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Abstract

In the field of unmanned aerial vehicles (UAVs), several control processes must be active

to maintain safe, autonomous flight. When flying multiple UAVs simultaneously, these air-

craft must be capable of performing mission tasks while maintaining a safe distance from each

other and obstacles in the air. Despite numerous proposed collision avoidance algorithms,

there is little research comparing these algorithms in a single environment. This paper out-

lines a system built on the Robot Operating System (ROS) platform that allows for control

of autonomous aircraft from a base station. This base station allows a researcher to test

different collision avoidance algorithms in both the real world and simulated environments.

Data is then gathered from two prominent collision avoidance algorithms based on safety and

efficiency metrics. These simulations use different configurations based on airspace size and

number of UAVs present at the start of the test. The two algorithms tested in this paper are

based on artificial potential fields and inverse proportional navigation. Artificial potential

fields maintain strong performance across all categories because of the algorithms handling of

many special cases. Inverse proportional navigation outperformed artificial potential fields

by handling all scenarios with perfection. Furthermore, artificial potential fields failed to

handle all of the stressful simulations, especially when the airspace became congested, while

inverse proportional navigation handled all scenarios. While artificial potential fields is able

to handle up to sixteen aircraft on a 500 meter square field and thirty-two aircraft safely on

a 1000 meter square field, inverse proportional navigation is able to handle up to thirty-two

aircraft on both a 500 meter square field and a 1000 meter square field.
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Chapter 1

Introduction

Remotely piloted aircrafts have been evolving since the early developments of flight.

In the later half of the American Civil War, the earliest documented forms of Unmanned

Aerial Vehicles (UAVs) were used. They were very rudimentary in design; the first UAVs

were balloons filled with explosives and designed to land inside enemy ammunition or a

supply depot and explode[1]. Prior to the Vietnam War, the United States had developed

the technology to make UAVs more efficient. Therefore, UAVs were used extensively in

the Vietnam War, which is when the term Drone was coined. Drones were later referred

to as UAVs to indicate a higher level of autonomy. The Depart Of Defense defines UAVs

as powered, aerial vehicles that do not carry a human operator, use aerodynamic forces

to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or

recoverable, and can carry a lethal or nonlethal payload[2]. Within the past 5 years, the

term UAV has migrated to UAS to represent the entire system associated with operating

the aircraft (every component on the aircraft, the ground-control station, and the wireless

communication link)[3].

Unmanned aerial vehicles are a growing field of research that supports a wide range of

applications from civil land surveys to military surveillance. Usually, each UAV requires a

human pilot to manually control it for a mission or an autopilot with a preloaded set of

waypoints to visit. Many applications require a fleet of UAVs with different missions over

a shared airspace. For a fleet of UAVs on independent path missions, collisions will be

likely for human as well as for autopilot-controlled aircraft. UAVs will be more convenient

and powerful when a fleet of UAVs can autonomously and safely fly to fulfill independent
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missions without human operator(s). To reach this autonomy, UAVs need collision avoidance

algorithms to prevent collisions.

Three years ago, a program started at Auburn University to build an Aerial Terrestrial

Testbed for Research in Aerospace, Computing, and maThematics (ATTRACT). The ulti-

mate goal of the ATTRACT project is to autonomously, safely, and efficiently fly up to 12

UAVs within a limited airspace. So far, over fifty students worked and contributed to design

and implement many parts of this project. James Holt, a graduate student advised by Dr.

Biaz, designed and implemented a general software architecture for the ground station[11].

Throughout the ATTRACT project, many advancements have been made to evaluate and

implement collision avoidance algorithms. The focus of the ATTRACT project lies with the

evaluation and determination of the best collision avoidance algorithm. This paper evaluates

four different algorithms and recommends the best one to be used. These four algorithms

are split into two groups: proactive and reactive. Proactive algorithms are designed to make

decisions ahead of time, such that they can plan out entire missions before they begin. Re-

active algorithms are in real-time; reactive algorithms take in all information at the current

time and plan a path for the current time step based upon it. This research is focused more

on reactive, as these algorithms are more fitting for an environment where multiple UAVs

are flying missions in a confined airspace, although two proactive algorithms are covered

throughout the Literature Review.

As mentioned, James Holt spent multiple years involved in the research efforts of the

ATTRACT project. For Mr. Holt’s Master’s thesis he proved that the Artificial Potential

Fields algorithm was the best algorithm that was evaluated in his thesis[11]. He also proved

that APF outperformed many other algorithms, including MILP, Sparse A*, and Dynamic

Sparse A*. Notice that APF is the only reactive algorithm among the bunch. Therefore,

the research presented in this paper is aimed at improving upon APF, by evaluation another

reactive collision avoidance algorithm, Reactive Inverse Proportional Navigation Algorithm,

a.k.a RIPNA. The outcome of this research will prove that RIPNA is a much more efficient
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and effective algorithm for maintain the safety of aircraft, while still providing adequate flight

efficiency. Furthermore, this research will prove that RIPNA outperforms, APF, as well as

MILP, Sparse A*, and Dynamic Sparse A*, by using five metrics of evaluation: the number

of collision, number of conflicts, deviation from the straight-line route, number of waypoints

achieved, and average life span per UAV. These five metrics are sufficient at providing a

thorough analysis of collision avoidance algorithms and will prove that RIPNA is the best

collision avoidance algorithm.
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Chapter 2

Literature Review

2.1 History

In the mid-1950s, a mid-air collision occurred between two US aircraft carriers over the

Grand Canyon[4]. This sparked interest in the development of collision avoidance systems.

For decades after this collision, a variety of collision avoidance techniques were explored,

but in 1974 the FAA narrowed its focus to the Beacon Collision Avoidance System. BCAS

is a transponder-based airborne system, meaning it uses radio frequencies to detect nearby

threats. Four years later, another mid-air collision occurred between an air carrier and a

general-aviation aircraft, which lead to the advancement of the BCAS effort. In 1981, the

name was changed to the Traffic Alert and Collision Avoidance System. As the TCAS

was refined, the first international version (version 7), was named the Aircraft Collision

Avoidance System (ACAS). Although the FAA has been using collision avoidance systems

for decades, there are a lot of areas for improvement.

2.2 Collision Avoidance Algorithm Categories

Collision avoidance algorithms are usually broken down into two categories: proactive

and reactive. Proactive algorithms plan the entire mission out beforehand, in effort to avoid

collisions by planning smart, cooperative paths. Proactive algorithms usually take a lot

of computation time, which is a significant limitation among UAVs. Reactive algorithms

allow the UAV to fly their mission without a pre-planned path. Then, once a conflict arises,

the reactive algorithms take in all the available information and execute a quick collision

avoidance maneuver. With the inherent low computation speed on embedded systems, UAVs
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can better utilize reactive algorithms for collision avoidance scenarios. Below, two proactive

and two reactive algorithms will be covered in more detail.

2.3 Mixed-Integer Linear Programming

Linear Programming is the process of disassembling a problem into a mathematical

model. That model represents decision variables and constraints that adhere to the problem.

MILP is a specific subset of linear programming problems in which the decision variables are

integers.

MILP is used to solve a variety of different situations. In the past, MILP has been

commonly used for transportation scheduling and cellular network routing. More recently,

MILP has been evolved to handle UAV collision avoidance.

MILP is an adaptation of linear programming, which allows for a scenario to be broken

down into mathematical constraints[5]. Once the constraints are in place, a linear program-

ming solver can be used to find an optimal solution.

In order to migrate MILP to solve a scenario with UAVs, a few constraints need to

be considered. Most importantly, each UAV is mapped by its position, velocity, and accel-

eration. It is necessary for the solver to know the current location of each UAV in order

to maintain a safe distance between other UAVs. Also, constraints are needed to force the

solver to maintain a safe distance between each UAV. Likewise, in order to find an optimized

solution, a goal must be set to minimize the travel distance of each UAV. This gives the

solver a goal and a method of evaluating success of the solution. An example of a MILP

solution is shown in 2.1. The biggest limitation with MILP is the computation time. To

solve a linear program, a non-optimal solution is found, and then, iteratively, better solutions

are found. This takes a lot of time, and can even take up to 200 iterations (sometimes 10+

seconds) to find the optimal solution. This is unacceptable for a UAV; UAVs need to quickly

avoid high-threat situations by making a quick avoidance maneuver. Therefore, for MILP
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Figure 2.1: Path for a helicopter flying from initial position (10,10,120) to final position
(70,60,120)[6]

to be a valid solution to collision avoidance, the problem needs to be heavily constrained to

decrease the time complexity.

2.4 Sparse A*

Most algorithms use the aircraft as the focal point for collision avoidance. However,

some algorithms represent the airspace as a grid and focus on the grid to maintain collision

avoidance. These algorithms work by discretizing the airspace into a grid and assigning each

grid cell cost values. Typically, these values are used to represent the threat of traveling to

that cell, meaning a high threat would represent an obstacle and a low threat would represent

a goal. These values are used to determine the best solution from point A to point B.

One of these algorithms is A* (pronounced A-Star). A* is a tree search algorithm,

that once given a starting and finishing location a solution is produced. The algorithm

guarantees to always find a solution if one exists. A* is a best-first search algorithm, meaning

it expands to more promising nodes first. Which nodes are promising is determined by a

heuristic function that estimates the cost of moving from the current node to the goal[7]. This

6



Figure 2.2: A* path planning example[8].

heuristic function can dramatically improve the overall performance of A*, when compared

to breadth-first search or depth-first search. An example of an A* search is provided in 2.2.

When migrating this algorithm to UAVs the airspace must be discretized into areas, such

that A* can compute costs for moving from area to area. Also, heuristic functions have

to be determined such that there is an advantage when moving toward waypoints, and a

disadvantage when moving toward obstacles. Tweaking these heuristic functions can alter

the output of the algorithm; therefore they are vital to the performance of the algorithm.

Similar to MILP, the limitation with A* is computation time. While the optimal UAV

path is computed, every feasible path will be considered, making the program very compu-

tation heavy. In-order to minimize on the number of paths considered a receding horizon

could be implemented. This can effectively prune the search space to allow the generation

of an acceptable solution that converges in real-time. There has been some success in this

approach, therefore the algorithm adopted the name Sparse A*[7].
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2.5 Artificial Potential Fields

Artificial Potential Fields uses a simplistic approach to collision avoidance. In physics,

particles have positive and negative charges, where like charges repel each other and oppo-

site charges attract each other. Recently, researchers have applied this theory to collision

avoidance, developing Artificial Potential Fields.

