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Abstract

A high fidelity surface vorticity solver in conjunction with an optimizer is used to find

optimal solutions for engine integration. The case study for this paper is an aerodynamically

optimized engine configuration added to the DLR-F4 from the AIAA CFD drag prediction

workshop. The unstructured meshes generated during the optimization process are produced

by Open Vehicle Sketch Pad. The SwarmOps particle swarm optimization algorithm is

used within Phoenix Integration ModelCenter during the optimization process. A purely

aerodynamically focused optimization resulted in a wing-engine geometry with the engine

being moved forward and down away from the lower surface of the wing as well as the engine

being placed at a maximum outboard location near the wing tip. A wing spar structural

analysis tool and vertical stabilizer sizing model were added to this optimization to attain a

more realistic optimal design. The result of this optimization revealed that the benefits to

the ratio of lift over drag attained by moving the engines outboard were greatly overshadowed

by the increased weight of the wing spar and added weight and drag of an ever increasing

vertical stabilizer size.
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Chapter 1

Introduction

Engine integration is an area of high current interest. Many variables involving aero-

dynamics, structural demands, weight, and cost are typical. Traditionally, after significant

preliminary design work, dozens of potential design configurations are tested in wind tun-

nels until a satisfactory configuration is identified. However, such an approach is expensive

and time intensive due to the high number of variables which makes finding a near opti-

mal design before any construction or wind tunnel testing begins extremely important. The

Navier-Stokes equations can be used to accurately describe the motion of a viscous, com-

pressible fluid which makes these equations ideal for determining the aerodynamic forces on

a aircraft configuration. However, due to the complexity of the three dimensional Navier-

Stokes equations, most of these problems cannot be solved analytically.

Over the past few decades Navier-Stokes equations have been incorporated in compu-

tational fluid dynamics (CFD) codes and are solved numerically to provide flow solutions.

These CFD flow solvers have the potential to provide high fidelity results for nearly any flight

regime. The main two disadvantages of CFD are long computation times when compared to

other methods, and the reliance of highly refined volumetric meshes to ensure accuracy and

convergence. As computer computational power increases, these long CFD run times become

more manageable; however, mesh generation is still often a very hands-on procedure that is

difficult to automate with good results. This mesh automation is essential during the opti-

mization process and is one of the challenges of attaining accurate solutions from any flow

solver. Although computers have become increasingly more powerful with time, optimiza-

tion problems can have hundreds of design variables. Run time increases with each added

variable to the optimization problem which is only exasperated by longer CFD computation
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times. Designers are often forced to either reduce the design space or endure optimization

run times that can take months to finish. Despite these limitations, Navier-Stokes based

CFD codes are nearly universally used in the aerospace industry today. Historically, when

computing power was more limited or nonexistent, assumptions or simplifications were made

to the Navier-Stokes equations so that flow solutions could be found.

By assuming that the flow is incompressible and inviscid, Prandtl’s lifting line theory

can be used to solve for the lift and induced drag for a wing given the geometry of the wing

and the flight conditions. The Kutta-Joukowski theorem relates the lift on a two dimensional

section of the wing to the circulation around the local airfoil. Lifting line theory extends this

concept to a wing by creating a bound vortex, extending along the entire span of the wing,

along with perpendicular trailing vortices to create a horseshoe vortex. The spanwise change

in circulation along the wing is directly related to the spanwise change in lift. By assuming

a circulation distribution along the wing and associated shed, the local lift per unit span can

be found using the KuttaJoukowski theorem [1]. By integrating along the entire wing, the

total lift and induced drag on a wing can be reduced to simple equations consisting of the

freestream velocity, density and coefficients related to the wing geometry [1]. These quick

algebraic equations would be well suited for use in an optimization problem; however, lifting

line theory only gives accurate answers for unswept quarter chord lines with a moderate to

high aspect ratio [1]. Unfortunately this means that lifting line theory would be unable to

accurately determine lift or drag for a wide array of wing and wing-body configurations.

Methods developed to solve this problem include the lifting-surface theory and the vortex

lattice numerical method. While the lifting line theory supposes only one lifting line going

across the wing, lifting-surface theory models an infinite number of lifting lines which cover

the entire wing to form a vortex sheet [1]. As in other methods, this total normal velocity

component of the sheet must be zero [1]. The advantage of the lifting-surface theory over

the lifting line theory is the ability to accurately calculate the lift and induced drag with a

minimum of unknowns. The downside to the lifting-surface theory is that the formulation
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of the series of equations that comprise this method are not easily found for most geometric

configurations.

A similar, but often more practical method is the vortex lattice numerical method.The

vortex lattice method discretizes the wing mean camber surface into a finite grid of horseshoe

vortices and control points [2]. The strength and location of all the horseshoe vortices create

an induced normal velocity at any given control point on the wing. As with the lifting-

surface theory, the total normal velocity component at any given control point must be zero

[2]. This creates a system of linear algebraic equations which can be solved using a computer.

For increased resolution, a higher number of horseshoe vortices and control points must be

used. With computers being able to solve such problems at higher speeds, engineers have

been able to develop software that uses the vortex lattice method with considerable success

to analyze finite wings with high resolution.

One of the first widely used generalized vortex lattice based softwares was VORLAX.

VORLAX was developed by Lockheed-California Company for NASA in the 1970’s [3]. VOR-

LAX was able to accurately approximate the surface pressure distributions, aerodynamic

forces, and moment coefficients for a very wide range of rigid aerodynamic bodies in inviscid

subsonic or supersonic flows [3]. Thickness effects of the airfoils were simulated using two

lattices, one for the top surface and one for the bottom surface, as long as these two surfaces

were not too close to each other as is necessary at the trailing edge of the wing[3]. Fuselages

were crudely simulated with either a vortex lattice planer surface or polygonal prism, with

varying cross sections [3]. The flat panels which made up the wings and body of the aircraft

contained a skewed-horseshoe vortex system with constant sweep for any single panel [3].

Each horseshoe vortex consisted of bound vortices along the mean camber surface with un-

bound trailing legs for the wake[3]. The bound legs followed the surface of the vortex lattice

in the longitudinal direction whereas the unbound legs on the trailing edges of the wings

went in a direction corresponding to the specified slip angle, ending at the trefftz plane [3].
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While VORLAX was a great advancement at the time, it had several limitations. The

accuracy of VORLAX is somewhat limited because it numerically solves the potential flow

equation for linear, inviscid, and irrotational flow [3]. This equation ignores higher order

terms in order to linearize the velocity potential equation and is only valid when dealing with

small perturbation (thin bodies at small angles of attack) and entirely subsonic or supersonic

flow [1]. This makes VORLAX unable to accurately approximate transonic flow. VORLAX

also assumes singularity strength is constant across a panel. This has the advantage of

decreased run time at the cost of accuracy. In many situations this does not negatively affect

the accuracy of the solution to a large degree as long as the mesh is fine enough; however, this

is often more problematic for supersonic problems and can lead to solver instability. Despite

these limitations, versions of VORLAX are still available online and it is sometimes used

today at the university level in combination with an aerodynamic superposition approach to

get semi-accurate preliminary design solutions [5].

In the 1980’s a more advanced potential flow solver was created called Panel Aerody-

namics (PAN AIR). PAN AIR was created with the goal of solving stability problems that

were common in earlier vortex lattice flow solvers for supersonic flow. One of the causes of

supersonic stability issues for previous solvers was spurious line-vortex terms at the panel

edges [6]. PAN AIR manages to eliminate these errors by creating a higher order panel

scheme and the addition of source panels [7]. Where earlier lower order solvers kept singu-

larity strength constant across a panel, PAN AIR allows source strengths to vary linearly

over a panel and uses quadratic doublet strength distributions [7]. PAN AIR’s higher order

scheme solves previous supersonic stability issues by ensuring that doublet strength is con-

tinuous across all panels and that all adjacent panels have contiguous edges [7]. PAN AIR

also is able to somewhat simulate boundary layer thickness by using either “exact” or “lin-

earized” boundary conditions [7]. With exact boundary conditions the user manually adds a

finite thickness to the geometry and assumes flow is tangent to the new surface to simulate

the boundary layer whereas with linearized boundary conditions PAN AIR changes panel
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source strengths which effectively acts as if a small amount of flow is being emitted from

the panel surface to simulate the boundary layer thickness [7]. This panel source strength

was assumed and thus could be altered to allow the user to match experimental data. PAN

AIR still suffers from the limitations of linearized potential flow in that it can not accurately

describe transonic flow [7], but it is able to provide solutions to both subsonic and supersonic

flow problems. The program’s higher order scheme also has the added benefit of reducing

the sensitivity to changes in mesh size and arrangement [6]. The downside to this higher

order scheme is a significantly increased run time and difficulties in generating the geometry

[6].

