff for a range of population sizes and social network models.  
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1. Introduction  

 It is often necessary for the various components of a system to agree on a single 

value, or set of values, that indicates an action each of the components should perform or 

that is a computational result the system should return; this is known as the consensus 

problem (Barborak, Dahbura, & Malek, 1993; Fischer, Lynch, & Paterson, 1985). More 

recently, the problem has also been formulated as the ñDemocratic Primary Problemò 

(DPP) (Kearns & Tan, 2008), subsequently renamed the ñNetworked Biased Voting 

Problemò (NBVP) (Tan, 2010), with respect to achieving agreement on a value among 

individuals in a social network, in this case a party candidate for an election. The study of 

consensus formation encompasses both uncovering the mechanisms and processes by 

which social groups form consensus to solve problems and creating the ability to engineer 

consensus in artificial applications. The thesis of this dissertation is that a metaheuristic 

based on the technique used by honey bees to select a new nest site is feasible for 

engineering distributed consensus negotiation in social networks and yields insight into the 

influence of the quorum sensing pattern on consensus negotiation in social groups. 

 Examples of the application of engineering consensus for automated tasks include 

vehicle control, in which the vehicles must agree on the center of the formation or other 

control variables (Fax & Murray, 2004; Ren, Beard, & Atkins, 2005); agreement among 

distributed databases on whether or not to commit a transaction (Gifford, 1979; Pandey & 

Tripathi, 2012; Thomas, 1979); agreement among energy producers and consumers in a 

smart grid on factors related to the amount of energy to produce or consume at a particular 

time (Ziang & Mo-Yuen, 2011; Ziang, Xichun, & Mo-Yuen, 2011); agreement among road 

segments in a smart highway on the best combination of speed limits to reduce congestion; 

agreement among distributed sensors on the correct value to report (Britton & Sacks, 2004; 

Wokoma, Sacks, & Marshall, 2003); and agreement among agents or processes on another 

agent or processôs reputation or trustworthiness (Yanbin & Yang, 2003). There are many 

other possible examples, but, in all of these cases, when individual components disagree 

on the value to act upon or report they must use a mechanism to negotiate a consensus on 

a single value.  
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 The mechanisms by which this consensus is reached, its optimality with respect to 

the individuals and the collective, the application of the consensus, and the role of the 

underlying communication network in the formation of consensus spans several fields of 

study. Decision theory is concerned with the factors relevant to reaching a rational or 

optimal decision, sometimes under uncertainty or in situations with complex relationships 

between the decision factors (Horvitz, Breese, & Henrion, 1988). This may involve 

multiple decision makers; however, in the case of competing agents with at least partially 

conflicting interests, the problem becomes one also related to game theory, and in the case 

of combining individual, possibly differing or erroneous, preferences to reach the best 

decision for the collective as a whole, it relates to social choice theory (Shoham & Leyton-

Brown, 2009; Wooldridge, 2009). Control theory studies, in part, the application of 

consensus to directing the control of dynamic systems with respect to leader-following and 

system convergence to, and stability in, consensus. Meanwhile, the study of the influence 

of the underlying communication network topology in a systemôs ability to reach consensus 

and the influence of individual voters and their locations in the network is of interest in the 

field of network science, which studies network representations of physical, biological, and 

social phenomena (such as communication and social interaction) with the goal of creating 

predictive models of these phenomena (Network Science, 2005). 

 

1.1. Motivation and Scope 

 This research approaches consensus negotiation as a decision optimization 

problem, primarily from the perspective of social choice theory. Thus, it is assumed that 

individuals may have differing preferences due to self-interest, uncertainty, or error, but 

the overall goal of each individual is to achieve cooperative social welfare and consensus 

upon a decision that yields the highest utility for the collective. Traditionally, the solution 

to this problem is frequently implemented through the use of various negotiation or voting 

protocols; however, a weakness of most of these protocols is that they require a centralized 

mediator or centralized consolidation and evaluation of individual votes. These centralized 

solutions fail to scale well as the centralized coordinatorôs workload increases with the 
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number of participants, they introduce the requirement for a way to select the coordinator, 

and the selected coordinator becomes a central point of potential failure. Solutions for 

consensus without centralized control have their own weaknesses. Chief among these is 

the need for a fully-connected communication network so that each participant can 

communicate directly with every other one. Mesh networks like this are simply not possible 

in all applications. Furthermore, the feasibility of pairwise negotiation or market-style 

solutions, which allow participants to directly negotiate individual agreements with others, 

decreases as the population size increases because each pairwise agreement must be 

reconciled with all the previously-negotiated agreements. Meanwhile, existing consensus 

negotiation techniques that work on non-fully-connected networks are not designed to 

handle formation of consensus from among more than two possible outcomes.  

 In addition to these weaknesses, both centralized solutions and decentralized 

solutions in which negotiating parties expect consistency in the underlying communication 

network are unsuitable for use in communication networks with switching topologies, 

where an individualôs neighbors change over time. Under these conditions in centralized 

regimes, the path to the coordinator is constantly changing, so efficiently ensuring that all 

votes reach the coordinator and broadcasting the coordinatorôs final decision to all 

participants becomes challenging as the networkôs spanning tree is potentially changing 

with each topology change. In decentralized solutions, as a negotiatorôs neighbors change, 

the negotiator loses track of previously-negotiated agreements and, with that, awareness of 

the progress being made toward consensus. 

 A protocol that facilitates distributed, self-organizing consensus formation without 

the requirement for a central coordinator or a fully-connected communications network is 

desired. It is also desired that this protocol have the capability of allowing consensus 

negotiation on two or more possible outcomes. To this end, this research applies 

metaheuristic techniques, often used for hard optimization problems, to the described 

problem of optimizing distributed consensus negotiation, because the distributed, iterative, 

population-based characteristics of metaheuristics share many similarities with the 

distributed negotiation process. Commonly-used metaheuristic techniques are augmented 
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with a negotiation protocol inspired by nature that provides insight into possible ways to 

overcome the problems with propagation and combination of preferences.  

 The scope of this dissertation is to define and describe a proposed nature-inspired 

metaheuristic for distributed, cooperative, self-organizing consensus negotiation. The 

relationships between the parameters of the protocol and the underlying social network are 

studied in order to understand their effects on a systemôs ability to converge to consensus 

under the influence of the metaheuristic. This understanding allows the considerations 

important to applying a more broadly-applicable agent-oriented design pattern, the 

quorum-sensing design pattern, to be characterized. 

 

1.2. Quorum Sensing: A Natural Mechanism for Negotiation and Compromise 

 In the search for solutions involving complex systems, it is common to look to ways 

in which nature solves similar problems from which inspiration can be derived. Indeed, it 

is the case that many natural systems exhibit the ability to form decentralized, distributed, 

self-organized consensus (Larissa Conradt & Roper, 2005).  In all instances, it is obvious 

that an essential requirement for a successful negotiation is that there must exist at least 

one option that all individuals are willing to accept as the final decision, otherwise 

consensus is impossible. The crux of the problem, then, is to define under what conditions 

an individual should change its preferred outcome in order to prevent deadlock due to 

intransigence. A common natural mechanism for determining this condition is quorum 

sensing. A quorum is a group of individuals with the same preference, the size of which is 

sufficient to exceed a predetermined threshold value that defines the point at which another 

individual, with a preference different than the quorum membersô, is willing to accept the 

quorumôs preference as its own without further deliberation. 

 Quorum sensing has been shown to be used for self-organization by bacteria to 

regulate gene expression (Bassler, 1999), by ants (Pratt, Mallon, Sumpter, & Franks, 2002) 

and bees (Seeley & Visscher, 2003) to select new nest sites, and by fish to coordinate their 

shoal movements (Ward, Sumpter, Couzin, Hart, & Krause, 2008). These natural systems 

often use iteration, stochasticity, and feedback loops (e.g., local activation/long-range 
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inhibition) to solve the consensus problem, resulting in decentralized, emergent, self-

organizing, and self-adaptive collective behavior that yields acceptable results through 

many individual applications of simple rules. Composed of mobile individuals situated in 

the chaos of uncertain natural environments, the negotiation protocols used by these 

collectives must tolerate changing neighborhood topologies, individual errors, and possible 

loss of individuals from the collective. This robustness under uncertainty is also a highly 

desirable trait for artificial applications of distributed consensus negotiation. It has also 

been shown that the quorum sensing pattern can be used to tune the speed-accuracy tradeoff 

through manipulation of the quorum size (Chittka, Skorupski, & Raine, 2009; Larissa 

Conradt & Roper, 2005; Passino & Seeley, 2006; Sumpter & Pratt, 2009). 

 Inspired by these natural applications, quorum sensing is increasingly being applied 

in distributed systems to guide self-organization. Examples include its application in sensor 

clustering (Wokoma et al., 2003) and server population management (Peysakhov & Regli, 

2005). The prevalence of this technique in natural and artificial systems has led to its 

identification as an agent-oriented design pattern by Fernandez-Marquez et al. (2012). The 

metaheuristic presented in this research implements this design pattern using what is 

known about how honey bees negotiate consensus when selecting new nest site locations. 

 

1.3. Overview of the Proposed Metaheuristic and Implementation Method 

 When a honey bee colony must select a new nest site, a swarm collects at an interim 

location near the old nest, and a subset of several hundred bees in the swarm (scouts) are 

responsible for searching for and evaluating candidate nest locations (Seeley & Buhrman, 

1999). Initially, none of the scouts know any potential locations, so they are all 

uncommitted and start exploring. Some of the scouts will find candidate sites and become 

committed scouts. Others will be unsuccessful in finding viable sites and return to the 

swarm as uncommitted scouts. Committed scouts share their evaluations of the sites they 

found by performing dances that direct other scouts to the candidate locations. The 

intensity of a scout beeôs dancing indicates the scoutôs perceived utility of the site it 

discovers (Seeley & Buhrman, 1999). In this way, uncommitted scouts are recruited to 
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confirm or reject the nominations and evaluations of the committed scouts. Uncommitted 

scouts are able to observe only the dances of the committed scouts within their sight. Given 

the choice between different dances, they choose a dance at random proportional to the 

number of observed dancers for each dance (Visscher & Camazine, 1999). After an 

independent evaluation of the site, the uncommitted bees return to the swarm and, if the 

site was found suitable, become committed scouts and dance for the site. 

 When a committed scout dances for a candidate site, the intensity of the dance 

decays (i.e., produces negative feedback) over time, even when the scout is dancing for a 

popular site (Seeley, 2003; Seeley & Buhrman, 1999). While this was previously thought 

to have been due to purely internal influences (Seeley & Buhrman, 1999), recent research 

has shown that bees produce a ñstop signalò that causes other bees to stop dancing for a 

site (Seeley et al., 2012). This provides a mechanism for compromise and prevents 

stubbornness from causing deadlock. When a bee stops dancing for a site, it becomes an 

uncommitted scout; however, it is relatively uncommon for formerly committed scouts to 

dance for more than one site, and even more uncommon for them to dance for three or 

more sites (Seeley & Buhrman, 1999). 

 Committed scouts alternate between dancing for their chosen site at the swarm and 

visiting the nest site location for which they are dancing. Recent research has shown that 

once a certain number of bees (a quorum) are detected at a candidate nest site by a scout, 

the scout begins ñpipingò (producing a sound with its wings) at the swarm when it returns 

(Seeley & Visscher, 2003). This piping signals to the swarm that the end of deliberations 

is near and, as the piping increases as more bees join in the activity, eventually a level of 

piping is reached that triggers liftoff of the swarm for the selected nest site. 

 To translate this observed honey bee behavior into a generally-applicable algorithm 

for distributed consensus, it is useful to represent the behavior exhibited by individual bees 

during the negotiation process as a set of simple rules encapsulated by agents in an agent-

based model. In agent-based modeling, agents are situated in a context that defines an 

environment, which agents sense and modify in accordance with their defined behaviors. 

In this particular application, the context is the underlying communication network that 
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connects the agents and the distribution of individual decision preferences at a given point 

in time. Peers to which an agent is directly connected in the network constitute that agentôs 

neighbors. Agents sense and modify their environment by exchanging messages with their 

neighbors. The objective is to create a model in which the simple rules followed by the 

agents in response to neighbor interactions result in a context where the individual 

preferences have converged and stabilized at a single, uniform value. Due to this choice of 

representation, and for the sake of consistency, the terms ñagentò or ñindividualò will be 

used throughout the rest of this dissertation to represent, in abstract terms, an individual 

member of a collective seeking consensus with the understanding that, in an actual 

application requiring consensus negotiation, an agent could actually be a process in 

software, a node in a distributed system, a single sensor, a vehicle, or any other autonomous 

entity. 

 The described agent-based model has been implemented using the Repast 

Simphony modeling and simulation framework (M. North et al., 2013). This has enabled 

simulation and study of the algorithmôs behavior under different parameters and contexts 

and the formulation of conclusions about the factors that influence the successful formation 

of consensus.  

  

1.4. Research Questions 

 In addition to describing and implementing a new metaheuristic algorithm for 

distributed, self-organizing consensus negotiation, this research tests a simulation model 

implementation of the algorithm to evaluate its performance and understand the 

fundamental conditions required for quorum-based consensus. This enables the 

identification of guidelines for the conditions under which quorum sensing is most 

appropriate and parameter values to use for the best performance in various applications. 

In consideration of these goals, this research addresses the following questions: 

 

1. How can honey bee nest site selection behavior be implemented as a metaheuristic 

for reaching a decision that optimizes the social welfare of a group of agents? 
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2. How well does such a metaheuristic work, overall, for achieving socially-optimal 

consensus in commonly-studied social network models? 

3. Does the quorum size parameter have a significant impact on the speed of 

distributed consensus formation and, if so, how does the choice of quorum size 

value affect the balance and tradeoffs between successful consensus formation, the 

speed of consensus, and the quality of consensus? 

4. How does the social network model influence consensus dynamics? 

5. What lessons can be generalized from this research for use in future applications of 

the agent-based quorum sensing pattern? 

 

1.5. Contributions 

 The primary contribution made by this research is the specification of a novel 

metaheuristic for optimal, distributed, self-organizing consensus negotiation suitable for 

negotiation of consensus on multiple decision values. This metaheuristic is applicable to 

solving consensus problems in the distributed systems and self-organizing systems 

communities. As the Honey Bee Consensus metaheuristic uses the quorum sensing pattern, 

two important contributions in the agent-based patterns field are made regarding the 

quorum sensing pattern: 

 

1. it is shown that a quorum size of 25% of the total population size is a near-optimal 

value to use for balancing the speed-accuracy tradeoff with Honey Bee Consensus 

2. it is observed that Honey Bee Consensus performs similarly for quorums of 

intermediate size, regardless of the underlying social network model 

 

1.6. Outline of the Dissertation 

 This dissertation is organized as follows. Chapter 2 provides the basis for the 

consensus problem, its variants, and relevant theoretical results. The state of the art in 

distributed consensus negotiation and current challenges are reviewed, exemplars of 

quorum sensing in nature and the current state of its codification as an agent-oriented 
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design pattern are described, and it is explained how existing metaheuristic optimization 

techniques contribute to the proposed metaheuristic. Chapter 3 presents the formal model 

for the agent-based implementation of the metaheuristic. Chapter 4 describes the evaluation 

methodology and experiment design. Chapter 5 presents the experiment results. Chapter 6 

provides a discussion of the experiment results and their broader applications. Finally, 

Chapter 7 summarizes the research and proposes future work. 
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2. Literature Review 

2.1. The Consensus Problem 

2.1.1. Background 

 In its most basic form, the consensus problem is simply the problem of driving a 

system comprised of members preferring different outcomes, called decision values, to a 

state in which all system members agree on the same decision value. Thus, the correctness 

of result lies in reaching any valid agreement, rather than the comparison of the value 

agreed upon to an ideal value or in accordance with the majority opinion. A well-studied 

probabilistic stochastic process for opinion diffusion expected to reach unanimity in 

networks is the voter model (Clifford & Sudbury, 1973). In the voter model, an individual 

node i in the network is picked uniformly at random. Subsequently, one of this nodeôs 

neighbors is selected uniformly at random and i sets its decision value in accord with the 

randomly selected neighborôs. This process continues until all nodes in the network share 

the same decision value. 

 The voter modelôs key weakness is its ambivalence about the final decision value 

obtained. More frequently, not only is unanimity desired, but there is a correct decision 

value that should be obtained. Traditional applications of consensus in computing include 

maintaining concurrency in distributed databases in which multiple copies of the database 

are kept in sync through agreement among the databases on which operations are 

committed (Thomas, 1979), clock synchronization, and sensor agreement (Pease, Shostak, 

& Lamport, 1980). In these types of applications, assuming the participation of only non-

faulty processes (i.e., process that produce correct output), it is sufficient to consider a 

consensus algorithm correct if, at the end of the algorithm, all processes agree on the final 

value. Unfortunately, in most real-world cases it is unlikely that all participating processes 

and their communications links will be fault-free; therefore, there is a significant body of 

work exploring the limits of how much faultiness (and of what types) can exist in systems 

under various constraints and still admit consensus, e.g.: (Bracha & Toueg, 1983; Lamport, 

Shostak, & Pease, 1982; Pease et al., 1980). Even with correctly operating processes, 

distributed systems can comprise different states that need to be resolved. Some solutions 
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to these problems include ensuring that each process can communicate with a sufficient 

number of non-faulty processes (Barborak et al., 1993) and using a majority opinion as the 

decision value (Gifford, 1979; Thomas, 1979). Both of these are examples of using 

quorums to overcome faulty or diverse opinions in order to reach consensus on a decision 

value that is best for the system overall. 

