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ABSTRACT 

 

 

 There is a need for a rapid quantitative way to evaluate the quality of aggregate friction 

properties for use in an asphalt surface (wearing) course. Aggregates that are resistant to 

polishing and capable of retaining their shape characteristics are desirable in the asphalt wearing 

course. The wearing course should be capable of maintaining an adequate amount of friction 

when subjected to polishing due to heavy traffic in order to ensure the safety of the roadway. 

Current laboratory procedures used to evaluate the friction properties of aggregates are said to be 

time consuming and subjective. The purpose of this research study was to evaluate the 

correlation between aggregate performance in a laboratory test consisting of the second 

generation Aggregate Imaging Measurement System (AIMS-II) and Micro-Deval to field friction 

performance. 

The AIMS-II device was used to quantify aggregate shape characteristics (angularity, texture, 

and form) before conditioning (polishing) and after conditioning in the Micro-Deval at different 

increments of time. The aggregates used for testing were selected based on their friction 

performance in surface courses at the National Center for Asphalt Technology (NCAT) 

Pavement Test Track. Field friction performance data for the selected test sections was obtained 

using the locked-wheel skid trailer. Aggregate shape indexes, more specifically, angularity and 

texture, were compared with the results obtained from the skid trailer in the field to see if a 

correlation could be established. 
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The results showed the AIMS-II device was capable of detecting changes in aggregate shape 

characteristics when subjected to conditioning in the Micro-Deval. However, the analysis 

showed a good correlation between the AIMS-II indexes and the field friction data could not be 

established with the procedure that was used in this research study. This research study was a 

useful step in working towards developing a test method that may use the AIMS-II in 

conjunction with the Micro-Deval to predict the skid resistance of an asphalt wearing course 

mixture in the field. Future research is needed to enhance the test method used in this research 

study and take other factors into consideration that affect field friction performance. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Transportation agencies have made safety a high priority regarding pavement infrastructure. To 

optimize roadway safety, pavement friction, also referred to as skid resistance, is an essential 

component to take into consideration when evaluating an asphalt pavement surface. The skid 

resistance of an asphalt pavement decreases when subjected to polishing from heavy traffic. State 

agencies monitor pavement friction to ensure the pavement surface is maintaining an adequate 

amount of skid resistance. It is important to prevent the pavement surface friction from dropping 

below the minimum thresholds applied by state agencies. This reduces the risk of potential 

crashes caused by inadequate friction on the roadway, especially in wet weather conditions. 

However, it should be noted that state agencies do not report their thresholds due to liability. 

Several methods and devices are capable of measuring pavement friction in the field. The most 

common device used is the locked-wheel skid trailer, equipped with either a ribbed or smooth 

testing tire (Hall et al. 2009). If the locked-wheel skid trailer indicates a pavement surface is 

characterized by a friction number lower than the minimum threshold, corrective measures, such 

as applying a surface treatment or resurfacing the pavement, should be taken to prevent the 

increased risk of accidents. However, such maintenance and treatment methods can be costly and 

time consuming. Therefore, there is a need for laboratory test protocols to evaluate a surface 

mixture’s ability to retain a sufficient amount of friction prior to placing it in the field. 

Aggregates make up a majority of the materials used in an asphalt pavement mixture. Therefore, 

it is important that good quality aggregates are used in the surface mix design. The quality of an 

aggregate may be determined by evaluating its shape characteristics. Aggregate shape 

characteristics, more specifically aggregate texture and angularity, are key components that 
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influence a mixture’s ability to provide a sufficient amount of friction between the pavement 

surface and vehicle tire (Hall et al. 2009). Understanding these parameters and the role they play 

in pavement friction is essential to the safety of the roadway. There are several methods used to 

evaluate aggregate shape characteristics in the laboratory before and after the aggregates are 

subjected to conditioning. Some of these tests are said to be subjective and time consuming (Hall 

et al. 2009). Therefore, researchers continue to examine the use of aggregate imaging systems to 

quantify aggregate shape characteristics. This research study focuses on the use of such a device, 

known as the second generation Aggregate Imaging System, Model AFA2A (AIMS-II). The 

AIMS-II device quantifies aggregate shape characteristics before and after conditioning. For the 

purpose of this research, aggregates were conditioned using the Micro-Deval aggregate 

conditioning test. This allowed the user to evaluate the AIMS-II device’s capability of detecting 

changes in aggregate shape characteristics when aggregates were subjected to conditioning. 

1.2 Project Objectives 

The objective of this study was to evaluate the feasibility of using the AIMS-II device in 

conjunction with the Micro-Deval as an aggregate testing protocol in the laboratory for 

evaluating pavement friction in the field. The second objective was to determine if a correlation 

could be established with the AIMS-II lab results and field friction performance data using the 

locked-wheel skid trailer.  

1.3 Scope of Work 

As part of this research study, five different aggregate sources were collected for testing: two 

limestone, two granite, and a high friction aggregate, bauxite. The aggregate sources were 

selected based on their availability and use in surface mixtures of different test sections at the 
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NCAT Pavement Test Track. Aggregate particles of the #4 sieve size (passing the 3/8 inch sieve 

and retained on the #4 sieve) and the #16 sieve size (passing the #8 sieve and retained on the #16 

sieve) were obtained for each aggregate source. However, only aggregate passing the #8 and 

retained on the #16 sieve were collected for the bauxite. The high friction surface treatment 

composed of bauxite in the field only contained fine particles.  The shape characteristics of each 

aggregate sample were quantified using the AIMS-II device prior to any conditioning. The 

aggregates were then subjected to conditioning in the Micro-Deval at intervals of 20, 40, 60, 80, 

and 100 minutes for coarse aggregates and 10, 20, and 30 minutes for the fine aggregates that 

were tested. The AIMS-II device was then used to track changes in aggregate shape 

characteristics after each Micro-Deval conditioning interval. Field friction performance data was 

obtained from the selected NCAT Test Track sections using the locked-wheel skid trailer at 40 

miles per hour, equipped with a ribbed testing tire. The AIMS-II lab results at the preconditioned 

values and at different intervals of Micro-Deval was compared with the field friction data to see 

if the two could be correlated. The different intervals that were used for comparison after 

conditioning were selected based on terminal conditioning. Terminal conditioning refers to the 

point at which friction values (or AIMS-II indexes) tend to level off at a steady rate. The friction 

numbers may still be decreasing, but they essentially remain the same with increased 

conditioning (Kowalski et al. 2010). Terminal conditioning values were used because state 

agencies are concerned with the friction data that continues at a steady decline after subjected to 

conditioning as opposed to preconditioned values. 

 

  



4 
 

CHAPTER 2: LITERATURE REVIEW 

2.1 Pavement Friction Overview 

Pavement friction is defined as “the force that resists the relative motion between a vehicle tire 

and a pavement surface” (Hall et al. 2009). This resistive frictional force (F) is generated when a 

tire rotates or slides over a pavement surface (Figure 2.1).   

 

Figure 2.1: Simplified diagram of forces acting on a vehicle tire (Hall et al. 2009) 

While friction is a force vector, it is commonly quantified using a friction coefficient, μ. This 

term is a function of the frictional force, F, and the vertical load due to the vehicle load 

supported by the tire, Fw, and is calculated using Equation 2.1 (Hall et al. 2009). 

𝜇 =
𝐹

𝐹𝑤
          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1 

Where: 

μ: Friction coefficient 

F: Frictional force 

Fw: Vertical load due to the vehicle load 



5 
 

The greater the frictional force between the vehicle tire and pavement surface, the higher the 

friction coefficient. This results in what is commonly referred to as a skid resistant pavement. 

Thus, throughout this thesis, pavement friction and skid resistance will be used interchangeably.  

Pavement friction is an essential component to highway safety. It is a result of the combined 

effects of adhesion and hysteresis force components (Figure 2.2). Adhesion is the frictional force 

component generated from the tire-pavement interaction as they come into contact with one 

another, and its magnitude heavily relies on the pavement micro-texture. Hysteresis is the 

frictional force component that results from the energy loss as the vehicle tire deforms over the 

surface with its magnitude depending more on the pavement macro-texture as well as the tire 

material and tire pressure (Hall et al. 2009).  An increase in pavement micro-texture and macro-

texture results in an increase in adhesion and hysteresis, respectively, which together, yield a 

larger frictional force generated between the vehicle tire and pavement.  

 

Figure 2.2: Adhesion and hysteresis frictional force components (Hall et al. 2009) 
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2.2 Factors Affecting Pavement Friction 

Pavement friction is affected by a number of factors which can be grouped into four categories 

(Hall et al. 2009): 

 Pavement Surface Characteristics: micro-texture, macro-texture, mega-texture, material 

properties, and temperature 

 Vehicle Factors: vehicle speed, braking, and driving maneuver 

 Tire Properties: tire tread, rubber composition, inflation pressure, load, and temperature 

 Environmental Effects: climate and contaminants on the roadway 

While all of these factors play an important role in the resulting pavement friction, pavement 

surface characteristics, more specifically the influence of material properties on micro-texture 

and macro-texture, will be the primary focus for the purpose of this research; therefore, these two 

key properties will be discussed in more detail. 

2.3 Pavement Texture 

It has been well established that pavement friction is a function of the pavement’s texture. 

Texture consists of two primary components that affect pavement friction, macro-texture and 

micro-texture. Macro-texture focuses on the mixture properties as a whole within wavelengths of 

0.5 mm to 50 mm, such as aggregate gradation or compaction method, whereas micro-texture is 

influenced by individual aggregate shape and surface properties within the mix characterized by 

wavelengths less than 0.5 mm (Hall et al. 2009). Figure 2.3 provides a better representation of 

the differences in magnitude of each of the texture components. 
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Figure 2.3: Texture ranges that exist for a given pavement surface (Hall et al. 2009) 

 

The magnitude of pavement friction is controlled by micro-texture at lower speeds, whereas 

macro-texture primarily contributes to pavement friction between the roadway surface and 

vehicle tire at high speeds. A pavement mixture capable of maintaining adequate micro-texture 

under the polishing action of traffic is desired in order to keep a strong interaction between the 

tire and pavement surface. Similarly, a sufficient amount of macro-texture is favorable on a 

pavement surface to ensure that water does not build up on the surface and is adequately 

dispersed to prevent vehicles from hydroplaning (Hall et al. 2009).  

2.4 Measuring Friction 

The importance of understanding pavement friction in regards to roadway safety has been well 

established. However, determining the best approach for measuring a pavement’s surface friction 

can be complicated as a number of different methods exist and are currently used.  
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2.4.1 British Pendulum Tester (BPT) 

The BPT is one tool used to quantify friction at low speeds for either aggregates or pavement 

mixtures, following ASTM E303 standard testing procedure. Figure 2.4 shows a picture of the 

BPT setup along with a magnified view of the BPT’s scale (right), which is discussed in more 

detail later. 

 

Figure 2.4: BPT setup (left) and magnified view of the scale (right) (Erukulla 2011) 

 

A sufficient amount of water is sprayed to cover the testing area prior to any testing. Then, a 

swinging pendulum with a rubber pad attached to the bottom is released and slides across the 

pavement surface or aggregate sample contained in a mold. The test is executed a total of five 

times with water being sprayed every time prior to releasing the swinging pendulum. The results 

from the first swing are not recorded, but the results from the subsequent four swings are. A 

British Pendulum Number (BPN) is recorded for each swing from a scale of 0 to 150, which can 

be seen in the right photograph of Figure 2.4. The BPN is recorded as the maximum height 

reached after contacting the testing surface. A higher BPN indicates that the surface is 
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characterized by a greater amount of friction, whereas a lower BPN reveals the surface is 

characterized by less friction. Serigos et al. (2013) used the device to provide spot measurements 

of the low-speed skid resistance of pavement sections in the field. The researchers’ results were 

then compared with pavement texture results obtained from the laser texture scanner (LTS), 

discussed in a later section within this chapter.  Although this testing methodology is not new, it 

is still commonly used today.  However, testing field data with updated, automatic technology, 

such as the dynamic friction tester (DFT) or locked-wheel skid trailer, seems more practical. The 

BPT can be subjective to the user, as the drop height of the swinging pendulum is controlled by 

the operator and could affect results. Additionally, when using the BPT for aggregate testing, the 

aggregates must be strategically placed in a special mold specific to the device and held together 

by epoxy. This task can prove to be tedious and time-consuming, and it could introduce 

additional variability to the testing procedure. 

2.4.2 Dynamic Friction Tester (DFT) 

The DFT is another device used to measure pavement friction of mixtures in the field or 

laboratory following ASTM E1911. Figure 2.5 shows a top view (left) as well as a side view 

(right) of the DFT. 
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Figure 2.5: Top view (left) and side view (right) of the DFT 

 

 Equipped with three spring loaded rubber sliders that come in contact with the pavement 

surface, a spinning horizontal disk is lowered on to the pavement with water spraying in front of 

the sliders to simulate wet weather. Figure 2.6 shows a view of the DFT from the bottom 

illustrating the rotating disk as well as the three rubber sliders. A magnified view of the rubber 

slider is shown in the top right corner of the picture.  
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Figure 2.6: Photographic illustration of the DFT's horizontal disk and three rubber sliders 

 

The friction coefficient generated between the rubber pads and pavement surface is recorded at 

varying speeds of 80, 60, 40, and 20 km/h as the disc decreases in speed and comes to a complete 

stop. The friction coefficient is calculated by converting the torque generated by the rotating disc 

to the force induced on the rubber sliders and dividing that force by the weight of the disk and 

motor assembly (ASTM E1911). A positive correlation has been established between the DFT 

and the locked-wheel skid trailer, which is discussed in more detail in the next section of this 

chapter. 

2.4.3 Locked-Wheel Skid Trailer 

The locked-wheel skid trailer (ASTM E274) is one of the most commonly used devices to obtain 

field friction data. The test involves using a vehicle or trailer with at least one test wheel to 
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measure the skid resistance of the pavement. Once the vehicle is brought to the desired speed, 

water is sprayed in front of the test wheel before initiating the braking system to lock the test 

wheel. The resulting torque from the interaction between the tire and pavement surface is 

recorded along with the test speed to calculate the skid resistance. This is then reported as a skid 

number (SN).  

The test wheel can either be ribbed (ASTM E501) or smooth (ASTM E524); however, the ribbed 

tire is currently the most common method of the skid trailer used in the United States (Hall et al. 

2009). Figure 2.7 shows an example of the ribbed test tire (left) compared to a smooth test tire 

(right). 

 

Figure 2.7: Photographic illustration of a ribbed (ASTM E501) versus smooth test tire 

(ASTM E524) (Choubane et al. 2006) 

  

Each tire has been shown to delineate differences in different textural wavelengths.  It has been 

noted that the ribbed tire is sensitive to pavement micro-texture and tends to generate higher skid 
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numbers, whereas the smooth tire was found to be more sensitive to pavement macro-texture 

(Yut et al. 2013). As part of the FHWA’s Long Term Pavement Performance (LTPP) study, six 

LTPP sections in Connecticut were tested with the skid trailer using the smooth tire and ribbed 

tire at 40 mph. When the SNs using the smooth tire (SN40S) were compared with the SNs using 

the ribbed tire (SN40R), the results yielded a very low correlation coefficient (R2) of 0.024 

(Figure 2.8). This further indicated the two tires were sensitive to different aspects of pavement 

texture (Yut et al. 2013). Therefore, it is important to understand the implications of tire type on 

lab to field comparisons. 

 

 

Figure 2.8: Smooth tire SNs versus ribbed tire SNs correlation plot (Yut et al. 2013) 
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2.4.4 Lab Test Correlations with Locked-Wheel Skid Trailer 

Correlations have been made between DFT laboratory testing of slabs and skid trailer field 

results using a ribbed tire on pavement test sections at the NCAT Test Track (Erukulla 2011). 

Four different mixtures which were part of the 2003 Test Track research cycle were made into 

slabs.  These slabs were then tested using the DFT after being subjected to incremental polishing 

cycles using the Three Wheel Polishing Device (TWPD). The TWPD was developed by NCAT 

to polish slabs, so the decrease in surface texture and friction could be tested, as discussed later. 

The Test Track sections were tested using the skid trailer at 40 mph to obtain the corresponding 

skid number (SN40R). To clarify, Erukulla (2011) refers to the SN40R as SN64R, which are 

synonymous, as 40 mph is equivalent to 64 km/h. The “64” in SN64R indicates the speed at 

which the skid trailer was tested, whereas the “R” denotes the type of test tire used, which was 

ribbed in this case. If a smooth tire had been used to test the pavement skid resistance with the 

skid trailer traveling at 64 km/h, the appropriate notation would be SN64S. This testing was 

completed at different trafficking intervals, measured using Equivalent Single Axle Loads 

(ESALs). As expected, the friction coefficients obtained from the DFT at varying speeds and the 

SN64Rs obtained from the skid trailer appeared to be decreasing with increased polishing and 

trafficking, respectively. The laboratory DFT values at 60 km/h (DFT60) were used to draw 

comparisons with skid trailer field data (SN64R). DFT60 results were used as these values 

correlated best with SN64R data out of all the speeds (80, 60, 40, and 20 km/h) at which the DFT 

collects friction data (Erukulla 2011).  The DFT ranked the laboratory made slabs (Figure 2.9) 

the same as the test sections that were tested using the skid trailer (Figure 2.10). The ranking is 

shown in red next to the mix designation at the top of the graphs. 
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Figure 2.9: Laboratory DFT60 values versus TWPD conditioning cycles for the four slabs 

(Erukulla 2011) 

 

 

Figure 2.10: Field SN64R versus ESALs for the four test sections (Erukulla 2011) 
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It should be noted that the field mixture used on section W7 was replaced with a different 

mixture shortly after 6 million ESALs due to its poor friction performance. Therefore, the 

terminal SN64R that was used in the research analysis is circled in red in Figure 2.10. The higher 

SNs in the figure for that section portray the friction performance of the new mixture that was 

used as the replacement and were excluded from analysis.  

A positive correlation was developed between the skid trailer field results (SN64R) and 

laboratory results when using the DFT values at 60 km/h multiplied by 100, as shown for the x-

axis in Figure 2.11.  

 

Figure 2.11: Laboratory (DFT60*100) versus NCAT Test Track (SN64R) correlation 

(Erukulla 2011) 

 

While comparing laboratory mixtures to field mixtures is important and useful, there is still a 

need for improving the correlation between a single aggregate source micro-texture properties 

and field mixture friction data to relate the aggregate source’s ability to resist polishing with the 
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overall mixture’s ability to resist polishing under traffic. It is important for agencies to be able to 

identify aggregates that would be suitable for use in a surface mixture that are capable of 

providing good skid resistance when subjected to heavy traffic.    

2.5 Measuring Mixture Surface Texture 

The texture of aggregates and pavement mixtures, on both a macro and micro level, is a key 

component that influences a mixture’s ability to provide an adequate amount of friction between 

the pavement surface and vehicle tire. Therefore, identifying aggregates and pavement mixtures 

characterized by high texture values is important to roadway safety. Several tests and equipment 

are currently used to quantify a pavement’s surface macro-texture and micro-texture. 

2.5.1 Volumetric Sand Patch Test 

The volumetric sand patch test (ASTM E965) is used to determine the average depth of the 

pavement’s surface macro-texture. A known volume of dry Ottawa natural silica sand is spread 

over the cleaned pavement surface being evaluated. Once the sand is spread into a circular patch, 

the diameter is measured and recorded a minimum of four times at different locations. The 

average diameter is then used to find the area of the sand patch. The resulting Mean Texture 

Depth (MTD) is calculated by dividing the known volume of sand used by the area of the 

circular sand patch.  

Other versions of the test use other materials such as glass spheres or a known volume of grease 

that is applied to the surface between two strips of masking tape. This is referred to as the grease 

patch method. With advancements in technology, the use of this test seems outdated and 

impractical due to operator subjectivity. Therefore, researchers should consider using automated 

equipment if it is available to them.   
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2.5.2 Circular Texture Meter (CTM) 

The use of laser technology is a more advanced approach to measuring the surface texture of a 

pavement. Several devices are currently available to measure pavement texture. The Circular 

Texture Meter (CTM) is a static device that uses laser technology to quantify the macro-texture 

of a pavement surface (ASTM E2157). The CTM provides texture measurements using a laser 

displacement sensor mounted on a 142 mm arm that rotates clockwise measuring pavement 

texture at a sampling rate of approximately 0.9 mm. The surface profile is recorded and divided 

into eight, 100 mm (4 in.) long segments, and the resulting Mean Profile Depth (MPD) and Root 

Mean Square (RMS) statistics are reported for each segment. Figure 2.12 provides an illustration 

of how the MPD is calculated for each segment. 

 

Figure 2.12: Graphical representation of calculating the MPD from the CTM (McGhee et 

al. 2003) 

 

The slope of each segment is converted to a zero mean profile reference height, noted as 

“Average level” in Figure 2.12, by subtracting a linear regression of the segment. This reference 

height is characterized as having an area above it equal to the area below it. Each segment is then 

further divided into two equal halves, noted as first and second half of baseline in the figure. The 
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highest peak is determined in each half segment (Peak level), and the average of these two peak 

heights is the mean segment depth (McGhee et al. 2003). Therefore, the overall MPD is the 

average of the mean segment depths for all eight segments that make up the tested circumference 

of the CTM. The RMS is a “…statistical value offering one measure of how much the actual data 

(measured profile) deviates from a best fit (modeled data) of the data” (McGhee et al. 2003). 

Together, the MPD and RMS provide information on whether the surface texture is positive 

(surface projections) or negative (depressions) (Applied Pavement Technology 2015).  

Previous research (Henry et al. 2000, McGhee et al. 2003) has shown a good correlation between 

the MTD provided by the sand patch test and the MPD provided by the CTM. Mcghee et al. 

(2003) confirmed the use of the CTM as a potential replacement tool for the sand patch test. 

Researchers compiled sand patch test and CTM data from 26 surfaces at the Wallops Flight 

Facility in Virginia and 55 surfaces at Virginia’s Smart Road test bed. The texture values 

provided by the Wallops facility were reported as an average value of three replicates of each test 

type for each surface. Virginia’s Smart Road data was reported as a single value for each test, 

where the sand patch test was conducted at the same location as the center of the CTM’s circular 

track. The data compilation between the two facilities showed a strong correlation between the 

sand patch test’s MTD and the CTM’s MPD (Figure 2.13). 
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Figure 2.13: Correlation between CTM MPD and sand patch MTD (McGhee et al. 2000) 

 

Figure 2.13 shows that the comparison between the MTD and MPD yielded approximately a 

one-to-one relationship, having a small y-intercept. Additionally, an R2 value of 0.92 for this 

particular research agreed with previous research conducted by Abe et al. (2000) who found the 

correlation between the sand patch MTD and CTM’s MPD to yield an R2 value of 0.97. 

