
 
 
 
 
 
 

Role of Climate, Land Use/Cover and Water Quality on West Nile Virus Incidence: A 
Modeling Approach 

 
by 
 

Navideh Noori 
 
 
 
 

A dissertation submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the Degree of 

Doctor of Philosophy 
 

Auburn, Alabama 
August 1st, 2015 

 
 
 
 

Keywords: West Nile Virus, water quality, climate variables, mosquito habitat, urbanization, 
prediction. 

 
Copyright 2015 by Navideh Noori 

 
 

Approved by 
 

Latif Kalin, Chair, Professor, School of Forestry and Wildlife Sciences 
B. Graeme Lockaby, Associate Dean and Professor, School of Forestry and Wildlife Sciences 

Hanqin Tian, Professor, School of Forestry and Wildlife Sciences 
Puneet Srivastava, Professor, Biosystems Engineering Department 

 

 



Abstract 

 

 

West Nile virus (WNV), a vector-borne infectious disease, has been a major public health 

concern in North America since 1999. This virus is transmitted to susceptible mosquitoes when 

they feed on infected birds. Infected mosquitoes spread the virus to humans and other animals 

when they bite. To control mosquito-borne diseases, it is necessary to identify the locations of 

mosquito breeding sites and to monitor changes in mosquito population under different 

environmental conditions. The focus of this study was to investigate the impacts of different risk 

factors on Culex quinquefasciatus population in the central north part of the State of Georgia and 

particularly in the Atlanta metropolitan area. The main risk factors considered in this study were 

climate variability, Land use/cover (LULC) types and their impact on water quality and 

streamflow. To demonstrate which specific components of water chemistry are conducive to 

breeding Culex mosquitoes, a mesocosm experiment was designed. The emergence pattern of 

Culex mosquitoes was found to be strongly related to certain nutrients, and results showed that 

breeding sites with higher PO4 or NO3 concentrations have higher survival rate of larvae. High 

NO3 concentrations favor the development of male mosquitoes and suppress the development of 

female mosquitoes, but those adult females that do emerge, develop faster in containers with high 

NO3 levels compared to the reference group. Also, the addition of PO4 in the absence of nitrogen 

sources to the larval habitat slowed larval development, however, it took less days for larvae to 
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reach the pupal stage in containers with combination of NO3 and PO4 or NH4 and PO4 nutrients. 

In addition, short term effects of climate conditions on seasonal variation of Culex mosquito 

abundance and their infection rate in the central north part of Georgia from 2002 to 2009 were 

assessed. The Poisson regression model and Artificial Neural Network (ANN) model were used 

for the prediction purposes. Statistical analysis revealed that increasing temperature and PET and 

decreasing surface moisture in preceding late winter and preceding spring increased Culex 

quinquefasciatus female mosquitoes abundance in summer/early fall about 2 times as many and 

also increased the number of infectious mosquitoes about 3.5 times. Also low precipitation in late 

winter decreased mosquito abundance in summer. However, above average temperature in late 

winter and early spring coupled with below average precipitation favors the incidence of WNV in 

mosquitoes. Both ANN and regression models predicted the seasonal cycle of mosquito abundance 

fairly accurate. Addition of antecedent mosquito count data or infection rate as predictors 

improved the prediction power of both models by increasing ENASH values and decreasing RBIAS 

values. To examine the relationship between LULC and various water quality parameters and to 

predict water quality in unmonitored watersheds in Atlanta area, an ANN-based model was 

applied. Streamflow and water quality data from neighboring USGS stations in the Atlanta area 

with leave-one-site-out jackknifing technique were used to build the predictive models for PO4, 

NH4 and NO3 loading values. NO3, NH4 and PO4 predictive models with best performance had 

ENASH values of 0.99, 0.89, and 0.66 respectively and RBIAS values of 8%, -6% and -7% respectively. 

No general trend was observed between percent imperviousness or percent forest cover or 
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watershed size and the model performances. Also, a lumped model (ANN) and semi-distributed 

watershed model, Soil & Water Assessment Tool (SWAT), were combined to improve ANN 

performance for predicting flow during warm and cool. 62% of runs for predicting flow during 

cool season and 83% of runs for predicting flow during warm season had “good” to “very good” 

performance ratings. The developed predictive models can be used for a more accurate warning of 

high-risk periods for WNV and could have important implications for the control of West Nile 

Virus spread by Culex mosquito species. Also, the findings of this study can help reduce the costs 

and efforts required for effective mosquito vector control by focusing on areas with higher risk. 
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Chapter 1. Introduction 

 

 

Introduction 

Transmission of vector-borne diseases in urban environments is an important global health 

concern and West Nile Virus (WNV) fever has repeatedly been identified as a major 

epidemiological concern in the developed world (Morens et. al. 2004). Since 1999, more than 

39,000 disease cases of WNV had been reported to the Center for Disease Control (CDC) 

(ArboNET, Arboviral Diseases Branch, Centers for Disease Control and Prevention, 2013). WNV 

is primarily maintained in nature by transmission cycles between mosquitoes and avian hosts 

(Deichmeister and Telang, 2010). This virus can infect other hosts including humans and horses. 

Culex species are the major vector of West Nile Virus disease in the United States. In the southeast 

U.S., over 96% of the West Nile Virus positive mosquito pools reported to the CDC from 1999 to 

2010 have been obtained from Culex mosquitoes, among which 64.6% were from Culex 

quinquefasciatus (Andreadis, 2012). The state of Georgia, and especially the Atlanta area has been 

a hotspot of WNV incidence in 2012 with 117 WNV human cases, 6 deaths and 125 WNV positive 

mosquito pools (among which over 81% were from Culex quinquefasciatus) reported by the 

Georgia Department of Public Health.  

Mosquito infection rate changes from year to year spatiotemporally. Multiple environmental 

drivers can affect WNV amplification and transmission to humans. Assessing the spatial patterns 
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of environmental determinants associated with vector and host can help recognize the geographic 

locations of populations at risk. Temporal analysis can also clarify inter-annual and seasonal 

variation of the vector abundance, and long-term predictions of shifts in mosquito abundance 

which can help identify high-risk periods for WNV (Rezaeian et al. 2007; Zeger et al. 2004; 

Wimberly et al. 2013). 

Major components of any arboviral surveillance system include a thorough understanding of 

the population dynamics of vectors and avian amplification hosts, the spatiotemporal distribution 

of the arboviruses, the interrelationships of vectors, environmental condition of mosquito habitats, 

and meteorological factors, including rainfall and temperature, that drive arboviral cycles (Day 

1991, Day and Lewis 1992). In spite of the large number of studies on vector-borne diseases, most 

of them assessed the impacts of changes in landscape characteristics on WNV transmission in a 

general level and solely from remotely sensed data or these contextual factors are often neglected 

in research related to disease transmission and public health (Brown et al. 2008, LaBeaud et al. 

2008, Messina et al. 2011). 

In this research, quantitative relationships among Culex quinquefasciatus productivity, 

landscape characteristics, climatic variability and water quality conditions in streams were 

explored. The ability of predicting WNV carrying Culex quinquefasciatus population will be 

enhanced by applying the identified relationships among landscape characteristics and temporal 

and spatial patterns of WNV risk. Data from the state of Georgia, specifically Atlanta area, was 

utilized in developing and testing these relationships. It is critical to improve our capability to 
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predict WNV risk across rural as well as developed landscapes to prevent the future spread of 

WNV infection. Detailed assessment of environmental risk factors would help predict spatial 

patterns of human WNV risk in Atlanta area. Also by directing surveillance activities and 

environmental monitoring and public health interventions, the early warning of WNV risk 

outbreaks would be possible.  

 

Proposed Research 

The prevalence and transmission of vector-borne pathogens is determined by the distribution 

and abundance of the primary vector (Reiter and LaPointe, 2007). These parameters affect WNV 

risk because of their influences on mosquito habitat suitability, avian host communities and human 

exposure to infected mosquitoes (Chuang et al. 2012). To assess the prevalence of vector-borne 

diseases within an area and to implement control measures, understanding the spatial and temporal 

dynamics of mosquito communities is vital (Buckner et al. 2010). In this study, some important 

risk factors were considered and their relationship with Culex quinquefasciatus population was 

assessed.  

 

1. Water quality and Culex quinquefasciatus population  

Culex larval habitats remain one of the largest targets for municipal surveillance programs in 

the United States (Deichmeister and Telang, 2010). Environmental modifications due to 

urbanization and human activity increase the number of artificial water collection reservoirs which 
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are common aquatic habitats for Culex quinquefasciatus. These species are found in artificial larval 

habitats such as catch basins, open containers that hold water and organic material long enough 

for the development of larvae to the adult stage (Jacob et al. 2006, Gardner et al. 2013). Combined 

sewer overflows (CSOs) are considered point source pollution and major urban breeding sites for 

Culex quinquefasciatus as they provide nutrient rich water which is unfavorable for mosquito 

predators due to diminished oxygen concentrations (Calhoun et al. 2007). Some studies have 

assessed the impacts of CSOs on WNV vector mosquito production (Bentley and Day 1989, 

Calhoun et al. 2007, Chaves et al. 2009). However, even after CSO improvements, elevated levels 

of WNV cases are observed in urban areas, which reveals that CSOs and catch basins are not the 

only sources of Culex mosquito production. Limited information exists on the effects of nutrient 

concentrations typically found in field conditions, and dose-response curves in general, for Culex 

species, despite their importance as major vectors of WNV. 

To clarify which specific water chemistry is conducive to breeding the mosquitoes associated 

with the virus, a mesocosm experiment was designed. The water concentrations of NO3, NH4 and 

PO4 have been selected to reflect the ranges commonly reported in urban streams in the Southeast 

U.S. Statistical analyses were performed to determine if the treatments significantly affected the 

number of larvae, pupae and adult mosquitoes. This study enabled us to develop dose–response 

relationships between larval development and NO3, NH4, and PO4 concentrations in the stream 

water. This experiment can determine the mosquito reactions under different water quality 

conditions, specifically in lower nutrient concentrations which are more widespread in the 
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landscape. This will be more significant when it comes to human health especially in residential 

areas with standing waters in flower pots, buckets, tires and barrels in back yards which are good 

mosquito breeding sites with different nutrient levels.  

 

2. Climatic variability and Culex quinquefasciatus abundance and their infection rate 

Climatic variability is one of the most important drivers of inter-annual WNV transmission 

risk. Climate directly affects the vector population, pathogens and hosts distribution, and their 

abundances (Roiz et al., 2014). Changes in meteorological conditions such as temperature, relative 

humidity and wind speed can impact mosquito populations (Curriero et al., 2005). Drought 

followed by wetting of the land surface is significantly associated with the spatial-temporal 

variability of WNV human cases (Shaman et al. 2005). The extreme weather conditions 

accompanying long-term climate change may be contributing to the spread of WNV in the United 

States and Europe (Epstein, 2001; Platonov et. al., 2008). Changes in weather patterns with global 

climate change make it especially important to improve our ability to predict how inter-related 

local weather and environmental factors affect vectors and vector-borne disease risk (Ruiz et. al., 

2010).  

However, in most previous studies, the impact of meteorological conditions on mosquito 

abundance was limited to single point lags which consider the conditions at a certain time point 

prior to trapping. In this study, to investigate the correlation between climate forces and inter-

annual and seasonal variation of Culex mosquito population carrying WNV as well as their 
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infection rate, cross-correlation maps (CCMs), introduced by Curriero et al. (2005), were 

developed for mosquito data from the central north part of the State of Georgia (GA). The main 

goal was to develop an improved predictive model of Culex quinquefasciatus population and their 

infection rate, which would advance our  understanding of the transmission of mosquito-borne 

arboviruses (Walsh et al., 2008), using the lagged climate data and by extending effects of climate 

conditions over a range of time rather than a single point in time. Two modeling approaches were 

applied in this study, multi-regression and Artificial Neural Network (ANN); lagged climate data 

were fed into these models for prediction purposes at four weeks moving average scale.  

 

3. Linkage between LULC and water quality 

A growing human population accelerates urbanization, forest disturbance and other types of 

LULC changes. Such land use changes modify the hydrological processes and water balance of 

river basins. Environmental disturbances such as urbanization and deforestation play a key role in 

the emergence of many infectious diseases (Patz et al. 2004; Saleeza et al. 2011) through changing 

hydrological processes and water balance of river basins. Urban/suburban land use can enhance 

environmental conditions for enzootic and bridge transmission of WNV to humans (Brown et al., 

2008). Concentrations of many water quality constituents changes due to altered sediment 

transport rate, chemical loads, and watershed hydrology. Nutrient concentrations and conductivity 

increase in urbanized streams due to water quality degradation (Paul and Meyer 2001; Walsh et 

al. 2005, Chadwick et. al.; 2012). As nutrients are limiting resources for bacteria and mosquitoes 
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feed on bacteria, stream pollution is a major determinant of the abundance of mosquito vectors 

(Chaves et al. 2010; Calhoun et al. 2007).  

However, there are not enough water quality data available in trap sites with high number of 

WNV positive mosquito pools around Atlanta area. To examine the relationship between LULC 

and various water quality parameters and to predict water quality in unmonitored watersheds with 

similar characteristics, Kalin et al. (2010) developed an ANN-based model. To predict water 

quality as a function of LULC in ungauged sites close to the mosquito trap sites in the Atlanta area, 

GA, Kalin et al. (2010) methodology was extended in this study. Data from neighboring USGS 

stations in the Atlanta area, GA was used to build the model. Streamflow was one of the input data 

to the model and since no streamflow data was available, a quasi‐distributed model, Soil and water 

assessment tool (SWAT), was applied to simulate streamflow.  

 

4. Combined impact of environmental predictors of Culex quinquefasciatus abundance  

Environmental conditions prompt mosquito population dynamics and consequently affect 

disease spread. To control mosquito populations and to prevent the disease, understanding this 

vector–environment relationship is essential. Biotic and abiotic conditions affect mosquito 

behaviors and consequently the risk of WNV epidemics (Paz et al. 2013). This virus occurrence is 

impacted by many risk factors such as the presence of susceptible avian hosts, infected birds, 

mosquito abundance that feed on birds and human or horses, and the interaction of the vector with 

the biotic and abiotic environment. The most important environmental factors influencing the 

7 

 



maintenance of WNV are climate variability, land use characteristics, water quality conditions of 

mosquito breeding sites and socio-economic conditions. The impacts of spatially heterogeneous 

environmental and ecological factors on mosquito population dynamics are complex and 

understanding the inter-relationships between vectors, hosts, and their environment can provide 

valuable information for identifying conditions suitable for pathogen transmission (Bisanzio et al. 

2011).  

In this part of study, to characterize the water quality conditions of streams around Atlanta 

and to link it to distribution of WNV transmission risk, mosquito trap sites that have been used at 

least 10 times in Fulton, DeKalb and Cobb counties and were located near a stream network with 

the distance of 1 km or less were selected. Daily streamflow and nutrient loadings were predicted 

using the developed ANN models from previous chapter and the results were linked to the 

developed regression models from the mesocosm experiment to estimate Culex quinquefasciatus 

population under water quality conditions in Atlanta area.  

 

General outline 

This research is organized according to the following framework: Chapter 1 delivers an 

introductory overview of the topic, presents the research purposes and objectives, and also a review 

of the methodology proposed for each objectives in chapters 2 to 5. Chapter 2 documents the 

relationship between larval development and different nutrient concentrations in stream water by 
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conducting a mesocosm experiment. This chapter has been accepted for publication in Journal of 

Vector Ecology (Noori et al. 2015).  

Chapter 3 explains the inter-annual and seasonal variation of Culex quinquefasciatus and its 

infection rate based on the climate variability in the central north part of the State of Georgia, 

United States. Two modeling approaches: multi-regression and ANN were applied in this chapter 

to develop an improved predictive model of Culex quinquefasciatus population and their infection 

rate using the lagged climate data. This chapter is in the process of being submitted to a journal.  

Chapter 4 examines the relationship between different LULC types and water quality 

parameters to develop a predictive model in unmonitored watersheds in the Atlanta area using an 

ANN-based model. Also, streamflow was predicted for ungauged watersheds using both ANN and 

SWAT models. Chapter 5 presents the predicted water quality constituents in the Atlanta area 

nearby mosquito trap sites and the predicted values in trap sites were linked to the mosquito 

population and larval development using the findings from chapter 2. This chapter also discusses 

the combined impacts of environmental factors on mosquito abundance in Atlanta area. Chapter 6 

is a summary of major findings to the preceding chapters. Suggestions for the future studies are 

also discussed in this chapter.  
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Chapter 2. Larval development of Culex quinquefasciatus in water with low to moderate 

pollution levels 

 

 

Abstract 

Population growth and urbanization have increased the potential habitats, and consequently 

the abundance of Culex quinquefasciatus, the southern house mosquito, a vector for West Nile 

Virus in urban areas. Water quality is critical in larval habitat distribution and in providing 

microbial food resources for larvae. To demonstrate which specific components of water chemistry 

are conducive to breeding Culex mosquitoes, a mesocosm experiment was designed. Dose–

response relationships between larval development and NO3, NH4, and PO4 concentrations in 

stream water were developed through this experiment to describe the isolated effects of each 

nutrient on pre-adult development. The emergence pattern of Culex mosquitoes was found to be 

strongly related to certain nutrients, and results showed that breeding sites with higher PO4 or NO3 

concentrations have higher survival rate of larvae. High NO3 concentrations favor the development 

of male mosquitoes and suppresses the development of female mosquitoes, but those adult females 

that do emerge, develop faster in containers with high NO3 levels compared to the reference group. 

Also, the addition of PO4 in the absence of nitrogen sources to the larval habitat slowed larval 

development, however, it took less days for larvae to reach the pupal stage in containers with 

combination of NO3 and PO4 or NH4 and PO4 nutrients. Results from this study may bolster efforts 
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to control WNV in urban landscapes by exploring water quality conditions of Culex larval habitats 

that produce adult mosquitoes.  

 

Keywords: West Nile Virus, water quality, urbanization, Culex species, mosquito habitat, 

mesocosm. 

 

Introduction 

Infectious diseases continue to pose major challenges to global economies and public health 

(Morens et al. 2004, Jones et al. 2008). The transmission of vector-borne diseases in urban 

environments, particularly West Nile Virus (WNV), has repeatedly been identified as a major 

epidemiological concern in the developed world (Morens et al. 2004). Since WNV was recognized 

in New York City in 1999, it has spread rapidly across the United States (Center for Disease 

Control and Prevention (CDC) 2011). As a result of rapid land development in the Southeast, 

habitats for Culex quinquefasciatus have become enhanced. The primary drivers of arbovirus 

disease outbreaks are human-induced land use/cover (LULC) changes (Patz et al. 2004). 

Environmental modifications due to road, drainage, canal, and residential developments have 

created new artificial breeding habitats for mosquitoes (Saleeza et al. 2011). Urbanization and 

human activity increase the number of artificial water collection reservoirs which are common 

aquatic habitats for Culex quinquefasciatus. These species are found in artificial larval habitats 

such as catch basins, open containers that hold water and organic material long enough for the 
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development of larvae to the adult stage (Jacob et al. 2006, Gardner et al. 2013). Small, flooded 

depressions in the soil, tire tracks, and shallow ditches are also suitable habitats for Culex 

quinquefasciatus (Jacob et al. 2006).  

Although many studies have been carried out to link environmental conditions to WNV risk, 

most of them assessed the impacts of changes in landscape characteristics on WNV transmission 

at a general level and solely from remotely sensed data (Brown et al. 2008, LaBeaud et al. 2008, 

Messina et al. 2011). Number of factors that have been suggested to influence WNV risk poorly 

understood. A key factor in determining the local abundance of insect populations is the choice of 

habitat for pre-adult development (Chaves et al. 2009). The selection of mosquito breeding sites 

is the result of the recognition of key physical and chemical factors. Sites with higher nutrient 

concentrations provide greater microbial food resources and mitigate resource competition 

(Dowling et al. 2013). The major food resources for Culex species are microorganisms and detritus, 

and the water column is their feeding microhabitat. Bacteria are the most abundant microorganisms 

present in larval food, and mosquito growth can occur with bacteria as the only food source 

(Merritt et al. 1992). Bacteria use nitrogen as a source of energy through NO3 dissimilation and as 

an essential element for growth through fixation of gaseous nitrogen. NH4 is also used by nitrifying 

bacteria as a primary energy source in aquatic systems. NH4 oxidation produces nitrite that is then 

quickly oxidized to NO3 by bacteria (Rheinheimer 1980, Bock et al. 1986, Paul and Meyer 2001). 

The nitrifying and denitrifying bacterial communities represent readily available potential food 

resources to developing mosquito larvae. The dissolved phosphorus can also be utilized for growth 
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by algae and bacteria (Cembella et al. 1984). These nutrients are introduced from different point 

and non-point sources. Two-thirds of phosphorus loads to lakes and rivers originate from non-

point sources, such as runoff from pastures and croplands, atmospheric deposition, and stream 

bank erosion. Other non-point sources include urban runoff, non-agricultural rural runoff and 

seepage from individual sewage treatment systems. Nitrogen is also introduced through sewage 

and fertilizers. Heavy rains can produce runoff carrying these materials into nearby streams and 

lakes. NO3 can also be formed in water bodies through the oxidation of other forms of nitrogen. 

Ammonia and organic nitrogen can enter water through sewage effluent and runoff from land 

where manure has been applied or stored. The extent of the increase in nutrient levels depends on 

wastewater treatment technology, the degree of illicit discharge and leaky sewer lines, as well as 

fertilizer use (Paul and Meyer 2001). Nutrients coming from these sources may be replenished in 

temporary pools by runoff or during flooding which represent potential mosquito breeding 

habitats.  

