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Abstract

Multiphase flows in the form of gravity currents are prevalent in various natural systems,

as well as in some open channels and closed conduits. These types of flow generally propagate

in a horizontal direction playing an important role in contaminant transport, thunderstorms

and pressure surge fluctuation in closed conduits. Thus, accurate flow simulation and efficient

modeling tools are important in such applications. Laboratory experiments and numerical

models are utilized in this work to study different types of gravity currents focusing on

the lock-exchange problem. Both Boussinesq and non-Boussinesq flows are analyzed in the

context of high-Reynolds number gravity currents. The numerical modeling efforts focus on

solving the shallow water equations for Boussinesq gravity currents. In addition, an integral

model is proposed for non-Boussinesq flows in closed conduits, and a Reynold-averaged

Navier-Stokes model was developed in OpenFOAM for selected flow cases to compare model

accuracy and computational efficiency.

Experiments were conducted alongside numerical model simulations for numerical val-

idation and to analyze internal velocities that were measured with MicroADV devices. In

previous research investigations, gravity current experiments focused on front trajectory, av-

erage depth, mixing, etc. by adjusting initial conditions (e.g. initial gravity current depth,

inlet velocity, density difference, etc.). For physical modeling of gravity currents, the lock-

exchange problem is often selected due to its simplicity, yet it has the ability to generate

complex flow features characteristic of a broad range of gravity currents. Internal veloc-

ities had not been directly measured using MicroADVs for lock-exchange experiments, so

numerical model calibration has focused on depth measurements and front velocities. Two

MicroADV probes that measured velocities in both fluid layers are utilized in this work to
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overcome this gap in experimental data. The MicroADV probes are utilized at three differ-

ent depths by adjusting wooden supports. Results indicate that the difference in velocities

caused by adjusting the vertical position of the ADVs is negligible within each fluid layer.

Using these velocity measurements, depth-averaged velocity hydrographs were obtained.

A two-layer shallow water equation model was developed, which predicted these velocity

hydrographs and gravity current front trajectories with fairly good accuracy. The proposed

model differs from existing approaches in that it utilizes shock-capturing theory in a finite

volume framework to seamlessly predict shocks that develop in lock-exchange problems. This

feature allows for simpler numerical implementation particularly when the direction of these

flow discontinuities is unknown apriori.

Another two-layer shallow water equation model was developed for a similar case in

which the lighter ambient fluid was not initially stagnant. This shock-capturing model

was tested with [Wright and Paez-Rivadeneira, 1996] experiments and [Hallworth et al.,

1998] numerical model for ambient flows moving with (coflows) and against (counterflows)

the gravity current. Model results compare well with the shock-fitting model of [Hallworth

et al., 1998] while using a simpler numerical implementation. For the lock-exchange problem,

the proposed SWE model is the first approach tested with nonlinear numerical schemes, to

the best of our knowledge. The quantitative difference in results produced by linear and

nonlinear numerical schemes is negligible unless small Courant numbers are expected in

model simulations. The HLL Riemann Solver is used throughout this work in which model

results compare well with shock-fitting alternatives in resolving flow discontinuities.

One of the challenges in shallow water equation models applied to gravity currents is

the requirement that a boundary condition is needed at the leading edge. Existing methods

utilize the method of characteristics in which the characteristic expressions and numerical

implementation can change for different flow cases increasing modeling complexity. In addi-

tion, systematic guidelines had not been provided for boundary condition implementation in

different flow scenarios. A new boundary condition approach is proposed in this work that
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is applicable for one- and two-layer SWE models with two computational cells utilized at

the gravity current leading edge. Boundary condition implementation is identical for both

SWE models. Similar to the solution approach by [Li and McCorquodale, 1999] applied

to air-water flows in storm sewers, this method enforces local continuity and momentum.

Alternatives employing the method of characteristics are systematically compared with the

proposed boundary condition in terms of ease of implementation, continuity errors and com-

putational efficiency. Results indicate that the proposed method is a good compromise for

the tested flow conditions.

Non-Boussinesq gravity currents are also investigated in this dissertation focusing on air-

water interactions in closed conduits. When air becomes entrapped in storm sewers during

intense rain events, pipelines may experience pressures much greater than driving pressure

heads [Martin, 1976]. These air pockets may propagate in the form of non-Boussinesq gravity

currents and can lead to structural damage through urban geysering [Vasconcelos, 2005].

Although the prediction of air pocket location is important, numerical models applied to

multiphase flows in storm sewers do not account for the motion of air. Instead of resolving

the free-surface interface, an integral model is proposed to simulate air pocket motion that

assumes uniform air pocket depth. This new approach builds on the work of [Benjamin,

1968] and [Wilkinson, 1982] in which a known quantity of air is suddenly released in a

closed conduit. The integral model was tested with a large range of air pocket volumes and

background flow velocities in experiments conducted by [Chosie, 2013] using D = 101.6 mm

pipes. Results indicate that air pocket velocities are predicted with an average error of 4%

or less. An extension to favorable and adverse slopes is expected in future extensions of the

proposed integral model.
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Chapter 1

Background

The mixing and motion of Boussinesq fluids (ρ1/ρ2 ≈ 1) in inland waterways are widely

studied phenomena in which temperature, contaminant transport, etc. are significantly af-

fected. These flows often resemble gravity currents, which generally flow in a quasi-horizontal

plane with buoyancy comparable to or greater than other relevant forces (e.g. inertia, viscos-

ity and/or surface tension). Examples of such flows include saltwater intrusions in estuaries

and thermal discharges in rivers (e.g. warmer wastewater effluent entering colder river bod-

ies). Non-Boussinesq gravity currents, on the other hand, may appear in storm sewers

during intense rain events in which the presence of moving air pockets may lead to loss of

conveyance, structural damage and/or geysering [Vasconcelos, 2005]. These gravity current

(GC) flows may also be present in other applications including pipeline priming and normal

operation of force mains. This work will focus on high-Reynolds number gravity currents

flowing in a prismatic channel/pipe with and without ambient crossflows.

This investigation explores selected aspects of inviscid GC flows in the context of civil

and environmental engineering applications. Experiments were performed primarily for

Boussinesq fluids focusing on the numerical solutions of lock-exchange problems. Boussi-

nesq fluids possess similar densities (e.g. less than 2.0%), which mathematically simplify

the governing equations as described ahead in this dissertation. The numerical modeling

effort in this work focused on the shallow water equations (SWE), but more sophisticated

computational fluid dynamics (CFD) models were developed in OpenFOAM to assess model

accuracy. Non-Boussinesq (e.g. air and water) experiments were also conducted with the

objective of understanding air pocket kinematics and involved the entrapment and release
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of air pockets within steady closed pipe flows. These experiments were accompanied by a

numerical model applying the integral model approach.

The prediction and modeling of GC flows generally follow three approaches: inte-

gral, shallow water equation and Navier-Stokes equation (NSE) models. The following

sections review the applications of experiments and numerical models for Boussinesq and

non-Boussinesq gravity currents.

• First, experimental contributions are provided for Boussinesq GC flows focusing on the

lock-exchange problem.

• One-layer shallow water equations (SWE) are introduced for Boussinesq and non-

Boussinesq applications.

• The two-layer SWE are analyzed for Boussinesq systems with and without ambient

crossflows.

• Leading edge boundary condition (BC) solution alternatives are analyzed for one- and

two-layer SWE models.

• Finally, non-Boussinesq air-water gravity currents are explored with a computationally

efficient integral model approach.

1.1 Gravity current experimental investigations

Along with analytical and numerical research, experimental investigations have provided

important insights into GC flows. [Simpson and Britter, 1979] studied a large range of

fractional depths/depth ratios (φ = h0/H) for GC flows and determined the respective

dimensionless velocities, rate of mixing, and depth of the mixed layer behind the head.

Their apparatus consisted of a moving floor and a downstream weir, which allowed them

to halt the GC flow in order to obtain more accurate measurements. A similar procedure
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was utilized by [Wright and Paez-Rivadeneira, 1996] to analyze the effects of coflows and

counterflows in which the ambient water is flowing with or against the GC, respectively.

In their lock-exchange experiments (see 1.1), [Rottman and Simpson, 1983] analyzed a

large range of φ and compared the results with a two-layer SWE model. Using large initial

depths, [Rottman and Simpson, 1983] concluded experimentally that the upstream moving

hydraulic jump generated upon gate removal occurs when φ ≥ 0.7. Once this disturbance

reflects off of the upstream boundary a hydraulic drop is formed that eventually overtakes

the GC front marking the beginning of the self-similar stage. For smaller fractional depths,

the upstream moving jump is replaced by a depression wave [Rottman and Simpson, 1983].

In [Hacker et al., 1996] a digital image technique (DigImage, [Dalziel, 1993]) was used

to determine the density structure for lock-release GC flows. They were able to observe the

detrainment of dense fluid at the GC nose caused by breaking Kelvin-Helmholtz waves, which

produced a stratified region behind the nose. This diluted fluid in this region was replaced

by dense fluid behind the nose, which traveled toward the front of the GC. Thus, this process

leads to re-circulation that causes the entire GC to become diluted. [Hacker et al., 1996]

utilized the total depth densimetric Froude number (FrH) and the mean Reynolds number

Figure 1.1: Schematic diagram of lock-exchange problem
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(Rem) to analyze gravity currents with different mixing rates:

FrH =
um√
h0 g′

Rem =
1

2

um h0

ν
(1.1)

where h0 is the initial depth of the denser fluid, g′0 is the initial reduced gravity, um is the mean

velocity of the GC front and ν is the kinematic viscosity. Rem is multiplied by 1
2
h0 because

this is the energy conserving depth described by [Benjamin, 1968]. These dimensionless

parameters are provided for the experiments in section 3.1.2.

Numerous experimental investigations have utilized sodium chloride (NaCl) in their

experiments to generate Boussinesq GC flows ([Rottman and Simpson, 1983], [Shin et al.,

2004], etc.). The same approach was implemented in the experiments presented in this

work. For non-Boussinesq lock-exchange flows, [Lowe et al., 2005] used sodium iodide (NAI)

in addition to NaCl in order to obtain density ratios (ρ2/ρ1) between 0.6 and 1.0. From their

non-Boussinesq experiments, they determined that in most cases the lighter current retains

its energy-conserving depth while the denser current is dissipative, so the depth decreases at

a rate that depends on the density ratio.

[Gerber et al., 2011] used a particle image velocimetry (PIV) to measure the Reynolds

stress and shear production of turbulence of a stably stratified GC. Their experimental results

compared well to their Reynold’s averaged NSE numerical model. [Firoozabadi et al., 2010]

used Micro Acoustic Doppler Velocimeter (MicroADV) probes to measure the turbulence

energy, Reynolds stresses and turbulence intensity of 3-D GC flows for various flow rates,

concentrations and slopes. As the discharge and the concentration increased, the turbulence

kinetic energy also increased. Their results also indicate that the normalized turbulence

intensity does not change with bed slope.
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1.2 Shallow water equation modeling for Boussinesq gravity currents

There are two primary SWE modeling alternatives to simulate gravity currents: one-

layer and two-layer. In deep ambient conditions, the displacement of a dense layer along

the bottom of the solution domain (or conversely a lighter layer on the top) will not create

significant counter currents and thus its motion is unaffected by the ambient flow, a case

analogous to a dam-break flow. These cases are well represented by the one-layer SWE

model, but this modeling approach is not applicable in the case of lock-exchange GC flows.

Significant counter currents may develop following the gate removal when the initial frac-

tional depth (φ = h0/H) approaches 0.5, causing significant deviation between one-layer

SWE model predictions and experimental observations. For such cases, it is very important

to incorporate ambient layer effects into GC motion using a two-layer SWE model.

In a wide range of hydraulic applications, numerical models have employed shock-

capturing approaches based on the Riemann problem. Examples of recent works using

these finite volume method (FVM) approaches include: channels with irregular geometry

[Elena and Vazquez-Cendon, 1999], shallow water flows with topography [Gallouet et al.,

2003], stormwater tunnels [Vasconcelos and Wright, 2006], pollutant transport [Benkhal-

doun et al., 2007], dam breaks with wetting and drying [Liang and Marche, 2009], etc.

Numerical models used in these works have performed well in resolving shocks, which are

expected for the lock-exchange problem. It was expected that these conservative approaches

would perform better for GC flows than existing modeling techniques, so shock-capturing

approaches are extended to GC applications in this work.

1.2.1 One-layer shallow water equation modeling

In GC flow applications, one-layer SWE models are employed when the GC depth is

significantly less than the ambient flow depth (h0/H ≤ 0.5). In contrast with the two-

layer SWE, the ambient fluid velocity is neglected in the GC momentum formulation. Both

one and two-layer SWE models can provide an accurate estimation of the GC front and
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are computationally efficient compared to the more complex Navier-Stokes models. In the

following text, the details of the one-layer SWE model are analyzed and several of the

important research investigations are included.

One-layer SWE models have been widely used for gravity currents flowing into deep

ambient fluids with key advantages being simplicity and computational efficiency. Because

the velocity of the ambient fluid is neglected, discontinuous solutions are generally not ob-

served for prismatic channel flows but may be present when obstacles or complex geometries

exist. Details of the one-layer formulation are found in [Ungarish, 2009] for both Boussinesq

and non-Boussinesq fluids. In this section the focus is on Boussinesq fluids; however, it is

relatively simple to expand the one-layer model to non-Boussinesq flows. Therefore, the

more generalized one-layer, non-Boussinesq SWE model is utilized in this work [Ungarish,

2007]:

∂h

∂t
+
∂uh

∂x
= 0 (1.2)

∂uh

∂t
+

∂

∂x

(
(uh)2

h
+

1

2
g′h2

)
= 0 (1.3)

where h and uh are the depth and flow rate per unit width of the GC, respectively. g′ =

[(ρc − ρa)/ρc] g = εg is the reduced acceleration due to gravity in which ρc and ρa are the

density of the current and ambient fluids, respectively; ε is the relative density difference.

[Ungarish, 2007] implemented the one-layer SWE model for a large range of depth

ratios and density differences. Boussinesq GC flows were analyzed for the lock-exchange

problem as a special case of non-Boussinesq flows. Although there are several important

underlying assumptions in this approach, the generality, absence of empirical coefficients and

computational efficiency make the one-layer model an attractive modeling choice [Ungarish,

2007]. [Hallworth et al., 1998] and [Hogg et al., 2005] extended the one-layer SWE model

to particle-driven gravity currents propagating in the presence of a uniform ambient flow

for constant-volume and constant-flux cases, respectively. [Ungarish and Huppert, 2004]

applied this SWE model to gravity currents traveling at the base of a stratified ambient and
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determined that the stratification reduces the GC velocity. Thus, the one-layer alternative

can be applied to a wide variety of flow scenarios.

Because the ambient fluid momentum is neglected in the GC momentum expression

(Eq. 1.3), there are important limitations for the one-layer SWE model that are highlighted

when simulating gravity currents with large depth ratios. For example, as φ increases beyond

0.5, the depression wave generated upon gate release transitions into a hydraulic jump-like

feature [Ungarish, 2009]. The one-layer model cannot simulate this feature or the change in

depth that accompanies this jump. To avoid these potential errors, two-layer SWE models

became popular in the last few decades as discussed in the following subsection.

