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Abstract

The use of reverse time chaos allows the realization of hardware chaotic systems that

can operate at speeds equivalent to existing state of the art while requiring significantly

less complex circuitry. Unlike traditional chaotic systems, which require significant analog

hardware that is difficult to realize at high speed, the reverse time system can be realized

with only a FPGA calculating a digital iterated map that drives a simple series RLC filter.

Because the dynamics of this system are determined by an iterated map, both Lorenz-like

and Rössler-like dynamics can be implemented without requiring any hardware adjustments.

Precise control of this system can also be maintained by adjusting the initial condition of

the iterated map.

Matched filter decoding is also possible for the reverse time system due to its possession

of a closed form solution formed partially by a linear basis pulse. Coefficients have been

calculated to realize the matched filter digitally as a FIR filter. Numerical simulations

confirm that this correctly implements a matched filter that can be used for detection of the

chaotic signal. In addition, the direct form of the FIR filter has been implemented in HDL

with demonstrated performance in agreement with numerical results.
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Chapter 1

Introduction

1.1 Overview

Although many types of chaos continue to evade analytic solutions, the assumption that

no solvable chaotic dynamics exist has been broken by the discovery of hybrid (consisting of

interdependent continuous time and discrete time states) chaotic systems which possess exact

solutions [3–5]. A linear matched filter, which can be used to exactly recover the discrete-

time state of the chaotic system when driven with only that system’s continuous-time state,

has also been developed using these solutions. Matched filter decoding significantly reduces

the difficulty of integrating chaos into a wide range of electronic systems, including both

communication and radar.

One of the most promising areas of research in chaotic systems has long been in their

utility for communication [6, 7]. Previous work has shown that such systems can be con-

structed and tuned such that they possess advantageous dynamics for various communication

schemes [8, 9]. In addition to possessing these targeted dynamics, chaotic systems can also

be subjected to control schemes that can maintain desired trajectories [10]. By combining

these characteristics with matched filter decoding [4,11], many of the necessary components

for a modern high-performance communication system may be realized with chaos-based

systems.

Various elements of such systems have been analyzed to determine how they might

perform in a number of applications. In the presence of additive Gaussian white noise, chaotic

systems possess error rates comparable to communication systems currently in use [12, 13].

Multipath propagation has also been shown to not pose the significant challenge it usually

presents when the propagated waveform is chaotic [14].
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A second area of interest in recent chaotic research is in its application for radar wave-

form generation [15]. The inherently wideband nature of signals found in any chaotic system

provides many advantages for radar [16,17]. Using such techniques has the potential to sig-

nificantly improve the resolution of radar systems while further reducing their susceptibility

to intercept and jamming. In addition, both weather [18] and imaging [19] applications of

radar systems can benefit from wideband chaotic signals.

Actually realizing physical systems that exhibit the chaotic dynamics necessary for these

applications has long proven to be a difficult task. Although surprisingly simple systems

constructed from both familiar [20, 21] and exotic [22, 23] components have been shown to

behave chaotically, such systems do not readily lend themselves to either exact solutions or

control. Simulations have shown that hardware can be developed for a controllable chaotic

system with an exact solution [24], but this hardware relies on many analog components

which are not expected to scale well to high speed operation.

Reverse time chaos provides a potential solution for realizing chaos in hardware with

both solvable and controllable properties without sacrificing the ability to scale in speed.

First proposed by Corron et. al. in [25], reverse time chaos describes behavior that differs

from traditional chaos by using the current state of the system to represent all of its past

states instead of all of its future states. Despite this difference, reverse time chaos retains a

positive Lyapunov exponent and a corresponding sensitivity to initial conditions that defines

traditional chaotic systems. The many similarities between traditional (or forward time)

and reverse time chaos also allows for formulation of an exact solution. Because of this, in a

method following the systems in [4,5], the development of a linear matched filter which can

be used to detect the original chaotic signal is possible.

1.2 Classical Chaotic Systems

To better understand the behavior of chaotic systems, it is helpful to first clearly define

what properties such a system is expected to possess. Three significant characteristics are

2



often agreed upon as necessary for chaos: the system must exhibit aperiodic long-term

behavior, it must be deterministic, and it must show sensitive dependence to its initial

conditions [26, 27]. To meet the first criterion, the system must not develop any patterns

(either long range or short range) in its behavior regardless of how long it is run. The second

criterion requires that the system does not involve any random process. This leads to the

conclusion that, provided all initial conditions are defined to infinite accuracy, the system

will always produce the same output for a given input. A visual example, shown in the

following figure, best describes the third criterion.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−2

−1

0

1

2

3

t

u

u0=0.5
u0=0.500001

Figure 1.1: Two Chaotic Trajectories with Close Initial Conditions

Each curve shows a chaotic trajectory u starting at t = 0 with the initial condition u0.

The value of u0 was changed by 0.000001 between the two runs (all other initial conditions

remained constant). As shown, the trajectories of u begin to vary significantly after only a

short time; this behavior demonstrates the requisite sensitivity to initial conditions. Note

that u and t are both plotted as dimensionless quantities - this convention will be followed

for all results generated using numerical models.

3



It is important to highlight the caveat requiring initial conditions be defined to infinite

accuracy in the second criterion for chaos, because, in any physical system or any numerical

model not using fixed width representations, such a definition is not achievable. When

combined with the conclusions from the third criterion for chaos, this caveat gives rise to

the seemingly random behavior shown by chaotic systems.

1.2.1 Lorenz

The canonical example of a chaotic system is often given by the Lorenz system, first

described by Edward Lorenz in 1963 as a rudimentary means of atmospheric modelling.

Prior to this work, it was a commonly held belief that low order systems were incapable of

generating complex dynamics. The Lorenz system can be described by the following three

coupled equations:

ẋ = −σx+ σy (1.1)

ẏ = −xz + rx− y (1.2)

ż = xy − bz (1.3)

where x, y, and z are the state variables and σ, r, and b are control parameters [28]. Although

the mathematical description of this system appears relatively simple (only two nonlinear

terms are present), certain sets of control parameters will produce highly complex chaotic

dynamics. Figure 1.2 shows a chaotic trajectory for x generated by a numerical simulation

with the values σ = 10, r = 28, and b = 8
3
.

4



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−20

−10

0

10

20

t

x

Figure 1.2: Numerical Simulation of Lorenz System (time)

The dynamics of x demonstrate significant complexity when compared against its rel-

atively simple governing equations. Although x appears to follow a pattern of oscillating

around two distinct levels, the number of oscillations which occur after each switch does not

(and will never) settle in to any period. This type of behavior, where the time around each

level can take any value, is often referred to as Lorenz like dynamics.

Often referred to as a phase portrait, a plot of one of a chaotic system’s state variables

against one or more of its other state variables is a common method to gain additional insight

into the dynamics of chaotic systems. Eliminating time as a variable allows for long range

dynamics to become apparent and provides details not otherwise visible. A phase portrait

for the Lorenz system with y and z plotted versus x is shown in the following figure.
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−20
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−20
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20

0

20

40

60
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z

Figure 1.3: Numerical Simulation of Lorenz System (phase)

The shape shown in Figure 1.3 is commonly known as the Lorenz Butterfly. As in the

plot versus time, visual inspection reveals two points around which the trajectories appear to

orbit with differing values in the radius of these orbits corresponding to the varying amounts

of time elapsed around each level. Additional symbolic analysis would reveal that these

points are the singular points of the system. Not shown is the amount of time elapsed;

for Figure 1.3, the simulation was stopped at t = 1000. This extended simulation time

reveals that the system experiences long term boundedness. The bounding area in which

the trajectories of the system remains is often referred to as an attractor.

1.2.2 Rössler

A second well known chaotic system was originally developed in 1976 by Otto Rössler.

This system was not developed as a means to describe a physical phenomenon, but rather

as an attempt to produce a model with dynamics similar to the Lorenz system without the

6



difficulty in analysis. The Rössler system is defined as:

ẋ = −y − z (1.4)

ẏ = x+ ay (1.5)

ż = b+ zx− zc (1.6)

where x, y, and z are again the state variables and a, b, and c are control parameters [29].

This system reduces analytic complexity by possessing only a single nonlinear term, but, as

with the Lorenz system, will generate chaotic trajectories for some sets of control parameters.

The trajectory of x is shown in the following figure for a = 0.1, b = 0.1, and c = 14.

0 10 20 30 40 50 60 70 80 90 100
−20

−10

0

10

20

x

y

Figure 1.4: Numerical Simulation of Rössler System (time)

At first glance, the Rössler system does not appear to mimic any of the complex behavior

readily apparent in the Lorenz system. Closer inspection reveals that the magnitude of x

grows for varying durations of t before abruptly decreasing. The phase portrait, shown below

in Figure 1.5, provides a clearer view of this process.
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Figure 1.5: Numerical Simulation of Rössler System (phase space)

Most of the orbits in this system remain centered around a single point, explaining the

almost sinusoidal appearance in Figure 1.4. Occasionally, however, an orbit will jump up

in the z plane; when this event occurs, it never lasts for more than one-half of an orbit.

This type of behavior is referred to as a fold and serves as the defining characteristic of the

Rössler system.

1.2.3 Chua

While it does not generate its own distinct type of chaos, Chua’s circuit (named after

Leon Chua) provides an excellent introduction to the development of electronic systems that

can mimic chaotic dynamics described by mathematical models. The governing equations

for this system are given by:

ẋ = αx− αy − αf(x) (1.7)

ẏ = x− y + z (1.8)

ż = −βy (1.9)
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where x, y, and z are the state variables, α and β are control parameters, and f(x) is a

function that provides a nonlinear response [30]. A schematic is shown in Figure 1.6 for a

circuit implementation of Equations 1.7-1.9.

L C1 C2

R

I
f(x)

z +
 
y
 
-

+
 
x
 
-

^

Figure 1.6: Chua’s Circuit Schematic

In this circuit, x represents the voltage across capacitor C2, y the voltage across capacitor

C1, and z the current through inductor L. An extra resistor RS in series with L models the

resistance of the inductor’s windings (not shown). Equations 1.7-1.9 can be rewritten in

terms of these circuit elements as:

ẋ =
1

C2

(
1

R
(y − x)− f(x)) (1.10)

ẏ =
1

C1

(
1

R
(x− y) + z) (1.11)

ż =
1

L
(y +RSz) (1.12)

Realizing f(x) often requires a separate circuit; the Chua diode is commonly used for

this function [1]. Figure 1.7 shows the I-V characteristic of a Chua diode with two slopes.
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Figure 1.7: I-V Curve of the Chua Diode [1]

Each point where the slope abruptly changes in this response results in a new singular

point around which the dynamics of the Chua circuit will oscillate. By varying the number

and value of slopes present in the response, differing dynamics can be generated without

requiring any additional changes to the circuit [31]. The following figures demonstrate this

graphically.
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Figure 1.8: f(x) Transfer Characteristic
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Figure 1.9: Numerical Simulation of Chua’s Circuit (phase portrait)

In Figure 1.8, two negative slopes are used to define f(x); the values of these were set

to -0.6 and -1.2. The phase portrait (Figure 1.9) displays an attractor with two distinct

singular points as expected. Increasing the magnitude of the slopes causes the attractor to

expand in all directions. This behavior is shown in Figures 1.10 and 1.11.
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Figure 1.10: f(x) Transfer Characteristic
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Figure 1.11: Numerical Simulation of Chua’s Circuit (phase portrait)

The ability to adjust the system to exhibit multiple types of dynamics by simply chang-

ing the properties of a single circuit element makes Chua’s circuit an often used tool for

exploring many types of chaotic behavior. Due to its low number of required elements, pro-

totypes of the circuit can be constructed successfully on a breadboard; this same simplicity

allows scaling all the way to full IC designs [32].