The heterogeneity of urban areas in their extent, degree, and distribution of environmental 

modifications, affects the dynamic transmission systems through which the pathogen propagates 

(Magori et al. 2011). Watersheds with high impervious cover have higher nutrient concentrations 

and loads and lower dissolved organic carbon (DOC), indicative of the influence of urbanization 

on biogeochemical inputs to streams (Nagy et al. 2012, Tu 2001, Crim 2007). Combined sewer 

overflows (CSOs) are considered point source pollution and major urban breeding sites for Culex 

quinquefasciatus as they provide nutrient rich water which is unfavorable for mosquito predators 
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due to diminished oxygen concentrations (Calhoun et al. 2007). Habitats created by CSOs are 

similar to other urban mosquito habitats such as catch basins (Lund et al. 2014), where ammonia 

concentrations were found to be positively correlated to larval mosquito abundance (Gardner et al. 

2013). Some studies have assessed the impacts of CSOs on WNV vector mosquito production 

(Bentley and Day 1989, Calhoun et al. 2007, Chaves et al. 2009). It was found that polluted water 

pulses coming from CSOs enhance oviposition and mosquito densities. Also, mosquitoes from 

sewage overflow water emerge faster, are bigger, and have an increased ratio of females to males 

(Chaves et al. 2010). Ammonia and PO4 concentrations and mosquito populations are higher in 

CSOs than in non-CSO creeks. However, even after CSO improvements, elevated levels of WNV 

cases are observed in urban areas, which reveals that CSOs and catch basins are not the only 

sources of Culex mosquito production. For instance, although CSOs in the Atlanta area were 

remediated in 2008 and water quality indices improved (Lund et al. 2014), an outbreak in 2012 

with a high number of positive mosquitoes occurred. This potentially indicates that mosquitoes 

carrying WNV do not necessarily require very high nutrient levels to thrive, and studies that only 

focused on mosquito development in sewage water are limited and confounded. Limited 

information exists on the effects of nutrient concentrations typically found in field conditions, and 

dose-response curves in general, for Culex species, despite their importance as major vectors of 

WNV.  

The nutrient influences on mosquito larvae development at low to moderate levels have not 

been clarified, and the quantitative relationships between specific nutrient concentrations in water 
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and larvae have not been studied. In most previous studies artificial pools were treated with dog 

food, yeast or liver powder to feed mosquito larvae during the experiment and to make the breeding 

habitat nutrient rich (Telang et al. 2006, Chaves et al. 2009, Cardoso et al. 2010, Nguyen et al. 

2012, Ariani et al. 2015). This creates a critical problem, specifically in lower nutrient 

concentrations which are much more widespread in the landscape than those of CSOs. This study 

helps to clarify that CSOs and catch basins are not the only habitats for Culex mosquitoes that 

could transmit WNV in urban areas. Understanding breeding habitats with low nutrient 

concentrations, and their impacts on Culex mosquito development, may help reduce WNV 

prevalence by identifying and eliminating such hitherto unrecognized sources of mosquito 

production. This may be more significant when it comes to human health in residential areas with 

standing water in flower pots, buckets, tires and barrels in back yards which are good mosquito 

breeding sites for various species with different nutrient levels (CDC 2012). For improved risk 

prediction in urbanized areas, relationships between water quality and mosquito reproductive 

potential need to be better understood.  

To explore the breeding of Culex mosquitoes under different water quality conditions, 

especially in habitat with medium to low levels of components of water chemistry, a mesocosm 

experiment was designed. Through this experiment, dose–response relationships between larval 

development and NO3, NH4, and PO4 concentrations in stream water were developed. It was 

hypothesized that addition of PO4 to the breeding water favors mosquito development. Results 
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from clarification of nutrients-mosquito relationships can be critical in developing tools for 

predicting WNV risk across developed landscapes. 

 

Materials and methods 

The water quality data from several highly urbanized streams within the Atlanta metropolitan 

area, Georgia U.S.A., collected and analyzed by USGS and USEPA, indicate concentrations range 

of 0.05-18 mg/L for NO3, 0-14 mg/L for NH4, and 0.01-9 mg/L for PO4 (http://ga.water.usgs.gov/) 

(http://www.epa.gov/storet/dbtop.html ). The maximum nutrient concentrations in a CSO site in 

Atlanta area were reported as 1.50 mg/L for NO3, 30.0 mg/L for ammonia and 8.0 mg/L for PO4 

in Lund et al. (2014). Therefore, in this experiment, water concentrations of NO3, NH4 and PO4 

have been selected to reflect the ranges commonly reported in urban streams in the Southeast U.S.  

Ninety 1.25 liter plastic containers were filled with 1 liter of stream water from a reference 

stream (i.e. a stream associated with a watershed with minimal development near Auburn, AL), 

ensuring that naturally-occurring communities of microflora were present in the containers. 

Eighteen treatments (Table 2.1), each replicated five times, were assigned to containers in a 

completely randomized design. Among these eighteen treatments, five of them contained low to 

high NO3 concentrations (Trt3 to Trt7), five had low to high NH4 concentrations (Trt8 to Trt12), 

four treatments covered low to high PO4 levels (Trt13 to Trt16), 1 treatment had NO3 and PO4 

constituents combined (Trt17) and 1 treatment had PO4 and NH4 constituents combined (Trt18). 

The stock solutions were made in the lab using sodium nitrate for NO3, ammonium chloride for 
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NH4 and monopotassium phosphate for PO4 and containers were spiked one week prior to the 

addition of larvae. All containers, except Trt1, were seeded with 0.1 g of ground senesced foliage 

from a flowering dogwood (Cornus Florida), a species with low lignin content and high 

decomposition rate which served as a source of carbon. After determining the NO3, NH4, and PO4 

concentrations in the reference stream water which were below detection limits, appropriate 

amounts of nutrients were added in order to achieve the target concentrations for treatments shown 

in Table 2.1. The treatment selection allowed for isolation of the influence of nitrogen source (NO3, 

NH4), PO4, as well as level of N and P in a setting where major sources of variation are controlled. 

One hundred Culex quinquefasciatus larvae as 1st instars were obtained from the laboratory 

colonies and were added to each container. All containers were placed in an indoor facility where 

a constant temperature of 25 oC (±2 oC) was maintained (Rueda et al. 1990). Containers were 

checked daily for pupae, which were isolated after pupation. Larvae were individually counted in 

each container after day 30 of the experiment, when it was possible to count them manually. Each 

pupa that successfully emerged into an adult was sexed and the number of days to pupation was 

recorded. The Thermo Scientific Dionex ICS-1500 ion chromatography system (Waltham, 

Massachusetts) was used to analyze water for each container at the end of experiment for anions 

(chloride, nitrite, nitrate, phosphate, and sulfate) and cations (sodium, ammonium, potassium, 

magnesium, calcium). About every two weeks, approximately 300 ml of water was added to 

containers to maintain a water level sufficient for larval and pupal development. The nutrient levels 

were not kept constant during the experiment to simulate a more natural system as nutrient 
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concentrations vary tremendously in the field. Figure 2.1 shows the initial and final nutrients 

concentrations and also the water volume remaining in each container after larval development. 

NH4 content decreased as adult mosquitoes emerged. PO4 was also utilized by algal cells for 

growth. In some containers especially those with very high PO4 levels or very high NO3 levels, the 

nutrient concentrations increased due to low water volume left at the end of experiment.  

 

Statistical analysis  

Statistical analyses were performed to determine if the treatments significantly affected the 

number of larvae, pupae and adult mosquitoes and to ascertain whether concentrations of different 

nutrients affect each response variable. Because of the discrete nature of the responses, count-data 

models, such as Poisson and negative binomial regression models (MuCullagh and Nelder 1989) 

were used. Due to excess zeroes in data, maximum likelihood fits of these models did not provide 

satisfactory fits to the data. Thus the models were modified to accommodate the excess zeros. 

There are two common statistical approaches for modifying count-data models to accommodate 

excess zeroes: inflating (Lambert 1992) and hurdling (Mullahy 1986). Inflating is appropriate 

when excess zeroes are due to inability to observe in addition to the actual absence or absence due 

to a source that is unaccounted for in the study. Zero-inflated Poisson (ZIP) or zero-inflated 

negative Binomial (ZINB) are two such models. Hurdling is used when all zero data are from one 

“structural” source (Hu et al. 2011). The source of zeroes in this study is mortality of larvae due 

to lack of food (very low nutrient and carbon source). There were no flaws in the containers and 
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hence we are unable to justify two separate sources for the zeroes as required by ZIP and ZINB 

models. Thus, all zero data were assumed to come from one “structural” source and hurdle models 

were applied. The standard errors of the regression coefficients were estimated using robust 

sandwich estimators (Huber 1967, Zeileis 2004, 2006) that can deal with slight deviations from 

normality, heteroscedasticity, and some observations that exhibit large residuals or influence. 

These standard errors were used to construct Wald test statistics to test the significance of 

regression coefficients (Zeileis et al. 2008). Also, pairwise contrasts of the treatment groups while 

adjusting for multiple comparisons using the Tukey’s method, was performed based on the fitted 

Poisson hurdle model for the count response variables which were number of pupae and number 

of adult males or females. The contrasts were estimated for both count and zero hurdle models. 

The effect of nutrient levels on the time required for a mosquito to develop from a larva to a pupa 

was analyzed using a linear model. The concentrations of NO3, NH4 and PO4 were covariates in 

the model. An analysis of variance (ANOVA) was also used to compare the time to pupation 

among the treatment groups. Following statistical significance at the p < 0.05 level, a Tukey’s 

Honest Significant Difference (HSD) test was used to separate treatment means. To see the effect 

of each specific nutrient alone on the response variable, all analyzes were also done within groups 

of treatments, including Trt2 as reference. All analyses were performed in R statistical software 

(version 3.0.2.) (R Core Team 2013).  

In addition, the dose-response relationship between each nutrient and response variable 

(number of larvae, pupae and adult mosquitoes and time to pupation) was developed by creating a 
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simulated dataset. Each statistically significant nutrient concentration was varied from its 

minimum to maximum value and the nonsignificant nutrient concentrations were fixed at their 

mean value of all the experiments. The response variable was predicted based on the simulated 

dataset.  

 

Time series of number of larvae  

To describe the variation in the number of surviving larvae as a function of time and nutrient 

concentration, larvae were counted starting on the day 30th of the experiment and continued until 

the experiment ended. The time series of larvae number was analyzed using a Poisson generalized 

linear mixed model (GLMM), (Breslow and Clayton 1993). The package nlme (Pinheiro et al. 

2012) from the R software was applied for the number of larvae time series. The concentrations of 

NH4, NO3, PO4, and time were considered as fixed effects; and containers as a random effect. The 

interactions of nutrients with each other and with time were also considered in the model.  

 

Results 

Impact of nutrient concentrations on larval mortality 

Summary statistics of number of larvae were plotted for each treatment as shown in Figure 

2.2. A linear mixed-effect model was applied to the time series of the number of larvae. NH4 and 

the interaction of time and NH4 were removed from the regression model as they were statistically 

non-significant. In all containers, larvae declined on average by 0.11 larvae per day (±0.004, ±95% 
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C.I.) (p<0.0001) (Table 2.2). The decline is due to mortality. Those larvae that pupated were 

counted as survivors thereafter. This decline in surviving larvae can be explained by the reduction 

in available food over time for larvae. In addition, PO4 and NO3 showed significant positive 

relationships with the number of surviving larvae over this period. The number of surviving larvae 

increased by 0.43 (±0.14, ±95% C.I.), (p <0.0001) following each 1 mg/L increase of PO4. Also, 

for each 1 mg/L increase of NO3, number of larvae increased by 0.09 (±0.06, ±95% C.I.), 

(p=0.003). Therefore, in containers with higher PO4 or NO3 concentration, the larval survival rate 

is larger due to an increase in food sources available for larvae. The same analysis was performed 

also within each group of treatments, including Trt2 as reference to see the effect of each nutrient 

on larval mortality separately. Results were in agreement with the findings from Table 2.2.  

We also observed statistically significant interactions between different nutrients and time but 

the impact size on the number of larvae is low (between 0.001 and 0.005, estimate value column 

in Table 2.2). To clarify the interactions, predicted time series of minimum, average and maximum 

number of larvae were graphed and shown in Figure 2.3 a, b and c. In addition, the average number 

of larvae was predicted at days 30, 40, 50 and 60 of experiments and was graphed (Figure 2.3 d). 

The negative relationship between time and number of larvae is shown in this figure. As time 

proceeds from day 30 to day 60, for fixed values of NO3 and PO4, the number of larvae decreases. 

Also, for a fixed time, by increasing the PO4 or NO3 level, the number of larvae increases. There 

was no significant interaction between PO4 and NO3 (Figure 2.3 c). In conclusion, breeding sites 

with higher PO4 or NO3 concentrations have higher survival rate of larvae.  
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Impact of nutrient concentrations on number of larvae pupating 

The number of pupae obtained at the end of the experiment for each treatment is shown in 

Figure 2.4. Containers without leaves (treatment 1) has low productivity compared to treatment 2. 

Average number of pupae in treatments 1 and 2 were 0.2 and 1.4 respectively (Figure 2.4). On 

average, 1.22 larvae out of 100 per container pupated successfully (0.31-4.14, 95% C.L.). Since 

about 33% of the containers failed to produce pupae, a hurdle model was fitted to the data. 

According to the zero hurdle model, a significant positive relationship was found between the 

concentrations of both NH4 and PO4 and the probability of any larvae pupating. The odds of any 

larvae pupating increased by 29% (1.29, 1.02-1.63 95% C.L.), (p=0.04) and 25% (1.25, 1.00-1.56 

95% C.L.), (p=0.04) for each mg/L increase in NH4 and PO4 level in containers, respectively. No 

significant correlation was found between NO3 and number of pupae (Table 2.3). To develop the 

dose-response curve of number of pupae versus PO4 and NH4 concentrations, a simulated dataset 

was created that has PO4 concentrations varying from 0 to 12 mg/l, NH4 concentrations varying 

from 0 to 8 mg/l and NO3 fixed at its mean value of all the experiments. The fitted hurdle model 

to the actual data was used to predict the number of pupae based on the simulated dataset. Figure 

2.5 describes the effects of PO4 and NH4 on the number of larvae successfully pupating. The same 

analysis was performed within each group of treatments including Trt2 as the reference treatment 

to show impact of each nutrient on the response variable separately. No significant correlation was 

found between the nutrient and number of larvae pupating within each group. In addition, pairwise 
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contrasts on the fitted Poisson hurdle model using the Tukey’s test did not show any significant 

differences for the number of pupae among treatment groups (results not shown).  

 

Impact of nutrient concentrations on time to pupation  

In addition to monitoring pupae, larvae, and adult densities during the experiment, the average 

time required for mosquitoes to develop into a pupa was also recorded (Figure 2.6). On average, 

larvae pupated in 40.95 days per container (30.22-54.41, 95% C.I.). A linear model considering 

NO3, PO4 and NH4 concentrations as predictors was fitted to the data. NO3 has a significant 

negative relationship with time to pupation (Table 2.4): for each 1 mg/L increase in NO3 

concentration, the pupation time decreased by 0.55 (± 0.35, ±95% C.I.) day, (p = 0.003). Therefore, 

increased NO3 levels increased the rate of larval development and pupation.  

Time to pupation was separated for males and females and the linear model was run for each 

sex separately. For females, a 1 mg/L increase in NO3 also shortened the time to pupation by 0.79 

(± 0.44, ±95% C.I) day, (p=0.002) (Table 2.4). As the impact of NO3 on time to pupation for 

females was statistically significant, a simulated dataset was created with NO3 concentrations 

varying from 0 to 28 mg/l, and PO4 and NH4 concentrations fixed at their mean value of all the 

experiments. The dose-response curve of time to pupation of females per container versus NO3 

concentration was developed based on the fitted linear model, as shown in Figure 2.7. For males, 

increased NH4 concentrations decreased pupation time, while increased PO4 concentrations 

increased pupation time. Increasing the concentration of NH4 by 1 mg/L, resulted in decreased 
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time to pupation for male mosquitoes by 1.32 (± 1.08, ±95% C.I.) day, (p=0.02). Also, by each 1 

mg/L increase in PO4, it takes 1.41 (± 1.23, ±95% C.I.) day longer for larvae to become pupae and 

emerge as males (p=0.03), (Table 2.4). The dose-response curve of time to pupation per container 

for males versus NH4 and PO4 concentrations was developed using the simulated dataset. Figure 

2.8 describes the isolated effects of PO4 and NH4 on male pupation time. PO4 slows the 

development of male mosquitoes while NH4 enhances the rate of development of male mosquitoes. 

The same analysis was performed within each treatment group to assess the impacts of each 

nutrient alone on time to pupation. Similar result was obtained for NH4 group. No significant 

correlation was found between NO3 or PO4 and pupation time.  

To compare mean pupation time among groups defined in Table 2.1, an ANOVA contrast 

matrix was used. Time to pupation for the combined group (Trt17 & Trt18) was the shortest (24.6 

days) in comparison to other groups and it was significantly shorter compared to the reference (by 

19.26 days, p=0.001), NH4 (by 20.05 days, p<0.0001) and PO4 (by 24.8 days, p<0.0001) groups. 

The NO3 group had the shortest pupation time (34.5 days) after the combined group and was 

significantly shorter relative to that of PO4 (by 14.84 days, p=0.0002) and NH4 (by 10.09 days, 

p=0.008) groups (Table 2.5). The same analysis was repeated for female and male pupation time 

separately. Similarly, fewer days were required for both females and males to pupate when 

breeding pools contained both NO3 or NH4 and PO4 compared to other treatment groups (results 

not shown). Generally, mosquitoes took longer to pupate in the PO4 group, while the combination 

of PO4 and NO3 or NH4 decreased the average time required for mosquitoes to develop into pupae. 
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The ANOVA contrast analysis showed significant differences in average pupation time 

between treatments with 1 mg/L NO3 level (Trt3) and treatments combined with no NO3 and also 

between treatments with 10 mg/L NO3 level (Trt17) and treatments combined with no NO3 (Table 

2.6). Trt17 is a combined treatment with the NO3 level of 10 mg/L and PO4 level of 1 mg/L. Time 

for larvae to reach the pupal stage in the combined treatment was 24.24 days shorter than the time 

with no NO3 treatment (p=0.0004). Also, by increasing the PO4 level from 1 mg/L (Trt13, Trt17 

and Trt18) to 2 mg/L (Trt14), the time to pupation increased by about 16 days.  

The same analysis was done for male and female pupation time. No significant differences 

were identified among groups for females. For males, average pupation time for treatments with 

the PO4 level of 2 mg/L (Trt13) and 12 mg/L (Trt16) was significantly different from the treatments 

without PO4 (p=0.01 and p=0.03, respectively) (Table 2.6). Also average pupation time of males 

in these two levels was significantly different from the PO4 level of 1 mg/L (p=0.001 and p=0.01, 

respectively). Increased PO4 level caused the time male mosquitoes need to develop from larvae 

to pupae to increase. In addition, the pupation time of males in treatment with NO3 levels of 10 

mg/L (Trt17) was significantly shorter than treatments with no NO3 or NO3 levels of 3.5 mg/L 

(p=0.004 and p=0.01, respectively). As a result, addition of PO4 in breeding waters increases the 

time to pupation, but addition of a combination of NO3 and PO4 to the container makes mosquitoes 

develop faster.  
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Impact of nutrient concentrations on number of adult mosquitoes 

At the end of the experiment, the number of adult mosquitoes, their sex, and the container of 

origin were recorded. As shown in Figure 2.9, 43% of treatment containers (Trt3 to Trt19, 5 

replicates) and 40% of control containers (Trt1 & Trt2, 5 replicates) successfully produced adults. 

29% of treatment containers and 10% of control containers produced adult males, and 21% of 

treatment containers and 30% of control containers produced adult females. The mean number of 

adults produced per container, along all 90 containers, was 0.6 (0.13-2.77, 95% C.L.); the mean 

number of adult males produced per container was 0.34 (0.08-2.04, 95% C.L,); and the mean 

number of females produced was 0.26 (0.06-1.75, 95% C.L.). As 78% of the containers did not 

produce any females, and 73% of the containers did not produce any males, the data was analyzed 

using a hurdle model. NO3 was negatively correlated to the number of adult females (Table 2.7). 

The count-data hurdle model found that for each 1 mg/L decrease in NO3 concentration, the 

number of adult females increased by 72%, (1-0.28), (0.15-0.52, 95% C.L.) (p=0.0001). Therefore, 

higher NO3 levels reduced the adult female populations (Table 2.7). At high NO3 levels, fewer 

females were produced but those that did emerge developed faster. Conversely, at low NO3 levels, 

more females emerged but took longer to develop. A dose-response curve of the predicted number 

of females versus NO3 concentration was developed based on a simulated dataset that has NO3 

concentrations varying from 0 to 28 mg/l and PO4 and NH4 fixed at their mean value of all the 

experiments. Using the developed hurdle model including both count model and zero hurdle 

model, average count data of adult females per container was predicted. Figure 2.10 describes the 
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isolated effect of NO3 on the number of females. The same analysis was done for adult male 

mosquitoes and no statistically significant relationship was found between nutrients and male 

mosquitoes (Table 2.8). Also, the hurdle model analysis was performed within each treatment 

group to assess the impact of each nutrient separately on the number of adult mosquitoes. However, 

due to excess zeroes in the dataset and a low number of data points within each group of treatments, 

the results are not reported here.  

Pairwise contrasts of the treatment groups using the Tukey’s test, was performed based on the 

fitted Poisson hurdle model for the number of adult males or females. The contrasts were estimated 

for both count and zero hurdle models. No significant contrasts were estimated for the zero hurdle 

model of adult males or females (results not shown). For the count model, the results indicated that 

containers treated with NO3 alone and PO4 in combination with either NO3 (Trt17) or NH4 (Trt18) 

produced a significantly lower number of adult females compared to NH4, PO4 and reference 

treatment groups (Table 2.9). The expected difference in log count of adult females between NO3 

group and NH4 group was 10.29 (8.05-12.53, 95% C.L.) (p<0.0001), between NO3 group and PO4 

was 10.14 (7.87-12.41, 95% C.L.) (p<0.0001), and between reference group and NO3 group was -

10.94 (-13.00- -8.88, 95% C.L.) (p<0.0001). Also, the expected log count for combined group 

decreased by 10.87, 10.22 and 10.08 compared to reference group, NH4 group and PO4 group 

respectively.  

