
Efficient Reliability Verification Testing in Open Source Software using Priority
Prediction

by

Patrick Pape

A dissertation proposal submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 10, 2015

Keywords: fault injection, data-flow analysis, reliability, open source, test case
prioritization and minimization, static analysis, software metrics, machine learning, logistic

regression, classification algorithms

Copyright 2015 by Patrick Pape

Approved by

John A. Hamilton Jr., Chair, Alumni Professor of Computer Science and Software
Engineering

David Umphress, Associate Professor of Computer Science and Software Engineering
Xiao Qin, Associate Professor of Computer Science and Software Engineering

Jeff Overbey, Assistant Professor of Computer Science and Software Engineering

Abstract

Open source software is becoming a strong alternative to private development for a

wide market of applications. There is a stigma against using open source software in the

private sector because of licensing restrictions and the desire for closed source proprietary

technologies. The idea of using open source software is often a more risky, though cheaper,

alternative to private development. This dissertation presents a novel procedure for efficient

reliability verification testing for open source software. The procedure utilizes both static and

dynamic analysis to prioritize methods and variables within those methods for testing. Test

case prioritization and minimization is used to create a more efficient process for identifying

key areas in the code for error handling. Fault injection testing is done relative to the

intended use cases of the system that will integrate the open source software. The results

of the analysis and testing are used to calculate a metric of relative importance that is used

to determine the highest priority locations for error detection and correction mechanisms.

The metric data collected for the modules, functions and variables is used in conjunction

with a two-step predictive model to reduce the total time needed to test the software to

locate these critical variables in the system. The first stage uses binary classification and

metric data about the modules and functions to identify which functions contain the most

critical variables with respect to reliability against data faults. The second stage uses metric

data about the variables in these functions and logistic regression to predict the relative

importance of the variables. This testing procedure allows for greater flexibility in choice of

open source software to integrate into an existing system through efficiently identifying key

areas in the code that are the most susceptible to data faults that lead to system failure.

ii

Acknowledgments

I would like to thank my committee members for their patience and guidance throughout

the process of completing this dissertation. Particular thanks goes out to Dr. Hamilton who

was instrumental in helping me to guide the path of research for this dissertation and also

broadening my view as to the possible implications of the research and potential areas for

future work. My thanks go out to my colleagues from Auburn and MSU who let me bounce

my ideas off of them and gave valuable feedback and suggestions for potential research leads.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

1 Introduction . 1

1.1 Problem Statement . 2

1.2 Benefits . 4

2 Literature Review . 6

2.1 Open Source Software . 6

2.1.1 Adoption . 6

2.1.2 Commercialization . 8

2.1.3 Open Innovation . 9

2.1.4 Bugs . 11

2.1.5 Quality . 13

2.1.6 Validation and Verification . 13

2.2 Test Case Prioritization and Minimization 14

2.2.1 Static Analysis . 15

2.2.2 Dynamic Analysis . 17

2.2.3 Fault Prediction . 23

2.3 Software Reliability . 26

2.3.1 Machine Learning . 26

2.3.2 Modeling and Formal Methods . 28

2.3.3 Reliability Prediction . 32

iv

3 Framework Architecture . 36

3.1 Overview . 36

3.2 Function Analysis . 38

3.3 Variable Analysis . 41

3.4 Fault Injection . 44

3.4.1 Framework . 46

3.4.2 Logging . 49

3.4.3 Importance . 49

3.5 Priority Prediction . 52

3.5.1 Function Priority . 52

3.5.2 Variable Priority . 54

4 Experimental Design and Results . 56

4.1 Priority Function Prediction . 57

4.1.1 Case Study . 57

4.1.2 Test Setup . 58

4.1.3 Attribute Selection . 58

4.1.4 Discretization . 62

4.1.5 Classification . 63

4.1.6 Cost-Sensitive Analysis . 68

4.1.7 Discussion . 69

4.2 Variable Metric Predictions . 70

4.2.1 Case Study . 70

4.2.2 Test Setup . 71

4.2.3 Attribute Selection . 71

4.2.4 Classification . 75

4.2.5 Discussion . 79

4.3 Validation Test . 83

v

4.3.1 Case Study . 83

4.3.2 Test Setup . 83

4.3.3 Function Attribute Selection . 84

4.3.4 Merit and Rank of Function Attributes 85

4.3.5 Function Classification . 88

4.3.6 Discussion: Function Validation . 89

4.3.7 Variable Attribute Selection . 91

4.3.8 Merit and Rank of Variable Attributes 91

4.3.9 Variable Classification . 92

4.3.10 Discussion: Variable Validation . 92

4.4 Summary . 99

5 Conclusion . 103

6 Future Work . 105

Bibliography . 109

Appendices . 117

A Code Listing . 118

B Sample Code Coverage Output . 139

vi

List of Figures

3.1 Overview of Process . 37

3.2 Function Analysis . 38

3.3 Variable Analysis . 41

3.4 Fault Injection . 44

3.5 Priority Prediction . 53

4.1 Mp3gain Predictions . 82

4.2 Mp3gain Average Percent Difference . 84

4.3 Function Learning Curve . 93

4.4 Mv Predictions . 97

4.5 Validation Predictions . 97

4.6 Mv Average Percent Difference . 100

4.7 Validation Average Percent Difference . 100

vii

List of Tables

4.1 Attribute Information Gain Evaluation . 61

4.2 Classification Comparison With Discretization 64

4.3 Classification Comparison No Discretization . 65

4.4 Cost-Sensitive Analysis (5x/10x) . 68

4.5 Mp3gain Principal Component . 75

4.6 Mp3Gain Relief Attribute Evaluation . 76

4.7 Mp3gain Variable Evaluation . 80

4.8 Mp3gain Variable Average Percent Correct . 81

4.9 Mp3gain Variable Average Rank Difference . 83

4.10 Validation Function Attributes Info Gain . 85

4.11 Validation Function Attribute Correlation . 86

4.12 Validation Function Attributes Gain Ratio . 87

4.13 Validation Function Attribute Cfs Subset Evaluation 89

4.14 Mv Function Evaluation . 90

4.15 Validation Function Evaluation . 91

4.16 Validation Function Learning Curve . 92

4.17 Validation Principal Component . 94

4.18 Validation Relief Attribute Evaluation . 95

4.19 Mv Variable Evaluation . 96

4.20 Validation Variable Evaluation . 96

viii

4.21 Mv Variable Average Percent Correct . 98

4.22 Validation Variable Average Percent Correct . 98

4.23 Mv Variable Average Rank Difference . 99

4.24 Validation Variable Average Rank Difference . 101

ix

Chapter 1

Introduction

This research is based on previous work presented as a methodology for increasing the

dependability of open source software components [1]. This dissertation takes that work as

a foundation and focuses on using test case prioritization and minimization techniques to

make the process more efficient and accurate. This will be done in three main components:

static analysis, dynamic analysis, and fault prediction. The master’s thesis referenced above

succeeded in showing that the process for identifying key variables in a system for error

handling was successful in selecting the variables with the highest chance of failure and that

it was possible for future research to make the process more efficient.

The first stage of the research deals with refining the static analysis potion of the process

that utilizes metrics such as lines of code, code slicing and memory analysis. To create a

more accurate process and to allow for a greater prediction rate of high failure rate variables,

the new testing framework incorporates several additional metrics to the existing process.

The refined process includes code complexity and accounts for the likelihood of bit faults

corrupting data relative to the modules, functions and variables stored in memory. In the

previous work, it was assumed that all functions held the same chance for a single transient

data fault to occur, when in reality that is not the case. Combining the memory analysis with

code complexity and other static analysis metrics aids in making the prioritization process

more efficient.

The second stage of the improved testing framework refines the dynamic analysis portion

of the process that identifies relative modules in the open source software and in predicting

potential propagation of faults throughout the system. The refined process leverages the

code coverage metric to ensure that the maximum number of potential paths are examined

1

for each part of the code and allows the testing framework to establish metrics that are

relative to the usage of the system by accounting for which code does or does not get

executed in the test cases. Combining the code coverage metrics with test case prioritization

and minimization techniques augments the current dynamic analysis techniques in removing

unnecessary tests and narrowing down potential placement locations for error handling. In

addition to augmenting the placement locations for error handling, the expanded dynamic

analysis testing allows for a more accurate prediction of variable priority when used in

conjunction with machine learning.

The third stage of the improved testing framework works along with the current fault-

injection testing techniques created previously to utilize various metrics found through static

and dynamic analysis to increase the accuracy of the prediction of relative importance of the

variables to increase the efficiency of the testing phases, resulting in fewer, but more accurate,

total tests for the software. This is done by utilizing a two stage predictive model that

consists of machine learning algorithms trained on the metrics collected by the framework.

This predictive model flags functions in each module of the software system as high or low

priority and then ranks the relative variables in the high priority modules according to their

relative importance to the reliability of the system. The goal when integrating this predictive

model into the testing framework is to reduce the number of direct interactions taken with

the system to collect data, meaning less fault injection and intrusive testing methods that

take up important testing time.

1.1 Problem Statement

By utilizing relative use cases and test case prioritization and minimization techniques,

it is possible to reduce some of the risk that is inherent to adopting open source software for

use in a real-life applications. There are several issues with integrating open source software

into a system or adopting open innovation policies into a firm that is focused on commercial

products. This dissertation focuses on the idea that open source software may be a cheaper

2

alternative to private development, but that it is also a much riskier alternative. Using open

source software as either the foundation or to add functionality to a commercial product is

gaining momentum. The research objective is reducing risk by creating an efficient process

for completing reliability verification testing of open source software through predicting the

priority of variables in the system.

The software is analyzed with both static and dynamic techniques and is put through

a series of fault-injection tests to identify the priority modules, functions and variables in

the software. These techniques allow for the minimization of test cases by focusing only

on the use cases relative to how the software will be used by the system that is integrating

it. Anything not directly related to the use of the system is culled, and the test cases

are prioritized according to the likelihood that the variables will lead to a system failure.

This metric and fault injection data is used to teach machine learning algorithms to predict

whether a function in a software system is of high priority, meaning that it is part of the

critical data-flow through the software, and then to rank the variables in each of those

high priority functions in terms of their relative importance to the reliable execution of the

software in the presence of transient data faults.

This likelihood of system failure is a major concern for trying to incorporate open source

software into a product with mission critical functions. An example would be using an open

source alternative for a mission control system in a UAV. The mission control system is

responsible for the control of the UAV and for communication between the UAV and the

ground station or controller. If the software is unreliable, then the risk is too high to warrant

the cost savings for using an open source alternative. So, this dissertation looks at how the

software will be used and identifies the key variables in the system. Then, by measuring the

chance for failure and the impact of the failure across the system, variables can be singled out

for error handling mechanisms to prevent this occurrence. This research focuses primarily

on coding defects and data corruption through simulated transient faults in memory, but it

is possible to expand the focus of the research to security and software vulnerabilities. An

3

example of a transient data fault with respect to the UAV control system, would be extreme

temperature changes that effect the data stored in the local memory of the UAV. This

temperature changes causes the data stored in memory to fluctuate during the execution of

the system. This dissertation seeks to identify and prioritize the variables in the system to

show which variables, when affected by fluctuating data, would cause a failure in the system

operation.

The current architecture from [1] that forms the foundation of the research presented in

this dissertation has several areas that needed improvement to keep up with current research

trends. There were also assumptions made for the sake of initial testing and validation of the

methods for identifying the critical path through the software component and placement of

error handling mechanisms. This dissertation takes the next step to replace the assumptions

with real measures of memory analysis and other factors to more accurately predict the

likelihood of failures in variables throughout the code.

1.2 Benefits

The popularity of open source software and open innovation within the private and

public sector rises each year. This research produces results from a process capable of taking

an open source software component in post-release and efficiently increasing the reliability of

the components for use in a pre-existing system. This allows the use of open source software

in more commercially oriented markets and is an early step in furthering the idea of open

source software as a strong alternative to consumer-off-the-shelf or in-house development.

The process described in this dissertation is novel in the way that it combines different

metrics of static and dynamic analysis with fault-injection testing and machine learning in

order to identify high priority variables for placing error handling mechanisms. The return to

the research community is the data from the hybrid analysis and testing process completed on

open source software cases. The results of the machine learning algorithms for the predictive

4

model provides feedback in a process that leverages the prediction of high priority variables

for test case priority and minimization.

This testing framework has uses outside of the open source community. Assuming

access to the source code in question, this framework is useful for helping to manage the

increasing time and cost of completing full testing suites on software in the late stages of

development or during regression testing from a software patch. Though there is room to

expand functionality of the tool, it could be used along with statistical or historical data

analysis tools to create a more efficient means of prioritizing test cases. The tool could also be

expanded to consider security aspects of software and focus on the detection of vulnerabilities

or weaknesses in the code.

5

Chapter 2

Literature Review

In this portion of the dissertation, related publications in topics that apply to the

research discussed previously in the introduction will be detailed. The review focuses on

several points: open source software, test case prioritization and minimization and software

reliability. The major goal of the dissertation research is to refine the procedure used in

the referenced master’s thesis to prioritize variables in open source software using a mix of

static and dynamic analysis and machine learning. The key research emphasis is on aspects

of developing, maintaining and integrating open source software into real-world systems and

making the prioritization process more accurate and efficient.

2.1 Open Source Software

Open source software usage is rising in the way that organizations are developing and

commercializing software. This section discusses the related research on adopting and com-

mercializing open source software, in addition to current research on detecting bugs and

quality issues specific to open source software. The goal of this dissertation research is not

to determine the use of open source software in the real-world or to explore the economic and

business aspects of commercializing it. An underlying premise is that open source software

is becoming an increasingly popular solution to reducing development time and costs and

therefore we review current research to verify this premise.

2.1.1 Adoption

In [2] Ayala, Cruzes, Hauge and Conradi detail five facts about adopting open source

software by various types of organizations, both private and public. Of particular interest

6

here is one of the ways that open source software is adopted by private section organizations.

Open source products are being integrated into other products or systems in an effort to

increase software reuse through reducing licensing, upgrade costs and development time.

An example is integrating some open source components into a system, extending some

functionality of the open source component or wrapping it. Utilizing open source software

has some hidden costs: training in the product, licensing costs with adding functionality,

support, expenses dealing with commercial strategies, backward compatibility and selecting

the right open source software for the system.

A review of the lessons learned from adopting open source software is shown by Fitzger-

ald, Kesan, Russo, Shaikh and Succi in [3]. They make several assertions based on their

results, but the most important relative to this research is that open source software adop-

tion is not successful in all environments. There are certain conditions that need to be met

and inherent risks when dealing with open source. This means that when choosing which

open source software would be a good fit as a test case in the dissertation research, it is

important to note the likely use cases and the type of project that would incorporate the

software.

An integrated model for adopting open source software is tested and evaluated by Gwebu

and Wang in [4]. The model utilizes several key aspects before deciding whether to adopt

open source software: identification, personal innovativeness in technology, perceived useful-

ness, and perceived ease of use. For this research, the perceived usefulness and ease of use

are most likely the aspects that are affected. The research seeks to make the procedure to

prioritize the placement of error handling mechanisms more accurate and efficient. Doing

this will reinforce the decision to switch to open source if the error handling is sufficient.

A major consideration when integrating open source software into a pre-existing system

is the consequence of changing the code or adding new functionality. Adam Reed discusses

various economic aspects of dealing with open source software [5], but more importantly notes

that improvements to the open source software are likely to be made once an organization

7

integrates the software. This means considering the implications of the GNU public license

if the software will then be re-distributed as part of a product.

The issue of viewing technology as a proprietary element and what that means for

open source software is discussed in [6] by Spinellis and Giannikas. Open source is such an

appealing option because it is free, the source code is available, and it can be modified to meet

the organizations needs. But, depending on how the software is to be used, it is not really

an option for use in purely proprietary software products. The study lead to the conclusion

that companies are more likely to profit when focusing on their own core competencies and

operations using products readily available on the market. But, one caveat was that for

organizations of all sizes, open source software was seeing increasing use in the realm of web

servers and depending on the organization, open source software could be utilized in other

areas.

2.1.2 Commercialization

The commercialization aspect of dealing with open source software was discussed some-

what in the previous research, but the next two papers deal specifically with that challenge.

The open source development model’s place in commercial companies is explored by Frank

Hecker in [7]. The topic of licensing surfaces again in the article when considering taking the

development of the commercial software in an organization through an open source develop-

ment method. The products begin as closed source, consumer-off-the-shelf type software and

eventually end up as open source software to ease the maintenance and featurization costs

that come post-release. The various licensing options are discussed and the developer is en-

couraged to select one that best fits their needs. For example, GNU places tighter constraints

on releasing code commercially without contributing changes to the code to the developer

community, whereas licenses like the Berkeley Software Distribution and the Mozilla Public

License are more lax when it comes to proprietary options.

8

Commercial open source software products are those that are privately developed based

on publicly available source code. These types of products are ideal for the research in this

dissertation. By efficiently and accurately placing error handling, the open source option

becomes even more ideal for this type of development. Kumar, Gordon, and Srinivasan [8]

develop a two-sided model of competition between commercial open source software firms

to address the issue of dealing with competition, since portions of the source code are now

freely available to other firms. The model shows that mandatory feature sharing between

firms can raise profits and that the availability of open source contributions improves the

quality of products more than just private development.

2.1.3 Open Innovation

A paper by Bonaccorsi and Rossi [9] on why open source can succeed discusses three

problems that occurred with the increase in open source software usage: motivation, coordi-

nation and diffusion. The problems lead to a series of key questions about why open source

was developed, if not for profit, and how effective can the coordination of strangers around

the globe be on a project? The focus of the paper is more on the business aspect of open

source software, but is worth noting because of the high consideration open source has been

getting over the last decade. The study showed that more research was needed to determine

the impact open source software would have on the market, but it was noted that an increase

in the usability of open source software will result in increased use, as the user is the key

focus in commercial software.

The idea of a firm that focuses on open source technology is not a brand new concept,

Red Hat is the largest contributor to Linux. Colombo, Piva and Ross-Lamastra discuss the

concept of open innovation and diversification in the industry in [10]. The paper explores

the open innovation paradigm with respect to small and medium sized enterprises. The

study showed that the diversification was negatively associated with the size of the enter-

prise and positively associated with the number of open source projects that the enterprise

9

contributes to. The relationship between innovation and diversification of the industry is

further explored by investigating the extent to which the enterprises collaborate with the

open innovation partners. That is, the relationship between the open innovation enterprises

and the development communities that contribute to the same open source projects.

One of the key aspects of the research is the focus on open source software, but the

methods used could also be of use to any software where the source code is available. The

concept is that the software is in post-release when you attempt to integrate, so standard

methods for testing and placing error handling will not suffice. A paper by Li, Kivett,

Zhan, Jeon, Nagappan, Murphy, and Ko [11] discusses the differences between pre- and

post-release versions of software. The study observed application crash and hang, system

crash and usage information from millions of Windows users. The goal was to examine

how usage characteristics affected field quality, pre- and post-release and to report the data

back to Windows. The four major usage characteristics for examining the field quality of

Windows were: number of applications executed, pre-installation, language locales, and 32

versus 64-bit. The study showed that there were prediction errors for the anticipated defects

of about thirty-six and eighty-nine percent for two different releases of Windows 7. The

results show that there is a large margin of error going from beta tests to actual field testing

post-release.

Midha and Palvia explore the factors that make open source software successful in [12].

The success of open source software was measured over a period of time to reflect the evolu-

tionary nature of open source. Though the concept of success in software development can

be subjective, the study indicated success through the amount of user interest and developer

contribution to a project. It was shown that the level of user interest may increase the devel-

oper contribution. A more popular project was more likely to see updates in the developer

community by those wanting to be part of a popular project. Other factors were considered

when observing changes in user interest and developer contribution, such as: license choice,

size of user and developer base, language translations, responsibility assignment, complexity,

10

modularity, and release. It was found that projects that coordinated responsibility, focused

community attention on key parts of the software and allowed for the maximum amount of

users led to the most successful projects.

The last paper considering open innovation looks at the challenges to a firm investing

in open source software. West and Gallagher [13] identify three major speed bumps to

dealing with open source software: ”finding creative ways to exploit internal innovation,

incorporating external innovation into internal development, and motivating outsiders to

supply an ongoing stream of external innovators.” [13] The study observed firms dealing

with open source software to support their innovation strategies. Put more simply, the issue

that was being investigated was how do you make a profit from something that is inherently

free to the customer? A common answer was to use the open source software as a foundation

to start some other intellectual property or to use the input of the developer community in

addition to internal developers to create something better. The balance is that when the

firm takes the lead and uses external developers, they incur a higher coordination cost, but

less risk. If the open source community is the lead on a project, more risk is involved for a

reduced cost.

2.1.4 Bugs

With one of the key focuses of the research being on the open source aspect of the code

to be tested, it is important to get an idea of the types of bugs that are more commonly

found in open source software than in privately developed software. Cotroneo, Grottke,

Natella, Pietrantuono, and Trivedi explore various fault triggers based on different types of

bugs in [14]. The paper analyzes types of bugs in four large open source software projects

throughout their life-cycle. The research in this paper is useful for understanding the bug

characteristics leading to a system failure and identifying the best way to deal with various

bugs in different phases of the project. Of particular interest are the methods for dealing

with bugs that are most likely to be found later in the development stages. These methods

11

included: model checking, stress testing, code reviews, and error detection and correction

mechanisms.

Further characterization of bugs found in open source software is seen in [15], by Li,

Tan, Wang, Lu, Zhou, and Zhai. The paper discusses how the nature of bugs has changed

in open source software. The study determined that memory-related bugs have decreased

with the rise of effective error detection tools, with the exception of certain memory-related

bugs such as NULL pointer de-referencing. Semantic bugs were also found to be a dominant

cause of failures in open source software. The data in this paper is useful for investigating

the error handling in the framework, as it is more focused on checking for errors that are

likely in open source.

Security is a major consideration in many open source software projects and the impact

on security when planning bug fixes is discussed in [16], by Saleem, Yu, and Nuseibeh. The

research investigates the process for planning bug fixes and whether security-related bugs

need to be fixed differently than other bugs. The bugs are classified as either security or non-

security related and then the frequency of the occurrence of key security terms is measured

for each bug description. It was shown that it was possible to plan a tool-supported release

for Samba, given that the open security issues at the time of release were known. Also, the

study gives a good example of how to use an open source software project’s documentation

when creating a release plan.

A example of analyzing bugs found in a particular type of open source software system is

shown in [17], by Yin, Caesar, and Zhou. The paper explores the bugs found in open source

router software. It uses bug databases for two routers utilizing open source implementations,

Quagga and XORP, and Cisco IOS security advisories and the Linux IP stack. Of key

importance in this paper, is the data showing that a mere 4 percent of the code contain more

than twenty-five percent of the bugs. This meant that lines of code was not necessarily a

useful metric for considering the number of bugs in the software. A methodology is presented

for classifying the bugs found in the router software using both static analysis and manual

12

classification. The research gives some insight into the considerations made when focusing

on the detection of bugs in an open source software system.

2.1.5 Quality

The next two papers take a look at producing quality open source software in the current

market. The first article, by Mark Aberdour [18], draws some interesting conclusions from

actual empirical data on open source quality. The difference between quality development

in open and closed source are considered, including management, testing process, and the

use of an open community of developers who can freely contribute to a code-base. Higher

quality is found in projects that utilize professional resources, structured testing, automated

regression testing, and user testing. The existence of a sustainable community is also a

factor in the project’s success. The community is found to provide some key objectivity to

the testing process and when augmented with some formal testing techniques, the quality

should increase.

Crowston, Wei, Howison, and Wiggins discuss more empirical research on free, libre

and open source software, FLOSS, in [19]. The paper presents a quantitative summary of

articles for analyzing the inputs, processes, emergent states, and outputs of such software.

The paper is a useful source of information about different types of open source software and

what type of considerations could be made for creating a more efficient analysis process in

the research. The research found in the paper is still in an early stage, but there is a clear

relationship between social interaction and software development that needs to be explored

further to form a more theoretically sound understanding of the development process.

2.1.6 Validation and Verification

The idea of validation and verification testing is not new research, but the concept

of validation and verification of open source software is an area that has grown larger in

the last decade. The idea of using empirical validation metrics in order to predict faults

13

in open source software is discussed in [20], by Gyimothy, Ferenc, and Siket. The paper

shows calculations of object-oriented metrics to illustrate fault detection of source code. The

values were checked against a bug database, Bugzilla, using regressions and machine learning

methods for validation. A large number of metrics are discussed in the paper: weighted

methods per class, depth of inheritance tree, response for a class, number of children, coupling

between object classes, coupling between classes and lines of code. Many of these metrics

will be considered in the dissertation research, so the results of the study here are useful.

The most important observations to the research were that coupling between classes was

found to be the best metric for fault prediction and that lines of code was a strong initial

indicator of faults, but falls behind multivariate models for more fine-grained analysis.

A distributed approach to validation and verification is considered in [21], by Yuan

and Gygi. The paper presents an approach for validation and verification of the Electronic

Structure TEST software, run on a network of distributed servers. The case study presented

in the paper is a useful reference for using a software framework for validation and verification

of networking software. More important to the research, is the description of the validation

and verification techniques used to analyze the ESTEST plug-ins and the challenges of

implementing the open source framework.

2.2 Test Case Prioritization and Minimization

This section will review the second key aspect of the research, the process of efficiently

identifying key variables for the placement of error handling mechanisms. The dissertation

research is based off an existing process found in [1]. The static analysis, dynamic analysis

and fault prediction methods discussed here are used to assist in creating a more accurate

and efficient process.

14

2.2.1 Static Analysis

The related research for the static analysis to be done in the research includes the

metrics of code complexity, prioritization, and others. The first paper covers validation of

complexity of code changes and predicting bugs in open source software. Chaturvedi, Bedi,

Misra, and Singh [22] apply linear regression to predict the release time of a project and

measure performance using various statistics. The complexity of the code and the bugs

previously fixed in the project are used to predict the next release problem that will occur.

It was found that given that open source software does not follow a specific set of rules for

releases, the method discussed in the paper is a useful way to determine the schedule for new

releases. The data presented is useful for determining when to release based on bug fixes in

the code and the complexity.

Dit, Revelle, Gethers, and Poshyvanyk [23] give a survey of papers dealing with the

location of features in source code. The locations are used to identify initial places in the

code that implement functionality in a software system. This information would be useful

for choosing a starting place for static analysis to find potential propagation of faults, given

a set of use cases. The taxonomy presented highlights the need for more benchmarks and

comparisons in the field of feature location. The findings are useful for locating further re-

search in the area if the concept of feature location looks like a promising means of increasing

the efficiency of the static analysis in the research.

Through evaluation of code complexity, code churn and developer activity metrics, Shin,

Meneely, and Williams locate software vulnerabilities in [24]. The study attempts to see

if metrics obtained from source code and development history can be used to predict the

location of vulnerable code. Of particular interest to the research is the process for predicting

the location of vulnerabilities and how the metrics mentioned above can be used to do so.

The assumptions in the study were that vulnerable files had a larger complexity and code

churn than those without vulnerabilities. It was found that the code churn and developer

activity metrics were more accurate in predicting vulnerabilities than code complexity. The

15

results indicate that pursuing historical data about bugs found in open source software could

increase the accuracy of the prediction process.

Sinha, Dey, Amin and Badkoobehi [25] detail the process of calculating software com-

plexity using a variety of metrics. The software complexity metric is indicative of the testa-

bility, maintainability, readability and the comprehensibility of a program. Previously, code

complexity was measured by lines of code, but that alone is not a good measure of how hard

to understand the software is. The paper presents a quantitative method for measuring soft-

ware complexity using code abstractions in state-chart diagrams to demonstrate. The code

abstractions are modeled in the state-chart diagrams and then analyzed with the following

criteria: number of execution paths, number of edges, nested loops, object references, data-

structures, external files, GUI, interfaces with other systems, lines of code, login, dealing

with secure user inputs. Each criteria has a scoring system in place that results in a total

complexity index for the diagram.

Thomas, Hemmati, Hassan, and Blostein [26] use topic models and static analysis to

prioritize test cases. Test suites can grow too large to maintain with many potentially

unnecessary tests. The paper discusses a method for development teams to prioritize their

test suite so that the highest number of distinct faults can be located in the fewest number

of test cases. In this case, the test case prioritization is done without access to the source

code in a black-box environment. A topic model is created using text analysis and linguistic

data to approximate the functionality of each test case. Test cases with the highest chance

to detecting a failure are prioritized over those with less functionality. Compared to other

test case prioritization techniques, requiring execution behavior, the black-box static testing

in the paper is capable of standing on its own. But, the methods discussed in the paper

would be best served complementing a prioritization technique with code access.

The idea of predicting defective code to allocate limited resources effectively is discussed

in [27], by Zhang, Zhang, and Gu. The paper measures code complexity through three key

16

metrics: lines of code, McCabe’s Cyclomatic Complexity and Halstead’s Volume. The soft-

ware components are classified as either defective or non-defective aided by the measurement

of code complexity. The study reinforces the concept that static analysis can be used to

measure component quality and predict defective modules. The method of calculating code

complexity and the data from the validation testing of the predictions are important to the

research, as they can be used in the static analysis to create a more accurate process for

prioritizing test cases. The data from the study shows that it is possible to build effective

defect prediction models based on the code complexity measures used.