Due to the longer run times inherent to higher order schemes, constant strength panel

methods were still pursued. For example NASA’s VSAERO, the precursor to PMARC.

VSAERO and PMARC attempt to better approximate the Navier-Stokes equations by us-

ing an iterative viscous/potential flow solver [8]. These programs use potential flow panel

methods with iterative wake-shape calculations coupled with a boundary layer approxima-

tion [8]. The boundary layer thickness is simulated by introducing a nonzero normal velocity

on the panel surfaces is much the same way as PAN AIR [8].

Sensitivity to mesh refinement and layout is a problem inherent to earlier lower order

schemes which led some subsonic only flow solvers such as MCAERO to sacrifice faster run

times and use continuous quadratic doublets much like PAN AIR [6]. VSAERO and PMARC

are able to get around this problem by using internal Dirichlet boundary conditions [8]. With

the internal Dirichlet boundary condition, a fictitious flow within the interior of the geometry

is modeled with a specified velocity potential [8]. By setting the perturbation velocity within

the geometry to zero it was found that the solver was less sensitive to bad panel layouts,

possibly due to smaller differences between inner and outer flow velocities [8].

Although PAN AIR, VSAERO, and PMARC are able to better mimic viscous effects

than previous solvers, they are still, at their core, potential flow solvers and lack the fidelity

of current Navier-Stokes CFD codes. They also have the drawback of being pressure based
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solvers, as apposed to vorticity and circulation based solvers such as VORLAX, and thus

require highly refined structured meshes in order to properly capture pressure gradients.

The main disadvantage of working with a structured mesh is the need of a much higher

mesh size on curved surfaces compared to an unstructured mesh [11]. The U-V mapping

which is typically used with structured meshes also requires the solver to define four points

for each panel even if one side of the quadrilateral has been collapsed to form a triangular

panel [11]. This often results in an unnecessary use of memory when defining the geometry

[11]. Another advantage of unstructured meshes is the ability to more easily refine certain

areas of the mesh. Due to the lack of an underlying mapping, individual panels can be

deleted or refined to increase mesh fidelity [11]. The advantages of unstructured meshes

pertaining to mesh size, quality, and flexibility made the use of unstructured meshes a very

desirable capability for surface solvers. However, due to the need of defining panel edges as

bound or trailing vortices during the calculation of induced loads on local panels, vorticity

based solvers were unable to use unstructured meshes which had arbitrary panel orientation

[11].

Pressure based flow solvers also suffer from poor pressure gradient resolution in the

event that the mesh has any bumps or dents. In addition to mesh fidelity concerns, the

attempts made by these solvers to more closely replicate viscous effects such as boundary

layer thickness and flow separation caused a large increase to solver run time compared to

previous potential flow solvers and thus diminished the main advantage of using them over

a Navier-Stokes CFD code in an optimization problem.

For some design problems that exist only in the subsonic stable flow, such as an aircraft

flying at cruise speed, viscous effects have a minuscule effect on the flow solution outside

the boundary layer. Therefore it is often appropriate in these cases to ignore these viscous

effects as modeled by some pressures solvers, e.g. PAN AIR, VSAERO and PMARC, in

favor of decreased runtime and solver stability provided by vorticity and circulation based

panel solvers. Athena Vortex Lattice (AVL) and Tornado are two such examples of vorticity
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based surface solvers that are widely used today [9] [10]. Both of these surface solvers allow

the user to easily define an aircraft shape and solve for aerodynamic forces and moments on

the body [9] [10]. However these vorticity based flow solvers, much like previous vorticity

solvers, are only compatible with structured meshes.

In 2013 Flightstream became the first vorticity based solver in the open literature able

to overcome the unstructured mesh challenge for vorticity based solutions [11]. Flightstream

is able to do this by using an application of vortex rings on a triangular panel. Within the

solver, vortex filaments are placed on the perimeter of each facet of the mesh to form vortex

loops [11]. By using an application of the Biot-Savart law, it is possible to determine the

induced velocity on a point in space from the segment of the vortex loop located on one of

the edges of a panel [11]. This same evaluation can then be done for the other two sides

of the triangular facet to determine the total induced velocity at a point in space from the

entire vortex loop located on the panel [11]. The vorticity strength can be found by applying

the Von Neumann boundary condition at control points on the sub-panel surface element

[11]. After the vorticity strengths are determined, the induced velocity at any point in space

may be found.

Instead of using a structured wake sheet as was the case with most previous vorticity

solvers, Flightstream optionally uses a relaxed wake strand model [11]. After trailing edges

are marked either manually or with the solver, Flightstream creates wake strands which

emanate from the nodes of the trailing edges [11]. The solver is then able to calculate

the vorticity strengths of these wake strands by analyzing contributing panel edges and

determining whether they have additive or diminishing effects on the vorticity strengths

of the wake strands [11]. The contributing panel edges’ classifications are decided by the

panels’ orientation relative to the node [11]. The net vorticity of the geometry is propagated

downstream by the wake strands with the only decrease to vorticity strengths is due to

viscous effects [11]. Flightstream numerically propagates wake strands downstream with

varying vorticity strength in an attempt to simulate viscous effects in the wake. The size of
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the pseudo-time steps used for the numerical propagation along each individual step of a wake

strand is unique to that strand segment [11]. This allows the solver to change the local step

sized based on flow conditions while still propagating all wake strands to a user designated

trefftz plane [11]. The flexibility of the relaxed wake strand model allows Flightstream to

more accurately describe the propagation of filaments downstream from lifting surfaces which

makes it possible to capture the interaction between different segments of geometry such as

a wing and the horizontal stabilizer.

Previous vorticity surface solvers used an application of the KuttaJoukowski equations

to determine lift from the knowledge of vortex strengths and flow conditions; however, this

is not possible with unstructured meshes due to the arbitrary orientation of the panels [11].

Flightstream is able to bypass this obstacle by using a method to calculate shed vorticity in

which panel orientation is irrelevant.

Although Flightstream has the ability to generate simplistic geometry components, the

program’s capability and flexibility of three dimensional modeling is fairly limited compared

to stand alone CAD programs. This would normally make it difficult to accurately model

a geometry for use in the program’s flow solver, but due to the unstructured nature of the

solver, any number of outside CAD programs can be used for mesh creation. Flightstream

can also be run with macros which allow the user to bypass the GUI during the flow eval-

uation process. The program’s capacity for automation and flexibility granted by its use of

unstructured meshes make Flightstream a viable tool for design optimization problems.

Typically Navier-Stokes based CFD solvers are used for the problem of engine integra-

tion; however these solvers are computationally very expensive in addition to requiring highly

refined volumetric meshes. While Flightstream is unable to give accurate flow solutions for

transonic or supersonic cases, engine integration problems often apply only to subsonic flow

in which Flightstream can evaluate the aerodynamic loads on an aircraft with high fidelity.
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The faster run time and use of less refined, unstructured, surface meshes inherent to Flight-

stream has the potential to allow an optimizer to explore a much wider search space in a

smaller amount of time compared to a CFD solver.
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Chapter 2

Methodology

The DLR-F4, a subsonic transport aircraft designed for the AIAA CFD drag prediction

workshop, was selected to serve as the baseline for the engine integration optimization prob-

lem. The DLR-F4 was selected because, due to its original purpose as a model to test the

validity of CFD solvers, the exact dimensions of the geometry are well defined and available

on the NASA archives [12] [13] which allows for more accurate mesh creation. The coeffi-

cients of lift and drag were also evaluated at various angles of attack in a wind tunnel by

Reference [13] which makes it possible to determine the validity of the baseline model used

in Flightstream.