1.3 Exactly Solvable Chaos

1.3.1 Theory

Although all of the systems discussed in the previous sections can be expressed in

relatively simple mathematical terms, none of them have (at the time of this writing) known

exact solutions. Numerical simulation provides extensive insight in to the dynamics of these

systems but does not allow for the same type analysis as is possible with a closed form

solution. First described in [4], an exactly solvable system has been developed that can

exhibit chaotic behavior for a range of control parameter values.
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This chaotic system can be described by a set of two equations written in terms of two

states. These consist of a continuous time state u(t) ∈ R which provides exponential growth

so that the system does not die out and a discrete time state s(t) ∈ {−1, 1} or s(t) ∈ {0, 1}

which maintains boundedness so that the system does not blow up. u(t) is defined by the

continuous-time differential equation:

ü− 2βu̇+ (ω2 + β2) ∗ (u− s) = 0 (1.13)

where ω = 2π and 0 < β ≤ ln 2. Taken alone, this expression is a simple second order

linear differential equation with negative damping, which satisfies the exponential growth

requirement for u(t). A guard condition is then enforced by the definition of s(t) to maintain

the necessary bounds. This is accomplished by limiting the evaluation of s(t) to only the

instants when the derivative of u(t) is zero (every 1
2
t). In a manner similar to Chua’s circuit,

s(t) is defined as a nonlinear function which is then included in an otherwise linear system to

induce chaotic behavior. Multiple dynamics can be realized by selecting specific definitions

of s(t); for Lorenz like dynamics, s(t) is defined as:

u̇ = 0→ s(t) = sgn(u(t)) (1.14)

where

sgn(u) =


−1 u < 0

1 u ≥ 0

(1.15)

When operating with this s(t), the system is said to be in the shift band. Redefining

s(t) to generate Rössler like dynamics yields:

u̇ = 0→ s(t) = H(u(t)) (1.16)
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where

H(u) =


0 u ≤ 0

1 u > 0

(1.17)

The system is said to be in the folded band when Equation 1.17 is used to define s(t).

For both bands, an oscillation represented by u(t) initially grows exponentially about the

value of the discrete state s(t), but is bounded when it exceeds the guard condition. At this

point, a transition is triggered in s(t) squelching the oscillation and causing its center to shift

to the other discrete value of s(t); this process then repeats continually. Figures 1.12 and

1.13 demonstrate this behavior graphically for the shift band and folded band, respectively.
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Figure 1.12: Numerical Simulation of Exactly Solvable System in Shift Band (time)
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Figure 1.13: Numerical Simulation of Exactly Solvable System in Folded Band (time)

As with the previously discussed chaotic systems, the phase portraits of this system

operating in each band provide more obvious insight into long term dynamics. The phase

portrait for the shift band is presented in the following figure.
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Figure 1.14: Numerical Simulation of Exactly Solvable System in Shift Band (phase portrait)
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In this plot, u is plotted on the x axis, u′ (equivalent notation to u̇ and du
dt
) on the y

axis, and s on the z axis. This allows for the effect of a transition in s to be seen as a shift

in the level around which the trajectories orbit. Also visible is the property that the system

will always complete at least a single full orbit at its current s level before a switch in s

occurs. In contrast, when operating in the folded band, the system does not orbit each of

its s values equally. This is shown in Figure 1.15.
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Figure 1.15: Numerical Simulation of Exactly Solvable System in Folded Band (phase por-

trait)

Here, the system only spends one-half of an orbit around the higher level of s before

switching back down to the lower level. This is similar in behavior to the Rössler system and

gives rise to the folded band designation for this mode of operation. While not immediately

visible in either the time or phase portrait plots, the timing of the system also changes in

this band. Additional details on this phenomenon are discussed in the section on chaotic

maps.
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An analytic solution to Equation 1.13 is given in [4] as:

u(t) =
∞∑

m=−∞
smP (t−m) (1.18)

P (t) =


(1− e−β)eβt(cos(ωt)− β

ω
sin(ωt)) t < 0

(1− eβ(t−1))(cos(ωt)− β
ω

sin(ωt)) t = 0

0 t > 0

(1.19)

where P (t) acts as a basis function. Although the simple existence of this solution is re-

markable, its most significant characteristic is in its description in Equation 1.18 in terms

of convolution of a basis function with a random bipolar pulse. This description notably

allows for derivation of a matched filter that can be used to partially regenerate s(t) when

presented with only u(t). From [33], this filter can be described by:

ξ̈ + 2βξ̇ + (ω2 + β2)ξ = (ω2 + β2)η(t) (1.20)

where

η̇ = v(t+ 1)− v(t) (1.21)

In Equations 1.20 and 1.21, ξ represents the output of the matched filter (which is also the

recovered s(t)) while v(t) represents the input, which is assumed to be u(t).

1.3.2 Chaotic Oscillator

A simulation model for an electronic circuit has been presented in [24] operating at a

frequency of approximately 1.6 MHz. While the circuit initially appears complex, it can

be broken into three major blocks for simplified analysis. These three blocks are indicated

visually on the schematic included on the next page.
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Basis Pulse

An exponentially growing oscillation described by the basis function is provided by the

first block, highlighted in red. This is accomplished by replacing the R component typically

used in a parallel RLC tank with a NIC . This subcircuit mimics the behavior of a negative

resistor and provides the energy necessary for the oscillation to grow rather than decay.

While the exact value of the negative impedance varies as a function of frequency, it is

approximately equal to R3 at low frequencies.

Differentiator

The second block, highlighted in green, generates the derivative of u. This term is

necessary for evaluation of the guard condition. In order to slightly simplify the circuit, the

capacitor used by the RLC tank is also used in the differentiator (C2 on the schematic).

Guard Condition

Most of the circuit consists of the third block, which acts as the guard condition and is

highlighted in blue. The comparators U3 and U4 generate logic levels that are then fed into

the logic blocks to result in an output to be fed back to the tank. The following truth table

describes the logic block’s functionality.

A B U7_O U10_O U9_O U8_O S

L L L L U8_O L L

L H L H U8_O U9_O U9_O

H L L H U8_O U9_O U9_O

H H H H H U9_O H

Table 1.1: Logic Block Truth Table
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1.3.3 Matched Filter

A matched filter has also been demonstrated in simulation [34] operating in the au-

dio range (approximately 2 kHz). Unlike the chaotic oscillator, which is free running, the

matched filter requires two inputs to account for the forcing function in Equation 1.20. These

inputs are the received signal Vin and a time delayed version of the received signal Vdelay.

As shown in [4], the time delay required can be determined by:

T = 2RCω

√
L

4R2C − L (1.22)

where R, L, and C are the values used in the matched filter’s tank. The schematic included

on the following page does not include a block for generating Vdelay.

Both inputs are fed into a difference amplifier to implement Equation 1.21. This output

is then integrated and used to drive an RLC tank circuit. In this tank, the resistor value is

positive and results in the exponentially decaying oscillation necessary for the matched filter

operation. The values for L2, R38, and C3 correspond to the |R|, L, and C values used in the

chaotic oscillator.
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Chapter 2

Reverse Time Chaos

2.1 Motivation

Although both components of the forward time exactly solvable system have been

demonstrated in circuit simulations, these circuits perform at relatively low speeds. Each

circuit consists of many analog components that scale poorly with frequency and do not

integrate well with modern high density IC processes. In particular, the use of a negative

impedance converter provides a significant challenge for high frequency designs of the oscil-

lator while the requirement for a long delay time adds significant complexity to the matched

filter design.

Reverse time chaos provides a method for generating functionally equivalent waveforms

with significantly simpler circuit implementations. The reverse time chaotic oscillator re-

quires only three passive components (forming a series RLC tank) in its simplest form; the

remainder of the circuit can be implemented digitally. Complementing this, the reverse time

matched filter can be implemented entirely in digital circuitry.

2.2 Theory

To begin, a mathematical description of reverse time chaos can be defined by the second

order system:

ü+ 2βu̇+ (ω2 + β2)u = s(t) (2.1)

as first described in [25]. Both β and ω are control parameters for this system; however,

to maintain consistency with typical engineering practice, ω will be defined as the radian
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frequency of operation. s(t), the forcing function, can be described as

s(t) = Asn (2.2)

where sn ∈ {−1, 1} is a random sequence with amplitude A. For the remainder of this work,

the assumption that A = 1 will be made, but, in general, A can take any real value.

Upon inspection, it is apparent that Equation 2.1 describes a harmonic oscillator with

positive damping producing oscillations centered around the value of s(t). An illustration

of this behavior generated with numerical simulation for β = ln(2) and ω = 2π is shown in

Figure 2.1.
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Figure 2.1: Numerical Simulation of Reverse Time System in Shift Band (time)

The negative damping term causes the value of u(t) to decrease in magnitude and is the

reason that the reverse time system requires s(t) to act as a forcing function. Without this

forcing, u(t) would simply die out after ringing down to 0.

As described in the introduction, a reverse time chaotic system differs from a forward

time chaotic system by using its initial condition to describe the set containing all of its
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previous states rather than its future states. To better visualize this, Figure 2.2 below shows

Figure 2.1 with its x axis reversed.
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Figure 2.2: Numerical Simulation of Reverse Time System in Shift Band (reverse time)

When viewed in this manner, the dynamics of u(t) appear identical to those of 1.13

operating in the shift band. Further confirmation of the similarity is shown by examining

the phase space projection, shown in Figure 2.3.
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Figure 2.3: Numerical Simulation of Reverse Time System in Shift Band (phase portrait)

The reverse time system’s phase portrait matches almost exactly with the phase portrait

from the exactly solvable system. A notable difference is the levels of s around which the

trajectories orbit; in the previous chapter, these were -1 and 1, while in the above figure they

are -2.5 and 2.5. This discrepancy arises from scaling necessary in the numerical analysis

routine used for the reverse time system. Implementing this system required a complex

routine which constructs piecewise solutions between zero crossings of u̇ and then combines

these to generate the total solution. MATLAB code and additional details are provided in

the appendices.