2.2.2 Dynamic Analysis

A large number of following papers utilize the KLEE LLVM, described in [28] by Cadar,

Dunbar and Engler. KLEE is ” a symbolic execution tool that is capable of generating

tests that achieve high-coverage on a diverse set of complex and environmentally-intensive

programs”. [28] KLEE was thoroughly tested against all 89 stand-alone programs in the

GNU Coreutils utility suite, which are commonly considered to be the most heavily tested

open source programs available. KLEE works by focusing on two key aspects of dealing with

code: complexity and environmental dependencies. In an initial test against MINIX’s tr

tool, KLEE generated 37 tests that traversed all of the executable statements in tr. KLEE

has two major goals: to hit every line of executable code in a program and to detect if

any input exists that could cause an error at each potentially dangerous operation. The

KLEE symbolic execution testing suite will be thoroughly experimented with in an attempt

to leverage the capabilities of the system with the techniques in [1] to create a more efficient

method for placing error handling mechanisms.

The dynamic analysis portion of the research will be based on ensuring maximum code

coverage and using symbolic execution with regression testing. The first three papers come

from Cadar, Sen and other contributors using the KLEE LLVM for symbolic execution and

software testing. Cadar, Godefroid, Khurshid, Pasareanu, Sen, Tillmann, and Visser [29]

17

utilize the program analysis technique known as symbolic execution along with dynamic test

generation and generalized symbolic execution and report their results. There are challenges

to utilizing symbolic execution with the current state of software engineering. The scalability

of symbolic execution when dealing with an exponentially increasing number of paths in the

code is a major issue. Also, removing redundant paths and using a heuristic search method

are needed to fully implement the technique. It is noted that parallelization could be helpful

in alleviating some of these problems. The concepts discussed in this paper are useful to

the research because the process will use relative test cases, cutting down on the number of

potential paths through the code.

Cadar and Sen [30] discuss the changes between symbolic execution as introduced in

the 1970s and modern symbolic execution. Current research has revisited the concept of

symbolic execution with advances in algorithms, constraint satisfiability and scalable dy-

namic approaches. Symbolic execution is once again an effective technique for generating

high-coverage test suites and finding errors in complex software systems. Symbolic execution

is used to visit as many different program paths as possible in the shortest amount of time.

This makes it an ideal tool for creating a more efficient testing phase. The major strength

of symbolic execution is that there is no need to provide concrete inputs to trigger specific

bugs, because symbolic execution can locate bugs on any path in a system. Though more

simple errors, such as buffer overflows, are possible to locate, symbolic execution can also be

used to locate higher-level issues dealing with complex program assertions.

Kaushik, Salehie, Tahvildari, Li, and Moore [31] utilize dynamic prioritization tech-

niques to create a more efficient means of performing regression testing. Because regression

testing has a high cost in both resource and process management, prioritizing the test suites

is especially important. The challenges of re-ordering test cases based on dynamic prioriti-

zation is addressed in this paper. To make the regression testing more efficient, in-process

events and up-to-date test suites are used to measure the usefulness of the tests and deter-

mine which tests would be best. With most prioritization techniques, it is assumed that

18

there is a fixed pool of test cases with available coverage metrics for all test cases. This

provides three types of challenges: environment and resource, metric and in-situ. The paper

focuses on the in-situ changes, meaning those based on events that occur within the process

or situation in the test cases.

Kumar, Mishra, and Misra propose a novel approach for minimizing and prioritizing

test suites in [32]. They utilize a path selection strategy for regression testing that enables

the tester to execute test cases in the order that most increases the effectiveness of finding

faults. Also, a genetic algorithm based technique is used to select a subset of the prioritized

test cases. Of particular interest is the path selection for regression testing. The data from

the study shows that the performance of the methods presented result in a greater efficiency

than random testing for faults.

In an effort to incorporate less traveled paths in symbolic execution increasing the

code coverage, Li, Su, Wang, and Li [33] utilize the length-n subpath program spectra. This

method systematically approximates the full path information for the paths explored through

symbolic execution. Frequency distributions are explored for length-n subpaths to identify

the less traveled parts of the code. Finding these less traveled parts of the code increases

the code coverage and the detection of errors. The KLEE LLVM testing suite is used for

the symbolic execution and the data is retrieved from testing done on the GNU Coreutils

programs. It is determined that the proposed method yields higher code coverage test cases

than traditional symbolic execution methods.

Marinescu and Candea [34] explore automated techniques for identifying errors in ap-

plication recovery code using fault injection. A framework is presented for writing precise

triggers that deliver the desired faults in the form of error return codes. The reaction to

these error return codes is monitored to evaluate the effectiveness of the recovery code. The

framework described in the paper uses static analysis of library binaries to determine the

error codes that can be used in the fault injection. The binary is analyzed for potentially

19

vulnerable locations for the faults to be located. The applicable portion of this research

comes from the combination of fault injection testing with efficient testing of recovery code.

Marinescu and Cadar [35] propose an automated technique based on symbolic execution

that attempts to increase the quality of software patches. The set of test cases is generated

automatically to cover most of the statements in the software. The coverage is measured by

the number of lines of code covered by the test suite. The KLEE symbolic execution engine

forms the base for the technique and is augmented by the code that combines the concrete

inputs with the symbolic program exploration, ZESTI. The proposed technique successfully

created inputs to cover all accessible path code in the test case studies using the lighttpd

web server.

Another paper by Marinescu and Cadar [36] furthers the concept of high-coverage testing

for software patches. In this paper, the issue of automation of testing code patches is

addressed. The technique from [35] is combined with novel heuristics with static and dynamic

analysis allowing for the specific code for the patch to be tested. The technique has taken the

form of a tool called KATCH, which has been tested against nineteen patches written over

a period of six years for an assortment of open source projects. There are several important

aspects to consider from this research. The first is that even with these new developments

achieving a high code coverage percentage is still difficult, only thirty-one percent coverage

was obtained here. Next, automation is key in achieving high code coverage. The data

showed anywhere from a twenty-one to a thirty-eight percent increase in coverage using

automatic techniques.

Mirzaaghaei, Pastore, and Pezze [37] propose a framework, TestCareAssistant (TCA)

that implements algorithms for the evolution of test suites written in Java. This article

focuses primarily on the issue of updating test suites automatically. The framework is

tested on five different open source projects and the results are presented. The results

shows that TCA is capable of generating test cases that cover software behaviors that are

not seen originally in the test cases. The article also identifies eight algorithms to aid in

20

the automation process depending on the particular scenario found in the software. These

scenarios include: adding or removing a parameter from the method signature, changing the

type of the return parameter, extending a class by overloading and overwriting a method.

The challenge of testing a synchronous reactive system is addressed by Schrammel,

Melham, and Kroening in [38]. The challenge comes from long input sequences that are

often needed to drive the reactive system to the desired feature. The issue is particularly

noticeable when dealing with on-target testing. This is the case where the system is tested

in a real-life application environment where the time to reset the test and start again is high.

This research is particularly important because the dissertation research takes advantage of

real-life applications of the software to be tested and uses it to focus test cases. [38] presents

an approach for discovering a test case chain for the software that uses a single execution

that covers all the test goals in one execution, while minimizing the overall execution time.

The reported experimental results come from a prototype tool for generating C code using

SIMULINK models. This is then compared to state-of-the-art test suite generators. The

implementation and results indicate a similarity to the KLEE LLVM.

Siddiqui and Khurshid [39] present a novel approach to scaling symbolic execution that

implements a program analysis technique for a systematic exploration of execution paths.

The test case inputs are automatically generated for each of the bounded execution paths.

The key aspect of the research is that the state of the analysis can be compactly represented

using a range, beginning and end, based on test case input for a specific symbolic execution

run. Combining the KLEE symbolic execution engine with this ranged symbolic execution

technique alleviates some of the issues with attempting to scale symbolic execution. The

novelty of the approach is that the symbolic execution is directed by the test inputs, and not

that test inputs are found through symbolic execution. This allows the symbolic execution

to be broken down into sub-problems using the range of test inputs and increasing the

scalability.

21

A novel approach for increasing the efficiency of symbolic execution given recent ad-

vances in constraint solving technology and computing power is discussed in [40], by Sid-

diqui and Khurshid. In this paper, symbolic execution is broken down into stages in order

to compute abstract symbolic inputs. This differs from standard symbolic execution, which

searches the code for paths all at once. The abstract symbolic inputs are shared across the

different methods in the software to systematically test each input. This approach is evalu-

ated and compared against the KLEE engine, resulting in cost savings for systematic testing

using symbolic execution. The method described isolates and removes a large amount of the

overhead in symbolic execution by creating a library of abstract symbolic tests that are used

to enable symbolic test suites to recreate symbolic states as needed for testing.

The paper by Siddiqui and Khurshid [41] based on [40] presents further analysis of

the potential scaling aspects of the symbolic execution done through staged execution. Of

importance in this paper is the test suite size reduction which is capable through black-box

techniques that use pre-conditions and class invariants. There are two key issues to doing the

reduction with the black-box techniques: high number of tests, redundant tests, and bounds

dependent method they are testing. This means that not all of the possible inter-leavings

and overlappings will be covered and many test cases will go to waste. It is important to

note that given access to the source code, these black-box techniques are less effective than

other methods.

The last paper considered here is by Yoo and Harman [42] and is a survey of minimiza-

tion, selection and prioritization techniques for regression testing. Test suites are known to

grow to un-manageable sizes as software evolves, making it too costly to attempt to run

the entire test suite. This paper is a collection of recent studies for dealing with the costly

process of running huge test suites on software. The papers are separated into the three

categories mentioned in the title. Test case minimization refers to eliminating redundant

test cases in order to lessen the total number of tests. Test case selection identifies test cases

that are particularly relevant based on recent changes to the code. Test case prioritization

22

orders the test cases in a way that maximizes fault detection in the code. This paper serves

as a strong resource for locating additional leads for future research.

2.2.3 Fault Prediction

Utilizing test case prioritization in order to predict or locate key artifacts in the source

more efficiently is the focus of the last section of the literature review. The surveyed research

will vary by method, but the overall focus of the research is on the testing process for finding

and dealing with faults. The first paper is by Benameur, Evans and Elder [43] and deals with

software development using type-unsafe languages, such as C and C++. It is critical to ensure

that code is free of security vulnerabilities and bugs. A novel architecture, MINESTRONE,

is presented that utilizes static analysis, dynamic confinement, and code diversification to

locate and contain vulnerabilities in software. The idea came from the fact that even with

security protocols in place throughout the development phase, MINESTRONE is highly

unlikely to catch all potential problems. The data showed that by combining the various

elements mentioned above, the detection rate of vulnerabilities was improved nearly thirty-

five percent over Valgrind, a state-of-the-art tool. Of particular interest here is the use of

KLEE in the test suite generation for detecting the bugs.

Bryce, Sampath and Memon [44] discuss the development of a single model and test

prioritization strategies for dealing with event-driven software. Since the software changes

state based on incoming events, it can be difficult to create efficient test suites that maximize

the coverage of all the important test cases. An empirical study showed that two event-driven

software examples, GUI and web-based applications, show similar behavior when using the

newly developed single model. The idea is that similar subclasses of software types can be

cast into a single model and studied together to aid in creating efficient test suites. Various

criteria, specific to the event-driven software subclass are run on the parameters of the

applications to measure their response. Of particular interest is the evaluation method for

the prioritization criteria.

23

In another paper about improving test case prioritization, Carlson, Do, and Denton [45]

discuss using a clustering approach in an industrial case study. The study involves reducing

the total cost of regression testing by exploring the underlying relationships in the data, such

as data correlations and patterns, to obtain information that would augment regression test-

ing techniques. New prioritization techniques are implemented that incorporate clustering,

code coverage, code complexity, and historical data on real faults. The initial results show

that the new prioritization techniques can improve the effectiveness of regression testing.

Methods for measuring code complexity and prioritizing test cases using code coverage are

relevant. The complexity is found using a combination of lines of code and dependency

relationships.

Czerwonka, Das, Nagappan, Tarvo and Teterev [46] discuss a Microsoft system called

CRANE. The research was inspired by the lack of data on the use of techniques for failure

prediction, change risk analysis and test prioritization being used in real-world systems.

CRANE is a system used at Microsoft that leverages existing research for developing and

maintaining the Windows Vista operating system. The paper describes the design of CRANE

and validates its usefulness and effectiveness in practice. This paper is a good resource

for learning about how such a system could be developed and implemented for use with

a real-world application. The lessons learned from the case study include: data should

be simple to understand, empirical and insightful, data needs to be project and context

specific, metrics should be non-redundant, information should be actionable, and to have at

least one statistical expert in the team. Some areas where CRANE could be improved are the

performance of metric collection and the efficiency and effectiveness of the recommendations.

Jacob and Ravi [47] discuss their project for detecting code defects using test case pri-

oritization rules. The project involves data mining techniques to locate two major types of

defects in source code in a single process. The two defects are rule-violating defects, like

a missing brace, and copy-paste defects, such as extra space after a paste. The proposed

24

detection method for locating defects extracts implicit source code requirements after anal-

ysis and uses them to search for defects. The detection method first uses frequent pattern

matching to detect rule-violation defects and then creates data-sets of the functions in the

source code. These data-sets are run against the defect location methods and the defect

report is generated. The results showed that a large number of implicit and undocumented

programming rules could be extracted from the source code. Of importance to this research

was the notice that between 88.3 and 96.7 percent of programming rules involve variables.

This reinforces the choice to make variables the key component of the prioritization process.

In an effort to explore the creation of adequate test suites for integrated test case

prioritization for fault localization, Jiang, Chang, and Tse [48] report and empirical study.

The study investigates the integration of test case prioritization and fault localization with

a postmortem analysis approach. It was found that test adequacy criteria is still lacking in

the current state of the research. Program debugging often uses only partial test results.

This means that there needs to be some system for selecting and executing certain test cases

before others, and determining whether the executed test cases are actually useful to the

debugger. The test adequacy criteria is important because they define how much testing

is needed before the system is thoroughly tested. It is possible to continue testing for a

seemingly infinite amount of time and though random testing is useful for stress testing, it

is not useful in all cases.

Following up on [48] Jiang, Zhang, Chan, Tse, and Chen explore the relationship be-

tween test case prioritization and statistical fault localization and how well they integrate.

In [49] the previous methods are further tested to see whether the effectiveness factors of test

case prioritization, such as strategy, coverage granularity, and time cost, have consequences

on the effectiveness of fault localization. An experiment was run that included sixteen test

case prioritization techniques and four statistical fault localization techniques. The Siemens

suite of programs was tested, in addition to grep, gzip, zed, and flex. With the use of test

case prioritization up to forty percent of test case executions could be saved, significantly

25

affecting the fault localization. By decreasing the test suite in size any further lead to a

serious drop in effectiveness. It was determined that of the factors discussed previously,

coverage granularity was the only factor that was not a significant factor.

Wei, Rashid, Pattabiraman and Gopalakrishnan [50] compare the effects of intermittent

and transient hardware faults on programs. Of importance in this research is the fault

model that is used to represent intermittent and transient faults. We utilize transient fault

injection simulation to measure the failure rate of variables under certain conditions. The

differences between intermittent and transient fault injection is dependent on the length of

the intermittent fault, the fault type, and the origin of the fault in the hardware.

2.3 Software Reliability

In this section we will look at the state of the research in modeling and predicting

software reliability and assessing risk in software systems. A review will focus on research

in machine learning techniques, software reliability models and methods for predicting the

reliability of software.

2.3.1 Machine Learning

Over the last two decades there have been a large number of empirical studies to measure

the usefulness of software design metrics on predicting the fault-proneness of modules in

software systems. The studies, [51] and [20], showed that coupling between object classes

and lines of code were the greatest indicators of the fault-proneness of a software module. It

is hypothesized that a class with a higher line of code count than others in the same software

project will be more prone to suffer from faults, but further testing needs to be done to

compare the results across different software languages. The Chidamber and Kemerer metrics

are investigated in another study, [52], that utilizes regression and machine learning methods

to detect faults specific to classes in a system. These object-oriented metrics are utilized

again, [53], to investigate the quality of software by using Receiver Operating Characteristics

26

analysis. It is shown that quality machine learning algorithms, such as the random forest

and bagging, are useful for predicting quality, especially in object-oriented languages. The

idea of predicting the quality of software is explored, [54], utilizing the NASA Metrics Data

Program, to show that the performance of the predictive models varies more as a result of

utilizing different metric groups, and not from different algorithms. It is also seen that a

combination of code and design metrics is better than just one or the other.

The classifier has a small impact on the performance of the predictive model when

dealing with empirical analysis of software metrics, [55], and researchers gathering the metrics

are the greatest influence of the prediction rate. Metrics based on the historical data and

the reported number of errors are used to train an Artificial Neural Network and Support

Vector Machines to determine the fault-proneness of software metrics in one study, [56]. The

metrics found to be the most crucial are determined by sensitivity analysis and are then

used as the basis of the predictive model. A literature review on software fault prediction,

[57], was done which determined that most machine learning done for fault prediction uses

method-level metrics. It is suggested that more practical metric data is used for predicting

faults and Naive Bayes is identified as a robust algorithm for this problem.

A study on choosing software metrics for detecting defects in a module, [58], used a

variety of feature selection and classification techniques to analyze a collection of software

metrics. It was found that in this case study, over eighty-five percent of the metrics could

be eliminated and the resulting prediction of software quality would either stay the same, or

even increase. Another study, [59], also takes into account how many metrics are needed for

getting a realistic prediction of the fault-proneness. This is done by utilizing an intelligent

feature selection algorithm for locating predictors likely to improve the models performance.

An effective predictor can be built with as little as three metrics. A paper on the current

state of software metrics research, [60], showed that there is a large basis of research, but that

many of the most cited empirical studies are built around either invalid metrics or suffer from

a lack of context when evaluated the metrics. A paper that discusses this misuse of metric

27

data sets, [61], further details why it is important to consider the context of the metrics that

are being evaluated when attempting to create a predictive model for fault-proneness. The

study concluded that researches must consider the context of how the data will be used, the

potential for erroneous findings due to repeated data points and incorporating lower level

and commonly used metrics to prevent creating repeated data points.

An invited talk by Aditya Nori [62] explores the use of machine learning techniques for

evaluating software reliability. The use of support vector machines, SVM, and linear regres-

sion are discussed with respect to calculating good invariants that are useful for program

verification. The use of SVMs can be used to determine relevant predicates for predict-

ing reliability. By using machine learning techniques it is possible to minimize superficial

non-linearities, meaning unforecasted outcomes that are not necessarily due to trends in the

predicates taken from the software but occur without explanation. With machine learning, it

is possible to identify the trends and relationships between the predicates and the output of

the model, the underlying linear structures for prediction can be identified. Cross-validation

is evaluated as a method for addressing bias-variance tradeoffs in prediction results. Cross-

validation was found to give more effective predictions for locating faults.

2.3.2 Modeling and Formal Methods

Barry Boehm’s work with creating a model for estimating cost, effort and schedule for

software projects is discussed in [63]. Also known as COCOMO 81, this model was based

on a study of projects completed at TRW Aerospace where Boehm served as the Director of

Software Research. These projects utilized the waterfall development model and consisted

of anywhere between 2,000 and 100,000 lines of code. COCOMO laid the groundwork for

a large aspect of software engineering research dealing with analyzing software projects at

varying levels of detail. COCOMO works by using a three-tiered method of evaluation

consisting of a basic, intermediate and advanced review process. The basic evaluation was

used to calculated effort and cost, based on program size. This was useful for quick estimates

28

of software costs, but ignored many other aspects of development that have an effect on

the cost of software development. The intermediate evaluation incorporates some of these,

introducing complexity, reliability, hardware attributes, personnel information, and project

data. Each of the attributes used in the review is rated and used to calculate effort. The

advanced evaluation takes the intermediate process and applies it at each step of the software

engineering process. Doing this advanced evaluation of effort gives a measure for each phase

of the development process: planning and requirements, system design, detailed design,

module code and testing, integration and testing.

Imsand, Evans, Dozier and Hamilton present the concept of utilizing genetic algorithms

for vulnerability analysis of national missile defense simulation software in [64]. Genetic

algorithms are used to complete boundary analysis and parameter optimization on the tar-

get software. This analysis was done to illustrate how different parameters in the software

affected heavily parametrized missile defense simulation system performance. Relevant re-

sults from this work was the discovery that many of the parameters ultimately had no real

effect on the outcome of the simulation. It did not matter what values were used for some

particular parameters in the simulation, the output was not affected. The goal of this work

as to determine which parameters had the greatest impact on the simulation output. By

utilizing genetic algorithms, the authors are able to significantly cut down on vulnerability

analysis time. By focusing only on the most influential parameters, the overall analysis pro-

cess becomes more efficient. Similar results were seen through the fault injection testing in

the presented work. Despite injecting faults into particular variables, some had no effect on

the execution flow of the program and were thus removed from consideration for predicting

relative importance.

A set of extended software metrics for measuring software reliability is explored in [65].

Metrics are proposed that are based on Nelson’s software reliability model. These metrics

are focused on measuring the software reliability through the view point of the user and focus

on moving away from a binary measure of either success or failure with respect to software

29

reliability. The reliability of the software is estimated using an extended adaptive testing

strategy. The testing utilizes historical information to limit the number of tests according to

a testing budget. The data from the study indicate that testing done in this way were closer

to the actual reliability of software than a random testing method. The overall variance of

the results using this testing method was lower than the compared methods, random testing

and operational profile-based testing. The study found that the proposed method of utilizing

historical information and adaptive testing to guide the selection of test cases led to more

accurate and descriptive evaluations of software reliability.

A safety case framework to determine reliability numbers for software systems is pro-

posed in [66]. There is a lack of consistency with quantitative evaluation of software reliability

between different countries and formal justifications for high reliability figures. The current

state of the art for quantifying software reliability uses conformance to accepted standards

and statistical testing. This framework utilizes a combination of analytical and Bayesian

approaches to use all available information from validation and verification testing. The

focus of the work is on investigating how each feature from a piece of software affects the

probability model and how the features relate to each other. The probability model is com-

bined with development models and available fault data for estimating residual faults in the

software. The primary metrics used in the framework are the probability that the software

has faults, the probability distribution for number of residual faults, the failure rate of the

critical digital systems from software faults and the conditional probability of a common

cause of failure. Using these metrics, the framework develops the map of evidence, structure

of the Bayesian belief network model, quantifies the model and interprets the results. Testing

is still being done on the underlying theories and tools that the model is based on.

In order to minimize the number of tests needed to accurate determine the reliability

of software [67] uses stratified sampling. As opposed to the traditional method of simple

random sampling based on the operational profile, stratified sampling splits the population

into subsets and randomly samples each subset separately. This method sees an overall

30

decrease in variance and increase in accuracy. The work discussed introduces the traditional

way to determine the number of tests needed to demonstrate discrete software reliability.

Then the stratified sampling method is analyzed and sample software is tested to show

how the effectiveness compares to the traditional methods. The stratified sampling method

attempts to provide some concrete evidence that software reliability demonstration testing

can be valid for use in real world situations. The stratified sampling method was found to

provide a minimal number of test cases while maintaining the accuracy of more traditional

methods.

The relationship between coverage metrics and reliability is explored in [68]. It is as-

sumed that code covered during correct execution of the program will also produce the

correct result for future test cases that cover the same code. The future reliability tests

are built up over time and the assumption that the code covered by earlier tests functions

the same for future tests allows for the growth of the software reliability as a function of

coverage to be modeled. The failure rate of the software is estimated based on the test

effectiveness and the number of bugs found in the software. The paper provides evidence

to support a relationship between coverage and reliability that is best used to quantify the

relative performance of different coverage metrics on a software system. Another paper on

software growth models [69] looks instead at leveraging the reliability growth model to assess

the security of the software. The issue investigated focuses on how security problems are

rare when running the code under ”normal” operational profiles. In the case where security

problems are detected in the software, reliability growth models can be used to assess the

security reliability. A Poisson distribution is done using the unique security problems that

are reported, verified and fixed for non-kernel components. The bug metrics are used to pre-

dict the impact of the security problems on the discovery rate of bugs over time. It is found

that the rate of discovering security problems is relatively constant when running the code

under normal circumstances and in some cases, it may be possible to predict the number of

remaining security problems based on reliability growth models.

31

2.3.3 Reliability Prediction

A prediction model based on support vector regression is detailed in [70]. The model

uses estimation of distribution algorithms to optimize the parameters of the support vec-

tor regression model. The proposed model combines an estimation distribution model that

maintains the diversity of the population of the data and a hybrid model that uses both

support vector regression and estimation of distribution algorithms. This hybrid model is

used to predict the software reliability based on data acquired during the life-cycle of the

software. A probabilistic model-building generalized genetic algorithm is used for estima-

tion of distribution algorithms to overcome the shortcomings of genetic algorithms. These

shortcomings include: poor performance for particular deceptive problems and the difficulty

of modeling a large number of variants. The results indicate that keeping a diverse popula-

tion of training data can improve the performance of the model and that the hybrid model

performs better than either of the unimproved original models.

Software reliability models using co-variate information are explored in [71]. Neural

network regression is used to estimate the failure rates of software from inter failure times

and number of failures. A Bayesian method is used to predict the software reliability based

around the available software metrics. The freely available software packages Winbugs and

R are used to facilitate the testing of these models. The testing is done on two data sets from

software development of a real time command and control system. The metrics are gathered

over a period of weeks and consist of failure numbers during seventeen weeks with the system,

weekly execution time, failure identification man hours, and failure identification computer

time. The unified approach to predicting software reliability was proven to be possible with

Bayesian inference for a neural network regression model. The advantage to this work was

how simple and fast the procedure for testing the reliability of the system was. Potential

problems lied in the functionality of the utilized tools, suggesting that it is possible that

some cases require a less generic implementation of the neural network model.

32

Pati and Shukla proposed a hybrid technique for predicting software reliability in [72].

The existing state of software reliability growth models relies heavily on unrealistic assump-

tions about software usage and are dependent on the environment where the software is run.

The accuracy of these models is often questionable when applied to real case studies, despite

promising results from theoretical test cases. Pati and Shukla utilize a time series approach

to predicting software reliability. An ensemble method referred to as hybrid ARIMA is uti-

lized to predict software reliability based on real world data about software failures. The

prediction performance of ARIMA and hybrid ARIMA models is compared. ARIMA mod-

els utilize artificial neural networks in a feed-forward configuration along with a supervised

training approach to facilitate the training of the model. The hybrid model works by using

the ARIMA model to analyze linear patterns in the model and then a nonlinear model is

used to analyze the residual patterns in the data. Testing showed an increase in accuracy in

the hybrid model over the traditional ARIMA model.

Kapur and Pham propose two general frameworks for deriving software reliability growth

models based on a non-homogeneous Poisson process in [73]. The research is done with

respect to the existence of imperfect debugging and error generation. A software reliability

growth model looks at measuring the reliability of a software system based on the observation

of failures and the fault removal processes. It is possible that a development team may not

be able to completely remove a fault when they observe a failure and some aspect of the

original fault may remain. This aspect of dealing with residual faults is called imperfect

debugging. When the original fault is replaced by another fault when attempting to fix the

original fault, it is called error generation. The proposed framework is developed for the case

where the observation and removal of failures is a single testing process and the case where

they are different processes. The complexity of a fault is found to be higher the greater the

delay between identifying the failure and removing the fault that causes the failure.

Reliability analysis of a software system using path-based software reliability prediction

for complex component-based software systems is discussed in [74]. With the increasing

33

size of software applications, the traditional methods for evaluation software reliability are

insufficient when dealing with inter-component interactions in a modular system. The pro-

posed adaptive framework incorporates path testing into reliability estimation to reduce the

number of test cases when evaluation modular software systems. The primary metrics for

evaluating the software are sequences, branches, and loop structures. Using these metrics,

the path reliabilities are calculated and used to derive the reliability of the system. The re-

sults of the framework testing indicate a high correlation between actual software reliability

and the simulated path reliability. Two real case studies are reviewed using the adaptive

framework to show a promising method for estimating the reliability of a modular software

system.

A survey of computational intelligence approaches for predicting the reliability of a

software system are reviewed in [75]. Two kinds of investigations are done on computational

intelligence. The paper provides a systematic review of software reliability prediction studies

which consider a wide array of metrics, methods, and techniques. Some of these include:

fuzzy logic, genetic algorithms, and neural networks. The second aspect of the investigation

involves prediction and data collection using available tools. Three classifications of software

reliability models is given. These models include: software reliability growth models, models

in stable reliability and constant failure, input domain based models, early prediction models,

architecture based models, and hybrid black and white box models. The Metrics for Object-

Oriented Design suite is evaluation for its effectiveness at predicting faults and reliability in

software. Overall, it was found that computational intelligence approach are more accurate

than traditional statistical techniques for predicting reliability.

