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Abstract 
 
 

The house fly, Musca domestica, is a major domestic, medical and veterinary pest that 

causes more than 100 human and animal intestinal diseases. The major barrier in the house fly 

control is their remarkable ability to develop not only resistance to the insecticide used against 

them, but also cross-resistance to unrelated classes of insecticides. The house fly has 

demonstrated to be a useful model to study and predict resistance in not only themselves but also 

other insect species. 

The current study generated the first reference transcriptome from the adult house fly and a 

whole transcriptome analysis was conducted for the multiple insecticide resistant strain ALHF 

(wild-type) and two insecticide susceptible strains: aabys (with morphological recessive markers) 

and CS (wild type) to gain valuable insights into the gene interaction and complex regulation in 

insecticide resistance of house flies. A total of 1316 genes were identified as being co-up-

regulated in ALHF in comparison to both aabys and CS. The majority of these up-regulated 

genes fell within the three key detailed function categories: redox detailed function category in 

metabolism, signal transduction and kinases/phosphatases in regulation, and proteases in intra-

cellular processes. Genetic linkage analysis with house fly lines comparing different autosomal 

combinations from ALHF revealed that the up-regulation of gene expression occurred mainly 

through the co-regulation of factors among multiple autosomes, especially between autosomes 2 

and 5, suggesting that signaling transduction cascades controlled by GPCRs, protein 
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kinase/phosphates and proteases may be involved in the regulation of P450 and carboxylesterase 

gene expression. 

To characterize the cytochrome P450 and carboxylesterase genes that play important roles 

in the pyrethroid resistance of house flies, 86 P450 and 26 carboxylesterase genes were selected 

based on our whole transcriptome analysis of the house fly to conduct the expression profile 

analysis in different house fly strains with different levels of permethrin resistance and autosome 

combinations. Our study showed that multiple P450 and carboxylesterase genes were co-up-

regulated in insecticide-resistant house flies compared to -susceptible house flies, and the 

expression of these genes was regulated by cis or trans regulatory factors/genes, which were 

mainly on autosomes 1, 2 and 5. Transgenic expression analysis of selected P450 and 

carboxylesterase genes in Drosophila melanogaster demonstrated that elevated expression of 

these genes confers different levels of resistance to permethrin in the transgenic Drosophila. 

Homology modeling and permethrin docking analysis further suggested potential ability of these 

genes to metabolize permethrin. 

Taken together, the study provides a global picture of P450 and carboxylesterase gene 

expression, regulation, autosomal interaction, and function in insecticide resistance of house 

flies, indicating multiple genes are co-responsible for detoxification of insecticides, and multiple 

mechanisms co-work on the development of insecticide resistance in house flies. 
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Chapter 1: Literature Review 
 

1.1 Insecticide resistance 

Humans have achieved significant progress in controlling insects and other arthropod pests 

in the last 50 years due to the introduction of synthetic pesticides, including insecticides, 

fungicides, acaricides and nematicides. However, the decline in the effectiveness of these new 

chemical weapons was observed very soon, and control failures were found in many cases, due to 

the development of resistance by the pests to these chemicals. 

Insecticide resistance was defined by the World Health Organization (WHO) as “The 

development of an ability in a strain of some organisms to tolerate doses of a toxicant, which 

would prove lethal to the majority of individuals in a normal population of the same species” 

(WHO, 1957). Before exposure to an insecticide, some individuals already have appropriate 

factors that allow them to survive, and these factors can be passed to their offspring. So, 

resistance is a pre-adaptive phenomenon (Liu et al. 2006).  

Resistance of insecticides is a common occurrence; the first report was documented by 

Melander in 1914 when San Jose scale demonstrated resistance to an inorganic insecticide 

(Melander 1914). Between 1914 and 1946, 11 additional cases of resistance to inorganic 

insecticides were recorded. In 1990, more than 1000 species of pests have developed insecticide 

resistance (Georghiou 1990). Insecticide resistance results in increased dosage and frequency of 

application, environmental contamination, disruption of wildlife and increased cost (Scott 1991). 
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1.2 How insecticide resistance develops 

Insecticide resistance develops via the process of selection by insecticide. At first, only a 

very small population of pests can survive after exposure to the insecticide, but after many 

applications of the insecticides, the proportion of resistant individuals is increased, since the 

resistant individuals pass the resistance genes to their offspring (Leeper et al. 1986).  

The rate of insecticide resistance development depends on several factors, including how 

rapidly the insects reproduce, the original level of insecticide resistance of insects, the migration 

and host range of insects, the persistence and specificity of insects, the rate, timing and number of 

applications of insecticide. 

 

1.3 Cross resistance and multiple resistances 

Resistance can develop to only a single insecticide or a class of insecticides. However, it is 

more common for insects to develop resistance to multiple insecticides. Insects that are resistant 

to many insecticides cause very serious issues. 

 

1.3.1 Cross resistance 

Many resistances are conferred by a single major genetic factor that differs between resistant 

and susceptible insects. When a single factor confers resistance to more than one insecticide, this 

is cross resistance (Tabashnik et al. 1997). In the majority of cases, the insect not only has 

resistance to the selecting insecticide, but it also often confers cross-resistance to other 

chemically-related compounds. Because a group of specific compounds usually shares a common 
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target site and mode of action in the insect (Casida 2009), it is easy to develop resistance to the 

same class of chemicals. When this happens, all of compounds in this class lose their efficiency 

to control pests. For example, the Colorado potato beetle, Leptinotarsa decemlineata (say) 

showed cross-resistance to imidacloprid and dinotefuranin in Long Island, New York (Mota-

Sanchez et al. 2006).  

The key point of cross resistance is a single mechanism responsible for resistance to more 

than one insecticide (Brattsten et al. 1986), and cross resistance can cause resistance to 

insecticides that never have been used.  

 

1.3.2 Multiple resistance 

Multiple resistance is the ability of insect populations to resist more than one insecticide 

class. For example, Huang and Han found that field population of common cutworm, 

Spodopetera litura, (Fabricius) in China developed high resistance to pyrethroids, 

organophosphates and carbamates (Huang and Han 2007). The multiple resistance mechanism is 

acquired by at least two separate genetic modifications. In 2007, Corbel found that the Anopheles 

gambiae and Culexquin quefasciatus mosquitoes in West Africa showed a high frequency of 

resistance to permethrin and DDT due to target site insensitivity and increased metabolic enzyme 

activity (Corbel et al. 2007).  

 

1.4 Insecticide resistance stability 

Insecticide resistance can be either stable or unstable in the field, depending upon many 

factors, including the pest, the chemical, and the agricultural system that is used. A stable 
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resistance occurs when an insecticide is used and resistance does not decline appreciably after 

stopping the insecticide treatment. An unstable resistance similarly increases in response to 

pesticide treatments, but decreases in frequency during intervals when the pesticide is no longer 

used (Brévault et al. 2008). 

 

1.5 Insecticide resistance mechanisms 

The development of insecticide resistance is well documented as a major problem today. 

Some species of insects can tolerate many kinds of insecticide families, causing chemical control 

to become almost useless. So, the question is, how does insecticide resistance happen? Several 

mechanisms are involved in insecticide resistance development. 

 

1.5.1 Behavioral resistance 

Insects may have inherited the tendency to stay on the undersides of leaves and not venture 

to the upper leaf surfaces where pesticide deposition may be much greater or there may be a shift 

in behavior to avoid exposure to insecticides. Behavioral resistance occurs if insects are irritated 

or repelled by the insecticide (Georghiou 1972). This type of resistance is stimulus-dependent 

behavior avoidance. For stimulus-dependent behavior resistance to occur, insects must have had 

some type of contact with the insecticide or insecticide treatments. 

Repellency is the ability of insects to detect certain repellent components of an insecticide 

(Fradin and Day 2002). Repellency occurs if insects are able to detect the insecticide molecules 

in the air before actually contacting the insecticide or the toxic substance and then avoid it 

(Castillochavez et al. 1988). One example of increased irritability is documented in the mosquito 
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Anopheles atroparvus. After 10 generations of selection by DDT, a strain of A. atroparvus 

mosquito possesses high irritability, enabling them to escape DDT residues more quickly than the 

normal strain (Gerold and Laarman 1964). 

Another typical case of this mechanism was documented in the state of Georgia, where fly 

control using applications of malathion-sugar baits failed (Kilpatrick and Schoof 1958). It was 

observed that the flies obtained a high level of repellency to malathion (organophosphate 

insecticide); thus, most of the flies did not alight on the treated sugar.  

Stimulus-independent behavior avoidance or resistance occurs if insects naturally avoid 

areas treated with insecticides. In stimulus-independent behavioral resistance, insects increase 

their chances of survival by moving to areas that are insecticide free. In this type of resistance, 

the avoidance of insects is not due to irritant or repellent effects of the insecticide (Guedes et al. 

2009). 

 

1.5.2 Physiological resistance 

Insects have developed physiological modification mechanisms to help survive the presence 

of insecticides. Physiological resistance is any form of resistance that reduces toxicity through 

changes in the basic physiology of insects. In this form of resistance, the chemical is not broken 

down into a less toxic form instead the insect accommodates the chemical by altering one or 

more physiological functions. These mechanisms include decreased penetration rate, increased 

sequestration storage, and accelerated excretion of insecticides (Liu et al. 2006). 

 

1.5.2.1 Reduced cuticle penetration rate 
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Insecticides must pass through the cuticle of the insect and reach the target site before lethal 

effects can occur. Reduced penetration rate of insecticides through the insect cuticle was 

considered as one aspect of increased insecticide resistance, since the amount of insecticide 

getting into the body of the insect or working on the target was reduced and became easier to 

digest by detoxification enzymes (Georghiou 1972). The decreased penetration rate has been 

found in a number of insects. A study of the house fly, Musca domestica, indicated that the 

penetration rate of 14C-labelled fipronil was slower in resistant strains than susceptible strains 

(Wen and Scott 1999). Other studies including the beet armyworm, Spodoptera exigua (Hubner) 

(Liu and Shen 2003) and the German cockroach, Blattella germanica (L) (Anspaugh et al. 1994), 

also found evidence of penetration resistance. The gene causing this resistance has been named 

pen (Farnham 1973). Any membrane has the potential ability to serve as a penetration barrier, 

however, the molecular basis for this mechanism is not clear (Liu et al. 2006; Scott 1991). 

 

1.5.2.2 Increased sequestration storage and accelerated excretion of insecticides 

Sequestration and storage as resistance mechanisms have been studied in many insect 

species. One example is from C. quinquefasciatus whose the major role of carboxylesterase A2 is 

to sequestrate the organphosphate insecticide (Ketterman et al. 1992). Another typical example 

comes from the peach potato aphid, myzus persicae. The resistance induced by carboxylesterase 

E4 in this specie is not mediated by hydrolysis, but by the storage and sequestration of a 

substantial proportion of a toxic dose of insecticides (Devonshire and Moores 1982). Glutathione 

S-transferase also offers protection against insecticides by binding to the molecules in a 

sequestering manner (Kostaropoulos et al. 2001). 
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In many insect species, a large amount of the accumulated toxic compound can be excreted 

or lost with the shell during molting (Zagrobelny et al. 2004). Toxic compounds also can be 

sequestered and subsequently used as a defensive substance against predators or pathogens (Ode 

2006). 

Some insects have developed selective transport and storage abilities that prevent toxins 

from interfering with the physiological processes of the insect (Després et al. 2007). In 2004, 

Kuhn reported that in studies of the molecular basis of sequestration in leaf beetles, which were 

feed with structurally different thioglucosides resembling natural O-gulcoside. The accumulated 

gulcoside in the defensive systems indicated that the larvae possess transport systems, which 

have evolved to adapt to the glycosides, and minor structural modifications in the aglycon can 

lead to drastically reduced transport rates in leaf beetles (Kuhn et al. 2004). 

Wide varieties of insects have developed insecticide resistance through accelerated excretion 

mechanism. For example, diazinon excretion was faster in resistant thrips, Frankliniella 

occidentalis than in the susceptible strain (Zhao et al. 1994). An increased excretion rate was also 

observed in the carbaryl-resistant population of Western corn rootworm, Diabrotica virgifera 

(LeConte) (Scharf et al. 1999). 

 

1.5.3 Increased activities of detoxification enzymes 

Increased metabolic detoxification by enzymes is one of the most common mechanisms 

involved in insecticide resistance (Hemingway 2000). The metabolism of xenobiotics is a multi-

step process in which lipophilic compounds are converted into more water-soluble metabolites, 

which can be excreted by the excretory system of insects. Three major enzyme systems play very 
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important roles in insecticide detoxification. They are cytochrome P450 monooxygenases 

(P450s), carboxylesterases (COEs) and glutathione S-transferases (GSTs). 

 

1.5.3.1 Cytochrome P450 monooxygenases 

Cytochrome P450s are one of the largest super gene families. They are important 

hemoproteins involved in monooxygenases systems, playing an essential role in the biosynthesis 

and metabolism of juvenile hormones and ecdysteroids, important for insect growth, development 

and reproduction (Feyereisen 1999; Scott and Wen 2001), as well as in the metabolism of 

xenobiotic substances such as drugs, pesticides and plant toxins (Feyereisen 2006). 

Cytochrome P450 derives its name from an absorption peak at 450 nm when it is reduced 

and saturated with carbon monoxide. In the late 1980s, studies of P450 nomenclature were 

conducted, and a standardized P450 nomenclature system was founded which facilitated 

classification of the isolated cytochrome P450s (Nebert et al. 1987). Genes are designated with 

the abbreviation CYP, followed by a numeral for the family, a capital letter indicating the 

subfamily, and another numeral for the individual gene. All the members of the CYP families 

share >40% amino acid identity, and members of a subfamily must share >55% identity at the 

amino acid level. Genes are described in italics, and the gene product, mRNA or enzyme, is 

described in capitals (Feyereisen 1999). 

P450 monooxygenase detoxification is an extremely important mechanism for insects 

survive an attack by insecticides. The P450 monooxygenase system includes three important 

components: cytochrome P450, which acts as the substrate binding protein, cytochrome P450 

reductase, which transfers electrons from nicotinamide adenine dinucleotide phosphate-oxidase 
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(NADPH) to cytochrome P450, and cytochrome b5, which also can transfer electrons from 

NADH to cytochrome P450. The most common catalytic reaction of cytochromes P450 is 

monooxygenase reaction, which inserts one atom of oxygen into an organic substrate, and the 

other oxygen atom is reduced to water. The catalytic cycle is as follows: The oxidized form (P450 

FeIII) protein binds the substrate first, and then the P450-substrate complex receives a single 

electron from NADPH reductase and binds oxygen, another electron is transferred from 

cytochrome b5 and reduces dioxygen to a negatively charged peroxy group. The peroxy group is 

rapidly protonated twice, releasing one molecule of water, forming a highly reactive iron (V)-oxo 

species, and then the substrate in the active site reacts with the highly reactive iron (V)-oxo 

species, releasing a hydroxylated product. The enzyme returns to its original state with a water 

molecule returning to occupy the distal coordination position of the heme iron (Feyereisen 1999). 

To date, more than 2000 P450 genes have been identified from various insects. The number 

of cytochrome P450s in sequenced genomes ranges from 37 in Pediculus humanus (Lee et al. 

2010), to 204 in the C. quinquefasciatus (Yang and Liu 2011). They are assigned to four major 

clades: CYP2 clade, CYP3 clade, CYP4 clade and Mitochondrial CYP clade (Feyereisen 2006; 

Scott 1999). The role of P450 monooxygenases in insecticide resistance was first reported in the 

early 1960s when the study found that the resistance of house flies to carbaryl could be 

eliminated by the P450 inhibitor sesame (Eldefrawi et al. 1960). Since then, evidences supporting 

monooxygenase-mediated resistance have accumulated rapidly. 

The insect P450 was first detected in the house fly by Ray in 1967 (Ray 1967), and the first 

insect P450 reductase was also purified and characterized from the house fly (Wilson and 

Hodgson 1971). In order to study the function of cytochrome p450, many attempts were made to 
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purify cytochrome p450s. The first insect P450 protein, CYP6A1, came from a diazinon-resistant 

house fly strain, Rutgers, with the expression of CYP6A1 in the Rutgers strain about 10-fold 

higher than in susceptible strains (Carino et al. 1994; Feyereisen et al. 1989). 

The relationship and interactions of p450 with p450 reductase and cytochrome b5 have been 

well described (Guzov et al. 1996; Murataliev et al. 1999). It is reported that the level of P450 

reductase and cytochrome b5 are increased in P450-mediated resistance (Scott and Georghiou 

1986a), but genetic analysis suggests that b5 might play a role in P450-mediated resistance while 

P450 reductase might not (Liu and Scott 1996).  

P450 monooxygenases play various functional roles in metabolism, and different expression 

levels have been detected in different tissues of insects. High levels of cytochrome p450 are 

usually detected in the midgut and fat bodies, which serve as the first defense system for 

absorbing foreign compounds, such as insecticides or plant chemicals (Scott 1999). The 

expression level of p450 also varies in different development stages; generally, cytochrome p450 

cannot be detected in eggs and pupae stages, but are highly expressed in adults (Scott 1999).  

The P450s showed great variation in response to inducers or repressors, which can be either 

endogenous compounds such as ecdysone, or xenobiotics such as insecticides. Phenobarbital 

(PB) is a well-studied inducer in insects. Several insect P450s coming from different species can 

be induced by PB, such as CYP4D10, CYP6A1, CYP6A2, CYP28A1, CYP28A2, and CYP28A3 in 

Drosophila, and CYP6D1 in both the house fly and mosquito (Brun et al. 1996; Danielson et al. 

1998; Dunkov et al. 1997; Jacob 1983; Lee and Scott 1989; Liu and Scott 1997). 

Piperonylbutoxide (PBO) is an organic compound used as pesticide synergist. It is a P450 
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inhibitor, which can decrease the metabolism of P450 enzymes. When house flies were treated 

with PBO, the resistance was reduced dramatically (Liu and Yue 2000).  

Over expression of the cytochrome p450 genes in insecticide resistant insects is a common 

phenomenon. In 1969, research found that the level of p450 monooxygenase in insecticide-

resistant strain of house flies was higher than in susceptible strains (Plapp and Casida 1969). 

Later research indicated that the resistance might be due to the elevation of only select 

cytochrome p450s and that this may not result in a significant increase in total cytochrome p450s 

(Fonseca-Gonzalez et al. 2009). CYP4G8, a P450 gene in Australian cotton bollworm, 

Helicoverpa armigera (Hubner), was found to be at a 2-fold higher level in a pyrethroid resistant 

strain compared to a susceptible strain (Pittendrigh et al. 1997). CYP6F1 from the southern house 

mosquito, C. quinquefasciatus (Say), was expressed 3 times higher in a permethrin-resistant 

strain than in the susceptible strain (Kasai et al. 2000). CYP6A2 was expressed 20 to 30-fold 

higher in a malathion-resistant strain of the fruit fly when compared to a susceptible strain 

(Waters et al. 1992). The study of two cytochrome P450s, CYP6A36 and CYP6A5v2 in house 

flies, revealed that they were overexpressed in a permethrin-resistant strain (Zhu et al. 2008a; 

Zhu and Liu 2008). CYP6BQ9 showed more than a 200-fold higher expression in the 

deltamethrin-resistant Tribolium castaneum strain compared to the susceptible strain, and 

functional studies showed that CYP6BQ9 confers deltamethrin resistance (Zhu et al. 2010). 

CYP6P9a and CYP6P9b in Anopheles funestus showed that elevated expression of either of these 

genes confers resistance to both type I and type II pyrethroids (Riveron et al. 2013). 

Point mutations of P450 genes also have been proved to be involved in insecticide 

resistance. Three point mutations R335S, L336V and V476L of CYP6A2 were responsible for 
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DDT resistance in the RDDTR strain of D melanogaster (Amichot et al. 2004). Single substitution 

in CYP51 of Candida albicans (T315A) and of Uncinula necator (F136Y) played a role in 

resistance to the fungicides fluconazole and triadimenol, respectively (Delye et al. 1998; Perea et 

al. 2001). 

Besides detoxification, P450 enzymes can activate insecticides to more toxic substrate, for 

example, the activation of oxygen substituting sulphur on the double bond with phosphate (P=S 

to P=O) by P450 enzymes can increase the activity of organophosphorus (OP) (Sams et al. 2000). 

Cytochrome P450 monooxygenase can metabolize a wide variety of substrates and induce 

cross resistance to unrelated compounds. Therefore, P450s-mediated detoxification is a very 

important resistance mechanism (Liu et al. 2006; Scott 1991; Scott and Georghiou 1986b). 

  

1.5.3.2 Esterases and hydrolases 

Hydrolases-or esterases-mediated detoxification has been found in many organisms, 

including carboxylesterases and phosphorotriester hydrolases. Esterases and hydrolases are 

involved in the metabolism of organophosphates, carbamates, pyrethroids and juvenile hormones 

(Kerkut and Gilbert 1985; Scott 1999). The hydrolase-mediated insecticide resistance 

mechanisms can be divided into two groups: quantitative changes and qualitative changes. 

 

1.5.3.2.1 Quantitative changes 

One mechanism of esterase-based insecticide resistance is the elevation of the expression of 

esterase. Esterase is observed to be overproduced in resistant insect strains, resulting in an 

increase of the amount of available esterase for sequestering penetrated insecticides in a unit of 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T79-4CG0J7S-1&_user=10&_coverDate=07%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5053&_sort=d&_docanchor=&view=c&_searchStrId=1440798075&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3fbab903152ea6e42308a1a8f85e8b5%23toc4
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time, thus reducing the amount of pesticide reaching the target. A study found a 64-fold 

amplification in resistant green peach aphid, M. persicae esterase gene, E4 compared to a 

susceptible strain (Devonshire and Moores 1982). 250-fold amplification of B1 esterase and co-

elevation of A2/B2 esterase were detected in the insecticide resistant Southern house mosquito C. 

quinquefasciatus (Vaughan and Hemingway 1995).  

 

1.5.3.2.2 Qualitative changes 

Another possible mechanism of esterase-based insecticide resistance is called non-elevated 

esterase mechanism, which has been documented to confer resistance to organophosphates in 

some species. In this mechanism, mutations of amino acids in carboxylesterase enhance the 

hydrolase activity of the enzyme, thus enhancing metabolism of insecticides (Russell et al. 2004). 

One example is the amino acid substitution from glycine to aspartic acid (Gly137 to Asp), which 

enhances the hydrolase activity in ali-esterase in the blowfly, Lucilia cuprina and in the housefly 

M. domestica (Campbell et al. 1998). Not all esterases have high activity in insecticide resistance 

strains; lower esterase activity was also founded in the OP-resistant blowfly, Chrysomya putoria 

(Wiedemann) (Townsend and Busvine 1969) and the parasitoid Habrobracon hebetor (Say) 

(Perez-Mendoza et al. 2000). 

 

1.5.3.3 Glutathione S-transferases 

Glutathine S-transferases (GSTs) are one of the major detoxification enzymes in both 

invertebrates and vertebrates having a broad range of substrate specificities (Jakoby 1978). With 

this, they play a significant role in the detoxification of a wide range of xenobiotics, including 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T79-4CG0J7S-1&_user=10&_coverDate=07%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5053&_sort=d&_docanchor=&view=c&_searchStrId=1440798075&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3fbab903152ea6e42308a1a8f85e8b5%23toc5
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metabolizing insecticides and catalyzing dehydrochlorination of insecticidal molecules or 

facilitating their conjugation with reduced glutathione (GSH) (Salinas and Wong 1999).  

There are 6 different classes of GSTs: Delta, Sigma, Epsilon, Omega, Theta and Zeta, which 

have been identified in insects (Enayati et al. 2005). It is reported that the increased insecticide 

resistance of insects results from over expression of one or more GST genes (Sonoda and 

Tsumuki 2005). For examples, increased expression of GSTs confers resistance to DDT in A. 

gambiae (Ortelli et al. 2003; Prapanthadara et al. 1996), and the over expression of the Epsilon 

class of GSTs in resistant A .gambiae is regulated by both cis- and trans-acting factors (Ranson et 

al. 2000). The enhanced activity of GSTs results in resistance to permethrin in the brown plant 

hopper, Nilaparvata lugens (Vontas et al. 2002b), and the high activity of GSTs provides 

resistance against organophosphates in the diamond back moth Plutella xylostella (Chiang and 

Sun 1993). 

 

1.5.4 Reduced sensitivity of target sites 

Alteration of amino acids responsible for the insecticide binding site of action, results in the 

insecticide become less effective or even ineffective is another important mechanism that 

involved in insecticide resistance. The target of organophosphorus (e.g., malathion, fenitrothion) 

and carbamate (e.g., propoxur, sevin) insecticides is acetylcholinesterase in nerve synapses, and 

the target of organochlorines (e.g., DDT) and synthetic pyrethroids (e.g., permethrin, 

fenpropathrin) is the sodium channels of the nerve sheath. 

 

1.5.4.1 Insensitivity of acetylcholinesterase 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T79-4CG0J7S-1&_user=10&_coverDate=07%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5053&_sort=d&_docanchor=&view=c&_searchStrId=1440798075&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3fbab903152ea6e42308a1a8f85e8b5%23toc10
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Acetylcholinesterase (AChE) is a serine esterase that terminates nerve impulses at 

cholinergic synapses by breaking down the neurotransmitter acetylcholine (Walsh et al. 2001). In 

insects, acetylcholinesterase is essential for life, and the inhibition by organophosphorus or 

carbamate insecticides is lethal. Intensive use of these insecticides over the past 60 years has led 

to the development of resistance in many target species that are detrimental to agriculture or serve 

as vectors of human and animal diseases (Georghiou 1990). The mutant forms of AChE have 

been characterized and showed widely differing spectra of insensitivity between different species 

or different compounds within a species (Byrne and Devonshire 1997; Devonshire and Moores 

1984; Feyereisen 1995; Mutero et al. 1994). Point mutations are usually accompanied by a 

modification of the kinetic parameters of acetylcholine hydrolysis, which have been closely 

identified as being responsible for insecticide resistance (Walsh et al. 2001; Zhu et al. 1996).  

Many potential resistance-associated point mutations may result in AChE insensitivity 

without significantly reducing AChE catalytic efficiency (Chen et al. 2001; Villatte et al. 2000; 

Vontas et al. 2002a). Insensitivity of AChE caused by multiple point mutations in structural genes 

have been found in different species, for examples, D. melanogaster, M. domestica , C. pipiens, 

and A. Gambiae, diamondback moth Plutella xylostella, Colorado potato beetle L. decemlineata 

and so on (Lee et al. 2007; Mutero et al. 1994; Russell et al. 2004; Zhu et al. 1996). These 

mutations were involved in insecticide resistance. 

 

1.5.4.2 The GABA receptor mutation 

The gamma-amniobutryric acid (GABA) receptor is a heteromultimeric gated chloride-ion 

channel, which is a widespread inhibitory neurotransmission channel of central nervous system 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T79-4CG0J7S-1&_user=10&_coverDate=07%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5053&_sort=d&_docanchor=&view=c&_searchStrId=1440798075&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3fbab903152ea6e42308a1a8f85e8b5%23toc11
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and neuromuscular junctions (Bermudez et al. 1991). GABA is released in order to wave the 

excitation and bind with receptors on the postsynaptic membrane, enhancing permeability to 

chloride ions resulting in more chloride ions with negative charge being allowed to enter the 

postsynaptic membrane, inducing hyperpolarization. 

The GABA receptor consists of five subunits, each subunit containing a large extracellular 

agonist-binding N-terminal domain, and four transmembrane domains (M1–M4). The GABA 

receptors are the targets of numerous insecticides, including cyclodienes, trioxabicycloctanes, and 

pirotoxinin. These insecticides are thought to bind the pore formed by transmembrane domain 

M2 (Miller 1989) and inhibit the flow of chloride ions through the receptor channel complex (Le 

Goff et al. 2005). It was reported that an A2′S mutation in the M2 confers resistance to 

cyclodienes in D. melanogaster (ffrench-Constant et al. 1993). Two amino acid substitutions 

(A2′S and A2′G) have been reported to be associated with cyclodiene resistance in the aphid, cat 

flea, mosquito, and so on (Anthony et al. 1998; Bass et al. 2004; Du et al. 2005; Miyazaki et al. 

1995; Thompson et al. 1993). 

                                                                         

1.5.4.3 Mutations in the voltage-gated sodium channel 

The voltage-gated sodium channel is a trans-membrane protein complex, which is 

responsible for the initiation and propagation of action potentials in almost all excitable cells. It is 

well known as the primary target of DDT and modern synthetic pyrethroids, which are structural 

derivatives of pyrethrins (Narahashi and American Chemical Society. 1979). 

The structure of voltage-gated sodium channel contains α subunit and one or more auxiliary 

β subunits (Yu and Catterall 2003). The α subunit contains the functional domains and is believed 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T79-4CG0J7S-1&_user=10&_coverDate=07%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5053&_sort=d&_docanchor=&view=c&_searchStrId=1440798075&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c3fbab903152ea6e42308a1a8f85e8b5%23toc12
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to be responsible for the main sodium currents when expressed in Xenopus oocytes without the 

assistance of β subunits (Catterall 2000). The α subunit is composed of four homologous domains 

(I to IV), each domain consisting of six transmembrane segments (S1 to S6). It has been 

demonstrated that S4 is the most conserved, thus making it the most likely to be involved in the 

voltage-sensing mechanism (Mannikko et al. 2002). The α subunit is also believed to play a role 

in regulating the channel gating or protein expression (Zlotkin 1999). 

Multiple point mutations were found in insect sodium channels of pyrethroid-resistant insect 

populations (Dong 2007). In 1996, the complete coding sequence of the insect voltage-gated 

sodium channel in the house fly was identified (Ingles et al. 1996). Comparison of the coding 

sequences of a susceptible strain, knock down resistance (kdr) and super-kdr strains revealed two 

consistent point mutations associated with resistance; L1014F and M918T, which occur at the 

1014 and 918 amino acid residues respectively. The L1014F, also called L-to-F mutation, was 

identified in all cases of resistance, while the M918T occurred only in the super-kdr phenotype.  

The L1014F mutation has also been identified in other species, including malaria mosquito 

A. gambiae; German cockroach B. germanica; Colorado potato beetle L. decemlineata; the horn 

fly Haematobia irritans; the diamondback moth Plutella xylostella; the green peach aphid M. 

persicae, the common house mosquito C. Pipiens and C. quinquefasciatus (Guerrero et al. 1997; 

Lee et al. 2000; Martinez-Torres et al. 1998; Martinez-Torres et al. 1999a; Martinez-Torres et al. 

1999b; Schuler et al. 1998; Soderlund and Knipple 2003; Xu et al. 2006a; Xu et al. 2006b). 

L1014F and M918T are not the only two mutations on the sodium channel that are 

associated with knockdown resistance. There are more than 20 resistance-associated mutations on 

the sodium channels have been reported, and at least 10 mutations have been functionally 
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expressed in Xenopus oocytes and were confirmed to be associated with kdr resistance (Dong 

2007; Zlotkin 1999).  

 

1.6 Regulatory gene and gene expression regulation 

The genome of an organism usually contains thousands of different genes. Some of the gene 

products are required by the cell under normal conditions, and other gene products are required 

under specific conditions (Hughes 1999). Regulation of gene expression by extracellular or 

intracellular signals is a fundamental mechanism of organisms to develop and adapt to the 

environment (Struhl 1999; Workman and Kingston 1998). 

Chemicals, growth factors and neurotransmitters are all able to alter the patterns of gene 

expression in a cell (Nestler et al. 2001). Mechanisms that are involved in the control of gene 

expression include structural changes in the chromatin to make a particular gene accessible for 

transcription, transcription of DNA into RNA, splicing of RNA into mRNA, editing and other 

covalent modifications of the mRNA, translation of mRNA into protein, and, finally, post-

translational modification of the protein into its mature, functional form (Fickett and Wasserman 

2000; Struhl 1999; Workman and Kingston 1998). 

 

1.6.1 Regulatory gene 

A regulatory gene or regulator gene is a gene that determines the expression of other genes. 

Some regulatory genes can only regulate a specific gene, while others can control the expression 

of several genes (Dickinson 1979). A regulatory gene can be an encode protein or a RNA, which 

works at the RNA level, such as microRNA. The regulatory gene can act as an activator, turning a 
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gene or group of genes on, which increases the rate of transcription. The regulatory genes also 

can act as repressors, turning some genes off so that they cannot express or decrease the 

expression of target genes (Bellí et al. 1998). Regulatory genes are produced by all organisms, 

and are very important to the system of the organisms. They help check, balance and moderate 

genetic expression of genes so that an organism operates different systems efficiently (Desvergne 

et al. 2006). 

Regulatory genes contain information that is used to code proteins. First, they are 

transcribed into RNA, which is used to build the protein by the cells. Once the protein is created, 

they can act in a variety of ways on the genetic material inside the cell. For example, when a 

mosaic virus is surrounded by antibiotics, an activator in a bacterium activates a gene for 

antibiotic resistance (Walsh et al. 1996). The regulatory gene also can make a protein which locks 

onto a section of DNA so that it cannot be transcribed (Freeman and Bassler 1999). In 

multicellular organisms, regulatory genes are also involved in the process of cell differentiation, 

development, proliferation and apoptosis, determining cell function. This allows organisms to 

have great diversity in cell types (Müller et al. 2001). 

 

1.6.2 Regulation of gene expression 

Regulation of gene expression is the process that influences the differential control of gene 

action at the level of transcription or translation by nuclear, cytoplasmic, or intercellular factors. 

This process includes gene activation and genetic induction. Any step of the gene expression can 

be modulated, from DNA-RNA initiation and transcription to the post-translational modification 

of a protein (Calkhoven 1996). 

http://www.wisegeek.com/what-is-a-bacterium.htm
http://www.wisegeek.com/what-are-antibiotics.htm
http://www.wisegeek.com/what-is-dna.htm
http://www.wisegeek.com/what-is-cell-differentiation.htm
http://www.wisegeek.com/what-are-the-different-cell-types.htm
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Post-translational_modification
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Gene regulation is necessary for all organisms as it increases the versatility and adaptability 

by allowing cells to express proteins when they are needed. Gene regulation also governs the 

processes of cellular differentiation and morphogenesis, leading to the creation of different cell 

types in multicellular organisms where the different types of cells may possess different gene 

expression profiles though they all possess the same genome sequence (Hogeweg 2000). 