 When the size threshold required to obtain a quorum is defined as a simple plurality, 

a new version of the consensus problem known as the majority consensus (or majority 

coordination) problem is obtained.  In this problem, the correct decision value is that which 

is in accordance with the majority of the participants at the outset of negotiations. Mossel 

and Schoenebeck (2010) propose several models for solving this problem that do not use 

quorums; however, all of their proposed solutions are limited to achieving majority 

consensus on only two possible decision values. Furthermore, none of the solutions 

discussed thus far take into consideration preference weighting, or bias. The addition of 

this capability was one of the main contributions of the Networked Biased Voter Problem. 

 

2.1.2. The Networked Biased Voter Problem 

 The version of the consensus problem known as the NBVP (Tan, 2010) is 

mentioned in the introduction. It deserves special attention here because it represents the 

version of the consensus problem most directly applicable to the solution proposed by this 

research.  

 In the NBVP, there are two competing choices. Each voter prefers each choice with 

a real-valued weight, which sum to 1. It is assumed that one choice is always collectively 

preferred to the other and that the preferred opinion is not known a priori to anyone. The 

objective is to determine this value through a distributed algorithm that is simple and local, 

and converges in time polynomial in the number of voters to the collectively preferred 

consensus (Kearns & Tan, 2008). 

 We revisit the NBVP in more detail later. Table 2.1 summarizes the differences 

between the methods described and the contributions of Honey Bee Consensus (HBC). 
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Table 2.1.  Comparison of distributed consensus techniques. 

Technique Consensus Reached 
Number of Decision 

Values Supported 

Supports Weighted 

Preferences 

Consensus Problem 

Techniques 
Any unanimous Many No 

Majority Consensus Plurality 2 No 

NBVP Plurality 2 Yes 

HBC Highest social utility Many Yes 

  

2.2. Distributed Artificial Intelligence and Agent Rationality 

 As described in the previous section, the standard consensus problem is only 

concerned with ensuring that all participants reach any valid consensus. In majority 

consensus or NBVP, however, different outcomes have different utility values when 

considered in relation to the desires of the collective as a whole, and the appropriate goal 

is to reach a consensus that matches the preference of the majority at the beginning of 

negotiations. When there are more than two possible outcomes, a majority consensus may 

be sought or, alternatively, one could seek a consensus that maximizes the collective utility. 

The latter situation can be further divided into two cases:  

Case 1: Each agent has the same utility function. All agents will view the 

consensus result equally favorably (or unfavorably) because they are all 

evaluating it with respect to the same metric. In this scenario, the agents 

are considered to be cooperating because they all seek the same goal 

(maximum collective utility) and they all agree on the utility values of the 

available choices due to using the same utility function. 

Case 2: Agents have different utility functions. Agents may disagree on 

the favorability of an outcome due to differences in their utility functions. 

In this scenario, agents may be in competition with respect to their 

individual preferences but still need to cooperate for the sake of reaching 

collective goals. This paradoxical situation has been called ñco-opetitionò 

(Nalebuff & Brandenburger, 1996). 
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 A field in computer science that has focused on addressing these issues in agent-

based systems is Distributed Artificial Intelligence (DAI). Historically, the first case 

described above was the focus of the distributed problem solving (DPS) research agenda, 

and the second case was the focus of Multi-Agent Systems (MAS) (Durfee & Rosenschein, 

1994; Ephrati & Rosenschein, 1996). More recently, however, the term MAS has come to 

encompass all systems composed of multiple agents, whether cooperating, competing, or 

a mixture of the two (Wooldridge, 2009). Regardless of the underlying research agenda, 

though, it is not surprising that these scenarios in agent-based computing were preceded by 

their human-interactive counterparts in social science, economics, and game theory. These 

fields have contributed to the underlying assumption that artificial agents should behave 

rationally and to methods for defining and evaluating rationality (Durfee & Rosenschein, 

1994). One particular difficulty in measuring rationality in order to judge actions or choices 

is that the ñcorrectò or rational action to take may be different depending upon whether the 

agent has global or partial knowledge of the factors relevant to the decision. Economic 

rationality provides a way to evaluate decisions made in the presence of uncertainty and 

heuristics used in those decisions (Doyle, 1992). 

 Doyle (1992) summarizes concepts from economic rationality as they apply to 

artificially intelligent reasoning to evaluate the ñgoodnessò of actions, used by both 

decision-theoretic and game-theoretic approaches,  and provides references to the 

economic literature on which artificially intelligent rationality is based. Decision-theoretic 

approaches to problems in artificial intelligence are described in (Feldman & Sproull, 1977; 

Gmytrasiewicz, Durfee, & Wehe, 1991; Horvitz et al., 1988; Jacobs & Kiefer, 1973), and 

a game-theoretic approach to consensus is presented in (Wang et al., 2013). These 

approaches give various examples of how utility can be incorporated into an agentôs 

reasoning process. 

 

2.3. Social Choice Theory and Voting 

 Now the application of rational agents to the problem of determining socially-

optimal consensus is considered. Since each rational agent will seek to maximize its 
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individual utility, reaching consensus in Case 1 from the previous section is trivial. In Case 

2, however, the differences of opinion between agents as to which outcome is the best and 

the need to choose only one of several possible outcomes, as dictated by the consensus 

problem, necessarily introduces a conflict in which some agents must accept sub-optimal 

outcomes from their perspectives. Nevertheless, due to the paradox of co-opetition, it 

remains rational for some agents to acquiesce to the preferences of other agents since we 

are operating under the assumption that the utility for any non-consensual outcome is zero 

for all agents. The critical question is: which agents should change their preferences, and 

which alternative outcome should they prefer? 

 To answer this question, it must first be understood how the optimality of a final 

group decision can be defined. Social welfare theory distinguishes between assigning an 

ordering over the set of possible alternatives based on individual preferences, obtained 

through the application of a social welfare function (SWF), and settling on one of the 

possible alternatives, obtained by the application of a social choice function (SCF) (Ephrati 

& Rosenschein, 1996). In other words, SWFs aggregate individual preferences, and SCFs 

are formal representations of voting procedures. Shoham et al. provide formal definitions 

of these functions. (Shoham & Leyton-Brown, 2009) Taylor (2008) and, especially, Brams 

et al. (2002) give detailed descriptions of a wide range of voting procedures that have been 

developed within this field of study. A key observation here is that optimality is subject to 

the SWF and/or SCF applied; therefore, it is important to acknowledge that there is no 

perfect voting procedure. Indeed, it has been proven that there is no SWF that satisfies all 

reasonably desirable properties that SWFs should hold (Arrow, 1950), therefore SCFs must 

be chosen with consideration given to the SWF properties they can ensure. Nevertheless, 

it is reasonable to conclude that a potential answer to the critical question, above, is that a 

ñgoodò consensus protocol should result in all rational agents aligning their preferences 

with the maximum preference from a chosen SWF or that matches the outcome that would 

result from applying a chosen SCF to all of the agentsô preferences. To this end, the trivial 

solution is to either consolidate all of the agent preferences and apply the chosen SWF or 

hold an election; however, this introduces the problem of centralized control in the election 
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coordinator, resulting in a single point of potential failure. These methods also require that 

all agents publicly disclose their preferences, which may not be desirable in all cases 

(Heiskanen, 1999). Finally, depending on the voting procedure chosen, strongly 

opinionated minorities or poorly-informed majorities could unduly influence the results of 

the election, possibly leading to a sub-optimal final choice, and this, too, must be 

considered. 

 

2.4. Automated Negotiation 

 In game theory terminology, voting procedures are a ñone-shot game.ò That is, the 

agents make their choices, the outcome is evaluated, and the election result is binding. 

Since the election is not repeated, agents cannot use their observations of the other agentsô 

past actions to improve their performance in future rounds. While there are some voting 

procedures that use iterative removal of candidate outcomes, all voters provide their 

complete preferences in advance of the election, so voters cannot benefit from new 

knowledge part-way through the election (Brams & Fishburn, 2002).  As was seen in the 

previous section, one of the weaknesses of elections is that strongly-opinionated minorities 

or poorly-informed majorities can unduly influence elections and, in a one-shot scenario, 

the agents are committed to these results, even if they are sub-optimal. It may be more 

desirable to allow agents to influence each otherôs opinions by iteratively sharing 

information and coming to a more gradual consensus. This can be achieved with automated 

negotiation. 

 Jennings et al. (2001) provide a thorough introduction to automated negotiation 

issues and discuss game theoretic impacts on negotiation strategies. They characterize 

negotiation as an iterative process, requiring the minimal capabilities of proposal of a 

solution and response (accept or reject) (Jennings et al., 2001). While their paper focuses 

on game theoretic and heuristic aspects of negotiation, many actual implementations of 

negotiation protocols make extensive use of the aforementioned social utility foundations 

to enable agents to reason rationally about the values of deals and compromises. 

Chevaleyre et al. (2006) and (Endriss, Maudet, Sadri, & Toni, 2006) present the application 
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of social welfare theories to the multi-agent resource allocation problem, but many of the 

issues affecting that problem are the same as those in distributed consensus in that both 

problems seek to negotiate a socially-optimal solution in a distributed environment. 

 A common weakness of many negotiation protocols proposed thus far are that they 

focus on combinatorial auctions (Endriss et al., 2006), which requires a fully-connected 

communication network and becomes increasingly infeasible as the number of agents 

increases; they only allow for pairwise negotiation (Ehtamo, Verkama, & Hamalainen, 

1999; R. G. Smith, 1980); or they require a trusted mediator (Ehtamo et al., 1999; 

Heiskanen, 1999; Heiskanen, Ehtamo, & Hämäläinen, 2001; Li, Vo, & Kowalczyk, 2009; 

Lopez-Carmona, Marsa-Maestre, & Klein, 2011; Vo, Padgham, & Cavedon, 2007; Ziang 

& Mo-Yuen, 2011; Ziang et al., 2011), which can be both prohibitive in uncontrolled 

environments and, again, introduces a potential single point of failure. Finally, many 

negotiation techniques require some sort of capability to transfer utility between agents 

which is typically thought of in terms of payments between agents. This may be used as a 

mechanism to encourage fair behavior as, for example, in the use of the Clarke tax 

mechanism in (Ephrati & Rosenschein, 1996), or simply as a mechanism for persuasion, 

which enables more efficient negotiation over protocols that simply allow agents to accept 

or reject proposals (Jennings et al., 2001). 

 In addition to these weaknesses, very little work has been done on automated 

negotiation of complex contracts, focusing instead on negotiation of contracts involving 

only one or a small number of independent issues. As a sample of representative work that 

has been done, Klein et al. (2003) propose ñthe first negotiation protocol specifically for 

complex contracts.ò They present two versions of their solution, one which requires a 

mediator, and one that does not. Ito et al. (2008) present a mediated multi-issue negotiation 

protocol. Both of these approaches use simulated annealing as a metaheuristic for finding 

Pareto optimal solutions to complex contracts. 

 

2.5 Self-Organization  

 Unfortunately, automated negotiation in the sense of iterated proposals versus 

counterproposals is not going to be effective in forming consensus in large, decentralized, 
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autonomous systems. It has been identified that using voting procedures to make a 

collective choice is too centralized, requiring consolidation of global information in order 

to reach a decision. Automated negotiation is, in a sense, too decentralizedðthe number 

of pairwise agreements between agents that must be negotiated (and re-negotiated as other, 

new negotiations are made) quickly becomes infeasible. Additionally, without a 

mechanism for the transfer of utility, the system would require some awareness of the 

global utility of each option, which is exactly the unknown being sought. Instead of 

attempting to purposefully design a system to reach consensus by directed interactions 

between all agents, a system that arrives naturally at the consensus decision by following 

simple rules that govern each agentôs interactions with only its local neighbors is 

considered. Recall from section 2.1.2 that one of the criteria of a NBVP solution is that it 

should be ñsimple and localò (Kearns & Tan, 2008). Another criterion imposed by the 

NBVP, as formulated by Kearns et al. (2008), is that agents update only their own 

preferences based on observation of their neighborsô choices; they should not attempt to 

encode detailed information or send ñsignalsò to neighbors (Kearns & Tan, 2008). 

 These goals and criteria strongly suggest the incorporation of self-organization 

principles. Parunak et al. (2011) define a self-organizing system as a ñspecial kind of self-

adaptive systemò characterized, primarily, by agents that change their interrelations. In 

particular, self-organizing systems should not require centralized management to reach 

their goals or any explicit representation of system goals or architecture (Parunak & 

Brueckner, 2011). Thus, agents that decrease the entropy of the system, in this case by 

organizing the alignment of agents to the socially-optimal consensus, self-organize. Their 

rule set governing purely local interactions does not require any knowledge of the system 

goal, per se. 

 In searching for self-organizing solutions, it is common to look to nature for 

inspiration and understanding of the underlying organizational principles of self-

organization (Couzin & Krause, 2003). Knoester et al. (2013) and Knoester & McKinley 

(2009) use digital evolution to evolve an algorithm for forming consensus in a group; 

however, this research adapts a consensus protocol already found in nature to the NBVP. 
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2.6. Natural Consensus, Quorum Sensing, and Agent-Oriented Design Patterns 

2.6.1. Consensus Formation in Nature 

 How groups of animals make decisions has been an interest of biologists for some 

time, although, even until recently, little has been known about the processes animals use 

(L. Conradt & Roper, 2003). Conradt et al. (2003) modeled and studied the differences 

between despotic and democratic decision making in animal groups in outcome fitness. 

They determined that the synchronization costs for democratic decision making were 

usually lower than those for despotic control (L. Conradt & Roper, 2003). Couzin et al. 

(2005) introduce a simple model for direction of travel consensus in animal groups in 

which the group settled on average preferences when the differences in preferences 

between individuals were small, but achieved consensus for the majority option in the 

presence of large differences. They also showed the impact of a weighted feedback 

mechanism to allow consensus, rather than averaging, in cases with small differences 

(Couzin et al., 2005). To categorize the many decision making techniques in use, (Larissa 

Conradt & Roper, 2005) present a classification scheme for animal decision making 

techniques and argue that better understanding of how animals achieve consensus could 

ñyield insights into the evolution of cooperation, communication and group decision 

making in humans.ò 

 While Conradt et al. (2005) focus on the properties of consensus formation in many 

different species, other researchers have worked on determining the consensus mechanisms 

used by specific species. Of particular inspiration to this proposed research is the regulation 

of gene expression in bacteria (Bassler, 1999), transfer of information in fish shoals (Ward 

et al., 2008), ant nest site selection (Nigel R. Franks, Mallon, Bray, Hamilton, & Mischler, 

2003), and honey bee nest site selection (Niven, 2012; Seeley, 2003; Seeley & Buhrman, 

1999; Seeley & Visscher, 2003; Seeley et al., 2012; Visscher & Camazine, 1999).  

 In these studies, many factors are suggested as contributing to a systemôs ability to 

reach consensus. In (Kearns, Judd, Tan, & Wortman, 2009; Kearns & Tan, 2008; Seeley, 

2003), the authors cite the importance of undecided voters in reaching consensus, and this 
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is further supported by (Couzin et al., 2011). One commonality among these techniques 

that stands out, however, is their use of quorum sensing. 

 

2.6.2. Quorum Sensing 

 In (Baarslag & Jonker, 2011), the authors discuss in detail the conditions under 

which negotiated conditions should be accepted, but these are all based on endogenous 

factors. Quorum sensing is an exogenous acceptance condition requiring an individual to 

transition to one of its less-preferred choices when a threshold number of neighbors are 

aligned with that choice. (Sumpter & Pratt, 2009) examine quorum responses in detail and 

argue its central importance in decision making; its use has several benefits. In contrast to 

(Jennings et al., 2001), which advocates the use of a critique (counterproposal) capability, 

quorum sensing allows consensus without this mechanism. It also allows a system to make 

a trade-off between time to reach consensus and accuracy of consensus by tuning the 

quorum threshold (Chittka et al., 2009; Larissa Conradt & Roper, 2005; Passino & Seeley, 

2006; Sumpter & Pratt, 2009). 