Zhao, Gu, and Ma present a novel software assessment approach that utilizes neural

networks in a network environment [76]. The Fedora Core Linux operating system is the

focus of the case study presented for the assessment. Of interest is the application of a neural

network in order to evaluation the effect of each component in the software on the reliability

of an entire system. Also, the consideration of the system being under an open source

34

development paradigm. It is important to consider many aspects of the software system

being evaluated when predicting the reliability. The metrics of interest are programming

path, size of each component, skill of the fault reported and other factors. The assessment

approach utilizes non-homogeneous Poisson process models and neural networks to improve

conventional methods that use software reliability growth models. This is done by calculating

weight parameters for each component in the system and then estimating the reliability for

the entire system. In order to achieve these weights, it is necessary to consider the effect of

a debugging process for an entire system, in addition to the inter-component metrics. It is

proposed that the data presented here is indicative of the neural network based approach is

effective for open source software users to assess the reliability of the software by using the

data sets from a bug tracking system. An emphasis on controlling the development process

in terms of reliability, effort, and version-upgrade time, limits the approach by requiring

additional work from the developers and knowledge of the software in the development

phase.

35

Chapter 3

Framework Architecture

3.1 Overview

The goal is to create a framework that completes reliability verification and risk assess-

ment on open-source software as efficiently as possible. Compared to the process from [1]

there have been some changes to the overall process for locating high priority locations for

placing error handling. The overall process remains the same, but there are additional steps

involving the use of machine learning algorithms to predict priority functions and variables at

two major steps in the process. In addition to the inclusion of machine learning elements, the

static and dynamic analysis elements have been expanded to include a mixture of currently

accepted metrics and some metric specific to this dissertation. Lastly, the fault injection

framework code was updated and expanded upon, refining the injection method and includ-

ing a larger number of available injection types. The research goals of this dissertation were

to expand the static and dynamic analysis portions of the process to increase the number

of metrics that could be used to predict the priority of functions and variables. Machine

learning is integrated into the process with the goal of making the process for ultimately

identifying key locations for error handling more efficient. The fault injection framework is

used to validate the predictions and increase the training data sets for teaching the model.

Ideally, the process would not initially utilize fault injection, but would instead have enough

data to predict the importance of the variables without needing the failure rate, spatial

impact and temporal impact. The overall process is shown in Figure 3.1.

The first step of the research is to identify key pieces of open source software that can

be easily obtained, compiled, and tested. At this stage of the research, the process does not

consider the functionality of the target software or its general structure. The main priority

36

Predictions

1. Function

Analysis
Start

End

3. Fault Injection 2. Variable Analysis

4. Priority Prediction

Figure 3.1: Overview of Process

is to validate that it is possible to effectively utilize machine learning algorithms in the

context of making reliability verification testing more efficient. Once the target software is

obtained, the function metrics are gathered and are sent to the binary classification model

which predicts whether the functions in each model are important, i.e. that they are part of

the critical path. Once the predictions have been made, the priorities of the functions are

calculated and the critical path is determined. The idea behind the critical path is discussed

in more detail in [1], but it is essentially the key data flow of information throughout the

system across modules and the functions within those modules. This is done by determining

the highest priority function and passing that information along to the second stage of the

process. This stage will determine the critical path using static analysis to map out the flow

of data in the program to locate all the functions that have an effect on the variables in the

priority function. Further analysis is done to complete the dataset for variable metrics in

this stage. The metrics are sent to the regression model in order to predict the importance of

each variable relative to the usage of the target software. Lastly, fault injection is completed

on the target software to obtain the relative importance and the results of this testing are

used to create a validation dataset. This dataset is tested against the previous predictions

in order to validate the effectiveness of the prediction models. The following sections further

detail the effort that goes into each stage of the process.

37

Static Analysis

Dynamic

Analysis

Determine

Function Priority

Priority

Function

Function

Dataset

2

4

Start

Build Function

Dataset

Figure 3.2: Function Analysis

3.2 Function Analysis

The first major step in the dissertation is to evaluate the functions of the target software

in order to predict the priority of each function. This is done by a combination of static and

dynamic analysis in order to obtain as much key information about the software as possible.

First dynamic analysis is done by utilizing code coverage obtained through the same relative

use cases that will be used during fault injection. This is done in order to locate where

the software spends most of its time, or none of its time, during the intended use cases

of the software. This is done by utilizing the gcov tool [77] for software compiled through

gcc. The gcov tool is available as part of the GNU compiler collection suite. This is a well

documented and testing tool that is effective for testing variants of the C language, but does

further limit the current implementation to testing against C source code. The output of the

tool is a .gcov file that is a copy of the source code with a number next to each logical line

of code that shows how often the line of code was executed since the .gcno file was created

at compile time. A few examples of this output are included in Appendix B. The output of

the gcov tool is used to obtain the frequency that the functions in the software are executed.

This frequency measurement is combined with the logical lines of code metric found in the

static analysis to calculate the probability that a randomly generated transient data fault

will occur during the execution of a line of code within each function. This is illustrated in

equation 3.1, where ELoC f is effective lines of code. The lines of code for a function, LoC,

38

was determined through code analysis and the function call frequency, F cf, was determined

through code coverage.

ELoCf = LoC ∗ Fcf (3.1)

After calculating the effective lines of code for each potentially high-priority function,

the probability that corrupted code is executed in that function at any given point during

run-time is found by equation 3.2. ELoC f is the effective lines of code for the function in

question and TELoc is the total effective lines of code across all functions.

PEf = ELoCf/TELoC (3.2)

Instead of assuming an equal chance across all functions and variables for a transient

data fault to occur, a probability of corruption is determined in order to relate the data

in terms of how likely a randomly placed bit fault is to occur in memory belonging to a

particular function or variable. At this stage of the research, the static size of the code

artifact is used in order to create this relation. The static size of the functions is determined

by the difference between the start of the function object location in memory and the start

of the next file object in memory after that. The nm [78] and objdump [79] tools are used

in order to obtain the file object information about the size of each of the functions. This

size value is used to calculate the probability that a randomly generated transient data

fault would occur in a bit located in memory belonging to the code for that function. This

probability of corruption for each function, PCf, is calculated as shown in equation 3.3, where

Memf is the memory usage for that function converted into decimal and TMemf is the total

memory used across all functions in question.

PCf = Memf/TMemf (3.3)

39

The values of the probability of corruption and execution together indicate the proba-

bility of a transient data fault occurring in a random location during a random point during

code execution and the resulting corrupted data being accessed at some point during the

remainder of execution. The two key events: a transient data fault occurring in a bit in

memory and that memory being accessed during execution, are independent and so the

probability of both occurring and potentially causing the program to enter an undesirable

program state is calculated by multiplying the values as seen in equation 3.4.

Priority = PEf ∗ PCf ∗ p (3.4)

This probability value is then used along with the propagation value, p, for each function

in order to measure the priority of each of the functions. The propagation value, as described

in [1], is determined by utilizing Doxygen to create data-flow diagrams of each function in

each module in order to determine the potential for the impact of a data fault to spread to

other functions. Doxygen [80] is run against the complete source code of each piece of target

software and utilizing the dot library of graphviz [81] in order to create the graphs of the

data-flow across the program. The priority metric for each function is calculated as shown

in equation 3.5.

The other key factor during this stage is the static analysis that is done to the functions

in the target software. In order to measure the capability of currently accepted code metrics

to predict the priority of functions and variables in the target software the Halstead [82] and

McCabe [83] metrics are used. These metrics are used as the features in the binary classifi-

cation model in order to predict whether or not each function is important. After evaluating

each function for its relative priority within the target software, the highest priority function

is passed along to the next stage of the process in order to complete the variable analysis

on the target software. It is important to note that at this point, the dataset of function

metrics has been sent along to the fourth stage of the process in order to get the predictions.

For this dissertation, the process moves along utilizing the techniques discussed in the next

40

Dynamic

Analysis

Calculate

Probabilities

Static Analysis

4

3

1

Variable

Dataset

Build Variable

Dataset

Figure 3.3: Variable Analysis

stage and fault injection in order to obtain the importance of the variables, and the data

gathered and sent to the machine learning models is used to validate that the models can

be used in order to make the process more efficient. This will be seen in the validation test

shown in the next chapter.

3.3 Variable Analysis

Once the highest priority function is determined the analysis of the variables in the

target software can begin. The first step in this stage of the process is to utilize dynamic

program slicing on each of the variables in the high priority function in order to determine

what variables potentially have an effect on the value of the variable in question. This means

all variables that are involved in writes to the variable, any variables in branch statements

that can alter the value stored in the variable, and any variables that effect variables that

effect the variable in question and so on. This process is recursively completed until no more

variables are left to add to the dataset. At this point, static analysis is completed on each

of the variables in the dataset in order to obtain as much information as possible that can

be used when predicting the importance of these variables. These metrics in the frequency

that the variable value is accessed during program execution, using the code coverage output

from gcov, the number of variables that the variable is affected by and affects, the number

of reads and writes for each variable and the number of other functions that the variable

41

connects to in the flow of data. These static metrics are combined with the code metrics for

the function that the variable is located in.

Dynamic analysis is done in order to obtain the size of each of the variables. This

is important because we are simulating the random occurrence of a bit fault in memory.

Knowing how much memory is needed in order to store the value of the variable tells us how

likely a randomly generated fault is to occur in memory belonging to a particular variable.

There are some established variable sizes for each programming language and operating

system, so it is possible to make an educated guess as to the size of the variables in the

target software, but it is more accurate to directly instrument the code to log the sizes of

the variables within the code. This is necessary because the sizes of variables is dependent

on the implementation of the system that the system is compiled and run on. Also, it is

necessary to consider variable types that are nonstandard and enumerated types that will

be specific to the software being tested. The framework utilizes probes and a variable log

in order to track the value of variables. In the case of this dissertation, all pointer sizes and

values are measured based on what is stored in the located where the pointer is indicating,

and not the pointer variable itself. This means that for a float pointer, the size is measured

as the size of a standard thirty-two bit floating point variable.

After collecting all of the desired metrics through static and dynamic analysis, the

probability of execution and corruption for the specific variables is calculated. In reference

to the variables, the probability of execution, PEv is calculated by taking the frequency the

variable is referenced in the code coverage, Fv, and dividing it by the total frequency of all

the variables in the code coverage, TFv, as indicated by equation 3.5.

PEv = Fv/TFv (3.5)

With the probability that a variable containing a data fault will be executed relative

to the other variable in the system is known. In order to determine the probability that a

data fault will occur in the memory space for a variable at a time when the variable is being

42

accessed, the probability of corruption must be determined. These variables are similar

to those found for each function, instead using frequency and size values relative to the

variable. The probability of corruption for a variable, PCv, is determined by taking the size

of the variable, Memv, and dividing by the total size of all variables in the system, TMemv.

This is shown in equation 3.6

PCv = Memv/TMemv (3.6)

PFv = PEv ∗ PCv (3.7)

As with the probability of the fault occurring for the function in the previous section,

the PFv is determined by taking the probability of two independent events, PEv and PCv and

multiplying them together as in equation 3.7. This value becomes important for calculating

the relative importance of the variables in the system as it provides context to the importance

metric based on the probabilities that a data fault would occur at a time where the artifact

is being accessed. The process for evaluating the relative importance of the variables has

been adjusted from [1] to bring the calculated more in line with actual results found through

fault injection testing in the next section. At this point in the evaluation process a dataset

of the variable metrics is constructed and sent to the regression model in order to predict

that importance values of each of the variables in the critical path. These predictions are

then validated by completed fault injection testing on each variable to measure the failure

rate, spatial impact and temporal impact. When applied to a real-world open source project

that is going through reliability verification, it would not be necessary to complete the fault

injection as the goal is to obtain the relative importance of variables to determine where to

place error handling. The output of the regression model would provide those values and

the user can determine how many to wrap, as discussed in [1].

43

 Fault Injection

Logging

Calculate

Importance

Calculate Relative

Importance

Build Validation

Datasets 4

2

Validation

Dataset

Figure 3.4: Fault Injection

3.4 Fault Injection

The first thing to consider when doing fault injection testing is the fault model that

will be used. Depending on the type of fault that is going to be considered, the type of

injection will change. The type of fault model used has two major parts: a local model and

a global model. The local model states the types of faults that could occur in the system

and the global model constrains the occurrence of the faults from the local model, so that

reliability can be measured. The faults considered were those that could occur at any time

or at any place during the execution of the system. The fault injection framework simulates

the occurrence of transient data faults. An example of one such fault would be a UAV

exposed to extreme temperature changes that cause the data stored in some part of memory

to become corrupted. This does not include permanent hardware faults, like the memory

suffering physical damage and the data being lost altogether. The local model is a transient

data value failure, which means that any variable can be corrupted at any time and could

be corrupted more than once. The global model is the assumption that any variable in the

system could be affected by this data failure. [1]

Some changes have been made to the implementation of the framework in order to

reflect some fundamental changes to the fault model. In the previous work the intended

usage of the framework was to cause system failures and log how many failures occurred

for each variable. This way of testing was done in order to determine which variables had

the greatest likelihood of causing system failure and how big of an impact they had on the

system. This is an important measurement, but for the purposes of this dissertation it was a

44

limiting way of conducting testing. The goal of the research is to allow for the efficient testing

of open source software for reliability verification. With the focus being on creating relative

use cases and a stub program to utilize the target software in as accurate a way as possible.

It is necessary to consider the case where the open source code will not be integrated into

the new system without undergoing some changes. With this in mind, it becomes necessary

to measure the effect the variables have on the flow of the program given these relative use

cases. For this dissertation the focus is not on full system failure, but instead on situations

where the target system enters an invalid program state.

In order to test for this, a golden log file is created that contains the list of steps

through the program during execution that map out the intended flow of execution through

the program. When the target software is run using the fault injection, the execution trace

is logged and compared to the golden run of the target software. Any time the injected fault

cause the program to go off of the expected program flow, that is determined to be a failure.

Fault injection testing done in this way allows the framework to locate faults that cause a

system failure as before, causing the program to crash and creating an invalid output due

to the injection causing errors in the program will still be caught this way. But, now the

failure rate will be indicative of a variable to cause the target software to enter an invalid

program state that may not necessarily cause a system failure in the form of a crash, but

creates a situation where there is a high risk. Testing in this way allows the functions in the

target software to be considered relative to the other functions in the system, but also to get

information about the effect this code would have if taken out of context and put inside of

another module. In addition to allowing a more complete view on the state of the system

during fault injection, this can further highlight the areas that need further error handling

by showing exactly where in the program a variable with a high importance was going off of

the expected execution trace.

45

3.4.1 Framework

Injections

The injection functionality is incorporated into the system first by adding the injectors.h

header file to all file to be tested and by placing the injectors.o object file in the compile

path for the system. Once this is done, it is possible to inject errors directly into variables

at any location in the code. There were two different types of injection functions written

for the framework. The first takes a specific value and inserts it into the variable in order

to test boundary conditions or specific faults, such as NULL or zero. The manual injection

function takes in four inputs. The iid variable is the string that identifies the injection point.

This value is compared to a file containing all the probes and injections that will be used in

the current experiment. If the string is located in the file, then the injection is completed

and the specified injection value, inject val, is returned. If not, then the original integer

value, int var, will be returned. The variable p specifies the probability that the injection

will occur.

The second function, which is the primary function used for this dissertation, injects a

random error in the variable. This is done by flipping a random bit in the variable and then

returning variable with the flipped bit. The prototype and way that the function is called

is very similar to the manual injection function, but instead the injection value is randomly

defined from within the function. The handling of flipping the bits in a single variable is

dependent on the type of variable that is being considered for injection. The general process

is done by casting the incoming variables address to an unsigned long* and dereferencing

it. The bitwise operation is completed on the unsigned long, which should be the longest

variable type available on the system so that it can be used to represent any other variable

including a double. When the single random bit-flip is complete, the variable is then cast

back as the original variable pointer and then dereferenced.

46

There are exceptions to this case, such as when the variable to receive the fault injection

is greater than 32 bits in size or when dealing with pointers. Appendix A lists the source

code for the framework and it can be seen that in order to handle longer variable types it is

possible to keep the general strategy for injections, but utilize unsigned long long variable

types. Also, when dealing with pointers it is necessary to save the value of the located

pointed to by the pointer in an appropriate variable type, complete the random bit flip, and

then reassign the pointer to the new variable. This essentially changes the value of where

the pointer is looking, so it becomes necessary to save the original value off in the case of an

injection, to maintain accurate logs of the variable state.

Instrumentation of a system involves a single call to an initialization function for the

injectors which includes a seed function call for rand and then the injector functions them-

selves wherever the user wishes to place a fault in the system. [1] The code coverage output

for the target system is used in order to locate the ideal location for the injection to be

placed. An areas in the desired function that is accessed during regular execution of the

code is targeted for injection and the result is monitored by the framework logs.

Probes

The probes currently serve the purpose of allowing the tester to see if the variable

injection was completed and what the value of a particular variable is at a given location in

the system. There is only one set of probe functions, where each function handles a different

type of variable probe. Each time a new type of injector is added a matching probe function

is added in order to log the changes in the value of all the possible variables. The probe

functionality also has to check the experiment list to see if that probe is to be used during

the current experiment. This allows all of the injections and probes to be placed into the

instrumented system at one time and then by modifying the experiment list document, the

framework knows which of the injection and probe sites to use for that particular experiment.

The probes also play an important role in determining the spatial and temporal impact of

47

the faults within the system. By ”turning on” all of the probes in the functions when

completing an injection test against a variable, it is possible to monitor what variables have

a value different than the expected value from the golden run and how long that value in

that variable stays incorrect.

Environment Simulator

The environment simulator is the program that is actually run when testing the instru-

mented system. The program takes in the experiment number as a command line input

and then runs the intended use cases of the function a set number of times and collects the

results of these experiments in a file in a results directory with experiment number labels

for each file. This is done in order to streamline the process of testing the instrumented

system, but also to simulate the intended use of the system. Any inputs the instrumented

code may need are controlled by the environment simulator and any outputs are dealt with

accordingly. This way, the testing of the instrumented component can be done in a way that

closely represents how it will fit into the entire system. [1]

The environment simulator is written to replicate the intended usage of the open source

component; consequently, it will differ based on each system. The way that the environment

simulator is written to test one open source component is not necessarily the same way the

simulator will be written when testing a component for another system. The general method

is the same, but the specifics of implementation will be different. It is important to note

that this dissertation attempts to accomplish a proof of concept of a task utilizing C code

and not a means for tested all types of code.

The testing process was driven using bash scripts as opposed to creating a C stub

just for testing the target software. Eventually this functionality will be changed to be

primarily script driven to minimize the effort needed to simulate the environment where the

target software will be executed. It is much more efficient to utilize scripts than to write a

stub function in C for each piece of software. To create a more optimized and automated

48

framework, the simulation of the target software could be driven by a more flexible scripting

language, such as python.

3.4.2 Logging

The framework utilizes logging at various stages of execution in order to more efficiently

conduct the injections and verify the results. The first part of the logging functionality is

utilized through the injector and probe sections in order to monitor the value of particular

variables throughout execution of the code. This is done primarily for testing for the spatial

and temporal impact of the variables given an injected fault. The environment simulator logs

the output of the target software for each iteration of the testing phase for troubleshooting

potential problems in the proper execution of the framework or target software. The last

element of the logging functionality is to track the execution trace of each iteration of the

target software. In order to track the number of failures in the system, each execution of

the target software has the list of steps logged. These logs are diff’d against the golden

execution traces in order to look for executions where the expected flow of execution in the

program was altered. This means of logging the execution steps throughout the code is done

by utilizing bash scripts to automate the gdb [84] debugger for the gcc compiler. A script is

written to add functionality to the gdb debugger in order to automatically step through the

execution of the software to create the expected flow for each potential use case.

3.4.3 Importance

Given a software system with functionality distributed logically over a set of distinct

components, the spatial impact of a variable v, of component C, in a run r, is denoted as

in equation 3.8. The spatial impact is then defined as the number of components that are

corrupted in r when the variable v is corrupted.

σv,C = max{σr
v,C},∀r (3.8)

49

Spatial impact finds the number of modules affected when a variable v in component

C is corrupted. The higher the value, the harder it will be for a system to recover from

the corruption. Given the same software system, temporal impact as defined by [85] is the

impact of a variable v of component C in a run r, denoted as in equation 3.9. This value

indicates that number of time units where at least one component of the software system

remains corrupted in r. [1]

τv,C = max{τ rv,C},∀r (3.9)

After determining the spatial and temporal impact for each relevant variable in the

critical path, it is important to determine the failure rate of each of the variables. The

failure rate is the failure rate determined through fault injection when the faults are injected

into each variable given a specific set of use cases for the target software. The previous

work did not use just the local failure rate because the importance calculated with just

the failure rate of a variable and the local spatial and temporal impacts are limited to just

the modules where they are calculated. Local failure rate is used because the method for

evaluating failures in target software has changed. This dissertation modifies the previous

relative importance metric by adjusting the calculation to put a distinct change between

local and relative importance of variables and not losing the balance between the failure rate

and the impact of the failures.

The general-form equation for calculating the importance of a variable is defined in

equation 3.10, where G, K and L are arbitrary functions that determine the importance,

spatial impact, and temporal impact respectively. The value incorporates the failure rate

and the spatial and temporal impact of a variable. This is done because a variable v in a

component C with a high spatial impact is likely to pass the corruption on to other variables

and a high temporal impact indicates that recovery efforts will be less effective. [1]

Iv,C = G[K(σv,C), L(τv,C)] (3.10)

50

The final equation found for the importance of a variable is as defined in equation 3.11,

where f indicates the failure rate and n and m indicate the focus of the testing. To be more

specific, the greater n is the more the metric focuses on the failure rate of the variables and

the greater m is the metric focuses on the spread and time of existence of corruption. An m

of zero and an n greater than zero would measure solely for failure rate of the variable and

conversely, an n of zero and an m greater than zero would measure only the impact of the

failure. The importance metric is altered to be a combination of the local importance and

relative importance from [1]. This is done because of data gathered during this dissertation

that brought up a problem with the current implementation of importance. The variable

importance found using the failure rate of the variable in that function and the spatial and

temporal impact as seen in equation 3.11.

Iv,C = [1/(1− f)n][(σv,C/σmax + τv,C/τmax)]m (3.11)

A fault that is introduced into a system, but is never executed has no effect on the

outcome of the current run of the program. This means that if the fault is injected randomly

at any point during the execution of the code, the actual likelihood of the fault being effective

for a particular variable is assumed to be PEv. The likelihood of the transient data fault

occurring in the memory relative to a particular variable is assumed to be PCv These values

can be used to define the relative importance as defined in equation 3.12, where σmaxr is

the max spatial impact on the critical path, τmaxr is the maximum temporal impact on the

critical path, f is the failure rate and PFv is the probability that a transient data fault will

occur in the memory location for the variable, v, at a point in the code where it will be

accessed. Relative importance is calculated in this way because it maintains the original

aspect of the importance that is based around how the function holds up against other

variables in the same function, but is made relative to the rest of the variables on the critical

path based around the probability that the random transient data fault will occur at a time

51

and place that effects the variable in question compared to the probability that the same

occurs for any other variable.

RIv,C = PFv ∗ [1/(1− f)n][(σv,C/σmaxr + τv,C/τmaxr)]
m (3.12)

The reason the relative importance is calculated in this way is that the previous method

of using the PFc to only inject given a certain probability drastically reduces the failure rate

of each of the variables. Doing the testing in this way requires a greater number of test cases

to get trusted results and causes problems when utilizing the importance equation. Since

each variable will likely have a very small failure rate, the accuracy of the equation begins to

drop and less emphasis is naturally placed on failure rate when the first half of the equation

comes out to be extremely close to 1 for each variable. Once the relative importance, RIv,C

has been calculated for all variables in a critical path, they are ranked according this value.

This process can be repeated for multiple critical paths, where the relative importance is

calculated across all paths. With the relative importance calculated, the validation dataset

for the target software is completed and can be sent to the priority prediction models to

validate the previous predictions. The validation dataset is the same as the variable dataset

from the previous step, but with the fault injection results added. To validate the predictions

the relative importance calculated using the fault injection framework can be compared to

those made by the prediction model.

3.5 Priority Prediction

3.5.1 Function Priority

In order to predict the priority of the functions in the target software system, the

features of the software that are collected in the first stage of the framework are given to a

binary classification model which determines which of the data points are of high priority.

In this case, the features that are extracted from the software being tested are the static

52

Predict Function

Priority

Predict Variable

Priority

Validate

Predictions

3

1

2 End Predictions

Figure 3.5: Priority Prediction

and dynamic metrics discussed in the function analysis section. These features serve as the

attributes that the machine learning model will use to create a predictive model that uses

those attributes as input and predicts a value of 0 or 1, where 0 means the function is not

important and the variables within will not be considered for analysis and a 1 means that

the function is important and lies on the critical data flow path through the system. At this

stage of the research, the primary concern is to see how the currently used features could be

used to identify trends between the priority of functions for risk analysis.

For the binary classification WEKA [86] [87], a collection of machine learning algorithms

for data mining, it utilized to obtain the prediction data. The software was developed at

the University of Waikato in New Zealand. The datasets created through the static and

dynamic analysis are converted from an excel CSV file to the ARFF file format utilized by

the WEKA program for analysis. Utilizing WEKA the datasets are tested using a series of

machine learning algorithms and pre-processing techniques in order to obtain the highest

possible predictions without overfitting the data. The GUI front end of WEKA was utilized,

but in future work it would be possible to use the java and python extensions to allow for

the process of collecting the data and making the classification predictions automated. A

series of different classification algorithms are investigated in the experiments in the following

chapter.

53

3.5.2 Variable Priority

The variable priorities are predicted by utilizing machine learning algorithms and the

metrics gathered through static and dynamic analysis. In order to create the dataset need

to determine the predictions of the variable priorities, the static and dynamic analysis data

from the second stage of the research are collected and given to the regression algorithms

utilized in WEKA to generate numeric predictions for the relative importance of each of the

variables. The static and dynamic analysis metrics are used as the features for the regression

models and the relative importance serves as the class that the algorithms are attempting

to predict the values for. In the case of the regression modeling, the output of the metrics

through WEKA are not utilized, but only the predictions are considered. Further analysis

must be done beyond the data provided by WEKA in order to fully utilize the predictions

made for each of the variables.

Once the predictions have been made they must be ranked from highest to lowest and

then compared to the actual rankings of each of the values taken from the fault injection

component output. The data is placed into an excel spreadsheet where the actual relative

importance values and the predicted relative importance are ranked. With the resulting

rankings, the percent error in each ranking is determined and the mean error across all

rankings is determined. In addition to these overall prediction metrics, the individual data

points are broken down into ten percent increments to identify the highest priority variables

according to the ranges that the user is interested in. This allows for some flexibility based

on what how much error handling code the user wants to add to the software in order to

increase the reliability of the code. This will be dependent on the type of system the target

software will be integrated into. For example, a long running piece of software that monitors

risks over a period of time may be willing to have some slow down by adding error handling to

the top twenty or thirty percent of relative variables, where are program like a flight control

system for a UAV may be limited to only the top fifteen percent of variables to prevent too

54

much slowdown in the system execution. The regression algorithms utilized and the process

for collecting the ranks is discussed in more detail in the experiment chapter.

55

Chapter 4

Experimental Design and Results

This chapter looks at three key experiments completed utilizing the dissertation research

in order to establish the baseline operation for the designed framework and then to validate

the use of the framework on new piece of software. The first experiment looks at utilizing

the function metric data with binary classification algorithms to locate any trends in the

metrics with determining the high priority functions through finding the critical data flow

path through the software. The baseline model for predicting the high priority functions is

created and tested using a technique called ten fold cross-validation. The second experiment

repeats this process of looking for trends between the static and dynamic metric data and

the calculation of the relative importance of each variable in the critical path. A baseline

model utilizing the data is created and tested again using ten fold cross-validation. These two

baseline models serve as the starting point for the third experiment which is the validation

testing for the dissertation research. The two trained models are used on the datasets

collected on software that has not been seen before by the framework and predicts the

highest priority functions and variables in the system. The fault injection data collected by

the framework is utilized in order to validate the results of these experiments. Lastly, the

test data is added to the training data from experiments one and two to create one large

dataset, and ten fold cross-validation is done again to observe the effects of increasing the

size of the training data on the prediction rate.

56

4.1 Priority Function Prediction

4.1.1 Case Study

The case study described in this section is based on an open-source software project

called Mp3gain. It is software that allows the user to perform numerous alterations of

.mp3 sound files, such as normalizing gain and adjusting other audio settings. The data

was gathered from a series of tests meant to obtain metric data from realistic use cases of

the software. The data was gathered under the assumption that another software system

was going to integrate parts of the functionality of Mp3gain and needed to pass reliability

verification testing on the code before integrating it into the system. The data is context-

sensitive to the testing methods described in previous work, [1]. The goal of this study was to

complete some exploratory research and to obtain some initial results as to the effectiveness

of utilizing machine learning techniques to make the process for identifying which methods

and functions in the code have the highest likelihood of containing variables with a high

failure rate when introduced to faults in the data.

Of particular interest was identifying trends that would indicate important functions

in open-source software and post-release software in general. The hypothesis is that when

approaching open-source software in order to use it in a pre-existing system, the trends in

the metrics will be different than code that has been put through rigorous design constraints

from the beginning of development. This will be evident in the results in the form of

outlying data points an order of magnitude higher than the average and for relatively erratic

design metric results from function to function. These effects are likely do to the open style

of development that generally accompanies an open-source project. The classifications for

each of the instances was determined by completing fault-injection testing given the set of

intended use-cases and calculating the average failure rate across variables in a function and

identifying levels of importance for each function from these values.