 

1.6.2.1 Regulation of gene expression by extracellular signals 

Most genes contain response elements that respond to physiologic signals. These elements 

can bind with transcription factors that are activated or inhibited by specific physiologic signals. 

For example, activation of neurotransmitter, hormone, or neurotrophic factor receptors by 

physiologic signals lead to the activation of specific second messenger and protein 

phosphorylation pathways, and regulate expression of genes. This can be accomplished by 

phosphorylation of protein kinases (Marshall 1995). 

There are two general mechanisms of transcriptional regulation by extracellular signal: 1 

Transcription factors that are present at high levels are rapidly activated by signaling cascades to 

activate or repress transcription of target genes. 2 Transcription factors that are expressed at low 

levels can be induced by physiologic signals and can regulate expression of a series of genes 

(Nestler et al. 2001).  

 

1.6.2.2 Regulation of gene expression by the structure of chromatin 

In eukaryotic cells, chromosomes are extremely long molecules of DNA, which are wrapped 

around histone proteins to form nucleosomes, which are the major subunits of chromatin 

http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Morphogenesis
http://en.wikipedia.org/wiki/Genome
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(Workman and Kingston 1998). Chromatin can inhibit access of transcription factors to the DNA 

and repress gene expression. The regulation of gene expression within euchromatin requires the 

delivery of enzymes by DNA-bound transcription factors, which bind to the promoter of specific 

genes and initiate a cascade of modification events. Acetylation, methylation, phosphorylation 

and ubiquitination have been implicated in gene expression activation. Methylation, 

ubiquitination, sumoylation, deimination and proline isomerization have been thought to be 

involved in the repression of gene expression (Kouzarides 2007; Nestler et al. 2001). 

 

1.6.2.3 Regulation of gene expression by transcription 

Transcriptional regulation is the process in gene expression levels through the altering of 

transcription rates. Transcription occurs when particular activator proteins displace nucleosomes. 

This allows several transcription factors to bind with DNA at the core promoter region and recruit 

RNA polymerase. When transcription occurs, the amount of RNA produced is controlled by 

regulatory genes. Transcription of a gene by RNA polymerase can be regulated by at least five 

mechanisms: 

1. Repressors regulate the expression of one or more genes by binding to the operator and 

blocking the attachment of RNA polymerase to the promoter, thus impeding the expression of the 

gene (Matthews and Nichols 1997). A good example is the lac operon of the bacteria Escherichia 

coli. The lac repressor is constitutively expressed and always bound to the operator region of the 

promoter, interfering with the ability of RNA polymerase to bind to the promoter and transcribe 

the lac operon (Bell and Lewis 2001). 

http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/RNA_polymerase
http://en.wikipedia.org/wiki/Repressor
http://en.wikipedia.org/wiki/Gene_expression
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2. Gene expression is regulated by specificity factors. Specificity factor is a protein that 

directs another protein to recognize or bind to other proteins. Altering the specificity of RNA 

polymerase for a given promoter or set of promoters, will make it more or less likely to bind to 

them. For example, sigma factor is a prokaryotic transcription initiation factor that enables 

specific binding of RNA polymerase to gene promoters (Gruber and Gross 2003). Mitochondrial 

transcription specificity factors (TFB1M and TFB2M) markedly enhance mtDNA transcription in 

the presence of mitochondrial RNA polymerase (Gleyzer et al. 2005). 

3. General transcription factors (GTF's) or basal transcription factors are protein 

transcription factors which are involved in the formation of a transcription complex. When 

combined with RNA polymerase, they help RNA polymerase to load at the start of a protein-

coding sequence and then release the polymerase to transcribe the mRNA (Deaton and Bird 

2011). For example, TATA binding protein (TBP) is a GTF that binds to the TATAA box, the 

motif of nucleic acids that is directly upstream from the coding region in all genes, thus 

facilitating the binding of the transcription complex to nucleosomal DNA (Imbalzano et al. 1994). 

4. Activators enhance the interaction between RNA polymerase and a particular promoter, 

increasing the expression of the gene. Activators increase this interaction through a connected 

domain that assists in the formation of the RNA polymerase holoenzyme, or they may operate 

through a co-activator, which binds the DNA-binding activator and contains the domain assisting 

holoenzyme formation. A particular activator may bind one or more specific co-activators 

(Brahms et al. 1985). The attraction of RNA polymerase for the promoter can be through direct 

interactions with subunits of the RNA polymerase or indirectly by changing the structure of the 

DNA. For example, the lac repressor always binds to the operator region of the promoter in the 
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bacteria Escherichia coli, interfering with the ability of RNA polymerase to bind to the promoter 

and transcribe the lac operon (Lin and Riggs 1975). In the presence of lactose, which acts as an 

activator, the repressor changes conformation and falls off the operator and RNA polymerase is 

able to bind to the promoter (Eschenlauer and Reznikoff 1991). 

5. Gene expression is regulated by enhancers. Enhancers are short regions of DNA or sites 

on the DNA helix that can be bound to proteins to enhance transcription levels of genes. 

Enhancers can be located upstream or downstream of the gene that it regulates (Hines et al. 

2004). An enhancer does not need to be located near to the transcription initiation site to affect 

the transcription of a gene, as some have been found to bind several hundred thousand base pairs 

upstream or downstream of the start site (Fraser et al. 1991). Enhancers do not act in the promoter 

region itself, but are bound by activator proteins. 

 

1.6.2.4 Post-transcriptional regulation 

Post-transcriptional regulation is the process that controls gene expression after mRNA is 

formed, between the transcription and the translation of the gene (Alberts 2008). This process is 

involved in modulating the capping structure (changing the five prime end of the mRNA to a 

three prime end by 5'-5' linkage, thus protecting the mRNA from 5' exonuclease, which degrades 

foreign RNA. This capping also helps in ribosomal binding), splicing (removing the introns, 

noncoding regions that are not transcribed into RNA, enabling the mRNA able to create proteins), 

adding of a Poly (A) Tail (adding Junk RNA to the 3' end which acts as a buffer to the 3' 

exonuclease, thus increasing the half life of mRNA), sequencing of specific nuclear export rates 

and sequestrating of the RNA transcript (Fabian et al. 2010; Siomi and Siomi 2010). Post-
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transcriptional regulation is a major way to regulate patterns of gene expression during 

development. 

 

1.6.2.5 Regulation of translation 

Translational regulation refers to the control of the levels of protein synthesized from 

mRNA. The process can be controlled by several mechanisms, including recruitment of the small 

ribosomal subunit governed by an mRNA secondary structure, antisense RNA binding, or protein 

binding (Curtis et al. 1995; Kozak 1999; Malys and McCarthy 2011). For example, RNA binding 

proteins (RBPs) exist in prokaryotes and eukaryotes. The translation rate of cytochrome c mRNA 

was determined by the RBP TIA-1 and HuR in mammalian cells (Kawai et al. 2006). 

 

1.6.3 Up-regulation and down-regulation 

Up-regulation is a process in cells triggered by signals, either internally or externally, 

resulting in increased expression of one or more genes which subsequently increases the level of 

proteins encoded by those genes. For example, the expression of cytochrome P450 enzymes 

increases when xenobiotics go into the body of the cockroach (Brown et al. 2003). 

Down-regulation is a process that cells decrease the quantity of a cellular component, such 

as RNA or protein. Troy and Shelanski found that down-regulation of copper/zinc superoxide 

dismutase causes apoptotic death in PC12 neuronal cells (Troy and Shelanski 1994). 

 

1.7 Gene regulatory network 
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For cell survival, thousands of genes are expressed and work together, and each gene must 

be expressed at the proper time and in the proper amounts. The regulation and expression of some 

genes are highly robust, but expression of other genes is more variable from cell to cell and from 

individual to individual. The expression is usually induced by stresses, but individually this 

response can be beneficial physiologically (MacNeil and Walhout 2011).  

A gene regulatory network or genetic regulatory network (GRN) is a collection of DNA 

segments in a cell, which interact with each other and other substances in the cell, controlling the 

rate of gene transcription. As regulatory genes regulate one another as well as other genes, 

responding to multiple inputs at the same time, the total map of their interactions formed a 

network (Erwin and Davidson 2009).  

Gene regulatory networks play an important role in life processes, including cell 

differentiation, metabolism, cell cycle and signal transduction (Karlebach and Shamir 2008). 

 

1.8 Regulation of cytochrome P450 genes 

Many of P450 genes are under complex control during development, either following 

exposure of organisms to foreign compounds, such as insecticides and plant chemicals, or in 

response to endogenous signals. 

 

1.8.1 Regulation of cytochrome P450 genes by specific promoters 

A promoter is a region of DNA where the transcription initiation takes place. It usually 

occurs upstream from a gene coding region, providing a secure initial binding site for RNA 

polymerase or transcription factors, also acting as a controlling element. Mutation of the 
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promoter region results in the loss of cAMP induced reporter gene expression in luteal cells 

(Michael et al. 1997). Mutagenesis in the non-overlapping region of the promoter region of 

CYP6B1v3 in Papillo polyxenes modulated the expression of this p450 gene (Petersen et al. 

2003). Two p450 genes, CYP28B1 and CYP4G13V2 were isolated from the house fly, the 

transcription start points were mapped to 176 and 163 nucleotides upstream of the ATG 

translation start codon respectively. Regulatory binding sites and five conserved cis-acting 

elements for tissue or cell-specific transcription regulatory factors were identified in the promoter 

region of both P450 genes (Liu and Zhang 2002). Gfi-1 is a zinc finger protein. The CYP6D1 

promoter from the susceptible house fly strain binds with Gfi-1, which decreases the expression 

of CYP6D1 (Gao and Scott 2006). The regions -1496 to -1102 bp for CYP9A19, and -1630 to -

121- bp for CYP9A22 were found to include several transcriptional regulatory elements, essential 

for basal transcriptional activity in the silkworm Bombyx mori (Zhao et al. 2013b). The upstream 

of CYP9M10, which included CURE1 as a cis-regulatory element in C. quinquesfasciatus, drove 

a 10 fold expression compared to the susceptible culex mosquitoes (Wilding et al. 2012). When a 

2141 bp 5’ flanking region was cloned in Spodoptera litura, multiple putative elements for 

transcription factors binding sites were detected (Zhou et al. 2012). Accord insertion in the 5’ 

flanking region of CYP6G1 increased the expression of this gene and conferred nicotine 

resistance in .D melanogaster (Li et al. 2012). The increased expression of the CYP4G61 gene 

was shown to be due to the mutation of cis-acting promoter sequences and/or trans-acting 

regulatory loci in whiteflies, Bemisia tabaci (Karatolos et al. 2012).  

 

1.8.2 Regulation of cytochrome P450 genes by nuclear receptors 
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Nuclear receptors (NR) are a class of proteins that transfer endogenous (for example, small 

lipophilic hormones) or exogenous chemicals into cellular responses by triggering the 

transcription of NR target genes (Wang and LeCluyse 2003), thereby controlling the 

development, homeostasis and metabolism of the organism, including the multiple phase I and 

phase II metabolism enzymes and transporter systems (Honkakoski and Negishi 2000). The 

structural comparative analysis of NR revealed that they have several independent but interacting 

functional modules: N-terminal regulatory domain, two common structural domains (DNA 

binding domain (DBD) and ligand binding domain (LBD)) and C-terminal domain. N-terminal 

regulatory domain contains the activation function 1 (AF-1), which is independent of the 

presence of ligand. DBD is highly conserved, characterized by two C4-type zinc fingers, linking 

the receptor to the specific promoter regions of its target genes, such as P450 genes. LBD is a less 

conserved multifunctional motif, which is located in the carboxy-terminal portion of the receptor. 

It serves as a docking site for ligands and transcriptional activation. After the ligand binds to the 

LBD, the conformation of the LBD changes significantly, leading to the recruitment of co-

activator proteins and co-integrators. C-terminal domain is highly variable in its sequence of 

various NR (Glass 1994; Horwitz et al. 1996; Mangelsdorf et al. 1995).  

NR can bind with specific elements of the promoter region gene after activation by a variety 

of inducers, including chemicals (Wang and LeCluyse 2003), resulting in up-regulation or down-

regulation of gene expression. Studies have reported that nuclear receptors, such as constitutive 

androstane receptor (CAR), pregnane X receptor (PXR), Hepatocyte nuclear factor 4 (HNF-4) 

and orphan receptor, regulate the expression of different P450 genes, which are involved in 
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xenobiotic detoxification in humans (Honkakoski and Negishi 2000; Maglich et al. 2002; 

Pascussi et al. 2000; Waxman 1999). 

 

1.8.3 Regulation of cytochrome P450 genes by kinase 

A kinase is a type of enzyme that can transfer phosphate groups from high-energy donor 

molecules, such as ATP, to specific substrates. Protein kinase has been shown to regulate the 

expression of P450 genes in catfish and humans (Bird et al. 1998; Blättler et al. 2007; Ghosh and 

Ray 2012; Murray et al. 2010; Rencurel et al. 2005; Yasunami et al. 2004). Salt-inducible kinase 

also can cooperate with the ACTH/Camp dependent protein kinase, to act on the cAMP-response 

element domain and repress the transcriptional activation of the CYP11A gene in humans 

(Takemori et al. 2003).Another study reported that protein kinase can not only regulate the 

expression of p450 genes, but also modulate the expression of GSTs and microsomal epoxide 

hydrolase (mEH) in rat hepatic tissue (Kim et al. 1998). 

 

1.8.4 Regulation of cytochrome P450 genes by microRNAs 

MicroRNAs are small non-coding RNA molecules, which function via base-pairing with 

complementary target mRNA resulting in target gene silencing via translational repression or 

degradation (Chen and Rajewsky 2007). They can be found in all organisms and are involved in 

both transcriptional and post-transcriptional regulation of gene expression (Bartel 2009). First, 

primary miRNA transcripts are cleaved by Rnase III, Drosha, in the cell nucleus into 70 to 80-

nucleotide precursor miRNA hairpins and transported to the cytoplasm, where they are processed 

by another Rnase III, Dicer, into 19 to 25-nucleotide miRNA duplexes. One strand of duplexes is 
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degraded, and another strand is used as mature miRNA, which is then incorporated into the RNA-

induced silencing complex to recognize the 3’ untranslated region of the target mRNA causing 

translational repression or mRNA cleavage. The expression of CYP3A4 and CYP1B1 genes, two 

P450 genes involved in drug-metabolizing, may be regulated by microRNAs at both the 

transcriptional and posttranscriptional level (Pan et al. 2009; Tsuchiya et al. 2006). MicroRNAs 

not only regulate the expression of cytochrome p450s, but also modulate the expression of 

nuclear receptors, which are in turn regulated by cellular stress and chemicals, affecting both 

metabolism and cellular biology (Nakajima and Yokoi 2011; Takagi et al. 2010; Takagi et al. 

2008). 

 

1.9 High-throughput sequencing studies and RNA-seq 

Initial transcriptomics studies relied on hybridization-based microarray technologies or 

sequence-based approaches, but these methods showed a limited ability to fully catalogue and 

quantify the diverse RNA molecules that are expressed from genomes over wide ranges of levels 

(Ozsolak and Milos 2011; Wang et al. 2009). The development of high-throughput next-

generation DNA sequencing (NGS) technologies revolutionized the transcriptomics analysis by 

allowing the analysis from RNA to cDNA sequencing on a massive scale (Ozsolak and Milos 

2011), providing for a far more precise measurement of levels of transcripts and their isoforms 

than other previous methods. 

Researchers working with small regulatory RNAs have pioneered next-generation 

sequencing (NGS) technologies for the analysis of RNA. RNA sequencing (RNA-seq) is also 

referred to as "Whole Transcriptome Shotgun Sequencing" ("WTSS") (Morin et al. 2008). A 
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typical RNA-seq experiment starts with mRNAs, which are converted into cDNA, subsequently 

used in high-throughput sequencing technologies to get RNA information of the sample. The 

RNA sequencing market is currently dominated by three different platforms: the FLX 

pyrosequencing system from 454 Life Sciences (a Roche company), the Illumina Genome 

Analyser (developed initially by Solexa), and the AB SOLiD system (now Life Technologies). 

On all three platforms, DNA fragments are sequenced in parallel, producing large numbers of 

relatively short sequence ‘‘reads’’ or ‘‘tags’’ (Marguerat and Bahler 2010). Studies using those 

methods have already altered our view of the extent and complexity of eukaryotic transcriptomes 

(Wang et al. 2009). 

The transcriptome is the complete set of transcripts in a cell. The key aims of 

transcriptomics analysis are: to catalogue all transcripts of specie, including mRNAs, non-coding 

RNAs and small RNAs, to determine the transcriptional structure of genes, in terms of their start 

sites, 5′ and 3′ ends, splicing patterns and other post-transcriptional modifications, and to quantify 

the changing expression levels of each transcript during development and under different 

conditions (Wang et al. 2009).  

The genomic library preparation is a key step in the RNA-seq. It determines how closely the 

cDNA sequence data reflect the original RNA population (Marguerat and Bahler 2010). First, the 

RNA (total RNA or mRNA) is converted to a library of cDNA fragments, with adaptors attached 

to one or both ends, which are then processed in a high-throughput manner to obtain short 

sequences from one end (single-end sequencing) or both ends (pair-end sequencing) after 

amplification. The length of reads is usually 35-100 bp, depending on the RNA-sequencing 

technology used (Mardis 2008). These short reads can be either aligned to a reference genome or 

http://en.wikipedia.org/wiki/High-throughput_sequencing


 

31 

 

reference transcripts, or even assembled de novo without the genomic sequence to produce a 

genome-scale transcription map that consists of both the transcriptional structure and/or level of 

expression for each gene (Wang et al. 2009). The de novo aligner is a good strategy, because it 

does not rely on the genomic sequence of an organism and it can be used for non-model 

organism’s transcriptome assembly. However, the length of the reads is not large enough to 

overlap between each read rendering de novo assembly difficult. It is not easy to reconstruct the 

original sequences, and the deep coverage makes the computing power to track all the possible 

alignments are impossible (Zerbino and Birney 2008). Another challenge comes from the 

relatively high error rate of RNA-Seq data, because the non-perfect matches have to be 

considered when mapping reads back to a genome. For example, we would encounter problems 

with this if interested in single nucleotide polymorphisms (SNPs) to detect allele specific 

expression in RNA-Seq data. 

 

1.9.1 The wide use of High-throughput sequencing studies and RNA-seq 

RNA-seq has produced highly quantifiable and reliable data, adequate sequencing depth at 

least as well as microarrays, and different transcripts with different UTR length allowing for 

quantitative analysis of transcript expression from the countable and digital data (t Hoen et al. 

2008). For example, RNA-seq has been used to analyze blood-induced changes in gene 

expression in the mosquito (Bonizzoni et al. 2011). Beside those advances, RNA-seq is suitable 

for discovering new aberrant transcripts (Zhao et al. 2009), new splice junctions (Sorber et al. 

2011), gene identification, polymorphism detection (Yang et al. 2011), molecular mechanisms 

(Brunskill et al. 2011), and metabolic interactions of organisms (Rosenthal et al. 2011). 
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1.9.2 Applying RNA-seq to gene regulation 

From the DNA-RNA transcription step to post-translational modification of a protein, 

including the control of alternative splicing, RNA editing, degradation and translation, gene 

expression can be modulated at any step.  

In molecular biology and genetics, splicing is a modification of an RNA after transcription, 

in which introns are removed and exons are joined together to form a mRNA. This is a necessary 

step for the typical eukaryotic messenger RNA before it can be used to produce a correct protein 

through translation. It was reported that 95% of the human multi-exon genes have been found to 

undergo alternative splicing, with exon skipping being the most frequent form of regulation (Pan 

et al. 2008). Alternative splicing has been shown to increase the diversity of the transcriptome of 

a single cell during embryonic development in mice (Wilhelm et al. 2008). Some research results 

also show that regulation of splicing is used by unicellular eukaryotes to control and diversify 

gene expression (Marguerat and Bahler 2010). Analysis of alternative splicing by RNA-seq has 

been used to quantitatively examine splicing diversity by searching for reads that span known 

splice junctions (Ameur et al. 2010; Gan et al. 2010; Loraine et al. 2013; Nicolae et al. 2011; 

Sultan et al. 2008; Wang et al. 2008; Zhao et al. 2013a).  

Gene expression also can be regulated by editing of mRNA transcripts. RNA editing is a 

post-transcriptional molecular phenomenon that can increase proteomic diversity by modifying 

the sequence of completely or partially non-functional primary transcripts (Gott 2003; Picardi et 

al. 2010). The high-throughput RNA-Seq technology allows the detection of a comprehensive 

landscape of RNA editing at the genome level (Picardi et al. 2010). High-throughput sequencing 
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coupled with hybridization is a good strategy to enrich specific RNA populations before 

sequencing (Licatalosi and Darnell 2010). 

Information about protein–RNA interactions are fundamental for the understanding of 

different layers of post-transcriptional regulatory networks (Marguerat and Bahler 2010). 

Researchers wish to distinguish between the primary (direct) and secondary (indirect) effects of 

RNA regulatory factors (Licatalosi and Darnell 2010). Protein–RNA interactions can be separated 

into two categories: RNA-binding proteins that are immunoprecipitated together with their intact 

target transcripts (RIP) (Gerber et al. 2004) or RNA-binding proteins that are crosslinked to the 

RNAs they interact with and treated with RNAse before immunoprecipitation (CLIP for 

crosslinking immunoprecipitation) (Ule et al. 2005). The second approach limits the analysis to 

RNA fragments protected by the binding protein. RNA-seq has been successfully applied to these 

approaches (Chi et al. 2009; Licatalosi et al. 2008).  

High-throughput sequencing studies have provided an unprecedented ability to describe 

RNAs on a genome-wide scale and to suggest which cis elements and trans-acting factors are 

associated with RNA regulation. RNA-seq will play an important role in research in the next few 

years.  

 

1.10 House fly 

The house fly, M. domesticaL. (Diptera: Muscidae), is a major domestic, medical and 

veterinary pest that causes irritation, spoils food and acts as a vector for many pathogenic 

organisms (Malik et al. 2007). The house fly has four different life stages: egg, larva, pupa and 

adult. Adult flies can transmit viruses to humans through their excreta and filth when they alight 
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on surfaces of food. They also can transmit pathogens, including bacterial agents of typhoid 

fever, bacillary dysentery, trachoma and protozoan amoebic dysentery (Clesceri 1987). 

Insecticide resistance of the insect is one of the most serious problems in agriculture today. 

Resistance can lead to increased pesticide application rates, increased frequency of pesticide use 

and cost, and ultimately the compound may become ineffective.  

Insecticides were first introduced against flies in the 1940’s. Since then, many insecticides 

have been used, including pyrethroids, organophosphates and carbamates. However, their 

effectiveness decreased within a few years as fly populations developed resistance to these 

insecticides.  

The first report of house flies insecticide resistance was in 1962 when the Rutgers strain of 

house flies were shown to have 98- to 125- fold resistance to diazinon (Forgash et al. 1962). By 

1978, house flies were reported to be resistant to the major insecticide classes, including DDT 

and its analogues, cyclodienes, carbamates, organophosphates, and pyrethroids. Substantial 

evidence indicated that multiple resistance mechanisms or genes were involved in house fly 

insecticide resistance.  

Resistance conferred by enhanced metabolic detoxification via cytochrome P450 

monooxygenases, hydrolase, and GST, target-site (primarily sodium channel) insensitivity, and 

decreased penetration have been reported in house flies already (Scott 1989; Scott and Georghiou 

1986a; Scott and Georghiou 1986b; Scott and Zhang 2003). 

Cytochrome P450 monooxygenases-mediated detoxification is a very important mechanism 

of insecticide resistance in house flies (Scott 1999). Several P450 genes have been isolated from 

resistant house fly strains already. The CYP6A1 is the first insect P450 gene that was cloned and 
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sequenced from the Rutgers strain (Feyereisen et al. 1989) with the expression of the CYP6A1 

gene in the Rutgers strain being 3-fold higher than the susceptible strain (Carino et al. 1992). 

In 1982, the LPR strain of house flies was collected from a dairy. After several generations 

of selection with permethrin, LPR became more homozygous and had extremely high levels 

(>6000-fold) of resistance to pyrethroid (Scott and Georghiou 1986b).The CYP6D1 mRNA was 

expressed 10-fold higher in LPR flies compared to susceptible flies (Scott 1999). Substantial 

evidence indicates that the CYP6D1 is directly involved in insecticide resistance (Wheelock and 

Scott 1992; Zhang and Scott 1994), and the promoter of CYP6D1v1 was able to mediate the 

phenobarbital induction (Lin and Scott 2011). CYP6A1 was mapped to autosome 5 of the house 

fly and the factors responsible for the increased expression level were linked to autosome 2 

(Feyereisen 1995). This indicated that the expression of CYP6A1 was regulated by trans-factors. 

CYP6D1 in the LPR strain of the house fly is due to an increased rate of transcription, which is 

regulated by factors on autosomes 1 and 2 (Liu and Scott 1996; Liu and Scott 1998). The 

permethrin resistance can be suppressed from 5900-fold to 32-fold by the P450 inhibitor 

piperonylbutoxide (PBO) (Scott and Georghiou 1986b). 

The Alabama house fly strain (ALHF) was collected from a poultry farm in Alabama in 

1998 after control failure with permethrin. The level of resistance to permethrin in ALHF was 

1,800-fold compared to the susceptible strain. P450 monooxygenases and hydrolases were proven 

to be involved in resistance in ALHF (Liu and Yue 2000). CYP28B1, CYP4G13v2, CYP4D4v2, 

CYP4G2, CYP6A36, CYP6A37 and CYP6A38 were P450 genes isolated from the ALHF strain. 

CYP4D4v2, CYP4G2 and CYP6A38 were co-up-regulated by permethrin treatment in ALHF 

house flies (Liu and Zhang 2002; Zhu et al. 2008b). Genetic linkage analysis located CYP4D4v2 
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and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in 

ALHF, whereas CYP4G2 was located on autosome 3 (Zhu et al. 2008b). Expression of CYP6A36 

was significantly higher in ALHF compared to susceptible CS flies. Over expression of CYP6A36 

was detected in the ALHF abdomen, where the primary detoxification organs of the midgut and 

fat body are located. CYP6A37 has no significant difference in expression between ALHF and the 

susceptible CS strain (Zhu et al. 2008a). Genetic linkage analysis located CYP6A36 on autosome 

5. Over expression of CYP6A36 was linked to the factors on autosomes 1 and 2, corresponding to 

the linkage of P450-mediated resistance in ALHF (Zhu et al. 2008a).  

The resistance of the NG98 house fly strain due to kdr was located on autosome 3 and 

monooxygenase-mediated resistance on autosome 1, 2, and 5, suggesting that P450 genes 

involved in resistance and regulatory factors controlling P450 expression are different among 

different populations (Scott and Kasai 2004). This evidence also suggests the importance of p450 

genes in detoxification of insecticides and evolution of insecticide resistance in house flies (Zhu 

et al. 2008a). 

The hydrolase-mediated detoxification is due to the mutation in carboxylesterase which 

causes the loss of its carboxylesterase activity and gain of OP hydrolase activity (Claudianos et 

al. 1999; Hemingway 2000). Comparisons between OP susceptible and resistant Rutgers strains 

indicated that resistance in the house fly was associated with a single amino acid mutation 

(glycine 137 to aspartic acid) in the ali-esterase E3. The same mutation has been reported in an 

OP-resistant strain of the sheep blowfly (Claudianos et al. 1999). Zhang et al (2007) found that 

carboxylesterase activities and maximal velocities to five naphthyl-substituted substrates in a 
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beta-cypermethrin-resistant strain were significantly higher than in a susceptible strain (Zhang et 

al. 2007). 

In 1992, two classes of GSTs, GST1 and GST2, were identified from the OP- and 

carbamate-resistant house fly strain, Cornell-R (Fournier et al. 1992). The genome of M. 

domestica contains multiple intronless loci, some of which appear to have resulted from fusion 

between the 5’ and 3’ ends of different GST genes (Enayati et al. 2005), and many studies have 

shown GST-mediated metabolic detoxification resistance in house flies (Clark and Shamaan 

1984; Clark et al. 1986; Hemingway 2000; Rauch and Nauen 2004; Wei et al. 2001). 

Knockdown resistance, as exemplified by genetically defined kdr strains of the house fly, 

represents a serious threat to continued use of the pyrethroid insecticides in the field (Mullin et al. 

1992). The phenomenon of kdr was first observed in a DDT-resistant house fly strain as an ability 

to resist the rapid knockdown paralysis action of DDT (Busvine 1951). The basis for kdr and 

super kdr comes from reduced sensitivity of sodium channels to these compounds. This reduction 

in sensitivity has been correlated with alterations in physicochemical properties of phospholipids 

and sodium channel proteins mapped to chromosome 3 of the house fly (Soderlund David et al. 

2001). The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown 

resistance to pyrethroids (Smith et al. 1997). The M918T point mutation is associated with the 

super-kdr trait (Lee et al. 1999). 

The decreased penetration rate of insecticides has been recorded in a number of resistant 

strains of the house fly (DeVries and Georghiou 1981; Plapp and Hoyer 1968; Scott and 

Georghiou 1986a; Scott and Georghiou 1986b). Penetration itself confers only a 2-to 3- fold 
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resistance (Plapp and Hoyer 1968). However, it is an enhancer of resistance conferred by other 

mechanisms. 

Due to the medical and economic importance of house flies, the biochemistry and genetics 

of insecticide resistance have been well studied in the house fly. The size of the house-fly genome 

is about 184 Mb, only about 1.6-fold larger than that of D. melanogaster. However, the evolution 

of cis-regulatory sequences in Drosophila has proven difficult in some cases. Sequencing the 

house fly genome will provide a critical resource for the analysis of cis-regulatory, shed light on 

the immune defense systems of this important species and expand our understanding of basic 

house fly biology to develop new control strategies. (Scott et al. 2009).  
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Chapter 2: Research Goal and Specific Objectives 
 

2.1 The goal of the research and objectives 

To fill the gaps in our knowledge about the importance of P450 genes in insecticide 

resistance and to improve understanding of P450 gene regulation pathways, the long term goal of 

my research is to characterize the P450 gene expression profiles and elucidate the P450 gene 

regulation pathways in insecticide-resistant house flies. To achieve this long term goal, the 

following objectives will be addressed in this research: 1) The whole transcriptomal linkage 

analysis of gene co-regulation in insecticide-resistant house flies. 2) Characterization of the 

expression profiles of P450 genes in different house fly strains. 3) Genetic mapping and 

autosomal linkage analysis of the up-regulated P450 genes in insecticide resistant house flies; 4) 

Characterization of the key P450 genes function in insecticide-resistant house flies. 5) Homology 

modeling and permethrin docking study of P450s 

 

2.1.1 Objective 1: The whole transcriptomal linkage analysis of gene co-regulation in 

insecticide resistant house flies 

In my study, three house fly strains, ALHF, aabys and CS, will be used. ALHF is a multi-

insecticide resistant strain (Liu and Yue 2000) collected from a poultry farm in Alabama in 1998. 

This strain was further selected with permethrin for six generations after collection to reach a 

high level of resistance and has been subsequently maintained under biannual selection with 
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permethrin (Liu and Yue 2001; Tian et al. 2011). CS is a wild-type insecticide-susceptible strain 

kept in laboratory breeding for more than five decades. aabys is an insecticide-susceptible strain 

with recessive morphological markers of ali-curve (ac), aristapedia (ar), brown body (bwb), 

yellow eyes (ye), and snipped wings (snp) on autosomes 1, 2, 3, 4, and 5, respectively. In 

addition, five house fly lines, A2345, A1345, A1245, A1235, and A1234 generated from genetic 

crosses of aabys and ALHF. These five lines contain different autosomal combinations from 

ALHF and will be used in the research to characterize the genetic linkages of insecticide 

resistance. 

The RNA extraction from each strain or line was performed three times with different fly 

samples on different days to provide biological replications for the RNA-Seq experiments 

(ALHF) or, later, as the replications of qRT-PCR experiments. Illumina HiSeq 2000 RNA-Seq 

was conducted by the Hudson Alpha Institute of Biotechnology (Huntsville, AL). The first 

reference transcriptome of the house fly was assembled de novo using Trinity. The reference 

transcriptome was then used as the common reference for the estimation of the gene expression 

values for each of the strains. Several genes with general function categories of metabolism, such 

as P450s, and regulation, such as G-protein coupled receptors (GPCRs), adenylate and 

guanylatecyclases, protein kinases (PKs), proteases, and DNA binding domain genes were 

identified from the reference transcriptome analysis of house flies. 

 

2.1.2 Objective 2: Characterization of the expression profiles of P450 genes in different 

house fly strains 

P450s associated insecticide resistance is due to increase the rate of detoxification of 
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insecticides by constitutively transcriptional up-regulation of P450 genes, resulting in increased 

levels of P450 proteins and P450 activities. CYP4D4V2, CYP6A1, CYP6A5, CYP6A5V2, 

CYP6A24, CYP6D1, CYP6D3, CYP6A36 and CYP12A1 have been found to be induced by 

insecticides or over-expressed in different insecticide-resistant house fly strains. The expression 

profiles of all P450 genes identified from objective 1 will be conducted by qRT-PCR. I 

hypothesize that several of P450 genes are over-expressed in the insecticide-resistant house flies 

when compared to susceptible house flies, and these P450 genes may play critical roles in the 

development of insecticide resistance in insecticide-resistant house flies. 