 

2.6.3. Agent-Oriented Design Patterns 

 The identification, categorization, and formalization of recurring patterns in 

software design was pioneered by (Gamma, Helm, Johnson, & Vlissides, 1994) with the 

intent of  facilitating the reuse of best practices in software construction and creating a 

common language for use in discussion of object oriented software designs. Since then, the 

use of design patterns has spread to other, more specific, application areas. Within agent-

based modeling, simulation, and engineering, alone, there have been multiple areas of 

focus including general applications of patterns (Aridor & Lange, 1998; Ferreira de Araújo 

Lima, Duarte de Lima Machado, Abrantes de Figueiredo, & Sampaio, 2003; Kendall, 

Krishna, Pathak, & Suresh, 1998), self-organization and coordination (Tom De Wolf & 

Holvoet, 2006; Tom  De Wolf & Holvoet, 2007; Deugo, Weiss, & Kendall, 2001; Gardelli, 

Viroli, & Omicini, 2007; Gatti, de Lucena, & Garcia, 2009; T. Holvoet, Weyns, & 

Valckenaers, 2009; Tom Holvoet, Weyns, & Valckenaers, 2010; Kasinger, Bauer, & 
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Denzinger, 2009; Snyder, Valetta, Fernandez-Marquez, & Serugendo, 2012), and bio-

inspired patterns (Babaoglu et al., 2006; Fernandez-Marquez et al., 2012). North et al. 

(2011) make the key distinction between agent-based and agent-oriented design patterns. 

The former is focused on the software design patterns used to implement agent-based 

models, whereas the latter is focused on the patterns of agent behaviors and interactions. 

 Quorum sensing, as described above, has been used in multi-agent applications 

including sensor networks (Britton & Sacks, 2004; Wokoma et al., 2003) and server 

population management (Peysakhov & Regli, 2005). These applications and quorum 

sensingôs frequent recurrence in nature have led to the identification of quorum sensing as 

an agent-oriented design pattern by (Fernandez-Marquez et al., 2012); however, these 

authors were not able to describe the implementation of the pattern in a generalized manner, 

stating instead that ñthere is no specific implementation for the Quorum Sensing Patternò 

(Fernandez-Marquez et al., 2012). Not only does this feel unsatisfactory in the sense of 

being able to use the pattern in a modular way to solve problems, it also results in an 

inability to identify the considerations that should be used in the application of the pattern, 

as is done for patterns in the style of (Gamma et al., 1994). Therefore, although there is 

significant agreement in the prevalence of quorum sensing and how it works in general, 

there is still significant work to be done in understanding the dynamics of quorum sensing 

systems, especially if it is intended to use quorum sensing as a generalizable pattern for 

engineering self-organizing consensus. 

 

2.7. Metaheuristic Influences and Eusocial Insect Models 

 In addition to using the quorum sensing pattern as a basis for a self-organized 

solution to the problem of forming distributed consensus, the solution proposed in this 

research also leverages ideas from metaheuristic optimization techniques and lessons 

learned from existing models of eusocial insects. Negotiation and consensus formation 

both have similarities to hard optimization, a major application area for metaheuristics, and 

eusocial insect models provide insight into how nature has evolved the values for 

parameters related to quorum-based consensus. 
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2.7.1. Metaheuristics 

 Consensus formation can be thought of as a search for the combination of choice 

and preference pairs for a set of agents that maximizes the utility of the collective, when 

all preferences for a single choice are considered together. According to (Jennings et al., 

2001), ñnegotiation can be viewed as a distributed search through a space of potential 

agreementsò with the goal of optimizing the utility of the final agreement. It is highly likely 

that these search spaces are non-linear such that greedy hill-climbing algorithms searching 

for the optimal configuration are susceptible to stalling at local maxima. These sorts of 

non-linear search applications are exactly the types of situations in which metaheuristics 

excel at finding solutions, so long as there is some way to compare the ñgoodnessò of 

possible solutions (e.g., using their utilities) and there is a heuristic for how to modify a 

possible solution in such a way that it is likely to be closer to the final solution. Thus, 

metaheuristics iteratively sample the solution space, using heuristics and stochasticity to 

incrementally adjust the search to random, but hopefully better, locations in the search 

space and updating the solution with better solutions as they are found. There is usually a 

parameter that balances exploration and exploitation such that during the exploration phase 

bigger moves through the search space are allowed, and during exploitation searches are 

constrained to remain close to the best solutions found so far. Since these techniques are 

randomly sampling the search space and do not perform an exhaustive search they are not 

guaranteed to find the optimal solution. Instead, they are techniques that usually give a 

good solution, that is, they are heuristics that use heuristics in their processing, giving rise 

to the term ñmetaheuristicò (Dréo, Pétrowski, Siarry, & Taillard, 2006). 

 The iterative nature of the honey bee consensus protocol from section 1.3, the 

presence of utility values, and the ability to heuristically monitor the global formation of 

consensus through local observations suggest that the Honey Bee Consensus protocol 

would be a suitable candidate for a metaheuristic implementation. The stochasticity of 

natural systems is believed to be an important aspect to self-organization patterns as well 

(Couzin & Krause, 2003), and highly compatible with metaheuristic techniques. For 
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example, simulated annealing (Kirkpatrick, Jr., & Vecchi, 1983) has been applied to 

contract negotiation in (Ito et al., 2008; Klein et al., 2003). In addition to simulated 

annealing techniques, striking similarities are also seen between natural honey bee 

consensus and particle swarm optimization (Kennedy & Eberhart, 1995). 

 

2.7.2. Eusocial Insect Models 

 Several models of eusocial insect colonies have been developed for ants (Pratt, 

Sumpter, Mallon, & Franks, 2005) and bees (List, Elsholtz, & Seeley, 2009; Passino & 

Seeley, 2006). These models are not directly applicable to general consensus formation 

because they seek to reproduce ant and bee behavior that involves actual insect movement 

in a spatial context. Nevertheless, choices made in these models regarding interaction 

protocols and parameter value choices are valuable in providing a general idea of where to 

start with metaheuristic variables and values. In the next chapter, the model proposed in 

this research is formalized and described in detail where it differs from natural systems. 

 

2.8. Chapter Summary 

 The previous sections of this chapter situates this research precisely in the literature. 

It is desired to develop a metaheuristic that solves a modified form of the NBVP that, unlike 

the canonical NBVP, allows for tied preference weights among outcomes and more than 

two possible outcomes. The problem is further relaxed to allow a limited amount of 

information encoding and signal passing, specifically, information related to quorum size 

and membership. 

 Significant use is made of the concepts of preference, utility, and tools from 

decision theory as described in (Doyle, 1992) in order to evaluate the goodness of the 

consensus reached by the Honey Bee Consensus protocol. Unlike traditional DPS 

solutions, the presented technique does not require that each agent use the same utility 

function in its computation. 

 The implementation and analysis of the model allows inferences to be drawn about 

relationships between parameters related to quorum sensing and network topologies 
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influencing consensus. This will have applications in behavioral sciences and network 

sciences. It will also contribute to the agent-oriented pattern literature by providing a 

generalized quorum sensing pattern and associated considerations for its application. The 

next chapter provides the formal model upon which the implementation will be based. 
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3. Formal Model of Honey Bee Consensus 

 In this section, following the Overview-Design-Details (ODD) model specification 

protocol (Grimm et al., 2006), the adaptation of agent-based honey bee models to a general-

purpose metaheuristic called Honey Bee Consensus (HBC) and the rationale for 

corresponding design decisions is described in detail. In this description, the model actors 

in HBC are referred to as ñagentsò and the term ñbeesò is used when the agent-based model 

origins that inform the design decisions are referred to. Much of the content of this chapter 

is an updated version of work previously published in (Mentis & Yilmaz, 2013). 

 

3.1. Purpose 

 The purpose of the model is to create a multi-agent system of voting agents that can 

solve the NBVP, modified to accommodate more than two decision values, in a manner 

similar to the way in which honey bees form consensus on a new nest site location. 

 

3.2. State Variables and Scales 

 The model consists of three hierarchical levels: agent, population, and social 

network. Agents encapsulate an identifier; a set of neighboring agents in the social 

network; a set of preferences for the possible outcomes; a currently-preferred decision 

value (choice); a commitment duration remaining for the currently-preferred outcome; a 

commitment decay (evaporation) rate; an evaporation threshold, below which the 

commitment duration triggers an agent to become uncommitted to any choice; and a 

quorum size threshold that is used by uncommitted agents to determine a new choice to 

which to commit. Agents also contain a QuorumData object that contains their current state 

of belief about the global consensus progress as learned from their local neighbors. 

 The population provides the global aggregation of individual preference data for 

the purposes of calculating the preferred outcome if all agents had perfect, global 

information about the preferences of their peers. The population also plays a role in 

determining the global distribution of preferences during model initialization, as discussed 

in section 3.5. 
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 The social network is defined by the set of edges created by each agentôs neighbors 

set. In other words, there is an edge in the social network between agents A and B if agent 

B is a member of the set of agents in A.neighbors or vice-versa. In the model, the network 

is an undirected graph so, for this example, agent A would be in B.neighbors and agent B 

would be in A.neighbors. The network structure will be maintained in a data structure 

provided by the simulation framework. 

 These state variables and their relationships are depicted in the UML diagram of 

Figure 3.1. 

 

3.3. Process Overview and Scheduling 

 The model proceeds in simulation ticks. A simulation tick does not represent any 

real-world time, it is simply a synchronization barrier for agent activation. Agents are 

activated in an asynchronous random manner, and agent actions are broken into two phases 

at each simulation tick: a neighbor polling phase and a decay phase. At the beginning of 

every simulation tick, an agent is committed to one of the possible decision values. 

 In the neighbor polling phase, an agent asks for the quorum data from all of its 

neighbors, but it only incorporates information from neighbors that it agrees with. This is 

a positive feedback mechanism similar to a honey bee seeing other bees when it visits the 

site it prefers, as described in section 3.7.4.1 for committed agents. 

 In the second phase, the decay phase, the agents apply the decay function to their 

remaining commitment duration as an application of evaporation from section 3.7.4.3. This 

is the systemôs negative feedback mechanism replicating a beeôs eventual loss of interest 

for a site over time. When the result of this evaporation falls below the evaporation 

threshold and results in an agent becoming undecided, the agent follows the aggregation 

rules for neutral agents, as described in section 3.7.4.1. This triggers a re-polling of all 

neighbors, but unlike in the first phase, the newly uncommitted agent takes into 

consideration all of its neighbors quorums. Which neighbors the agent aligns its choices 

with depend on if there is a unique quorum among its neighbors, in which case it aligns 
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Figure 3.1. UML class diagram of implementation. 
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with the choice of that quorum, or else it is probabilistic based on fitness proportionate 

selection. In either case, the agent is guaranteed to become committed to one of the possible 

outcomes, maintaining the loop invariant for the beginning of every simulation tick. To 

clarify these interactions, UML activity diagrams and pseudocode for them are provided in 

the following sections. Further details of the submodels are provided in section 3.7.4. 

 

3.3.1. UML Activity Diagrams 

 

 

Figure 3.2. UML activity diagram for neighbor polling (positive feedback) phase. 
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Figure 3.3. UML activity diagram for decay/evaporation (negative feedback) phase. 
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3.3.2. Pseudocode 

 Pseudocode for the agent actions at each simulation tick is as follows: 

 

while tick  ˯ maxIterations :  

   for each agent a: // update with positive feedback  

      for each neighbor n in a.neighbors :  

         receivedQuorum  = n.copyQuorumData()  

         if receivedQuorum.choice = a.choice :  

            merge receivedQuorum and a.quorum  as fo llows:  

               perform the set union of their agent sets;  

                  if an agent is in more than one Q.A, keep the  

                  largest d value for that agent  

 

   for each agent a: // apply decay function (negative feedback)  

      apply  f decay to a.duration  

      if a. duration  ˳ evaporationThreshold : // become undecided  

         collect quorum objects from all neighbors, merging quorum  

            objects sharing the same choice, as above  

         if a unique merged quorum object meets the quorum threshold:  

            a.quoru m = unique merged quorum  

         else:  

            a.quorum  = result of fitness proportionate selection  

         apply f decay to all members of a.quorum  

         a.duration = f init (a.p a.quorum.choice )  

         a.quorum.add(a)  

         a.choice  = a.quorum. choice  

      else:  

         apply f decay to all members of a.quorum  

tick ++ 
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3.4. Design Concepts 

3.4.1. Emergence 

 Consensus on one of the possible outcomes emerges as the agents modify their 

commitments based on interactions with their neighbors and evaluation of propagated 

information. Individual response to local information is entirely represented by 

probabilistic rules. Fitness-seeking is therefore not modeled explicitly, since an individual 

cannot accurately evaluate the fitness of its own choice without global knowledge. Instead, 

the probabilistic responses to local interactions drive the agent toward the most-fit choice. 

 

3.4.2. Sensing 

 Individuals are assumed to know their own preferences for each of the possible 

outcomes, to which outcomes they are currently committed, and which agents are their 

neighbors. 

 

3.4.3. Interaction 

 Explicit interaction consists of polling neighbors and receiving the quorum data in 

response to the polls. Persuasion of neighbors is modeled implicitly by an agent refusing 

to incorporate the preferences of a neighbor until the agent becomes uncommitted. The 

agent whose commitment decays first, due to lower preference, becomes subject to the 

persuasion of its neighbors whose commitments have not yet decayed below the 

evaporation threshold. 

 

3.4.4. Stochasticity 

 As is typical in metaheuristic algorithms, stochastic behavior is an integral part of 

this solution. It is used to determine the order of agent activation; the order in which the 

decay function is applied to agents and their quorum data; and the uncommitted agent 

choice alignment in the absence of a unique quorum, as described in section 3.7.4.1. All of 

these random values are drawn from the uniform distribution; however, uncommitted agent 
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preference alignment applies the random value probabilistically to perform a fitness 

proportionate selection from among neighbor preferences. 

 

3.4.5. Observation 

 For model analysis, each runôs model parameter settings, each agentôs preference 

weights for the possible outcomes, and the population-level aggregation of preferences in 

accordance with the reference voting protocols described in Chapter 4 are recorded. At the 

end of the run, the number of simulation ticks executed, whether or not a consensus was 

reached, and the consensus value agreed upon (if applicable) are also recorded. 

 

3.5. Initialization 

 The pseudorandom generation of agent preferences is performed in two stages. 

First, a target probability distribution ὴ  for the outcomes is generated from the 

uniform distribution לπȟρ. This determines what probability each outcome has of being 

the preferred choice of an agent. For example, a ὴ  of ἂ0.16, 0.04, 0.09, 0.68, 0.03ἃ 

would indicate that approximately 68% of the agents should assign Outcome 4 their highest 

preference, whereas approximately 3% should assign Outcome 5 their highest preference.  

 In general, ὲ random values in the interval (0, 1) that sum to 1 are desired, where ὲ 

is the number of possible outcomes. As Smith & Tromble show in (2004), however, it is 

not possible to just choose ὲ values and normalize them by dividing by their sum, since 

that introduces bias. Instead, following (N. A. Smith & Tromble, 2004), probability 

distribution are constructed as follows: 

 Sample ὼȟȣȟὼ  uniformly at random from ρȟȣȟρππ without replacement. 

Let ὼ π and ὼ ρππ. Define ὴ  be the Ὥth value in the target probability 

distribution. Then ὴ ȟᶅὭɴ ρȟςȟȣȟὲ. Division by 100 transforms the 

integer preferences into percentages. If desired, the precision of the preferences could be 

increased by using a larger value, e.g. 1,000 to get three decimal places of precision. This 

algorithm has the limitation of not allowing any index of the distribution function to equal 

0.00, but in the target problem space, this is exactly what is necessary. If any of the 
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outcomes were to have 0% chance of being preferred by an agent, then it should not be 

under consideration by the group.  

 Second, having obtained the target probability distribution, a roulette wheel 

selection based on ὴ  is used to assign each agent its preferences for each of the ὲ 

outcomes. Using the same method as the first step, a new pseudorandom probability 

distribution is created representing all of the possible preferences an agent could have for 

an outcome. These values represent the weight of an agentôs preference for each outcome 

versus the others, so they sum to 1, since the sum of these values captures all possible 

outcome preferences. Again, zero values are not allowed since that would be indicative of 

a stubborn agent that refused to consider one of the outcomes, and that could lead to a 

failure in consensus. These preference weights are sorted and iterated through from 

largest to smallest, assigning them, in turn, to the outcome returned by the roulette wheel 

selection. Roulette wheel selection will return unassigned outcomes proportionate to their 

probabilities in ὴ , so it is most probable that the highest preference weights will be 

assigned to the outcomes that are supposed to be the most popular. 

 This methodology allows the pseudorandom generation of preferences across all 

agents that result in collective preference sets that can yield winners, losers, and ties, 

depending on the social rules by which they are evaluated. It also allows that multiple 

agents can prefer the same outcome despite different preference weights for that outcome. 

Were the ὴ  distribution for preference assignment not generated, the uniformly 

random agent preferences would be distributed so uniformly that each of the options would 

receive approximately equal total utility. Essentially, all choices would be equally good 

and thus the efficacy of the algorithm for finding optimal solutions would not be evaluable. 