However, [Ungarish, 2007] proved that the one-layer SWE model is useful for lock-

exchange simulations when used in the correct context. Although the one-layer model is

unable to accurately simulate the depth profile particularly at the initial flow stages, the GC

leading edge trajectory is accurately simulated throughout the initial slumping stage and

into the self-similar stage without the use of empirical coefficients [Ungarish, 2007]. For the

lock-exchange problem, the error between measured and simulated GC front trajectories is

approximately 3% using the one-layer SWE model [Hatcher, 2012]. The models surprising

accuracy for the lock-exchange problem is more than likely caused by a fortunate balance of

errors from different simplifications [Ungarish, 2007]. The ambient fluid velocity increases

the GC velocity in the lock-exchange problem, but this increase is balanced by the reduction

in velocity due to entrainment. The single-layer SWE model cannot simulate either one of

these complex flow features, but the combined effect of neglecting them leads to an accurate

estimation for the GC front trajectory. As φ decreases, this error balance changes, and the

accuracy of the one-layer model for GC front trajectories also decreases despite being more

theoretically sound [Ungarish, 2007].

To simulate gravity currents with SWE, numerical solutions are required. Analytical

solutions exist for the initial slumping stage and later stages of the flow, but the transition
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between flow stages cannot be simulated analytically. For two-layer SWE models, no ana-

lytical solutions exist [Ungarish, 2009]. Prior to this work, lock-exchange gravity currents

have only been solved numerically using the method of characteristics (MOC) and the Fi-

nite Difference Method (FDM) in the context of SWE models. When discontinuities are

not expected, the MOC is a popular modeling choice. The characteristic equations for the

one-layer SWE model are presented in [Ungarish, 2007]:

g′
1
2
dh

h1/2
± du = 0 on

dx

dt
= u± (g′h)1/2 (1.4)

in which the second expression represents the characteristic flow velocities. Although these

equations (1.4) can be used to compute the internal cell calculations, [Ungarish, 2007] imple-

mented the Lax-Wendroff two-step FDM scheme to solve Eqs. 1.2 and 1.3. This numerical

scheme is well documented and performs well in the absence of shocks [Chaudhry, 2008],

which are generally not present in the one-layer model. The MOC was used in the BCs of

the [Ungarish, 2007] simulations. The implementation of such BCs are highlighted in Section

1.3.

1.2.2 Two-layer shallow water equation modeling

Two-layer SWE are comprised of four partial differential equations (PDEs) that repre-

sent mass and momentum conservation in both fluid layers of different densities [Rottman

and Simpson, 1983]. Two-layer models are most often implemented for the release of dense

fluids into relatively small ambient depths (e.g. the lock-exchange problem). [Rottman and

Simpson, 1983] developed the first two-layer SWE model for GC flows in the context of

partial-depth releases. By adopting some simplifying assumptions (e.g. Boussinesq fluids,

depth uniformity, etc.) they were able to reduce the problem to a system of two PDEs

describing the dense layer and to develop a solution via characteristic analysis, yielding the
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following system of ODEs:

h
du

dh
− (1− 2a)u+ c± = 0

c± = u(1− a)±
[
u2a2 + g′h(1− b)

]1/2 (1.5)

in which u = q/h = uh/h is the velocity of the GC layer. The parameters a and b were

formulated in the two-layer formulation by [Rottman and Simpson, 1983] and are discussed

in the Methodology section.

While numerical simulations based on MOC have been applied successfully in a number

of unsteady flow applications, these models break down when characteristic lines of the same

family intercept one another [Chaudhry, 2008]. The [Rottman and Simpson, 1983] two-layer

SWE model presents non-physical results when φ ≥ 0.5 in the form of a multi-valued solu-

tion for depth (h). Experimental observations performed by [Rottman and Simpson, 1983]

indicate that such conditions correspond to regions with sharp gradients at the interface be-

tween fluids and form when φ ≥ 0.7, instead of 0.5, due to viscous effects. Thus, an accurate

representation of lock-exchange flows require special handling of these discontinuities either

by explicit tracking [Klemp et al., 1994, Ungarish and Zemach, 2005] or by shock-capturing

techniques as presented in this work.

[Klemp et al., 1994] extended the two-layer model implemented by [Rottman and Simp-

son, 1983] in order to simulate lock-exchange gravity currents for φ > 0.5. Instead of using

MOC, [Klemp et al., 1994] implemented a FDM model using the second-order accurate

Leapfrog scheme [Cunge et al., 1980]. [Ungarish and Zemach, 2005] extended the works

of [Rottman and Simpson, 1983] and [Klemp et al., 1994] in order to simulate the entire

slumping stage, which ends when the GC leading edge propagates approximately 10 lock

lengths (xLE ≈ 10x0) [Rottman and Simpson, 1983]). The FDM model used the second-

order accurate Lax-Wendroff (LxW) numerical scheme and performed explicit tracking of

flow discontinuities. These shocks were treated as depth discontinuities in a way that re-

sembles the shock-fitting approach used to track open channel bores [Cunge et al., 1980].
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More recently, [Adduce et al., 2012] formulated an alternative two-layer SWE model that

incorporates entrainment. The conserved variables in their model were ρ1h1, ρ2h2, u1 and

u2. Instead of focusing on the simulation of shocks, [Adduce et al., 2012] analyzed the effects

of entrainment and shear forces, which decrease the GC front velocity.

In numerous flow applications, existing ambient flows exist that cannot be neglected in

SWE formulations (e.g. denser wastewater effluent released in a river). Most SWE models do

not account for these ambient crossflows and assume stagnant initial conditions. [Hallworth

et al., 1998] provided one of the first quantitative analyses on the effect of ambient crossflows

in gravity currents and focused on three modeling approaches: integral models and the one-

layer and two-layer SWE models. [Hogg et al., 2005] built on the work of [Hallworth et al.,

1998] by expanding their modeling approaches to account for constant-flux intrusions. Both

of their two-layer SWE models were not developed using a conservative modeling framework,

so there are potential difficulties in the simulation of naturally occurring flow discontinuities,

which are characteristic of hyperbolic PDEs. In [Hallworth et al., 1998] and [Hogg et al.,

2005] simulations, shocks were avoided by utilizing small depth ratios (φ << 1), but this

assumption does not always hold in some applications. In section 3.2.3 a two-layer SWE

model accounting for ambient crossflows is proposed for constant-volume gravity currents.

The proposed SWE model is written in conservative format so that it is able to simulate

shocks when (φ ≤ 0.7).

1.3 Alternatives for flow solution at the leading edge of gravity currents

One of the most widely studied components of GC flows involves the front condition that

controls the GC depth and velocity. These front conditions, which range from theoretical

[Benjamin, 1968, Shin et al., 2004] to empirical [Huppert and Simpson, 1980, Rottman and

Simpson, 1983, Marino et al., 2005] approaches, are implemented in analytical and numerical

models. In contrast with front conditions, the other component of the leading edge BC that

brings information from the upstream side of the GC front has received little attention in
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SWE models. Three front BC approaches have been formulated with two based on the

MOC. One of the downsides of MOC-based approaches involves the complexity when the

characteristic equations change. For example MOC expressions and, as a result, front BC

approaches are different for one-layer and two-layer SWE models. In addition, it is difficult

to determine the most appropriate method to implement based on the flow application. In a

recent work, [Hatcher and Vasconcelos, 2013a] proposed a new method that conserves mass

and momentum that uses the same implementation for a wide variety of GC flows.

SWE models require special handling at the leading edge of gravity currents since flow

conditions there violate the assumptions used in these models. At the leading edge, there are

strong vertical accelerations and mixing that contribute to a curved interface between GC and

ambient fluids that invalidates some of the hypotheses formulated in the SWE derivation. To

overcome the difficulties at these locations, SWE models adopt front conditions that relate

the GC depth and correspondent velocity at the leading edge region. An early example of

these front conditions was proposed by [von Karman, 1940]:

uLE

(g′hLE)1/2
= FrLE (1.6)

in which g′ is the reduced gravity defined as g′ = ∆ρ/ρ0, and uLE, hLE and FrLE are the

velocity, depth and Froude number at the leading edge, respectively. Defining φ = h0/H

as the initial depth ratio between current and ambient fluids, Von Karman applied this

front condition to the deep ambient scenario (φ ≈ 0) with FrLE =
√

2; [Benjamin, 1968]

extended Eq. 3.25 to the range 0 < φ ≤ 1 in a more comprehensive analysis. Because both

of these theoretical front conditions overestimate the GC front velocity, significant research

has focused on empirical front conditions that account for entrainment, friction, dissipation,

etc. [Huppert and Simpson, 1980, Rottman and Simpson, 1983]. For the leading edge BC

solution strategy comparison, the Huppert and Simpson front condition (referred to as HS )
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is utilized where FrLE is computed from the following relationship:

Fr(φLE) =


1
2
φ−

1
3 (0.075 ≤ φLE < 1)

1.19 (φLE ≤ 0.075)

(1.7)

The HS front condition has been tested with good accuracy for several types of GC flows

[Ungarish, 2009]. For the two-layer SWE model presented in Section 3.2.2, a different method

is used based on the pioneering work of [Rottman and Simpson, 1983]. Their front condition

adjusts the theoretical model of [Benjamin, 1968] with an empirical parameter (β) to account

for entrainment and friction:

FrLE =
β√
2

[
(2− φLE)(1− φLE)

1 + φLE

]1/2

(1.8)

For partial depth releases, [Rottman and Simpson, 1983] calibrated β to equal unity. β =
√

2

reproduces Benjamin’s theoretical condition, but the resulting velocities are overestimated

by approximately 20% for the lock-exchange problem due to the effects of entrainment.

In this work β was re-calibrated for φ = 1 scenarios to equal 1.21 based on experimental

observations.

Regardless of the implemented front condition, there is one equation for the two un-

knowns (uLE and hLE, where φLE = hLE/H at the GC leading edge), so another equation

must be provided. A traditional method to provide this equation has been through the

MOC, whereby a relevant characteristic equation that is valid within a trajectory in the

space-time solution domain (a characteristic line) is used to provide closure to the flow

calculation. Within the MOC, there are two alternatives to provide this equation:

• Grid-of-Characteristics (GOC): Described by [Lai, 1988], this method involves explicit

tracking of characteristic lines to determine flow conditions at locations where they

intercept each other or intercept a BC, such as GC leading edges.
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• Specified time intervals (STI): Also known as Hartree MOC [Sturm, 2010], this popular

approach involves back-projecting of characteristic lines in the space-time grid and

spatial interpolation of variables between the leading edge coordinate and the adjacent

node.

A third method referred to as Dual-Cell (DC) has been proposed by [Hatcher and Vasconce-

los, 2013a] and attempts to provide a set of equations that ensure observance of continuity

and momentum equations at the leading edge region. In addition to these equations, the

DC method uses a front condition (e.g. Eqs. 3.25) and 1.7 to determine flows at the GC

leading edge. This method has been proven accurate to simulate both one and two-layer

SWE models when compared with experimental results presented by the authors. These

comparisons involved constant-volume GC flows, but not constant-influx GC flows.

While there has been significant progress in the development of improved front condi-

tions to simulate GC flows, a more detailed study on the advantages between the different

leading edge BC solution strategies has not received as much attention. Some important

questions are still open and require clarification. First, the STI approach is a practical

and relatively cheap alternative to solve flows at GC leading edges, but one question is to

what extent the interpolation it introduces affect simulation accuracy. Second, while the

GOC approach does not use interpolation, a relevant question is how expensive is the ex-

plicit tracking of characteristic lines that were generated at the upstream BC, particularly

for highly-discretized solution domains. Third, the relative performance of the DC method

when compared to the MOC methods has not been assessed to this date. Finally, another

pertinent question is whether there are applicability limits to the outlined strategies to solve

flows at GC leading edge in the context of constant-volume and density intrusion GC. The

main purpose of this work is to address these questions.
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1.4 Air pocket motion in closed conduits

Intense rain events in urban areas lead to the generation of large amounts of surface

runoff, which is eventually conveyed into stormwater collection systems. Most of the time

this leads to the rapid filling of closed conduits, such as sewers, in a highly unsteady fashion

that can lead to the entrapment of large air pockets [Li and McCorquodale, 1999, Zhou

et al., 2002, Vasconcelos and Wright, 2006]. Issues that have been linked to the presence

of air in stormwater systems include increased pressure surges, loss of storage capacity, and

geysering. Such issues have led to investigations aimed at the identification of interactions

between entrapped air pockets within unsteady water flows.

There are at least three different types of studies linked to the behavior of entrapped air

pockets. The first type approaches the problem of air pocket interactions in the perspective of

stormwater systems in which air pockets are linked to flow regime transition episodes (either

abrupt or gradual), and a major concern is the pressurization of air. The second type focuses

on the removal of discrete air pockets in pipelines. Various formulas [Falvey, 1980, Pothof

and Clemens, 2008, Pozos et al., 2010] have been proposed to predict the minimum average

velocity to clear air pockets from pipelines based on air pocket dimension, pipeline slope,

etc. The third type focuses on a relatively new research area and is discussed in this section.

Instead of neglecting the air phase, the motion of air pockets in pipelines is accounted for in

the flow regime transition episodes previously mentioned.

Studies focused on air pocket motion have dealt with fundamental flow aspects such as

the advance of an air cavity or finite length air pocket from the open end of a pipe. The

flow in such conditions can be considered as a type of non-Boussinesq flow and is created by

density differences between two fluids. As explained earlier, Boussinesq currents occur when

density differences between fluids are small, e.g. up to 2%. Non-Boussinesq currents occur

when density differences are very large as in the spreading of an air pocket along the crown

of a pipe partially filled with water. One of the earliest analytical investigations on gravity

currents was conducted by [Benjamin, 1968]. Benjamin proposed a steady-state theory to
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describe such air-cavity motion when air was allowed to flow freely into a tube initially filled

with water. Benjamin determined the possible air cavity depths (y/H ≤ 0.5 in which y is

the depth of the air cavity and H is the height of the tube) and concluded that dissipation

existed for depth ratios y/H < 0.5.

In an attempt to quantify the effects of surface tension and unsteadiness, which were

not considered by Benjamin, [Wilkinson, 1982] conducted experiments in rectangular tubes

filled with water in which one end was opened to admit air. One of the primary objectives

was to describe the front speeds and shapes of the resulting air-cavities when the air inflow

was throttled. In his experiments the energy-conserving, steady-state solution (y/H = 0.5)

existed when the air was allowed to flow freely out of one end of the tube. Surface tension

and wall boundary effects were negligible in such conditions. For throttled flows in which

one end of the tube was partially opened, [Wilkinson, 1982] determined that the flow was

unsteady when the depth ratio at the outlet was 0.22 ≤ y/H < 0.5. In this scenario the

speed and shape of the air-cavity front was the same as for energy-conserving flows, but

the front was followed by a hydraulic jump moving at a slower speed than the front. When

the air-cavity depth ratio y/H < 0.22, the flow was again steady but corrections for surface

tension were recommended. For this steady-state scenario, which was predominant for the

experiments conducted in this work, [Wilkinson, 1982] obtained an analytical solution. One

of the drawbacks of this approach is that the expression represents one equation for two

unknowns: air pocket front velocity and depth.