For the adult males, pairwise contrasts based on the count part of the hurdle model showed 

opposite results than adult females. Containers treated with NO3 alone and PO4 in combination 
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with either NO3 (Trt17) or NH4 (Trt18) produced a significantly greater number of males compared 

to the NH4, PO4, and reference treatment groups (Table 2.9). The expected increase in log count 

adult males for containers treated with NO3 alone was 12.12, 12.72 and 10.86 compared to NH4, 

PO4 and reference groups respectively. For the combined treatments (Trt17 and Trt18), the log 

count adult males also increased by 10.29, 11.56 and 12.15 compared to the reference, NH4 and 

PO4 groups (Table 2.9). This indicates that mosquito breeding sites containing NO3 or either a 

combination of NO3 and PO4 or a combination of NH4 and PO4 produce higher numbers of male 

mosquitoes. It can be concluded that NO3 favors the adult male mosquitoes and suppresses the 

development of adult females.  

 

Discussion  

The mesocosm experiment results have demonstrated that higher PO4 or NH4 concentrations 

increase the number of surviving mosquito larvae and the number of larvae successfully pupating 

(Table 2.2). These results are in agreement with Carpenter (1982) and Sunish and Reuben (2001) 

who found that PO4 concentration exerts a positive influence on late aquatic stages of mosquito 

larvae. This can be due to acceleration in leaf litter breakdown. Faster breakdown rates are 

associated with significantly higher phosphorus concentrations in agricultural streams (Paul et al. 

2006). Therefore, microbial activity increases in association with faster breakdown rate, which 

affects organic matter availability as a food source for mosquito larvae. Organic carbon source plays 

an important role in mosquito growth as we found that productivity was very low in containers without 
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leaves compared to other containers (Walker et al. 1991). In addition, more adult females emerged 

in containers with lower NO3 concentrations (Table 2.7). Therefore, the addition of NO3 to the 

breeding water decreased the number of adult females that emerged. Pairwise contrasts of the 

number of adult females and males among treatment groups showed that containers with NO3 

constituent or a combination of either NO3 and PO4, or NH4 and PO4 constituents, have more adult 

males and fewer adult females than treatments with elevated PO4 or NH4 alone and reference 

treatments (Table 2.9).  

Previous studies found that addition of nutrients into water accelerates mosquito larval 

development as well as increases the survival of larvae, and the proportion of larvae that pupate 

(Reiskind et al. 2004). However, our study showed that the response depends on the type and 

amount of the added nutrients. As the experiment progressed, the food source available for the 

larvae was reduced and larval mortality increased and population size decreased (Table 2.2). 

Larval growth and development of mosquitoes to reproductive maturity are dependent on nutrient 

availability. Larval nutrition scarcity can increase development time, decrease pupation and 

emergence rates, and result in smaller adult female body size, as demonstrated for Culex tarsalis 

(Dodson et al. 2011). In this study, containers with elevated NO3 levels reduced the pupation time 

for females and enhanced the development of larvae in general (Table 2.4). In contrast, addition 

of NO3 to the containers appears to have a detrimental effect on adult females. For males, 

containers with elevated PO4 concentration had longer pupation times and containers with elevated 

NH4 had faster larval development (Table 2.4). PO4 plays a significant role in keeping larvae alive 
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longer (Table 2.2) but inhibits pupation in absence of NO3 or NH4. Moreover, comparison of mean 

pupation time of larvae among treatment groups indicated that for containers with combinations 

of either PO4 and NO3 or PO4 and NH4, fewer days were required for both females and males to 

emerge than other groups.  

The major findings of this study were: 1) increased NO3 levels alone in the larval habitat favors 

the development of male mosquitoes and suppresses the development of female mosquitoes. 

However, those adult females that do emerge, develop faster in containers with the NO3 constituent 

compared to the reference group. Female mosquitoes are larger than males and also their 

development time is longer than males (Bradshaw et al. 1997), therefore, they need more food than 

males. Also, as larvae feed on microorganisms in the water column, the algal growth promoted by 

nitrogen contained in leaves may support Culex production (Chaves et al. 2010). In addition, 

decreasing number of females by increasing NO3 level is probably due to differences in the effect 

of this limitation between the genders (i.e. females might need more PO4 than males for 

development and are therefore more limited in growth despite the increased levels of nitrogen). 2) 

Addition of PO4 alone to the larval habitat increases the larval development time. PO4 generally 

increases the proportion of females that emerge and they are larger at emergence (Decker, 2010). 

Therefore, the emergence time will be longer for females of larger size. However, in this 

experiment the time to pupation was significantly longer for males with increasing PO4 levels. The 

increase in the developmental time occurs in the absence of nitrogen. Nitrogen is required for chitin 

development and severely limiting for larval growth and development. Therefore, the combination 
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of NO3 and PO4 or NH4 and PO4 nutrients in the container favors mosquito development and 

shortens pupation time. 

This study demonstrated the importance of understanding how nutrients influence mosquito 

pre-adult development and the quantitative relationships between specific nutrient concentrations 

in water and developmental parameters. This experiment enabled us to develop dose–response 

relationships between larval development and NO3, NH4, and PO4 concentrations in stream water 

(Figure 2.3, 2.5, 2.7, 2.8 and 2.10). These dose-response curves provide guidelines on the 

conditions required for Culex quinquefasciatus to survive and develop at low nutrient and carbon 

levels especially in non-CSO sites, and potentially maintain a population at a background level. 

The continued maintenance of Culex populations, even if at low levels, is important, because it 

allows mosquito populations to expand dramatically when high-nutrient habitats appear in the 

landscape. This reveals that WNV risk can remain even in the presence of larval habitats with low 

to moderate nutrient levels which are more common in the landscape than the levels characteristic 

of CSOs. Specifically around residential areas, the number of Culex mosquitoes and WNV 

prevalence might be maintained with standing water in containers such as flower pots, 

wheelbarrows, gutters, buckets, old tires, pool covers, pet water dishes, discarded tires, bird baths, 

(CDC, 2012). These findings should promote the development of targeted larviciding 

interventions, thus reducing the costs and efforts required for effective mosquito vector control. 

The results of this experiment may also help identify specific larval habitats for Culex mosquitoes 

by predicting which water quality conditions in urban landscapes are most likely to support 
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mosquito development, which could lead to improved control of WNV transmission. However, 

incidence of WNV varies spatially and temporally and is influenced by a wide range of 

environmental factors. The interrelationships of vectors, environmental condition of mosquito 

habitats, and meteorological factors need to be investigated more thoroughly. In addition, other 

risk factors including socioeconomic factors, land use / cover changes and urbanization, which 

affect water quality and quantity and therefore the transmission of WNV, should be considered for 

future studies.  
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Table 2.1. Mesocosm treatments with different nutrient levels.  
 

                            

                                * NO
3

, PO
4

, NH
4

were all below the detection limits. 

 

Table 2.2. Results of a mixed effects model for time series of number of larvae. 

Parameter Estimate Std.Error p-value 
(Intercept) 7.64 0.26 <0.0001 

Time -0.11 0.002 <0.0001 
NO3 0.09 0.03 0.003 
PO4 0.43 0.07 <0.0001 

Time:NO3 -0.001 0.0003 <0.0001 
Time:PO4 -0.005 0.001 <0.0001 

 

 

 

Treatments Description Groups 
Trt1 Reference stream conditions (RSC)* Reference 
Trt2 Addition of 0.1 g of leaf litter to RSC 
Trt3 trt 2 + NO3=1 mg/l 

Nitrate 
Trt4 trt 2 + NO3=3.5 mg/l 
Trt5 trt 2 + NO3=9 mg/l 
Trt6 trt 2 + NO3=14 mg/l 
Trt7 trt 2 + NO3=28 mg/l 
Trt8 trt 2 + NH4=0.29 mg/l 

Ammonium 
Trt9 trt 2 + NH4=1 mg/l 
Trt10 trt 2 + NH4=2.57 mg/l 
Trt11 trt 2 + NH4=4 mg/l 
Trt12 trt 2 + NH4=8 mg/l 
Trt13 trt 2 + PO4=1 mg/l 

Phosphate 
Trt14 trt 2 + PO4=2 mg/l 
Trt15 trt 2 + PO4=6 mg/l 
Trt16 trt 2 + PO4=12 mg/l 
Trt17 trt 2 + NO3=10 mg/l & PO4=1 mg/l Combined Trt18 trt 2 + NH4=2.86 mg/l & PO4=1 mg/l 
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Table 2.3. Results of a Hurdle model analysis of number of pupae.  

Parameter Estimate* 95% CL p-value 
Count model coefficients 

Intercept 1.51* 1.03 2.23 0.03 
NO3 0.98 0.95 1.02 0.43 
NH4 0.96 0.84 1.08 0.48 
PO4 1.00 0.93 1.08 1.00 

Zero hurdle model coefficients 
zero_Intercept 1.09 0.57 2.06 0.80 

zero_NO3 1.04 0.97 1.12 0.21 
zero_NH4 1.29 1.02 1.63 0.04 
zero_PO4 1.25 1.00 1.56 0.04 

* Odds ratios were derived using the link function e(coefficient) and coefficient estimates of the 
Hurdle model to determine the likelihood of any larvae pupating . 

 

Table 2.4. Results of a linear model fitted to the time to pupation. 

 Time to pupation Time to pupation (females) Time to pupation (males) 

Parameter Estimate Std. 
Error p-value Estimate Std. 

Error p-value Estimate Std. 
Error p-value 

Intercept 43.19 2.46 <0.0001 46.90 2.55 <0.0001 32.02 3.69 <0.0001 
PO4 0.29 0.38 0.45 0.54 0.73 0.47 1.32 0.54 0.02 
NH4 -0.48 0.77 0.53 0.59 0.74 0.44 -1.41 0.61 0.03 
NO3 -0.55 0.18 0.003 -0.79 0.22 0.002 -0.52 0.27 0.07 
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Table 2.5. Comparison of the mean pupation time of different groups. 

Parameter Diff Between Means Std. Error p-value 
Reference - NO3 9.3 4.94 0.06 
Reference - NH4 -0.79 4.89 0.87 
Reference - PO4 -5.54 4.89 0.26 

Reference - Combined 19.26 5.69 0.001 
NO3 - NH4 -10.09 3.67 0.01 
NO3 - PO4 -14.84 3.67 0.0002 

NO3 - Combined 9.96 4.68 0.04 
NH4 - PO4 -4.75 3.61 0.19 

NH4 - Combined 20.05 4.63 <0.0001 
PO4 - Combined 24.8 4.63 <0.0001 

Mean pupation time 
Ref NH4 Combined NO3 PO4 
43.8 44.6 24.6 34.5 49.4 

 

Table 2.6. Tukey’s HSD test results for pupation time.  

Adults pupation time 
NO3 (mg/L) Diff between means lower upper p-value 

1-0 -20.91 -38.87 -2.95 0.01 
10-0 -24.24 -39.98 -8.51 0.0004 

PO4 (mg/L) Diff between means lower upper p value 
2-1 16.55 0.40 32.69 0.04 

Adult males pupation time 
PO4 (mg/L) Diff between means lower upper p-value 

2-0 17.90 4.84 30.95 0.01 
2-1 24.92 10.61 39.22 0.001 
12-1 29.92 8.07 51.77 0.01 
12-0 22.90 1.84 43.95 0.03 

NO3 (mg/L) Diff between means lower upper p-value 
10-0 -19.76 -33.41 -6.10 0.004 

10-3.5 -33.08 -57.70 -8.47 0.01 
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Table 2.7. Results of a Hurdle model analysis of number of adult females. 

Parameter Estimate 95% CI p-value 
Count model coefficients 

Intercept 0.70 0.26 1.86 0.46 
NO3 0.28 0.15 0.52 0.0001 
NH4 0.53 0.25 1.12 0.09 
PO4 0.77 0.55 1.08 0.13 

Zero hurdle model coefficients 
zero_Intercept 0.30 0.14 0.66 0.00 

zero_NO3 0.96 0.84 1.08 0.48 
zero_NH4 1.00 0.77 1.29 0.97 
zero_PO4 1.06 0.91 1.25 0.44 

 

Table 2.8. Results of a Hurdle model analysis of number of adult males. 

Parameters Estimate 95% CI p-value 
Count model coefficients 

Intercept 1.00 0.25 4.02 1.00 
NO3 1.00 0.92 1.08 0.91 
NH4 0.77 0.50 1.20 0.25 
PO4 0.49 0.19 1.27 0.14 

Zero hurdle model coefficients 
zero_Intercept 0.28 0.14 0.56 0.0005 

zero_NO3 1.03 0.97 1.10 0.36 
zero_NH4 1.07 0.84 1.37 0.56 
zero_PO4 1.06 0.91 1.23 0.45 
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Table 2.9. Pairwise contrasts of the treatment groups using the Tukey’s test based on the fitted 

Poisson hurdle model for the number of adult males or females.  

 Adult Females 

  

Adult Males 
Parameter Estimate* 95% CL p-value Estimate 95% CL p-value 

NO3-Reference -10.94 -13.00 -8.88 <0.0001 10.86 8.63 13.08 <0.0001 
NH4-Reference -0.65 -2.94 1.65 0.98 -1.26 -3.57 1.05 0.80 
PO4-Reference -0.80 -3.12 1.53 0.96 -1.86 -4.02 0.30 0.41 

Combined-Reference -10.87 -12.93 -8.81 <0.0001 10.29 8.03 12.56 <0.0001 
NH4-NO3 10.29 8.05 12.53 <0.0001 -12.12 -13.64 -10.60 <0.0001 
PO4-NO3 10.14 7.87 12.41 <0.0001 -12.72 -13.99 -11.44 <0.0001 

Combined-NO3 0.06 -1.94 2.06 1.00 -0.56 -2.01 0.88 0.93 
PO4-NH4 -0.15 -2.63 2.34 1.00 -0.60 -2.01 0.82 0.91 

Combined-NH4 -10.22 -12.47 -7.98 <0.0001 11.56 9.99 13.12 <0.0001 
Combined-PO4 -10.08 -12.35 -7.81 <0.0001 12.15 10.81 13.49 <0.0001 
*The coefficient estimates of the hurdle model was not converted in this table to Odds ratios due 
to large number which will be obtained using the link function e(Estimate). 
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(a) 

 
(b) 

 
(c) 

 
Figure 2.1. Nutrient levels at the beginning and end of the experiment and the final water volume 

for each container. (a) NO3 concentrations, (b) NH4 concentrations, (c) PO4 concentrations. The 

treatments along the x-axis are organized as replicates. 
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Figure 2.2. Mean, median and range of the number of larvae that either survived or pupated over 

the 40 day period for different treatments. 
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Figure 2.3. Predicted number of larvae by fitted mixed effects model versus time and nutrients. 

Graphs a, b and c show predicted time series of minimum, average and maximum number of 

larvae. Graph d shows average number of larvae predicted at days 30, 40, 50 and 60 of 

experiments.  

 

Time=30 days 

Time=50 days 

Max 
 

Average 
 

Min 

(a) (b) 

Time=60 days 

Time=40 days 

(c) (d) 
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Figure 2.4. Mean, median and range of the number of pupae for different treatments.  
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Figure 2.5. Predicted number of pupae per container by fitted Hurdle model versus NH4 or PO4 

levels. Increasing NH4 or PO4 had positive impacts on probability of any larvae pupating. 
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Figure 2.6. Mean, median and range of time to pupation for different treatments. 

 

 

Figure 2.7. Predicted pupation time of females per container by fitted linear model versus NO3 

levels. By increasing NO3 level, time to pupation of adult females decreased. 
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Figure 2.8. Predicted pupation time of males per container by fitted linear model versus PO4 and 

NH4 levels. By increasing NH4, time to pupation decreased and by increasing PO4, it took longer 

for larvae to pupate and emerge as males.  
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Figure 2.9. Mean, median and range of the number of adults for different treatments. 

 

 

Figure 2.10. Predicted number of females per container by fitted Hurdle model versus NO3 

levels. Increasing NO3 concentration is predicted to decrease the number of adult females that 

emerge.  
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Chapter 3. Short term prediction of Culex quinquefasciatus abundance carrying West Nile 

Virus and their infection rate in Central North Georgia, U.S.A based on the climate 

variability 

 
 

Abstract 

Mosquito population density plays a key role in determining outbreaks and transmission of 

vector-borne infectious risk such as West Nile Virus (WNV). Culex quinquefasciatus is the main 

vector of WNV in the southeast United States and inter-annual and seasonal variation of this vector 

abundance is mainly related to climate variability. In this study, short term effects of climate 

conditions on seasonal variation of Culex mosquito abundance and their infection rate in the central 

north part of the State of Georgia, United States, from 2002 to 2009 were assessed. Weekly and 

four weeks moving average temperature, precipitation, potential evapotranspiration (PET), and 

available moisture in surface layer were considered as risk factors. Cross-correlation maps (CCMs) 

were developed to investigate influence of preceding environmental conditions during a time 

lagged interval on mosquito count data as well as estimated infection rate. The Poisson regression 

model and Artificial Neural Network (ANN) model were used for the prediction purposes. Two 

sets of predictors were used for these models: 1) the interval lagged climate data with the highest 

correlation, 2) single time lag antecedent Culex mosquito abundance or infection rate up to 10 

weeks prior to the events combined with lagged climate data. Statistical analysis revealed that 

increasing temperature and PET and decreasing surface moisture in preceding late winter and 
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preceding spring increased Culex quinquefasciatus female mosquitoes abundance in summer/early 

fall about 2 times as many and also increased the number of infectious mosquitoes about 3.5 times. 

Also low precipitation in late winter decreased mosquito abundance in summer. However, when 

temperature in late winter and early spring is above average coupled with low precipitation favors 

the incidence of WNV in mosquitoes. Both ANN and regression models predicted the seasonal 

cycle of mosquito abundance fairly accurate. Addition of antecedent mosquito count data or 

infection rate improved the prediction power of both models by increasing ENASH values and 

decreasing RBIAS values. Our results highlight the impacts of preceding climate conditions over a 

range of time on Culex vector species which can be modeled under climate change scenarios so 

that long-term predictions of shifts in mosquito abundance can be estimated. Also, using the 

developed predictive model, warning of high-risk periods for WNV can become more accurate. 

 

Keywords: Culex mosquito population, West Nile Virus, prediction, seasonal variation, climate 

variables. 

 

Introduction 

Culex species are the major vector of West Nile Virus disease in the United States. This virus 

was first identified in North America in New York City in 1999. By the end of 2013, more than 

39,000 disease cases of West Nile Virus (WNV) had been reported to the CDC (Centers for 

Disease Control and Prevention, 2013). Just recently in 2012, 5674 human cases and 286 deaths 

were reported to the CDC. In the southeast U.S., over 96% of the West Nile Virus positive 
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mosquito pools reported to the CDC from 1999 to 2010 have been obtained from Culex 

mosquitoes, among which 64.6% were from Culex quinquefasciatus (Andreadis, 2012). The state 

of Georgia, and especially the Atlanta area has been a hotspot of WNV incidence in 2012 with 117 

WNV human cases, 6 deaths and 125 WNV positive mosquito pools (among which over 81% were 

from Culexquinquefasciatus) reported by the Georgia Department of Public Health (2012). 

Transmission of vector-borne diseases is influenced by a wide range of environmental factors. 

Among these, climatic variability is one of the most important drivers of inter-annual WNV 

transmission risk. Climate directly affects the vector population, pathogens and hosts distribution, 

and their abundances (Roiz et al., 2014). Culex species display a seasonal behavior. Their activity 

reaches its minimal level in the winter, then rises in the spring to the peak levels of summer and 

continues until mid-fall (Strickman, 1988). Females which emerge in late summer search for 

sheltered areas where they hibernate until spring. They become inactive when the temperature 

drops below 15°C (Rey, 2011), while warm weather brings them out in search of water on which 

to lay their eggs (AMCA, 2014). Changes in meteorological conditions such as temperature, 

relative humidity and wind speed can impact mosquito populations (Curriero et al., 2005). The 

greatest WNV transmissions during the epidemic summers of 2002 to 2004 in the U.S. were linked 

to above normal temperatures. Analysis of temperature deviations from the 30-yr mean (1971-

2000) during summer in the United States showed that during years with above normal 

temperatures, WNV always dispersed into new areas and the amplification occurred during 
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summers with above or normal temperatures. Subsequent cool summers were associated with 

decreased or delayed virus activity, especially at northern latitudes (Reisen et al., 2006).  

Temperature influences the development rate and fitness of immature mosquitoes and the 

biting rate and survival of adult female mosquitoes (Dohm et. al., 2002). Drought can lead to a 

decline in the number of mosquito predators and it may encourage birds to gather near standing 

water, where the virus can circulate more easily. High temperatures also speed the development of 

viruses within the mosquito carriers (Epstein, 2001; Patz et. al., 2008; Wang et. al., 2010). During 

periods of drought between rainfall events, blood-fed and potentially infected mosquitoes digest 

blood meals and wait for a heavy rainfall that floods the temporary pools to oviposit (Day, 2001). 

Rainfall and the surface moisture first create temporary freshwater habitats and also maintain 

permanent aquatic habitats that are used as egg-laying sites by female mosquitoes. Subsequently, 

rainfall saturates the ground and increases near-surface humidity levels (Shaman et al., 2002).  

