
Determination of the Image Distance in a Plenoptic Camera

by

Chelsea Thomason

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 13, 2014

Keywords: plenoptic, refraction, calibration

Copyright 2014 by Chelsea Thomason

Approved by

Brian Thurow, Chair, Associate Professor of Aerospace Engineering
Stan Reeves, Professor of Electrical and Computer Engineering
Joseph Majdalani, Department Head of Aerospace Engineering



Abstract

Two methods for determining the distance between the lens of a plenoptic camera and

the focal plane, known as the image distance, are presented and tested. The plenoptic

camera is a form of light field imaging, which seeks to record both the spatial and angular

information of the light within a volume. The plenoptic camera requires one calibration

image to determine the location of the focal points of each microlens within the camera.

The focal point method of calibration uses the location of these focal points to geometrically

determine the image distance. The magnification method of calibration instead requires an

additional calibration image of a ruler and uses the standard, well-studied imaging equations

to back out this distance. This thesis seeks to analyze both methods of calibration for

accuracy and robustness across a wide range of possible image distances. The magnification

method is proven to provide a sound estimation for the image distance for all of the tested

cases. Synthetic results show that the focal point method of calibration is mathematically

sound, but experimental results show that the real application of the method is limited by

several deficiencies, namely errors caused by assuming that a complex lens exhibits the same

properties as a thin lens. Results show that the focal point method can provide comparable

accuracy to the magnification method by applying a correction equation specific to each

lens settings, but overall the magnification is more robust and much simpler for general

experiments.
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Chapter 1

Introduction

Plenoptic particle image velocimetry (PIV) is being explored to address current limita-

tions in PIV imaging. PIV, introduced by Adrian in 1984 [1], is an imaging method that

seeds a flow with minuscule particles that scatter all light impinging on each particle. A

desired region of this flow is then illuminated by a thin sheet of light, typically a laser, and

imaged with a single camera. The cameras that are used with PIV are designed with a high

frame rate, such that two images may be taken sequentially within a fraction of a second.

The distance the particles shift between the two images is then measured and divided by the

time step to determine the two-dimensional velocity field of the flow [2]. While the premise

behind this technique remains true in current implementations, there have been many ad-

vancements in not only the accuracy of the imaging systems but also in the dimensions and

resolutions of the results.

The concept of using multiple cameras to ascertain the depth component of velocity has

been used in experiments for decades, but the first to introduce a dual-camera system to PIV,

named stereoscopic PIV (stereo-PIV), was Arroyo and Greated in 1991 [3]. In stereo-PIV,

each camera is placed at a different angle with respect to the particle field, thus allowing the

depth component to be determined and subtracted from the in-plane components of velocity.

This reduces the error in the two-dimensional velocity field caused by out-of plane motion. By

combining a single PIV camera with a stereo-PIV system, the accuracy can be improved even

more. Raffel proposed placing these systems to view perpendicular planes to best estimate

the out-of-plane component [4], but Ganapathisubramani showed that a three-dimensional

volume could be reconstructed by placing these systems in parallel planes [5]. In the same

way, two stereo-PIV systems can be combined to form a dual-plane stereo-PIV imaging
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system [6]. One of the more recent advances, tomographic PIV (tomo-PIV) expands the

laser sheet into a volume and utilizes four or more cameras viewing the illuminated volume,

from which the full volume may be reconstructed in a computationally-intensive process [7].

Similarly, synthetic aperture PIV (SAPIV) uses even more cameras, typically eight or more,

in a tight cluster to image and reconstruct a volume. Although more cameras are used,

the reconstruction process is much faster than the tomographic counterpart[8]. With each

additional camera, however, more and more optical access to the flow is required to fully

capture the three-dimensional information.

Along the same lines, several single camera systems have been developed to determine

the three-dimensional properties of a volume. The first of such systems was presented by

Willert in 1997. This camera determines the depth of a particle by placing three pinholes

across the lens of the camera and using the principle of defocusing. While capable of pro-

ducing three-dimensional results, this method only permits a limited number of particles to

be seeded into the flow [9]. In contrast to using multiple cameras to view different planes,

another method named scanning PIV captures a volume by moving the laser sheet through

the area and records these multiple planes onto the same camera or camera systems [10, 11].

Holographic PIV can be used to combine light rays reflected off the particles in a flow with

a reference beam to make an inference pattern onto a sensor [12, 13]. The volume can then

be reconstructed from this image with a high spatial resolution, and eliminates the restric-

tion caused by the lens of a camera. This method, however, is best reserved for small-scale

experiments [2].

Despite the large number of possible camera combinations and imaging techniques, there

remain several types of flow configurations that current PIV techniques cannot adequately

image, such as the regime of highly turbulent flows with limited optical access. Single camera

systems require minimal optical access to acquire measurements, but either provide only two-

dimensional results that are insufficient for a fully three-dimensional turbulent flow, or have

limitations in particle density that would limit the resolution of the results. While multiple
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camera systems can back out the three-dimensional properties of a flow, each camera must

have a unique view of the flow in question. For cases such as combustion gas ignition, where

the high temperatures restrict the size of a glass viewing panel, or porous flow, where the

porous solid model can hinder imaging, an imaging system consisting of a single camera

capable of producing three-dimensional results is necessary.

The imaging technique known as light-field imaging is an emerging technology that may

provide the solution to this limitation in PIV. Light is known to propagate in all dimensions

from every point in space, defined by three spatial components (x, y, z) and two angular

components (θ, φ). Conventional cameras only record two of these five dimensions of the

light passing through a camera. The goal of light field imaging is to record not only the

spatial location of where light impacts the image sensor, but also the angle of incidence.

By including these additional two dimensions, the depth of the origin of the light z can be

obtained. One camera that has been introduced to photography within the past fifteen years

has the capability to record all four of these dimensions onto a single image sensor. This

camera, known as the plenoptic camera, is adapted from a conventional camera by placing

an area of small, micrometer-sized lenses in front of the image sensor [14]. With this small

change, the light striking each microlens is divided among the pixels beneath each microlens

depending on the angle of incidence of the light. This retention of angular data allows the

depth of the imaged objects to be ascertained, all from a single image. While the plenoptic

camera has been well-proven in general photography, only within the past five years has

this system begun to be tested as a candidate for the next leading method of PIV [15, 16];

furthermore, this camera has the potential to image several fluid flows that are unobtainable

by existing PIV techniques.

The calibration process for any imaging system is pivotal for relating the size of objects

in an image to the actual physical dimensions. For the particle image velocimetry systems

detailed above, the calibration process involves imaging a grid of points with a known spacing

between each grid point. The spacing between the calibration points on the image can be
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related back to the known spacing to provide the magnification at the focal plane. For three-

dimensional systems, this calibration target must either be repositioned along the various

depths or be three-dimensional in nature, requiring complex mapping to appropriately relate

each calibration point to the appropriate point on the image [2]. The magnification of the

camera is then used to compute the image distance of the camera. If the image distance and

the focal length of the camera lens are known, the depth of any particle within a field may

be established. Since the plenoptic camera is inherently designed to trace back the depth of

particles throughout a volume, the magnification is only needed at the nominal focal plane.

For this reason, a simplified method may be used to determine the image distance from

the magnification, requiring only a single object of known size. This simplified method has

been tested with transmission electron microscopes, but a detailed analysis on the accuracy

of the image distance has yet to be performed [17]. While a conventional camera requires

some form of external calibration, the design of the plenoptic camera may also be beneficial

for an internal calibration method to determine the image distance based on the camera

geometry. For the plenoptic camera, a focal point calibration image is necessary, where

the aperture of the lens is stopped down so that only the pixels beneath the focal points

of each of the microlenses is illuminated. The location of these focal points relative to the

positions of the microlenses could provide enough information to back out the image distance

of the plenoptic camera based on simple geometry. This thesis seeks to present both unique

methods for determining the relationship between the dimensions in the image space and the

dimensions in the object space, one using the principle of magnification and the other using

the focal point calibration image. Both methods will be compared with the known length of

the image distance to establish the accuracy and robustness of each method across a wide

range of image distances.
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Chapter 2

The Light Field and Plenoptic Imaging

A commercial version of the plenoptic camera was first released in 2011 by Lytro Incor-

perated. Although the plenoptic camera is relatively new in the realm of general photography,

the principles of light field imaging that led to the development of the plenoptic camera have

been studied for more than a century.

2.1 History

In 1908, Lippman introduced the concept of integral photography, a method for esti-

mating the depth of an object from a single image. He theorized that, by placing a thin

layer of transparent bumps onto the front end of a strip of film, the depth of a point light

source could be estimated [18]. A diagram of this proposed method is shown in Figure 2.1.

This idea provided the starting point for the development for all light field photography

[14]. The nature of light and the full definition of the light field, a function that defines the

propagation of light, were detailed in the work of Adelson and Bergen in 1991 [19]. Adelson

Figure 2.1: Lippmann’s concept of integral photography [18].
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and Wang then built upon this description in the following year with a proposed method

for capturing the light field through the use of a single camera, which in design was similar

to the concept originally supported by Lippman. This single camera system, named the

plenoptic camera, included a lenticular array in front of the image sensor, as well as a field

lens to properly focus the image onto each of the microlenses [20]. Gortler [21] and Levoy

and Hanrahan [22] both presented the process by which a collection of light field data could

be used to back out different focus points or perspectives of the viewed region from a single

image. The work of Ng et.al. built upon the work of Adelson and Wang by making the

plenoptic camera more accessible for general photography. By removing the field lens as a

required component, the size of the plenoptic camera was reduced to dimensions comparable

to a conventional camera, without sacrificing the four-dimensional capabilities. This work

also combined the plenoptic camera with the principles of light field imaging developed by

Levoy and Hanrahan [22] to demonstrate the multiple uses of the additional dimensions of

the light field provided by the plenoptic camera [14].

2.2 Function of the Plenoptic Camera

The light field, as described by Adelson and Wang [20], is the function describing the

complete distribution of light rays that are propagated within a free space. This field is

parameterized by five dimensions: the spatial location (x, y, z) and the angle of propagation

(θ, φ). Since light propagates in a straight line through a transparent medium, one of the

spatial dimensions is redundant. For this reason, the plenoptic function is often reduced to

a four-dimensional function, defined by LF (x, y, θ, φ). An image of a point source of light

recorded by any camera captures the irradiance along the range of angles of light that pass

through the aperture of the camera. If the magnitude of the range of angles that enter

the camera is known, the depth of the point source of the light can be determined. While

many forms of light field imaging utilize multiple cameras to capture the additional angular
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(a) Conventional camera (b) Single pixel’s line of sight (c) All pixels’ line of sight

Figure 2.2: Difference between a conventional camera and a plenoptic camera.

dimension, the plenoptic camera seeks to record the full light field onto just a single image

sensor.