Solution

An exact solution for Equation 2.1 can be found, further continuing the similarity be-

tween the reverse time and exactly solvable systems. To begin the process, its homogeneous

solution uh(t) must first be found. This can be done by setting the forcing function s(t)

equal to 0. With this substitution, Equation 2.1 becomes:

ü+ 2βu̇+ (ω2 + β2)u = 0 (2.3)
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The characteristic equation for Equation 2.3 can be determined by inspection to equal:

αü+ γu̇+ δu = 0 (2.4)

Eigenvalues can now be found by substituting for u with λ raised to the power equal to the

order of the derivative of u:

αλ2 + γλ+ δ = 0 (2.5)

Solving for λ in Equation 2.5 which results in:

λ = β ± jω (2.6)

As anticipated for a second order harmonic oscillator, these eigenvalues form a complex

conjugate. The homogeneous solution can be written directly as:

uh(t) = C1e
−t(β+jω) + C2e

−t(β−jω) (2.7)

Simplifying the exponentials:

uh(t) = C1e
−βte−jωt + C2e

−βtejωt (2.8)

where C1 and C2 are constants of integration and ω ≡ 2πf . Recall Euler’s formula:

e±jωx = cos(ωx)± j sin(ωx) (2.9)

With this, equation 2.8 can be rewritten as:

uh(t) = e−βt(A cos(ωt) +B sin(ωt)) (2.10)
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In standard form, this reduces to:

uh(t) = αe−βt sin (ωt+ φ) (2.11)

where A and B (or α and φ) can be real or complex valued. To find values for A and B,

initial values can be established by setting t = 0. Because there are two constants, two

equations will be required; u̇h(t) serves as the second equation. To find u̇h(t), the form in

Equation 2.10 is used:

uh(t) = e−βt(A cos(ωt) +B sin(ωt)) (2.12)

Because uh(t) consists of a a product of two terms, the product rule must be used to find its

derivative:

˙(fg) = ḟ g + ġf (2.13)

This results in:

u̇h(t) = e−βt(Bω cos(ωt)− Aω sin(ωt))− βe−βt(A cos(ωt) +B sin(ωt)) (2.14)

Evaluating at t = 0:

uh(0) = e−β∗0(A cos(ω ∗ 0) +B sin(ω ∗ 0)) (2.15)

u̇h(0) = e−β∗0(Bω cos(ω ∗ 0)− Aω sin(ω ∗ 0))− βe−β∗0(A cos(ω ∗ 0) +B sin(ω ∗ 0)) (2.16)

Equations 2.15 and 2.16 can be simplified by recalling that cos(0) = 1 and sin(0) = 0.

Making these simplifications leaves:

uh(0) = Au̇h(0) = Bω − βA (2.17)
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Solving for A and B:

u̇h(0) = Bω − βu(0) (2.18)

B =
u̇(0)

ω
− βu(0)

ω
(2.19)

A = uh(0) (2.20)

A and B can now be substituted back into Equation 2.10:

uh(t) = e−βt(uh(0) cos(ωt) + (
u̇h(0)

ω
− βuh(0)

ω
) sin(ωt)) (2.21)

u̇h can be set to equal 0 since the system is under consideration at its initial state from rest

(i.e. no stored energy). Simplifying and replacing uh(0) with A:

uh(t) = Ae−βt(cos(ωt) + (
β

ω
) sin(ωt)) (2.22)

A final expression for A requires the particular solution and will be found in a later step.

To find an expression for β, an assumption that the system follows a shift dynamic must

first be made:

uh(t+ 1) =
1

2
uh(t) (2.23)

The rationale for this assumption is introduced in [25]. Substituting with (2.8) yields:

e−β(t+1)e−j2πf(t+1) + e−β(t+1)ej2πf(t+1) = e−βte−j2πft + e−βtej2πft (2.24)

Solving for β:

β = − ln

(
ej2πf (1 + ej4πft)

2(1 + ej4πf(t+1))

)
− j2πn (2.25)

β = ln

(
2(1 + ej4πf(t+1))

ej2πf (1 + ej4πft)

)
− j2πn (2.26)

28



β = ln(2) + ln

(
(1 + ej4πf(t+1))

ej2πf (1 + ej4πft)

)
− j2πn (2.27)

β = ln(2)− ln(ej2πf ) + ln

(
(1 + ej4πf(t+1))

(1 + ej4πft)

)
− j2πn (2.28)

To simplify the expression, the third term can be expanded using the property ln(a
b
) =

ln(a)− ln(b):

β = ln(2)− j2πf + (1 + ej4πf(t+1))− (1 + ej4πft)− j2πn, n ∈ Z (2.29)

Because of their periodicity, the third and fourth terms cancel, simplifying to:

β = ln(2)− j2πf − j2πn, n ∈ Z (2.30)

Taking the real part of Equation 2.30 leads to a final expression for β:

β = ln(2) (2.31)

Evaluating the general solution ug can now continue. This will be in the form:

ug(t) = uh(t) + up(t) (2.32)

where uh(t) is the homogeneous solution given by Equation 2.22 and up(t) is the particular

solution arising from the forcing function. To find up(t), an assumption is made that it will

be in the same form as the forcing function (the negative sign is added to produce a positive

final expression):

up(t) = −C (2.33)
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Solving for C, Equation 2.33 is substituted in Equation 2.1:

−C̈ − 2βĊ − (ω2 + β2)C = s(t) (2.34)

Because C is a constant, this simplifies to:

−(ω2 + β2)C = s(t) (2.35)

C = − s(t)

ω2 + β2
(2.36)

The general solution ug(t) can be written as:

ug(t) = Ae−βt(cos(ωt) + (
β

ω
) sin(ωt))− s(t)

ω2 + β2
(2.37)

As in [25], s(t) can be defined as:

s(t) =


1 0 ≤ t < 1

0 t ≥ 1

(2.38)

A can now be found using the initial conditions ug(0) = 0 and u̇g(0) = 0; these correspond

to the initial values of the system starting at t = 0 with no stored energy. Substituting:

0 = Ae−β∗0(cos(ω ∗ 0) + (
β

ω
) sin(ω ∗ 0))− s(t)

ω2 + β2
(2.39)

0 = A− s(t)

ω2 + β2
(2.40)

A =
s(t)

ω2 + β2
(2.41)

The value for s(t) can be found by evaluating Equation 2.38 at t = 0, which results in:

A =
1

ω2 + β2
(2.42)
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Finally, the complete general solution can be written:

ug(t) =
1

ω2 + β2

[
1− e−βt(cos(ωt) + (

β

ω
) sin(ωt))− s(t)

ω2 + β2

]
(2.43)

Splitting into cases based on the value of s(t) and adding an expression for the system at

rest when t < 0:

ug(t) =


0 t < 0

1
ω2+β2

[
1− e−βt(cos(ωt) + (β

ω
) sin(ωt))

]
0 ≤ t < 1

1
ω2+β2

[
e−βt(cos(ωt) + (β

ω
) sin(ωt))

]
t ≥ 1

(2.44)

Equation 2.44 forms a basis function for the reverse time system in a manner congruous

with the forward time system. A plot of this function evaluated for 0 ≤ t < 3 is shown in

the following figure.
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Figure 2.4: Reverse Time Basis Pulse

The difference between the two cases is clearly visible; for 0 ≤ t < 1, the basis pulse

is offset by 1 while for t ≥ 1, this offset is removed. As expected, this response is identical
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but reversed in time to the forward time basis pulse in Equation 1.19. Because the system’s

solution can be described in terms of this basis pulse, it can be extended to all t as given

in [25]:

u(t) =
t∑

n=−∞
snug(t− n) (2.45)

The existence of this solution also allows for the development of a matched filter with

the same process used in [4]. A detailed development of the filter is presented in the next

chapter.

2.3 Chaotic Maps

While the expression in Equation 1.13 provides a complete description the dynamics of

the chaotic system for any time point, it is not necessary use its complete solution for many

types of analysis. A common method to explore the behavior of chaotic systems is to find

a one-dimensional map that describes the system at some fixed time interval in terms of its

state one time step earlier [35]. Mathematically, this can be described as:

x(t+ 1) = Fx(t) (2.46)

where F is a function that established the mapping. Many types of chaotic behavior can be

described effectively with the appropriate definition of F [36, 37].

2.3.1 Shift Map

A chaotic shift map describing Equation 1.13 operating in the shift band can be defined

as:

un+1 = eβun − (eβ − 1)sn (2.47)
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sn =

 +1, un ≥ 0

−1, un < 0
(2.48)

where the map is piecewise linear and bounded such that |un| ≤ 1 and 0 < β ≤ ln(2) [4].

This map is shown graphically in the following figure.
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Figure 2.5: Return Map of Shift-band System

While Figure 2.5 was generated by iterating through Equation 2.48 many times, it is

important to note that this map’s values also correspond to return points of Equation 1.13.

Each value of the map represents the continuous time value after a single orbit in phase

space. Figure 2.6 demonstrates these points.
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Figure 2.6: Numerical Simulation of Reverse Time System in Shift Band with Return Points

(time)

In this figure, each marked return point represents a new value of the map defined by

Equation 2.47 - plotting these points would exactly regenerate Figure 2.5 above.

To determine if this map is chaotic, the slope in these bounds can be examined; it

evaluates to a constant, eβ, which can be shown to always be greater than 1 for any β > 0.

This result proves that the map is chaotic due to its possession of positive entropy.

By varying the initial conditions and β value of Equation 2.47, the symbolic dynamics

- which future states the system can take as a function of its current state - of the system

can be explored [38, 39]. MATLAB code has been developed that iterates through the map

for its full range of possible initial conditions at a given β value; this code is included in

the appendices. Using this code in a nested sweep, β was also varied through its allowable

values. At each initial condition and β combination, the map was iterated four times so that

four sn values (referred to as symbols) were generated. The result of these sweeps is shown

in Figure 2.7.
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Figure 2.7: Symbolic Dynamics of Shift-band System

For β near ln(2), any possible combination of sn values can be generated. Because sn

can take two values, this leads to 24 = 16 possible sequences. As β decreases, the number of

possible sequences is reduced, resulting in a restricted grammar.

Examining the relationship between initial conditions and generated symbol sequences

for a single β value generates a coding function that maps the two. To allow for plotting, the

symbol sequences were converted into decimal; the coding function generated for β = ln(2)

is shown in the following figure.
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Figure 2.8: Coding Function of Shift-band System for β = ln(2)

This β value represents the special case of unrestricted grammar, which results in a

coding function that covers both the full range of initial conditions and the entire set of

possible symbol sequences (each possible initial condition maps to a symbol sequence). As β

is reduced, the effects of grammar restriction become more apparent. Figure 2.9 shows this

occurring.
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Figure 2.9: Coding Function of Shift-band System for Decreasing β

The value of β added to this figure results in the same set of allowable symbol sequences,

but the range of initial conditions that map to a given sequence is reduced. This behavior

is visible as the shorter green segments (representing β = 0.9 ln(2)) overlaid on the blue

segments (representing β = ln(2)). Functionally, this restricts the system grammar by

removing the initial conditions for which there is no green segment from the set of allowable

initial conditions for this β value.

If this process is continued further such that β falls to a lower step on Figure 2.7, some

symbol sequences are lost entirely. This is shown in Figure 2.10.
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Figure 2.10: Coding Function of Shift-band System for Decreasing β

Building on the previous figure, a red overlay (representing β = 0.8 ln(2) is added. In

addition to the red segments shrinking further as compared to the blue and green, the two

levels at 0 and 16 do not contain a red overlay at all. These levels represent the lost symbol

sequences referred to above.

2.3.2 Skew Tent Map

A second chaotic map, the skew tent map, which describes Equation 1.13 operating in

the folded-band, is defined in [5] as:

un+1 =


eβun, 0 < un ≤ 1

−e3β/2un + (eβ + e3β/2), 1 < un < 1 + e−β/2

eβun − (eβ/2 + eβ), un > 1 + e−β/2

(2.49)

As with the shift map, a determination on the chaotic nature of this map can be made by

examining the slope of the map within its bounds. Although this is not a constant value, it
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can be shown that it always possesses a magnitude greater than 1; chaotic behavior is again

proven by the positive entropy resulting from any positive value of β.