APF uses physics to map out the environment into particle charges. Using this approach,

each aircraft is considered to have an artificial negative charge. Each goal, or waypoint, is

given a positive charge in order to attract the UAV. Likewise, each obstacle (other UAVs or

land-obstacles) is given an artificial negative charge in order to repel the UAV. To determine

a collision avoidance maneuver, all of these charges are summed together to form a resulting

vector. This resulting vector can be applied to direct the UAV into safe airspace.

APF takes significantly less time to execute then most other algorithms. This is due

to the simplicity of the algorithm. APF is a reactive algorithm, therefore it makes a greedy

decision based on the current information at a specific point in time. Also, APF doesnt make

decisions about the future, unlike A* and MILP. Although this tremendously decreases the

computation time, it can lead to situations that APF cannot solve.

2.6 Inverse Proportional Navigation

Similar to APF, Inverse Proportional Navigation uses a simplistic approach to colli-

sion avoidance. Although, rather than using particles forces, IPN uses geometry. IPN was

adopted from a well-known algorithm used primarily by the military, proportional naviga-

tion. PN is commonly used to guide missiles. PN is based on the fact that two moving

objects have a straight-line distance between them called the Line Of Sight. The PN guid-

ance law applies a lateral acceleration to the missile so that the direction of the LOS vector

stays constant[9]. This ensures the missile will collide with the target.
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IPN is essentially the opposite of proportional navigation; IPN aims to avoid collision,

not create them. Therefore, IPN is concerned with the lateral acceleration that takes an

UAV away from the collision[9]. When PN is applied to missile guidance, PN dictates that

the missile should rotate at a rate that is proportional to and in the same direction as the

LOS rate of rotation. IPN does the opposite; Inverse PN dictates that both objects should

rotate at a rate proportional to and in the opposite direction of the LOS rate of rotation.

IPN is very easy to compute. Therefore, IPN is the quickest algorithm covered in this

paper. This is due to the simplicity of IPN. IPN uses the easiest approach to collision

avoidance, geometry. Also, IPN is purely a reactive algorithm. Therefore, it doesnt compute

information about the future, or the past, making it much faster than proactive algorithms.

Since reaction time is vital among aircraft, IPN is an obvious choice for optimal performance.

2.7 Conclusion

There are many different algorithms that can solve collision avoidance situations. This

paper has briefly described four collision avoidance algorithms: MILP, A*, APF, and IPN.

MILP and A* perform optimally when theyre able to fully compute the solution, but many

times UAVs are limited in computation time. Therefore, APF and IPN became an obvious

choice for further analysis.

APF and IPN both use simplistic methods for collision avoidance; APF maps the field

into particle forces, while IPN uses basic geometry to determine the most efficient solution.

Both algorithms will successfully solve most, if not all, threatening situations. Although

both algorithms are successful, certain algorithms are better in certain situations. Since

APF can handle many particle forces, it is better than IPN at handling some multiple-UAV

scenarios. Even so, this paper will prove IPN is a much more efficient and quicker algorithm

making it the best collision avoidance solution.
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Chapter 3

Artificial Potential Fields

3.1 Artificial Potential Fields Basics

The fundamental theory behind APF are physics particle forces. For instance, like

charges are used as attractants and opposite charges are used a repellents. Specifically, all

aircraft in the airspace will have a negative charge associated with a positively charged des-

tination waypoint[12]. Following the rules of magnetism, the aircrafts (negatively charged)

will feel repulsive forces against other aircraft and attractive forces toward their destination

waypoint (positively charged)[12]. Each of these forces factor into the final force vector

calculation. Then, that vector is used to direct the UAV to safety.

In order to scale the particle forces of attraction and repulsion to accurately mimic an

UAV environment, an attraction constant, γ, is used. This attraction constant is used to add

weights to the attractive and repulsive forces[13], and thus is bounded such that 0 < γ < 1.

Finally, using the attraction constant, the overall force equation can be calculated as

~Ftot = γ ∗ ~Fattr + (1− γ) ∗ ~Frep (3.1)

Sigurd and How used this equation in previous research to evaluate their APF implemen-

tation. During this research, their best results were achieved using γ = 0.66 for attractive

forces and 0.34 for repulsive forces[13]. The proposed APF solution in this paper follows

their implementation using Equation 3.1 and the specified attraction constant.

Equation 3.1 is the method for combining force vectors. To use Equation 3.1, APF

needs a method to determine the values of these force vectors. The magnitudes of magnetic

forces are primarily determined by the distance between the two objects. These forces can
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be measured at any distance, and they weaken as the distance increases. However, at some

point, the force becomes negligible, so APF has to define a maximum distance at which one

UAVs force can be felt, or dfmax.

Unfortunately, UAVs do not operate exactly like physics particles, meaning the force

vectors arent solely dependent on the distance between two objects. Therefore, APF must

use a much more complex way to calculate dfmax. First, donesec is used to represent the

distance that one UAV can travel in one second, and a scale factor α is used to define the

ratio of the collision zone to the size of the potential field. Through experimentation, it

was determined an α = 5 provided the most realistic results[8]. Furthermore, each UAVs

potential field is modified to be an elliptical shape with the force field extending much

farther in front of the UAV. This allows APF to closely mimic a UAV environment, since

it is more likely that a head-on collision occurs on UAVs. To define this elliptical shape,

two constants,λscalef and λscaleb, are used to scale the amount of the ellipse that is extended

in front and behind the UAV. Through experimentation, λscalef = 2.0 and λscaleb = 1.25

provided the best results[8]. Finally, θ is used to represent the angle from the heading of

UAV, Uk, to the position (excluding heading) of the current aircraft, Ui. Using all of these

values, dfmax can be calculated using Equation 3.2. Figure 3.1 represents the force field

around a UAV that may be included in Equation 3.2.

dfmax = α ∗ donesec(λscalef − (λscalef − λscaleb)/2) + ((λscalef − λscaleb)/2) ∗ cos(θ) (3.2)

Along with the maximum distance a UAVs force field can be felt, there also needs to

be a minimum distance, dubbed dfailsafe, which will modify our force value to represent an

immediate collision[14]. If two UAVs are within this minimum distance, they both will feel

a maximum force, Ffailsafe, which will overpower all other forces in calculations. This will

force the UAVs to avoid each other.
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Figure 3.1: Determining the maximum distance of the repulsive force field[8].

Finally, we must consider the case when dfailsafe < d ≤ dfmax. While the UAV is within

this range, the repulsive force felt by Uk is dependent on two factors: the distance between

Ui and Uk, and the position and direction Ui and Uk are flying[14]. As stated earlier, the

distance is the main contributor to the magnitude of the repulsive force. But, the orientation

of each UAV also influences the repulsive force. For example, if one UAV is in front of the

other, the leading UAV will feel a stronger force to avoid. In contrast, the trailing UAV will

feel a weaker force to avoid, because the leading UAV is doing most of the work. In this final

calculation, two constants, kemitf and kemitb, will be used to represent the scalar effecting

the force in front of Uk and behind it, respectively. Also, the negative charge from a UAV is

represented as qUAV . Lastly, to help check the strength of the repulsive force, a scalar value,

γ, is used. Using all of these variables and constants, the final force calculation is given as
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r(θ, d) =



0 if d > dfmax

qUAV ∗ [(kemitf − (kemitf − kemitb)/2)] + ((kemitf − kemitb)/2) ∗ cos(θ)
dfmax−d
γ∗α if dfailsafe < d ≤ dfmax

Ffailsafe if d ≤ dfailsafe
(3.3)

Through experimentation, the best results were provided with qUAV = 80, kemitf = 1.5,

kemitb = 1.0, and γ = 4.0[8].

Now that the final force is calculated, APF must determine how much of this force is

felt by the UAV. To calculate this, APF must know three additional values. First, APF uses

a variable, called φrep, to represent the angle between the UAVs bearing and the repulsive

force. Second, APF uses a scalar, called βfeelf , to represent the force felt from an obstacle

in front of the UAV. Lastly, APF uses another scalar, called βfeelb, to represent the force felt

from an obstacle behind the UAV. Using these values Equation 3.4 can be used to increase

the force felt from obstacles in the path of the UAV. For a visual representation of φrep,

please refer to 3.2. Through experimentation, the best results were provided with βfeelf =

1.0 and βfeelb = 0.5[8].

s(θ, φrep, d) = r(θ, d) ∗ [(βfeelf − (βfeelf − βfeelb)/2)− ((βfeelf − βfeelb)/2) ∗ cosφrep)] (3.4)

Using Equation 3.3 and Equation 3.4, we can infer some vital information. Most impor-

tantly, the most powerful forces will be felt when two aircraft are heading directly toward

each other. Extrapolating this scenario further, the resulting angles are θ = 0, and φrep = π,

which will result in the maximum possible force emitted from the obstacle and subsequently

felt by the UAV. In contrast, if two UAVs are flying directly away each other, the force

emitted and felt will be minimal.
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Figure 3.2: Geometry for calculating the repulsive force felt by Ui[8].

After using Equation 3.4 to calculate each repulsive force for a UAV, these values are

combined into one value, ~Frep, by using Equation 3.5.

~Frep =
n∑
k=1

s(θk, φrepk, dk) (3.5)

Finally, APF can calculate the total force acted upon a UAV, and make a decision to

safely route the UAV. To do this, APF uses the result in Equation 3.5 and inserts that

value into Equation 3.1, along with a constant attractive force,
∣∣∣ ~Fattr∣∣∣=100[8]. Using these

two values, APF calculates the total force, as shown in Figure 3.3, and uses that force

to determine where the Ui should fly during the next time step. The only limitation is

the maximum turning angle. If ~Ftot is greater than the maximum turning angle, APF will

command the UAV to fly at its maximum turning angle. Although, if ~Ftot isnt greater than

the maximum turning angle, APF will command the UAV to fly at that specific angle.

3.2 Special Situations

Artificial Potential Fields use a simplistic method to achieve collision avoidance. Al-

though using a simplistic method has its advantages, situations arise that are unsolvable or
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Figure 3.3: Calculating the total force acting on a Ui[8].

Figure 3.4: Situation in which the right hand turn rule should not be applied. Ui should
continue towards its destination instead of traveling behind Uk.

poorly solved by this method. Therefore, APF must tackle these situations individually by

looking for these specific scenarios. This section will cover these special situations.