57

4.1.2 Test Setup

A series of tests were completed in the explorer to get initial reactions from a variety of

classification algorithms and pre-processing algorithms. Then, the WEKA experimenter was

used in order to complete more rigorous tests of the metric data sets once the classification

and pre-processing algorithms were chosen. In all test cases, ten-fold cross validation was

used in order to get more accurate data from the results due to the size of the sample

set, taken from a single project. For the experimenter data, ten iterations of each ten-fold

cross validation test was completed. The following sections will discuss the different metrics

collected from the software, pre-processing algorithms used, classification models, and cost-

sensitive analysis.

4.1.3 Attribute Selection

In order to identify which attributes have the greatest impact on the prediction model,

a selection algorithm is used to rank the attributes according to the amount of information

obtained from having each metric in the data set. In this case, attribute selection is measured

by merit and then ranked. Across a set of cross validation tests, the data set is analyzed

to see which of the metrics provides the greatest amount of information, meaning the result

of the evaluation criteria across all of the folds of the cross validation. The merit for this

nominal classification, important or not, is representative of the error rate contributed by

the inclusion of the attribute.

Metrics Used

n1,n2,N1,N2 These metrics form the basis of the Halstead metrics, [82], and represent

measures of the operators and operands in the software. The number of unique operators

is n1 and the total number of operands is N1. Likewise, the number of unique operands is

n1 and the total number of operands is N2. These values are useful for calculating other

metrics and for providing raw data about the size of the code, beyond just lines of code.

58

Derived Halstead These metrics are calculated from the previously determined metrics.

The program Vocabulary is measured as the number of unique operators plus the number of

unique operands. Program Length is measured as the total number of operators plus the total

number of operands. Program Volume is the amount of information contained in the program

measured in bits, measured as the program Length multiplied by the 2-base logarithm of

the Vocabulary. The program Difficulty represents the likelihood of errors occurring in the

software, determined by the unique operators divided by two and then multiplied by the total

number of operands divided by the unique operands. The Effort is calculated by multiplying

the Volume by the Difficulty and represents how hard it is to understand a program. Lastly,

the Intelligent Content of the program is calculated by multiplying the program Volume by

the Difficulty and is a measure of the complexity of the code.

Code Line Metrics The modified lines of code contains the number of lines in the software

no matter what they contain and the actual logical lines of code in the software is measured

as a separate attribute which disregards white space and comments. The preliminary lines

of code includes these values and is removed in pre-processing for zero value added. The

percentage of code that are comments and branches are also included in the data set. The

percent comments was included as a measure of the developers effort to keep maintainable

code, but the percent branches in the code is a measurement of the complexity of the code.

A high number of branches can quickly lead to a high complexity and code depth.

Complexity and Nesting Depth The complexity of each function is calculated using

McCabe’s cyclomatic complexity, [83]. It is influenced by the number of if statements,

loops, switch cases and returns in the software. The cyclomatic complexity is measured

by evaluating the control flow of the program using a series of nodes and directed edges

to connect the nodes. The nodes represent indivisible groups of commands in a program.

This is done in order to measure the number of potential paths through the code in order

to determine how difficult it will be to fully test and maintain the code. The nesting depth

59

is a measure of how many of these change of flow points are located in the software. For

example, a for loop would increase the nesting depth by one for its duration. If there is an if

statement within that for loop, the nesting depth goes up by one again for its duration, and

so on. The average nesting depth is calculated for each function to determine how complex

the control flow is in the program in a line by line fashion.

Relative Use-Case Metrics The metrics discussed in this section come from the testing

methods use in the previous work, [1]. The Frequency metric measures the number of times

that a function was called during the chosen use-cases for each of the testing suites. The

propagation measures the call depth of the function in relation to the other functions in the

program, not unlike program coupling. The effective lines of code, ELoC, is calculated by

multiplying the frequency that a function gets called by the lines of code contained in the

function. This metric represents how many lines of code total a function represents during

execution of the program. This is important when determining the next metric, probability

of execution. The probability of execution, PEf, is the measure of how likely it is that a line

of code that contains a variable with a data fault will be executed, measured by dividing

the effective lines of code for a function by the sum of the effective lines of code across each

function. The reasoning behind this is that even if a data fault occurs somewhere in memory

that effects a line of codes, if the locations in memory belonging to that line of code and

variables within are not accessed after the data fault occurs, then the fault is unlikely to

become a full-blown failure.

Merit and Rank of Attributes

This section will provide the details of the attribute selection process and will discuss

the implications of the results. Table 4.1 shows the average merit and average rank of key

metrics. Each of the values is augmented by its standard deviation to provide some context

for the results across all folds of the cross validation. This method is useful for identifying

60

which attributes are actually useful in predicting the importance of a function and which

attributes do not contribute meaningful data. Any of the metrics that fell below the defined

threshold are omitted from the table. At this stage it becomes clear that many of the

metrics are redundant or not immediately useful for our intended testing methods and can

likely be eliminated. The table indicates that the relative metrics for evaluating functions

for importance have the greatest information gain, along with a couple Halstead metrics. It

is likely that the percent comments metric was evaluated highly by coincidence based on the

erratic nature of the developers tendency to leave comments on different sections of code,

which is not uncommon in open-source developed by an individual or small group.

The information gain attribute evaluation evaluates the worth of an attribute by mea-

suring the information gain with respect to the class using the formula that follows, where H

is the information entropy. The information entropy is the concept of how much information

about the class we obtain by observing the data in the attribute. Each event, or data point,

is analyzed and the amount of information located in the attribute is evaluated and given a

value for merit. This algorithm does not take into account the interaction of attributes. The

ranker algorithm is used in conjunction with these algorithms in order to place the attributes

in order according to their evaluated values for entropy, merit, etc.

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute) (4.1)

Table 4.1: Attribute Information Gain Evaluation

Average Merit Average Rank Metric
0.316 +- 0.048 1 +- 0 PoE
0.316 +- 0.048 2 +- 0 ELoC
0.208 +- 0.106 5.6 +- 5.22 Frequency
0.065 +- 0.1 6.5 +- 5.22 Difficulty
0.078 +- 0.096 11.3 +- 5.57 Propagation
0.053 +- 0.081 14.4 +- 6.53 Percent Comments
0.021 +- 0.063 20.4 +- 4.8 n1

61

4.1.4 Discretization

Discretization is used on the data set in order to bring the selected metrics into more

manageable ranges. There are a number of outlying data points that have certain attribute

values that are much higher or lower than the average that skew the data. These outliers

cannot just be removed because they are important data points in illustrating the unreliable

nature of the development style common in open-source software. The discretization method

utilized in WEKA, [88] [89], defines a threshold for the attributes in the data set and essen-

tially places all of the instances of the attributes onto one side or the other. This is helpful

in identifying key turning points in the data that shows a general trend in certain attributes

that are common among important functions. For example, a complexity of fifteen may be

a threshold where the majority of points below fifteen are predicted as not important and

the majority of points above fifteen are predicted as important. A supervised discretiza-

tion method is used when training the model to adjust the numeric ranges of the selected

attributes to define clear points in the data that influence the prediction. The classifier is

taken into consideration when determining the ranges to be used in supervised discretion,

which creates a binary distribution of instances around a single threshold.

This discretization is done for each fold of the cross validation, instead of doing pre-

processing on the entire data set. In order to prevent potential over-fitting of the data and

getting inaccurate results, each iteration of the cross validation folds is discretized as a stand

alone process. This was done using the built-in Filtered Classifier in WEKA which applies

a given filter to the data before running each fold through the classification algorithm that

has been chosen. This method provided more realistic results than when pre-processing

the entire data set since the data set was fifty test cases, it was important to take full

advantage of the cross validation process to achieve an accurate result. The discretization

pre-processing takes much of the decision making away from the classification algorithm

and puts it into the ranges that are determined for each attribute. If the same subset of

discretized attributes are used for each classification, they are all likely to build around the

62

same thresholds for the attribute with the highest merit. For example, the J48 decision tree

classification method will have a single node that splits around just one attribute, in this

case probability of execution.

4.1.5 Classification

A wide variety of classification algorithms are used in the initial testing process, and as

indicated by other research papers discussed above, the metrics used and the pre-processing

done on the data set had a much greater impact on the outcome of the prediction process

than the chosen classification algorithm. The results of each of the classification algorithms,

without cost-sensitive analysis is shown in Table 4.2. The more important aspect of Table

2 is that the only thing that changes is the mean absolute error, MAE, and root mean

squared error, RMSE, and the predictions. The overall confusion matrix remains the same,

because the supervised discretization adjusts the ranges on only the attributes known to be

important and leaves the other attributes as a single range. This reinforces the point made

earlier about the classification algorithm itself being less important than the actual metrics

used and the pre-processing done on the data-set. It is also possible that a larger data set

or a different data set may have different outcomes, but for initial exploratory data, the

implications are of great interest. Table 3 repeats the same set of tests, but instead leaves

out the pre-processing, giving a wider range of results.

Table 4.2 and 4.3 display the resulting evaluation analytics for the data set when run

through the given classification algorithms, where MP is the Multilayer Perception, NB is

Naive Bayes, and IBk is the K-Nearest Neighbor algorithm. The kappa statistic is a measure

of the agreement between the two classifications categories. Mean absolute error is used to

measure how close the predicted values are to the eventual outcomes, calculated by taking

the average of the absolute errors. The root mean squared error is a measure of the root of

the averages of the squares of the errors in the classifier, meaning the root of the difference

between the predicted class and the actual class. The true positive rate, TP, are the instances

63

Table 4.2: Classification Comparison With Discretization

Evaluation J48 MP NB IBk
Percent Correct 75 75 75 75
Percent Incorrect 25 25 25 25
Kappa Statistic 0.4182 0.4182 0.4182 0.4182
MAE 0.3237 0.3302 0.2824 0.3304
RMSE 0.4477 0.4599 0.4948 0.4577
TP Rate 0.6 0.6 0.6 0.6
FP Rate 0.182 0.182 0.182 0.182
TN Rate 0.818 0.818 0.818 0.818
FN Rate 0.4 0.4 0.4 0.4
Precision 0.75 0.75 0.75 0.75
Recall 0.75 0.75 0.75 0.75
F-Measure 0.75 0.75 0.75 0.75
ROC Area 0.677 0.668 0.623 0.674

that are correctly predicted as important. The false positive rate, FP, are the instances that

are incorrectly predicted as important. The true negative rate, TN, are the instances that are

correctly predicted as not important. The false negative rate, FN, are the instances that are

incorrectly predicted as not important. Precision in Table 4.2 and Table 4.3 is the weighted

average of the precision of the yes and no classifications. Precision for a classification is

calculated as the true positives divided by the true positives plus the false positives. Recall

for a classification is calculated as the true positives divided by the true positives plus the

false negatives. The F-measure is the harmonic mean of precision and recall, meaning that it

is calculated as twice the precision multiplied by recall and divided by the precision plus the

recall. The ROC area is the area under the curve of the receiving operating characteristic

curve. The curve is created by plotting the true positive rate against the false positive rate

of a classification. The following sections will discuss the classification algorithms that were

used and why they were considered for this problem.

64

Table 4.3: Classification Comparison No Discretization

Evaluation J48 MP NB IBk
Percent Correct 79.1667 79.1667 79.1667 75
Percent Incorrect 20.8333 20.8333 20.8333 25
Kappa Statistic 0.4771 0.4771 0.4558 0.4182
MAE 0.2573 0.242 0.2082 0.2615
RMSE 0.4187 0.4116 0.4561 0.4902
TP Rate 0.533 0.533 0.467 0.6
FP Rate 0.091 0.091 0.061 0.182
TN Rate 0.909 0.909 0.939 0.818
FN Rate 0.467 0.467 0.533 0.4
Precision 0.785 0.785 0.785 0.75
Recall 0.792 0.792 0.792 0.75
F-Measure 0.782 0.782 0.583 0.75
ROC Area 0.754 0.802 0.774 0.667

J48

J48 is a classification algorithm that creates a C4.5 decision tree, [90]. The C4.5 decision

tree works by first checking for any existing base cases. These base cases include: all instances

belonging to the same class, no attributes have information gain, and an instance of a class

that the algorithm has not seen yet. If none of these base cases are occurring, the normalized

information gain for each attribute is calculated if the tree were to split on that attribute.

The attribute that gives the highest normalized information gain is picked for the next leaf in

the decision tree. This leaf servers as the next decision node in the tree and a binary split on

the node occurs. The subset of attributes that is created by splitting on the best attribute is

recursively traversed repeated the previous processes until a base case is reached. Once the

algorithm is finished, a tree is created starting with the nodes with the highest normalized

information gain near the top and those with the lowest at the bottom. WEKA allows for

the user to set the minimum number of nodes in the tree and to determine whether or not

the tree should be pruned to reduce the total number of nodes. This algorithm was chosen

because it utilizes the normalized information gain and does not require as much setup as

65

some other classifiers. Since this is exploratory research, it is best to pick simpler algorithms

at the start to get an understanding of the data and then move on to more complex testing

methods later.

Multilayer Perceptron

The multilayer perceptron is a specific type of artificial neural network called a feed-

forward network. This means that the flow of data only goes from the input layer to the

output layer and does not contain any recurrence in the data flow. Since there are no loops

in the network, it is easier to setup and to manipulate to see the effect on the predictions.

This keeps with our desire to start with simpler classifiers first to see what kind of algorithm

works best with the metrics in the data set and then to utilize more detailed and com-

plex algorithms later, if necessary. The multilayer perceptron utilizes a technique known as

back-propagation to train the nodes in the network when used with an optimization method

for the data. Essentially, each of the nodes in the network has a weight that it applies to

whatever value gets sent to it. There is an input layer, some number of hidden layers and

an output layer. In this experiment, back-propagation and gradient descent are used to

calculate the ideal weights for each node. This means having the input data run through the

network over and over with each iteration changing the weights in the nodes until each node

reaches an optimum value that yields the best possible prediction rate. Each of the nodes

utilizes a sigmoid function with the input value and the weight to calculate the output to

send to the next node. A sigmoid function is one that is always between negative one and

positive one. The results of this classifier consistently created an identical confusion matrix

to the J48 classifier, as is evident in the results from Table 3.

Naive Bayes

The Naive Bayes classification algorithm, [91], utilizes estimator classes based on preci-

sion values that are calculated based on the training data. For each classification, analytics

66

are found for each of the attributes: mean, standard deviation, weighted sum, and precision.

The key aspect to using Naive Bayes is the assumption that the attributes are unrelated to

each other and that the presence of one attribute does not impact any other attributes in the

data set. Naive Bayes was chosen because it generally needs fewer data points in order to

accurately estimate the data analytics of each of the attributes. The assumption that all the

attributes are independent means that it is not necessary to calculate covariances between

the attributes, and only the variance within each attribute is calculated. It is important to

note that if the attributes are not truly independent, the results of using Naive Bayes are

unlikely to be a a good choice for a classification algorithm. This classification algorithm

is straight-forward, but still useful for dealing with complex systems. The classifier works

best when used in supervised learning instances in order to predict classes where the class

information of the training data is included. Even though recent research has shown the

algorithm to be outperformed by newer prediction approaches, we chose this classifier due to

its simplicity of design. For the purpose of this study, this is the worst performing classifier

in the first experiment.

K-Nearest Neighbor

The last classifier tested is a version of the K-nearest neighbor classifier, IBk [92], that

expands on the nearest neighbor algorithm to reduce the high storage requirements. The

training data is placed on a multidimensional space and a user defined constant, k, is used

along with a test point in the space. This test point is given the most common classification

between the k nearest points to itself. A distance metric is used to determine which data

points are closest to the test point for the surveying process. A major drawback of this

classification algorithm is that when one classification is significantly more common than

another, it is more likely that the test data will be skewed towards the more popular classi-

fication. Weights can be applied to the nearest nodes to the test point to give less popular

nodes an advantage on the distance calculated for determining which k nodes to included

67

Table 4.4: Cost-Sensitive Analysis (5x/10x)

Evaluation J48 MP NB IBk
Percent Correct 68.75 70.8333/68.75 79.1667 75
Percent Incorrect 31.25 29.1667/31.25 20.8333 25
Kappa Statistic 0.3333/0.375 0.4074/0.3939 0.4558 0.4182
TP Rate 0.667/0.8 0.8/0.867 0.467 0.6
FP Rate 0.303/0.364 0.333/0.394 0.061 0.182
TN Rate 0.697/0.636 0.667/0.606 0.939 0.818
FN Rate 0.333/0.2 0.2/0.133 0.533 0.4

in the survey. These weights work similarly to those in the neural network, where the input

value would be the distance and the weight is multiplied by this distance. An important

consideration when using the k-nearest neighbor algorithm is the value of k itself. A higher k

means more nodes are consulted about the value to assign to each data point, so there is less

influence from more popular training points and a more accurate assignment can be made.

The drawback is that it becomes harder to create clear groupings for the classifications in the

space. This algorithm was chosen for a similar reason to the others, it is easier to understand

and allows for easy customizations in order to get some initial data about the trends in the

data set. Another advantage to using this algorithm is that it is conducive to working as a

weighted classifier, which will become important when doing cost-sensitive analysis.

4.1.6 Cost-Sensitive Analysis

A major consideration to be made when doing any type of study on evaluating data is

the context of where the data comes from, and what the results mean. In this study, the

purpose is to learn the trends particular to open-source software metrics and the impact of

classic metrics on determining important functions as opposed to the relative metrics defined

in the previous work, [1]. Remember that the main purpose for this research is to make the

process for identifying key functions in a software system more efficient, not necessarily to get

the best overall prediction rating possible. Ideally a predictive model would locate all of the

68

important modules, while eliminating all of the unimportant modules. This is unrealistic,

but it is possible to weight the classifiers in such as way that gives a higher cost to false

negatives over false positives that would allow for more ”‘yes”’ classifiers to be correctly

predicted at the cost of more incorrect ”‘no”’ predictions. This is an acceptable trade-off

because the cost for having incorrect ”‘no”’ predictions is additional testing, but having a

small percentage of unnecessary tests is a reasonable price to pay for more reducing the

number of false negatives. Table 4.4 shows a repeat of the tests from Table 4.3, except that

a cost matrix is included is constructed so that it is worse to get false negatives than false

positives in our classification. The CostSensitiveClassifier is a meta classifier that can be

used in WEKA with a base class to make them cost-sensitive. The process is done in this

case by reweighing the training instances according to the total cost assigned to each class

represented by a 2 x 2 cost matrix.

The cost-sensitive analysis was repeated twice, once with false negatives being five times

the cost of false positives and again with false negatives being ten times the cost of false

positives. This is represented in the table in the form x/y where applicable, meaning that

x is the five times cost and y is the ten times cost if there was any change in that value

with the increase in cost. Table 4.4 contains the data from both of these experiments where

applicable. It should be noted that even by increasing the cost of false negatives by ten, the

results of the experiment were the same for Naive Bayes and for IBk. On the other hand,

J48 and particularly the Multilayer Perceptron show good increases in true positive rate.

4.1.7 Discussion

The initial results found in these tests would indicate that machine learning is a strong

choice for increasing the efficiency of identifying the key functions in a software system

for completing reliability verification testing. The results suggest that the relative metrics

defined according to the intended use cases have a greater impact on the key locations in

a system for placing error handling. Standard metrics, such as McCabe and Halstead, are

69

less effective in determining these key areas once a relative portion of the code is being

examined. For the purposes of the research, it would seem that focusing on the real-world

impact of faults in a system and the metrics which put that into perspective are of greater

use than just code or design metrics alone. It was shown that discretization yielded a

consistently higher true positive rate while reducing total prediction accuracy in most cases.

Without cost-sensitive analysis it makes sense to utilize supervised discretion to pre-process

the data and allow for a more effective prediction model which is not heavily impacted by

the choice in classification algorithm. But, the overall best results for our purposes came

from the cost-sensitive analysis. Despite having a lower total prediction rate, J48 and the

Multilayer Perceptron classifiers made substantial increases to the true positive rate. As

stated previously, it is far more important to us to have as high a true positive rate as

possible as opposed to a high total percent correct.

4.2 Variable Metric Predictions

4.2.1 Case Study

The case study described in this section is based on the open-source software project

same as the previous experiment. The difference between the last experiment and this one is

that the previous data acquired by testing and analyzing the Mp3gain project was repeated

using the updated framework and the new metrics were used for predicting the variable

priorities. The goal of this study was to re-test Mp3gain and extract the software metrics

as features for a machine learning algorithm to use to predict the relative importance of

variables. Using this relative importance the framework can rank the variables according

to their risk to the system with respect to the reliability of the system when under duress

from data faults occurring in memory. By utilizing a combination of widely accepted metrics

and custom metrics, the machine learning algorithms are used to identify trends and help

to determine which metrics provide the greatest amount of information for predicting the

relative importance of the variables in the system. The predictions made by the machine

70

learning algorithm are verified by using the fault injection data to calculate the revised

relative importance value to use against the predictions to determine the accuracy of the

model.

4.2.2 Test Setup

The test setup repeats the test case from [1] with the improvements made to the fault

injection framework discussed in the previous chapter. The testing was done using a wide

range of available attribute selection and classification algorithms. The algorithms that pro-

duced the most relevant results are included in the experiment. Since the machine learning

component of the framework is the newest aspect of the research and given there is no avail-

able literature pertaining to how machine learning could be used for the specific purposes of

this research, a wide survey was completed in order to narrow down what types of algorithms

would be most useful for the framework. The WEKA program is used and ten-fold cross-

validation is used in order to get more accurate data from the datasets. The sample size is

still relatively small at this stage of the research and ten-fold cross-validation is the best way

to get relevant results about the potential of the predictive model used in the framework.

4.2.3 Attribute Selection

To identify which attributes have the greatest merit when predicting the value of relative

importance for each of the variables in the dataset, two attribute selection algorithms are

used. The full training set is used as an input to the attribute selection algorithms. In this

case, not all of the algorithms worked utilizing ten-fold cross-validation and so the entire

training set is used in order to maintain consistency between the algorithms. First, the

metrics that were used as features in the dataset are discussed in detail.

71

Metrics Used

Function Metrics All of the metric values from the function pertaining to each individual

variable are included in the dataset. At this point it was important to include as many

features as possible in order to identify any possible trends between the software metrics in

order to evaluate which metrics were the best for predicting the relative importance. Refer to

the previous experiment for details about these metrics. The only new metric to add to this

section is the inclusion of the PCf that was added with the improvements to the metrics and

was calculated for each function in the target software and used to recalculate the priority

of each function accordingly.

Static Metrics The new static metrics included in the framework analysis are: local

connection, LC, intermodule connections, IMC, reads, writes, variable type. The local con-

nections are the number of variables that effect or are effected by the variable in question.

This was determined using the source code of the target software and manually investigating

each line of code that the variable occurred in. This value can be determined during the

dynamic code slicing stage of the framework. The intermodule connections refers to the

number of the functions that the variable appears to effect. This includes all function calls

within the function currently being investigated. All variables are given a starting value of

one local and intermodule connection and for each new connection that value is increased by

one. Each branch statement that relies on the variable value increases the local connections

by one. In the case of global variables, the intermodule connections value increases by one.

The reads and writes are the number of times in the function that the value of the variable

is read from and written to. This is done because it is important for helping to predict the

temporal impact and potentially the failure rate. Each write to the memory location for a

variable is one potential overwrite of the faulty data. Each read is potentially a point where

the data fault can affect the system. The variable type has proven to be an interesting metric

to include in the datasets. The different variable types have a widely varying effect on the

72

system when injected with faults. For example, with the implementation of bool variables

the failure rate is particularly low because of the chances of flipping the single bit used to

determine value. The failure rate for string variables tends to be higher than other variable

types, especially with variables dealing with file paths and file names.

Dynamic Metrics The new dynamic metrics include the frequency and size. The fre-

quency of the variable, VarFreq, is calculated by using the results of the gcov tool. Each

occurrence of the variable in the function currently being analyzed and the frequency of the

lines of code that are executed with the variable in them are summed to give the frequency

that the variable occurs throughout the execution of the program. This value serves as

the variable equivalent to the frequency found for each function call using the gcov tool to

determine the probability of execution of each function. The size metric is calculated by

instrumenting the code with a probe that returns the size of the variable in bytes. This is

done because the size of variables is implementation specific and it is important to identify

the size of the variables for the particular system being used. For this reason both the size

and the variable type are included in the dataset. The size is used in order to calculate the

probability of corruption for the specific variable.

Relative Metrics The primary relative metrics included in the dataset are PEv, PCv, PFI,

and relative importance. Just as with the function metrics, the probability of the randomly

generated data fault occurring in memory belonging to the variable and then being accessed

by the program are determined in order to add an element of relevance to the importance

calculation. The probability of these two independent events occurring at the same time is

the PFI metric. This is the value that is multiplied by the importance of the variable to

calculate the relative importance. Refer to the previous chapter for a more detailed look at

how these values are calculated.

73

Merit and Rank of Attributes

Principal Component with Ranker The principal component algorithm performs an

analysis and transformation of the data. It is meant to be used in conjunction with a

Ranker search to order the attributes according to relevance. Dimensionality reduction is

accomplished by choosing enough eigenvectors to account for some percentage of the variance

in the original data, in this case a variance of ninety-five percent is used. Attribute noise

is filtered by transforming to the PC space, eliminating some of the worst eigenvectors,

and then transforming back to the original space. Dimensionality reduction in this context

is the process of reducing the number of random variables under consideration for feature

selection. Table 4.5 shows the coefficients for each attribute determined through the principal

component method. The data in the table refers to the highest ranked attribute eigenvector

from the output of the algorithm. Essentially, each value of the attribute would be multiplied

by its coefficient and added to the other attributes in order to obtain the class value.

Relief Attribute Evaluation The relief attribute evaluation algorithm evaluates the

worth of an attribute by repeatedly sampling an instance and considering the value of the

given attribute for the nearest instance of the same and different class. This algorithm de-

tects the features which are statistically relevant to the desired class. Table 4.6 shows the

rankings of the attributes according to this algorithm. The influence of each attribute indi-

cates how much of an effect the attribute has on the prediction of the relative importance.

Higher numbers indicate a greater influence on the prediction and the positive and negative

values indicate a direct or indirect proportion to the class, respectively. More information

can be found at [93].

74

Table 4.5: Mp3gain Principal Component

Coefficient Attribute Coefficient Attribute
-0.0215 vartype=real 0.2413 N1
-0.0337 vartype=real* 0.2363 N2
-0.0385 vartype=int 0.2416 Vocab
-0.0027 vartype=int* 0.24 Length
0.0008 vartype=Float t* 0.2409 Volume
0.057 vartype=uchar 0.1468 Difficulty

0.0552 vartype=uchar* 0.2409 Effort
0.0035 vartype=ulong 0.2373 Mental
0.0773 vartype=long 0.241 ModLoC

-0.0055 vartype=uint 0.0991 Branches
-0.0047 VarFreq -0.0629 Comments
0.0472 LC 0.241 LogLoc
0.0132 Reads 0.238 Complexity

-0.0018 Writes 0.2282 MaxNested
-0.0126 IMC 0.2243 AvgNested
-0.0047 PoEv -0.0704 FuncFreq
-0.0556 size 0.2254 propagation
-0.0556 PoCv -0.0118 ELoC
-0.004 PoFI -0.0118 PoEf
0.1909 n1 0.2368 PoCf
0.2416 n2 0.2368 Mem

4.2.4 Classification

ZeroR

This is the default algorithm for classifying the dataset. It serves as the starting point for

validating the performance of other classification algorithms on a dataset. This classification

has no rules, so it merely predicts the mean, for numeric classes, or the mode, for nominal

classes. This algorithm is included in order to give a reference point to the predictions made

by other algorithms. Algorithms that do worse than ZeroR are worse than just predicting

the mean each time. For the purposes of this framework, ZeroR and the majority of the

rule based algorithms are not of much use because they create a series of rules that provide

threshold values for the predictions. The algorithms just predict whichever threshold value

75

Table 4.6: Mp3Gain Relief Attribute Evaluation

Influence Attribute Influence Attribute
0.747 PoFI -0.0195 Mental

0.7413 VarFreq -0.0204 Vocab
0.7413 PoEv -0.0209 n1
0.6993 Reads -0.0213 n2
0.2188 Writes -0.0216 Complexity
0.2151 vartype -0.0224 LogLoc
0.2005 LC -0.0226 ModLoC
0.1755 size -0.0229 Mem
0.1755 PoCv -0.0229 PoCf

-0.0138 PoEf -0.0274 AvgNested
-0.0138 ELoC -0.0291 MaxNested
-0.0149 Difficulty -0.0308 propagation
-0.0189 N1 -0.0377 FuncFreq
-0.0191 Length -0.0405 Branches
-0.0193 Effort -0.045 IMC
-0.0193 Volume -0.055 Comments
-0.0194 N2

the dataset prediction comes out closest to. Since the framework seeks to rank the output

of these algorithms in order to identify the top ten, twenty and so on percent of variables,

this type of prediction does not work for this purpose.