 

2.1.3 Objective 3: Genetic mapping and autosomal linkage analysis of the up-regulated 

P450 genes in insecticide-resistant house flies 

My third objective will focus on the autosome location and autosomal linkage of up-

regulated P450 genes detected from objective 2. ALHF, aabys, A2345, A1345, A1245, A1235, 

and A1234 house fly strains and lines will be used to conduct the genetic mapping and autosomal 

linkage of up-regulated P450 genes. Allele specific PCR will be conducted using the cDNA from 

the 7 house fly strains/lines. Two rounds of PCR will be conducted. For the first PCR reaction, 

we will use the regular primer pairs to generate cDNA fragments, respectively. The second PCR 

will employ 0.5 µl of the first round PCR reaction solution and an allele specific primer pair, 

designed by placing a specific nucleotide polymorphism at the 3’ end of the primer to permit 

preferential amplification of the allele from ALHF based its gene specific sequence. Then, qRT-

PCR will be used to detect the autosomal interaction of P450 genes. I hypothesize that several up-

regulated P450 genes will be mapped on different autosomes in the ALHF strain, especially 
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autosome 5, the importance of factors of which has been extensively reported in insecticide 

resistance. We also expect that the expressions of the majority of up-regulated P450 genes are 

controlled by multiple factors/autosomes. 

 

2.1.4 Objective 4: Characterization of the key P450 genes function in insecticide-resistant 

house flies 

Once we have mapped the up-regulated P450 genes on the different autosomes, we will 

characterize the function of the up-regulated genes in insecticide-resistant house flies. We will 

select key P450 genes that identified from objective 1, 2 and 3 to investigate their function by 

transgenic technology. Construction of transgenic Drosophila melanogaster lines will be applied 

to validate the functions of the P450 genes. Briefly, selected P450 genes will be constructed into 

a pUASTattB vector and transformed into the germline of D.melanogaster. Permethrin toxicity 

bioassays will be then conducted on a 2-3 day post eclosion female Drosophila to examine the 

toxicity of permethrin to transgenic flies. Bioassay will be independently replicated three times. 

We predict that the expression of any one of the transformed key P450 genes in Drosophila will 

increase the resistance level of Drosophila to permethrin. 

 

2.1.5 Objective 5: Homology modeling and permethrin docking study of P450s 

We will select key p450 genes from objective 4 to conduct homology modeling and 

permehtrin docking study. Structural modeling will be performed by the I-TASSER server with 

the combined methods of threading, ab initio modeling (Roy et al. 2010; Zhang 2008). Five 

models will be predicted by the I-TASSER for each P450. We will submit the top scoring model 
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to the FG-MD server for fragment guided molecular dynamics structure refinement (Zhang et al. 

2011). The Model quality will be controlled by Ramachandran plots generated with Procheck 

(http://services.mbi.ucla.edu/SAVES/) (Laskowski et al. 1993) and ProSA-web 

(https://prosa.services.came.sbg.ac.at/prosa.php) (Sippl 1993; Wiederstein and Sippl 2007). 

Channels of P450s will be calculated by CAVER 3.0 (http://caver.cz/index.php) (Chovancova et 

al. 2012; Medek et al. 2007), the passage of a sphere of maximal radius greater than 1.2 Å are 

considered tabulated, and named according to nomenclature of Cojocaru et al. (Cojocaru et al. 

2007). The volume of the substrate binding cavity will be characterized by VOIDOO with a 1.4 Å 

probe (Kleywegt et al. 2001), Proteins and ligands will be prepared for docking with Autodock 

Tools v1.5.6 (http://mgltools.scripps.edu/downloads). Molecular docking will be performed by 

Autodock 4.2. (Morris et al. 2009). Ligand permethrin structures will be retrieved from the ZINC 

database (Irwin et al. 2012). For all dockings, a search space with a grid box of 60 x 60 x 60 Å, 

centered at the heme iron will be set corresponding to substrate recognition sites (SRSs) 

following those of the CYP2 family proposed by Gotoh (Gotoh 1992). The figures will be 

produced by Pymol (http://www.pymol.org/) (DeLano 2002). 

 

2.2 Significance of research 

Insect cytochrome P450s are critical for detoxification of xenobiotics and play a 

fundamental role in biosynthesis and degradation of endogenous compounds. Elucidation of the 

regulation pathway and P450s that involved in insecticide resistance will provide us with a better 

understanding of the post-regulation processes involved in insecticide resistance development in 

the house fly and will be important for developing new control strategies for many insect pests, 

https://prosa.services.came.sbg.ac.at/prosa.php
http://caver.cz/index.php
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including house flies. 
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Chapter 3: A Whole Transcriptomal Linkage Analysis of Gene Co-Regulation in 

Insecticide Resistant House Flies, Musca domestica  

 

3.1 Abstract 

The first reference transcriptome from the adult house fly was generated and a whole 

transcriptome analysis was conducted for the multiple insecticide resistant strain ALHF (wild-

type) and two insecticide susceptible strains: aabys (with morphological recessive markers) and 

CS (wild type) to gain valuable insights into the gene interaction and complex regulation 

involved in the development of insecticide resistance in house flies, Musca domestica. Over 56 

million reads were used to assemble the adult female M. domestica transcriptome reference and 

14488 contigs were generated from the de novo transcriptome assembly. A total of 6159 (43%) of 

the contigs contained coding regions, among which 1316 genes were identified as being co-up-

regulated in ALHF in comparison to both aabys and CS. The majority of these up-regulated genes 

fell within the SCOP categories of metabolism, general, intra-cellular processes, and regulation, 

and covered three key SCOP detailed function categories: redox detailed function category in 

metabolism, signal transduction and kinases/phosphatases in regulation, and proteases in intra-

cellular processes. The redox detailed function group contained gene superfamilies for 

detoxification, including multiple cytochrome P450s, glutathione S-transferases, and esterases. 

The signal transduction and kinases/phosphatases detailed function groups contained gene 
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families including 7 transmembrane receptors (rhodopsin-like GPCR family), adenylate and 

guanylate cyclases, protein kinases and phosphatases. The proteases detailed function group 

contained genes with digestive, catalytic, and proteinase activities. Genetic linkage analysis with 

house fly lines comparing different autosomal combinations from ALHF revealed that the up-

regulation of gene expression in the three key SCOP detailed function categories occurred mainly 

through the co-regulation of factors among multiple autosomes, especially between autosomes 2 

and 5, suggesting that signaling transduction cascades controlled by GPCRs, protein 

kinase/phosphates and proteases may be involved in the regulation of resistance P450 gene 

regulation.  

 

3.2 Introduction 

Insecticides have a major impact on agriculture, economy, and public health due to their 

outstanding contribution towards controlling agriculturally, medically, and economically 

important insect pests worldwide. Nevertheless, the development of resistance to insecticides in 

diverse insect pests is becoming a global problem in the insect pest control battle (Hemingway et 

al. 2002). Resistance is thought to be a pre-adaptive phenomenon, in that prior to insecticide 

exposure rare individuals already exist who carry an altered genome that results in one or more 

possible mechanisms (factors) allowing survival from the selection pressure of insecticides 

(Brattsten et al. 1986; Sawicki and Denholm 1984), and overall, the rate of development of 

resistance in field populations of insects depends upon the levels of genetic variability in a 

population (Liu and Scott 1995; Liu and Yue 2001). Efforts to characterize the genetic variation 

involved in insecticide resistance have thus focused on building a better fundamental 
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understanding of the development of resistance and studying resistance mechanisms, both of 

which are vital for practical applications such as the design of novel strategies to prevent or 

minimize the spread and evolution of resistance development and the control of insect pests 

(Roush et al. 1990). 

There is considerable evidence to suggest that the interaction of multiple insecticide resistance 

mechanisms or genes is responsible for the development of insecticide resistance (Georghiou 1971; 

Liu et al. 2005; Liu et al. 2007; Liu and Scott 1996; Liu and Yue 2000; Plapp Jr et al. 1987; Pridgeon 

and Liu 2003; Raymond et al. 1989; Vontas et al. 2005; Xu et al. 2005; Xu et al. 2006b). While 

altering target site sensitivity to insecticides has been shown to reduce insects’ response to 

insecticides, transcriptional up-regulation of the detoxification machinery, increasing metabolism 

of insecticides into less harmful substances and facilitating insecticide excretion are all known to 

play a role in allowing insects to defend themselves against insecticides (Xu et al. 2005). This 

detoxification machinery in insects has been mainly attributed to three enzyme systems, namely 

cytochrome P450s, esterases, and glutathione S-transferases (GSTs), the up-regulation of which 

underlies the development of insecticide resistance in many insect species. It has been suggested 

that new patterns of gene expression may arise via a variety of mechanisms involving changes to 

upstream regulators (change in trans) and mutations of the noncoding regulatory DNA sequences 

(e.g., enhancers) of a gene (change in cis) (Rebeiz et al. 2011). Indeed, many studies on the 

development of insecticide resistance in insects have demonstrated different patterns of gene 

expression between resistant and susceptible insect populations. Many studies have also found that 

the different patterns of gene expression in metabolic detoxification of insecticide-resistant insects 

are regulated by trans and/or cis factors (Liu and Scott 1995; Liu and Scott 1996; Liu and Yue 2001; 
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Plapp Jr et al. 1987). Taken together, these studies suggest that not only is insecticide resistance 

conferred via multiple gene up-regulation, but it is mediated through the interaction of regulatory 

factors and resistance genes. However, no regulatory factors in insecticide resistance have yet been 

identified, and there has been no examination of the regulatory interaction of resistance genes. 

Recent advances in DNA sequencing technology have provided an opportunity for genome/whole 

transcriptome-wide gene discovery in organisms, including those genes suspected of involvement 

in insecticide resistance and the factors that may be involved in the regulation of resistance genes 

and mechanisms. 

The house fly, Musca domestica, is a major domestic, medical and veterinary pest that causes 

more than 100 human and animal intestinal diseases, including bacterial infections such as 

salmonellosis, anthrax ophthalmia, shigellosis, typhoid fever, tuberculosis, cholera and infantile 

diarrhea; protozoan infections such as amebic dysentery; helminthic infections such as pinworms, 

roundworms, hookworms and tapeworms; and both viral and rickettsial infections (Greenberg 1965; 

Keiding 1986; Scott and Littig 1962; Scott et al. 2009). Current approaches to control house flies 

rely primarily on source reduction and the application of insecticides, generally pyrethroids, 

organophosphates, neonicotinoids, as well as chitin synthesis inhibiting/disrupting larvicides. 

However, house flies have shown a remarkable ability to develop not only resistance to the 

insecticide used against them but also cross-resistance to unrelated classes of insecticides 

(Greenberg 1965; Liu and Yue 2000; Pap and Tóth 1995; Wen and Scott 1997). Because of this 

ability and the relatively rapid rate at which they develop resistance and cross-resistance to 

insecticides, their well described linkage map for five autosomes and two sex chromosomes (X and 

Y) (Hiroyoshi 1964; Milani et al. 1967; Nickel and Wagoner 1974; Tsukamoto et al. 1961), and 
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their relatively well studied biochemistry and genetics of insecticide resistance, the house fly has 

proven to be a useful model for understanding and predicting resistance in other insect species.  

The house fly strain ALHF has demonstrated the ability to develop resistance and/or cross-

resistance to not only pyrethroids and organophosphates (OPs), but also relatively new 

insecticides such as fipronil and imidacloprid (Liu and Yue 2000; Tian et al. 2011). Genetic 

studies have linked pyrethroid resistance to autosomes 1, 2, 3 and 5 (Liu and Yue 2001). The 

major mechanisms governing pyrethroid resistance in this strain include increased detoxification 

mediated by P450 monooxygenases and decreased sensitivity of voltage-gated sodium channels 

(kdr) (Xu et al. 2006b; Zhu et al. 2008; Zhu and Liu 2008). Previous genetic studies of ALHF 

have linked pyrethroid resistance primarily to autosomes 2, 3 and 5, with a minor role played by 

factor(s) on autosome 1 (Liu and Yue 2000; Tian et al. 2011). Furthermore, multiple P450 genes, 

CYP6A5, CYP6A5v2, CYP6A36, CYP6A37, CYP4D4v2 and CYP6A38, that are known to be 

overexpressed in ALHF have been located on autosome 5 and the regulation of these P450 genes 

have been linked to autosomes 1 and 2 (Zhu et al. 2008; Zhu and Liu 2008). However, the precise 

nature of the interaction between the regulatory factors and resistance genes such as P450s is 

unclear. In an effort to better understand the genetic variation relation to resistance and gain 

valuable insights into the gene interaction and regulation involved in the development of 

permethrin resistance in the house fly, the current study generated the first adult transcriptome of 

the house fly M. domestica using Illumina RNA-Seq. Whole transcriptome comparative analyses 

were conducted for the resistant ALHF strain, susceptible CS and aabys strains, which enabled us 

to investigate the complete transcriptome of M. domestica and identify the genes that are most 

likely to be involved in pyrethroid resistance and their autosomal interactions. 
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3.3 Materials and methods 

3.3.1 House fly strains and lines 

Three house fly strains were used in this study. ALHF, a multi-insecticide resistant strain 

(Liu and Yue 2001) collected from a poultry farm in Alabama in 1998. This strain was further 

selected with permethrin in the laboratory for six generations after collection, reaching to a high 

level of resistance (Liu and Yue 2000; Tian et al. 2011). This strain has been maintained under 

biannual selection with permethrin. CS is a wild type insecticide-susceptible strain kept in 

laboratory breeding for more than five decades. aabys is an insecticide-susceptible strain with 

recessive morphological markers ali-curve (ac), aristapedia (ar), brown body (bwb), yellow eyes 

(ye), and snipped wings (snp) on autosomes 1, 2, 3, 4, and 5, respectively. Both CS and aabys 

were obtained from Dr. J. G. Scott (Cornell University).  

A cross of ALHF female and aabys male was performed with each of ~400 flies. The F1 

males (~400 flies) were then backcrossed to aabys female (Figure 3.1). Five back-cross (BC1) 

lines with the following genotypes were isolated: ac/ac, +/ar, +/bwb, +/ye, +/snp (A2345); +/ac, 

ar/ar, +/bwb, +/ye, +/snp (A1345); +/ac, +/ar, bwb/bwb, +/ye, +/snp (A1245); +/ac, +/ar, +/bwb, 

ye/ye, +/snp (A1235); and +/ac, +/ar, +/bwb, +/ye, snp/snp (A1234). Homozygous lines (+/+, 

+/+, bwb/bwb, +/+, +/+ (A1245); +/+, + /+, +/+, ye/ye, +/+ (A1235); +/+, +/+, +/+, +/+, snp/snp 

(A1234); +/+, ar /ar, +/+, +/+,+/+ (A1345); and ac/ac, +/+, +/+, +/+, +/+ (A2345)) were 

accomplished by sorting for appropriate phenotypic markers and selecting with permethrin at a 

corresponding dose that caused ~70% mortality for each of lines for three generations. One 

hundred single-pair crossing (n=100) of each of lines for the desired phenotype and genotype 
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were then set up (Liu and Yue 2000; Tian et al. 2011). The name of each line indicates which of 

its autosomes bear wild-type markers from ALHF. For instance, the A2345 strain has wild-type 

markers on autosomes 2, 3, 4, 5 from ALHF and the mutant marker on autosome 1 from aabys. 

A1235 strain (flies with a recessive mutant marker on autosome 4 from aabys) showed no 

significant differences in resistance levels compared with ALHF based on the overlapping 95% 

confidence intervals for the two strains (Liu and Yue 2000; Tian et al. 2011). A2345, A1345, 

A1245, or A1234 house fly lines with recessive morphological markers on autosomes 1, 2, 3 or 5, 

respectively, from aabys had significantly decreased levels of permethrin resistance compared 

with ALHF, implying that factors on autosomes 1, 2, 3 and 5 play important roles in pyrethroid 

resistance in ALHF (Tian et al. 2011). 

 

3.3.2 RNA extraction  

A total of 20 3-day old adult female house flies from each of three house fly strains (ALHF, 

aabys and CS) and five house fly lines (A2345, A1345, A1245, A1235, and A1234) were flash 

frozen on dry ice and immediately processed for RNA extraction. Total RNA was extracted using 

the hot acid phenol extraction method as outlined by Chomczynski and Sacchi (1987) 

(Chomczynski and Sacchi 1987). The RNA extraction from each strain or line was performed 

three times with different fly samples on different days to provide biological replications for the 

RNA-Seq experiments (ALHF) or, later, as the replications of qRT-PCR experiments for the 

validation of the up-regulated genes. A total of 30 µg of RNA was subsequently treated with 

DNase I using the DNA-Free kit from Ambion (Austin, TX) to remove any remaining DNA and 

then extracted over two successive acid phenol: chloroform (1:1) steps, followed by a final 
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chloroform extraction to remove any residual phenol. The RNA was then precipitated over 

ethanol at -80 °C overnight, pelleted, dried, and suspended in sterile distilled water, after which a 

1µg aliquot of RNA was visually inspected for quality and for DNA contamination on a 1% 

agarose gel. Total RNA was sent for RNA-Seq analysis to Hudson Alpha Institute of 

Biotechnology (HAIB), in Huntsville, Alabama. 

 

3.3.3 RNA library preparation and RNA-Seq  

RNA quality for each sample of house fly strains and lines was assessed using a Qubit 

fluorimeter and an Agilent 2100 Bioanalyzer at HAIB. Libraries were then prepared using 

Illumina Tru-Seq RNA Sample Prep Kits for mRNA-Seq using a 3' poly A selection method. 

Samples for the mRNA-Seq were run using the PE-50 module (HAIB) on an Illumina HiSeq 

2000 instrument to generate 50 nucleotide paired end libraries. Base calling and barcode parsing 

were also conducted at HAIB. Data were processed to remove any reads not passing the Chastity 

filter and then further trimmed for the adapter using Trimmomatic (Lohse et al. 2012). Two 

biological replications of RNA-Seq sequencing were conducted on independent samples of the 

resistant ALHF strain to validate the gene expression values. All sequence traces have been 

submitted to the National Center for Biotechnology Information (NCBI) Short Read Archive 

(SRA) as accessions [NCBI:SRR521286], [NCBI:SRR521288], [NCBI:SRR521289], and 

[NCBI:SRR521290], and are part of Bioproject #170716 with additional information in the NCBI 

Gene Expression Omnibus [NCBI:GSE39327].  

 

3.3.4 Contig generation, gene annotation, gene expression determination, and data analysis  
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The bioinformatic analysis of the M. domestica transcriptomic data generated in this study 

was performed as illustrated in the flowchart in Figure 3.2. To generate the M. domestica 

reference transcriptome, the raw data for the two ALHF samples were pooled and then assembled 

de novo using Trinity version r2012-05-18 (Grabherr et al. 2011). The standard program settings 

were modified to increase the Java memory to 20 GB. The contigs obtained from the Trinity build 

were then compressed, to reduce redundancy, using CAP3 (Huang and Madan 1999) at a 95% 

similarity level. Compressed sequences that were <500 nt in length were discarded and the 

remaining contigs were further annotated to predict the gene coding region within each transcript 

using Augustus (Stanke et al. 2006). Within the Augustus program (Augustus version 2.5.5), the 

species model “FLY” based on Drosophila melanogaster’s genome was selected as the reference 

species due to the relatively close phylogenetic relationship of D. melanogaster and M. 

domestica. All predicted coding regions that were ≥300 nt in length were retained as the M. 

domestica ALHF strain reference transcriptome and were used for further gene expression 

comparisons with all of the M. domestica strains in our study. Within the ALHF reference 

transcriptome, 90% of the contigs with coding region were predicted to consist of full-length 

ORFs, and 10% expressed sequence tags (EST) that were missing either the 5' or the 3' ends of 

the predicted sequence. The functional annotations of the sequences within the ALHF reference 

transcriptome were then predicted using HMMScan in HMMER (v 3.0) at an e-value cut off of 

10-20 against the Pfam-A (v26.0) hidden Markov model (HMM) database from the Wellcome 

Trust Sanger Institute, which is a manually-curated database of known protein domains that can 

be used to predict the function of an unknown protein by homology (Johnson et al. 2010; Punta et 

al. 2012). In addition, the ALHF reference sequences were annotated using blastx (Altschul et al. 
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1997) against the D. melanogaster proteome (v. r5.46) (McQuilton et al. 2012) at an e-value cut 

off of 10-20, and enzyme functions were annotated by the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) automatic annotation server (KAAS) at an e-value cut off of 10-5 

(http://www.genome.jp/tools/kaas/; (Moriya et al. 2007)). All predicted sequences have been 

submitted to the TSA of NCBI as accession numbers [NCBI:KA644422] through 

[NCBI:KA650580]. 

The de novo ALHF reference transcriptome was then used as the common reference for the 

estimation of the gene expression values for each of the strains. The paired end reads within each 

strain were mapped as paired end mate pairs using RSEM (Li and Dewey 2011) to estimate the 

fragments per kilo base of reference gene length per million reads mapped (FPKM). The 

differential gene expression was then determined using EdgeR from Bioconductor at the α=0.05 

(0.05%) false discovery rate (FDR) (Robinson et al. 2010; Robinson and Smyth 2007; Robinson 

and Smyth 2008). To examine sequence coverage and to verify that the sequences of the ALHF 

reference transcriptome were present within each of the strains tested, the reads from each strain 

were mapped against the ALHF transcriptome reference using TopHat, with the no-novel-juncs 

option, to estimate the percentage of gene coverage within each strain (Trapnell et al. 2012) and 

the resulting alignment files were converted to nucleotide sequences using Samtools pileup 

(v0.1.13) (Li et al. 2009) and Seqret in EMBOSS (Rice et al. 2000). The percentage of gene 

coverage for each ALHF predicted gene for each house fly strain tested was then determined 

using faCount (http://hgwdev.cse.ucsc.edu/~kent/src/unzipped/utils/faCount/). 

 

3.3.5 Real-time quantitative RT-PCR validation of RNA-Seq data 

http://hgwdev.cse.ucsc.edu/%7Ekent/src/unzipped/utils/faCount/
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A total of 70 genes that were differentially expressed among the different house fly 

strains/lines were chosen for the validation study using real-time quantitative PCR, with primers 

designed according to the RNA-Seq sequencing data (Table S3.1). Total RNA was extracted from 

samples of 20 3-day old post-eclosion female M. domestica as previously described. The total 

RNA (0.5 μg/per sample) from each house fly sample was reverse-transcribed using SuperScript 

II reverse transcriptase (Stratagene) in a total volume of 20 μL. The quantity of cDNAs was 

measured using a spectrophotometer prior to qRT-PCR, which was performed with the SYBR 

Green master mix Kit and ABI 7500 Real Time PCR system (Applied Biosystems). Each qRT-

PCR reaction (15 µL final volumes) contained 1× SYBR Green master mix, 1 μL of cDNA, and a 

gene specific primer pair at a final concentration of 0.3–0.5 μM. A 'no-template' negative control 

and all samples were performed in triplicate. Relative expression levels for specific genes were 

calculated by the 2-ΔΔCt method using SDS RQ software (Livak and Schmittgen 2001). The β-

actin gene, an endogenous control, was used for internal normalization in the qRT-PCR assays 

(Aerts et al. 2004). Preliminary qRT-PCR experiments with the primer pair for the β-actin gene 

(Table S3.1) designed according to the sequences of the β-actin gene had revealed that the β-actin 

gene expression remained constant in the house fly strains, so the β-actin gene was used. Each 

experiment was performed three times with different preparations of RNA samples. The 

statistical significance of the gene expressions was calculated using a Welch's t-test for all 

pairwise sample comparisons against the ALHF strain at a value of α=0.05 (RDevelopment 

2012). 

 

3.3.6 Genetic linkage analysis of up-regulated genes   
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BC1 lines of ac/ac, +/ar, +/bwb, +/ye, +/snp (A2345); +/ac, ar/ar, +/bwb, +/ye, +/snp 

(A1345); +/ac, +/ar, bwb/bwb, +/ye, +/snp (A1245); +/ac, +/ar, +/bwb, ye/ye, +/snp (A1235); and 

+/ac, +/ar, +/bwb, +/ye, snp/snp (A1234) were used to determine genetic linkage of up-regulated 

genes. Briefly, allele specific PCR was conducted using the cDNA from five BC1 house fly lines 

(Liu and Yue 2001; Zhu et al. 2008; Zhu and Liu 2008) for genetic mapping of the genes (Liu and 

Scott 1996). Two rounds of PCR were conducted. For the first PCR reaction, the allele-

independent primer pairs (Table S3.1) were designed for generating P450 (ALHF_04445.g2939 

(CYP6A36), (Zhu et al. 2008)) and ALHF_04553.g3033, carboxylesterase (ALHF_03407.g2111), 

adenylate cyclase (ALHF_01050.g580), protein kinase (ALHF_10712.g5974), G-protein coupled 

receptor (ALHF_06811.g4468), and peptidase (ALHF_07511.g4836 and ALHF_05334.g3663) 

cDNA fragments, respectively. The first PCR solution with cDNA template and an allele-

independent primer pair was heated to 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 

60°C for 30 s, and 72°C for 1 min, then 72°C for 10 min. The PCR product from this reaction 

was then used as the template to determine autosomal linkage. The second PCR was employed 

with 0.5 µL of the first round PCR reaction solution and the allele specific primer pair (Table 

S3.1). The second PCR reaction was heated to 95°C for 3 min, followed by 35 cycles of 95°C for 

30 s, 58°C for 30 s, and 72°C for 30 s, then 72°C for 10 min. One of each allele specific primer 

pair was designed based on the specific sequence of the genes from ALHF by placing a specific 

nucleotide polymorphism at the 3’ end of the primer to permit preferential amplification of the 

allele from ALHF. Each experiment was repeated three times with different mRNAs to ensure 

that the same autosomal linkage could be consistently repeated. The PCR products were 

sequenced at least once for each gene to confirm the consistency of the tested gene fragments. 
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3.4 Results 

3.4.1 Illumina sequencing, transcriptome assembling and annotation of ALHF house flies 

The number of paired end reads for each of the house fly strains ranged from 25-37 million, 

with an average of 7% of the reads discarded due to low quality (Table 3.1). The two RNA-Seq 

biological replicates from the ALHF strain ([NCBI:SRR521288] and [NCBI:SRR521289]) had 

sequence depths of 25 and 28 million reads, respectively. After the sequence cleaning steps, the 

two RNA-Seq sequences from ALHF were pooled, resulting in 53 million reads that could then 

be used to assemble the ALHF transcriptome reference. After the Trinity de novo transcriptome 

assembling (Grabherr et al. 2011) and CAP3 processing steps (Huang and Madan 1999), 14488 

contigs were generated from the adult female ALHF M. domestica de novo transcriptome 

assembly (Table 3.2). The majority of the contigs ranged from 500 to 1500 nt in length (Figure 

3.3). The N50, the central tendency of the contig length, was 1039 nt, indicating that half of the 

total number of nucleotides used for the entire transcriptome assembly were contained within 

contigs with ≥1039 nt in length (Miller et al. 2010). Within the 14488 contigs, a total of 6159 

(43%) of them contained coding regions with >500 nt length, 5469 of which had complete 

putative open reading frames (ORFs). The nucleotide sequence information for house flies has 

been submitted to the NCBI Transcriptome Shotgun Assembly (TSA) 

(http://www.ncbi.nlm.nih.gov/genbank/tsa/). The complete annotation spreadsheet for the M. 

domestica predicted gene set is provided in Table S3.2, including the predicted gene name, 

nucleotide length, the TSA accession number from NCBI, the D. melanogaster blastx homology, 

the Superfamily general and detailed function annotations, the Pfam-A HMM homology, the 

http://www.ncbi.nlm.nih.gov/genbank/tsa/
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KEGG homology, and the putative GO terms based on the M. domestica predicted gene 

homology to the D. melanogaster proteome. The predicted gene set had an N50 of 2043 nt and 

the majority of the genes ranged in length from 1000 to 3000 nt (Figure 3.3). Among the 6159 

annotated sequences, 5975 had significant hits to three different databases. A total of 5549 

sequences had significant hits for the Pfam-A HMM library (v26.0), representing 2147 gene 

families (Johnson et al. 2010; Punta et al. 2012), while 5730 sequences had significant hits for D. 

melanogaster (v. r5.46) (McQuilton et al. 2012) (Figure 3.4). Since ~93% of the sequences had 

significant (e-value < 10-20) matches to D. melanogaster, we used the bioinformatic information 

available for the D. melanogaster Structural Classification of Proteins (SCOP) functional 

annotation (http://supfam.cs.bris.ac.uk/SUPERFAMILY/) as a reference for the M. domestica 

transcriptome. To provide a general overview of the gene discovery in the adult M. domestica 

transcriptome, the predicted genes in M. domestica were thus classified according to their 

sequence homology to the functional categories of D. melanogaster in the SCOP database (Table 

3.3) (http://supfam.cs.bris.ac.uk/SUPERFAMILY/). The SCOP functional category annotation 

sorts the genes from D. melanogaster into eight general function categories, which are then 

divided into detailed functional categories. A total of 1963 genes, which was approximately one-

third of the 6159 genes, were placed into the non-annotated category of the SCOP general 

function category, and represented the largest SCOP general function category. The second most 

abundant general function category was the metabolism category, encompassing 17% of all 

predicted genes, followed by general function (15%), regulation (15%), intracellular processes 

(13%), information (4%), extracellular processes (2%), and “other” (1%). The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) was also used for gene annotation in order to 
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identify those genes with putative enzymatic function. Taken together, the use of multiple 

databases for the functional annotation of the predicted genes in the M. domestica adult 

transcriptome allowed us to categorize the M. domestica genes into higher (general and detailed 

function) and lower (family and gene function) levels of annotation. 

 

3.4.2 House fly transcriptome reference and gene expression profiles  

The ALHF transcriptome was used as the reference for the comparison of gene expression 

between the resistant ALHF and the susceptible aabys and CS strains of M. domestica. To verify 

that the predicted genes within the ALHF transcriptome also provided good coverage for the 

other M. domestica strains tested, we independently mapped the raw Illumina reads from each of 

the M. domestica strains to the ALHF reference transcriptome using Tophat and then determined 

the percentage of gene coverage for each of the genes within each M. domestica strain. The 

results showed that the median nucleotide coverage for the 6159 genes within the ALHF 

transcriptome was >99% for all of the M. domestica strains tested (Figure 3.5), demonstrating 

that the transcriptome from ALHF was indeed a suitable reference for the determination of gene 

expression levels for all the strains.  

The program RSEM (Li and Dewey 2011) was therefore used to estimate the gene 

expression values (FPKM) for all the M. domestica strains using the ALHF transcriptome as the 

reference. The gene expression values from the susceptible aabys and CS strains were then 

compared with the gene expression values of the ALHF strain to determine differential gene 

expression using EdgeR (Robinson and Smyth 2007) with a 0.05 false discovery rate (α=0.05, 

(Robinson and Smyth 2007; Robinson and Smyth 2008)). In addition to testing the two 
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susceptible strains of M. domestica for differential gene expression, we further tested the gene 

expression values of the ALHF strain against an additional biologically-independent sample of 

the ALHF strain to ensure that the gene expression values were reproducible. When the gene 

expression values of the two ALHF samples were compared, the results showed a strong 1:1 

correlation (r2=0.95); the correlation coefficients for the aabys and CS strains were 0.62 and 0.49, 

respectively (Figure 3.6). In addition, <10% (606) of the genes tested as differentially expressed 

between the two ALHF replicates, while the aabys and CS strains had 3428 and 4792 genes that 

were differentially expressed, respectively (Figure 3.6). Since gene over-expression has been 

linked to insecticide resistance (Cao et al. 2008; Djouaka et al. 2008; Liu and Scott 1995; Ortelli 

et al. 2003; Vontas et al. 2002), the genes identified as differentially up-regulated in the ALHF 

strain when compared to both the insecticide-susceptible aabys and CS strains represent the genes 

putatively involved in pyrethroid resistance. 

Overall, a total of 1316 genes were identified as being co-up-regulated in ALHF in 

comparison to both aabys and CS (Table S3.3). While one-third of these genes (452 genes) were 

distributed within the SCOP general function category of “no annotation” (Table S3.3), the 

majority (777 genes) fell within the SCOP categories of metabolism, general, intra-cellular 

processes, and regulation, containing 275, 178, 174, and 150 genes, respectively (Table S3.3). 

The metabolism SCOP general function category had the greatest number of detailed function 

groups (13 groups), among which the redox detailed function group contained the second largest 

number of genes and detoxification enzymes such as cytochrome P450s, glutathione-S-

transferases (GSTs) and esterases (Table S3.3). Interestingly, within the regulation category the 

detailed function groups with the greatest number of genes were involved with signal 
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transduction, kinases/phosphatases, and DNA binding, while in the intra-cellular processes 

category the proteases were the most abundant detailed function group. A total of 1440 genes 

were identified as down-regulated in the ALHF strain when compared to the susceptible aabys 

and CS strains (Table S3.3), among which one-third (458) of the genes had no SCOP annotation. 

The rest of the down-regulated genes were distributed within the SCOP general function category 

of regulation (254 genes), general (242 genes), metabolism (194 genes), intra-cellular processes 

(152 genes), information (105 genes), other (22 genes), and extra-cellular processes (13 genes). 

 

3.4.3 Validation of the expression of up-regulated genes in house fly strains/lines 

A total of 70 genes were selected from the predominant groups of up-regulated genes 

identified by RNA-Seq, including multiple cytochrome P450s, GSTs, and esterases in 

metabolism; kinases/phosphatases, 7 transmembrane receptors (rhodopsin-like G-protein coupled 

receptor (GPCR) family), adenylate and guanylate cyclases in regulation; and serpins and 

carboxypeptidases in intracellular processes for further validation by qRT-PCR. We examined the 

expression of these 70 genes in resistant ALHF, susceptible aabys and five house fly homozygous 

lines A2345, A1345, A1245, A1235, and A1234, the lines represent the ALHF strain where 

autosomes 1, 2, 3, 4, and 5, respectively, have been replaced by the autosome from aabys. 