Conventional digital photography captures an image by recording the average intensity

of the light that impacts a pixel, regardless of the angle of incidence. This can be seen in

Figure 2.2(a). Light is emitted in every direction from the point source (x, y, z) located at the

world focal plane. The portion of this light that is directed through the lens of the camera,

highlighted in gray, is focused onto the single pixel located at (xp, yp), a spatial location.

Therefore, the number of pixels on the image sensor of a conventional camera corresponds

to the spatial resolution of the camera. The plenoptic camera follows the same imaging

principles as a conventional camera, except that the point (x, y, z) on the world focal plane

is mapped to a spatial location (xp, yp) on the microlens plane, rather than the sensor plane.

Figure 2.2(b) shows the line of sight from the point (x, y, z) to a single pixel, highlighted

in green. Unlike the conventional camera, the full distribution of light passing through the

aperture of the camera is not focused onto a single pixel, but rather onto a single microlens.

The light is then distributed across an array of pixels behind each microlens according to

7



Figure 2.3: A raw plenoptic image (3280 x 4904).

Figure 2.4: A portion of the plenoptic image.
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the angle of incidence. Each pixel corresponds to a spatial location given by the position

of the microlens, defined in the image as (xp, yp), but more commonly labeled as (s, t). In

addition, each pixel also relates to the range of light rays passing through at a certain angle

(θ, φ). This angular distribution can also be defined by the portion of the aperture through

which the light rays propagate (u, v). Figure 2.2(c) expands on the previous figure to show

the range of angles that correspond to each pixel for the given microlens [16].

There are inherent trade-offs associated with the plenoptic camera in order to retain

the additional light field data. While the spatial resolution of the conventional camera is

determined by the number of pixels on the image sensor, the spatial resolution of the plenop-

tic camera only corresponds to the number of microlenses contained within the array. This

trade-off is an important consideration in the fabrication of the microlens array. Should there

be too few microlenses, the reduced spatial resolution of the images would cause artifacts

to appear in the rendered images. On the other end of the spectrum, too many microlenses

would reduce the number of pixels that correlate to each microlens. Each microlens records

a unique view of the light passing through the aperture, such that the grid of pixels beneath

each microlens records the light passing through the full span of the aperture for that given

spatial location. Since the circular aperture is imaged onto a square grid of pixels beneath

each microlens, some pixels along the fringes of the associated grid are not illuminated.

This can be seen in the raw plenoptic image in Figure 2.3, where the image appears to be

comprised of individual circles. Figure 2.4 shows a closer look at a portion of this image,

taken from the lettering on the Imperx box near the focal plane of the camera. The edge of

each small aperture image is not perfectly round; rather, the edge is blurred around some of

the neighboring pixels. These blurred pixels, as well as the dark portions, would affect the

rendering of images requiring information near the edge of the aperture. Should the number

of pixels beneath each microlens be too low, these partially illuminated pixels would over-

shadow the already limited number of fully defined pixels [23]. This proper balance depends

on the properties of each plenoptic camera.
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2.3 Perspective Shift and Refocus

The plenoptic camera is capable of two important post-rendering abilities: shifting the

perspective from which the subject is viewed, and changing the location of the focal plane

of the image. These abilities were first introduced by Levoy and Hanrahan [22] and later

developed for the handheld plenoptic camera by Ng [14]. A perspective shift demonstrates

practicality of relating each pixel to the portion of the aperture (u, v) through which the light

passes, rather than the angle of propagation (θ, φ). A perspective image can be generated by

selecting the pixel in each grid of a raw image, such as the one in Figure 2.3, that corresponds

to the same portion of the aperture. This process is shown in Figure 2.5 [14]. Figure 2.6

shows four such perspective images, which correspond to light entering through four different

points near the edge of the aperture. The individual images are labeled with respect to the

portion of the aperture from which each perspective is viewed, as though looking out through

the camera lens. Since each of these images is generated near the edge of the aperture, the

effects of the dark pixels can be seen in the outer corners of each image. The curvature

of the aperture can be clearly seen and partially impinges on each generated image. This

perspective shift capability exhibits the range of parallax available to the plenoptic camera,

comparable to results that would have previously required four conventional cameras.

Not only can desired objects be viewed from different perspectives, but the plenoptic

camera is also capable of rendering images at various focal planes, still from the same raw

image shown in Figure 2.3. From general imaging, the depth of the focal point of an image

is based on the focal length of the lens and the distance from the lens to the imaging plane,

which is the microlens plane for the plenoptic camera. Therefore, to change the depth of the

focal point for a given lens, a synthetic microlens plane can be assumed to be at a different

distance from the lens, as shown in Figure 2.7. This new location is represented as a scale

factor multiplied by the actual location of the plane, labeled as α. To focus on objects in front

of the nominal focal plane, the synthetic image plane must be further away from the lens, such

that α must be greater than unity. Conversely, to focus on objects behind the nominal focal
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Figure 2.5: Perspective image generation by angle.

(a) Upper right (b) Upper left

(c) Bottom right (d) Bottom left

Figure 2.6: Different perspectives generated from Figure 2.3 (193 x 287).
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Figure 2.7: Geometry of a synthetically generated focal plane

(a) Near field (b) Close midfield

(c) Far midfield (d) Far field

Figure 2.8: Different focal planes by synthetic plane (193 x 287)
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plane, α must be less than unity. The pixels that correspond to each microlens are no longer

directly beneath the microlens, but rather must be reestablished based on geometry. All the

pixels for a given microlens are then averaged to provide the intensity for that microlens

[14]. Figure 2.7 shows the image of the room refocused at different depths. One important

distinction with the plenoptic camera from other imaging systems is that each object does

not have to be in focus in the original plenoptic image in order for the object to be in focus in

a rendered image. For example, the clock in the foreground of Figure 2.3 is clearly blurred,

but this clock is in clear focus in Figure 2.8(a). While current PIV techniques require that all

particles be in focus to be reconstructed, the plenoptic camera would be able to reconstruct

particles throughout a thicker depth.

2.4 Further Developments

Since the fundamentals of the handheld plenoptic camera were developed in 2005, many

have sought to improve on the capabilities of the camera. For the plenoptic camera develeped

by Ng et.al. [14], the spatial resolution of a reconstructed image is limited by the number of

microlenses. Lumsdaine and Georgiev [24] proposed a different configuration for a plenoptic

camera that would allow for images to be generated with higher resolution. Figure 2.9

shows the difference between the camera developed by Ng et.al. [14], which Lumsdaine

(a) Plenoptic 1.0 (b) Plenoptic 2.0

Figure 2.9: Comparison between plenoptic 1.0 and plenoptic 2.0 [24].
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and Georgiev [24] referred to as plenoptic 1.0, and the new model, called plenoptic 2.0.

For plenoptic 1.0, the main lens is optimally focused onto the microlens plane, such that

each microlens records an image of the full aperture. In contrast, plenoptic 2.0 is optimally

focused well in front of the microlens array, so that each microlens only records a portion

of the aperture. This camera arrangement allows the camera to fully utilize the positional

information of the light entering the camera to render images in full resolution, as named

by Lumsdaine and Georgiev [24]. A comparison of the difference between a plenoptic 1.0

rendered image and a plenoptic 2.0 rendered image is shown in Figure 2.10. The plenoptic

1.0 image has several artifacts due to the strong contrast of colors in the image and the

limited spatial resolution. The full resolution image significantly reduces these artifacts and

allows the fence on the right of the image to be distinguished from the many colors of the

bush. Plenoptic 2.0 has become the leading form of plenoptic imaging in the commercial

industry [24]. While the plenoptic 2.0 provides superior resolution in generated images, the

additional resolution is at a cost to angular resolution. For this reason, plenoptic 1.0 is better

suited for plenoptic PIV, and shall be the focus for the rest of the paper.

Figure 2.10: A light field image, a normally rendered image, and a full resolution image [24].

While the alignment and capture of a volume of particles is simple to execute with a

plenoptic camera, especially in comparison with other three-dimensional PIV techniques, the

processing of the plenoptic images to determine the velocity field has proven to be the main

challenge. Lynch [25] proposed that a window displacement iterative multigrid (WIDIM)

method, originally published by Scarano [26], could be used to determine the velocity field
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Figure 2.11: Velocity field of an inviscid spherical vortex [25].

from a plenoptic image. Lynch [25] extended this algorithm into a three-dimensional method

by applying this analysis to multiple rendered focus planes. One such case was the Hill’s

spherical vortex, shown in Figure 2.11. The reconstructed flow field proved to match the

velocity characteristics expected with an inviscid vortical flow. Despite the proven accuracy,

rendering the focal planes to determine the location of the particles within the flow still

has significant drawbacks. For example, this method may only be used with a low particle

number density. This restriction may only be overcome through the use of more advanced

reconstruction methods.

Current progress is being done by Lynch [15] and Fahringer [16, 27] to develop a tomo-

graphic method for reconstructing a particle field from a plenoptic image. The process of

volumetric reconstruction using computed tomography algorithms has been used for several

decades. In 2006, Elsinga et.al. [7] introduced the concept into the field of fluid diagnostics

as a method for obtaining three-dimensional velocimetry data, termed tomo-PIV. Prior to

the reconstruction process, the volume of interest is discretized into cubic voxel elements,

which are the volume equivalent of pixels. For tomo-PIV, these elements are the size of

a pixel; however, for a plenoptic camera the size of the voxels is chosen to reflect the size
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Figure 2.12: Velocity field of a synthetically generated vortical particle displacement [15].

of a microlens, since the microlenses govern the spatial resolution of the plenoptic camera.