Linear Regression

A regression algorithm is included as another reference point to compare the other

machine learning algorithms against. This is a simple classifier that uses linear regression

for prediction. The algorithm uses the Akaike criterion for model selection, and is able to deal

with weighted instances. The attribute selection is done by stepping through the attributes,

removing the one with the smallest standardized coefficient until no improvement is observed

in the estimate of the error given by the Akaike information criterion. The Akiake criterion

is as follows, where L is the maximized value of the likelihood function for the model and k is

the number of estimated parameters in the model. This means that given a set of candidate

76

models for the dataset, the best model is determined based on which model has the lowers

AIC value. The linear regression model fits a straight line through the set of data points in

order to make the sum of the squared values for the distance between the points of the data

set as small as is possible. The resulting model is used to predict the desired class.

AIC = 2 ∗ k − 2 ∗ ln(L) (4.2)

IBk

This is an implementation of the K-nearest neighbor classifier. [92] See the previous

experiment for a brief description of its functionality.

KStar

K* is an instance-based classifier, that is the class of a test instance based upon the class

of those training instances similar to it, as determined by some similarity function. It differs

from other instance-based learners in that it uses an entropy-based distance function. Using

the entropy as a distance measure provides this algorithm with benefits over other: consistent

handling of symbolic attributes, real values and missing values. Instance based learners work

by comparing the current instance, or data point, to a database of pre-classified examples,

the training set. This explains the poor performance of this variable in the validation testing

that tested the models using new unseen test data instead of cross-validation. Since the

dataset is relatively small, it is unlikely that there will be many instances for the algorithm

to compared the instances to in order to get an accurate prediction. More information is

available from [94]

LWL

The LWL algorithm stands for locally weighted learning. This algorithm uses an

instance-based algorithm to assign instance weights which are then used by a specified

77

WeightedInstancesHandler method in WEKA. This algorithm then utilizes another algo-

rithm depending on the desired prediction values. For classification predictions Naive Bayes

is used and linear regression is used for regression models, like this one. This model, like the

previous two, are considered lazy model types, in that they are generally good at predicting

values for data point types that they have seen before. The results show that the lazy types

of predictors do well with the cross-validation testing because the dataset is balanced be-

tween training and test data. The exception to this is the validation testing using just the mv

variable dataset that the predictor has not seen before. This problem is potentially solved

by adding more data points over varying types to the dataset to give the algorithm a wider

range of data points for comparing the test data. More information on the functionality of

the algorithm can be found at [95].

Least Median Squared

This algorithm implements a least median squared linear regression algorithm that

utilizes the existing linear regression class in WEKA to form predictions. Least squared

regression functions are generated from random subsamples of the data. The least squared

regression with the lowest median squared error is chosen as the final model. This model

is an interesting addition to the experimental data, because even though it is based around

the linear regression model that provides less desirable prediction rates, this algorithm is

consistently a strong predictor. Particularly in dealing with the test data from mv that the

model has not seen before in the next section. The model minimizes the sum of the squared

residuals, the same as linear regression. For this specific algorithm, the square is replaced

by the median o the squared residuals. More information about this algorithm can be found

at [96] and [97].

78

M5P

This algorithm implements base routines for generating an M5 model and trees. The

original algorithm M5 is defined in [98] and improvements are described in [99]. The algo-

rithm deals with inducing trees of regression models. The algorithm works by creating a

decision-tree induction algorithm to build a tree where each node minimizes the variation

of the class values for the nodes beneath it on its branch. The next step prunes the tree

from each individual leaf using the original M5 algorithm. The primary difference between

the old algorithm and this one is that when pruning an interior node the algorithm decides

between replacing the node with a constant value or a regression plane. The attributes of

the regression plane are those that are used in decisions in the tree nodes that are located

lower in the branch than the current node. [99]

4.2.5 Discussion

The results of the principal component attribute selection indicate that the attributes

of PFI, ELoC, PEf, writes, PEv, and IMC have the greatest natural correlation with the

predicting of the relative importance class. In the case of the principal component, the

smaller the coefficient, the less the attribute has to be adjusted in order to predict the class.

This means that coefficients close to zero are the most indicative of a strong relationship

with the class. The attribute merit of the relief attribute evaluation algorithm has PFI,

variable frequency, PEv, and reads as the highest ranked attributes for predicting the relative

importance. The inclusion of variable frequency and PEv with the same influence makes

sense, since the frequency is used when calculating PEv. In both cases the PFI value is used,

which makes sense because it is directly proportional to calculating the relative importance,

but it is interesting to see the non relative metrics, like reads, writes, variable type, LC, size

and variable frequency having a notable influence on the prediction of relative importance.

This indicates that there is potential in predicting the relative importance using both the

relative metrics and more conventional code metrics.

79

Table 4.7: Mp3gain Variable Evaluation

Model Total Mean Error Mean Absolute Error Root Mean Squared Error
zeroR 2.90 32.89 381.48

Linear Regression 1.11 25.59 307.78
Ibk 0.40 12.23 164.86

Kstar 2.14 27.31 289.33
LWL 1.86 21.27 252.14

LeastMedSq 0.20 5.63 83.27
M5P 0.81 21.95 264.44

The evaluation metrics collected from the prediction testing of the Mp3gain dataset are

detailed over the next three tables. Table 4.7 shows the total mean error , mean absolute error

and root mean squared error for each of the models. The total mean error is the averages

of the difference between the predicted relative importance rank and the actual relative

importance rank of the variable. The mean absolute error is the sum of the differences in the

actual and predicted ranks and divided by the total number of data points. It is a measure

of the average difference in the ranking potential of the model across all data points. The

root mean squared error is found by taking the square root of the sum of each difference in

the rankings squared. This value only has worth when comparing models that work with

the same data types and context, so they serve as another means of measuring the models

used in this dissertation to one another. It is important to note here that framework is not

interested in getting the predicted ranks to be exactly identical to the actual ranks, but more

in the trend of the ranking process. Even if the overall rankings are off by a few ranks, as

long as the majority of the ranks fall into the correct range, top ten percent, twenty percent

and so on, then these models have achieved a useful result.

It can be seen in Table 4.7 that for ten-fold cross validation on the revise Mp3gain

dataset that the total mean errors indicate a strong result from IBk and the LeastMedSq

algorithms. The model selection is a balance of functional, lazy, rule based and tree type

algorithms.

80

Table 4.8: Mp3gain Variable Average Percent Correct

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedSq M5P
10 0.00 0.60 0.40 0.10 0.20 0.80 0.60
20 0.05 0.42 0.68 0.32 0.47 0.79 0.58
30 0.21 0.50 0.86 0.39 0.64 0.96 0.68
40 0.38 0.59 0.89 0.46 0.70 0.95 0.70
50 0.46 0.59 0.83 0.41 0.67 0.93 0.63
60 0.56 0.64 0.80 1.00 0.67 0.93 0.69
70 0.72 0.66 0.83 1.00 0.77 0.92 0.72
80 0.81 0.78 0.93 1.00 0.84 0.95 0.79
90 0.90 0.89 0.93 1.00 0.91 0.96 0.89

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The value in Table 4.8 show the average percent of the data points ranked within the

correct ranking range. Here it can be seen that all of the models eventually work their way up

to being particularly accurate in identifying the top eighty or so percent of variables, but the

framework is mostly interested in the results in the top thirty percent. The ranking accuracy

tends to be a bit lower in the top ten percent, but tends to increase to a better prediction

rate at twenty percent. An important note here for algorithms like zeroR and KStar is

that they will utilize threshold values and predict that all of the data points fall on one of

those threshold values instead of predicting an exact value for each point. In particular, the

KStar algorithm predicts any numbers near zero as zero, so for all the data points beyond

rank fifty-five it predicts zero. This isn’t necessarily a bad thing, as it is unlikely that the

target software being testing by the framework would be capable of maintaining its standard

operation after adding error handling to fifty or more variables. Of note here is the high

percent correct of LeastMedSq and IBk. This will be a recurring trend in the remaining

data, and indicates that these two algorithms are best to pursue in future research. Figure

4.1 gives a visual representation of the individual models and their accuracy in predicting

variables in the various percent ranges of the rankings.

81

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120

Tr
u

e
P

o
si

ti
ve

 R
at

e

Ranking %

Mp3gain Predictions

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedSq

M5P

Figure 4.1: Mp3gain Predictions

In order to take another look at the variance in the predictions between the models,

Table 4.9 shows the average ranking difference found across all the predictions for each of

the models. The way to interpret the model is that the values indicate the average number

of rankings that the model is off, either by predicting too high or too low. For example, that

means when predicting the actual top ten percent ranked variables, the average error in the

actual ranking predictions is 2.60 for LeastMeanSq. Since the framework is less concerned

with predicting the exact value and more concerned with predicting the trends, this value is

not as important as the previous one, but is a useful comparison metric. The table shows

that there is a substantial error in guessing the rankings of variables in models using anything

other than LeastMeanSq, IBk, and M5P. Note that even with a high variance in correctly

identifying the actual rank, the overall trends of the predictive models are close enough to

obtain high percent correct, near seventy percent or higher, despite this variance. Figure 4.2

shows the relationship of the different models and their average rank difference across each

ranking range.

82

Table 4.9: Mp3gain Variable Average Rank Difference

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedsq M5P
10 57.70 25.90 6.70 44.80 31.10 2.60 11.90
20 45.21 25.68 6.95 34.42 25.74 4.21 18.37
30 38.21 24.68 7.82 30.64 24.39 4.82 17.39
40 34.00 24.03 8.19 28.32 22.05 4.35 18.38
50 32.24 24.39 11.00 25.37 22.07 4.93 20.57
60 30.49 24.38 11.75 24.55 21.36 4.96 20.27
70 30.88 23.16 11.81 25.20 21.11 5.69 20.33
80 30.37 23.07 11.70 25.36 21.58 5.37 21.08
90 30.89 23.72 11.54 26.32 21.21 5.50 20.65

100 32.89 25.59 12.23 27.31 21.27 5.63 21.95

4.3 Validation Test

4.3.1 Case Study

The case study for this experiment was to complete the entirety of the framework process

on a new dataset that had not been seen by the models and then to combine the previous

dataset and the new dataset for one larger dataset and to observe the improvements with

an increase in data points. The dataset used in this experiment is taken from the testing

and analysis of the Mv program from the coreutils. The Mv tests come from testing the

models by using the Mp3gain datasets as training data and the Mv datasets as test data.

The second part of the validation testing was to combine these models and complete ten-fold

cross validation in order to get a more accurate reading of the prediction potential of the

models once more data points are collected.

4.3.2 Test Setup

The test setup for each of the sections, function priority and variable priority, are the

same as the two previous sections of the experimental design chapter. The only difference is

that the datasets used came from running the framework on new software. The validation

testing was done in the exact same way as the tests for creating and testing the baseline

83

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 20 40 60 80 100 120

A
ve

ra
ge

 %
 D

if
fe

re
n

ce

Ranking %

Mp3gain Difference

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedsq

M5P

Figure 4.2: Mp3gain Average Percent Difference

models for predicting function priority and variable priority. The rest of this section will

discuss the evaluation of the attributes and predictions for the function prediction model

and then the variable prediction model. The data was collected during the execution of

the framework on the Mv program and once the framework had completed fault injection

analysis and calculated the relative importance, the datasets were run through WEKA to

investigate the capability of the predictive models to predict on data that had not been seen

before and then again using a method more relevant to smaller datasets.

4.3.3 Function Attribute Selection

The attributes selected for the dataset in this experiment are the same as the baseline

function prediction experiment in the previous section. The exception is the inclusion of the

PCf metric which is used to calculate the priority of the functions.

84

Table 4.10: Validation Function Attributes Info Gain

average merit average rank attribute
0.324 +- 0.03 1.4 +- 0.8 Propagation
0.18 +- 0.119 4.2 +- 3.6 Difficulty
0.053 +- 0.107 5.5 +- 0.67 Volume
0.053 +- 0.107 5.8 +- 2.27 Length

0 +- 0 6.8 +- 4.4 Mem
0.025 +- 0.075 8.2 +- 2.4 Vocab
0.151 +- 0.128 8.9 +- 6.67 ELoC
0.053 +- 0.107 9.3 +- 3.61 Effort
0.151 +- 0.128 9.5 +- 6.56 PoEf
0.053 +- 0.107 9.6 +- 0.92 N1
0.053 +- 0.107 10 +- 1.1 N2
0.053 +- 0.107 10.4 +- 3.23 Mental
0.025 +- 0.075 10.8 +- 1.47 n2
0.035 +- 0.106 12.2 +- 5.13 ModLoc

0 +- 0 14.1 +- 1.14 Branches
0.046 +- 0.092 15.9 +- 4.7 Frequency
0.02 +- 0.06 17.6 +- 1.91 MaxNested

0.023 +- 0.069 17.8 +- 1.4 AvgNested
0.029 +- 0.088 17.9 +- 4.85 Complexity

0 +- 0 17.9 +- 2.84 PoCf
0.035 +- 0.106 19.1 +- 6.09 LogLoc

0 +- 0 20.1 +- 2.21 Comments
0 +- 0 23 +- 0 n1

4.3.4 Merit and Rank of Function Attributes

Information Gain Attribute Evaluation with Ranker

The information gain attribute evaluation algorithm is detailed in section 4.1.3.

Correlation Attribute Evaluation with Ranker

This algorithm evaluates the worth of an attribute by measuring Pearson’s correlation

between it and the class. Nominal attributes are considered on a value by value basis by

treating each value as an indicator. An overall correlation for a nominal attribute is arrived

at via a weighted average. Pearson’s correlation in this context is the measure of the linear

85

Table 4.11: Validation Function Attribute Correlation

average merit average rank attribute
0.622 +- 0.033 1.3 +- 0.9 Propagation
0.537 +– 0.044 3 +- 0.77 N2
0.551 +- 0.06 3.2 +- 3.63 Difficulty
0.518 +- 0.043 4.6 +- 1.2 Length
0.504 +- 0.052 6.3 +- 2.69 Vocab
0.503 +- 0.044 6.4 +- 1.5 N1
0.497 +- 0.039 7.7 +- 1 Effort
0.495 +- 0.051 7.9 +- 2.84 n2
0.496 +- 0.039 8.8 +- 1.17 Volume
0.478 +- 0.045 11 +- 2.68 Mental
0.474 +- 0.056 11.2 +- 1.6 ModLoc
0.462 +- 0.061 11.9 +- 3.83 MaxNested
0.465 +- 0.059 12.7 +- 2.37 LogLoc
0.448 +- 0.042 14.2 +- 1.17 n1
0.438 +- 0.065 14.7 +- 2.37 Complexity
0.432 +- 0.051 16 +- 1.18 AvgNested
0.394 +- 0.093 17 +- 1.61 Mem
0.394 +- 0.093 18 +- 1.61 PoCf
0.347 +- 0.117 18.2 +- 4.24 PoEf
0.347 +- 0.117 18.6 +- 4.59 ELoC
0.237 +- 0.097 20 +- 5.37 Frequency
0.251 +- 0.067 20.8 +- 1.25 Comments
0.169 +- 0.062 22.5 +- 1.02 Branches

correlation, dependence, between each attribute and the class value. The resulting merit

value is between −1 and 1, where a positive value indicates that a linear equation describes

the relationship between the attribute and the class and a negative value indicates that the

data points lie on a line where when the class value decreases, the attribute value increases.

Gain Ratio Attribute Evaluation with Ranker

The gain ratio attribute evaluation algorithm determines the worth of an attribute by

measuring the gain ratio with respect to the class using the following equation, where H is the

information entropy as discussed in the previous section for the information gain attribute

86

Table 4.12: Validation Function Attributes Gain Ratio

average merit average rank attribute
0.355 +- 0.242 3.1 +- 3.48 Difficulty
0.404 +- 0.039 3.2 +- 3.46 Propagation
0.093 +- 0.189 5 +- 0.89 Volume
0.093 +- 0.189 5.4 +- 2.62 Length

0 +- 0 6.8 +- 4.4 Mem
0.028 +- 0.085 8.1 +- 2.21 Vocab
0.189 +- 0.172 8.9 +- 6.67 ELoC
0.093 +- 0.189 9 +- 1.41 N1
0.093 +- 0.189 9.1 +- 3.75 Effort
0.189 +- 0.172 9.3 +- 6.57 PoEf
0.093 +- 0.189 9.4 +- 2.01 N2
0.093 +- 0.189 10.1 +- 3.75 Mental
0.028 +- 0.085 10.9 +- 1.58 n2
0.049 +- 0.147 12.9 +- 4.06 ModLoc

0 +- 0 14.1 +- 1.14 Branches
0.06 +- 0.119 15.9 +- 4.7 Frequency
0.021 +- 0.063 17.6 +- 1.91 MaxNested
0.025 +- 0.076 17.8 +- 1.4 AvgNested

0 +- 0 17.9 +- 2.84 PoCf
0.036 +- 0.109 18.6 +- 2.91 Complexity
0.049 +- 0.147 19.8 +- 4.02 LogLoc

0 +- 0 20.1 +- 2.21 Comments
0 +- 0 23 +- 0 n1

evaluator. One advantage to utilizing this algorithm is that the algorithm creates a biased

decision tree that is against attributes with a high number of distinct values. This is done

in order to avoid over-fitting the data to a particular type of attribute that gives too much

information about the classifier.

GainR(Class, Attribute) = (H(Class)−H(Class|Attribute))/H(Attribute). (4.3)

87

Cfs Subset Attribute Evaluation with Greedy Stepwise

The last attribute selection algorithm considered in this validation test is the CfsSubset

attribute evaluation algorithm which determines the worth of a subset of attributes by con-

sidering the individual predictive ability of each feature along with the degree of redundancy

between them. The subsets of features that are highly correlated with the class while having

low inter-correlation are preferred. The CFS algorithm is a feature selection based algorithm

that uses a search algorithm with a particular function to evaluate the merit of various sub-

sets of metrics. In the case of this research we will consider the highest merit subset for each

of the cross fold validation tests of the algorithm. CFS measures the merit of the feature

subsets based on the concept that good subsets contain features highly correlated with the

class, while remaining uncorrelated with each other. More information can be found at [100]

This type of algorithm does not work with the ranker algorithm in WEKA to order the

predictions according to their ranked merit, because the algorithm does not calculate the

merit in the same way. Instead a greedy stepwise algorithm is used which performs a greedy

forward or backward search through the space of attribute subsets. The algorithm can start

with none or all of the attributes or from an arbitrary point in the space. It stops when

the addition or deletion of any remaining attributes results in a decrease in evaluation. The

algorithm can also produce a ranked list of attributes by traversing the space from one side

to the other and recording the order that attributes are selected.

4.3.5 Function Classification

The classification algorithms that were used in this phase of the testing are the same

as those used when creating the baseline model for predicting the priority of the functions.

Refer to section 4.1.5 for more information.

88

Table 4.13: Validation Function Attribute Cfs Subset Evaluation

number of folds (%) attribute attribute
0 (0%) n1
1 (10%) n2
1 (10%) N1
0 (0%) N2
0 (0%) Vocab
0 (0%) Length
0 (0%) Volume
6 (60%) Difficulty
0 (0%) Effort
0 (0%) Mental
1 (10%) ModLoc
0 (0%) Branches
0 (0%) Comments
0 (0%) LogLoc
0 (0%) Complexity
0 (0%) MaxNested
0 (0%) AvgNested
0 (0%) Frequency

10 (100%) Propagation
6 (60%) EloC
1 (10%) PoEf
0 (0%) PoCf
0 (0%) Mem

4.3.6 Discussion: Function Validation

The attribute selection algorithms for the function prediction model tend to favor the

propagation, difficulty, volume, and the N2 metric as the attributes with the highest merit

for predicting the importance of the functions under consideration. These metrics gener-

ally are commonly accepted metrics that measure known factors about the function code.

The exception is the propagation metric which is calculated based on the data flow graphs

produced by Doxygen in order to determine how many other functions each function is con-

nected to and could potentially pass a faulty variable to. The propagation metric is directly

related to the connection metrics calculated for the variable dataset, so it makes sense that

89

Table 4.14: Mv Function Evaluation

Evaluation ZeroR J48 Ibk MP NB
Percent Correct 85.71 14.29 14.29 14.29 57.14

Percent Incorrect 14.29 85.71 85.71 85.71 42.86
Kappa Statistic 0 0 0 0 0.2222

TP Rate 1 0 0 0 0.5
FP Rate 1 0 0 0 0
TN Rate 0 1 1 1 1
FN Rate 0 1 1 1 0.5

it would rank highly. With the amount of data that is used at this point of the research,

it is possible that these trend values will fluctuate as more types of software systems are

evaluated.

The evaluation of the Mv dataset using the Mp3gain dataset as the training data gave

the expected results in Table 4.14. With such a small dataset based on a single open-source

project, it is unlikely that the model would be capable of properly predicting the importance

of the functions in the target software. The predictive model does not have enough data

points to predict with high certainty which functions are important or not. With the addition

of new data from different types of software projects, size, architecture, etc. the prediction

percentage will increase, as is shown later. Most of the models had a particularly low true

positive rate, even with using the cost-benefit analysis technique to skew the predictions

towards as few false negative as possible. Naive Bayes is the only algorithm to manage

predicting more than one or zero of the important functions correctly.

Table 4.15 shows the results when the Mv dataset is combined with the Mp3gain dataset

and ten-fold cross-validation is used to measure the prediction capabilities of the models.

Remember that cross-validation essentially removes a random selection of ten percent of the

training data as test data and uses the rest as training data and conducts the prediction. This

removal and test process is repeated ten times and the complete result is what is presented.

It can be seen that the prediction rates are much better with cross-validation because the

90

Table 4.15: Validation Function Evaluation

Evaluation ZeroR J48 Ibk MP NB
Percent Correct 23.08 88.46 82.69 78.85 84.61

Percent Incorrect 76.92 11.54 17.3 21.15 15.38
Kappa Statistic 0 0.6929 0.4293 0.4211 0.5398

TP Rate 1 0.833 0.417 0.583 0.583
FP Rate 1 0.1 0.05 0.15 0.075
TN Rate 0 0.9 0.95 0.85 0.925
FN Rate 0 0.167 0.583 0.417 0.417

models have more relevant data points to work from when creating the prediction model.

This result suggests that more data is needed from a varying number and type of software

projects in order to train a model to be able to accurately predict the importance of the

functions. The J48 algorithm proves to be the most effective algorithm for predicting the

important algorithms with a true positive rate of 0.833. This true positive rate combined

with the overall accuracy of 88.46 suggests that J48 is the ideal algorithm to use for training

our predictive model.

The learning curve of the validation dataset is determined by utilizing the best algo-

rithm, J48, and removing sections of the data to measure the accuracy of the predictions

based on the amount of data in the dataset. Table 4.16 and figure 4.3 illustrate this concept.

It can be seen that with an increasing amount of data to work with, the algorithm accuracy

gets much higher. This is an important point because it shows that with the increase in the

dataset size, the accuracy of the overall model should increase. This is further evidence that

further data would allow the model to more accurately handle unknown data points.

4.3.7 Variable Attribute Selection

4.3.8 Merit and Rank of Variable Attributes

The attribute selection algorithms used are the same as those used in the baseline model

testing in section 4.2.3.

91

Table 4.16: Validation Function Learning Curve

Percent Removed Accuracy
90 38.2
80 52.43
70 74.17
60 72.83
50 77.67
40 79.93
30 84.63
20 84.9
10 89.97

4.3.9 Variable Classification

The classification algorithms are the same as those used in the baseline model evaluation

in section 4.2.4.

4.3.10 Discussion: Variable Validation

The attribute selection algorithms: principal component and relief information gain

were run on the combined dataset to obtain the evaluation metrics found in Table 4.17 and

Table 4.18. It can bee see that with the additional data added to the training dataset, the

principal component algorithm chose PEv, function frequency, PFI, and a few of the variable

types as the attributes with the highest impact on the relative importance of the variable.

This makes sense when you consider how the relative importance is calculated. The PFI

is directly proportional to the value of the relative importance, but the other attributes

help to identify some trends in the metrics that can be used to determine the relationship

with the other values that make up the relative importance. The type of variable, function

frequency, probability that a variable will be executed after having a fault injected and the

type of variable all appear to have a closen connection to the failure rate, spatial impact

and temporal impact. The relief attribute evaluation provides a similar attribute selection,

identifying PFI, variable frequency, PEv and the read metric as being the strongest indicators

92

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%
 D

at
a

R
et

ai
n

ed

Accuracy

Learning Curve

Accuracy

Figure 4.3: Function Learning Curve

of predicting the correct priority of the variables. Just as before, these values make sense,

as the variable frequency is tied to the probability of a fault occuring during the program

executing a line of code involving the particular variable and the reads helps to show the

likelihood that the data fault will have an effect on the system.

The variable evaluation results are similar to those from the function evaluation when

tested along on the models trained by the Mp3gain dataset. Given the dataset sizes used, it

makes sense for there to be a drop in accuracy when dealing with unseen data as opposed

to the validation dataset that uses the combined data from Mv and Mp3gain and cross-

validation. As shown in Table 4.19 there is a drop in accuracy from the previous run of

the models on just the Mp3gain datasets. The total mean error is quite high for most all

cases, the exception being the least median squares algorithm. This indicates that against

data that has not been seen before, with a small sample size for training, the other models

predicted quite poorly when compared to the zeroR model which just predicts the mean

value for each. But, when combining the datasets and using the ten-fold cross-validation

method in order to test on a more knowledgeable dataset, the error found in the models

shown in Table 4.20 is back in line with where it would be expected. Note again that the

93

Table 4.17: Validation Principal Component

Coefficient Attribute Coefficient Attribute
0.0022 vartype=real 0.1984 n1
0.0065 vartype=real* 0.2387 n2
0.0317 vartype=int 0.2489 N1
0.0073 vartype=int* 0.2457 N2
0.017 vartype=Float t* 0.2423 Vocab

0.0606 vartype=uchar 0.2482 Length
0.066 vartype=uchar* 0.2474 Volume

0.0205 vartype=ulong 0.1808 Difficulty
0.0831 vartype=long 0.2475 Effort
0.0031 vartype=char** 0.2435 Mental

-0.0326 vartype=enum 0.2474 ModLoC
-0.0801 vartype=bool 0.0394 Branches
0.0034 vartype=uint -0.0228 Comments

-0.0323 vartype=char* 0.2443 LogLoc
0.0233 VarFreq 0.2431 Complexity
0.0765 LC 0.2267 MaxNested
0.045 Reads 0.223 AvgNested

0.0175 Writes -0.0098 FuncFreq
-0.0021 IMC 0.2342 Propagation

0.008 PoEv 0.0388 ELoC
0.0506 size -0.0352 PoEf

-0.0274 PoCv 0.0997 PoCf
0.0111 PoFI 0.2412 Mem

error in predicting the correct rank is less important than the accuracy of the models in

correctly identifying the top ten percent, twenty percent and so on.

The average percent correct for the predictions made by the models using the training

data from Mp3gain and the test data from Mv is shown in Table 4.21. As expected, the

overall accuracy is lower than with the cross-validation, because the training set used is

based on a single software project, so the relationships between the attributes and the class

are particular to that instance. Note that zeroR and Kstar are all zero in this case because

they determined a single value and predicted that single value for each instance, leaving no

correctly identified instances. Alternatively, the least median squared algorithm gets much

94

Table 4.18: Validation Relief Attribute Evaluation

Influence Attribute Influence Attribute
0.747 PoFI -0.0195 Mental

0.7413 VarFreq -0.0204 Vocab
0.7413 PoEv -0.0209 n1
0.6993 Reads -0.0213 n2
0.2188 Writes -0.0216 Complexity
0.2151 vartype -0.0224 LogLoc
0.2005 LC -0.0226 ModLoC
0.1755 size -0.0229 Mem
0.1755 PoCv -0.0229 PoCf

-0.0138 PoEf -0.0274 AvgNested
-0.0138 ELoC -0.0291 MaxNested
-0.0149 Difficulty -0.0308 Propagation
-0.0189 N1 -0.0377 FuncFreq
-0.0191 Length -0.0405 Branches
-0.0193 Effort -0.045 IMC
-0.0193 Volume -0.055 Comments
-0.0194 N2

better results in the twenty percent range and beyond. The IBk and the M5P algorithms

fall behind the least median squared algorithm in their predictive ability, catching up only

when determining the bottom percent ranges of eighty percent of variables or higher. Linear

regression is particularly bad at dealing with this test case. It is interesting that linear

regression does poorly in this case, but the least median squared algorithm which uses linear

regression for predicting numeric classes does quite well compared to the other baseline

models.

When the datasets are combined into the single dataset for validating through cross-

validation, the models saw an increase in predicting ability because of the training process

incorporating data points from numerous software projects which provides a better informed

model. IBk returns to being the best model in this case, but least median squares is not far

behind in accuracy. The most interested data is the in top ten to thirty percent prediction

ranges for variables, because the user is most likely interested in upping the error handling on

95

Table 4.19: Mv Variable Evaluation

Model Total Mean Error Mean Absolute Error Root Mean Squared Error
zeroR 0.94 37.95 385.71

Linear Regression 1.85 33.58 333.58
Ibk 1.35 33.16 334.08

Kstar 0.94 37.95 385.71
LWL 1.95 26.09 275.95

LeastMedSq 0.41 10.74 123.27
M5P 0.97 27.16 273.67

Table 4.20: Validation Variable Evaluation

Model Total Mean Error Mean Absolute Error Root Mean Squared Error
zeroR 3.07 28.26 944.34

Linear Regression 1.03 736.10 736.10
Ibk 0.35 6.20 243.79

Kstar 2.16 17.14 614.65
LWL 1.49 22.40 779.65

LeastMedSq 0.48 7.89 317.01
M5P 0.77 22.13 725.14

those areas. Overall it appears that least median squared is the best choice for predictions

for relative importance of variables, despite performing worse than IBk in the validation

dataset. The cross-validation is a good way to measure performance of a smaller sample size

that we have in this research, but it is important to measure the capability of the models

when dealing with potentially unknown data trends from software projects with different

architectures. Figure 4.4 shows a representation of the prediction accuracy of the different

models tested against the Mv dataset usign the Mp3gain dataset for training. Figure 4.5

shows the same, but for the combined validation dataset using cross-validation.