The increase in the relative rate of WNV human cases from 2001 to 2005 in the U.S. has been 

linked to warmer temperatures, elevated humidity, and heavy precipitation independent of season 

using conditional logistic regression (Soverow et. al., 2009). WNV mosquito infection changes 

from year to year spatiotemporally. For the temporal scale, higher temperature and less rainfall are 

associated with more human cases and also with the highest WNV prevalence in the mosquitoes. 

WNV infection can also be negatively correlated with the previous year’s precipitation (Ruiz et. 

al., 2010). For the spatial analysis, temperature plays a bigger role than precipitation in comparison 

to the temporal patterns (Ruiz et. al., 2010). The spatiotemporal variability of human West Nile 
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cases is associated with the spatiotemporal variability of drought followed by wetting of the land 

surface (Shaman et. al, 2005). Spring drought induces the amplification of WNV by concentrating 

vector mosquitoes in humid vegetated areas where nesting birds are present. This makes the virus 

transmission easier as birds are the natural host of WNV and this virus is maintained in nature in 

a mosquito-bird-mosquito transmission cycle. Subsequent summer rainfall and wetting of the land 

surface enable the dispersal of infected mosquitoes into the open, sparsely vegetated areas they 

had avoided during the drought (Day and Shaman, 2008).  

To control mosquito populations and to prevent disease, understanding this vector–

environment relationship is essential. It is also helpful to understand the responses of WNV 

transmission risk to climate variability to adapt the public health policies based on the consequent 

impacts (Wang et al., 2011). Predictive models can be helpful in this regard to enhance warning 

of high-risk periods for WNV and to describe the variations in mosquito abundance over time. 

Numerous studies have been conducted to develop mosquito abundance prediction models which 

mostly rely on meteorological and environmental data from the days and weeks preceding the 

capture of mosquitoes (Walsh et al., 2008). Such models can be designed to provide continuous 

daily or weekly estimates of mosquito populations under the impacts of different environmental 

conditions. Ahumada et al. (2004) proposed a discrete-time population model to simulate the 

temporal dynamics of Culex quinquefasciatus abundance. The model incorporated temperature 

and rainfall dependence and breeding site density dependent competition. This model simulated 

the mosquito population growth through time and at different elevations in Hawaii. Temperature 
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was the major driving force behind mosquito population growth and abundance in Hawaii but 

precipitation dependence also constrained population size which was evident during dry years.  

A climate based model was developed by Gong et al. (2007) to predict mosquito abundance 

of WNV Culex species. Temperature, rainfall, evaporation and photoperiod were used as inputs to 

the model. A moisture index was also created based on 7 days cumulative rainfall and evaporation. 

The model was developed on temperature-dependent functions including development rate and 

survival rate, a moisture index dependent function, and daily egg laying rate.  

The Dynamic Mosquito Simulation model (DyMSiM) developed by Morin and Comrie 

(2010) was used in simulating Culex quinquefasciatus population dynamics in Florida and 

California. This model breaks up the larval phases into separate instar stages. The model used daily 

temperature and precipitation to drive population simulations throughout the year. This model 

revealed that dry conditions in California reduced mosquito populations due to loss of immature 

mosquito habitats, while drier late summer conditions in Florida decreased late-season adult 

mosquito populations.  

In most of the previously mentioned analyses, the impact of meteorological conditions on 

mosquito abundance was limited to single point lags which consider the conditions at a certain 

time point prior to trapping. Curriero et al. (2005) introduced cross-correlation maps (CCMs) as a 

graphical method for visualizing the influence of preceding environmental conditions during a 

time lagged interval on the abundance of Ochlerotatus sollicitans species. Since then, this tool has 

been used to identify the timing and duration of potential meteorological effects on mosquito 
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populations (Shone et al., 2006; Walsh et al., 2008; Chuang et al., 2012; Lebl et al., 2013). In this 

study, to investigate the correlation between climate forces and inter-annual and seasonal variation 

of Culex mosquito population carrying WNV as well as their infection rate, CCMs were developed 

for mosquito data from the central north part of the State of Georgia (GA). The main goal was to 

develop an improved predictive model of Culex quinquefasciatus population and their infection 

rate, which would advance our understanding of the transmission of mosquito-borne arboviruses 

(Walsh et al., 2008). Using the lagged climate data extend effects of climate conditions over a 

range of time rather than a single point in time. Two modeling approaches were applied in this 

study, multi-regression and Artificial Neural Network (ANN); lagged climate data were fed into 

these models for prediction purposes. In addition, as there is correlation between any two 

observations of the time series of the response variable (mosquito count data or infection rate), 

antecedent conditions of response variable up to 10 weeks prior to the event were added to the 

models as predictors. It was hypothesized that addition of past values of mosquito count data or 

the infection rate to the model improves the model performance and increases the prediction 

accuracy.  

 

Methodology 

Mosquito and meteorological data 

In this study, effects of meteorological variation on female Culexquinquefasciatus abundance 

per trap night and Vector Index were explored for the central north part of the State of Georgia. 
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Vector Index is an estimate of the average number of infectious mosquitoes per trap night and 

reflects risk of human diseases (CDC, 2013). The weekly meteorological data including mean 

weekly precipitation, temperature, potential evapotranspiration (PET) and available moisture in 

surface layer from 2002 to 2009 were downloaded from the National Weather Service, Climate 

Prediction Center (CPC) 

(http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml). Climatic divisions 

were defined for the state of GA by CPC and as Atlanta metropolitan area is located in division 2, 

the central north part of GA, weekly climatic data were obtained for this division (Figure 3.1). Soil 

moisture is estimated by a one-layer hydrological model (Huang et al., 1996; Van den Dool et al, 

2003). The model takes observed precipitation and temperature and calculates soil moisture, 

evaporation and runoff. Potential evapotranspiration is computed from observed temperature and 

using Thornthwaite method (Thornthwaite, 1948). Mosquito data were obtained from 2002 to 2009 

for the counties located in division 2. As adult Culex species hibernate during winter, no traps were 

set up for winter time and mosquito counts were assumed to be zero for this period. Figure 3.1 

shows the average weekly precipitation, temperature and female Culexquinquefasciatus 

abundance over the period 2002 to 2009 for counties located in the central north of GA.  

 

Statistical analysis 

The potential relationship between female Culex quinquefasciatus mosquito abundance and 

various meteorological forcings was analyzed using cross correlation maps (CCMs). This 
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graphical approach characterizes the temporal structure of mosquito population size or Vector 

Index in association with meteorological variables. Using this method, the key antecedent 

environmental conditions, their timings, and durations were identified which can improve the 

ability of developing predictive models of vector abundances. Assume Y(t) and X(t) represent two 

time series with time index t, CCMs illustrate the correlation coefficients (r) between Y(t), here 

number of captured female Culex mosquitos or Vector Index at time t, and a meteorological 

variable X, averaged over a time period starting at time t−j and ending at time t-k with j≥k: 

𝑟𝑟(𝑌𝑌,𝑋𝑋𝑗𝑗,𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑌𝑌(𝑡𝑡),𝑋𝑋(𝑡𝑡 − 𝚥𝚥, 𝑡𝑡 − 𝑘𝑘)������������������) 

Here, t changes from 1 to 52 for a given year (i.e. weekly time interval). Spearman’s rank 

order correlation was applied to calculate the correlation as it makes no assumption about the 

distribution of the data and does not consider a linear relationship between mosquito abundance 

and climate data. The CCMs were developed for weekly, and four weeks moving average scales. 

As preceding climate condition up to 5 months prior to summer plays a significant role on the life 

cycle of mosquitoes, the maximum time lag was set to 20 weeks. In addition, the sample 

autocorrelation function (ACF) was defined for time series of each response variable to identify 

the time interval over which a correlation in the data series exists. All analyses were performed in 

R statistical software (version 3.0.2.) (R Core Team, 2013). 
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Predictive model 

As the response variables are count data, Poisson regression model was selected for prediction 

purposes. To capture the potential complex nonlinear relationships between climate variables and 

mosquito abundance or the infection rate, the ANN model was also used. Some climatic variables 

are highly correlated with each other (e.g. evaporation and temperature), which will cause high 

variance inflation in the Poisson regression model. To handle such collinearities, Principle 

Component Analysis (PCA) was used. PCA is a variable reduction technique that uses orthogonal 

transformation to convert a set of observations of correlated variables into a set of values of linearly 

uncorrelated variables called principle components. PCA was applied to two sets of predictors, the 

first set included the interval lags of climate variables with highest correlation; temperature, 

precipitation, PET and available moisture in surface layer, the second set included the interval lags 

of climate variables and also antecedent conditions of response variables. Components that 

explained the variability of observed data were fed into ANN and Poisson regression models.  

ANN is a black box type lumped model that has the ability to identify a relationship from 

given patterns which makes it possible to solve nonlinear models. ANNs can be categorized based 

on the direction of information flow and processing. In a feed-forward network, the connections 

between nodes is from an input layer, through one or more hidden layers, to an output layer 

(Dawson and Wilby, 2001) (Figure 3.2). The most common method used to find the number of 

hidden layers and nodes is a trial-and-error approach (Kalin et al., 2010). In this study, the number 

of hidden neurons changed from 4 to 6, and the number of hidden layer was set to 1 to build a 
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parsimonious model and to avoid data overtraining. A neural network was constructed using 

MATLAB version 7.10.0 (2010) and was trained by adjusting the weights that link its neurons. 

Separate models were developed for predicting weekly and four weeks moving average mosquito 

abundance and Vector Index. The ANN model was trained and tested using the Principal 

Components (PCs) and the response variable. 70% of the time series data, selected randomly from 

the whole data set (Rezaeian Zadeh et al., 2010), was used for training and 30% of data was used 

for testing purposes into the ANN and regression models. Model performances were assessed with 

the coefficient of determination (R2), Nash–Sutcliffe efficiency (ENASH) (Nash and Sutcliffe, 1970), 

and bias ratio (RBIAS) (Salas et al., 2000).  

In addition, female Culex mosquito abundance as well as Vector Index were predicted based 

on Principle Components (PCs) and the Poisson regression models and were graphed against real 

dataset of climate variable for the purpose of sensitivity analysis and to visualize the potential 

relationship between predictors and the response variables.  

 

Results  

Weekly analysis 

Culex quinquefasciatus is the main vector of WNV in the southeast United States and studying 

the effect of climate on the population dynamics of this species would help predict the virus risk 

more accurately. To do so, for each climate variable, Cross Correlation Maps (CCMs) were 

generated for weekly time scale by varying the temporal lag and the period over which the variable 
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was averaged. As shown in Figure 3.3, each map indicates the correlation between preceding 

climate condition and Culex mosquito abundance (female Culex quinquefasciatus species) as well 

as Vector Index with all combinations of interval time lags.  

 

  Female Culex quinquefasciatus abundance  

Weekly Culex mosquito abundances (M) were highly correlated with the mean temperature 

of the 16 to 9 weeks prior a capture event, 𝑟𝑟�𝑀𝑀,𝑇𝑇16,9� =0.82. PET averaged over the interval of 

(t-15) to (t-12) weeks also had a strong positive correlation with mosquito abundance at time t, 

𝑟𝑟�𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃15,12�=0.82. Surface moisture averaged over 17 to 7 weeks prior the capture event had 

the highest negative correlation with mosquito population  𝑟𝑟�𝑀𝑀,𝜃𝜃17,7�=-0.72. Precipitation 

averaged over 20 to 16 weeks preceding time frame showed the weakest negative correlation with 

mosquito abundance in comparison to other climate variables 𝑟𝑟�𝑀𝑀,𝑃𝑃20,16�=-0.08. As mosquito 

population density peaks in summer/early fall (Figure 3.1 C), counting back the lags with the 

highest correlation identifies the preceding late winter and spring as most relevant time-period.  

These selected interval lags were fed into PCA to eliminate the collinearity. PC1, and PC2 

together explain 96% of variance in observed data (Table 3.1). PC1 had strong positive loadings 

for temperature and PET and strong negative loading for surface moisture which considering 

summer/early fall as peak Culex species population, reflects warmer and drier late winter and 

spring. About 27% increase in weekly temperature or 30% decrease in weekly surface moisture 

with respect to their average value over the period of 2002 to 2009 leads to 1 unit increase in PC1 
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(Figures 3.4 a & b). PC2 had a strong negative loading for precipitation which reflects low rain in 

late winter/early spring. About 50% decrease in total weekly precipitation from with respect to its 

average value over the 2002-2009 period corresponds to 1 unit increase in PC2 (Figure 3.4).  

These components were fed into ANN and Poisson regression models for prediction purposes. 

70% of randomly selected input data were used for training and the rest for testing. Table 3.2 

shows the regression model summary. For 1 unit increase in PC1, female Culex mosquito 

abundance increased by a factor of 2.24 (2.15-2.33, 95% C.L.), (p<0.0001). Also, for 1 unit 

decrease in PC2, mosquito abundance is decreased by 14% (0.86, 0.82-0.91, 95% C.L.), 

(p<0.0001). To visualize the relationship between climate variables and mosquito abundance, 

mosquito data was predicted using the Poisson regression model and PCs and was plotted against 

climate dataset (Figure 3.5). When average weekly temperature goes above 24 °C in mid-March 

through May coupled with low moisture conditions, below 0.5 cm per week, the population of 

Culex vectors in mid-July increases up to 35 (Figure 3.5 b & Table 3.2). During the late winter and 

spring, Adult females overwinter and hide under buildings or storm drains and sewers. Mild winter 

and early spring increase the survival rate of these species throughout winter resulting in a rapid 

buildup of mosquito populations in the spring and summer. Weekly precipitation about 2 cm 

averaged in March, increases mosquito abundance in mid-July up to 40 per week (Figure 3.5 a & 

d). As shown in Figure 3.5 d, there is no clear trend between mosquito abundance and precipitation. 

In general, the graph displays high mosquito population when precipitation is about 2 cm followed 

by a small secondary peak in mosquito counts when precipitation is around 6 cm. Precipitation 
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influences the mosquito population dynamics through increasing near-surface humidity associated 

with rainfall and consequently enhancing mosquito flight activity and also through changing the 

abundance and type of aquatic habitats available for mosquito breeding. Higher precipitation in 

late winter provides pools as potential mosquito breeding sites. Warm spring and warm later winter 

cause mosquitoes to start their season earlier and increase the Culex mosquito population and 

infection rate in summer.  

Two PCs were randomized and fed into ANN as well for prediction purposes. Time series of 

observed vs predicted data for the whole data set were plotted after sorting the randomized data 

(Figure 3.6). ANN predicted slightly better than regression model with the ENASH value of 0.54 and 

RBIAS value of 6%. Both models underestimated the peak values, especially weekly mosquito counts 

of 40 and higher. 

To improve the developed predictive model and for a short term prediction, antecedent values 

of Culex mosquito count data extending back 10 weeks were fed into the PCA in addition to climate 

variables. There is a significant correlation between mosquito abundance at time t and mosquito 

abundance at time t-h for h= 1 to 12 (Figure 3.7). Three components which explained 97% of the 

variance of observed data were selected and used as inputs to the ANN and Poisson regression 

models (Table 3.3). Figure 3.8 shows time series of predicted values using both models versus 

observed data for the whole period after sorting the randomized data set. In addition, a graph 

showing the performance of ANN and regression model based on the ENASH values versus single 

time lags extending back 10 weeks prior sampling was plotted for Culex mosquito abundance data 
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for testing and training periods (Figures 3.9). As the lag interval increases, model performance 

gradually decreases, however the model built based on lagged climate data and antecedent 

mosquito count data 10 weeks preceding time frame for the testing period still had an acceptable 

accuracy level with ENASH value of 0.56 and 0.50 for ANN and regression model respectively. ANN 

models worked better than regression model in general. Figure 3.9 indicates that by using climate 

data of preceding time frame, for instance late winter and spring, and using estimated weekly 

mosquito abundance in the past up to 10 weeks prior to the point of interest, both models are able 

to predict Culex mosquito population in upcoming summer with a good level of accuracy.  

 

  Vector Index 

For the weekly Vector Index (VI), the highest correlation was found for temperature and PET 

averaged from 20 weeks prior to trapping and extended into 8 or 6 weeks prior to sampling, 

𝑟𝑟�𝑉𝑉𝑉𝑉,𝑇𝑇20,6� =  𝑟𝑟�𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃𝑃𝑃20,8�=0.65. Also, surface moisture averaged over 20 to 5 weeks prior the 

capture event was negatively correlated with weekly Vector Index,  𝑟𝑟�𝑉𝑉𝑉𝑉,𝜃𝜃5,20�=-0.56. 

Precipitation Averaged over (t-20) to (t-16) weeks were negatively and weakly correlated with 

Vector Index at week t, 𝑟𝑟�𝑉𝑉𝑉𝑉,𝑃𝑃20,16� =-0.09. Considering summer as peak mosquito activity, the 

selected interval lags indicate the climate variability in preceding late winter and spring.  

The climate data of interval lags with the highest positive or negative correlation were fed into 

PCA. Table 3.4 shows the proportion of variance of each component and how much each variable 

contributed to that principle component. PC1 and PC2 describe about 97% of the variance in 

69 

 



observed data and reflect the same definition as PCs for mosquito data shown in Table 3.1. 

Considering the seasonal behavior of mosquito abundance and their peak activity in summer/early 

fall (Figure 3.1 C), PC1 reflects warmer and drier spring, and 25% increase in weekly temperature 

or 27% decrease in weekly surface moisture with respect to their average values from the period 

2002-2009 leads to 1 unit increase in PC1 (Figures 3.10 a & b). PC2 has a strong negative loading 

for precipitation, this reflects less rain in late winter. About 50% decrease in total weekly 

precipitation from its average value over the 2002-2009 period corresponds to 1 unit increase in 

PC2 (Figure 3.10). These PCs were fed into ANN and Poisson regression models for prediction 

purposes. Table 3.5 shows the regression model summary. Two sets of input data were fed into 

the Poisson model: only PC1, PC1 and PC2. Although PC2 was not statistically significant, the 

model containing both components worked better in terms of prediction than the model built using 

just PC1. Therefore, the two components were kept into the model for prediction purposes. For 1 

unit increase in PC1, Vector Index increased by a factor of 4.96 (1.37-18.76, 95% C.L.), (p=0.02). 

Also, 1 unit increase in PC2 leads to decrease in Vector Index by 33% (0.67, 0.26-1.78, 95% C.L.), 

(p=0.42). To clarify the relationship between climate variables and mosquito infection rate, Vector 

Index was predicted using PCs and the Poisson regression model and was plotted against climate 

dataset (Figure 3.11). When average weekly temperature is around 24 °C in March through early 

June coupled with low moisture conditions, below 0.5 cm per week, infection rate in mid-July will 

be around 0.2 (Figure 3.11, a). Dry and warm spring increases mosquito population in summer and 

consequently increases the chance of circulating virus between vector and host. Precipitation vs 
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Vector Index graph shows a peak Vector Index value of 0.25 in mid-July when the precipitation is 

less about 2 cm in March followed by a smaller secondary peak in mosquito infection rate when 

precipitation is about 6 cm (Figure 3.11 c).  

Two components were also fed into the ANN model to predict weekly Vector Index. ANN 

had some negative predictions which were converted to zero. Both model performances were very 

close to each other with a slightly higher ENASH value for the Poisson regression model and smaller 

RBIAS value for the ANN model for the testing period (Figure 3.12). Both models underestimated 

the peak values especially values above 0.2. To improve the developed predictive model and for 

the short term prediction, antecedent values of Vector Index up to 10 weeks prior to the event were 

fed into the PCA in addition to climate variables. Significant correlation exists in the Vector Index 

(VI) data series between 𝑉𝑉𝑉𝑉𝑡𝑡 and 𝑉𝑉𝑉𝑉𝑡𝑡−ℎ for h= 1 to 5 (Figure 3.7). For the new set of PCs, five 

components were defined and three of them which explained about 97% of the variance of 

observed data were fed into the ANN and Poisson regression model (Table 3.6). Time series of 

predicted Vector Index by both models versus observed data for the whole period (training + 

testing) after sorting the randomized data were given in Figure 3.13. In addition, a graph showing 

the performance of ANN and regression model based on the ENASH values versus lag intervals over 

10 weeks preceding time frame was developed and plotted for Vector Index (Figure 3.14). For the 

training period, ANN with higher ENASH predicted Vector Index more accurately than regression 

model. As the lag interval increases, model performance accuracy decreases especially from lag 1 

through lag 3, although even using single time lags Vector Index extending back 10 weeks prior 
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to sampling, model accuracy for the testing period was acceptable with ENASH value of 0.54 and 

0.58 for ANN and regression model respectively. By estimating infection rate 10 weeks prior to 

summer season and having climate data of preceding late winter and spring seasons, Culex 

mosquito infection rate can be predicted in following summer with an acceptable level of accuracy. 

 

Four weeks moving average analysis 

In order to perform the analysis in monthly scale having sufficient number of data, four weeks 

moving average of mosquito and its infection rate and climate data were obtained for each week 

of the period studied. CCMs were generated for each climate variable and Culex mosquito 

abundance data as well as Vector Index as shown in Figure 3.15.  