Tomographic algorithms then seek to map the intensity recorded by each pixel on the image

sensor to each voxel in the three-dimensional volume. This mapping is of critical impor-

tance for a proper reconstruction and is dependent on an accurate estimation of the distance

between the main lens and the microlens array of the plenoptic camera. Although plenop-

tic PIV simplifies the imaging system to one camera, the reconstruction algorithm remains

computationally intensive. In many other PIV methods, each image pair is cross-correlated

to determine the direction of movement for a group of particles. In tomographic PIV, how-

ever, each time step is reconstructed first, and then the two reconstructed particle fields are

cross-correlated.

With the tomographic approach for determining the velocity field, much higher particle

seeding may be used. Similar to the focal stack algorithm developed by Lynch [15], this
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method was tested with a synthetic vortical flow, though this time an Oseen vortex was

used. The resulting velocity field produced by the tomographic algorithm applied to a

plenoptic image is pictured in Figure 2.12. This preliminary test showed that plenoptic PIV

was capable of quantifying the velocity within the main motion of this vortex, but with

apparent distortion in the depth direction. This depth distortion was also apparent in the

work of Fahringer and Thurow [27], where reconstructed particles were elongated in the

depth direction. This is attributed to the limited parallax of the plenoptic camera, which is

restricted by the small size of the camera. The centroid of these particles was found to still

be located at the expected depths, demonstrating that this elongation does not dramatically

undermine the feasibility of plenoptic PIV.

2.5 Assembly of the Plenoptic Camera

The camera used in the two main plenoptic camera experiments in Section 2.4 was

modeled after the design detailed in Ng et.al. [14]. The image sensor used by this camera

is a Kodak KAI-16000 charge-coupled device (CCD), which has a pixel size of 7.4 mm. The

microlens array was fabricated from a 10.4 mm thick glass slab to form 193 x 287 microlenses,

(a) Plenoptic camera (b) Microlens mount

Figure 2.13: Properties of the Auburn University plenoptic camera.
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which in turn is the spatial resolution for this plenoptic camera. Each microlens has a pitch of

125 mm, with a manufacturer-specified non-cummulative error of ±3%. Since the resolution

of the image sensor is 3280 x 4904 pixels, the light through each microlens is divided among

a grid of approximately 16 x 16 pixels, representing 256 unique angles of incidence for each

spatial location. Despite its ability to capture the full light field, the plenoptic camera is no

larger than a conventional camera. This can be seen in Figure 2.13(a), where the plenoptic

camera is compared with the size of a quarter.

Figure 2.14: The process of aligning the microlens array.

The microlens array in a plenoptic camera is ideally placed in front of the image sensor at

a distance equivalent to the focal length of the microlenses, which is 500 mm for the camera

in Figure 2.13(a). A mount for the microlens array is designed to be able to change the

alignment of the microlens array through tightening or loosening of the three inset screws on

the circle plate seen in Figure 2.13(b). To determine if the array is properly focused after the

array is placed into the camera, the lens is removed and collimated light is shined through

the array and onto the image sensor. The plenoptic camera shown in Figure 2.14 exhibits the

characteristics of a properly aligned array. The collimated light is equivalent to a point source

at optical infinity, and so the resulting image should show that the light passing through

each microlens is focused onto a single pixel across the entire array. Since the point of focus

can only be estimated to within the span of the pixel, there is some potential for error in
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the distance of the array from the image sensor, although slight. For the plenoptic camera

used with this work, the pixel pitch of 7.4 mm signifies that any placement within ± 25 mm

of the nominal placement depth will appear to be in focus. The screws are adjusted until

every microlens is properly focused. This process must be repeated any time the microlens

is removed or cleaned to ensure that no artifacts are caused by improper alignment. This

alignment step is important for angular clarity, as a misalignment would cause the intensity

for a given angle to be blurred across several pixels.
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Chapter 3

Estimating Image Distance

The image distance Si, defined as the length from the main lens to the microlens array,

is pivotal in relating the size of objects in an image to the physical dimensions of the object.

The tomographic reconstruction process for plenoptic PIV heavily depends on this parameter

to calculate the mapping between each pixel and voxel element. Unfortunately, this property

is a dimension inside of the camera and therefore cannot be directly measured.

3.1 Current Calibration Method

Although the magnification method of calibration has yet to be fully analyzed for ac-

curacy, this method has been used in recent plenoptic PIV experiments with reliable results

[15, 27, 16]. The magnification method requires two calibration images to be taken: one of

a white sheet to determine the location of the focal points of the microlenses and another of

a ruler to determine the magnification of the current lens arrangement.

3.1.1 Focal Point Calibration Image

In the two-plane parameterization of the light field, each light ray is represented by the

points of intersection with each plane: the main lens aperture plane (u, v) and the microlens

plane (s, t). Whenever the focal settings of the camera are changed, the camera must be

calibrated to relate the light ray that a pixel records to the corresponding intersection of

that ray with the microlens array and the aperture of the camera. These intersections must

be determined through consideration of the geometric relationship between the image sensor

plane, or the pixel coordinates (x, y), and the aperture plane (u, v). This relationship is

shown schematically in Figure 3.1, where similar triangles can be used to relate the image
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Figure 3.1: Relationship between aperture and pixels.

coordinates to aperture coordinates. In order to quantify this relationship, the image distance

Si and the center of the aperture image under each microlens xc must be determined. The

determination of the image distance Si is the purpose of this paper and will be thoroughly

detailed later. To determine the center of the aperture in each microlens image xc, a simple

calibration step is performed by reducing the aperture of the main lens to the minimum value.

The reduced aperture only allows light to pass through the center of the main lens, and only

the pixels corresponding to the centers of each aperture subimage will be illuminated under

each microlens. A subset of a calibration image is shown in Figure 3.2(a). The number

of bright spots corresponds to the number of microlenses, and the centroid of each of the

spots corresponds to the center of the aperture subimages. Since the intensity might be

spread across a few surrounding pixels, the location of the exact centers can be found with

sub-pixel accuracy by using a simple centroid fit. The locations found by the centroid fit are

represented by a green ”x” in Figure 3.2(b) [27].
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(a) Subset of the calibration image (b) Centroid fit for subpixel accuracy

Figure 3.2: Calibration image.

3.1.2 Image Distance by Magnification

While the values of x, xc, and fm can be determined based on the geometry and the

propagation of light within the camera, the magnification method of determining the image

distance Si requires an object external to the camera to be used for calibration. To relate

distances inside the camera to distances outside of the camera, the coordinate system is

defined by the optical axis, as shown by the dotted line in Figure 3.3, and the main lens.

The origin is located at the intersection of these two planes, at the center of the main lens.

All points to the left of the origin, outside of the camera, are defined as the object space,

denoted by a subscript o. To the right of the origin is the interior of the camera, known

Figure 3.3: Distances in the object and image spaces.
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as the image space and denoted by a subscript i. In a two-dimensional system, such as in

Figure 3.3, the distance from the optical axis is expressed as the height h, while the distance

from the main lens is the depth S. The microlens array is located at a distance Si from the

main lens, although not shown in the figure for simplicity.

Based on geometric optics, there are two principle equations to relate the object space

to the image space: the thin lens equation and the magnification equation. The thin lens

equation, defined as

1

So
+

1

Si
=

1

fm
(3.1)

relates the depths of the plane on either side of the camera to the focal length of the main

lens fm. Similarly, the magnification equation, expressed as

M = −hi
ho

= −Si
So

(3.2)

relates the ratio of the depths to the ratio of the heights, based on similar triangles. If the

magnification and focal length of the main lens are known, the depths of the focal planes

can be easily determined by rearranging Eqs. (3.1) and (3.2) to produce

So =
fm (M − 1)

M
(3.3)

Si = fm (1 −M) (3.4)

While the focal length of the main lens is a set value, the magnification of the lens

depends on variable properties of the lens, such as the focal settings. In order to determine

the magnification for a lens with fixed characteristics, an object of known dimensions may

be imaged. An ideal object for this method is a ruler, as shown in Figure 3.4. To determine

the magnification, a span of visible centimeters is chosen, such as the range from 29 cm
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Figure 3.4: Ruler calibration image.

to 33 cm in Figure 3.4. Between these two points on the image, there are 155 individual

microlenses, which correspond to an image distance di of approximately 19.3 mm based on

the pitch of the microlenses. The magnification can be deduced by dividing this distance by

the actual distance do between these two points, which produces a magnification of −0.39.

Since Figure 3.4 was taken with a 135 mm lens, the value for the image distance Si can be

approximated using Eq. (3.4) to give an expected value of 185 mm. Notably, the accuracy

of this method is constrained by the width of the microlenses, although better detail may

be attained by interpolating between the microlenses to find the proper location of the ruler

marking.

One predicted problem with this method is the inaccuracy caused by the depth of focus.

The depth of the focus is the region surrounding the focal plane in the object space where

an object will appear to be in focus. The size of this region is dependent on three camera

parameters: the object plane distance So, determined by Eq. (3.3); the magnification of the

camera M , determined by Eq. (3.2); and the diameter of the main lens d, given by the f/#
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of the lens [28]. The front distance L1 and back distance L2 of the depth of focus can be

determined from

L1 =
CSo
d+ C

(3.5)

L2 =
CSo
d− C

(3.6)

where C is the circle of confusion. This is the uncertainty caused by the spatial resolution

of the camera, and the value is given by

C = pm/M (3.7)

where pm is the size of a microlens. From these equations, the total span of the depth of

field can be written as

∆So =
C2So
d2 + C2

(3.8)

Figure 3.5: Uncertainty with respect to image distance for a 135 mm lens.
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This can easily be equated to a change in Si by taking the derivatives of Eqs. (3.3) and (3.4)

with respect to the magnification and combining them into a single equation, such that

∆Si = M2∆So (3.9)

Figure 3.5 shows the relationship between the image depth to the region of uncertainty in

the prediction of this value caused by the range of the depth of focus. This uncertainty is

applicable for a main lens with an a focal length of 135 mm and an f/# of 5.6. For many

PIV experiments, the image distance is high in order to bring the focal plane closer to the

camera to reduce the width and height of the illuminated volume. As the image distance

is increased, the uncertainty in the approximation of the image distance linearly increases,

such that the uncertainty is roughly equal to 1% of the image distance. Thus, an error of

this magnitude should have a minimal effect on the reconstruction of a volume.