Figure 2.1: DLR-F4 Schematic [13]

10



2.0.1 DLR-F4 Baseline Mesh Creation

Although Flightstream has some CAD capabilities, the primary purpose of the program

is that of a flow solver, and as such it is somewhat limited in its ability to produce a complex

geometry. Therefore it was determined that in order to more easily create an accurate

DLR-F4 geometry, an outside CAD program was necessary. The NASA open source CAD

program Vehicle Sketch Pad (VSP) was selected for the process of geometry and mesh

creation. VSP was chosen because it was developed with the creation of aircraft geometries

in mind. Components of an aircraft, such as the wing and fuselage, are defined within VSP

by a set of parameters that the user can easily change to drastically alter the shape of the

aircraft. Fuselage cross sections and wing airfoils can be very accurately recreated within

VSP by importing text files which define the outer mold line with a series of points. After

all of the components of the are made within the program, VSP can be used to join these

components and produce an unstructured mesh which is compatible with Flightstream.

Figure 2.2: DLR-F4 Isometric View

Originally it was attempted to exactly match the fuselage cross sections and airfoils

by using the profile data defined by Reference [13], but the inclusion of the entirety of the

defined points within the VSP model proved to be to be too computationally demanding.

Therefore it was necessary to simplify the profile data in order to increase the speed of
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geometry creation. Fortunately an accurate model of the DLR-F4 with simplified fuselage

cross section definition was found on the VSP Hangar [14].

The number of interpolated cross sections for the wing of the aircraft was increased to

produce a finer mesh across the wing. Lower quality panels are often generated by VSP at

the intersection of different components of the aircraft geometry such as the wing fuselage

intersection. Flightstream can still produce accurate flow solutions despite the presence of

lower quality panels but mesh quality is more critical near the trailing edge of lifting surfaces.

Therefore it was necessary to manually correct panels at the intersection of the fuselage and

wing within Flightstream. After the baseline model was completed, coefficients of lift and

drag were obtained using Flightstream over a range of angle of attacks. The results were

then compared to the wind tunnel data from Reference [13].

Figure 2.3: DLR-F4 CL vs Angle of Attack, Mach=.75

As can be seen in Figure 2.3, the coefficient of lift values attained with Flightstream

for the VSP DLR-F4 mesh closely matched the wind tunnel data from Reference [13]. Near

an angle of attack near two degrees there was flow separation on the wing. Flightstream,

12



Figure 2.4: DLR-F4 Drag Polar, Mach=.75

as a vorticity based solver, can not determine flow separation location, therefore any results

attained over an angle of attack of two degrees were omitted from Figure 2.3.

Flightstream is able to predict drag at low Mach numbers but accuracy is decreased when

compressibility effects are more prominent. Flightstream uses a semi-empirical evaluation

for skin friction drag but the total drag is not accurately captured at high subsonic Mach

numbers [11]. This is an area where improvement in Flightstream is desired. For the current

version of Flightstream, the computed drag polar for the DLR-F4 is shown in Figure 2.4

along with experimental wind tunnel data. With the completion of a baseline geometry, it

is now possible to create an engine and pylon for the engine integration.

2.0.2 Engine Modeling

A high bypass turbofan engine geometry was modeled within VSP to be added to the

DLR-F4 model. The engine intake was modeled down to the compressor blades which were

treated as a flat, solid compressor face. The engine bypass exit and nozzle exit were also
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modeled as solid boundaries. Within Flightstream a Von Neumann boundary condition is

applied to facets which ensures that no flow penetrates the panels. In order to model the

flow through the engine, relaxed Von Neumann boundary conditions were applied to the

surfaces of the compressor face, bypass exit and nozzle exit. This relaxed Von Neumann

boundary specifies a flow velocity through the panels that make up these boundaries. A

similar turbofan engine was analyzed using NPSS by Reference [15]. The flow conditions

specified for the engine at the compressor, bypass and nozzle exit from Reference [15] were

matched within the engine model in Flightstream.

(a) Engine with no Flow Modeled (b) Engine with Flow Modeled

(c) Compressor Flow Region

Figure 2.5: Flightstream Engine Flow Solution

The thrust of this engine can be found by calculating the time rate of change of mo-

mentum from the flow entering the engine to the flow exiting the engine as well as the force
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created by the pressure difference at the exit.

F =
moutVout −minVin

∆t
+ (pe − pa)Ae (2.1)

This can be rewritten in terms of mass flow rate as seen below.

F = ( ˙moutVout)− (ṁinVin) + (pe − pa)Ae (2.2)

ṁ = ρAV (2.3)

The mass flow rate coming into the engine is equal to the mass flow rate going through

the compressor whereas the mass flow rate leaving the engine is composed of the mass flow

rate exiting the nozzle and engine bypass. The velocity at these locations is known from

Reference [15] and areas can be measured from the engine model in VSP. Density is not

directly known at these engine locations but it can be found using the known pressure and

temperature values from Reference [15] and the equation of state.

p = ρRairT (2.4)

The flow properties within the engine are treated as constants for a given free stream

velocity, regardless of engine location; therefore, the thrust will remain constant as long as

the cross sectional area of the compressor, bypass exit, and nozzle exit remain unchanged.

2.0.3 Engine Pylon

With the baseline aircraft configuration and engine modeled, it was necessary to connect

the engine to the wing with a pylon. The pylon was modeled within VSP as a symmetric

vertical wing component extending from the engine to the lower surface of the DLR-F4

wing. One of the challenges with the pylon creation was making the pylon capable of

changing shapes and locations as the engine was shifted relative to the wing. This was
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done by defining the pylon with four coplanar points as seen in Figure 2.6 and Figure 2.7.

By dictating that the bottom of the pylon had a constant attachment point to the engine,

the position of the pylon could be attained from the location of the engine. Although the

position of the engine and pylon could be variable, the relative position between the two

components was a known constant value.

xpylon = xengine + ∆x (2.5)

zpylon = zengine + ∆z (2.6)

ypylon = yengine (2.7)

These three equations give the origin location of pylon which coincides with the bottom

left corner of the pylon in Figure 2.7 . With the pylon placed, it is still necessary to size

and shape the pylon accordingly so that it properly interfaces with the lower surface of the

wing. This geometry is developed by adjusting the leading edge sweep, spans, and chords of

the three sections in VSP that make up the pylon. Before this interface can be built, it is

necessary to define the shape of the pylon with the four points seen in Figure 2.6 and Figure

2.7.

When joining different geometry components in VSP, it is necessary to have at least part

of the two components occupying the same space. This ensures that one mesh comprised

of the two components is created by VSP instead of two non interlocking meshes which

happen to share a surface. In the latter case its is possible to create nearly coplanar panels

which can lead to solver divergence in Flightstream. Therefore section 1 and section 3 of the

pylon, seen in Figure 2.7, are made to partially intersect the engine and wing respectably.