Overall, the biological replication of qRT-PCR results showed that the expression of the majority 

of genes (81%) was consistent with the RNA-Seq data, being highly expressed in resistant ALHF 

compared with the susceptible aabys (Table 3.4). We also examined the expression levels of the 

up-regulated genes in ALHF for the five house fly lines to determine the effects of factors from 

the different autosomes of ALHF on the up-regulation of the genes. Clear changes in the gene 
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expression levels were identified when each autosome in ALHF was replaced by the 

corresponding aabys autosome, i.e., lines A2345, A1345, A1245, A1235, and A1234 (Figure 3.7, 

Table 3.4). In general, no significant change in the level of expression was observed for most of 

the selected genes, when autosome 4 of ALHF (i.e., line A1235, Figure 3.7, Table 3.4) was 

replaced with that from aabys except for four protease genes. Previous research by Tian et al., 

(Tian et al. 2011) identified that when autosome 4 in ALHF was replaced by the one from aabys, 

there was no significant decrease in resistance. Liu and Scott (1995) also demonstrated that 

replacement of autosome 4 in the resistant LPR house flies with the one from aabys, the 

resistance level was not changed (Liu and Scott 1995). Liu and Yue (2001) reported the similar 

results in house flies (Liu and Yue 2001). Taken together, these results strongly revealed that 

factors/genes on autosome 4 do not have a major role in the up-regulation of genes in ALHF, 

although further investigation of the up-regulated protease genes in resistance is needed. The 

majority of the selected up-regulated genes exhibited no change in expression when autosome 1 

or 3 in ALHF was replaced by the corresponding autosome from aabys (i.e., lines A2345 or 

A1245, respectively). However, significant changes in the gene expression for most of the 

selected up-regulated genes (>90%) were observed when autosome 2 or 5 in ALHF was replaced 

by the corresponding autosome from aabys (i.e., lines A1345 or A1234 respectively). These 

results suggest the importance of factors on autosome 2 and/or 5 for the expression of up-

regulated genes in ALHF and/or that several of the up-regulated loci reside on the replaced 

chromosomes. 

 

3.4.4 Autosome co-regulation in up-regulation gene expression in resistant house flies  
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We next examined the autosomal linkage of factors from different autosomes on the 70 up-

regulated genes that have been validated by qRT-PCR to determine the effects of the co-

regulation on the expression of the up-regulated genes among five house fly lines of A2345, 

A1345, A1245, A1235 and A1234. Analyzing the gene expression changes resulting from 

autosome replacement in ALHF enabled us to evaluate the role of genes or factors on each 

autosome plays in gene overexpression in ALHF. We conducted Venn diagram analyses on the 

autosome interaction for the expression of genes in each of the SCOP general function categories 

of metabolism, regulation, and intracellular processes (Figure 3.8). The results revealed that apart 

from the 11 genes up-regulated solely by factor(s) on a single autosome (four in autosome 2, six 

in autosome 5 and one in autosome 3), the expression of the rest of the up-regulated genes were 

all linked to factors on more than one autosome (Figure 3.8). This result suggests that factors on 

different autosomes are capable of co-regulation of some genes. This was most commonly 

observed for autosomes 2 and 5. Almost one-third of the tested genes (n=21 genes) were up-

regulated by co-regulation of factors on autosome 2 and 5 only, including cytochrome P450s, 

GSTs, and esterases in metabolism; kinases/phosphatases, 7 transmembrane receptors (rhodopsin-

like GPCR family), adenylate and guanylate cyclases in regulation; and serpin and 

carboxypeptidases in intracellular processes (Figure 3.8, Table 3.4). Nine genes were co-up-

regulated by factors on autosomes 1, 2, and 5, with the functions of these genes being linked to 

metabolism and regulation categories, suggesting that factors on autosome 1, besides those on 

autosomes 2 and 5, were also involved in the regulation of some of the gene expression in 

metabolism and regulation. Six genes were up-regulated by the interaction of factors on 

autosomes 2, 3, and 5 and these genes were mainly located in the regulation and protease 
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categories and none of the metabolic genes were involved in the interactions by factors among 

autosomes 2, 3, and 5, suggesting that, besides the factors on autosomes 2 and 5, factors on 

autosome 3 might have a role in the functions of regulation and proteolysis. A few genes were co-

regulated by factors on autosomes 1 and 2 (including one P450 gene, one carboxylesterase gene, 

and one GPCR gene), or autosomes 1, 2, 3, and 5 (including one P450 gene and two protein 

kinase genes) (Table 3.4). No gene interactions between 1 and 3; 1 and 5; 2 and 3; 3 and 5; 1, 2 

and 3; 1, 3 and 5; 2. 3, and 4 or 2, 3, 4 and 5 were observed. None of the genes were found to be 

up-regulated solely by factors on autosome 1 or 4 alone. 

To better understand the cis/trans regulation of the up-regulated genes in resistant house 

flies, autosomal location analyses were conducted for eight up-regulated genes scattered among 

all three important functional categories. An allele specific PCR (AS-PCR) determination was 

performed to examine the autosomal location of the genes with five house fly lines. The ALHF 

allele specific primer pair was designed based on the specific sequence of the genes from ALHF 

by placing a specific nucleotide polymorphism at the 3’ end of each primer to permit preferential 

amplification of specific alleles from ALHF. Our results showed that the ALHF allele-specific 

primer sets for P450 genes of ALHF_04445.g2939 (CYP6A36) and ALHF_04553.g3033 and 

protein kinase gene ALHF_10712.g5974 amplified specific DNA fragments only in flies having 

the autosome 5 wild-type marker from ALHF (Figure 3.9), which demonstrated that these three 

genes were located on autosome 5. Whereas, carboxylesterase gene ALHF_03407.g2111, 

adenylate cyclase gene ALHF_01050.g580, G-protein coupled receptor gene 

ALHF_06811.g4468, and peptidase genes ALHF_07511.g4836 and ALHF_05334.g3663 were 

located on autosome 2. These results were consistent with our autosomal linkage map (Figure 
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3.7, Table 3.4). 

 

3.5 Discussion 

The central hypothesis guiding this research is that normal biological and physiological 

pathways and gene expression signatures are varied in resistant insects through changes in 

multiple gene expression, thus enabling resistant house flies to adapt to environmental or 

insecticidal stress, and that these changes are controlled by a regulatory network and perhaps by 

signaling transduction. This hypothesis is grounded in evidence from the considerable body of 

research that has been done in this field. Results from previous studies by ourselves (Liu et al. 

2011; Liu et al. 2007; Xu et al. 2005; Xu et al. 2006a; Yang and Liu 2011), and others (David et 

al. 2010; David et al. 2005; Gregory et al. 2011; Kalajdzic et al. 2012; Karatolos et al. 2012; Liu 

and Scott 1996; Marcombe et al. 2009; Martinez-Torres et al. 1999; MÜLler et al. 2008; Plapp Jr 

et al. 1987; Pridgeon and Liu 2003; Strode et al. 2006; Strode et al. 2008; Tao et al. 2012; Vontas 

et al. 2005) all indicate that the interaction of multiple genes and complex mechanisms are 

responsible for the development of insecticide resistance in insects. Indeed, many studies have 

demonstrated different patterns of gene expression between resistant and susceptible insect 

populations and the up-regulation of P450 and GST genes in resistant insects. Many studies have 

also found that the overexpression of resistant metabolic genes is regulated by trans and/or cis 

factors in insecticide-resistant insects (Brown et al. 2005; Carino et al. 1994; Gao and Scott 2006; 

Grant and Hammock 1992; Liu and Scott 1997; Liu and Scott 1998; Maitra et al. 2000b; Maitra 

et al. 1996; Misra et al. 2011; Wilding et al. 2012). The up-regulation of a GST gene (GST-2) in 

the mosquito Aedes aegypti is controlled by a trans-acting factor (Grant and Hammock 1992), 



 

97 

 

while the up-regulation of two P450 genes, CYP6A1 and CYP6D1, in the house fly M. domestica 

are known to be trans-regulated by one or more factors on autosome 2 (Carino et al. 1994; Gao 

and Scott 2006; Liu and Scott 1997; Liu and Scott 1996). The up-regulation of CYP6A2 and 

CYP6A8 in the fruit fly D. melanogaster is transcriptionally regulated by trans-regulatory factors 

(Maitra et al. 2000a; Maitra et al. 1996). The up-regulation of CYP6G1 and CYP6D1 is controlled 

by cis/trans regulatory factors (Gao and Scott 2006; Liu and Scott 1997; Liu and Scott 1998). 

Taken together, these findings suggest that not only is insecticide resistance conferred via 

multi-resistance mechanisms or genes, but it is mediated through the interaction of regulatory 

genes and resistance genes such as P450s, esterases and GSTs. However, a global understanding 

of the complex processes resulting from gene interaction and regulation remains elusive. None of 

the regulatory factors responsible for insecticide resistance have yet been identified, and no 

regulation pathways have been examined. Nevertheless, these gaps will soon be filled following 

the availability of whole transcriptome analyses, which have begun to provide new ways of 

assessing how insects respond to the environment and insecticides (Schuler 2012).  

To define the key genes and their trans/cis- or co-regulation involved in insecticide 

resistance, and thus gain fresh insights into the overall picture of how molecular mechanisms in 

resistant house flies function, we began by assembling and annotating the adult house fly 

transcriptome, providing the first reference transcriptome for adult house flies. Using the house 

fly transcriptome as a reference, our RNA-Seq of the resistant ALHF strain revealed a set of 1316 

genes that were up-regulated relative to the susceptible aabys and CS strains, and a total of 1440 

genes that were down-regulated. These results may not only reveal equally dynamic changes in 

abundance for both the increases and decreases in the total gene expression for different 



 

98 

 

categories in resistant house flies, but also indicate an important feature of resistance gene 

regulation by both activators (the up-regulated genes) and perhaps, repressors (those down 

regulated genes). Several hypotheses have been proposed for the harmonizing of up- and down-

regulation, e.g., homeostatic responses for protecting the cell from the harmful effects of 

oxidizing species from metabolic enzymes (Morgan 2001; White and Coon 1980); homeostatic 

responses to provocative processes (Morgan 1989); and/or an essential for the tissue to utilize its 

transcriptional machinery and energy for the synthesis of other components involved in the 

inflammatory response (Morgan 1989). Whether the down-regulated genes identified in the 

resistant house flies by our study reflects a regulation feature or homeostatic response of 

mosquitoes to insecticides needs to be further studied. 

Deciphering the up-regulated genes among the SCOP general categories into detailed 

functions uncovered three key SCOP detailed function categories, namely the redox detailed 

function category in metabolism, signal transduction and kinases/phosphatases in regulation, and 

proteases in intra-cellular processes. The redox detailed function group contained a number of 

superfamilies that have been linked to detoxification, including multiple cytochrome P450s, 

glutathione S-transferases, and esterases. The signal transduction and kinases/phosphatases 

detailed function groups were found to contain several gene families with signal transduction and 

regulation functions, including 7 transmembrane receptors (rhodopsin-like GPCR family), 

adenylate and guanylate cyclases, protein kinases and phosphatases. The proteases detailed 

function group contained genes with digestive, catalytic, and proteinase activities. Since co-

regulation provides valuable insights into altered categories/pathways, thereby aiding functional 

interpretation (Blalock et al. 2004), this finding suggests that these co-up-regulated functional 
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groups of genes may share co-regulation features. Among the three key detailed function 

categories, the roles of the detoxification superfamilies of P450s, GSTs and esterase in insecticide 

resistance have been extensively studied and up-regulation of their expression has been 

demonstrated to be associated with enhanced metabolic detoxification of insecticides, resulting in 

the development of insecticide resistance in insects (Carino et al. 1994; Feyereisen 2006; 

Hemingway et al. 2002; Hemingway and Karunaratne 1998; Itokawa et al. 2010; Liu et al. 2011; 

Liu and Scott 1998; Oakeshott et al. 2005; Ortelli et al. 2003; Pavek and Dvorak 2008; Ranson 

and Hemingway 2005; Scott 1999; Small and Hemingway 2000; Vontas et al. 2005; Yang and Liu 

2011; Zhu et al. 2008; Zhu and Liu 2008; Zhu et al. 2010). In contrast to the well-known role 

played by the detoxification system in insecticide resistance, the functions of genes in two other 

key detailed function categories, the signaling transduction system and proteases/serine proteases, 

such as GPCRs, protein kinase/phosphatases and proteases, in insecticide resistance are less well 

understood, although a few studies have reported the up-regulation of protease genes in 

insecticide resistant insects (Ahmed et al. 1998; Pedra et al. 2004; Reid et al. 2012; Vontas et al. 

2005; Wilkins et al. 1999; Wu et al. 2004). Nevertheless, the genes in these two key categories 

are well known as key intracellular signaling regulators and share common functions in the 

signaling pathway, playing an important role in transmitting information from extracellular 

polypeptide signals to target gene promoters in the nucleus and in the regulation of gene 

expression, activation/termination intracellular signaling transduction, and regulating numerous 

diverse cellular and biological/physiological processes (Betke et al. 2012; Cottrell et al. 2012; de 

la Nuez Veulens and Rodríguez 2009; Goupil et al. 2012; Krishna and Narang 2008; Lagerström 

and Schiöth 2008; Lawan et al. 2012; Lemberg 2011; Marrs et al. 2010; Oldham and Hamm 
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2008; Pedra et al. 2004; Ramsay et al. 2008; Singh and Aballay 2012; Spehr and Munger 2009; 

Trejo 2003; Verrier et al. 2011; Yang et al. 2013).  

To test the co-regulation of the up-regulated genes in these three key categories in resistant 

house flies, a novel approach was applied in the study, in which the gene expression profile in the 

house fly genetic lines was characterized in terms of different autosome combinations from the 

resistant ALHF strain, thus illustrating the co-regulation of autosomes in the expression of 

individual genes. This research approach not only provides a catalog of genes and information 

about their potential functions in insecticide resistance (Donnell and Strand 2006), but also serves 

as a stepping stone towards filling important gaps in our knowledge of transcriptional interaction 

and the regulation networks that are involved in insecticide resistance. Our gene co-regulation 

analysis revealed that the up-regulated gene expression in resistant ALHF house flies occurred 

primarily as a result of the co-regulation of factors between autosomes 2 and 5, although a few 

genes had their expression regulated by factors among autosomes 1, 2, and 5, or among 

autosomes 2, 3, and 5. These findings strongly suggest that multiple factor/autosome co-

regulation, especially those related to autosomes 2 and 5, are key determinants for individual 

gene expression in resistant house flies. Among the up-regulated genes, cytochrome P450s, 

GSTs, and esterases in metabolism; kinases/phosphatases, 7 transmembrane receptors (rhodopsin-

like GPCR family), adenylate and guanylate cyclases in regulation; and serpin and 

carboxypeptidases in intracellular processes as major groups of genes were up-regulated by the 

interactions of factors on autosomes 2 and 5 (Table 3.4). Our genetic mapping study further 

located two P450 genes and a protein kinase gene on autosome 5, and mapped a carboxylesterase 

gene, an adenylate cyclase gene, a G-protein coupled receptor gene and two peptidase genes on 
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autosome 2. With the exception of one P450 gene, whose up-regulation was controlled by cis 

factor(s) on the same autosome on which the gene was located, all the genes tested in the genetic 

mapping study showed their expression being controlled by cis and trans factors. i.e., factors not 

only on the autosomes on which the genes were located but also other autosomes as well. Taken 

together, our findings suggested that that not only is insecticide resistance conferred via multi-

resistance mechanisms or up-regulated genes, but it is mediated through the trans and/or cis co-

regulations of resistance genes. Whether the signaling transduction cascades controlled by 

GPCRs, protein kinase/phosphatases and proteases are indeed involved in the regulation of 

resistance P450 genes and of resistance development remains an urgent topic for investigation.  
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Table 3.1 Total Illumina reads for each of the Musca domestica strains/lines tested. 

 

Sample 

 

SRA* accession 

Total PE** reads passing 
Chastity filter 

 

Discarded‡ 

 

Reads used 
aabys SRR521286 40284931 2794419 37490512 

CS SRR521290 34589399 2561540 32027859 
ALHF SRR521289 30329576 2208815 28120761 

ALHF- replicate SRR521288 26151304 1406309 24744995 
*Sequence Read Archive, National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/sra/) 
**51nt Paired-end reads with an average insert size of 200 nt. 
‡Discarded reads were removed using Trimmomatic based on a sliding window quality cut off of 
(4:15) and a minimum length of 36nt after adapter removal. In addition all mate pairs were 
excluded from analysis if one of the mate pairs was rejected by Trimmomatic. 
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Table 3.2 Results of the homology testing for the transcriptome assembly for the adult female 
Musca domestica ALHF strain. 

Assembly results Total number Unique annotation 
Contigs generated   

Non annotated contigs† 8229 - 
Predicted ORFs 5469 - 
5' Partial ESTs 519 - 
3' Partial ESTs 171  

Contigs annotated   
No annotation* 184 - 
D. melanogaster‡ 5730 4265 
Pfam family** 5549 2148 
KEGG†† 2795 1967 

† "Non annotated contig" indicates that no ORF was identified in the contig  

* "No annotation" indicates the presence of an ORF, a start, and a stop codon, but no homology to 
the Pfam family HMM search, Drosophila melanogaster, or KEGG 

** Pfam HMM A (v26.0) Nov 2011. http://www.pfam.sanger.ac.uk/ 

‡ version r5.46 20 Feb, 2009. http://www.flybase.org/ 

††Release 62.0 April 1, 2012. http://www.genome.jp/kegg/ 
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Table 3.3 Higher level SCOP annotation for the predicted genes from the adult Musca domestica 
transcriptome based on sequence homology to Drosophila melanogaster§. 

General function Detailed function Superfamilies Predicted genes 
Metabolism Amino acids metabolism /transport 6 17 
 Carbohydrate metabolism /transport 11 94 
 Coenzyme metabolism /transport 13 45 
 Electron transfer 7 28 
 Energy 23 45 
 Lipid metabolism /transport 4 18 
 Nitrogen metabolism /transport 1 2 
 Nucleotide metabolism /transport 14 74 
 Other enzymes 51 344 
 Photosynthesis 1 2 
 Polysaccharide metabolism /transport 2 19 
 Redox 28 180 
 Secondary metabolism 6 68 
 Transferases 14 143 
Regulation DNA-binding 32 218 
 Kinases/phosphatases 7 245 
 Other regulatory function 5 12 
 Receptor activity 2 5 
 RNA binding, metabolism /transport 12 113 
 Signal transduction 30 301 
Information Chromatin structure 4 4 
 DNA replication/repair 15 141 
 RNA processing 6 25 
 Transcription 7 17 
 Translation 44 77 
Extra-cellular processes Blood clotting 1 13 
 Cell adhesion 18 101 
 Immune response 4 22 
 Toxins/defense 2 5 
Intra-cellular processes Cell cycle, Apoptosis 10 26 
 Cell motility 11 38 
 Ion metabolism /transport 13 173 
 Phospholipid metabolism /transport 4 36 
 Proteases 21 304 
 Protein modification 15 105 
 Transport 22 118 
General General 12 348 
 Ion binding 1 6 
 Ligand binding 1 4 
 Protein interaction 19 178 
 Small molecule binding 11 403 
Other Unknown function 26 75 
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 Viral proteins 1 4 
NONA not annotated 1 1963 
 TOTAL 537 6159 

§SCOP Superfamily annotation for D. melanogaster (v. 66_539) 
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Table 3.4 Gene expression values and the predicted autosomal interactions for the selected genes linked to pyrethroid 
resistance in Musca domestica as assayed by qPCR. 

SCOP† Functional 
annotation 

Predicted gene function Accession number Relative gene expression ± SE 

 
General Detailed Pfam annotation§ Gene ALHF A2345 A1345 A1245 A1235 A1234 
Metabolism Other Carboxylesterase ALHF_03407.g2111 3.1±0.2 2.4±0.1 1.8±0.12* 3.0±0.1 2.9±0.1 1.1±0.11* 
   ALHF_05628.g3847 6.6±1.3 2.1±0.3* 1.0±0.1* 4.0±0.4 3.2±0.1 4.4±0.8 
   ALHF_00771.g422 26±5.5 14±1.2 0.24±0.07* 18±1.5 26±2 3.1±0.3* 
 Redox Cytochrome P450 ALHF_04553.g3033 2.7±0.09 2.5±0.1  2.7±0.2 2.5±0.08 3.0±0.2 0.8±0.03* 
   ALHF_05265.g3608 510±28 300±5.0 15±2.6* 530±16 500±18 300±4.3 
   ALHF_03088.g1882 310±9.3 310±10 190±9.0 150±4.4 310±18 120±6.4* 
   ALHF_02791.g1651 12±0.2 7.4±0.7 7.9±0.04 8.8±0.2 13±0.9 2.4±0.09* 
   ALHF_07553.g4857 6.2±0.6  2.6±0.4* 3.1±0.6* 9.5±2.3 6.2±0.5 2.6±0.3* 
   ALHF_04445.g2939 3.0±0.1 1.6±0.2* 1.8±0.4* 4.0±0.4  3.0±0.04 1.0±0.2* 
   ALHF_04444.g2938 3.6±0.06 1.9±0.1 2.1±0.09 5.6±2.1 3.6±0.1 1.0±0.2* 
   ALHF_03006.g1816 2.3±0.09 1.9±0.3 1.1±0.08* 3.8±0.4 2.1±0.06 0.9±0.1* 
   ALHF_01822.g1025 4.3±1.0 1.3±0.2* 1.9±0.4* 5.6±1.2 4.2±0.2 0.6±0.1* 
   ALHF_04730.g3176 2.1±0.02 1.2±0.2 2.6±0.3 7.1±2.7 1.8±0.09 0. 7±0.09* 
   ALHF_03063.g1860†† - - - - - - 
   ALHF_05136.g3505 2.4±0.3  0.9±0.1* 0.4 ±0.2* 3.2±0.4 2.5±0.2 1.5±0.1  
   ALHF_07623.g4891 1.9±0.2 1.8±0.2 0.4±0.2* 4.6±1.2 2.2±0.1 1.0±0.1 * 
   ALHF_08221.g5182 2.6±0.2 1.6±0.04 1.8±0.3  0.6 ±0.04 2.9±0.04 0.6±0.05* 
   ALHF_04665.g3125 2.9±0.08 1.0±0.05* 1.1±0.06* 0.8 ±0.03* 2.8±0.09 1.0±0.03* 
   ALHF_01339.g731 2.0±0.08 2.3±0.07 0.2±0.03* 1.1±0.03 2.1±0.07 0.8±0.04* 
   ALHF_04736.g3182†† - - - - - - 
   ALHF_03849.g2446†† - - - - - - 
  Glutathione-S-transferase ALHF_04900.g3328 2.8±0.4 2.1±0.2  0.9±0.08* 2.3±0.2 2.8±0.2 2.2±0.2 
   ALHF_04476.g2964 2.4±0.2  1.7±0.2 0.6 ±0.07* 1.9±0.2  1.8±0.08 0.7±0.02* 
   ALHF_03731.g2351 2.4±0.3 1.8±0.3 0.4±0.03* 1.2±0.08 1.5±0.07 0.6±0.08* 
   ALHF_04477.g2965 1.5±0.02 1.1±0.11 0.6±0.07* 1.7±0.1 1.3±0.06 0.8±0.1* 
   ALHF_03145.g1917 1.9±0.2 0.7±0.06* 0.5±0.01* 1.6±0.2 1.8±0.06 0.9±0.02* 
Regulation Kinase / 

phosphatase 
Protein kinase domain ALHF_02546.g1487 2.9±0.09 3.8±0.75 0.4±0.04* 2.2±0.3  2.6±0.2 0.5±0.08* 

   ALHF_00685.g381 3.6±0.4  3.2±0.7  0.8 ±0.2* 1.1±0.09* 3.3±0.3 0.5±0.04* 
   ALHF_03462.g2147 3.7±0.7 4.1±0.4 0.5±0.01* 1.5±0.2* 3.5±0.2 0.2±0.2* 
   ALHF_02885.g1722 1.8±0.2 1.8±0.2 0.6 ±0.2* 1.5±0.8 1.6±0.1 0.8 ±0.1* 
   ALHF_00823.g452 2.0±0.2  1.8±0.2 0.8±0.2* 1.2±0.09 1.8±0.2 0.7±0.1 * 
   ALHF_04500.g2986 1.7±0.09 1.1±0.04 0.7±0.2* 1.5±0.1  1.7±0.04 0.9±0.06* 
   ALHF_04095.g2646 1.7±0.1  1.1±0.06 0.9 ±0.2 1.0±0.08 1.5±0.03 1.0±0.2  
   ALHF_01595.g882 2.3±0.2  0.8±0.06* 0.8±0.1* 1.4±0.2 2.5±0.2 1.0±0.1* 
   ALHF_01832.g1033 2.3±0.2 2.8±0.6 0.4±0.09* 1.0±0.06* 1.9±0.1 0.4±0.06* 
   ALHF_08078.g5122 2.6±0.7 1.0±0.04 0.5±0.03* 1.7±0.1 2.4±0.2 0.6±0.06* 
   ALHF_11277.g6269 2.3±0.1  0.7±0.05* 0.2±0.02* 1.8±0.1 2.1±0.2 0.8±0.2* 
   ALHF_11442.g6384†† - - - - - - 
   ALHF_00727.g395†† - - - - - - 
  Protein tyrosine kinase ALHF_11829.g6650 1.7±0.08 1.3±0.09 1.5±0.17 2.2±0.4 1.9±0.1 1.3±0.1 
   ALHF_11144.g6194 4.0±0.8 3.2±0.2 1.4±0.2* 2.5±0.7 5.1±0.2 0.8±0.04* 
   ALHF_09312.g5609 1.9±0.1 1.3±0.1 0.7±0.1* 1.7±0.2 1.7±0.06 0.7±0.1* 
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   ALHF_10712.g5974 1.8±0.1 0.7±0.04* 0.6±0.2* 1.7±0.3 1.8±0.08 0.7±0.1* 
   ALHF_07173.g4665 1.5±0.1 1.3±0.1 0.8±0.05* 1.2±0.2 1.6±0.07 0.5±0.1* 
   ALHF_03649.g2289 2.1±0.1  0.9±0.07* 0.4±0.2* 1.5±0.2  2.1±0.2 1.1±0.06* 
   ALHF_05773.g3933†† - - - - - - 
   ALHF_11245.g6252 1.7±0.07 0.6±0.03* 0.2±0.06* 0.5±0.2* 1.9±0.09 0.9±0.09* 
  Protein-tyrosine 

phosphatase 
ALHF_11768.g6612 39±4.9 1.6±0.07* 0.6±0.05* 0.4±0.1* 36±3.8 0.5±0.03* 

   ALHF_03863.g2457 1.5±0.06 0.9±0.09 0.5±0.04* 1.2±0.2 1.7±0.06 0.9±0.08* 
 Signal 

transduction 
GPCR                
(rhodopsin family) 

ALHF_01760.g986 1.6±0.09 1.0±0.08 0.9±0.1* 1.1±0.03 1.7±0.1 1.0±0.1 

   ALHF_02400.g1393 1.7±0.07 0.9±0.07 0.7±0.05* 1.2±0.2 1.6±0.1 0.9±0.1* 
   ALHF_06811.g4468 1.7±0.1 0.9±0.03* 0.6±0.07* 1.2±0.2 1.7±0.1 0.8±0.08* 
   ALHF_07519.g4838 1.7±0.07 1.1±0.09 0.2±0.06* 0.9±0.2 1.6±0.06 0.9±0.04 
   ALHF_02706.g1581 1.4±0.1 0.52±0.1* 0.37±0.1* 1.2±0.3 1.3±0.04 1.2±0.11 
   ALHF_04422.g2918†† - - - - - - 
  Adenylate and Guanylate 

cyclase catalytic domain 
ALHF_01050.g580 2.6±0.3 1.3±0.1 0.8±0.09* 1.1±0.2* 2.2±0.21 1.3±0.3* 

   ALHF_07748.g4948 2.1±0.2 1.2±0.1  0.6±0.05* 1.3±0.2 1.8±0.05 1.0±0.2* 
  Serpentine type 7TM 

GPCR chemoreceptor 
Srw 

ALHF_01902.g1074 - - - - - - 

Intra-cellular 
processes 

Proteases Serpins ALHF_07374.g4763 4.5±0.8 1.8±0.2 0.6±0.2* 1.3±0.1* 2.3±0.2 0.5±0.08* 

   ALHF_01182.g646 1.7±0.1 0.8±0.07 0.3±0.07* 1.1±0.08 1.8±0.1 0.7±0.08* 
  Carboxypeptidases ALHF_04057.g2616 2.2±0.3 1.5±0.1 0.5±0.1* 1.3±0.2 1.8±0.07 0.9±0.1* 
   ALHF_05871.g3981†† - - - - - - 
  Subtilase ALHF_00530.g295†† - - - - - - 
  Aspartyl protease ALHF_06529.g4317 2.5±0.1 2.3±0.2 1.4±0.2* 1.3±0.1* 2.1±0.1 1.4±0.01* 
  Peptidases ALHF_00761.g417 780±50 530±100 630±60 23±2* 650±110 530±20 
   ALHF_03218.g1970 29±2.1 30±3 35±5 2.6±0.4* 17±3* 8.2±1* 
   ALHF_02207.g1267 145±10 150±20 120±3 5.0±0.3* 4.6±2* 4.9±0.6* 
   ALHF_07511.g4836 2.1±0.1 1.5±0.2 0.52±0.04* 3.2±0.2 0.52±0.07* 0.41±0.08* 
   ALHF_01861.g1049†† - - - - - - 
   ALHF_05334.g3663 1.4±0.04 1.0±0.1 0.66±0.06* 1.5±0.1 0.75±0.07* 0.40±0.1* 

†Structural Classification of Proteins (SCOP) http://supfam.cs.bris.ac.uk/SUPERFAMILY/ 

‡Autosomal interactions are named after the combination of the autosomes donated by the aabys strain in each case 
where a M. domestica autosomal combination line had a level of gene expression significantly lower than the ALHF 
strain at the α=0.05 level of significance.  

§Gene predicted function as evidenced by the Pfam HMM-A homology (http://pfam.sanger.ac.uk/) 
*Indicates that the gene expression value within a given M. domestica autosomal line was significantly lower than the 
expression in the parental ALHF strain at the α=0.05 level of significance 
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Figure 3.1 Schematic for the generation of the M. domestica combination strains 
used in our study. Strain ALHF is a highly insecticideresistant strain while the aabys 
strain is an insecticide-susceptible strain that possesses five recessive morphological 
markers, with each morphological marker being uniquely present on one autosome. The 
images along the bottom row show the recessive morphological markers unique to each 
of the combination strains. 
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Figure 3.2. Data analysis pipeline for the generation of the M. domestica predicted 
gene set and differential gene expression testing. Hexagons represent the raw data used 
in this study, while terms within boxes represent either the programs, or the filtering steps 
used in the data analysis. The direction of the arrows indicates the flow of data 
processing. 
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Figure 3.3 Nucleotide length distributions for the M. domestica ALHF strain raw 
assembled contigs and predicted coding regions (CDS). Coding region lengths were 
predicted using Augustus (version 2.5.5) under the “fly” model and include both 
complete (5469 sequences) open reading frames (ORFs) and partial ORFs (690 
sequences). A partial ORF means any sequence that is predicted to be missing either the 
start, or the stop codon, but not both. 
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Figure 3.4 Venn diagram for the annotation obtained for the M. domestica ALHF 
strain predicted gene set. Overlapping ellipses represent predicted genes from the Pfam-
A (v26.0), the D. melanogaster proteome (v. r5.46), and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) automatic annotation server (KAAS) that could be 
annotated in two or more of the databases used to predict gene function. An e-value 
threshold for homology detection was fixed at 10-20 for all databases. The circle excluded 
from the overlapping ellipses represent sequences which contained coding region, but had 
no homology to any of the three databases used for gene prediction. 
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Figure 3.5 Box and whisker plots representing the interquartile ranges (IQR) for the 
nucleotide coverage for each of the ALHF strain predicted genes for each of the M. 
domestica strains tested. The dependent axis has been broken to make the IQR and 
median values discernible. The solid line within each of the boxes represents the median 
value for the gene coverage for each of the house fly strains. 
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Figure 3.6 Correlation of the gene expression levels (FPKM) for all of the M. 
domestica strains tested versus the ALHF pyrethroid-resistant strain (upper panels). 
Scatterplots for the testing of the differential gene expression compared to the ALHF 
strain (lower panels). In the upper panels, the points closest to the 1:1 line represent genes 
that had the same gene expression value for the ALHF strain and the tested M. domestica 
strain. In the lower panels, each point represents a gene, with red points below the central 
axis indicating the genes that were down-regulated in the tested M. domestica strain 
compared to the ALHF strain, thus the red points below the horizontal axis on the lower 
panels represent the genes that were up-regulated in the pyrethroid-resistant ALHF strain 
and putatively linked to insecticide resistance. 
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Figure 3.7 Heat map of the gene expression values (within gene) for each of the 
genes tested by qPCR to validate the gene expression levels within the different M. 
domestica lines and the parental ALHF and aabys strains. Colors scaled from yellow 
to red indicate low to higher gene expression, respectively.  
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Figure 3.8 Interaction of the autosomal-linked genes associated with pyrethroid 
resistance in the ALHF strain of M. domestica. The overlapping areas between the 
ellipses indicate the autosomal interaction that existed for the genes that were up-
regulated in the ALHF strain for two, or more, of the autosomal combination lines. One 
gene, ALHF_02807.g1664, having an autosome 2,3,4,5 interaction is not shown in this 
figure.  
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Figure 3.9 Allele-specific RT-PCR autosomal mapping of the M. domestica genes 
used for the transgenic D. melanogaster functional assays. The presence of a band 
within M. domestica stain/line indicates that the gene is present. The absence of a band 
within both the aabys and an autosomal combination line indicates that the gene is 
located on the autosome donated by aabys (eg/ the absence of a band in the A1234 
autosomal combination line indicates that the gene was present on autosome 5).
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Chapter 4: Roles of P450 Genes in Permethrin Resistance of the House Fly, Musca 

domestica 

 

4.1 Abstract 

To characterize the P450 genes that play important roles in the pyrethroid resistance 

of house flies, 86 cytochrome P450 genes were selected based on our whole 

transcriptome analysis of the house fly, to conduct the expression profile analysis in 

different house fly strains with different levels of permethrin resistance and autosome 

combinations. Our study showed that 4 P450 genes, CYP6A36, CYP6A52, CYP6D, and 

CYP4S24, were co-up-regulated in insecticide-resistant house flies compared to -

susceptible house flies, and the expression of these genes was regulated by cis or trans 

regulatory factors/genes, which were mainly on autosomes 1, 2 and 5. Transgenic 

expression analysis of these four P450 genes in Drosophila melanogaster demonstrated 

that elevated expression of each of these 4 genes confers different levels of resistance to 

permethrin in the transgenic Drosophila, with relative lower level in CYP4S24 transgenic 
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flies. Homology modeling and permethrin docking analysis further suggested potential 

abilities of all 4 P450 genes to metabolize permethrin, generating multiple metabolites 

except CYP4S24, which may have low degree metabolism of permethrin, consistent with 

lower level of resistance to permethrin in the CYP4S24 transgenic flies. Taken together, 

the study provides a global picture of P450 gene expression, regulation, autosomal 

interaction, and function in insecticide resistance of house flies. 