Another possible source of uncertainty with the magnification method for determining

the image distance is a miscalculation in the height of an object in the image plane. The

spatial resolution of the plenoptic camera is limited by the number of microlenses, and so the

measured value of the image height may be improperly estimated. The relationship between

the error in the image distance to the error in the estimated height of an image is given by

∆Si
∆di

=
fm
do

(3.10)

For an extreme case, if only a one centimeter span of a ruler is used to provide the object

height for a 135 mm lens and the image height was offset by the entire width of a microlens

with pm = 125 mm, the resulting error in the approximation of the image distance would

only be 1.69 mm for all values of the image distance. As stated, this is only an extreme case,

and the error can be greatly reduced by using a larger span along the ruler and using an

interpolation method to determine the precise image distance. Therefore, the main source

of error for the magnification method is the depth of focus. Overall, the magnitude of the
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uncertainty is expected to be low for the magnification method of determining the image

distance.

3.2 Estimating Si from Location of Microlens Centers

With the inclusion of a microlens array inside of the camera, the plenoptic camera

offers the possibility of determining the magnitude of the image distance based on the focal

point calibration image rather than through magnification. Since the spacing between each

microlens is approximately 125 mm, the image distance could be approximated by examining

the spacing between each aperture subimage. The spacing is relatively large when the image

distance is small, but the average spacing decreases as the lens is moved further away from

the sensor. By establishing a relationship between the spacing in the focal centers to the

spacing in the microlenses, the precise image distance could be established. This alternative

calibration technique would not require the additional ruler image to be taken for each

experiment and only need the single focal center calibration image to be taken. For the focal

point calibration image, a white sheet is placed directly in front of the lens regardless of the

focal plane. Thus, unlike the magnification method of calibration, access to the focal plane

of the experimental arrangement would not be necessary.

3.2.1 Model of Relationship

Since there are two principle planes, the microlens plane and the image plane, the origin

of the coordinate system could be positioned on either plane. The image sensor is at a fixed

position and orientation, and the microlens array should be positioned 500 mm in front of

the image sensor for the camera described in Section 2.5. There is potential for error in this

placement, however, as the array may not be centered on the optical axis, or may not be

perfectly focused onto the image sensor. For this reason, the distance between the microlens

array and the image sensor is labeled by f to denote the potential flexibility of this position.

The origin of the coordinate system, defined as (s, t, z), should therefore be placed at the
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center of the image sensor, as shown in Figure 3.6, since this point is consistent regardless

of any changes to the camera. The optical axis is defined by a line perpendicular to the

image sensor, originating from the center point of the sensor. The location of the center

of a microlens in the array with respect to the optical axis is then defined by the vector ~d.

This vector can be split into the three components (ds, dt, dz), where dz = f . Similarly, the

location of the focal center on the image sensor is labeled by the vector ~p, and can be divided

into the components (ps, pt).

3.2.2 Algorithm Development

Before the relationship between the focal points and the image distance can be estab-

lished, the precise location of each of the microlenses must be determined with respect to

the (s, t) plane shown in Figure 3.6, where the t axis is orientated out of the paper. During

the initial placement of the microlens array, through the process described in Section 2.5,

an image is taken after the full array has been properly aligned. Since the collimated light

entering the camera should be perfectly perpendicular to each microlens, the focal point of

each lens will lie on the pixel directly beneath the center of that microlens. Thus the location

of each microlens on the (s, t) plane is equivalent to the location of the illuminated pixel on

the image sensor.

From here, an algorithm is developed to take the position of the microlens array and

the location of the centers, which are determined from the focal point calibration image, to

back out the proper value of Si. The relationship between a point on a microlens array and

a point on the image sensor is modeled using the simple geometry of similar triangles, as

can be seen in Figure 3.6. The resulting relationship equation can be expressed as

ps,est =

(
Si + f

Si

)
ds (3.11)

This equation is shown in the (s, z) plane, but the same relationship exists for the (t, z)

plane as well. Based on this equation, only one data point would be needed to back out the
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Figure 3.6: coordinate system and geometry of internal parameters.

(a) Shift (b) Rotation

Figure 3.7: Imperfections to microlens array placement.
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image distance that would satisfy this relationship. To fully utilize each of the points and

best estimate the value of Si that properly represents a given geometry, a value is assigned

to Si, and the known microlens positions are used to calculate where the focal points of the

microlenses would be for the given value of Si. These new focal locations are then compared

with the location of the centers that are input into the program until the root mean square

error is minimized, defined by

eRMS =

√√√√√ m∑
i=1

n∑
j=1

[(ps(i, j) − ps,est(i, j))2 + (pt(i, j) − pt,est(i, j))2]

2mn
(3.12)

where m and n are the dimensions of the microlens array. The value for Si is then al-

tered using the built-in MATLAB function fminsearch until the root mean square error is

minimized.

Although the process for obtaining the microlens position is sound, there is possible

error if the light source for the microlens alignment image is not far enough away from the

lens. For the plenoptic camera used in this experiment, the microlens array of the camera was

known to be off-centered from the optical axis, as well as slanted to the left. The magnitude

of these errors is defined by two spatial variables (so, to) and one rotational variable γ, which

are geometrically depicted in Figure 3.7. Ideally, the alignment image should compensate for

these positional errors. These errors are applied to the (s, t) locations given by the alignment

image through the equations

ds,new = (ds,old + so) cos(γ) − (dt,old + to) sin(γ) (3.13)

dt,new = (ds,old + so) sin(γ) + (dt,old + to) cos(γ) (3.14)

Instead of simply iterating for the image distance, the magnitudes of the misplacement

parameters are iterated until the best fit is achieved. For a proper microlens alignment
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process, all three of these values should be negligible. Any other result would require another

method for ascertaining the precise location of the microlens centers to be generated.

3.2.3 Synthetic Design

Fahringer and Thurow [16] have developed a program called the Auburn Light Field

Analyzer (ALFA) that is capable of simulating focal point calibration images. These cali-

bration images are generated by simulating several thousand particles in front of the camera

to be equivalent to the light source provided by a white background. The properties of

the camera are then specified in the program, and ray transfer matricies are used to map

the thousands of rays emanating from each particle to the point of intersection with the

microlens array and then onto the image sensor. For each synthetic image, the microlenses

are properly aligned with the image sensor, separated precisely by the focal length of the

microlenses, or 500 mm in this case. For all synthetic experiments, the simulated plenoptic

camera has properties that match the camera detailed in Section 2.5, with an image sensor

size of 3280 x 4904 pixels with a pitch of 7.4 mm. The microlenses are spaced evenly at a

pitch of 125 mm with an array size of 193 x 287 microlenses. The focal length of the lens was

chosen to match a lens currently owned by the lab to best match experimental testing, and

was set to 135 mm. Rather than input the value for Si, ALFA requires the magnification of

the lens. The magnification was varied from a value near 0 to 2 in increments of 0.33, which

corresponds to image distances ranging from 135 mm to 405 mm. The centroid method was

then used on the resulting images to determine the location of the focal points, as detailed

in Section 3.1.1. From here, each set of focal points, as well as the perfect microlens array,

were passed into the algorithm described in the previous section to test the accuracy of the

image distance prediction.
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Figure 3.8: Synthetic results for image distance prediction.

3.2.4 Synthetic Results

Figure 3.8 shows the results of the estimation of the image distance for each of the

generated images, where the black line represents the ideal solution. It can be clearly seen

that the synthetic results show a robust and accurate prediction for Si for every simulated

value. Each estimated value falls within 0.05 mm of the actual value, thus demonstrating

an accuracy that outperforms the ruler magnification method. Also, all values for the error

parameters remain less than 10−6, hence demonstrating an ideal placement of the microlenses.

These results showed that the basic premise behind this method for estimating the image

Figure 3.9: Error caused by a random noise of ±1 pixel for a 135 mm lens.
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distance is sound. To further test the robustness of the algorithm, a random noise was

applied to each of the focal center locations. The uncertainty in location was varied up to

a full pixel width of ±7.4 mm in order to simulate the effect of either an improperly spaced

microlens or the known window of error for the centroid fit to find the focal points. Even

with a noise error of a full pixel, all of the estimated image distance values are found within

1 mm, as seen in Figure 3.9.

3.2.5 Preliminary Experimental Results

A Nikkor 135 mm lens was used to test the practicality of this focal point calibration

method. In order to vary the image distance, extension tubes were added to the lens, and the

known image distance was assumed to be the the image distance at optical infinity, which

was 135 mm for this lens, plus the total length of the extension tubes. The microlens array

was assumed to have a perfect pitch of 125 mm between each microlens. The displacement

parameters so, to, and γ were all outputs for the algorithm, and the magnitude of the rotation

parameter γ was confirmed to be correct by calculating the angle of rotation between two

focal points located on the same row of the microlens array. Since the algorithm properly

estimated this value, the magnitudes of the two displacement terms should also be accurate.

Figure 3.10: Experimental results for image distance prediction.
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For the experimental results displayed in Figure 3.10, the value of the calculated image

distance drastically differed from the known image distance. The large difference between the

expected result and the actual result demonstrates that this problem cannot be attributed to

a noise error and that there is a significant flaw in the model of the camera. This reasoning

is further supported by the uniformity of the observed error, which linearly increases as the

image distance increases. Since the synthetic data was proven to be accurate, this error must

be a physical aspect to the camera that was not accounted for in the synthetically simulated

plenoptic camera.
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Chapter 4

Effect of a Flat Refractive Interface on Plenoptic Imaging and Si Estimation

Throughout the previous phase of testing, the fact that the microlens array of the camera

was fabricated out of a 10.4 mm thick pane of glass with an index of refraction of 1.517 was

completely ignored. This preliminary data prompted a detailed look at how the imaging

properties of the camera could be affected by a flat refractive interface along the line of

sight for the plenoptic camera. One future application of the plenoptic camera is to image a

porous flow in a refractive-index-matched facility, as detailed in Appendix A. A complication

with imaging any fluid that is more dense than air, such as water, is the varying indices of

refraction from the desired volume to the image sensor of the camera. This refraction causes

a difference in magnification between an object and the image, as well as affects the depth

estimation of particles. While the documented method of a mobile calibration grid would

account for this distortion [2], the effects of the interface could potentially be addressed by

a depth correction algorithm for the plenoptic camera. In addition to this, once the light

passes through the camera, the refractive plate from which the microlens array is fabricated

causes the light to once again change paths before passing through the microlenses. This

refraction inside of the camera can potentially affect the magnitude of the magnification and

lead to a misrepresentation of the depth of a particle in an illuminated field, just like an

external refraction. Therefore, the effects of refraction must be studied both outside and

inside the camera.