This geometry intersection ensures a cohesive, interlocking mesh between the three aircraft

components. Point 1 in Figure, 2.7 represents the location that the pylon intersects the outer

surface of the engine and can be determined from the pylon and engine location as well as

the outer diameter of the engine at that location engine. Due to the positional relationship
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Figure 2.6: Pylon Side View

between the pylon and engine, as well as the engine shape being constant, the lower span of

the pylon is also a constant value.

span1 = .5Dengine −∆z (2.8)

x1 = xpylon (2.9)

y1 = ypylon (2.10)

z1 = zpylon + span1 (2.11)

The lowest most point on the trailing edge of the pylon was defined by point 4. The z

coordinate of this point is already determined by the position of the pylon. The x coordinate

of the pylon is determined by the user given root chord of the pylon, referred to Chord 1 in

Figure 2.7.

x4 = xpylon + C1 (2.12)

y4 = ypylon (2.13)
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Figure 2.7: Pylon Diagram

z4 = zpylon (2.14)

The upper most point on the leading edge of the pylon is defined as point 2. The x

and z coordinates of point 2 are found by referencing the local airfoil of the wing that is

intersected by the pylon y plane. The x coordinate of point 2 is defined as being a constant

small percentage of the local airfoil projected chord aft of the leading edge of the wing. The

z coordinate is defined as being the mid way point between the upper and lower surface

of the airfoil at that x location. Once again, the reasoning for the location of point 2 to

be within the wing as opposed to on the outer surface was to ensure that VSP created an

interlocking mesh between the pylon and the wing. The length of Chord 4, as seen in Figure

2.7 is unimportant as the upper surface of the pylon is hidden within the wing and is not

created during the meshing process. The only matter of importance pertaining to the length

of Chord 4 is ensuring that no part of the pylon extends through the upper surface of the

wing. This was achieved by making the length of Chord 4 be a small constant percentage of

the local wing airfoil projected chord.
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Point 3 was used to define the trailing edge sweep of the pylon and was once again

determined from the local airfoil of the wing intersected by the pylon y plane. The trailing

edge sweep of the pylon was a desired variable in the pylon creation process. In order to

achieve this, the x coordinate of point 3 was defined by a variable percentage of the local

airfoil projected chord with the z coordinate being placed at ten percent between the upper

and lower surface of the local airfoil at that x location. Before point 2 or point 3 could be

determined, the local shape and location of the airfoil of the wing had to be found.

The DLR-F4 wing shape is defined in Reference [12] and Reference [13] by local airfoil

profiles at 4 different span-wise locations along the wing as can be seen in Figure 2.8. Ref-

erence [12] provides x and z coordinates for points on the upper and lower surface of the

four defining airfoils. These profiles were used to produce the wing geometry in VSP for the

baseline DLR-F4 model. VSP shapes the wing cross sections between these defined airfoils

by linearly interpolating between these defined airfoils.

Figure 2.8: DLR-F4 Wing Definition [13]

In order to determine the shape and location for any cross section along the wing, the

linear interpolation for the wing done by VSP had to be replicated externally. This was

done by taking the data from each defined cross section and shifting the x coordinates so

that they all had the same starting location. After this was done the x and z coordinates of
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the data were normalized to ensure that each set of airfoil data had a range of 1 for the x

axis. These four cross sections could then be used to define a surface which could be used

with the built in Matlab function named “griddata” to calculate a linearly interpolated cross

section shape at any point along the wing. This airfoil shape could then be scaled back up

to normal size using the linearly interpolated projected chord length of the airfoil at that

location and multiplying that value by the x and z coordinates which defined the local wing

cross section shape. After scaling was complete the size and shape of the wing cross section

created by any given y value along the wing was known however position information still

needed to be determined.

The position information, relative to the starting location of the wing, for a cross section

of the wing could be found using the wing sweep and dihedral information provided for the

DLR-F4 in Reference [13]. The DLR-F4 wing has a constant wing sweep and dihedral angle

which allows the following equations to define the starting location for any cross section

along the wing.

xairfoil = yairfoil tan(Λwing) + xwing (2.15)

yairfoil = ypylon (2.16)

zairfoil = yairfoil tan(Γwing) + zwing (2.17)

With the size shape and location of the local airfoil interfacing with the pylon, all of the

necessary information is available to determine the coordinates of points 2 and 3 in Figure

2.7. K1 is a constant value defining the starting location of point 2 as a percentage of the

projected chord of the local airfoil of the wing. K2 is a user defined variable defining the

starting location of point 3 as a percentage of the projected chord of the local cross section

of the wing.

x2 = k1PCairfoil + xairfoil (2.18)
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y2 = ypylon (2.19)

z2 = .5(USx2 − LSx2) + LSx2 + zairfoil (2.20)

x3 = k2PCairfoil + xairfoil (2.21)

y3 = ypylon (2.22)

z3 = .1(USx3 − LSx3) + LSx3 + zairfoil (2.23)

After points 1 through 4 have been found, the location and shape of the pylon is fully

defined, but to create the pylon, this information must be changed into a format that VSP

can accept. Due to the pylon being created as a wing component in VSP, the shape of each

section of they pylon is defined by a given span, tip chord, root chord, and leading edge

sweep. The span of the lowest section of the pylon, Span 1, is already known from equation

2.8 and the root chord of the first section of the pylon, Chord 1, is a user given value and

therefore is also know. The leading edge sweep of the first pylon section is zero, as can be

seen from Figure 2.7. Although the trailing edge sweep is not needed to define the pylon

section in VSP, this value must be determined to find the tip chord of the first pylon section,

Chord 2. Since the pylon has a constant trailing edge sweep angle from point 4 to point 3,

the trailing edge sweep for the first pylon section can be found by finding the trailing edge

sweep angle from point 4 to point 3.

ΛTE = arctan[(x3 − x4)/(z3 − z4)] (2.24)

C2 = C1 + span1 tan(ΛTE) (2.25)

21



The span of the second pylon section, Span 2 can be found using the z coordinates of

points 3 and 1.

span2 = z3 − z1 (2.26)

Before the tip chord of the second section of the pylon can be determined, the leading edge

sweep of the pylon section needs to be calculated. As seen in Figure 2.7 the leading edge

sweep for the pylon is constant for the top two sections of the pylon. This allows the sweep

for the second section of the pylon to be determined by calculating the sweep angle between

point 1 and point 2.

Λ = arctan[(x2 − x1)/(z2 − z1)] (2.27)

C3 = (x3 − x1)− span2 tan(Λ) (2.28)

The leading edge sweep of the third section of the pylon is the same as the leading edge

sweep of the second section of the pylon and thus is already known from equation 2.27. The

span the of the third section of the pylon, Span 3, can be determined using the coordinates

from points 2 and 3.

span3 = z2 − z3 (2.29)

Finally, the last necessary value needed for the pylon is the tip chord of the third section of

the pylon, Chord 4. As stated previously, this value is not overly important as long as the

chord is short enough so as to not protrude through the upper surface of the wing. Therefore,

this chord length was made to be a small percentage of the projected chord of the local wing

cross section that the pylon intersects.

C4 = .2PCairfoil (2.30)

With the addition of Chord 4, all necessary vsp inputs have been determined to produce

an engine pylon that can adjust shape and location to property interface with the wing

and engine while allowing the engine to change location. The last step is ensuring that a
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consistent pylon mesh is produced as they pylon changes shape. As with the other geometry

components such as the wing and fuselage, mesh refinement can be controlled within VSP

by changing the number of interpolated cross sections for each section of the component.

Widthpanel = span/(NumberofInterpolatedCrossSections− 1) (2.31)

To ensure that the pylon had consistent panel sizes between configurations with different

span lengths, the average panel size on the wing of the aircraft was measured and used to

determine a specified panel width along the span of the pylon. Because the engine pylon was

an area of focus the panel width used on the wing was halved for the pylon. The reason for

having a variable number of interpolated cross sections for the pylon was to create a near

constant panel size between pylon configurations. This procedure is an attempt to eliminate

mesh quality as a potential variable during an design process.
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Chapter 3

Program Automation and Optimization

3.0.4 Vehicle Sketch Pad Automation

The previous chapter outlined the development of the baseline DLR-F4 geometry and

engine and pylon modeling; however before any engine integration optimization could begin,

an optimization pipeline would have to be developed and the process of mesh creation and

fitness evaluation would have to be automated. Vehicle Sketch Pad can be used to create

a specified geometry and mesh. For this engine optimization problem the geometry of the

fuselage and wing of the DLR-F4 as well as the engine geometry will be constant while the

engine location and pylon shape and location will be variable. For a given engine location,

the equations in the previous chapter showed a method for finding the values of the necessary

VSP inputs needed to create a desired aircraft configuration. After these values are found

they can be entered manually into the VSP model to produce the mesh for that aircraft

configuration. This process can be automated through the use of a design file within VSP.