 

4.2 Introduction 

The development of resistance to insecticides in insect pests is becoming a global 

challenge in the insect pest control confrontation. Efforts to characterize the molecular 

mechanisms involved in insecticide resistance have thus been focused to build better 

understanding of resistance development, which is vital for practical applications such as 

the design of novel strategies to prevent or minimize the spread and evolution of 

resistance development and the control of insect pests (Roush et al., 1990). While the 

interaction of multiple mechanisms or genes in response to the development of 

insecticide resistance has been extensively recognized, transcriptional up-regulation of 

the detoxification machinery, increasing metabolism of insecticides into less harmful 
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substances and facilitating insecticide excretion are known to play an important role in 

allowing insects to defend themselves against insecticides (Xu et al., 2005). Cytochrome 

P450s are attributed as one of the important components in the detoxification machinery 

of insects, the up-regulation of which underlies the development of insecticide resistance 

in many insect species. It has been suggested that new patterns of gene expression may 

arise via a variety of mechanisms involving changes to upstream regulators (change in 

trans) and mutations of the noncoding regulatory DNA sequences (e.g., enhancers) of a 

gene (change in cis) (Rebeiz et al., 2011). Indeed, different patterns of gene expression 

between resistant and susceptible insect populations and the up-regulation of P450 has 

also been found to be controlled by unknown trans- or cis-regulatory factors have 

demonstrated (Grant and Hammock, 1992; Carino et al., 1994; Liu and Scott, 1996; 

Maitra 1996, 2000), suggesting that not only is insecticide resistance conferred via 

multiple P450 gene up-regulation, but it is mediated through the interaction of regulatory 

factors and resistance P450 genes. However, it is not yet clear how many P450 genes 

precisely are involved in insecticide resistance in a single insect, no regulatory factors in 

insecticide resistance have yet been identified, and no resistance gene interaction has 

been examined. Recent advances in genome/whole transcriptome sequencing technology 
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have provided opportunities for discovery of gene/mechanism/regulatory factor 

involvement in insecticide resistance (Li et al. 2013).  

The house fly, Musca domestica, is a major domestic, medical and veterinary pest 

that causes more than 100 human and animal intestinal diseases (Scott and Lettig, 1962; 

Keiding, 1986; Greenberg, 1965, Scott et al. 2000). However, the major barrier in the 

house fly control, as other insect species, is their remarkable ability to develop not only 

resistance to the insecticide used against them but also cross-resistance to unrelated 

classes of insecticides (Greenberg, 1965; Liu and Yue, 2000; Pap and Tóth, 1995; Wen 

and Scott, 1997). Because of their ability in rapid development of resistance and cross-

resistance to insecticides, their well described linkage map for five autosomes and two 

sex chromosomes (X and Y) (Hiroyoshi, 1960; Tsukamoto et al. 1961, Nickel and 

Wagoner, 1974; Hiroyoshi, 1977, Milani et al. 1967), and their relatively well studied 

biochemistry and genetics of insecticide resistance, the house fly has demonstrated to be 

a useful model to study and predict resistance in not only themselves but also other insect 

species. With the availability of the first adult transcriptome database of the house fly M. 

domestica (Li et al. 2013), the current study focused on characterizing key P450 genes 

that were involved in permethrin resistance through expression profiles analysis of a total 
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of 86 cytochrome P450 genes in house fly strains with different levels of resistance to 

pyrethroid/permethrin; examined interaction of the resistant key P450 genes and factors 

on different autosomes through house fly lines with different combination of autosomes 

from a resistant house fly strain, ALHF; exploring the function of key P450 genes in 

insecticide resistance using Drosophila transgenic techniques; and analyzing P450 

modeling and permethrin docking to investigate the roles of P450s that are involved in 

pyrethroid resistance in house flies.  

 

4.3 Materials and Methods 

4.3.1 House fly strains and lines 

Three house fly strains were used in this study. ALHF is a wild-type insecticide-

resistant strain collected from a poultry farm in Alabama in 1998. This strain was further 

selected with permethrin for six generations after collection to reach a high level of 

resistance, and has been maintained under biannual selection with permethrin (Liu and 

Yue 2000; Tian et al. 2011). aabys is an insecticide-susceptible strain with recessive 

morphological markers ali-curve (ac), aristapedia (ar), brown body (bwb), yellow eyes 

(ye), and snipped wings (snp) on autosomes 1, 2, 3, 4, and 5, respectively. CS is a wild-
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type insecticide-susceptible strain, which has been kept in laboratory breeding for more 

than five decades. Both aabys and CS strains were originally obtained from Dr. J. G. 

Scott (Cornell University). 

A cross of ALHF female and aabys male was performed with each of ~400 flies, and 

the F1 males (~400 flies) were then backcrossed to aabys female. Five back-cross (BC1) 

lines with the following genotypes were isolated: ac/ac, +/ar, +/bwb, +/ye, +/snp; +/ac, 

ar/ar, +/bwb, +/ye, +/snp; +/ac, +/ar, bwb/bwb, +/ye, +/snp; +/ac, +/ar, +/bwb, ye/ye, 

+/snp; and +/ac, +/ar, +/bwb, +/ye, snp/snp (Li et al. 2013). Homozygous lines ac/ac, 

+/+, +/+, +/+, +/+ (A2345); +/+, ar /ar, +/+, +/+,+/+ (A1345); (+/+, +/+, bwb/bwb, +/+, 

+/+ (A1245); +/+, + /+, +/+, ye/ye, +/+ (A1235) and +/+, +/+, +/+, +/+, snp/snp (A1234) 

were accomplished by sorting for appropriate phenotypic markers and selecting with 

permethrin at a corresponding dose that caused ~70% mortality for each of lines for three 

generations. One hundred single-pair crossing of each of lines for the desired phenotype 

and genotype were then set up (Liu and Yue 2000; Tian et al. 2011). The name of each 

line indicates which of its autosomes bear wild-type markers from ALHF. For instance, 

the A2345 strain has wild-type markers on autosomes 2, 3, 4 and 5 from ALHF and the 

mutant marker on autosome 1 from aabys. 
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4.3.2 RNA extraction, cDNA preparation and gene expression detection 

A total of 20 3-day old adult female house flies from each of three house fly strains 

(ALHF, aabys and CS) and five house fly lines (A2345, A1345, A1245, A1235, A1234) 

were flash frozen on dry ice and immediately processed for RNA extraction. Total RNA 

(0.5 μg/sample) from each house fly sample was reverse-transcribed using SuperScript II 

reverse transcriptase (Stratagene) in a total volume of 20 μl. The quantity of cDNAs was 

measured using a spectrophotometer prior to qRT-PCR, which was performed with the 

SYBR Green master mix Kit and ABI 7500 Real Time PCR system (AppliedBiosystems). 

Each qRT-PCR reaction (15 µl final volumes) contained 1× SYBR Green master mix, 1 

μl of cDNA, and a gene specific primer pair at a final concentration of 0.3-0.5 μM (Table 

S4.1). A 'no-template' negative control and all samples were performed in triplicate. 

Relative expression levels of specific genes were calculated by the 2-ΔΔCt method using 

SDS RQ software (Livak and Schmittgen 2001). The β-actin gene, an endogenous 

control, was used to normalize expression of target genes (Zhu et al. 2008a). Each 

experiment was repeated three times with different preparations of RNA samples. The 

statistical significance of the gene expressions was calculated using Student's t-test for all 
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pairwise sample comparisons and a one-way analysis of variance (ANOVA) for multiple 

sample comparisons (SPSS v19.0), a value of P < 0.05 was considered statistically 

significant. 

 

4.3.3 Autosomal mapping of P450 genes in M. domestica 

Five house fly BC1 lines were used to determine genetic linkage of up-regulated 

P450 genes. Allele specific PCR was conducted using the cDNA from 5 BC1 lines (Liu et 

al. 1995). The ALHF allele specific primer pair was designed based on the specific 

sequence of the genes from ALHF by placing a specific nucleotide polymorphism at the 

3’ end of each primer to permit preferential amplification of specific alleles from ALHF. 

Two rounds of PCR were conducted. For the first PCR reaction, the allele-independent 

primer pairs (Table S4.1) were used for generating P450 cDNA fragments, respectively. 

The first PCR solution with cDNA template and a primer pair were heated to 95°C for 3 

min, followed by 35 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 1 min, then 

72°C for 10 min. The second PCR was employed with 0.5 µl of the first round PCR 

reaction solution and the allele specific primer pair (Table S4.1). The second PCR 

reaction was heated to 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 62°C for 
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30 s, and 72°C for 30 s, then 72°C for 10 min. One of each allele specific primer pair was 

designed based on the specific sequence of the genes from ALHF by placing a specific 

nucleotide polymorphism at the 3’ end of the primer to permit preferential amplification 

of the allele from ALHF. Each experiment was repeated three times with different 

mRNAs, and the PCR products were sequenced at least once for each gene. 

 

4.3.4 Permethrin induction experiment 

Topical applications were performed by dropping 0.5-μl of permethrin solution (10 

ug/fly, dissolved in acetone) onto the thoracic notum of 2-day old female flies (Zhu et al. 

2008b). The surviving flies were collected for RNA extraction after 6, 12, 24, 48 h 

exposure to permethrin. Control house flies were exposed to acetone only and collected at 

the same time points as their permethrin treatment counterparts. All tests were replicated 

at least three times.  

 

4.3.5 Transgenic expression of candidate P450 genes in Drosophila melanogaster and 

toxicity of permethrin to the transgenic lines 
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The full length of four up-regulated P450 genes were amplified from cDNA of 

ALHF house fly using Platinum Taq DNA polymerase High Fidelity (Invitrogen) with 

specific primer pairs (Table S4.1) based on the 5' and 3' end sequences of the genes. PCR 

products were purified using a QIAquick Gel Extraction Kit (Qiagen). The purified PCR 

products were ligated into pCR 2.1 vector using the Original TA Cloning kit (Invitrogen) 

as described by the manufacturer. The full lengths of P450 genes were cloned in One 

Shot TOPO 10F' cells using the One Shot TOP10F' Chemically Competent E. coli kit 

(Invitrogen). Cloning and sequence analyses were repeated at least three times and three 

TA clones from each replication were verified by sequencing. The clones were then sub-

cloned into a pUASTattB vector (a gift from Dr. Johannes Bischof, University of Zurich). 

The plasmid of each pUASTattB-up-regulated P450 gene was transformed into the germ 

line of the M{vas-int.Dm}ZH-2A, M{3xP3-RFP.attP'}ZH-58A strain of D. melanogaster 

(Bloomington stock #24484), resulting in site specific integration on chromosome 2R 

(Rainbow Transgenic Flies Inc.). Flies were then reciprocally-crossed against a W1118 

strain to obtain a transgenic line with the orange eye phenotype, then balanced against the 

D. melanogaster balancer strain w[1118]/Dp(1;Y)y[+]; sna[Sco]/CyO, 

P{ry[+t7.2]=sevRas1.V12}FK1 (Bloomington stock #6312) to generate a homozygous 
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line containing the Cytochrome P450 transgene. The insertion of the up-regulated P450 

genes in the transgenic fly lines were further confirmed using RT-PCR. The homozygous 

lines were crossed with the GAL4-expressing D. melanogaster strain P{Act5C-

GAL4}17bFO1 (Bloomington stock #3954) which expresses GAL4 under control of the 

Act5C promoter, resulting in ubiquitous non-tissue-specific expression. The F1 

generation of these crosses expressed GAL4 and contained a single copy of the 

Cytochrome P450 transgene which was under control of the UAS enhancer. The 

expression of the transgenes in transgenic Drosophila flies was confirmed using qRT-

RCR. The ribosomal protein L11 (RPL11) of D. melanogaster was used as an 

endogenous control to normalize expression of target genes. 

Permethrin toxicity bioassays were then conducted on 3-day posteclosion female D. 

melanogaster of F1 UAS-GAL4 crosses to examine the toxicity of permethrin to 

transgenic flies. Briefly, a serial concentrations of permethrin solution in acetone, ranging 

from 3 ng/µL to 150 ng/µL that gave >0 and <100% mortality to the tested flies were 

prepared, two hundred microliter of each permethrin solution were evenly coated on the 

inside of individual 20 mL glass scintillation vials. Twenty female flies were transferred 

to each of the prepared vials, which were plugged with cotton balls soaked with 15% 
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sucrose. The vials for the control groups were coated with acetone alone and plugged 

with identical 15% sucrose-soaked cotton balls. The mortality was scored after 24 h 

exposure to permethrin. Flies that did not move were scored as dead. Each bioassay was 

independently replicated three times using only flies that exhibited the correct 

morphological marker eyes. The D. melanogaster line (Bollmington stock #24484), 

which containing the empty pUAST vector donated insert, but no transgene from M. 

domestica were used as the control reference line. All tests were run at 25±2o. Bioassay 

data were pooled and probit analysis was conducted. Significant difference in the 

resistance levels of the D. melanogaster lines were determined based on non-overlap of 

95% confidence intervals (CI). All D. melanogaster were reared on Jazz-Mix D. 

melanogaster food (Fisher Scientific, Kansas City, MO) at 25 ± 2 oC under a photoperiod 

of 12:12 (L:D) h. 

 

4.3.6 Homology modeling and permethrin docking 

Structural modeling was performed by the I-TASSER server with the combined 

methods (Roy et al. 2010; Zhang 2008). Five models were predicted by the I-TASSER 

for each P450. The top scoring model was submitted to the FG-MD server for fragment 
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guided molecular dynamics structure refinement (Zhang et al. 2011). Model quality was 

controlled by Ramachandran plots generated with Procheck 

(http://services.mbi.ucla.edu/SAVES/) (Laskowski et al. 1993) and ProSA-web 

(https://prosa.services.came.sbg.ac.at/prosa.php) (Sippl 1993; Wiederstein and Sippl 

2007). Channels of P450s were calculated by CAVER 3.0 (http://caver.cz/index.php) 

(Chovancova et al. 2012; Medek et al. 2007), the passage of a sphere of maximal radius 

greater than 1.2 Å were considered tabulated, and named according to nomenclature of 

Cojocaru et al. (Cojocaru et al. 2007). The volume of the substrate binding cavity was 

characterized by VOIDOO with a 1.4 Å probe (Kleywegt et al. 2001). Proteins and 

ligands were prepared for docking with Autodock Tools v1.5.6 

(http://mgltools.scripps.edu/downloads). Molecular docking was performed by Autodock 

4.2. (Morris et al. 2009). Ligand permethrin structures were retrieved from the ZINC 

database (Irwin et al. 2012). For all dockings, a search space with a grid box of 60 x 60 x 

60 Å, centered at the heme iron was set corresponding to substrate recognition sites 

(SRSs) following those of the CYP2 family proposed by Gothoh (Gotoh 1992). The 

figures were produced by Pymol (http://www.pymol.org/) (DeLano 2002).  

 

https://prosa.services.came.sbg.ac.at/prosa.php
http://caver.cz/index.php
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4.4 Results 

4.4.1 Cytochrome P450 genes in M. domestica 

To characterize the P450 genes that play important roles in the pyrethroid resistance 

of house flies, 86 cytochrome P450 genes, whose expression can be detected in ALHF 

house flies based on our whole transcriptome analysis of ALHF M. domestica (Li et al. 

2013), were selected to conduct the current study. These genes were distributed into four 

major clans of CYP2, CYP3, CYP4, and mitochondrial (Figure 4.1 and S4.2). Of the 86 

P450 genes, the majority of them assemble in clans 3 and 4: 41 P450 genes were found in 

clan 3, with 29 in family CYP6, 6 in family CYP9 family, 3 in family CYP28, and 1 each 

in families CYP310 and CYP317. Thirty-one P450 genes were in clan 4, with 26 in 

family 4, 3 in family 313, and 1 each in families 311 and 318. Seven P450 genes were 

found in clan 2, in the families of 304, 305, 306 and 18. The remaining 13 P450 genes 

were found in the mitochondrial clan with 5 families of 12, 301, 302, 314 and 315. These 

detectable P450 genes in ALHF house flies showed a clear expansion in families 4, 6 and 

9 compared to other families. P450 genes in these three families have been implicated in 

environmental response, xenobiotics metabolism and resistance in insect. This expansion 
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may provide a clue to study the ecological and/or physiological environments adaption 

strategy of ALHF house flies. 

 

4.4.2 Expression profile of P450 genes in the insecticide-resistant (ALHF) and -

susceptible (aabys and CS) M. domestica strains 

The relative expression profile of 86 P450 genes was examined in ALHF, aabys and 

CS house fly strains. The expression level of 12 P450 genes was found significantly (P < 

0.05) up-regulated in the ALHF house flies compared to aabys and CS house flies. The 

up-regulated levels were from 1.9-fold to 274.4-fold (Figure 4.2, Table S4.3). These 

genes were distributed into two clans (clan 3 and 4) with 5 genes in family 4, 6 in family 

6 and 1 in family 9. Meanwhile, 14 P450 genes were found significantly down-regulated 

in the ALHF strain compared to both aabys and CS strain. The down-regulated levels 

were from 1.43-fold to 16.7-fold. For the remaining 59 P450 genes, no significant 

difference was observed between the transcriptional level in the ALHF strain and that in 

the aabys and CS strains. 
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4.4.3 Autosome co-regulation in up-regulation P450 gene expression in insecticide-

resistant house flies 

We next examined the autosomal linkage of factors from different autosomes to 

determine the effects of the co-regulation on the expression of the up-regulated P450 

genes among the five house fly homozygous lines of A2345, A1345, A1245, A1235 and 

A1234. Analyzing the gene expression changes resulting from autosome replacement in 

ALHF house flies enabled us to evaluate the role that genes or factors on each autosome 

play in P450 gene overexpression in ALHF house flies. The results showed that no 

significant change in the level of expression was observed for these genes when 

autosome 4 of ALHF was replaced with that from aabys (i.e., line A1235) (Table 4.2). 

Suggesting none of the up-regulated P450 genes in ALHF house flies was regulated by 

factors on autosome 4. In addition, apart from the CYP6A52 and CYP9F7, whose 

expression level were regulated solely by factor(s) on one autosome only, the expression 

of the rest of the up-regulated P450 genes were all linked to factors on multiple 

autosomes (Table 4.2). This result suggests that factors on different autosomes are 

capable of co-regulation of the P450 genes. This was most commonly observed for 

autosomes 1, 2 and 5, with eight genes regulated by factors on autosome 1, ten genes 
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were up-regulated by factors on autosome 2 and seven genes were regulated by factors on 

autosome 5. Furthermore, CYP4G99 was regulated by the interaction of factors on 

autosomes 1 and 3; CYP4G13 and CYP4S24 were regulated by the interaction of factors 

on autosomes 1, 2 and 3, suggesting that factors on autosome 3, besides those on 

autosomes 1, 2 and 5, were also involved in the expression regulation of up-regulated 

P450 genes in ALHF house flies (Table 4.2).  

To better understand the cis/trans regulation of the up-regulated P450 genes in the 

ALHF house flies, autosomal location analyses were conducted for these up-regulated 

P450 genes. Our results showed the ALHF allele-specific primer sets for CYP6D3 and 

CYP6D10 amplified specific DNA fragments only in flies with the autosome 1 wild-type 

marker from ALHF (Figure 4.3), demonstrating that these two P450 genes were on 

autosome 1. Whereas, CYP9F7 was located on autosome 2, CYP4G13, CYP4G99 and 

CYP4S24 were located on autosome 3. CYP4E10, CYP4E11, CYP6A36, CYP6A40, 

CYP6A52 and CYP6A58 were on autosome 5. Taken together, these results strongly 

suggested that the expression of the up-regulated P450 genes in ALHF house flies was 

regulated by cis or trans regulatory factors/genes. 
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4.4.4 Response of P450 genes to permethrin challenge in ALHF house flies 

Our results showed the expression of 16 P450 genes was significantly induced by 

permethrin at varying levels and time ranges compared to the control house flies (Figure 

4.4, Table S4.4), with 3 in family 4, 9 in family 6, 1 in family 9 and 2 in family 12. 

Meanwhile, the expression of 23 P450 genes was significantly decreased at least one of 

the investigation times after treatment with permethrin (Table S4.4), suggesting potential 

active regulation of P450 gene expression and contribution of these genes to the 

permethrin resistance in ALHF house flies. The expression level of the rest of P450 genes 

showed no significant difference between permethrin treated and non-treated house flies. 

 

4.4.5 Functional study of four up-regulated P450 genes in the transgenic D. 

melanogaster 

To further characterize the function of the up-regulated P450 genes in ALHF house 

flies, four P450 genes CYP4S24, CYP6A36, CYP6A52 and CYP6D10, whose expression 

was not only constitutively up-regulated in ALHF strain compared to aabys and CS 

strains, but also can be induced by permethrin, were selected to conduct transgenic study 

by using the GAL4-UAS enhancer trap system of D. melanogaster. The P450 gene, 
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CYP4S24, was located on autosome 3 and expression was regulated by factors on 

autosomes 1, 2 and 3. CYP6A36 located on autosome 5 and regulated by factors on 

autosomes 1, 2 and 5. CYP6A52 was regulated solely by factors on autosome 5, where the 

gene itself was located. CYP6D10 was mapped on autosome 1 and regulated by factors 

on autosomes 1 and 2 (Figure 4.3, Table 4.2). 

We first determined the presence of the house fly P450 genes in transgenic lines of 

D. melanogaster by RT-PCR, the result showed that all the transgenic lines obtained 

target transgenes (Figure S4.1). To test whether the GAL4-UAS expressing system of D. 

melanogaster can increase the expression of target house fly P450 genes, qRT-PCR was 

employed to detect the expression level of three lines: Control (Bloomington stock 

#24484 D. melanogaster line containing the empty pUAST vector), GAL4 (ubiquitous 

Act5C driver line) and Control + GAL4 (the F1 progeny from the cross between the 

control females and the GAL4 males), which were not transformed with the house fly 

P450 gene recombinant plasmid, and two transgene lines, P450 (P450 homozygous 

transgene line) and P450+GAL4 (the F1 progeny from the cross between the P450 

homozygous transgene line females and the GAL4 males). Our results showed that the 

expression of four P450 genes was not detected in the non-transgenic D. melanogaster 
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lines (Control, GAL4 and Control+GAL4), but was detected in transgenic lines (P450 

and P450+GAL4). The expression of these P450 genes was enhanced by the GAL4-UAS 

expressing system of D. melanogaster (P450+GAL4 > P450) (Figure 4.5). In addition, 

there was no significant difference in P450 gene expression observed among different 

transgenic Drosophila P450 homozygous lines or P450+GAL4 lines. 

We next characterized the sensitivities of the non-transgenic and transgenic D. 

melanogaster lines to permethrin. The bioassay results showed that there was no 

significant difference of permethrin toxicity among three non-transgenic lines based on 

the overlapping 95% confidence intervals (Figure 4.6). However, after the house fly P450 

genes were expressed in D. melanogaster respectively, the permethrin resistance level 

was significantly increased compared to non-transgenic lines (Figure 4.5 and 4.6). These 

results indicated that these P450 genes of house flies are capable of conferring permethrin 

tolerance in D. melanogaster, suggesting that these up-regulated P450 genes play 

important roles in permethrin resistance of M. domestica. In addition, CYP6A36 

conferred the highest permethrin tolerance ability in the transgenic flies among the four 

P450s, followed by CYP6A52, CYP6D10 and CYP4S24. 
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4.4.6 Homology modeling and permethrin docking 

Homology modeling and permethrin docking studies were conducted to investigate 

the potential permethrin metabolic detoxification differences of selected P450s. The 

deduced amino acid sequence of four P450 genes from ALHF and aabys house flies were 

aligned respectively. Sequences contained several conserved P450 characteristics, such as 

hydrophobic N-terminal domain that acts as a transmembrane anchor, heme-binding 

region (FXXGXRXCXG) near the C-terminal and six predicted substrate recognition 

sites (SRSs) (Figure S4.2, S4.3, S4.4 and S4.5). In total, zero, four, thirteen and nine 

amino acid variations, generated by non-synonymous single nucleotide polymorphisms 

(SNPs) were detected in CYP4S24, CYP6A36, CYP6A52 and CYP6D10 respectively. The 

tertiary structure of P450s showed that basic P450 folds were detected in all P450 

models, such as helices A to L, commencing from the N terminus, helices F’, G’ and F/G 

loop putatively making contact with the membrane region, and cysteine-pocket attaching 

heme (Figure 4.7).  

The active site of P450 is buried deep within the enzyme structure. It is connected to 

the surrounding environment by a network of channels, which serve as access/egress 

paths and may determine the substrate specificity of P450s (Cojocaru et al. 2007; 
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Otyepka et al. 2012). The most probable candidate substrate access/egress channels 

(solvent and family 2) were investigated in our study. Seven channels (2a, 2ac, 2b, 2c, 2d, 

2f and S) were detected in CYP4S24, and eight channels (2a, 2ac, 2b, 2c, 2e 2d, 2f and S) 

were discovered in CYP6A36, CYP6A52 and CYP6D10 (Figure 4.8, Table S4.5). In 

addition, the geometry analysis revealed that channel 2c has the largest bottleneck radii 

among all channels in CYP6A36, CYP6A52 and CYP6D10. Channel 2a has the largest 

bottleneck radii among all channels in CYP4S24. Furthermore, the analysis showed that 

CYP6A36, CYP6A52 and CYP6D10 have large openings to the heme prosthetic group 

and large volumes of active cavity, while the CYP4S24 has a restrained narrow opening 

to the heme prosthetic group and a smaller active cavity, attributed to the protrusion of 

two amino acid (Glutamate 313 and Threonine 317) of I helix structure (Figure 4.8, table 

S6). 

Our permethrin docking study showed that there were three predicted permethrin 

binding conformations in CYP6A36, CYP6A52 and CYP6D10 (Figure 4.9 A, B, C), 

corresponding with 3 predicted metabolic sites of permethrin (Figure S4.6). All 

permethrin binding models presented favorable binding affinity and putative permethrin 

hydroxylation sites directly over the heme iron within 6.0 Å (Feenstra et al. 2007; 
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Vasanthanathan et al. 2008; Zhu et al. 2013) (Figure 4.9, Table S4.6). These metabolic 

sites of pyrethroid have been experimentally verified or predicted in several studies 

(Boonsuepsakul et al. 2008; Lertkiatmongkol et al. 2011; Stevenson et al. 2011; Zhu et al. 

2013). These results indicated that CYP6A36, CYP6A52 and CYP6D10 have the 

potential ability to degrade permethrin and generate multiple metabolites. The short 

distance from the substrate metabolic sites to P450 heme iron corresponds to the high 

electrophilic character of this position (Karunker et al. 2009) and high catalytic reactivity 

(Zimmer et al. 2013). The shortest distance from the metabolic sites to heme iron and the 

highest permehtrin binding affinity were observed in the CYP6A36 binding models 

(Table S4.6), implying stronger nucleophilic and electrophilic attacks (Coon et al. 1998), 

and permethrin metabolism ability of CYP6A36. These results were consistent with our 

bioassay results that CYP6A36 provided the highest permethrin tolerance ability to 

transgenic flies among the four P450s. Our study also revealed a single permethrin 

binding model in CYP4S24 (Figure 4.9 D); however, the catalytic site of permethrin was 

far away from the heme iron (7.41 Å), indicating CYP4S24 may not metabolize 

permethrin. 
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Sequence analysis of CYP6A36 revealed that there were four amino acid variations 

between ALHF and aabys house flies (Figure 4.7, Figure S4.3). The geometry analysis 

and permethrin docking study indicated that the backbone of protein structure, the active 

site volume, permethrin binding energy and the distance from the permethrin putative 

hydroxylation sites to the heme iron of CYP6A36 in ALHF house flies were same as that 

in the aabys house flies (Table S4.6). These observations strongly suggested that the 

involvement of CYP6A36 and CYP4S24 (no amino acid mutation) in permethrin 

resistance of ALHF house flies is mainly from the increased expression of these genes 

compared to aabys house flies. On the contrary, although the protein backbones of 

CYP6A52 and CYP6D10 in aabys house flies were very similar to that in ALHF house 

flies (root-mean-square deviation was 0.285 Å and 0.373 Å, respectively), larger active 

site cavities, higher binding affinity and shorter distance from the permethrin metabolic 

sites to P450 heme iron of these two enzyme were observed in the ALHF house flies 

compared to that in aabys house flies (Table S4.6). These results indicated that the amino 

acid differences of CYP6A52 and CYP6D10 between ALHF and aabys house flies 

influenced the interactions between permethrin and P450s, suggesting the involvement of 

the two P450 enzymes in permethrin resistance of ALHF house flies was not only from 
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the increased expression of the genes, but also from the more efficient form of the 

enzymes compared to aabys house flies. 

Residues that contacted to permethrin in the active sites of P450s were examined. 

ILE122, ASN216, ALA311, THR315 and ILE377 of CYP6A36; ARG105, ILE214, 

GLU215, ALA309 and ILE490 of CYP6A52; ARG99, LYS211 and VAL319 of 

CYP6D10 were conserved in permethrin binding models of each P450 enzyme, 

respectively (Table S4.5), suggesting the importance of these residues for permethrin 

binding. 

 

4.5 Discussion 

Previous studies showed that permethrin resistance in house flies could be largely 

suppressed by PBO, indicating P450s are the primary enzymes involved in detoxifying 

permethrin and conferring permethrin resistance in house flies (Carino et al. 1992; Carino 

et al. 1994; Feyereisen 2006; Liu and Yue 2000; Liu and Yue 2001; Zhu et al. 2008a; Zhu 

et al. 2008b; Zhu and Liu 2008). An expansion of these P450 gene members in families 

4, 6 and 9, which groups were most commonly involved in xenobiotics metabolism and 

resistance in insects (Feyereisen 2005; Li et al. 2007; Pavlidi et al. 2012; Yang et al. 
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2008). This expansion implied a clue to study the ecological and/or physiological 

environments adaption strategy of ALHF house flies, such as the house fly may have 

benefited from this expansion by obtaining ability to metabolize insecticides.  

Up-regulation of P450 gene expression led to increased levels of total P450s and 

P450 activities that can significantly affect the disposition of xenobiotics or endogenous 

compounds in the tissues of organisms and alter their toxicological effects (Feyereisen 

2006; Pavek and Dvorak 2008). Many studies have suggested that both constitutively 

increased expression and induction of P450s in insects are responsible for the insecticide 

resistance (Gong et al. 2013; Liu et al. 2011; Pavek and Dvorak 2008; Scharf et al. 2001; 

Yang and Liu 2011; Zhu et al. 2008b). We therefore expected that the P450 genes, which 

were involved in permethrin resistance would be highly expressed or could be induced by 

permethrin in ALHF house flies. The approaches to this study, which compared P450 

gene expression profile in different house fly strains and permethrin induction, revealed 

that these up-regulated or inducible P450 genes were also mainly distributed in families 

4, 6 and 9, suggesting the importance of these P450 genes in permethrin resistance in 

ALHF house flies. Interestingly, four P450 genes, CYP4S24, CYP6A36, CYP6A52 and 

CYP6D10, whose expression was not only constitutively overexpressed, but also could be 
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induced by permethrin in the ALHF house flies, were observed in our study. The 

concurrence of the constitutive overexpression and induction of these four genes in the 

ALHF strain strongly suggested that these genes play important roles in permethrin 

resistance in the ALHF house flies. 

P450 gene down-regulation has been reported in several insect species, such as C. 

quinquefasciatus, Anopheles gambiae, Spodoptera littoralis and D. melanogaster (Davies 

et al. 2006; Marinotti et al. 2005; Yang and Liu 2011). In the current study, we also found 

several P450 genes were down-regulated in ALHF house flies compared to both aabys 

and CS house flies, or the expression was repressed by permethrin. These results may not 

only reveal equally dynamic changes in abundance for both the increased and decreased 

P450 gene expression in resistant house flies, but also indicate an important feature of the 

gene regulation system of the house fly in response to environmental changes (Li et al. 

2013). Several hypotheses have been proposed for the harmonizing of up- and down-

regulation, e.g., homeostatic responses for protecting the cell from the harmful effects of 

oxidizing species, nitric oxide, or arachidonic acid metabolites from catalytic or 

metabolic enzymes (Morgan 2001); homeostatic responses to provocative processes; 

and/or an essential need for the tissue to utilize its transcriptional machinery and energy 
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for the synthesis of other components involved in the inflammatory response (Li et al. 

2013; Morgan 1989; Reid et al. 2012). Whether the down-regulated P450 genes identified 

in the ALHF house flies reflects a regulation feature or homeostatic response of house 

flies to insecticides needs further study. 

Examination of the autosomal linkage of overexpressed P450 genes is an important 

step in establishing a causal link between P450 genes and their roles in insecticide 

resistance (Carino et al. 1992; Liu and Scott 1996; Maitra et al. 2000). The current 

genetic mapping of the up-regulated P450 genes in the ALHF house flies showed that 

these genes were on autosome 1, 2, 3 and 5. Gene co-regulation analysis revealed that the 

up-regulated P450 gene expression in ALHF house flies also occurred among autosomes 

1, 2, 3 and 5. Interestingly, these results were consistent with our previous synergism 

studies that factors/genes on autosome 1, 2, 3 and 5 play very important roles in 

insecticide resistance of the ALHF house fly (Li et al. 2013; Liu and Scott 1995; Liu and 

Yue 2001; Tian et al. 2011), indicating the importance of these P450 genes in pyrethroid 

resistance of ALHF house flies. The expression of the up-regulated P450 genes were 

linked to regulatory factors/genes on multiple autosomes except for the CYP6A52 and 

CYP9F7, whose expression was regulated solely by factor(s) on one autosome that they 



 

160 

 

were located on also. These results strongly indicated a common feature of up-regulated 

P450 genes were that they were regulated by trans- and/or cis-acting factors in ALHF 

house flies. Characterizing co-regulated P450 genes will represent a good starting point 

for characterizing the transcriptional regulatory network and pathways in house flies. 