3.2.1 Right-Hand Rule

As UAVs fly their missions, conflicts between them arise. Sometimes, the UAVs need

to cross each others path to continue on their mission, and APF must make a decision on

how these UAVs should cross. Usually, when APF is looking at a specific UAV, it decides

that the UAV should fly in front of other UAVs to continue on its mission. The majority of

the time this method provides the most efficient solution, but sometimes it is quicker for the

UAV to fly behind other UAVs. Therefore, APF is alerted to execute the Right Hand Rule

when this situation arises.
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Figure 3.5: Calculating the new φrep to force Ui to fly behind Uk.

To detect this situation, APF calculates three values. The first value, θ, is the angle

between the location of the current UAV, Ui, and the bearing of another UAV, Uk. Next,

APF calculates φrep, the angle between the current bearing of Ui and the repulsive force

acting on Ui from Uk. Lastly, APF calculates φattr, the angle between the bearing of Ui and

the attractive force from its goal.

APF uses θ, φrep, and φattr to detect a situation when the Right Hand Rule needs to

be applied. If φattr ≤ 0 and θ < −90, then no corrective action should be taken because

Ui is both to the left of Uk and turning left away from a collision as shown in Figure 3.4.

But, if θ is found to be between [-135, 0], then Ui is to the left of Uk. Next, APF checks if

φrep is between [-180, -90]. If it is, then Ui is attempting to turn left to avoid Uk, but this

will place Ui in the path in front of Uk, and could potentially cause a hazardous situation[8].

Therefore, the Right Hand Rule must be applied to solve this situation.

If θ is between [-135, -25], then a right turn should be forced such that Ui passes behind

Uk. To force this situation, φrep is flipped to make the UAV turn the equal amount, but

opposite direction, that it was initially turning. This is shown in Figure 3.5. This will force

Ui to avoid a collision by flying behind Uk.

The last unchecked interval is when θ is between [-25, 0]. This scenario is on the verge of

whether to avoid, or not to avoid. Therefore, APF uses a spherical triangle to calculate the

corrective action. Referring to Figure 3.5, a is defined as the distance between Ui and Uk, b

is defined as the distance between Ui and the point of intersection with Uk, and c is defined
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as the distance between Uk and the point of intersection with Ui. b and c are calculated

using the law of cosines and are used for determining the corrective action, If (cb) ≤ (φrep90),

then the same corrective action should happen as if θ is between [-135, -25]. If this isnt the

case, it simply means that no corrective action is required, and Ui can safely cross the path

of Uk.

3.2.2 Deadlocks

When two UAVs are flying directly at each other, APF enters a deadlock situation

where it cannot determine a corrective action[15]. In this case, the repulsive force is pointed

directly behind each UAV; no force to the left or right is present to break the deadlock

situation. If the UAVs were to continue on their path, the UAVs would simply fly into each

other. Therefore, APF detects this situation beforehand and eliminates the deadlock. To

determine if two UAVs are on a head-on collision course, APF converts the attractive and

repulsive forces into unit vectors and adds them together. If these vectors cancel each other

out, then a head-on collision is imminent. To resolve this situation, APF turns each UAV to

the right 15 degrees, so they can safely pass each other[15]. The head-on collision situation

and APF resolving this situation is shown in Figure 3.6.

3.2.3 Priorities

One of the problems with APF, is when a UAV approaches its destination, repulsive

forces from other UAVs can push the original UAV off course. This can cause several negative

effects such as looping around the destination, unnecessary turns, or just being pushed

completely off course. Although the intervening UAV will eventually fly away, before it

does, it potentially could cause hazardous situations for the main UAV.

To solve this situation, APF prioritizes the UAVs based upon how far it is from its

destination. To order the priorities, APF uses a variable dpriority, defined as dpriority = 4.5

* donesec. If the distance between the UAV and its destination is within dpriority, then that
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Figure 3.6: Adjusting the UAVs to handle head-on collisions

UAV becomes prioritized. Therefore, when APF calculates the summation for a UAV with

priority m, only aircraft that are higher priority are factored into the summation, which

solves the issue where lower priority UAVs can alter the path of higher priority UAVs[8].

This is shown in Equation 3.6, which takes the UAVs priority into account when calculating

( ~Frep).

~Frep =
m−1∑
k=1

s(θk, φrepk, dk) (3.6)

Although this solved the problem presented above, it introduces an entirely new prob-

lem. Without the priority system, both UAVs make a simultaneous avoidance maneuver,

when they need to. But, when the priority system is in place, only one UAV (the one with

lower priority) will attempt to avoid. This can lead to conflicts because, usually, both air-

craft would avoid each other. To solve this side effect, APF expands the potential field of

prioritized aircraft by using scaling factor, called pmult. This alters the potential field to be

defined as dfmax ∗ pmult[8].
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Figure 3.7: The geometry involved in looping detection[8]

3.2.4 Looping

The final issue that arises with APF is indefinite destination oscillations. For example,

image a scenario where two sequential waypoints are very close to each other. It could

happen where the second waypoint is within an unreachable area that the UAV will never

be able to reach by simply turning at the maximum rate in the direction of the waypoint.

Therefore, APF developed a way to detect and correct this situation.

APF uses basic geometry to detect if a waypoint is unreachable. First, the waypoint

must be within a predefined distance before APF considers the waypoint for looping con-

ditions. This distance is defined as dloopmax = 2 * rturn − dthres, where rturn is the UAVs

maximum turning radius and dthres is its distance threshold to contact its destination. Figure

3.7 shows the geometry involved in calculating looping. In this figure, the red zone cannot be

reached by a normal turn maneuver and the white zone can. If the UAV is within dloopmax,

then APF calculates the value dctodest, which is the distance between the center of the un-

reachable zone, c, and the destination. If dctodest ≤ runreachablezone, then the UAV cannot

reach the destination with a typical turn maneuver. To fix this situation APF simply flips

the polarity of the destination to repel the UAV until dctodest ≥ runreachablezone.

19



Chapter 4

Reactive Inverse Proportional Navigation

4.1 Background

Reactive Inverse Proportional Navigation Algorithm is an effective solution to collision

avoidance. RIPNA solves many issues that arise with other collision avoidance algorithms

like computation time, routing efficiency and most importantly, decreasing collisions. It does

this by combining two unique algorithms for two specific purposes; IPN is used to determine

collision avoidance maneuvers and Dubins path is used for non-collision scenarios.

4.2 Greatest Threat Identification

The first step of RIPNA is treat identification. RIPNA surveys the airspace looking for

UAVs on collision courses. This is determined by examining each UAV and using a specified

separation distance to choose other UAVs imposing a threat. Also, each UAV is assumed

to continue on its current trajectory. Using geometry to project each UAVs vectors, the

ideal minimum distance or Zero Effort Miss, is calculated. To calculate the ZEM of a pair

of UAVs, consider the 2-D engagement scenario of two UAVs, U1 and U2. To help calculate

the ZEM, let p1 = (x1, y1) and p2 = (x2, y2) represent the initial positions of U1 and U2

respectively. Also, let d1 = (l1, m1) and d2 = (l2, m2) represent the direction cosines of the

respective headings of U1 and U2. Supposing both UAVs travel at constant speed V and

bearing, the distance S between them can be calculated as a function of time, given as

S2 = (p1 − p2) ∗ (p1 − p2) + 2(p1 − p2) ∗ (d1 − d2)(V t) + (d1 − d2) ∗ (d1 − d2)(V t)2 (4.1)
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To find the time at which U1 and U2 are closest to each other, RIPNA finds the time at

which S is the smallest, by solving for t when ds
dt

=0. George and Ghose[9] call this the tgo.

It may be calculated as

tgo =
−((p1 − p2) ∗ (d1 − d2))
(V (d1 − d2) ∗ (d1 − d2))

(4.2)

Now, RIPNA can calculate the ZEM as S(tgo). If tgo > 0, then there exists a point in

the future that U1 and U2 will collide. Also, tgo can be less than 0, which means that U1 and

U2s paths extrapolated backwards results in a minimum distance and thus a negative tgo.

Each UAV compiles a list of other UAVs in its neighborhood, meaning each UAV will

only consider other UAVs within a distance of Rdes. After compiling this list of other UAVs

and their corresponding ZEM and tgo, RIPNA can make a decision on which UAV to avoid.

In order to find the greatest threat, RIPNA uses a greedy selection; from the list of threats,

RIPNA chooses the UAV with the smallest positive tgo as the greatest threat, and the current

UAV will perform a maneuver to avoid that UAV.

4.3 Collision Avoidance Maneuver Determination

After selecting a great threat, a collision avoidance maneuver must be performed. Figure

4.1 depicts a 2-D engagement of 2 UAVs, U1 and U2. Assume U1 and U2 have selected each

other as greatest threats. To ensure a safe maneuver, each UAV will turn to increase the

magnitude of the rate of rotation of their LOS. Let θ1 and θ2 be the angles between the

LOS and heading of U1 and U2. The LOS rate of change is given as

θ =
(V sin(θ2)− V sin(θ1))

r
(4.3)

In this scenario, if (θ2 > θ1), then accelerations a1 and a2 are applied to U1 and U2,

respectively. Using these two accelerations, the UAVs will safely avoid their collision course.

The magnitude of the accelerations is given as
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Figure 4.1: An engagement of 2 UAVs in the 2-D plane where θ2 > θ1[9]

a =
V 2

R
(4.4)

where R is the calculated turning radius for the UAVs. George and Ghose[9] suggest an

equation for the computation of R, by using the exponential function

R = Rmin ∗ exp(
λ ∗ ZEM
Rdes

) (4.5)

where Rmin is the minimum turning radius of the UAVs and λ is a tuning parameter.

In the scenario in Figure 4.2, when (θ2 < θ1), accelerations are applied in the opposite

direction depicted in Figure 4.2. This will effectively execute the most effective collision

avoidance maneuver. Likewise, with a ZEM of zero, the UAV is expected to perform the

tightest turn possible. For a higher ZEM, there is a lower risk of a collision; therefore, it is

desirable to minimize the deviation from the normal path by lessening the turning radius.

One way to achieve this is by using an exponential function, like Equation 4.5, to achieve a

demand radius of R.
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Figure 4.2: An engagement of 2 UAVs in the 2-D plane θ2 < θ1[9]

4.4 Dubin’s Path

If a UAV doesnt have an immediate threat, it is routed to its next waypoint using

Dubins path. Dubins path provides the shortest distance between two points, given the

initial heading and destination heading. When implementing Dubins path in UAV airspace,

the destination heading isnt critical, given that the destination is a waypoint rather than

a runway. Therefore, the destination heading isnt considered, which alters Dubins path to

simply make the UAV turn as sharply as possible until it is headed toward its destination.