Design files are created within VSP by selecting the variable inputs such as the ones

used to control engine position on the X Y and Z axis and the inputs used to control the

shape of the pylon such as span length, chord length, and leading edge sweep of the different

sections of the pylon. After the variable inputs are selected, VSP writes a text file with each

variable being identified by a unique identification code. After this design file is created it

can be read by an outside program such as Matlab. After it is read by Matlab, the input

variable values can be changed to correspond to a new aircraft configuration and then a new

design file can be written to reflect the changes. Loading this new design file into the VSP

baseline file will change the previous geometry to the desired new design. Finally a script can

be written for VSP to create a mesh from this geometry and export it to a desired location.
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After a new design file is created the new geometry mesh creation can be automated by

creating a batch file which opens VSP, selects the baseline VSP file, choses the new design

file, and runs the VSP script that creates and exports the new mesh.

3.0.5 Flightstream Automation

With the mesh generation fully automated it was now necessary to automate the flow

solver, Flightstream. Before this can begin a baseline Flightstream file must be created which

contains much of the solver settings. Within this file solver settings such as flow velocity,

angle of attack, solver convergence criteria, and reference area and length are defined. After

this file is created, manual interaction with the Flightstream graphical user interface can be

avoided by using a macro. The macro can load the previously generated Flightstream file as

well as the newly created mesh. Flightstream will then find the lift and drag produced by

that geometry with the given solver and flow settings. This information is then output by

Flightstream as a text file which can be read and used as part of an objective function for an

optimizer. Other information and actions can be stored within the Flightstream macro such

as specifying the unit used for the geometry and whether or not a symmetry plane should

be used in the case of a symmetric half mesh.

The ability of Flightstream to work with half meshes can be extremely advantageous

when preforming repeated runs as is the case with an optimization application. Using a half

mesh with a symmetric plane cuts the mesh size in half which decreases the necessary run

time dramatically without losing solver accuracy. Another feature used in Flightstream is

the ability to combine boarding triangular panels to form quadrilateral panels. Not only

does this process decrease the mesh size and run time, but it can serve to produce a more

stable flow solution which can converge more quickly and accurately. The reason for this

is the accuracy of vorticity based surface solvers can be negatively effected by having panel

edges nearby the centroids of opposing panels. This situation most typically occurs near

thin trailing edges of the wing in meshes produced by VSP. This is due to the upper surface
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of the wing mesh being composed of triangular panels which have diagonals in a different

direction than the panels which make up the lower surface of the wing. When Flightstream

converts much of the triangular panel mesh into quadrilateral panels, these opposing diagonal

edges between neighboring panels are removed to form unified quadrilateral panels along the

trailing edge of the wing.

The Flightstream macro file can also load physics files which specify special flow regions

which have boundary conditions other than the typical Von Neumann boundary condition.

Two such examples are trailing edges of the aircraft wings and engine inlet and exits. Spec-

ifying a region as being a trailing edge causes Flightstream to create vortex filaments which

extend from nodes along the trailing edge [11]. These trailing edge vortices are necessary in

calculating the lift produced by a geometry due to the solver’s integrated circulation loop

method [11]. Flightstream has a built-in trailing edge identification function but it fails to

ignore trailing edges which are not of interest for lift generation calculations such as the

trailing edge of the engine pylon. Therefore it was necessary to create a trailing edge physics

file for the DLR-F4 wing so as to avoid unwanted trailing edge vortices which would have

increased solver run time.

Engine inlet and exit flow boundary conditions were discussed earlier along with engine

modeling. The engine inlet boundary conditions can specify a flow velocity which penetrates

the panel unlike the Von Neumann boundary condition which specifies that no flow goes

through the surface panels. After these flow regions are defined within Flightstream on an

engine mesh, a physics file can be produced which saves the designated flow velocity as

well as the coordinates of the panels which make up the inlet boundary. However, in the

case of an optimization problem where the engine location is variable, the coordinates of

the panels making up the engine inlet boundaries are also variable and dependent of the

location of the engine. Therefore if the engine was moved, these flow regions would have

to be redefined manually within Flightstream. This process was avoided by creating an

engine mesh in VSP from the turbofan geometry and moving it to the aircraft origin defined
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in VSP. After it was brought into Flightstream the flow regions of the compressor, bypass

exit and nozzle exit were marked and given the flow velocities outlined in Reference [15] to

create a physics file. This text file can then be read in by Matlab which allows the engine

boundary coordinates to be altered to reflect a new engine location. This is done by adding

the X Y and Z coordinates of the new engine location defined in VSP to the preexisting

panel coordinates in the physics file produced from the same engine mesh at the VSP origin.

After the flow boundary panel coordinates are changed, the physics file can be rewritten with

Matlab to reflect the new engine location. This new physics file is then specified within the

Flightstream macro so as to avoid any manual interface with the Flightstream GUI. With

VSP and Flightstream fully automated, they could now be used within an optimizer and

wrapper to solve an aerodynamic optimization problem.

3.0.6 Phoenix Integration ModelCenter

The equations and discussions in the previous chapters showed how a new engine pylon

configuration could be created with the DLR-F4 given inputs defining an engine location

and pylon shape. It was also shown that the process of mesh creation in VSP and flow

evaluations in Flightstream could be automated. However, a wrapper was still needed to

properly communicate between these programs so that information and files could be passed

between VSP, Matlab and Flightstream. ModelCenter, by Phoenix Integration, was chosen

as the program to provide this service. Within ModelCenter a user can build an object

oriented framework to solve a design problem. These components can run outside programs

such as VSP and Flightstream as well as pass input and output variables between the dif-

ferent programs. ModelCenter can also use previously written Matlab scripts to determine

the necessary inputs for other components such as VSP. Finally ModelCenter’s Optimiza-

tion Toolkit can be used to drive this process with one of the many optimizers included

with ModelCenter. This optimization process as applied to the DLR-F4 engine integration

problem can be seen in the Figure 3.1.
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Optimizer Selects Inputs

Matlab Calculates Necessary VSP In-
put Values and Writes Design File

VSP Creates Geometry with New Design
Variable Values and Exports a Mesh

Matlab Reads in Default Engine
Physics File, Changes Panel Coor-
dinate Values and Makes New File

Flightstream Loads Aircraft Mesh
and Calculates Lift and Drag

for a Specified Flight Condition

Optimizer Evaluates Objective Func-
tion Using Lift and Drag Values

Was Optimized Design Convergence Met?

Optimized Geometry

yes

no

Figure 3.1: Optimization Flow Chart

This optimization process outlined in Figure 3.1 can be used to find an engine pylon con-

figuration for the DLR-F4 which maximizes lift over drag. However, before this optimization
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process could be used within ModelCenter to solve a design problem, an optimizer had to

be selected. For this engine integration problem the ModelCenter included, classic particle

swarm optimizer called SwarmOps (PSO) was selected. This optimizer was chosen because

it does a good job of searching noisy solution spaces compared to some other optimization

techniques such as the gradient based methods which can become stuck in local minimum

or maximum locations within the search space. Particle swarm optimization (PSO) was first

developed in 1997 by Kennedy and Eberhart as a way to create an optimization process that

can mimic how information is found and shared in a society [17]. With PSO a population

of particles is created which explores the search space [17]. The search of each particle is

influenced by the particle’s previously found local best design as determined by the fitness

function as well as the best design found globally by any particle [17].

−−→vn+1 = ω−→vn + φprp(−→p −−→xn) + φgrg(−→g −−→xn) (3.1)

−−→xn+1 = −→xn +−−→vn+1 (3.2)

The velocity with which each particle travels through the search space is directed by

user defined inputs which can create greater influence due to either the local or global best

position within the domain found so far by the population of particles [16]; however, the

optimizer domain is constrained to insure that no particles travel outside of the user defined

search space. The optimization parameters used for the engine integration design problem

are shown in the following table.