 

3.6. Input 

3.6.1. Social Network Topology 

 There are several classes of graphs that have characteristics of particular interest in 

the study of social networks. The NetworkX Python package (Hagberg, Schult, & Swart, 

2008) is used to generate random graphs from several classic graph classes, such as ErdŖs-
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Rényi graphs and graphs that exhibit small world and power law characteristics. For this 

research, it is the intent to test and compare the algorithmôs performance on each of these 

types of graphs in order to derive generalizations about consensus formation in networks 

that have these characteristics. It is expected that this information will be of interest to 

researchers who focus on problems involving these topology classes. The social network 

models studied are explained in detail in Chapter 4. 

 

3.6.2. Quorum Size 

 The central mechanism of HBC is quorum-sensing; therefore, the impact of the 

quorum size parameter on algorithm performance is of particular interest in this research, 

both for developing guidelines for this algorithmôs use in consensus formation problems 

as well as for general applicability to solutions incorporating the quorum-sensing pattern. 

For the classes of graphs just mentioned, it is of interest to determine if quorum size affects 

successful consensus formation and, if so, how the quorum size should be adjusted to 

successfully achieve consensus. 
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3.7. Submodels 

3.7.1. Model Parameters 

 The parameters listed in Table 3.1 have been incorporated into the model. 

 

Table 3.1. Model parameters. 

Parameter Description Impact 

Agent Count Number of agents that 

must reach consensus. 

Higher numbers are expected to 

make consensus harder to reach. 

Quorum Size 

Threshold 

The number of agents that 

must agree in order to 

reach a quorum. 

Once a quorum is formed, it has the 

potential to force other agents to 

align themselves with its choice if it 

is the only quorum, otherwise, 

alignment is fitness proportionate. 

Decay Rate A value by which agent 

commitment is decreased 

at each round. Can be 

modified to select a decay 

function, e.g., one that 

produces a geometric 

decay rate, if desired. 

Agent preference must decay to 

allow agents to become uncommitted 

and open to compromise, either by 

being influenced by their neighbors 

or, if a unique quorum has formed, 

by committing to the quorumôs 

choice. 

Evaporation 

Threshold 

The value below which an 

agentôs preference 

indicates non-

commitment. 

When an agentôs decay rate has 

lowered its commitment below this 

value, the agent becomes 

uncommitted and open to persuasion 

to different outcomes. 

Network 

Topology Type 

Allows the use of a 

various social network 

models. 

This allows the use of different 

network topologies created externally 

to the model. 

Random Seed The seed for the PRNG 

controlling agent 

activation order and 

stochastic actions. 

Randomizes initial states and 

behavior on multiple runs. 

 

3.7.2. Metaheuristic Foundation 

 Fundamentally, distributed decision making is viewed as an optimization problem 

in which the aim is to decide on a value that maximizes the collective utility of all the 

agents in the group. In the case of honey bees, they are seeking the nest site that is perceived 

by the collective to be the best of several possible choices. 



35 

 

 As described previously, honey bees arrive at their nest site decision through a 

process that comprises a mix of independent site evaluation and influence from peer 

opinions. Several features of the Particle Swarm Optimization (PSO) metaheuristic 

(Kennedy & Eberhart, 1995) are recognized that are similar to the honey bee decision 

making process or that provide a solution to some of the problems that must be solved by 

HBC. Although the PSO metaheuristic is designed for optimizing continuous non-linear 

functions, which is different from the consensus problem at hand, PSOôs use of particle 

interaction within a neighborhood of peers in a connected network; stochasticity, and social 

(external) and cognitive (internal) influences; and iteration-based termination conditions 

are useful for consensus purposes. 

 In PSO each particle has a current location in the solution space (analogous to a 

decision in the consensus problem) and it moves to new locations (decisions) by combining 

information it knows about its preferences with those of its neighbors. Similarly, 

uncommitted bees obtain information from their dancing neighbors that push the 

uncommitted bees toward a decision. This implies that HBC must define a neighborhood 

of peers for each agent and provide a way to share preferences. The original PSO 

description called for all of the particles to be fully interconnected in a mesh topology, and 

it is also common in the PSO literature for the particles to be connected in a ring topology; 

however, neither of these topologies is particularly realistic for bee colonies or the potential 

application areas. Instead, the idea of connecting agents to a neighborhood of peers is 

retained, but the network topology is made to be a configurable parameter and allows more 

natural topologies such as random, scale-free, and hierarchical network topologies. As in 

PSO, however, at each iteration of HBC, each agent polls all of its neighbors for influence.  

 The influence of stochasticity, and social (external) and cognitive (internal) factors 

drives how each particle in PSO responds to the influences it receives from its neighbors. 

Similar forces are used, explained in the Agent Attributes and Stigmergic Quorum 

Detection sections, to direct how agents with expired commitments determine a decision 

for recommitment. 
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 Finally, the common technique of iteration-based termination, in which particles 

continuously refine their best values up to a certain number of iterations, is also a feature 

for adaptation. Bees use a piping signal that, upon reaching a certain threshold, causes the 

bees to take flight, effectively terminating the decision making process. Unfortunately, 

implementing this requires some sort of globally-accessible variable, which is undesirable 

in applications for distributed systems, or a broadcast propagation that would be time and 

message intensive. Instead, a configurable parameter is used to limit the time the system is 

allowed to attempt to reach consensus. The factors that influence the number of iterations 

required to routinely reach a consensus is then determined. 

 

3.7.3. Agent Attributes 

 As described, when bees in nature start their search, all of the scouts are 

uncommitted; only some of them find potential nest sites and become committed scouts. 

The adaptation to Honey Bee Consensus must differ here, since it operates under the 

assumption that all agents in the system have a preferred course of action at the start of 

deliberations. The first attribute of the agents is defined as a set of fixed values representing 

the preference weights for each of the ά possible outcomes:  

 

╟ ὴȟὴȟȣȟὴ   

 

where ὴ is the preference weight for the Ὥ th decision option.  

 The weight of each preference is used to calculate the duration for which the agent 

will remain committed to a decision before reconsidering its position. This is done by 

applying a function Ὢ  that translates a preference weight into an integer representing the 

number of iterations to maintain commitment. In the simplest case, the preference weights 

are limited to integer values and used directly, but using a function allows the weight 

representation and translation operations to be easily as desired. 

 Agent iôs initial commitment duration, Ὠ, is then set by applying Ὢ  to the largest 

value in ╟:  
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Ὠ Ὢ ÍÁØ
╟ɴ
ὴ  

 

 The commitment of a scout to its chosen site wanes over time, so each agent needs an 

evaporation parameter, צ, which is applied to Ä at time ὸ by some decay function Ὢ  

such that: 

 

Ὠ Ὢ Ὠ ȟ 

 

 The details of this decay function in HBC are subject to future experimentation, but 

observed bee behavior suggests that it should be linear, on average (Seeley, 2003; Seeley 

& Buhrman, 1999). The following is an example for the decay function: 

 

Ὠ Ὠ ẗρ  

 

where  ρ  and π  ρ. 

 When Ὠ π, the scout becomes uncommitted and seeks a new decision to which 

to commit, as described later in the section on Stigmergic Quorum Detection. For now, it 

is only important to note that the agent could recommit to the same preference for which 

its commitment just expired, or it could change to a different preference because, unlike 

the initial decision value, recommitments are influenced by neighbor preferences and 

aggregated quorum information. This is different than the way natural bees act, since most 

bees will not change allegiances once their enthusiasm for their chosen sites expires; 

however, the process retains similarity to the way bees that have never found a site base 

their exploration of new sites upon neighbor (social) information, but evaluate the quality 

of the new site upon internal (cognitive) information as emphasized in (List et al., 2009). 

 This repetitive process of commitment decaying to non-commitment provides the 

mechanism required for the expiration of dissent that is important in preventing deadlock 

in the decision making process (Passino & Seeley, 2006). It also provides a way to 
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artificially create ñuninformedò agents in a population that starts out partially informed 

with personal preferences for each decision. This injection of uninformedness is desirable 

because recent research has suggested that the presence of uninformed agents is an 

important component to swarm decision making in natural systems (Couzin et al., 2011). 

 

3.7.4. Stigmergic Quorum Detection 

 Bees not only advertise a preferred site, but they visit it periodically. This is a form 

of stigmergy in that the number of bees present at a candidate site informs a visiting bee 

about how widespread the preference for the site is throughout the swarm. That is to say, 

while one bee might not have seen a second bee dancing at the swarm, the first bee can 

infer the second beeôs commitment to a candidate site by its presence at the site.  

 The stigmergic data is important for an agent to be able to detect a quorum among 

distributed agents throughout the hive and detect the convergence to a consensus, so HBC 

uses the stigmergy design pattern (Babaoglu et al., 2006) to adapt bee behavior to agent 

behavior. In the absence of a globally accessible variable or mobile agents, this information 

must be propagated through the network somehow. In engineered systems this is usually 

achieved through message passing between network nodes (Babaoglu et al., 2006). Various 

agent-based design patterns for system communication and distributed coordination agree 

that this communication typically consists of aggregation, propagation, and evaporation of 

the relevant data (Babaoglu et al., 2006; Tom De Wolf & Holvoet, 2006; Gardelli et al., 

2007; Gatti et al., 2009; Kasinger et al., 2009). 

 The relevant data for quorum detection is encapsulated in a Quorum Data object, 

ὗ, that contains the identifier of the candidate choice it encapsulates, ὧ, and a set of agents 

that are known by this Quorum Data object to prefer its choice along with each agentôs 

remaining commitment duration for the choice. ὗ can be represented as 

 

ὗ ộὧȟὃỚ 

 

and ὃ as 
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ὃ ὥȟὨ ȟȣȟὥȟὨ  

 

 This object is the message to be passed in the implementation of the stigmergy 

pattern and supports aggregation, propagation, and evaporation as follows: 

 

3.7.4.1. Aggregation 

 Aggregation occurs when an agent adds itself to the set of agents contained in the 

object. There are two possibilities here: the receiving agent is either committed to a choice 

or it is neutral. It will be explain how an agent becomes neutral shortly. 

 If a committed agent receives any Quorum Data objects from its neighbors for the 

candidate choice it prefers, it performs a set union on the agent member sets and adds itself 

to the resultant set of agents in the object along with the remaining duration of its 

commitment, Ä. In the process of the set union the commitment durations of all agents are 

updated to the most current value. Thus, when an agent receives a Quorum Data object for 

a site it prefers and views the set of agents it contains, it is analogous to a bee visiting its 

preferred site and observing the other bees that are visiting it. If the agent was already a 

member of the set, it updates its associated commitment duration with its current value for 

that choice. Committed scout bees do not visit sites to which they are not committed, so 

they do not have visibility of quorum data for non-preferred sites; therefore, committed 

agents simply ignore Quorum Data objects for sites they do not prefer. 

 A neutral agent, on the other hand, is uncommitted. An uncommitted agent 

considers the quorum data of all of its neighbors. If, after combining all of the received 

quorum data, it detects a unique Quorum Data object that has accumulated a quorum (i.e. 

sufficient number) of agents in its membership set, defined by a model parameter, the agent 

will commit to that option, ὧᶻ, at the level determined by Ὢ ὴᶻ . This behavior is meant 

to simulate the receipt of a ñstop signal,ò (Seeley et al., 2012) essentially forcing an agent 

to join the quorum. On the other hand, if there is no unique quorum, the agent must become 

committed to one of the decision options before joining a Quorum Data object. Following 
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the findings concerning dance selection in (Visscher & Camazine, 1999) and the 

relationship between independence and interdependence in (List et al., 2009), the agent 

makes this commitment probabilistically based on the number of neighboring agents that 

prefer a decision using fitness proportionate selection, for example, tournament or roulette 

wheel selection. The agent then commits to that option, ὧ, at the level determined by 

ὴ) and behaves as committed to the selected decision until its enthusiasm expires and the 

process repeats. 

 

3.7.4.2. Propagation 

 Propagation of quorum data occurs when an agent is polled for its opinion by a 

neighboring agent. In response to the polling, an agent will return a single Quorum Data 

object appropriate to its preferences, created from the aggregation of the last set of Quorum 

Data objects it created from the polling of its neighbors. 

 

3.7.4.3. Evaporation 

 Evaporation in a Quorum Data object is related to the aforementioned commitment 

duration associated with each agent in the Quorum Data structure. The length of time a bee 

remains committed to and dances for a preferred site is based upon the perceived quality 

of the site (Seeley & Buhrman, 1999). Because bees periodically revisit the site to which 

they are committed, this value also factors into the number of times the bee returns to the 

preferred site and its likelihood of being perceived by other agents as a member of the 

quorum for it. In other words, an agent should remain a member of the Quorum Data 

objects it has joined and that are being propagated through the network only about as long 

as the agent is committed to the sites contained by those Quorum Data objects. This can 

be approximated by applying Ὢ  to the value Ä associated with each agent ὥᶰὗȢὃ at 

each iteration and refreshing Ὠ with the current value every time an agent receives a 

Quorum Data object in which it is already a member. 
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3.8. Chapter Summary 

 In this chapter, the Honey Bee Consensus model has been described following the 

ODD template. The observed behavior of honey bees has been mapped to Honey Bee 

Consensus rules, especially with regard to information propagation between neighbors and 

reaction to quorum formation. It has also been described how the aggregation, propagation, 

and evaporation patterns are applied to replicate the stigmergic effects achieved through 

the mobility of bees in natural environments. In the next chapter, the methods to be used 

to implement and evaluate the performance of Honey Bee Consensus is explained. 
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4. Evaluation Methodology and Experiment Design 

4.1. Overview 

 In this chapter, the experiments conducted with HBC to determine its feasibility for 

use in distributed negotiation and consensus formation are explained. The experiments 

were designed to answer the following research questions: 

 

1. How well does HBC work, overall, for achieving socially-optimal consensus in 

commonly-studied social network models? The performance metrics in this 

regard are whether or not a consensus is reached in the allotted number of 

negotiation rounds, the number of negotiation rounds required to reach 

consensus, and the social utility of the resulting consensus. 

2. Does the quorum size parameter have a significant impact on the speed of 

distributed consensus formation in HBC, and, if so, how does the choice of 

quorum size value affect the balance and tradeoffs between successful 

consensus formation, the number of negotiation rounds required to reach 

consensus, and the quality of the final consensus as measured by its social 

utility? 

3. How does the social network model and topology affect the performance of 

HBC? 

 

4.2. Methodology 

4.2.1. Evaluating the Overall Performance of Honey Bee Consensus 

 To evaluate HBCôs performance an algorithmic analysis of its time complexity is 

presented and compared to the time complexity analyses of established techniques for 

distributed consensus negotiation over two possible choices. This provides HBCôs worst-

case performance with respect to negotiation rounds required to attempt to reach consensus 

and allows the practicality of using the compared methods for solving the Networked 

Biased Voter and Majority Coordination problems to be determined. 
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 As discussed in Chapter 2, however, one of the key benefits of HBC over other 

techniques is its ability to negotiate consensus from among more than two possible choices 

in addition to considering the agentsô weighted biases; therefore, the predominance of this 

research has focused not on competing with two-outcome distributed consensus 

techniques, but on gathering empirical performance data for HBC on problems with more 

than two possible choices on a variety of social network topologies.  

 General trends in network topology effects on HBCôs performance were examined 

with respect to speed, accuracy, and failure rates. Performance metrics were measured for 

all trials performed on a given social network model at the same population size and 

combined, regardless of the parameters used to construct the individual random graphs. 

Using this data, the average number of ticks to consensus (discarding the outlier cases 

where the metaheuristic failed to achieve consensus in the allotted time); the percentage of 

times a given topology resulted in the desired outcome, given that a consensus was reached 

in the allotted time; and the percentage of times the topology failed, either because it 

resulted in an undesired consensus or failed to reach consensus at all, were plotted, each 

with 95% confidence intervals. 

 Since all of the underlying social networks for these plots were created using 

different model parameters, this data view provided insight about how HBC performed on 

a given social network model in general, regardless of the specific parameters chosen for 

the model. In particular, trends in the plots of the performance metrics versus the quorum 

size were examined, since one of the research objectives was to be able to provide quorum 

size parameter guidance for the quorum sensing design pattern. The confidence intervals 

allowed determination of the statistical significance of performance differences at the 

tested quorum size thresholds and examine the variance in performance for different social 

network topologies. As HBC yields heuristic results, the confidence intervals also allowed 

inference of the expected performance of the technique for a given class of social networks. 

 These evaluations necessitated that an appropriate set of models be selected to 

construct the social networks and that a way to determine the correct, or desired, consensus 

result, given the initial preferences and weighted biases of the social network members, be 
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defined. The decisions and rationale for these choices are explained in the next two 

sections.  

 

4.2.1.1. Social Network Models 

 The social network models upon which the experiments were ran were the Watts-

Strogatz (Watts & Strogatz, 1998), Barabási-Albert (Barabási & Albert, 1999), and ErdŖs-

Rényi (Erdos & Rényi, 1959; Gilbert, 1959) models due to their common use in the study 

of social and complex networks (Strogatz, 2001). Each of these models provides an 

algorithm for randomly generating networks with short average path lengths, also known 

as ñsmall-worldò networks; however, they result in different connectivity structures with 

respect to the degree distribution of the nodes and/or the clustering coefficient (Amaral, 

Scala, Barthélémy, & Stanley, 2000; Porter, 2012). Specifically, the Watts-Strogatz model 

yields networks with normal degree distribution and high clustering coefficients, the 

Barabási-Albert model yields scale-free networks (networks in which the degree 

distribution follows a power law), and the ErdŖs-Rényi model yields random networks with 

clustering coefficients that are related to the number of edges in the network. By comparing 

HBCôs performance on each of these topologies, the ways in which these unique network 

characteristics that appear in naturally-occurring social networks do or do not influence 

consensus formation can be determined. 