However, this may cause the UAV to repeatedly circle its destination if the waypoint is

within the circle of UAVs minimum turning radius. This is illustrated if Figure 4.3. In

this example, turning along R1 towards destination 1 would require the UAV to circle its

destination. Therefore, Dubins path has been altered to allow the UAV to fly along the

circle R2 to reach destination 1. This simply requires the UAV to slightly turn left until the

destination is no longer inside the circle of the minimum tuning radius, at which the UAV

turns along the circle of its minimum turning radius (R2) to reach its destination.

4.5 Special Situations

After Fish and Westman implemented RIPNA, they experienced some special situations

that RIPNA solved poorly[16]. These situations may not have presented themselves prior to

Fish and Westmans research due to the simulation environment (i.e. short run-time, random
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Figure 4.3: A UAV taking Dubins path to one of the two possible destinations[9]

Figure 4.4: A situation that induces chattering between U1 and U2[16]

destination arrangement, one destination per UAV, etc.). To solve these situations, special

detection and correct techniques were integrated into the existed RIPNA implementation[16].

4.5.1 Chattering

One of the most common situations occurs when two UAVs are traveling with similar

headings, they are close to each other, and they both need to turn in the same direction to

their destination. This causes the UAVs to oscillate from avoiding each other to trying to

fly to their destination. A geometry that can cause chattering is shown in Figure 4.4.

Once chattering occurs, it usually pushes the two UAVs several hundred meters off

course until the oscillation pattern is broken. This greatly lowers the efficiency of RIPNA,

which could make other collision avoidance algorithms falsely rank higher than RIPNA

during evaluation. Therefore, Fish and Westman took a preventative approach to solving

this problem: two UAVs with similar headings (within 30 of each other) will not attempt to
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avoid each other unless the LOS distance is below a provided threshold[16]. This will allow

the UAVs to orient themselves by traveling further toward their destination, rather than

initiating the chattering situation. This will resolve most long-term chattering situations

with minimal restrictions to RIPNAs overall objectives.

4.5.2 Inaccurate Threat Selection

Inherently, RIPNA is amazingly good at solving two-UAV scenarios. Although, when

RIPNA is dealing with multiple-UAV scenarios, it has trouble accurately choosing the correct

UAV as the greatest threat. This can lead to unexpected near misses and a reduction in

flight-path efficiency. For example, consider the three-UAV scenario shown in Figure 4.5.

When RIPNA is selecting the greatest threat for U1, it will consider U2 and U3, because

their ZEM values are less than the desired separation. Then, RIPNA would select U3 as U ′1s

greatest threat because U ′3s tgo is less than U ′2s, but this is an inaccurate threat selection. It

would be in the best interest of U1 to avoid U2, because even though its tgo is much larger

than that of U3, its ZEM is less than the near miss radius, which makes it significantly more

dangerous than U3.

To solve this situation, Fish and Westman implement a basic two-threshold system. This

gives RIPNA a method for determining if a smaller ZEM is enough to trump the smaller

tgo, like in Figure 4.5. To implement this fix, Fish and Westman use the near miss radius as

one of the thresholds. If one or more of the UAVs being considered have a ZEM less than

the near miss radius, then the UAV with the smallest tgo will be considered the greatest

threat. Otherwise, RIPNA performs as it would regularly. This two-threshold system is not

a complete solution, although it does offer a preventative approach to minimize the near

misses that are due to inaccurate threat selection[16].
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Figure 4.5: Three-UAV scenario where RIPNA performs inaccurate threat selection. Rnm is
the near miss radius and Rdes is the threshold ZEM value for avoiding UAVs
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Chapter 5

Test-bed Design

5.1 Test-bed Requirements

One of the key requirements to perform this research is having a standardized way to

test and compare collision avoidance algorithms based on a set of metrics. To accomplish this

goal, there needed to be a system that would be standardized regardless of which collision

avoidance algorithm was currently active. This would allow for easy comparisons between

multiple collision avoidance algorithms. Additionally, this system needed to work with a

pre-existing, control system that was capable of sending waypoints to a UAV and receiving

GPS data from that UAV. For testing purposes, the control system needed to have the ability

to perform simulations. This feature would allow a researcher to perform basic tests and

error checking in a laboratory setting before risking the hardware components of a real UAV.

There also needed to be methods to both store and visualize the data collected from these

flights such that analysis could be performed on the collected GPS data. In summation, this

system would need to meet the following requirements:

1. Standardization of the control system

2. Ability to easily switch collision avoidance algorithms

3. Ability to perform laboratory simulation

4. Ability to perform field tests with real UAVs

5. Collect and visualize GPS data

6. Provide an interface for loading waypoints, paths, or courses into the system
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James Matt Holt, a previous Masters student under Dr. Saad Biaz, developed part of

this system for his Thesis project. Matt was able to complete items 1., 2., 3., and 6., and

compare three collision avoidance algorithms: MILP, Sparse A*, and APF[11]. Although

Matt made a significant dent in the overall project, there was still plenty of work left to finish

the test-bed and collision avoidance testing, therefore I was tasked with with completing

items 4., 5., and further testing new collision avoidance algorithms in an effort to out perform

Matt’s final results.

5.2 Hardware Considerations

5.2.1 Ground Control Station Hardware

The most important hardware consideration is the Ground Control Station. The GCS

is the brains of the operation; It needs to be able to monitor all of the UAVs, while making

decisions on where and when to route each UAV. Since the architecture is discussed in detail

below, this section will only touch on the hardware involved in the GCS.

Most importantly, the GCS needs to be run on a computer, and if real UAVs are being

flown, the GCS needs to be in-range of these UAVs inorder to undergo communication.

Therefore, a lightweight, transportable, yet powerful laptop is the best choice. This laptop

needs to be able to run a Linux OS, e.g. Ubuntu, because the GCS is written on top of the

Robot Operating System. Personally, I use a Linux virtual machine to operate the GCS,

but any computer running a Linux OS that has ROS configured correctly will suffice.

Secondly, the GCS computer needs to be able to communicate with the real UAVs.

This is done by using a Xbee telemetry module that is connected to the GCS computer.

The Xbee module is a product made by the company Digi International that is a lightweight

arduino-based board which performs wireless communication. Xbees allow for point-to-point,

point-to-multipoint, and multipoint-to-multipoint communcation, between two or more Xbee

modules. The Xbee product was chosen for this research because the modules are cheap ( 30

per module), they provide a very long range (1-2 miles), and they are easily configured to
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a desired network configuration. Therefore, every real UAV (fixed wing or multi-rotor) are

equipped with a Xbee telemetry unit, forming a point-to-multipoint network configuration.

Lastly, since the GCS is equipped with Google Maps visualization, an internet connec-

tion is needed for the visualization to operate correctly. For future endeavors, a 3G/4G

WiFi hot-spot should be purchased so that the GCS can operate anywhere that has cell-

phone reception, since recently we have been using phone-tethering which will not always be

available. Another idea is to cache the field’s data beforehand, then when operating in the

field WiFi will not be required. Furthermore, it should be noted that the fundamental oper-

ation of the GCS is not hindered by the WiFi requirement; the GCS can operate perfectly

without WiFi, but the visulation aspect of the GCS requires the internet connection.

5.2.2 UAV Hardware

As this research has progressed over several years the UAV platform has also evolved

from fixed-wing aircraft to multi-rotor aircraft. Initially, the research was all done using

a basic R/C fixed-wing aircraft equipped with an autopilot control chip. More recently,

the research has progressed to using multi-rotor aircraft, also equipped with an autopilot

control chip. This transition was done in an effort to further the research into the latest

technologies available, test collision avoidance algorithms among all system available, and

because multi-rotor UAVs are much easier to pilot than fixed-wing UAVs.

5.2.3 Fixed-wing Hardware

The fixed-wing hardware is essentially a remote controlled airplane equipped with smart

sensors. The airframe for the fixed-wing is a Bixler model that is controlled by a 6 channel

DX6i Spektrum remote. In order to have autonomous flight, the airframe needed to be

equiped with an autopilot mechanism, which is obtained by using the ArduPilotMega, a.k.a

APM. The APM is an arduino micro-controller that controls the servos onboard the Bixler

acting as the autopilot for the autonomous system. The APM has a lot of sensors onboard
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to achieve a fully autonomous system. Some of the sensors include a compass, barometer,

accelerometer, gyroscope and a GPS. The APM uses these sensors to read the current ori-

entation of the aircraft and then manipulates the servos accordingly to keep the Bixler in

the air. Furthermore, the UAV is equipped with a Xbee telemetry unit for communication

between the aircraft and the GCS. With all of these parts combined, the fixed-wing UAV is

able to fly waypoint-to-waypoint missions, while avoiding other aircraft, which is all directed

by the GCS.

5.2.4 Multirotor Hardware

The multi-rotor hardware contains a lot of the same hardware involved in the fixed-

wings, but a much different airframe. The airframe was bought from 3DRobotics, and the

DIYDrones community. It is called the IRIS, but essentially its a basic quadcopter, meaning

it uses four propellers to keep the aircraft flying. With that being said, quadcopters are

nearly impossible to fly manually, so they always have a micro-controller attached to help

with the flight stabilization. The IRIS uses the Pixhawk micro-controller, just like the fixed-

wing uses the APM. Likewise, the Pixhawk has many of the same sensors available, e.g.

magnetometer, barometer, accelerometer, gyroscope, GPS. Like the APM, the Pixhawk uses

these sensors to maintain stabilization during flight. Also, like the fixed-wings, the IRIS

is equipped with the same Xbee telemetry unit so that it too can communication with the

GCS, which gives the IRIS the ability to fly waypoint-to-waypoint missions.

5.3 Software Considerations

The software is involved in two locations: the GCS and the aircraft. The main focus

is to have these two pieces of software communicate, therefore they have to talk the ”same

language”. This language is the Micro Aerial Vehicle protocol, called MAVLink. This

protocol is widely used among amateur UAV enthusiasts, was already implemented on the
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autopilot system we were using, and was easily implementable on the GCS, so we decided

this was the best protocol for our system.

The aircraft has one huge piece of software: the autopilot system. For the fixed-wing

and multi-rotor hardwares, this system is innately different, and called the ArduPilot and

ArduCopter, accordingly. They are different because the flight dyanamics of a fixed-wing

aircraft and quadcopter are very different, and the software components are tailored to a

specific system. With that being said, the communication of the two is exactly the same,

which is good for the needs of this research. Therefore, the only software consideration for

the aircrafts are the communication message that will be used on the GCS and the aircraft.

For this research the AU UAV message was implemented on both the GCS and the aircraft.