As discussed in the previous section, it is necessary to map a position on the image

sensor x to its equivalent position on the aperture plane u. This relationship is given by

u =
(x− xc)Si

fl
(4.1)
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where x is the distance of a pixel from the optical axis and u the distance of a point on

the aperture from the optical axis. The pixel xc is the location of the focal point of the

microlens, determined through the calibration process described in Section 3.1.1. Since this

relationship is based on geometry, Eq. (4.1) holds only as long as the light follows a constant

path. This section discusses how the presence of a flat refractive interface impacts the

relationship between the image space and object space, as well as the relationship between

the pixels and the aperture of the camera.

4.1 Geometry of Tomographic Reconstruction

The location of the origin for a tomographically reconstructed volume is defined as the

distance between the main lens of the camera and the nominal focal plane of the lens So,

as seen in Figure 4.1. A particle in front of this focal plane has depth of −∆z, and a

particle in behind this plane has a depth of ∆z. The location of this origin is altered by a

flat refractive surface located between the object volume and the camera, such as between

a water tunnel and the surrounding air, and as such alters the positioning of the whole

coordinate system. In addition to this, a refractive surface influences the mapping between

each voxel and pixel, and can lead to improperly positioned particles relative to the origin.

While this issue has been addressed with multiple-camera tomographic PIV, no analysis has

been done for plenoptic PIV to correct these errors.

Figure 4.1: Coordinate system of a reconstructed volume.
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Table 4.1: Effect of refraction on imaging equations

Refraction Schematic Imaging Equations

No
Refraction

1

So
+

1

Si
=

1

fm

M = −hi
ho

= −Si
So

External
Refraction

1
n2

n1
l1 + l2

+
1

Si
=

1

fm

M = −hi
ho

= − Si
n2

n1
l1 + l2

Internal
Refraction

1

So
+

1

l3 + n4

n3
l4

=
1

fm

M = −hi
ho

= −
l3 + n4

n3
l4

So

Combined
Refraction

1
n2

n1
l1 + l2

+
1

l3 + n4

n3
l4

=
1

fm

M = −hi
ho

= −
l3 + n4

n3
l4

n2

n1
l1 + l2

4.2 Analytical Estimation of the Effect of a Flat Refractive Interface

The presence of a flat interface within the optical path from a point in object space to

a point in image space was modeled using ray transfer matrices, also commonly known as

ABCD matrix analysis [29]. Ray transfer matrices provide a convenient method to study
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the combined effects of multiple elements in the optical path of the system on the position x

and direction of propagation θ of a light ray. Since a flat refractive interface only alters the

direction of propagation of a ray, the interface can be simply modeled by the ray transfer

matrix

xout
θout

 =

1 0

0 n2/n1


xin
θin

 (4.2)

From the ray transfer matrices, the unique imaging relationship for a given optical system

can be determined. Four possible configurations were analyzed and are shown in Table 4.1:

a) a simple thin lens relationship; b) a refractive interface contained in the object space; c)

a refractive interface contained in the image space; and d) a refractive interface contained

in both the object space and the image space. Table 4.1 also includes a schematic of each

relationship, showing the location of the refractive interface and the distances between each

element. With the presence of the refractive interface, the distance between the main lens

and the focal point was subdivided into ln before the interface and ln+1 after the interface.

Next to each schematic is the corresponding imaging equations that relate a point in the

object space to a point in the image space. The equations were rearranged as the sum of

the inverse distances to the main lens in order to illustrate the analogous behavior to the

thin lens equation and the distances associated with a flat refractive interface. As such, the

effective object and image distances can be defined as follows:

So,eff = (n2/n1)l1 + l2 (4.3)

Si,eff = l3 + (n4/n3)l4 (4.4)

The magnification of an optical system is still determined by measuring the ratio of the

height of ruler on an image sensor to the actual height of the ruler in the object space.
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Rather than being directly equated to the physical distance of the focal plane from the main

lens, the magnification can also be shown to be equivalent to the effective values of Si and

So, as shown in Table 4.1. This demonstrates that the relationship between the image sensor

and the main lens of the plenoptic camera can be expressed as

u =
(x− xc)Si,eff

fl
(4.5)

This mapping provides a convenient representation to build the light field directly from

previously established methods. This shows that the construction of the light field implicitly

assumes an image space void of a refractive interface.

In plenoptic PIV, a grid is constructed in object space upon which the volume recon-

struction is formulated. As the light-field is captured and parameterized in image space,

the desired grid in object space must be mapped to its corresponding grid in image space.

The thin lens equation has been proven to provide a convenient means of performing this

mapping, but the refractive interface complicates this relationship, as shown in Table 4.1.

Therefore, a coordinate transformation must be implemented between the physical coor-

dinates of the volume and the effective coordinate system as given by the reconstruction

process. For reconstruction, the depth of a particle ∆z is defined by the distance from the

nominal focal plane So,eff. While the location of the nominal focal plane accounts for the

refraction, the relative depth for out-of-plane particles does not account for any refractive

effects. Using the nominal focal plane of the main lens as a reference, a grid can be con-

structed by mapping points that are shifted relative to this plane in the depth direction as

follows:

So,eff + ∆Seff = (n2/n1)(l1 + ∆z) + l2 (4.6)

This can then be simplified to
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∆Seff = (n2/n1)∆z (4.7)

In these equations, ∆z represents the physical distance in object space and ∆Seff is the

change in effective object distance. This can be understood by considering the imaging of

an object in a water tunnel, where the presence of the interface results in a magnification

that is proportional to the index of refraction of water. In a similar manner, a flat refractive

interface within the camera can also lead to a misrepresentation of the proper depth of a

particle. Unlike the external refractive interface, the effect of the internal interface on the

depth of a particle cannot be easily correlated through the imaging equations. Moreover,

particles may be focused both in front of and behind the refractive interface. Particles that

impact the refractive interface after passing through the lens focal point will have a different

magnitude of distortion than particles that pass through the interface and then are focused

to a point. Thus, a noticeable discrepancy between the depth estimation of particles across

these two regimes is expected.

In summary, the raw data recorded by the plenoptic camera is rendered into a light field

measurement by determining, for each pixel on the image sensor, the corresponding point

of intersection on the microlens plane and the aperture plane. This rendering process relies

on a measurement of the imaging system’s nominal magnification and a simple calibration

to determine the center of the aperture microlens images. The rendering process, however,

implicitly models the image space of the camera as being free from refractive interfaces

such that the distance Si is an effective distance, not a physical distance actually contained

within the camera. This distance, in turn, is mapped to the outside world by the thin

lens equation. In the case where a refractive interface is also present in the outside world,

the mapping generates an effective object distance which can be related to the real object

distances by Eq. (4.6).
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Figure 4.2: Path of a light ray through a plenoptic camera with a flat refractive interface.

4.3 Adjustment to Focal Point Algorithm

With the addition of a flat refractive interface, Eq. (3.11) no longer equates the position

of a microlens to the position of the corresponding focal point. The new geometry for the

light entering through the center of the aperture is shown in Figure 4.2. Similar to the

geometry shown in Section 4.2, the interior of the camera is divided into two main sections:

from the main lens to the refractive interface, and then from the refractive interface to the

focal point of the lens. For the plenoptic camera, this main lens focal point is at the microlens

plane, which is located at a distance t behind the refractive plane. The light entering the

camera propagates in a straight line from the center of the camera to a point on the refractive

plane. There, the light is bent by a factor of the refractive index, and then propagated to

the microlens array. Since the optics of a microlens are fabricated such that light passing

through the center of the lens will not bend, there is no need for a second interface to be

modeled at the microlens array. Instead, the light continues at the same angle of incidence

until the image sensor is impacted.

By using ray transfer matrices once again [29], the relationship between the microlens

array and the image sensor may be determined geometrically to be

ps,est =

(
1 +

f

nl3 + t

)
ds (4.8)
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A full derivation of this equation is shown in Appendix B. Rather than determining the

image distance Si from this equation, the physical distance l3 is found instead. From here,

Eq. (4.4) must be used to determine the effective value of this image distance. For the

plenoptic camera, l4 is equivalent to the thickness of the glass plate, such that

Si,eff = l3 + nt (4.9)

To implement this new algorithm, only the relationship equation needs to be changed to Eq.

(4.8). The value output by the code must then be corrected to reflect the effective image

distance.
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Chapter 5

Validation of Depth Correction and Image Distance Correction

With the realization of the existence of a flat refractive interface within the camera,

adjustments had to be made to the estimation of both the image distance from the focal

points and the depth of a reconstructed particle. The magnification method for determining

the image distance was unaffected by this development. The alterations to the particle depth

simulation were verified first to confirm the basic understanding of the impact of the flat

refractive interface. Following this, the new image distance algorithm was tested for both

accuracy and robustness.

5.1 Simulation Design for Depth Estimation

A refractive interface in the optical path is known to have an effect on the estimated

depth of a particle in a volume, but the magnitude of these effects had yet to be classified. To

verify the depth correction equation, presented in Eq. (4.7), a series of simulated plenoptic

images were generated for a particle located at different depths along the optical axis, once

again using the program ALFA. By placing the particle along this axis, variations in the

horizontal and vertical components were made negligible. A 50 mm lens was modeled with a

magnification of −1, such that So,eff = Si,eff = 100 mm. The experimental design was divided

into three separate optical arrangements: no refractive interfaces along the optical path, a

refractive interface between the object and the volume, and a refractive interface in front of

the microlens array. The first simulation in each set placed the particle at 10 mm in front

of the focal plane, and the particle was shifted away from the camera in 1 mm increments

until the particle was 10 mm behind the focal plane. This range was chosen due to the

higher accuracy of the tomographic reconstruction process within the region. The first set of
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simulations, generated without any refractive interfaces, was completed to provide a baseline

for improvement and to demonstrate the accuracy of the reconstruction algorithm. Images

were then simulated with a refractive interface of magnitude n = 1.33, positioned 40 mm in

front of the effective focal plane, such that l1 = 40.00 mm and l2 = 69.92 mm as determined

by Eq. (4.3). The resulting reconstructed particles were expected to be compressed toward

the focal plane when compared with the actual simulated position. By applying Eq. (4.7)

to the simulated positions, the new locations were expected to align with the actual position

of the particle. Finally, a glass plate was simulated in front of the microlens array with an

index of refraction of n = 1.46 with a thickness of t = 6.3 mm, such that l3 = 95.68 mm

and l4 = 6.30 mm based on Eq. (4.4). The effect of the refractive plate was expected to be

accounted for by the magnification method for determining the image distance.