 The Python NetworkX library (Hagberg et al., 2008) was used to create the random 

networks with a variety of parameter values, as described in the Experiment Design section. 

The library was also used to ensure that each randomly-generated network was connected 

(i.e., that there was at least one path between any two nodes of the network), since this 

property is required to ensure consensus. Each of the social network models uses different 

parameters to guide its random construction of a social network with the desired 

characteristics. Generally speaking, the models are configured by parameters and rules that 

determine the number of nodes in the network, the number of edges in the network, and 

the probability of establishing an edge between two nodes. Here, a brief overview of these 

well-known models is provided. 
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ErdŖs-Rényi Model 

 

 The ErdŖs-Rényi model may refer to either of two model variants for constructing 

random graphs: the G(n, M) model or the G(n, p) model (West, 2001). In both models, the 

parameter n indicates the number of nodes in the graph. The G(n, M) model yields a random 

graph from the set of all graphs with n nodes and M edges. The G(n, p) model, on the other 

hand, connects every pair of nodes with a fixed probability p. For the purposes of this 

research, the G(n, M) model was primarily used because the ability to specify the number 

of edges in the network allowed for a more direct comparison between the ErdŖs-Rényi 

random graphs and those created with the Watts-Strogatz model, which also produces 

social networks with a fixed number of edges. As described in the section on the Watts-

Strogatz model, it can easily be used to yield G(n, M)-style ErdŖs-Rényi random networks 

by fixing the rewiring parameter. The only exception to this was the usage of the G(n, p) 

model for the random networks of 200 agents seeking consensus from two outcomes. This 

variation allowed testing HBCôs performance on a set of ErdŖs-Rényi random graphs with 

varying edge counts in a single trial group. 

 

Watts-Strogatz Model 

 

 The Watts-Strogatz model provides a way to algorithmically create a family of 

social networks that have a small average path length and high clustering coefficient. It is 

constructed by connecting each node on the circumference of a ring to its k nearest 

neighbors. Then, each edge in the network is removed with uniform, independent 

probability p and ñrewiredò to connect a pair of nodes chosen uniformly at random (Porter, 

2012). Figure 4.1 depicts an example starting network constructed with k = 6 and what the 

network might look like after four random re-wirings. 
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Figure 4.1. Starting graph for Watts-Strogatz model with k = 6 (a) and after 4 random re-

wirings (b) (Porter, 2012). 

 

 For this model, as ὴO ρ the clustering coefficient approaches zero as the number 

of nodes ὲᴼЊ. At ὴ ρ, the resulting structure is the equivalent of a network constructed 

with the G(n, M) variant of the ErdŖs-Rényi model, where ὓ
ẗ

 (Porter, 2012). 

 

Barabási-Albert Model 

 

 The Barabási-Albert model decides the existing nodes to which new nodes should 

connect using preferential attachmentðnodes with a high number of neighbors are more 

likely to be connected to a new node than those with low numbers of neighbors. The 

parameter that affects this choice is m, which dictates the initial number of (unconnected) 

nodes in the starting graph and also the number of new, preferentially attached edges added 

with each additional node, up to the nth node. The result of this model is a network in 

which the nodal degree distribution follows a power law where there are a small number 

of nodes with high degree and a small number with very low degree. This approximates 

the condition in social networks where there are a small number of very popular or 

influential individuals, but most individuals only have a fairly small local community. 

 

4.2.1.2. Evaluation Metrics 

 As discussed in the literature review, the rationality of an outcome can be judged 

in different ways. Following (Endriss et al., 2006), in this research outcomes are evaluated 

with respect to the resultant social welfare of the artificial multi-agent society. A number 

 



47 

 

of possible social welfare metrics are presented in (Brams & Fishburn, 2002; Chevaleyre 

et al., 2006; Shoham & Leyton-Brown, 2009; Taylor, 2008; Wooldridge, 2009); plurality 

voting, Borda voting, and range voting are the three used in the presentation of these results.  

 Since each of these voting protocols can yield a different winning result under the 

same conditions, there is no definitive way to establish one method as more correct than 

any of the others. In light of this, the desired consensus, with respect to social utility, is 

defined to be that consensus which would agree with the results of the majority of these 

three voting protocols for a given preference initialization. The remainder of this section 

consists of a description of each voting protocol used as evaluation metrics and an example 

illustrating how they can yield different winners under the same conditions. One difference 

is noted in the application of these voting protocols in that in HBC the agents are allowed 

to rank options equally if they both have the same utility. Allowing ties departs from what 

is traditionally allowed in Borda and range voting where each outcome must be assigned a 

distinct ranking; however, this rule is not enforced due to the differences in the goal of 

voting, in which one is trying to determine a definitive winner, and consensus formation, 

in which one is concerned with determining any acceptable outcome of high social utility 

and, therefore, where ties are not a problem. 

 

Plurality Voting 

 

 In plurality voting, each decision maker casts a vote for their top choice. The choice 

that receives the most votes wins. In this data collection, tied choices are considered equally 

good; therefore, if HBC picks any of the tied choices we consider it to have picked an 

acceptable outcome with respect to plurality voting.  

 An interesting case with plurality voting is that the result may not yield the highest 

utility for the collective because it does not take into account any of the individual 

preference weights for the outcomes, it gives full weight only to the top choice. Consider 

the weighted voter preferences in Table 4.1. In this example, Candidate A would win the 

election in plurality voting because it is the first choice of Voters A and B. By some 
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measures, however, Candidate B would yield a higher collective utility because that 

candidate is relatively acceptable to Voters A and B while being much more acceptable to 

Voter C than Candidate A. The next two methods attempt to address this apparent paradox. 

 

Table 4.1. Example of voters with weighted preferences. 

 Candidate A Candidate B Candidate C 

Voter A 0.50 0.40 0.10 

Voter B 0.40 0.35 0.25 

Voter C 0.05 0.60 0.35 

 

Borda Voting 

 

 In Borda voting, each voter rank orders all of the candidates. Each rank is given a 

fixed weight. The accumulated weights for each candidate are summed, and the candidate 

with the highest weighting wins. Using Borda voting with the preference weights in Table  

would result in the weightings shown in Table 4.2. 

 

Table 4.2. The Borda weights resulting from the preference weights in Table 4.1. 

 Candidate A Candidate B Candidate C 

Voter A 3 2 1 

Voter B 3 2 1 

Voter C 1 3 2 

Sum 7 7 4 

 

In this particular case, it can be seen that Candidates A and B would be tied. This results 

in better representation of Voter Côs preferences, but it does not take into account Voter 

Côs large relative preference for Candidate B over Candidate A. This information can be 

incorporated with the next voting protocol. 
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Range Voting 

 

 The reason Borda voting results in a tie between Candidates A and B is because, 

even though the ranks are weighted, the weighted difference in preferences between 

outcomes is ignored. With range voting, all candidates are rank ordered, just as in Borda 

voting, but each candidate receives a weight, chosen by the voter, within a specified range. 

In HBC, weights between 1 and 99 are assigned, corresponding to the preference value, so 

the preference weights in Table 4.1 result in the range voting results in Table 4.3. 

 

Table 4.3. The range voting weights resulting from the preference weights in Table 4.1. 

 Candidate A Candidate B Candidate C 

Voter A 50 40 10 

Voter B 40 35 25 

Voter C 5 60 35 

Average 31.67 45 21.67 

 

As shown, the weights are averaged to get the final result, showing that Candidate B is the 

most acceptable to all voters when considering global preferences and relative weights. 

 

4.2.2. Determining the Impact of the Quorum Size Parameter 

 To determine whether or not the quorum size has a significant effect on HBCôs time 

to consensus metric, and to discover any confounding effects on consensus speed from the 

social network model parameters, the Minitab Statistical Software package ("Minitab 17 

Statistical Software," 2010) was used to perform analyses of variance (ANOVA) setting 

simulation ticks (i.e., negotiation rounds) as the response variable and quorum size and the 

applicable social network model parameters as the independent variables defined by factors 

in the ANOVA model. The ANOVA analysis was performed for each class of social 

network, combined across all tested network sizes to allow the analysis to be valid for 

describing the significance of factor impacts on social networks of the class in general. 

Since the possible values for quorum size and model parameters are limited in range by the 

size of the social network, the factor levels were normalized across different sized networks 
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of the same class by considering the factor levels in ranges determined by percentage of 

the social network population. These ranges were labeled low, medium, and high and these 

ranges are defined in Appendix A. 

 

4.2.3. Determining the Impact of the Social Network Model 

 The previously described ANOVAs examine factor impacts within a particular 

social network model. To determine the impact of the individual social network models on 

HBCôs consensus formation, additional ANOVAs were performed on consolidated trial 

data for different network models of similar population sizes. Since different social 

network models use different parameters in network construction, the only factors that 

could be examined in these ANOVAs were model type and quorum size. 

 

4.2.4. Verification and Validation 

 The correctness of simulations based on a model is usually described in terms of 

verification and validation. Verification is the process of ensuring the model is 

implemented correctly with respect to its specification (Yilmaz, 2006), in other words, 

whether or not one is ñbuilding the model rightò (Balci, 1986). Validation is the process of 

ensuring the model produces results accurate enough to serve its intended purpose (Robert 

G. Sargent, 1996). In this case, ensuring one has ñbuilt the right modelò (Balci, 1986).  

A modelôs validity is considered relative to the context of its experimental conditions and 

its response accuracy. For the proposed research, the intended purpose of the model is to 

allow distributed, autonomous agents to reach a desired consensus in a decentralized, self-

organizing way. The creation of the right model can be validated if it produces the expected 

result with sufficient degree of accuracy. The definition of the ñoptimalò result, however, 

is variable, as is the minimum frequency of consensus formation needed to declare success. 

 In (Tan, 2010), the optimal result of the NBVP is the result held by the majority of 

the voters at the beginning of the deliberations, but the canonical NBVP only considers 

two possible decision values. As it has been shown, additional possible decision values 

create a condition where the optimal choice can be defined differently than just the majority 
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opinion. In these experiments, the desired consensus result is considered to be one that 

agrees with a majority of the three centralized social choice protocols mentioned in section 

4.2.1.2, and any case that results in a consensus that is not in the majority result returned 

by the social welfare metrics, including cases where the metaheuristic fails to reach a 

consensus in the allotted time, is considered an undesirable result. Based on these 

definitions, comparison to other models is being used, as described in (Robert G Sargent, 

2005), as the validation technique. 

 Similarly, it is not specified how frequently an appropriate outcome must be chosen 

in order for the algorithm to be considered successful because, as observed by Dréo et al. 

(2006), there is no straightforward way to compare iterative optimization methods; the 

quality of the result is often dependent upon the length of time the algorithm is allowed to 

run, which can be freely chosen by the user, and the runtime characteristics of 

metaheuristics are strongly tied to the chosen parameter values. Instead, the goal is to 

characterize how frequently the algorithm results in consensus, given a specific amount of 

allotted negotiation rounds, for different experimental conditions such as network 

topology, number of voters, and quorum size in order to allow those implementing the 

algorithm to engineer its performance in accordance with their needs. As a general 

benchmark, however, it is clear that a success ratio at least significantly greater than 1/x, 

where x is the number of choices would be desired, since a value close to 1/x would be 

expected to be obtained by random chance. 

 With regard to verification, it must be ensured that the entities, processes, and 

associated constraints and assumptions of the programmed model are an accurate 

realization of the proposed design. This can be achieved with model analysis and testing. 

Model analysis is a static analysis of the software to predict control and data-flow 

properties of interest. Model testing is achieved by subjecting the implementation to test 

cases for which the expected result in known and comparing the actual output to the 

expected output (Yilmaz, 2006). 

 Prior to conducting experiments with HBC, validation and verification was 

performed by repeatedly running HBC on trial networks and preference distributions and 
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using the simulation frameworkôs visualization capabilities to observe the progression of 

negotiation and consensus formation in the network. A histogram of the number of agents 

preferring each possible outcome provided a visual indication of the preference distribution 

upon initialization and as the simulation progressed to completion. Color-coding of the 

agents in the network visualization showed which agents preferred which outcomes at 

different times. Observation of these visualizations provided face validation that HBC was 

performing as intended. Comparison of the initial preference distribution to the resulting 

consensus, as shown in Figure 4.2, allowed verification that the expected result was 

routinely returned, either by way of returning the clear majority winner or, in some cases, 

forming consensus for an option that was a close runner-up, indicating the return of a 

consensus likely to be favored by Borda or range voting. 

 

  

Figure 4.2. Histogram and network visualization showing initial and final agent 

preferences and distribution. In this run, the clear majority preference at initialization is 

chosen by all agents after only 84 negotiation rounds. 

 

4.3. Experiment Design 

 Honey Bee Consensus was evaluated on social networks of size n equal to 25, 200, 

and 1,000 agents. These values were chosen in order to provide a sample of network sizes 

that spanned several orders of magnitude so that significant differences could be detected 

as the network size grew and to test the scalability of the technique. For each network size, 

a set of random social networks was produced using the three aforementioned models. 

Some of the model parameters are bounded by the number of nodes in the network (e.g.: 
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neighbors per node in Watts-Strogatz and number of initially-connected nodes in Barabási-

Albert), therefore, for these parameters, values from a predefined range of low, medium, 

and high values from between 1 and n/2 were chosen. These range definitions are provided 

in Appendix A. 

 Choosing parameters for the rewiring probability parameter, p, in the Watts-

Strogatz models was less straightforward. Initial sensitivity tests showed that for n = 200 

and k = 20, p values in the range [0, 1] at steps of 0.1 produced almost identical 

metaheuristic performance for ὴ πȢρ. It was determined that the cause of this was the 

fact that these p values did not yield social networks with a sufficiently diverse range of 

diameters for producing different results. In order to remedy this, values for p were 

generated in the range (0, 1] such that each network at a given k value had a different 

diameter. The value p = 0 was excluded, since, by the Watts-Strogatz model, this would 

result in a k-regular large-world ring network different than the structures to be studied. 

Watts-Strogatz models generated with p = 1 simply yield ErdŖs-Rényi random graphs in 

accordance with the ErdŖs-Rényi G(n, M) model, so this was the technique used to create 

the ErdŖs-Rényi model social networks. Appendix A contains a comprehensive table of the 

social network parameter configurations used in experiments. 

 As indicated by the research questions, the effects of the quorum size parameter 

value was of particular interest. By definition, a quorum size greater than n/2 represents a 

simple majority, but it is desired to achieve consensus with considerably less global 

knowledge; therefore, testing of quorum size values was limited to those less than or equal 

to half of the social network population. In the cases of population sizes 50 and 200, 

quorum sizes were tested in increments of 5, but as the size of the population reached 1,000 

this became infeasible due to the time required to run many random trials, so quorum sizes 

in increments of 25 were used for these trials. 

 Experimenting with common random numbers, for a given network size, 30 sets of 

random preference weight configurations were used, and these preference weights were 

initialized to the same network locations, with the same neighbors, for each of the random 

social network models created of that network size, as listed in Appendix A. Using the 
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metaheuristic, trials were run on each of these 30 configurations for each of the social 

network configurations for every quorum level, giving a total of σπὲόά ὲὩὸύέὶὯί

ὲόά ήόέὶόά ίὭᾀὩ ὰὩὺὩὰί trials  for each of the social network model and population size 

combinations. The results from these trials were used to calculate the average performance 

and variance of the metaheuristic over a range of social network model variations at each 

quorum size level. 

 For all of the experiments, the evaporation rate and evaporation threshold were 

maintained as control variables. While these variables guide the propagation of consensus 

through the social network, initial sensitivity tests suggested that they did not have a 

significant impact on the results when the values were the same for all agents, and adding 

experimentation levels would have added independent variable complexity in excess of 

that required for the scope of this research. Further exploration of the impacts of these 

parameters is proposed as future work, however.  

 

4.4. Chapter Summary 

 This chapter has described the social network topological conditions under which 

HBCôs performance was studied and the criteria used to evaluate that performance. It has 

been explained how the parameter values for the metaheuristic model, described in the 

previous chapter, were chosen and how the experimental design was structured for the 

simulation trials in order to answer the research questions regarding the performance of the 

metaheuristic. Table 4.4 provides a summary of the design variables. The next chapter 

presents the results of these experiments. 
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Table 4.4. Summary of experiment design variables. 

Dependent Variables 

Negotiation Rounds 

(Simulation Ticks) 

The number of rounds of negotiation required to reach a 

consensus. 

Percent Desired 

Outcome Returned 

Given Consensus 

Reached 

The percentage of trials resulting in a consensus in accord 

with the majority of the reference voting protocols, given that 

a consensus was returned. 