Unlike the shift map, the skew tent map does not directly yield a sn sequence. To

overcome this limitation, the relation:

sn =


A, 0 ≤ un < 1

B, 1 ≤ un < 1 + e−β/2

C, un ≥ 1 + e−β/2

(2.50)

as defined in [5], where the symbols (which correspond to the three partitions of the map)

are mapped as A → 00, B → 100, and C → 10, can be used. Figure 2.11 shows these

partitions graphically.
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Figure 2.11: Return Map of Folded-band System
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To account for the A, B, and C substitutions being unequal in length, a relation for the

time between each sn value can be defined as:

tn+1 =


tn + 1, 0 < un ≤ 1

tn + 3
2
, 1 < un < 1 + e−β/2

tn + 1, un > 1 + e−β/2

(2.51)

This variable timing arises from the need to account for the extra half cycle that occurs

when the systems enters its fold (see Figure 1.15).

As with the shift map, the tent map can be iterated while varying its initial conditions

and β to provide an understanding of the system’s symbolic dynamics. Because the tent

map’s sn consists of multi-bit symbols, the maximum number of sequences is found by

considering the longest symbol, B → 100, which results in 34 = 81. The results from these

sweeps are shown in the following figure.
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Figure 2.12: Symbolic Dynamics of Folded-band System
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The line marking 0.81 ∗ ln(2) indicates the β value below which the third symbol C

disappears entirely. For the values above this line, the number of symbol sequences changes

quickly as β is decreased; below this line, the behavior is analogous to the shift map.

Coding functions were also generated for different β values showing the effects of moving

from unrestricted grammar to an increasingly restricted grammar. These are shown in the

following three figures and follow the same order of decreasing value and color as the shift

map coding function figures.
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Figure 2.13: Coding Function of Folded-band System for β = 0.81 ln(2)

For β = 0.81 ln(2), which is the maximum value for generating only symbols A and B,

each initial condition maps to an output symbol sequence. This mapping differs significantly

from those shown in Figure 2.8, confirming that the skew tent map possesses significantly

different dynamics when compared with the shift map. As β is reduced, the effects of

grammar restriction become visible. Figures 2.14 and 2.15 show this occuring for β =

0.71 ln(2) (green) and β = 0.61 ln(2) (red), respectively.
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Figure 2.14: Coding Function of Folded-band System for Decreasing β
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Figure 2.15: Coding Function of Shift-band System for Decreasing β

42



2.3.3 Sequence Generation

Both the shift map and the skew tent map have been shown to generate chaotic sequences

when given appropriate initial conditions and control parameters. A summary of these is

provided in Table 2.1.

Map β

shift 0 < β < ln(2)

skew tent (2 partitions) 0 < β < 0.81ln(2)

skew tent (3 partitions) 0 < β < 1.39ln(2)

Table 2.1: Summary of Chaotic Map Parameters

Previous work has shown that a random sequence for sn in Equation 2.2 can be replaced

by sequences generated from chaotic iterated maps to realize different types of dynamics in

the reverse time system. Both Lorenz like and Rössler like dynamics have been observed

in numerical calculations when driving the system with random sequences using different

encodings [40]. Building on these conclusions, the sn sequences generated from the chaotic

maps presented above can be used to generate these encoded random sequences [41]. By

selecting desired initial condition and β combinations, precise control over the reverse time

chaotic dynamics is possible.
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2.4 Circuit Model

In order to implement reverse time chaos in hardware, components realizing both the

continuous time state u and the sn drive sequence have been developed. To aid in this

development, the system described in equation (2.1) is rewritten in terms of electrical circuit

components as:
d2VRT

dτ 2
+
TR

L

dVRT
dτ

+
T 2

LC
VRT = f(τ) (2.52)

f(τ) =
T 2Vin
LC

sn, n ≤ τ < n+ 1 (2.53)

where the time constant τ is defined as τ = t
T
and Vin is an arbitrary fixed magnitude [25].

A diagram illustrating a circuit implementation of this system is shown in the Fig. 2.16.

LR

CB

V=F(tau)

V_RT

Figure 2.16: Reverse Time System Circuit Model

The values for the R, L, and C components can be determined by solving the system of

equations given by:
TR

L
= 2ln(2) (2.54)

T 2

LC
= 4π2 + ln(2)2 (2.55)
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where one of the component values must be set arbitrarily so that the two equations contain

only two unknowns.

To generate the f(τ) signal, sn can be generated computing the map given in Equations

2.47 and 2.48 (for shift map dynamics) or Equations 2.49 and 2.50 (for tent map dynamics).

Any allowed value of β can be used with this method, which allows for operation with

arbitrary grammar restrictions (or with unrestricted grammar). Control of the reverse time

system can be realized by starting the map computation with the initial condition (u0) that

corresponds to the desired sn sequence.

2.4.1 HDL

The sn sequence was generated by implementing the shift map described above in VHDL.

A complete listing of the code used for both bands is provided in the appendices. Signed

Qm.n fixed-point numerical representations were used to allow for high speed operation. In

this scheme, numbers are represented in binary where Qm.n maps to 1 sign bit, m-1 integer

bits, and n fractional bits and results in a range of [(−2m).( 1
2n

), (2m−1).( 1
2n

)]. High accuracy

was maintained by using 32 bit variables in Q4.28 format, which allowed for an integer range

of -8 to 7 and a minimum resolution of 1
228

(3.725e-9).

Map calculations were split into multiple clock cycles in order allow for synthesis into

physical circuits. This was required due to the expressions in both maps containing multiple

mathematical operations; in hardware, one operation must complete before the next can use

its value. Due to this, a new map value is generated every two cycles of the input clock for

the shift map and every two (partitions A and C) or three (partition B) cycles of the input

clock for the skew tent map. Mentor Graphics ModelSim was used to simulate the VHDL

model and produce output bitstreams used in a complete simulation.
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2.4.2 SPICE

A SPICE simulation of the hardware described in the previous section was constructed

initially to predict how an actual circuit would perform at a target operating frequency of

1.8 MHz. LTSpiceIV from Linear Technology [42] was used to perform the simulations.

Component values for this frequency were calculated to be R=250 Ω (fixed), L=100 µH, and

C=75 pF using Equations 2.54 and 2.55, and the HDL simulation output was used as the

input voltage representing f(τ). These SPICE results are shown in Figure 2.17 for the shift

map with β = ln(2).
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Figure 2.17: Simulation Results of Shift-band System (time)

The simulation results produce the expected chaotic behavior. It should be noted that

the simulated S_rt was left at its default output range of 0-1 V; although this differs from the

sn definition given in Equation 2.48, the shift is accounted for by the Vin term in Equation

2.53 and the resulting system dynamics mimic the original system’s behavior around these

new levels.
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A complete simulation model is included on the following page. Buffers were added to

both sides of the RLC tank and a level shifting resistor divider was added to the output to

allow for interfacing with other circuitry. The C value C3 was adjusted slightly from 75 pF

to 68 pF to match with on hand parts. As shown, the opamp selected for use in the buffers

was the Linear Technology LT1220; this selection was made due to both high performance

and availability in a readily solderable DIP package [43].
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2.5 Hardware

2.5.1 Components

To realize the model used for simulation in hardware, a PCB was designed and assem-

bled. The circuit used for the PCB layout closely follows the schematic shown in Figure 2.18

with the addition of decoupling capacitors to remove noise from the power supply lines and

the replacement of the resistor divider with a summing amplifier tunable with the poten-

tiometer RV101. The assembled board is shown in Figure 2.19.

Figure 2.19: Reverse Time Oscillator PCB

Testing of the reverse time oscillator was performed by using a low-cost Altera Cyclone

IV-E FPGA clocked at 3.6 MHz (twice the tuned operating frequency of the RLC tank) to

generate a sn sequence that was fed into the oscillator PCB as f(τ). An image of this setup

is presented in the following figure.
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Figure 2.20: Reverse Time Oscillator Testing Setup

2.5.2 Measurement Results

Measurements were taking using the Digilent Analog Discover USB oscilloscope. The

analog bandwidth was set to 10 MHz to allow for complete capture of the chaotic waveforms

as well as faster transients resulting from the switching of f(τ). Regulated power rails (+5 V

and -5 V) and a ground reference were also provided by the Analog Discovery board. Screen

captures are used for each measurement to show the exact settings used for capture. Results

from operation using the shift map with β = ln(2) to generate f(τ) are shown in Figure

2.21.
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Figure 2.21: Measurement Results using Shift Map (top: time, bottom: phase portrait)
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As expected, the hardware produces reverse time dynamics which are similar to those of

the system in [4] and are in close agreement to the simulation results shown in Figure 2.17.

The double-scroll attractor shown in the phase portrait clearly indicates chaotic behavior.

The real time FFT function of the oscilloscope also allowed for exploration of the spectral

content of the chaotic waveform. A flat response from DC to approximately the tuned

frequency of the RLC tank confirms spread spectrum operation; the sharp dip near 1.8 MHz

results from the impedance of the tank falling close to zero at resonance. This output is

shown in Figure 2.22.

Figure 2.22: Measurement Results using Shift Map (spectrum)

Similarly, when operated using the tent map with β = 1.39 ln(2), the hardware’s dy-

namics are a reverse time analogue to those of the system presented in [5]. Chaotic behavior

is again confirmed by examining the phase space. Figure 2.23 provides these results.
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Figure 2.23: Measurement Results using Tent Map (top: time, bottom: phase portrait)
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The stretched appearance of the fold in the phase portrait is due to the x axis scale

used for plotting. Closer observation confirms that the center of the fold is located at

approximately 1, which preserves the Rössler like dynamics. As when operating with the

shift map, the spectrum of the reverse time system operating with the tent map was observed

to be approximately flat approaching the resonant frequency of the tank. This is shown in

the following figure.

Figure 2.24: Measurement Results with Skew Tent Map (spectrum)
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Chapter 3

Digital Matched Filter

3.1 Theory

A common problem in many signal processing applications is to determine if a known

signal is present in a received signal which may contain significant noise. Although there are

multiple approaches which solve this problem, the use of a filter whose response is matched

to the known signal - a matched filter - is frequently the solution of choice. This matched

filter can be described as the system with the maximal output SNR when presented with

a known signal corrupted by AWGN . A mathematical derivation, based on the coverage

in [44], [45], and [46], follows.