Therefore, the use of the CTM as a texture measuring device is practical and eliminates the 

operator subjectivity introduced by the volumetric sand patch test. 

One disadvantage of the CTM is that it focuses on macro-texture measurements only and is not 

used to evaluate the micro-texture of the pavement. Because pavement micro-texture plays a key 

role in pavement friction, it would be useful to have a device that measures both macro and 

micro-texture using laser technology. 
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2.5.3 Laser Texture Scanner (LTS) 

Serigos et al. (2013) evaluated the Laser Texture Scanner’s (LTS) ability to quantify pavement 

micro-texture by using it to test the same locations as the CTM and BPT (mentioned previously) 

for twenty-eight test sections in the field. The LTS is a device similar to that of the CTM; 

however, because the device uses a higher sampling rate than that of the CTM, it is also capable 

of defining pavement micro-texture by separating the texture components within a surface 

profile. Components within the surface profile that were characterized by a wavelength between 

0.05 mm and 0.50 mm were considered micro-texture, whereas macro-texture is defined as 

wavelengths between 0.50 mm and 50.0 mm (Serigos et al. 2013). The method of filtering these 

surface profiles from the LTS was found to be successful for all twenty-eight pavement test 

sections that were evaluated. This showed micro-texture could be included in the analysis. 

As mentioned previously, Serigos et al. (2013) compared texture data with BPT data taken at the 

same locations in the field to demonstrate that the prediction of the BPN could improve when 

accounting for both macro and micro-texture, rather than only taking macro-texture into account. 

Macro-texture measurements were taken using the CTM, whereas the pavement surface micro-

texture was collected using the LTS. The researchers analyzed the effects of CTM macro-texture 

and LTS micro-texture on the BPN separately (Figure 2.14). 
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Figure 2.14: Relationship between macro-texture MPD and BPN (left) and micro-texture 

MPD and BPN (right) (Serigos et al. 2013) 

 

It is apparent that a relationship between the CTM measured macro-texture and BPN as well as 

LTS measured micro-texture and BPN exists; in each cases, the BPN increased as the macro and 

micro-texture increased. The researchers came up with a linear regression reference model to 

explain the prediction of BPN, initially accounting for macro-texture only (Equation 2.2). 

BPN Linear Regression (Serigos et al. 2013): 

𝐵𝑃𝑁 = 𝛼 +  𝛽𝑀𝐴𝐶𝑅𝑂𝑀𝑃𝐷
∗  𝑀𝐴𝐶𝑅𝑂𝑀𝑃𝐷 +  𝛽𝑇𝑅𝐸𝐴𝑇 ∗ 𝑇𝑟𝑒𝑎𝑡      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2 

Where: 

α, βMACRO MPD, βTREAT: Regression coefficients 

MACROMPD: MPD of the surface macro-texture as measured by the CTM 

Treat: Value of 1 if test section consisted of light texturing treatment; otherwise 0 

Using Generalized Least Squares (GLS) statistics, the regression parameters were estimated. It 

should be noted that a light texturing treatment was applied to some of the test sections at the 

time of testing. T-statistics obtained from using the GLS showed that the application of the 
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treatment was statistically significant in explaining the BPN, and therefore, was included in the 

regression model to obtain an R2 of 0.670. 

The micro-texture parameters, as measured by the LTS, were then incorporated into the 

reference model (Equation 2.2). This was also calculated using GLS. The regression model that 

incorporated the LTS measured micro-texture data with the CTM macro-texture measurements 

increased the adjusted R2 value from 0.670 to 0.775. This supports the accepted theory that 

micro-texture greatly influences the performance of a pavement in terms of friction and should 

be accounted for when correlating texture data with field friction data. Although both the CTM 

and LTS were successful in quantifying pavement texture, the two devices are used to test 

pavement surfaces. This still leaves a need for a simpler laboratory protocol to quantify 

aggregate textural characteristics. 

2.6 Existing Laboratory Conditioning Devices 

Because asphalt mixtures are composed primarily of aggregates, it is important to use aggregates 

which resist polishing to ensure the mixtures maintain their friction properties. An aggregate 

might be characterized by a high level of initial angularity or texture, which is indicative of its 

field performance. However, if the aggregate cannot maintain a sufficient level of friction under 

traffic loadings, the aggregate may not be applicable for a pavement surface course. Therefore, 

laboratory polishing equipment may be used to assess an aggregate’s or a pavement surface’s 

resistance to polishing. For the purpose of this research, the primary focus will be on equipment 

used to polish aggregates. 
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2.6.1 Los Angeles (L.A.) Abrasion Test 

The L.A. Abrasion (ASTM C535) is a device that has been used to assess coarse aggregate 

resistance to degradation (Figure 2.15). An aggregate sample containing material retained on the 

#12 (1.70 mm) sieve of known gradation is placed inside a steel drum with a specified number 

(six to twelve) of 450 gram steel charges. The drum is equipped with shelves inside that pick up 

the aggregate sample and steel charges and drop them the height of the drum as it rotates. After 

the drum rotates 1,000 revolutions at 30 to 33 rpm, the material is removed and washed over a 

#12 sieve. The material is oven dried, and the percent loss of the aggregate sample is determined 

as aggregate passing the #12 sieve. 

 

Figure 2.15: L.A. Abrasion testing equipment (Pavement Interactive 2012) 

 

Previous research has concluded that the L.A. Abrasion test does not correlate well with field 

pavement performance (Wu et al. 1998) and acts more as an impact test rather than simulating 



25 
 

the polishing action from heavy traffic in the field (Lane et al. 2000). Wu et al. (1998) tested 

sixteen aggregate sources that varied in performance levels in asphalt concrete using a variety of 

impact tests, such as the Los Angeles Abrasion test, Micro-Deval (discussed within the next 

section), Aggregate Impact Value, Aggregate Crushing Value, and degradation in the Strategic 

Highway Research Program (SHRP) Gyratory Compactor. Table 2.1 shows what Wu et al. 

(1998) characterized as a good, fair, and poor historical pavement performance rating. For the 

purpose of this research and literature review, the focus will be on the Los Angeles Abrasion and 

Micro-Deval aggregate conditioning tests, as these are the tests commonly used in the United 

States.  

Table 2.1: Pavement performance evaluation criteria (Wu et al. 1998) 

Pavement Performance 

Rating 
Description 

Good 

Used for many years with no significant 

degradation problem during construction and 

no significant popouts, raveling, or potholes 

during service life 

Fair 

Used at least once where some degradation 

occurred during construction and/or some 

popouts, raveling, and potholes developed, 

but pavement life extended for over 8 years 

Poor 

Used at least once where raveling, popouts, or 

combinations developed during the first two 

years, severely restricting pavement 

 

The L.A. Abrasion results of the sixteen aggregate sources were compared with the historical 

pavement performance rating (Figure 2.16). As a result, they demonstrated that the L.A. 

Abrasion was not capable of delineating between aggregates as related to good, fair, and poor 
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performance. In some cases, aggregate sources characterized as poor resulted in an L.A. 

Abrasion mass loss close to those aggregate sources that were characterized as good. 

 

Figure 2.16: Pavement performance ratings with L.A. Abrasion results (Wu et al. 1998) 

 

2.6.2 Micro-Deval Aggregate Conditioning Test 

The Micro-Deval (Figure 2.17) is a device used to condition an aggregate sample. The 

aggregate’s resistance to polishing, abrasion, and breakage can then be tested. An aggregate 

sample with a specified gradation (ASTM D6928 for coarse aggregates or ASTM D7428 for fine 

aggregates) is soaked in a specified volume of water for a minimum of one hour prior to testing. 

The aggregate sample and volume of water are then placed inside a steel drum with a specified 

mass of steel balls. The interaction of the steel charges and aggregates degrades the aggregate 

sample as the container rotates for a specified time or number of revolutions. The percent of 

material that passed the 1.18 mm (#16) sieve for coarse aggregates and 75 um (#200) for fine 

aggregates, is then measured to detect the aggregate sample’s abrasion resistance and durability. 
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Figure 2.17: Micro-Deval apparatus 

 

Previous research has shown the Micro-Deval test to be a good tool in evaluating coarse 

aggregate quality in the presence of water. An aggregate’s quality and abrasion resistance may 

be categorized into three different performance levels as good, fair, or poor depending on the 

percent loss upon conducting the Micro-Deval test. As mentioned previously, Wu et al. (1998) 

tested sixteen aggregate sources varying in asphalt concrete field performance levels using the 

Micro-Deval. Researchers compared the Micro-Deval performance rating (good, fair, or poor) 

based on mass loss with the subjective ratings of the asphalt concrete mixtures from different 

state transportation agencies, using the same criteria provided in Table 2.1. They found the 

Micro-Deval to yield the same ratings for most of the aggregate sources (Figure 2.18). 
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The solid horizontal lines show the average of the Micro-Deval mass loss for each of the 

different groups rated by the state agencies. Wu et al. (1998) determined that 18% mass loss 

delineated aggregates of poor quality from the fair and good quality aggregate, which is depicted 

by the dashed line in the figure. It should be noted that the Micro-Deval test was the only impact 

test of the five (mentioned previously) that showed clear delineations among the aggregate 

groups (Wu et al. 1998) 

 

Figure 2.18: Pavement performance ratings with Micro-Deval abrasion (Wu et al. 1998) 

 

Similarly, Cooley et al. (2002) selected 72 different aggregate sources from eight different states 

(AL, GA, FL, KY, MS, NC, SC, and TN) varying in historical asphalt pavement performance 

and evaluated their quality using the L.A. Abrasion and Micro-Deval tests. They found mixed 

results among the Micro-Deval data for each state. For example, of the five states that selected 

aggregate sources with at least two different performance histories, only Micro-Deval results for 
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AL and GA agreed with the historical performance rankings. The Micro-Deval results for the 

remaining three states did not distinguish between the three categories of aggregates (good, fair, 

and poor) that were ranked based on historical performance. The researchers concluded that the 

mineralogical type resulted in the wide range of Micro-Deval results and suggested that 

specifications for the Micro-Deval test method be dependent on parent aggregate type. Despite 

the mixed results, the Micro-Deval is still considered to be a useful tool in evaluating the quality 

and abrasion resistance of aggregates ranging from poor to good historical asphalt pavement 

performance.  

2.6.3 L.A. Abrasion and Micro-Deval Test Differences 

In the progression of test development, the Micro-Deval test procedure was compared to the 

industry standard L.A. Abrasion. Research showed the two yielded significantly different results 

which is to be expected as they simulate different types of impacts and abrasion on the aggregate 

sample. The impact from the L.A. Abrasion simulates the impact aggregates experience during 

handling and construction, whereas the Micro-Deval abrasion relates closer to what aggregates 

would experience in the field when subjected to traffic. 

As mentioned previously, Cooley et al. (2002) tested 72 aggregate sources using the L.A. 

Abrasion and Micro-Deval and found that the L.A. Abrasion resulted in a higher percent loss 

than that of the Micro-Deval, sometimes more than double the percent loss. This can be 

attributed to the L.A. Abrasion test using fewer but significantly larger steel charges (46.8 mm 

diameter) as opposed to the several smaller ones used in the Micro-Deval test protocol (9.5 mm 

diameter). The L.A. Abrasion drum is also equipped with baffles inside which pick up the 

aggregates and large steel charges and drops them the height of the drum. This increases the 

possibility for damage compared to the Micro-Deval test. The harsher impact tends to yield 
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higher mass loss values for some high quality aggregates that have otherwise performed well in 

the field (Rogers et al. 2003).  

Additionally, the L.A. Abrasion test is run on oven dry aggregates as opposed to the Micro-

Deval protocol, which tests aggregates in the presence of water. Aggregates are rarely dry in the 

field and experience more polishing and abrasion than the type of impact simulated by the L.A. 

Abrasion (Rogers et al. 2003). Therefore, the Micro-Deval appears to be more appropriate than 

the L.A. Abrasion in evaluating an aggregate’s resistance to traffic wear while the L.A. Abrasion 

test is more appropriate in assessing aggregate breakdown during handling, mixing, and 

placement. 

2.6.4 British Polishing Wheel 

The British Polishing Wheel (ASTM D3319) is a device used to polish coarse aggregates. The 

polishing resistance of the coarse aggregates are then tested using the BPT described previously. 

The British Polishing Wheel is equipped with a cylindrical wheel and a pneumatic rubber tire 

(Figure 2.19). Coarse aggregates are placed in the same mold as described for BPT testing. The 

cylindrical wheel is characterized by a flat-surface periphery capable of holding fourteen test 

specimens. Test specimens are clamped to the wheel so as to create a continuous surface of 

coarse particles for polishing. As the wheel rotates at 320 +/- 5 rpm, the rubber tire comes in 

contact with the coarse aggregates subjecting them to polishing. During testing, water and a 

silicon carbide grit (No. 150) are continuously fed onto the specimens prior to coming in contact 

with the rubber tire. The water should be fed at a rate of 50 to 75 mL/minute, and the grit is fed 

at a rate of 6 +/- 2 g/minute (ASTM D3319). After the coarse aggregates have been subjected to 

polishing for the desired time, the specimens are removed, washed, and tested using the BPT in 

accordance with ASTM E303. 
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Figure 2.19: British Polishing Wheel apparatus 

 

2.6.5 NCAT Three Wheel Polishing Device (TWPD) 

The TWPD is a device developed by NCAT that is used to condition laboratory compacted 

HMA slabs (Figure 2.20). The friction and texture loss of the HMA wearing course may then be 

evaluated using the DFT and CTM, respectively. The device is equipped with three pneumatic 

rubber tires, inflated at 50 psi, that come in contact with the slab surface. The wheels are attached 

to a turntable allowing them to rotate in a circle that is characterized by the same diameter as that 

of the DFT and CTM (11.2 inches). A variable load may be applied to the wheels by adding steel 

plates on the turntable. During conditioning, water is continuously circulated from the water tank 

through PVC pipes that are attached to the wire mesh enclosure. Once the counter reaches the 
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desired number of revolutions, the device shuts off and the slabs are measured for texture and 

friction using the CTM and DFT, respectively.. 

  

Figure 2.20: NCAT Three Wheel Polishing Device (Erukulla 2011) 

 

2.7 Aggregate Imaging Systems 

Aggregate imaging analysis is an automated way of quantifying aggregate shape properties while 

eliminating the subjectivity introduced by Superpave consensus property tests, such as 

Uncompacted Void Content of Fine Aggregates (AASHTO T304), Flat and Elongated Particles 

in Coarse Aggregates (ASTM D4271), and Percent of Fractured Particles in Coarse Aggregates 

(ASTM D5821). Several different imaging systems have been developed and evaluated within the 

last decade to assess their ability to appropriately characterize aggregate shape properties. The 

focus of this work is on the recently developed second generation Aggregate Imaging 

Measurement System (AIMS-II) and the second generation of the Enhanced University of 
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Illinois Aggregate Image Analyzer (E-UIAIA). Although a recent NCHRP study recommended 

the AIMS-II device to quantify aggregate shape characteristics, both imaging devices were 

deemed capable of producing validated indexes for aggregate shape properties that may be 

correlated with field performance data (Masad et al. 2007). 

2.7.1 The Second Generation Aggregate Imaging Measurement System (AIMS-II) 

The AIMS-II device (Figure 2.21), developed by Pine Instruments, is a computer automated 

system that captures aggregate images. The device then uses these images to analyze and 

quantify both coarse and fine aggregate shape characteristics through a series of algorithms. 

AIMS-II is equipped with two lighting configurations (back lighting and top lighting) and a 

microscope-camera system enclosed in a case to protect it from outside light sources (Pine 

Instrument Company 2011).  

 

Figure 2.21: The second generation Aggregate Imaging Measurement System                 

(Pine Instrument Company 2011) 
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The aggregates set in a rotating tray are individually scanned such that the camera captures 

images of each particle. Coarse aggregates require three separate scans, while fine aggregates 

only use a single scan for analysis. For coarse aggregates, the first scan uses the back lighting to 

capture a black and white silhouette of each aggregate. This scan is used to quantify the 

aggregate’s angularity using the gradient method, as discussed within the next chapter. 

Additionally, the first scan is used to record the centroid of the particle so the system may 

recognize the particle location for additional scans. Top lighting is used during the second scan 

to determine particle height measurements. The third scan captures grey scale images used to 

analyze each particle’s surface texture from wavelet analysis (Pine Instrument Company 2011). 

These three scans are critical in quantifying coarse aggregate angularity, particle surface texture, 

sphericity, and flatness and elongation ratios. For fine aggregates, a single scan is used to 

quantify fine aggregate angularity and two-dimensional form. The AIMS-II software program 

exports all the data into a spreadsheet consisting of the relevant shape characteristics for each 

particle and corresponding statistics for the sample group, such as mean, standard deviation, and 

cumulative distribution. 

2.7.2 Enhanced University of Illinois Aggregate Image Analyzer (E-UIAIA) 

Similar to the AIMS-II, the E-UIAIA (Figure 2.22) is a second generation device originally 

developed by Dr. Erol Tutumluer which was designed to quantify shape properties for coarse 

aggregates only.  
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Figure 2.22: The Enhanced University of Illinois Aggregate Image Analyzer (Mahmoud et 

al. 2014) 

 

The E-UIAIA uses a different type of high resolution camera system than that of the AIMS-II to 

capture three projections of the particles as they move along a conveyor belt to determine 

gradation, form, angularity, texture, surface area, and volume (Mahmoud et al. 2014). The device 

is equipped with dimmer controls that allow the operator to adjust the lighting to obtain the best 

quality aggregate images (Moaveni et al 2013). Similar to the AIMS-II, the E-UIAIA also uses a 

software program to export the calculated shape characteristics to a spreadsheet for further 

analysis.  

2.8 Relevant Research on AIMS 

As previously mentioned, the Superpave consensus property tests are commonly used as part of 

material acceptance for several state agencies. One major disadvantage of these tests is that they 

can be laborious, time consuming, and subjective. Therefore, researchers are hopeful in replacing 
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the Superpave consensus property tests with an automated aggregate imaging system as part of 

material acceptance protocol in the future.  

Gudimettla et al. (2008) compared results obtained from Superpave consensus property tests 

with the first generation AIMS test results for a variety of aggregates. The following 

comparisons were made as part of the research study: 

 Uncompacted Void Content of Fine Aggregates (AASHTO T304) and AIMS Fine 

Aggregate Angularity (FAA) 

 Uncompacted Void Content of Fine Aggregates (AASHTO T304) and AIMS Fine 

Aggregate Two Dimension Form 

 Flat and Elongated Particles in Coarse Aggregates (ASTM D4271) and AIMS Flat and 

Elongation 

 Percentage of Fractured Particles in Coarse Aggregates (ASTM D5821) and AIMS 

Coarse Aggregate Angularity (CAA) 

The first generation AIMS fine aggregate angularity and two dimensional form results ranked the 

aggregates the same when compared with AASHTO T304 results. Fine aggregate angularity is 

an important parameter for ensuring adequate internal friction within the aggregate structure that 

is developed to prevent rutting (Prowell et al. 2005). The results obtained from comparing 

AASHTO T304 with AIMS FAA and AIMS two-dimensional form for three different sizes of 

three aggregate sources that were tested are shown in Table 2.2 with the numerical ranking 

represented as a letter in parenthesis. It should be noted that the table reflects the results from one 

of the several projects that were part of the research study. The rankings for all the projects’ 

aggregates that were used in this research were the same for AASHTO T304, AIMS FAA, and 
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AIMS two-dimensional form except for one, ME-0359 (Table 2.3). The aggregates are listed in 

the corresponding order of their ranking in the table. 

Table 2.2: Example of results obtained from AASHTO T304, AIMS FAA, and two-

dimensional form (Gudimettla et al. 2008) 

  
AASHTO T304 

FAA  

(Method A) 

AIMS FAA 
AIMS Two-Dimensional 

Form 

2.36 mm 1.18 mm 0.600 mm 
2.36 

mm 

1.18 

mm 

0.600 

mm 

1/4" 

Washed 
44 (A) 4,081 (A) 4,729 (A) 4,422 (A) 8.5 (A) 9.0 (A) 8.8 (A) 

2A Gravel 42 (C) 3,271 (C) 3,205 (C) 3,381 (C) 6.8 (C) 6.5 (C) 7.3 (C) 

C Gravel 42.8 (B) 3,342 (B) 3,677 (B) 3,902 (B) 6.9 (B) 7.4 (B) 8.3 (B) 

 

Table 2.3: Rankings obtained from AASHTO T304, AIMS FAA, and AIMS two-

dimensional form (Gudimettla et al. 2008) 

Project 

ID 
Fine Aggregates 

AASHTO 

T304 

FAA 

AIMS 

FAA 

AIMS  

Two-Dimensional 

Form 

NJ 0671 #8, #10, RAP A,B,C A,B,C A,B,C 

ME 

0570 
Crusher Dust, Crusher Sand A,B A,B A,B 

NE 

0569 
1/4" Washed, C Gravel, 2A Gravel A,B,C A,B,C A,B,C 

KS 0568 Crushed Sand 2, Natural Gravel A,B A,B A,B 

NY 

0466 

Washed Screenings, Screenings, RAP, 

Natural Sand 
A,B,C,D A,B,C,D A,B,C,D 

MN 

0465 

ST Cloud Sand, Kraemer Sand, RAP, 

West Lakeland Sand 
A,B,C,D A,B,C,D A,B,C,D 

KS 0464 

CH-1A, Crushed Sand 2A, Crushed 

Gravel 1, Crushed Sand 2, Natural 

Sand 

A,B,C,D,E A,B,C,D,E A,B,C,D,E 

LA 

0462 
Crushed Gravel, RAP, Concrete Sand A,B,C A,B,C A,B,C 

NC 

0360 
Screenings, RAP, Natural Sand A,B,C A,B,C A,B,C 

ME 

0359 

Washed Ledge Sand, -3/8 Ledge Sand, 

RAP, Hancock Sand 
A,B,C,D B,A,C,D B,A,C,D 
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Additionally, the AIMS flat and elongated (F&E) results and the F&E values obtained from 

ASTM D4271 ranked similarly in most cases for both ratios, 1:3 and 1:5. Deviations between the 

two test results can be attributed to user subjectivity introduced in the ASTM D4271 procedure. 