[Baines et al., 1985] performed similar experiments except that a constant volume of

air was released at one end of a rectangular tube. Three phases were observed in the

experiments: the velocity and depth of the front were steady (phase 1); the front speed

decreased monotonically in which there was a balance between inertia and drag (phase 2); the

front erratically stopped and started before coming to rest (phase 3). The characteristics of

phase 1 were generated a few tenths of a second after the initial gate release and are dependent

on the initial depth ratio (y0/H) where y0 is the initial air pocket depth measured from the
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pipe centerline. For (0.7 ≤ y0/H ≤ 1), the flow resembled Benjamin’s energy conserving

theory. A different steady-state front was observed by the authors for smaller depth ratios

in which the flow upstream of the nose resembled a “shallow neck”. In both instances a

shock developed that, once reflected off of the end wall, eventually overtook the front. This

instance generates the beginning of phase 2 (the kinematics of phase 2 are independent of

the initial depth ratio). This feature was also demonstrated in Boussinesq gravity currents

by [Rottman and Simpson, 1983].

There is an important knowledge gap that stands at this point, which is linked to the

inability to account for both the spreading and the pressurization of air pockets during

simulations of rapid filling events. A standing challenge in this task is the inability of Saint-

Venant equations to represent flow conditions at the edge of air pockets where free surface

flows are curved and pressures are non-hydrostatic. A new modeling formulation that avoids

the limitations of the Saint-Venant equations is needed, and is presented in this work.
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Chapter 2

Knowledge Gaps and Objectives

Two-phase gravity current (GC) flows are observed in a number of cases that include

civil and environmental engineering applications. The objective of this work is to focus on

physical and numerical modeling for: Boussinesq gravity currents in open-channels and non-

Boussinesq gravity currents in closed conduits. Knowledge gaps identified in the Section 1

for each research case are listed below:

• The quantitative focus of most lock-exchange GC experiments has involved the density

distribution and leading edge trajectory. For these lock-exchange experiments, internal

GC velocity measurements have not been provided (e.g. using MicroADV devices)

that could potentially help in calibrating numerical models and provide insight into

entrainment and its effect on GC motion.

• [Peng and Lee, 2010] used the planar laser-induced fluoroescence (PLiF) flow visualiza-

tion technique to analyze instabilities at the front of gravity currents. They concluded

what other researches have observed that two dominant instabilities exist at GC lead-

ing edges: the Kelvin-Helmholtz instability that leads to billows moving upstream of

the GC head and the convective instability, which results in lobes and clefts at the

GC front. [Peng and Lee, 2010] found that the convective instability leads to another

instability related to vortex breakdown. These instabilities govern GC mixing and en-

trainment mechanisms highlighting the limitations in shallow water equation (SWE)

modeling. More detailed frontal instability and turbulent flow structure measurements

are necessary to better understand these mixing mechanisms and how to incorporate

such effects in SWE models.
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• Incorporating entrainment in 1D SWE modeling has lately received more attention

[Adduce et al., 2012]. Empirical approaches have been proposed, but a more unified

method that accounts for a wide range of channel geometries, depth ratios, density

differences, slopes, stratification, grain size distribution, etc. would benefit the fluid

mechanics community.

• GC modeling using the SWE has focused on finite difference method (FDM) and

method of characteristics (MOC) based numerical approaches [Ungarish, 2009]. When

resolving flow discontinuities in the lock-exchange problem, the shock-tracking method

has been the primary modeling choice. For complex flow problems modeled with

SWE (e.g. gravity currents propagating into ambient crossflows with multiple wall

reflections), shock-tracking methods can be cumbersome and difficult to implement.

An open question is whether shock-capturing approaches based on the finite volume

method (FVM) constitute a better alternative.

• [Dai, 2014] conducted non-Boussinesq GC experiments with different density ratios

(0.05 ≤ ε ≤ 0.17) while varying the bottom slope (0◦ ≤ θ ≤ 9◦). They noted that

there is a gap in experimental data for larger slopes and larger density differences. As

pointed out in [Lowe et al., 2005], density ratios as low as 0.61 can be obtained with

sodium iodide, but high costs are involved in conducting such experiments.

• [Ungarish, 2011] and [Rotunno et al., 2011] developed two-layer SWE models for

non-Boussinesq high-Reynolds-number gravity currents accounting for the upstream-

moving flow discontinuity that develops after gate release for large fractional depth.

Boussinesq GC theory was extended for SWE models in which Boussinesq flows are

treated as a special case of non-Boussinesq gravity currents. A large range of numerical

results was presented in [Ungarish, 2011] by varying density differences and fractional

depth. The SWE models were tested with Navier-Stokes models in [Rotunno et al.,

2011] and [Baines et al., 1985] experiments in [Ungarish, 2011] with generally good
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agreement. Another gap for SWE models applied to non-Boussinesq gravity currents

is related to the mathematical model in which an extension to conservative and di-

vergent format has not been proposed. Thus, these non-Boussinesq type SWE models

have not been tested with nonlinear numerical schemes.

• [Hallworth et al., 1998] investigated gravity currents with initial ambient flows moving

with (coflows) and against (counterflows) the GC. They developed a two-layer SWE

model to predict such GC motion, but they restricted their investigation to systems

with small fractional depth (i.e. φ ≤ 0.5) in which flow discontinuities do not develop.

[Hogg et al., 2005] expanded on their work focusing on density intrusion gravity currents

in which there was a constant influx of denser fluid near the center of a rectangular

tank. One of the difficulties in both investigations was quantifying mixing effects in

the initial release where SWE theory is invalid.

[Robinson et al., 2013] expanded on the work of [Hallworth et al., 1998] conducted GC

experiments in systems with steady periodic wave flow instead of a constant ambient

flow velocity. In [Robinson et al., 2013] experiments qualitative results were provided

in terms of observed wave regimes; however, the quantitative relationship between

these wave regimes and expected concentrations is not presented as mentioned by the

authors. Also, the relationship between the profile of the GC head and shearing caused

by ambient wave motion needs more analysis.

• [Goldman et al., 2014] compared the one-layer SWE model with 2-D Navier-Stokes

simulations for gravity currents with linear stratification. Results were presented for

different quantities of GC stratification, ambient stratification and fractional depth.

The one-layer SWE model showed deficiencies for large fractional depth and cases

where waves slowed propagation by interacted with the GC head. An extension to

two-layer SWE theory was recommended to overcome one-layer deficiencies but has

not been developed. In addition, [Goldman et al., 2014] acknowledged the limitations
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in 2-D Navier-Stokes models particularly for resolving eddies at the GC head in which

3-D models are recommended.

• [Marino et al., 2005] performed lock-exchange GC experiments focusing on leading edge

characteristics. They concluded that the Froude number used in self-similar analytical

solutions and leading edge boundary conditions for SWE models is effectively calculated

using the initial lock depth (h0) in the initial constant velocity (i.e. slumping) stage.

As the GC enters the self-similar stage where there is a balance between inertia and

drag [Simpson, 1997], [Marino et al., 2005] recommends a length scale based on the

maximum depth at the rear of the gravity current head instead of h0. They noticed

that this Froude-like number varies with the Reynolds number over the range of 400-

4500. [Marino and Thomas, 2009] extended this leading edge analysis to cases with

non-rectangular cross-sections for light and heavy gravity currents.

Most SWE models for gravity current flows use h0 as a length scale in Fr calculations

at the leading edge for the slumping and self-similar flow stages. In the transition

between these stages, the Fr changes as the initial conditions are no longer important

in the self-similar stage. [Marino et al., 2005] states that there is no justification in

using the same Fr formulation throughout the propagation as implemented in existing

SWE models. More work is necessary for quantifying depth and velocity relationships

at the GC leading edge accounting for both slumping and self-similar flow stages.

• [Ungarish, 2008] investigated energy balances for lock-exchange gravity currents focus-

ing on the leading edge BC. A major contribution was using shallow water theory to

analyze such energy balances where steady-state hydraulic theory had been used in pre-

vious investigations. It was concluded that energy dissipation for this time-dependent

case resembled Benjamin’s theory for steady-state gravity currents. Other methods

that compare better to experiments are treated as ad-hoc solutions. Moreover, [Un-

garish, 2008] found that the implementation of energy conserving boundary conditions
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resulted in unrealistic results for lock-exchange flows. It was emphasized that the loss

of kinetic energy at the GC leading edge may be converted to the vertical dimension

for real systems. The quantitative effect of this transfer of energy was not resolved in

[Ungarish, 2008] as it was out-of-scope for a 1-D two-layer analysis.

• Although front conditions that relate GC depth and velocity have received a lot of at-

tention, the implementation of leading edge boundary condition (BC) solution strate-

gies needs more analysis. Existing front BC methods are based on MOC, so BC imple-

mentation can change for different SWE models (e.g. one-layer and two-layer models).

For different flow applications, it is difficult to determine which solution strategy is

appropriate. One of the MOC approaches uses interpolation (i.e. Specified Time In-

tervals, STI), but errors associated with this limitation are unknown. Clear numerical

guidelines and/or a comprehensive comparison for BC solution strategies would clearly

benefit SWE models.

In [Ungarish, 2011] and [Rotunno et al., 2011] non-Boussinesq SWE models, a Grid-of-

characteristic (GOC) MOC BC was utilized at the GC leading edge. The implemen-

tation of this front BC is more complex for non-Boussinesq gravity currents than their

Boussinesq counterpart [Ungarish, 2011]. BC alternatives, such as the STI approach,

have not been tested for two-layer non-Boussinesq SWE models.

• Initial conditions leading to air pocket formation and motion in closed conduits are

not well understood; thus, accurate numerical modeling is difficult.

• GC research for non-Boussinesq, air-water flows has focused on analytical methods and

qualitative observations. Few research investigations have predicted air pocket motion

due to several complexities that include geometry, pipeline slope, surface tension, ge-

ometric complexity and limited availability of field and laboratory data. In a large
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number of hydraulic applications (e.g. stormwater system design and pipeline prim-

ing), a viable modeling alternative to predict air pocket motion would be beneficial for

the design of such systems.

• Integral models have been applied in a large number Boussinesq GC applications [Hup-

pert and Simpson, 1980, Thomas et al., 2004] but rarely in the case of non-Boussinesq

flows. [Baines et al., 1985] simulated air-water gravity currents with an integral-type

model (also referred to as a Box model), but to our knowledge box models have not

been applied to hydraulic systems with circular conduits, sloped pipelines or back-

ground flow velocities.

Some of the knowledge gaps listed above are analyzed in this work for Boussinesq and

non-Boussinesq GC flows. The primary objectives are listed below:

• To measure internal velocities in high-Reynolds-number, Boussinesq lock-exchange ex-

periments using MicroADV probes in both fluid layers;

• To develop depth-averaged velocity hydrographs for validation of SWE models in lock-

exchange applications;

• To develop a shock-capturing SWE model for Boussinesq, lock-exchange gravity cur-

rents that accurately simulates leading edge trajectories and flow discontinuities through-

out slumping and self-similar flow stages;

• To compare nonlinear FVM numerical schemes to FDM approaches for GC flows;

• To develop a simple yet accurate alternative for the leading edge BC used in SWE

models and to provide a systematic comparison for existing GC front BC methods

focusing on ease of implementation, continuity errors and computational time;

• To develop a 2-D Reynolds-Averaged-Navier-Stokes (RANS) model in OpenFOAM to

assess one-layer SWE models in fixed-volume, Boussinesq GC applications.
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• To formulate an integral model for non-Boussinesq gravity currents that accurately

predicts air pocket motion in closed conduits for a wide range of pipe diameters, air

pocket volumes and flow velocities.
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Chapter 3

Methodology

The Methodology covers three research phases in which the first phase focuses on an

experimental and numerical investigation on lock-exchange gravity currents. Additional

sections deal with numerical investigations of leading edge BC solution strategies and integral

models formulated for non-Boussinesq systems, respectively. It approximately follows the

sequence of four journal papers that were published as a result of this research. The overall

scope and main contributions for each section are summarized below:

• Lock-exchange: Experiments were performed in a 9.14 m long rectangular channel

using saltwater and freshwater. The GC front trajectory was tracked with a 30 FPS

video camera for three different density differences. A new approach used in this work

involved the development of two Micro Acoustic Doppler Velocimeter (MicroADV)

devices sampling at 30 Hz in both fluid layers. To our knowledge, MicroADV probes

had not been previously used in this lock-exchange scenario. The MicroADV probes

were each placed at three different depths near the middle of the channel. Velocity

hydrographs were developed for both fluid layers and transformed in depth-averaged

velocity results for comparison with SWE models.

• SWE modeling: The one and two-layer SWE models are both presented with a focus

on finite volume and shock capturing methods. In order to develop a numerical model

to simulate the lock-exchange experiments, a two-layer SWE model was developed

as presented in [Hatcher and Vasconcelos, 2013a]. A key contribution was adapting

existing SWE models to simulate gravity currents with large depth ratios (e.g. lock-

exchange problem) without the need for explicit tracking of shocks. The proposed
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numerical model is the first of its kind amenable to the finite volume method (FVM)

and solved with nonlinear numerical schemes. Finally, the two-layer SWE model was

extended to account for gravity currents propagating into ambient crossflows.

• Alternatives for flow solution at the GC leading edge: A new BC was implemented

at the GC leading edge for the aforementioned SWE models. Using the one-layer

SWE, a systematic comparison was made between the proposed solution strategy and

two alternatives based on MOC as presented in [Hatcher and Vasconcelos, 2014]. The

advantages and disadvantages are provided for each method focusing on ease of imple-

mentation, computational efficiency and continuity errors. In addition, lock-exchange

experiments conducted by [Marino et al., 2005] as well as two Reynolds-Averaged-

Navier-Stokes (RANS) models developed in OpenFOAM (k− ε and υ2− f) were used

to analyze the validity of SWE models.

• Integral model approach to simulate air pocket motion: This section follows experi-

ments conducted by [Chosie, 2013] in a 101.6 mm diameter pipeline. Instead of focusing

on more complex modeling tools, the integral model approach was selected based on

simple yet fairly accurate results. This numerical modeling approach is popular for

Boussinesq gravity currents in rectangular open channels but has not gained as much

momentum for non-Boussinesq currents propagating in closed conduits. In this work

two integral models are formulated to simulate air pocket motion in closed conduits

and tested for a wide range of air pocket volumes and background flow velocities.

3.1 Lock-exchange gravity current experiments

Lock-exchange experiments were conducted in a 9.14 m long rectangular channel in

order to validate the two-layer SWE model (Eq. 3.5) and to better describe GC flows such

as those in the Mobile Bay channel. Experimental studies related to gravity currents are

prevalent, but none have analyzed the use of MicroADV devices in describing lock-exchange
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GC flows. Although the leading edge trajectory is tracked with HD video cameras, the focus

of this experimental work is on obtaining velocity hydrographs. Depth-averaged velocities

were obtained from the MicroADV results and are analyzed in Section 4.1.2.

3.1.1 Physical model construction and measurement devices

The acrylic channel was constructed in four segments as the acrylic sheets are only 2.44

m in length. In each component a 15 cm wide sheet that represents the channel bottom was

welded to two acrylic sheets (40.6 cm wide) that represent the channel sides. Therefore, the

maximum depth that could be achieved in the channel is 40.6 cm. After the side pieces were

welded on top of the bottom sheet, the effective channel width was 12.7 cm. A wooden gate

(2 cm thick) with rubber ends was constructed to separate the two fluids, which initiated

the GC flow upon removal.

Before the acrylic sheets were welded together, openings were drilled into the acrylic.

Then the acrylic sheets were tightened together with metal screws in order to increase the

welding adhesion and to provide structural support. In the front of the physical model on the

outside of the tank, small acrylic pieces around 5 in long were used to connect the adjacent

acrylic sheets (Fig. 3.1). On the inside of the tank, adhesive tape was placed between the

acrylic segments with silicon caulking applied along the edges in order to obtain a strong

waterproof seal. As a result, the entire channel formed a cohesive and waterproof unit.