 

  Female Culex quinquefasciatus abundance  

Four weeks moving average Culex mosquito data showed stronger correlation with climate 

data in comparison to weekly data. Culex vector abundance was positively correlated with 

temperature and PET respectively over 20 to 5 weeks prior to sampling, 𝑟𝑟�𝑀𝑀,𝑇𝑇20,5�=0.82, and 19 

to 7 weeks prior to sampling, 𝑟𝑟�𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃19,7�=0.82 and negatively correlated with four weeks 

moving average available moisture in surface layer over 16 to 8 weeks prior the capture event, 

𝑟𝑟�𝑀𝑀,𝜃𝜃16,8�=-0.75. Four weeks moving average precipitation over 20 to 13 weeks was positively 

correlated with mosquito abundance at week t, 𝑟𝑟�𝑀𝑀,𝑃𝑃20,13�=0.1, also precipitation one week prior 

to mosquito capture event was weakly and negatively correlated with vector abundance, 
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𝑟𝑟�𝑀𝑀,𝑃𝑃1,1�=-0.09. As mosquito population density peaks in summer/early fall (Figure 3.1 C), 

counting back the lag with the highest correlation identifies the preceding late winter and spring 

as most relevant time-period. The climate data of interval lags with the highest positive or negative 

correlation were fed into PCA. Table 3.7 shows the proportion of variance of each component and 

how much each variable contributed to that principle component. PCs 1, 2 and 3 together explain 

97% of the variance in observed data. PC1 has negative loadings for temperature and PET and 

positive loadings for surface moisture which considering summer/early fall as peak Culex species 

population, corresponds to cold and moist late winter and spring. About 24% decrease in weekly 

moving average temperature or 30% increase in four weeks moving average surface moisture with 

respect to their average values from the period 2002 to 2009 leads to 1 unit increase in PC1 (Figures 

3.16 a & b). PC2 has strong negative loading for precipitation which reflects low precipitation in 

early spring and PC3 is positively related to precipitation one week prior the trapping event. About 

40% decrease in weekly moving average precipitation in early spring from its average value over 

the period of 2002 to 2009 increases PC2 by 1 unit (Figure 3.16). Also, 55% increase in four weeks 

moving average precipitation over (t-1, t-1) from its average value leads to 1 unit increase in PC3 

(Figure 3.16).  

After feeding these components to the Poisson model, it was found that all three PCs have a 

negative relationship with Culex mosquito count data. One unit increase in PC1, decreased 

mosquito abundance by 50% (0.50, 0.48-0.52, 95% C.L.), (p<0.0001), so half as many female 

Culex mosquitoes. PC2 is negatively related to mosquito data, and 1 unit increase in PC2 decreases 
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mosquito abundance by 22% (0.78, 0.75-0.82, 95% C.L.) (p<0.0001) (Table 3.8). In addition, PC3 

has a statistically significant negative relationship with mosquito data (0.94, 0.91-0.97, 95% C.L.) 

(p=0.0004). To visualize the relationship between climate variables and mosquito abundance, 

using PCs and the developed Poisson regression model, mosquito data were predicted and plotted 

against the climate dataset (Figure 3.17). When four weeks moving average temperature goes 

above 24 °C in March through June coupled with a surface moisture below 0.5 cm, this condition 

exacerbates mosquito development leading to high mosquito abundance in summer around mid-

July. (Figure 3.17 b). During mild winter and warm spring, the survival rate of those adult females 

that overwinter and hide under buildings or storm drains and sewers increases. Culex 

quinquefasciatus does not enter a true diapause but rather overwinters in a temperature induced-

quiescence (Reisen et al. 1986). Adult females spend the winter for the most part resting in cellars, 

under dwellings and other protected places and become inactive during cold periods (Tesh et al. 

2004). During warm periods, they become active again and renew blood feeding. Survival of 

considerable numbers of Culex quinquefasciatus throughout the winter results in a rapid buildup 

of mosquito populations early in the spring and summer.  

Figure 3.17a shows that when temperature in spring goes above 20 °C up to 24 °C, if there is 

high precipitation in late winter and early spring, about 6 cm, number of female Culex mosquitoes 

rises to about 40 per trap night in weekly scale. Precipitation-mosquito graphs do not show a strong 

relationship. In general, highest mosquito abundance in mid-July is seen when precipitation from 

March to April is about 2 cm followed by a smaller secondary peak in mosquito counts when 
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precipitation is about 5 cm (Figure 3.17 f). Precipitation influences the mosquito population 

dynamics by increasing near-surface humidity associated with rainfall and consequently enhancing 

mosquito flight activity and also by changing the abundance and type of aquatic habitats available 

for mosquito breeding. Higher precipitation in early spring provides pools as potential mosquito 

breeding sites. Warm springs and warm winters cause mosquitoes to start their season earlier by 

looking for standing pools to lay their eggs, thus increasing the Culex mosquito population and 

infection rate in summer. In addition, the chance of getting about 30 female Culex mosquitoes per 

trap night will increase especially in summer if the precipitation one week prior to sampling is 2-

4 cm or 8 cm and higher combined with temperature of 20-24 °C in spring (Figure 3.17 c and e). 

One week after a rain event, especially in summer which is the peak mosquito activity season, 

rainwater stands in pools through the landscape, providing more habitat available for the larvae 

and therefore accelerates their development rate. Also, late summer and fall rains result in a longer 

mosquito season. These findings are in agreement with Soverow et al. (2009) that 1-2 weeks after 

the rainfall, the incidence of reported human WNV infection increased, this condition may expand 

the mosquito population and influence mosquito host-seeking. However, depending on habitat 

characteristics and ecology of each mosquito species, the interaction between mosquito population 

and rainfall is very complex and inconsistent (Roiz et al., 2014).  

Three PCs were also randomized and fed to ANN model as input for prediction purposes. 

Figure 3.18 compares ANN and the regression model performance versus the observed data. ANN 

predicted the four weeks moving average mosquito abundance more accurately with ENASH=0.62 
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and RBIAS=9% relative to the regression model with ENASH=0.52 and RBIAS=18%. To improve the 

model prediction accuracy, the antecedent four weeks moving average Culex mosquito abundance 

data up to 10 weeks prior to sampling, was added to the PCA as a predictor. Table 3.9 shows the 

proportion of variance of components for each set of PCs. PCs 1 & 2 & 3 & 4 explained about 

98% of variance in observed data. Components 1 & 2 & 3 had same interpretation as explained for 

Table 3.7. Component 4 corresponds to antecedent mosquito abundance condition. These 

components were fed into ANN and regression model for prediction purposes. Figure 3.19 

compares the predicted vs observed data. For all the data sets, ANN performed better, with higher 

ENASH values and less RBIAS values compared to the regression model and as the lag interval increases, 

model performances gradually decrease (Figure 3.20). This indicates that by combining interval 

lagged climate data and single time lag antecedent Culex mosquito abundance at the four weeks 

moving average scale, a stronger model with higher accuracy performance can be built for 

prediction purposes.  

 

  Vector Index 

According to CCMs (Figure 3.15), Vector Index had the highest correlation with temperature 

and PET averaged from 15 weeks prior to sampling and extended into 10 or 12 weeks prior to 

sampling with 𝑟𝑟�𝑉𝑉𝑉𝑉,𝑇𝑇15,10� = 𝑟𝑟�𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃𝑃𝑃15,12� =0.79. Also, surface moisture averaged over 18 to 

7 weeks prior the capture event was negatively correlated with four weeks moving average Vector 

Index 𝑟𝑟�𝑉𝑉𝑉𝑉,𝜃𝜃18,7� = −0.70. Averaged precipitation over (t-20) to (t-11) weeks were negatively 
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correlated with Vector Index at week t, 𝑟𝑟�𝑉𝑉𝑉𝑉,𝑃𝑃20,11� =-0.14. These interval lagged climate data 

were fed into PCA to eliminate the collinearity. Table 3.10 shows the proportion of variance of 

each component and how much each variable contributed to that principle component. PC1, PC2 

and PC3 together explain about 100% of the variance in observed data. PCs 1 and 2 reflect the 

same definition as PCs in Table 3.4 but in four weeks moving average scale. 25% increase in 

weekly moving average temperature or about 28% decrease in four weeks moving average surface 

moisture with respect to their average values from the period 2002 to 2009 leads to 1 unit increase 

in PC1 (Figures 3.21 a & b). Also, about 37% decrease in weekly moving average precipitation in 

early spring from with respect to its average value over the period of 2002 to 2009 increases PC2 

by 1 unit (Figure 3.21). According to Table 3.10, PC3 had positive loading for four weeks moving 

average moisture condition but the moisture vs PC3 graph does not show a clear relationship 

(Figure 3.21). After feeding these PCs to the Poisson regression model, it was found although PCs 

2 and 3 were not statistically significant, the regression model including three components 

predicted the Vector Index more accurately (ENASH=0.69, RBIAS=-19%) than the regression model 

contained just PC1 (ENASH=0.61, RBIAS=-22%) for testing period. Therefore, all three PCs were kept 

into the model (Table 3.11). PCs 1 and 3 have positive relationship with Vector Index and PC2 

has negative relationship with Vector Index. To visualize the relationship between climate 

variables and mosquito infection rate, using PCs and the developed Poisson regression model, 

Vector Index was predicted and was plotted against climate dataset (Figure 3.22). In four weeks 

moving average scale, temperature about 26 °C and surface moisture around 0.5 cm in late March 
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through early May increase mosquito infection rate in summer around mid-July up to 0.4. Also, 

rain events of 2 cm and less in late winter and early spring followed by temperature about 26 °C 

in spring, favor transmission of WNV within mosquitoes leading to the infection rate as high as 

0.25 in mid-July (Figure 3.22 a and b). Precipitation-vector Index graph does not show a strong 

relationship. In general, highest mosquito infection rate in mid-July is seen when precipitation 

from March to April is about 2 cm followed by a smaller secondary peak in infection rate when 

precipitation is about 5 cm (Figure 3.22 e). 

PCs 1 and 2 and 3 were fed also into the ANN model for prediction purposes. Figure 3.23 

shows time series of predicted versus observed four weeks moving Vector Index for each model 

for the whole data set. Both models could capture the data trend and ANN performance was 

slightly better than regression model with ENASH=0.72 and RBIAS=-7%. Although, Vector Index 

prediction model in four weeks moving average scale is better than weekly scale, both models still 

underestimated the high peak values. To improve the prediction, the second set of predictors 

consists of antecedent conditions of Vector Index data up to 10 four weeks moving average 

preceding point of interest and interval lagged climate data were fed into PCA. Table 3.12 shows 

the proportion of variance of each component and weight of each variable. Out of five new defined 

PCs, three components were selected and were added to the prediction models. The first two 

components explain the same conditions as the first data set. PC3 corresponds to antecedent Vector 

Index value. Figures 3.24 shows time series of predicted vs observed four weeks moving average 

Vector Index for the whole period after sorting the randomized data. Also a graph of ENASH value 
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of each model built using single lagged Vector Index and interval lagged climate data was given 

in Figure 3.25. Accuracy of performance was much better for models that were built by including 

lagged interval climate data and antecedent Vector Index value up to 3 weeks prior to point of 

interest and the peak values were captured by these models. Addition of Vector Index value one 

week preceding time frame to the model, improved ANN prediction accuracy for the testing period 

from ENASH value of 0.71 to 0.93.  

 

Discussion 

In this study, the associations of preceding meteorological conditions and Culex mosquito 

abundance as well as their infection rates were explored to enhance our understanding of mosquito 

ecology and disease risk for Culex quinquefasciatus vectors carrying WNV. To determine the 

maximum correlations between mosquito data or infection rate and climate variables, cross 

correlation maps (CCMs) were generated. The association of vector abundance with leading 

climate variables under specific time interval lags result in more robust inference than analyses 

that are restricted to single predefined time lags (Chuang et al., 2012). Using CCMs and 

considering interval lag structures, both the timing and duration of the meteorological effects are 

displayed (Curriero et al., 2005). The relationships revealed between interval lagged 

environmental factors and the abundance of mosquitoes carrying WNV can be used as leading 

indicators of vector abundance. Predicting WNV activity is an essential requirement for vector 

control, and studying the Culex species population dynamics in relation to climate factors like 
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ambient air temperature, surface moisture and precipitation could help improve the ability of 

predicting the WNV risk.  

Using PCA, the collinearities among the climate variables were removed and the new 

components obtained at weekly and four weeks moving average scales were fed into the ANN and 

Poisson regression models as explanatory variables. Considering the timing of peak mosquito 

abundance which is summer and early fall, results of CCMs and the Poisson regression model 

reflected that elevated temperature and PET averaged over late winter and spring were associated 

with increased abundance of Culex quinquefasciatus and their related infection rate in summer 

(considering mid-July as peak mosquito count, Figure 3.1. C). This is consistent with other field 

studies as larval and pupal development are temperature dependent (Chuang et al., 2012). Also, 

drier than normal condition during spring with low available moisture in surface layers creates 

favorable conditions for the development of Culex vectors in summer. Prolonged above normal 

temperature extends the duration of the mosquito season and vector activity. It also accelerates the 

development rate, influence fitness of immature mosquitoes, the biting rate and survival of adult 

female mosquitoes (Patz et al., 2008; Morin and Comrie, 2013). Also, vector breeding conditions 

are facilitated and the frequency of transmission events is increased due to dry condition by 

gathering hosts and vectors around nutrient-rich water bodies (Shaman et al., 2005).  

Results showed that rain events of 6 cm and higher averaged over March to April combined 

with mild spring with average weekly temperature of 20 to 24 °C, favor mosquito development in 

mid-July. Also rain event of 2 cm or less in March through May coupled with temperature around 
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26 °C, increases the chance of getting higher number of infectious mosquitoes in mid-July. Early 

period precipitation postpones and shortens the activity of host-seeking mosquitoes, but at the 

same time leads to higher abundance. Increase in formation and persistence of mosquito breeding 

sites due to early period precipitation, is associated with increase in abundance of Culex 

mosquitoes (Rosa et al., 2014). Extensive breeding habitats of Culex mosquitoes can result from 

the heavy rains and associated flooding especially in late winter and early spring, which is right 

before the mosquito life cycle starts. Breeding habitats can include temporary ground pools, pools 

along receding river floodplain or natural or man-made containers. However, the impact of 

precipitation on mosquito population is controversial (Roiz et al., 2014). Generally, regions with 

lower seasonal variation in precipitation such as the southeastern United States, have lower 

probability of WNV mosquito cases (Harrigan et al., 2014). Also, the southeastern United States 

receives sufficient precipitation to support mosquito populations throughout the year, making 

temperature the controlling variable affecting Culex mosquito population dynamics (Morin and 

Comrie, 2013). The CCMs obtained for precipitation versus mosquito count data or versus Vector 

Index support this statement. Due to exponential growth rates and also complex interaction 

between mosquito abundance and rainfall, even small effects of weather conditions on a mosquito 

population could result in vast effects in future generations (Lebl et al., 2013; Roiz et al., 2014).  

The ANN and Poisson regression model predicted the seasonal cycle of mosquito abundance 

and Vector Index fairly accurately. The predictions improved significantly when antecedent 

conditions of response variable up to 10 weeks prior to point of interest were added as predictors 
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to the models. Addition of 1 week antecedent mosquito count data to the ANN model as a predictor 

increased the ENASH value from 0.54 to 0.68 and from 0.62 to 0.89 respectively for weekly and four 

weeks moving average scales for testing period. Also, addition of estimated weekly mosquito 

abundance 10 weeks prior to the ANN model, improved the model performance for the testing 

period by increasing ENASH from 0.54 to 0.56 (weekly scale) and from 0.62 to 0.68 (four weeks 

moving average scale) (Figures 3.6 and 3.13). For the Vector Index, addition of antecedent 

infection rate one week prior the capture increased the ANN model performance accuracy and the 

ENASH value changed from 0.54 to 0.69 and from 0.72 to 0.93 respectively for weekly and four 

weeks moving average scales for testing period. Also, addition of estimated weekly Vector Index 

10 weeks prior as a predictor to PCA and then to the ANN model, improved the model performance 

for the testing period by increasing ENASH from 0.72 to 0.74 for four weeks moving average scale 

(Figures 3.6 and 3.10). For weekly scale ENASH value did not change. ANN predicted slightly better 

than the regression model, which could be due to the non-linearity assumption of ANN in 

comparison to Poisson which is a log-linear model. Generally including the antecedent mosquito 

count or Vector Index to the model increased the predictive power of both ANN and regression 

models. This suggests that meteorological conditions and mosquito data from preceding weeks 

may be better indicators of future population dynamics for Culex quinquefasciatus mosquito 

species and the WNV risk than just the present size of the population.  
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Conclusion  

The findings of this study and the developed ANN and Poisson regression models for 

predictions could have important implications for the control of West Nile Virus spread by Culex 

mosquito species. Most other studies developed mosquito abundance regression based models with 

single time lag antecedent climate data up to 2 months as explanatory variables without fixing the 

collinearities among climate variables and without extending effects of climate conditions over a 

range of time. Multi-collinearity can increase the variance of the coefficient estimates and reduce 

the statistical power of the analysis. In addition, single time lag might not capture meteorological 

effects on mosquito abundance if preceding conditions contributed to breeding and survival over 

weeks to months (Chuang et al., 2012). By collecting rigorous climate and mosquito data during 

important seasons, between January to May, and also addition of any antecedent mosquito count 

data as well as estimated infection rate 1 to 10 weeks prior, the size of vector populations that are 

likely to be seen in summer can be estimated and the possible abnormalities in the increase of rates 

of WNV infestation can be monitored. These climate factors can be modeled under future warming 

conditions so that long-term predictions of shifts in risk can be estimated (Harrigan et al., 2014). 

These information could be used for planning of mosquito control strategies and to prioritize the 

distribution of scarce mosquito control resources before the transmission season begins. Also, it 

can help enable early detection of virus circulation in mosquitoes and to provide early warning for 

WNV outbreaks. In years with warm spring and mild late winter, control operations such as 

applying insecticides can be initiated late in the winter to prevent rapid development of mosquitoes 
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early in the spring and summer as a result of increase in survival rate of Culex mosquitoes 

throughout the winter. Although climate is the main driver of WNV risk and climatic factors 

increase predictive power of determining risk associated with WNV, further studies are needed to 

explore whether other environmental factors such as socio-economic conditions, and landscape 

and mosquito habitat characteristics should be accounted for a better understanding of disease risk 

and for developing a more comprehensive Culex mosquito dynamic simulation model.  

 

References 

Ahumada, J.A., Lapointe, D., Samuel, M.D., 2004. Modeling the Population Dynamics of Culex 

quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. J Med 

Entomol. 41(6):1157-1170.  

American Mosquito Control Association, 2014. http://www.mosquito.org/ 

Andreadis, Th.G., 2012. The contribution of Culex pipens complex mosquitoes to transmission 

and persistence of West Nile Virus in North America. The American Mosquito Control 

Association, Inc. Vol. 28, No. 4, page: 137-151. 

Center for Disease Control and Prevention, division of Vector-Borne Dieases., 2013. West Nile 

Virus in the United States: Guidelines for Surveillance, Prevention, and Control. U.S. 

Department of Health and Human Services. Public Health Service. 

Chuang, T.W., Ionides, E.L., Knepper, R.G., Stanuszek, W.W., Walker, E.D., Wilson, M.L., 2012. 

Cross-Correlation Map analyses show weather variation influences on mosquito abundance 

patterns in Saginaw County, Michigan, 1989–2005. J Med Entomol. 49(4):851-858. 

Curriero, F.C., Shone, S.M., Glass, G.E., 2005. Cross Correlation Maps: A tool for visualizing and 

modeling time lagged associations. Vector Borne Zoonotic Dis. Vol. 5, Number 3, 267-275. 

84 

 

http://www.mosquito.org/


Day, J.F., 2001. Predicting St. Louis Encephhalitis Virus Epidemics: Lessons from Recent, and 

Not So Recent, Outbreaks. Annu. Rev. Entomol. 46:111–138.  

Day, J and Shaman, J., 2008. Using hydrologic conditions to forecast the risk of focal and epidemic 

arboviral transmission in Peninsular Florida. J Med Entomol. 45(3): 458-465 

Dawson, C.W., and R.L. Wilby., 2001. Hydrologic modeling using artificial neural networks. 

Prog. Phys. Geogr. 25:80–108 

Dohm D.J., O’Guinn, M.L., Turel, M.J., 2002. Effect of environmental temperature on the ability 

of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol. 39(1):221–

5. 

Epstein, P. R., 2001. West Nile Virus and the Climate. J Urban Health. Vo. 78, No, 2. 

Georgia Department of Public Health, Environmental Health. 2012. 2012 Arbovirus final report. 

Summary of human West Nile Virus and other arboviral Infections, Georgia.  

Gong, H., DeGaetano, A., Harrington, L.C., 2007. A climate based mosquito population model. 

Proceedings of the World Congress on Engineering and Computer Science, October 24-26, 

San Francisco, USA. 

Harrigan, R.J., Thomassen, H.A., Buermann, W., Smith, Th.B., 2014. A continental risk 

assessment of West Nile virus under climate change. Glob Change Biol. 20, 2417-2425.  

Huang, J., van den Dool, H., and Georgakakos, K.P., 1996. Analysis of model-calculated soil 

moisture over the United States (1931-93) and application to long-range temperature 

forecasts. J Climate. Vol.9, No.6. 
Kalin, L., Isik, S., Schoonover, J.E., Lockaby, B.G., 2010. Predicting Water Quality in 

Unmonitored Watersheds Using Artificial Neural Networks. JEQ. 39(4):1429-1440. 

Lebl, K., Brugger, K., Rubel, F., 2013. Predicting Culex pipiens/restuans population dynamics by 

interval lagged weather data. Parasites & Vectors. 6:129, 1-11. 

Morin, C.W. and Comrie, A.C., 2010. Modeled response to the West Nile virus vector Culex 

quinquefasciatus to changing climate using the dynamic mosquito simulation model. Int J 

Biometeorol. 54:517–529.  
85 

 

http://www.annualreviews.org/journal/ento
http://dph.georgia.gov/sites/dph.georgia.gov/files/related_files/site_page/EnvHealthContactInformation.pdf


Morin, C.W. and Comrie, A.C., 2013 Regional and seasonal response of a West Nile virus vector 

to climate change. PNAS. Vol. 110, No. 39.  

Nash, J.E., and Sutcliffe, J.V.,  1970. River flow forecasting through conceptual models: Part I. A 

discussion of principles. J. Hydrol. 10:282–290.  

Patz, J.A., Olson, S.H., Uejio, Ch. K., Gibbs, H.K., 2008. Disease Emergence from Global Climate 

and Land Use Change. Med Clin N Am. 92, 1473–1491. 