Flatness and elongation ratios have not been tied directly to pavement friction but rather to 

influencing the mixture’s volumetric properties (Prowell et al. 2005).  

Results from ASTM D5821 and AIMS coarse aggregate angularity comparison appeared to be 

inconclusive because they do not measure similar properties. ASTM measures fractured faces 

while the AIMS measures aggregate angularity. A majority of the aggregates were said to have 

100 percent fractured faces when following ASTM D5821 procedure, while the AIMS provided 

different angularity values for those aggregates. The ASTM procedure does not measure 

angularity and the AIMS does not detect fractured faces (Gudimettla et al. 2008). Table 2.4 

shows a few examples of the project results obtained from ASTM D5821 and AIMS CAA. 

Table 2.4: Example of CAA results obtained from ASTM D5821 and AIMS (Gudimettla et 

al.  2008) 

Project 

ID 

Coarse 

Aggregates 

ASTM 

D5821 CAA 

1 Fractured 

Face (%) 

ASTM D5821 

CAA  

2 Fractured 

Faces (%) 

AIMS 

CAA 

NJ 0671 

8's 100 100 2,748 

57's 100 100 2,995 

RAP 99 1 2,714 

ME0570 1/2's 99 98 3,509 

NE 

0569 

1/4 Washed 100 100 2,585 

2A Gravel 32 21 2,248 

C Gravel 60 43 2,314 

 

This introduces a potential limitation with the ASTM procedure in that an aggregate source may 

be characterized by higher angularity when compared to another aggregate source as defined by 
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AIMS, but the two could have the same percentage of fractured faces. The ASTM procedure 

would show no indication of any differences between the two aggregate sources when 

considering angularity. Coarse aggregate angularity is said to be the second most important 

property behind gradation for HMA pavement performance (Prowell et al. 2005). There is a need 

to be able to sufficiently quantify this parameter, and inspecting fractured faces may not 

adequately accomplish this.  

This research study (Gudimettla et al. 2008) provided useful insight towards the advancement of 

using an automated aggregate imaging system as an alternative to Superpave consensus property 

tests in the future. Superpave consensus property tests are not intended to evaluate an aggregate’s 

capability of providing adequate friction to a surface mixture. For example, the Superpave 

consensus property tests do not adequately provide coarse aggregate surface micro-texture 

measurements, but the AIMS is capable of measuring micro-texture, an important aggregate 

property that influences pavement friction (Hall et al. 2009). 

Although the first generation AIMS device was used in the Superpave and AIMS comparison 

study, it can be assumed that with the advancements in the AIMS-II device, the results would 

yield similar rankings to that of the first generation. As part of the AIMS-II implementation 

study (Gates et al. 2011), results generated by the first generation AIMS device were compared 

with those of the second generation for a variety of aggregate sources, including 32 coarse 

aggregate samples and 21 fine aggregate samples. Both systems ranked the aggregate sources the 

same among each of the shape parameters and provided comparable results. For example, Figure 

2.23 shows the comparison between the first generation AIMS (AIMS 1 in the figure) and the 

second generation AIMS (AIMS 2 in the figure) of the angularity indexes for all the aggregate 

sources tested. Therefore, they concluded that any research studies that used the first generation 
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AIMS were applicable to characterizations obtained from the second generation device, AIMS-II 

(Gates et al. 2011).  

 

Figure 2.23: Angularity index comparison between the AIMS-I and AIMS-II devices (Gates 

et al. 2011) 

Another research study conducted at the University of Illinois at Urbana-Champaign focused on 

evaluating the feasibility of using two aggregate imaging devices, AIMS-II and the E-UIAIA, in 

conjunction with the Micro-Deval to track an aggregate’s resistance to polishing, abrasion, and 

breakage (Moaveni et al. 2013). It should be noted that this particular research study was one of 

many research tasks conducted for an ongoing project in cooperation with the Illinois 

Department of Transportation (IDOT) (Mahmoud et al. 2014). Researchers retained the material 

captured on the 9.5 mm sieve for eleven aggregate sources before subjecting them to 

conditioning in the Micro-Deval for 15, 30, 45, 60, 75, 90, 105, 180, and 210 minutes. As part of 

a separate research task, Mahmoud et al. (2014) determined that 210 minutes was sufficient 

polishing time in the Micro-Deval for the aggregates to reach terminal texture and angularity. 
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However, for both devices, the rate of texture loss reduced significantly after 105 minutes of 

conditioning in the Micro-Deval, indicating the initial point at which the aggregates began 

approaching terminal values. The aggregate samples were analyzed using the AIMS-II and E-

UIAIA prior to conditioning and after each conditioning cycle. Researchers found that both 

imaging devices were capable of detecting aggregate degradation in the Micro-Deval. 

Additionally, the researchers developed regression equations using statistical analysis to predict 

angularity and surface texture as a function of Micro-Deval conditioning time for each aggregate 

type and device in the form of Equation 2.3 (Moaveni et al. 2013). Each aggregate source was 

characterized by a different equation with different fitting parameters to show the rate of texture 

or angularity loss. Table 2.5 shows an example of the fitting parameters used to model the 

AIMS-II texture results, and Table 2.6 shows an example of the fitting parameters used to model 

the AIMS-II texture results. 

Surface Texture Index (Moaveni et al. 2013): 

𝑆ℎ𝑎𝑝𝑒 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑡) = 𝑎 + 𝑏 ∗ 𝑒𝑥𝑝−𝑐𝑡        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3 

Where: 

a, b, and c: Fitting parameters based on statistical analysis relating to initial, final, and 

rate of change in texture 

t: Micro-Deval conditioning time (minutes) 
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Table 2.5: Example of AIMS-II fitting parameters for predicting angularity loss from 

Micro-Deval conditioning (Moaveni et al. 2013) 

 

 

Table 2.6: Example of AIMS-II fitting parameters for predicting surface texture loss from 

Micro-Deval conditioning (Moaveni et al. 2013) 
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While both devices were successful in detecting aggregate degradation from Micro-Deval 

conditioning, the two devices showed some significant differences in the texture and angularity 

results for the particles analyzed. For example, the E-UIAIA recorded one of the limestone 

sources to have one of the highest terminal angularity values, whereas the AIMS-II showed the 

same aggregate to have one of the lowest terminal angularity values when compared with the 

other aggregates. Although each device uses a different scale for angularity index and surface 

texture index, they should be able to rank the aggregates similarly. This could be attributed to the 

two different algorithms and methods used within the devices to calculate surface texture and 

angularity indexes. Additionally, the results obtained from the E-UIAIA showed more 

fluctuation, especially in the surface texture indexes, than that of the AIMS-II. This was noted by 

the E-UIAIA having a higher coefficient of variation (COV) within laboratory measurements 

than seen by the AIMS-II. Because this indicates the AIMS-II to have higher repeatability, it 

may be a more desired test. Moaveni et al. (2013) also specified that the AIMS-II results showed 

a better correlation with historical friction data obtained from IDOT. However, no evidence was 

presented within the report and was assumed to be part of the ongoing research project for the 

state.  

Mahmoud et al. (2014) and Moaveni et al. (2013) concluded that the use of the Micro-Deval for 

aggregate polishing in conjunction with the AIMS-II for aggregate shape analysis proved to be 

feasible for coarse aggregates. With the success of this study, research should be taken a step 

further to show correlations of the polishing curves with field friction data. Additionally, the 

feasibility of using Micro-Deval with AIMS-II to detect changes in fine aggregate shape 

properties should be explored as they are an important part of the mix design as well. Correlating 

these texture and angularity indexes obtained from the imaging devices with field friction data 
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should be further studied as these aggregate properties influence pavement performance, 

especially friction, and could be used as part of material acceptance tests and contribute to 

enhancing roadway safety. 

2.9 Summary of Literature Review 

Pavement texture, on both a macro and micro level, is essential to providing adequate pavement 

friction to ensure the safety of the roadway system. Aggregate imaging systems have been 

proven to be successful in quantifying aggregate shape properties. They provide advantages over 

Superpave consensus properties in that these devices reduce operator subjectivity and are not 

labor intensive. Additionally, aggregate imaging systems provide information on the micro-

texture of the coarse aggregates, a key component in pavement friction that is not currently 

assessed by Superpave consensus properties. 

Aggregate imaging systems, more specifically the AIMS-II device, in conjunction with the 

Micro-Deval has proven to be successful in measuring degradation of aggregate angularity and 

texture. There is still a research need to come up with a laboratory test protocol that is capable of 

analyzing aggregate degradation due to polishing and correlates with field friction performance. 
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CHAPTER 3: AIMS-II TEST DESCRIPTION 

The AIMS-II is used to automatically quantify aggregate shape characteristics. As a tray of 

aggregates rotates around, a microscope-camera system is used to capture images of the 

aggregates using top lighting or back lighting. A photo of this camera system is shown in Figure 

3.1.  

 

Figure 3.1: AIMS-II camera system setup 

 

The AIMS-II software program then uses the images of each particle to calculate aggregate 

angularity, surface texture, three-dimensional form (sphericity), and flatness and elongation 

ratios for coarse aggregates (particles retained on the #4 sieve). Fine aggregate angularity and 
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two-dimensional form are calculated for the fine aggregates (particles passing the #4 and 

retained on the #200 sieve). The AIMS-II device does not measure the surface texture of fine 

aggregate. Though the reason is not explicitly stated, it is likely the AIMS-II is not capable of 

measuring a property at that small of a scale. The software interface allows the operator to select 

the coarse or fine aggregate size that is being analyzed. For coarse aggregates, the options to 

choose from are standard sieve sizes of the 1” (25 mm), 3/4” (19 mm), 1/2” (12.5 mm), 3/8” (9.5 

mm), 1/4” (6.35 mm), and the #4 (4.75 mm). The fine aggregate selections include standard 

sieve sizes of the #8 (2.36 mm), #16 (1.18 mm), #30 (0.60 mm), #50 (0.30 mm), #100 (0.51 

mm), and the #200 (0.075 mm) sieve. These sieve sizes indicate material that is retained on those 

sieves.  

The system also allows the operator to select the particle count they wish to achieve, so the 

image acquisition will terminate once the specified particle count is reached. For the purpose of 

this research, the AIMS-II was run to scan all particles that were placed on the tray, resulting in a 

range of approximately 60-90 scanned particles for coarse aggregates and 160-300 scanned 

particles for fine aggregates for each replicate as discussed later. This was done to ensure that 

after all outliers were removed, the particle count remained above the AIMS-II specified 

minimum of 50 and 150 particles for coarse and fine aggregates, respectively.  

3.1 AIMS-II Coarse Aggregate Testing 

A tray was selected based on the aggregate size described previously. This establishes the trough 

size in which the aggregate is going to be placed. Each coarse aggregate particle was placed in 

the trough. Particle orientation depended on how the aggregate randomly came to rest in the 

trough (Figure 3.2). The number of particles placed in the trough depended on the size of the 

aggregate and the size of the trough. The design of the tray and trough allows the system to align 
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each aggregate directly under the camera to ensure each aggregate would be in full view for 

image acquisition. It was important to ensure the particles were spaced far enough apart to ensure 

the device did not misrepresent two aggregate particles as a larger aggregate particle.  

 

Figure 3.2: Coarse aggregates spread on tray trough 

 

Image acquisition was initiated when the doors were closed, and the tray returned to its initial 

position. As the aggregate tray completed its first pass, each aggregate was scanned under the 

camera unit using back lighting. This created a black and white silhouette of each particle to 

determine the centroid and quantify angularity. If the entire particle was not in camera view, the 

particle was rejected from the analysis, and the tray would rotate to the next particle. Figures 3.3 

and 3.4 show an example of the black and white silhouette generated by the first scan for an 

accepted particle as well as a rejected particle, respectively. The camera view of the rotating 

aggregates is shown in the left picture, whereas the angularity image that is produced is shown in 
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the right picture of the figures. To clarify, the particle that was being scanned is circled in green 

(accepted particle) and red (rejected particle) in the left picture. 

 

Figure 3.3: Example of accepted particle in the AIMS-II coarse aggregate analysis 

 

 

 

Figure 3.4: Example of rejected particle in the AIMS-II coarse aggregate analysis 
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The small box seen in the right picture of the figures indicates whether the aggregate was entirely 

in camera view (green box) or if any part of the aggregate was outside camera view (red box). If 

a particle was too small or was not properly placed in the trough, the AIMS-II recognized its 

existence, but the particle was not used in the analysis and was skipped during subsequent scans. 

This feature of the imaging system permits this study to cycle the aggregate sample through 

multiple conditioning cycles without re-sieving the aggregate to a specific particle size. 

During the second scan, top lighting was used to measure the particle height at the previously 

determined centroid. The camera unit magnified the particle on the third scan to generate gray 

scale images that captured aggregate surface texture, as shown in Figure 3.5. 

 

Figure 3.5: Gray scale image used to capture coarse aggregate texture 

 

The software program used the three scans in a series of algorithms to calculate coarse aggregate 

angularity, texture, sphericity, and flatness and elongation ratios. This process is discussed in 

detail later in this chapter. 
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3.2 AIMS-II Fine Aggregate Testing 

Fine aggregate image acquisition only requires one scan to obtain the particle shape properties. 

Additionally, there are only two trays to select from for fine aggregate analysis. The first is a 

transparent tray similar to those used for the coarse aggregates, whereas the second tray is an 

opaque tray designed for smaller fine aggregates that are retained on or passing the #50 sieve. 

The opaque tray may also be used to analyze more translucent particles which could present 

challenges to imaging on the transparent tray. The transparent tray uses backlighting to capture 

aggregate images, whereas the opaque tray uses top lighting for image scans. The transparent 

tray was used throughout the AIMS-II fine aggregate analysis of this research as the aggregates 

used were #16 and dark enough for imaging purposes.  

Fine aggregate particles were sprinkled into the rotating tray’s trough until the tray was full 

(Figure 3.6). Similar to the coarse particles, fine particle orientation was based on how the 

particle randomly came to rest in the trough.  
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Figure 3.6: Fine aggregates spread on tray trough 

 

Upon initiating the imaging process of the AIMS-II, the tray returned to its initial position. The 

camera system used back lighting to capture images as the tray rotated which were used to 

quantify fine aggregate angularity and two-dimensional form. While it was important to spread 

out the fine particles, it is more difficult for the operator to control the placement of the fine 

particles than that of the coarse. Therefore, the AIMS-II was capable of rejecting particles that 

appear to be touching each other. For example, Figure 3.7 shows which aggregates are being 

scanned inside the device on the left image, while the right image shows which particles were 

actually accepted as part of the analysis. The picture on the left shows a red circle around 

particles that were touching each other and consequently, were eliminated them from the 

analysis. Additionally, the figure shows other fine particles that appeared within camera view in 

the left picture but were not included in the scan because the entire particle was not in camera 

view.  
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Figure 3.7: Example of rejected fine particles from being too close together 

 

3.3 AIMS-II Shape Properties 

The AIMS-II software uses scanned images to calculate the necessary aggregate properties 

through a series of algorithms. The results are then exported into a Microsoft Excel file that may 

be used for further analysis. The Excel file is organized by shape parameter and includes all the 

raw data, corresponding basic statistics, and a graph that reflects the cumulative distribution of 

the particles for each parameter.  

3.3.1 Aggregate Angularity 

Aggregate angularity is captured from the two-dimensional images of the first scan for both 

coarse and fine aggregates using the gradient method. This method quantifies the variations at 

the particle boundary using a scale of 0 to 10,000. A particle characterized as a perfect circle 

would have an angularity index approaching a value of 0. The sharper the corners of the particle 

are, or the greater the change in inclination of the gradient vectors on the outer edge points, the 

higher the angularity index is (Pine Instrument Company 2011). The AIMS-II considers an 
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angularity index of 3,300 or less a low angularity aggregate, 3,300 to 6,600 as medium 

angularity, and angularity indexes greater than 6,600 are characterized as high angularity. Figure 

3.8 provides a representation of how gradient vectors would appear for a smooth particle versus 

an angular particle. Additionally, Equation 3.1 is used to calculate the angularity of the particle 

from the gradient method.  

 

 

Figure 3.8: Gradient vector for smooth versus angular particle (Pine Instrument Company 

2011) 

 

Aggregate Angularity (AASHTO TP81): 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
1

𝑛
3 − 1

∑|𝜃𝑖 − 𝜃𝑖+3|

𝑛=3

𝑖=1

        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1 

Where: 

θ: Angle of orientation on particle boundary point i 

n: Total number of boundary points 

i: The ith point on the particle boundary 
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Equation 3.1 uses a step size of three for calculating the gradients to reduce any noise effects 

created during image acquisition which may affect the results (Masad et al. 2003). Any bias 

towards particle size is significantly reduced by using the average as opposed to the summation 

in calculating angularity (Moaveni et al. 2013). This allows the angularity index to put more of 

an emphasis on the particle edges rather than particle size. This further justifies why it was 

acceptable to use the entire Micro-Deval sample as opposed to using only those retained on the 

#4 or #16 sieve as mentioned in Step 7a of the laboratory research procedure. 

3.3.2 Surface Micro-texture 

The surface micro-texture is a coarse aggregate property measured using wavelet analysis, which 

provides texture information in the horizontal, vertical, and diagonal directions. Particle texture 

refers to the smoothness or roughness of a particle surface and is dependent on particle surface 

irregularities at wavelength less than 0.5 mm. According to the AIMS-II, the surface texture 

index ranges from 0 to 1,000 and is calculated “at a given decomposition level [as] the arithmetic 

mean of the squared values of the wavelet coefficients for all three directions” (Pine Instrument 

Company 2011) using Equation 3.2. A surface texture index approaching 0 indicates a smooth, 

polished aggregate surface. Additionally, the AIMS-II denotes a texture index of 260 or lower as 

low, 260 to 550 as a medium texture level, and texture indexes above 550 as high. 

Surface Micro-texture (AASHTO TP81): 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =
1

3𝑁
∑ ∑ (𝐷𝑖,𝑗(𝑥, 𝑦))

2
𝑁

𝑗=1

3

𝑖=1

        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2 
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Where: 

N: Total number of coefficients in an image 

i: 1, 2, or 3 for horizontal, vertical, or diagonal direction of texture 

j: Wavelet index 

D: Decomposition function 

x, y: Location of the coefficients in transformed domain 

3.3.3 Aggregate Form 

Aggregate form is characterized for both coarse and fine aggregates by the AIMS-II using the 

images captured during the aggregate scans. Figure 3.9 shows a representation of what is referred 

to as form according to the AIMS-II device. 

 

Figure 3.9: Representation of AIMS-II aggregate form (Pine Instrument Company 2011) 

 

Coarse aggregate form is referred to as sphericity and is used to describe the overall three-

dimensional shape of the particle. Sphericity is calculated using Equation 3.3 and ranges on a 

scale of 0 to 1, where a particle that is characterized by equal dimensions (cubical) has a 

sphericity value of 1. Therefore, a value that is characterized as a perfect circle would have a 

sphericity index approaching 0 (Pine Instrument Company 2011). According to the AIMS-II 
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software, a sphericity index of 0.3 or less is considered a low sphericity index, 0.3 to 0.7 is 

considered a medium sphericity index, whereas an index greater than 0.7 is considered to have a 

high sphericity index. 

Sphericity (AASHTO TP81): 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = √
𝑑𝑠𝑑𝐼

𝑑𝐿
2

3

        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3 

Where: 

ds: Shortest dimension of the particle 

dI: Intermediate dimension 

dL: Longest dimension 

Fine aggregate form is referred to as two-dimensional form and is indicative of the changes in 

the particle radius in all directions of a two-dimensional image. The particle radius is defined as 

the distance between the particle center and the outer edge at a given point (Pine Instrument 

Company 2011). Two-dimensional form (Form2D) is calculated using Equation 3.4 with values 

ranging from 0 to 20, where a particle characterized as a perfect circle would have a value 

approaching 0. The AIMS-II software indicates that a two-dimensional form value of 6 or less is 

considered low, 6 to 12 is considered a medium level of two-dimensional form, and a value 

greater than 12 is considered high. 

Two-Dimensional Form (AASHTO TP81): 

𝐹𝑜𝑟𝑚2𝐷 = ∑ [
𝑅𝜃+∆𝜃 − 𝑅𝜃

𝑅𝜃
]

𝜃=360−∆𝜃

𝜃=0

        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4 
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Where: 

Rθ: Radius of the particle at an angle of θ 

Δθ: Incremental difference in the angle 

3.3.4 Flat and Elongated Properties 

The flatness and elongation properties for coarse aggregates is represented using a variety of 

ratios based on the measured particle dimensions from the three scans. 

Flatness Ratio (AASHTO TP81): 

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
𝑑𝑠

𝑑𝐼
        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.5 

Elongation Ratio (AASHTO TP81): 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑑𝐼

𝑑𝐿
        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6 

Flat and Elongated Ratio (AASHTO TP81): 

𝐹𝐸 =
𝑑𝐿

𝑑𝑠
        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.7 

Flat or Elongated Value (AASHTO TP81): 

𝐹𝑜𝑟𝐸: 
𝑑𝐼

𝑑𝑠
 𝑜𝑟 

𝑑𝐿

𝑑𝐼
> 𝑅𝑎𝑡𝑖𝑜 (𝑖𝑒: 1, 2, 3 … )       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.8 

The variables used in the flatness and elongated ratios are defined the same as they were for 

calculating sphericity from Equation 3.3. For each of the above ratios, the AIMS-II software 

records the cumulative percentage of particles that were characterized by a ratio greater than 1:1, 
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2:1, 3:1, 4:1, or 5:1. Due to the large amount of data, only the flat and elongated ratios (Equation 

3.7) were analyzed for the coarse particles for the purpose of this research.  

The range of values as well as the values the AIMS-II considers to be low, medium, and high for 

each AIMS-II index are summarized in Table 3.1. To clarify, coarse aggregate is denoted as CA 

in the table, whereas fine aggregate is denoted as FA. 

Table 3.1: Summary of AIMS-II index ranges 

AIMS-II 
Index 

Aggregate Sizes 
Measured 

Range Low Medium High 

Angularity CA, FA 0 - 10,000 < 3,300 3,300-6,600 > 6,600 

Texture CA 0 - 1,000 < 260 260-550 > 550 

Sphericity CA 0 - 1.0 < 0.3 0.3-0.7 > 0.7 

Form 2D FA 0 - 20 < 6 6-12 > 12 
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CHAPTER 4: EXPERIMENTAL PLAN 

4.1 Research Plan 

The purpose of this research was to analyze the use of the Micro-Deval apparatus in conjunction 

with the AIMS-II device comparing the laboratory polishing resistance of aggregates to field 

friction performance data. Currently, the use of these devices is not standardized for measuring 

friction characteristics. This study applied portions of existing test standards, including ASTM 

D7428, ASTM D6928, and AASHTO TP81. Micro-Deval and AIMS-II testing were conducted 

on five aggregate sources at NCAT’s laboratory. Each aggregate source and size was tested 

individually. Particle shape properties were analyzed using the AIMS-II prior to any 

conditioning as well as after incremental Micro-Deval polishing. 