3.1.1 Derivation

Given a known transmitted signal x(t), the received signal v(t) can be written as:

v(t) = Ax(t− tp) + n(t) (3.1)

where A is amplitude scaling due to attenuation or gain of the channel, tp is the propagation

delay through the channel, and n(t) is AWGN added in the channel with a PSD Sn(ω). The

SNR of this system can be defined as:

SNR =
peak signal power

average noise power
=

max (|Ax(t− t0)|2)
|n(t)2|

=
|Ax(0)|2
|n(t)|2

(3.2)

The matched filter is the linear filter (h(t) or H(ω)) that maximizes its output SNR at

some instant relative to a starting point t0. The output from such a filter can be described
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by:

vo(t) = v(t) ∗ h(t) = y(t) + n(t) (3.3)

To achieve the maximal SNR, an h(t) must be found such that:

SNR =
|y(tx)|2
|no(t)|2

(3.4)

at some instant tx > to. The input to the matched filter is defined as:

v(t) = x(t) + n(t) (3.5)

The output of the matched filter is expanded from Equation 3.3 to:

vo(t) = x(t) ∗ h(t) + n(t) ∗ h(t) (3.6)

where y(t) = x(t) ∗ h(t) is the output signal component and no(t) = n(t) ∗ h(t) is the output

noise component. Recall Equation 3.4:

SNR =
|y(tx)|2
|no(t)|2

=
peak signal power at t = tx

average noise power
(3.7)

An expression for y(t) in the frequency domain can be written as:

y(t) = x(t) ∗ h(t) =
1

2π

∫
X(ω)H(ω)ejωtdω (3.8)

With this, the peak signal power at t = tx, |y(tx)|2, can be found:

|y(tx)|2 =

∣∣∣∣∣∣∣
1

2π

∫
X(ω)H(ω)ejωtxdω

∣∣∣∣∣∣∣
2

(3.9)
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A similar methodology can be used to find the average noise power |no(t)|2 and results in:

|no(t)|2 =
1

2π

∫
Sno(ω)dω =

1

2π

∫
Sn(ω)|H(ω)|2dω (3.10)

Equation 3.10 can be simplified by taking advantage of the fact that Sn(ω) describes AWGN

to rewrite it as a constant term N0

2
:

|no(t)|2 =
N0

4π

∫
|H(ω)|2dω (3.11)

Next, an expression for H(ω) must be developed for maximal SNR at t = tx. This can be

accomplished using the results from above:

|y(tx)|2
|no(t)|2

=

∣∣∣∣ 1
2π

∫
X(ω)H(ω)ejωtxdω

∣∣∣∣2
N0

4π

∫
|H(ω)|2dω

(3.12)

Equation 3.12 does not readily lend itself to analysis. To simplify, the Schwartz inequality

can be used. This states that, for two complex functions f(x) and g(x), integrable over [a, b]:

∣∣∣∣∣∣∣
∫

b

a

f(x)g(x)dx

∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣
∫

b

a

f(x)dx

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∣∣
∫

b

a

g(x)dx

∣∣∣∣∣∣∣
2

(3.13)

Notably, the LHS and RHS are equal for the special case where:

g(x) = kf ∗(x), k ∈ R (3.14)
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To apply the Schwartz inequality to the numerator of Equation 3.12, f(x) and g(x) are

defined as:

f(x) = X(ω) (3.15)

g(x) = H(ω)ejωtx (3.16)

This allows Equation 3.12 to be expanded:

|y(tx)|2
|no(t)|2

=

1
2π

∫
|X(ω)dω|2

∫
|H(ω)dω|2

N0

4π

∫
|H(ω)|2dω

(3.17)

Equation 3.17 can then be simplified:

|y(tx)|2
|no(t)|2

=
2

N0

∫
|X(ω)dω|2 (3.18)

With these results, the special case of the Schwartz inequality given by Equation 3.14 is

applied:

H(ω)ejωtx = kX∗(ω) (3.19)

Rewriting:

H(ω) = kX∗(ω)e−jωtx (3.20)

Applying the Fourier transform pairs:

X∗(ω)→ x∗(−t) (3.21)

X(ω)e−jωtx → x(t− tx) (3.22)
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The final matched filter expression can be written as:

h(t) = kx∗(−t− tx) (3.23)

Equation 3.23 describes a filter whose response is identical to the received signal v(t)

but reversed in time and shifted by some amount tx (k may be used to adjust the amplitude,

but typically is left equal to 1). For the reverse time system, the received response is taken

to be the basis pulse given by Equation 2.44. The resulting required matched filter response

is shown in Figure 3.1 for β = ln(2).
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Figure 3.1: Reverse Time Matched Filter Response

3.1.2 Expected Performance

To demonstrate the expected performance of the matched filter, the following set of

figures demonstrates its output graphically as the reverse time basis pulse is presented at its

input. β = ln(2) was used for all numerical simulations. Figure 3.2 starts this process with

the basis pulse partially shifted in to the matched filter.
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Figure 3.2: Matched Filter Performance (initial)

The top plot in this figure shows both the input (v, in blue) and the matched filter

response (h, in orange). As expected, the response of the filter remains small since only a

small segment of the basis pulse as been input. With more of the shift completed, as shown

in Figure 3.3, the matched filter’s response begins to increase.
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Figure 3.3: Matched Filter Performance (partial)

Even though the basis pulse is still only two thirds shifted in, the matched filter’s output

has increased by a factor of four. Finally, with the shift complete, the matched filter’s output

produces the expected sharp peak. This can be seen in Figure 3.4.
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Figure 3.4: Matched Filter Performance (complete)

3.2 Numerical Model

3.2.1 Verification

A numerical model for the matched filter was constructed in MATLAB using the filter

function. Using this model, the performance of the filter in a number of scenarios of interest

was evaluated. The first test performed was to determine if the filter could properly detect

the basis pulse when inserted in a random signal. Figure 3.5 demonstrates this process.
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Figure 3.5: Matched Filter Response to Basis Pulse

The output from the numerical filter (vo(t)) is shown in the bottom plot while the input

(v(t)) is shown in the top. These results match closely with the performance seen in the

previous tests and indicate that it correctly responds to the presence of a basis pulse. To

verify the expected resilience in the presence of AWGN, a series of three additional tests

was performed with increasing noise levels added for each successive run. MATLAB’s awgn

function was used to add noise to the existing model. Figures 3.6, 3.7, and 3.8 show these

results with the SNR set to 10 dB, 3 dB, and 0 dB, respectively. In each figure, the segment

containing the basis pulse with added noise is highlighted in red.
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Figure 3.6: Matched Filter Response to Basis Pulse in Presence of AWGN (SNR=10 dB)
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Figure 3.7: Matched Filter Response to Basis Pulse in Presence of AWGN (SNR=3 dB)
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Figure 3.8: Matched Filter Response to Basis Pulse in Presence of AWGN (SNR=0 dB)
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In all three cases where AWGN was present, the matched filter was able to correctly

detect the presence of the basis pulse. Although the magnitude of the output peak varied

slightly with the AWGN magnitude, it remained high enough to be readily detected for all

inputs. The response to the random segments at the beginning and end of the input signal

remained low throughout; this result combined with the peak behavior previously discussed

indicates a strong selectivity for the basis pulse.

3.2.2 Chaotic Input

While the ability to detect a single basis pulse provides verification that the matched

filter model is operating correctly, its true utility comes from the ability to detect a reverse

time chaotic signal. The numerical model used above was tested with a chaotic signal inserted

into a random waveform to verify this functionality. The output of this test is shown in the

following figure.
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Figure 3.9: Matched Filter Response to Reverse Time Chaotic Waveform

Because the chaotic waveform consists of many instances of the basis pulse summed

together, the matched filter shows a large number of peaks as the input is shifted through

its response. The magnitude of these peaks is diminished as compared to the response when

presented with a single instance of the basis pulse, but is still high enough to allow for reliable

detection of the chaotic waveform.

The effect of AWGN present on the chaotic waveform has also been explored with the

numerical matched filter. Rather than iterate through multiple noise levels, only the worst-

case level (SNR = 0 dB) used above was examined. These results are presented in Figure

3.10.
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Figure 3.10: Matched Filter Response to Reverse Time Chaotic Waveform in Presence of

AWGN (SNR=0 dB)

As with the basis pulse, even high magnitude AWGN does not significantly diminish

the response of the matched filter to the presence of a chaotic waveform.

3.2.3 sn Reconstruction

Limited post-processing can be applied to the matched filter response to reconstruct the

sn sequence used to generate the chaotic signal applied to its input. This post-processing

requires the establishment of three threshold levels: a high threshold, a zero crossing or

midpoint threshold, and a low threshold. Figure 3.11 demonstrates the placement of these

levels where the high and low thresholds are denoted by the upper and lower red lines and

the midpoint threshold is denoted by the black line.
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Figure 3.11: Threshold Levels Used for Reconstruction of sn

New values of sn always correspond to the matched filter output going above (or below)

the high and low threshold values. Just detecting these events, however, does not properly

reconstruct sn - it only indicates the presence of the basis pulse (it is important to reiterate

that the matched filter is matched to the basis pulse, not the overall chaotic waveform or sn).

The solution in Equation 2.45 allows for sn to hold its value for many cycles, which results

in many oscillations around the threshold. To account for this, the midpoint threshold is

used to detect when a switch in the sn value has occurred and then update the recovered sn.

This process is shown graphically in the following figure.
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Figure 3.12: Reconstructed sn

When compared to the original s state of the reverse time chaotic oscillator (top), the

reconstructed s (bottom) appears identical apart from the time shift introduced by the

matched filter operation. The blue asterisks marked on the reconstructed s plot indicate the

decision made by the post processing algorithm at each time step. For the vast majority of

the steps, this value is 0, corresponding to no change in s. When the matched filter output

crosses through the midpoint threshold and then exceeds either the high or low threshold,

however, the decision changes to indicate a new value. These decision points are then used

to generate the overall reconstructed s as shown.
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3.3 FIR Implementation

The numerical modeling in MATLAB provided a straightforward path for realization of

the matched filter in hardware as a digital FIR filter. Values used for the filter’s magnitude

response can be used directly to define the coefficients necessary for the FIR algorithm. Any

Nth order constant coefficient digital FIR function can be described as a convolution sum as

shown in Equation 3.24 [47].

Y [n] = X[n] ∗H[n] =
N−1∑
k=0

H[k] ∗X[n− k] (3.24)

The exact function performed is determined by the values of H, which are the FIR

coefficients. This form can be implemented in hardware directly (and is often referred to

as the direct-form FIR), but is generally less desirable due to its use of multipliers. One

solution for addressing this shortcoming is using the sum of power of two (SOPOT) method to

decompose multiplication into addition and multiplication by powers of two [48,49]. Equation

3.25 describes the process of determining the SOPOT representation of an arbitrary value

s(n).

s(n) =
J−1∑
i=0

ai,n ∗ 2bi,n (3.25)

where ai,n ∈ {−1, 0, 1}, bi,n ∈ {0, 1, ..., u}, and J is the number of terms necessary to represent

s(n) [48]. The maximum value that can be represented by SOPOT is related to u, so its value

determines the allowable range of coefficients. Because SOPOT contains only multiplication

by powers of two, the multiplication functions can be replace by logical left shifts that shift

by the bi,n values. An algorithm based on the work in [50] was developed in MATLAB to

automate the calculation of these coefficients for any real number and is documented in the

following listing.
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1 function [a b] = sopot(h)
2 i = 1;
3

4 % continue iterating until all terms are generated
5 while h ~= 0
6 % try to generate positive coeffecient first
7 if h > 0
8 a(i) = (abs(h)/h);
9 b(i) = round(log2(abs(h)));

10 h = h - 2^(b(i));
11 % generate negative coefficient if needed
12 else
13 a(i) = (abs(h)/h);
14 b(i) = round(log2(abs(h)));
15 h = h + 2^(b(i));
16 end
17 i = i + 1;
18 end
19

20 % format results for display
21 out = ’’;
22 for i=1:length(a)
23 out = sprintf(’%s %+i*2^%i’, out, a(i), b(i));
24 end
25 disp(out);

Listing 1: SOPOT Decomposition Algorithm in MATLAB

3.3.1 Architecture

A general block diagram of the FIR architecture is shown in Figure 3.13.

Figure 3.13: FIR Filter Block Diagram [2]
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From this figure, it is apparent that the algorithm requires relatively few components for

its hardware realization. The unit delay blocks (indicated as z−1) map directly to D flip-flops

where the clock period sets the delay time. The weights (denoted by f [0]-f [L− 1]) require a

varying number of adders and left shift circuits as indicated by the SOPOT decomposition.

A Verilog example of a single unit from Figure 3.13 is provided in Listing 2.