The following data is representative of the average difference in the actual ranks of

the variables in the datasets and the ranks that the predictive model chose for each of

the variables. Table 4.23 shows the average difference across each model for the different

96

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120

Tr
u

e
P

o
si

ti
ve

 R
at

e

Ranking %

Mv Predictions

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedSq

M5P

Figure 4.4: Mv Predictions

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120

Tr
u

e
P

o
si

ti
ve

 R
at

e

Ranking %

Validation Predictions

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedSq

M5P

Figure 4.5: Validation Predictions

97

Table 4.21: Mv Variable Average Percent Correct

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedSq M5P
10 0.00 0.25 0.38 0.00 0.00 0.63 0.75
20 0.00 0.31 0.50 0.00 0.44 0.94 0.63
30 0.00 0.25 0.63 0.00 0.67 0.75 0.58
40 0.00 0.26 0.65 0.00 0.61 0.90 0.58
50 0.00 0.33 0.62 0.00 0.51 0.97 0.56
60 0.00 0.51 0.66 0.00 0.51 0.91 0.51
70 0.00 0.63 0.70 0.00 0.69 0.91 0.67
80 0.00 0.82 0.89 0.00 0.82 0.87 0.77
90 0.00 0.90 0.94 0.00 0.94 0.99 0.90

100 0.00 1.00 1.00 0.00 1.00 1.00 1.00

Table 4.22: Validation Variable Average Percent Correct

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedSq M5P
10 0.00 0.65 0.82 0.47 0.24 0.59 0.71
20 0.15 0.59 0.88 0.47 0.41 0.76 0.79
30 0.25 0.65 0.86 0.55 0.55 0.80 0.73
40 0.35 0.50 0.81 0.66 0.56 0.76 0.56
50 0.49 0.54 0.93 0.68 0.57 0.87 0.60
60 0.53 0.59 0.94 0.63 0.61 0.95 0.64
70 0.69 0.69 0.95 1.00 0.69 0.95 0.69
80 0.81 0.82 0.92 1.00 0.79 0.91 0.81
90 1.00 0.91 0.96 1.00 0.91 0.93 0.90

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

percentage ranges. The data here is representative of the same trends found in the percent

correct table detailed above. The models that have lower correct predictions also have a

greater variance in the predictions made by that model. For example, the least median

squared algorithm had the best prediction rates and also the lowest variance in the actual

and predicted ranks for each of the variables with respect to the relative importance of each

variable. The models that provided a lower true positive prediction rate also had a higher

difference on average between the actual ranks and the predicted ranks of the variables.

Again, zeroR and Kstar have the same values because they both pick threshold values and

98

Table 4.23: Mv Variable Average Rank Difference

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedsq M5P
10 3.50 33.75 23.38 3.50 27.38 6.75 7.63
20 7.50 37.88 29.44 7.50 23.88 6.25 19.31
30 11.50 35.46 24.92 11.50 23.21 6.21 20.88
40 15.00 31.68 24.71 15.00 24.81 6.35 21.94
50 19.00 30.23 25.18 19.00 25.46 6.26 22.62
60 23.00 29.09 26.26 23.00 23.43 7.43 23.00
70 27.46 30.06 28.52 27.46 23.87 8.13 23.69
80 31.45 30.61 30.95 31.45 24.47 8.69 24.06
90 34.44 32.30 32.90 34.44 26.26 10.09 25.60

100 36.96 33.14 33.12 36.96 26.06 10.73 26.81

attempt to match the variables to those as opposed to calculating a unique prediction for

each variable. In the top thirty percent of the variable rankings, least median squared, M5P,

and Ibk had the best overall results, because the Kstar and zeroR model results are not

usable for actual ranking.

The validation dataset results are shown in Table 4.24 and reinforce the trend shown in

the previous data for the validation dataset. For the combined dataset, IBk gives the best

results, then least median squares and M5P in a distant third. Similarly to the prediction

metrics, the overall best model in this experiment is least median squared. When comparing

the results of the model predictions against an unseen dataset and the combined dataset,

least median squares performs better overall, with IBk outperforming on the combined set,

but falling far behind for the dataset from the Mv program. Figure 4.6 shows the curve of

the average difference in actual and predicted rank for the models. Figure 4.7 shows the

same relationship but on the data from the validation dataset.

4.4 Summary

The results of the baseline testing on Mp3gain show that machine learning is an effective

choice for increasing the efficiency of the framework by correctly predicting the importance of

99

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 20 40 60 80 100 120

A
ve

ra
ge

 %
 D

if
fe

re
n

ce

Ranking %

Mv Difference

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedsq

M5P

Figure 4.6: Mv Average Percent Difference

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0 20 40 60 80 100 120

A
ve

ra
ge

 %
 D

if
fe

re
n

ce

Ranking %

Validation Difference

zeroR

Linear Regression

Ibk

Kstar

LWL

LeastMedsq

M5P

Figure 4.7: Validation Average Percent Difference

100

Table 4.24: Validation Variable Average Rank Difference

Percentage zeroR Linear Regression Ibk Kstar LWL LeastMedsq M5P
10 85.29 39.59 5.41 59.29 45.76 11.35 19.24
20 67.91 37.56 8.79 56.76 43.71 11.71 16.03
30 66.18 40.82 11.90 49.75 42.69 14.35 30.24
40 62.03 43.06 11.76 41.04 42.60 15.15 34.74
50 58.48 44.06 13.57 39.89 42.86 14.49 36.99
60 54.13 42.43 12.89 37.35 41.91 16.50 36.62
70 54.12 44.06 12.21 35.31 43.27 18.60 36.37
80 54.73 44.02 13.06 35.22 43.32 18.28 38.36
90 56.39 45.28 12.82 36.76 44.67 17.74 41.78

100 59.86 44.90 12.86 38.51 47.96 18.11 44.20

functions and variables. A combination of standard software metrics and the relative metrics

introduced in this work need to be used in order to make the best possible prediction. In

addition to these metrics, some general aspects of the code that are used as features in

the dataset are particularly important in the prediction process. For example, the type of

variable has a major impact on the importance of the variable for data faults in the system.

Pointer variables, including strings, are in general more indicative of higher risk variables in

a system due to their more complex nature in how they are stored and utilized in memory.

The number of writes occurring for a particular variable was another indicator of high risk

variables. A greater focus on the real probabilities of the occurrence of a data fault and its

execution was an effective way to measure the importance of variables in the system. The

high impact of the propagation metric for predicting function priority indicates that the

architecture of the system and data-flow has a high impact on the priority of a function in

a system.

Of the various machine learning pre-processing methods, cost benefit analysis proved

to be the most effective at increasing the true positive prediction rate. Though the overall

percentage of correct predictions lowered in some cases, the cost-benefit analysis increased

the total number of true positives. For efficient reliability verification we can afford to

101

have some false positives, but false negatives could lead to letting a potentially high risk

function go by untested. Discretization of the attributes in the datasets did not provide a

consistent improvement to the prediction capabilities of the models. Using the Multilayer

Perceptron and J48 models for function prediction saw true positive prediction rates of over

eight-percent, as high as eighty-seven percent with Multilayer Perceptron. It should be noted

that overall between both cross-validation and test data, J48, a tree algorithm, performed

the best for the function model.

The best algorithms for variable prediction were Least Median Squared, IBk and M5P.

In the case of variable prediction, Least Median Squared was far ahead of the others, with

eighty to ninety percent correctly ranked variables in the top ten to thirty percent of rankings.

Even when dealing with the fresh datasets and the accuracy drop, Least Median Squared

showed an average accuracy of seventy-seven percent against the top thirty percent of unseen

datapoints. Comparatively, the lazy and rule based algorithms had drastic drops when

dealing with completely unseen datapoints. Given that it is unlikely that it will be possible

to collect enough training data for these models to have a rule for every scenario, it is best to

pick a model that gracefully handles unseen data points. Least Median Squared is the best

overall model for dealing with ranking the variables according to relative importance. This

is the case despite the cross-validation showing better results with IBk, because the lazy

model is on average twenty percent worse than Least Median Squared on unseen datapoints.

102

Chapter 5

Conclusion

This dissertation is a valuable step towards utilizing machine learning algorithms in

combination with software metrics to highlight the highest priority functions and variables

in an open-source software system. Both historically accepted software metrics and the

newer relative software metrics have proven to be effective features for the machine learning

algorithms. The experimental results indicate a high potential for an effective means of

establishing the highest priority variables in open-source software by utilizing a combination

of static and dynamic analysis with machine learning methods. The results serve as a good

indicator of the trends in software metrics when applied to open-source software tested with

relative use cases. A much larger selection of machine learning algorithms was reduced in

size to the smaller subset of machine learning algorithms presented. The results indicate

the prevalence of function and tree based machine learning algorithms for predicting the

relative importance of both functions and variables. New metrics need to be introduced

to replace those that were consistently eliminated by the attribute selection process or are

redundant with other metrics. The next metrics to be tested will be those that can be directly

connected to the existing testing process for identifying key functions in the system. Afferent

and efferent coupling and cohesion measurements make sense, given the high ranking of the

propagation metric.

It is important to note that this work was based on two software projects with different

architectures and coding strategies. By running more software projects through the frame-

work and building larger datasets, the predictions should get increasingly more accurate.

This is supported by the learning curve of the model predictions and the cross-validation

results with the combined dataset. With the architecture agnostic approach taken in this

103

research, the focus was on the relationship of the variables and functions to the rest of the

target software. The current dataset built around only a couple of programs will fall short on

accurately predicting functions and variables in new datasets. The cross-validation results

show that the concept of utilizing machine learning to predict the relative importance of the

variables in a system is a valid approach and worth pursuing further. The mv test cases that

utilize the Mp3gain datasets for training had the expected results, but make the need for

varying types data more prominent. With the addition of new data, these drawbacks of using

the models on new datasets should lower significantly, as shown by the cross-validation. This

research focuses on a more general view of open-source software systems. This research has

proven to be a potentially powerful tool to use when dealing with integrating open-source

or any post-release stage code where the source code is available.

The addition of machine learning and the updates to the framework have proven to be

an effective way to increase the efficiency of the reliability verification process. The research

shows a significant reduction in the total time needed to prioritize the high risk locations in

the code. The two stage predictive process presents two models which are capable of further

reducing the time needed to verify the reliability of a software system compared to [1]. We

see a further reduction in the total number of test cases when you consider that each of the

variables does not need fault injection testing to be done for the ranking. The next logical

step is to pursue even greater accuracy from the predictive models to make the framework

a more desirable process for completing reliability verification in high fidelity systems. The

learning curve and data from the cross-validation suggests that further improvements on the

effectiveness can be made with additional research into training and testing the machine

learning models. With the improvements discussed in the future work section, a completed

tool should increase the overall efficiency of verifying the reliability of software under the

effects of data faults.

104

Chapter 6

Future Work

The individual components of the framework utilized in this dissertation research have

been tested and validated using two sample software systems. There is further research to

be done in order to get the framework to a point where it can be utilized in a real-world

situation. The overall process needs to be fully automated from start to finish to allow for

a more efficient means of extracting features from the target software for analysis. Though

not specifically a research problem to be solved, there is a technical aspect of automating

the framework that is non-trivial. Once this automation of the framework is complete, the

efficiency of the testing and analysis process will increase significantly, allowing for me to

build datasets for training the models much faster.

Automation of the static and dynamic analysis and the machine learning portions of

the process will lead to an overall more efficient process for prioritizing test cases. This

automation is the next milestone for this research. Until the framework is fully automated,

gathering new data, which has proven to be a vital aspect of improving both the classification

and regression models, will be a cumbersome and inefficient process overall. The final stage

of the framework would ideally by a tool that could be used on a piece of software to complete

each of the stages of the process from defining the critical path of priority modules, functions

and variables up to the placement of the error handling mechanisms. There is a great deal

of parsing, logging and interaction between the various components of the framework that

need to be coded and tested. The target software would need to be run through the static

and dynamic analysis sections which complete their calculation of the remaining metrics and

that data should be used to create a dataset and automatically fed into a machine learning

algorithm to be tested against a trained model.

105

A big technical challenge would be automatically instrumenting the code in order to

complete the fault injection testing and to obtain some of the dynamic analysis metrics,

such as variable size. This obtrusive way of conducting the fault injection analysis will be

changed in the future, after achieving automation of the testing and analysis framework.

The framework needs to move away from the limitations of testing and being run using only

C source code. The framework will likely move to a more portable language, such as python,

in order to incorporate both the scripting elements of the framework and the analysis and

testing aspects. With libraries like Cython, the original C source code for the fault injection

component can be maintained while being integrated into the new python coded framework.

In addition to changing the framework source code to a python base, the framework needs to

be revised and improved upon to allow for more than just testing and analysis on C source

code. This will involve adding new code to be utilized based on the language the target

source code is written in, but also a change in the functionality of some of the components

of the framework.

Of particular concern is the implementation of the fault injection component of the

framework. The component works fine for this first build of the framework for the greater

problem of creating a more efficient process of identifying high risk variables in a system for

reliability verification. But, the implementation of the fault injection framework will either

need to be expanded to have probe and injection types for each type of source language that

will be testing using the framework, or the implementation needs to change. Ideally, the

fault injection component would avoid the intrusive style of injection that involves directly

injecting through calls in the source code, to utilizing system calls in a simulation type

environment that monitors the source code while it executes to detect the creating of variables

and directly injects the data fault into the memory location that the variable value was saved

into. Completing the injection in this way gives the framework more credibility for use on

real-world systems and allows for a more flexible design for dealing with varying types of

source languages for the target software.

106

Another task is taking the fully automated framework and making it into one that is

much easier to use than the disjointed command line tools and scripts that currently make

up the process. The addition of components such as a GUI would allow for the user to

easily point the framework to the target software system and have it complete the testing

and analysis based on some inputs the user gives as to any considerations the user may

have for how to complete the tests. An example would be the user providing the relative

use cases for a command-line driven system, meaning the list of commands that the user

is interested in testing the software under. Interoperability with well known output types,

such as CSV or XML, for datasets and ranking outputs is the next step in this process of

usability. The user will want to store the output of the analysis and testing in a common

output to allow for ease of use. It is clear that there are a number of improvements that can

be made to the framework created during this dissertation research. The main components

have been researched and validated and now must be made into a more user friendly and

efficient process. The improvements detailed in this section are aimed at improving the

overall experience in utilizing the framework, but also increasing its efficiency in completed

testing in order to more rapidly build the datasets that will be used to train the machine

learning models.

The research has brought up some important questions that need to be pursued further

in order to get the framework to the point where it can be used on a real-world system. The

machine learning algorithms highlighted some key trends in the software dealing with which

features were most important for making a correct prediction. Another aspect to these trends

was the difference in the trends found for each of the target software systems. It would be

worthwhile to research the trends in the metrics for predicting relative importance based on

the architecture of the target system. The architecture of the system appears to have an

effect on relationships of the metrics to each other.

After building up the training dataset, it would be interesting to split the current data

into smaller datasets based on the architecture of the software system it came from. The

107

prediction capabilities of the models could be compared across all of the datasets for a

software system. It would make sense for the predictions to be better when the model was

trained on data that came from software systems with a similar architecture to the current

target software being tested. If this is the case, it would be beneficial to have a collection of

training data that can be used to making the predictions based on the data-flow analysis of

the target software.

Another aspect of the research that could be further explored is the approach to sim-

ulating the data faults occurring in the target system. A comparison of the different ways

to cause the data fault in the system would give valuable data for updating the framework

for use in real-world systems. The simulation should mimic as closely as possible how the

data faults occur in reality. Utilizing a method to directly access memory to change the

bits instead of doing it through the source code could lead to a more effective fault injection

process. The goal is to have as flexible a framework as possible to allow for more widespread

use. If the framework was based around system calls and direct memory access, there would

be fewer versions of the fault injection. With injections based around the language used to

program the source code, there are a significant number of languages that would need to be

made compatible.

With the goal of creating a framework that simulates the faults as close to reality

as possible, it may be beneficial to pursue a hardware component to the testing. Using

embedded programs as an example, it may be possible to run software and physically cause

data faults in the system. The locations of the faults could be recorded and compared to the

effect that it had on the system. Pursuing this line of research may be useful in validating

the methods used in this work for calculating the probability of corruption and execution.

Also, by utilizing some physical component to the testing, it may assuage the concerns of

those less familiar with the software implementation and give a more concrete test case for

use in a real-world scenario.

108

Bibliography

[1] Pape, P. 2013. A Methodology for Increasing the Dependability of Open Source Software
Components. Master’s thesis. Auburn University, Auburn, AL.

[2] Ayala, C. P., Cruzes, D. S., Hauge, O., Conradi, R. (2011). Five facts on the adoption
of open source software. Software, IEEE, 28(2), 95-99.

[3] Fitzgerald, B., Kesan, J. P., Russo, B., Shaikh, M., Succi, G. (2012). Lessons
learned from the adoption of open source software. European Financial Review. url
= http://hdl.handle.net/10344/2423

[4] Gwebu, K. L., Wang, J. (2011). Adoption of Open Source Software: The role of social
identification. Decision Support Systems, 51(1), 220-229.

[5] Reed, A. (2011). Negative Scarcity And The Praxeology Of Open Source Software.
Journal of Business and Economics Research (JBER), 6(2).

[6] Spinellis, D., Giannikas, V. (2012). Organizational adoption of open source software.
Journal of Systems and Software, 85(3), 666-682.

[7] Hecker, F. (1999). Setting up shop: the business of Open-Source software. IEEE soft-
ware, 16(1), 45-51.

[8] Kumar, V., Gordon, B. R., and Srinivasan, K. (2011). Competitive strategy for open
source software. Marketing Science, 30(6), 1066-1078.

[9] Bonaccorsi, A., Rossi, C. (2003). Why open source software can succeed. Research
policy, 32(7), 1243-1258.

[10] Colombo, M. G., Piva, E., Rossi-Lamastra, C. (2013). Open innovation and within-
industry diversification in small and medium enterprises: The case of open source
software firms. Research Policy.

[11] Li, P. L., Kivett, R., Zhan, Z., Jeon, S. E., Nagappan, N., Murphy, B., Ko, A. J.
(2011, May). Characterizing the differences between pre-and post-release versions of
software. In Proceedings of the 33rd International Conference on Software Engineering
(pp. 716-725). ACM.

[12] Midha, V., Palvia, P. (2012). Factors affecting the success of Open Source Software.
Journal of Systems and Software, 85(4), 895-905.

109

[13] West, J., Gallagher, S. (2006). Challenges of open innovation: the paradox of firm
investment in open?source software. R and D Management, 36(3), 319-331.

[14] Cotroneo, D., Grottke, M., Natella, R., Pietrantuono, R., Trivedi, K. S. (2013, Novem-
ber). Fault triggers in open-source software: An experience report. In Software Reliabil-
ity Engineering (ISSRE), 2013 IEEE 24th International Symposium on (pp. 178-187).
IEEE.

[15] Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C. (2006). Have things changed
now?. In An empirical study of bug characteristics in modern open source software. In
Proceedings of the ASID Workshop in ASPLOS.

[16] bin Saleem, S., Yu, Y., Nuseibeh, B., Ince, D., Lopez, T. (2012). An Empirical Study
of Security Requirements in Planning Bug Fixes for an Open Source Software Project.
url = http://computing-reports.open.ac.uk/2012/TR2012-01.pdf

[17] Yin, Z., Caesar, M., Zhou, Y. (2010). Towards understanding bugs in open source
router software. ACM SIGCOMM Computer Communication Review, 40(3), 34-40.

[18] Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE,
24(1), 58-64.

[19] Crowston, K., Wei, K., Howison, J., Wiggins, A. (2012). Free/Libre open-source soft-
ware development: What we know and what we do not know. ACM Computing Surveys
(CSUR), 44(2), 7.

[20] Gyimothy, T., Ferenc, R., Siket, I. (2005). Empirical validation of object-oriented met-
rics on open source software for fault prediction. Software Engineering, IEEE Trans-
actions on, 31(10), 897-910.

[21] Yuan, G., Gygi, F. (2012). A distributed approach to verification and validation of elec-
tronic structure simulation data using ESTEST. Computer Physics Communications,
183(8), 1744-1748.

[22] Chaturvedi, K. K., Bedi, P., Misra, S., Singh, V. B. (2013, December). An Empirical
Validation of the Complexity of Code Changes and Bugs in Predicting the Release
Time of Open Source Software. In Computational Science and Engineering (CSE),
2013 IEEE 16th International Conference on (pp. 1201-1206). IEEE.

[23] Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D. (2013). Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process, 25(1),
53-95.

[24] Shin, Y., Meneely, A., Williams, L., Osborne, J. A. (2011). Evaluating complexity,
code churn, and developer activity metrics as indicators of software vulnerabilities.
Software Engineering, IEEE Transactions on, 37(6), 772-787.

110

[25] Sinha, B. R., Dey, P. P., Amin, M., Badkoobehi, H. (2013). Software complexity
measurement using multiple criteria. Journal of Computing Sciences in Colleges, 28(4),
155-162.

[26] Thomas, S. W., Hemmati, H., Hassan, A. E., Blostein, D. (2014). Static test case
prioritization using topic models. Empirical Software Engineering, 19(1), 182-212.

[27] Zhang, H., Zhang, X., Gu, M. (2007, December). Predicting defective software compo-
nents from code complexity measures. In Dependable Computing, 2007. PRDC 2007.
13th Pacific Rim International Symposium on (pp. 93-96). IEEE.

[28] Cadar, C., Dunbar, D., Engler, D. (2008). KLEE: Unassisted and Automatic Genera-
tion of High-Coverage Tests for Complex Systems Programs. Stanford University

[29] Cadar, C., Godefroid, P., Khurshid, S., P?s?reanu, C. S., Sen, K., Tillmann, N., Visser,
W. (2011, May). Symbolic execution for software testing in practice: preliminary as-
sessment. In Proceedings of the 33rd International Conference on Software Engineering
(pp. 1066-1071). ACM.

[30] Cadar, C., Sen, K. (2013). Symbolic execution for software testing: three decades later.
Communications of the ACM, 56(2), 82-90.

[31] Kaushik, N., Salehie, M., Tahvildari, L., Li, S., Moore, M. (2011, March). Dynamic
prioritization in regression testing. In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on (pp. 135-138).
IEEE.

[32] Mishra, K. K., Kumar, A., Misra, A. K. (2014). A novel approach for minimizing and
prioritizing test suite. Engineering Science Letters, 2014, Article-ID.

[33] Li, Y., Su, Z., Wang, L., Li, X. (2013, October). Steering symbolic execution to less
traveled paths. In Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages and applications (pp. 19-32). ACM.

[34] Marinescu, P. D., Candea, G. (2011). Efficient testing of recovery code using fault
injection. ACM Transactions on Computer Systems (TOCS), 29(4), 11.

[35] Marinescu, P. D., Cadar, C. (2012). High-coverage symbolic patch testing. In Model
Checking Software (pp. 7-21). Springer Berlin Heidelberg.

[36] Marinescu, P. D., Cadar, C. (2013, August). KATCH: high-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (pp. 235-245). ACM.

[37] Mirzaaghaei, M., Pastore, F., Pezz, M. (2014). Automatic test case evolution. Software
Testing, Verification and Reliability.

[38] Schrammel, P., Melham, T., Kroening, D. (2013). Chaining Test Cases for Reactive
System Testing. In Testing Software and Systems (pp. 133-148). Springer Berlin Hei-
delberg.

111

[39] Siddiqui, J. H., Khurshid, S. (2012, October). Scaling symbolic execution using ranged
analysis. In ACM SIGPLAN Notices (Vol. 47, No. 10, pp. 523-536). ACM.

[40] Siddiqui, J. H., Khurshid, S. (2012, March). Staged symbolic execution. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing (pp. 1339-1346). ACM.

[41] Siddiqui, J. H., Khurshid, S. (2013). Scaling symbolic execution using staged analysis.
Innovations in Systems and Software Engineering, 9(2), 119-131.

[42] Yoo, S., Harman, M. (2012). Regression testing minimization, selection and prioritiza-
tion: a survey. Software Testing, Verification and Reliability, 22(2), 67-120.

[43] Benameur, A., Evans, N. S., Elder, M. C. (2013). MINESTRONE: Testing the SOUP.
In Presented as part of the 6th Workshop on Cyber Security Experimentation and Test.
USENIX.

[44] Bryce, R. C., Sampath, S., Memon, A. M. (2011). Developing a single model and
test prioritization strategies for event-driven software. Software Engineering, IEEE
Transactions on, 37(1), 48-64.

[45] Carlson, R., Do, H., Denton, A. (2011, September). A clustering approach to improving
test case prioritization: An industrial case study. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on (pp. 382-391). IEEE.

[46] Czerwonka, J., Das, R., Nagappan, N., Tarvo, A., Teterev, A. (2011, March). Crane:
Failure prediction, change analysis and test prioritization in practice–experiences from
windows. In Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on (pp. 357-366). IEEE.

[47] Jacob, T. P., Ravi, T. (2013). Detecting of software source code defects using test
case prioritization rules. In 2nd International Conference on Latest Computational
Technologies.

[48] Jiang, B., Chan, W. K., Tse, T. H. (2011, July). On practical adequate test suites for
integrated test case prioritization and fault localization. In Quality Software (QSIC),
2011 11th International Conference on (pp. 21-30). IEEE.

[49] Jiang, B., Zhang, Z., Chan, W. K., Tse, T. H., Chen, T. Y. (2012). How well does
test case prioritization integrate with statistical fault localization?. Information and
Software Technology, 54(7), 739-758.

[50] Wei, J., Rashid, L., Pattabiraman, K., Gopalakrishnan, S. (2011, June). Comparing
the effects of intermittent and transient hardware faults on programs. In Depend-
able Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st International
Conference on (pp. 53-58). IEEE.

[51] Zhou, Y., and Leung, H. (2006). Empirical analysis of object-oriented design metrics
for predicting high and low severity faults. Software Engineering, IEEE Transactions
on, 32(10), 771-789.

112

[52] Suresh, Y., Kumar, L., and Rath, S. K. (2014). Statistical and Machine Learning Meth-
ods for Software Fault Prediction Using CK Metric Suite: A Comparative Analysis.
International Scholarly Research Notices, 2014.

[53] Malhotra, R., and Jain, A. (2012). Fault Prediction Using Statistical and Machine
Learning Methods for Improving Software Quality. JIPS, 8(2), 241-262.

[54] Jiang, Y., Cuki, B., Menzies, T., and Bartlow, N. (2008, May). Comparing design and
code metrics for software quality prediction. In Proceedings of the 4th international
workshop on Predictor models in software engineering (pp. 11-18). ACM.

[55] Shepperd, M., Bowes, D., and Hall, T. (2014). Researcher bias: The use of machine
learning in software defect prediction. Software Engineering, IEEE Transactions on,
40(6), 603-616.

[56] Gondra, I. (2008). Applying machine learning to software fault-proneness prediction.
Journal of Systems and Software, 81(2), 186-195.

[57] Catal, C. (2011). Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4), 4626-4636.

[58] Gao, K., Khoshgoftaar, T. M., Wang, H., and Seliya, N. (2011). Choosing software
metrics for defect prediction: an investigation on feature selection techniques. Software:
Practice and Experience, 41(5), 579-606.

[59] Wang, H., Khoshgoftaar, T. M., and Seliya, N. (2011, May). How many software
metrics should be selected for defect prediction?. In FLAIRS Conference.

[60] Kitchenham, B. (2010). What’s up with software metrics? preliminary mapping study.
Journal of systems and software, 83(1), 37-51.

[61] Gray, D., Bowes, D., Davey, N., Sun, Y., and Christianson, B. (2011, April). The misuse
of the nasa metrics data program data sets for automated software defect prediction.
In Evaluation and Assessment in Software Engineering (EASE 2011), 15th Annual
Conference on (pp. 96-103). IET.

[62] Nori, A. V. (2014, June). Software reliability via machine learning (invited talk). In
Proceedings of the 2nd FME Workshop on Formal Methods in Software Engineering
(pp. 1-2). ACM.

[63] Boehm, B. W. (1981). Software engineering economics (Vol. 197). Englewood Cliffs
(NJ): Prentice-hall.

[64] Imsand, E. S., Evans, G., Dozier, G., Hamilton, J. A. (2004). Using genetic algorithms
to aid in a vulnerability analysis of national missile defense simulation software. The
Journal of Defense Modeling and Simulation: Applications, Methodology, Technology,
1(4), 215-223.