4.2 Material Selection 

Five aggregate sources characterized by different geology and field friction performance 

properties were selected as part of this research. Three of the chosen aggregates were part of 

NCAT’s 2009 Test Track friction study.  These aggregates included the following:  a Columbus 

granite, a LaGrange granite, and a Calcined bauxite that was used in a high friction surface 

course constructed in 2006. A Calera limestone was selected as part of this research because of 

its use in NCAT’s 2000 Test Track friction study. Though it was only used as screenings in 

NCAT’s 2009 cycle, an Opelika limestone was also used as a comparison to the limestone source 

from Calera due to the Calera limestone’s poor friction performance. 

Two sizes of each aggregate (coarse and fine) were used in this project. The coarse aggregate 

was defined as material passing the 3/8 inch sieve and retained on the #4 sieve based on the 

gradations used in the surface mixtures from the 2009 Test Track cycle. The largest percentage 

of aggregates used in the surface mixtures were retained on the #4 sieve.  Aggregates passing the 
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#8 sieve and retained on the #16 sieve were selected for fine aggregate testing. Testing a fine 

aggregate two sieve sizes below the selected #4 provided some delineation between the coarse 

and fine aggregate sizes while maintaining a large enough particle size in hopes that a sufficient 

amount of degradation could still be observed. Therefore, aggregates retained on the #4 (4.75 

mm) and #16 (1.16 mm) sieve sizes were used for AIMS-II testing as part of the research. Table 

4.1 shows a summary of the aggregate sources’ properties and their designated stockpile at 

NCAT’s Test Track. The aggregate volumetric properties were obtained from the laboratory 

database, including apparent specific gravity (Gsa), bulk specific gravity (Gsb), and the specific 

gravity at the saturated surface dry state (Gssd). It should be noted that only Bauxite retained on 

the #16 sieve was used, as this material was used for a high friction surface study, and all 

material used in the study passed the #4 sieve. 
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Table 4.1: Summary of laboratory tested aggregate properties 

Aggregate 

Type 
Sieve Size 

NCAT 

Stockpile 
Gsa Gsb Gssd 

Absorption 

(%) 

Opelika Lms 

#4 
Opelika LMS 

78 
2.863 2.769 2.802 1.2 

#16 
Opelika LMS 

8910 
2.812 2.784 2.794 0.4 

Columbus Grn 

#4 
Columbus Grn 

89 
2.713 2.61 2.648 1.5 

#16 
Columbus Grn 

M10 
2.739 2.735 2.736 0.1 

LaGrange Grn 

#4 LaGrange 78 2.666 2.617 2.635 0.7 

#16 LaGrange M10 2.725 2.707 2.714 0.3 

Calera LMS 

#4 Calera LMS 78 2.871 2.836 2.848 0.4 

#16 
Calera LMS 

820 
2.779 2.645 2.693 1.8 

 

 

4.2.1 Field Data 

Pavement sections from the 2000 and 2009 research cycles were selected for the purpose of this 

research. These sections varied in mixture properties and field friction performance. Historical 

field friction data were obtained from NCAT’s database for each selected pavement section to 

serve as ground truth field performance measures. These sections were used to select the 

aggregates for laboratory testing. Aggregate laboratory test results using the AIMS-II device and 

Micro-Deval were compared to the field friction performance data. 
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4.2.1.1 Selection of NCAT Test Track Pavement Sections 

The NCAT Pavement Test Track is a full-scale accelerated pavement testing (APT) facility. The 

Test Track is a 1.7 mile (2.8 km) oval divided into 46 different research sections, each 200 feet 

in length. Each test section is funded by an external sponsor for research purposes. Several field 

performance parameters, such as rutting, cracking, roughness, texture, friction, and noise are 

measured regularly to monitor pavement mixture performance under controlled, accelerated 

traffic loads, quantified as ESALs.  

Pavement surface mixtures that contained a high percentage of recycled material were avoided to 

ensure that the friction performance was mostly influenced by the virgin aggregates in the 

mixture and not the recycled aggregate. Additionally, sections were selected based on aggregate 

availability.  

The first selected surface mix was a high friction surface treatment (HFST) composed of bauxite 

ranging from #5 to #12 sized particles. The second mix type was an open graded friction course 

(OGFC) composed primarily of LaGrange granite. The third and fourth surface mixes, 

characterized as a stone matrix asphalt (SMA) mix and a fine-dense graded (FDG) mix, were 

composed primarily of Columbus granite. The fifth mix type was an SMA mix from the 2000 

NCAT Test Track research cycle made of primarily Calera limestone. Table 4.2 shows the 

mixture identification that will be used throughout the thesis, the construction year, the Test 

Track sections, and the materials used as part of the aggregate skeleton. Some of the test sections 

characterized as a FDG Columbus granite surface mixture contained binder replacement. The 

binder was replaced at 25% of the weight of total binder used in the original mix design. The 

original mix design was used in the control section, S9 (Brown et al. 2002, Willis et al. 2009, and 

West et al. 2012). However, these differences showed no effect on friction field performance. It 
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should be noted that the Calera limestone Test Track section was replaced with a different 

surface mixture due to poor friction performance. The data used in this research study for the 

Calera limestone section reflects the data shown in Brown et al. (2002). 

Table 4.2: NCAT Pavement Test Track sections mix identification 

Mixture ID 
Year 

Constructed 
Sections NMAS Materials 

HFST Bauxite 2006 E2, E3 N/A Bauxite 

OGFC Columbus Granite 2009 N12 1/2 inch 

7 Columbus Granite 

89 Columbus Granite 

Other: Flyash, 

Hydrated lime, 

Cellulose 

Fine-Dense Graded 

Columbus Granite 
2009 

N5, N6, 

N7, S9, 

S10, S11, 

S12 

3/8 inch 

89 Columbus Granite 

8910 Opelika 

Limestone Screenings 

M10 Columbus Granite 

Shorter Coarse Sand 

OGFC LaGrange Granite 2009 N1, N2, S8 1/2 inch 

78 LaGrange Granite 

Coarse Fraction Local 

RAP (15% by weight 

of mix) 

SMA Calera Limestone 2000 W7 3/8 inch 

7 Calera Limestone 

821 Calera Limestone 

Other: Fly Ash 

 

4.2.1.2 Locked-Wheel Skid Trailer Measurements 

Test track friction data were collected using the locked wheel skid trailer equipped with the 

ribbed tire to obtain skid numbers at 40 mph (SN40R) for each pavement section on a monthly 

basis, following the testing protocol set forth in ASTM E501. All testing was conducted in the 

middle 150 feet, leaving 25 feet at the beginning and end of each section as transition zones 

between sections. The friction data of the test sections in consideration were obtained from 

NCAT historic data records. 
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4.3 Test Procedure 

The test procedure carried out for the coarse aggregates slightly from that of the fine aggregates. 

Therefore, the procedures are described separately within this chapter. The Micro-Deval testing 

procedures for coarse and fine aggregates (ASTM D6928 and ASTM D7428) were used as the 

basis for conditioning the aggregates. However, modifications were made to the ASTM test 

procedures for the purpose of this research study. For example, only a single sized aggregate was 

tested as opposed to one of the specified gradations. The total conditioning times were also 

modified based on aggregate size and were divided into incremental conditioning times to track 

changes in aggregate shape parameters using the AIMS-II. 

4.3.1 Coarse Aggregate Micro-Deval/ AIMS-II Testing Procedure 

The testing procedure for the AIMS-II and Micro-Deval for all aggregate sources of the #4 sieve 

size was as follows: 

1) The aggregate sources were sampled from their corresponding stockpiles according to 

AASHTO T2: Standard Practice for Sampling Aggregates, washed, oven dried, and 

sieved to obtain particles passing the 3/8 inch sieve yet retained on the #4 sieve. 

2) Approximately 1,500 grams of each processed sample were obtained using proper 

aggregate splitting procedures for testing purposes according to AASHTO T248: 

Standard Practice for Reducing Samples of Aggregate to Testing Size. The sample size 

was determined from ASTM D6928: Standard Test Method for Resistance of Coarse 

Aggregate Degradation by Abrasion in the Micro-Deval Apparatus. 

3) The Micro-Deval sample was split to obtain 90 gram replicate AIMS-II samples. The 

1,500-gram Micro-Deval sample was significantly larger than the sample required by the 
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AIMS-II. The AIMS-II procedure required 50 coarse particle count minimum, which was 

approximately 90 grams. Therefore, the 1500 gram sample was split in accordance with 

AASHTO T248 into 16 smaller 90-gram samples for AIMS-II analysis. Using Excel’s 

random number generator, three replicates of the 16 samples (approximately 90 grams 

each) were selected for analysis in the AIMS-II. To clarify, each of the three smaller 

samples that were randomly selected to run through the AIMS-II will be referred to as 

replicates throughout the thesis. Splitting the samples into 16 smaller samples was found 

to be suitable for AIMS-II repeatability purposes, which is discussed later within this 

section. 

4) The three replicates for each aggregate source were measured in the AIMS-II device for 

angularity, texture, sphericity, and flat and elongated ratios. The data were evaluated for 

outliers and repeatability using the Minitab statistical software as discussed later. 

5) Once measurements in the AIMS-II were complete and data checked for repeatability, the 

smaller samples were recombined to make up the 1,500 gram Micro-Deval sample. The 

1,500 gram sample was then conditioned in the Micro-Deval following ASTM 6928. 

However, instead of using a specific gradation provided by the testing standard, the 

procedure was used to condition the single sized aggregate sample. The 1,500 gram 

sample was soaked in the Micro-Deval container for an hour in two liters of water, and 

5,000 grams of steel charges were added to the container for conditioning. Because the #4 

sieve size was selected for testing, the total conditioning time of 95 minutes was selected 

based on the gradation from the standard Micro-Deval procedure that contained the 

greatest mass of the #4 material. For simplicity, the total conditioning time in the Micro-

Deval was rounded up to 100 minutes, and the sample was conditioned in increments of 
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20 minutes. Moaveni et al. (2013) found that 210 minutes was necessary conditioning 

time for coarse aggregates to ensure terminal angularity and texture indexes were 

reached. However, they noted that the rate of angularity and texture losses appeared to 

slow down significantly after 105 minutes of Micro-Deval conditioning, indicating 100 

minutes of conditioning was approaching terminal conditioning. 

6) After 20 minutes of Micro-Deval conditioning, the steel charges were removed using a 

magnet. The conditioned sample was washed over the #16 sieve, dried, and weighed. The 

material passing the #16 sieve was recorded as mass loss. Throughout the thesis, a cycle 

includes an increment of 20 minutes of polishing in the Micro-Deval followed by AIMS-

II testing. The first cycle consists of AIMS-II testing prior to any conditioning. 

7) Steps 3 through 6 were repeated until the sample completed five conditioning/testing 

cycles using 20 minute incremental polishing times. This resulted in an overall 

conditioning time of 100 minutes in the Micro-Deval. 

a. The Micro-Deval samples were not sieved to obtain particles only passing the 3/8 

inch sieve and retained on the #4 sieve after conditioning when they were 

analyzed in the AIMS-II during Step 4. This was done to ensure the sample 

remained together throughout the entire experiment. The AIMS-II is capable of 

rejecting particles that are too small and do not fit entirely within camera view. 

Therefore, keeping the entire sample together was considered appropriate. 

4.3.2 Fine Aggregate Micro-Deval/ AIMS-II Testing Procedure 

The testing procedure for the AIMS-II and Micro-Deval for all aggregate sources of the #16 

sieve (passing the #8 and retained on the #16) was as follows: 
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1) The aggregate sources were sampled from their corresponding stockpiles, washed, oven 

dried, and sieved to obtain particles passing the #8 sieve yet retained on the #16 sieve. 

2) Approximately 500 grams was weighed out for each processed sample. This sample size 

was specified in ASTM D7428: Standard Test Method for Resistance of Fine Aggregate 

to Degradation by Abrasion in the Micro-Deval Apparatus. 

3) The Micro-Deval sample was split to obtain 30-gram replicate AIMS-II samples. The 

500-gram Micro-Deval sample was significantly larger than the sample required by the 

AIMS-II. The AIMS-II procedure required a 150 fine particle count minimum, which was 

approximately 30 grams. Three replicates of the 16 AIMS-II samples were selected using 

Excel’s random number generator. 

4) The AIMS-II measured the angularity and two-dimensional form of the three replicates 

for each of the fine aggregate sources. The AIMS-II fine aggregate data was evaluated for 

outliers and repeatability as discussed later. 

5) The 16 smaller samples were combined again to make up the 500 gram Micro-Deval 

sample. The sample was then conditioned in the Micro-Deval following ASTM D7428. 

The procedure was used to condition the single sized aggregate sample, as opposed to a 

gradation that is provided by the testing standard. The 500 gram sample was soaked in 

0.75 liters of water in the Micro-Deval container for an hour. Approximately 1,250 grams 

of steel charges were added to the Micro-Deval container for conditioning. ASTM D7428 

specified a total conditioning time of 15 minutes for the gradation that contained the 

greatest mass of the #16 sized particles. This study elected to have a minimum of three 

testing cycles with a minimum of 10 minutes of conditioning for each cycle. Based on 
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these parameters, the total conditioning time was modified from 15 minutes to 30 

minutes. 

6) After 10 minutes of Micro-Deval conditioning, the steel charges were removed using a 

magnet. The conditioned sample was washed over the #50 sieve, dried, and weighed. The 

mass loss was recorded as the material passing the #50 sieve. ASTM D7428 specifies 

material passing the #200 sieve is considered lost material for the provided gradations. It 

was determined that using material passing the #200 sieve as lost material was too small 

of a sieve size when testing only #16 aggregate particles. The coarse aggregate Micro-

Deval procedure (ASTM D7428) specified that coarse aggregates passing the #16 sieve 

were considered lost material, which is two standard sieve sizes smaller than the #4, the 

particle size that was tested. Therefore, lost material for the #16 fine particles was 

characterized as material passing the #50 sieve, two standard sieve sizes below the #16 

sieve. 

7) Steps 3 through 6 were repeated until the sample experienced a total conditioning time of 

30 minutes. 

a. The Micro-Deval samples were not sieved to obtain particles only passing the #8 

sieve and retained on the #16 sieve after conditioning when they were analyzed in 

the AIMS-II during Step 4. This was done to ensure the sample remained together 

throughout the entire experiment. 

4.3.3 AIMS-II Selection of Sample Size  

As mentioned previously, the Micro-Deval procedure requires a significantly larger aggregate 

sample than the AIMS-II. The AIMS-II procedure requires a minimum of 50 coarse particles and 

150 fine particles to be scanned, whereas the Micro-Deval requires 1,500 grams and 500 grams 
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of coarse and fine aggregates, respectively.  Therefore, a brief repeatability study was carried out 

on the #4 coarse aggregate without any conditioning in order to determine the appropriate sample 

size that would yield at least 50 readings within the AIMS-II for each replicate. The repeatability 

analysis was only conducted on the Opelika limestone coarse aggregate angularity. Aggregate 

surface texture tends to be more variable within a sample, so using the angularity data to test 

repeatability deemed more appropriate.  

Initially, the 1,500 gram Micro-Deval sample of the #4 aggregate size was split into eight, 

approximately equal, samples using a splitter. Each sample was numbered one through eight in 

the order they were split and collected, and the random number generator in Microsoft Excel was 

used to select which three samples were to be tested in the AIMS-II.  Upon completion of 

testing, it was determined that the sample could be split further into sixteenths while maintaining 

an adequate amount of particles to be read within the imaging system. The precision between the 

replicates improved when the particles were further split into 16 smaller samples.  

To test the repeatability of the results, the Kolmogorov-Smirnov (K-S) test was used to compare 

the three runs with one another, two data sets at a time (Tools for Science 2015). The K-S test 

assesses the differences among two datasets. The test results in a measurement of the maximum 

difference (D) between the two datasets (Figure 4.1) and a p-value that indicates the statistical 

difference between the two datasets. Figure 4.1 shows a theoretical example on the left, whereas 

the right image shows an example of two datasets provided by this research study. Table 4.3 

shows the maximum difference between two cumulative distributions at a given angularity index 

and the corresponding p-value when comparing two data sets for the samples split in eighths as 

well as sixteenths. 
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Figure 4.1: Maximum difference, D, in Kolmogorov-Smirnov test as theoretical example 

(left) (Tools for Science 2015) and example for this research study (right) 

 

Table 4.3: Kolmogorov-Smirnov test results for the repeatability analysis 

Angularity K-S Test Results for Repeatability Analysis 

 K-S 

Comparisons 

Split in 8ths Split in 16ths 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

Run 1 vs 2 0.2344 0.014 0.0903 0.897 

Run 2 vs 3 0.1293 0.442 0.0838 0.927 

Run 1 vs 3 0.1634 0.175 0.0901 0.863 

 

A lower p-value denotes that the difference between the two data sets are more significant. 

Technically, a p-value less than 0.05 indicates the difference between the two runs are 

statistically significant with a confidence level of 95%. While only the first two runs of the 

sample split in eighths are considered to be statistically different, the p-values of the data set 

comparisons from the sample split in sixteenths are substantially higher further justifying that 

splitting the sample into sixteenths deemed more appropriate. 

Figures 4.2 and 4.3 show an example of the aggregate angularity cumulative distributions of the 

three replicates scanned when the samples were split into eighths and sixteenths, respectively. 
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Table 4.4 shows the averages of each replicate and the standard deviation of the three replicates 

for a sample split in eighths and sixteenths. When the sample was split into sixteenths, the 

standard deviation was reduced. This further justifies splitting the sample into sixteenths as 

opposed to eighths. The process for removing any outliers, discussed later within the chapter, 

was carried out during the repeatability investigation for consistency. 

 

Figure 4.2: Angularity cumulative distribution of the Micro-Deval sample split in 8ths 
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Figure 4.3: Angularity cumulative distribution of the Micro-Deval sample split in 16ths 

 

Table 4.4: Standard deviations for sample split in eighths versus split in sixteenths 

Parameter Split in 8ths Split in 16ths 

Replicate 1 Average 2690.96 2847.91 

Replicate 2 Average 2942.37 2852.37 

Replicate 3 Average 2891.45 2854.43 

SD 132.92 3.34 

 

From the graphs, it is apparent that when the sample was properly split into 16 smaller samples, 

the results produced by the AIMS-II yielded higher repeatability. Additionally, splitting the 

sample into sixteenths yielded the smallest possible sample to have the required minimum 

particle count to run through the AIMS-II device. 

The results of this repeatability study of the Micro-Deval sample for the coarse aggregate 

showed that splitting the sample in sixteenths was an appropriate test procedure. This analysis 
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was the basis for splitting the fine aggregate sample into sixteenths. No additional repeatability 

study was done for the fine aggregate sample. 

4.4 Data Quality Control 

Data quality control analysis was run on AIMS-II test results to detect outliers among the 

datasets. The results were also checked with the AIMS-II precision statement to ensure 

repeatable results were achieved.  These activities are described in the following subsections. 

4.4.1 Defining Outliers 

Some of the replicates appeared to have significantly lower or higher data points for each shape 

property which would misrepresent the true sample properties. Therefore, Minitab statistical 

software was used to analyze the data and identify any outliers within the sample. This analysis 

was executed for the combined three replicates after each time the aggregates were measured in 

the AIMS-II for each aggregate source. 

After measurement in the AIMS-II, the data from the three replicates were combined into one 

dataset for further analysis. The combined three replicates for statistical analysis will be referred 

to as a dataset throughout the thesis. Minitab provided a graphical summary using a boxplot to 

represent variability of the data (Figure 4.4). The left edge of the rectangular box represents the 

25th percentile (25% of the data is less than or equal to this value), whereas the right edge of the 

rectangular box represents the 75th percentile (75% of the data is less than or equal to this value). 

The middle line shown in the rectangular box represents the median. The interquartile range 

(IQR) is computed by subtracting the 25th percentile from the 75th percentile. The stems of the 

boxplot extend 1.5*IQR below the 25th percentile (to the left) and 1.5*IQR above the 75th 

percentile (to the right) (Devore 2012). Any data point outside these stems are represented by an 
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asterisk (*). When the graphical summary was carried out for the data, all data points that were 

outside of the stems were considered “first order outliers” and were removed from the data. 

These are circled in red in Figure 4.4. The example shown in Figure 4.4 reflects a similar 

graphical summary of what was shown for the remaining datasets that were analyzed for outliers. 

There would only be a few measurements that reflected very high or very low AIMS-II indexes. 

Therefore, it was determined that these isolated individual measurements did not reflect the true 

distribution of the population and were removed as first order outliers.  Removing these data 

points from the dataset was acceptable, as a typical dataset for the coarse aggregates contained 

approximately 180-270 data points and 480-900 data points for the fine aggregates. Recalling the 

AIMS-II requires 50 particles for coarse aggregates and 150 for fine aggregates, these particle 

counts remained well above the minimum.  
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Figure 4.4: Example of removing first order outliers from a data set 
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A second level graphical summary of the statistics on the updated data set (data excluding first 

order outliers) was run to determine if any additional outliers outside the adjusted stems of the 

boxplot remained (i.e., second order outliers). The second order outliers were essentially treated 

as a group; either all of the second order outliers were to be removed or all remained part of the 

analysis. The AIMS-II precision statement was checked prior to removing any second order 

outliers. If the average of each of the three replicates fell within the precision statement, the 

second order outliers were automatically included as part of the analysis. However, if the average 

of any of the three replicates fell outside of the limits specified within the precision statement, a 

third level graphical summary was performed to assess how much the overall mean was affected 

if the second order outliers were removed. There were no instances in which the overall mean 

changed by more than 5% when removing the second order outliers. Therefore, all second order 

outliers remained part of the analysis for all data sets. Minitab graphical summaries showing 

only the distributions for coarse aggregate angularity, fine aggregate angularity, and coarse 

aggregate texture can be found within Appendix A.  