R Core Team. 2013. R: a language and environment for statistical computing. Reference Index. R 

Foundation for Statistical Computing, Vienna, Austria. Version 3.0.1.  

Reisen W.K., Meyer, R.P., Milby, M.M., 1986. Overwintering studies on Culex tarsalis (Diptera: 

Culicidae) in Kern County, California: temporal changes in abundance and reproductive status 

with comparative observations on C. quinquefasciatus (Diptera: Culicidae). Ann Entomol Soc 

Am. 79:677–685. 

Reisen, W., Fang, Y., Martinez, V.M., 2006. Effects of Temperature on the Transmission of West 

Nile Virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. Vol. 43, no, 2. 

Rey, J.R., 2011. The mosquito. ENY-727 (IN652), one of a series of the Entomology and 

Nematology Department, Florida Cooperative Extension Service, Institute of Food and 

Agricultural Sciences, University of Florida.  

Rezaeian Zadeh, M., Amin, S., Khalili, D., and Singh, V.P., 2010. Daily outflow prediction by 

multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water 

Resour Manage. 24:2673–2688. 

Roiz, D., Ruiz, S., Soriguer, R., Figuerola, J., 2014. Climatic effects on mosquito abundance in 

Mediterranean wetlands. Parasites & Vectors. 7:333.  

Rosa, R., Marini, G., Bolzoni, L., Neteler, M., Metz, M., Deluuchi, L., Chadwick, E.A., Balbo, L., 

Mosca, A., Giacobini, M., Bertolotti, L., Rizzoli, A., 2014. Early warning of West Nile virus 

mosquito vector: climate and land use models successfully explain phenology and abundance 

of Culex pipiens mosquitoes in north-western Italy. Parasites & Vectors. 7:269. 

86 

 



Ruiz, M.O., Chaves. L.F., Hamer, G.L., Sun, T., Brown, W.M., Walker, E.D., Haramis, L., 

Goldberg, T.L., Kitron, U.D., 2010. Local impact of temperature and precipitation on West 

Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites & 

Vectors. 3:19.  

Salas, J.D., M. Markus, and A.S. Tokar., 2000. Streamflow forecasting based on artificial neural 

networks. p. 23–51. In R.S. Govindaraju and A.R. Rao (ed.) Artificial neural networks in 

hydrology. Kluwer Academic, Dordrecht, the Netherlands.  

Shaman, J., Stieglitz, M., Stark, C., Blancq, S. L., Cane, M., 2002. Using a Dynamic Hydrology 

Model to Predict Mosquito Abundances in Flood and Swamp Water. Emerg Infect Diseases. 

Vol. 8, No. 1. 

Shaman, J., Day, J.F., Stieglitz, M., 2005. Drought-Induced Amplification and Epidemic 

Transmission of West Nile Virus in Southern Florida. J Med Entomol. 42(2): 134-141. 

Shone, S.M., Curriero, F.C., Lesser, C.R., Glass, G.E., 2006. Characterizing Population Dynamics 

of Aedes sollicitans (Diptera: Culicidae) Using Meteorological Data. J Med Entomol. 

43(2):393-402. 

Soverow, J. E., Wellenius, G.A., Fisman, D.E., Mittleman, M.A., 2009. Infectious Disease in a 

Warming World: How Weather Influenced West Nile Virus in the United States (2001–2005). 

Environ Health Perspect. Vol. 117, No. 7. 

Strickman, D., 1988. Rate of oviposition by Culex Quinquafasciatus in San Antonio, Texas, during 

three years. J AMCA. Vol 4, No. 3. 339-344. 

Tesh, R.B., Parsons, R., Siirin, M, Randle, Y., Sargent, C., Guzman, H., Wuithiranyagool T, Higgs 

S, Vanlandingham, D.L., Bala, A.A., Haas, K., Zerinque, B., 2004. Year-round West Nile 

virus activity, Gulf Coast region, Texas and Louisiana. Emerg Infect Dis. 10:1649–1652. 

Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical 

Review 38 (1): 55–94.  

87 

 

http://www.unc.edu/courses/2007fall/geog/801/001/www/ET/Thornthwaite48-GeogrRev.pdf


Van den Dool, H., Huang, J., and Fan, Y. (2003). “Performance and analysis of the constructed 

analogue method applied to U.S. soil moisture over 1981–2001.” J Geophys Res. Vol. 108, 

NO. D16, 8617.  

Walsh, A.S., Glass, G.E., Lesser, C.R., Curriero, F.C., 2008. Predicting seasonal abundance of 

mosquitoes based on off-season meteorological conditions. Environ Ecol Stat. 15:279–291. 

Wang, G., Minnis, R.B., Belant, J.R., Wax, Ch.R., 2010. Dry weather induces outbreaks of human 

West Nile virus infections. BMC Infect Diseases. 10:28.  

Wang, J., Ogden, N.H., Zhu, H., 2011. The Impact of weather conditions on Culex pipiens and 

Culex restuans (Diptera: Culicidae) abundance: A case Study in Peel Region. J Med Entomol. 

48(2):468-475. 

 

88 

 



Table 3.1. PCA for climate variables highly correlated with weekly Culex mosquito abundance.  

  Loadings 

 
Spearman 

Correlation PC1 PC2 PC3 PC4 
𝑇𝑇16,9 0.82 0.58** -0.17 0.39 0.69 
𝑃𝑃20,16 -0.08 -0.11 -0.96 -0.25   
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.82 0.58 -0.16 0.35 -0.72 
𝜃𝜃17,7 -0.72 -0.56 -0.15 0.82   

Proportion of variance - 70% 26% 4% 0% 
T= Temperature, P= Precipitation, PET=Potential evapotranspiration, 𝜃𝜃= Soil moisture in surface layer.  
First column is the Spearman’s rank order correlation coefficient between each climate variable and weekly 
Culex mosquito abundance.  

 

Table 3.2. Poisson model analysis of weekly Culex mosquito abundance.  

 Estimate* 95% CI p-value  
Intercept 2.99* 2.74 3.26 <0.0001 

PC1 2.24 2.15 2.33 <0.0001 
PC2 0.86 0.82 0.91 <0.0001 

* Odds ratios were derived using the link function e(coefficient) and coefficient estimates of the 
GLM model. 
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Table 3.3. PCA for climate variables and weekly lagged mosquito abundance data time series. 
Each set contains antecedent mosquito data changing from 1 to 10 weeks prior.  

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇16,9 0.52 -0.16 -0.28 0.39 𝑇𝑇16,9 0.52 0.15 -0.28 0.39 
𝑃𝑃20,16  -0.96   -0.25 𝑃𝑃20,16  0.96  -0.25 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 -0.15 -0.22 0.35 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 0.15 -0.23 0.35 
𝜃𝜃17,7 -0.51 -0.15 0.24 0.81 𝜃𝜃17,7 -0.51 0.16 0.23 0.82 
𝑴𝑴𝒕𝒕−𝟏𝟏 0.43  0.90   𝑴𝑴𝒕𝒕−𝟐𝟐 0.42  0.90   

%VAR 66% 21% 10% 3% %VAR 66% 21% 10% 3% 
  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇16,9 0.53 0.14 -0.29 0.38 𝑇𝑇16,9 0.53 0.13 -0.28 0.39 
𝑃𝑃20,16  0.96  -0.25 𝑃𝑃20,16  0.96  -0.25 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 0.13 -0.24 0.35 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.54 0.13 -0.23 0.35 
𝜃𝜃17,7 -0.51 0.17 0.20 0.82 𝜃𝜃17,7 -0.51 0.18 0.20 0.82 
𝑴𝑴𝒕𝒕−𝟑𝟑 0.42  0.90   𝑴𝑴𝒕𝒕−𝟒𝟒 0.41  0.91   

%VAR 65% 21% 10% 3% %VAR 65% 21% 11% 3% 
  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇16,9 0.53 0.11 -0.29 0.38 𝑇𝑇16,9 0.54   -0.27 0.39 
𝑃𝑃20,16   0.95 -0.14 -0.25 𝑃𝑃20,16   0.94 -0.20 -0.25 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.54 0.10 -0.23 0.35 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.55   -0.22 0.35 
𝜃𝜃17,7 -0.51 0.19 0.17 0.82 𝜃𝜃17,7 -0.52 0.20 0.16 0.82 
𝑴𝑴𝒕𝒕−𝟓𝟓 0.39 0.17 0.90   𝑴𝑴𝒕𝒕−𝟔𝟔 0.37 0.22 0.90   

%VAR 64% 21% 12% 3% %VAR 62% 21% 13% 3% 
  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇16,9 0.55   -0.26 -0.39 𝑇𝑇16,9 0.55   -0.24 -0.39 
𝑃𝑃20,16   0.93 -0.25 0.25 𝑃𝑃20,16   0.92 -0.30 0.25 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.55   -0.21 -0.35 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.56   -0.20 -0.35 
𝜃𝜃17,7 -0.52 0.21 0.13 -0.82 𝜃𝜃17,7 -0.53 0.20 0.10 -0.82 
𝑴𝑴𝒕𝒕−𝟕𝟕 0.34 0.28 0.90   𝑴𝑴𝒕𝒕−𝟖𝟖 0.30 0.33 0.89   

%VAR 61% 21% 14% 3% %VAR 60% 21% 15% 3% 
  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇16,9 0.56   0.22 0.39 𝑇𝑇16,9 0.57   -0.20 -0.39 

𝑃𝑃20,16   0.89 0.37 -0.25 𝑃𝑃20,16 -0.10 0.90 -0.35 0.25 

𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.56   0.19 0.35 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.57   -0.17 -0.35 

𝜃𝜃17,7 -0.54 0.20   0.82 𝜃𝜃17,7 -0.55 0.18   -0.82 
𝑴𝑴𝒕𝒕−𝟗𝟗 0.27 0.39 -0.88   𝑴𝑴𝒕𝒕−𝟏𝟏𝟏𝟏 0.22 0.38 0.90   

%VAR 59% 22% 16% 3% %VAR 58% 21% 17% 3% 
%VAR: Proportion of variance 
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Table 3.4. PCA for climate variables highly correlated with weekly Vector Index.  

  Loadings 

 
Spearman 

Correlation PC1 PC2 PC3 PC4 
𝑇𝑇20,6 0.65 0.58 -0.18 0.40 0.69 
𝑃𝑃20,16 -0.09 -0.12 -0.96 -0.27   
𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.65 0.58 -0.17 0.34 -0.72 
𝜃𝜃20,5 -0.56 -0.56 -0.16 0.81   

Proportion of variance - 70.5% 26% 3.3% 0% 
 

Table 3.5. Poisson model analysis of weekly Vector Index. 

 Estimate* 95% CI p-value  
Intercept 0.002* 0.0001 0.04 <0.0001 

PC1 4.96 1.31 18.76 0.02 
PC2 0.67 0.26 1.78 0.42 
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Table 3.6. PCA for climate variables and weekly lagged Vector Index time series. Each set 
contains antecedent Vector Index changing from 1 to 10 weeks prior. 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇20,6 0.54 0.18 0.25 0.38 𝑇𝑇20,6 0.54 0.15 -0.26 0.38 

𝑃𝑃20,16 -0.11 0.96   -0.27 𝑃𝑃20,16 -0.10 0.96  -0.27 

𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.54 0.17 0.20 0.34 𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.55 0.15 -0.20 0.34 

𝜃𝜃20,5 -0.53 0.16 -0.17 0.82 𝜃𝜃20,5 -0.53 0.18 0.15 0.82 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟏𝟏 0.36   -0.93   𝑽𝑽𝑽𝑽𝒕𝒕−𝟐𝟐 0.35  0.93   
%VAR 63% 21% 14% 3% %VAR 62% 21% 14% 3% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇20,6 0.54 0.16 -0.24 -0.39 𝑇𝑇20,6 0.55 0.16 -0.23 -0.40 

𝑃𝑃20,16 -0.11 0.96   0.27 𝑃𝑃20,16 -0.11 0.96   0.27 

𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.55 0.16 -0.18 -0.34 𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.55 0.15 -0.18 -0.34 
𝜃𝜃20,5 -0.53 0.17 0.18 -0.81 𝜃𝜃20,5 -0.53 0.18 0.17 -0.81 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟑𝟑 0.34   0.94   𝑽𝑽𝑽𝑽𝒕𝒕−𝟒𝟒 0.33   0.94   
%VAR 62% 21% 14% 3% %VAR 61% 21% 15% 3% 

 PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇20,6 0.55 -0.16 -0.21 0.40 𝑇𝑇20,6 0.55 -0.18 -0.17 0.40 

𝑃𝑃20,16 -0.11 -0.96  -0.27 𝑃𝑃20,16 -0.11 -0.96  -0.27 

𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.55 -0.16 -0.17 0.34 𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.56 -0.17 -0.15 0.34 
𝜃𝜃20,5 -0.53 -0.18 0.17 0.81 𝜃𝜃20,5 -0.54 -0.16 0.18 0.81 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟓𝟓 0.31  0.95   𝑽𝑽𝑽𝑽𝒕𝒕−𝟔𝟔 0.29  0.957   
%VAR 61% 21% 16% 3% %VAR 60% 21% 16% 3% 

 PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇20,6 0.56 -0.19 -0.13 -0.40 𝑇𝑇20,6 0.56 -0.19 -0.11 -0.40 

𝑃𝑃20,16 -0.12 -0.95 0.12 0.27 𝑃𝑃20,16 -0.12 -0.95 0.12 0.27 
𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.56 -0.19 -0.11 -0.34 𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.57 -0.19  -0.34 
𝜃𝜃20,5 -0.54 -0.14 0.19 -0.81 𝜃𝜃20,5 -0.55 -0.14 0.16 -0.81 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟕𝟕 0.26 0.10 0.96   𝑽𝑽𝑽𝑽𝒕𝒕−𝟖𝟖 0.23  0.97   
%VAR 59% 21% 17% 3% %VAR 58% 21% 18% 3% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 

𝑇𝑇20,6 0.57 0.16 -0.13 -0.40 𝑇𝑇20,6 0.57 0.13 -0.14 -0.40 

𝑃𝑃20,16 -0.12 0.95 -0.14 0.27 𝑃𝑃20,16 -0.11 0.88 -0.38 0.27 
𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.57 0.15 -0.12 -0.34 𝑃𝑃𝑃𝑃𝑃𝑃20,8 0.58 0.13 -0.14 -0.34 
𝜃𝜃20,5 -0.55 0.18   -0.81 𝜃𝜃20,5 -0.56 0.18  -0.81 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟗𝟗 0.18 0.16 0.97   𝑽𝑽𝑽𝑽𝒕𝒕−𝟏𝟏𝟏𝟏 0.13 0.40 0.91   
%VAR 58% 21% 19% 3% %VAR 57% 21% 19% 3% 
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Table 3.7. PCA for climate variables highly correlated with four weeks moving average Culex 

mosquito abundance. 

  Loadings 

 
Spearman 

Correlation PC1 PC2 PC3 PC4 PC5 

𝑇𝑇20,5 0.82 -0.57 -0.20  -0.39 0.69 
𝑃𝑃1,1 -0.09  -0.20 0.98    
𝑃𝑃20,13 0.1 0.14 -0.92 -0.18 0.33  
𝑃𝑃𝑃𝑃𝑃𝑃19,7 0.82 -0.58 -0.19   -0.31 -0.73 
𝜃𝜃16,8 -0.75 0.56 -0.20   -0.80  

Proportion of variance - 56% 21% 20% 2% 0% 
 

Table 3.8. Poisson model analysis of four weeks moving average Culex mosquito abundance.  

 Estimate 95% CI p-value  
Intercept 4.22 3.93 4.54 <0.0001 

PC1 0.50 0.48 0.52 <0.0001 
PC2 0.78 0.75 0.82 <0.0001 
PC3 0.94 0.91 0.97 0.0004 
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Table 3.9. PCA for climate variables and lagged four weeks moving average Culex mosquito 
abundance time series. 

  PC1 PC2 PC3 PC4 PC5   PC1 PC2 PC3 PC4 PC5 
𝑇𝑇20,5 -0.52 -0.16  -0.31 -0.38 𝑇𝑇20,5 -0.52 -0.16  -0.32 -0.37 
𝑃𝑃1,1  -0.20 -0.98     𝑃𝑃1,1  -0.16 -0.99     
𝑃𝑃13,20 0.11 -0.92 0.18  0.33 𝑃𝑃13,20 0.11 -0.93 0.15  0.33 
𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.52 -0.16   -0.27 -0.30 𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.52 -0.15   -0.28 -0.30 
𝜃𝜃16,8 0.50 -0.23   0.19 -0.81 𝜃𝜃16,8 0.50 -0.24   0.17 -0.81 
𝑴𝑴𝒕𝒕−𝟏𝟏 -0.44    0.89   𝑴𝑴𝒕𝒕−𝟐𝟐 -0.44 -0.10   0.89   
%VAR 57% 18% 16% 7% 2% %VAR 57% 18% 17% 7% 2% 

  PC1 PC2 PC3 PC4 PC5   PC1 PC2 PC3 PC4 PC5 
𝑇𝑇20,5 -0.52 -0.15  -0.33 -0.37 𝑇𝑇20,5 -0.52 0.14   -0.33 -0.36 
𝑃𝑃1,1  -0.15 -0.99     𝑃𝑃1,1  0.153 -0.99     
𝑃𝑃13,20 0.11 -0.93 0.14  0.33 𝑃𝑃13,20 0.10 0.92 0.14   0.33 
𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.52 -0.15   -0.28 -0.30 𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.53 0.14   -0.29 -0.30 
𝜃𝜃16,8 0.50 -0.24   0.15 -0.82 𝜃𝜃16,8 0.51 0.25   0.13 -0.82 
𝑴𝑴𝒕𝒕−𝟑𝟑 -0.43 -0.13   0.89   𝑴𝑴𝒕𝒕−𝟒𝟒 -0.42 0.16   0.89   
%VAR 56% 18% 17% 7% 2% %VAR 56% 18% 17% 8% 2% 

  PC1 PC2 PC3 PC4 PC5   PC1 PC2 PC3 PC4 PC5 
𝑇𝑇20,5 -0.53 0.12  -0.32 -0.36 𝑇𝑇20,5 -0.53 -0.11 0.13 -0.30 0.37 
𝑃𝑃1,1   0.21 -0.97     𝑃𝑃1,1  -0.29 -0.94 -0.18   
𝑃𝑃13,20 0.10 0.91 0.20 -0.12 0.33 𝑃𝑃13,20 0.10 -0.88 0.29 -0.14 -0.33 
𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.53 0.12   -0.28 -0.30 𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.53 -0.10 0.12 -0.27 0.30 
𝜃𝜃16,8 0.51 0.25   0.11 -0.81 𝜃𝜃16,8 0.51 -0.26     0.81 
𝑴𝑴𝒕𝒕−𝟓𝟓 -0.41 0.20   0.89   𝑴𝑴𝒕𝒕−𝟔𝟔 -0.39 -0.24   0.88   
%VAR 55% 18% 16% 9% 2% %VAR 54% 18% 17% 9% 2% 

  PC1 PC2 PC3 PC4 PC5   PC1 PC2 PC3 PC4 PC5 
𝑇𝑇20,5 0.534  0.15 -0.27 -0.38 𝑇𝑇20,5 -0.54   0.17 -0.24 -0.38 
𝑃𝑃1,1   -0.34 -0.91 -0.24   𝑃𝑃1,1   -0.40 -0.86 -0.32   
𝑃𝑃13,20 -0.11 -0.85 0.36 -0.15 0.33 𝑃𝑃13,20 0.11 -0.82 0.43 -0.16 0.33 
𝑃𝑃𝑃𝑃𝑃𝑃19,7 0.54   0.14 -0.25 -0.30 𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.54   0.16 -0.23 -0.30 
𝜃𝜃16,8 -0.52 -0.25    -0.81 𝜃𝜃16,8 0.53 -0.25     -0.81 
𝑴𝑴𝒕𝒕−𝟕𝟕 0.37 -0.27 -0.10 0.88   𝑴𝑴𝒕𝒕−𝟖𝟖 -0.34 -0.31 -0.15 0.87   
%VAR 53% 19% 17% 10% 2% %VAR 52% 19% 17% 11% 2% 

  PC1 PC2 PC3 PC4 PC5   PC1 PC2 PC3 PC4 PC5 
𝑇𝑇20,5 -0.55   0.16 -0.22 -0.38 𝑇𝑇20,5 -0.56 -0.10 0.15 0.20 -0.39 
𝑃𝑃1,1   -0.35 -0.88 -0.31   𝑃𝑃1,1  -0.31 -0.90 0.30   
𝑃𝑃13,20 0.12 -0.83 0.39 -0.18 0.33 𝑃𝑃13,20 0.12 -0.84 0.36 0.22 0.33 
𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.55   0.15 -0.22 -0.30 𝑃𝑃𝑃𝑃𝑃𝑃19,7 -0.56  0.14 0.20 -0.30 
𝜃𝜃16,8 0.53 -0.24     -0.81 𝜃𝜃16,8 0.54 -0.23    -0.81 
𝑴𝑴𝒕𝒕−𝟗𝟗 -0.31 -0.33 -0.15 0.88   𝑴𝑴𝒕𝒕−𝟏𝟏𝟏𝟏 -0.26 -0.36 -0.15 -0.88   
%VAR 51% 19% 17% 12% 2% %VAR 51% 19% 17% 12% 2% 
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Table 3.10. PCA for climate variables highly correlated with four weeks moving average Vector 

Index.  

  Loadings 

 
Spearman 

Correlation PC1 PC2 PC3 PC4 

𝑇𝑇15,10 0.79 0.57 -0.23 0.42 0.67 
𝑃𝑃20,11 -0.14 -0.15 -0.92 -0.36   
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.79 0.58 -0.22 0.27 -0.74 
𝜃𝜃18,7 -0.70 -0.57 -0.22 0.79   

Proportion of variance - 70% 27% 2% 0% 
 

Table 3.11. Poisson model analysis of four weeks moving average Vector Index. 