1 // +1*2^5 +1*2^2 -1*2^0
2 adder_14b_3in a3(nw3, nd3 << 5, nd3 << 2, -(nd3 << 0));
3 adder_14b_2in af3(nf3, nw3, nf2);
4 wire [13:0] nf4;
5 wire [13:0] nd4;
6 wire [13:0] nw4;
7 d_ff_14b d4(nd3, clk, nd4);

Listing 2: Example SOPOT Form in Verilog HDL

Line 1 provides the polynomial describing the weight value for the block, while line 2

instantiates the adder used for the overall sum. Each of the adder’s inputs consists of a single

power of two implemented by the appropriate logical shift. The remaining lines contain a

second adder to combine this block’s results with the previous block as well as the D flip-flop.

A MATLAB routine was written to generate and combine these blocks automatically given

a set of FIR weights.

3.4 HDL Simulation

Making use of the Verilog code generated for the FIR filter, a HDL simulation was

performed using ModelSim to determine expected performance of a physical implementation.

The clock frequency used for this simulation significantly affected the output results; Figure

3.14 demonstrates this graphically.
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Figure 3.14: Effect of Frequency Shifts on Matched Filter Response

In the first plot, the chaotic input to the matched filter is shown; the desired output for

this is shown in the following two plots in blue. Each of the red waveforms represents the

matched filter output when the clock frequency is too fast (middle) and too slow (bottom).

To achieve the desired output, the clock frequency must be set equal to the number of filter

taps (coefficients) times the return time of the chaotic waveform so that the filter’s shape

matches the chaotic basis pulse.
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Results of the HDL simulation indicate expected performance and are shown in the

following figure.
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Figure 3.15: Simulation Results of FIR Matched Filter

The large scales used for the y axis on both the filter input and output result from

converting the binary values generated from the simulation into decimal directly. 32 bit

values were used for internal calculations to allow for high precision while 10 bit values were

used for the input to correspond to typical ADC resolutions. The operating clock frequency

was set to 180 MHz due to the use of the 1.8 MHz chaotic oscillator with 100 FIR coefficients.
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Chapter 4

ASIC Components

To further improve upon the speed of chaotic systems, many (or all) of the components

in such systems will need to be integrated into an ASIC. Initial work has been performed to

evaluate the feasibility and potential performance of certain common analog chaotic system

building blocks in IBM’s state-of-the-art 9HP SiGe BiCMOS process. 9HP combines highly

scaled 90 nm CMOS with extremely high performance NPN HBTs reaching a 300 GHz

fT [51].

4.1 Breakout Circuits

Rather than attempting to construct a complete chaotic system, multiple smaller test

circuits were broken out individually so that each one could be thoroughly tested without

having to compensate for the effects of other (undesired) components. Each breakout circuit

was designed, simulated, and laid out using the Cadence software suite; Virtuoso XL was

used for schematic entry and layout while Spectre was used for simulation. For testing

purposes, each circuit contained its own power and ground rails and used 100 µm square

pads for wire bonding.

4.1.1 FET Opamp

The first circuit developed was an opamp constructed using the 90 nm CMOS FETs.

A FET design was chosen to allow for minimal area while still realizing acceptable gain and

bandwidth. To minimize the overall complexity, the opamp bias current was designed to be

provided off chip. Simulation results showing frequency response as a function of this bias

current are shown in Figure 4.1.
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Figure 4.1: Opamp Simulation Results

The marker indicates the maximum gain occurs at a bias current of 50 µm. 1.73 GHz

was chosen as the frequency of interest to correspond with the Colpitts oscillator discussed

in the next section. A schematic of the circuit as fabricated in included on the following

page. A typical three stage design was used: the first stage provides differential input with

an active load, the second provides gain, and the third acts as a buffer to provide a voltage

output.
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4.1.2 Colpitts Oscillator

A Colpitts oscillator was also designed and included as a breakout circuit. While not

directly suitable for inclusion in an exactly solvable chaotic system directly, this oscillator

allows for characterization of the frequency performance of both the passive devices that

form its tank as well as the transistor that provides its gain. Direct chaos generation - albeit

without a closed form solution - is also possible by carefully tuning the bias current [52,53].

To facilitate testing, both the bias current and the reference level of the tank were brought

out to pads so they could be controlled off chip. Component values were determined using

equations 4.1 and 4.2 for a target frequency f0 of 1.7 GHz [54]:

f0 =
1

2π

√
1

CpL
(4.1)

Cp =
C1C2

C1 + C2

(4.2)

For Cp set to 1 pF, an L of 8.8 nH was needed. A schematic showing the final circuit design

as well as simulation results confirming (non chaotic) operation are presented in the following

figures.

80



Figure 4.3: Colpitts Oscillator Schematic
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Figure 4.4: Colpitts Oscillator Simulation Results (top: time, bottom: spectrum)
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4.1.3 Summary

Multiple breakout circuits were fabricated in the IBM 9HP process - the two discussed

occupied a total die area of approximately 0.5 mm2 and required 11 total pads. A summary

of the area and number of pads for each circuit is provided in the following table.

Subcircuit Dimensions Area Pads

FET opamp 568 µm x 341 µm 0.194 mm2 6

Colpitts oscillator 446 µm x 651 µm 0.291 mm2 5

Table 4.1: Performance Summary

Due to significant delays from the foundry, finished die were not received in time to

include hardware test results. A photo of the die is included on the following page; the chaos

breakout circuits are contained in the red (opamp) and green (Colpitts oscillator) outlines

on the lower left corner of the die. The following table lists the pinout for each device.

FET opamp Colpitts oscillator

Pin Number Function Pin Number Function

1 VDD 1 VDD

2 Out 2 Vout

3 GND 3 GND

4 In+ 4 Ibias

5 In- 5 Vc

6 Ibias

Table 4.2: 9HP Die Pinout
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Figure 4.5: ASIC Die Photo
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Chapter 5

Conclusions and Future Work

Reverse time chaos provides a solution for generating chaotic waveforms at speeds higher

than have previously been realized with relatively simple hardware. It has shown that

driving a passive RLC circuit with appropriate signal sequences from a chaotic iterated

map will produce reverse time chaos that is in close agreement with numerical calculations.

Possibilities for precise control and grammar restriction arising from the use of two different

chaotic maps have been discussed.

Both simulation and hardware results for the reverse time chaotic system have been

introduced and demonstrated to operate correctly at 1.8 MHz. The analog circuit used for

this system was shown to require a low number of components, all of which are suitable

for integration. HDL code for the digital portion of the circuit was synthesized and run in

hardware on a FPGA; this verified that the HDL is ready for synthesis and inclusion on an

ASIC.

In addition, matched filter decoding has been shown to provide a viable means of de-

tection of reverse time chaotic waveforms in the presence of even high magnitude AWGN.

The ability to both detect the waveform and use this detection to reconstruct the original

s sequence has been demonstrated. Conversion to a FIR filter has been performed and im-

plemented in HDL; simulation results of this code indicate that a hardware realization is

possible and likely to function correctly using the generated HDL code.

Preliminary test circuits were designed and successfully taped out into a state-of-the-art

SiGe process. Simulation of these components provided preliminary performance estimates

of operating speeds exceeding 1 GHz. Final die have been received and are in preparation

for hardware testing to confirm these results.
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Overall, this implementation has been demonstrated as a viable means to generate

high frequency chaotic waveforms that could be utilized in a wide range of applications.

For chaotic waveform generation, neither digital to analog conversion nor complex analog

circuitry is required; while for matched filter decoding, no analog circuitry is required at all.

Both components are readily scalable to much higher operating frequencies without requiring

any significant circuit modifications.

To realize these higher operating frequencies, multiple paths are open for future work

in this area. Frequencies between 10 MHz and 50 MHz are readily achievable using the PCB

and FPGA combination presented in this work; synthesis estimates of the digital iterated

maps indicate correct operation is possible on the relatively low speed Cyclone IV-E board up

to 25 MHz. Scaling to even higher operating frequencies will require ASIC implementations,

but the preliminary ASIC results shown above provide a strong starting point for such

development.
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Appendix A

Numerical Model for Reverse Time Oscillator

1 %% Numerical Simulation for Exact Solvable Chaotic Oscillator
2 % Implements the systems described in
3 % <http://dx.doi.org/10.1063/1.3432557 A Matched Filter for Chaos> and
4 % <http://dx.doi.org/10.1063/1.4704813 Exact Folded-Band Chaotic
5 % Oscillator>.
6

7 %% Function Definition
8 % *oscillator* takes three inputs: _t_stop_ sets the stop time, _t_step_
9 % sets the solver step time, _band_

10 % controls which band the system is in (0 for folded, 1 for shift), _beta_
11 % is the system control parameter, and _u_0_ is the initial condition.
12 % Outputs are column vectors containing all solution values of t, u,
13 % du

dt , and s, respectively, as well as the time points and
14 % solution values of the overall solution’s return points.
15 function [t_sol, u_sol, s_sol, du_sol, t_return_sol, u_return_sol] = ...
16 oscillator_rt(t_stop, t_step, band, beta, u_0)
17

18 clear t_n s sym u_m;
19

20 if (band == 1)
21 % calculate the map values
22 u_m(1)=u_0;
23 if (u_0 >= 0)
24 s(1) = 1;
25 else
26 s(1) = -1;
27 end
28

29 t_n(1)=0;
30 for t=2:t_stop+1
31 if (u_m(t-1) >= 0)
32 u_m(t)=(exp(beta)*u_m(t-1)-(exp(beta)-1));
33 s(t) = 1;
34 else
35 u_m(t)=(exp(beta)*u_m(t-1)+(exp(beta)-1));
36 s(t) = -1;
37 end
38 t_n(t)=t-1;
39 end
40 else
41 u_m(1)=u_0;
42 t_mx(1)=0;
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43 j=1;
44 if (u_0 > 0) && (u_0 <= 1)
45 s(j)=0;
46 t_n(j)=0;
47 j=j+1;
48 s(j)=0;
49 t_n(j)=t_n(j-1)+0.5;
50 j=j+1;
51 elseif (u_0 > 1) && (u_0 < (1+exp(-beta/2)))
52 s(j)=1;
53 t_n(j)=0;
54 j=j+1;
55 s(j)=0;
56 t_n(j)=t_n(j-1)+0.5;
57 j=j+1;
58 s(j)=0;
59 t_n(j)=t_n(j-1)+0.5;
60 j=j+1;
61 else
62 s(j)=1;
63 t_n(j)=0;
64 j=j+1;
65 s(j)=0;
66 t_n(j)=t_n(j-1)+0.5;
67 j=j+1;
68 end
69 for t=2:t_stop+1
70 if (u_m(t-1) > 0) && (u_m(t-1) <= 1)
71 u_m(t)=(exp(beta)*u_m(t-1));
72 t_mx(t)=t_n(j-1);
73 s(j)=0;
74 t_n(j)=t_n(j-1)+0.5;
75 j=j+1;
76 s(j)=0;
77 t_n(j)=t_n(j-1)+0.5;
78 j=j+1;
79 elseif (u_m(t-1) > 1) && (u_m(t-1) < (1+exp(-beta/2)))
80 u_m(t)=(-exp((3*beta)/2)*u_m(t-1)+(exp(beta)+exp((3*beta)/2)));
81 t_mx(t)=t_n(j-1);
82 s(j)=1;
83 t_n(j)=t_n(j-1)+0.5;
84 j=j+1;
85 s(j)=0;
86 t_n(j)=t_n(j-1)+0.5;
87 j=j+1;
88 s(j)=0;
89 t_n(j)=t_n(j-1)+0.5;
90 j=j+1;
91 else
92 u_m(t)=(exp(beta)*u_m(t-1)-(exp(beta)+exp(beta/2)));
93 t_mx(t)=t_n(j-1);
94 s(j)=1;
95 t_n(j)=t_n(j-1)+0.5;
96 j=j+1;
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97 s(j)=0;
98 t_n(j)=t_n(j-1)+0.5;
99 j=j+1;