ω φp φg Swarm Size
.729 1.49445 1.49445 50

Table 3.1: Optimization Parameters
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Chapter 4

Aerodynamic Optimization

With the optimization method selected, ModelCenter could now be used to solve a DLR-

F4 engine integration optimization problem. The design problem chosen was to maximize lift

over drag generated from the DLR-F4 in a cruise situation with the addition of a turbofan

engine and pylon. The aircraft velocity was set to Mach .75 with a an angle of attack of

zero degrees. The fuselage and wing of the DLR-F4 was chosen to remain constant while the

position of the engine beneath the wing was variable. Due to the variable engine location,

the position and shape of the engine pylon was also variable. A half mesh was created in

VSP along with the symmetry plane option in Flightstream to decrease solver time. The

quadrilateral meshing tool was also used within Flightstream to decrease mesh size and

increase solver stability. The engine location was defined by allowing the optimizer to chose

the position of the pylon engine interface, pictured as Point 1 in Figure 2.7. The input

variables needed for the optimizer to control the engine location and pylon shape as well as

the limits for the search space can be seen in Table 4.1.

Variable Minimum Maximum Starting Value
∆X (m) -.07 .07 -.01463
Y (m) .18 .5 .28122
∆Z (m) .013 .04 .017
Percent Chord .5 .95 .77688
Root Chord (m) .08 .135 .13016

Table 4.1: Optimization Variables

The first three variables shown in Table 4.1 determine the engine and pylon location

along the wing of the aircraft. The variable “Y” is the y coordinate of Point 1 on the engine

pylon, seen in Figure 2.7. This measurement is taken as the perpendicular distance from the
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plane of symmetry for the aircraft to Point 1 on the pylon. The variable ∆X corresponds to

the distance along the x axis that Point 1 of the pylon is from the leading edge of the aircraft

wing for a given Y value. A positive ∆X value corresponds to an engine configuration where

Point 1 is in front of the leading edge of the wing while a negative ∆X value corresponds to

an engine configuration where Point 1 is aft of the leading edge. The variable ∆Z determines

the distance that Point 1 is below the leading edge of the wing along the z axis of the aircraft.

Finally the variables “Root Chord” and Percent Chord help to define the rest of the shape of

the pylon. Root Chord determines the length of Chord 1 of the pylon, as seen in Figure 2.7,

and Percent Chord determines what percentage of the chord length of the local wing airfoil

for a given Y location that the trailing edge of the pylon will interface with. The starting

location for each variable was chosen at random by the SwarmOps PSO in ModelCenter.

The coefficients of lift and drag obtained by Flightstream during the optimization process

were used to determine the lift to drag ratio of each configuration. This ratio was then used

as the optimizers objective function to determine the fitness of a given aircraft configuration.

The results of this optimization run can be seen in the figures below.

Figure 4.1: Optimization Convergence History
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Variable Starting Design Best Design
∆X (m) -.01463 .06202
Y (m) .28122 .5
∆Z (m) .017 .02474
Percent Chord .77688 .95
Root Chord (m) .13016 .12297
Lift over Drag 17.5049 24.608

Table 4.2: Optimization Design Values

Figure 4.1 shows the lift to drag ratios found during the optimization process by Flight-

stream. Each point in the figure represents a new best design point found by the optimizer.

As can be seen from Table 4.2, the lift to drag ratio was improved by around 40 percent of

the starting value. The optimization run took less than seven “clock” hours to complete1 on

a laptop with an Intel(R) Core (TM) i7 CPU 1.73 GHz processor and 485 engine and pylon

configurations were tested.

Figure 4.2 and Figure 4.3 show that the pylon was moved outboard on the wing to the

maximum allowed value. This occurs because the pylon is acting like a winglet or fence to

block wingtip vortex formation. The engine was also moved forward and lowered compared

to the wing connection point. This was an expected outcome as it was theorized that higher

lift to drag values would be attained by having the engine interfere as little as possible with

the wing by moving the engine to the area of the wing with the smallest chord and moving

the engine away from the lower surface. This decrease in flow interference is very noticeable

in Figure 4.5 and 4.4. An interesting outcome of the optimization is that the percent chord

variable was maximized in the best design. This increase to the upper chord length of the

pylon may cause the pylon to act in a similar manner to a winglet and reduce the effect of

the vortex formed from a differences in pressures to the left and right of the pylon. This

vortex formation can be seen in Figure 4.6.

1The optimization was recorded as taking 13 hours and 15 minutes but the optimization was paused for
up to 7 hours over the night.
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(a) Side View

(b) Front View

(c) Bottom View (d) Isometric View

Figure 4.2: Starting Design
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(a) Side View

(b) Front View

(c) Bottom View (d) Isometric View

Figure 4.3: Best Design
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(a) Starting Design

(b) Best Design

Figure 4.4: Vorticity Contour Plot: Top View
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(a) Starting Design

(b) Best Design

Figure 4.5: Vorticity Contour Plot: Bottom View
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(a) Starting Design

(b) Best Design

Figure 4.6: Vorticity Contour Plot: Rear View
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Chapter 5

Aerodynamic Optimization with Structural Penalty

The aerodynamic optimization from the previous chapter pushed the engine as far out-

board as possible. In order to get a more realistic engine integration solution, structural and

aerodynamic moment constraints must be considered. With an engine placement further

from the plane of symmetry of the aircraft an increased moment is generated on the struc-

ture of the wing by the thrust and weight of the engine. Changes in lift and drag from the

wing will also change the moment experienced by the wing. For the wing to be capable of

sustaining an increased moment, it is necessary to increase the strength of the wing struc-

ture. This will inevitably lead to an increase to weight of the aircraft. The presence of two

thrust producing engines also necessitate the presence of a vertical stabilizer large enough to

overcome the yawing moment created in an engine out scenario. The further outboard the

engine is placed on the wing, the larger a vertical stabilizer must be to counteract any po-

tential yawing moments. By calculating the added weight of the wing structure and vertical

stabilizer needed for an engine and pylon configuration, a structural penalty can be placed

on the engine optimization problem.

5.0.7 Wing Weight Estimation

The structural support of the DLR-F4 wing was assumed to be composed of a single I

beam made of aircraft steel, 5 Cr-Mo-V. This wing spar was said to have a fixed support

where the wing attached at the fuselage. The three failure conditions examined for this wing

spar are failure due to shear stress and failure due to compression or tension caused by a

bending moment on the wing. The shear and bending stresses are created by the lift, drag,

and weight forces generated by the wing and engine, as well as the thrust produced by the
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engine. Before these calculations can be done, the lift and drag distribution along the wing

must be found.

After an engine-pylon configuration is analyzed in Flightstream, span-wise lift and drag

coefficients are written to an output file. These span-wise points are randomly placed along

the span by Flightstream but the sum of these coefficients is equal to the total lift and

drag coefficient for the aircraft. These data points can be used to form piece-wise cubic

functions for the coefficients of lift and drag. These functions can then be used to estimate

the coefficients of lift and drag along the wing with more even spacing which is more useful

during wing loading analysis. However, it is important to remember that these values must

be normalized by the ratio of data points to the number of interpolated points in order to

ensure that they still produce the same amount of total lift and drag on the wing.

After the lift and drag distributions have been found for the wing, shear and moment

calculations can begin. The lift and drag distributions can be approximated by a series of

point loads on the wing spar. After the wing is split into a set number of elements of equal

spacing, the lift and drag coefficients found from the span-wise lift and drag functions can be

applied at individual points along the wing. The lift and drag coefficients at these span-wise

locations can then be converted to lift and drag forces with the following equations where S

is the reference area of the wing.

L = .5ρV 2SCL (5.1)

D = .5ρV 2SCD (5.2)

After lift and drag point forces are applied on the wing the thrust and weight of the

engine can be added to the load distribution. This is done by splitting the thrust and

weight of the engine between the two wing elements nearest to the span-wise engine location.

The distribution of the thrust and weight of the engine between the two wing elements is

determined by how close the span-wise engine location of the engine is to the two elements.
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The closer the engine is to one of the two wing elements, the greater percentage of the engine

forces it bears.