This message contains the following information:

1. Current latitude

2. Current longitude

3. Current altitude in meters

4. Target latitude

5. Target longitude

6. Target altitude in meters

7. Current ground speed in meters/second

8. Current airspeed in meters/second

9. Desired bearing to wp in degrees

10. Distance to target waypoint in meters

11. Target waypoint index
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On the GCS there are a lot more software considerations in order to achieve all of

the needs of this research. First, and Foremost, the GCS needs the ability to test multiple

collision avoidance algorithms in the same environment, and provide results from these tests.

Therefore, the GCS will need to have a simulation mechanism so the environment can be

held constant while different collision avoidance algorithms are tested. Second, and almost

as important, the GCS needs to monitor all the aircraft (simulated and real) and direct

them during flight. This requires the GCS to keep track of all the current aircraft, monitor

them to see when they need to be sent to their next waypoint, or avoid another aircraft, and

direct the corresponding aircraft to the correct location. Finally, the GCS needs to be able

to communicate to real UAVs, which requires the GCS to have a Xbee telemetry unit, and

software that receives the AU UAV message sent from each aircraft.

All in all, the Robot Operating System allows for the GCS to encapsulate all of these

requirements. The Robot Operating System is built for programs that need multiple threads

running simultaneously, performing different operations. In robots, this allows for the robot

to be able to move, while using on-board sensors to collect data and make decisions. In

terms of a Ground Control Station, there are many separate tasks that need to be running

simultaneously. As stated above, the GCS needs to be able to receive incoming information

from real UAVs using the wireless Xbee unit, while monitoring all of the UAVs, sending

them waypoints and collect data for collision avoidance evaluation. Therefore, ROS is the

perfect platform to encapsulate the GCS, since it gives the ability to have all of these tasks

running at once.

5.4 Ground Control Station Architecture

5.4.1 ROS Overview

The GCS is responsible for coordinating all of the aircraft while maintaining a safe flight;

therefore ROS is a perfect fit for aiding in implementation. ROS is a framework used for

controlling robots, because it splits up specific tasks into their own processes, which can run
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independently of each other. Imagine a robot that has three sensors: infrared, sonar, and

infrasound. Each sensor would be controlled by their own process, which allows for the user

to run each sensor independently of each other. The advantage of ROS is that the sensors

can easily be dynamically started and stopped without failure of the entire system.

The ROS framework is used for the ground control station in the RIGORS project. The

GCS will be used to perform extensive test flights to collect data for real and simulated UAV

missions. Furthermore, the GCS can be used to test multiple collision avoidance algorithms

and compare the differences in each algorithm. This will allow for real UAV testing in order

to compare collision avoidance algorithms in a real environment.

5.4.2 ROS Components

ROS has three main components: nodes, services, and topics. These three components

make up the entire ROS system and allow for a developer to create anything from a personal

autonomous cleaning robot, to an UAV ground control station.

5.4.2.1 Nodes

Nodes are the processes that run within ROS. Each node has a specific task for it to

perform. Because of this partitioning, most ROS based programs require multiple nodes to

fulfill all requirements of an overall program. The node structure allows for the user to easily

swap out nodes to perform different tasks. For example, if there are two nodes both tasked

with the collision avoidance for vehicles, the nodes can be used interchangeably even though

they may use completely different algorithms to calculate avoidance maneuvers.

5.4.2.2 Services and Topics

Services and topics are used to communicate information in ROS. Topics are the many-

to-many communication protocol in ROS. Topics are a lot like a bulletin board; anyone can

post information to the bulletin board (given a specific format), and anyone can read from
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the bulletin board. Therefore, there can be multiple publishers and multiple subscribers to

each topic. Services are the one-to-one communication protocol in ROS. Services are issued

by a node to another node, usually asking for specific information that the issued node has.

For example, imagine if one node is controlling the movement of the robot and another node

is controlling a sonar sensor. The movement node will issue a service to the sonar node,

before moving the robot, in order to keep the robot a safe distance from any objects.

5.4.3 GCS Nodes

Figure 5.1: The Ground Control Station Architecture

5.4.3.1 Coordinator

The coordinator is the core node that keeps order in the GCS. It communicates to the

Simulator, Collision Avoidance, Xbee In, Xbee Out and the Visualization node. Specifically,
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the coordinator is in charge of monitoring all of the active vehicles so that they fly their

desired mission safely and efficiently. In order to insure safety, the coordinator passes in-

formation to the collision avoidance system. This allows the coordinator to issue collision

avoidance commands, if needed. To insure efficiency, the coordinator is constantly monitor-

ing the active vehicles to see if they have hit their desired waypoint in order for the vehicle

to continue on its mission.

When the system is started, a course file is read into the coordinator to start the mission.

Each active UAV will have a set of waypoints to fly to. The coordinator is in charge of issuing

the commands to send each UAV to the correct location. Likewise, whenever a UAV has

hit its desired waypoint, the coordinator will remove that point from the mission queue and

issue a command to send the UAV to its next location through the commands topic.

Aside from the normal missions, the coordinator is in charge of issuing collision avoid-

ance commands. The coordinator has a callback function that is executed every time a

telemetry message is published to the telemetry topic. The coordinator passes the telemetry

information off to the collision avoidance algorithm, which determines if a collision avoid-

ance maneuver is necessary. If one is deemed necessary, the coordinator issues the collision

avoidance waypoint through the commands topic.

5.4.3.2 Simulator

Since the major purpose of the system is to test collision avoidance algorithms, the sim-

ulator was built to simulate an UAV environment. Very similar to real UAVs, the simulator

is a publisher to the telemetry topic, and a subscriber of the commands topic. This is done

in order to mimic real UAVs as closely as possible; real UAVs publish their current infor-

mation to the telemetry topic and receive commands from the commands topic. One of the

beneficial aspects of this implementation is the coordinator cannot distinguish the difference

between the real and simulated UAVs through the communication protocol. Therefore, the

coordinator can communicate to real or simulated UAVs in the same fashion, which is very
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beneficial for implementing the coordinator. Furthermore, this functionality provides the

ability to fly real and simulated UAVs simultaneously.

The functionality of the simulated was built to mimic real UAVs as closely as possible.

The simulator takes the estimated cruise speed and generates a telemetry update based upon

that speed. However, when the simulated UAVs need to make a turn, a maximum turning

angle is applied, which for the testing purposes of this project is set to 22.5. Therefore,

over a 4 second time frame a UAV is able to turn 90. Also, its important to bring to light

that the current implementation is simplistic; the UAV telemetry simulation doesnt factor

in the current weather such as the wind conditions. With that being said there have been

successful efforts in implementing wind into the telemetry simulation, although it has not

been fully integrated at this moment.

5.4.3.3 Collision Avoidance

The collision avoidance system maintains the slew of collision avoidance algorithms. The

coordinator node calls the collision avoidance system every time the coordinator receives a

telemetry update. The collision avoidance system uses every active aircrafts most current

telemetry update to decide which UAVs are in danger and should be issued an avoidance

command. This implementation is useful because the coordinator doesnt know which colli-

sion avoidance algorithm is under operation, which allows for low cohesion within the GCS,

meaning the coordinator doesnt have to alter its functionality depending on which collision

avoidance algorithm is being used. Also, this allows for different collision avoidance algo-

rithms to be interchanged easily and tested using the same UAS mission, which leads to

better analysis of the collision avoidance algorithms.
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5.4.3.4 Xbee IO

Two nodes are in charge of communicating with the UAVs. These two nodes are called

Xbee In and Xbee Out. As you would think, Xbee In handles the incoming communication,

while Xbee Out handles the outgoing communication.

The Xbee In node uses the Xbee telemetry unit and setups a communication socket to

receive information from each UAV. The GCS uses the MAVLINK communication protocol

to interface with the UAVs used for testing. Since MAVLINK is a commonly used protocol,

this allows the GCS the ability to integrate any other vehicles using the same MAVLINK

protocol. Once the Xbee In node receives a message from a UAV, that message is deciphered

and posted on the telemetry topic for other nodes to use.

The Xbee Out node is in charge of sending commands to each UAV. The Xbee Out

node subscribes to the commands topic and reads any commands posted to this topic. If the

command is for itself, then Xbee Out will read the commands and send it to the corresponding

UAV. Common commands are Go to this waypoint, Change your telemetry rate to X Hz, or

Change your ID to X. The Xbee Out node also uses the MAVLINK protocol, so that the

UAV recognizes the commands that are sent.

5.4.3.5 Visualization

The flight visualization is using the QT software development kit. It is built as a front-

end graphical user interface, such that the ROS component is the back-end. Although, there

is a node in the back-end called QNode, which is the interface to the QT-built GUI. QNode

simply subscribes to the telemetry topic and relays that information to the QT interface.

This allows the QT component to visualize each UAV on a map. QNode can also the driver of

the system, allowing the user to start a mission through the GUI. In order to do this, QNode

issues a service to the coordinator to load a specific mission. There is a lot of improvement

available for the visualization component that I think could drastically improve the ability

of the system.
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5.4.4 GCS Messages

The messages within the GCS are the second most vital piece of the GCS. The messages

allow the Nodes to operate smartly. Within the information in each message, each Node

would be a stand-alone process. The advange to using ROS is the communication that can

happen between Nodes, and the messages propagate this information.

There are two main messages in the GCS; the Telemetry update and the commands

message. These two messages are covered in detail below.

5.4.4.1 Telemetry Update

The telemetry update message contains all of the information from each UAV, real and

simulated. This message contains vital information unique to each UAV and is implemented

as a topic in ROS. Remember, topics in ROS give each node the ability to monitor the

information posted to the topic, and post information to the topic. The Coordinator node,

as well as other nodes, need this message to keep track of each UAV. Specifically, this message

contains the following information:

1. Current latitude

2. Current longitude

3. Current altitude in meters

4. Target latitude

5. Target longitude

6. Target altitude in meters

7. Current ground speed in meters/second

8. Current airspeed in meters/second
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9. Desired bearing to wp in degrees

10. Distance to target waypoint in meters

11. Target waypoint index

The rate at which this information is sent is dependent on the user, but currently each

UAV sends a telemetry update message every second. This is one of the most time dependent

aspects of the GCS, because if an update is lost or isn’t sent on time, two UAVs could crash

into each other.

Furthermore, one of the most rewarding aspects of the GCS is the way these messages

are received. In terms of the Coordinator node, there is not a different between a real UAV’s

telemetry update and a simulated UAV’s telemetry update, which provides a very realistic

evaluation environment.