 Estimate 95% CI p-value  
Intercept 0.001 0.00 0.07 0.001 

PC1 6.07 1.04 35.56 0.04 
PC2 0.56 0.17 1.80 0.32 
PC3 1.76 0.04 78.62 0.77 
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Table 3.12. PCA for climate variables and lagged four weeks moving average Vector Index time 
series.  

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
𝑇𝑇15,10 0.52 -0.23 -0.29 0.39 𝑇𝑇15,10 0.52 -0.23 -0.29 0.40 
𝑃𝑃20,11 -0.13 -0.92   -0.35 𝑃𝑃20,11 -0.13 -0.92   -0.35 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 -0.22 -0.20 0.28 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 -0.22 -0.20 0.28 
𝜃𝜃18,7 -0.52 -0.22 0.20 0.80 𝜃𝜃18,7 -0.52 -0.22 0.20 0.80 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟏𝟏 0.41   0.91   𝑽𝑽𝑽𝑽𝒕𝒕−𝟐𝟐 0.40   0.91   
%VAR 65% 22% 11% 2% %VAR 65% 22% 11% 2% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
𝑇𝑇15,10 0.52 -0.22 -0.28 0.41 𝑇𝑇15,10 0.53 0.20 -0.27 0.41 
𝑃𝑃20,11 -0.13 -0.93   -0.36 𝑃𝑃20,11 -0.13 0.93   -0.36 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.53 -0.21 -0.21 0.27 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.54 0.20 -0.21 0.27 
𝜃𝜃18,7 -0.52 -0.23 0.19 0.80 𝜃𝜃18,7 -0.52 0.24 0.17 0.80 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟑𝟑 0.39   0.92   𝑽𝑽𝑽𝑽𝒕𝒕−𝟒𝟒 0.38   0.92   
%VAR 64% 22% 12% 2% %VAR 63% 22% 13% 2% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
𝑇𝑇15,10 0.54 0.19 -0.26 0.41 𝑇𝑇15,10 0.54 0.18 -0.25 0.41 
𝑃𝑃20,11 -0.13 0.92   -0.36 𝑃𝑃20,11 -0.13 0.92 -0.12 -0.36 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.54 0.19 -0.22 0.27 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.55 0.17 -0.22 0.27 
𝜃𝜃18,7 -0.53 0.25 0.15 0.80 𝜃𝜃18,7 -0.53 0.26 0.12 0.79 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟓𝟓 0.36 0.12 0.93   𝑽𝑽𝑽𝑽𝒕𝒕−𝟔𝟔 0.33 0.18 0.93   
%VAR 62% 22% 14% 2% %VAR 61% 22% 15% 2% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
𝑇𝑇15,10 0.55 0.17 -0.24 0.42 𝑇𝑇15,10 0.56 0.16 -0.23 0.42 
𝑃𝑃20,11 -0.13 0.91 -0.19 -0.36 𝑃𝑃20,11 -0.13 0.88 -0.27 -0.36 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.55 0.16 -0.22 0.26 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.56 0.15 -0.22 0.26 
𝜃𝜃18,7 -0.54 0.26   0.79 𝜃𝜃18,7 -0.55 0.26   0.79 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟕𝟕 0.30 0.25 0.92   𝑽𝑽𝑽𝑽𝒕𝒕−𝟖𝟖 0.26 0.33 0.91   
%VAR 60% 22% 16% 2% %VAR 59% 23% 17% 2% 

  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 
𝑇𝑇15,10 0.56 0.15 -0.21 0.42 𝑇𝑇15,10 0.57 -0.15 -0.19 -0.42 
𝑃𝑃20,11 -0.13 0.86 -0.35 -0.36 𝑃𝑃20,11 -0.14 -0.82 -0.42 0.36 
𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.57 0.14 -0.21 0.26 𝑃𝑃𝑃𝑃𝑃𝑃15,12 0.57 -0.14 -0.19 -0.26 
𝜃𝜃18,7 -0.55 0.24   0.79 𝜃𝜃18,7 -0.56 -0.22   -0.79 
𝑽𝑽𝑽𝑽𝒕𝒕−𝟗𝟗 0.20 0.41 0.89   𝑽𝑽𝑽𝑽𝒕𝒕−𝟏𝟏𝟏𝟏 0.14 -0.48 0.86   
%VAR 58% 23% 17% 2% %VAR 57% 23% 18% 2% 
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Figure 3.1. A: Climatic divisions for the state of Georgia defined by Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml). B& C: Average 

weekly climate and mosquito abundance data over the period 2002 to 2009 for the central north. 

GA.  
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Figure 3.2. An example of feed-forward artificial neural network (ANN) structure with three 

vectors as inputs, 1 hidden layer with 4 neurons and two output vectors. 
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Figure 3.3. Cross correlation maps (CCMs) of weekly Culex mosquito abundance and Vector 

Index (VI) vs climate variables. 
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Figure 3.4. Graphs of climate variables versus each PC at weekly scale for Culex mosquito data. 

(P=Precipitation, T=Temperature, 𝜃𝜃= Surface moisture.) 
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Figure 3.5. Predicted weekly female Culex mosquito abundance by fitted Poisson model versus 

climate variables. Highlighted regions correspond to high mosquito abundances.  
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Figure 3.6. Comparison of predicted weekly Culex mosquito abundance by ANN and regression 

models vs observed data for the whole period (training + testing). 

 

 
Figure 3.7. Autocorrelation function graphs of weekly Culex mosquito abundance and Vector 

Index 

 

ANN Reg ANN Reg
R 2 0.42 0.37 0.54 0.47

E Nash 0.42 0.36 0.54 0.43
R BIAS -5% 0% 6% 11%

TestingTraining
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Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−2 

  
Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−3 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−4 

  

Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−5 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−6 

  

Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−7 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−8 
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ANN Reg ANN Reg
R 2 0.40 0.35 0.68 0.57

E Nash 0.40 0.34 0.67 0.48
R BIAS -5% 0% 13% 24%

TestingTraining

ANN Reg ANN Reg
R 2 0.40 0.35 0.61 0.58

E Nash 0.40 0.34 0.61 0.56
R BIAS -1% 0% 4% 14%

Training Testing
ANN Reg ANN Reg

R 2 0.40 0.35 0.60 0.56
E Nash 0.40 0.34 0.60 0.54
R BIAS -3% 0% 5% 14%

Training Testing

ANN Reg ANN Reg
R 2 0.40 0.35 0.60 0.56

E Nash 0.39 0.33 0.60 0.53
R BIAS 3% 0% 13% 15%

Training Testing
ANN Reg ANN Reg

R 2 0.43 0.35 0.60 0.56
E Nash 0.43 0.34 0.59 0.52
R BIAS 3% 0% 13% 16%

Training Testing

ANN Reg ANN Reg
R 2 0.40 0.35 0.59 0.55

E Nash 0.40 0.34 0.58 0.51
R BIAS 0% 0% 6% 17%

Training Testing

ANN Reg ANN Reg
R 2 0.42 0.35 0.60 0.56

E Nash 0.41 0.33 0.59 0.53
R BIAS 8% 0% 15% 15%

Training Testing

ANN Reg ANN Reg
R 2 0.49 0.47 0.68 0.32

E Nash 0.49 0.46 0.68 -1.13
R BIAS -4% 0% 2% 33%

Training Testing
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Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−9 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−10 

 

 

  
Figure 3.8. Time series of predicted weekly Culex mosquito abundance by ANN and regression 

models vs observed data using different antecedent values of mosquito abundance and lagged 

climate data as predictors for training and testing periods.  

 

(a) Training period (b) Testing period 

 

Figure 3.9. ANN and regression model performances built using lagged climate data and 

antecedent weekly Culex mosquito for (a) training period, and (b) testing period. 
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Figure 3.10. Graphs of climate variables versus each PC at weekly scale for Vector Index data.  
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Figure 3.11. Predicted weekly Vector Index by fitted Poisson model versus climate variables. 

Highlighted region corresponds to high mosquito abundance.  
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Figure 3.12. Comparison of predicted weekly Vector Index by ANN and regression models vs 

observed data for the whole period (training + testing). 

 

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−1 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−2 

  

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−3 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−4 
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ANN Reg ANN Reg
R 2 0.32 0.26 0.55 0.60

E Nash 0.31 0.24 0.54 0.56
R BIAS 22% 0% 1% -18%

Training Testing

ANN Reg ANN Reg
R 2 0.44 0.36 0.70 0.66

E Nash 0.43 0.35 0.69 0.66
R BIAS 2% 0% 16% 1%

Training Testing
ANN Reg ANN Reg

R 2 0.35 0.17 0.69 0.77
E Nash 0.35 0.01 0.66 0.68
R BIAS -3% 0% 42% 52%

Training Testing

ANN Reg ANN Reg
R 2 0.28 0.15 0.63 0.53

E Nash 0.27 0.09 0.57 0.22
R BIAS 7% 0% -17% 8%

Training Testing
ANN Reg ANN Reg

R 2 0.34 0.27 0.63 0.61
E Nash 0.33 0.26 0.61 0.56
R BIAS 20% 0% 1% -24%

Training Testing
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Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−5 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−6 

  

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−7 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−8 

  
Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−9 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−10 

  

Figure 3.13. Time series of predicted weekly Vector Index by ANN and regression models vs 

observed data using different antecedent values of Vector Index and lagged climate data as 

predictors for training and testing periods.  

 

 

ANN Reg ANN Reg
R 2 0.34 0.26 0.55 0.57

E Nash 0.33 0.25 0.53 0.55
R BIAS 16% 0% 0% -18%

Training Testing
ANN Reg ANN Reg

R 2 0.35 0.28 0.56 0.61
E Nash 0.34 0.27 0.54 0.58
R BIAS 26% 0% 12% -18%

Training Testing

ANN Reg ANN Reg
R 2 0.35 0.29 0.59 0.61

E Nash 0.35 0.28 0.57 0.59
R BIAS 8% 0% -5% -16%

Training Testing
ANN Reg ANN Reg

R 2 0.37 0.29 0.59 0.60
E Nash 0.35 0.28 0.59 0.58
R BIAS 17% 0% -1% -15%

Training Testing

ANN Reg ANN Reg
R 2 0.35 0.29 0.58 0.61

E Nash 0.35 0.28 0.56 0.59
R BIAS 22% 0% 4% -15%

Training Testing
ANN Reg ANN Reg

R 2 0.36 0.29 0.56 0.60
E Nash 0.36 0.28 0.54 0.58
R BIAS 16% 0% -2% -11%

Training Testing

108 

 



 (a) Training period (b) Testing period 

 

Figure 3.14. ANN and regression model performances built using lagged climate data and 

antecedent weekly Vector Index for (a) training period, and (b) testing period. 
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Figure 3.15. CCMs of four weeks moving average Vector Index and Culex mosquito abundance 

vs climate variables 
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Figure 3.16. Graphs of climate variables versus each PC at four weeks moving average scale for 

Culex mosquito data. 
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Figure 3.17. Predicted four weeks moving average female Culex mosquito abundance by fitted 

Poisson model versus climate variables. Highlighted regions correspond to high mosquito 

abundance.  
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Figure 3.18. Comparison of predicted four weeks moving average Culex mosquito abundance by 

ANN and regression models vs observed data for the whole period (training + testing). 

 

Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−2 

  
Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑡𝑡−3 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−4 

 
 

  

ANN Reg ANN Reg
R 2 0.49 0.41 0.63 0.56

E Nash 0.49 0.40 0.62 0.52
R BIAS -2% 0% 9% 18%

Training Testing

ANN Reg ANN Reg
R 2 0.72 0.67 0.90 0.77

E Nash 0.72 0.65 0.89 0.74
R BIAS 1% 0% 11% 10%

Training Testing
ANN Reg ANN Reg

R 2 0.57 0.51 0.81 0.73
E Nash 0.57 0.50 0.81 0.70
R BIAS -4% 0% 8% 15%

Training Testing

ANN Reg ANN Reg
R 2 0.49 0.43 0.71 0.65

E Nash 0.49 0.42 0.69 0.61
R BIAS 1% 0% 19% 18%

Training Testing
ANN Reg ANN Reg

R 2 0.51 0.41 0.67 0.56
E Nash 0.51 0.40 0.66 0.52
R BIAS -3% 0% 11% 18%

Training Testing
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Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−5 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−6 

  

Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−7 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−8 

  
Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−9 Input: Lagged climate data + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−10 

  

Figure 3.19. Time series of predicted four weeks moving average Culex mosquito abundance by 

ANN and regression models vs observed data using different antecedent values of mosquito 

abundance and lagged climate data as predictors for training and testing periods.   

 

 

 

ANN Reg ANN Reg
R 2 0.44 0.40 0.71 0.63

E Nash 0.44 0.39 0.70 0.60
R BIAS 1% 0% 8% 14%

Training Testing
ANN Reg ANN Reg

R 2 0.47 0.40 0.70 0.64
E Nash 0.46 0.39 0.70 0.61
R BIAS -8% 0% -1% 14%

Training Testing

ANN Reg ANN Reg
R 2 0.47 0.40 0.69 0.65

E Nash 0.47 0.39 0.68 0.63
R BIAS 3% 0% 15% 14%

Training Testing
ANN Reg ANN Reg

R 2 0.48 0.40 0.69 0.65
E Nash 0.48 0.39 0.69 0.62
R BIAS 2% 0% 13% 14%

Training Testing

ANN Reg ANN Reg
R 2 0.48 0.40 0.70 0.64

E Nash 0.47 0.39 0.70 0.61
R BIAS -4% 0% 3% 14%

Training Testing

ANN Reg ANN Reg
R 2 0.49 0.40 0.68 0.63

E Nash 0.49 0.39 0.68 0.60
R BIAS 0% 0% 7% 14%

Training Testing
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(a) Training period (b) Testing period 

  
Figure 3.20. ANN and regression model performances built using interval lagged climate data 

and antecedent four weeks moving average Culex mosquito abundance for (a) training period, 

and (b) testing period.  

 

 

 
Figure 3.21. Graphs of climate variables versus each PC at four weeks moving average scale for 

Vector Index data. 

 

𝑷𝑷
𝟐𝟐𝟐𝟐

,𝟏𝟏
𝟏𝟏,

 c
m

 

𝜽𝜽 𝟏𝟏
𝟏𝟏,
𝟕𝟕,

 c
m

 

𝑻𝑻 𝟏𝟏
𝟏𝟏,
𝟏𝟏𝟏𝟏

, C
 

𝜽𝜽 𝟏𝟏
𝟏𝟏,
𝟕𝟕,

 c
m

 

115 

 



  a 

 

b 
 

c          d                 e 

 
 

Figure 3.22. Predicted four weeks moving average Vector Index by fitted Poisson model versus 

climate variables. Highlighted regions correspond to high mosquito abundance.  
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Figure 3.23. Comparison of predicted four weeks moving average Vector Index by ANN and 

regression models vs observed data. 

 

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−1 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−2 

  

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−3 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−4 

  

  

ANN Reg ANN Reg
R 2 0.55 0.48 0.73 0.72

E Nash 0.54 0.47 0.72 0.69
R BIAS 13% 0% -7% -19%

Training Testing

ANN Reg ANN Reg
R 2 0.85 0.77 0.94 0.83

E Nash 0.84 0.75 0.93 0.41
R BIAS 0% 0% 10% 30%

Training Testing
ANN Reg ANN Reg

R 2 0.60 0.65 0.91 0.81
E Nash 0.60 0.64 0.89 0.69
R BIAS -14% 0% -8% 20%

Training Testing

ANN Reg ANN Reg
R 2 0.60 0.57 0.72 0.68

E Nash 0.59 0.56 0.70 0.66
R BIAS 10% 0% 14% 8%

Training Testing

ANN Reg ANN Reg
R 2 0.52 0.51 0.66 0.59

E Nash 0.51 0.50 0.66 0.58
R BIAS -4% 0% -1% 3%

Training Testing
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Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−5 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−6 

  

Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−7 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−8 

  
Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−9 Input: Lagged climate data + 𝑉𝑉𝑉𝑉𝑡𝑡−10 

  

Figure 3.24. Time series of predicted four weeks moving average Vector Index by ANN and 

regression models vs observed data using different antecedent values of mosquito abundance and 

lagged climate data as predictors for training and testing periods.   

 

 

 

ANN Reg ANN Reg
R 2 0.54 0.49 0.69 0.65

E Nash 0.53 0.48 0.67 0.63
R BIAS 14% 0% 16% 4%

Training Testing
ANN Reg ANN Reg

R 2 0.56 0.51 0.69 0.67
E Nash 0.56 0.51 0.69 0.65
R BIAS 6% 0% 10% 6%

Training Testing

ANN Reg ANN Reg
R 2 0.62 0.57 0.71 0.70

E Nash 0.62 0.57 0.68 0.66
R BIAS 5% 0% 17% 10%

Training Testing
ANN Reg ANN Reg

R 2 0.63 0.61 0.70 0.73
E Nash 0.63 0.61 0.69 0.70
R BIAS 1% 0% 9% 9%

Training Testing

ANN Reg ANN Reg
R 2 0.61 0.61 0.74 0.73

E Nash 0.61 0.61 0.72 0.71
R BIAS 6% 0% 0% -7%

Training Testing

ANN Reg ANN Reg
R 2 0.62 0.58 0.74 0.77

E Nash 0.62 0.58 0.74 0.77
R BIAS 5% 0% 14% 7%

Training Testing
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(a) Training period (b) Testing period 

  
Figure 3.25. ANN and regression model performances built using interval lagged climate data 

and antecedent four weeks moving average Vector Index for (a) training period, and (b) testing 

period.  
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Chapter 4. Linkage between Land use/cover and water quality associated with Culex 

quinquefasciatus population in Atlanta, Georgia. U.S.A. 

 

 

Abstract 

Urban/suburban land use can enhance environmental conditions for the transmission of West 

Nile Virus. Forest to urban transition and consequently higher nutrient loads, could potentially 

increase the WNV risk. In the Atlanta area, high West Nile infection in humans, mosquitoes and 

birds reported in 2012 made this city a hotspot of WNV risk. Urbanization and shift from forest to 

urban in the region have increased nutrient loading into streams. Result of the mesocosm study in 

chapter 2 showed that depending on the type of nutrient, pre-adult mosquito abundance increases 

in waters with high nutrient levels. Around Atlanta, there are mosquito trap sites with high number 

of WNV positive pools that have no water quality data available. To examine the relationship 

between LULC and various water quality parameters and to predict water quality in unmonitored 

watersheds in the Atlanta area, an ANN-based model was applied. Streamflow and water quality 

data from neighboring U.S. Geological Survey (USGS) stations in the Atlanta area with leave-one-

site-out jackknifing technique were used to build predictive models for PO4, NH4 and NO3 

loadings. ANN models were also developed for predicting streamflows during warm and cool 

seasons. First, flow was simulated using a quasi‐distributed watershed model, Soil and water 

assessment tool (SWAT) and then the SWAT simulated flow was used as an input to ANN. NO3, 
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NH4 and PO4 predictive models with best performance had ENASH values of 0.99, 0.89, and 0.66 

respectively and RBIAS values of 8%, -6% and -7% respectively. No general trend was observed 

between percent imperviousness or percent forest cover or watershed size and the model 

performances. In addition, 62% of runs for predicting flow during cool season with ENASH values of 

0.82 to 0.50 and 83% of runs for predicting flow during warm season with ENASH values of 0.79 to 

0.56 had “good” to “very good” performance ratings. Coupling lumped models and semi-

distributed watershed models helped to improve both ANN and the common practice of distributed 

model use. The developed models for predictions of water quality and streamflow in ungauged 

watersheds could have important implications for the control of West Nile Virus spread by Culex 

mosquito species. The findings of this study can help reduce the costs and efforts required for 

effective mosquito vector control by focusing on areas with lower water quality conditions.  

 

Keywords: Land use/cover (LULC), water quality, West Nile Virus, unmonitored watersheds. 

 

Introduction 

Culex quinquefasciatus, the southern house mosquito, is a cosmopolitan mosquito with 

worldwide distribution (Uttah et al., 2013) especially in the Southern United States and in urban 

area. It is a common urban mosquito (Barbosa and Regis, 2011) and also the major vector of West 

Nile Virus (WNV) which was detected in the United Stated in 1999. This species usually breeds 

in rich and polluted surface waters or artificial containers (Weinstein et al., 1997). Environmental 
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disturbances such as urbanization and deforestation play a key role in the emergence of many 

infectious diseases (Patz et al. 2004; Saleeza et al. 2011) through changing hydrological processes 

and water balance of river basins. Anthropogenic activities increase the number of artificial water 

collection reservoirs which are common aquatic habitats for Culex quinquefasciatus (Jacob et al. 

2006, Gardner et al. 2013). Small, flooded depressions in the soil, tire tracks and shallow ditches 

are also suitable habitats for Culex quinquefasciatus (Jacob et al. 2006).  

The prevalence and transmission of vector-borne pathogens are determined by the distribution 

and abundance of the primary vector (Reiter and LaPointe, 2007). To describe the spatial 

epidemiology of Culex quinquefasciatus, studying the spatial patterns of land cover and its impacts 

on hydrological factors are necessary. These parameters affect WNV risk because of their 

influences on mosquito habitat suitability, avian host communities and human exposure to infected 

mosquitoes (Chuang et al. 2012). Selection of mosquito breeding sites is the result of the 

recognition of physical and chemical key factors. This site selection is influenced by the presence 

of chemical substances of a wide range of origins (Bentley & Day 1989). Land use/ cover (LULC) 

changes and urbanization change concentrations of many water quality constituents due to altered 

sediment transport rate, chemical loads, and watershed hydrology. Urban/suburban land use can 

enhance environmental conditions for enzootic and bridge transmission of WNV to humans. Risk 

of human WNV cases is significantly associated with measures of urbanization and with 

percentage of forested or urban land (Brown et al., 2008). Agricultural lands and forest 

fragmentation significantly increase the probability of Culex quinquefasciatus mosquito capture 
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in mixed residential-agricultural community in Hawaii (Reiter and LaPointe, 2007). Forest habitat 

functions are source habitat for container breeding mosquito-predator communities. Connectivity 

of surface water in forest habitat affect the predator colonization rates (Weterings et al. 2014).  