Felementn = [1− |yelementn − yengine|/spanelement]Fengine (5.3)

Welementn = [1− |yelementn − yengine|/spanelement]Wengine (5.4)

With the addition of the engine forces to the wing, all forces affecting the wing have been

accounted for and converted to point loads with the exception of the support forces. Because

the DLR-F4 has a cantilever wing, the sum of the forces felt and moments felt by the wing

must be counteracted by the fixed support where the wing spar attaches to the fuselage.

This supporting moment and force can be said to be acting at the most inboard location of

the exposed wing. The load distribution for the optimal design from chapter 4 can be seen

in the Figure 5.1.

After the total force distribution for the wing has been found, the shear and moment

distribution for the wing can be determined. The forces of lift and weight act in a perpendic-

ular direction to drag and thrust; therefore, they will produce perpendicular shear forces and

bending moments for the wing spar. The shear force distribution for the wing spar can be

found by integrating the force distribution across the wing. Due to the nature of cantilever

beams, it is often easier to start calculations at the wing tip where the shear forces and

bending moments are known to be zero.

Fshear(y) =
∫ y

0
F (y)dy (5.5)

The bending moment felt by the wing spar is the integral of the shear force distribution.

M(y) =
∫ y

0
Fshear(y)dy (5.6)
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(a) Span-Wise Forces in the X Direction

(b) Span-Wise Forces in the Z Direction

Figure 5.1: Span-Wise Force Distribution

These shear and moment calculations should be done for both the design case as well

as the case where the aircraft is stationary with full thrust. The later case is important

to consider during the design phase to ensure that wing can support the weight and thrust

41



of the engine on the runway without the forces of lift and drag to counteract them. The

span-wise shear and bending moments for the optimal design from chapter 4 can be seen in

Figures 5.2 and 5.3.

(a) Span-Wise Shear in the X Direction

(b) Span-Wise Shear in the Z Direction

Figure 5.2: Span-Wise Shear Forces
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(a) Span-Wise Bending Moment about the X Axis

(b) Span-Wise Bending Moment about the Z Axis

Figure 5.3: Span-Wise Bending Moments

The shear force and bending moment applied at any given span-wise location of the

wing will produce a shear and bending stress felt by the wing spar cross section. These

stresses are largely dependent on the dimensions of the cross section selected for the wing
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spar. For this estimation it is assumed that the wing spar is an I beam with the following

dimensions seen in Figure 5.4. The scale of this cross section will be variable in order to

adjust to the local shear and bending stresses.

Figure 5.4: Wing Spar Cross Section

This cross section will have the following cross sectional area and moments of inertia

about its centroid.

A = 18c2 (5.7)

Ix = 166c4 (5.8)

Iz = 36.5c4 (5.9)
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The shear stress for a cross section of the wing spar is determined by the shear force

applied at the location of the cross section and the cross sectional area of the beam.

Fshear =
√
Fshearx

2 + Fshearz
2 (5.10)

τ = Fshear/A (5.11)

The maximum bending stress felt by the cross section of the beam can be found using the

bending moment, the perpendicular distance measured from the neutral axis of the cross

section to the outer surface of the beam, and the moment of inertia about the neutral axis.

σx = Mxz/Ix (5.12)

σz = Mzx/Iz (5.13)

The bending stress created from lift and weight will be greatest at the top and bottom

surfaces of the I beam whereas the bending stress created from thrust and drag will be

greatest at farthest sides of the spar cross section. Each bending stress will cause compression

on half of the cross section and tension on the other half of the cross section. These bending

stresses felt by the cross section can be superimposed onto each other to determine the

net bending stress created by the sum of the two bending moments. The end result is

two opposite corners of the cross section will be compressed or stretched by both bending

moments to create a maximum bending stress on the cross section of the spar.

σmax = σx + σz (5.14)

In order to determine the necessary cross section size needed by the beam to withstand

the stresses calculated with equation 5.11 and equation 5.14, some information about the
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material of the wing spar is needed. A wing spar made of the aircraft steel 5 Cr-Mo-V will

have the following properties shown in Table 5.1.

Property Value
ρ .281(lb/in3)
τmax 260 kpsi
σcmax 220 kpsi
σtmax 240 kpsi

Table 5.1: Aircraft Steel (5 Cr-Mo-V) Material Properties [18]

The material properties in Table 5.1 can be used along with eqs. (5.7) to (5.14) to

determine the cross section scaling necessary to prevent failure due to shear or bending.

Because the aircraft steel is stronger in compression, the maximum tensile stress value in

Table 5.1 will be used when determining the cross section scaling needed to prevent failure

due to bending. After the cross section size needed to prevent failure due to shear or bending

is found, the larger of the two cross sections is selected as the local cross section of the wing

spar. The weight of the spar can be found by assuming a linear change in cross section area

between each point. The following equation shows how the weight of one section between

two points is found. This can be done for all the sections to find the total weight of the spar.

Wy1,y2 = ρg.5(A1 + A2)(y2 − y1) (5.15)

If the weight of a beam section were to be converted to a point load, it would be applied

at some location between the two endpoints of the beam section; however, all previously

known load values are applied at the endpoints of these beam sections. Therefor; it would

be more convenient to split the weight of each beam section into two smaller loads which are

applied at the previously established wing element locations. This can be done by integrating

equation 5.15 to find the moment produced by the weight of the spar section about one of
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its endpoints.

My1 = (1/6)(A2 − A1)(y2 − y1)2 + .5A1(y2 − y1)2 (5.16)

This total moment produced by the weight can then be used to determine the force applied

at one of the end points of the beam section to produce that moment.

F2 = My1/(y2 − y1) (5.17)

This ensures that point load at the end of the spar section replicates the moment produced

by the weight; however it is still necessary to apply another point load at the opposing end

of the section to ensure that the two point loads sum to the total weight of the section.

F1 = Wy1,y2 − F2 (5.18)

This can be done for the total length of the wing span to convert the weight of the wing spar

to point loads applied at the previously defined span-wise locations. The forces applied at

the end points of adjacent spar locations can be summed to find the total point load applied

at that spar cross section.

The weight distribution in the form of point loads can now be added to the wing forces in

the Z direction so that shear, moment and area calculations can be redone. This is necessary

because the previously calculated spar cross section areas did not take the weight of the wing

into account. This process is then repeated until the weight of the wing is within .1 Newton

of the previously found wing weight. This process can be seen in the following figure.

After the wing spar weight is found, the weight of the wing can be found by assuming

that the wing spar accounts for 80 percent of the weight of the wing.

Wwing = Wspar/.8 (5.19)
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Force Distribution is Found

Force Distribution is Converted to
Shear and Moment Distribution

Determine Maximum Stress
due to Bending and Shear

Cross Section Sizes are Found

Wing Spar Volume and
Weight is Determined

Has Spar Weight Converged?
Wing Spar Weight Dis-
tribution is Calculated

Wing Spar Weight Calculation Complete

yes

no

Figure 5.5: Wing Spar Weight Calculation

5.0.8 Vertical Stabilizer Sizing

Although the DLR-F4 does not have a vertical stabilizer, one would be needed to offset

the yawing moment generated by the thrust produced by one of the added engines in the

event that the other engine failed. The yawing moment produced by one engine is directly

proportional to the magnitude of the thrust and the engine’s distance from the plane of
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symmetry.

Mz = Fyengine (5.20)

If a constant thrust is assumed, the further outboard the engine is placed on the wing, the

larger the yawing moment will be. To counteract this yawing moment the rudder will have to

be capable of producing a yawing moment that is equal and opposite to the yawing moment

produced by the engine. The process of determining the yawing moment produced by a

rudder deflection is well documented in Reference [19].

Mz = −δRqSbCnδR (5.21)

q = .5ρV 2
MC (5.22)

The design velocity for the one engine out condition is 80 percent of the stall speed for the

aircraft and the rudder control derivative can be found with the following equations [19].