5.4.4.2 Commands

After the telemetry updates have been received and a UAV either needs to avoid a

collision, or proceed to a mission waypoint, the GCS needs a way to send commands to

each UAV. This is handled by the commands message. This message, like the telemetry

update, is implemented as a topic so that multiple nodes can post and receive the command

information.

The commands message contains the following information:

1. Plane ID

2. Simulation

3. Command ID

4. Target latitude

5. Target longitude
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6. Target altitude in meters

The Plane ID is self explanatory - each UAV has a unique plane ID number. The

simulation component of the commands message is a boolean item that specifies whether or

not the command is for a simulation UAV. This is done in order for the Xbee IO Nodes to

know whether or not to send out a MAVLink message with the command. Moreover, if the

command is not for a simulation UAV, the simulation node will not process the command.

The command ID component of the command message is used for sending a specific command

to real UAVs. The command ID can take on four values:

1. COMMAND NORMAL WP

2. COMMAND AVOID WP

3. COMMAND SET ID

4. COMMAND SET STREAMRATE

COMMAND NORMAL WP and COMMAND AVOID WP are used to send waypoints

to the UAVs - avoidance waypoints and mission waypoints. COMMAND SET ID is used

to change the ID of a UAV, and COMMAND SET STREAMRATE is used to alter the

frequency at which the telemetry update message is sent down.

Finally, the target latitude, target longitude and target altitude are used to direct the

UAV to a target waypoint. This is used by the COMMAND NORMAL WP and COM-

MAND AVOID WP commands. Specifically, the target waypoint is used to direct any UAV

to any location. Moreover, this is how the GCS manipulates the flights of the UAVs.
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Chapter 6

Results

As mentioned in the Introduction, James Holt, a previous Master’s student that worked

for Dr. Biaz, spent multiple years conducting research for the ATTRACT project. During

his research Mr. Holt produced many significant results, which are the foundation for the

research presented in this paper. Most importantly, Mr. Holt evaluated three algorithms:

Mixed-Integer Linear Programming, Dynamic Sparse A-Star, and APF. While MILP, and

DSAS outperformed APF in some minor metrics, the most important metrics, Survival Rate,

and Efficiency, were dominated by APF. This resulted in an overall recommendation of APF,

as it was the ”winning” algorithm among the three. Therefore, the research in this paper

builds upon Mr. Holt’s findings to improve upon APF’s results, and consequently improve

upon the results on MILP and DSAS as well. With that being said, this section will expand

upon the results of APF and RIPNA, and will show that RIPNA is the clear winner among

most all the evaluation metrics.

Four metrics were used to evaluate the two collision avoidance algorithms. These met-

rics were aimed at evaluating every aspect of the algorithms, in order to highlight the key

points where a collision avoidance algorithm should succeed, and to evaluate the efficiency of

each algorithm. First, and foremost, a collision avoidance algorithm should avoid collisions,

therefore the number of collisions is the primary metric. Likewise, the number of conflicts

is extremely important, therefore it is also recorded. The efficiency of the algorithms are

further tested by evaluating the deviation from the straight line distance, which is calculated

as actual−distance−traveled
minimum−possible−distance . This provides a solid metric to evaluate how much extra work the

algorithm is requiring. Furthermore, the total number of waypoints reached is evaluated.

Obviously, if some planes collide this value will be drastically affected, but in a traditional
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waypoint mission scenario, this is the main objective, therefore this is a good metric in

evaluating the performance of the algorithms.

These four metrics were collected in a simulation environment, using many different

constraints. First off, each simulation runs for 600 seconds, or 10 minutes. Since 24 simula-

tions were executed, this meant that each algorithm takes four hours to simulate. Therefore,

a total time of 12 hours is needed to simulate the baseline - no collision avoidance - scenario,

and the two collision avoidance algorithms. Each of the 24 simulations were executing using

two main constraints: the field size and the number of aircraft. The field size varied between

a 500x500 meter grid and a 1000x1000 meter grid; Half of the simulations were run with one

size where the other half ran with the other size. Using a smaller and larger grid provides

the ability to evaluate how well the algorithms work in a confined space as well as a more

spacious environment. The number of aircraft were varied from 4, up to 32, doubling for

each increment, meaning the number of aircraft is 4, 8, 16, 32. This seems to be a pretty

exhaustive range of aircraft, since anything lower than four aircraft is trivial and anything

higher than 32 aircraft is unlikely. Furthermore, the values in-between (6,12...etc) are not

tested, which is a limitation of the overall simulation. This is left out due to the lengthiness

of the simulations, although the results do show a trend which would follow if these values

were simulated. All in all, the range used on the number of aircraft provide a very good

way to evaluate the ability for the algorithms to perform in a extremely crowded airspace,

as well as the ability to evaluate how the algorithms perform when the airspace is spacious.

These tests present a wide range of stressful situation to these algorithms. First, on

a small 500m field, its fairly reasonable to fly four aircraft, but becomes difficult to fly

any more than that in such a constrained airspace. The 1000m field offers more flexibility,

but even that airspace becomes stressed when 32 aircraft are flying around it. Second, the

variable number of aircraft helps to show how efficiently the algorithms can calculate viable

solutions for a large number of aircraft. Without efficiency, the solutions will not reach the

aircraft in time which may result in conflicts and/or collisions. Finally, waypoints in these
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courses were randomly generated to present the challenge of flight paths that may not make

sense. Typically, the aircraft would have goals such as mapping a field, scanning an area

for personnel, or even just flying to specific points on the field. However, in these tests,

there is no logical organization to the waypoints which can create unique problems for these

algorithms.

6.1 Number of Collisions

As described earlier, a collision occurs when two aircraft are within one second of each

other. For example, if all aircraft are traveling at 12 m/s, the collision distance is defines

at 12 meters away from each other. Rather than simply seeing if two aircraft are at the

same position, this allows for a collision radius, which allows for a more realistic simulation

since aircrafts would usually collide with extremities of the aircraft rather than in the central

location of the vehicle.

The number of collisions is a very important metric in evaluating the efficiency of a

collision avoidance algorithm, since, as you would expect, the main goal of the algorithm

is to ensure safety. The number of collision for APF and RIPNA will be compared to

the baseline, which is using no collision avoidance. Using this baseline shows the overall

improvement in the system, and well as a fair comparison as to the amount of improvement.

Furthermore, the two algorithms will be compared against each other in order to prove the

best overall algorithm. As you would expect, the higher the percent decrease in the number

of collision, compared to the baseline, the better the algorithm is. Also, since APF has

already been compared by previous researchers, comparing RIPNA to APF produces a lot of

information about the ranking of all algorithms tested using the current research platform.

Figures 6.1 and 6.2 show the results in the percent decrease in the number of collisions

over to the baseline (no collision avoidance). The higher percent decrease in the number of

collisions, the better the algorithm is. As mentioned in the Figures 6 section above, APF was

clearly the best collision avoidance algorithm in previous simulation attempts. In Figures
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Figure 6.1: The percent decrease in number of collision on a 500m grid

6.1 and 6.2 it is clearly shown that RIPNA improves vastly upon APF. In fact, RIPNA is

125 percent better in the best case for a 500m grid, and 63.63 percent better in the 1000m

grid. This alone proves to be a drastic increase, which makes RIPNA the front runner for

the best collision avoidance algorithm. With that being said, the other four metrics need to

be evaluated before making a final decision.

6.2 Number of Conflicts

A conflict between two aircraft is described as being within a two second distance of

each other. For the purpose of this simulation, the speed of each simulated aircraft has been

set to a constant of 12 meters/second. Therefore, a conflict between two aircraft occurs when

they are 24 meters apart from each other.

Conflicts are a very important metric. Imagine if two aircraft are only two seconds apart

from each other. This situation will more than likely end up in a collision, unless a collision

avoidance maneuver is already underway. Therefore, decreasing the number of conflicts is

a very beneficial way to, in turn, decrease the number of collisions and provide an overall

better collision avoidance algorithm.
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Figure 6.2: The percent decrease in number of collision on a 1000m grid

Since APF has already been evaluated against many other collision avoidance algo-

rithms, comparing APF and RIPNA is a beneficial way to evaluate all algorithms together[11].

Likewise, if RIPNA is better than APF, RIPNA will be the best algorithm tested using this

simulation platform. The two figures in this section, Figures 6.3 and 6.4, show the percent

decrease in the number of conflicts for a 500m and 1000m grid. As expected, there should be

a clear trend of percent decrease, for both algorithms, compared to the baseline of no collision

avoidance. This is proven to be true in the two figures. Furthermore, there is a clear trend

in Figures 6.3 and 6.4 that shows how much better RIPNA is compared to APF. In fact, in

the best case RIPNA is 183.33 percent better than APF in a 500m and 330 percent better

in the 1000m grid. This is very drastic improvement over APF. This drastic improvement

directly affects the number of collisions, which is why RIPNA is significantly better in both

categories. All in all, in the two most significant metrics (collisions and conflicts), RIPNA

has significantly beaten APF, meaning RIPNA is a clear improvement over the previously

best algorithm.
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Figure 6.3: The percent decrease in number of conflicts on a 500m grid

Figure 6.4: The percent decrease in number of collision on a 1000m grid
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6.3 Straight-line Deviation

When there isn’t any collision avoidance used during a mission, each aircraft attempts to

fly directly from waypoint to waypoint. This is known as the straight-line distance, which is

the most efficient route between two points. The desired result from any collision avoidance

algorithm is to avoid collision while not deviating from the straight-line distance to much.

This metric evaluates that deviation. A good algorithm should minimize this deviation,

while maintaining safe flight.

Unlike the number of collisions, and number of conflicts, RIPNA is not a clear winner

over APF in the straight-line deviation metric. This is due to the nature of APF and RIPNA;

APF attempts to use the least means necessary to avoid collisions, while RIPNA is more

focused on avoiding the collision at all costs. Therefore, Figures 6.5 and 6.6 do not show

a clear trend of which algorithm is better at keeping this deviation to a minimum. With

that being said, APF does seem to be better, in most cases, than RIPNA at keeping the

straight-line deviation increase to a minimum.