4.4.2 Test Repeatability 

The results for angularity and texture only were checked against the precision statement in 

AASHTO TP81: Determining Aggregate Shape Properties by Means of Digital Image Analysis 

as these were the properties used to find correlations with field data. The precision statement 

specifies acceptable upper and lower limits with a COV as a percent of the overall average 

(boundary +/- average*COV) for each of the shape parameters. The COV corresponding to 

AIMS-II angularity indexes is 2.9%, whereas the COV corresponding to AIMS-II texture 

indexes is 4.5%. Tables showing the overall mean, lower and upper limits, as well as the means 

of each replicate are shown in Appendix B. It should be noted that while some of the replicates’ 
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means fell outside the precision statement, which are shown in red within the tables, these values 

were reasonably close and were accepted for use in data analysis.  
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CHAPTER 5: LABORATORY RESULTS AND DISCUSSION 

This chapter focuses on the laboratory results obtained from the AIMS-II device before and after 

aggregates were subjected to incremental conditioning times in the Micro-Deval apparatus. The 

change in mass loss and aggregate property indexes provided by the AIMS-II device as result of 

Micro-Deval conditioning were tracked. These AIMS-II indexes for coarse aggregates included 

angularity, texture, sphericity, and flat and elongated ratios. The AIMS-II indexes provided for 

fine aggregates were angularity and two-dimensional form.  

The Micro-Deval test procedures set forth in ASTM D7428 and ASTM D6928 were the basis of 

selecting 100 minutes and 30 minutes of total conditioning time for coarse and fine aggregates, 

respectively. As shown in the following results, the test protocol was not able to achieve terminal 

conditioning, thus the AIMS-II indexes did not achieve terminal values as shown in the 

following results. As mentioned previously, terminal values indicate that AIMS-II index is 

decreasing at a much slower and steady rate and essentially remaining the same with increased 

conditioning. 

5.1 Micro-Deval Aggregate Mass Loss 

As described in Step 6 of the test protocol in Chapter 3 for both coarse and fine aggregates, the 

Micro-Deval mass loss was recorded. Material passing the #16 sieve was considered lost 

material for coarse aggregates, and material passing the #50 sieve was considered lost material 

for fine aggregates. The amount of mass loss due to conditioning in the Micro-Deval is an 

indication of aggregate durability. The change in coarse aggregate (CA) and fine aggregate (FA) 

mass was recorded at each Micro-Deval polishing time as a cumulative percent loss (Figures 5.1 

and 5.2, respectively). 
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Figure 5.1: Change in coarse aggregate mass loss from Micro-Deval conditioning 

 

 

Figure 5.2: Change in fine aggregate mass loss from Micro-Deval conditioning 
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As expected, all aggregate sources experienced some mass loss due to conditioning in the Micro-

Deval. A steeper slope in the figure indicates a higher rate of mass loss for the aggregate. With 

the exception of the Opelika limestone source, the fine aggregates experienced a greater 

percentage of average mass loss after 30 minutes of conditioning than the coarse aggregates after 

100 minutes of conditioning. This may be attributed to the sample of fine particles having a 

higher surface area exposure to abrasion than coarse aggregates based on an equal mass of 

sample. There are more pieces broken off of multiple fine particles compared to the fewer coarse 

particles.  

The bauxite was characterized by the least percent mass loss among all the #16 particles that 

were tested indicating the bauxite to be the most durable. This was expected, as the bauxite is 

considered to be a good aggregate source for use in high friction surface courses and is capable 

of maintaining its durability under heavy traffic loads (Federal Highway Administration 2012).  

Additionally, the ranking among the aggregates differs from coarse and fine aggregates of the 

same sources (Table 5.1). The ranking is based on the cumulative percent loss at the end of the 

total conditioning time (100 minutes for coarse aggregates and 30 minutes for fine aggregates) 

with the aggregate that was characterized by the greatest mass loss ranked last. Bauxite was 

excluded from the table because only the #16 size was tested, and the test results clearly show 

bauxite experienced the least amount of mass loss,. The table shows that aggregate durability 

varies among different sizes of the same aggregate source; thus, aggregate size should be 

considered when evaluating an aggregate for use in a surface course. 
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Table 5.1: Percent mass loss ranking among CA and FA at total conditioning 

Aggregate 

Source 

CA 

Ranking 

FA 

Ranking 

Opelika LMS 4 1 

Columbus GRN 3 4 

LaGrange GRN 1 3 

Calera LMS 2 2 

*1 = lowest mass loss, 4 = highest mass loss 

5.2 AIMS-II Aggregate Angularity 

As described in Chapter 3, the AIMS-II aggregate angularity was recorded for coarse and fine 

aggregates. Coarse aggregate angularity is an indication of macro-texture, whereas fine 

aggregate angularity relates to the internal friction of the aggregate structure. The average coarse 

aggregate and fine aggregate angularity index was recorded at each conditioning time interval 

(Figure 5.3 and Figure 5.4, respectively). 

 

Figure 5.3: Change in AIMS-II coarse aggregate angularity from Micro-Deval conditioning 

1800

2000

2200

2400

2600

2800

3000

3200

0 20 40 60 80 100

A
IM

S
-I

I 
A

n
g
u

la
ri

ty
 I

n
d

ex

Conditioning Time (minutes)

Change in CA Angularity

Opelika Lms

Columbus Grn

LaGrange Grn

Calera Lms



82 
 

 

Figure 5.4 Change in AIMS-II fine aggregate angularity from Micro-Deval conditioning 
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fine particles beyond 30 minutes of conditioning time in order to see a noticeable decrease in the 

rate of angularity loss despite 30 minutes being double the conditioning time specified in ASTM 

D7428.  

Similar to the mass loss results, there were differences between the angularity indexes of the 

coarse and fine aggregates of the same source. The fine aggregates were characterized by a 

higher initial angularity when compared to the coarse aggregates of the same source. An 

aggregate may initially be characterized by a high angularity index, but it is important for the 

aggregate to be able to maintain an adequate level of angularity when subjected to polishing. 

Therefore, the percent reduction in angularity (reduction in angularity/initial) was recorded to 

evaluate the aggregates’ ability to retain its initial angularity (Table 5.2). 

Table 5.2: Percent loss in AIMS-II angularity for coarse and fine aggregates 

Aggregate 

Source 
CA FA 

Opelika Lms 27.7% 8.9% 

Columbus Grn 16.7% 26.5% 

LaGrange Grn 19.3% 22.6% 

Calera Lms 19.3% 19.5% 

Bauxite N/A 8.5% 

 

It has been established that coarse aggregate angularity is the second most important property 

behind gradation for overall HMA pavement performance (Prowell et al. 2005). Table 5.2 shows 

the Opelika limestone to have the largest percent loss in angularity for coarse aggregates. Under 

heavy traffic volumes at the NCAT Test Track, the surface courses typically do not consist of 

only a limestone source. Limestone sources tend to polish easily under heavy traffic loads, 

resulting in a decrease in pavement friction performance. To improve friction performance, 

another aggregate more resistant to polishing is blended with the limestone. Fine aggregates 
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characterized by higher angularity are more desirable because they provide internal friction 

within the aggregate structure to prevent rutting but do not directly relate to pavement surface 

friction. 

The cumulative distribution of angularity indexes was tracked before Micro-Deval conditioning 

(BMD) and at each conditioning time (20, 40, 60, 80, and 100 minutes or 10, 20, and 30 minutes) 

for each aggregate source and size. Figure 5.5 provides an example of this for the #4 Opelika 

limestone. The AIMS-II delineation between low, medium, and high angularity indexes are 

labeled and separated by vertical black lines within the graph. The cumulative distributions for 

all of the aggregate sources may be found in Appendix C. 

 

Figure 5.5: Example of AIMS-II angularity distribution trend for Opelika limestone #4 
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increased polishing time. This is demonstrated using the K-S test. Table 5.3 shows the K-S test 

results that correspond to Figure 5.5. The maximum difference between two successive 

distributions decreases as the distribution curves get closer. The K-S test results for all aggregate 

distributions are located in Appendix D. 

Table 5.3: Example of K-S test results for Opelika limestone #4 AIMS-II angularity 

Opelika Lms #4 Angularity 

Comparisons 

Max 

Difference 
P-value 

BMD vs 20 0.38 0.00 

20 vs 40 0.16 0.01 

40 vs 60 0.13 0.06 

60 vs 80 0.09 0.34 

80 vs 100 0.07 0.65 

BMD vs 100 0.53 0.00 

 

The K-S test results shown in Table 5.3 provide the maximum difference between the two 

distributions as well as the corresponding p-value at a 95% confidence interval. A low p-value 

means the distributions are significantly different at a 5 percent level; these values are shown in 

red. The initial distribution prior to any conditioning and at the total conditioning time were 

compared in order to confirm that the K-S test recognized a significant change in distribution 

caused by Micro-Deval conditioning. It should be noted that the K-S test results from the fine 

aggregates’ angularity showed several cases in which the distribution at 20 minute conditioning 

significantly differed from the distribution at 30 minutes. This further indicated fine aggregate 

conditioning should be carried out beyond 30 minutes conditioning time to reach terminal 

angularity values. 

Figures 5.6 and 5.7 show the cumulative distribution of particles for each of the coarse and fine 

aggregate sources, respectively, after total conditioning time. It was noted that the distribution 
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curves had similar shape. Therefore, the location of the distribution curves ranks similarly to the 

mean value of each curve. Distribution curves further to the left also had a lower mean value. 

 

Figure 5.6: AIMS-II coarse aggregate angularity cumulative distribution after 100 minutes 

of Micro-Deval conditioning 

 

 

Figure 5.7: AIMS-II fine aggregate angularity cumulative distribution after 30 minutes of 

Micro-Deval conditioning 
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5.3 AIMS-II Coarse Aggregate Texture 

The AIMS-II texture index was recorded after each Micro-Deval conditioning cycle for each 

coarse aggregate source (Figure 5.8). As mentioned in Chapter 3, the AIMS-II does not evaluate 

surface texture of fine aggregates. Coarse aggregate texture relates to the surface micro-texture 

of the individual particles, a parameter that influences the overall pavement friction. 

 

Figure 5.8: Change in AIMS-II coarse aggregate texture from Micro-Deval conditioning 
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to maintain adequate surface texture when subjected to polishing, the loss of texture as a percent 

of initial surface texture was computed for each aggregate source after 100 minutes of 

conditioning (Table 5.4).  

Figure 5.8 shows Calera limestone has a higher terminal texture index than both the LaGrange 

granite and Opelika limestone. However, Table 5.4 shows the Calera limestone also has the 

highest rate of texture loss after 100 minutes of conditioning which is further portrayed by the 

steeper slope in Figure 5.8. If the Micro-Deval conditioning time were increased, it is possible 

that the Calera limestone could reach a terminal surface texture value less than that of the 

LaGrange granite. This is an important consideration as an aggregate might appear to have a 

higher initial surface texture but under polishing conditions could not retain its micro-texture. 

This could result in a mixture’s inability to maintain an adequate amount of pavement friction.  

Table 5.4: Percent loss in AIMS-II coarse aggregate texture 

Aggregate 

Source 

Percent 

Texture Loss 

Opelika Lms 23.8% 

Columbus Grn 10.2% 

LaGrange Grn 14.6% 

Calera Lms 28.2% 

 

Similar to aggregate angularity, the cumulative distribution of coarse aggregate texture indexes 

was tracked before conditioning in the Micro-Deval (BMD) and after 20, 40, 60, 80, and 100 

minutes of conditioning. Figure 5.9 shows an example of the #4 Opelika limestone with the 

corresponding K-S test results in Table 5.5. The cumulative distributions and corresponding K-S 

test results of all the aggregate sources may be found in the appendices. 
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Figure 5.9: Example of AIMS-II texture distribution trends for Opelika limestone #4 

 

Table 5.5: Example of K-S test results for Opelika limestone #4 AIMS-II texture 
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difference between the samples beginning at 60 minutes. This statistical analysis agrees with 

Figure 5.8 that suggests the Opelika limestone reaches a terminal AIMS-II surface texture at 60 

minutes of conditioning, indicating the average AIMS-II texture index is leveling off and 

essentially remaining constant at this point in conditioning. 

Figure 5.10 shows the cumulative distribution of each aggregate source’s surface texture after 

100 minutes of Micro-Deval conditioning. The further right the distribution is shifted indicates 

rougher texture distribution at terminal conditioning. After 100 minutes of conditioning, the 

Columbus granite consisted of the largest percentage of particles characterized by rougher 

texture compared to the other aggregate sources. Therefore, the Columbus granite would provide 

the most micro-texture to a pavement mixture compared to other sources in this study. This 

suggests that the Columbus granite should provide more pavement surface friction. 

  

Figure 5.10: AIMS-II coarse aggregate texture cumulative distribution trends after 100 

minutes of Micro-Deval conditioning 
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5.4 AIMS-II Aggregate Form 

5.4.1 AIMS-II Coarse Aggregate Sphericity 

Figure 5.11 shows the change in the average AIMS-II sphericity index for each coarse aggregate 

at each incremental polishing time. The figure reveals that there was no change in sphericity with 

increased Micro-Deval conditioning time.  According to the AIMS-II, all aggregate sources were 

consistently characterized as having a medium level of sphericity (value of 0.3- 0.7) when 

considering the overall average. The Opelika limestone consistently had the lowest sphericity 

index, indicating that these particles tended to be slightly more spherical than the other aggregate 

sources. This was further demonstrated in Figure 5.12 by showing that the cumulative 

distribution of the sphericity indexes for the Opelika limestone was shifted farthest left of the 

aggregate sources after 100 minutes of conditioning. 

 

Figure 5.11: Change in AIMS-II coarse aggregate sphericity from Micro-Deval 

conditioning 
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Figure 5.12: AIMS-II coarse aggregate sphericity cumulative distribution trends after 100 

minutes of Micro-Deval conditioning 
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Figure 5.13: Change in AIMS-II coarse aggregate F&E ratios from Micro-Deval 

conditioning 
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Figure 5.14: Change in AIMS-II fine aggregate form2D from Micro-Deval conditioning 
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bauxite reflected minimal changes in distribution after increased conditioning, further indicating 

the durability of bauxite and its resistance to change in shape.  

Additionally, Figure 5.17 shows the distributions of form2D values for each aggregate source 

after 30 minutes of conditioning. Apart from the Opelika limestone, there are barely any 

differences between the form2D distributions among the aggregate sources. This indicates that 

there is little variation in the overall two-dimensional shape among the fine aggregates tested. 

 

Figure 5.15: Example of AIMS-II fine aggregate form2D distribution trends for bauxite 
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Figure 5.16: Example of AIMS-II FA formd2D distribution trends for Columbus granite 
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Figure 5.17: AIMS-II fine aggregate form2D distribution trends after 30 minutes of Micro-

Deval conditioning 
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using a limestone source in a surface course may not provide suitable pavement friction. Overall, 

increased Micro-Deval conditioning yielded a decreasing trend in fine aggregate two-

dimensional form. This indicated the aggregates became more rounded. The bauxite showed 

minimal change in its particle shape when subjected to conditioning, validating its capability of 

resisting the effects from conditioning. No trends were observed for coarse aggregate sphericity 

as well as F&E values with increased conditioning time. These two parameters do not play a role 

in pavement friction, so this did not introduce any hindrances when finding correlations between 

lab data and field friction data.  
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CHAPTER 6: COMPARISON OF AIMS-II LAB RESULTS AND FIELD FRICTION 

This chapter focuses on comparing the lab results obtained from the AIMS-II device with the 

results obtained from the NCAT Pavement Test Track field test sections using the locked-wheel 

skid trailer. For the purpose of this chapter, the AIMS-II lab results for the Opelika limestone 

were omitted because none of the surface mixtures on the Test Track sections were composed of 

Opelika limestone as the dominant aggregate in the mix. 

6.1 Field Results 

Friction data were collected from NCAT’s 2009 Test Track research cycle using the locked-

wheel skid trailer. As mentioned previously, the skid trailer is run at 40 miles per hour with a 

ribbed tire and produces a skid number, denoted as SN40R. Field friction data from the last few 

months of testing in the 2009 research cycle was omitted due to irregularities within the data. 

The irregularities came from testing field friction a couple of months after the traffic cycles had 

stopped. This caused the field friction to yield measurements inconsistent with the rest of the 

friction measurements from the same research cycle. 

Initially, the field test sections were ranked on an individual basis. However, using individual 

test sections for the analysis proved to be inconclusive. Therefore, test sections were grouped 

together according to the surface mix design, resulting in five separate groups of mixtures. As 

described in Chapter 4, these groups included two sections of the HFST using bauxite, seven 

sections of fine-dense graded (FDG) mix composed primarily of Columbus granite, one section 

of the OGFC composed of Columbus granite, three sections of the OGFC composed of 

LaGrange granite, and one section characterized as an SMA composed primarily of Calera 
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limestone. These are summarized in Table 4.2 of Chapter 4. Figure 6.1 shows the design 

gradation of the four asphalt mix types. 

 

Figure 6.1: Field mix gradations for each Test Track section 

Based on the mix types, an average of the SN40R for each group was computed to rank the field 

results (Figure 6.2). The SN40R for bauxite section E3 was unusually high compared to the rest 

of the data during testing around 5.3 million ESALs. Section E3 was characterized by a SN40R 

of 68.0 after 5.3 million ESALs of traffic. To justify removing this data point, the difference in 

SN40R values between section E3 and section E2 were calculated (SN40R of E3 – SN40R of 

E2). After 5.3 million ESALs, the difference between the measured SN40R values of E3 and E2 

was 4.2. This calculated difference was more than two standard deviations away from the 

average difference between the two test sections, indicating there was some error resulting in the 

measurement. This was likely attributed to the skid trailer testing outside of the wheel path, 

which would result in a higher skid number than if the measurement were taken inside the wheel 
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path. Therefore, the SN40R obtained from the other bauxite section (E2) was used (circled in red 

in the figure) as opposed to taking an average of the two test sections. 

 

Figure 6.2: Average of field SN40R data based on mix type 

6.1.1 Defining “Terminal Friction” 

Figure 6.2 shows a rapid initial decline in field friction values, primarily with the Calera 

limestone surface mix. The field friction data showed the rate of friction loss for this mix 

drastically reduces around 2 million ESALs. Agencies are interested in measuring long-term 

friction properties, which are commonly called the terminal properties. At 2 million ESALs, all 

test sections were approaching a point at which the SN40R values were trending to a terminal 

friction condition (a flat slope), which will be referred to as terminal friction. While friction 

values tend to continue steadily decreasing, they essentially remain constant at this point with 

increased polishing from traffic. For this study, it was determined the SN40R at approximately 7 

million ESALs was considered the end point of the terminal friction trend for all field test 
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sections. A linear trend is typically appropriate to portray terminal friction because the change in 

friction is decreasing at a steady rate. Therefore, a linear trendline was applied to the friction data 

from 2 to 7 million ESALs (Figure 6.3). The resulting equation from the linear trend was used to 

calculate average skid numbers from 2 million ESALs to 7 million ESALs to use for comparison 

with the AIMS-II angularity and AIMS-II texture indexes. 

 

Figure 6.3: SN40R approaching terminal friction for each Test Track section 

 

6.2 Comparing AIMS-II Aggregate Angularity to Field Friction Performance 

A relationship between the AIMS-II angularity and SN40R was assessed as part of the research 

study. AIMS-II coarse aggregate angularity and AIMS-II fine aggregate angularity were 

compared separately with the field friction performance. The skid number obtained from the 

field before the test sections were opened to traffic (0 ESALs) was not altered and was used to 

compare with preconditioned AIMS-II indexes, which is further discussed within this chapter. 
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6.2.1 AIMS-II Coarse Aggregate Angularity and SN40R 

Four measurement intervals were selected at specific points in time during conditioning to 

evaluate if a relationship could be established between the AIMS-II results and field friction. The 

first interval selected compared the field SN40R with the AIMS-II prior to any conditioning from 

traffic in the field or the Micro-Deval in the lab. Lab results (shown in Chapter 4 of this report) 

portrayed a linear decline from 20 to 100 minutes for AIMS-II coarse aggregate angularity. A 

similar trend was seen in the field friction performance data as it was approaching terminal 

friction from approximately 2 to 7 million ESALs. Therefore, the end of the significant decline 

was selected as the second interval of comparison, which compared the AIMS-II CA angularity 

at 20 minutes and the field SN40R at 2 million ESALs. A third interval was selected to compare 

points in the middle of the linear decline as the values approached terminal values, which 

included AIMS-II CA angularity at 60 minutes and SN40R at 4 million ESALs. Lab testing was 

not carried out to a terminal value. It was believed that 100 minutes of conditioning coarse 

aggregates was reaching near a terminal value based on a study by Moaveni et al. (2008), which 

found the AIMS-II indexes significantly reduced after 105 minutes of Micro-Deval conditioning. 

Therefore, AIMS-II CA angularity at 100 minutes was compared with the SN40R at 6 million 

ESALs, a value approaching close to the end point of the terminal friction trend (7 million 

ESALs) in the field. The results of the comparison are shown in Figure 6.4. Bauxite is not 

included in the figure because there were no coarse aggregates to test bauxite. To clarify, the 

field friction values were acquired from the trendlines shown in Figure 6.3, whereas the AIMS-II 

indexes are the actual indexes provided by AIMS-II testing. The isolated data points represent 

the comparison of the AIMS-II results with the field friction data prior to any conditioning. As 

mentioned previously, these points were not altered for comparison. 
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Figure 6.4: Comparison of AIMS-II coarse aggregate angularity with field friction 

 

The results showed some inconsistencies among the data. For example, the Calera limestone in 

the field showed barely any reduction in the SN40R after the initial 2 million ESALs of 

conditioning. However, in the laboratory after initial conditioning to 20 minutes, the AIMS-II 

angularity continued to decrease from approximately 2,400 to 2,200. As a result, the steep slope 

of the Calera limestone reflects the change in laboratory properties while field friction remained 

reasonably constant. A similar trend was seen when comparing the AIMS-II Columbus granite 

angularity indexes with the field friction of the two mixes containing Columbus granite. 

Therefore, it was determined that generating a trendline to the linear portion of the AIMS-II 

coarse aggregate angularity data may provide more consistent results (Figure 6.5). 
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The trendline equations were used to calculate the average lab values to be used for comparison 

after conditioning at 20, 60, and 100 minutes. These values were then used to rank the aggregates 

and mixtures based on the AIMS-II coarse aggregate angularity indexes and SN40R values, 

respectively (Table 6.1). To clarify, the aggregates and mixtures are ranked from 1 to 3, where 1 

denotes the aggregate or mixture as being characterized as having the highest AIMS-II index or 

SN40R. The AIMS-II lab values at 20, 60, and 100 minutes were used to compare with the field 

SN40R at 2, 4, and 6 million ESALs (Figure 6.6).  