100 end
101 end
102 end
103

104 clear t;
105

106 %% Set Operating Parameters
107 omega = 2*pi;
108

109 % keep track of how many time units the ODE has been solved for
110 % must be initially 0
111 t_run = 0;
112

113 % initial start and stop times
114 t_s = 0;
115 t_f = 5;
116

117 % initial values for du_1/dt and du_2/dt
118 du_1dt_0 = 0;
119 du_2dt_0 = 0;
120 du_p = 0;
121 du_p_prev = 0;
122

123 % matrices to store final solution; initially empty
124 t_sol = [];
125 t_return_sol = 0;
126 u_sol = [];
127 u_return_sol = 0;
128 s_sol = [];
129

130 % tell the ode solver to evaluate the function events for event detection
131 options = odeset(’Events’,@events);
132

133 %% Main Loop
134 while (t_run < t_stop)
135 % call ode15s to solve the differential equation (see below)
136 %
137 % return values:
138 % t - vector of all time points where solution was calculated
139 % u - values for solution at corresponding time points
140 % te - time where event was detected
141 % ue - solution value at event
142 [t, u, te, ue] = ode15s(@(t,u) f(t, u, beta, omega, s, t_n, band), ...
143 [t_s:t_step:t_f], [du_1dt_0, du_2dt_0], options);
144

145 % append data from this run to the final solution matrices
146 % omit the final data point since it will be solved in the next
147 % iteration
148 t_sol = [t_sol; t(1:(length(t) - 1))];
149 u_sol = [u_sol; u(1:(length(u) - 1),:)];
150
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151 % ue sometimes has more than one row; always select the last one
152 [m, n] = size(ue);
153 if (m > 1)
154 ue(1) = ue(length(ue), 1);
155 ue(2) = ue(length(ue), 2);
156 end
157

158 % store the value of du at the point before the return to help
159 % determine its direction
160 du_p = u(length(u)-1, 2);
161

162 % check that the sign of u and du is positive and that du isn’t
163 % extremely small (this eliminates the point when s switches from
164 % high to low) to get the correct timing
165 if (band == 0)
166 if ((sign(ue(1)) == 1) && (sign(du_p) == 1) ...
167 && (abs(du_p) > 1e-5))
168 % this event has detected a return, store it
169 t_return_sol = [t_return_sol; max(t)];
170 u_return_sol = [u_return_sol; ue(1)];
171 end
172 % for shift band, check if t=t+1 by subtracting the previous
173 % return time from the current time and then checking to make sure
174 % this isn’t the zero crossing that occurs at t=t+0.5
175 else
176 if ((max(t)-t_return_sol(length(t_return_sol))) > 0.6)
177 % this event has detected a return, store it
178 t_return_sol = [t_return_sol; max(t)];
179 u_return_sol = [u_return_sol; ue(1)];
180 end
181 end
182

183 % update the run time with the maximum value of the t vector
184 t_run = max(t);
185

186 % set new start time to point where event was triggered
187 t_s = te(length(te));
188 % set new stop time far away from new start time to insure ode15s
189 % runs long enough to find the next event
190 t_f = t_s + 5;
191 % set new initial conditions to solution value at event
192 du_1dt_0 = ue(1);
193 du_2dt_0 = ue(2);
194 end
195

196 %% Format and Plot Results
197

198 % split u_sol into du/dt and u
199 du_sol = u_sol(:, 2);
200 u_sol = u_sol(:, 1);
201

202 if (band == 1)
203 for i=1:length(t_sol)
204 s_sol(i)=s(floor(t_sol(i)+1))*0.025;
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205 end
206 else
207 for i=1:length(t_sol)
208 k = find(t_n==round(t_sol(i)));
209 s_sol(i)=s(k)*0.025;
210 end
211 end
212 % plot time series
213 figure(1)
214 hold on
215 plot(t_sol, u_sol);
216 plot(t_sol, du_sol, ’m’);
217 plot(t_sol, s_sol, ’r’);
218 % mark return locations
219 for i=1:(length(u_return_sol))
220 plot(t_return_sol(i), u_return_sol(i), ’g*’);
221 end
222 xlabel(’t’);
223 ylabel(’u(t), s(t)’);
224 legend(’u(t)’, ’s(t)’, ’return’);
225 hold off
226 % plot phase space
227 figure(2)
228 plot(u_sol, du_sol);
229 xlabel(’u’);
230 ylabel(’du/dt’);
231 % plot return map
232 figure(3)
233 hold on
234 for i=1:(length(u_return_sol)-1)
235 plot(u_return_sol(i+1), u_return_sol(i), ’*’);
236 end
237 xlabel(’u(t)’);
238 ylabel(’u(t+1)’);
239 hold off
240 end
241

242 %% *event* - Event Function for Detecting Zero Crossing of the Derivative
243 %
244 % *event* takes two inputs: the current values of _u_ and _t_ and returns
245 % these values in _value_ if du

dt = 0 is detected. _isterminal_
246 % returns 1 to stop integration and _direction_ returns if
247 % du

dt = 0 was approached from the positive or negative
248 % direction.
249 function [value, isterminal, direction] = events(t, u)
250 % detect du/dt = 0
251 value = u(2);
252 isterminal = 1;
253 % detect zero crossings from either direction
254 direction = 0;
255 end
256

257 %% *f* - Implements the Differential Equation
258 %
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259 % *f* takes five inputs: the current valeues of _u_ and _t_, the system
260 % parameters _beta_ and _omega_, and the current value of the discrete
261 % state _s_. The output is a column vector containing the solved values for
262 % du1

dt and du2

dt .
263 %
264 % To determine du1

dt and du2

dt , the original
265 % second-order equation can be split into two first-order equations as
266 % follows:
267 %
268 % d2u

du2 − 2β du
dt + (ω2 + β2) ∗ (u− s) = 0

269 %
270 % d2u

du2 = 2β du
dt − (ω2 + β2) ∗ (u− s)

271 %
272 % Two new variables are defined as
273 % u1 = u and u2 = du

dt
274 %
275 % From these, it can be determined that
276 % du1

dt = u2 and
277 % du2

dt = 2βu2 − (ω2 + β2) ∗ (u1 − s)
278 function dudt = f(t, u, beta, omega, s, t_n, band)
279 dudt = zeros(2, 1);
280 dudt(1) = u(2);
281 dudt(2) = sgn(t, s, t_n, band)-2*beta*u(2)-((beta*beta+omega*omega)*(u(1)));
282 end
283

284 %% *sgn* - Implements the sgn Function
285 % *sgn* takes a single input _x_ and returns a value _y_ determined by:
286 %
287 % x ≥ 0→ y = 1; x < 0→ y = −1
288 function s_out = sgn(t, s, t_n, band)
289 if (band == 1)
290 s_out=s(floor(t)+1);
291 else
292 k = find(t_n==round(t));
293 s_out=s(k);
294 end
295 end
296

297
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Appendix B
Routine for Determining Symbolic Dynamics of Skew Tent Map

1 function [sequences, init_cons] = ...
2 discrete_chaos_codingfunc(beta, init_con_step, symbols)
3

4 % initial condition index
5 i=1;
6

7 % initial condition loop
8 % for each value of beta, the return map is calculated for the full
9 % range of possible initial conditions at the entered step size

10 for u_0=0:init_con_step:exp(beta)
11 u(1)=u_0;
12

13 % determine successive maxima based on equation
14 % run for enough iterations to generate the number of symbols
15 % entered
16 for t=2:(symbols+1)
17 if (u(t-1) > 0) && (u(t-1) <= 1)
18 u(t)=(exp(beta)*u(t-1));
19 s(t-1)=’A’;
20 elseif (u(t-1) > 1) && (u(t-1) < (1+exp(-beta/2)))
21 u(t)=(-exp((3*beta)/2)*u(t-1)+(exp(beta)+exp((3*beta)/2)));
22 s(t-1)=’B’;
23 else
24 u(t)=(exp(beta)*u(t-1)-(exp(beta)+exp(beta/2)));
25 s(t-1)=’C’;
26 end
27 end
28

29 %generate bitstream
30 j=1;
31 for k=1:length(s);
32 if s(k) == ’A’
33 s_bits(j)=’0’;
34 j=j+1;
35 s_bits(j)=’0’;
36 j=j+1;
37 elseif s(k) == ’B’
38 s_bits(j)=’1’;
39 j=j+1;
40 s_bits(j)=’0’;
41 j=j+1;
42 s_bits(j)=’0’;
43 j=j+1;
44 else
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45 s_bits(j)=’1’;
46 j=j+1;
47 s_bits(j)=’0’;
48 j=j+1;
49 end
50 end
51

52 % convert the bits into a cell and store in the overall array
53 bits_itr(i)=cellstr(strcat(s_bits));
54 % store the initial condition for the corresponding bitstream
55 init_con_itr(i) = u_0;
56

57 % clear results of current run and iterate initial condition index
58 clear u;
59 clear s;
60 clear s_bits;
61 i=i+1;
62 end
63

64

65 figure(1)
66 hold on
67 % convert each bitstream into decimal form for plotting
68 for i=1:length(bits_itr)
69 s_1=bits_itr(i);
70 s_1=s_1(~cellfun(@isempty, s_1));
71 plot(init_con_itr(i), bin2dec(char(s_1)), ’*r’);
72 bits_out(i)=bin2dec(char(s_1));
73 end
74 xlabel(’u_0’);
75 ylabel(’Decimal Value of Bitstream’);
76 hold off
77

78 % return the bitstreams and initial condition for each step
79 sequences = bits_itr;
80 init_cons = init_con_itr;
81 csvwrite(’init_cons.csv’, init_con_itr’);
82 csvwrite(’bits_out.csv’, bits_out’);
83

84 function [sequences, init_cons, lut] = ...
85 discrete_chaos_shift_codingfunc(beta, init_con_step, symbols)
86

87 % initial condition index
88 i=1;
89

90 % initial condition loop
91 % for each value of beta, the return map is calculated for the full
92 % range of possible initial conditions at the entered step size
93 for u_0=-(exp(beta)-1):init_con_step:(exp(beta)-1)
94 u(1)=u_0;
95

96 % determine successive maxima based on equation
97 % run for enough iterations to generate the number of symbols
98 % entered
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99 for t=2:(symbols+1)
100 if (u(t-1) >= 0)
101 u(t)=(exp(beta)*u(t-1)-(exp(beta)-1));
102 s(t-1) = ’1’;
103 else
104 u(t)=(exp(beta)*u(t-1)+(exp(beta)-1));
105 s(t-1) = ’0’;
106 end
107 end
108

109 % convert the bits into a cell and store in the overall array
110 bits_itr(i)=cellstr(strcat(s));
111 % store the initial condition for the corresponding bitstream
112 init_con_itr(i) = u_0;
113

114 % clear results of current run and iterate initial condition index
115 clear u;
116 clear s;
117 i=i+1;
118 end
119