The model insect, D. melanogaster, is a useful tool for functionally studying the role 

of metabolic enzymes in conferring metabolism-based insecticide resistance of insects 

(Daborn et al. 2012). The function of several P450 genes has been studied through the 

transgenic expression of P450 genes in D. melanogaster, such as CYP6BQ9 from 

Tribolium castaneum (Zhu et al. 2010), CYP6P9a and CYP6P9b from Anopheles funestus 

(Riveron et al. 2013b), and CYP6CM1 from Bemisia tabaci (Daborn et al. 2012). The 

important roles played by CYP4S24, CYP6A36, CYP6A52 and CYP6D10 in permethrin 

resistance of ALHF house flies were well supported by the transgenic expression of these 

genes in D. melanogaster demonstrating these genes are able to confer permethrin 

resistance in house flies. Interestingly, although no significant difference of P450 gene 

expression was detected among different transgenic Drosophila lines (P450+GAL4), 

different permethrin resistance levels were observed, indicating the contributions of these 

P450s to permethrin resistance in ALHF house flies were different. 
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SRSs are the most variable regions in P450s, with SRS1, SRS4, SRS5 and SRS6 

involved in the catalytic site formation while SRS2 and SRS3 are related to the substrate 

access channel formation (Chiu et al. 2008; Fishelovitch et al. 2009; Schuler and 

Berenbaum 2013). Differences in the substrate channels and active sites were responsible 

for the differences in binding to pyrethroids (Lertkiatmongkol et al. 2011). Several 

modeling and docking studies, such as CYP6AA3 of A. minumus, CYP6M2 of A. 

gambiae have predicted that pyrethroid insecticides metabolism of these enzymes can 

produce multiple metabolites due to different catalyze sites, and these predictions have 

been proven in the corresponding in vitro metabolism studies (Boonsuepsakul et al. 2008; 

Lertkiatmongkol et al. 2011; Stevenson et al. 2011). In our study, multiple permethrin 

binding models were also detected in CYP6A36, CYP6A52 and CYP6D10 due to the 

huge active site cavity, strongly indicating multiple permethrin metabolites can be 

produced by these enzymes. In addition, the binding models showed a shorter distance 

from the metabolic sites of permethrin to the heme iron and higher permethrin binding 

affinity in CYP6A36 compared to CYP6A52 and CYP6D10, implying stronger 

nucleophilic and electrophilic attacks and permethrin metabolism ability of CYP6A36, 

perhaps explaining why CYP6A36 provided the highest permethrin tolerance ability in 
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transgenic flies among the four P450s. The increased gene expression of CYP6Z2 was 

shown to elevate the pyrethroid resistance in An. gambiae (McLaughlin et al. 2008; 

Nikou et al. 2003), and modeling study showed that CYP6Z2 can bind with permethrin 

but lacks the ability to metabolize permethrin because of structural constraints within the 

active site (McLaughlin et al. 2008). The current transgenic D. melanogaster study 

showed that increased expression of CYP4S24 was capable of conferring permethrin 

tolerance in D. melanogaster. However, compared to CYP6A36, CYP6A52 and 

CYP6D10, CYP4S24 has a narrow opening to heme iron, which prevented permethrin 

access to the iron, resulting in the catalytic site of permethrin being far away from the 

heme-oxygen (more than 6.0 Å) , this may cause the absence of the metabolic 

detoxification activity toward permethrin, suggesting that metabolic activity differences 

among these four P450 enzymes in house flies come from active site differences allowing 

different binding models to form. Beside detoxification, P450s also have other functions, 

such as hormone and pigment biosynthesis (Scott 2008). Interestingly, P450s in the 

CYP4G family, such as CYP4G2 in the house fly have been reported to produce 

hydrocarbons from aldehydes (Qiu et al. 2012), which are involved in cuticle formation. 

Decreased insecticide penetration due to the increased cuticle thickness has been reported 
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to be involved in insecticide resistance (Koganemaru et al. 2013; McKenzie and 

Batterham 1994; Strycharz et al. 2013). To determine whether the contribution of 

CYP4S24 to permethrin resistance in house flies was related to cuticle formation or 

storage/sequestration, similar to carboxyl esterase E4 of Myzus persicae (Devonshire and 

Moores 1982), more studies are needed. 

The active site of P450 is buried within the protein structure. To arrive at the active 

site, substrates will undergo chemical modification and channel conduction (Kirchmair et 

al. 2012). In our study, the most probable substrate access/egress channels (solvent and 

family 2 channels) of CYP4S24, CYP6A36, CYP6A52 and CYP6D10 were investigated. 

Interestingly, channel 2e was not detected in CYP4S24, and this enzyme showed the 

lowest contribution to permethrin resistance among the four P450s based on transgenic 

and permethrin docking studies. To determine whether the absence of channel 2e is 

responsible for the low activity of CYP4S24 on permethrin, more studies are needed. The 

channel 2f always pointed toward the lipid interior, which may serve as common access 

channels for lipophilic substrates. The solvent channel always pointed into the water-

membrane interface and served as an entrance/release for hydrophilic substrates. 

However, the position of substrate access channels and residues of channel openings were 
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contributed to substrate preferences (Berka et al. 2013; Kirchmair et al. 2012), the 

bottleneck diameter also fluctuates due to the flexibility of P450s (Hendrychová et al. 

2011; Hendrychova et al. 2012; Skopalík et al. 2008), and different P450s may use 

different channels to conduct substrates because of their structural differences (Cojocaru 

et al. 2007; Otyepka et al. 2012). Without further deep gating mechanisms and molecular 

dynamics simulation studies, it is still unknown which channels are involved in 

permethrin access and corresponding metabolites egress from the active site of these 

P450s. 

Enzymatic activities of P450s are affected by residue mutations. Mutations in 

catalytic site and substrate access channels were linked to the range of substrate 

metabolized, the rate of substrate entry/exit and metabolism directly (Hiratsuka 2011; 

Sansen et al. 2007; Wen et al. 2005; Zhao and Halpert 2007). The mutations in the 

proximal surface of helix C and the C-D loop region related to the interactions between 

cytochrome P450 and cytochrome b5 or cytochrome P450 reductase (Ahuja et al. 2013; 

Bridges et al. 1998; Im and Waskell 2011; Skopalík et al. 2008) can affect electron 

conduction and kinetic properties due to alterations in interaction between P450 and their 

partners (Kenaan et al. 2011; Schenkman and Jansson 1999; Schuler and Berenbaum 
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2013; Zhang et al. 2005). Many studies have also shown that mutations outside of the 

active site changed the active site cavity or binding affinity of P450s, influencing the 

metabolism activity of P450s (Kumar et al. 2005; Kumar et al. 2006; Tiong et al. 2014; 

Wilderman et al. 2012). Sequence analysis of CYP6A36 revealed that there were four 

amino acid variations in ALHF house flies compared with aabys house flies. The 

geometry analysis and permethrin docking study indicated that the involvement of 

CYP6A36 and CYP4S24 in permethrin resistance of ALHF house flies compared to 

aabys house flies is mainly from the increased expression of these genes in ALHF house 

flies. However, the contribution of CYP6A52 and CYP6D10 to the permethrin resistance 

of ALHF house flies is not only from the increased expression of gene but also from the 

more efficient form of enzymes. Many studies also showed that mutations located outside 

of the active site of P450 can enhance P450 expression or stability (Kumar et al. 2007; 

Talakad et al. 2010). To determine whether the mutations that were identified in our study 

relate to P450 expression or stability, further studies are needed. 

Taken together, our findings suggest that P450 constitutive over-expression or 

induction is responsible for permethrin resistance in house flies, and these P450 genes are 

regulated by trans- and/or cis-acting factors. Functional characterization of house fly 
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P450s in the transgenic D. melanogaster, modeling and permethrin docking analyses 

have provided important information on the pivotal roles of CYP4S24, CYP6A36, 

CYP6A52 and CYP6D10 in permethrin resistance of house flies, and opened the avenue 

for P450 in vitro study. In addition, our results confirm and support the co-overexpression 

of multiple P450 genes as likely to be key factors enhancing permethrin resistance in 

house flies. Furthermore, our study indicates that besides detoxification, other roles of 

P450 may be involved in permethrin resistance in house flies. Future studies of 

identification and characterization of the promoter regions and regulatory factors that are 

involved in the P450 gene expression regulation will shed new light on the molecular 

basis of insecticide resistance in house flies or even in other insect species. 
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Table 4.1 Relative P450 gene expression values and the predicted autosomal interactions 
of the up-regulated P450 genes in ALHF Musca domestica 

  Relative gene expression§ Autosome  

location 

Autosomal 

interaction  
Gene ALHF A2345 A1345 A1245 A1235 A1234 

CYP4E10 274.42±22.40 125.67±10.39* 144.62±12.62* 257.81±23.61 268.61±25.8 66.6±6.74* 5 125 

CYP4E11 5.86±0.55 6.31±0.48 2.61±0.17* 5.99±0.71 5.80±0.36 2.71±0.26* 5 25 

CYP4G13 1.93±0.13 1.04±0.10* 1.22±0.09* 1.04±0.04* 2.01±0.12 1.91±0.08 3 123 

CYP4G99 4.52±0.31 2.12±0.22* 4.28±0.41 1.38±0.13* 4.43±0.45 4.43±0.23 3 13 

CYP4S24 2.94±0.08 1.03±0.05* 1.14±0.06* 0.83±0.03* 2.83±0.49 3.04±0.53 3 123 

CYP6A36 7.03±0.64 2.60±0.21* 2.80±0.41* 6.63±0.62 7.01±1.04 1.72±0.19* 5 125 

CYP6A40 2.95±0.22 2.90±0.32 1.16±0.10* 2.99±0.41 2.68±0.36 1.17±0.05* 5 25 

CYP6A52 2.74±0.15 2.50±0.22 2.70±0.17 2.54±0.08 3.01±0.24 0.81±0.03* 5 5 

CYP6A58 4.32±1.02 1.32±0.23* 1.86±0.36* 5.63±2.17 4.19±0.22 0.64±0.15* 5 125 

CYP6D3 2.40±0.13 1.38±0.07* 1.34±0.06* 2.25±0.13 2.40±0.37 2.34±0.18 1 12 

CYP6D10 6.24±0.63 2.55±0.37* 3.06±0.55* 5.99±0.25 6.19±0.51 2.62±0.32* 1 125 

CYP9F7 2.01±0.19 2.13±0.18 1.54±0.11 1.90±0.17 2.08±0.10 2.23±0.29 2 2 

§ The relative levels of gene expression were shown as a ratio in comparison with that in 
aabys flies, the data are shown as the mean ± SEM.  
* Gene expression value within a given M. domestica autosomal line was significantly 
lower than the expression in the parental ALHF strain at the P < 0.05 level of significance. 
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Table S4.1 List and sequences of the primers used 

Gene Forward primer (5'-3') Reverse primer (5'-3') 

Primers used for quantitative real time PCR  

CYP18A1 TTAAGACCACCCTGCTGTGGATCA GTGGCCAATGGTACAATGCTGGAA 

CYP304A2 CAATGTTGTCGGCTCAGGTCGTTT AAGGTACCAGCGTCTCAATTCGCA 

CYP3073A1 AAACGACAGCGGAGGGTTTGAGAT TAACCACACCATTGCTCAGTCGGA 

CYP3073A2 GGTGCATGTATTTAGTGCGGCCTT AGCTCGAACTCTCCGTCATCGTTT 

CYP3073B1 ACAATGTTGGGTCACAATGCCAGG TTCAATGGTCTCCCGACATTCCCT 

CYP305A1 TCACAAACCACCAGCACCACAATG TAGGCCTTGTTACCCAAACTGGGA 

CYP306A1 TGCCATTCTATTCGCGATCGGTCA GCACTGAAGGCCACAAAGCTGAAT 

CYP28B1 TACACCACCGAAGTTGTCAGCGAT TCATCACCTTCTTTAGGCTGGGCA 

CYP28B2 GAAACCCGGAGACCCAAGAGAAAT AGTTTAGAGTTCACAGCCACGGGT 

CYP28G6 TACTGGGTCTTTCGGCTGATGCTT AAACTCCTCCACGGGCTTTGGTAT 

CYP310B2 GATAGCATCGACGGCAGTATTT CTTTGTTTCACTGTTCGCCATTAT 

CYP317A3 TATGCAGCAAAGGGTACGGGAAGA AGAGTGCGACGCATTACATAGGGT 

CYP6A1 GTCTACGCGAGGAGGTTAATG GCGGAGTGTTTCATTCAATACC 

CYP6A24 TTCGAATACCCAAGGGAACACCCA AAATCGGGCGCCAATACAGTTTCG 

CYP6A25 TTCCCGGTCATCCGAAATATG CGTCGGGATTGGGATAATACTG 

CYP6A36 TTTATCCTTTGGTGATGGTCCC CGCCACAATGATGCTCTTCTTA 

CYP6A37 ATGAGTTGGCCCAGAATCAGGAGA ATTCAGAATGGGCAGGACGGTGTA 

CYP6A4 AAGGGCATAGATTTGTCGCATGGC CCTGGTGCCTAGCCAATTCATAGA 

CYP6A40 TGAGGGAGAGCAAGCAAATC TGTTGTGGAGGAGGTCTCATA 

CYP6A52 ATGTGATTGGTCGCTGTGCCTTTG TACTTCTCCACATCGGGCATGGTT 

CYP6A7 GCATTGTCCGCGAAACTGTGGAAT AACACAAAGGCCTGGCCAGTTATC 

CYP6A54 GAAGGTATTCGGTTCGGAGAAA TGGCTCCAAAGTAGCGTAAAT 

CYP6A63P AGGCCATGATGGAGATGGCCTATT ATCCTCCATGCAGACACGCTGTAA 

CYP6A57 GCTGCCCAGGTGTTTGTCTTCTTT AAAGTCTCTTTGACCTCCTGGCGT 

CYP6A58 AATCGCCAAGCTGTCGAAGACTAC TCCGGATTGAAGACATTGGGTTGG 

CYP6A59 CCTATGAGTCGCTGAAGGATATG GGGACCTGATAGTCTTTGACAC 

CYP6A5 CAAATGGCCGCTCAGACCTTTGTT AGGCCCTCATAGGTTATTTCGCCA 

CYP6C2 TCTGTGGCGTAAGGTGAGAACCAA TGCCAATGACATCGGTGGTGAAAC 

CYP6D10 ACTGCTCGCAAATATCCTGGCCTA TCCGGCTTATAATCCATGGGCTGA 

CYP6D11 CAGCGGCTACCATAGCATTTA CCCTCAACTTATGTTCCGTCAA 

CYP6D3 AACTGCCTCAAGTACCTCATTTA TACGTCCATCCGGCTTTATTC 
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CYP6D8 TGGTCGGCGGTAAAGACAAAGGAT CGGCATTGCGTGCCAATTCATAGA 

CYP6EK2 CCTTTCCGAATTTGGCCCGGAAAT GGCCGCTATTTGTTCCAACGTCAA 

CYP6FS2 AACCTTTAGCAACTCTCTGCGGGA ATTGTGTGTTGCGATAACGCACGG 

CYP6FT3 GACGATGACAGGGATATGGATAAG GGCCAATTCAAAGAGAGCATTT 

CYP6G4 TGACTGCTGGCTTTGAGACATCCT ATTTCTCGACGCAAACGTTCCTGC 

CYP6GU1 TGCTCTCTATGAATTGGCCCGGAA AGGACGGCATATTTGCGTAGGGTT 

CYP6GW1 GTTCCAGTTGACCATGGATATGA CTCATATAGGGCCTGACACAAAG 

CYP6V3 CGCAAGTACCCGATTGTGCCATTT AAAGAGGTCTGGTTCGGGCCAATA 

CYP9F10 GTTCTACGCAAATGGCCGGTGAAT AAACGTTCCGGATCAAAGGCACTG 

CYP9F11 AAATGGTCGTGTCGGAGGTGTTGA TTCCGGATCGAAGGCATCAGGATT 

CYP9F12 CGATGAGGCCATGTCGTATT CAAATGCCGTCGAAGCAATAA 

CYP9F7 CGATCAACGACAACCAATGCTGCT TGGCGACAAAGTGTTGCGCATATC 

CYP9F8v1 ATGCGTTCCATGTTCCAGCTGATG GGCCAAATGCAGTCGAGGCAATAA 

CYP9F9 AAACAAGGCAAGGGAGAGGATGGA GACTTGCAGACCAAATGCAGTGCT 

CYP311A1 CCAATACCTCGGATCTCAACAA AATGTTACGCCAGGTGGATAG 

CYP313D1 GGCTTTCGATGTGACCTATGCCAA TTGATGACACATTGCACACCAGCC 

CYP313D2 TGCACAGACGCAAGGATATATGGG TTAGCAACTTTGCCAAGGCCACCT 

CYP318B1 TGCATCGTAGTGCAGATGTTTGGG GCCAAGTACATGCTATAGCGGCTT 

CYP438A4 CGGTCGATAAGGCAACGATAG GGCATACTGATACAAAGCGAATG 

CYP4AA1 AACACTGGGATAGAGTCGCAACGA AGGCCATGATGGAGATGGCCTATT 

CYP4AC6v1 GAGGAGTATCGCAAGAAGAAGG CATCCAGCAGCGTATCCAA 

CYP4AD1 GCCCTCTTCACCACAGATTTA AATGCCACAGAGAAGTCGATAG 

CYP4AE3 TTGCCTCTATGCACTATCGCGTCA CCAACAGCCGGAATTGGTGGAAAT 

CYP4C74 TGAGGAGGTTGACACGTTTATG TCGACAACACGTTCCTGATATT 

CYP4D3 TTCGGCCGTAACGTTCTGCTTCTA GCAGCGTCTCCTTGATGCACAAAT 

CYP4D36 GTCGAACCATTTACGCTGGCCAAA ATTGTGTAGACGCCGGAACAATGC 

CYP4D4 GCGAATGGCTTTCCTTGATGTGCT TCGTGGTGTCATGTCCTTCGAACA 

CYP4D54 CAGTTGCCGGGAATAACAACACCA AGATGCGAACACTGCTCCCACATA 

CYP4D55 GCCTTGTTGGATGTGCTATTG TAAGGGCCTGCATCAAAGAG 

CYP4D56 TGTTTCCAGTTGTGTGTCGCATGG TTGGCGAGGTGAGTTTGAAGAGGA 

CYP4D58v1 ATTTGCCACCGCCGAAATGAAGAG ACCCAATTGGACATCAGTCTCGGA 

CYP4D9 CAAGCGTTGCCGACATAATAG TCCCTCATCATCTTGCGATAC 

CYP4E10 GCACCACCCTGCTACTATTT CTCGAAGGGATTGTAGGTCATT 

CYP4E11 CAAGATCATAACACCGGCATTTC GCCTCCCTCAATTTGTCCATA 

CYP4E7 ATCAACATGCGTGCCTTCAATCCC ATTCTTTGCCTCCTGCTTGGCTTC 
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CYP4G13 ATTGCCCGTAAAGCGGAAGAGGAT TAGATGTCGGCACGACGATGAACA 

CYP4G2 ATGACCCGTAAAGTGGTGACGGAA TCATCCAAATCATCGCGCAAACCC 

CYP4G99 TGAGACATCGTAGCCTCTTTCTG CGTTGCCATTGGAGTTTAGAC 

CYP4P8 AATGCGCGAAGCAGTCGAAGAAAC AAAGCATACGGATGACGTCCCACA 

CYP4P10 ACGACATACATCGTAATCCCAGGC AAATGCAAACGGGTGCCTCTGTTC 

CYP4S23 TGCCATTCTATTCGCGATCGGTCA GCACTGAAGGCCACAAAGCTGAAT 

CYP4S24 GGTCCAACATTTCGCATTTG GCTTCACCACTACTCGTCAGCA 

CYP12A1 AAGTGGAGTGCCAGAGAAAC GTATCCACACCAGCCAATATCA 

CYP12A3 CCCACAGCAAAGCGTATGTTCCAA GCCGAACAATGGCCTCTTCAACAA 

CYP12A14 AGGGCCTGCATTAAGGAATCGCTA AGCTCTCAACCATCGTTCGGGTAA 

CYP12A16 GCCAATGGCAACATCGAACCAAGT AAGAGCAAGCCGGTAAAGGCAGAT 

CYP12A17 TAAGGGCCTGCATCAAAGAG GATAACCGCTGAGGACAACAT 

CYP12A13 CCCTGCGCATGTATCCATTGACAT ACTTCCTGATTCGGTTGGCCTCAA 

CYP12A2 AGTGGCTATCGTGTTCCCAAAGGT GGCATGTGGACATTCAGCGGATTT 

CYP12G2 ATGGGCGGTGTAGAAATCACCTCA ATGGAGAAATCTTCGTGCCGTCCA 

CYP12G4 TGTTTGGCAATATGCGAGCCTTGG TTTCGGGCTGTGATATCTTCGGCA 

CYP301A1 ACGGATCGCCTAAAGGTTCAAGGA CAAACCGCCATGGAAATGGTGTCA 

CYP302A1 TGCTTGTCTGAAGGAGGTATTC TCCTTCGGCACCAAATATCC 

CYP314A1 ACCGAACAGCCGGAGAAGATCAAA TTTCCTGTAGGTCTGCGTGGGAAA 

CYP315A1 TTTATACTGCCGGTCGTGATCCCA ATAGGGCCAATTTGCGGCCAATAC 

Actin ATGAGGCTCAGAGCAAACGTGGTA AGTCATCTTCTCGCGATTGGCCTT 

Dm RPL11 CGATCCCTCCATCGGTATCT AACCACTTCATGGCATCCTC 

Primers used for autosome mapping  

CYP4E10 F1: CGATTTGAAGAACCAGAAGC R: ACTCATTGTTGTGGCTCTCA 

 F2: AAGCTGATTAAGGCGGAAC  

CYP4E11 F1: CCAGGCCTGTAACGGCAATCC R: ACTCATTGTTGTGGCTCTCA 

 F2: GGCCGATAACTATGCCACCGTT  

CYP4G13 F1: GTCTTCAAGGATTGTGGTGAAAC R: TATTGTCACGCTCACGTAGCTTG 

 F2: TTTGTGCCCACATTTGTCAAG  

CYP4G99 F1: TTGGACTTGCTCTTGGAGA R: TGGTAGCCACTGTGATGGT 

 F2: TGGTGCCACCATTACGGACACT  

CYP4S24 F1: AGAGAATCTGCCACATCTTGC R: TGCCGAACTTGTCGTATCG 

 F2: CGAAGATGCCAAGATACAAAAT  

CYP6A36 F1:TTTAAGGGGTCTCTCGACGAGT R: AATGGAAACATGGCCTTCATA 

 F2:TTATGAGAAATATAGAAATTCCGCC  
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CYP6A52 F1: ATGTGATTGGTCGCTGTGCCTTTG R: CATACCCTTGCGTATGACATAG 

 F2: CCCAAATCGGAATTCCGC  

CYP6A40 F1: CATTCTCACCAGGGATTTCA R: AAAGGCACAGCAGCCAAT 

 F2: GCTGACACCCACCTTCAGTTCA  

CYP6A58 F1: CACCTTTACCTCGGGCAAA R: CGCCATCCTCACTCTTCATC 

 F2: AACCGAAACCATGCCCGATGT  

CYP6D3 F1: GACGGCTACAAATCTCAAGG R: GTTTCATCGGCAAATCGTTC 

 F2: TGAATTGGCCATGAATCCAGAT  

CYP6D10 F1: CTACCCGTTTGGAATCGTG R: TCCTTGCGTGGCTGTATT 

 F2: AAAGCTGCCCTGGTAAAAATG  

CYP9F10 F1: GCTTTTCTTATTGCCGGCATAG R: GTCACTGCCTTCGGTAAATAC 

 F2: ATGCCAAGCCTTCGTTCTTTTA  

Primers used for functional study 

CYP4S24 CCGGGATCCCAAAATGGATTTACTAACAATCAACAG CTAGCTAGCATTGCCACGCGATTTTATG 

CYP6A36 CCGAGATCTCAAAATGGTTTTTCTAACGCTT CTAGTCTAGACAACTTCTCCACCTTCAA 

CYP6A52 CCGGAATTCCAAAATGATCGCTTTGACAATAC CTAGCTCGAGAATCCTCTCCACACGCAAATAAAT 

CYP6D10 CCGGAATTCCAAAATGTTTTTATATTTGGCTATATTCG CTAGGCTAGCACATCGTTTTATGAGTGTAATTTTC 
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Table S4.2 List of selected P450 genes in the ALHF M. domestica 

Name† Clan SC_number‡ XM_number‡ XP_number‡ 
CYP18A1 2 NW_004765049 XM_005183375 XP_005183432 
CYP304A2 2 NW_004765002 XM_005183057 XP_005183114 
CYP305A1 2 NW_004764745 XM_005180589 XP_005180646 
CYP306A1 2 NW_004765049 XM_005183378 XP_005183435 
CYP28B1 3 NW_004764738 XM_005180394 XP_005180451 
CYP28B2 3 NW_004764738 XM_005180398 XP_005180455 
CYP28G6 3 NW_004765174 XM_005184255 XP_005184312 
CYP310B2 3 NW_004765160 XM_005184125 XP_005184182 
CYP317A3 3 NW_004765183 XM_005184339 XP_005184396 
CYP438A4 3 NW_004765049 XM_005183376 XP_005183433 
CYP6A1 3 NW_004765183 XM_005184331 XP_005184388 
CYP6A24 3 NW_004768817 XM_005190469 XP_005190526 
CYP6A25 3 NW_004768817 XM_005190472 XP_005190529 
CYP6A36 3 NW_004765183 XM_005184332 XP_005184389 
CYP6A37 3 NW_004765183 XM_005184336 XP_005184393 
CYP6A4 3 NW_004765183 XM_005184338 XP_005184395 
CYP6A40 3 NW_004765183 XM_005184343 XP_005184400 
CYP6A5 3 NW_004765183 XM_005184346 XP_005184405 
CYP6A52 3 NW_004765183 XM_005184334 XP_005184391 
CYP6A54 3 NW_004760864 XM_005175565 XP_005175622 
CYP6A57 3 NW_004768817 XM_005190468 XP_005190525 
CYP6A58 3 NW_004765183 XM_005184341 XP_005184398 
CYP6A59 3 NW_004765183 XM_005184344 XP_005184401 
CYP6A63P 3 NW_004760864 XM_005175566 XP_005175623 
CYP6A7 3 NW_004765183 XM_005184333 XP_005184390 
CYP6C2 3 NW_004765183 XM_005184350 XP_005184407 
CYP6D10 3 NW_004765160 XM_005184128 XP_005184185 
CYP6D11 3 NW_004765015 XM_005183145 XP_005183202 
CYP6D3 3 NW_004765160 XM_005184123 XP_005184180 
CYP6D8 3 NW_004765436 XM_005185673 XP_005185730 
CYP6EK2 3 NW_004765349 XM_005185208 XP_005185265 
CYP6FS2 3 NW_004764906 XM_005182161 XP_005182218 
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CYP6FT3 3 NW_004768760 XM_005190452 XP_005190509 
CYP6G4 3 NW_004766190 XM_005188667 XP_005188724 
CYP6GU1 3 NW_004765183 XM_005184337 XP_005184394 
CYP6GW1 3 NW_004768817 XM_005190471 XP_005190528 
CYP6V3 3 NW_004764478 XM_005176346 XP_005176403 
CYP9F10 3 NW_004764700 XM_005180062 XP_005180119 
CYP9F11 3 NW_004764700 XM_005180054 XP_005180111 
CYP9F12 3 NW_004764700 XM_005180063 XP_005180120 
CYP9F7 3 NW_004764700 XM_005180052 XP_005180109 
CYP9F8v1 3 NW_004764700 XM_005180050 XP_005180107 
CYP9F9 3 NW_004764700 XM_005180053 XP_005180110 
CYP3073A1 4 NW_004765739 XM_005187010 XP_005187067 
CYP3073A2 4 NW_004765739 XM_005187012 XP_005187069 
CYP3073B1 4 NW_004765739 XM_005187011 XP_005187068 
CYP311A1 4 NW_004764740 XM_005180423 XP_005180480 
CYP313D1 4 NW_004767316 XM_005189825 XP_005189882 
CYP313D2 4 NW_004766063 XM_005188279 XP_005188336 
CYP318B1 4 NW_004766506 XM_005189277 XP_005189334 
CYP4AA1 4 NW_004764464 XM_005175977 XP_005176034 
CYP4AC6v1 4 NW_004765632 XM_005186465 XP_005186522 
CYP4AD1 4 NW_004765578 XM_005186278 XP_005186335 
CYP4AE3 4 NW_004764514 XM_005177255 XP_005177311 
CYP4C74 4 NW_004765515 XM_005185973 XP_005186030 
CYP4D3 4 NW_004764514 XM_005177258 XP_005177315 
CYP4D36 4 NW_004764744 XM_005180553 XP_005180610 
CYP4D4 4 NW_004765144 XM_005183986 XP_005184043 
CYP4D54 4 NW_004764514 XM_005177250 XP_005177307 
CYP4D55 4 NW_004764514 XM_005177252 XP_005177309 
CYP4D56 4 NW_004764514 XM_005177251 XP_005177308 
CYP4D58v1 4 NW_004765144 XM_005183988 XP_005184045 
CYP4D9 4 NW_004764514 XM_005177345 XP_005177402 
CYP4E10 4 NW_004765578 XM_005186272 XP_005186329 
CYP4E11 4 NW_004765578 XM_005186268 XP_005186325 
CYP4E7 4 NW_004765578 XM_005186267 XP_005186324 
CYP4G13 4 NW_004764475 XM_005176292 XP_005176349 
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CYP4G2 4 NW_004764475 XM_005176294 XP_005176351 
CYP4G99 4 NW_004764542 XM_005177736 XP_005177793 
CYP4P10 4 NW_004764771 XM_005180896 XP_005180953 
CYP4P8 4 NW_004764771 XM_005180909 XP_005180966 
CYP4S23 4 NW_004764524 XM_005177495 XP_005177552 
CYP4S24 4 NW_004764524 XM_005177488 XP_005177545 
CYP12A1 Mito NW_004764697 XM_005180004 XP_005180061 
CYP12A13 Mito NW_004764697 XM_005180007 XP_005180064 
CYP12A14 Mito NW_004764697 XM_005179996 XP_005180053 
CYP12A16 Mito NW_004769267 XM_005190663 XP_005190720 
CYP12A17 Mito NW_004764512 XM_005177016 XP_005177073 
CYP12A2 Mito NW_004764697 XM_005179998 XP_005180055 
CYP12A3 Mito NW_004764697 XM_005179997 XP_005180054 
CYP12G2 Mito NW_004764745 XM_005180644 XP_005180701 
CYP12G4 Mito NW_004765031 XM_005183241 XP_005183298 
CYP301A1 Mito NW_004764517 XM_005177409 XP_005177466 
CYP302A1 Mito NW_004764628 XM_005179205 XP_005179262 
CYP314A1 Mito NW_004764603 XM_005178726 XP_005178783 
CYP315A1 Mito NW_004765301 XM_005184970 XP_005185027 

† Nomenclature provided by the cytochrome P450 nomenclature committee, David R. 
Nelson. 
‡ RefSeq accession number, National Center for Biotechnology Information, Bethesda, 
MD. SC_number: supercontig number; XM_number: mRNA sequence number; 
XP_number: amino acid sequence number. 
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Table S4.3 Relative expression profile of 86 P450 genes in three strains of Musca 
domestica 