Percent Desired 

Outcome Returned 

Overall 

The percentage of trials resulting in a consensus in accord 

with the majority of the reference voting protocols out of all 

attempts, including failures. 

Independent Variables 

Quorum Size The number of agents that must agree on an outcome 

preference to form a quorum that drives undecided agents to 

go along with their preference. 

Population Size (n) The number of agents in the social network. 

Social Network Model The model used to generate the random social networks 

(Watts-Strogatz, Barabási-Albert, or ErdŖs-Rényi). 

Social Network Model 

Parameters 

The model-specific parameters controlling random variability 

(e.g.: p and k in Watts-Strogatz or m in Barabási-Albert). 

Pseudorandom number 

generation seed. 

The seed for the pseudorandom number generator that 

determines the initial preference distributions and the 

stochastic agent choices in each negotiation round. 

Control Variables 

Evaporation Rate The rate at which an agentôs preference strength for the 

currently-preferred outcome decays toward zero. 

Evaporation Threshold The preference level below which an agent becomes 

undecided. 

Maximum Negotiation 

Rounds 

The number of rounds of negotiation allowed before aborting 

the simulation. 
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5. Experiment Results 

5.1. Overview 

 This chapter presents the results of the experiments conducted. As described in 

Chapter 4, a full factorial experiment design was used to evaluate HBC performance in 

terms of speed to consensus, the percentage of desired outcomes when consensus was 

reached, and the percentage of failed outcomes out of all the trials with respect to quorum 

size, population size, social network model, and 30 pseudorandom number generator 

(PRNG) seeds. The experiment design matrix is given in Table 5.1. Quorum sizes and 

social network parameters limited by the population size are divided into low, medium, 

and high ranges, as detailed in Appendix A, to allow comparison across trials of different 

population sizes. 

 

Table 5.1. Factorial design matrix. 

Factor Levels Sub-Factor Levels 

PRNG Seed 0 - 29 

p k m 
Population Size 50, 200, 1000 

Quorum Size 
Low, Med, 

High 

Social Network 

Model 

Watts-

Strogatz 

Low, Med, 

High 

Low, Med, 

High 

 

Barabási-

Albert 

  Low, Med, 

High 

ErdŖs-Rényi  Low, Med, 

High 

 

 

 

 Experiment results empirically show that HBC performs significantly better than 

chance at yielding a socially desired consensus from among two or five possible outcomes 

on all three of the social network models tested for population sizes ranging from 50 to 

1,000. It is also found that the quorum size parameter has a significant impact on the 

number of negotiation rounds required to reach the desired consensus in all of the social 

network models. The number of negotiation rounds does not appear to be significantly 

impacted by the social network model for small populations, but differences in this metric 
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become more pronounced as the population size increases. The plots of the performance 

data are presented in the remainder of this chapter. 

 

5.2. Honey Bee Consensus Performance Results 

 The first metric used to evaluate HBCôs performance was the number of negotiation 

rounds required to reach a consensus, which is the equivalent of the number of simulation 

ticks required to reach consensus. Figures 5.1 through 5.3 contain the plots of the average 

number of negotiation rounds, with 95% confidence intervals, required for reaching 

consensus versus the quorum size parameter value for each of the social network sizes and 

models over five choices of outcome.  

  
  

 
Figure 5.1. The 95% confidence interval plots for average negotiation rounds to consensus 

for all social network models of population size 50. 
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Figure 5.2. The 95% confidence interval plots for average negotiation rounds to 

consensus for all social network models of population size 200. 

  

 
Figure 5.3. The 95% confidence interval plots for average negotiation rounds to 

consensus for all social network models of population size 1,000. 
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 These plots show that, regardless of the social network model and population size, 

there is at least one quorum size for each that can be reliably expected to yield consensus 

in a reasonable number of rounds of negotiation. It is observed that extremely small quorum 

sizes, relative to the total population size, require significantly more negotiation rounds 

than larger quorum size values to reach consensus. It is also apparent that the smallest 

numbers of rounds required to reach consensus tend to cluster around quorum size values 

slightly greater than one quarter of the total population size. Finally, the general shapes of 

the plots often exhibit similar characteristics across different social network models. For 

instance, the shapes of all of the plots for n = 50 are strikingly similar, and, while the 

similarities become less pronounced as the population size increases, similarities are still 

noted, such as the performance plateau between quorum size values of 20 and 35 in the 

networks of population size 200 and the peaks at quorum size values of 200 and 350 in 

Watts-Strogatz and Barabási-Albert networks of population size 1,000. 

 While speed to consensus is an important performance metric, the plots in Figures 

5.1 through 5.3 are too generous in that they show the number of negotiation rounds to 

reach any consensus, regardless of whether or not it is the desired consensus as defined in 

Chapter 4. Figures 5.4 through 5.6 contain the plots showing the percentage of trials, with 

95% confidence intervals, in which the final consensus reached is a desired consensus 

versus the quorum size parameter value for cases in which HBC terminates in the allotted 

time. 

 The plots in Figure 5.4 through 5.6 show that the percentage of consensuses reached 

in accord with the desired outcome increases as the population size increases. It is also 

observed that, when there is a statistical significance between the results at each quorum 

size, the best consensuses are obtained by the smallest quorum sizes, and the range of 

quorum sizes yielding a high percentage of desirable outcomes increases with the 

population size. This performance is in contrast with the results in Figures 5.1 through 5.3 

where the smallest quorum sizes produced the worst results in terms of the number of 

negotiation rounds. 
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Figure 5.4. The 95% confidence interval plots for percentage of success in achieving 

desired consensus for all social network and models of population size 50. 

  

 
Figure 5.5. The 95% confidence interval plots for percentage of success in achieving 

desired consensus for all social network and models of population size 200. 
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Figure 5.6. The 95% confidence interval plots for percentage of success in achieving 

desired consensus for all social network and models of population size 1,000. 

 

 As explained in Chapter 4, the plots in Figures 5.1 through 5.6 consider only those 

cases in which a consensus was ultimately reached. Trials that exceeded the maximum 

number of negotiation rounds are not included. It is logical to consider these excluded cases 

as failures, even though they might have ultimately reached a consensus if allowed to 

continue. Plotting the percentage of trials, with 95% confidence intervals, in which either 

no consensus or a non-desired consensus is reached versus the quorum size parameter 

value, the results shown in Figures 5.7 through 5.9 are obtained. 
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Figure 5.7. The 95% confidence interval plots for percentage of failure in achieving any 

consensus or the desired consensus for all social network models of population size 50. 

  

 
Figure 5.8. The 95% confidence interval plots for percentage of failure in achieving any 

consensus or the desired consensus for all social network models of population size 200. 
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Figure 5.9. The 95% confidence interval plots for percentage of failure in achieving any 

consensus or the desired consensus for social network models of population size 1,000. 

 

 In the cases where all trials for a given quorum size parameter terminated with some 

consensus, these plots are simply the opposite of those in Figures 5.4 through 5.6; however, 

the results in Figures 5.7 through 5.8 contain the additional information of runs that 

exceeded the allotted number of negotiation rounds. As opposed to the results from Figures 

5.4 through 5.6, where the best results were obtained at the smallest quorum sizes, in 

Figures 5.7 through 5.8 the smallest percentages of failures, when considering trials that 

exceeded the allotted time, are observed at generally larger quorum sizes.  

 From these plots, it can also be seen that each social network model and population 

size has a range of quorum sizes for which the success rate of HBC is significantly higher 

than that which would be expected by random chance. This validates HBCôs effectiveness 

for the assigned task. It remains to determine how to select a quorum size that results in 

both effective and feasible performance, which is discussed in Chapter 6. 
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5.3. Impact of the Quorum Size 

 Figures 5.1 through 5.3 indicate that the quorum size parameter has a significant 

impact on the number of negotiation rounds required for HBC to yield a consensus. 

ANOVA were conducted for each of the tested social network models in order to confirm 

the significance of the quorum size parameter and identify any possible confounding 

effects on consensus speed introduced by the parameters used to generate the social 

networks. Appendix B contains extended ANOVA results; a summary of the ANOVA 

results for each class of social network are shown in Figures 5.10, 5.11, and 5.12. 

 In these ANOVA, the null hypothesis is that there is no difference between the 

mean number of negotiation rounds required to reach consensus for different combinations 

of quorum size values and social network model parameters; however, the results of the 

ANOVA show that the quorum size does have a significant impact on the number of 

negotiation rounds required. For each social network model, p < 0.001 for the quorum size 

factor, so the null hypothesis is rejected. The p-values for other factors and factor 

combinations indicate a significant impact in the ANOVA results as well, but the F-values 

of the quorum size level are significantly higher than the other factorsô F-values making it 

more likely that the difference in samples is due mostly to the quorum size factor. The p-

values for most of the model parameters (e.g.: p, m, and k in the Watts-Strogatz, Barabási-

Albert, and ErdŖs-Rényi models, respectively) do not appear significant, indicating that 

HBCôs performance characteristics are robust to variations within the individual social 

network models, regardless of the parameters used to construct them. One exception is the 

k parameter in the Watts-Strogatz model, which affects the number of neighbors each agent 

has and thus the size of the small world clusters. 
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General Linear Model: ticks versus n, k -level, p -level, qs -level  

 
Method  

 

Factor coding           ( - 1, 0, +1)  

 

Box- Cox transformation  

Rounded ɚ               - 0.967645  

Estimated ɚ             - 0.967645  

95% CI for ɚ            (- 0.983145, - 0.953145)  

 

 

Factor Information  

 

Factor    Type   Levels  Values  

n         Fixed       3  50, 200, 1000  

k- level   Fixed       3  1, 2, 3  

p- level   Fixed        3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance for Transformed Response  

 

Source                           DF   Adj SS    Adj MS  F - Value  P - Value  

  n                               2  0.00405  0.002023    91.03    0.000  

  k- level                         2  0.00145  0.000723    32.54    0.000  

  p- level                         2  0.00006  0.000030     1.36    0.258  

  qs - level                        2  0.02798  0.013992   629.68    0.000  

  n*k - level                       4  0.00106  0 .000265    11.93    0.000  

  n*p - level                       4  0.00032  0.000080     3.62    0.006  

  n*qs - level                      4  0.00101  0.000253    11.40    0.000  

  k- level*p - level                 4  0.00018  0.000044     1.99    0.093  

  k- level*q s- level                4  0.00339  0.000847    38.11    0.000  

  p- level*qs - level                4  0.00031  0.000077     3.45    0.008  

  n*k - level*p - level               8  0.00117  0.000146     6.58    0.000  

  n*k - level*qs - level              8  0.00197  0. 000247    11.11    0.000  

  n*p - level*qs - level              8  0.00024  0.000030     1.35    0.211  

  k- level*p - level*qs - level        8  0.00022  0.000028     1.25    0.265  

  n*k - level*p - level*qs - level     16  0.00039  0.000025     1.11    0.339  

Error                         41874  0.93049  0.000022  

Total                         41954  1.06840  

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.0047139  12.91%     12.74%      12.62%  

  

Figure 5.10. General ANOVA results for significance of factor impacts on negotiation 

rounds required to reach consensus on Watts-Strogatz model random networks. 
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General Linear Model: ticks versus n, m -level, qs -level  

 
Method  

 

Factor coding           ( - 1, 0, +1 )  

 

Box- Cox transformation  

Rounded ɚ               - 1.28924  

Estimated ɚ             - 1.28924  

95% CI for ɚ            (- 1.30174, - 1.27674)  

 

 

Factor Information  

 

Factor    Type   Levels  Values  

n         Fixed       3  50, 200, 1000  

m- level   Fixed       3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance for Transformed Response  

 

Source                   DF    Adj SS    Adj MS  F - Value  P - Value  

  n                       2  0.000477  0.000239   184.46    0.000  

  m- level                 2  0.000004  0.000002     1.41    0 .244  

  qs - level                2  0.001605  0.000803   620.11    0.000  

  n*m- level               4  0.000012  0.000003     2.34    0.053  

  n*qs - level              4  0.000472  0.000118    91.18    0.000  

  m- level*qs - level        4  0.000026  0.000006     4 .98    0.001  

  n*m- level*qs - level      8  0.000033  0.000004     3.16    0.001  

Error                 95197  0.123199  0.000001  

Total                 95223  0.149644  

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.001137 6  17.67%     17.65%      17.62%  

 

Figure 5.11. General ANOVA results for significance of factor impacts on negotiation 

rounds required to reach consensus on Barabási-Albert model random networks. 
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General Linear Model: t icks versus n, k -level, qs -level  

 
Method  

 

Factor coding           ( - 1, 0, +1)  

 

Box- Cox transformation  

Rounded ɚ               - 1.11988  

Estimated ɚ             - 1.11988  

95% CI for ɚ            (- 1.16838, - 1.07138)  

 

 

Factor Information  

 

Factor    Type   Lev els  Values  

n         Fixed       3  50, 200, 1000  

k- level   Fixed       3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance for Transformed Response  

 

Source                  DF    Adj SS    Adj MS  F - Value  P - Value  

  n                      2  0.000974  0.000487    91.74    0.000  

  k- level                2  0.000001  0.000000     0.07    0.937  

  qs - level               2  0.001841  0.000920   173.32    0.000  

  n*k - level              4  0.000169  0.000042     7.95    0.000  

  n*qs - level             4  0.000771  0.000193    36.32    0.000  

  k- level*qs - level       4  0.000245  0.000061    11.56    0.000  

  n*k - level*qs - level     8  0.000156  0.000020     3.68    0.000  

Error                 4778  0.025370  0.000005  

Total                 4804  0.03157 7 

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.0023043  19.66%     19.22%      18.81%  

 

Figure 5.12. General ANOVA results for significance of factor impacts on negotiation 

rounds required to reach consensus on ErdŖs-Rényi model random networks. 

 

5.4. Impact of the Social Network Model 

 Each ANOVA in the previous section combined different sizes of social networks 

created by the same model. To determine if the social network model, itself, has any 

significant impact on the metaheuristic, results for different social network models of the 

same size were combined for ANOVA. These results are presented in Figures 5.13, 5.14, 

and 5.15, with the full ANOVA results presented in Appendix B.  
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General Linear Model: ticks versus model, qs -level  

 
Method  

 

Factor coding           ( - 1, 0, +1)  

 

Box- Cox transformation  

Rounded ɚ               - 1.16755  

Estimated ɚ             - 1.16755  

95% CI for ɚ            (- 1.24005, - 1.09705)  

 

 

Factor Information  

 

Factor    Type   Levels  Values  

model     Fixed       3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance fo r Transformed Response  

 

Source              DF    Adj SS    Adj MS  F - Value  P - Value  

  model              2  0.000030  0.000015     3.14    0.044  

  qs - level           2  0.001920  0.000960   197.81    0.000  

  model*qs - level     4  0.000072  0.000018     3. 69    0.005  

Error             2520  0.012228  0.000005  

Total             2528  0.014544  

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.0022028  15.92%     15.65%      15.29%  

 

Figure 5.13. General ANOVA results for significance of social network model impact 

on negotiation rounds required to reach consensus for social networks of population 

size 50. 
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General Linear Model: ticks versus model, qs -level  

 
Method  

 

Factor coding           ( - 1, 0, +1)  

 

Box- Cox transformation  

Rounded ɚ               - 1.21023  

Estimated ɚ             - 1.21023  

95% CI for ɚ            (- 1.22073, - 1.19873)  

 

 

Factor Information  

 

Factor    Type   Levels  Values  

model     Fixed       3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance fo r Transformed Response  

 

Source                DF    Adj SS    Adj MS  F - Value  P - Value  

  model                2  0.000592  0.000296   111.18    0.000  

  qs - level             2  0.011365  0.005683  2133.79    0.000  

  model*qs - level       4  0.007378  0.00184 4   692.56    0.000  

Error             115065  0.306436  0.000003  

Total             115073  0.362373  

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.0016319  15.44%     15.43%      15.42%  

 

Figure 5.14. General ANOVA results for significance of social network model impact 

on negotiation rounds required to reach consensus for social networks of population 

size 200. 
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General Linear Model: ticks versus model, qs -level  

 
Method  

 

Factor codi ng           ( - 1, 0, +1)  

 

Box- Cox transformation  

Rounded ɚ               - 1.65271  

Estimated ɚ             - 1.65271  

95% CI for ɚ            (*, *) 

 

 

Factor Information  

 

Factor    Type   Levels  Values  

model     Fixed       3  1, 2, 3  

qs - level  Fixed       3  0, 1, 2  

 

 

Analysis of Variance for Transformed Response  

 

Source              DF    Adj SS    Adj MS  F - Value  P - Value  

  model              2  0.000005  0.000002    52.93    0.000  

  qs - level           2  0.000055  0.000028   634.03    0.000  

  model*qs - level     4  0.000012  0.000003    68.40    0.000  

Er ror             8414  0.000365  0.000000  

Total             8422  0.000463  

 

 

Model Summary for Transformed Response  

 

        S    R - sq  R - sq(adj)  R - sq(pred)  

0.0002084  21.09%     21.02%      20.94%  

 

Figure 5.15. General ANOVA results for significance of social network model impact 

on negotiation rounds required to reach consensus for social networks of population 

size 1,000. 