 

Figure 6.5: Linear trend in AIMS-II coarse aggregate angularity from 20 to 100 minutes 
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Table 6.1 Comparison of AIMS-II coarse aggregate angularity and field SN40R Rankings 

Field Mix ID Pre-conditioned 2 mESALs 4 mESALs 6 mESALs 

OGFC LaGrange Grn 1 1 1 1 

SMA/FDG Columbus Grn 3/1 2 2 2 

SMA Calera Lms 2 3 3 3 

#4 Aggregate Pre-conditioned 20 minutes 60 minutes 100 minutes 

LaGrange Grn 2 2 2 2 

Columbus Grn 1 1 1 1 

Calera Lms 3 3 3 3 

 

 

Figure 6.6: Adjusted trend for field friction and AIMS-II coarse aggregate angularity 

comparison 

 

Table 6.1 compares the ranking of the AIMS-II coarse aggregate angularity with that of the field 

SN40R. To further clarify, the preconditioned ranking follows the order using the SMA 

Columbus granite ranked third. If the remaining field sections were ranked based on the FDG 

Columbus granite ranking prior to any conditioning, which was ranked first, the OGFC 

LaGrange granite section would rank second, and the SMA Calera limestone section would rank 
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third. With the exception of the pre-conditioned rankings, the rankings of the mix types were 

identical, regardless of which Columbus granite surface mix was used. This suggests the mix 

type did not impact the field friction performance. The #4 Calera limestone consistently ranked 

last after it was subjected to conditioning. Similarly, the field mix composed primarily of Calera 

limestone consistently ranked last after being subjected to polishing due to traffic.  

Figure 6.6 shows that a positive relationship between the AIMS-II coarse aggregate angularity 

and the field SN40R. In general, a decrease in the AIMS-II coarse aggregate angularity results in 

a decrease in SN40R of the surface mix in the field. Unfortunately, a good correlation between 

the AIMS-II coarse aggregate angularity results and the field SN40R could not be established. 

This can be attributed to discrepancies within the results that question the capability of the 

AIMS-II/Micro-Deval combination to relate to field friction performance. The AIMS-II lab 

results show the Columbus granite to be the aggregate characterized by the highest coarse 

aggregate angularity. However, the field results show the mix containing primarily LaGrange 

granite as exhibiting the best field friction performance. In the lab, the LaGrange granite 

exhibited AIMS-II coarse aggregate angularity indexes that were closer to the Calera limestone, 

an aggregate known to yield poor friction performance in the field.  

6.2.2 AIMS-II Fine Aggregate Angularity and SN40R 

A similar process was carried out for evaluating the relationship between AIMS-II fine aggregate 

angularity from the #16 aggregate particles and the SN40R from the surface mixtures in the field. 

The AIMS-II fine aggregate angularity began exhibiting a linear trend at 10 minutes. Therefore, 

a linear trendline was applied to the data from 10 to 30 minutes (Figure 6.7). The resulting 

equations were used to generate average AIMS-II fine aggregate angularity indexes which were 
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used to rank the aggregate’s (Table 6.2) and to compare with the field SN40R values (Figure 

6.8).  

 

Figure 6.7: Linear trend in AIMS-II fine aggregate angularity from 10 to 30 minutes 

 

Table 6.2: Comparison of AIMS-II fine aggregate angularity and field SN40R Rankings 

Field Mix ID Pre-conditioned 2 mESALs 4 mESALs 6 mESALs 

HFST Bauxite 1 1 1 1 

OGFC LaGrange Grn 2 2 2 2 

SMA/FDG Columbus Grn 4/2 3 3 3 

SMA Calera Lms 3 4 4 4 

#16 Aggregate Pre-conditioned 10 minutes 20 minutes 30 minutes 

Bauxite 4 3 3 3 

LaGrange Grn 2 2 2 1 

Columbus Grn 1 1 1 2 

Calera Lms 3 4 4 4 
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Figure 6.8: Adjusted trend for field friction and AIMS-II fine aggregate angularity 

comparison 

 

After the aggregates were subjected to conditioning in the Micro-Deval, the Calera limestone 

consistently exhibited the lowest AIMS-II fine aggregate angularity, which agrees with the 

SN40R results of the Calera limestone mix in the field. However, the results also showed some 

inconsistencies. The aggregates which portrayed the highest and lowest friction in the field were 

characterized by the same angularity in the AIMS-II. The bauxite, which excelled in field friction 

performance, yielded AIMS-II angularity indexes close to the Calera limestone, which exhibited 

poor friction performance. This may be attributed to the bauxite being used as a high friction 

surface treatment in the field as opposed to a component in a surface mixture. 

Figure 6.8 shows that AIMS-II fine aggregate angularity decreases as friction decreases in the 

field for each of the surface mixes. The figure also indicates no correlation between the AIMS-II 

fine aggregate angularity and the field SN40R could be established. If the bauxite were removed, 
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a possible correlation could be made between AIMS-II fine aggregate angularity and field 

friction among the granite sources and Calera limestone. This indicates the AIMS-II may not be 

suitable in evaluating aggregate sources that are used in typical high friction surface treatments, 

such as the bauxite. 

6.3 Comparing AIMS-II Texture to Field Friction Performance 

Similar to the AIMS-II coarse aggregate angularity, the AIMS-II coarse aggregate texture results 

exhibited a linear trend from 20 to 100 minutes of conditioning time. Therefore, linear trendlines 

were applied (Figure 6.9), and the same points for comparison were selected that were used 

previously when comparing coarse aggregate angularity with field friction. The AIMS-II lab 

results at 0, 20, 60, and 100 minutes were compared with the field’s SN40R at 0, 2, 4, and 6 

million ESALs, respectively, using the same ranking system (Table 6.3) and plotting the values 

on a graph (Figure 6.10).  
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Figure 6.9: Linear trend for AIMS-II coarse aggregate texture from 20 to 100 minutes 

 

Table 6.3: Comparison of AIMS-II coarse aggregate texture and field SN40R rankings 

Mix ID Pre-conditioned 2 mESALs 4 mESALs 6 mESALs 

OGFC LaGrange Grn 1 1 1 1 

SMA/FDG Columbus Grn 3/1 2 2 2 

SMA Calera Lms 2 3 3 3 

#4 Aggregate Pre-conditioned 20 minutes 60 minutes 100 minutes 

LaGrange Grn 3 3 3 3 

Columbus Grn 1 1 1 1 

Calera Lms 2 2 2 2 
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Figure 6.10: Adjusted trend for AIMS-II coarse aggregate texture and field SN40R 

comparison 

 

The results from the AIMS-II coarse aggregate texture measurements did not agree with the 

friction results obtained from the field SN40R. The AIMS-II texture indexes for the LaGrange 

granite were consistently ranked the lowest of the aggregates compared. As mentioned 

previously, the LaGrange granite surface mix exhibited the best field friction performance of the 

mixes presented in Table 6.3. The results show the #4 LaGrange granite to be exhibiting AIMS-

II texture indexes that reflect more closely to the Calera limestone texture indexes, which was 

not expected. Similar to the AIMS-II coarse aggregate angularity, Figure 6.10 did not show a 

good correlation between the AIMS-II texture and field SN40R, though it does suggest that a 

decrease in AIMS-II coarse aggregate texture results in a decrease in SN40R after conditioning, 

which is what would be expected.  
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6.4 Comparing Micro-Deval Mass Loss to Field Friction Performance 

The cumulative percentage of the aggregate mass loss from the Micro-Deval was analyzed to 

determine if field SN40R data ranking was similar. Table 6.4 shows the ranking of the SN40R in 

the field and of the cumulative mass loss for the coarse aggregates after 100 minutes of 

conditioning and fine aggregates after 30 minutes of conditioning.  An aggregate ranking of 1 

indicates the aggregate yielded the least mass loss at the end of Micro-Deval conditioning, 

whereas a ranking of 4 is the aggregate with the most mass loss. The ranking system for the 

coarse aggregate mass loss starts with 2 to be consistent with the ranking of the field and fine 

aggregate mass loss, as a coarse aggregate bauxite was not tested. As noted earlier, the field mix 

types containing Columbus granite did not affect the SN40R ranking after conditioning, so for 

simplicity, they were not separated within the table. 

Table 6.4: Ranking comparison of field friction, coarse aggregate mass loss, and fine 

aggregate mass loss 

Aggregate Field SN40R 
CA Mass 

Loss 

FA Mass 

Loss 

Bauxite 1 N/A 1 

Columbus Grn 3 4 4 

LaGrange Grn 2 2 3 

Calera Lms 4 3 2 

 

The table shows the performance of the bauxite in the lab, in regards to mass loss, agreed with 

the HFST bauxite friction from the field, as they both excelled in performance. However, the 

Columbus granite and LaGrange granite, which performed well in the field, exhibited a 

significantly higher cumulative mass loss compared to the Calera limestone, which exhibited 

very poor performance in the field in regards to friction. Unfortunately, a correlation could not 

be made between cumulative mass loss and the field data, as there was no indication of what the 
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terminal value would be for mass loss. According to Figure 4.1 and Figure 4.2 from Chapter 4, 

the cumulative mass loss for both the coarse and fine aggregates, respectively, failed to reach a 

terminal value.  

6.5 Statistical Analysis of Comparison Results  

A series of statistical analyses were carried out using Excel’s data analysis package and DataFit 

(version 9.1.32) to further analyze the correlations between the AIMS-II indexes and the field 

friction performance data. The AIMS-II parameters that were used included the coarse aggregate 

angularity, coarse aggregate texture, coarse aggregate sphericity, fine aggregate angularity, and 

fine aggregate form2D. Coarse aggregate flat and elongated ratios were excluded from the 

analysis because they influence the compaction of the mixture and are not tied to friction. Coarse 

aggregate sphericity and fine aggregate form2D were not previously used to compare with field 

friction data. However, these two AIMS-II parameters were included in the statistical analysis to 

evaluate their influence on the correlation. 

The first part of the statistical analysis used the average AIMS-II indexes for each aggregate 

source after final conditioning. These AIMS-II indexes were compared with the average SN40R 

obtained from the last month of testing that was used for this research study (Figure 6.2). A 

summary of the data used for comparison is shown in Table 6.5. 
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Table 6.5: AIMS-II indexes after final conditioning and average terminal SN40R 

Aggregate 

AIMS-II Indexes 

SN40R CA 

Angularity 

CA 

Texture 

CA 

Sphericity 

FA 

Angularity 

FA 

Form2D 

Bauxite ---  ---  ---  2708.53 6.95 60.8 

Columbus 

Grn 
2500.9 299.84 0.68 3143.43 6.99 40.7 

LaGrange 

Grn 
2268.3 152.84 0.69 3127.73 6.84 40.0 

Calera Lms 2141.6 158.96 0.66 2472.07 6.81 17.9 

 

The data from Table 6.5 was used to run a Pearson Product-Moment Correlation to detect 

correlations between the AIMS-II indexes and field friction data (Table 6.6). The Pearson 

Correlation is used to evaluate the linear relationship between two parameters. It provides a 

value between -1 and +1, known as the Pearson Correlation coefficient or r-value, which 

indicates the strength of the correlation between the two sets of data in consideration (Johnson et 

al. 2000). This r-value should not be confused with the coefficient of determination (R2), which 

represents how much the variability of the data can be explained by a given model. For the 

statistical analyses in this research study, variables with an r-value of approximately 0.6 and 

greater were considered to be an acceptable correlation for further correlation analysis (Pearson’s 

Correlation Coefficient 2009).  Table 6.6 shows three of the AIMS-II parameters, coarse 

aggregate angularity, coarse aggregate sphericity, and fine aggregate form2D, had acceptable 

correlation coefficients with the field friction data compared to the other parameters. 
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Table 6.6: Pearson Correlation Coefficient for AIMS-II indexes and average field friction 

Parameter 
CA 

Angularity 

CA 

Texture 

CA 

Sphericity 

FA 

Angularity 

FA 

Form2D 
SN40R 

Ca 

Angularity 
1           

CA Texture 0.924 1         

CA 

Sphericity 
0.345 -0.039 1       

FA 

Angularity 
0.783 0.486 0.854 1     

FA Form2D 0.977 0.984 0.139 0.417 1   

SN40R 0.787 0.491 0.851 0.325 0.683 1 

 

The correlation between the fine aggregate angularity and field friction was low. This was 

attributed to the bauxite measuring a low angularity index while performing well in the field 

from a friction standpoint. To examine the influence of the bauxite, it was omitted from the data, 

and a second Pearson Correlation was run (Table 6.7).  

Table 6.7: Pearson Correlation Coefficients for AIMS-II indexes and average field friction 

(excluding bauxite) 

Parameter 
CA 

Angularity 

CA 

Texture 

CA 

Sphericity 

FA 

Angularity 

FA 

Form2D 
SN40R 

CA 

Angularity 
1           

CA Texture 0.924 1         

CA 

Sphericity 
0.345 -0.039 1       

FA 

Angularity 
0.783 0.486 0.854 1     

FA Form2D 0.977 0.984 0.139 0.634 1   

SN40R 0.787 0.491 0.851 1.000 0.639 1 

 

When bauxite was excluded, the correlation between fine aggregate angularity and field friction 

resulted in an r-value of 1.000, indicating a perfect positive correlation between fine aggregate 

angularity and field friction (Table 6.7). However, it should be noted that the remaining data 
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without bauxite represents a linear fit between a single limestone data point and a tight cluster of 

granite data. Additionally, the correlation between fine aggregate form2D and field friction 

decreased slightly with the exclusion of bauxite. Graphical representations of the comparisons 

that resulted in good correlations are shown in the Appendices. 

The data set was limited to three data points for coarse aggregates and four data points for fine 

aggregates when using an average SN40R. In order to expand the amount of data, the SN40R for 

each individual section was analyzed individually, as opposed to using an average based on 

surface mix type (Table 6.8). This increased the data for coarse aggregates to 12 data points and 

for fine aggregates to 14 data points. The AIMS-II indexes remain the same for a specific 

aggregate type, but the SN40R values are the measured friction for each surface on the Test 

Track. A Pearson Correlation was run on the data presented in Table 6.8. These results included 

the bauxite and are summarized in Table 6.9.  
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Table 6.8: AIMS-II indexes after final conditioning and terminal SN40R for each section 

Aggregate 
AIMS-II Indexes 

SN40R CA 

Angularity 

CA 

Texture 

CA 

Sphericity 

FA 

Angularity 

FA 

Form2D 

Bauxite 
--- --- --- 2708.53 6.95 61.5 

--- --- --- 2708.53 6.95 60.1 

Columbus 

Grn 

2500.9 299.84 0.68 3143.43 6.99 42.6 

2500.9 299.84 0.68 3143.43 6.99 41 

2500.9 299.84 0.68 3143.43 6.99 40.9 

2500.9 299.84 0.68 3143.43 6.99 40.7 

2500.9 299.84 0.68 3143.43 6.99 40.3 

2500.9 299.84 0.68 3143.43 6.99 39.8 

2500.9 299.84 0.68 3143.43 6.99 39.5 

2500.9 299.84 0.68 3143.43 6.99 39.5 

LaGrange 

Grn 

2268.3 152.84 0.69 3127.73 6.84 39.4 

2268.3 152.84 0.69 3127.73 6.84 38.1 

2268.3 152.84 0.69 3127.73 6.84 42.4 

Calera Lms 2141.6 158.96 0.66 2472.07 6.81 17.9 

 

Table 6.9: Pearson Correlation Coefficients for AIMS-II indexes and field friction 

(including bauxite) 

Parameter 

CA 

Angularity CA Texture 

CA 

Sphericity 

FA 

Angularity FA Form2D SN40R 

CA Angularity 1           

CA Texture 0.963 1         

CA Sphericity 0.093 -0.177 1       

FA Angularity 0.664 0.439 0.806 1     

FA Form2D 0.989 0.992 -0.055 0.394 1   

SN40R 0.654 0.434 0.790 -0.019 0.373 1 

 

The Pearson Correlation showed relatively good correlations for coarse aggregate angularity and 

coarse aggregate sphericity with field friction. The correlation between fine aggregate angularity 

and field friction was thought to be lower because of the bauxite. Therefore, bauxite was 

excluded from the data, and a second Pearson Correlation was run (Table 6.10). 
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Table 6.10: Pearson Correlation Coefficients for AIMS-II indexes and field friction  

(excluding bauxite) 

Parameter 

CA 

Angularity CA Texture 

CA 

Sphericity 

FA 

Angularity FA Form2D SN40R 

CA Angularity 1           

CA Texture 0.963 1         

CA Sphericity 0.093 -0.177 1       

FA Angularity 0.664 0.439 0.806 1     

FA Form2D 0.989 0.992 -0.055 0.546 1   

SN40R 0.654 0.434 0.790 0.982 0.538 1 

 

As expected, the r-value in Table 6.10 increased to 0.982, indicating a near perfect correlation 

between fine aggregate angularity and field friction. Additionally, after separating out the SN40R 

from each section, the Pearson Correlation showed lower r-values for the relationship between 

form2D and field friction. The adjusted r-value indicated a weak correlation between form2D 

and field friction. 

Minitab was used to generate two different general linear models (GLM). Minitab requires a 

consistent amount of data for all parameters, so the bauxite was excluded in the analyses. The 

first GLM included all the parameters shown in Table 6.8. The second included just those 

parameters that exhibited a relatively good r-value with field friction from Table 6.10 (coarse 

aggregate angularity, coarse aggregate sphericity, and fine aggregate angularity). Minitab 

removed all the parameters except coarse aggregate angularity from each of the two analyses. 

These results are shown in the Appendices.  

Minitab found there was no reasonable linear correlation for the data in consideration. Therefore, 

a series of statistical analyses were run through DataFit to determine which model could be fitted 

to the parameters. All analyses used the data presented in Table 6.8. Bauxite was excluded from 

the analyses because there were no coarse aggregate sizes of bauxite that were tested, and the 
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software program requires an even amount of data for each variable. DataFit allows the user to 

select the type of regression analysis to run. For the purpose of these analyses, all models were 

selected to assess the best fit model, according to DataFit. The statistical analyses will be 

summarized in the following tables of this chapter. Detailed result summaries of the DataFit 

analyses are shown in the Appendices.  

Initially, all five parameters were included in the DataFit analysis. Equation 6.1 shows the model 

that resulted in the highest R2 value. Table 6.11 shows the coefficients that were estimated for 

each parameter and the corresponding statistics.  

𝑆𝑁40𝑅 = 𝑎 ∗ 𝐶𝐴𝐴 + 𝑏 ∗ 𝐶𝐴𝑇 + 𝑐 ∗ 𝐶𝐴𝑆 + 𝑑 ∗ 𝐹𝐴𝐴 + 𝑒 ∗ 𝐹𝐴𝐹2     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.1 

Where: 

a, b, c, d, and e: Regression coefficients (Table 6.11) 

CAA: Coarse aggregate angularity 

CAT: Coarse aggregate texture 

CAS: Coarse aggregate sphericity 

FAA: Fine aggregate angularity 

FAF2: Fine aggregate form2D 

Table 6.11: Summary of DataFit statistics corresponding to Equation 6.1 

Variable Value Standard Error t-ratio Prob(t) R2 Radj
2 

a 1.04E+12 1683.26 615403986.30 0.0 

0.964 0.944 

b -1.51E+12 16914.39 -88999331.60 0.0 

c -6.99E+14 27986345.74 -24984423.67 0.0 

d -1.75E+11 2863.03 -61103630.39 0.0 

e -1.59E+14 4019583.71 -39644491.47 0.0 
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The results show estimated coefficients that are very high and indicate all parameters are 

significant, and the model explains approximately 94% of the variability within the data, as noted 

by the adjusted R2. Although the model showed a relatively high R2 value (Table 6.11), the 

model indicates a negative relationship between all AIMS-II indexes and field friction, with the 

exception of coarse aggregate angularity. This is noted by the negative values that were 

estimated for each coefficient shown in Equation 6.1, with the exception of coefficient a. As 

mentioned previously, a decrease in texture should result in a decrease in field friction, which is 

not represented by the model.   

A second analysis was carried out in DataFit. This analysis considered only those parameters that 

showed a relatively good Pearson Correlation with field friction from Table 6.10, including 

coarse aggregate angularity, coarse aggregate sphericity, and fine aggregate angularity. 

Additionally, the interactions between those variables that showed strong correlations were 

considered by multiplying the variables together. This included the interaction between coarse 

aggregate angularity and fine aggregate angularity as well as coarse aggregate sphericity and fine 

aggregate angularity. The model resulting in the highest R2 is shown in Equation 6.2 with the 

estimated parameters and corresponding statistics shown in Table 6.12.  

𝑆𝑁40𝑅 = 𝑎 ∗ 𝐶𝐴𝐴 + 𝑏 ∗ 𝐶𝐴𝑆 + 𝑐 ∗ 𝐹𝐴𝐴 + 𝑑 ∗ 𝐶𝐴𝐴𝐹𝐴𝐴 + 𝑒 ∗ 𝐶𝐴𝑆𝐹𝐴𝐴      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.2 

Where: 

a, b, c, d, e: Regression coefficients (Table 6.12) 

CAAFAA: Interaction between coarse aggregate angularity and fine aggregate angularity 

CASFAA: Interaction between coarse aggregate sphericity and fine aggregate angularity 
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Table 6.12: Summary of DataFit statistics corresponding to Equation 6.2 

Variable Value Standard Error t-ratio Prob(t) R2 Radj
2 

a -9.63E+11 12044.64 -79962762.46 0.00 

0.957 0.933 

b -1.11E+12 35167769.35 -31463.04 0.00 

c 3.88E+12 3973.02 976137953.60 0.00 

d 8.17E+07 3.56 22981404.06 0.00 

e -4.88E+12 15777.62 -309083062.40 0.00 

 

Similar to the previous model, the estimated coefficients are very large, and the table shows each 

parameter is statistically significant. When taking the adjusted R2 into consideration, 

approximately 93% of the variability within the data may be explained by the model. The model 

shows a negative relationship between coarse aggregate angularity and field friction as well as 

fine aggregate angularity and field friction, as indicated by the estimated negative coefficients a 

and e. Similar to the previous model (Equation 6.1), this demonstrates the model is not 

reasonable for the parameters in consideration.  