 Relative gene expression ± SEM* 
Gene aabys CS ALHF 
CYP4E10 1.00 1.56±0.08 274.42±22.40 
CYP4E11 1.00 1.22±0.12 5.86±0.55 
CYP4G13 1.00 0.99±0.11 1.93±0.13 
CYP4G99 1.00 0.54±0.07 4.52±0.31 
CYP4S24 1.00 1.04±0.11 2.94±0.08 
CYP6A36 1.00 1.11±0.03 7.03±0.64 
CYP6A40 1.00 1.08±0.11 2.95±0.22 
CYP6A52 1.00 1.01±0.11 2.74±0.15 
CYP6A58 1.00 0.84±0.18 4.32±1.02 
CYP6D10 1.00 1.77±0.07 6.24±0.63 
CYP6D3 1.00 0.26±0.05 2.40±0.13 
CYP9F10 1.00 1.23±0.09 2.01±0.19 
CYP12A3 1.00 0.74±0.01 0.35±0.15 
CYP12G4 1.00 1.21±0.12 0.35±0.05 
CYP28G6 1.00 1.18±0.17 0.21±0.04 
CYP3073A1 1.00 1.03±0.11 0.12±0.03 
CYP4AD1 1.00 0.94±0.08 0.07±0.01 
CYP4D4 1.00 2.25±0.19 0.66±0.08 
CYP6A24 1.00 1.08±0.11 0.69±0.07 
CYP6A5 1.00 1.44±0.08 0.67±0.07 
CYP6A57 1.00 1.89±0.17 0.66±0.03 
CYP6A63P 1.00 0.22±0.05 0.08±0.03 
CYP6D8 1.00 0.74±0.09 0.18±0.04 
CYP6EK2 1.00 1.39±0.13 0.41±0.11 
CYP6FT3 1.00 0.83±0.09 0.06±0.01 
CYP6GW1 1.00 0.84±0.07 0.08±0.01 
CYP12A1 1.00 1.28±0.12 1.02±0.19 
CYP12A13 1.00 0.04±0.04 0.54±0.06 
CYP12A14 1.00 0.36±0.06 0.74±0.08 
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CYP12A16 1.00 1.96±0.13 1.85±0.17 
CYP12A17 1.00 3.13±0.11 2.81±0.24 
CYP12A2 1.00 1.67±0.08 1.53±0.14 
CYP12G2 1.00 2.99±0.25 2.16±0.19 
CYP18A1 1.00 2.75±0.23 2.64±0.22 
CYP28B1 1.00 0.95±0.11 1.04±0.12 
CYP28B2 1.00 1.68±0.08 1.55±0.14 
CYP301A1 1.00 0.78±0.08 0.69±0.07 
CYP302A1 1.00 0.20±0.05 0.68±0.07 
CYP304A2 1.00 0.15±0.03 0.74±0.16 
CYP305A1 1.00 4.27±0.34 2.32±0.18 
CYP306A1 1.00 0.95±0.10 1.09±0.11 
CYP3073A2 1.00 0.34±0.06 0.37±0.05 
CYP3073B1 1.00 0.74±0.13 0.88±0.09 
CYP310B2 1.00 1.25±0.31 1.51±0.14 
CYP311A1 1.00 0.96±0.11 0.86±0.09 
CYP313D1 1.00 530.5±46.61 512.12±27.76 
CYP313D2 1.00 0.93±0.12 0.79±0.08 
CYP314A1 1.00 1.65±0.15 1.26±0.12 
CYP315A1 1.00 1.88±0.13 2.07±0.18 
CYP317A3 1.00 0.98±0.13 1.14±0.11 
CYP318B1 1.00 0.91±0.13 0.99±0.11 
CYP438A4 1.00 0.89±0.11 0.88±0.09 
CYP4AA1 1.00 1.13±0.11 1.30±0.06 
CYP4AC6v1 1.00 27.45±3.72 23.59±1.94 
CYP4AE3 1.00 0.44±0.06 0.62±0.08 
CYP4C74 1.00 5.16±0.41 1.60±0.15 
CYP4D3 1.00 0.89±0.13 1.06±0.13 
CYP4D36 1.00 1.11±0.08 1.03±0.12 
CYP4D54 1.00 0.41±0.06 0.59±0.06 
CYP4D55 1.00 0.53±0.07 1.04±0.16 
CYP4D56 1.00 0.79±0.09 0.51±0.06 
CYP4D9 1.00 1.02±0.11 1.08±0.13 
CYP4D58V1 1.00 5.87±0.39 4.33±0.93 
CYP4E7 1.00 1.11±0.11 1.05±0.12 
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CYP4G2 1.00 1.08±0.05 1.20±0.23 
CYP4P10 1.00 2.98±0.26 2.93±0.11 
CYP4P8 1.00 1.02±0.07 0.81±0.08 
CYP4S23 1.00 11.69±1.31 6.61±0.55 
CYP6A1 1.00 2.94±0.42 2.91±0.25 
CYP6A25 1.00 3.67±0.32 1.05±0.10 
CYP6A37 1.00 1.04±0.11 0.88±0.06 
CYP6A4 1.00 2.02±0.18 1.18±0.05 
CYP6A54 1.00 3.55±0.29 2.57±0.23 
CYP6A59 1.00 1.17±0.12 0.86±0.09 
CYP6A7 1.00 52.34±3.8 10.41±0.86 
CYP6C2 1.00 1.51±0.14 0.82±0.08 
CYP6D11 1.00 0.43±0.06 0.77±0.08 
CYP6FS2 1.00 0.97±0.11 1.24±0.12 
CYP6G4 1.00 3.22±0.26 2.41±0.31 
CYP6GU1 1.00 1.79±0.16 1.91±0.21 
CYP6V3 1.00 0.96±0.10 0.92±0.09 
CYP9F11 1.00 1.24±0.05 0.99±0.09 
CYP9F12 1.00 2.17±0.19 1.02±0.10 
CYP9F7 1.00 1.23±0.09 1.31±0.12 
CYP9F8v1 1.00 1.24±0.12 1.18±0.09 
CYP9F9 1.00 1.06±0.11 0.81±0.08 

* The relative levels of gene expression were shown as a ratio in comparison with that in 
aabys flies, the data are shown as the mean ± SEM. 
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Table S4.4 The relative expression of P450 genes in ALHF Musca domestica following 
permethrin treatment 

 

Gene 

Relative gene expression ± SEM* 

0h 6h 12h 24h 48h 
CYP4D4 1.00  1.23±0.09 1.71±0.23 2.65±0.34 1.63±0.16 
CYP4G2 1.00 1.31±0.17 1.65±0.21 2.52±0.12 0.98±0.22 
CYP4S23 1.00  2.04±0.36 1.82±0.28 0.95±0.15 1.01±0.25 
CYP4S24 1.00  1.09±0.12 2.25±0.32 2.53±0.32 0.77±0.13 
CYP6A24 1.00  1.41±0.16 1.96±0.29 3.19±0.17 0.94±0.23 
CYP6A36 1.00  1.04±0.11 2.05±0.30 2.12±0.27 1.34±0.18 
CYP6A52 1.00  2.46±0.29 3.01±0.40 2.22±0.28 2.07±0.33 
CYP6A54 1.00  4.46±0.55 3.71±0.47 3.27±0.43 0.81±0.44 
CYP6A58 1.00  2.03±0.22 2.43±0.24 0.99±0.15 0.65±0.12 
CYP6D8 1.00  4.03±0.53 3.25±0.42 7.88±0.54 0.98±0.15 
CYP6D10 1.00  1.36±0.25 5.22±0.92 2.82±0.35 1.14±0.16 
CYP6V3 1.00  1.59±0.26 1.96±0.31 2.80±0.35 1.05±0.16 
CYP6EK2 1.00  4.83±0.39 8.73±0.97 6.98±0.81 2.02±0.48 
CYP9F9 1.00  2.94±0.36 6.54±0.75 2.65±0.33 1.83±0.23 
CYP12A13 1.00  2.10±0.25 1.95±0.29 0.85±0.14 1.21±0.13 
CYP12G4 1.00  3.12±0.52 3.50±0.44 1.17±0.09 1.24±0.29 
CYP12A14 1.00  0.84±0.09 0.68±0.17 0.56±0.17 0.49±0.11 
CYP12A17 1.00  0.75±0.08 0.22±0.12 0.43±0.09 0.21±0.08 
CYP12A2 1.00  0.55±0.16 0.46±0.15 0.52±0.10 0.38±0.11 
CYP28G6 1.00  0.55±0.08 0.49±0.15 0.81±0.13 0.84±0.14 
CYP302A1 1.00  0.58±0.08 0.43±0.14 0.43±0.09 0.51±0.11 
CYP304A2 1.00  0.57±0.18 0.95±0.19 0.69±0.12 1.29±0.18 
CYP306A1 1.00  0.68±0.08 0.45±0.14 0.91±0.14 0.75±0.13 
CYP3073A2 1.00  0.48±0.06 0.46±0.15 0.23±0.06 0.56±0.11 
CYP3073B1 1.00  0.59±0.02 0.66±0.16 0.84±0.13 1.34±0.18 
CYP311A1 1.00  0.58±0.12 0.56±0.15 0.91±0.14 1.05±0.16 
CYP4AA1 1.00  0.84±0.19 0.51±0.15 0.99±0.22 0.66±0.12 
CYP4AC6v1 1.00  0.16±0.05 0.14±0.04 0.59±0.11 0.55±0.11 
CYP4D3 1.00  0.64±0.09 0.28±0.13 0.52±0.13 0.93±0.15 
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CYP4D36 1.00  0.41±0.06 0.21±0.12 0.41±0.09 1.26±0.17 
CYP4D55 1.00  0.22±0.05 0.15±0.05 0.35±0.08 0.48±0.11 
CYP4D58v1 1.00  1.13±0.13 0.75±0.17 0.58±0.11 0.91±0.14 
CYP6A1 1.00  0.49±0.22 0.38±0.14 0.27±0.07 0.33±0.09 
CYP6A25 1.00  0.24±0.05 0.19±0.12 0.13±0.06 0.21±0.08 
CYP6A7 1.00  0.75±0.08 0.63±0.16 0.69±0.12 0.27±0.09 
CYP6D11 1.00  1.03±0.23 1.38±0.21 0.98±0.15 0.52±0.11 
CYP6GU1 1.00  0.96±0.20 1.02±0.24 0.63±0.11 1.19±0.17 
CYP9F8v1 1.00  0.58±0.07 0.34±0.13 0.35±0.08 0.85±0.14 
CYP9F12 1.00  0.65±0.07 0.52±0.15 0.67±0.12 0.51±0.11 
CYP12A1 1.00  1.26±0.24 1.36±0.23 1.17±0.08 1.30±0.18 
CYP12A16 1.00  0.95±0.21 0.98±0.10 0.95±0.25 1.03±0.15 
CYP12A3 1.00  1.18±0.13 1.11±0.22 1.32±0.19 1.01±0.15 
CYP12G2 1.00  1.25±0.16 1.09±0.22 0.75±0.29 0.85±0.14 
CYP18A1 1.00  0.99±0.11 0.81±0.18 0.80±0.19 0.92±0.19 
CYP28B1 1.00  1.07±0.14 1.08±0.26 0.88±0.14 1.11±0.16 
CYP28B2 1.00  1.01±0.13 0.91±0.24 0.79±0.19 1.05±0.16 
CYP301A1 1.00  1.04±0.29 1.21±0.22 1.14±0.17 1.01±0.15 
CYP305A1 1.00  0.99±0.25 1.29±0.23 1.01±0.15 1.03±0.15 
CYP3073A1 1.00  1.12±0.14 1.22±0.22 1.26±0.18 1.21±0.17 
CYP310B2 1.00  1.01±0.13 0.84±0.18 1.04±0.15 1.12±0.21 
CYP313D1 1.00  0.98±0.06 1.27±0.22 1.33±0.19 1.31±0.18 
CYP313D2 1.00  1.06±0.33 1.18±0.21 0.97±0.15 0.73±0.43 
CYP314A1 1.00  0.81±0.09 1.09±0.21 1.15±0.17 0.84±0.14 
CYP315A1 1.00  0.89±0.21 0.89±0.28 0.88±0.25 1.16±0.19 
CYP317A3 1.00  0.81±0.09 1.15±0.21 1.17±0.17 0.77±0.13 
CYP318B1 1.00  1.09±0.18 0.86±0.18 1.29±0.18 0.96±0.15 
CYP438A4 1.00  0.86±0.13 1.06±0.26 1.04±0.16 1.21±0.17 
CYP4AD1 1.00  1.17±0.31 1.01±0.24 1.28±0.18 1.27±0.18 
CYP4AE3 1.00  0.83±0.11 0.94±0.19 1.16±0.17 1.24±0.17 
CYP4C74 1.00  0.95±0.12 1.09±0.02 1.01±0.15 1.27±0.18 
CYP4D54 1.00  0.98±0.07 1.07±0.23 0.78±0.13 0.86±0.19 
CYP4D56 1.00  1.04±0.12 0.93±0.24 0.82±0.13 1.21±0.17 
CYP4D9 1.00  1.16±0.15 1.16±0.21 1.34±0.22 0.84±0.14 
CYP4E10 1.00  1.05±0.23 0.92±0.19 0.91±0.19 0.73±0.23 
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CYP4E11 1.00  1.37±0.36 1.26±0.22 1.26±0.18 1.34±0.18 
CYP4E7 1.00  0.87±0.06 0.92±0.19 1.16±0.17 0.91±0.14 
CYP4G13 1.00  1.35±0.27 0.87±0.18 0.94±0.24 1.25±0.17 
CYP4G99 1.00  0.95±0.23 0.94±0.19 0.87±0.14 0.89±0.09 
CYP4P10 1.00  1.14±0.13 1.18±0.17 1.31±0.19 1.21±0.17 
CYP4P8 1.00  1.32±0.15 1.23±0.18 1.33±0.29 1.12±0.16 
CYP6A37 1.00  1.29±0.16 1.23±0.22 0.86±0.14 1.17±0.19 
CYP6A4 1.00  1.09±0.22 1.01±0.20 1.23±0.18 0.86±0.14 
CYP6A40 1.00  1.03±0.33 1.04±0.25 1.22±0.35 1.04±0.32 
CYP6A5 1.00  1.06±0.21 1.35±0.15 1.15±0.17 1.14±0.16 
CYP6A57 1.00  1.18±0.14 1.08±0.26 1.11±0.16 0.99±0.15 
CYP6A59 1.00  1.21±0.09 0.79±0.18 1.39±0.19 0.84±0.24 
CYP6A63P 1.00  1.22±0.31 1.07±0.21 0.95±0.20 1.16±0.17 
CYP6C2 1.00  1.38±0.24 1.24±0.22 0.83±0.13 1.17±0.07 
CYP6D3 1.00  0.87±0.11 0.95±0.12 0.92±0.14 0.75±0.13 
CYP6FS2 1.00  1.12±0.24 1.11±0.21 1.10±0.16 0.81±0.13 
CYP6FT3 1.00  1.12±0.22 1.21±0.22 1.13±0.16 1.29±0.18 
CYP6G4 1.00  1.14±0.15 0.96±0.15 1.26±0.23 1.03±0.21 
CYP6GW1 1.00  1.12±0.13 1.08±0.21 1.13±0.17 1.22±0.19 
CYP9F10 1.00  1.15±0.13 0.87±0.24 1.25±0.18 0.88±0.14 
CYP9F11 1.00  1.04±0.17 1.47±0.35 1.18±0.17 0.83±0.14 
CYP9F7 1.00  1.07±0.12 1.18±0.21 1.12±0.16 0.75±0.17 

* The relative levels of gene expression following permethrin treatment are shown as the 
mean ± SEM. 
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Table S4.5 Bottleneck values of channels detected by Cavity 3.0 

 Bottleneck radii values of channels detected by Cavity 3.0 (Å) 
Protein 2a 2ac 2b 2c 2d 2e 2f Solvent 

CYP4S24 2.14 1.64 1.61 1.66 1.21 - 1.42 1.23 
CYP6A36 1.55 1.22 1.37 2.04 1.32 1.47 1.39 1.26 
CYP6A52 1.31 1.35 1.36 1.85 1.36 1.63 1.27 1.24 
CYP6D10 1.33 1.59 1.36 1.93 1.89 1.77 1.31 1.27 

- Indicated channel was not detected by Cavity 3.0 
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Table S4.6 Docking results of selected P450 homology models 

Protein Active 

cavity 

volume 

(Å3) § 

Putative 

metabolic 

site# 

Estimate 

free energy 

(kcal/mol) 

Distance 

from heme 

iron (Å) * 

Predicted permethrin contact residues$ 

CYP6A36-aabys 574 gem -10.98 2.67 1(ILE122), 2(ASN216), 4(LEU310, ALA311, 

GLU314, THR315), 5(THR376, ILE377, 

PRO378), 6(ILE492) 

  C5-PB -9.91 2.64 1(ARG106, ILE122), 2(ASN216), 4(ALA311, 

THR315), 5(THR376, ILE377, THR379), 

6(ILE492) 

  C4′-PB -10.58 2.85 1(ASP114, ILE122), 2(ASN216, GLU217), 

3(GLU242), 4(ALA311, THR315), 5(ILE377) 

CYP6A36-

ALHF 

574 gem -10.98 2.67 1(ILE122), 2(ASN216), 4(LEU310, ALA311, 

GLU314, THR315), 5(THR376, ILE377, 

PRO378), 6(ILE492) 

  C5-PB -9.91 2.64 1(ARG106, ILE122), 2(ASN216), 4(ALA311, 

THR315), 5(THR376, ILE377, THR379), 

6(ILE492) 

  C4′-PB -10.58 2.85 1(ASP114, ILE122), 2(ASN216, GLU217), 

3(GLU242), 4(ALA311, THR315), 5(ILE377) 

      

CYP6A52-aabys 535 gem -9.71 3.21 1(ARG105, PHE121), 2(ILE214, GLU215), 
4(LEU308, ALA309), 6(ILE490) 

  C5-PB -9.15 3.43 1(ARG105, PHE121), 2(ILE214, GLU215), 

4(ALA309, THR313), 6(ILE490, ILE491) 

  C4′-PB -8.67 3.19 1(ARG105, PHE108, PHE121), 2(ILE214, 

GLU215), 4(ALA309, THR313, ILE374, 

ALA375), 6(ILE490) 

CYP6A52-

ALHF 

482 gem -10.16 2.94 1(ARG105), 2(MET213, ILE214, GLU215), 

4(LEU308, ALA309), 6(ILE490) 

  C5-PB -9.51 3.25 1(ARG105, PHE121), 2(ILE214, GLU215), 

4(LEU305, LEU308, ALA309, THR313), 

6(ILE490) 
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  C4′-PB -8.93 3.01 1(ARG105, PHE108, PHE121), 2(ILE214, 

GLU215), 4(LEU305, LEU308, ALA309, 

THR313), 6(ILE490) 

      

CYP6D10-aabys 593 gem -9.73 3.09 1(ARG99, SER111), 2(LYS211), 4(ALA319, 

THR323), 5(LEU389, PRO390, VAL391) 

  C5-PB -9.78 3.23 1(ARG99, SER111, ALA112), 2(LYS211, 

THR212), 4(LEU315, ALA319, THR323), 

5(LEU389, VAL391) 

  C4′-PB -9.45 3.16 1(ARG99, GLU105, LYS107, PHE115, SER116), 

2(LYS211), 4(LEU315, ILE318, ALA319), 
5(LEU389) 

CYP6D10-

ALHF 

537 gem -9.71 2.97 1(ARG99, TYR102, PHE115), 2(LYS211), 

4(ALA319, THR323), 5(LEU389, PRO390, 

VAL391) 

  C5-PB -10.11 2.91 1(ARG99, GLU105, LYS107, PHE115), 

2(LYS211, THR212), 4(LEU315, ILE318, 

ALA319, THR323), 5(LEU389) 

  C4′-PB -9.75 2.98 1(ARG99, TYR102, GLU105, LYS107, PHE115, 

SER116), 2(LYS211), 4(LEU315, ILE318, 

ALA319), 5(LEU389) 

      

CYP4S24 279 C5-PB -9.86 7.41 1(HIS101, ASN105, TYR106, LEU109), 
5(SER370, VAL371, PRO372, THR373, 

ALA375), 6(LEU479, VAL480) 

§ Active site cavity was calculated using the VOIDOO program with conventional probe 
radius of 1.4 Å. Å, angstrom. 1 Å=10-10 m 
# Predicted metabolic sites are indicated as following: Gem, germinal-dimethyl group; C5-
PB, carbon 5 in alcohol moiety; C4′-PB, carbon 4′ in terminal aromatic ring 
* The distance between the heme iron and putative metabolic sites. 
$ Predicted contact residues of permethrin are grouped based on SRSs of P450s. Superscript 
presents order of SRS 
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Figure 4.1 Number, family and clan distribution of cytochrome P450 genes in house 
flies, Musca domestica. The number shown along each column represents the P450 
family, the number in parenthesis is the number of individual genes in the corresponding 
family. The P450 gene sequence information was generated from the RNA-seq 
([NCBI:SRR521288], [NCBI:SRR521289]) and genome (PRJNA210139, 
PRJNA176013) analysis of Musca domestica. 
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Figure 4.2 mRNA levels of 86 P450 genes in aabys, CS and ALHF Musca domestica 
strains. mRNA levels were shown as the mean fold relative to their levels in aabys strain. 
Colors scaled from green to red indicate low to higher mRNA level. P450 genes were 
highlighted with red indicated significant up-regulated expression of P450 gene in ALHF 
strain compared to aabys and CS strains (P < 0.05). 
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Figure 4.3 Allele-specific RT-PCR autosomal mapping of the Musca domestica P450 
genes. PCR fragments were generated using the allele-specific primer set according to 
the sequence of each gene from ALHF. The absence of a PCR product in a house fly line 
indicated that the gene was located on the corresponding autosome from aabys (i.e. the 
absence of a band in the A1234 line indicates that the gene was present on autosome 5). 
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Figure 4.4 Induction of P450 gene expression in ALHF house flies following 
permethrin treatment. The relative expression of P450 genes was analyzed by qRT-
PCR as described in the methods. Y axis represents the ratio of the gene expression in 
each treatment compared with that in the acetone treated control house flies. The results 
are shown as the mean ± SEM (n = 3). There is no significant difference in the expression 
level with the same alphabetic letter (P < 0.05). 
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Figure 4.5 Transgenic expression of CYP4S24, CYP6A36, CYP6A52 and CYP6D10 in 
Drosophila melanogaster. The relative expression of the four transgenes were quantified 
by qRT-PCR. “P450” represents the homozygous transgenic Drosophila line with house 
fly P450 genes, “P450+GAL” represents the F1 generation of homozygous transgenic 
Drosophila line crossed with GAL4 driver line. Data shown are mean ± SEM (n = 3). 
There was no significant difference in the expression level with the same alphabetic letter 
(P < 0.05). 
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Figure 4.6 Toxicity of permethrin to non-transgenic and transgenic Drosophila 
melanogaster lines. Resistance ratios = LC50 of Drosophila melanogaster lines/LC50 of 
Control line. There was no significant difference in the expression level with the same 
alphabetic letter (P < 0.05). 
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Figure 4.7 Topology of P450s. Secondary structure of helices and sheets are labeled. The 
mutated residues are shown in green sticks and listed with aabys residue first and ALHF 
residue second. Six putative SRSs were colored and predicted, according to Gotoh’s 
predicted models (Gotoh 1992). SRS 1 to 6 is represented by red, wheat, yellow, blue, 
purple and orange color, respectively. The heme group is represented by cyan sticks. (A) 
CYP4S24, (B) CYP6A36, (C) CYP6A52, (D) CYP6D10. 
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Figure 4.8 Solvent channel, family 2 channels and active site of P450s. Channels are 
shown as connected spheres with different color: cyan (2a), orange (2ac), purple (2b), 
blue (2c), wheat (2d), red (2e) and yellow (2f). Helix I and heme of P450s are labeled. 
(A) CYP6A36, (B) CYP6A52, (C) CYP6D10, (D) CYP4S24. Glutamate 313 and 
Threonine 317 are labeled. 
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Figure 4.9 Permethrin binding models in active site of P450s. The heme group is 
represented by green sticks. The permethrin is represented by red sticks. CYP6A36, 
CYP6A52 and CYP6D10 exhibited 3 permethrin binding models close to heme iron: (A) 
germinal-dimethyl group, (B) 5-phenoxybenzyl carbon, (C) 4′-phenoxybenzyl carbon. 
Single binding mode, (D) 5-phenoxybenzyl carbon was obtained in CYP4S24. 
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Figure S4.1 RT-PCR amplification of the transgenic Drosophila melanogaster lines 
using gene specific primers. The lanes, within gene, indicated with a “-” represent the 
non-transgenic empty vector control D. melanogaster line. “+” represent the transgenic 
D. melanogaster lines containing the house fly P450 genes. *The GelPilot 1Kb (+) ladder 
(Qiagen Inc, Valencia, CA) was used as the molecular size reference, with the numbers 
on the figure indicating the DNA band size in bp. 
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Figure S4.2-5. Deduced amino acid sequence alignment of P450s. The sequence 
analysis was conducted by T-COFFEE (http://tcoffee.crg.cat/) and ESPript 3.0 
(http://espript.ibcp.fr/ESPript/ESPript/) (Gouet et al. 2003). Alph-helices, eta-helices, 
beta strands and strict beta turns are marked by α, η, β and TT respectively. 
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Figure S4.6 Putative metabolic site of permethrin. Arrows point to putative metabolic 
sites of P450s. 
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Chapter 5: Molecular and Functional Characterization of Carboxylesterases from 

the House Fly, Musca domestica 

 

5.1 Abstract 

To characterize the carboxylesterase genes that play important roles in the pyrethroid 

resistance of house flies, 26 carboxylesterase genes were selected from the house fly 

based on our whole transcriptome analysis, to conduct the expression profile analysis in 

different house fly strains with different levels of permethrin resistance and autosome 

combinations. Our study showed that 2 carboxylesterase genes, MdαE7 and MdβE2 were 

co-up-regulated in insecticide-resistant house flies compared to -susceptible house flies, 

and the expression of these genes was regulated by cis or trans regulatory factors/genes, 

which were mainly on autosomes 1, 2 and 5. Transgenic expression analysis of MdβE2 in 

Drosophila melanogaster demonstrated that elevated expression of this gene confers 

resistance to permethrin in the transgenic Drosophila. Homology modeling and 
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permethrin docking analysis further suggested the potential abilities of MdαE7 and 

MdβE2 to metabolize permethrin. 

 

5.2 Introduction 

The development of insecticide resistance in insect pests is becoming a global 

challenge and threatening the sustainable use of insecticides. Efforts to characterize the 

molecular mechanisms involved in insecticide resistance are becoming increasingly 

important for practical applications, such as the design of novel strategies to prevent or 

minimize the spread and evolution of resistance development and the control of insect 

pests (Roush et al. 1990).  

Increased metabolic detoxification, which can facilitate insecticide excretion, is one 

of the significant mechanisms involved in pyrethroid resistance in insects (Zhang et al. 

2010). One of the major routes of pyrethroid metabolism is via carboxylesterase-

mediated hydrolysis (Huang et al. 2005b). Studies have shown that carboxylesterase gene 

amplification, up-regulation, coding sequence mutations, or a combination of these 

mechanisms, are the predominant molecular basis of the esterase-mediated resistance to 

pyrethroids (Li et al. 2007; Zhang et al. 2010). 
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Interestingly, a recent study of mosquitoes showed that cytochrome P450 

monooxygenases can metabolize PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-

phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, 

producing PBA (3-phenoxybenzoic acid). In addition, transcription of these P450 genes 

was induced by PBAlc, PBAld and PBA (Alexia et al. 2013), indicating potential 

interaction between carboxylesterases and P450s. Previous studies also showed that 

expression of some important P450 genes involved in insecticide metabolism were 

regulated by trans- or cis-regulatory factors/genes (Carino et al. 1994; Liu and Scott 

1996; Maitra et al. 2000; Maitra et al. 1996; Zhu et al. 2008a), suggesting that insecticide 

resistance development of insects is not only conferred via multiple metabolism genes, 

but also mediated through the interaction of regulatory factors and metabolism genes (Li 

et al. 2013). Although no regulatory factors involved in insecticide resistance have yet 

been identified, these studies inferred that studies of carboxylesterases would be an 

important intermediary step in characterizing the regulatory genes involved in insecticide 

resistance. Recent advances in genome/whole transcriptome sequencing technology have 

provided opportunities for discovering and studying all of the carboxylesterases in one 

single organism.  
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The house fly, Musca domestica, is an important cosmopolitan pest that causes more 

than 100 human and animal intestinal diseases, such as cholera, typhoid fever, 

salmonellosis and polio (Keiding 1986). It is also an effective vector of Escherichia coli 

O157:H7 among cattle, and from cattle to humans (Ahmad et al. 2007; Sasaki et al. 

2000). The major barrier to house fly control is their remarkable ability to develop 

insecticide resistance. Because of their rapid ability to develop resistance and cross-

resistance to insecticides, their well described linkage map for five autosomes and two 

sex chromosomes (X and Y) (Hiroyosh 1960; Hiroyosh 1977; Milani et al. 1967; Nickel 

and Wagoner 1974; Tsukamoto et al. 1961) and their relatively well studied biochemistry 

and genetics of insecticide resistance, the house fly has demonstrated to be a useful 

model to study and predict resistance in not only themselves but also other insect species.  

With the availability of the first adult house fly transcriptome and genome database 

(Li et al. 2013), 26 carboxylesterase genes were identified in the house fly. From this, we 

conducted an expression profile study of five carboxylesterase genes in different house 

fly strains with different combinations of autosomes from a resistant house fly strain, 

ALHF, explored the function of one carboxylesterase gene in insecticide resistance using 

Drosophila transgenic techniques, and conducted modeling and permethrin docking 
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analyses to investigate the roles of carboxylesterases involved in pyrethroid resistance in 

house flies. 

 

5.3 Materials and Methods 

5.3.1 House fly strains and lines 

Two house fly parental strains were used in this study. ALHF is a wild-type 

insecticide-resistant strain collected from a poultry farm in Alabama in 1998. This strain 

was further selected with permethrin for six generations after collection to reach a high 

level of resistance, and has been maintained under biannual selection with permethrin 

(Liu and Yue 2000; Tian et al. 2011). aabys is an insecticide-susceptible strain with 

recessive morphological markers ali-curve (ac), aristapedia (ar), brown body (bwb), 

yellow eyes (ye), and snipped wings (snp) on autosomes 1, 2, 3, 4, and 5, respectively. 

A cross of ALHF female and aabys male was performed with each of ~400 flies, and 

the F1 males (~400 flies) were then backcrossed with aabys female. Five back-cross 

(BC1) lines with the following genotypes were isolated: ac/ac, +/ar, +/bwb, +/ye, +/snp; 

+/ac, ar/ar, +/bwb, +/ye, +/snp; +/ac, +/ar, bwb/bwb, +/ye, +/snp; +/ac, +/ar, +/bwb, 

ye/ye, +/snp; and +/ac, +/ar, +/bwb, +/ye, snp/snp (Li et al. 2013). Homozygous lines 
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ac/ac, +/+, +/+, +/+, +/+ (A2345); +/+, ar /ar, +/+, +/+,+/+ (A1345); (+/+, +/+, bwb/bwb, 

+/+, +/+ (A1245); +/+, + /+, +/+, ye/ye, +/+ (A1235) and +/+, +/+, +/+, +/+, snp/snp 

(A1234) were accomplished by sorting for appropriate phenotypic markers and selecting 

with permethrin at a corresponding dose that caused ~70% mortality for each of lines for 

three generations. One hundred single-pair crossing of each of lines for the desired 

phenotype and genotype were then set up (Liu and Yue 2000; Tian et al. 2011). The name 

of each line indicates which of its autosomes bear wild-type markers from ALHF. For 

instance, the A2345 strain has wild-type markers on autosomes 2, 3, 4 and 5 from ALHF 

and the mutant marker on autosome 1 from aabys. 

 

5.3.2 Phylogenetic analysis of carboxylesterase genes in M. domestica 

To classify carboxylesterase genes that identified from the house fly based on our 

transcriptome and genome analysis, phylogenetic tree was constructed with the 

carboxylesterases that from the Drosophila melanogaster (http://flybase.org/) and 

Anopheles gambiae (https://www.vectorbase.org/). Briefly, the amino acid sequences 

were analyzed using ClustalW alignment through Molecular Evolutionary Genetic 

Analysis software version 6 (MEGA 6) (http://www.megasoftware.net/) (Tamura et al. 

http://www.megasoftware.net/
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2013). Subsequently, the alignment result was submitted to construct the phylogenetic 

tree with neighbor-joining algorithm. A total of 1,000 bootstrap replications were used to 

test of phylogeny. The house fly carboxylesterases were named based on the major clades 

that they were clustered. 

 

5.3.3 RNA extraction, cDNA preparation and gene expression detection 

A total of 20 3-day old adult female house flies from each of three house fly strains 

(ALHF, aabys and CS) and five house fly lines (A2345, A1345, A1245, A1235, A1234) 

were flash frozen on dry ice and immediately processed for RNA extraction. Total RNA 

(0.5 μg/sample) from each house fly sample was reverse-transcribed using SuperScript II 

reverse transcriptase (Stratagene) in a total volume of 20 μl. The quantity of cDNAs was 

measured using a spectrophotometer prior to qRT-PCR, which was performed with the 

SYBR Green master mix Kit and ABI 7500 Real Time PCR system (AppliedBiosystems). 

Each qRT-PCR reaction (15 µl final volumes) contained 1× SYBR Green master mix, 1 

μl of cDNA, and a gene specific primer pair at a final concentration of 0.3-0.5 μM (Table 

S5. 1). A 'no-template' negative control and all samples were performed in triplicate. 

Relative expression levels of specific genes were calculated by the 2-ΔΔCt method using 
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SDS RQ software (Livak and Schmittgen 2001). The β-actin gene, an endogenous 

control, was used to normalize expression of target genes (Zhu et al. 2008a). Each 

experiment was repeated three times with different preparations of RNA samples. The 

statistical significance of the gene expressions was calculated using Student's t-test for all 

pairwise sample comparisons and a one-way analysis of variance (ANOVA) for multiple 

sample comparisons (SPSS v19.0), a value of P < 0.05 was considered statistically 

significant. 

 

5.3.4 Autosomal mapping of selected carboxylesterase genes in M. domestica 

Five house fly BC1 lines were used to determine genetic linkage of up-regulated 

P450 genes. Allele specific PCR was conducted using the cDNA from 5 BC1 lines (Liu et 

al. 1995). The ALHF allele specific primer pair was designed based on the specific 

sequence of the genes from ALHF by placing a specific nucleotide polymorphism at the 

3’ end of each primer to permit preferential amplification of specific alleles from ALHF. 

Two rounds of PCR were conducted. For the first PCR reaction, the allele-independent 

primer pairs (Table S5.1) were used for generating P450 cDNA fragments, respectively. 

The first PCR solution with cDNA template and a primer pair were heated to 95°C for 3 
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min, followed by 35 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 1 min, then 

72°C for 10 min. The second PCR was employed with 0.5 µl of the first round PCR 

reaction solution and the allele specific primer pair (Table S5.1). The second PCR 

reaction was heated to 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 62°C for 

30 s, and 72°C for 30 s, then 72°C for 10 min. One of each allele specific primer pair was 

designed based on the specific sequence of the genes from ALHF by placing a specific 

nucleotide polymorphism at the 3’ end of the primer to permit preferential amplification 

of the allele from ALHF. Each experiment was repeated three times with different 

mRNAs, and the PCR products were sequenced at least once for each gene. 

 

5.3.5 Transgenic expression of candidate carboxylesterase genes in Drosophila 

melanogaster and toxicity of permethrin to the transgenic lines 

The full length of candidate carboxylesterase genes were amplified from cDNA of 

ALHF house fly using Platinum Taq DNA polymerase High Fidelity (Invitrogen) with 

specific primer pairs (Table S5.1) based on the 5' and 3' end sequences of the genes. PCR 

products were purified using a QIAquick Gel Extraction Kit (Qiagen). The purified PCR 

products were ligated into pCR 2.1 vector using the Original TA Cloning kit (Invitrogen) 
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as described by the manufacturer. The full lengths of P450 genes were cloned in One 

Shot TOPO 10F' cells using the One Shot TOP10F' Chemically Competent E. coli kit 

(Invitrogen). Cloning and sequence analyses were repeated at least three times and three 

TA clones from each replication were verified by sequencing. The clones were then sub-

cloned into a pUASTattB vector (a gift from Dr. Johannes Bischof, University of Zurich). 