Figures 6.5 and 6.6 show the straight-line deviation compared to the baseline of not using

a collision avoidance algorithm. These figures clearly show that both algorithms drastically

increase this deviation. This is expected, since both algorithms are introducing avoidance

maneuvers into the simulations. In fact, in the worst case, RIPNA has a 157 percent increase

in the straight-line deviation on the 500m grid, which is very bad. In this same situation,

APF improves upon that by lowering the straight-line deviation to a 103 percent increase

over the baseline. Although this seems like a drastic increase, keep in mind that innately

any collision avoidance algorithm will have an increase in the straight-line deviation over

the baseline. If this weren’t the case, the collision avoidance algorithm would be completely

unsuccessful at avoiding collisions. Therefore, the attempt of these algorithms should be

to minimize this increase, rather than nullify it. Moreover, it should be noted that as the

number of UAVs is increased, the straight-line deviation is drastically increased, which is

expected. The more planes that are included in the simulation, the harder it is for the
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Figure 6.5: The average percent increase in the straight line deviation on a 500m grid

algorithms to make an efficient avoidance maneuver, meaning that more deviation will occur

in an effort to keep all aircraft safe. All in all, especially in the 1000m scenarios, both

algorithms do a good job at minimizing this deviation.

6.4 Number of Waypoints Achieved

The last metric is the number of waypoint achieved throughout the simulation. This is

a significant metric because the overall objective of any simulation is to fly through all of the

waypoints. Ideally, all of the waypoints in a mission should be reached. To add some value

to this metric, this simulations in this paper are terminated after running for 10 minutes.

This provides more significant results, since the more efficient algorithm will reach more

waypoints in the given 10 minute time frame. Furthermore, truncating the simulation to 10

minutes allows for a clear analysis of multiple algorithms; The most waypoints achieved the

better.

Like the first three metrics presented, RIPNA is a clear winner in improving the number

of waypoints achieved. Surprisingly, APF doesn’t improve that much over the baseline; The

most significant improvement APF had over the baseline is a 70 percent increase, while the
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Figure 6.6: The average percent increase in the straight line deviation on a 1000m grid

least improvement for APF is 1.62 percent. This is directly due to the number of collisions

that APF allows. If more collisions occur, less number of waypoints will be hit. Therefore,

RIPNA really shines because the number of collision are nullified, where APF falls short

because it produces some collisions.

Figures 6.7 and 6.7 show that RIPNA is the overall better algorithm in this metric,

for both grid sizes. This is expected since RIPNA has beaten APF in both the number of

collisions and number of conflicts metric. As shown in Figure 6.7, RIPNA is 127 percent

better than APF in the scenario with 32 UAVs. Since RIPNA performs so well in a highly

constrained environment, this is expected. All in all, RIPNA is a much better algorithm at

increasing the number of waypoints achieved by each aircraft. This is a significant advantage

over APF, especially since APF didn’t improve that much over the baseline, and RIPNA has

a drastic improvement.
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Figure 6.7: The average percent increase in the straight line deviation on a 500m grid

Figure 6.8: The average percent increase in the straight line deviation on a 1000m grid
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6.5 Algorithm Performance

6.5.1 APF Performance

While APF wasn’t the best performing algorithm overall, it still proved that it’s capable

of working under the more reasonable simulations. In particular, APF excelled at solving

problems with only four aircraft. It had a zero collisions on both the 500m and 1000m grid.

Also, it achieved the most waypoints out of any of the collision avoidance algorithms for four

aircraft in the 1000m grid scenario. Likewise, APF excelled in the straight-line deviation

metric, where it beat all other algorithms for four, eight, and sixteen aircraft, on the the

most constrained environment, the 500m grid.

Unfortunately, compared to RIPNA, this implementation of APF struggled to handle

the stress test simulations. As described earlier, APF becomes much more heavyweight with

each aircraft added to the algorithm. This is due to the nature of APF; APF maps everything

in the airspace to particle forces, which then produces a resulting force, which is mapped

to a collision avoidance maneuver. When more aircraft are added into the airspace, more

particle forces have to be considered. In a tight airspace, this becomes even more complex

because there isn’t a one-to-one relationship between the magnitude of a force vector and how

that correlates to where a collision avoidance waypoint should exist. Moreover, imagine if a

resulting force produced a force vector for 10 magnitude. How should a magnitude of 10 map

to where a collision avoidance waypoint should be issued? Should the waypoint be placed

at 10 times the current speed of the aircraft, or one-tenth of the current speed? Currently,

the direction of the resulting for the driving factor in where the waypoint is placed, and the

magnitude is negligible. For a more reliable APF implementation, the magnitude should be

taken into consideration. This is most noticeable in a very high constrained environment.

Particularly, for all metrics, APF is underwhelming for 32 aircraft. For both the 500m

grid and the 1000m grid, APF is outperformed for all metrics. In fact, for the 32 aircraft
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scenarios, APF only had a 7.9 percent improvement in the number of waypoints achieved on

the 1000m and a 15.1 percent improvement in the 500m grid.

With that being said, APF does perform well in taking the closest to straight-line dis-

tance possible, even if sometimes that may result in a collision. Therefore, APF performs

very well in the straight-line deviation metric. Once again, this is due to the implementation

of APF, where the objective waypoint a given aircraft is mapped to a very high attractive

particle force, and harmful aircraft are mapped to a less-significant repulsive force. This

makes APF very greedy, in the sense that at all costs it tries to proceed toward the des-

tination, rather than flying away from the destination, if needed, to avoid all collisions.

While this sounds counter-intuitive, it does produce some interesting results, especially in

the straight-line deviation metric. Specifically in the 1000m meter grid, for 32 aircraft, APF

outperforms the baseline by 45 percent, and even outperforms all other algorithms by 53

percent. Like was said earlier, this is where idea of APF shines the most.

In summary, APF is a very efficient algorithm for manageable problems. The algorithm

performed well when only working with four aircraft. The algorithm also performed well

with eight aircraft, but didn’t maintain a high survival rate. Unfortunately, sixteen and

thirty-two aircraft produces lackluster results for this implementation on both field sizes.

While this APF implementation works well for a small quantity of aircraft, more work needs

to be done on mapping more realistic particle charges to the problem space, and mapping

resulting force vectors to more realistic collision avoidance waypoints. With more work, this

algorithm has the potential to handle a large number of aircraft safely, and efficiently.

6.5.2 RIPNA Performance

The Reactive Inverse Proportional Navigation Algorithm was considered the ”best”

performing algorithm in these specific tests for a few reasons. One of the most prevalent

reasons was that it was capable of keep all aircraft alive, for all scenarios. The second was

that RIPNA drastically improved upon the number of waypoints achieved, especially in high
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traffic scenarios. Finally, RIPNA improved significantly upon the number of conflicts that

occurred.

Being the main objective of a collision avoidance algorithm, the survival rate, or the

number of collisions is the most important metric, although the number of conflicts a very

closely related metric. In both the number of collisions and the number of conflicts RIPNA

beat APF drastically. In fact, on both a 500m and 1000m field, RIPNA has a perfect survival

rate for all number of aircraft, and near perfect conflict rate for all situations; RIPNA only

had conflicts when thirty-two aircraft were involved. APF wasn’t even close to achieving

this. Furthermore, having a perfect survival rate is the best any algorithm could possibly

perform, therefore RIPNA excelled in the first two metrics, number of collisions and number

of conflicts.

The second reason RIPNA excelled was it tended to have a higher improvement in way-

points achieved than any other algorithm, especially in the high traffic situations. Overall,

this is a very important metric because it evaluates the usefulness of the overall simulation.

Imagine if a collision avoidance algorithm made all aircraft fly directly away from a central

point of the field, but never actually directed the aircraft back to their desired destination.

This algorithm would receive a perfect survival rate, but if zero waypoints were achieved it

would be useless. Therefore, this metric evaluates the usefulness of the mission. In low traffic

situations RIPNA is lackluster. With that being said, RIPNA still performs optimally in

low traffic situations, compared to APF. In high traffic situations is where RIPNA is useful.

When thirty-two aircraft are present, on the 500m grid RIPNA outperformed the next best

algorithm by 172 percent!

Finally, RIPNA significantly improves upon the number of conflicts that occurred. As

you can imagine, since RIPNA performed very well in keeping aircraft alive, the number of

conflicts per aircraft also drastically increased. In fact, RIPNA outperformed the next best

algorithm by 206 percent. This improvement is directly related to how well RIPNA performs

in highly constrained environments.
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6.5.3 Conclusion

While each algorithm has strengths and weaknesses, it’s equally important to recognize

those traits with respect to scenarios. Many of the scenarios presented in this research are

extremely dangerous, especially if a ill-suited collision avoidance algorithm is used. From

this research, it is apparent that APF is very capable, and even exceptional, at handling

up to eight aircraft in a 500m field, and up to sixteen aircraft in a 1000m field, despite the

randomness of the scenarios. Furthermore, RIPNA was not limited by the number of aircraft

or field size, although with more simulations this threshold could have been found. RIPNA

is able to handle up to thirty-two aircraft on both a 500m field and 1000m field, meaning

RIPNA successfully handled all scenarios.

After analyzing the results for all algorithms, it is apparent that improvements can still

be made. For APF, more experimentation could lead to better overall results, by mapping the

particle forces more realistically. By altering the amount of attractive force that a waypoint

exerts or the amount of repulsive force an opposing aircraft exerts will drastically affect the

performance of APF. Furthermore, how the resulting force APF produces is interpreted is a

portion of the APF implementation that also affects the results significantly, and is an area

capable of improving upon. For example, if APF produces a resulting force of magnitude

10, and a resulting force of magnitude 100, these forces should lead to different avoidance

maneuvers. With the current implementation, the resulting force magnitude isn’t considered.

Furthermore, RIPNA also has areas for improvement. In some situations RIPNA deviates

from the straight-line distance too far. Decreasing this deviation will improve RIPNA.

Likewise, RIPNA should be stress-tested in more high-traffic simulations than it was tested

in this report. Finally, the best approach could combine both RIPNA and APF into one

hybrid algorithm that would utilize the strengths of both, resulting in the best performance,

in all metrics.