In this analysis it was important to position the MicroADV probes as close to vertical

as possible in order to accurately measure the velocity in the longitudinal direction. The

probes were held in place with a wooden support, and adhesive tape was applied to hold

them in the vertical direction. The wooden support contains a cantilever section that hangs

over the channel so that the ADV probes could be placed in the center of the tank.
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3.1.2 Experimental variables and range of variation

Experiments were performed in a 9.14 m long and 12.7 cm wide rectangular channel

(see Fig. 3.2) with the following initial conditions: x0 = 76.2 cm, h0 = 40.6 cm and L =

914.0 cm. Three different density differences were used (ε = 1%, 2% and 3%). There

was no initial ambient motion in the experiments; however, ambient motion was generated

upon gate release. Instead of implementing a large range of parameters (e.g. x0, h0, ∆ρ),

the experimental contributions focus on the analysis of downward-facing MicroADV probes

measuring velocities in both fluid layers. In 1%, 2% and 3% experiments, MicroADV devices

were measuring velocities near the center of the channel and the middle of each fluid layer

(see Fig. 3.2).

For 1% and 2% density differences, MicroADV devices were also adjusted to measure

velocities at different depths within each fluid layer: h∗ADV = hADV /h0 = 0.063, 0.125 and

Figure 3.1: Different components of the construction for the acrylic channel.
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0.188 for the lower ADV; and h∗ADV = 0.375, 0.625 and 0.875 for the upper ADV. These

velocity hydrographs display the variation of velocity with depth and allow for comparison

with CFD models. Obtaining velocities for a range of depths resulted in depth-averaged

velocity results, which are compared to the two-layer SWE model in Section 4.1.2.

It is convenient to display the parameters for lock-exchange GC flows in terms of dimen-

sionless units. Moreover, distance is normalized by the initial current length (x0), depth by

the initial GC depth (h0), velocity by the initial celerity (
√
g′h0), etc., as seen in [Ungarish,

2009]. This procedure allows for a comparison of various initial conditions while verifying

consistency of results. For the experiments conducted in this work, the initial conditions and

some of the dimensionless results are presented in Table 3.1.

Table 3.1: Experimental initial conditions and results for each experiment. Values for um

were determined from a digital camera tracking the GC front.

Run x0 h0 ρ1 g′ um Rem FrH[
m
] [

m
] [

kg m -3
] [

ms -2
] [

ms -1
] [

−
] [

−
]

1 0.762 0.406 1010 0.107 0.098 19952 0.468
2 0.762 0.406 1020 0.202 0.135 27657 0.472
3 0.762 0.406 1028 0.277 0.158 32423 0.473

Figure 3.2: Schematic diagram of lock-exchange experiments (not to scale). The MicroADV
probes were placed at three different depths within each fluid layer.
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The mean Reynolds numbers in experiments (Rem >> 1, 000) validated the inviscid

assumption used later in this work for the SWE formulation. Because the initial depth was

the same for each of the experiments, the total densimetric Froude number (FrH) should

converge between each run conditions and indeed the results compared well to one another.

FrH and Rem were determined from the following expressions [Hacker et al., 1996], [Adduce

et al., 2012]:

FrH =
um√
h0 g′

Rem =
1

2

um h0

ν
(3.1)

The mean velocity of the GC (um) front was determined from high definition digital cameras

tracking the front during the initial slumping stage (described in Section 3.1.3).

3.1.3 Experimental procedure and data analysis

Several experiments were conducted in a smaller scale tank (x0 = 20.3 cm, h0 = 40.6 cm

and L = 243.9 cm) before official experiments in order to develop a consistent experimental

program that involved the mixing procedure and the gate removal. Once consistent results

for the GC trajectory were obtained in the smaller tanks, the experiments were performed

in the 9.14 m tank that is presented in this work. Two duplicates were performed for each

run to ensure that the results were consistent and properly obtained.

In this work salt was dissolved in one side of a rectangular channel to generate a

predetermined density difference (∆ρ) between fluids. When dissolving the salt in wa-

ter, it is imperative that the resulting density is accurately computed. Methods that have

been implemented to determine the density are: salinity tables, polynomial equations, hy-

drometers and refractive index measurements. Because of simplicity and accuracy of re-

sults, the difference in density for this work was estimated from a polynomial expression in

www.csgnetwork.com/h2odenscalc.html, which was provided by the University of Michigan

and NOAA:

ρ = ρ0 + Ac+Bc3/2 + 0.00048314c2 (3.2)
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where

A = 0.824493− 0.0040899T + 0.000076438T 2 − 0.00000082467T 3 + 0.0000000053675T 4

B = −0.005724 + 0.00010227T − 0.0000016546T 2

ρ0 = 1000
1− (T + 288.9414)

508929.2(T + 68.12963)
∗ (T − 3.9863)2

in which A and B are polynomial parameters, ρ is the density of the denser fluid in kg m−3,

T is the temperature in ◦C and c is the salt concentration in mg l−1. The initial salt

concentration was determined from this relationship, and the resulting density difference

was re-evaluated using precision hydrometers. These hydrometers provided the density with

an error of approximately 5% or less. In addition to accurate data measurement, experiments

were performed relatively quickly.

For the velocity hydrograph measurements, two MicroADV probes sampling at 20 Hz

were placed near the middle of the tank in order to determine the velocities for the denser

current and ambient fluid. The MicroADV devices were placed at x∗ = 7.68 and x∗ = 7.70

for the lower and upper ADV, respectively. Although three-dimensional velocities were

obtainable, the focus of the data analysis was on the longitudinal velocities. The lower ADV

probe was placed 10.2 cm from the channel bottom, and the upper probe was placed 33.0

cm from the channel bottom in order to measure the ambient velocities. As mentioned in

Section 3.1.2, ADV depths were adjusted for 1% and 2% experiments to develop depth-

averaged results. The data was recorded at 20 Hz for about 250 s or when the GC front

reflected back and forth twice.

The trajectory of the front was also tracked with a 1080p high-definition digital cam-

era moving with the GC front and recording at 30 frames per second. The cameras were

positioned at the leading edge normal to the channel sides, and measurements were made

at 10 cm intervals. The experimental errors were within acceptable limits (∆x∗ = 0.03 and

∆t∗ = 0.01).
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3.2 Shallow water equation modeling

There are three primary cases related to 1-D SWE modeling that are highlighted all

with the following model objectives: focus on computationally efficient solutions, minimize

continuity errors and employ shock-capturing methods amenable to FVM schemes. Each case

correlates to a unique SWE formulation: one-layer, two-layer and two-layer accounting for

ambient crossflows. Unlike previous related work, each mathematical model presented here is

written in conservative and divergent format and solved with both linear and nonlinear FVM

schemes. The SWE models are written in such a way that the conserved variables (~U) and

fluxes (F(~U)) are equivalent. This methodology allows the LHS of the momentum equations

to be solved using the same procedure/numerical scheme, while the model differences are

mathematically expressed in the source terms (S(~U)).

3.2.1 One-layer shallow water equations

One of the contributions of this work is related to the front BC solution strategies

(Section 3.3) incorporated in SWE models, which was recently accepted in the IAHR Journal

of Hydraulic Research. To compare these leading edge boundary conditions, the one-layer

SWE is utilized as presented in [Ungarish, 2007]. This numerical model is ideal for smaller

depth ratios in which the one and two-layer SWE models are indistinguishable [Ungarish,

2009]. For the lock-exchange problem (φ = 1) analyzed subsequently in this work, depth

gradients are much larger and the two-layer SWE are recommended.

The one-layer SWE model is implemented in this work for constant-volume and density

intrusion gravity currents with φ ≤ 0.5. This one-layer model is written below in conservative
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and divergent format amenable for solving with nonlinear Riemann solvers:

∂ ~U

∂t
+
∂F(~U)

∂x
= S(~U)

~U =

 h

uh

 F(~U) =

 uh

(uh)2

h
+

1

2
g′h2

 S(~U) =

 0

0

 (3.3)

in which h and u are the depth and velocity of the GC, respectively. Unlike in previous works,

the SWE models are solved with the FVM method in which interface fluxes are computed

to determine center-cell values of h and uh. The following expression performs the updates

on the conserved variables for each computational cell i at the time step n+ 1:

~U
n+1

i = ~U
n

i +
∆t

∆x

(
~F(U)

n+1/2

i−1/2 − ~F(U)
n+1/2

i+1/2

)
+ ~S(U)∆t (3.4)

where ~F(U)
n+1/2

i±1/2 are the interfacial fluxes, which are calculated with various numerical

schemes. Unless otherwise noted, the nonlinear HLL Riemann solver [Toro, 2001] is used in

this work. To the author’s knowledge, the one-layer SWE applied to gravity currents has

not been previously written in divergent format or solved with nonlinear schemes.

One may notice the similarities between this mathematical model and the traditional

SWE used to solve dam break flows. The primary difference lies in the gravitational ac-

celeration term where gravity (g) is replaced by the reduced gravity (g′) [Ungarish, 2009].

This change in F(~U) accounts for buoyancy effects in a Boussinesq system. When water

and air are the two fluids under consideration, g′ ≈ g, and Eq. 3.3 reduces to the traditional

SWE. One can also formulate Eq. 3.3 from the two-layer SWE Eq. 3.5 by eliminating the

two-layer source terms. As subsequently stated, this one-layer SWE model is used in Section

3.3 to compare front boundary conditions for constant-volume and density intrusion gravity

currents.
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3.2.2 Two-layer shallow water equations

To predict GC motion in lock-exchange experiments outlined in Section 3.1, a two-

layer SWE model was proposed. In one-layer implementations of the SWE, influences of

the ambient fluid are neglected except in the reduced gravity. However, when the fractional

depth φ approaches unity as in the lock-exchange experiments conducted for this work,

the ambient velocity becomes an important parameter. This potential problem led to the

mathematical model of the two-layer shallow water equations used for Boussinesq gravity

currents as formulated by [Rottman and Simpson, 1983]. This formulation reduced the

two-layer SWE from four partial differential equations (PDEs) to two. The upper layer

continuity equation was omitted, and the two momentum equations were combined. Because

their model was unable to simulate shocks, a new two-layer SWE model was formulated that

tracks these sharp gradients with a shock capturing approach. This Section is based on the

recent publication in the Journal of Hydraulic Engineering [Hatcher and Vasconcelos, 2013a]

where the two-layer SWE model was used to simulate lock-exchange experiments that are

presented in this work.

As in the one-layer SWE amenable to nonlinear FVM scheme, the two-layer SWE is

written below in conservative and divergent format:

∂ ~U

∂t
+
∂F(~U)

∂x
= S(~U)

~U =

 h

uh

 F(~U) =

 uh

(uh)2

h
+

1

2
g′h2

 S(~U) =

 0

Ah2∂u

∂x
+Bg′h

∂h

∂x


A =

2u

H − h
B =

h/H (1− h/H)2 +
(
u/
√
g′H

)2

(1− h/H)2

(3.5)

in which the upper layer parameters were substituted out of the momentum equation as in

[Rottman and Simpson, 1983]. The transition to divergent format involved some algebraic
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manipulation and the substitution of the continuity equation back into the linear momentum

equation for the denser current layer.

In Eq. 3.5 A and B are components of the source terms presented by [Rottman and

Simpson, 1983] rewritten to highlight the potential problems as h → H. When the depth

ratio approaches unity, it is clear that the solution of both terms approaches a zero divided

by zero solution in which instabilities emerge (the GC velocity (u) approaches zero in such

conditions because of the horizontal free surface). The proposed solution in Eq. 3.5 sepa-

rates the depth and velocity gradient components of the source term because their effect on

stability and shock simulation is different. For the depth gradient component of the source

term, there is a relatively simple solution in that B = 1 when h = H. This value for B

was enforced by [Klemp et al., 1994] and [Ungarish and Zemach, 2005] as a constraint to

ensure the front velocity did not exceed the characteristic velocity. However, the numerical

solution may become unstable primarily because of the velocity gradient component of the

source term, which is multiplied by A. To overcome this problem, a term (εhH) with small

magnitude was added to the denominator of A to ensure that the solution could not become

undefined. As a result, this work implements the following expression for A:

A =
2uh2

(1 + εh)H − h
(3.6)

The value of the parameter (εh = 0.01) was selected on the basis of stability and accuracy of

simulation. Albeit pragmatic, results show that the addition of 1% of H in the denominator

of the variable A managed to stabilize the solution and yield accurate predictions for GC

flows.

The advantage of the proposed mathematical model is simplicity in which regions with

steep gradients are accounted for without resorting to explicit numerical tracking. This

procedure enables the same numerical scheme to be applied everywhere in the solution

domain except of course at the boundary conditions (upstream wall and GC leading edge).

34



It is later shown that the proposed shock-capturing method compares well to the shock-

tracking approach implemented by [Klemp et al., 1994] and [Ungarish and Zemach, 2005],

specifically at describing the interface between the two fluids. The novelty in the proposed

SWE model is highlighted in the ability to resolve shocks without the use of explicit tracking.

In the lock-exchange problem, a backward moving shock is developed upon gate release and

another shock is developed after the first is reflected off of a physical boundary. To the

authors’ knowledge, this two-layer SWE solution for lock-exchange GC is the first of its

kind to incorporate non-linear approximate Riemann solvers (e.g. HLL scheme) within a

finite volume framework, which has been proven to yield accurate predictions for sharp

fronts in free-surface flow modeling, as illustrated in many previous works such as [Toro,

2001, Macchione and Morelli, 2003].

3.2.3 Two-layer shallow water equations accounting for ambient crossflows

Oftentimes, these gravity currents contain ambient crossflows, which are not accounted

for in the previous two-layer SWE formulation. This limitation motivated the formulation of

another numerical model presented in a recent ASCE-EWRI conference paper [Hatcher and

Vasconcelos, 2013b] that is able to simulate lock-exchange GC flows with moving ambients.

The primary difference in the new formulation is related to the control volume approach

that was used to eliminate the ambient velocity (u2) from the momentum equation. In the

presence of ambient crossflows, this expression is u1h1 + u2h2 = UH where U is the ambient

velocity and the subscripts 1 and 2 represent the current and ambient fluid layers, respec-

tively. Incorporating this control volume approach into the two-layer SWE formulation, the

updated mathematical model is presented below for the lower GC layer with the subscripts
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removed:

∂ ~U

∂t
+
∂F(~U)

∂x
= S(~U)

~U =

 h

uh

 F(~U) =

 uh

(uh)2

h
+

1

2
g′h2

 S(~U) =

 0

Ah2∂u

∂x
+Bg′h

∂h

∂x


A =

u

H
+
uh+ uH − 2UH

H(H − h)
B =

h

H
+
u2 + U2 − 2uU

g′H(H − h)2

(3.7)

in which ~U and F(~U) are the same as in Eq. 3.5, but S(~U) is updated to incorporate the

ambient velocity. The source terms appear equivalent for both two-layer models, but changes

are present in the source term parameters A and B. The similarity between mathematical

models allows for the same solution procedure using nonlinear Riemann solvers.

3.2.4 Numerical implementation of shock-capturing shallow water equation mod-

els

The SWE models are tested for both constant-volume and constant-flux (density in-

trusion) GC flows. The numerical implementation for the aforementioned GC problems is

highlighted including boundary conditions and initial conditions. The differences between

GC flows with and without ambient crossflows are also discussed. One of the most heavily

studied components of the numerical implementation for GC SWE models is the front con-

dition. This condition is briefly discussed since it is a key component of leading edge BC

solutions, which is the focus of Section 3.3. As previously stated, the HLL numerical scheme

[Toro, 2001] is utilized unless other stated.