120

121 figure(1)
122 hold on
123 % convert each bitstream into decimal form for plotting
124 for i=1:length(bits_itr)
125 s_1=bits_itr(i);
126 s_1=s_1(~cellfun(@isempty, s_1));
127 plot(init_con_itr(i), bin2dec(char(s_1)), ’*r’);
128 bits_out(i)=bin2dec(char(s_1));
129 end
130 xlabel(’u_0’);
131 ylabel(’Decimal Value of Bitstream’);
132 hold off
133

134 % return the bitstreams and initial condition for each step
135 sequences = bits_itr;
136 init_cons = init_con_itr;
137 csvwrite(’init_cons.csv’, init_con_itr’);
138 csvwrite(’bits_out.csv’, bits_out’);
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Appendix C
HDL Code for Shift Map

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_signed.all;
4 use IEEE.std_logic_arith.all;
5 -- below are for fixed point math support
6 library IEEE_proposed;
7 use IEEE_proposed.fixed_float_types.all;
8 use IEEE_proposed.fixed_pkg.all;
9

10 entity oscillator_shift is port (
11 clk: in std_logic; -- IN: clock
12 en: in std_logic; -- IN: enable
13 ctrl: in std_logic; -- IN: indicates that new initial condition is present
14 u_0: in std_logic_vector (31 downto 0); -- IN: new initial condition
15 u: out std_logic_vector (31 downto 0); -- OUT: system state
16 s: out std_logic; -- OUT: bitstream
17 ctrl_ack: out std_logic); -- OUT: indicates that new initial condition has been read
18 end oscillator_shift;
19

20 architecture arch of oscillator_shift is
21

22 type del_states is (d1, d2);
23

24 -- values for signed Q format numbers Qm.n
25 constant m: integer := 4; -- bits for integer portion (signed, two’s complement)
26 constant n: integer := 28; -- bits for fractional portion
27

28 -- calculated for beta=0.99*ln(2)
29 constant c1: sfixed (m-1 downto -n) := to_sfixed(1.986184990874072, m-1, -n); --

exp(beta)↪→

30 constant c2: sfixed (m-1 downto -n) := to_sfixed(0.986184990874072, m-1, -n); --
(exp(beta)-1)↪→

31

32 signal n_delay: del_states := d2; -- keeps track of how many cycles to wait before next u
update;↪→

33 signal u_n: sfixed (m-1 downto -n) := to_sfixed(0.5, m-1, -n); -- operating copy of u,
initially 0.5↪→

34 signal s_n: std_logic := ’0’;
35 signal tmp: sfixed (m-1 downto -n) := to_sfixed(0, m-1, -n); -- memory for multi-step

math operations, initially 0↪→

36

37 begin
38 process(clk, en)
39 begin
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40 if (en = ’0’) then
41 n_delay <= d2;
42 u <= "00000000000000000000000000000000";
43 s <= ’0’;
44 elsif (rising_edge(clk)) then
45 case n_delay is
46 when d2 =>
47 n_delay <= d1;
48 u <= to_slv(u_n);
49 s <= s_n;
50 tmp <= resize(arg => c1*u_n, size_res => u_n); -- exp(beta)*u_n
51 ctrl_ack <= ’0’;
52 when d1 =>
53 n_delay <= d2;
54 if (ctrl = ’1’) then -- read in new initial condition if the ctrl flag is set
55 u_n <= to_sfixed(u_0, 3 ,-28);
56 ctrl_ack <= ’1’;
57 elsif (tmp >= to_sfixed(0, 3 ,-28)) then
58 u_n <= resize(arg => tmp-c2, size_res => u_n); -- exp(beta)*u_n -

(exp(beta)-1) (s_n = 1)↪→

59 s_n <= ’1’;
60 else
61 u_n <= resize(arg => tmp+c2, size_res => u_n); -- exp(beta)*u_n +

(exp(beta)-1) (s_n = -1)↪→

62 s_n <= ’0’;
63 end if;
64 end case;
65 end if;
66 end process;
67 end arch;
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Appendix D
HDL Code for Skew Tent Map

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_signed.all;
4 use IEEE.std_logic_arith.all;
5 -- below are for fixed point math support
6 library IEEE_proposed;
7 use IEEE_proposed.fixed_float_types.all;
8 use IEEE_proposed.fixed_pkg.all;
9

10 entity oscillator is port (
11 clk: in std_logic; -- IN: clock
12 en: in std_logic; -- IN: enable
13 ctrl: in std_logic; -- IN: indicates that new initial condition is present
14 u_0: in std_logic_vector (31 downto 0); -- IN: new initial condition
15 u: out std_logic_vector (31 downto 0); -- OUT: system state
16 s: out std_logic; -- OUT: bitstream
17 ctrl_ack: out std_logic); -- OUT: indicates that new initial condition has been read
18 end oscillator;
19

20 architecture arch of oscillator is
21

22 type osc_states is (A, B, C);
23 type del_states is (d1, d2, d3, d4, d5, d6);
24

25 -- values for signed Q format numbers Qm.n
26 constant m: integer := 4; -- bits for integer portion (signed, two’s complement)
27 constant n: integer := 28; -- bits for fractional portion
28

29 -- DAC resolution
30 constant dac_bits: integer := 14;
31

32 -- calculated for beta=0.81*ln(2)
33 --constant c1: sfixed (m-1 downto -n) := to_sfixed(1.753211442632070, m-1, -n); --

exp(beta)↪→

34 --constant c2: sfixed (m-1 downto -n) := to_sfixed(1.755236292781413, m-1, -n); --
1+exp(-beta/2)↪→

35 --constant c3: sfixed (m-1 downto -n) := to_sfixed(4.074619271399510, m-1, -n); --
exp(beta)+exp(3*beta/2)↪→

36 --constant c4: sfixed (m-1 downto -n) := to_sfixed(3.077300353027467, m-1, -n); --
exp(beta)+exp(beta/2)↪→

37 --constant c5: sfixed (m-1 downto -n) := to_sfixed(-2.321407828767440, m-1, -n); --
-exp(3*beta/2)↪→

38

39 -- calculated for beta=1.385*ln(2)
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40 constant c1: sfixed (m-1 downto -n) := to_sfixed(2.611719574177835, m-1, -n); --
exp(beta)↪→

41 constant c2: sfixed (m-1 downto -n) := to_sfixed(1.618780655219275, m-1, -n); --
1+exp(-beta/2)↪→

42 constant c3: sfixed (m-1 downto -n) := to_sfixed(6.832471390105772, m-1, -n); --
exp(beta)+exp(3*beta/2)↪→

43 constant c4: sfixed (m-1 downto -n) := to_sfixed(4.227801123536603, m-1, -n); --
exp(beta)+exp(beta/2)↪→

44 constant c5: sfixed (m-1 downto -n) := to_sfixed(-4.220751815927937, m-1, -n); --
-exp(3*beta/2)↪→

45 constant u_dac_scale: sfixed (dac_bits-1 downto 0) := to_sfixed(4096, dac_bits-1, 0); --
constant for scaling to DAC resolution↪→

46

47 --signal c_delay: del_states := d6; -- keeps track of how many cycles to wait before next
u update;↪→

48 signal n_delay: del_states := d1; -- keeps track of how many cycles to wait before next u
update;↪→

49 signal state: osc_states := A; -- keeps track of if the system is in state A, B, or C
50 signal u_n: sfixed (m-1 downto -n) := to_sfixed(0.5, m-1, -n); -- operating copy of u,

initially 0.5↪→

51 signal tmp: sfixed (m-1 downto -n) := to_sfixed(0, m-1, -n); -- memory for multi-step
math operations, initially 0↪→

52 --signal u_dac_tmp: sfixed (dac_bits-1 downto 0) := to_sfixed(0, dac_bits-1, 0);
53

54 begin
55 process(clk, en)
56 begin
57 if (en = ’0’) then
58 n_delay <= d1;
59 u <= "00000000000000000000000000000000";
60 elsif (rising_edge(clk)) then
61 case n_delay is
62 when d6 =>
63 n_delay <= d5;
64 s <= ’1’; -- first of two hi cycles for s in state B
65 when d5 =>
66 n_delay <= d4;
67 s <= ’1’; -- second of two hi cycles for s in state B
68 u <= to_slv(u_n); -- convert u to std_logic_vector for output
69 -- multiply u by constant to convert fractional part to integer, then

truncate to DAC resolution↪→

70 when d4 =>
71 case state is
72 when C => -- case C: exp(beta)*u
73 tmp <= resize(arg => c1*u_n, size_res => u_n);
74 s <= ’1’; -- first of two hi cycles for s in state C
75 when B => -- case B: -exp(3*beta/2)*u
76 tmp <= resize(arg => c5*u_n, size_res => u_n);
77 s <= ’0’; -- first of four lo cycles for s in state B
78 when others => -- no operation for case A
79 s <= ’0’; -- first of four lo cycles for s in state A
80 end case;
81 n_delay <= d3;
82 when d3 =>
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83 if (state /= B) then -- update u if this is the entry point (case A or C)
84 u <= to_slv(u_n); -- convert u to std_logic_vector for output
85 -- multiply u by constant to convert fractional part to integer, then

truncate to DAC resolution↪→

86 end if;
87 n_delay <= d2;
88 when d2 =>
89 if (ctrl = ’1’) then -- read in new initial condition if the ctrl flag is set
90 u_n <= to_sfixed(u_0, 3 ,-28);
91 ctrl_ack <= ’1’; -- set the ctrl_ack flag to acknowledge that u_0 has been

read↪→

92 case state is
93 when C => -- case C: exp(beta)*u - (exp(beta/2)+exp(beta))
94 s <= ’1’; -- second of two hi cycles for s in state C
95 when B => -- case B: -exp(3*beta/2)*u + (exp(beta)+exp(3*beta/2))
96 s <= ’0’; -- second of four lo cycles for s in state B
97 when A => -- case A: exp(beta)*u
98 s <= ’0’; -- second of four lo cycles for s in state A
99 when others =>

100 null;
101 end case;
102 else
103 case state is
104 when C => -- case C: exp(beta)*u - (exp(beta/2)+exp(beta))
105 u_n <= resize(arg => tmp-c4, size_res => tmp);
106 s <= ’1’; -- second of two hi cycles for s in state C
107 when B => -- case B: -exp(3*beta/2)*u + (exp(beta)+exp(3*beta/2))
108 u_n <= resize(arg => tmp+c3, size_res => tmp);
109 s <= ’0’; -- second of four lo cycles for s in state B
110 when A => -- case A: exp(beta)*u
111 u_n <= resize(arg => c1*u_n, size_res => u_n);
112 s <= ’0’; -- second of four lo cycles for s in state A
113 when others =>
114 null;
115 end case;
116 end if;
117 n_delay <= d1;
118 s <= ’0’; -- third of four lo cycles for s in all states
119 when d1 =>
120 -- case A: u > 0 and u <= 1
121 if (u_n > to_sfixed(0, 3 ,-28) and u_n <= to_sfixed(1, 3 ,-28)) then
122 n_delay <= d4;
123 state <= A;
124 -- case B: u > 1 and u < 1+exp(-beta/2)
125 elsif (u_n > to_sfixed(1, 3 ,-28) and u_n < c2) then
126 n_delay <= d6;
127 state <= B;
128 -- case C: u > 1+exp(-beta/2)
129 else
130 n_delay <= d4;
131 state <= C;
132 end if;
133 s <= ’0’; -- fourth of four lo cycles for s in all states
134 ctrl_ack <= ’0’; -- reset the ctrl_ack flag
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135 end case;
136 end if;
137 end process;
138 end arch;
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