113

[65] Kapur, P. K., Pham, H., Anand, S., Yadav, K. (2011). A unified approach for devel-
oping software reliability growth models in the presence of imperfect debugging and
error generation. Reliability, IEEE Transactions on, 60(1), 331-340.

[66] Holmberg, J. E., Bishop, P., Guerra, S., Thuy, N. (2012, June). Safety case framework
to provide justifiable reliability numbers for software systems. In Proceedings of 11th
International Probabilistic Safety Assessment and Management Conference and The
Annual European Safety and Reliability Conference.

[67] Qiuying, L., Lei, L. (2013). Determining the Minimal Software Reliability Test Effort
by Stratified Sampling. TELKOMNIKA Indonesian Journal of Electrical Engineering,
11(8), 4399-4406.

[68] Veevers, A. (2014, June). Software Coverage Metrics and Operational Reliability.
In Safety of Computer Control Systems 1990 (SAFECOMP’90): Proceedings of the
IFAC/EWICS/SARS Symposium Gatwick, UK, 30 October-2 November 1990 (p. 67).
Elsevier.

[69] Vouk, M., Williams, L. (2013, November). Using software reliability models for security
assessment verification of assumptions. In Software Reliability Engineering Workshops
(ISSREW), 2013 IEEE International Symposium on (pp. 23-24). IEEE.

[70] Jin, C., Jin, S. W. (2014). Software reliability prediction model based on support
vector regression with improved estimation of distribution algorithms. Applied Soft
Computing, 15, 113-120.

[71] Wiper, M. P., Palacios, A. P., Marin, J. (2012). Bayesian software reliability prediction
using software metrics information. Quality Technology and Quantitative Management,
9(1), 35-44.

[72] Pati, J., Shukla, K. K. (2015, February). A Hybrid Technique for Software Reliability
Prediction. In Proceedings of the 8th India Software Engineering Conference (pp. 139-
146). ACM.

[73] Hu, H., Jiang, C. H., Cai, K. Y., Wong, W. E., Mathur, A. P. (2013). Enhancing
software reliability estimates using modified adaptive testing. Information and Software
Technology, 55(2), 288-300.

[74] Hsu, C. J., Huang, C. Y. (2011). An adaptive reliability analysis using path testing for
complex component-based software systems. Reliability, IEEE Transactions on, 60(1),
158-170.

[75] Bhuyan, M. K., Mohapatra, D. P., Sethi, S. (2014). A survey of computational intel-
ligence approaches for software reliability prediction. ACM SIGSOFT Software Engi-
neering Notes, 39(2), 1-10.

[76] Ma, C., Gu, G., Zhao, J. (2012). A Novel Software Reliability Assessment Approach
based on Neural Network in Network Environment. IJACT: International Journal of
Advancements in Computing Technology, 4(1), 136-144.

114

[77] http://linux.die.net/man/1/gcov - gcov Linux manual page

[78] http://linux.about.com/library/cmd/blcmdl1_nm.htm - nm Linux/Unix Com-
mand man page

[79] http://linux.about.com/library/cmd/blcmdl1_objdump.htm - objdump Linux/U-
nix Command man page

[80] http://www.stack.nl/~dimitri/doxygen/ - Doxygen main page

[81] http://graphviz.org - graphviz main page

[82] Chhabra, P., and Bansal, L. (2014). An Effective Implementation of Improved Halstead
Metrics for Software Parameters Analysis.

[83] McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Transac-
tions on, (4), 308-320.

[84] http://www.gnu.org/software/gdb/ - gdb: The GNU Project Debugger

[85] Leeke, M., Jhumka, A. Towards Understanding the Importance of Variables in De-
pendable Software. in Dependable Computing Conference (EDCC). (Valencia, Spain
2010) 85-94.

[86] Holmes, G., Donkin, A., Witten, I. H. (1994, December). Weka: A machine learning
workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second
Australian and New Zealand Conference on (pp. 357-361). IEEE.

[87] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H. (2009).
The WEKA data mining software: an update. ACM SIGKDD explorations newsletter,
11(1), 10-18.

[88] Kononenko, I. (1995, August). On biases in estimating multi-valued attributes. In
IJCAI (Vol. 95, pp. 1034-1040).

[89] Fayyad, U., and Irani, K. (1993). Multi-interval discretization of continuous-valued
attributes for classification learning.

[90] Quinlan, J. R. (1993). C4.5: programs for machine learning (Vol. 1). Morgan Kauf-
mann Publishers.

[91] John, G. H., and Langley, P. (1995, August). Estimating continuous distributions
in Bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence (pp. 338-345). Morgan Kaufmann Publishers Inc.

[92] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.
Machine learning, 6(1), 37-66.

[93] Kenji Kira, Larry A. Rendell: A Practical Approach to Feature Selection. In: Ninth
International Workshop on Machine Learning, 249-256, 1992.

115

http://linux.die.net/man/1/gcov
http://linux.about.com/library/cmd/blcmdl1_nm.htm
http://linux.about.com/library/cmd/blcmdl1_objdump.htm
http://www.stack.nl/~dimitri/doxygen/
http://graphviz.org
http://www.gnu.org/software/gdb/

[94] John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic
Distance Measure. In: 12th International Conference on Machine Learning, 108-114,
1995.

[95] Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive Bayes. In: 19th
Conference in Uncertainty in Artificial Intelligence, 249-256, 2003.

[96] Peter J. Rousseeuw, Annick M. Leroy (1987). Robust regression and outlier detection.

[97] Peter J. Rousseeuw, Least Median of Squares regression. Journal of the American
Statisctical Association, December 1984, 79(388)

[98] Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Confer-
ence on Artificial Intelligence, Singapore, 343-348, 1992.

[99] Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In:
Poster papers of the 9th European Conference on Machine Learning, 1997.

[100] M. A. Hall (1998). Correlation-based Feature Subset Selection for Machine Learning.
Hamilton, New Zealand.

116

Appendices

117

Appendix A

Code Listing

//Patrick Pape - 4/13 - Header file for injector functions

#ifndef INJECTOR_H_INCLUDED

#define INJECTOR_H_INCLUDED

#include <stdbool.h>

//Create the list of injectors for the experiment - file is taken from simulator input

void injector_setup();

//Injector function to inject a fault if it is part of the experiment list

char injector_c(char *iid, char var, char inject_val, float p);

char *injector_s(char *iid, char *var, char *inject_val, float p);

int injector_i(char *iid, int var, int inject_val, float p);

short injector_sh(char *iid, short var, short inject_val, float p);

long injector_l(char *iid, long var, long inject_val, float p);

float injector_f(char *iid, float var, float inject_val, float p);

double injector_d(char *iid, double var, double inject_val, float p);

long double injector_ld(char *iid, long double var, long double inject_val, float p);

//bool injector_b(char *iid, bool var, bool inject_val, float p);

//Injector function to inject a random fault if it is part of the experiment list

char injector_rand_c(char *iid, char var, float p);

char *injector_rand_s(char *iid, char *var, float p);

int injector_rand_i(char *iid, int var, float p);

short injector_rand_sh(char *iid, short var, float p);

long injector_rand_l(char *iid, long var, float p);

float injector_rand_f(char *iid, float var, float p);

double injector_rand_d(char *iid, double var, float p);

long double injector_rand_ld(char *iid, long double var, float p);

bool injector_rand_b(char *iid, bool var, float p);

double injector_rand_dp(char *iid, double var, float p);

int *injector_rand_ip(char *iid, int *var, float p);

float injector_rand_fp(char *iid, float var, float p);

int ret_test();

void set_func(int value);

#endif

//Patrick Pape - 4/13 - Injector functions for injecting faults into variables in the instrumented source code

#include <stdio.h>

#include <stdlib.h>

118

#include <string.h>

#include "injectors.h"

FILE *fp1; //experiment list for injections and probes to use

FILE *fp2; //variable log for injection values and probe values

int timing = 0;

//Create the list of injectors for the experiment - file is taken from simulator input

void injector_setup(){

struct timeval time;

gettimeofday(&time,NULL);

srand((time.tv_sec * 1000) + (time.tv_usec / 1000));

}

//Output the bits in the variable for testing

void printBits(size_t const size, void const * const ptr)

{

printf("size is %d - ",size);

unsigned char *b = (unsigned char*) ptr;

unsigned char byte;

int i, j;

for (i=size-1;i>=0;i--)

{

for (j=7;j>=0;j--)

{

byte = b[i] & (1<<j);

byte >>= j;

printf("%u", byte);

}

printf(" ");

}

puts("");

}

//Injector function to inject a fault if it is part of the experiment list

char injector_c(char *iid, char var, char inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

119

fprintf(fp2,"%s: original = %c injection = %c\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

char *injector_s(char *iid, char *var, char *inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %s injection = %s\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force an integer variable fault with a given value and prob

int injector_i(char *iid, int var, int inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection = %d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

120

else {

return var;}

}

//Fault injection function to force a short int variable fault with a given value and prob

short injector_sh(char *iid, short var, short inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection = %d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a long int variable fault with a given value and prob

long injector_l(char *iid, long var, long inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %ld injection = %ld\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a float variable fault with a given value and prob

121

float injector_f(char *iid, float var, float inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %f injection = %f\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a double variable fault with a given value and prob

double injector_d(char *iid, double var, double inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %f injection = %f\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//

long double injector_ld(char *iid, long double var, long double inject_val, float p){

double p2 = (double)rand()/(double)RAND_MAX;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

122

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %Lf injection = %Lf\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//bool injector_b(char *iid, bool var, bool inject_val, float p);

//**

//Fault injection function to force a char variable fault given a probability and random value

char injector_rand_c(char *iid, char var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(char);

int fault_loc = rand()%bitCount; //removed the + 1, created an error when the bitplace chosen was 8 (or MAX SIZE) - wouldn’t

affect a single character

int fault_inj = (1 << fault_loc);

unsigned long temp = *(unsigned long*)&var;

temp = temp ^ (1 << fault_loc);

char inject_val = *(char*)&temp;

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

printBits(sizeof(char), &var);

printBits(sizeof(char), &fault_inj);

printf("-------------------------------\n");

printBits(sizeof(char), &inject_val);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %c injection = %c\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

123

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a string variable fault given a probability and random value

char *injector_rand_s(char *iid, char *var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * strlen(var);

int fault_loc = rand()%bitCount;

int fault_inj = 0 ^ (1 << fault_loc);

int i;

unsigned long temp;

char * inject_val = var;

char var_copy[strlen(var)];

int inj_byte = fault_loc/8;

int fault_loc_byte = fault_loc%8;

//printf("inj_byte = %d \n", inj_byte);

//printf("fault_loc_byte = %d \n", fault_loc_byte);

for(i=0;i<strlen(inject_val);i++) {

var_copy[i] = var[i];

if(i == inj_byte) {

temp = *(unsigned long*)&inject_val[i];

temp = temp ^ (1 << fault_loc_byte);

inject_val[i] = *(char*)&temp; }

}

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

printBits(strlen(var), var);

printBits(strlen(var), &fault_inj);

printf("-------------------------------\n");

printBits(strlen(var), inject_val);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %s injection = %s\n",iid,var_copy,inject_val);

return inject_val; } }

fclose(fp1);

124

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force an int variable fault with a given prob and random bit-flip

int injector_rand_i(char *iid, int var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(int);

int fault_loc = rand()%bitCount;

int fault_inj = (1 << fault_loc);

int inject_val = var ^ (1 << fault_loc);

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

printBits(sizeof(int), &var);

printBits(sizeof(int), &fault_inj);

printf("-------------------------------\n");

printBits(sizeof(int), &inject_val);

printf("inject_val = %d\n",inject_val);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection = %d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a short variable fault with given probability and random value

short injector_rand_sh(char *iid, short var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(short);

int fault_loc = rand()%bitCount;

unsigned long temp = *(unsigned long*)&var;

125

temp = temp ^ (1 << fault_loc);

short inject_val = *(short*)&temp;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection = %d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force long variable fault with given probability and random value

long injector_rand_l(char *iid, long var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(long);

int fault_loc = rand()%bitCount;

int fault_inj = (1 << fault_loc);

unsigned long long temp = *(unsigned long long*)&var;

temp = temp ^ (1 << fault_loc);

long inject_val = *(long*)&temp;

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

printBits(sizeof(long), &var);

printBits(sizeof(long), &fault_inj);

printf("-------------------------------\n");

printBits(sizeof(long), &inject_val);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %ld injection = %ld\n",iid,var,inject_val);

return inject_val; } }

126

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a float variable fault with given probability and random value

float injector_rand_f(char *iid, float var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(float);

int fault_loc = rand()%bitCount;

unsigned long temp = *(unsigned long*)&var;

temp = temp ^ (1 << fault_loc);

float inject_val = *(float*)&temp;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %f injection = %f\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a double variable fault with a given probability and random value

double injector_rand_d(char *iid, double var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(double);

int fault_loc = rand()%bitCount;

int fault_inj = (1 << fault_loc);

unsigned long long temp = *(unsigned long long*)&var;

temp = temp ^ (1 << fault_loc);

double inject_val = *(double*)&temp;

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

127

printBits(sizeof(double), &var);

printBits(sizeof(double), &fault_inj);

printf("-------------------------------\n");

printBits(sizeof(unsigned long long), &temp);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %f injection = %f\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a long double variable fault with given probability and random value

long double injector_rand_ld(char *iid, long double var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(long double);

int fault_loc = rand()%bitCount;

int fault_inj = (1 << fault_loc);

unsigned long long temp = *(unsigned long long*)&var;

temp = temp ^ (1 << fault_loc);

long double inject_val = *(long double*)&temp;

//Test Code

/*

printf("bitCount = %d randomBitPlace = %d \n", bitCount, fault_loc);

printf("var ^ fault_inj = inject_val \n");

printBits(sizeof(long double), &var);

printBits(sizeof(long double), &fault_inj);

printf("-------------------------------\n");

printBits(sizeof(long double), &temp);*/

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %Lf injection = %Lf\n",iid,var,inject_val);

128

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a bool variable fault with given probability and random value

bool injector_rand_b(char *iid, bool var, float p){

double p2 = (double)rand()/(double)RAND_MAX;

unsigned int bitCount = 8 * sizeof(bool);

int fault_loc = rand()%bitCount;

unsigned long temp = *(unsigned long*)&var;

temp = temp ^ (1 << fault_loc);

bool inject_val = *(bool*)&temp;

if(p2 <= p) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,iid)) {

fprintf(fp2,"%s: original = %d injection = %d\n",iid,var,inject_val);

return inject_val; } }

fclose(fp1);

fclose(fp2);

return var; }

else {

return var;}

}

//Fault injection function to force a double variable fault in the address pointed to by the pointer variable

double injector_rand_dp(char *iid, double var, float p){

double var_value = var;

var_value = injector_rand_d(iid, var_value, p);

var = var_value;

return var;

}

//Fault injection function to force an integer variable fault in the address pointed to by the pointer variable

int *injector_rand_ip(char *iid, int *var, float p){

int var_value = *var;

var_value = injector_rand_i(iid, var_value, p);

129

var = &var_value;

return *var;

}

//Fault injection function to force a float variable fault in the address pointed to be the pointer variable

float injector_rand_fp(char *iid, float var, float p){

float var_value = var;

var_value = injector_rand_f(iid, var_value, p);

var = var_value;

return var;

}

//Patrick Pape - 4/13 - Header file for probe functions

#ifndef PROBE_H_INCLUDED

#define PROBE_H_INCLUDED

#include <stdbool.h>

//Create the list of injectors for the experiment - file is taken from simulator input

void create_probe_list();

//Probe function to read a variable if it is part of the experiment list

void probe_c(char *pid, char var_probe);

void probe_s(char *pid, char *var_probe);

void probe_i(char *pid, int var_probe);

void probe_sh(char *pid, short var_probe);

void probe_l(char *pid, long var_probe);

void probe_f(char *pid, float var_probe);

void probe_d(char *pid, double var_probe);

void probe_ld(char *pid, long double var_probe);

void probe_b(char *pid, bool var_probe);

void probe_fp(char *pid, float var_probe);

void probe_ip(char *pid, int *var_probe);

void probe_dp(char *pid, double var_probe);

#endif

//Patrick Pape - 4/13 - Probe functions for reading variable values at set locations in the code

#include "probes.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

FILE *fp1; //experiment list for which injections and probes to use

FILE *fp2; //variable log for injection values and probe values

//Create the list of injectors for the experiment - file is taken from simulator input

//Probe size of function

130

void probe_size(size_t const size, char * name) {

fp2 = fopen("var_log.txt", "a");

fprintf(fp2, "%s variable is %d bytes \n", name, size);

fclose(fp2);

}

//Probe function to read char variable

void probe_c(char *pid, char var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %c\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Probe function to read string variable

void probe_s(char *pid, char *var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %s\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Probe function to read integer variable

void probe_i(char *pid, int var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %d\n",pid,var_probe);}

}

131

fclose(fp1);

fclose(fp2);

}

//Probe function for short variables

void probe_sh(char *pid, short var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %d\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Probe function for long variables

void probe_l(char *pid, long var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %ld\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Probe function for float variables

void probe_f(char *pid, float var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %f\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

132

//Probe function for double variables

void probe_d(char *pid, double var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %f\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Probe function for long double variables

void probe_ld(char *pid, long double var_probe){

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %Lf\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Prove function for bool variables

void probe_b(char *pid, bool var_probe) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %d\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Prove function for integer pointers variables

void probe_ip(char *pid, int *var_probe) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

133

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %d\n",pid,*var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Prove function for float pointers variables

void probe_fp(char *pid, float var_probe) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %f\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Prove function for double pointers variables

void probe_dp(char *pid, double var_probe) {

fp1 = fopen("exp_list.txt", "r");

fp2 = fopen("var_log.txt", "a");

char tmp[256] = {0x0};;

while(fp1 != NULL && fgets(tmp, sizeof(tmp), fp1) != NULL) {

if (strstr(tmp,pid)) {

fprintf(fp2,"%s => %lf\n",pid,var_probe);}

}

fclose(fp1);

fclose(fp2);

}

//Patrick Pape - 4/13 - Program to test each of the injector functions by creating a variable and outputting the size and data in bits.

//The program then injects a bit fault into the variable and displays the new data stored in each of the variables.

#include <stdio.h>

#include <sys/types.h>

#include <getopt.h>

#include <assert.h>

#include <stdbool.h>

134

#include "injectors.c"

#include "probes.c"

int main() {

//setup the fault injection framework

injector_setup();

//output the size and contents for each variable

printf("creating variables...\n");

bool x = false;

int y = 0;

char z[6] = "string";

char test_c = (char)rand();

int test_i = (int)rand();

short test_sh = (short)rand();

long test_l = (long)rand();

float test_f = (float)rand();

double test_d = (double)rand();

long double test_ld = (long double)rand();

bool test_b = (bool)rand();

char * test_string = z;

unsigned u;

int test_i_b = (int)rand();

float test_f_b = (float)rand();

double test_d_b = (double)rand();

int *ip;

float *flp;

double *dp;

ip = &test_i_b;

flp = &test_f_b;

dp = &test_d_b;

//test the injectors

printf("injecting faults.....\n");

char bef_c = test_c;

int bef_i = test_i;

short bef_sh = test_sh;

long bef_l = test_l;

float bef_f = test_f;

double bef_d = test_d;

long double bef_ld;

bool bef_b = test_b;

char * bef_string = z;

int bef_ip = *ip;

float bef_flp = *flp;

double bef_dp = *dp;

test_c = injector_rand_c("test_c", test_c, 1);

test_i = injector_rand_i("test_i", test_i, 1);

135

test_sh = injector_rand_sh("test_sh", test_sh, 1);

test_l = injector_rand_l("test_l", test_l, 1);

test_f = injector_rand_f("test_f", test_f, 1);

test_d = injector_rand_d("test_d", test_d, 1);

test_ld = injector_rand_ld("test_ld", test_ld, 1);

test_b = injector_rand_b("test_b", test_b, 1);

test_string = injector_rand_s("test_s", test_string, 1);

*ip = injector_rand_ip("test_ip", ip, 1);

*flp = injector_rand_fp("test_flp", *flp, 1);

*dp = injector_rand_dp("test_dp", *dp, 1);

//output the new values for each variable after injection

printf("outputting results.....\n");

//Char variables injection

printf("\nChar\n");

printf("---\n");

printf("Before: %c - ",bef_c);

printBits(sizeof(char), &bef_c);

printf("After: %c - ", test_c);

printBits(sizeof(char), &test_c);

//Int variable injection

printf("\nInt\n");

printf("---\n");

printf("Before: %d - ",bef_i);

printBits(sizeof(int), &bef_i);

printf("After: %d - ", test_i);

printBits(sizeof(int), &test_i);

//Short variable injection

printf("\nShort\n");

printf("---\n");

printf("Before: %d - ",bef_sh);

printBits(sizeof(short), &bef_sh);

printf("After: %d - ", test_sh);

printBits(sizeof(short), &test_sh);

//Long variable injection

printf("\nLong\n");

printf("---\n");

printf("Before: %ld - ",bef_l);

printBits(sizeof(long), &bef_l);

printf("After: %ld - ", test_l);

printBits(sizeof(long), &test_l);

//Float variable injection

printf("\nFloat\n");

printf("---\n");

printf("Before: %f - ",bef_f);

printBits(sizeof(float), &bef_f);

136

printf("After: %f - ", test_f);

printBits(sizeof(float), &test_f);

//Double variable injection

printf("\nDouble\n");

printf("---\n");

printf("Before: %lf - ",bef_d);

printBits(sizeof(double), &bef_d);

printf("After: %lf - ", test_d);

printBits(sizeof(double), &test_d);

//Long double variable injection

printf("\nLong Double\n");

printf("---\n");

printf("Before: %Le - ",bef_ld);

printBits(sizeof(long double), &bef_ld);

printf("After: %Le - ", test_ld);

printBits(sizeof(long double), &test_ld);

//Bool variable injection

printf("\nBool\n");

printf("---\n");

printf("Before: %d - ",bef_b);

printBits(sizeof(bool), &bef_b);

printf("After: %d - ", test_b);

printBits(sizeof(bool), &test_b);

//Int pointer injection

printf("\nInt Pointer\n");

printf("---\n");

printf("Before: %d - ",bef_ip);

printBits(sizeof(int), &bef_ip);

printf("After: %d - ", *ip);

printBits(sizeof(int), &(*ip));

//Float pointer injection

printf("\nFloat Pointer\n");

printf("---\n");

printf("Before: %f - ",bef_flp);

printBits(sizeof(float), &bef_flp);

//Double pointer injection

printf("\nDouble Pointer\n");

printf("---\n");

printf("Before: %lf - ",bef_dp);

printBits(sizeof(double), &bef_dp);

printf("After: %lf - ", *dp);

//String variable injection

137

printf("\nString\n");

printf("---\n");

printf("Before: %s - ",bef_string);

printBits(strlen(bef_string), bef_string);

printf("After: %s - ", test_string);

printBits(strlen(test_string), test_string);

return 0;

}

138

Appendix B

Sample Code Coverage Output

-: 0:Source:src/mv.c

-: 0:Graph:src/mv.gcno

-: 0:Data:src/mv.gcda

-: 0:Runs:1000

-: 0:Programs:1

-: 1:/* mv -- move or rename files

-: 2: Copyright (C) 1986-2014 Free Software Foundation, Inc.

-: 3:

-: 4: This program is free software: you can redistribute it and/or modify

-: 5: it under the terms of the GNU General Public License as published by

-: 6: the Free Software Foundation, either version 3 of the License, or

-: 7: (at your option) any later version.

-: 8:

-: 9: This program is distributed in the hope that it will be useful,

-: 10: but WITHOUT ANY WARRANTY; without even the implied warranty of

-: 11: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

-: 12: GNU General Public License for more details.

-: 13:

-: 14: You should have received a copy of the GNU General Public License

-: 15: along with this program. If not, see <http://www.gnu.org/licenses/>. */

-: 16:

-: 17:/* Written by Mike Parker, David MacKenzie, and Jim Meyering */

-: 18:

-: 19:#include <config.h>

-: 20:#include <stdio.h>

-: 21:#include <getopt.h>

-: 22:#include <sys/types.h>

-: 23:#include <assert.h>

-: 24:#include <selinux/selinux.h>

-: 25:

-: 26:#include "system.h"

-: 27:#include "backupfile.h"

-: 28:#include "copy.h"

-: 29:#include "cp-hash.h"

-: 30:#include "error.h"

-: 31:#include "filenamecat.h"

-: 32:#include "quote.h"

-: 33:#include "remove.h"

-: 34:#include "root-dev-ino.h"

-: 35:#include "priv-set.h"

-: 36:

-: 37:#include "injectors.c"

-: 38:#include "probes.c"

-: 39:

-: 40:/* The official name of this program (e.g., no ’g’ prefix). */

139

-: 41:#define PROGRAM_NAME "mv"

-: 42:

-: 43:#define AUTHORS \

-: 44: proper_name ("Mike Parker"), \

-: 45: proper_name ("David MacKenzie"), \

-: 46: proper_name ("Jim Meyering")

-: 47:

-: 48:/* For long options that have no equivalent short option, use a

-: 49: non-character as a pseudo short option, starting with CHAR_MAX + 1. */

-: 50:enum

-: 51:{

-: 52: STRIP_TRAILING_SLASHES_OPTION = CHAR_MAX + 1

-: 53:};

-: 54:

-: 55:/* Remove any trailing slashes from each SOURCE argument. */

-: 56:static bool remove_trailing_slashes;

-: 57:

-: 58:static struct option const long_options[] =

-: 59:{

-: 60: {"backup", optional_argument, NULL, ’b’},

-: 61: {"context", no_argument, NULL, ’Z’},

-: 62: {"force", no_argument, NULL, ’f’},

-: 63: {"interactive", no_argument, NULL, ’i’},

-: 64: {"no-clobber", no_argument, NULL, ’n’},

-: 65: {"no-target-directory", no_argument, NULL, ’T’},

-: 66: {"strip-trailing-slashes", no_argument, NULL, STRIP_TRAILING_SLASHES_OPTION},

-: 67: {"suffix", required_argument, NULL, ’S’},

-: 68: {"target-directory", required_argument, NULL, ’t’},

-: 69: {"update", no_argument, NULL, ’u’},

-: 70: {"verbose", no_argument, NULL, ’v’},

-: 71: {GETOPT_HELP_OPTION_DECL},

-: 72: {GETOPT_VERSION_OPTION_DECL},

-: 73: {NULL, 0, NULL, 0}

-: 74:};

-: 75:

-: 76:static void

1000: 77:rm_option_init (struct rm_options *x)

-: 78:{

1000: 79: x->ignore_missing_files = false;

1000: 80: x->remove_empty_directories = true;

1000: 81: x->recursive = true;

1000: 82: x->one_file_system = false;

-: 83:

-: 84: /* Should we prompt for removal, too? No. Prompting for the ’move’

-: 85: part is enough. It implies removal. */

1000: 86: x->interactive = RMI_NEVER;

1000: 87: x->stdin_tty = false;

-: 88:

1000: 89: x->verbose = false;

-: 90:

-: 91: /* Since this program may well have to process additional command

-: 92: line arguments after any call to ’rm’, that function must preserve

-: 93: the initial working directory, in case one of those is a

-: 94: ’.’-relative name. */

1000: 95: x->require_restore_cwd = true;

-: 96:

140

-: 97: {

-: 98: static struct dev_ino dev_ino_buf;

1000: 99: x->root_dev_ino = get_root_dev_ino (&dev_ino_buf);

1000: 100: if (x->root_dev_ino == NULL)

#####: 101: error (EXIT_FAILURE, errno, _("failed to get attributes of %s"),

-: 102: quote ("/"));

-: 103: }

1000: 104:}

-: 105:

-: 106:static void

1000: 107:cp_option_init (struct cp_options *x)

-: 108:{

1000: 109: bool selinux_enabled = (0 < is_selinux_enabled ());

-: 110:

1000: 111: cp_options_default (x);

1000: 112: x->copy_as_regular = false; /* FIXME: maybe make this an option */

1000: 113: x->reflink_mode = REFLINK_NEVER;

1000: 114: x->dereference = DEREF_NEVER;

1000: 115: x->unlink_dest_before_opening = false;

1000: 116: x->unlink_dest_after_failed_open = false;

1000: 117: x->hard_link = false;

1000: 118: x->interactive = I_UNSPECIFIED;

1000: 119: x->move_mode = true;

1000: 120: x->one_file_system = false;

1000: 121: x->preserve_ownership = true;

1000: 122: x->preserve_links = true;

1000: 123: x->preserve_mode = true;

1000: 124: x->preserve_timestamps = true;

1000: 125: x->explicit_no_preserve_mode= false;

1000: 126: x->preserve_security_context = selinux_enabled;

1000: 127: x->set_security_context = false;

1000: 128: x->reduce_diagnostics = false;

1000: 129: x->data_copy_required = true;

1000: 130: x->require_preserve = false; /* FIXME: maybe make this an option */

1000: 131: x->require_preserve_context = false;

1000: 132: x->preserve_xattr = true;

1000: 133: x->require_preserve_xattr = false;

1000: 134: x->recursive = true;

1000: 135: x->sparse_mode = SPARSE_AUTO; /* FIXME: maybe make this an option */

1000: 136: x->symbolic_link = false;

1000: 137: x->set_mode = false;

1000: 138: x->mode = 4544;

1000: 139: x->stdin_tty = isatty (STDIN_FILENO);

-: 140:

1000: 141: x->open_dangling_dest_symlink = false;

1000: 142: x->update = false;

1000: 143: x->verbose = false;

1000: 144: x->dest_info = NULL;

1000: 145: x->src_info = NULL;

-: 146:

1000: 147:}

-: 148:

-: 149:/* FILE is the last operand of this command. Return true if FILE is a

-: 150: directory. But report an error if there is a problem accessing FILE, other

-: 151: than nonexistence (errno == ENOENT). */

-: 152:

141

-: 153:static bool

900: 154:target_directory_operand (char const *file)

-: 155:{

-: 156: struct stat st;

900: 157: int err = (stat (file, &st) == 0 ? 0 : errno);

900: 158: bool is_a_dir = !err && S_ISDIR (st.st_mode);

900: 159: if (err && err != ENOENT)

#####: 160: error (EXIT_FAILURE, err, _("failed to access %s"), quote (file));

900: 161: return is_a_dir;

-: 162:}

-: 163:

-: 164:/* Move SOURCE onto DEST. Handles cross-file-system moves.