Constant-volume gravity currents

The constant-volume scenario is broken up into two problem types: the lock-exchange

problem [Rottman and Simpson, 1983] and partial depth release problem with ambient

crossflows [Hallworth et al., 1998]. In the lock-exchange case, denser fluid is released at one
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end of a long channel containing lighter fluid. The fluids are typically set in motion by the

removal of a gate that separates both fluids in which density differences drive the flow. The

two-layer SWE model (Eq. 3.5) is compared to this GC scenario since sharp gradients/shocks

are expected to occur upon gate release.

For the lock-exchange problem, the initial conditions are simple: u = 0, h = H for

x ≤ x0 and h = 0 for x > x0. There are two types of boundary conditions located at either

the GC leading edge or at physical walls. The solution alternatives at physical walls are

straightforward and consistent for each GC flow scenario. Enforce zero flow (u = 0) along

with a relevant characteristic equation or apply a reflective BC with the aid of a virtual cell,

as presented in [Toro, 2001]. In this work the MOC is used at wall boundary conditions, and

the DC approach is used at the GC leading edge (see Section 3.3.3).

For the ambient crossflow case, the partial depth (φ < 1) release occurs near the cen-

ter reach of the channel (see Fig. 3.3a). The boundary conditions for this constant-volume

problem are slightly different than traditional lock-exchange simulations. Because the denser

fluid is released near the center of the channel, GC fronts spread in both directions horizon-

tally, so two leading edge boundary conditions are implemented as described in [Hallworth

et al., 1998]. The following expressions represent the front conditions for the left and right

GC leading edge, respectively:

u = −Fr
√
g′h+ U u = Fr

√
g′h+ U (3.8)

in which the ambient velocity (U) is known and can be positive or negative. The Froude

number at the GC leading edge (Fr) was computed from the HS expression [Huppert

and Simpson, 1980], as presented in [Hallworth et al., 1998]. The leading edge BC, which

utilizes this front condition, follows the DC approach [Hatcher and Vasconcelos, 2013a] and

is highlighted in Section 3.3.3. For the traditional lock-exchange problem [Rottman and

Simpson, 1983], only the second expression in Eq. 3.8 is utilized as discussed in Section 3.3.
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Figure 3.3: Schematic diagram of GC flows with ambient crossflows. a) constant-volume GC
and b) density intrusion GC.

Lastly, in their experiments [Hallworth et al., 1998] were unable to insert the denser

fluid into the center of the tank without dilution and momentum effects caused by a moving

ambient flow. The model presented in this work is compared to [Hallworth et al., 1998]

idealized two-layer SWE model in which the aforementioned mixing effects were neglected.

The comparison is for smaller depth ratios (φ = 0.25) since their model is unable to simulate

shocks.

Density intrusion gravity currents

For the constant-flux simulations, denser fluid was flowing horizontally into a channel

with constant velocity (see Fig. 3.3b). The ambient fluid was either moving with the current

(coflow), moving against the current (counterflow) or stagnant. [Hatcher and Vasconcelos,

2014] analyzed the one-layer SWE for density intrusion gravity currents in stagnant flow

conditions mimicking experimental conditions by [Wright and Paez-Rivadeneira, 1996]. As

in the constant-volume simulations, the DC front condition was used at the GC front unless

otherwise noted. The inlet dimensions (specifically hin) and fluid densities were constant

throughout the simulation. hin and uin were enforced at the upstream physical BC.

Enforcing both conserved variables in SWE simulations may result in numerical errors.

In this case the errors were expressed in terms of continuity errors defined by the difference

between initial and final GC volumes, which increased when inlet conditions were enforced

(less than 1% difference). Although these continuity errors may be negligible depending on
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the modeling objectives, an alternative solution alleviated this problem in a few trial runs

(uin was enforced and hin was computed with a characteristic equation). However, hin was

enforced in this work to match with [Paez-Rivadeneira, 1997] experimental conditions.

[Paez-Rivadeneira, 1997] performed dozens of experiments with and without ambient

crossflows, which were moving with (coflows) or against (counterflows) the GC. These ex-

periments were used for comparison against the SWE model. The initial conditions for

this model are slightly different than in [Paez-Rivadeneira, 1997] experiments. Instead of

freshwater (i.e. the lighter ambient fluid) initially occupying the entire solution domain, the

simulation begins with a small number of cells that contain denser fluid (see [Bonnecaze

et al., 1995]). These saltwater cells were required for model stability but have a minor effect

on the GC propagation.

3.3 Alternatives for flow solution at the GC leading edge

As mentioned in Section 1.4, front BC solution strategies are required for GC models

using the SWE. The three leading edge BC alternatives are analyzed in detail in the following

subsections. The success of each approach is determined based on computational efficiency

and continuity errors in addition to ease of implementation as explained in [Hatcher and

Vasconcelos, 2014]. The most popular approach (GOC) has been implemented in [Rottman

and Simpson, 1983], [Ungarish, 2007], etc. and is further discussed in 3.3.1. The STI approach

was implemented in [Hallworth et al., 1998], but the details were not covered and further

explanation is necessary. After the MOC approaches are covered, the newly proposed DC

method is presented in Section 3.3.3. The details of the formulations and implementations

are highlighted following the recent publication [Hatcher and Vasconcelos, 2014].

3.3.1 Grid-of-Characteristics (GOC) approach

The GOC approach has the simplest concept of all the methods. It involves the com-

bination of a front condition and a C+ characteristic equation that is tracked within a
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characteristic line originated at a system boundary. This provides two equations that al-

low for the solution of the two unknowns [hLE, uhLE]T at the GC leading edge cell (LE

subscript). When the model requires the solution at specified intervals, one method to im-

plement the GOC approach is to generate the characteristic lines at every time step (e.g. at

a physical boundary) and to track them so that the corresponding characteristic equation

can be used in the BC computation (see Fig. 3.4). This is an important distinction from

the STI method, which generates these characteristic lines at the vicinity of the GC leading

edge. While the continuous generation and tracking of characteristic lines is computationally

costly, particularly for finer grids, the GOC method benefits from no loss of accuracy caused

by interpolation that is required in the STI method.

For constant-volume gravity currents, the depth varies over time at the upstream wall

(cell 1), but the velocity is always zero. Tracking the characteristic lines over time brings the

Riemann invariant values (u+2c) from the wall to the leading edge of the GC. The resulting

Figure 3.4: Diagram of the GOC approach, where C+ characteristic lines (not to scale and
can be nonlinear) are generated at each time step at the upstream boundary. These travel
towards and eventually reach the GC leading edge.
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set of equations is thus:

ucell:1 + 2
√
g′hcell:1 = uLE + 2

√
g′hLE (3.9a)

uLE = FrLE

√
g′hLE (3.9b)

in which ucell:1 is 0 at the upstream physical boundary, and hcell:1 is the depth at the wall

that was observed when the characteristic line was generated, at an earlier time step. The

value of hcell:1 will be constant and equal to the initial depth h0 until the depression wave

generated by the initial gate release arrives at the wall (for constant volume simulations). Up

to that moment in the simulation, flow conditions are consistent with a simple wave condition

[Sturm, 2010] and there is no need to generate/track characteristic lines. As the flow depth

drops at the wall, characteristic lines are created each time step and the trajectory of this

line is updated during the simulation using the C+ characteristic equation (dx/dt = u + c)

evaluated with the local flow conditions between the wall and the leading edge of the GC.

Once a new characteristic line reaches the GC front, Eqs. 3.9a and 3.9b are solved iteratively

for hLE and uLE. The position of the front advance (xn+1
LE ) is updated according to the

kinematic condition:

∆xn+1
LE = ∆xn

LE + ∆t · uLE (3.10)

Once ∆xn+1
LE equals the internal cell length (∆x), one more computational cell of length

∆x is added to the solution domain and ∆xn+1
LE and ∆xnLE are reduced by ∆x. In the case of

density intrusion gravity currents tested in this work, both hcell:1 and ucell:1 are predefined by

the problem conditions. Unlike constant-volume gravity currents, density intrusion problems

involve non-zero velocity conditions at the upstream boundary. Since hcell:1 and ucell:1 (and

respective Riemann Invariants) are constant throughout the problem, there would be no

need to track the characteristic lines. However, this tracking is performed to consistently

quantify the computation effort between the three tested approaches.
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3.3.2 Specified Time Intervals (STI) approach

The STI approach, similarly to GOC, also utilizes the MOC. However, instead of track-

ing characteristic lines in the space-time grid from the line origin, interpolation between

neighbor computational cells is utilized. It thus allows the calculation of the relevant Rie-

mann invariant used in the computation of flow conditions along with the front condition

much more rapidly decreasing computational effort. The approach is consistent with tradi-

tional implementation of the MOC-Hartree method at boundary conditions [Sturm, 2010]

except that the location of the BC is updated with time. Using Fig. 3.5 as reference, integra-

tion of the C+ characteristic equation and the corresponding trajectory of the characteristic

line yields:

uP − uR + (g′/cR) (hP − hR) (3.11)

xP − xR = (uR + cR) ∆t (3.12)

The subscript P corresponds to a point immediately upstream of the leading edge in

the next time step where the flow solution (uP , hP ) at the leading edge is obtained. Point R

is the origin of the C+ characteristic line that arrives at point P , bringing the information

on the Riemann invariants (Eq. 3.11) to be applied in the solution of the flow in the BC.

It is assumed that flow conditions at point P correspond to the conditions at the leading

edge, less than ∆x away. This approach is tested with good accuracy in comparison with

the other front BC approaches with time steps ranging from 2 ms to 1 s (see Section 4.2.1).

While conditions at points A and B (previous time step) are known, flow depth, velocity,

and celerity at point R are unknown, and this is where interpolation is introduced. A

potential drawback of STI interpolation is the generation of inaccuracies in the solution,

especially in locations where there are strong gradients. Assuming that the previous time step

index is denoted by n, the computation of uR, cR and hR follows the expressions presented
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in [Sturm, 2010]:

uR =
un

B + r (−un
Bc

n
A + un

Ac
n
B)

1 + r (un
B − un

A + cn
B − cn

A)
(3.13a)

cR =
cn
B + ruR (cn

A − cn
B)

1 + r (cn
B − cn

A)
(3.13b)

hR = hn
B − r (hn

B − hn
A) (uR + cR) (3.13c)

Once the parameters in Eqs. 3.13a-3.13c have been computed, Eq. 3.11 is solved alongside

a front condition to determine uP = uLE and hP = hLE. The update of the GC leading edge

location uses the same kinematic condition that was presented for the GOC front BC (Eq.

3.10).

3.3.3 Dual-Cell (DC) approach

As pointed out, despite the relative simplicity behind MOC-based methods to provide

closure to the flow calculation at the leading edge of gravity currents, both GOC and STI

approaches have limitations. The GOC approach promotes explicit tracking of characteristic

Figure 3.5: The numerical solution for the STI method in which the characteristic grid is
superimposed onto a rectangular grid for a single time step. Adapted from [Sturm, 2010].
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lines that may become computationally intensive in some cases. On the other hand, the STI

approach involves interpolation that may impact model accuracy. In addition, characteristic

equations for two-layered flows [Rottman and Simpson, 1983] are significantly more complex

and difficult to implement.

These combined factors led to the development of an alternative method [Hatcher and

Vasconcelos, 2013a] that does not depend on characteristic equations, but rather on flow

conditions at two computational cells located at the leading edge region of the flow. This

approach, referred to as Dual-Cell (DC) method, can be applied to one and two-layer GC

flows without alterations. Like MOC-based approaches, it also requires a front condition to

achieve flow closure at the leading edge of the GC. The DC method combines the enforce-

ment of continuity, linear momentum, and the kinematic condition at the GC leading edge

assuming that the front spans over two cells: (1) cell LE corresponds to a computational cell

fully occupied by the dense fluid and (2) cell LE + 1 undergoes the advance of the current

and is not yet completely filled (see Fig. 3.6 for reference).

Figure 3.6: Schematic diagram of the DC approach implemented for density intrusion gravity
currents with two cells representing the leading edge: LE and LE + 1.
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The continuity equations utilized at the leading edge BC cells are presented below:

Continuity


dALE

dt
= ∆x

dhLE

dt
= uh LE-1 − uh LE+1 (cell: LE)

dALE+1

dt
=
d(∆x LE+1 hLE+1)

dt
= uh LE (cell: LE+1)

(3.14)

in which A is the cell area: A = ∆x hLE for cell LE and A = ∆xLE+1hLE+1 for cell LE+1. The

continuity equation is slightly more complex for cell LE+1 because both the depth hLE+1 and

the cell length ∆xLE+1 change with time as indicated in Fig. 3.6. The following expression

represents the x-momentum equation that is implemented at the leading edge cell (LE):

∑
Fx =

∑
cs

ṁLE+1uLE+1 −
∑
cs

ṁLEuLE (3.15)

where ṁ = ρc uh is the mass flow rate. The set of momentum and continuity equations along

with the front condition and the kinematic condition used in the DC method is presented

below:

DC



[
I
]

ρc · uh n+1
LE

(uh n+1
LE+1

h n+1
LE

− uh n+1
LE-1

h n+1
LE

)
+ F 2 − F1 = 0

[
II
]

h n+1
LE = h nLE +

∆t

∆x
(uh n+1

LE-1 − uh n+1
LE+1)[

III
]

uh n+1
LE+1 = h n+1

LE+1

√
g′h n+1

LE+1 FrLE+1

[
IV
]

∆x n+1
LE+1 = ∆xn

LE+1 + ∆t
uh n+1

LE+1

h n+1
LE+1[

V
]

uh n+1
LE =

1

∆t

[
∆x n+1

LE+1(h
n+1
LE+1 − h n

LE+1) + h n+1
LE+1

(
∆x n+1

LE+1 −∆x n
LE+1

)]

(3.16)

where n is the time step index, F1 is the upstream hydrostatic force at the interface between

cells LE-1 and LE, and F2 is the downstream hydrostatic force at the interface between cells

LE and LE+1. These five equations represent: 3.16
[
I
]

the linear momentum balance at cell LE;

3.16
[
II
]

the local continuity at cell LE; 3.16
[
III
]

the enforcement of a front condition relating
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depth and velocity at cell LE+1; 3.16
[
IV
]

the kinematic condition, which updates the front

position ∆x n+1
LE+1, at cell LE+1; and 3.16

[
V
]

the local continuity at cell LE+1.

These equations are solved iteratively for the pair of cells at the edge of the computa-

tional domain until the advance of the GC front at cell LE+1 (i.e ∆x n+1
LE+1, given by

∑
u LE+1∆t)

exceeds the cell size ∆x. When this occurs, the front of the GC enters a new cell and ∆x n+1
LE+1

is reset to zero and the process starts again for the set of the two new leading edge cells.

As the result section shows, this alternative to compute the boundary conditions is

shown to be accurate for one and two-layer SWE models, comparing well with experimental

data collected in this work as well as with previous investigations. For one-layer gravity

currents using the DC method, results are compared with 2D RANS simulations.

3.4 Laterally-averaged RANS modeling of Boussinesq gravity currents

The other main component of the work included in [Hatcher and Vasconcelos, 2014]

focuses on the validity of SWE models or in this case, the one-layer SWE model. One form

of validation is based on lock-exchange experiments conducted by [Marino et al., 2005]. The

other method for validation, which is the focus of this section, is RANS modeling that was

developed using OpenFOAM. The standard k− ε (with wall functions) and υ2− f (without

wall functions) turbulence models were implemented as seen in [Hatcher and Vasconcelos,

2014]. The decision of using two RANS models, which had been previously implemented

for GC flows [Mehdizadeh and Firoozabadi, 2009], created a more comprehensive analysis.