5.2 Corrections for Depth Estimation

In order to reduce the computation time, the simulated volume was reconstructed as

a 50 x 50 x 120 voxel grid, such that each square voxel was roughly 0.125 mm in length.

For the horizontal and vertical directions, the reconstruction volume spanned from −3 mm

to 3 mm in both directions. All reconstructed particles were within 0.2 mm of the optical

axis. For the depth, the volume of interest spanned 15 mm, where the range was adjusted

such that the particle should not be reconstructed within 5 mm of the edge of the volume

to verify accuracy.

As discussed in previous studies on plenoptic PIV [27, 16] and in Section 2.4, recon-

structed particles are elongated in the depth direction due to the limited parallax of the

plenoptic camera. A centroid method was used to determine a precise particle location for

each reconstruction. Preliminary results showed that the inclusion of a refractive interface

between a particle and the camera visibly altered the estimated depth of a particle. Fig-

ure 5.1 exhibits two reconstructed particles that were simulated at the same depth 10 mm

behind the focal plane, one without an interface and one with the refractive surface. The
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(a) No refractive interface (b) External refractive interface

Figure 5.1: Reconstructed position of a particle simulated at the same depth.

camera was positioned to the right of each of the volumes, and the reconstructed depths

represent the range from 0 mm to 15 mm. It can be clearly seen that the particle simu-

lated with a refractive interface is significantly closer to the nominal focal plane, at a visual

disparity of around 20 voxels with the non-refractive reconstruction.

In order to validate Eq. (4.7) for reconstructions involving a refractive interface between

the volume and the camera, each simulated image was reconstructed based on the known

magnification and assuming no refractive interfaces. The reconstructed position of each

particle was plotted against the actual simulated position, where the nominal focal plane

is the origin. These results are compared with the a theoretical perfect reconstruction in

Figure 5.2, represented by the black line. The blue line plots the reconstruction of the images

generated without any refractive interfaces to demonstrate the accuracy of the reconstruction

algorithm. In Figure 5.2(a), as expected, the red line shows that the reconstruction of

particles behind a refractive interface causes each particle to be compressed toward the focal

plane. The error in location increases with distance from the focal plane. In Figure 5.2(b),

where the position of the particles is corrected in accordance with Equation 4.7, the depths

of the particles behind an interface align nearly perfectly with the particles without any

interfaces. A linear fit was applied to each optical arrangement, with the properties shown in

Table 5.1. This simulated experiment demonstrated two key confirmations for the analytical

45



(a) Raw reconstructed position

(b) Correction for refraction

Figure 5.2: Reconstructed position versus known position from −10mm≤ ∆z ≤ 10 mm
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Table 5.1: Effect of refraction corrections
Without Exterior Exterior Internal Internal

Refraction Interface Interface Interface Interface
Uncorrected Corrected Uncorrected Corrected

Slope 0.9925 0.7563 1.0059 1.4265 0.9770
Intercept 0.3675 0.2694 0.3583 -0.3176 -0.2175
R2 value 0.9971 0.9975 0.9975 0.9939 0.9939

solution. First, the error in depth caused by the refractive interface does not have to be

adapted into the tomographic reconstruction process, but can simply be applied to a volume

during post-processing. Second, the intercept for even the uncorrected refraction was shown

to be near zero. This shows that using an effective So to define the volumetric coordinate

system with an interface will yield a similar reconstruction to the same volume without an

interface.

The final series of simulations involved an internal refractive plate with an index of

refraction of n = 1.46. Figure 5.3 compares the results of the reconstruction without any

interfaces to the position of the particle reconstructed with an internal interface, shown

in green. Only the range between −5 ≤ ∆z ≤ 5 mm is shown for this case, since the

discontinuties begin to occur outside of this range. Like the external interface, a linear fit

may be applied to the particles reconstructed with an internal interface. These properties

are also shown in Table 5.1. Once again, the slope of the reconstructed particles is directly

proportional to the index of refraction of the plate. From the resulting data, the depth of

a particle may be corrected by dividing by the index of refraction of the internal interface,

such that

∆So = (n3/n4)∆z (5.1)

Figure 5.3(b) shows the reconstructed position with the correction applied. Once again, the

corrected position closely matches the accuracy of the reconstruction without any refractive

interfaces. In addition to this, the range of reconstructed particles from 0 ≤ ∆z ≤ 10 mm
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(a) Raw reconstructed position

(b) Correction for refraction

Figure 5.3: Reconstructed position versus known position from −5mm≤ ∆z ≤ 5 mm.
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Figure 5.4: Reconstructed particle position from 0 ≤ ∆z ≤ 10 mm with an internal interface.

is shown in Figure 5.4. There is a significant deviation in the depth reconstruction around

7 mm, with the properties shown in Table 5.2. The error in the position of the particles

at a depth greater than the 7 mm discontinuity do not show any error trend that may be

correlated to the index of refraction, and thus a correction equation for these particles cannot

be generated from known quantities as was done for in Eqs. (4.7) and (5.1). Further study

will be needed to properly correlate these particles to the proper position, but the cause is

possibly associated with the particles being focused in front of the refractive plate, rather

than to a point within or behind the glass.

5.3 Synthetic Test for New Focal Point Model

Similar to the original synthetic testing, a series of focal point calibration images were

generated through a modified version of the Auburn Light Field Analyzer, which will now

model a camera with a glass plate in front of the microlens array. For this secondary testing,

Table 5.2: Discontinuity with particle in front of internal interface
Without Particles Focused Particles Focused

Refraction Behind Interface In Front of Interface
Slope 0.9925 1.4162 1.8026

Intercept 0.3675 -0.4911 0.5211
R2 value 0.9971 0.9964 0.9984
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the magnification was once again varied from a value near 0 to 2. All properties of the

camera remained the same, except for the inclusion of a glass plate with a thickness of

6.3 mm and an index of refraction of 1.46. These values were originally thought to be the

dimensions of the plate within the camera, until further discovery showed that the actual

depth was 10.4 mm with an index of refraction of 1.517. Although different magnitudes from

what is expected in the experiment, this synthetic test was still able to prove the concept of

refraction correction.

The calibration images generated by ALFA were also analyzed using the original model

equation in order to compare the accuracy of the improved focal point calibration algorithm

to the original implementation. The blue data points in Figure 5.5 show the error generated

by the previous method when an interface is present. The previous model grossly overes-

timates the length of the image distance, just as the experimental results in Section 3.2.5

showed. When the proper relationship equation is implemented, however, the resulting val-

ues align precisely with the known values for the image distance, with an accuracy akin to

the previous synthetic results. This demonstrated that the new relationship equation cor-

rectly accounted for the refraction caused by a glass pane and also showed that the refractive

interface was a probable cause for the large error seen in the original experiments.

Figure 5.5: Synthetic results for a 135 mm lens with refractive plate.
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Table 5.3: Synthetic noise error for different image distances with a 135 mm lens
Noise (% of pixel) 135 mm 270 mm 405 mm

0 0.02 0.03 0.01
33 0.04 0.11 0.25
67 0.00 0.77 0.80
100 0.11 0.27 0.68

While a synthetically generated microlens array has perfect pitch, the known error in

positioning for the microlenses in the physical array is a non-cumulative ±3 mm. To test

the robustness of the algorithm for the slight variance in microlens center locations, random

noise was added to the location of each focal point. The largest magnitude of variance that

was tested was varied over the range of [−7.4 7.4] mm, which corresponds to plus or minus

one pixel width. The results for three of the simulated calibration images are shown in Table

5.3. The general trend shows that optics with a large image distance are more sensitive to

the random fluctuations in pitch, but overall the algorithm provided accurate results in all

cases, with the error being within a millimeter.

5.4 Experimental Arrangement

The basic premise behind the focal point method for calibration is the relationship

between the location of a point on the microlens array to the focal point of that microlens.

While a synthetic array has perfect pitch between each of the microlenses, the manufactured

array is reported to have a pitch variance of ±3%. While the noise error tests demonstrate

that the algorithm is capable of compensating for this variance with only a small error, the

accuracy could be further improved by determining the precise location of the centers of

the microlenses within the array. This may be done during the alignment process for the

microlens array that is detailed in Section 2.5, when all lenses are removed and collimated

light is shined directly onto the array. The light impacting the array should be perpendicular

to all points along the array, causing all microlens focal points to lie directly beneath the
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Figure 5.6: Magnification image near optical infinity for a 50 mm lens.

center of the microlenses. The location of the centroid of each focal point on the image

sensor (s, t) can then be directly used as the location of the microlens centers (s, t, f).

Both a Nikkor 50 mm and a Nikkor 135 mm manual focus lens were used in order to

experimentally examine a wide range of image distances. A series of extension tubes were

implemented to incrementally increase the image distance of the plenoptic camera. For each

lens, a large box with clearly defined edges and known width was placed as far away from

the camera as possible so that the magnification of the camera could be determined near

optical infinity, as shown in Figure 5.6. The focus setting of the lens was then changed until

the white box appeared in focus, and the magnification method was used to estimate the

the image distance. The image distance measured was expected to be close to the focal

length of the lens for this case, although slightly increased due to the change in focus. This

Si was used to provide a baseline estimate for the change in image distance as extension

tubes were added to the camera. The length of an extension tube directly correlates to the

change in image distance, such that a 12 mm extension tube should cause a 12 mm change
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Figure 5.7: Simple experimental set-up.

in Si. By performing the experiment in this manner, the image distance provided by both

the magnification method and the focal point method could be compared to the known value

determined from the baseline Si plus the total length of extension tubes. After the baseline

images were taken, with both a magnification image and a microlens focal point image, this

process was repeated for combined extension tube lengths of 12 mm, 24 mm, 36 mm, 48 mm,

60 mm, 76 mm, 88 mm, and 100 mm, with the focal point calibration image arrangement

shown in Figure 5.7. When each extension tube was added, special care was taken to ensure

that the focus of the lens was not altered. Therefore, for the magnification method, objects

were moved until the focal plane was found, rather than adjusting the focus setting of the

lens.