 

 These results show that the social network model does, in addition to quorum size, 

have a significant impact on the number of negotiation rounds required to reach consensus, 

and this significance increases as the population size increases; however, as shown in 

Figure 5.16, the model that produces the effect and the quorum size levels at which the 

effects are realized are not consistent for differing population sizes. For population sizes of 

1,000 agents, the ErdŖs-Rényi model at low and high quorum sizes has the largest impact, 

whereas for population size 200, Watts-Strogatz and ErdŖs-Rényi have a large effect at low 

quorum sizes and Barabási-Albert has a large effect at high quorum sizes. At population 

size 50, none of the models appear significantly better than their peers with the exception 
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of slightly worse performance by the Watts-Strogatz model at high quorum sizes. Precise 

reasons for these differences require additional experimentation and are proposed as future 

work; however, it is hypothesized that small population sizes do not allow significant 

differentiation between the models in cluster and influential hub formation. As the 

population size increases the effects of clusters and hubs become more influential, resulting 

in random networks outperforming those with highly clustered and scale-free topologies. 

These cluster and hub effects are moderated by increased quorum sizes, effectively 

reducing their influence and causing the networks to behave more like those based on the 

ErdŖs-Rényi model. One trend that is clear is that medium and high quorum sizes both 

perform significantly better than low quorum sizes across all models and population sizes. 

 

  

 
Figure 5.16. Model and quorum size level effect comparisons for different sizes of 

populations. 
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5.5. Comparisons of Performance on Two Decision Values 

 A key contribution of HBC over existing techniques is its ability to facilitate 

distributed consensus negotiation over more than two possible decision values. 

Nevertheless, examination of HBCôs ability to correctly handle two-choice consensus 

provides further validation of the metaheuristic. Here, three existing non-metaheuristic 

techniques that can only accommodate consensus from among two possible outcomes are 

compared to HBC on the basis of expected running time. The first existing technique is 

proposed by Tan (2010) as a solution to the Networked Biased Voter Problem. The 

remaining two are proposed by Mossel and Schoenebeck (2010) as solutions to the 

Majority Coordination Problem. 

 Tanôs solution consists of a nested iterative solution in which the iterative classic 

voter model (Clifford & Sudbury, 1973; Holley & Liggett, 1975), which is expected to 

reach some consensus in a finite amount of time, is repeated a number of times sufficient 

to expect that the result of the majority of the iterations is the desired majority outcome 

with high, user-selectable, probability. Tan shows that this nested iterative solution runs in 

expected time ὕὲ  (Mossel & Schoenebeck, 2010; Tan, 2010). While this solution is in 

polynomial time, the high degree of the polynomial quickly makes this technique infeasible 

as population size increases. 

 Mossel and Schoenebeck propose two techniques with running times faster than 

Tanôs solution, although they rely on the availability of global knowledge and the ability 

to propagate selected information through the social network. Mossel and Schoenebeckôs 

Strong Weak model reaches majority consensus in expected time ὕὲ Ȣ Their modified 

Wait-And-See model runs in expected time, related to the diameter d of the social network, 

of ὕὨ ÌÏÇὲ ; however, the largest possible diameter for a connected network is ὲ

ρ when the nodes are connected in a straight line, giving a worst-case time complexity of 

ὕὲ.  For the faster Wait-And-See model it is noted that it may not always converge to a 

consensus, in which cases the model should be restarted (Mossel & Schoenebeck, 2010). 

The number of restarts that may be required to achieve successful consensus is not 

specified. 
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 In comparison to the previous techniques, HBC runs in expected time ὕὲ , which 

is faster than Tanôs solution and Mossel and Schoenebeckôs Strong Weak model, but 

slower than Mossel and Schoenebeckôs Wait-And-See model. 

Proof. The maximum number of edges in a simple, connected graph is , where n is 

the number of vertices in the graph, or, in this case, agents in the social network. For every 

negotiation round, each agent polls each of its neighbors for information, therefore each 

edge in the social network is polled twice per negotiation round. Thus, the maximum 

possible number of edge communications per round of negotiations for any social network 

is ὲὲ ρ. 

 The number of negotiation rounds is bounded by a predetermined constant, c, 

giving a total run time of ὧὲὲ ρ for ὧḺὲ, which is ὕὲ . ʉ  

 In practice, most social networks will not be fully-connected, so the expected 

runtime is more precisely stated in terms of the number of edges in the network as —ȿ╔ȿ. 

  

  

 
Figure 5.17. Consolidated performance metric plots for all three social network models of 

200 agents on two possible outcomes. 
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 Figure 5.17 shows results from empirical tests of HBC performance over two 

potential outcomes for 200 agents. It should be noted, as described in Appendix A, for 

these trials the social network model used for the ErdŖs-Rényi random networks was the 

G(n, p) variant.  This variation was chosen in order to obtain an even wider range of random 

topologies for study and to ensure that the empirical results presented here were 

comprehensive in their depiction of HBC performance on a variety of network models. 

 Despite the smaller number of possible outcomes and the ErdŖs-Rényi model 

variation, the results are substantially similar to those previously presented for population 

size 200, although the percentage of trials in which the desired result is obtained, given that 

the metaheuristic successfully terminates in the allotted time, demonstrates a more distinct 

phase transition point than what was observed with five possible outcomes. This is a result 

more similar to that observed in population sizes of 1,000. 

 

5.6. Scalability to Larger Numbers of Decision Values 

 The results presented thus far have demonstrated HBC performance for various 

population sizes connected by random networks generated using three different social 

network models and seeking consensus on one of five possible outcomes. For population 

sizes of 200, performance has been further explored on the three social network models 

when seeking consensus on one of two possible outcomes. In all of these trials, it has been 

shown that in the tradeoffs between speed to consensus, desirability of achieved consensus, 

and the rate of failure to reach the desired, or even any, consensus is contingent in large 

part upon the chosen quorum size, with high quorum sizes yielding faster and less failure 

prone results, and lower quorum sizes yielding more desirable results, so long as a 

consensus is actually achieved in the allotted time. It has also been shown that there is a 

quorum size at which a distinct phase transition point can be observed for each network 

and population combination. 

 To further determine the strengths of these observed relationships as the number of 

possible outcomes varies, further experimentation was performed on networks of 

population size 200 with 10 possible outcomes. The underlying random networks were 
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identical to those used in the trials on two possible outcomes. Figure 5.18 contains the 

results of these trials. 

  

 
Figure 5.18. Consolidated performance metric plots for all three social network models of 

200 agents on ten possible outcomes. 

 

 Figure 5.18 demonstrates that HBC performance continues to maintain its observed 

properties as the number of possible outcomes increases. This third data point also indicates 

a trend that as the number of possible choices increases, the worst-case percentage of trials 

reaching a desirable consensus, given that a consensus is reached, does move progressively 

lower, although low quorum sizes continue to yield highly favorable results by that metric. 

Similarly, higher failure rates are observed at some quorum sizes, but the general trend of 

high failure rates for low quorum sizes with a sharp phase transition to more moderate 

failure rates continues to hold. These results are intuitive as a larger number of possible 

outcomes to choose from increases the likelihood that the desired outcome will not be the 

one chosen, however, the performance of HBC continues to be better than that expected by 

random chance. 
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5.7. Chapter Summary 

 This chapter presented both empirical and analytical time complexity results for 

HBCôs performance on three different social network models of varying sizes and possible 

numbers of outcomes. An analysis of the significance of different independent variable 

model parameters such as quorum size and social network model was also presented.  

 The results show that, of the independent variables tested, the choice of quorum 

size has the most significant impact on the number of negotiation rounds required to reach 

consensus, the accuracy of the consensus obtained, and the rate of failure to reach any or a 

desirable consensus. Generally, lower quorum size yields higher accuracy when consensus 

is reached, but higher quorum sizes are faster and less likely to completely fail to reach any 

consensus. When an appropriate quorum size is selected, HBC returns a desired consensus 

more frequently than would be expected by chance. 

 The social network model is also shown to have a significant impact, especially as 

population sizes increase. At larger population sizes, random social networks tend to 

perform better than those with Watts-Strogatz small-world or Barabási-Albert scale-free 

structures. It is believed that this is due to the absence of overly-influential clusters or hub 

individuals in ErdŖs-Rényi model networks as compared to the other two models. 

 Honey Bee Consensus performs well in consensus tasks seeking the majority 

consensus of two possible outcomes and, for more than two possible outcomes, the 

consensus aligned with the majority of three common voting protocols that consider global 

preference information. When compared to the runtimes of existing solutions for the 

Networked Biased Voting and Majority Consensus Problems, HBCôs worst-case runtime 

is more favorable than the majority of the compared expected runtimes; in addition, HBC 

provides the capability of handling more than two possible outcomes. 

 In the next chapter, these results will be examined and explained. The broader 

implications and applications of these results will also be presented. 
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6. Discussion 

6.1. Overview 

 Empirical results have shown that HBC produces distributed consensus results that 

are significantly better than random, as intended. Nevertheless, HBC is a metaheuristic and 

cannot claim to be able to guarantee optimal results. Instead, HBC produces results that are 

expected to be near-optimal with respect to balancing the time required to reach consensus, 

the consensus success rate, and the consensus accuracy as measured by social utility 

metrics. As with all metaheuristics, appropriate choice of configuration parameters can 

have an impact on the effectiveness of the technique. 

 In the previous chapter, it was shown that the quorum size and social network model 

parameters have significant impact on the success of the Honey Bee Consensus 

metaheuristic. Here, these results are further analyzed and explained in order to provide 

guidance in the application of HBC and the parameter selection of the quorum sensing 

agent-oriented design pattern, described in Chapter 2. This chapter also discusses the 

implications of using HBC and quorum sensing on networks conforming to the different 

models studied.  

 

6.2. Suitability and Limitations of Honey Bee Consensus 

 While HBC has been shown in these experiments to perform well for large, 

distributed populations with more than two possible consensus values and where it is 

impossible or infeasible to centrally collect global vote tallies, it is important to recognize 

certain limitations of the technique as well. Study and remediation of many of the 

shortcomings described in this section is proposed as future work. 

 Given the metaheuristic and probabilistic nature of HBC, it is not appropriate for 

use when direct calculation methods or those with guaranteed performance bounds can be 

used if guaranteed results or performance are required. Like other metaheuristic 

optimization techniques, it is also not particularly well suited to online or hard real-time 

systems due to its iterative nature and the fact that performance depends on the number of 

iterations the metaheuristic is allotted. 
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 One of the key contributions of HBC is its ability to accommodate more than two 

possible consensus outcomes; however HBC effectiveness decreased slightly as possible 

consensus outcomes increased. This was expected, since a larger set of possible outcomes 

should result in more diversity of opinion among the population, thus making a desirable 

consensus harder to negotiate in a distributed setting. Nevertheless, HBC consistently 

resulted in consensus negotiation of the desired outcome more frequently than would be 

expected by random chance, and even for the largest number of possible consensus 

outcomes tested, failure rates remained below 20% for quorum sizes in the intermediate 

and high ranges. These failure rates decreased as the number of possible consensus 

outcomes was reduced. 

 Due to its basis in natural honey bee consensus negotiation, it is not known how 

extensible HBC is to competitive or game theoretic situations. Honey bees are eusocial 

insects and consensus on the best nest site location is a goal that is shared by all members 

of the swarm, thus is it counterproductive for any of the members to selfishly advocate a 

poor choice or to lie about the quality of a potential nest site. Furthermore, it is sensible to 

expect that all honey bees have evolved to have essentially the same preferences with 

regard to potential nest sites. That is to say, two correctly behaving scouts should be 

expected to have the same preference for a given potential nest site, within some small 

amount of error or subject to a small degree of data or measurement noise. The artificial, 

stochastic preferences generated for the trials performed in this research allows for wider 

variation among individual preferences than might be expected in actual honey bees. 

Attempts to deliberately subvert consensus were not evaluated at all. 

 Finally, for HBC to work, stubbornness cannot be allowed. Each member of the 

population must have some non-zero preference for each of the possible outcomes and all 

possible outcomes must be known prior to the beginning of negotiations. This also implies 

a discrete set of possible outcomes from which the population can choose. Real-valued 

consensus was not explored. 
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6.3. Optimal Quorum Size 

 Fernandez-Marquez (2012) identifies the quorum sensing agent-oriented design 

pattern, but unlike design patterns described in (Gamma et al., 1994), the Fernandez-

Marquez paper provides no consequences for the use of the pattern. The absence of this 

content leaves pattern users uninformed as to how the pattern parameters can be expected 

to influence the performance results and trade-offs. Also, none of the documentation of 

existing self-organization patterns thoroughly analyze the systemic behavior via simulation 

experiments to suggest control strategies to influence behavior. One of the primary goals 

of this research is to provide guidance in these areas.  

 Chapter 5 illustrated results showing that the quorum size parameter has a 

significant impact on consensus speed and success. Plots from the figures in Chapter 5 have 

been stacked in Figures 6.1a-f to enable comparison of consensus speed and failure rates 

at each quorum size for all of the population sizes tested. In each of these plots, a phase 

transition point can be seen at quorum sizes near 25% of the population size, indicated by 

the vertical lines, where both the average number of negotiation rounds required to reach 

consensus and the percentage of failure cases approach their lowest values. For population 

size 50, the phase transitions are clearer and more statistically significant with respect to 

the number of negotiation rounds required as compared to the failure rate; however, the 

phase transition point for the failure rate becomes more apparent and significant as 

population size increases. It is hypothesized that this is because achieving consensus in 

small populations is intuitively easier than in large populations, so there is less variation in 

the rate of success in small populations, regardless of the quorum size used. 
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Figure 6.1a. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 
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Figure 6.1b. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 
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Figure 6.1c. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 
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Figure 6.1d. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 
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Figure 6.1e. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 
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Figure 6.1f. Vertical comparison of quorum size vs average negotiation rounds required 

and percentage of failed trials. Vertical lines across plots show the point at which the 

quorum size equals 1/4 of the population size. 

 

 It is frequently the case when evaluating a solution with respect to multiple metrics 

that it is not possible to improve performance relative to one metric without causing the 

degradation in performance relative to one or more of the other metrics. Such a solution is 

said to be Pareto optimal, and the set of all possible Pareto optimal solutions constitute the 
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Pareto front. By choosing a solution from the Pareto front, one can control the balance of 

performance provided by the solution. 

 The Pareto optimality of each quorum size, with respect to speed to consensus and 

failure rate was examined to see if the observed phase transition point was also an optimal 

value. Figure 6.1a-e depict performance over five possible outcomes. In eight of these 

plots, the quorum size of 25% of the total population is equal to, or directly adjacent to, a 

quorum size on the Pareto front for negotiation rounds to consensus versus failure rate. The 

exception to this trend was the ErdŖs-Rényi network of size 1,000 where the only quorum 

size on the Pareto front occurred at 50% of the population size.  

 Like the 1,000-member ErdŖs-Rényi network, for the pair of plots combining all 

three network models of size 200 on two possible outcomes, the only point on the Pareto 

front occurs near 50% of the population rather than near the phase transition point at 25%. 

Despite this, the phase transition point at 25% of population size is still nearly optimal for 

these trials and the plots show favorable performance near that quorum size. Furthermore, 

increasing the number of possible outcomes to 10 for population size 200 results in quorum 

sizes on the Pareto front at the quorum size value of 45, 75, 85, and 95 for all social network 

models. The inclusion of quorum size 45 here continues to reinforce the favorability of 

quorum sizes near 25% of the population size. 

 These results, showing a phase transition in speed and accuracy frequently co-

incident with Pareto optimality, indicate that 25% of the population size is a good starting 

point to use as a heuristic for choosing a quorum size with HBC. The frequency of Pareto 

optimality of this quorum size tended to increase with the number of possible outcomes, 

while the average number of rounds required to reach consensus continued to remain low 

with respect to other quorum size options. Furthermore, as the number of possible 

outcomes increased, more of the quorum size values between 25% and 50% of the 

population size fell on the Pareto front. This suggests that as the number of possible 

outcomes increases, the suitability of HBC also increases as it becomes more likely to 

produce Pareto optimal results. 
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 The explanation for why 25% of the population size is a good guideline for 

selecting a quorum size follows directly from the premise that the quorum sensing 

technique is a method for balancing the tradeoff between speed and accuracy of consensus. 

Definition of a quorum size is a way to specify some amount of required agreement that 

falls between complete discord and unanimity. Consider the two extremes of a quorum size 

of one (complete self-determination) and a quorum size of at least 50% of the population 

(simple plurality).  

 The smallest quorum size is trivial to obtain since all agents are expected to at least 

agree with themselves, but it is intuitively obvious that small quorums should be easier to 

achieve than larger ones, especially in the presence of fairly uniform preference 

distribution. If an agent finds it easy to form a coalition of others in agreement with itself 

and sufficient to form a quorum, this results in stubborn behavior between multiple 

competing quorums that will delay consensus. If the delay is eventually overcome by one 

of the quorums, then the resulting consensus is likely to be a good one with respect to social 

utility; however, in a time-constrained environment, the competition between many small 

quorums is more likely to result in a split decision at the end of the allotted time. 