The k − ε model is commonly used in a wide range of CFD applications while the υ2 − f

turbulence model is relatively new but offers more accuracy depending on the flow scenario

[Mehdizadeh and Firoozabadi, 2009]. Both RANS models were used to analyze the proposed

one-layer SWE model focusing on the GC front trajectory and average depth.
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The mean velocity vector field (~u) satisfies the incompressible RANS mass and momen-

tum equations:

∇ · ~u = 0

∂t~u+ ~u · ∇u = −∇P +∇ · [(ν + νt)∇~u]

(3.17)

where P = mean pressure, ν = kinematic viscosity and νt = turbulent viscosity. The turbu-

lent viscosity expressions are provided below for each turbulence model:

νt = CµKE

k2

ε
(k − ε model) νt = Cµυ2T (υ2 − f model) (3.18)

where k = turbulent kinetic energy, ε = turbulent dissipation, υ = turbulent stress normal to

streamlines, T = turbulent time scale, Cµ = 0.22 and CµKE = 0.09. The turbulent viscosity

calculated with the υ2−f model (see Eq. 3.18) is more accurate at resolving turbulence near

walls when compared to Direct Numerical Simulations and experiments [Mortensen et al.,

2010]. For both RANS models, the following equations are used to compute k and ε:

∂tk + ~u · ∇k = Pk − ε+∇ ·
[
(ν +

νt
σk

)∇k
]

∂tε+ ~u · ∇ε =
Cε1Pk − Cε2ε

T
+∇ ·

[
(ν +

νt
σε

)∇ε
] (3.19)

in which Pk is the production term and Cε1, Cε2, σk and σε are standard k − ε coefficients.

Compared to the k − ε model, the υ2 − f turbulence model contains an additional equation

for (υ2) that improves accuracy near walls particularly for cases involving flow separation

[Lien and Kalitzin, 2001]. In addition, an elliptic relaxation equation is required for υ2 − f

models because of nonlocal suppression of υ2. These additional expressions for the υ2 − f

model are provided below [Durbin, 1991], [Durbin, 1995]:

∂tυ2 + ~u · ∇υ2 = kf − 6υ2
ε

k
+∇ ·

[
(ν +

νt
σk

)∇υ2

]
L2
kε

∂2f

∂xj∂xj
= f +

1

T

[
(C1 − 6)

υ2

k
− 2

3
(C1 − 1)

]
− C2

Pk
k

(3.20)
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where Lkε is the turbulent length scale, kf is a pressure-strain term, and C1 and C2 are

coefficients provided in [Lien and Kalitzin, 2001]. The production term (Pk) is computed

from the expression [Durbin, 1995]:

Pk = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

(3.21)

and the turbulent time (T ) and length (Lkε) scales are provided below [Lien and Kalitzin,

2001]:

T = max

(
k

ε
, CT

(υ
ε

)1/2
)

LKε = CLmax

[
k3/2

ε
, Cη

(
υ3

ε

)1/4
]

(3.22)

The coefficients for the RANS models were adopted from [Lien and Kalitzin, 2001]:

Cµkε = 0.09, Cµ = 0.22, Cε1 = 1.4

(
1 + 0.05

√
k/υ2

)
, Cε2 = 1.9,

σk = σε = 1.3, C1 = 1.4, C2 = 0.3, CT = 6, CL = 0.23 Cη = 70

(3.23)

A dynamic time step was used with a maximum Courant number and time step of 0.5

and 1.0 s, respectively. 20,000 computational cells were used in the k − ε simulations: 500

longitudinal cells and 40 vertical cells (both uniform). The υ2 − f model (without wall

functions) requires a much finer grid than the k − ε model near the bed (y+ ≈ 1). For the

υ2−f simulations, there were 500 computational cells in the longitudinal direction (∆x = 6.0

mm) and 80 cells in the vertical direction (40,000 total cells). The grid spacing in the vertical

direction was increased by a factor of 20 toward the channel bottom while the longitudinal

spacing was uniform. Rigid lid conditions were assumed for both 2D-RANS models, and

the following expressions were used for wall BCs in the υ2 − f model [Mehdizadeh and

Firoozabadi, 2009]:

~u = 0, k = 0, υ2 = 0, ε =
2νk

y2
, f = 0 (3.24)
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3.5 Integral model approach to simulate air pocket motion in stormwater tun-

nels

For air pocket motion in circular conduits, the flow is three-dimensional and highly

turbulent. Instead of resolving the details of the turbulence and air pocket interface, an

integral model approach was formulated to focus on the leading edge trajectory and average

pocket depth. For this numerical approach outlined in [Ungarish, 2009], a relationship

between the air pocket/GC thickness and its propagation speed is utilized to update the

location of the leading edge at each end of the air pocket. Integral models assume uniform

flow depth at each time step while providing the average GC depth and front celerity. Because

of this uniform depth assumption, integral models, which are referred to as “box models”

[Ungarish, 2009], are much simpler to implement than SWE and NS models. The integral

model formulations follow the work of [Hatcher et al., 2014] and [Chosie et al., 2014].

The integral model is developed for horizontal (no slope) flow conditions following the

experiments conducted by [Chosie, 2013] (see Fig. 3.7). Figure 3.8 presents a schematic

diagram of this modeling approach where x0 and y0 are respectively the initial length and

thickness (measured from the pipe crown) of the air pocket. After the knife gate valves are

fully opened, the air pocket spreads in both directions at unique velocities according to the

leading edge celerity and relative pipe flow velocity. Front conditions relate the air pocket

leading edge celerity and its thickness and offer a closure to the integral model along with

the air phase continuity equation. The front conditions used in the integral model framework

are adapted to account for pipe flow velocities following the rationale by [Hallworth et al.,

1998]. The resulting front condition is:

uf =
dxf
dt

= F
√
gD + Vflow (3.25)
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where xf is the distance traveled by the respective air pocket front, F is the local Froude

number at the upstream and/or downstream air pocket front, D is the pipe diameter and

Vflow is the background flow velocity.

Each front condition uses a different formulation to determine the value of F at the

leading edge of the air pocket. The first front condition applies the theory by [Benjamin,

1968] in which there is a momentum balance solved at the air pocket leading edge. The

control volume (CV) encloses the leading edge so that the flow is uniform and hydrostatic at

the CV boundaries. This formulation considers surface tension following [Wilkinson, 1982].

After integrating Equation 3.25 and solving for xf , the result is the first integral model

considered in this work (referred to as M1):

xf = (F
√
gD + Vflow)(tnew − told)

F =

πD
2A2 −

2πDA2σ

ρgrc
− 4A2

(
A2 cosα +

1

6
D2 sin3 α

)
πD2

(
1

2
πD2 − A2

)


1/2

(3.26)

where tnew is the updated time step; told is the previous time step; α = is the pipe half-angle,

with 2α as the angle subtended from the center of the pipe to the free surface; σ is the air-

water surface tension; rc is the leading edge radius of curvature; and A2 is the cross-sectional

flow area beneath the air pocket equal to
(
π − α + 1

2
sinα

)
D2

4
.

The second integral model approach (M2) utilizes the front condition presented in

[Vasconcelos and Wright, 2008], which in turn was based on the work by [Townson, 1991].

This front condition accounts for the curvature at the air pocket front and has the advantage

of accounting for the depth change at the hydraulic jump that trails the leading edge of the

gravity current. A limitation is that while this front condition formulation does not assume

uniform air pocket thickness, the integral model makes this assumption. This has impacts

in the accuracy of model predictions, as is shown in the Section 4.4. The expression for the

2nd proposed integral model (M2) is:
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xf = (F
√
gD + Vflow)(tnew − told)

F =
π − α− sinα cosα

π

1− 1

3π

(
3 sinα + 3(π − α) cosα− sin3 α

)
A2

π

(
2− A2

π

)


1/2

(3.27)

Since there are initially two air intrusion fronts for the cases studied in this work,

Equation 3.26 or 3.27 are solved twice at each time step. With the front velocities known, the

locations of each front are updated (xfU and xfD) according to Figure 3.8. The methodology

used to solve each leading edge location is identical except that the sign of U changes

depending on the orientation of the background flow with respect to the front motion. One

of the difficulties in this procedure is that xf (xfU or xfD) is a function of α and vice versa. For

the implementation utilized in this work, xf was first computed from parameters determined

at the previous time step. Then, α was updated using the following volume/continuity

expression:

V ol =
LpD

2

4

(
α− 1

2
sin 2α

)
(3.28)

in which V ol and Lp = x0 + xfU + xfD are the air pocket volume and length, respectively.

This nonlinear expression was solved at each time step using the iterative Newton-Raphson

method with a tolerance for α of 10−5. A schematic diagram for this integral model formu-

lation is displayed in Figure 3.8.

Albeit relatively simple, the integral models formulated in this work account for drag,

pressure forces and surface tension (M1), but there are still important limitations. The model

formulation utilizes steady-state theory for the air cavity motion in which zero displacement

is assumed at the stagnation point. The steady-state assumption is valid during the initial

slumping stage, but the air pocket motion will diverge from steady-state theory in later

stages of the propagation [Simpson, 1997]. In addition, as previously stated, the spatial
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variation in depth is neglected. Finally, the adopted radius of curvature at the leading edge

(rc = 0.0034m) followed the work of [Wilkinson, 1982] in rectangular cross-sections, while

results in this work were obtained in circular pipes. Results are validated with experiments

conducted by [Chosie, 2013] for various pocket sizes and background flows in 101.6 mm pipes.

Figure 3.7: Schematic diagram of air pocket motion experiments conducted by [Chosie,
2013].
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Figure 3.8: Schematic Diagram of the integral model approach used to simulate an air
pockets propagating in circular pipes. The direction of ufD is always positive while the sign
of ufU will vary depending on the magnitude of U and y/D.
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Chapter 4

Results

4.1 Two-layer SWE applied to Boussinesq gravity currents

In [Hatcher and Vasconcelos, 2014] it was shown that the one-layer SWE, while able

to predict GC front trajectories, was unable to accurately simulate the head of the current.

One of the primary reasons for this discrepancy is the omission of the ambient layer mo-

mentum in the one-layer SWE formulation. To improve GC predictions, a shock-capturing

two-layer SWE was developed (Section 3.2.2). The following sections analyze this two-

layer model and the use of linear and nonlinear numerical schemes. MicroADV results

obtained in lock-exchange experiments outlined in Section 3.1.3 were used to validate the

SWE model. [Hatcher and Vasconcelos, 2013a] also compared the model with previous SWE

models [Rottman and Simpson, 1983, Ungarish and Zemach, 2005] with good agreement.

In Section 4.1.3 the effects of ambient crossflows are analyzed with respect to the two-layer

SWE.

4.1.1 Numerical analysis of the two-layer SWE

The effect of the numerical scheme and time step size on the accuracy of the numerical

model predictions are analyzed in Table 4.1. The assessment of the model accuracy is

measured using two criteria: the difference between the experimental propagation time and

the respective numerical prediction, and the continuity (mass balance) errors. The continuity

error is defined as the percentage difference in denser fluid volume between the beginning

of the simulation and the moment in time when the GC has propagated the entire length

of the channel. Numerical results, all obtained with a 500-finite volume cell computational
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domain (except where otherwise stated), are compared to experimental conditions (x0 =

76.2 cm, h0 = 40.6 cm, ε = 1% and 2%), but results for larger density differences (not

shown here for brevity) follow the same general trend.

This research determined that the selection of the numerical scheme does not have major

importance on the overall accuracy provided Courant numbers are near unity. Results for

nonlinear numerical schemes are stable for a larger range of Courant numbers, fractional

depth and density differences, but finite difference SWE models performed well for most

scenarios. The continuity errors were less than 0.7% for all numerical model results (Table

4.1), and the largest divergence between the measured and predicted propagation time was

approximately 0.9%. The effect of the time step size was also analyzed by implementing two

values for the Courant number: 0.9 and 0.3. These values were chosen because of the stability

issues while applying the LxW numerical scheme. Although each numerical scheme presented

in this work performed well for this lock-exchange scenario, the nonlinear numerical schemes

performed better for smaller time steps yielded by lower Courant numbers, as anticipated.

For the second-order accurate LxW finite difference method (FDM) scheme, the difference

in propagation time was approximately 2 − 3 sec depending on the Courant number. The

difference in propagation time for the nonlinear schemes was less than 0.1 s. In addition, the

continuity errors were consistently 0.2% less for the nonlinear schemes. The HLL and Roe

schemes presented continuity errors consistently less than 0.1% when Cr = 0.9.

The LxW scheme produced minor oscillations throughout the slumping stage; however,

this disadvantage was minor for the experiments conducted in this work compared to non-

linear schemes. The results for the HLL and Roe schemes were almost identical. A slight

advantage was noticed with the HLL scheme with regards to computational time, but the

Roe scheme was stable for a wider range of initial conditions. For the nonlinear Roe scheme,

the Roe-Pike approach [Toro, 2001] was used to compute the Roe averages. The alterna-

tive approach to compute the Roe averages presented in [Glaister, 1988] performed almost
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Table 4.1: Comparison between lock-exchange experiments and two-layer SWE model pre-
dictions for different time steps and front conditions. The gravity current time of propagation
in the experiments was 93.67 s (ε = 1.0%) and 67.63 s (ε = 2.0%).

Numerical Model Predictions

Cr = 0.9 Cr = 0.3
ε = 1.0% LxW HLL Roe LxW HLL Roe

GC propag. time (sec) 93.49 93.85 93.85 89.97 93.74 93.70
Error w/ experim. (%) -0.20 +0.20 +0.19 -3.95 +0.08 +0.03
Continuity error (%) +0.23 +0.02 +0.04 +0.95 +0.46 +0.48

Cr = 0.9 Cr = 0.3
ε = 2.0% LxW HLL Roe LxW HLL Roe

GC propag. time (sec) 68.00 68.26 68.26 65.44 68.18 68.15
Error w/ experim. (%) +0.54 +0.94 +0.93 -3.24 +0.81 +0.77
Continuity error (%) +0.23 +0.02 +0.04 +0.95 +0.46 +0.48

equally well for smaller Courant numbers but became unstable when the Courant number

approached unity.

4.1.2 Experimental velocity measurements and corresponding numerical pre-

dictions

A comparison between the predicted and measured velocities at an intermediate point

along the tank is presented in Fig. 4.1 for three different depths: h∗ADV = 0.063, 0.125 and

0.188. A 9.14 m long, 12.5 cm wide flume was used in these experiments, and details of

the experimental program are presented in [Hatcher, 2012]. Velocity measurements were

performed with MicroADV probes sampling at a frequency of 20 Hz. Velocity values are

normalized by
√
g′h0 while time values are normalized by xo/

√
g′h0 (dimensionless variables

are denoted with asterisks). The oscillations observed at the beginning of the velocity mea-

surements were caused by the removal of the gate separating fresh and salt water. At about

t∗ = 15 there are sharp increases in velocity values that correspond to the arrival of the front

at the MicroADV station (i.e. x∗ = x/h0 = 7.68). Velocity measurements indicate a gradual

decline in the velocity after an initial peak that was caused by the front arrival. Measure-

ments were continued after the GC advanced the entire length of the channel in order to
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observe the reflections. As the reflected front reached the MicroADV probes, sharp negative

values were generated for velocity denoting the arrival of the reflected front (t∗ = 40) (see

Fig. 4.1).