5.5 Experimental Testing of Both Methods

First, the accuracy of the magnification method for determining the image distance

was examined. The value of the image distance provided by the magnification method is

compared with the image distance based on the length of the extension tubes in Figures

5.8 and 5.9. The magnification method is shown to provide an excellent estimate for the

image distance for all range of values, although some small error may be seen in some cases.

Additionally, the standard deviation in the error appeared to remain constant at all image
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Figure 5.8: Magnification method accuracy for a 50 mm lens.

Figure 5.9: Magnification method accuracy for a 135 mm lens.
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distances rather than showing any increasing or decreasing trends. For the 50 mm case, the

focal point calibration images were corrupted for the extension tubes lengths of 24 mm and

36 mm, or where the image distance equaled 74.26 mm and 86.26 mm respectively. For both

the magnification and the focal point methods, these two data point are not included. All

values of the magnification method were within 5 mm of the expected result for both the

50 mm and the 135 mm lenses. A full study on the trends of this error will be presented in

Section 5.7.

For the focal point method of calculating the image distance, the distance between the

microlens array and the image sensor was assumed to be a nominal f = 500 mm. The tilt of

the array estimated by the alignment image was shown to be accurate to within 10−4 for all

cases. The positioning offset in the vertical direction was within 3% of the microlens width;

however, in the horizontal direction this offset was closer to 10% of the microlens width.

This may have been caused by the light passing through the array at a small angle, since

Schlieren mirrors were used to redirect the light. This error is still small and should not have

a significant impact on the validity of the results, but care should be taken in the future

to better orchestrate proper alignment. The computed image distance for the experimental

cases is compared with the known value for the 50 mm and 135 mm lens cases in Figures

5.10 and 5.11 respectively. While the original experiment shows that the calculated image

distance was greater than the known value, the corrected equations now underestimate this

distance by a similar margin. This error was initially attributed to a small variation in

the distance f , but further analysis showed that the calculated values of the image distance

would only converge to the known solution when f = 900 mm, well beyond the possible range

of error in microlens array placement.

Table 5.4: Linear trends for the error in image distance
50 mm lens 135 mm lens

Slope 0.5149 0.5309
Intercept -39.734 -22.236
R2 Value 0.9994 0.9992
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Figure 5.10: Experimental results for image distance prediction for a 50 mm lens.

Figure 5.11: Experimental results for image distance prediction for a 135 mm lens.
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Figure 5.12: Differences between the known and computed values for the image distance.

The difference between the known value for the image distance and the calculated value

was plotted in order to ascertain if there was any noticeable trend to the error. This plot is

shown in Figure 5.12. For both the 50 mm and 135 mm lens cases, the magnitude of this

distance linearly increases as the image distance increases; however, the 135 mm lens data

points are not a continuation of the 50 mm lens data points. The values associated with each

trend line are shown in Table 5.4. While the slopes for the differences in each lens are similar,

the intercept value is highly varied. Furthermore, the ratio between the differing intercepts

is not equivalent to the ratio between the focal lengths of the corresponding lenses. Since

the error is different for each lens, the cause of the offset is likely due to a specific property

of each lens, rather than a problem with the model itself.

For both the 50 mm and 135 mm lens cases, this linear trend may be represented by

the equation

Si,corr − Si,o = a ∗ Si,corr + b (5.2)

where Si,corr is the correct value of the image distance, Si,o is the computed value, and a and

b are the linear fit constants. From Eq. (5.2), a correction may derived for each lens that
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Figure 5.13: Experimental results corrected for error for a 50 mm lens.

Figure 5.14: Experimental results corrected for error for a 135 mm lens.
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would properly estimate the image distance based on the computed result. These corrective

equations were found to be

Si,corr = 2.0614Si,o − 81.9089 (5.3)

for the 50 mm lens, and

Si,corr = 2.1317Si,o − 47.4014 (5.4)

for the 135 mm lens. Figures 5.13 and 5.14 show the estimations for the image distance

compared with the known distance, this time with the correction applied to the computed

result. For both lenses, the corrected computed values provide an excellent representation

of the image distance.

5.6 Effect of Uncertainty in Microlens Array Positioning

One possible cause for the increasing error in the image distance estimation as the image

distance increased is the uncertainty in the microlens array placement. As stated in Section

2.5, the placement of the microlens array in the plenoptic camera has an uncertainty in

location between ±25 mm, which corresponds to 475 ≤ f ≤ 525 mm. Naturally, this has the

potential to cause noticeable differences in the measured magnitude of the image distance.

The uncertainty was found by geometrically calculating the average spacing between the

focal points for a given value of the image distance, first with f = 525 mm and then f = 475

mm. For both pairs of the average spacing, the magnitude of the image distance was deducted

as though the value of the array alignment matched the expected value of f = 500 mm. The

resulting uncertainty is shown in Figure 5.15. This uncertainty is far from insignificant, but

is notably a linear function with regard to the image distance. As such, this positioning

uncertainty is at least a portion of the overall error that is compensated for in the correction

equations required by the lens geometry.
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Figure 5.15: Uncertainty caused by imprecise microlens array placement.

5.7 Error Analysis

Figure 5.16 shows the lens design for one of the Nikkor lenses that were used in this

experiment. For analytical purposes, the lens modeled in this method was assumed to be a

thin lens. For the geometric properties such as focal length and magnification, this is a valid

assumption that is built into the complex lens design. For precise measurement of distances,

however, the full optics of the lens must be considered. For a complex lens, the aperture

stop of the lens is placed at the geometric center of the lens, from where the focal length of

the lens is also determined [31]. For the algorithm described above, the light is assumed to

propagate from this location in a straight line until the microlens array is impacted. As seen

in Figure 5.16, the light is instead passed through further optics before being propagated

through free space. This is a highly plausible cause for the error seen in the experimental

results.

This optically-induced error can be explained by examining a standard six optical ele-

ment lens, whose properties were detailed by Smith[32]. This lens has three elements in front

of the aperture plane and three elements behind the aperture plane. The focal length of this

lens is 100.7 mm, and the design of the lens was provided with enough detail to perform

a ray transfer analysis for light passing through the lens with a stopped down aperture.
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Figure 5.16: Lens design for a Nikkor 135 mm f/2D lens [30].

Figure 5.17 shows light passing through this lens with an f-number of f/16, the same as was

used in the experimental testing. After the light passes through the stopped down aperture

at the optical axis, the light continues to narrow until it is brought to a focus right behind

the rear element of the lens. For the focal point method of calibration, however, the light

was assumed to propagate in a straight line from the aperture to the image sensor. The

red dotted line shows the error in approximation caused by this fallacy, which for the case

shown, lies short of the aperture plane.

When an extension tube is added onto a lens mount, the distance between the end of the

lens and the image sensor is effectively increased. The new image distance is still measured

by adding the length of the extension to the previous value of the image distance. Since

the image sensor is further away from the camera but the image sensor maintains the same

dimensions, the angle of incidence of the light on the image sensor is at a different angle than

before. In order for the focal point method to have a constant error as the image distance is

increased, the estimated value of the image distance should remain at the same point relative

to the lens. As seen in Figure 5.18, however, a gap appears between the rear element of the

lens and the predicted value of the image distance. This shows to be a probable reason for
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Figure 5.17: Design of a complex lens.

the error in the image distance estimation to be increasing as the actual value of the image

distance increases.

Furthermore, the linearity of the error when the full lens is moved can be explained by

looking at the space between the rear element and the image sensor, as seen in Figure 5.19.

This image sensor plane for a conventional camera is equivalent to the microlens array of a

plenoptic camera, as both determine the spatial resolution of the image. Figure 5.19 shows

a microlens located at point s, which is a horizontal distance w from the edge of the rear

lens element. When an extension tube is added, the back focal length bfl of the camera is

increased by the length of the extension tube x. This increase changes the angle of incidence

of the light on that microlens, but the positioning of the microlens remains unchanged.

Because of this, the magnitude of the calculated image distance is also increased, but by a

different scale factor labeled y in Figure 5.19. The relationship between a change in the back

focal length of the camera to the change in the calculated image distance is given through

similar triangles as

y =
Si,calcx

bfl
(5.5)
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(a) Baseline (b) Baseline + 50 mm

(c) Baseline + 100 mm

Figure 5.18: Effect of increasing image distance on focal point method

For the Nikkor lenses used in this experiment, the error between the known value and the

calculated value increased as the image distance increased. This demonstrates that the

value estimated by the focal point method is less than the back focal length, as is seen in

Figure 5.18. Although the back focal length of the camera cannot be quantified, Eq. (5.5)

shows that the rate of change in error should be linear when only the image distance of the

lens is changed, which collaborates perfectly with the observed results.

To test the robustness of the correction for the focal point method, the exact same

test was performed for a random image distance each day for five additional days. For the

subsequent experiments, the focus of the lens was not held constant, but rather allowed

to vary from day to day. For these tests, the magnification method was also performed
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Figure 5.19: Effect of extension tube on focal point method.

to form a baseline for the expected results, since the image distance no longer correlated

to the number of extension tubes directly when the focus of the lens is changed and the

magnification method was already shown to have reliable results. As seen in Figures 5.20

and 5.21, there is a significant deviation in the accuracy of the focal point method on the

later days. Table 5.5 shows the qualities of the error for both the original tests and for the

subsequent days. Overall, for the original tests for the focal point method, the error is well

within the desired region of accuracy, and shows comparable results to the magnification

method.

This staunch difference between the original set of experiments and the later tests is

attributed once again to the properties of a complex lens. The lenses used in this experiment

use a rear focusing method to change the focus of the lens. Unlike some constant focal

length lenses that shift the entire set of internal lenses forward to move the focal plane, a

Table 5.5: Accuracy of the focal point method compared with magnification
50 mm 135 mm

Mag Method Original Later Mag Method Original Later
Average -0.730 -0.0007 -3.74 1.82 0.0098 38.95

Standard Dev 2.22 0.914 5.03 2.29 1.04 44.74
Max Error 4.51 1.82 -7.86 4.31 1.45 64.83
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Figure 5.20: Image distance estimation robustness for a 50 mm lens.

Figure 5.21: Image distance estimation robustness for a 135 mm lens.
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rear focusing lens divides the internal lenses into groups and moves only the last set to alter

the focus [30]. This method of focusing causes the focal length of the lens to be slightly

altered with higher image distances, although the overall effect is minimized. When the rear

element is moved instead of the full lens, the final angle of the light that exits the lens is

changed, so that the last element does not have to move the same amount as the full lens

would need to in order to obtain the same value of the image distance, as seen in Figure 5.22.