 On the other hand, by definition, achieving a quorum size of more than 50% of the 

population precludes the remainder of the population from achieving a quorum. Forming a 

quorum of this size is relatively hard, especially for more than two possible consensus 

outcomes, unless one of the outcomes has an especially large following at the outset of 

negotiations; therefore, at the beginning of negotiations, in the absence of a clear quorum 

establishment, agents choose new preferences with probability proportional to the 

preferences of their immediate neighbors. This eventually leads to the establishment of a 

critical mass of agreement (exposure threshold) that easily cascades to create a quorum of 

the requisite size. Unfortunately, this cascade effect can lead to undue marginalization of 

minority opinions that results in lower social utility.  

 Quorum sizes of 25% of the population strike the balance between these two 

extremes. Models of natural honey bee swarms show the same propensity to favor 

intermediate quorum sizes for similar reasons. In the honey bee models, low quorum sizes 
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result in split or no decisions and failure; high quorum sizes require more time and 

communication energy from the bees. Researchers have found that honey bee models 

perform best with quorum sizes of between 15% and 25%, which is similar to the findings 

presented in this research (Passino & Seeley, 2006). The natural honey beeôs ability to form 

consensus with quorum sizes even smaller than 25% of the population is likely due to two 

key differences between actual honey bee swarms and the presented HBC metaheuristic: 

1) honey bee swarm social networks are not static, and 2) honey bees have a common, 

global communications channel. When honey bees detect a quorum at a potential nest site, 

they generate a ñpipingò signal at the swarm by rubbing their wings together. This piping 

can be heard by every other bee, which means that, in this respect, honey bees have a fully-

connected social network for communication and access to some form of global 

information. In contrast, the HBC metaheuristic does not assume a fully-connected social 

network and expressly forbids any analogous functionality, restricting all communication 

to immediate neighbors. This enhances the scalability of HBC. 

 

6.4. Social Network Models 

 As shown in the previous chapter in Figure 5.10, within a given quorum size level 

of low, medium, or high, HBC frequently performs similarly in speed to consensus, 

regardless of the social network topology. The performance of Barabási-Albert networks 

at high quorum size levels in population sizes of 200 and ErdŖs-Rényi networks at low 

quorum size levels in populations sizes of 1,000 are the only notable outliers. If the 

guideline from the previous section is followed, however, and a moderate quorum size of 

25% of the total population is used, speed to consensus can be expected to be similar for 

the population, regardless of the underlying social network model.  

 This similar performance across network models with different clustering and 

degree distribution properties shows that quorum sensing serves to mitigate the influence 

of clusters and hubs found in Watts-Strogatz and Barabási-Albert model networks, as long 

as communication is not bottlenecked through a cluster or hub. It is trivially possible to 

construct networks that result in poor consensus performance by forcing all communication 
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to travel through a single node, for example. A diversity of opinions must be available to 

each agent in order for them to be able to properly select some alternative outcome when 

the preference for their first outcome expires.  

 

6.5. Chapter Summary 

 In this chapter, the experiment results from the previous chapter have been 

consolidated and analyzed. While, like all metaheuristics, HBC has its limitations, its 

suitability for purpose has been shown. Performance trends discovered in the experiments 

of the previous chapter have been explained with respect to quorum size and social network 

model. A quorum size of 25% of the total population has been shown to produce consensus 

performance balanced between speed and accuracy, and the application of this knowledge 

has been proposed for use in engineering the performance of systems that use the quorum 

sensing pattern and understanding the performance of quorum sensing systems in nature. 
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7. Conclusion 

7.1. Summary of Contributions 

 The thesis of this dissertation is that a metaheuristic based on the technique used by 

honey bees to select a new nest site is feasible for engineering distributed consensus 

negotiation in social networks and yields insight into the influence of the quorum sensing 

pattern on consensus negotiation in social groups. In support of the thesis, this dissertation 

presents the Honey Bee Consensus metaheuristic and empirical results on randomized trials 

that answer the research questions posed in Chapter 1. 

 In Chapter 3, it is shown how honey bee nest site selection can be implemented as 

a metaheuristic model for reaching consensus in a distributed, self-organized way. The 

Honey Bee Consensus agent-based model is formally defined, observed honey bee 

behaviors are linked directly to agent behaviors in HBC, and metaheuristic aspects of HBC 

are described. The incorporation of the quorum sensing agent-oriented design pattern and 

the associated design decisions are explained. Chapter 4 presents the metrics used to judge 

the success of the metaheuristic in achieving optimal consensus and describes the model 

validation. 

 Experiment and time complexity results show that HBC is a suitable and feasible 

technique for negotiating distributed consensus on more than two decision values in a 

population with weighted biases. Experiments on randomly generated social networks 

created using the Watts-Strogatz, Barabási-Albert, and ErdŖs-Rényi models of population 

sizes ranging from 50 to 1,000 agents are presented in Chapters 5 and 6. The results of 

these experiments show that HBC results in predictable performance for consensus 

negotiation across all social network models and population scales tested. It is shown that 

the selection of the quorum size parameter has a significant impact on the speed-accuracy 

tradeoff in consensus negotiation and that intermediate quorum sizes of approximately 25% 

of the total population size yield results approaching the Pareto front. This same quorum 

size also moderates the differences in consensus performance in the different social 

network models; therefore, it is proposed as a heuristic starting point for the general 

application of the quorum sensing pattern. 
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 Other general lessons in the application of the agent-based quorum sensing pattern 

have also been revealed in this implementation. In the application of quorum sensing to 

consensus formation, HBC contributes to the understanding of bio-inspired design patterns 

as formulated in (Fernandez-Marquez et al., 2012). The pattern relationships presented by 

Fernandez-Marquez are both validated and challenged by HBC. This research validates 

Fernandez-Marquezôs presentation of quorum sensing as a high level design pattern, 

fundamentally composed of the basic patterns of evaporation, aggregation, and spreading 

(i.e., propagation); however, Fernandez-Marquezôs hierarchy describes quorum sensing as 

a higher-level version of the gradient pattern with evaporation as an optional component. 

This does not reflect the way the quorum sensing pattern has been typically implemented 

in practice or observed in nature. Honey Bee Consensus applies the composition of 

aggregation and spreading into the intermediate-level gossip pattern and then derives 

quorum sensing from the combination of the gossip and evaporation patterns. Since 

quorum sensing is a mechanism for obtaining consensus, the evaporation pattern is 

essential to allowing agents to compromise; therefore, the evaporation pattern should be 

considered a mandatory component of the high level quorum sensing pattern in Fernandez-

Marquezôs taxonomy of bio-inspired design patterns. This more accurately reflects the 

ways in which the pattern occurs in natural and artificial systems. 

 

7.2. Extension of Results to Other Applications 

 In addition to the direct application of HBC to the task of self-organized, distributed 

consensus negotiation and general guidance for quorum size selection for tuning 

performance when using the quorum sensing pattern, the results of this research have 

applicability to the study of mechanisms of consensus formation in social networks and the 

function of quorums within these mechanisms. This study of strategic interactions in 

networks encompasses elements of biology, economics, game theory, network science, and 

computer science.  

 The effects of quorums in consensus negotiation and strategic interaction can be 

studied from the perspective of cooperation or competition. In the former case, quorum 
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sensing has been shown to be a mechanism for biological systems to tune the balance 

between speed and accuracy of decision making (Nigel R Franks, Dornhaus, Fitzsimmons, 

& Stevens, 2003; Passino & Seeley, 2006). Some of this research has also demonstrated 

biological collectives that dynamically modify quorum sizes based on environmental 

factors in order to achieve a desired tradeoff. Recent research in this area has raised the 

question of how this balance can be further calibrated to task requirements (Chittka et al., 

2009). The research presented in this dissertation, showing a correlation between 

population sizes and quorum sizes for phase transition points affecting the speed-accuracy 

tradeoff, can be used to further define the Pareto front along which these optimal values 

should be found. 

 With regard to competitive environments, this research has shown that quorum 

sensing can result in similar performance across social models regardless of clustering, 

high-degree hubs, or random connectivity. This is in contrast to research on human 

cooperation presented by Kearns which found consensus formation in systems with biased 

voting to be easier in preferential attachment networks (Kearns et al., 2009) and concluded 

that this class of problem was harder to solve on networks with ErdŖs-Rényi connectivity. 

For other classes of problems in which clusters and hubs make problem solving more 

difficult, the results of this research show that quorum sensing allows HBC to overcome 

the effects of clusters and hubs in Watts-Strogatz and Barabási-Albert networks, 

respectively.   This research did not study intentional manipulation of consensus results. A 

potential limitation of this technique is its reliance on the eusocial motivation and 

homogeneous social goals of the participants.  Further work is proposed to determine if 

quorum sensing can be used to counteract purposeful manipulation and, if so, what the 

optimal quorum size would be required to do so. This will also serve to identify the limits 

of systemsô abilities to self-organize in the presence of conflict. 

 Finally, observations about the behavioral space of quorum sensing can be 

formalized to provide run-time guidance for adjusting quorum sizes to steer behavior as 

context changes. For example, the quorum size can be dynamically adjusted by a self-
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adapting system to further optimize the speed-accuracy tradeoff or learning behavior can 

be incorporated to facilitate repeated consensus formation. 

 

7.3. Future Work 

 This research presents many avenues for future work to build on its contributions. 

An area of active research involves distributed consensus formation on non-static social 

networks. Honey Bee Consensus is directly modeled on a system in which the 

communication network topology is constantly switching, therefore it is predicted that this 

problem is an appropriate application for HBC. 

 The ability for quorum sensing to mitigate the impacts of clusters and hubs in 

consensus on social networks implies that the incorporation of quorum definition and 

detection could be of use in facilitating human problem solving on distributed networks in 

tasks that are inhibited by social networks exhibiting these structures. To determine this, it 

is proposed as future work to apply HBC on social networks and data sets using real-world 

connectivity and preferences. Furthermore, distributed social cooperation and 

differentiation experiments similar to those performed in (Kearns, 2012; Kearns et al., 

2009; Kearns, Suri, & Montfort, 2006) could be conducted in which the user interface also 

provides quorum information or allows a quorum size to be set and or adjusted by the 

participant. This could provide insight into how humans value quorums in their decision 

making process. 

 Considering HBCôs basis in a system of cooperating agents, the techniqueôs 

performance under competitive conditions is an area ripe for exploration. How robust 

quorum sensing is to malicious manipulation and other game theoretic aspects is an open 

question and remains to be understood. This exploration also naturally leads to possible 

extensions of the system to include behavioral learning and self-adaptation to facilitate 

consensus. 
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Appendix A. Social Network Experiment Parameter Configurations and Range Definitions 

A.1. Overview 

 This appendix contains tables showing the random generation parameters used for 

each social network model in the experiments and the number of random graphs created 

and tested for each parameter configuration. It also contains tables defining the limits of 

the low, medium, and high parameter value ranges for those configuration parameters used 

for the ANOVA analyses. 

  

A.2. Social Network Model Generation 

 For most configurations, 30 random trials were executed on one instance of each 

configuration, but there are some exceptions. For instance, in early experiments with the 

Barabási-Albert model with 200 agents, 30 random trials were conducted on 30 random 

social networks created with the same parameters, but the technique of experimenting with 

common random numbers was used for the remaining experiments due to the infeasibility 

of conducting 900 trials for every tested network configuration, especially for large n. 

Similarly, when it was determined that p values greater than or equal to 0.1 for our Watts-

Strogatz graphs produced nearly identical performance, much smaller p values were 

selected, two of which (0.1 and 0.5) overlapped with previously collected data. 

Nevertheless, the data from these additional runs was kept and analyzed in the final analysis 

for the sake of completeness. 
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Table A.1. Parameter configurations used for scale-free 

networks. 

Barabási-Albert Model  

NetworkX function: barabasi_albert_graph(n, m) 

n m number of random graphs tested 

50 2 1 

50 5 1 

50 12 1 

50 18 1 

50 25 1 

200 2 30 

200 6 30 

200 10 30 

200 20 30 

200 60 30 

200 100 30 

1000 15 1 

1000 30 1 

1000 60 1 

1000 250 1 

1000 500 1 

 

Table A.2. Parameter configurations used for 

ErdŖs-Rényi G(n, M=k) random networks. 

ErdŖs-Rényi Model 

NetworkX function: watts_strogatz_graph(n, k, 

p=1) 

n k p number of random graphs 

tested 

50 5 1 1 

50 10 1 1 

50 25 1 1 

200 2 1 1 

200 6 1 1 

200 10 1 1 

200 20 1 1 

200 60 1 1 

200 100 1 1 

1000 100 1 1 

1000 200 1 1 

1000 500 1 1 
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Table A.3. Parameter configurations used for small-world networks. 

Watts-Strogatz Model 

NetworkX function: watts_strogatz_graph(n, k, p) 

n k p number of random graphs tested 

50 5 0.0078125 1 

50 5 0.0625 1 

50 5 0.5 1 

50 10 0.0078125 1 

50 10 0.0625 1 

50 10 0.5 1 

50 25 0.0078125 1 

50 25 0.0625 1 

50 25 0.5 1 

200 2 0.03125 1 

200 2 0.0625 1 

200 2 0.125 1 

200 2 0.25 1 

200 2 0.5 1 

200 2 0.75 1 

200 6 0.0078125 1 

200 6 0.00390625 1 

200 6 0.015625 1 

200 6 0.03125 1 

200 6 0.0625 1 

200 6 0.125 1 

200 6 0.25 1 

200 10 0.00390625 1 

200 10 0.0078125 1 

200 10 0.015625 1 

200 10 0.03125 1 

200 10 0.0625 1 

200 10 0.125 1 

200 20 0.005 1 

200 20 0.006 1 

200 20 0.015 1 

200 20 0.02 1 

200 20 0.1 2 

200 20 0.2 1 

200 20 0.3 1 

200 20 0.4 1 

200 20 0.5 2 



107 

 

200 20 0.6 1 

200 20 0.7 1 

200 20 0.8 1 

200 20 0.9 1 

200 60 0.03137178632607688 1 

200 60 0.0625 1 

200 60 0.125 1 

200 60 0.875 1 

200 100 0.027448734302918387 1 

200 100 0.10073719442448524 1 

200 100 0.5 1 

1000 100 0.0078125 1 

1000 100 0.0625 1 

1000 100 0.5 1 

1000 200 0.0078125 1 

1000 200 0.0625 1 

1000 200 0.5 1 

1000 500 0.0078125 1 

1000 500 0.0625 1 

1000 500 0.5 1 

 

A.3. Social Network Model Parameters for 2- and 10-Choice Trials 

 The trials testing the scalability of HBC to 2 or 10 potential outcomes were 

performed exclusively on social networks of size 200. The same set of 90 graphs, 

encompassing 30 random graphs for each of the three social network models, were used 

for both the 2- and 10-choice trials. Tables 4 through 6 show the parameters used for each 

of the random networks generated. Values for the parameters were chosen uniformly at 

random from the parameter ranges defined in the following section. In contrast to the 

ErdŖs-R®nyi variant used for the other trials, the set of ErdŖs-Rényi networks used in these 

trials were constructed with the G(n, p) variant of the model. 

  



108 

 

Table A.4. Watts-Strogatz model parameters for 200-agent graphs used 

in 2- and 10-choice trials. 

Graph # k p 

0 44 0.38497829157803887 

1 44 0.44763462653321456 

2 76 0.3859939619018211 

3 90 0.17150176131261377 

4 20 0.4183793975742383 

5 35 0.07575130829172926 

6 89 0.45455589109109146 

7 63 0.15235876349358535 

8 86 0.30366233019085853 

9 76 0.19658322899815206 

10 47 0.37261657195993153 

11 82 0.030825740438274345 

12 53 0.26962163785748794 

13 35 0.06042612329286466 

14 69 0.29863359482217133 

15 94 0.01806977623964902 

16 83 0.08164703692782228 

17 39 0.16066764059030406 

18 91 0.1987853432074423 

19 20 0.047765030122363744 

20 58 0.4575071943558304 

21 35 0.37645377856781204 

22 22 0.18176686714916224 

23 93 0.43074981763931675 

24 25 0.2619261805016232 

25 100 0.4758434144523738 

26 64 0.14606652703264314 

27 35 0.24925853343142873 

28 99 0.4666190257567396 

29 16 0.06549377631849304 
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Table A.5. Barabási-Albert model 

parameters for 200-agent graphs 

used in 2- and 10-choice trials. 

Graph # m 

0 38 

1 42 

2 74 

3 39 

4 96 

5 51 

6 8 

7 68 

8 69 

9 25 

10 73 

11 100 

12 34 

13 50 

14 59 

15 94 

16 85 

17 57 

18 11 

19 88 

20 3 

21 61 

22 67 

23 92 

24 90 

25 53 

26 21 

27 95 

28 53 

29 1 

 

  








































































