Figure 4.1 presents a comparison between the experimental measurements for the veloc-

ity and the predictions from the two-layer SWE model using the HLL scheme and Dual-Cell

(DC) boundary condition with the modified Rottman and Simpson front condition and 200

computational cells. In Fig. 4.1 one notices good agreement between numerical simulations

Figure 4.1: Denser fluid velocity hydrographs generated from experiments and the proposed
two-layer SWE model with 200 computational cells. The experimental data is provided from
MicroADV devices (x∗ = 7.68) measuring at three different depths: h∗ADV = hADV /h0 =
0.063, 0.125 and 0.188. The experimental errors were ∆t∗ = 0.01, ∆u∗1 = 0.10 (ε = 1.0%)
and ∆u∗1 = 0.07 (ε = 2.0%).
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and the experimental data for ε = 1.0% and ε = 2.0%. The theoretical front condition from

Benjamin performs slightly better in reproducing the peak velocity magnitudes but performs

far worse at estimating the arrival of the front. After the three depths were analyzed for

ε = 1.0% and ε = 2.0% in Fig. 4.1, an arithmetic average was computed to determine the

depth-averaged velocity profile. Since the MicroADV measurements were conducted at equal

intervals (2.5 cm) from the channel bottom to the depth behind the nose (around 10 cm), this

type of averaging should converge to the depth-average solution. The results are promising

and are presented at the bottom of Fig. 4.1.

The same approach was utilized for the upper MicroADV device (h∗ADV = 0.375, 0.625

and 0.875) to analyze the velocities in the ambient fluid layer (the upper MicroADV was

rotated 180o with respect to the lower MicroADV so that the velocities were positive). The

results are not quite as sharp (see Fig. 4.2) for the upper MicroADV because the wave

amplitudes are closer in magnitude to the layered velocity. Also, the MicroADV probes

are more successful at reading the saltwater, so the depth-averaged results are the focus for

the ambient fluid. The HLL scheme with 200 computational cells was used again with the

same boundary conditions as presented for the lower layer. The proposed two-layer model

performs well at predicting the initial ambient front (t∗ ≈ 15) and the reflection (t∗ ≈ 40).

Between t∗ ≈ 20 − 30, after the arrival of the initial ambient front, the ambient velocities

computed with the two-layer SWE model under predict the results from the MicroADV

much like for the GC layer. Overall, the proposed two-layer SWE model performs well at

describing the velocities of both fluid layers.

4.1.3 Two-layer shallow water equations accounting for ambient crossflows

The ambient flow results are separated into two sections as discussed in Section 3.2.4:

constant-volume and density intrusion gravity currents. The constant-volume simulations

focus on a comparison between proposed and [Hallworth et al., 1998] two-layer SWE models.

For density intrusion simulations, a comparison is made between the same proposed SWE
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model (see Eq. 3.7) and 23 experiments performed by [Paez-Rivadeneira, 1997] with ambient

crossflows (coflows and counterflows). As in previous sections, results are often displayed in

terms of non-dimensional variables, which are denoted with an asterisk.

Constant-volume gravity currents

The initial conditions for the constant-volume simulations were chosen based on the

results presented in [Hallworth et al., 1998]. The length parameters are normalized by the

initial depth (h0): h∗ = 1, L∗ = 14, x∗0 = 1 in which the left side of the current is located

7.5 units from the beginning of the tank (see Fig. 4.3). The depth ratio (h0/H = 0.25) is

large enough so that the ambient velocity is important for the GC momentum but small

enough to avoid shocks [Hallworth et al., 1998]. As stated in the methodology section, the

initial velocity of the denser fluid is zero. The ambient velocity (U∗ = 0.1) is moving to

Figure 4.2: Ambient fluid depth-averaged velocity hydrographs generated from experiments
and the proposed two-layer SWE model with 200 computational cells. The experimental data
(ε = 1.0% and 2.0%) is provided from MicroADV devices at x∗ = 7.70. The experimental
errors were ∆t∗ = 0.01, ∆u∗2 = 0.10 (ε = 2.0%) and ∆u∗2 = 0.07 (ε = 2.0%).
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the left so that the right front moves slower and with greater depth than the left GC front.

The velocities and times are normalized by
√
h0g′ and

√
h0/g′, respectively. The simulation

consisted of 500 computational cells with a Courant number of 0.9.

At the beginning of the simulation (t∗ = 0.5), sharp depth gradients exist in the middle

of the solution domain due to the depression wave generated from the GC release. The depth

results using the HLL scheme in Fig. 4.3a) compare fairly well with [Hallworth et al., 1998],

but the maximum depth is underestimated due to first order accuracy. The Lax-Wendroff

second-order accurate FDM scheme in Fig. 4.3b) performs better for this feature. For the rest

of the simulation, both numerical schemes result in very similar depth profiles and almost

identical front trajectories.

Throughout the simulation the trajectory of the left front compares very well between

[Hallworth et al., 1998] and proposed SWE models. The results for the right front compare

Figure 4.3: Superimposition of [Hallworth et al., 1998] (dotted line) and proposed (dark line)
two-layer SWE models using a) HLL FVM and b) LxW FDM schemes.
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well to one another but start to diverge at t∗ ≈ 10. This small divergence is independent

of the front condition since both models use the HS expression. The cause of error in

trajectory is believed to stem from minor differences in the mathematical model and/or in

the front BC solution strategy. There are differences between the shock-tracking technique

used in the proposed model and the characteristic approach from [Hallworth et al., 1998]

using interpolation. The continuity error for the proposed model was consistently around

0.6%.

Density intrusion gravity currents

The proposed SWE model predictions were utilized to compare the density intrusion

simulations in terms of the front velocity experimentally measured at a specified location

4.0− 4.5 m away from the injection point. The velocity was measured by visually tracking

the location of the GC front using a stop watch with a precision of 0.01 seconds. Like the

constant volume simulations, 500 computational cells were used with a Courant number of

0.9, and the continuity error was consistently less than 1%.

The front velocity results compare fairly well with the experiments for both coflows

(Fig. 4.4a) and counterflows (Fig. 4.4b). In coflow simulations the ambient velocity is in

the same direction as the GC advance. All nine of the experimental results conducted by

[Paez-Rivadeneira, 1997] with (0.16 ≤ h0/H ≤ 0.23) are analyzed. The results in Fig. 4.4a)

compare very well to one another. Initially, the discrepancy between predictions and exper-

iments was larger, but the front condition was altered based on observations from [Simpson

and Britter, 1980]. They determined from their experiments that U is approximately 60%

of the mean velocity in the channel. [Hallworth et al., 1998] utilized this methodology as

well in their model and stated that the GC front only experiences around 60% of the mean

ambient velocity in their experiments as well. Once this change was made to the GC front

condition (Eq. 3.8), the SWE results compare fairly accurately to the experimental results

presented in [Paez-Rivadeneira, 1997].
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The results for the counterflow simulations (Fig. 4.4b) compare well also, but there are

a few outliers with less accuracy. Similar to the coflows, the counterflow results improved

substantially when the front velocity was altered with an accurate value for the ambient

velocity. All 14 counterflow experiments conducted by [Paez-Rivadeneira, 1997] at a sampling

location of 4.5 m from the source were analyzed. The results are very accurate for all but

3− 5 runs in which the front velocity is slightly overestimated by the SWE model.

Figure 4.4: Front velocity (ms−1) comparison between [Paez-Rivadeneira, 1997] experiments
and proposed two-layer SWE model for a) coflows and b) counterflows.
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4.2 Alternatives for flow solution at the GC leading edge

The three leading edge BC solution strategies discussed in Section 3.3 are analyzed

for constant-volume and density intrusion gravity currents. In computing the GC leading

edge location, the BC methods are fairly indistinguishable [Hatcher and Vasconcelos, 2014].

However, the effects of computational time and continuity error can be significant and are

analyzed in the following section. This section follows [Hatcher and Vasconcelos, 2014] where

the one-layer SWE model was validated with the numerical model from [Ungarish, 2009] and

experiments by [Paez-Rivadeneira, 1997].

4.2.1 Constant-volume gravity currents

To analyze the front BC solution strategies for constant-volume GC, h0 was adjusted so

that (0 < φ ≤ 0.5) while the following initial conditions were constant: H = 1 m, x0 = 1 m,

L = 10 m. For Boussinesq, constant-volume gravity currents, the propagation is a function

of the depth ratio [Ungarish, 2009]. Thus, the deep ambient (φ ≈ 0) and critical condition

(φ = 0.5) scenarios were chosen to generate the data in Tables 4.2 and 4.3.

In order to compare the front BC solution strategies, continuity errors, time steps and

computational times were quantified. The continuity error (negative values equate to mass

lost) is computed from the difference between initial (xLE = x0) and final (xLE = L) GC

volumes. Results for continuity error and computational times are shown in 4.2 (φ ≈ 0) and

Table 4.3 (φ = 0.5) for the tested range of discretization sizes. Because the front location

is changing within the solution domain, the number of discretization cells is a maximum

value that represents the number of cells at xLE = L. Computations were carried out

until the leading edge interface was at position x/x0 = 10 or until the computational time

reached one hour. The number of time steps for each front BC solution strategy was almost

identical regardless of discretization size, which allowed for a more accurate computational

time comparison. In addition, GC front trajectory results were very similar between each

BC strategy.
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Table 4.2: Comparison between measured continuity errors and computational time for STI,
GOC and DC strategies - constant volume GC flows, deep ambient condition (φ ≈ 0).

Method No. of cells 100 200 500 1000 5000 10000

STI Cont. error (%) -7.66 -3.77 -1.49 -0.74 -0.15 -0.08
Comp. time (sec) 0.44 0.69 1.78 3.87 38.02 129.47
No. of time steps 180 363 911 1824 9131 18265

GOC Cont. error (%) -0.48 -0.10 +0.15 +0.12 +0.05 NA
Comp. time (sec) 0.61 1.22 5.04 19.48 2469 > 1 hr
No. of time steps 182 365 913 1826 9133 NA

DC Cont. error (%) -6.17 -2.56 -1.02 -0.51 -0.10 -0.05
Comp. time (sec) 0.17 0.96 2.33 5.11 44.01 144.09
No. of time steps 181 363 911 1825 9132 18265

Table 4.3: Comparison between measured continuity errors and computational time for STI,
GOC and DC strategies - constant volume GC flows, critical condition (φ = 0.5).

Method No. of cells 100 200 500 1000 5000 10000

STI Cont. error (%) -10.20 -5.90 -3.64 -2.84 -2.34 -2.27
Comp. time (sec) 0.32 0.66 1.77 3.90 38.81 137.48
No. of time steps 195 394 990 1984 9939 19882

GOC Cont. error (%) -4.08 -1.53 -0.46 -0.19 -0.02 NA
Comp. time (sec) 0.39 0.97 4.84 20.64 2586 > 1 hr
No. of time steps 198 397 993 1988 9942 NA

DC Cont. error (%) -6.96 -3.58 -1.44 -0.71 -0.15 -0.07
Comp. time (sec) 0.35 0.72 1.87 4.18 40.25 127.44
No. of time steps 196 396 992 1986 9941 19884

The results for both initial conditions indicate a similar trend for each BC approach. The

Grid-of-Characteristics (GOC) approach results consistently yielded the smallest continuity

error, yet this method is clearly the most computationally intensive. The Specified-Time-

Intervals (STI) approach resulted in the largest continuity error, particularly for larger depth

ratios, but had the smallest computational time. The DC approach computational time was

slightly larger than the STI method, albeit with much smaller continuity errors especially

for larger depth ratios.
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4.2.2 Density intrusion gravity currents

For the density intrusion GC simulations, the three BC approaches were tested for the

conditions presented in the experimental work by [Paez-Rivadeneira, 1997]. The experi-

mental apparatus length was 10 m, and the advancing front velocity was experimentally

measured at station x = 4 m from the denser fluid inlet. Various conditions were tested

involving many injection flow rates per unit width (uhin), depth ratios at the inlet (φin) and

reduced gravity (g′). In the present study, a comparison between the approaches to solve

flows at the leading edge is performed for 20 of the tested conditions. The ranges of experi-

mental values considered in this comparison were: φin from 0.10− 0.417, g′ from 3.60− 8.82

cm s−2, and uhin from 23.85−49.87 cm2 s−1. The resulting range of front velocities observed

in this work was 3.81− 6.43 cm s−1.

For all tested conditions, the continuity errors were relatively small with the largest

around 3% and in most cases 1%. To be consistent with the reported experimental conditions,

both depths and flow rates were enforced at the apparatus boundary. Continuity errors and

computational times are shown for two of the simulated cases in Fig. 4.5. Results follow

approximately the same general trend observed in the previous example involving constant-

volume GC flows. Continuity errors were in general largest for the STI approach and smallest

for the GOC approach. Computational time, on the other hand was smallest for the STI

approach, but results with the DC approach are comparable especially for finer discretization.

GOC results required much larger time when the number of grid cells were 5, 000 or above.

One may notice that the increase of computational cells for case (b) in Fig. 4.5 has not

resulted in zero continuity errors in any of the tested solutions. This lack of convergence

has to do with the enforcement of h and uh at the system boundary. In the context of

open-channel flow problems, it is known that such practice leads to accuracy issues when a

characteristic line from the domain arrives at the system boundary. An alternative solution

at the system boundary that enforced only the inflow and used a C− characteristic line

was used in such cases, and continuity errors were much reduced (results not shown for
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brevity). However, to maintain consistency between the 20 cases selected for comparison, as

well as with the reported experimental conditions, all results shown enforced these two flow

variables.

A comparison between experimentally measured front velocities and model predictions

using the three solution approaches for the flow at the leading edge is shown in Fig. 4.6. All

simulations were obtained with a 100-cell grid, as these front velocity results were not too

dependent on the discretization size. One notices that there is generally good agreement

between predicted and measured front velocities, which were not dependent on the selected

approach to solve flow velocities at the GC leading edge. The one-layer SWE results displayed

little bias compared to the experimental measurements.
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Figure 4.5: Continuity error and computational time comparison for density intrusion GC
flows using the DC, GOC and STI approaches to compute flows at leading edge region. For
the experimental conditions, (a) φ = 0.16, g′ = 6.75 cm s−2, uin = 7.28 cm s−1 and (b)
φ = 0.40, g′ = 6.17 cm s−2, uin = 5.22 cm s−1.
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Figure 4.6: Front velocity (ms−1) comparison between single-layer SWE model and density
intrusion experiments conducted by [Wright and Paez-Rivadeneira, 1996].
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4.3 One-layer SWE and 2D RANS comparison for lock-exchange gravity cur-

rents

Results presented thus far indicated that computational effort for GC flows solved with

the SWE is generally small even for fine discretization, particularly when DC or STI meth-

ods to solve flows at the leading edge are used. While continuity was mostly preserved in

calculations, a pertinent question is how well those models represent the advance of GC flows

over time. SWE models are clearly unable to describe the detailed flow structure for GC

flows due to their one-dimensional nature, so one anticipates that the GC shape cannot be

accurately represented. However, one question is whether the trajectory of the leading edge

is well predicted over the slumping and self-similar stages of the GC flow.