A third DataFit analysis only included those variable that indicated strong correlations with the 

field friction data. The best fit model, according to the software program, is shown in Equation 

6.3. The estimated coefficients and corresponding statistics are shown in Table 6.13. 

𝑆𝑁40𝑅 = 𝑎 ∗ 𝐶𝐴𝐴 + 𝑏 ∗ 𝐶𝐴𝑆 + 𝑐 ∗ 𝐹𝐴𝐴     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.3 

Where: 

a, b, c: Regression coefficients (Table 6.13) 
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Table 6.13: Summary of DataFit statistics corresponding to Equation 6.3 

Variable Value Standard Error t-ratio Prob(t) R2 Radj
2 

a -0.005 3.87E-03 -1.22 0.25 

0.964 0.957 b -105.042 1.25E+01 -8.39 0.00 

c 0.039 3.15E-03 12.49 0.00 

 

Table 6.13 shows estimated coefficients that are more reasonable than the previous models. The 

results from Table 6.13 also indicate coarse aggregate angularity is not a statistically significant 

parameter within the model. Therefore, coarse aggregate angularity was removed from the 

model, and a fourth analysis was run in DataFit. Equation 6.4 shows the adjusted regression 

model after removing coarse aggregate angularity. This left the model with two parameters, 

coarse aggregate sphericity and fine aggregate angularity. The estimated coefficients and 

corresponding statistics are shown in Table 6.14.  

𝑆𝑁40𝑅 = 𝑎 + 𝑏 ∗ 𝐶𝐴𝑆 + 𝑐 ∗ 𝐹𝐴𝐴     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.4 

Where: 

a, b, c: Regression coefficients (Table 6.14) 

Table 6.14: Summary of DataFit statistics corresponding to Equation 6.4 

Variable Value Standard Error t-ratio Prob(t) R2 Radj
2 

a -63.13 51.72 -1.22 0.25 

0.964 0.957 b -3.96 88.65 -0.04 0.97 

c 0.03 0.00 9.28 0.00 

 

Table 6.14 shows the only variable to be significant is c, which is tied to fine aggregate 

angularity. Therefore, coarse aggregate sphericity was removed, and a fifth analysis was run 

through DataFit to only consider fine aggregate angularity. Bauxite was included for this analysis 
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because there were no coarse aggregate parameters in consideration. Removing the bauxite 

would be inappropriate. The analysis resulted in a cubic function shown in Equation 6.5 with the 

results summarized in Table 6.15. The table shows all variables in the equation to be statistically 

significant at a 5% level. With this model, approximately all of the variability within the data can 

be explained, as indicated by the adjusted R2. 

𝑆𝑁40𝑅 = 𝑎 ∗ 𝐹𝐴𝐴3 + 𝑏 ∗ 𝐹𝐴𝐴2 + 𝑐 ∗ 𝐹𝐴𝐴 + 𝑑      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.5 

Where: 

a, b, c, and d: Regression coefficients (Table 6.15) 

Table 6.15: Summary of DataFit statistics corresponding to Equation 6.5 

Variable Value Standard Error t-ratio Prob(t) R2 Radj
2 

a 0.00 0.00 3.92 0.00 

0.986 0.982 
b -0.01 0.00 -4.11 0.00 

c 20.78 4.81 4.32 0.00 

d -19959.38 4412.04 -4.52 0.00 

 

The R2 shown in Table 6.15 indicates the model (Equation 6.5) explained almost 100% of the 

variability within the data in consideration. However, a high R2 does not indicate the model 

makes sense from a practical standpoint. Therefore, the logic behind Equation 6.5 was tested by 

selecting a reasonable range of fine aggregate angularity indexes that were not indexes that 

resulted from this research study. The AIMS-II fine aggregate angularity index can range from 0 

to 10,000. For testing this model, a range similar to the aggregates in this study was used. 

Therefore, fine aggregate angularity indexes ranging from 2,000 to 3,500 were selected to 

calculate the predicted SN40R using Equation 6.5 (Figure 6.11). The figure shows that given a 

fine aggregate particle characterized by an AIMS-II fine aggregate angularity index of 2,000, the 
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resulting SN40R is predicted to be approximately -500 based on the DataFit model (Equation 

6.5). Additionally, the model shows the predicted SN40R would be approximately 200 for a fine 

aggregate particle characterized by an AIMS-II angularity index of 3,500. It is reasonable for the 

AIMS-II fine aggregate angularity index to reach a value of 2,000 or 3,500. However, the model 

results in negative field friction values as well as values in the hundreds, both of which are 

impossible values for the measured SN40R. This demonstrates using the predictive model would 

not be logical, despite having a very high R2 value. This was attributed to the small range of 

AIMS-II data presented in this research study. The AIMS-II indexes that resulted from the 

particles tested in this research study cover a small percentage of the overall range of AIMS-II 

indexes aggregate are capable of yielding.  

 

Figure 6.11: Predicted SN40R (Equation 6.5) from a reasonable range of AIMS-II fine 

aggregate angularity indexes 
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The statistical evaluation of the data was carried out to establish a correlation between the 

AIMS-II aggregate indexes and field friction. The analysis found no reasonable correlation and 

supports the findings of the previous evaluation using the rankings. 

6.6 Summary of Comparison Results 

The AIMS-II coarse aggregate angularity and the AIMS-II fine aggregate angularity test methods 

were capable of recognizing the Calera limestone to be a poor aggregate for use in a surface mix, 

as it ranked the lowest for both categories. Similarly, the mix made up of primarily Calera 

limestone ranked last as well and performed very poorly in the field in regards to field friction 

performance. The results also suggest that a possible correlation could be established between 

AIMS-II fine aggregate angularity and the SN40R when analyzing it by aggregate type. 

However, this cannot be confirmed with the results obtained from this research study. Fine 

aggregate was not the predominant aggregate size in the mix design, and the data was limited to 

these aggregate sources selected for this study. It could be noted that a comparison cannot be 

made between the AIMS-II fine aggregate angularity of the #16 bauxite and the SN40R from the 

HFST bauxite in the field. The lab results revealed bauxite to consistently have the lowest 

AIMS-II fine aggregate angularity, whereas the surface treatment in the field yielded the best 

friction performance. 

When comparing the AIMS-II coarse aggregate texture results with the friction measurements 

obtained from the SN40R in the field, the two measurements ranked differently. The AIMS-II 

revealed the Columbus granite to exhibit significantly higher indexes than the other aggregates. 

However, the field results showed the LaGrange granite mix measured higher friction 

performance, whereas in the lab, the #4 LaGrange AIMS-II texture index was more comparable 
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to the Calera limestone. This was not expected because the Calera limestone was the dominant 

aggregate used in a poor performing mix from a friction standpoint.  

The AIMS-II coarse aggregate angularity, coarse aggregate texture, and fine aggregate angularity 

indexes could not be correlated with the field SN40R results. These results only reflect the 

findings of this research study. Additional research is needed to confirm these results and 

identify another method to establish a relationship between AIMS-II indexes and SN40R. 

The ranking between the coarse aggregate mass loss, fine aggregate mass loss, and SN40R were 

not consistent between all aggregates with the exception of the HFST bauxite SN40R and the 

fine aggregate bauxite mass loss. A correlation between the Micro-Deval mass loss and field 

SN40R could not be analyzed. The lab results showed the cumulative mass loss for coarse and 

fine aggregates did not reach a terminal value and showed no indication of when that value could 

be reached. 

The statistical analysis carried out for this research study included all AIMS-II parameters, with 

the exception of flat and elongated ratios. Although, all of the models yielded relatively good R2 

values, they were not reasonable models for use in predicting the SN40R from AIMS-II 

parameters. This further supports that there was no reasonable correlation between the AIMS-II 

indexes and field friction. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

The use of the AIMS-II device in conjunction with the Micro-Deval aggregate conditioning test 

was evaluated to determine if a correlation with the locked-wheel skid trailer’s SN40R could be 

established. Based on the results, the following conclusions and recommendations were made: 

 The AIMS-II coarse aggregate angularity and the AIMS-II fine aggregate angularity 

decreased with increased conditioning, indicating the AIMS-II device is capable of 

detecting changes in coarse and fine aggregate angularity when subjected to polishing in 

the Micro-Deval. The coarse aggregate conditioning time for evaluating friction should 

be extended beyond 100 minutes to ensure terminal values are reached. Similarly, the 

AIMS-II fine aggregate angularity failed to reach terminal values after 30 minutes of 

Micro-Deval conditioning, which is more than twice the amount of conditioning stated in 

ASTM D7428. Future friction research should consider conditioning fine aggregate 

particles for more than 30 minutes in the Micro-Deval. 

 The AIMS-II device was capable of delineating between aggregate types when analyzing 

the AIMS-II coarse aggregate angularity indexes after conditioning. As expected, the two 

granite sources (Columbus and LaGrange granite) retained higher AIMS-II coarse 

aggregate angularity than the two limestone sources (Opelika and Calera limestone). 

However, the AIMS-II fine aggregate angularity showed no clear delineation between 

aggregate types. The Opelika limestone exhibited the highest AIMS-II fine aggregate 

angularity, whereas the Calera limestone exhibited the lowest. The bauxite, which was 

used in the field as a high friction surface treatment, yielded the second lowest AIMS-II 

fine aggregate angularity indexes after conditioning. 
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 When comparing the AIMS-II coarse aggregate angularity with the field friction data, the 

results showed similar decreasing trends of the AIMS-II coarse aggregate angularity 

index with a decrease in the SN40R of the mixture in the field. However, a good 

correlation between the AIMS-II coarse aggregate angularity and the field SN40R could 

not be established. Similarly, the results showed an increase in the AIMS-II fine 

aggregate angularity with an increase in the SN40R, but a good correlation was not 

established between the two. The high friction surface treatment composed of bauxite in 

the field yielded good friction performance, whereas in the lab, the #16 bauxite resulted 

in lower AIMS-II fine aggregate angularity than expected. Therefore, the AIMS-II device 

is not a good tool for comparing aggregate AIMS-II indexes to high friction surface 

treatments used in the field due to the nature of the surface in the field. 

  The AIMS-II coarse aggregate texture decreased with increased Micro-Deval 

conditioning, confirming the AIMS-II device was capable of quantifying changes in 

aggregate texture when subjected to polishing in the Micro-Deval. Micro-Deval 

conditioning of 100 minutes selected for this research study appeared to be a sufficient 

amount of time for the AIMS-II coarse aggregate texture to reach a terminal value. 

However, to achieve terminal texture values, the conditioning time could be extended 

beyond 100 minutes to confirm terminal conditions are reached.  

 The ranking of the aggregates according to the AIMS-II coarse aggregate texture 

remained consistent throughout each conditioning cycle. The Columbus granite yielded 

the highest AIMS-II coarse aggregate texture index, whereas the Opelika limestone 

yielded the lowest. It was expected that the limestone aggregates would yield lower 

indexes, as they tend to polish faster in the field. However, the Calera limestone ranked 
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the second highest in the lab but performed poorly in the field in regards to friction 

performance.  

 Although the AIMS-II coarse aggregate texture showed a decreasing trend with 

decreased field SN40R, there was no correlation between the two. The LaGrange granite 

measured the best field friction, other than the high friction surface treatment bauxite. 

However, it exhibited the lowest AIMS-II coarse aggregate texture indexes of the 

aggregates that were dominant in the field mixes; this excluded the Opelika limestone.  

 Micro-Deval mass loss did not reach a terminal value during testing for both coarse and 

fine aggregates. Therefore, a correlation with the field SN40R could not be assessed. The 

#16 bauxite yielded the least amount of mass loss compared to the other #16 aggregates, 

which agreed with the SN40R ranking of the high friction surface treatment bauxite in the 

field. 

 A series of statistical analyses run through DataFit resulted in models that consistently 

yielded high R2 values. However, the models revealed some discrepancies that proved the 

regression equation was not a reasonable fit to the data. The statistical analysis suggested 

fine aggregate angularity to be the primary influence for predicting the SN40R. However, 

the model was not logical and predicted SN40R values that were outside the possible 

range of measured values for SN40R. The statistical analysis confirmed that a reasonable 

correlation between the AIMS-II indexes and field friction could not be established. This 

was attributed to the data being limited to only three different aggregate sources for 

comparison. Future friction research should include more than three different aggregate 

sources to establish a possible correlation between AIMS-II indexes and field friction. 
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 The AIMS-II in conjunction with the Micro-Deval was unsuccessful in providing a good 

correlation to field friction results. Only three aggregate sources were available for 

establishing a correlation between AIMS-II lab results and field friction. Future friction 

research should consider testing more aggregate sources than three. Additionally, only 

two sizes of particles were tested in the lab study, and field friction performance is 

dependent on more than just the contribution of a single sized particle. The AIMS-II 

device is capable of measuring the surface of a pavement core less than 35 mm thick. It is 

recommended that a research study evaluate the capability of using the AIMS-II device to 

measure surface properties of a pavement core and correlating it with the SN40R of the 

pavement mixture in the field. Using the AIMS-II device to analyze single sized particles 

was a useful first step toward determining if the AIMS-II and Micro-Deval could be used 

as a laboratory test method for identifying friction aggregate. Additional research is 

needed to develop a stronger relationship between the lab aggregate properties and field 

friction data.   
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Appendix A: Minitab Graphical Summaries of AIMS-II Index Distributions after each 

Micro-Deval Conditioning Interval 
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Appendix B: AIMS-II Test Repeatability for Angularity, Texture, and Two-Dimensional 

Form Results 

 

Opelika Lms #4: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 2851.70 2769.00 2934.40 2847.91 2852.37 2854.43 

20 2345.80 2277.77 2413.83 2405.99 22879.90 2351.05 

40 2193.60 2130.00 2257.20 2218.10 2152.63 2210.70 

60 2084.50 2024.05 2144.95 2082.62 2085.30 2085.68 

80 2005.80 1947.63 2063.97 2007.56 2062.05 1947.88 

100 2062.60 2002.80 2122.40 2103.40 2041.80 2042.02 

 

Columbus Grn #4: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 2987.60 2900.96 3074.24 2923.36 2999.09 3038.28 

20 2867.00 2783.86 2950.14 2847.15 2826.94 2930.19 

40 2692.40 2614.32 2770.48 2700.67 2665.14 2712.72 

60 2614.10 2538.29 2689.91 2581.98 2632.64 2626.54 

80 2483.20 2411.19 2555.21 2462.28 2489.00 2495.99 

100 2500.90 2428.40 2573.40 2468.80 2485.40 2548.30 

 

LaGrange Grn #4: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 2809.90 2728.41 2891.39 2821.35 2783.50 2823.56 

20 2449.40 2378.37 2520.43 2407.12 2454.96 2484.04 

40 2390.30 2320.98 2459.62 2433.57 2376.25 2362.95 

60 2390.00 2320.69 2459.31 2387.12 2335.57 2454.11 

80 2339.90 2272.04 2407.76 2373.09 2297.67 2348.94 

100 2268.30 2202.50 2334.10 2341.90 2246.40 2216.70 
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Calera Lms #4: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 

2 Average 

Replicate 3 

Average 

0 2654.20 2577.23 2731.17 2699.72 2615.61 2642.64 

20 2422.20 2351.96 2492.44 2382.17 2492.48 2392.04 

40 2295.10 2228.54 2361.66 2272.87 2312.71 2302.87 

60 2191.70 2128.14 2255.26 2177.20 2237.57 2160.31 

80 2221.00 2156.60 2285.40 2265.70 2220.97 2182.59 

100 2141.60 2079.50 2203.70 2100.18 2181.60 2146.96 

 

Bauxite #16: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 2960.40 2874.55 3046.25 2963.66 2957.89 2959.94 

10 2935.30 2850.18 3020.42 2986.51 2912.45 2909.92 

20 2750.50 2670.70 2830.30 2739.10 2742.90 2769.70 

30 2708.50 2629.95 2787.05 2689.30 2737.40 2698.30 

 

Opelika Lms #16: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 3603.30 3498.80 3707.80 3652.10 3578.34 3568.74 

10 3494.20 3392.87 3595.53 3467.47 3471.37 3550.30 

20 3362.90 3265.38 3460.42 3345.54 3415.44 3318.33 

30 3282.60 3187.40 3377.80 3286.31 3316.85 3249.45 

 

Columbus Grn #16: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 4274.90 4150.93 4398.87 4305.83 4287.96 4233.23 

10 3602.10 3497.64 3706.56 3670.75 3549.57 3594.72 

20 3288.30 3192.94 3383.66 3277.12 3261.07 3321.33 

30 3143.40 3052.24 3234.56 3136.86 3172.82 3126.67 
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LaGrange Grn #16: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 4039.60 3922.45 4156.75 4016.65 4075.12 4026.50 

10 3513.50 3411.61 3615.39 3422.21 3622.14 3500.21 

20 3311.00 3214.98 3407.02 3345.32 3316.00 3273.89 

30 3127.70 3037.00 3218.40 3082.39 3133.97 3162.62 

 

Calera Lms #16: Angularity 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 30.69.10 2980.1 3158.1 3080.62 3083.61 3039.25 

10 2791.40 2710.45 2872.35 2823.65 2750.7 2796.37 

20 2687.90 2611.95 2765.85 2705.36 2685.99 2674.91 

30 2472.10 2400.4 2543.8 2475.68 2516.11 2413.33 

 

Opelika Lms #4: Texture 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 115.16 109.98 120.34 103.37 127.15 116.01 

20 96.64 92.29 100.99 90.22 98.00 101.96 

40 103.25 98.60 107.90 106.93 102.17 100.52 

60 86.51 82.62 90.41 84.96 93.23 81.68 

80 85.88 82.02 89.75 89.01 92.36 76.17 

100 87.80 83.85 91.75 87.09 84.31 92.23 
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Columbus Grn #4: Texture 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 333.95 318.92 348.98 344.87 322.10 335.74 

20 314.73 300.57 328.89 328.08 294.69 319.96 

40 315.67 301.46 329.88 330.51 299.82 318.25 

60 315.29 301.10 329.48 301.33 320.62 323.55 

80 286.84 273.93 299.75 278.63 285.20 295.40 

100 299.84 286.35 313.33 321.40 292.93 285.42 

 

LaGrange Grn #4: Texture 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 173.73 165.91 181.55 159.75 184.28 178.43 

20 180.56 172.43 188.68 172.39 180.65 188.24 

40 169.42 161.80 177.04 176.44 166.28 165.83 

60 170.01 162.36 177.66 166.76 166.44 177.98 

80 155.63 148.63 162.63 150.83 173.48 138.37 

100 152.84 146.00 159.72 148.50 152.30 158.14 

 

Calera Lms #4: Texture 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 221.33 211.37 231.29 213.35 206.36 244.60 

20 203.27 194.12 212.42 215.43 198.17 194.75 

40 184.06 175.78 192.34 185.57 182.64 183.70 

60 175.28 167.39 183.17 173.81 169.94 182.04 

80 163.77 156.40 171.14 159.81 162.48 168.29 

100 158.96 151.80 166.10 155.68 157.47 163.44 
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Bauxite #16: Form 2D 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 7.19 6.99 7.39 7.28 7.13 7.19 

10 7.12 6.91 7.33 7.28 7.01 7.10 

20 6.93 6.74 7.12 6.97 6.77 7.04 

30 6.95 6.76 7.14 6.98 6.94 6.93 

 

Opelika Lms #16: Form 2D 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 8.79 8.55 9.03 8.66 8.97 8.77 

10 8.31 8.08 8.53 8.05 8.37 8.56 

20 8.15 7.93 8.37 7.92 8.25 8.28 

30 7.90 7.69 8.11 7.88 7.91 7.90 

 

Columbus Grn #16: Form 2D 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 8.72 8.47 8.94 8.59 8.93 8.64 

10 7.49 7.29 7.69 7.55 7.45 7.47 

20 7.26 7.06 7.45 7.24 7.32 7.21 

30 6.99 6.80 7.18 7.04 7.08 6.88 

 

LaGrange Grn #16: Form 2D 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 8.25 8.03 8.47 8.20 8.46 8.09 

10 7.56 7.36 7.77 7.58 7.52 7.59 

20 7.06 6.87 7.25 6.98 7.06 7.13 

30 6.84 6.66 7.02 6.89 6.73 6.90 
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Calera Lms #16: Form 2D 

Conditioning 

Time (min) 

Overall 

Average 

Lower 

Limit 

Upper 

Limit 

Replicate 1 

Average 

Replicate 2 

Average 

Replicate 3 

Average 

0 7.83 7.62 8.04 7.72 7.94 7.83 

10 7.43 7.23 7.63 7.50 7.31 7.46 

20 7.26 7.07 7.46 7.07 7.24 7.45 

30 6.81 6.63 6.99 6.75 6.80 6.89 
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Appendix C: Cumulative Distribution Trends of AIMS-II Results 
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Appendix D: Kolmogorov-Smirnov Test Results for AIMS-II Cumulative Distributions 

 

Opelika LMS #4 KS Test 

Comparisons 

Angularity Texture 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 20 0.38 0.00 0.14 0.03 

20 vs 40 0.16 0.01 0.09 0.45 

40 vs 60 0.13 0.06 0.17 0.01 

60 vs 80 0.09 0.34 0.05 0.99 

80 vs 100 0.07 0.65 0.06 0.92 

BMD vs 100 0.53 0.00 0.16 0.01 

 

Columbus Grn #4 KS Test 

Comparisons 

Angularity Texture 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 20 0.14 0.01 0.09 0.24 

20 vs 40 0.17 0.00 0.04 0.99 

40 vs 60 0.09 0.27 0.66 0.69 

60 vs 80 0.10 0.18 0.10 0.24 

80 vs 100 0.09 0.23 0.07 0.51 

BMD vs 100 0.35 0.00 0.08 0.40 

 

LaGrange Grn #4 KS Test 

Comparisons 

Angularity Texture 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 20 0.22 0.00 0.09 0.30 

20 vs 40 0.12 0.06 0.13 0.04 

40 vs 60 0.05 0.96 0.10 0.20 

60 vs 80 0.06 0.86 0.15 0.02 

80 vs 100 0.11 0.15 0.08 0.59 

BMD vs 100 0.36 0.00 0.18 0.00 
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Calera LMS #4 KS Test 

Comparisons 
Angularity Texture 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 20 0.21 0.00 0.10 0.16 

20 vs 40 0.14 0.01 0.11 0.08 

40 vs 60 0.09 0.25 0.10 0.16 

60 vs 80 0.10 0.17 0.17 0.00 

80 vs 100 0.12 0.07 0.07 0.67 

BMD vs 100 0.37 0.00 0.31 0.00 

 

Bauxite #16 KS Test 

Comparisons 

Angularity Form 2D 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 10 0.04 0.72 0.04 0.78 

10 vs 20 0.13 0.00 0.08 0.12 

20 vs 30 0.05 0.59 0.04 0.76 

BMD vs 30 0.15 0.00 0.07 0.15 

 