-: 165: If SOURCE is a directory, DEST must not exist.

-: 166: Return true if successful. */

-: 167:

-: 168:static bool

1000: 169:do_move (const char *source, const char *dest, const struct cp_options *x)

-: 170:{

-: 171: bool copy_into_self;

-: 172: bool rename_succeeded;

1000: 173: bool ok = copy (source, dest, false, x, ©_into_self, &rename_succeeded);

-: 174:

1000: 175: if (ok)

-: 176: {

-: 177: char const *dir_to_remove;

1000: 178: if (copy_into_self)

-: 179: {

-: 180: /* In general, when copy returns with copy_into_self set, SOURCE is

-: 181: the same as, or a parent of DEST. In this case we know it’s a

-: 182: parent. It doesn’t make sense to move a directory into itself, and

-: 183: besides in some situations doing so would give highly nonintuitive

-: 184: results. Run this ’mkdir b; touch a c; mv * b’ in an empty

-: 185: directory. Here’s the result of running echo $(find b -print):

-: 186: b b/a b/b b/b/a b/c. Notice that only file ’a’ was copied

-: 187: into b/b. Handle this by giving a diagnostic, removing the

-: 188: copied-into-self directory, DEST (’b/b’ in the example),

-: 189: and failing. */

-: 190:

#####: 191: dir_to_remove = NULL;

#####: 192: ok = false;

-: 193: }

1000: 194: else if (rename_succeeded)

-: 195: {

-: 196: /* No need to remove anything. SOURCE was successfully

-: 197: renamed to DEST. Or the user declined to rename a file. */

1000: 198: dir_to_remove = NULL;

-: 199: }

-: 200: else

-: 201: {

-: 202: /* This may mean SOURCE and DEST referred to different devices.

-: 203: It may also conceivably mean that even though they referred

-: 204: to the same device, rename wasn’t implemented for that device.

-: 205:

-: 206: E.g., (from Joel N. Weber),

-: 207: [...] there might someday be cases where you can’t rename

-: 208: but you can copy where the device name is the same, especially

142

-: 209: on Hurd. Consider an ftpfs with a primitive ftp server that

-: 210: supports uploading, downloading and deleting, but not renaming.

-: 211:

-: 212: Also, note that comparing device numbers is not a reliable

-: 213: check for ’can-rename’. Some systems can be set up so that

-: 214: files from many different physical devices all have the same

-: 215: st_dev field. This is a feature of some NFS mounting

-: 216: configurations.

-: 217:

-: 218: We reach this point if SOURCE has been successfully copied

-: 219: to DEST. Now we have to remove SOURCE.

-: 220:

-: 221: This function used to resort to copying only when rename

-: 222: failed and set errno to EXDEV. */

-: 223:

#####: 224: dir_to_remove = source;

-: 225: }

-: 226:

1000: 227: if (dir_to_remove == NULL)

-: 228: {

-: 229: struct rm_options rm_options;

-: 230: enum RM_status status;

-: 231: char const *dir[2];

-: 232:

1000: 233: rm_option_init (&rm_options);

1000: 234: rm_options.verbose = x->verbose;

1000: 235: dir[0] = dir_to_remove;

1000: 236: dir[1] = NULL;

-: 237:

1000: 238: status = rm ((void*) dir, &rm_options);

1000: 239: assert (VALID_STATUS (status));

1000: 240: if (status == RM_ERROR)

#####: 241: ok = false;

-: 242: }

-: 243: }

-: 244:

1000: 245: return ok;

-: 246:}

-: 247:

-: 248:/* Move file SOURCE onto DEST. Handles the case when DEST is a directory.

-: 249: Treat DEST as a directory if DEST_IS_DIR.

-: 250: Return true if successful. */

-: 251:

-: 252:static bool

1000: 253:movefile (char *source, char *dest, bool dest_is_dir,

-: 254: const struct cp_options *x)

-: 255:{

-: 256: bool ok;

-: 257:

-: 258: /* This code was introduced to handle the ambiguity in the semantics

-: 259: of mv that is induced by the varying semantics of the rename function.

-: 260: Some systems (e.g., GNU/Linux) have a rename function that honors a

-: 261: trailing slash, while others (like Solaris 5,6,7) have a rename

-: 262: function that ignores a trailing slash. I believe the GNU/Linux

-: 263: rename semantics are POSIX and susv2 compliant. */

-: 264:

143

1000: 265: if (remove_trailing_slashes)

100: 266: strip_trailing_slashes (source);

-: 267:

1000: 268: if (dest_is_dir)

-: 269: {

-: 270: /* Treat DEST as a directory; build the full filename. */

1000: 271: char const *src_basename = last_component (source);

1000: 272: char *new_dest = file_name_concat (dest, src_basename, NULL);

1000: 273: strip_trailing_slashes (new_dest);

1000: 274: ok = do_move (source, new_dest, x);

1000: 275: free (new_dest);

-: 276: }

-: 277: else

-: 278: {

#####: 279: ok = do_move (source, dest, x);

-: 280: }

-: 281:

1000: 282: return ok;

-: 283:}

-: 284:

-: 285:void

#####: 286:usage (int status)

-: 287:{

#####: 288: if (status != EXIT_SUCCESS)

#####: 289: emit_try_help ();

-: 290: else

-: 291: {

#####: 292: printf (_("\

-: 293:Usage: %s [OPTION]... [-T] SOURCE DEST\n\

-: 294: or: %s [OPTION]... SOURCE... DIRECTORY\n\

-: 295: or: %s [OPTION]... -t DIRECTORY SOURCE...\n\

-: 296:"),

-: 297: program_name, program_name, program_name);

#####: 298: fputs (_("\

-: 299:Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.\n\

-: 300:"), stdout);

-: 301:

#####: 302: emit_mandatory_arg_note ();

-: 303:

#####: 304: fputs (_("\

-: 305: --backup[=CONTROL] make a backup of each existing destination file\

-: 306:\n\

-: 307: -b like --backup but does not accept an argument\n\

-: 308: -f, --force do not prompt before overwriting\n\

-: 309: -i, --interactive prompt before overwrite\n\

-: 310: -n, --no-clobber do not overwrite an existing file\n\

-: 311:If you specify more than one of -i, -f, -n, only the final one takes effect.\n\

-: 312:"), stdout);

#####: 313: fputs (_("\

-: 314: --strip-trailing-slashes remove any trailing slashes from each SOURCE\n\

-: 315: argument\n\

-: 316: -S, --suffix=SUFFIX override the usual backup suffix\n\

-: 317:"), stdout);

#####: 318: fputs (_("\

-: 319: -t, --target-directory=DIRECTORY move all SOURCE arguments into DIRECTORY\n\

-: 320: -T, --no-target-directory treat DEST as a normal file\n\

144

-: 321: -u, --update move only when the SOURCE file is newer\n\

-: 322: than the destination file or when the\n\

-: 323: destination file is missing\n\

-: 324: -v, --verbose explain what is being done\n\

-: 325: -Z, --context set SELinux security context of destination\n\

-: 326: file to default type\n\

-: 327:"), stdout);

#####: 328: fputs (HELP_OPTION_DESCRIPTION, stdout);

#####: 329: fputs (VERSION_OPTION_DESCRIPTION, stdout);

#####: 330: fputs (_("\

-: 331:\n\

-: 332:The backup suffix is ’~’, unless set with --suffix or SIMPLE_BACKUP_SUFFIX.\n\

-: 333:The version control method may be selected via the --backup option or through\n\

-: 334:the VERSION_CONTROL environment variable. Here are the values:\n\

-: 335:\n\

-: 336:"), stdout);

#####: 337: fputs (_("\

-: 338: none, off never make backups (even if --backup is given)\n\

-: 339: numbered, t make numbered backups\n\

-: 340: existing, nil numbered if numbered backups exist, simple otherwise\n\

-: 341: simple, never always make simple backups\n\

-: 342:"), stdout);

#####: 343: emit_ancillary_info ();

-: 344: }

#####: 345: exit (status);

-: 346:}

-: 347:

-: 348:int

1000: 349:main (int argc, char **argv)

1000: 350:{ injector_setup();

-: 351: int c;

-: 352: bool ok;

1000: 353: bool make_backups = false;

-: 354: char *backup_suffix_string;

1000: 355: char *version_control_string = NULL;

-: 356: struct cp_options x;

1000: 357: char *target_directory = NULL;

1000: 358: bool no_target_directory = false;

-: 359: int n_files;

-: 360: char **file;

1000: 361: bool selinux_enabled = (0 < is_selinux_enabled ());

-: 362:

-: 363: initialize_main (&argc, &argv);

1000: 364: set_program_name (argv[0]);

1000: 365: setlocale (LC_ALL, "");

1000: 366: bindtextdomain (PACKAGE, LOCALEDIR);

1000: 367: textdomain (PACKAGE);

-: 368:

1000: 369: atexit (close_stdin);

-: 370:

1000: 371: cp_option_init (&x);

-: 372:

-: 373: /* Try to disable the ability to unlink a directory. */

1000: 374: priv_set_remove_linkdir ();

-: 375:

-: 376: /* FIXME: consider not calling getenv for SIMPLE_BACKUP_SUFFIX unless

145

-: 377: we’ll actually use backup_suffix_string. */

1000: 378: backup_suffix_string = getenv ("SIMPLE_BACKUP_SUFFIX");

-: 379:

1000: 380: while ((c = getopt_long (argc, argv, "bfint:uvS:TZ", long_options, NULL))

-: 381: != -1)

-: 382: {

1000: 383: switch (c)

-: 384: {

-: 385: case ’b’:

100: 386: make_backups = true;

100: 387: if (optarg)

#####: 388: version_control_string = optarg;

100: 389: break;

-: 390: case ’f’:

200: 391: x.interactive = I_ALWAYS_YES;

200: 392: break;

-: 393: case ’i’:

#####: 394: x.interactive = I_ASK_USER;

#####: 395: break;

-: 396: case ’n’:

100: 397: x.interactive = I_ALWAYS_NO;

100: 398: break;

-: 399: case STRIP_TRAILING_SLASHES_OPTION:

100: 400: remove_trailing_slashes = true;

100: 401: break;

-: 402: case ’t’:

100: 403: if (target_directory)

#####: 404: error (EXIT_FAILURE, 0, _("multiple target directories specified"));

-: 405: else

-: 406: {

-: 407: struct stat st;

100: 408: if (stat (optarg, &st) != 0)

#####: 409: error (EXIT_FAILURE, errno, _("failed to access %s"),

-: 410: quote (optarg));

100: 411: if (! S_ISDIR (st.st_mode))

#####: 412: error (EXIT_FAILURE, 0, _("target %s is not a directory"),

-: 413: quote (optarg));

-: 414: }

100: 415: target_directory = optarg;

100: 416: break;

-: 417: case ’T’:

#####: 418: no_target_directory = true;

#####: 419: break;

-: 420: case ’u’:

100: 421: x.update = true;

100: 422: break;

-: 423: case ’v’:

100: 424: x.verbose = true;

100: 425: break;

-: 426: case ’S’:

100: 427: make_backups = true;

100: 428: backup_suffix_string = optarg;

100: 429: break;

-: 430: case ’Z’:

-: 431: /* As a performance enhancement, don’t even bother trying

-: 432: to "restorecon" when not on an selinux-enabled kernel. */

146

100: 433: if (selinux_enabled)

-: 434: {

#####: 435: x.preserve_security_context = false;

#####: 436: x.set_security_context = true;

-: 437: }

100: 438: break;

#####: 439: case_GETOPT_HELP_CHAR;

#####: 440: case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);

-: 441: default:

#####: 442: usage (EXIT_FAILURE);

-: 443: }

-: 444: }

-: 445:

1000: 446: n_files = argc - optind;

1000: 447: file = argv + optind;

-: 448:

1000: 449: if (n_files <= !target_directory)

-: 450: {

#####: 451: if (n_files <= 0)

#####: 452: error (0, 0, _("missing file operand"));

-: 453: else

#####: 454: error (0, 0, _("missing destination file operand after %s"),

-: 455: quote (file[0]));

#####: 456: usage (EXIT_FAILURE);

-: 457: }

-: 458:

1000: 459: if (no_target_directory)

-: 460: {

#####: 461: if (target_directory)

#####: 462: error (EXIT_FAILURE, 0,

#####: 463: _("cannot combine --target-directory (-t) "

-: 464: "and --no-target-directory (-T)"));

#####: 465: if (2 < n_files)

-: 466: {

#####: 467: error (0, 0, _("extra operand %s"), quote (file[2]));

#####: 468: usage (EXIT_FAILURE);

-: 469: }

-: 470: }

1000: 471: else if (!target_directory)

-: 472: {

900: 473: assert (2 <= n_files);

900: 474: if (target_directory_operand (file[n_files - 1]))

900: 475: target_directory = file[--n_files];

#####: 476: else if (2 < n_files)

#####: 477: error (EXIT_FAILURE, 0, _("target %s is not a directory"),

#####: 478: quote (file[n_files - 1]));

-: 479: }

-: 480:

1000: 481: if (make_backups && x.interactive == I_ALWAYS_NO)

-: 482: {

#####: 483: error (0, 0,

#####: 484: _("options --backup and --no-clobber are mutually exclusive"));

#####: 485: usage (EXIT_FAILURE);

-: 486: }

-: 487:

1000: 488: if (backup_suffix_string)

147

100: 489: simple_backup_suffix = xstrdup (backup_suffix_string);

-: 490:

1100: 491: x.backup_type = (make_backups

100: 492: ? xget_version (_("backup type"),

-: 493: version_control_string)

-: 494: : no_backups);

-: 495:

1000: 496: hash_init ();

-: 497:

1000: 498: if (target_directory)

-: 499: {

-: 500: int i;

-: 501:

-: 502: /* Initialize the hash table only if we’ll need it.

-: 503: The problem it is used to detect can arise only if there are

-: 504: two or more files to move. */

1000: 505: if (2 <= n_files)

#####: 506: dest_info_init (&x);

-: 507:

1000: 508: ok = true;

2000: 509: for (i = 0; i < n_files; ++i) {

1000: 510: ok &= movefile (file[i], target_directory, true, &x);}

-: 511: }

-: 512: else

#####: 513: ok = movefile (file[0], file[1], false, &x);

-: 514:

1000: 515: exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);

-: 516:}

-: 0:Source:mpglibDBL/decode_i386.c

-: 0:Graph:mpglibDBL/decode_i386.gcno

-: 0:Data:mpglibDBL/decode_i386.gcda

-: 0:Runs:3

-: 0:Programs:1

-: 1:/*

-: 2: * Mpeg Layer-1,2,3 audio decoder

-: 3: * ------------------------------

-: 4: * copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.

-: 5: * See also ’README’

-: 6: *

-: 7: * slighlty optimized for machines without autoincrement/decrement.

-: 8: * The performance is highly compiler dependend. Maybe

-: 9: * the decode.c version for ’normal’ processor may be faster

-: 10: * even for Intel processors.

-: 11: */

-: 12:

-: 13:/* $Id: decode_i386.c,v 1.3 2003/08/12 00:02:55 snelg Exp $ */

-: 14:

-: 15:#ifdef HAVE_CONFIG_H

-: 16:#include <config.h>

-: 17:#endif

-: 18:

-: 19:#ifdef STDC_HEADERS

-: 20:# include <stdlib.h>

-: 21:# include <string.h>

148

-: 22:#else

-: 23:/*# ifndef HAVE_STRCHR

-: 24:# define strchr index

-: 25:# define strrchr rindex

-: 26:# endif

-: 27:char *strchr (), *strrchr ();

-: 28:*/

-: 29:# ifndef HAVE_MEMCPY

-: 30:# define memcpy(d, s, n) bcopy ((s), (d), (n))

-: 31:# define memmove(d, s, n) bcopy ((s), (d), (n))

-: 32:# endif

-: 33:#endif

-: 34:

-: 35:#if defined(__riscos__) && defined(FPA10)

-: 36:#include "ymath.h"

-: 37:#else

-: 38:#include <math.h>

-: 39:#endif

-: 40:

-: 41:#include "decode_i386.h"

-: 42:#include "dct64_i386.h"

-: 43:#include "tabinit.h"

-: 44:

-: 45:#include "interface.h"

-: 46:

-: 47:#include "probes.h" //FI variable probe functions

-: 48:#include "injectors.h" // FI injector functions

-: 49:#include "errhandle.h" // error handling functions

-: 50:

-: 51:#ifdef WITH_DMALLOC

-: 52:#include <dmalloc.h>

-: 53:#endif

-: 54:

-: 55:Float_t *lSamp;

-: 56:Float_t *rSamp;

-: 57:Float_t *maxSamp;

-: 58:unsigned char maxAmpOnly;

-: 59:

-: 60:int procSamp;

-: 61:

#####: 62:int synth_1to1_mono(PMPSTR mp, real *bandPtr,int *pnt)

-: 63:{ //printf("decode_i386.c - synth_1to1_mono\n"); //**

-: 64: int ret;

#####: 65: int pnt1 = 0;

-: 66:

#####: 67: ret = synth_1to1(mp,bandPtr,0,&pnt1);

#####: 68: *pnt += 64;

-: 69:

#####: 70: return ret;

-: 71:}

-: 72:

13536144: 73:int synth_1to1(PMPSTR mp, real *bandPtr,int channel,int *pnt)

-: 74:{//printf("decode_i386.c - synth_1to1\n"); //**

-: 75:/* static const int step = 2; */

-: 76:

-: 77: int bo;

149

-: 78: Float_t *dsamp;

13536144: 79: real mSamp = 0;

-: 80:

-: 81: real *b0,(*buf)[0x110];

13536144: 82: int clip = 0;

-: 83: int bo1;

-: 84:

13536144: 85:channel ^= 1 << 1;

-: 86:

13536144: 87: bo = mp->synth_bo;

-: 88:

13536144: 89: if(!channel) { printf("hey\n");

#####: 90: dsamp = lSamp;

#####: 91: bo--;

#####: 92: bo &= 0xf;

#####: 93: buf = mp->synth_buffs[0];

-: 94: }

-: 95: else {

13536144: 96: dsamp = rSamp;

13536144: 97: buf = mp->synth_buffs[1];

-: 98: }

-: 99:

13536144: 100: if(bo & 0x1) {

13536144: 101: b0 = buf[0];

13536144: 102: bo1 = bo;

13536144: 103: dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);

-: 104: // dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,read_imp_dp(1,bandPtr,10));

-: 105: }

-: 106: else {

#####: 107: b0 = buf[1];

#####: 108: bo1 = bo+1;

#####: 109: dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);

-: 110: //dct64(buf[0]+bo,buf[1]+bo+1,read_imp_dp(1,bandPtr,10));

-: 111: }

-: 112:

13536144: 113: mp->synth_bo = bo;

-: 114:

13536144: 115:if (maxAmpOnly) {

-: 116: {

-: 117: register int j;

13536144: 118: real *window = decwin + 16 - bo1;

-: 119:

230114448: 120: for (j=16;j;j--,b0+=0x10,window+=0x20)

-: 121: {

-: 122: real sum;

216578304: 123: sum = window[0x0] * b0[0x0];

216578304: 124: sum -= window[0x1] * b0[0x1];

216578304: 125: sum += window[0x2] * b0[0x2];

216578304: 126: sum -= window[0x3] * b0[0x3];

216578304: 127: sum += window[0x4] * b0[0x4];

216578304: 128: sum -= window[0x5] * b0[0x5];

216578304: 129: sum += window[0x6] * b0[0x6];

216578304: 130: sum -= window[0x7] * b0[0x7];

216578304: 131: sum += window[0x8] * b0[0x8];

216578304: 132: sum -= window[0x9] * b0[0x9];

216578304: 133: sum += window[0xA] * b0[0xA];

150

216578304: 134: sum -= window[0xB] * b0[0xB];

216578304: 135: sum += window[0xC] * b0[0xC];

216578304: 136: sum -= window[0xD] * b0[0xD];

216578304: 137: sum += window[0xE] * b0[0xE];

216578304: 138: sum -= window[0xF] * b0[0xF];

-: 139:

216578304: 140: if (sum > mSamp) {

30107229: 141: mSamp = sum;

-: 142: }

186471075: 143: else if ((-sum) > mSamp) {

29962909: 144: mSamp = (-sum);

-: 145: }

-: 146: }

-: 147:

-: 148: {

-: 149: real sum;

13536144: 150: sum = window[0x0] * b0[0x0];

13536144: 151: sum += window[0x2] * b0[0x2];

13536144: 152: sum += window[0x4] * b0[0x4];

13536144: 153: sum += window[0x6] * b0[0x6];

13536144: 154: sum += window[0x8] * b0[0x8];

13536144: 155: sum += window[0xA] * b0[0xA];

13536144: 156: sum += window[0xC] * b0[0xC];

13536144: 157: sum += window[0xE] * b0[0xE];

-: 158:

13536144: 159: if (sum > mSamp) {

#####: 160: mSamp = sum;

-: 161: }

13536144: 162: else if ((-sum) > mSamp) {

#####: 163: mSamp = (-sum);

-: 164: }

13536144: 165: b0-=0x10,window-=0x20;

-: 166: }

13536144: 167: window += bo1<<1;

-: 168:

216578304: 169: for (j=15;j;j--,b0-=0x10,window-=0x20)

-: 170: {

-: 171: real sum;

203042160: 172: sum = -window[-0x1] * b0[0x0];

203042160: 173: sum -= window[-0x2] * b0[0x1];

203042160: 174: sum -= window[-0x3] * b0[0x2];

203042160: 175: sum -= window[-0x4] * b0[0x3];

203042160: 176: sum -= window[-0x5] * b0[0x4];

203042160: 177: sum -= window[-0x6] * b0[0x5];

203042160: 178: sum -= window[-0x7] * b0[0x6];

203042160: 179: sum -= window[-0x8] * b0[0x7];

203042160: 180: sum -= window[-0x9] * b0[0x8];

203042160: 181: sum -= window[-0xA] * b0[0x9];

203042160: 182: sum -= window[-0xB] * b0[0xA];

203042160: 183: sum -= window[-0xC] * b0[0xB];

203042160: 184: sum -= window[-0xD] * b0[0xC];

203042160: 185: sum -= window[-0xE] * b0[0xD];

203042160: 186: sum -= window[-0xF] * b0[0xE];

203042160: 187: sum -= window[-0x0] * b0[0xF];

-: 188:

203042160: 189: if (sum > mSamp) {

151

63129248: 190: mSamp = sum;

-: 191: }

139912912: 192: else if ((-sum) > mSamp) {

62933519: 193: mSamp = (-sum);

-: 194: }

-: 195: }

-: 196: }

-: 197:}

-: 198:else {

-: 199:

-: 200:

-: 201: {

-: 202: register int j;

#####: 203: real *window = decwin + 16 - bo1;

-: 204:

#####: 205: for (j=16;j;j--,b0+=0x10,window+=0x20)

-: 206: {

-: 207: real sum;

#####: 208: sum = window[0x0] * b0[0x0];

#####: 209: sum -= window[0x1] * b0[0x1];

#####: 210: sum += window[0x2] * b0[0x2];

#####: 211: sum -= window[0x3] * b0[0x3];

#####: 212: sum += window[0x4] * b0[0x4];

#####: 213: sum -= window[0x5] * b0[0x5];

#####: 214: sum += window[0x6] * b0[0x6];

#####: 215: sum -= window[0x7] * b0[0x7];

#####: 216: sum += window[0x8] * b0[0x8];

#####: 217: sum -= window[0x9] * b0[0x9];

#####: 218: sum += window[0xA] * b0[0xA];

#####: 219: sum -= window[0xB] * b0[0xB];

#####: 220: sum += window[0xC] * b0[0xC];

#####: 221: sum -= window[0xD] * b0[0xD];

#####: 222: sum += window[0xE] * b0[0xE];

#####: 223: sum -= window[0xF] * b0[0xF];

-: 224:

#####: 225: *dsamp++ = (Float_t)sum;

#####: 226: procSamp++;

#####: 227: if (sum > mSamp) {

#####: 228: mSamp = sum;

-: 229: }

#####: 230: else if ((-sum) > mSamp) {

#####: 231: mSamp = (-sum);

-: 232: }

-: 233: }

-: 234:

-: 235: {

-: 236: real sum;

#####: 237: sum = window[0x0] * b0[0x0];

#####: 238: sum += window[0x2] * b0[0x2];

#####: 239: sum += window[0x4] * b0[0x4];

#####: 240: sum += window[0x6] * b0[0x6];

#####: 241: sum += window[0x8] * b0[0x8];

#####: 242: sum += window[0xA] * b0[0xA];

#####: 243: sum += window[0xC] * b0[0xC];

#####: 244: sum += window[0xE] * b0[0xE];

#####: 245: *dsamp++ = (Float_t)sum;

152

#####: 246: procSamp++;

#####: 247: if (sum > mSamp) {

#####: 248: mSamp = sum;

-: 249: }

#####: 250: else if ((-sum) > mSamp) {

#####: 251: mSamp = (-sum);

-: 252: }

#####: 253: b0-=0x10,window-=0x20;

-: 254: }

#####: 255: window += bo1<<1;

-: 256:

#####: 257: for (j=15;j;j--,b0-=0x10,window-=0x20)

-: 258: {

-: 259: real sum;

#####: 260: sum = -window[-0x1] * b0[0x0];

#####: 261: sum -= window[-0x2] * b0[0x1];

#####: 262: sum -= window[-0x3] * b0[0x2];

#####: 263: sum -= window[-0x4] * b0[0x3];

#####: 264: sum -= window[-0x5] * b0[0x4];

#####: 265: sum -= window[-0x6] * b0[0x5];

#####: 266: sum -= window[-0x7] * b0[0x6];

#####: 267: sum -= window[-0x8] * b0[0x7];

#####: 268: sum -= window[-0x9] * b0[0x8];

#####: 269: sum -= window[-0xA] * b0[0x9];

#####: 270: sum -= window[-0xB] * b0[0xA];

#####: 271: sum -= window[-0xC] * b0[0xB];

#####: 272: sum -= window[-0xD] * b0[0xC];

#####: 273: sum -= window[-0xE] * b0[0xD];

#####: 274: sum -= window[-0xF] * b0[0xE];

#####: 275: sum -= window[-0x0] * b0[0xF];

-: 276:

#####: 277: *dsamp++ = (Float_t)sum;

#####: 278: procSamp++;

#####: 279: if (sum > mSamp) {

#####: 280: mSamp = sum;

-: 281: }

#####: 282: else if ((-sum) > mSamp) {

#####: 283: mSamp = (-sum);

-: 284: }

-: 285: }

-: 286: }

-: 287:}

13536144: 288: *pnt += 128;

-: 289:

13536144: 290: if ((Float_t)mSamp > *maxSamp)

1481: 291: *maxSamp = mSamp;

-: 292:

13536144: 293: if (!channel) lSamp = dsamp;

13536144: 294: else rSamp = dsamp;

-: 295:

13536144: 296: return clip;

-: 297:}

-: 298:

153

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Benefits

	Literature Review
	Open Source Software
	Adoption
	Commercialization
	Open Innovation
	Bugs
	Quality
	Validation and Verification

	Test Case Prioritization and Minimization
	Static Analysis
	Dynamic Analysis
	Fault Prediction

	Software Reliability
	Machine Learning
	Modeling and Formal Methods
	Reliability Prediction

	Framework Architecture
	Overview
	Function Analysis
	Variable Analysis
	Fault Injection
	Framework
	Logging
	Importance

	Priority Prediction
	Function Priority
	Variable Priority

	Experimental Design and Results
	Priority Function Prediction
	Case Study
	Test Setup
	Attribute Selection
	Discretization
	Classification
	Cost-Sensitive Analysis
	Discussion

	Variable Metric Predictions
	Case Study
	Test Setup
	Attribute Selection
	Classification
	Discussion

	Validation Test
	Case Study
	Test Setup
	Function Attribute Selection
	Merit and Rank of Function Attributes
	Function Classification
	Discussion: Function Validation
	Variable Attribute Selection
	Merit and Rank of Variable Attributes
	Variable Classification
	Discussion: Variable Validation

	Summary

	Conclusion
	Future Work
	Bibliography
	Appendices
	Code Listing
	Sample Code Coverage Output