The plasmid of each pUASTattB-up-regulated P450 gene was transformed into the germ 

line of the M{vas-int.Dm}ZH-2A, M{3xP3-RFP.attP'}ZH-58A strain of D. melanogaster 

(Bloomington stock #24484), resulting in site specific integration on chromosome 2R 

(Rainbow Transgenic Flies Inc.). Flies were then reciprocally-crossed against a W1118 

strain to obtain a transgenic line with the orange eye phenotype, then balanced against the 

D. melanogaster balancer strain w[1118]/Dp(1;Y)y[+]; sna[Sco]/CyO, 

P{ry[+t7.2]=sevRas1.V12}FK1 (Bloomington stock #6312) to generate a homozygous 

line containing the Cytochrome P450 transgene. The insertion of the up-regulated P450 

genes in the transgenic fly lines were further confirmed using RT-PCR. The homozygous 

lines were crossed with the GAL4-expressing D. melanogaster strain P{Act5C-

GAL4}17bFO1 (Bloomington stock #3954) which expresses GAL4 under control of the 

Act5C promoter, resulting in ubiquitous non-tissue-specific expression. The F1 
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generation of these crosses expressed GAL4 and contained a single copy of the 

Cytochrome P450 transgene which was under control of the UAS enhancer. The 

expression of the transgenes in transgenic Drosophila flies was confirmed using qRT-

RCR. The ribosomal protein L11 (RPL11) of D. melanogaster was used as an 

endogenous control to normalize expression of target genes. 

Permethrin toxicity bioassays were then conducted on 3-day posteclosion female D. 

melanogaster of F1 UAS-GAL4 crosses to examine the toxicity of permethrin to 

transgenic flies. Briefly, a serial concentrations of permethrin solution in acetone, ranging 

from 3 ng/µL to 150 ng/µL that gave >0 and <100% mortality to the tested flies were 

prepared, two hundred microliter of each permethrin solution were evenly coated on the 

inside of individual 20 mL glass scintillation vials. Twenty female flies were transferred 

to each of the prepared vials, which were plugged with cotton balls soaked with 15% 

sucrose. The vials for the control groups were coated with acetone alone and plugged 

with identical 15% sucrose-soaked cotton balls. The mortality was scored after 24 h 

exposure to permethrin. Flies that did not move were scored as dead. Each bioassay was 

independently replicated three times using only flies that exhibited the correct 

morphological marker eyes. The D. melanogaster line (Bollmington stock #24484), 
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which containing the empty pUAST vector donated insert, but no transgene from M. 

domestica were used as the control reference line. Bioassay data were pooled and probit 

analysis was conducted. Significant difference in the resistance levels of the D. 

melanogaster lines were determined based on non-overlap of 95% confidence intervals 

(CI). All D. melanogaster were reared on Jazz-Mix D. melanogaster food (Fisher 

Scientific, Kansas City, MO) at 25 ± 2 oC under a photoperiod of 12:12 (L:D) h. 

 

5.3.6 Homology modeling and permethrin docking analysis of selected 

carboxylesterase 

Structural modeling was performed by the I-TASSER server with the combined 

methods (Roy et al. 2010; Zhang 2008). Multiple models were predicted by the I-

TASSER for each carboxylesterase. The top scoring model was submitted to the FG-MD 

server for fragment guided molecular dynamics structure refinement (Zhang et al. 2011). 

Model quality was controlled by Ramachandran plots generated with Procheck 

(http://services.mbi.ucla.edu/SAVES/) (Laskowski et al. 1993) and ProSA-web 

(https://prosa.services.came.sbg.ac.at/prosa.php) (Sippl 1993; Wiederstein and Sippl 

2007). The volume of the substrate binding cavity was characterized by VOIDOO with a 

https://prosa.services.came.sbg.ac.at/prosa.php
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1.4 Å probe (Kleywegt et al. 2001). Proteins and ligands were prepared for docking with 

Autodock Tools v1.5.6 (http://mgltools.scripps.edu/downloads). Molecular docking was 

performed by Autodock 4.2. (Morris et al. 2009). Ligand permethrin structures were 

retrieved from the ZINC database (Irwin et al. 2012). For all dockings, a search space 

with a grid box of 60 x 60 x 60 Å, was centered at the serine of the catalytic triad of 

carboxylesterases. The figures were produced by Pymol (http://www.pymol.org/) 

(DeLano 2002) and Ligplot (Laskowski and Swindells 2011). 

 

5.4 Results 

5.4.1 Identification and phylogenetic analysis of carboxylesterase genes in M. 

domestica 

A total of 26 putative carboxylesterases was identified from the M. domestica based 

on our transcriptome and genome analysis. The tree showed that a total of 11 clades 

within three groups of dietary/detoxification, hormone/semiochemical processing, and 

neuro/developmental functions were characterized (Figure 5.1). Among the 26 identified 

carboxylesterase genes of the house fly, thirteen were in the dietary detoxification group 

(α-esterase clade). Eight of the carboxylesterase genes were involved in the 
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hormone/semiochemical processing, 1 juvenile hormone esterase, 2 β-esterases and 5 

integument esterases. Five carboxylesterase genes were located in neuro/developmental 

functions group, with 2 genes were in the glutactin-like esterase clade and 3 in 

uncharacterized putative neuroreceptor, acetylcholinesterase and neuroligin clades, 

respectively. None of the carboxylesterase genes of house flies that belong to the 

gliotactin, uncharacterized group and neurotactin clades were detected in our study. The 

accession numbers of these genes are shown in Table S5.1. Again, the names were based 

on the major clades where they were clustered. 

 

5.4.2 Autosomal location and expression profile of selected carboxylesterase genes in 

ALHF and aabys M. domestica strains 

Carboxylesterases in clades of α-esterase and β-esterase have been found to be 

involved in insecticide resistance in different insects. Based on our transcriptome analysis 

of house flies, five carboxylesterase genes from these clades were selected for 

investigation in autosomal location and examination of the relative expression profile in 

ALHF and aabys house fly strains. Our autosome mapping results showed that the ALHF 

allele-specific primer sets for these carboxylesterase genes amplified specific DNA 
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fragments only in flies with the autosome 2 wild-type marker from ALHF (Figure 5.2), 

which demonstrated that all of these carboxylesterase genes were on autosome 2. 

Meanwhile, the expression levels of 2 carboxylesterase genes (MdαE7 and MdβE2) were 

found significantly (P < 0.05) up-regulated in the ALHF house flies and MdαE10 was 

found significantly down-regulated in ALHF house flies compared to aabys house flies 

(Figure 5.3). No significant difference in the transcriptional level of MdαE1 and MdαE5 

was observed between the ALHF and aabys house flies. 

 

5.4.3 Autosome co-regulation of up-regulated carboxylesterase gene expression in 

insecticide-resistant (ALHF) house flies 

We next examined the autosomal linkage of factors from different autosomes to 

determine the effects of the co-regulation on the expression of the up-regulated MdαE7 

and MdβE2 genes among five house fly homozygous lines of A2345, A1345, A1245, 

A1235 and A1234. Analyzing the gene expression changes resulting from autosome 

replacement in ALHF house flies enabled us to evaluate the role of genes or factors on 

each autosome play in carboxylesterase gene overexpression in ALHF house flies. The 

results showed that when autosomes 2 and 5 of ALHF house flies was replaced by the 
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corresponding autosome from aabys, respectively (i.e., line A1345 and A1234), the 

expression of MdαE7 was down-regulated compared to ALHF house flies (Figure 5.4). 

Meanwhile, when autosomes 1, 2 and 5 of ALHF house flies were replaced by the 

corresponding autosome from aabys respectively (i.e., line A2345, A1345 and A1234), 

the expression of MdβE2 was down-regulated compared to ALHF house flies. Suggesting 

that factors on autosomes 2 and 5 were involved in the expression regulation of MdαE7 

genes, and factors on autosomes 1, 2 and 5 were involved in the expression regulation of 

MdβE2 genes in ALHF house flies. 

 

5.4.4 Functional study of MdβE2 in the transgenic D. melanogaster 

Overexpression of MdαE7 has been reported to be associated with pyrethroid 

resistance in a Chinese house fly strain (Zhang et al. 2010). To investigate whether 

MdβE2 can independently confer resistance to permethrin, transgenic study of MdβE2 

using the GAL4-UAS enhancer trap system of D. melanogaster was conducted. We first 

determined the presence of the MdβE2 genes in transgenic lines of D. melanogaster by 

RT-PCR; the result showed that the transgenic line has obtained the target transgene 

(Figure S5.1). To test whether the GAL4-UAS expressing system of D. melanogaster can 
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increase the expression of the target MdβE2 gene, qRT-PCR was employed to detect the 

difference in the expression level of three lines: Control (Bloomington stock #24484 D. 

melanogaster line containing the empty pUAST vector), GAL4 (ubiquitous Act5C driver 

line) and Control + GAL4 (the F1 progeny from the cross between the control females 

and the GAL4 males), which were not transformed with the MdβE2 recombinant 

plasmid, and two transgene lines, MdβE2 (MdβE2 homozygous transgene line) and 

MdβE2+GAL4 (the F1 progeny from the cross between the MdβE2 homozygous 

transgene line females and the GAL4 males). Our results showed that the expression of 

MdβE2 was not detected in the non-transgenic D. melanogaster lines (Control, GAL4 

and Control+GAL4), but was detected in transgenic lines (MdβE2 and MdβE2+GAL4), 

and the expression of MdβE2 was enhanced by the GAL4-UAS expressing system of D. 

melanogaster (MdβE2+GAL4 > P450) (Figure 5.5). 

We next characterized the sensitivities of the non-transgenic and transgenic D. 

melanogaster lines to permethrin. The bioassay results showed that there was no 

significant difference of permethrin toxicity among the three non-transgenic lines based 

on the overlapping 95% confidence intervals (Figure 5.5). However, after the MdβE2 was 

highly expressed in D. melanogaster, the permethrin resistance level was significantly 
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increased compared to non-transgenic lines (Figure 5.5 and S5.2). These results indicated 

that MdβE2 is capable of conferring permethrin tolerance in D. melanogaster, further 

suggesting that MdβE2 plays important roles in permethrin resistance in M. domestica.  

 

5.4.5 Homology modeling and permethrin docking analysis 

Homology modeling and permethrin docking studies were conducted to investigate 

the potential permethrin metabolic detoxification differences between MdαE7 and 

MdβE2. The deduced amino acid sequence of MdαE7 showed a 27.3% identity with 

MdβE2. In contrast to the low overall sequence identity, the three dimensional structure 

shows a high degree (90.6%) of conservation (Figure 5.7). Both MdαE7 and MdβE2 

contained conserved carboxylesterase characteristics, such as amphipathic α-helix in the 

N-terminus that acts as transmembrane anchor, canonical catalytic triad (Serine, 

glutamate and glycine) and oxyanion hole (Alanine and glycine) (Figure 5.6, S5.2, S5.3). 

The overall structure of MdαE7 and MdβE2 were both composed of a catalytic domain, a 

αβ domain and a regulatory domain, respectively. The main differences between MdαE7 

and MdβE2 were the channel opening to the catalytic site and the size of the catalytic 

pocket. Although MdβE2 has a wider substrates channel opening at the entrance of the 
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catalytic cavity due to the short amino acid chain on the N-terminus, it has a smaller 

catalytic pocket compared to MdαE7. The substrate binding cavities of these two 

esterases were extremely asymmetrical, with a small and a large pocket responsible for 

depositing alkyl group and early/aerial groups of substrate, respectively.  

Docking analysis showed that permethrin (1R, trans) is, as expected, a suitable 

substrate for MdαE7 and MdβE2. Snugly fitting between the permethrin and catalytic 

cavities of both MdαE7 and MdβE2 suggested that the active sites of MdαE7 and MdβE2 

were ideally shaped for permethrin (Figure 5.7). However, a higher binding affinity with 

permethrin (-10.94 Kcal/mol) and shorter distance (3.8 Å) from the carbon atom of the 

ester group of permehtrin to the hydroxyl function serine in MdβE2 was detected 

compared to that in MdαE7 (-10.1 Kcal/mol, 4.6 Å), indicating a stronger nucleophilic 

attack and permethrin metabolism ability in MdβE2. 

Since permethrin is a hydrophobic molecule, it interacts almost entirely through van 

der Waals contacts with carboxylesterases. The only exception is the hydrogen bond 

formed between the carboxyl group of permethrin and arginine in MdαE7 and histidine in 

MdβE2. Hydrogen bonds with these atoms may stabilize the intermediate that was 
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formed during hydrolysis (del Loandos et al. 2012; Newcomb et al. 1997; Satoh and 

Hosokawa 2006). 

5.5 Discussion 

The importance and interest in carboxylesterases are evident by the increasing 

number of studies and citations. In this study, 26 putative carboxylesterase genes were 

identified from the house fly based on our transcriptome and genome database. They 

were divided into three major subgroups based on catalytic ability and cell/subcellular 

location. An expansion of the carboxylesterase gene members in the 

dietary/detoxification group was observed in the house fly. This expansion implies a clue 

to study the ecological and/or physiological environments adaption strategy of ALHF 

house flies, such as the house fly may have benefited from this expansion by obtaining 

ability to metabolize insecticides. 

In insects, esterase is one of the major metabolic enzymes that detoxify insecticides 

in the first phase of metabolism (Huang et al. 2005a; Soderlund 1992). Up-regulation of 

carboxylesterase gene expression leads to increased levels of total carboxylesterase that 

can significantly affect the disposition of xenobiotics or endogenous compounds (Bass 

and Field 2011; Cao et al. 2008; Li et al. 2007). In the current study, we found the 
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expression of MdαE7 and MdβE2 in the ALHF house fly strain was significantly higher 

than that in aabys strain. In addition, the overexpression of MdαE7 has also been reported 

in a beta-cypermethrin resistant house fly strain in China and has been tentatively linked 

to beta-cypermethrin resistance (Zhang et al. 2010), strongly suggesting a common 

feature and the important role of these genes in pyrethroid resistance in M. domestica. 

Meanwhile, we also found the expression of MdαE10 was down-regulated in ALHF 

house flies compared to aabys house flies. The result may not only reveal equally 

dynamic changes in abundance for both the increased and decreased carboxylesterase 

expression in resistant house flies, but may also indicate an important feature of the gene 

regulation system of the house fly in response to environmental challenges. 

Characterizing the regulatory genes that regulate the expression of detoxification 

genes (such as carboxylesterases and cytochrome P450s) presents challenges even today. 

However, this area of research attracts a great deal of effort since characterization of 

regulatory genes will provide novel strategies to prevent or minimize the spread and 

evolution of resistance development thus increasing the control of insect pests. 

Interestingly, recent studies have found that P450 genes that are involved in pyrethroid 

resistance development of house flies were on autosome 1, 2, 3 and 5, and the expression 
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of these genes was regulated by cis- or trans- factors on autosome 2 (Li et al. 2013; Liu 

and Scott 1996; Liu et al. 1995; Zhu et al. 2008a; Zhu et al. 2008b; Zhu and Liu 2008). In 

addition, a study of mosquitoes has found that the transcription of cytochrome P450 

monooxygenases related to pyrethroid resistance was induced by PBAlc and PBAld, 

common pyrethroid metabolites produced by carboxylesterases (Alexia et al. 2013). In 

our study, we found all of the selected carboxylesterases genes were on autosome 2, and 

overexpression of MdαE7 in ALHF house flies was regulated by factors on autosomes 2 

and 5, overexpression of MdβE2 in ALHF house flies was regulated by factors on 

autosomes 1, 2 and 5. This information implied there was a potential interaction between 

these carboxylesterases and P450s in house flies. What is more interesting is expression 

of both carboxylesterases and P450s have been reported to be regulated by the pregnane 

X receptor (Goodwin et al. 2002; Xu et al. 2009) or nuclear factor-4 alpha in humans and 

mice (Furihata et al. 2006; Jover et al. 2001). Taken together, these results indicate a 

complicated regulatory network exists both between and among insecticide resistance 

genes and regulatory genes. Characterizing carboxylesterases genes will be an important 

step in understanding the regulatory network and pathways involved in insecticide 

resistance development in house flies. 
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A study has shown that Drosophila melanogaster is useful for functionally studying 

the role of metabolic enzymes, such as carboxylesterase genes, in conferring metabolism-

based insecticide resistance (Durban et al. 2012). In our study, a transgene Drosophila 

line with the house fly MdβE2 gene was generated successfully. The important roles 

played by MdβE2 in permethrin resistance of ALHF house flies were well supported by 

the transgenic expression of this gene in D. melanogaster. Demonstrating the ability of 

this gene to confer permethrin resistance in ALHF house flies. 

Commercial permethrin is formulated as a blend of two pairs of diastereomers (1R 

trans-permethrin and 1S trans-permethrin, 1R cis-permethrin and 1S cis-permethrin) in a 

ratio of approximately 75:25 (Chavasse and Yap 1997; Ross et al. 2006). Insect esterses 

generally show a selectivity favoring trans isomers of pyrethroids (Heidari et al. 2005). In 

our study, only the 1R trans-permethrin binding model was observed, suggesting 1S 

trans-permethrin, 1R cis-permethrin and 1S cis-permethrin may not be the substrates for 

MdαE7 and MdβE2. Failure of MdαE7 and MdβE2 to effectively metabolize these 

permethrin isomers may be due to disruption in the oxyanion hole formation (Hemmert 

and Redinbo 2010). 
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In conclusion, 26 carboxylesterase genes were identified from M. domestica based on our 

transcriptome and genome analysis. These genes were clustered into different clades in 

our phylogenetic analysis. Further study showed that 5 selected carboxylesterase genes 

(MdαE1, MdαE5, MdαE7, MdαE10 and MdβE2) were all on autosome 2. The expression 

of MdαE7 and MdβE2 was up-regulated in the ALHF house files compared to aabys 

house flies, and the expression of these two genes was regulated by trans- and/or cis-

acting factors. Functional characterization of MdβE2 in the transgenic D. melanogaster, 

modeling and permethrin docking analyses have lifted the veil on the pivotal roles of 

MdαE7 and MdβE2 in permethrin resistance of house flies, and opened the avenue for 

MdαE7 and MdβE2 in vitro study. Future study including the identification and 

characterization of the promoter regions and regulatory factors that are involved in the 

insecticide resistance development will open the door for new pest control strategies. 
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Table S5.1 List and sequences of the primers used. 

Gene Forward primer (5'-3') Reverse primer (5'-3') 
Primers used for quantitative real time PCR 
MdβE2 GGCTTTTAGTACATCTGCTCGG GCACTGGGTAGTGGAAGATTAG 

MdαE7 CCACTGTAGAACCATACCAGACA CCAACTCCCAAGGCACATA 

MdαE5 AAGACACGTCACTGCTAACC CCAGGCCGAAGAAAGGTATT 

MdαE10 CCTCTACACATTTCCTAACAGCCA GCTTGTCCTCGTCATTGAGAA 

MdαE1 GCATTCCATTGCTCATTGG TGCCGTGCCAGAAGTATTTA 

Actin ATGAGGCTCAGAGCAAACGTGGTA AGTCATCTTCTCGCGATTGGCCTT 

Dm RPL11 CGATCCCTCCATCGGTATCT AACCACTTCATGGCATCCTC 

Primers used for autosome mapping 
MdβE2 F1:TTGAAATGTCCCAATTTGGA AGAGCATATCCCAAACTATAATC 

 F2:TTATGACTCGGCATCCAAGA 

MdαE7 F1:GTTTGGGTGTGTTGGGTTTC TTCACTATGGCAGCCCTTTC 

 F2:CGGTAATTCCATGTGCTCATT 

MdαE5 F1:ACTATTCGGAGAGAGTGCCGG AATAATAATAGGTGGGTGTT 

 F2:AAGAAGAACAATTCAATCATCTA 

MdαE10 F1:CCCGGCAATGCTGGTATCAAAGA AACCTCGACATCCTTATTTGC 

 F2:AATGGGTTAAGCAATACATC 

MdαE1 F1:AAACATCTTCTCCGGTCTGTG TTGACGGCAATTCGCATTTGAT 

 F2:CTGACCGGTCGGTCACAT 

Primers used for functional study 
MdβE2 CCGGAATTCCAAAATGAAATTTAAACTTTTCG CTAGCTCGAGGACAACAATGGGTTTACA 

Primers used for full length amplification 

MdβE2 ATGAAATTTAAACTTTTCGTATTGGG TTAGACAACAATGGGTTTACAA 
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Table S5.2 List of carboxylesterase genes in Musca domestica 

Clade Accession number Gene name 
α-esterase AFP60546 MdαE1 
 AFP63016 MdαE2 
 AFP62560 MdαE3 
 AFP63126 MdαE4 
 AFP62322 MdαE5 
 AFP62813 MdαE6 
 AFP62162 MdαE7* 
 AFP63133 MdαE8 
 AFP62337 MdαE9 
 AFP62145 MdαE10 
 AFP63619 MdαE11 
 XP_005175450 MdαE12 
 XP_005174776 MdαE13 
Juvenile hormone esterase XP_005181511 MdJhe1 
β-esterase XP_005181018 MdβE1 
 XP_005183940 MdβE2 
Integument esterase XP_005180750 MdIntE1 
 XP_005180749 MdIntE2 
 XP_005180748 MdIntE3 
 XP_005180752 MdIntE4 
 XP_005177449 MdIntE5 
Glutactin AFP62929 MdGluE1 
 AFP64249 MdGluE2 
Uncharacterized putative neuroreceptor XP_0051885078 MdUucE1 
Acetylcholinesterase AF281161 MdAceE1* 
Neuroligin XP_005185445 MdNeuE1 

* Indicated gene has been reported in other studies. 

 

 



 

256 

 

Figure 5.1 Neighbor-joining consensus trees of carboxylesterases. MUSCLE software 
was used to perform multiple sequence alignment (Edgar, 2004). The phylogenetic tree 
was generated by MEGA 6.0 using the amino acid sequences from Drosophila 
melanogaster (Dm) and Anopheles gambiae (Ag). Sequences of Drosophila 
melanogaster were from flybase (http://flybase.org/), and sequences of Anopheles 
gambiae were from Vectorbase (https://www.vectorbase.org/). Distance bootstrap 
values >70% (1000 replicates) are shown at the tree branches. The nomenclatures of the 
clades were according to Oakeshott et al. 
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Figure 5.2 Allele-specific RT-PCR autosomal mapping of the Musca domestica 
carboxylesterase genes. PCR fragments were generated using the allele-specific primer 
set according to the sequence of each gene from ALHF. The absence of a PCR product in 
a house fly line indicated that the gene was located on the corresponding autosome from 
aabys (i.e. the absence of a band in the A1345 line indicates that the gene was present on 
autosome 2). 
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Figure 5.3 Relative expression of selected carboxylesterases in aabys and ALHF 
Musca domestica strains. The relative gene expression ratios were calculated by 
comparing the expression of MdβE2 in aabys strain. Data were shown as the mean ± 
SEM (n = 3). There was no significant difference in the expression level designated with 
the same letter (P < 0.05). 
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Figure 5.4 Relative expression of MdαE7 and MdβE2 in ALHF and five house fly 
homozygous lines. The relative expression levels of MdαE7 are shown as a ratio in 
comparison with that in aabys strain. The results are shown as the mean ± SEM (n = 3). 
There was no significant difference in the expression level among samples designated 
with the same letter (P < 0.05). (A) MdαE7. (B) MdβE2. 
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Figure 5.5 Toxicity of permethrin to non-transgenic and transgenic Drosophila 
melanogaster lines. Resistance ratios = LC50 of Drosophila melanogaster lines/LC50 of 
Control line. There was no significant difference in the resistance level among samples 
designated with the same (P < 0.05). 
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Figure 5.6 Overall structure of MdαE7 and MdβE2. Membrane anchor, Regulatory 
domain, αβ domain, catalytic domain, substrate entrance channel and active site are 
colored blue, green, orange, purple and cyan, respectively. Residues of the catalytic triad 
(serine, glutamate and histidine) and oxyanion hole (alanine and glycine) are shown as 
red sticks. 
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Figure 5.7 Stereo view of permethrin bound within the active site cavity of MdαE7 
and MdβE2. The active site cavity and substrate channel are represented in cyan. Serine 
is showed in sticks and labeled in red. Permethrin is showed in green sticks. The dashed 
line represents the distance between the metabolic site of permethrin and the Serine of 
CarEs. (A) Permehtrin bound within the active site cavity of MdαE7. (B) Permehtrin 
bound within the active site cavity of MdβE2. 
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Figure 5.8 Ligplot representation of the contacts between permethrin and 
carboxylesterases. (A) MdαE7. (B) MdβE2. 
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Figure S5.1 RT-PCR amplification of the transgenic Drosophila melanogaster lines 
using gene specific primers. The lane indicated with “-” represent the non-transgenic 
empty vector control D. melanogaster line. “+” represent the transgenic D. melanogaster 
line containing the MdβE2 gene. * The GelPilot 1Kb (+) ladder (Qiagen Inc, Valencia, 
CA) was used as the molecular size reference, with the numbers on the figure indicating 
the DNA band size in bp. 
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Figure S5.2 Transgenic expression of MdβE2 in Drosophila melanogaster. The 
relative expression of the transgene was quantified by qRT-PCR. “MdβE2” represents the 
homozygous transgenic Drosophila line with house fly MdβE2 genes, “MdβE2+GAL” 
represents the F1 generation of homozygous transgenic Drosophila line crossed with 
GAL4 driver line. Data shown are mean + SEM (n = 3). Different letters above the bars 
indicate significant differences among different lines (P < 0.05). 
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Figure S5.3-4 Deduced amino acid sequence of MdαE7 and MdβE2. The sequence 
analysis was conducted by T-COFFEE (http://tcoffee.crg.cat/) and ESPript 3.0 
(http://espript.ibcp.fr/ESPript/ESPript/) (Gouet et al. 2003). Alph-helices, eta-helices, 
beta strands and strict beta turns are marked by α, η, β and TT respectively. * represents 
N-terminal conserved cysteine for disulfide bond. The catalytic triads are marked with 
red star. Residues for oxyanion hole are marked with blue triangle. The predicted signal 
peptide is underlined in orange. Signal peptide of each protein was predicted by using 
SignalP4.1 web tools (http://www.cbs.dtu.dk/services/SignalP/). 
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Chapter 6: Research Summary and Future Studies 
 

6.1 Research summary 

My doctoral research projects were mainly focused on the mechanisms that involve 

in the pyrethroid insecticide resistance development in the house fly, Musca domestica. 

Specifically, my work focused on the investigation and characterization of metabolic 

genes, such as cytochrome P450 genes and carboxylesterase genes that were involved in 

the development of insecticide resistance and their expressional regulation in response to 

insecticide stimulation in the house fly, Musca domestica. I conducted the transcriptome 

analysis of the house fly, generated the first adult house fly transcriptome database. This 

database contained 14488 contigs, and 43% of the contigs contained coding regions, 

among which 1316 genes were identified as being co-up-regulated in insecticide resistant 

house fry strain (ALHF) in comparison to two insecticide susceptible strains (aabys and 

CS). The majority of these up-regulated genes fell within the SCOP categories of 

metabolism, general, intra-cellular processes, and regulation, and covered three key 
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detailed functional categories: redox detailed function category in metabolism, signal 

transduction and kinases/phosphatases in regulation, and proteases in intra-cellular 

processes. The redox group contained detoxification gene superfamilies, including 

cytochrome P450s, glutathione S-transferases, and esterases. The signal transduction and 

kinases/phosphatases groups contained gene families of rhodopsin-like GPCRs, adenylate 

and guanylate cyclases, protein kinases and phosphatases. The proteases group contained 

genes with digestive, catalytic, and proteinase activities. Genetic linkage analysis with 

house fly lines comparing different autosomal combinations from ALHF revealed that the 

up-regulation of gene expression in the three key SCOP detailed function categories 

occurred mainly through the co-regulation of factors among multiple autosomes, 

especially between autosomes 2 and 5, suggesting that signaling transduction cascades 

controlled by GPCRs, protein kinase/phosphates and proteases may be involved in the 

regulation of resistance P450 gene regulation. Based on these findings, I then 

concentrated my research on two important mechanisms, which are cytochrome P450-

mediated and carboxylesterase-mediated detoxification. I examined the interaction of the 

resistant key P450 genes and factors on different autosomes through house fly lines with 

different combination of autosomes from a resistant house fly strain, ALHF; exploring 
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the function of key P450 genes in insecticide resistance using Drosophila transgenic 

techniques; and analyzing P450 modeling and permethrin docking to investigate the roles 

of P450s that are involved in pyrethroid resistance in house flies. My findings 

demonstrated that P450 constitutive over-expression or induction responsible for 

permethrin resistance in house flies, and these P450 genes are regulated by trans- and/or 

cis-acting factors. Our results also confirm and support the co-overexpression of multiple 

P450 genes as likely to be key factors enhancing permethrin resistance in house flies. 

Suggesting that beside detoxification, other roles of P450 may also involve in permethrin 

resistance in house flies. Meanwhile, a total of 26 carboxylesterase genes was identified 

from the house fly. I conducted the expression profile study of five carboxylesterase 

genes in different house fly strains with different combination of autosomes from a 

resistant house fly strain, ALHF; explored the function of one carboxylesterase gene in 

insecticide resistance using Drosophila transgenic techniques; and conducted modeling 

and permethrin docking analyses to investigate the roles of carboxylesterases that are 

involved in pyrethroid resistance in house flies. The results showed that The expression 

of two carboxylesterase gene was up-regulated in ALHF house files compared to aabys 

house flies, and the expression of these two genes was regulated by trans- and/or cis-
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acting factors. Functional characterization of one gene in the transgenic D. melanogaster, 

modeling and permethrin docking analyses indicated that this gene is capable of 

conferring permethrin tolerance in M. domestica. These results from my dissertation 

research clearly demonstrated that multiply mechanisms co-confer insecticide resistance, and 

up-regulation of P450 genes and carboxylesterase genes play important roles in insecticide 

detoxification. A complicated regulatory network between insecticide resistance genes 

and regulatory genes, among resistance genes or regulatory genes that refer to insecticide 

resistance were exist in house flies. My research lifted the veil on the pivotal roles of 

P450 and carboxylesterase genes in permethrin resistance of house flies, and opened the 

avenue for in vitro study. 

 

6.2 Future studies 

The detoxification roles of P450s and carboxylesterases in the pyrethroid resistance 

development of house flies have been revealed in my studies. However, the results of my 

studies also implied that beside detoxification, other roles of P450s may also involve in 

permethrin resistance in house flies. Based on these results, our future studies will 

include two aspects.  

 

6.2.1 In vitro expression and the metabolism study of house fly key P450 genes on 
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permethrin insecticide  

We will select key p450 genes and characterize their metabolisms on permethrin 

insecticide. Briefly, we will express the key p450 genes and cytochrome b5 reductase in 

vitro using Bac to Bac baculovirus expression system (Figure 6.1), and then characterize 

the activities of P450 proteins through measure the catalytic rate of 7-ethoxyresorufin O-

deethylation (EROD) and 7-methoxyresorufin O-demethylation (MROD). The product of 

reactions, resorufin can be detected using the fluorimetric assay or high performance 

liquid chromatography (HPLC). At last, the metabolisms study of the expression P450s 

with permethrin will be conducted. Each reaction contained the P450/reductase (3:1), 1,2-

didodecanoylrac- glycero-3-phosphocholine, NADPH regenerating system, and 60 uM 

permethrin in a total volume of 250 ul. Briefly, the reconstitution reaction will be initiated 

by addition of NADPH regenerating system, and incubated at 30 °C with shaking at 

1,000 × g. Reactions will be stopped with 0.1 mL of methanol and incubated with 

shaking (1,000 × g) for 5 min at 30 °C to dissolve all available permethrin. Samples will 

be then centrifuged at 16,000 × g for 10 min at 4 °C, 150 μL supernatant will be 

transferred to HPLC vials. The quantity of pyrethroid remaining in the samples will be 

determined by reverse-phase HPLC with a monitoring absorbance wavelength of 232 nm. 
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We predict that key p450 genes and reductase will be expressed in vitro by using Bac to 

Bac baculovirus expression system, and recombinant P450 proteins will metabolize 

permethrin. 

 

6.2.2 Characterization of the molecular mechanisms of P450 and carboxylesterase 

expression regulation in ALHF house flies 

The regulatory elements of up-regulated P450 and carboxylesterase genes, which are 

mostly found upstream from the promoter regions and are responsible for binding regulatory 

proteins are still unknown in house flies. I will focus on characterization of the molecular 

mechanisms that involved in the regulation of P450 and carboxylesterase gene expression 

associated to insecticide resistance in house flies. Electrophorethc mobility shift assay 

(EMSA), also known as gel shift assay will be used for the regulatory elements of the target 

genes investigation. 

First, I will find the promoter region sequence differences of the target genes 

between insecticide susceptible and resistant house flies. These regions are considered as 

candidate regulatory elements, and will be selected for further investigation of their roles 

in the interaction with transcriptional regulatory factors. I will design and synthesize the 
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radioactive probe DNA. After incubation for binding reaction of radioactive probe and 

extracted nuclear protein, electrophoresis and autoradiograph development will be conducted. 

The DNA-protein complex will be resolved by electrophoresis on a non-denaturing 

polyacrylamide gel and visualized by autoradiography by exposure to X-ray film with 

intensifying screens (Figure 6.2). Based on the mobility of the molecules and signal 

appearing on the film after autoradiography, the interaction between the regulatory factors at 

the promoter region of target genes and the transcriptional regulatory factor will be 

investigated eventually. 
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Figure 6.1 Schematic for the express target genes of interest using the 
BaculoDirect™ Baculovirus Expression System. 
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Figure 6.2 The scheme of electrophoretic mobility shift assay (EMSA) 
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