Thus, the linear relationship obtained in Section 5.5 would not apply to the altered lens.

(a) Original element placement (b) Original + 10 mm

(c) Original + 20 mm

Figure 5.22: Effect of moving lens element on focal point method.
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Chapter 6

Concluding Remarks

Based on geometry, the location of the centers of the focal points of the microlenses in a

plenoptic camera should provide enough information to determine the image distance of the

lens. In practice, however, the diversity of interfaces within both the camera itself and the

lens were proven to cause unexpected errors in this relationship. First, the effects of refractive

interfaces were examined to determine the impact on both reconstruction techniques and

the estimation of the image distance of camera. It was shown that the reconstruction of

the depths of objects in a plenoptic image was directly impacted by both forms of refractive

interfaces, but the errors in depth caused by these interfaces could be corrected by a scale

factor of the index of refraction of the surface. For the estimation of the image distance,

the magnification method was shown to already account for these refractive effects, but the

focal point method had to be adjusted in order to account for the thickness of the glass plate

in front of the microlens array. Even with this adjustment, the experimental estimation of

the image distance by the focal point method was shown to contain significant errors. This

error was caused by the assumption that the light propagates in a straight line after passing

through the aperture of the lens, when in reality the angle of propagation of the light was

altered by several optical elements located after the aperture. The focal point calibration

method in the current form is still capable of providing an estimation of the image distance

with comparable accuracy to the magnification method. This process requires several steps

and is detailed in Figure 6.1. If the optics of the lens after the aperture are changed in any

way, this entire process must be repeated. For the lenses used in this experiment, which

employed a rear focusing method for changing the magnification, only the last element of

the lens moved, thus causing an error in approximation. For this reason, the magnification
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Figure 6.1: Focal point calibration process
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method of calibration is currently the best method for determining the image distance, as it

is much more simple to implement.

The focal point method of calibration does show the potential for further growth with

more research. For the purposes of this research, the lens of the camera was modeled as a

thin lens. Since the majority of the complications with this model were caused by the lens,

improvements can be made where the lens is instead modeled by the actual elements of the

lens. Should this new model also adapt to the shifts in the optical elements caused by a shift

in the focus, the calibration steps detailed in Figure 6.1 would only be need to be performed

when the microlens array is moved to properly eliminate the error in image distance induced

by an imprecise alignment of the microlens array in the depth direction. The precise optics

for a commercial lens are generally not disclosed to the public, so this next improvement to

the focal point method may not be attainable. For best results with the current model, a

lens with a constant focal length or a lens that is constantly set to focus at infinity could

be used instead, both only changing the image distance through the use of extension tubes,

which would allow a single calibration process to be applicable for a much wider range of

experimental settings. At the time being, however, the focal point method of calibration

should only be used when the magnification method is not easily implemented.
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Appendix A

Refractive Index Matching Considerations

The reflection of light from a solid surface in a flow has been a clear problem in many

recent PIV studies [33]. This reflection prevents accurate studies to be performed near the

surface of an object, especially in the boundary layer. By matching the index of refraction

of the fluid and the solid, light should pass unimpeded through both mediums, significantly

reducing any surface reflection. The Refractive-Index Matching (RIM) Tunnel attempts to

address the issue of surface reflection and obstruction interfering with the image quality near

the surface of a model in a water tunnel.

A.1 Advantages of Index Matching

From the basic principles of Snell’s law, light that passes though a change in the index

of refraction is bent into a new direction of propagation [29]. Illumination of the flow is a

requirement for all forms of PIV. For any experiment involving transparent models, the laser

light impinging on the model may be either reflected or refracted in many directions, causing

regions of high intensity in close proximity to the surface of the object. This scattering of

light can be seen in Figure A.1(a). By matching the index of refraction between a model

and the surrounding fluid, the light is able to pass straight through the model and the

reflections are minimized. This is shown in Figure A.1(b). While this technique has many

practical implications, one regime where a RIM Facility would be required is for porous flow.

With the large density of solid model surfaces within the flow, large surface reflection would

greatly reduce the already limited volume of fluid flow that could be studied. In addition to

this, with a RIM Facility the flow behind a transparent model could be imaged without the
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(a) Mismatched Indices (b) Matched Indices

Figure A.1: Light scattering due to refraction is corrected with index matching

distortion caused by the varying index. Flows could be examined closer to the middle of the

test section rather than being focused on the region close to the wall.

A.2 Fluid and Solid Choice

Many considerations must be given to the solid/fluid combination that would be best

suited for a given experiment. Ideally, the refractive index of the fluid should be between

1.33-1.6 to match most possible solid materials. While water can be used as a fluid within

a RIM tunnel, the corresponding solids are often costly and difficult to manufacture. Other

possible fluids propose unnecessary health or safety risks, or kinematic viscosities that would

limit the range of Reynolds numbers that could be studied with the tunnel. Furthermore,

the fluid should not chemically react with the index-matched solid. For the tunnel built by

the University of Illinois, the fluid chosen was a 62.5% mixture of sodium iodide, NaI, and

water, which has an index of refraction of 1.4947. The index of refraction for a liquid is

dependent on the temperature of the fluid, but the index of refraction for NaI is relatively

stable within the range of 20-30◦C. The viscosity is approximately 10-15% greater than
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Figure A.2: Current appearance of Auburn University water tunnel

pure water, which would allow flows of Re > 105 to be generated. This fluid matches the

index of refraction of polymethyl methacrylate (PMMA), which is non-corrosive, simple to

manufacture, and inexpensive. PMMA is also optically clear, transmitting 92% of visible

light. While this combination appears perfect, this fluid choice comes with two significant

drawbacks: NaI is highly corrosive and reacts with oxygen. Special care has to be taken

in the design of the tunnel to ensure that all components are corrosion resistant, and the

whole tunnel must be sealed against air to prevent contact with oxygen. To compensate, the

tunnel built at the University of Illinois is pressurized with five psi of nitrogen [34].

A.3 RIM Facility Development

Within the past year, Auburn University has been developing a smaller version of the

facility located at the University of Illinois, seen in Figure A.2. Due to the high corrosiveness

of the sodium iodide solution, each part had to be manufactured with corrosion resistant

materials. The test section has an area of 11.25 x 11.25 cm, a length of 30 cm, and is made of

super abrasion-resistant (SAR) plexiglass. This plexiglass has the same index of refraction

as PMMA, so that only the change in refraction between the tunnel wall and the outside
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air will need to be considered in the imaging design. The converging section is fabricated

from carbon fiber by technicians in Auburn’s Polymer and Fiber Department. The main

body of the converging section has an area 12.5 times larger than the test section, with a

gently sloping nozzle. The other main components of the tunnel are made with high-density

polyethylene (HDPE), such as the diverging section and the holder for the filters. The inner

workings of the pump are also made of stainless steel to prevent corrosion. The pump is

capable of pumping 100 gallons per minute, which should give a maximum flow velocity of

approximately 0.6 m/s in the test section. This pump is connected to a variable frequency

drive to control the velocity of the flow.

Due to the expense of sodium iodide, this tunnel was first tested with pure water to

find any leaks. The pump was then run to examine the capabilities of the pump and flow

regulator. The variable speed drive displays the current speed value, which is on a scale

of zero to sixty units, to an accuracy of a tenth of a decimal. The exact velocity in the

tunnel has not been measured at this point, but the desired maximum speed of 0.6 m/s was

estimated to be reached well before the maximum setting. The next phase of the tunnel

development will be to seal off the tunnel and connect the nitrogen pressurization system to

the converging section of the tunnel.
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Appendix B

Derivation of Relationship Equation

The relationship between a point on the microlens plane d and the corresponding focal

point on the image sensor p is best related through the ray transfer matrices for optics [29].

The light entering through the center of the aperture first propagates through a constant

medium for the distance l3, as seen in Figure B.1. The index of refraction of the glass plate

of the microlens array then causes the angle of the light to bend to a shallower angle, and

this light then passes through the glass thickness t. Since a lens is designed such that light

passing through the center of the lens does not change direction, the final portion of the

propagation of a light ray is over the distance from the microlens plane to the sensor plane

f . In order to relate the two primary planes and eliminate unknown variables, the path of

light was divided into two separate portions: from the main lens to the microlens plane, and

then from the microlens plane to the image sensor.

Figure B.1: Ray path through the plenoptic camera.

From the main lens to the microlens plane, the ray transfer matrices can be expressed

in one dimension as
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 ds

θ/n

 =

 1 t

0 1


 1 0

0 1/n


 1 l3

0 1


 0

θ

 (B.1)

Since the light entering the camera will always be from the center of the aperture for the

microlens focal point image, the starting height for all light rays will be zero. The matrices

can be combined into a singular square matrix, such that

 ds

θ/n

 =

 1 l3 +t /n

0 1/n


 0

θ

 (B.2)

From the bottom portion of the matrices, it is clear that the change in angle is simply a

factor of 1/n. The change in height, however, is more complex, and can be extruded from

the top portion of Eq. (B.2).

ds =

(
l3 +

t

n

)
θ (B.3)

All variables in Eq. (B.3) are known except for the angle of propagation θ. For this reason,

Eq. (B.3) can be solved for the angle of propagation so that θ can be determined from known

quantities,

θ =

(
n

nl3 + t

)
ds (B.4)

The second portion of the ray transfer function, from the microlens plane to the sensor

plane, only comprises of a single ray transfer matrix, such that

 ps

θ/n

 =

 1 f

0 1


 ds

θ/n

 (B.5)
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During this portion, the light does not go through a change in propagation angle. Similar to

the previous paragraph, the top portion of the matrix may be used to determine the change

in height of the light between the array and the sensor. This is written as

ps = ds +
fθ

n
(B.6)

Using Eq. (B.4) to substitute the angle of propagation for known values, Eq. (B.6) may be

written as

ps = ds +
f

n

(
n

nl3 + t

)
ds (B.7)

From here, the relationship equation may be simplified to the form presented in Chapter 4.

ps =

(
1 +

f

nl3 + t

)
ds (B.8)

While this derivation is only shown in the s dimension, the exact same equation is true for

relating dt to pt.
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