All in all, for every single metric, the advantages of RIPNA are shown. Specifically,

RIPNA is the best performing algorithm for four out of the four metrics: number of collisions,
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number of conflicts, and number of achieved waypoints. The only metric that RIPNA did

not entirely beat other algorithms on was the straight-line deviation metric, although, among

the four metrics, this is the least significant metric. Out of all the four metrics, this is the

only metric that evaluates how much of a deviation the collision avoidance algorithm uses

to avoid collisions, and although this metric is directly related to the algorithm efficiency,

avoiding collisions is the main concern of the algorithm. Therefore, the trade-off between

avoiding collisions and deviating from the straight-line is necessary. As shown through this

paper, RIPNA has proven to be the most efficiency and reliable algorithm presented in this

paper, and should be used for furthering research related to multi-aircraft simulations.
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Appendix A

Abbreviations

Federal Aviation Administration (FAA)

Unmanned Aerial Vehicles (UAV)

Unmanned Aircraft System (UAS)

Aerial Terrestrial Testbed for Research in Aerospace, Computing, and maThematics

(ATTRACT)

Beacon Collision Avoidance System (BCAS)

Traffic Alert and Collision Avoidance System (TCAS)

Aircraft Collision Avoidance System (ACAS)

Mixed Integer Linear Programming (MILP)

Artificial Potential Fields (APF)

Attraction Constant (γ)

Maximum distance at which one UAVs force can be felt (dfmax)

Distance that one UAV can travel in one second (donesec)

Ratio of the collision zone to the size of the potential field (α)

Scale factors for the amount of the ellipse extended out from the UAV (λscalef and

λscaleb)

Angle from the heading of one UAV to the position of another UAV (θ)

Minimum distance a UAVs force field can be felt (dfailsafe)

The maximum force felt when a UAV is within dfailsafe (Ffailsafe)

Scalar affecting the force in front of a UAV (kemitf )

Scalar affecting the force in behind of a UAV (kemitb)

The negative charge from a UAV (qUAV )
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Scalar to check the strength of the repulsive force (γ)

The angle between the UAVs bearing and the repulsive force (φrep)

The force felt from an obstacle in front of the UAV (βfeelb)

The angle between the location of the current UAV and the bearing of another UAV (θ)

The angle between the current bearing of a UAV and the repulsive force acting on

another UAV (φrep)

The angle between the bearing of a UAV and the attractive force from its goal (φattr)

4.5 * the donesec (dpriority)

Scalar to expand the potential field of prioritized aircraft (pmult)

Proportional Navigation (PN)

Inverse Proportional Navigation (IPN)

Reactive Inverse Proportional Navigation Algorithm (RIPNA)

Line Of Sight (LOS)

Zero Effort Miss (ZEM)

Separation Distance (Rdes)

Time-To-Go (tgo).

Department of Defense (DOD)

60



Appendix B

Link to Source Code

Test bed repository: https://github.com/dhj0001/au uav pkg

APF Team Documentation: https://sites.google.com/site/auburnreuteam12012/

RIPNA Team Documentation: https://sites.google.com/site/auburnuavreu2012team5/
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Appendix C

GCS Tutorial

This appendix section is for new users. This section will give a step-by-step tutorial

on how to setup, build, and run the GCS. Also, this section will provide in-depth explana-

tions about different launch settings, how to test and evaluate different collision avoidance

algorithms, and how to use the GUI.

C.1 Configuring ROS

In order to run the GCS you will need to setup the Robot Operating System on a

machine. This can be done manually in Linux, or it can be setup through a Linux virtual

machine.

If you are setting up ROS manually, it is easiest to follow the ROS tutorial at http://

wiki.ros.org/ROS/Installation. This guide will walk you through step-by-step on how to get

ROS configured for your operating system. NOTE: The current state of the GCS has only

been tested on ROS distributions up to ROS-Hydro, although later distribution should be

backwards compatible.

Rather than setting up ROS manually, I think it is easier to setup the virtual ma-

chine, since ROS comes pre-configured on the virtual machine. In order to do this download

VirtualBox from https://www.virtualbox.org/wiki/Downloads. Once you have setup Vir-

tualBox, you can download the Ubuntu-ROS image, and setup your virtual machine. You

can download the Ubuntu-ROS image from http://nootrix.com/downloads/#RosVM, and

specficially for Hydro, http://nootrix.com/2014/04/virtualized-ros-hydro/. Follow the in-

stallation guide, http://nootrix.com/2012/09/virtualizing-ros/, in order to setup the image

in VirtualBox.
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Another option, which is probability the best option thus far, uses the virtual machine

to import a pre-configured appliance that contains the virtual machine with the source code

already installed and set up. This will give you the ability to start exactly where I left off,

without the hassle of setting everything up. To do this option, you will first need to download

VirtualBox, from https://www.virtualbox.org/wiki/Downloads. Now, you can download the

pre-configured appliance. I gave Dr. Biaz this appliance the week before I graduated. Setup

the appliance by doubleclicking the .ova file. This will automatically setup a virtual machine

in the VirtualBox application.

C.2 Downloading the GCS

The GCS source code is located on my github account at https://github.com/dhj0001/

au uav pkg/. Please clone, or download this repository, and if you plan on working on this

code a lot, I would suggest setting up your own repository since I will more than likely not

be available to make publish your commits. Once you download the code, place all of these

files into your ROS workspace. Now you are ready to start implementing!

NOTE: If you used the last option suggested in the above section, the source code will

already exist in the virtual machine, and you can skip this section.

C.3 Building and Launching the GCS

First, navigate to your ROS workspace by opening the command prompt and typing

roscd

Now, you can build the source code by typing

catkin_make

If you successfully built the source code you can launch the GCS by typing

roslaunch au_uav_ros "launchFile"
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where, launchFile is one of the files located in /src/au uav ros/launch/. The launch file

designates which nodes are executed at run time, and also reads any parameters from the

command line.

You can specify parameters while executing the roslaunch. An example of this is

roslaunch au_uav_ros launch.launch XBeeIO:=true GUI:=false CAAlgorithm:=RIPNA

C.3.0.1 Launch File Explanation

There are two launch files currently written: launch.launch and evaluation.launch.

These files could be combined into one launch file, but for simplicity sake they haven’t

been. The launch.launch file is the generic launch file that should be executed the majority

of the time. The only time evaluation.launch needs to be executed is when you want to

run the evaluator node, which runs diagnostics on the running collision avoidance algorithm;

The evaluator node evaluates the running collision avoidance algorithm based on the four

metrics described earlier in this paper.

In each launch file, there are three main tags that are used: arg, for commandline

arguments, param, for parameters used by ROS nodes, and node, for specifying which nodes

to run. The arg tag is used to specify which commandline arguments are expected. The

param tag is usually populated by the information provided by the arg, but not always.

The param tag specifies a variable that can be used in a ROS node. Finally, the node tag

specifies which nodes should be run when the system is launched.

The launch.launch file runs these nodes:

1. Coordinator

2. Simulator

3. Gui Interfacer

4. au uav gui - the QT GUI
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5. XbeeIn/XbeeOut

The launch.launch file has these arguments:

1. sim speed - the fight speed at which the simulated planes fly - default: 1

2. sim freq - the frequency at which simulated planes update - default: 1

3. planPath - a boolean to specify if path planning is wanted - default: false NOTE: this

is used in conjunction with centralized, and is current nonoperational

4. centralized - a boolean to specify if the system is running in a centralized or decen-

tralized environment - default: true - NOTE: decentralized is nonoperational at the

moment.

5. XBeeIO - a boolean to specify if you are flying UAVs with XBee connections; this is

needed for flying real UAVs - default: true

6. GUI - a boolean to specify if you want to launch the GUI or not - default: true

7. CAAlgorithm - a string to specify which collision avoidance algorithm to run - default:

”NONE”

All of these arguments are used to either launch specific nodes, or are read in at runtime

to be used by a node.

The evaluation.launch file, as said earlier, is used to evaluate the running collision avoid-

ance algorithm based on four metrics. The node that is in-charge of this is the evaluator. In

order to automate the evaluation process, more arguments were added so that a driver can

be used to run through many simulations.

The evaluation.launch file runs these nodes:

1. Coordinator

2. Simulator
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3. Gui Interfacer

4. au uav gui - the QT GUI

5. XbeeIn/XbeeOut

6. Evaluator

The evaluation.launch file has these arguments:

1. sim speed - the fight speed at which the simulated planes fly - default: 1

2. sim freq - the frequency at which simulated planes update - default: 1

3. planPath - a boolean to specify is path planning is wanted - default: false NOTE: this

is used in conjunction with centralized, and is current nonoperational

4. centralized - a boolean to specify if the system is running in a centralized or decen-

tralized environment - default: true - NOTE: decentralized is nonoperational at the

moment.

5. XBeeIO - a boolean to specify if you are flying UAVs with XBee connections; this is

needed for flying real UAVs - default: true

6. GUI - a boolean to specify if you want to launch the GUI or not - default: true

7. courseFileParam - a string parameter to specify which courseFile to run. The course

file must be in the /course/directory. There is no default for this parameter. It must

be specified.

8. outputFileParam i a string parameter to specify the name of the output file. The

output file will be built and stored in the /score/directory. There is no default for this

parameter. It must be specified.

9. CAAlgorithm - a string to specify which collision avoidance algorithm to run - default:

”NONE”
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In order to automate the evaluation by running multiple course files, you can run the

automator.cpp file. This is located in /ExtraTools/directory. This file will parse through

the input file that you specify and run all of the course files that exist in that file. I have

provided the automatorTest.txt file for an example.

C.4 GUI Explanation

The GUI is a separate system apart from the ROS framework, that is launch by the

ROS system. The GUI provides a graphical representation as to what is happening in ROS.

The GUI is highly recommended with flying real UAVs, and even when running simulations.

In fact, the only time I have suppressed the GUI from launching is when I’m using the

automator to script a bunch of tests.

The GUI has two main features: The Flight Visualization, and the Mission Planner.

The Mission Planner tab allows you to plan course files, that can be ran on the Flight

Visualization tab. This tab allows the user to point and click to add waypoints to a mission.

Also, you can set the height for each waypoint. The waypoints also have a drag and drop

option, so that you can move around waypoints with ease. Furthermore, you can edit an

existing file by loading the file using the LoadFile button. This tab provides a nice window

that shows what the file will look like once it is outputted, so you can check this window to

make sure everything is formatted correctly. After you have completed the mission planning,

click on the SaveFile button to output the file. Refer to Figure C.1 to understand all of the

features.

The Flight Visualization tab provides a visual representation of the current mission

being executed in ROS. As you can see from Figure C.2, the active UAVs are depicted

by airplane icons. You can see the current telemetry information per UAV by selecting the

UAV with the drop-down box on the upper-right. This is shown in Figure C.2. Furthermore,

there are little additives that can help visualize the current mission, like enable/disable flight

paths, enable/disable waypoints, auto center the map to the current UAVs, auto zoom the
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Figure C.1: The Mission Planner tab on the GUI

map to the current UAVs. These four features can help you while running a simulation so

that you are not worrying about changing the resolution of the screen to visualize all of the

UAVs.

In order to launch a mission, you need to move your cursor to the menu-bar at the top

of the screen and select File → LoadMission. This will prompt you with a file selection

GUI where you can select a course file to launch. This is shown in Figure C.3. All in all, the

best way to get familiar with the GUI is to use it.
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Figure C.2: The Flight Visualization tab on the GUI

69



Figure C.3: The Flight Visualization tab on the GUI
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