To address this question a three-way comparison is performed for constant-volume GC

between experimental results presented by [Marino et al., 2005], predictions from the SWE

model (using the DC strategy) and 2D-RANS modeling strategies presented in the method-

ology. For the CFD model, the choice of k− ε turbulence model was motivated by simplicity

and popularity, whereas υ2 − f model was chosen because of improved accuracy in compar-

ison with other RANS models [Mehdizadeh and Firoozabadi, 2009]. Only constant-volume

GC flows are used in this comparison between SWE and 2D-RANS models.

The partial depth experimental results from [Marino et al., 2005] were used for compar-

ison and are displayed in Figs. 4.7, 4.8, and 4.9. They were able to determine the equivalent

GC depth with a lighting technique outlined in [Dalziel, 1993] in which the saltwater mass

was measured within 2% accuracy. GC flow conditions represent the case for x0 = 0.1 m,

L = 3 m, h0 = 0.16 m, H = 0.4 m, φ = 0.4 and g′ = 0.098 ms−2.

According to the GC profiles displayed in Fig. 4.7, the SWE model predicts the early

stages of front location with fair accuracy in comparison with [Marino et al., 2005] exper-

iments, with better accuracy than the 2D RANS simulation using the υ2 − f model. As

shown in Fig. 4.7d for t = 40.0 s, 2D-RANS predictions at the leading edge of the GC

exceed the SWE prediction by a slight amount. As indicated in Fig. 4.8, the same trend
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is observed when the k − ε model is considered, except that at latter stage there is better

agreement between this 2D-RANS model and the SWE prediction. However, as indicated

in the trajectories presented in Fig. 4.9, the best representation of the leading edge location

measured in the experiment at t = 40.0 s (t∗ = 50.1) was yielded by the υ2 − f model.

As indicated in Figs. 4.7 and 4.8, SWE predictions fail to present an accurate depiction

of gravity current head throughout the different stages of the flow propagation, particularly

at the earlier stages. Both υ2 − f and k − ε models yield a fair representation of the shape

Figure 4.7: Gravity current propagation comparison between (solid line) SWE and 2D RANS
(υ2− f) simulations and experiments (dashed line) by [Marino et al., 2005] for (a) t = 4.5 s,
(b) t = 6.9 s, (c) t = 9.9 s, and (d) t = 40.0 s: x0 = 0.1 m, L = 3 m, h0 = 0.16 m, H = 0.4
m, φ = 0.4 and g′ = 0.098 ms−2.
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of the GC leading edge. The former presented a better representation of the flow conditions

behind the leading edge, as the k − ε model (with wall functions) seemed to excessively

diffuse this region upstream of the GC head.

The front trajectories are compared in Fig. 4.9 for the two numerical modeling alter-

natives and the same [Marino et al., 2005] experiment analyzed in Figs. 4.7 and 4.8. All

of the numerical models predict the location of the front reasonably well before the end of

the initial slumping stage (t∗ ≈ 18). In comparison with the experiments, the υ2 − f model

Figure 4.8: Gravity current profile comparison between (solid line) SWE and 2D RANS
(k − ε) simulations and experiments (dashed line) by [Marino et al., 2005] for (a) t = 4.5 s,
(b) t = 6.9 s, (c) t = 9.9 s, and (d) t = 40.0 s: x0 = 0.1 m, L = 3 m, h0 = 0.16 m, H = 0.4
m, φ = 0.4 and g′ = 0.098 ms−2.
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clearly is the most accurate within the later self-similar stage. The SWE model simulated

accurately the initial slumping stage and fairly accurately the unsteady self-similar phase (a

closer approximation than k − ε model results).

For this constant-volume GC flow, the computational times were compared on the same

computer with a 2.40 GHz clock CPU. The SWE model simulation time was 6.4 seconds. The

k − ε model with wall functions yielded results in slightly over 20 minutes (1, 215 seconds)

while the υ2 − f model had the longest computational time of almost 5 hours (17, 251

seconds). These times indicate that depending on the modeling objectives there may be

some advantages in using a simpler SWE simulation for GC flows. This could be the case

when a large number of simulations are required, as exemplified in parametric studies such

as the ones conducted by [Ungarish and Huppert, 2002] and [Hogg et al., 2005].

Figure 4.9: GC front trajectory comparison between SWE and 2D RANS simulations and
[Marino et al., 2005] experiment.
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4.4 Air pocket motion in closed conduits

To this point, all of the simulations have involved Boussinesq flows. As discussed in

Section 3.5, two integral models were formulated for non-Boussinesq flows in circular con-

duits. The proposed integral model was tested with four different air pocket volumes and

background flow rates, all involving horizontal pipe conditions. The model alternatives (M1

and M2) discussed in the Methodology were compared to [Chosie, 2013] experiments to

analyze leading edge trajectories. Both alternatives were simple to implement and involved

relatively small computational times. Thus, simulations were concluded in a fraction of a

second.

The limitation of slope was due to the inability to obtain accurate and systematic

experimental measurements of air pocket fronts. Another limitation of the numerical model is

that comparisons only involved downstream moving fronts when ambient flows were present.

This is mostly due to the fact that the upstream moving fronts lasted briefly as they were

quickly sheared by ambient flows. Such conditions yielded a limited amount of experimental

data points and prevented a comparison between experimental and model results.

The air cavity front trajectories for horizontal flow experiments are compared to both

numerical model alternatives (M1 and M2) in Fig. 4.10. The pocket front coordinate (x) was

normalized by the initial air pocket length (x0) and the time by (x0/
√
gD). The experimental

results are clearly affected by the background flow rate in which the air cavity front velocity is

governed by Eq. 3.25 as described in [Hallworth et al., 1998]. The effect of air pocket volume

on front velocity in the tested conditions was not as important as the ambient velocity.

Figure 4.10 indicates that in the absence of background flow, M1 consistently compared

better to experimental results, and this agreement was considered good. On the other hand,

M2 consistently underestimated the air pocket front velocity, and this error increased for

larger air pocket sizes. M2 predictions were more accurate or comparable to M1 predictions

only for cases involving smaller air pocket volumes (V ol∗ = 1.2 and V ol∗ = 2.2) in the

presence of higher background flows. The accuracy of M1 appears unaffected by different
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background flows and pocket sizes. These results indicate that the surface tension parameters

presented in [Wilkinson, 1982] for rectangular pipe cross sections were adequate for circular

pipes.

Figure 4.10: Air pocket front trajectory comparison between experiments and both integral
models for various background flows and pocket volumes: a) V ol∗ = 1.2, b) V ol∗ = 2.2, c)
V ol∗ = 3.1, and d) V ol∗ = 4.1. The solid lines represent the integral model predictions, and
the data markers represent experimental values.
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Table 4.4: Cavity Froude number (F = uf/
√
gD) comparison for the largest and smallest

air pocket volumes tested with various background flows.

Q∗ = Q/
√
gD5 0 0.13 0.27 0.39

V ol∗ = 1.2

Experiments 0.284 0.451 0.672 0.804
M1 prediction 0.268 0.467 0.664 0.826
M2 prediction 0.253 0.431 0.617 0.773

V ol∗ = 4.1

Experiments 0.419 0.594 0.751 N/A
M1 prediction 0.427 0.612 0.809 0.972
M2 prediction 0.323 0.496 0.683 0.840

While experimental observations indicated that the initial stages (t∗ <2) of the air

pocket propagation were characterized by a gradual increase on the air pocket celerity, both

modeling approaches neglected this effect and yielded larger celerity values at these initial

seconds of the flow. As shown in Figure 4.11, both model alternatives assume a larger

celerity value than what was measured in these initial stages of the flow. This discrepancy is

attributed to the limitations and simplifying hypothesis in the gravity current integral model.

After t∗ > 2, results from M1 are fairly close to the observations from tested conditions.

Results yielded by the M2 model compared well only with the the smallest air pocket tested

V ol∗ = 1.2.

The accuracy of air pocket velocity predictions are reflected in a comparison between

measured and predicted cavity Froude numbers (F = uf/
√
gD), which are provided in Table

4.4. The smallest (V ol∗ = 1.2) and largest (V ol∗ = 4.1) air pocket volumes from experiments

were selected for the comparison. The front velocity (uf ) was computed from the average

velocity between t∗ = 0 and t∗ ≈ 2.5. M1 was more accurate of the two integral models

for each one of the experiments tested in this comparison. This model underpredicted F

values by only 0.1% for V ol∗ = 1.2 experiments while overpredicting results in V ol∗ = 4.1

experiments by 4.2%. M2 underpredicted F values by an average of 11.5% with larger

discrepancies occurring for larger air pockets and smaller background flows.
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Figure 4.11: Air pocket front celerity comparison between experiments and both integral
models for various background flows and pocket volumes: a) V ol∗ = 1.2, b) V ol∗ = 2.2, c)
V ol∗ = 3.1, and d) V ol∗ = 4.1. The solid lines represent the integral model predictions, and
the data markers represent experimental values.
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Chapter 5

Conclusions

The first part of this research focused on shock-capturing shallow water equation (SWE)

models to simulate lock-exchange gravity currents. Experiments were conducted to analyze

the use of MicroADV devices focusing on Boussinesq currents. The SWE model was tested

with these ADV results and superimposed with model results from [Rottman and Simpson,

1983] and [Ungarish and Zemach, 2005]. The conclusions are summarized below:

• The proposed SWE is similar to shock-capturing models used to describe free-surface

bores. Non-linear finite volume schemes (HLL and Roe) were successfully implemented,

and their performance was better (in terms of continuity errors and resolving discon-

tinuities) than finite-difference alternatives (see [Hatcher and Vasconcelos, 2013a] for

details).

• The two-layer SWE model can be rewritten in conservative and divergent format in

which the ambient layer influences are incorporated as source terms, rendering the

implementation into finite volume method (FVM) approaches simple and accurate.

• A shock-capturing approach can simulate the upstream-propagating shock generated

upon the gate release in lock-exchange simulations. In addition, results of the hydraulic

bore reflected off of an end wall also compare well to previous shock-fitting approaches.

• A new leading edge BC solution alternative was proposed [Hatcher and Vasconcelos,

2014] that has consistent implementation for both one and two-layer SWE models.

Continuity errors were consistently less than 1% with the proposed boundary condition

(BC).
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• MicroADV probes successfully measured the velocities at three different depths in each

fluid layer. Depth-averaged MicroADV results were obtained by taking the arithmetic

average of measured velocities at different depths, and results compare well with SWE

models [Hatcher and Vasconcelos, 2013a]. The key discrepancy for SWE model results

is with maximum velocities, which were underestimated. Model results using Ben-

jamin’s front condition indicated a good match for maximum velocities, but leading

edge arrival times were significantly underestimated due to entrainment effects.

Leading edge BC solution alternatives were analyzed in [Hatcher and Vasconcelos, 2014]

for constant-volume and density intrusion gravity currents in the second phase of this re-

search. The three BC solution strategies (referred to as Grid-of-Characteristics (GOC),

Specified-Time-Intervals (STI) and Dual-Cell (DC) approaches) constitute variations of solv-

ing flows at the leading edges of gravity currents. STI and GOC methods apply characteristic

equations and Riemann invariants alongside a front condition that accounts for drag. The

DC method enforces explicit mass and momentum conservation for two cells at the leading

edge in addition to a front condition. The leading edge BC approaches were compared in

terms of continuity errors and computational time. Also in this second phase [Hatcher and

Vasconcelos, 2014], the applicability of SWE models is explored focusing on constant-volume

currents. Model results were compared to [Marino et al., 2005] experiments and a 2D com-

putational fluid dynamics (CFD) model that was developed in OpenFOAM using the k − ε

(with wall functions) and υ2− f (without wall functions) turbulence models. A summary of

the findings is provided below:

• All three front BC approaches performed reasonably well in terms of continuity errors

with values consistently less than 3% for computational cells greater than 500. As

expected, the GOC approach performed noticeably better than the STI method, which

utilizes interpolation. Continuity error results with the DC approach were in between

the MOC alternatives.
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• For the computational time comparison, all of the methods were fairly efficient except

at discretization sizes exceeding 1,000 cells in which the GOC approach performed

poorly. For GOC cases with large computational sizes, the number of characteristic

lines generated was excessive and deemed this BC method unreasonably calculation

intensive. The STI approach was slightly more computationally efficient than the DC

approach, but both methods performed well.

• Compared to [Marino et al., 2005] experiments and 2D Reynolds-Averaged-Navier-

Stokes (RANS) constant-volume simulations, the SWE model performed fairly well in

terms of the gravity current (GC) front trajectory with errors consistently less than 5

%. However, the GC depth near the head was not simulated accurately as the details

of the head were not resolved. Each of the numerical methods was fairly accurate in

predicting the front trajectory in the slumping stage, but the υ2− f model was clearly

superior in the self-similar or unsteady flow stage. The one-layer SWE model and k−ε

model predicted leading edge arrival times with similar accuracy with both models

underpredicting front velocities.

• With computational efforts orders of magnitude smaller than even the simplest 2D-

RANS alternatives, SWE models may constitute an attractive means to obtain large

sets of modeling results if modeling objectives are focused on the description of GC

trajectories or average depths.

The last stage of this research consisted of an integral model development that was

used to simulate non-Boussinesq currents propagating in stormwater tunnels [Hatcher et al.,

2014]. Model results performed well in comparison with air-water experiments conducted

by [Chosie, 2013]. Two integral models were formulated, which are referred to as M1 and

M2. M1 incorporates theory from [Benjamin, 1968] and [Wilkinson, 1982] and accounts

for surface tension in addition to drag and pressure forces. M2 is formulated from a more

sophisticated front condition presented in [Vasconcelos and Wright, 2008] accounting for the
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hydraulic jump seen in these GC experiments. M2 does not account for surface tension. The

conclusions for this last stage and the related work of [Chosie et al., 2014] are summarized

below focusing on the numerical work:

• The celerity of discrete air pockets in stagnant flow conditions depended on air pocket

volume, particularly for shallower slopes (below 0.5%), in agreement with [Benjamin,

1968] and [Wilkinson, 1982] observations. For stronger slopes, celerity values were not

as dependent on initial pocket volume as air accumulation at the leading edge of the

air pocket reduced differences on the pocket thickness.

• The celerity of the air pocket leading edge in horizontal and adverse slopes was ac-

curately predicted by the summation of values observed in quiescent conditions and

ambient flow velocities.

• Predictions of the air pockets leading edge coordinate yielded by proposed numeri-

cal models compared well with experiments. M1 consistently yielded better results

than M2 regardless of flow condition. This difference was highlighted for large air

pocket volumes and smaller ambient flows in which M2 did not perform well. Results

converged for the numerical modeling alternatives in larger ambient flow cases.
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Chapter 6

Future Work

Two-layer SWE formulations were proposed for Boussinesq gravity currents using con-

servative and divergent format with one model accounting for initial ambient motion. How-

ever, extensions to axisymmetric, non-Boussinesq, particle-driven and stratified gravity cur-

rents have not been proposed as well as gravity currents propagating over porous media. In

addition, an extension to two dimensions would serve as an important contribution to the

hydraulics community.

For non-Boussinesq gravity currents in closed conduits, the integral model proposed in

this work is capable of simulating a large range of background flow velocities and air pocket

volumes. However, the model is not applicable for sloped pipelines. To extend the integral

model to incorporate slopes (So ≤ 0.02), additional experiments are be required in which the

shape of the GC front needs to be accurately measured to account for Buoyancy at the GC

front. Moreover, this integral model could be utilized as a sub model in more sophisticated

stormwater tunnel models that currently do not account for air pocket motion. The details

of air pocket formation and collapse in closed conduits and this impact on gravity current

propagation is left for future investigations.
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