CnδR = −CLαV VV ηvτR
bR
bV

(5.23)

VV =
lvSv
bS

(5.24)

For a given vertical stabilizer configuration and a prescribed rudder deflection angle for the

one engine out case, the reference area of the vertical stabilizer can be found by rearranging

eqs. 5.20 to 5.24.

SV =
Fyengine

δRqCLαV ηRτR
bR
bV
lV

(5.25)

From equation 5.25 it can be seen that given a constant vertical stabilizer configuration and

deflection angle, the required vertical stabilizer size to counteract the yawing moment due

to thrust will scale linearly with the outboard location of the engine. Reference [18] outlines

how this vertical stabilizer area can then be used to find the weight of the vertical stabilizer
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in newtons using empirical relationships.

WV = 27SV g (5.26)

The drag created by a given vertical stabilizer configuration can be found by first mod-

eling it in VSP and analyzing the mesh in Flightstream. Flightstream can give the coefficient

of drag of the vertical stabilizer using the reference area of the baseline vertical stabilizer. Af-

ter this coefficient of drag is found for the cruise condition of the aircraft, the drag produced

by a similar vertical stabilizers of varying sizes can be found with the following equation.

DV = qSVCDV (5.27)

5.0.9 Optimization with Wing Spar and Vertical Stabilizer Sizing Penalty

The previous engine integration optimization focused exclusively on maximizing the

ratio of lift to drag for the DLR-F4. The result was engines being placed as far outboard

as the optimizer would allow. This is not a very realistic result when other factors such

as structural weight and tail sizing are considered. To address these issues, the objective

function must be altered to reflect the disadvantages of increased weight and drag due to

increases in wing spar and vertical stabilizer sizes.

Fitness =
L−Wfuselage − 2Wwing −WV

D +DV

(5.28)

Much like the weight of the vertical stabilizer, the fuselage weight can be estimated with an

empirical equation [18].

Wfuselage = 24Sfuselageg (5.29)

Equations 5.26 and 5.29 seem to be more accurate for more realistic transport aircraft sizes,

so for the purpose of this optimization the DLR-F4 geometry will be scaled up to have
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the same length as an Airbus A320 while using the same flow conditions as the previous

optimization case.

The vertical stabilizer added to the DLR-F4, pictured in Figure 5.6, will scale with its

root chord length in order to produce a large enough moment to off set the yawing moment

created by a one engine out scenario. The vertical stabilizer will be required to counteracting

the moment produced by the thrust of one engine with a 20 degree rudder deflection.

Figure 5.6: Vertical Stabilizer Side View

The DLR-F4 will have an assumed stall speed of 67 m/s and finally the vertical stabilizer

will be assumed to have a constant moment arm relative to the center of gravity of the

aircraft, regardless of vertical stabilizer sizing. The moment arm of the vertical stabilizer

along with other constants needed for the tail sizing calculation can be seen in Table 5.3a.

The coefficient of drag for the vertical stabilizer was found by creating the geometry

within VSP and analyzing it within Flightstream using the same flow conditions as the DLR-

F4 cruise. The reference area used for the drag coefficient evaluation was that of the vertical
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Constant Value
Vs 67 m/s
ρ 1.22000 kg/m3

δR 20 deg
S .1454 m2

b 1.17129 m
ηV .97
bR
bV

1

lV .6 m
CLαV 4.5 /rad
τR .52 [19]
CDV .0063807

Table 5.2: Tail Sizing Constant Values

(a) All Lengths and Areas Listed are Pre Scale Up

stabilizer tested in Flightstream. This coefficient of drag was assumed to be constant for

all vertical stabilizers regardless of size which meant that the drag produced by the vertical

stabilizer scaled linearly with vertical stabilizer area.

With the vertical stabilizer scaling fully defined, ModelCenter can once again be used to

find an optimal engine-pylon configuration for the DLR-F4. The flow conditions and search

space, and starting geometry of this optimization are the same as the previous case; however,

the geometry is scaled by a factor of 31.518 in order to have a similar length to an A320.

The engine thrust is found in the same way as outlined in 2.0.2, but the weight of the engine

is assumed to be 5,250 pounds which is equal to the weight of the engine used on an Airbus

A320, CFM56-5B [20]. Finally the factor of safety used for wing spar cross section sizing

was set to 1.5. The results of this optimization can be seen in the figure and table below.

Unlike the previous optimization which attempted to maximize the ratio of lift to drag,

the fitness function of this optimization drove the engines to the maximum allowable inboard

location. Although the lift to drag ratio was higher at the wing tips, the added weight of the

wing spar and vertical stabilizer more than outweighed the aerodynamic benefits. As can

be seen by equations 5.25 and 5.26, the area and weight of the vertical stabilizer will scale

52



Figure 5.7: Optimization Convergence History

Variable Starting Design Best Design
∆X (m) -.01463 .0429
Y (m) .28122 .18
∆Z (m) .017 .0228
Percent Chord .77688 .64943
Root Chord (m) .13016 .12066
Fitness 12.2564 16.978

Table 5.4: Optimization Design Values

(a) Input Distances are not Scaled

linearly with the span-wise distance. The full range of vertical stabilizers produced by the

optimizer can be seen in the figure below.

The optimizer also once again moved the engine forward and to a farther distance

below the wing to maximize the lift to drag ratio generated at the span-wise engine location.

Unlike the previous optimization, the uppermost pylon chord length was not driven to the

maximum allowable value. This may be due to the lack of a nearby wing tip vortex. When

the engine is placed near the wing tip it can act as a winglet to reduce the wing tip vortex

but when the engine is placed more inboard a increase to the upper pylon chord length only

serves to further disrupt the flow. With the engine configuration of the optimal design, the

53



(a) Side View

(b) Front View

(c) Bottom View (d) Isometric View

Figure 5.8: Best Design

flow appears to be minimally affected, producing a similar wing vorticity distribution as the

previous optimal design as can be seen in Figures 4.5b,4.4b and 5.11.
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Figure 5.9: Range of Pylon Sizes for Optimization

(a) c=13.3169 m
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(a) Top View

(b) Bottom View

Figure 5.11: Vorticity Contour Plots of Best Design
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Chapter 6

Conclusions and Future Work

The process and results of two engine integration optimizations of the DLR-F4 geometry

using an unstructured mesh vorticity based panel solver were presented. Flightstream and

ModelCenter were able to identify the optimal engine-pylon configuration for both a purely

aerodynamic optimization and an aerodynamic optimization with more realistic structural

constraints. For the purely aerodynamic optimization, the optimal engine placement was

found to be near the wingtip which reduced the effect of wing tip vortices. However, this

benefit to the ratio of lift over drag was found to be overshadowed by the added weight and

drag produced by an ever increasingly large vertical stabilizer needed to offset potential yaw-

ing moments produced by the engines. These optimizations showed that Flightstream can

provide an adequate alternative to Navier-Stokes based CFD solvers in finding an optimized

preliminary design solution. The decrease to run time resulting from the use of unstructured

surface meshes and a vorticity based solver is of immense value to the optimization process.

An engine optimization run that may have taken weeks or longer using CFD was preformed

in a few hours.

In the future an effort should be made to parallelize this optimization process to further

decrease the optimization run time. In addition to improving the optimizer, the fidelity of

the vertical stabilizer model could be improved by including the vertical stabilizer geometry

to the aircraft model in VSP to measure the yawing moment produced by a rudder deflection

as opposed to using empirical relationships. Also due to the modular nature of optimization

with ModelCenter, greater complexities could be added to the model with the addition of

more outside programs. The addition of an engine analysis program such as NPSS would

allow for the ability to alter the internal engine configuration instead of simply the location
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of the engine. The estimation of weight could also be more accurately measured through

the integration of a finite element structural tool such as Nastran. Nastran could allow

for the optimization of more elaborate wing spar cross sections and the evaluation of more

failure conditions. This program could also be used to improve the pylon model by changing

the shape and weight of the pylon to account differing structural demands. Although the

addition of these propulsion and structural analysis tools would increase optimization run

time, the presence of an unstructured mesh vorticity flow solver can reduce the run time to

a manageable level.
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