Opelika LMS #16 KS Test 

Comparisons 

Angularity Form 2D 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 10 0.09 0.03 0.10 0.01 

10 vs 20 0.07 0.14 0.05 0.47 

20 vs 30 0.08 0.04 0.07 0.06 

BMD vs 30 0.17 0.00 0.17 0.00 

 

Columbus Grn #16 KS Test 

Comparisons 

Angularity Form 2D 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 10 0.29 0.00 0.28 0.00 

10 vs 20 0.18 0.00 0.10 0.00 

20 vs 30 0.10 0.00 0.09 0.02 

BMD vs 30 0.46 0.00 0.37 0.00 
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LaGrange Grn #16 KS Test 

Comparisons 

Angularity Form 2D 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 10 0.27 0.00 0.18 0.00 

10 vs 20 0.09 0.01 0.13 0.00 

20 vs 30 0.13 0.00 0.07 0.12 

BMD vs 30 0.40 0.00 0.35 0.00 

 

Calera LMS #16 KS Test 

Comparisons 

Angularity Form 2D 

Max 

Difference 
P-value 

Max 

Difference 
P-value 

BMD vs 10 0.19 0.00 0.13 0.00 

10 vs 20 0.10 0.00 0.04 0.58 

20 vs 30 0.13 0.00 0.11 0.00 

BMD vs 30 0.36 0.00 0.24 0.00 
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Appendix E: Detailed Statistical Output 
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Minitab: General Linear Model: SN40R versus CA Angularity, CA Texture, CA 

Sphericity, FA Angularity, FA Form2D 

 
The following terms cannot be estimated and were removed: 

   CA Texture, CA Sphericity, FA Angularity, FA Formd2D 

 

 

Method 

 

Factor coding  (-1, 0, +1) 

 

 

Factor Information 

 

Factor         Type   Levels  Values 

CA Angularity  Fixed       3  2141.6, 2268.3, 2500.9 

 

 

Analysis of Variance 

 

Source           DF  Adj SS   Adj MS  F-Value  P-Value 

  CA Angularity   2  464.02  232.012   122.07    0.000 

Error             9   17.11    1.901 

Total            11  481.13 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.37862  96.44%     95.65%           * 

 

 

Coefficients 

 

Term              Coef  SE Coef  T-Value  P-Value   VIF 

Constant        32.801    0.555    59.11    0.000 

CA Angularity 

  2141.6       -14.901    0.970   -15.36    0.000  2.44 

  2268.3         7.165    0.721     9.94    0.000  2.44 

 

 

Regression Equation 

 

SN40R = 32.801 - 14.901 CA Angularity_2141.6 + 7.165 CA Angularity_2268.3 

        + 7.736 CA Angularity_2500.9 

 

 

Fits and Diagnostics for Unusual Observations 

 

                              Std 

Obs   SN40R     Fit  Resid  Resid 

 11  42.400  39.967  2.433   2.16  R 

 12  17.900  17.900  0.000      *     X 

 

R  Large residual 

X  Unusual X 
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Minitab: General Linear Model: SN40R versus CA Angularity, CA Sphericity, FA 

Angularity 

 
The following terms cannot be estimated and were removed: 

   CA Sphericity, FA Angularity 

 

 

Method 

 

Factor coding  (-1, 0, +1) 

 

 

Factor Information 

 

Factor         Type   Levels  Values 

CA Angularity  Fixed       3  2141.6, 2268.3, 2500.9 

 

 

Analysis of Variance 

 

Source           DF  Adj SS   Adj MS  F-Value  P-Value 

  CA Angularity   2  464.02  232.012   122.07    0.000 

Error             9   17.11    1.901 

Total            11  481.13 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.37862  96.44%     95.65%           * 

 

 

Coefficients 

 

Term              Coef  SE Coef  T-Value  P-Value   VIF 

Constant        32.801    0.555    59.11    0.000 

CA Angularity 

  2141.6       -14.901    0.970   -15.36    0.000  2.44 

  2268.3         7.165    0.721     9.94    0.000  2.44 

 

 

Regression Equation 

 

SN40R = 32.801 - 14.901 CA Angularity_2141.6 + 7.165 CA Angularity_2268.3 

        + 7.736 CA Angularity_2500.9 

 

 

Fits and Diagnostics for Unusual Observations 

 

                              Std 

Obs   SN40R     Fit  Resid  Resid 

 11  42.400  39.967  2.433   2.16  R 

 12  17.900  17.900  0.000      *     X 

 

R  Large residual 

X  Unusual X 
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DataFit Summary: Equation 6.1, Table 6.11 

Equation ID: a*x1+b*x2+c*x3+d*x4+e*x5 
   

Model Definition: 
    

Y = a*x1+b*x2+c*x3+d*x4+e*x5 
   

      
Number of observations = 12 

    
Number of missing observations = 0 

   
Solver type: Nonlinear 

    
Nonlinear iteration limit = 250 

   
Diverging nonlinear iteration limit =10 

   
Number of nonlinear iterations performed = 26 

   
Residual tolerance = 0.0000000001 

   
Sum of Residuals = -0.775000000000006 

   
Average Residual = -6.45833333333338E-02 

   
Residual Sum of Squares (Absolute) = 17.170625 

  
Residual Sum of Squares (Relative) = 17.170625 

  
Standard Error of the Estimate = 1.56618850352422 

  
Coefficient of Multiple Determination (R^2) = 0.9643118186 

  
Proportion of Variance Explained = 96.43118186% 

  
Adjusted coefficient of multiple determination (Ra^2) = 0.943918572 

 
Durbin-Watson statistic = 1.70094274378481 

   

      
Regression Variable Results 

    
Variable Value Standard Error t-ratio Prob(t) 

 
a 1035885108114.53 1683.26031538751 615403986.3 0.0 

 
b -1505369848829.76 16914.3949934118 -88999331.6 0.0 

 
c -699222718978454 27986345.7422513 -24984423.67 0.0 

 
d -174941577256.979 2863.03082386847 -61103630.39 0.0 

 
e -159354351975424 4019583.70681438 -39644491.47 0.0 

 

      
68% Confidence Intervals 

    
Variable Value 68% (+/-) Lower Limit Upper Limit 

 
a 1035885108114.53 1801.59351555925 1035885106312.94 1035885109916.12 

b -1505369848829.76 18103.4769614486 -1505369866933.24 -1505369830726.28 

c -699222718978454 29953785.8479316 -699222748932240 -699222689024668 

d -174941577256.979 3064.30189078642 -174941580321.281 -174941574192.677 

e -159354351975424 4302160.44140343 -159354356277584 -159354347673264 

      
90% Confidence Intervals 

    
Variable Value 90% (+/-) Lower Limit Upper Limit 

 
a 1035885108114.53 3189.10499353317 1035885104925.43 1035885111303.64 

b -1505369848829.76 32046.0127545179 -1505369880875.77 -1505369816783.75 

c -699222718978454 53022930.6432693 -699222772001385 -699222665955523 

d -174941577256.979 5424.2981989012 -174941582681.277 -174941571832.681 

e -159354351975424 7615503.29093052 -159354359590927 -159354344359921 

      
95% Confidence Intervals 

    
Variable Value 95% (+/-) Lower Limit Upper Limit 

 
a 1035885108114.53 3980.2373417653 1035885104134.29 1035885112094.77 

b -1505369848829.76 39995.7784014215 -1505369888825.54 -1505369808833.98 
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c -699222718978454 66176513.1421274 -699222785154967 -699222652801941 

d -174941577256.979 6769.92268611937 -174941584026.902 -174941570487.056 

e -159354351975424 9504707.63313328 -159354361480132 -159354342470716 

      
99% Confidence Intervals 

    
Variable Value 99% (+/-) Lower Limit Upper Limit 

 
a 1035885108114.53 5890.56947369859 1035885102223.96 1035885114005.1 

 
b -1505369848829.76 59191.9252794445 -1505369908021.69 -1505369789637.83 

c -699222718978454 97938216.9250085 -699222816916671 -699222621040237 

d -174941577256.979 10019.1763681277 -174941587276.155 -174941567237.803 

e -159354351975424 14066533.1819969 -159354366041957 -159354337908891 

      
Variance Analysis 

    
Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 4 463.958541666667 115.989635416667 47.28584125 0.00004 

Error 7 17.170625 2.45294642857143 
 

Total 11 481.129166666667 
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DataFit Summary: Equation 6.2, Table 6.12 

Equation ID: a*x1+b*x2+c*x3+d*x4+e*x5 
   

Model Definition: 
    

Y = a*x1+b*x2+c*x3+d*x4+e*x5 
   

      
Number of observations = 12 

    
Number of missing observations = 0 

   
Solver type: Nonlinear 

    
Nonlinear iteration limit = 250 

   
Diverging nonlinear iteration limit =10 

   
Number of nonlinear iterations performed = 13 

   
Residual tolerance = 0.0000000001 

   
Sum of Residuals = 3.09999999999999 

   
Average Residual = 0.258333333333333 

   
Residual Sum of Squares (Absolute) = 20.63 

   
Residual Sum of Squares (Relative) = 20.63 

   
Standard Error of the Estimate = 1.71672445580031 

  
Coefficient of Multiple Determination (R^2) = 0.9571217016 

  
Proportion of Variance Explained = 95.71217016% 

  
Adjusted coefficient of multiple determination (Ra^2) = 0.9326198167 

 
Durbin-Watson statistic = 1.72321861366941 

   

      
Regression Variable Results 

    
Variable Value Standard Error t-ratio Prob(t) 

 
a -963122784867.742 12044.641220282 -79962762.46 0.0 

 
b -1106484994878.07 35167769.3538509 -31463.04173 0.0 

 
c 3878211226936.09 3973.01550717438 976137953.6 0.0 

 
d 81717947.3821655 3.55582919004318 22981404.06 0.0 

 
e -4876593749010.23 15777.6156077052 -309083062.4 0.0 

 

      
68% Confidence Intervals 

    
Variable Value 68% (+/-) Lower Limit Upper Limit 

 
a -963122784867.742 12891.3794980679 -963122797759.121 -963122771976.362 

b -1106484994878.07 37640063.5394266 -1106522634941.61 -1106447354814.53 

c 3878211226936.09 4252.31849732874 3878211222683.77 3878211231188.41 

d 81717947.3821655 3.80580398210321 81717943.5763615 81717951.1879695 

e -4876593749010.23 16886.7819849269 -4876593765897.01 -4876593732123.45 

      
90% Confidence Intervals 

    
Variable Value 90% (+/-) Lower Limit Upper Limit 

 
a -963122784867.742 22819.7772559463 -963122807687.519 -963122762047.965 

b -1106484994878.07 66628855.8178059 -1106551623733.89 -1106418366022.25 

c 3878211226936.09 7527.27517989258 3878211219408.81 3878211234463.37 

d 81717947.3821655 6.7368739834558 81717940.6452915 81717954.1190395 

e -4876593749010.23 29892.2705303582 -4876593778902.5 -4876593719117.96 

      
95% Confidence Intervals 

    
Variable Value 95% (+/-) Lower Limit Upper Limit 

 
a -963122784867.742 28480.7586294789 -963122813348.501 -963122756386.983 

b -1106484994878.07 83157707.4141158 -1106568152585.48 -1106401837170.66 
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c 3878211226936.09 9394.59246826454 3878211217541.5 3878211236330.68 

d 81717947.3821655 8.40811370277609 81717938.9740518 81717955.7902792 

e -4876593749010.23 37307.7498659797 -4876593786317.98 -4876593711702.48 

      
99% Confidence Intervals 

    
Variable Value 99% (+/-) Lower Limit Upper Limit 

 
a -963122784867.742 42150.221950377 -963122827017.964 -963122742717.52 

b -1106484994878.07 123069608.853801 -1106608064486.92 -1106361925269.22 

c 3878211226936.09 13903.5677673567 3878211213032.52 3878211240839.66 

d 81717947.3821655 12.4436242505561 81717934.9385413 81717959.8257898 

e -4876593749010.23 55213.7658191643 -4876593804224 -4876593693796.46 

      
Variance Analysis 

    
Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 4 460.499166666667 115.124791666667 39.0631867 0.00007 

Error 7 20.63 2.94714285714286 
 

Total 11 481.129166666667 
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DataFit Summary: Equation 6.3, Table 6.13 

Equation ID: a*x1+b*x2+c*x3 
    

Model Definition: 
    

Y = a*x1+b*x2+c*x3 
    

      
Number of observations = 12 

    
Number of missing observations = 0 

   
Solver type: Nonlinear 

    
Nonlinear iteration limit = 250 

    
Diverging nonlinear iteration limit =10 

   
Number of nonlinear iterations performed = 11 

   
Residual tolerance = 0.0000000001 

   
Sum of Residuals = 4.95106178277638E-10 

   
Average Residual = 4.12588481898032E-11 

   
Residual Sum of Squares (Absolute) = 17.1054166666667 

  
Residual Sum of Squares (Relative) = 17.1054166666667 

  
Standard Error of the Estimate = 1.3786231725355 

   
Coefficient of Multiple Determination (R^2) = 0.9644473504 

  
Proportion of Variance Explained = 96.44473504% 

   
Adjusted coefficient of multiple determination (Ra^2) = 0.9565467616 

  
Durbin-Watson statistic = 1.72067104312488 

   

      
Regression Variable Results 

    
Variable Value Standard Error t-ratio Prob(t) 

 
a -4.71950576173437E-03 3.86604391808778E-03 -1.220758445 0.25319 

 
b -105.042020599295 12.5138223781086 -8.394079557 0.00002 

 
c 3.93738960202708E-02 3.15157283068247E-03 12.49341143 0.0 

 

      
68% Confidence Intervals 

    
Variable Value 68% (+/-) Lower Limit Upper Limit 

 
a -4.71950576173437E-03 4.06901122378739E-03 -8.78851698552176E-03 -6.50494537946978E-04 

b -105.042020599295 13.1707980529593 -118.212818652254 -91.8712225463357 
 

c 3.93738960202708E-02 3.3170304042933E-03 3.60568656159775E-02 4.26909264245641E-02 

      
90% Confidence Intervals 

    
Variable Value 90% (+/-) Lower Limit Upper Limit 

 
a -4.71950576173437E-03 7.08684510624671E-03 -1.18063508679811E-02 2.36733934451234E-03 

b -105.042020599295 22.9390878013109 -127.981108400606 -82.1029327979841 
 

c 3.93738960202708E-02 5.77714815592404E-03 3.35967478643468E-02 4.51510441761948E-02 

      
95% Confidence Intervals 

    
Variable Value 95% (+/-) Lower Limit Upper Limit 

 
a -4.71950576173437E-03 8.74576455149818E-03 -1.34652703132326E-02 4.02625878976381E-03 

b -105.042020599295 28.3087689837573 -133.350789583052 -76.7332516155377 
 

c 3.93738960202708E-02 7.12948805756989E-03 3.22444079627009E-02 4.65033840778407E-02 

      
99% Confidence Intervals 

    
Variable Value 99% (+/-) Lower Limit Upper Limit 

 
a -4.71950576173437E-03 1.25638695250017E-02 -0.017283375286736 7.84436376326731E-03 

b -105.042020599295 40.6674199643774 -145.709440563672 -64.3746006349176 
 

c 3.93738960202708E-02 1.02419813851519E-02 2.91319146351189E-02 4.96158774054227E-02 
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Variance Analysis 

    
Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 2 464.02375 232.011875 122.0728449 0 

Error 9 17.1054166666667 1.90060185185186 
  

Total 11 481.129166666667 
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DataFit Summary: Equation 6.4, Table 6.14 

Equation ID: a+b*x1+c*x2 
    

Model Definition: 
    

Y = a+b*x1+c*x2 
    

      
Number of observations = 12 

    
Number of missing observations = 0 

   
Solver type: Nonlinear 

    
Nonlinear iteration limit = 250 

    
Diverging nonlinear iteration limit =10 

   
Number of nonlinear iterations performed = 11 

   
Residual tolerance = 0.0000000001 

   
Sum of Residuals = -6.4090954765561E-12 

   
Average Residual = -5.34091289713009E-13 

   
Residual Sum of Squares (Absolute) = 17.1054166666667 

  
Residual Sum of Squares (Relative) = 17.1054166666667 

  
Standard Error of the Estimate = 1.3786231725355 

   
Coefficient of Multiple Determination (R^2) = 0.9644473504 

  
Proportion of Variance Explained = 96.44473504% 

   
Adjusted coefficient of multiple determination (Ra^2) = 0.9565467616 

  
Durbin-Watson statistic = 1.72067104312281 

   

      
Regression Variable Results 

    
Variable Value Standard Error t-ratio Prob(t) 

 
a -63.1337156948226 51.7167961878667 -1.220758445 0.25319 

 
b -3.95951913401735 88.6527271811408 -0.044663252 0.96535 

 
c 3.38368243307326E-02 3.64814393857193E-03 9.275079301 0.00001 

 

      
68% Confidence Intervals 

    
Variable Value 68% (+/-) Lower Limit Upper Limit 

 
a -63.1337156948226 54.4319279877297 -117.565643682552 -8.70178770709288 

 
b -3.95951913401735 93.3069953581507 -97.266514492168 89.3474762241333 

 
c 3.38368243307326E-02 3.83967149534696E-03 2.99971528353856E-02 3.76764958260796E-02 

      
90% Confidence Intervals 

    
Variable Value 90% (+/-) Lower Limit Upper Limit 

 
a -63.1337156948226 94.8020590919785 -157.935774786801 31.6683433971559 

 
b -3.95951913401735 162.509314195749 -166.468833329766 158.549795061732 

 
c 3.38368243307326E-02 6.68741265379621E-03 2.71494116769364E-02 4.05242369845288E-02 

      
95% Confidence Intervals 

    
Variable Value 95% (+/-) Lower Limit Upper Limit 

 
a -63.1337156948226 116.993736336192 -180.127452031015 53.8600206413695 

 
b -3.95951913401735 200.550199429177 -204.509718563194 196.590680295159 

 
c 3.38368243307326E-02 8.25283121783742E-03 2.55839931128952E-02 0.04208965554857 

 

      
99% Confidence Intervals 

    
Variable Value 99% (+/-) Lower Limit Upper Limit 

 
a -63.1337156948226 168.069244251329 -231.202959946152 104.935528556507 

 
b -3.95951913401735 288.103632793271 -292.063151927289 284.144113659254 
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c 3.38368243307326E-02 1.18557381715711E-02 2.19810861591615E-02 4.56925625023037E-02 

      
Variance Analysis 

    
Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 2 464.02375 232.011875 122.0728449 0 

Error 9 17.1054166666667 1.90060185185186 
  

Total 11 481.129166666667 
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DataFit Summary: Equation 6.5, Table 6.15 

Equation ID: a*x^3+b*x^2+c*x+d 
    

Model Definition: 
    

Y = a*x^3+b*x^2+c*x+d 
    

      
Number of observations = 14 

    
Number of missing observations = 0 

   
Solver type: Nonlinear 

    
Nonlinear iteration limit = 250 

    
Diverging nonlinear iteration limit =10 

   
Number of nonlinear iterations performed = 11 

   
Residual tolerance = 0.0000000001 

   
Sum of Residuals = 4.65618654743594E-11 

   
Average Residual = 3.32584753388281E-12 

   
Residual Sum of Squares (Absolute) = 18.0854166666667 

  
Residual Sum of Squares (Relative) = 18.0854166666667 

  
Standard Error of the Estimate = 1.34482031017778 

   
Coefficient of Multiple Determination (R^2) = 0.986442404 

  
Proportion of Variance Explained = 98.6442404% 

   
Adjusted coefficient of multiple determination (Ra^2) = 0.9823751252 

  
Durbin-Watson statistic = 2.15777176198056 

   

      
Regression Variable Results 

    
Variable Value Standard Error t-ratio Prob(t) 

 
a 8.19802400372808E-07 2.09253048712928E-07 3.917756063 0.00288 

 
b -7.16369455251768E-03 1.74256506380859E-03 -4.111005495 0.00211 

 
c 20.7804309759503 4.81363972239797 4.316989259 0.00152 

 
d -19959.3814444567 4412.03700852675 -4.52384724 0.0011 

 

      
68% Confidence Intervals 

    
Variable Value 68% (+/-) Lower Limit Upper Limit 

 
a 8.19802400372808E-07 2.18962390173208E-07 6.008400101996E-07 1.03876479054602E-06 

b -7.16369455251768E-03 1.82342008276931E-03 -8.98711463528699E-03 -5.34027446974837E-03 

c 20.7804309759503 5.03699260551724 15.7434383704331 25.8174235814675 
 

d -19959.3814444567 4616.75552572239 -24576.1369701791 -15342.6259187343 
 

      
90% Confidence Intervals 

    
Variable Value 90% (+/-) Lower Limit Upper Limit 

 
a 8.19802400372808E-07 3.79271150792182E-07 4.40531249580626E-07 1.19907355116499E-06 

b -7.16369455251768E-03 3.15839917815307E-03 -1.03220937306707E-02 -4.00529537436461E-03 

c 20.7804309759503 8.72472199684633 12.055708979104 29.5051529727966 
 

d -19959.3814444567 7996.81707795473 -27956.1985224114 -11962.564366502 
 

      
95% Confidence Intervals 

    
Variable Value 95% (+/-) Lower Limit Upper Limit 

 
a 8.19802400372808E-07 4.66236717837274E-07 3.53565682535534E-07 1.28603911821008E-06 

b -7.16369455251768E-03 3.88260921867192E-03 -1.10463037711896E-02 -3.28108533384576E-03 

c 20.7804309759503 10.7252706654749 10.0551603104754 31.5057016414252 
 

d -19959.3814444567 9830.45965869845 -29789.8411031552 -10128.9217857582 
 

      
99% Confidence Intervals 

    
Variable Value 99% (+/-) Lower Limit Upper Limit 

 
a 8.19802400372808E-07 6.63185687285882E-07 1.56616713086926E-07 1.48298808765869E-06 
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b -7.16369455251768E-03 5.52271145672856E-03 -1.26864060092462E-02 -1.64098309578912E-03 

c 20.7804309759503 15.2558683721959 5.5245626037544 36.0362993481462 
 

d -19959.3814444567 13983.0688911238 -33942.4503355805 -5976.31255333287 
 

      
Variance Analysis 

    
Source DF Sum of Squares Mean Square F Ratio Prob(F) 

Regression 3 1315.88386904762 438.627956349208 242.5312971 0 

Error 10 18.0854166666667 1.80854166666667 
  

Total 13 1333.96928571429 
   

 

 