To assess the prevalence of vector-borne diseases within an area and to implement control 

measures, understanding the spatial and temporal dynamics of mosquito communities is vital 

(Buckner et al. 2010). Predicting insect abundance across a landscape is difficult (Liebhold et al. 

1993, Ribeiro et al. 1996, Kitron 1998, Nansen et al. 2003); however, it can increase the efficiency 

and efficacy of management. Landscape characteristics for spatial prediction can be gained from 

existing GIS data and implemented to create target zones for management. This provides a 

mechanism to increase the focus of management efforts that are frequently limited by time and 

money. In Georgia and especially in the Atlanta metropolitan area, high West Nile infection in 

humans, mosquitoes and birds in 2012 reported by the Georgia Department of Public Health made 

Atlanta a hotspot of WNV risk. Urbanization and shifting from forest to urban in this area have 

increased nutrient loading into streams. As nutrients are limiting resources for bacteria and 

mosquitoes feed on bacteria, stream pollution is a major determinant of the abundance of mosquito 

vectors (Chaves et al. 2010; Calhoun et al. 2007). In this region, there are mosquito trap sites with 

high number of WNV positive pools that have no water quality data available. Most studies 

focused on trap sites near waste water treatment facilities and Combined Sewer Overflows (CSOs)-

affected streams (Calhoun et al, 2007; Chaves et al. 2010; Lund et al. 2014). Nevertheless, CSOs 

are not the only Culex quinquefasciatus habitats and their development rate depends on the type 
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and amount of nutrients in a habitat. Our previous lab experiments indicated that emergence pattern 

of Culex mosquitoes are strongly related to certain nutrients such as NO3, NH4, and PO4 and WNV 

risk remains even in the presence of larval habitats with low to moderate nutrient levels which are 

more common in the landscape than the levels characteristic of CSOs (Noori et al. 2015).  

To predict water quality through the landscape in the Atlanta area under the impacts of 

different LULC types, modeling approaches are required. Identification and quantification of 

impacts of LULC changes on the hydrologic processes and water yield of a watershed and 

developing relationships between LULC and water quality parameters has been an area of interest 

to hydrologists in recent years (Paul and Meyer 2001; Kalin et al. 2010; Walsh et al. 2005, Tu 

2011; Isik et al. 2012; Chadwick et. al.; 2012). Various statistical and conceptual models have been 

developed to help ecologists, urban planners, sociologists, administrators, and policy makers better 

understand the complexity of land use change patterns and evaluate the impacts of land use change 

on the environment, the latter of which requires large amount of data. Statistical techniques 

including regression models are overly simplistic and are constrained to a functional form between 

variables prior the analysis. On the other hand, watershed models require a lot of input data and 

model parameters that are often hard to predict (Palani et. al., 2008). Often, the data available to 

develop and apply predictive models are insufficient, even for small research catchments, which 

leads to the need for development of simplified models (Amiri et al. 2012).  

Multivariate nature of water quality data, and a complicated nonlinear relation among the 

variables, make the statistical and watershed models less reliable (Chenini and Khemiri, 2009; 
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Nagy et. al., 2011). Due to the complexity of process of relating water quality to LULC changes 

using either deterministic or stochastic models, an artificial neural network (ANN) model has been 

applied in many studies (Ha et. al, 2003; Sahoo et. al., 2006; Singh et. al., 2009; Kalin et. al., 2010; 

Palani et. al., 2011; Gazzaz et. al., 2012; Isik et. al., 2012; Amiri et al. 2012). Such models have 

the ability to learn about the nonlinear relationships between the variables and to extract the 

relation between the inputs and outputs of a process without the need of a detailed understanding 

of its physical characteristics.  

Kalin et al. (2010) developed an ANN-based model to examine the relationship between 

LULC and various water quality parameters and to predict water quality in unmonitored 

watersheds with similar characteristics. To predict water quality as a function of LULC in 

ungauged sites close to the mosquito trap sites in the Atlanta area, GA, Kalin et al. (2010) 

methodology was extended in this study. Streamflow and water quality data from neighboring 

USGS stations in the Atlanta area, GA were used to build the model. Streamflow was one of the 

input data to the model and since no streamflow data was available, a quasi‐distributed watershed 

model, Soil and water assessment tool (SWAT), was applied to simulate streamflow. SWAT has 

been used widely for predicting streamflow under varying LULC and climate data (Dixon and 

Earls 2012; Shi et al. 2013; Fan and Shibata 2015; Glavan et al. 2015; Huang et al. 2015; 

Krysanova and Srinivasan 2015). However, since SWAT calibration is a complicated process and 

also time consuming, a separate ANN model was developed for predicting streamflow by using 

the SWAT simulated flow as an input to ANN. Coupling lumped and watershed models can help 
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overcome the limitations of each model and result in a stronger predictive model for streamflow. 

In this study, a hybrid model based on SWAT and ANN was developed and streamflow was first 

simulated by SWAT and the SWAT simulated flow was used as an input to ANN. This method 

reduces the time needed to calibrate and validate SWAT and also time needed to select the optimal 

input layer to ANN. It is hypothesized that the coupling SWAT and ANN improve the streamflow 

prediction accuracy and also the developed models for predicting the water quality constituents 

work better in urban watersheds. 

 

Methodology 

  Study area and data  

As WNV is endemic in Atlanta and mosquito and human cases have been reported 

continuously by the Georgia Department of Health since 2001, this area was selected as our case 

study. US Geological Survey (USGS) monitoring stations in and around the city of Atlanta, that 

have available water quality and instantaneous and daily streamflow data for the period 2001-2011 

were considered in this study. Figure 4.1 shows the locations of selected USGS stations. Watershed 

areas vary from 3 to 552 km2 and are located within the Fulton, DeKalb and Cobb counties in the 

state of Georgia. The study area is within the Southeastern Piedmont physiographic province of 

the USA. The city of Atlanta is one of the fastest growing metropolitan areas in the United States. 

The population of the metro area has more than tripled since the middle of the 20th century, from 

the 1 million residents in 1950 to over 3 million by 2014, with no slowdown in sight (USGS, 2014). 
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The rapid development with a highly diverse LULC in this region makes it necessary to study its 

impact on hydrologic processes (Rose and Peters, 2001). Elevation in the study area ranges from 

about 157 to 513 meters above sea level. The dominant hydrologic soil group (HSG) is B which 

has moderate infiltration rates with silt loam to loam soil textures (Figure 4.2). The climate is warm 

and humid with mean annual temperature of ~16.5 °C and mean annual precipitation of ~120 cm. 

Dominant LULC types are impervious, evergreen forest, deciduous forest, mixed forest, pasture 

and urban grass, based on National Land Cover Database (NLCD, http://www.mrlc.gov/), in 2006. 

Summary of different LULC classes of the watersheds draining to the USGS stations shown in 

Figure 4.1 are given in Table 4.1. Percent imperviousness is within the range of 13%-52% and 

percent forest cover varies between 2% to 33%.  

 

  Water quality prediction 

ANN is a black box type lumped model that has the ability to identify a relationship from 

given patterns which makes it possible to solve nonlinear models. ANNs can be categorized based 

on the direction of information flow and processing. In a feed-forward network, the connections 

between nodes are from an input layer, through one or more hidden layers, to an output layer 

(Dawson and Wilby, 2001). The most common method used to find the number of hidden layers 

and nodes is a trial-and-error approach (Kalin et al., 2010). In this study, the number of hidden 

neurons changed from 3 to 10, and number of hidden layer changed from 1 to 2. MATLAB version 

7.10.0 (2010) was used for ANN model development, training and testing.  
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As the rates of most chemical reactions in natural waters increase with temperature (Chapra, 

1997), a simplified temepratrue-dependant expression of the Arrhenius equation is used for 

observed values of water temperature as an input to ANN.  

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜃𝜃𝑇𝑇𝑤𝑤−20 

𝑇𝑇𝑤𝑤 is water temperature (°C) and 𝜃𝜃 is a dimensionless parameter which was assumed to be 

1.05 in this study (Kalin et al., 2010). 𝜃𝜃𝑇𝑇𝑤𝑤 is the estimated Arrhenius coefficient (values above 

unity indicate a positive relation between the nutrient loss rate and temperature; values below unity 

indicate a negative relation) (Boyer et al., 2006). Water temperature was obtained from USGS 

stations or computed from average daily air temperature (Neitsch et al., 2005).  

𝑇𝑇𝑤𝑤 = 5.0 + 0.75 𝑇𝑇�𝑎𝑎𝑎𝑎 

𝑇𝑇�𝑎𝑎𝑎𝑎, average daily air temperature (°C), was obtained from National Climatic Data Center 

(NCDC) stations in the city of Atlanta (Figure 4.1). 

Nutrient loads per unit area (yield) (kg ha-1 d-1) were calculated and used in the ANN network 

as outputs. Natural logarithms of water quality parameters were used in the network to avoid zero 

outputs (Kalin et al. 2010). All data were normalized within the range of 0.1 to 0.9 before training 

the network using the equation below: 

𝑧𝑧𝑖𝑖 = 0.1 + 0.8
(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) 

where 𝑧𝑧𝑖𝑖 is the normalized value, 𝑥𝑥𝑖𝑖 is the log-transformed observed data point, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum values among all the data points. Multiple ANN runs were 
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conducted for each nutrient using leave-one-site-out jackknifing technique (Sefick et al. 2015). For 

each run, out of n stations, one station was excluded for testing purposes and the model was trained 

to the remaining (n-1) stations. Model performances were assessed with the Nash–Sutcliffe 

efficiency (ENASH) (Nash and Sutcliffe, 1970), and bias ratio (RBIAS) (Salas et al., 2000). Moriasi et 

al. (2007) proposed some guidelines for the evaluation of model simulation related to streamflow, 

sediment and nutrients for a monthly time step. Considering that our time scale is smaller (daily), 

the adjusted ratings in evaluating the ANN model performance developed by Kalin et al. (2010) 

were adopted in this study: 

Very good: ENASH ≥ 0.70; |𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|≤ 0.25 

Good: 0.50 ≤ ENASH < 0.70; 0.25 < |𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵| ≤ 0.50 

Satisfactory: 0.30 ≤ ENASH < 0.50; 0.50 < |𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵| ≤ 0.70 

Unsatisfactory: ENASH < 0.30; |𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵| > 0.70 

 

  Streamflow prediction 

SWAT is a quasi‐distributed watershed model simulating the movement of water, sediment, 

nutrient, crop growth, nutrient cycling, etc. in a watershed. It is a conceptual hydrologic model, 

operating at daily and sub-daily steps (Arnold et al. 1998). SWAT has widely been used for 

assessing water resources and nonpoint source pollution problems. Input information for each sub-

watershed includes weather, soil properties, topography, and vegetation. The sub-watersheds are 

divided to hydrologic response units or HRUs which are lumped land areas with unique land use, 

soil type and slope combinations.  
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SWAT considers watershed hydrology in two parts. The first part is composed of the 

watershed land areas that controls the water transported to the channels together with sediment, 

nutrients and pesticide in each sub-watershed. The second part includes the movement of water 

through the stream network to the watershed outlet (Cibin et al., 2010). The climatic variables 

required by SWAT include precipitation, temperature, wind speed, solar radiation and relative 

humidity. These data can be input to the model as observed data or generated during the simulation. 

Three potential evapotranspiration (PET) methods have been incorporated into SWAT: Penman–

Monteith (Monteith 1965), Hargreaves (Hargreaves et al., 1985) and Priestley–Taylor (Priestley 

and Taylor 1972). Also, a data set of daily PET values can be supplied to the model if a different 

PET method is preferred. In this study, PET was calculated externally through the Hamon method 

(Hamon, 1961) and provided to the SWAT model as input. This method which has been shown to 

work well in the southeastern United States (Lu et al., 2005), calculates PET based on mean air 

temperature and hours of daylight for a given day. SWAT allows the user to specify a warm-up 

period during the simulation process to stabilize or calculate values that become initial values for 

the period of interest. In this study, one year was used as warm-up period. 

LULC data from 2006 NLCD, soil data from Soil Survey Geographic Database (SURRGO, 

http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm), daily air temperature data from 

National Climatic Data Center (NCDC, http://www.ncdc.noaa.gov/), stations in Atlanta area and 

daily precipitation data from North American Land Data Assimilation Systems (NLDAS, 

http://ldas.gsfc.nasa.gov/index.php) were used as inputs to the SWAT model. To consider the 
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seasonal changes in vegetation and evapotranspiration and to study their impact on flow 

individually, the SWAT simulated flow was separated into cool and warm seasons. Warm season 

was considered to be May through October and cool season was considered to be November 

through April. To improve streamflow predictions, an ANN model was coupled with SWAT. This 

is a loose coupling where SWAT-simulated baseflow and direct flow are used as inputs to the 

ANN models. Separate ANN models were developed for cool and warm seasons. Multiple runs 

were conducted for each model using leave-one-site-out jackknifing technique.  

 

Results  

  Water quality prediction 

Different combinations of data were examined as input to the ANN model to identify the 

optimal input layer. For all three water quality parameters, combination of LULC, streamflow and 

temperature generated better results than other combinations. 15, 13 and 25 stations containing 

sampled NO3, PO4 and NH4 data respectively, were used for prediction purposes. Data from all 

stations except one, were used for training the model and the one left was used for testing the 

developed model.  

 

    NO3 prediction 

Delineated watersheds of USGS stations that were used for predicting NO3 load had low 

percentage of pasture and urban grass, between 0 to 1%, therefore they were not included in the 
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input group. Most watersheds were highly urbanized with percent imperviousness of 18% to 51%. 

15 sets of run were conducted for NO3 prediction and each time one watershed was excluded for 

testing and 14 watersheds were considered for training the model. ENASH values are given in Figure 

4.3 for each run. Average ENASH, and absolute RBIAS values over all 15 runs were 0.89 and 7% 

respectively. Overall, the model performances were “very good”. Log scale scatterplots of 

simulated versus observed NO3 loadings for all runs are shown in Figure 4.4. Based on the scatter 

plots, the runs for the test watersheds #2336644, #2336517 and #2336240 had the best 

performances with ENASH values of 0.99, 0.99 and 0.98 and RBIAS values of 8%, -12% and -6% 

respectively. The area of these watersheds varied from 10 to 71 km2. In terms of LULC, they have 

21% to 45% Imperviousness and 4% to 25% forest cover. The instantaneous NO3 loading value 

ranged from 0 to 4.5 kg ha-1 d-1 among these three watersheds. To visualize the selected model 

performances, the log scaled load duration curve of observed versus simulated NO3 are given in 

Figure 4.5. Since these watersheds are mostly urbanized, the developed models work better in the 

developed watershed. Figure 4.6 shows no general trend between percent forest or imperviousness 

or size of the test watershed and relative ENASH values.  

 

    NH4 prediction 

25 USGS stations which had available NH4 data were used for developing the predictive 

model (Table 4.1). The watershed sizes varied from 3 to 552 km2 and with the percent 

imperviousness of 13% to 52%. Total forest cover for these watersheds ranged from 2% to 33%. 
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25 models were developed and the ENASH was estimated to measure the performance of each model 

(Figure 4.7). Averages of ENASH and absolute RBIAS values for the 25 runs were 0.62 and 14% 

respectively. The overall performance rating of models varied from “good” to “very good”. 

Considering the scatter plots of ANN generated versus observed NH4 loadings for each station 

(Figure 4.8), models  developed for testing USGS stations #2207185, #2207220, and #2207385 

with ENASH values of 0.89, 0.88, and 0.86, and RBIAS values of -6%, -5% and -8% respectively had 

the highest performance accuracy. The test watersheds relative to these models had 16% to 21% 

imperviousness and 24% to 30% forest cover. The area of these watersheds varied from 26 to 552 

km2. Also, NH4 loadings ranged from 0 to 0.48 kg ha-1 d-1. The log scaled load duration curves of 

observed versus simulated NH4 for the models with the best performance are given in Figure 4.9. 

There is no general trend between percent LULC types in a watershed and its developed predictive 

model accuracy. The model performances do not decrease or increase with changing the 

percentage development or forest cover in the test watersheds (Figure 4.10). However, in the model 

with the lowest performance accuracy, Station #2207400, 11% of the test watershed is covered by 

pasture. This indicates that the developed models do not predict NH4 loadings for pastoral 

watersheds with an acceptable level of accuracy.  

 

    PO4 prediction 

Out of 29 USGS stations, 13 stations with sampled unfiltered PO4 and measured streamflow 

data available for the period 2005-2011 were used to develop an ANN predictive model. The area 
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of these watersheds ranged from 3 to 420 km2 with the percent imperviousness of 13% to 52% and 

percent forest cover of 2% to 33%. All the stations are located in the Gwinnett County. 13 runs 

were conducted and the model performances are given in Figure 4.11. The performance ratings of 

10 out of 13 models varied from “satisfactory” to “good”. Average values of ENASH and absolute 

value of RBIAS among 13 models were 0.43 and 17% respectively. Considering these values and also 

looking at the scatter plots of observed versus ANN generated PO4 loadings (Figure 4.12), three 

models with best performances were those developed for stations #2208150, #2334578, and 

#2336030. The ENASH values of these three models were 0.66, 0.65 and 0.50 respectively and their 

RBIAS values were -7%, -23% and -0.17% respectively. The log scaled load duration curves of 

observed versus ANN generated PO4 of these three test watersheds are given in Figure 4.13. The 

area of these watersheds varied from 4 to 80 km2. In terms of LULC, they had 13% to 52% 

imperviousness and 2% to 26% forest cover. No trends were identified between percent 

imperviousness or forest cover or size of test watersheds and the relative model performance 

(Figure 4.14). Among 13 developed ANN models, the watershed with the highest percent forest 

cover had the lowest ENASH value and under prediction at -44%. Also watershed #2207400, with 

11% pasture cover, had a weak performance too. This indicates that the developed models work 

better for urbanized watersheds. 
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  Streamflow prediction 

In order to predict water quality in ungauged watersheds, streamflow data as an input was 

needed. Therefore, An ANN model was developed based on the neighboring watersheds delineated 

for USGS to predict streamflow in unmonitored watersheds. The streamflow was simulated using 

the SWAT model first and was used as an input to ANN. No calibration or sensitivity analysis was 

conducted for SWAT. SWAT simulated baseflow and directflow of 29 USGS stations were fed to 

the ANN model as inputs to predict the observed daily streamflow. Two sets of runs for warm and 

cool seasons were developed and in each set, 29 runs were conducted using one-site-out 

jackknifing technique. In each run, data of 28 sites were used for training the model and one station 

left out, was used for testing the developed model. Note that each run corresponds to a different 

ANN model where one of the 29 sites was tested. Out of the total 29 runs, two of them had ENASH 

values below zero during cool season simulations. Those two are not shown on the figures for 

clarity (Figure 4.15). Overall, 62% of runs for predicting flow during the cool season and 83% of 

runs for predicting flow during the warm season had “good” to “very good” performance ratings. 

The average ENASH and absolute RBIAS values during  the warm season runs were 0.59 and 14% 

respectively and during the cool season runs were 0.55 and 9% respectively. The top 10 runs with 

best prediction accuracy were selected for each season and the scatter plots of observed versus 

ANN generated daily streamflow of the related watersheds are given in Figure 4.16. For the warm 

season (Figure 4.16 (a)), there were two outliers that were removed from the scatter plot.  

135 

 



During the warm season, test watersheds of the top 10 models with the high performance had 

the percent imperviousness of 13% to 52% and percent forest cover of 2% to 33%. The area of 

these watersheds varied from 4 to 90 km2. During the cool season, the area of test watersheds of 

the top 10 models varied from 4 to 69 km2 with 13% to 52% imperviousness and 2% to 25% forest 

cover. Developed models for warm season performed better than those for cool seasons as 

predicted values are close to 1:1 line, except a few values which are underestimated (Figure 4.16). 

Since most of selected watersheds are urbanized, the ANN predictive models worked better for 

developed watersheds. In general, as the percent forest cover or the area of test watershed 

increased, the model performances gradually decreased for both warm and cool season predictions. 

Also, the test watershed with higher percent imperviousness had a better model performance for 

the cool season flow prediction. This indicates that the developed models work better in urbanized 

watersheds with the size of 200 km2 or less (Figure 4.17).  

 

Discussion 

This study provides further evidence that ANNs can predict water quality loadings in 

ungauged watersheds using data from the neighboring watersheds with similar characteristics. This 

approach has been previously demonstrated for west Georgia by Kalin et al. (2010) and Isik et al. 

(2012). In the present study, similar model was developed for water quality prediction in the 

Atlanta metropolitan area and also ANN was run several times for each nutrient using leave-one-

site-out jackknifing technique. The inputs to the water quality models were streamflow, water 
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temperature and LULC percentages. The main purpose was to predict NO3, NH4 and PO4 loadings 

for rivers passing by mosquito trap sites around the Atlanta area, and also to link the predicted 

water quality parameters to Culex quinquefasciatus abundance for the future work. The developed 

ANN models could predict NO3 and NH4 loadings with “good” to “very good” level of accuracy. 

The developed models for PO4 loadings under-predicted the peak observed values with the 

performance rate of “satisfactory” to “good”   which could be due to the flashy behavior of the 

watersheds and lack of flow measurement during high-flow periods. For missing instantaneous 

flow data, average daily streamflow from USGS discharge was used as input to ANN.  

In addition, ANN and SWAT were combined to predict streamflow using the SWAT 

simulated flow. By coupling ANN and SWAT a hybrid approach was introduced for predicting 

daily streamflow in unmonitored watersheds. Combining ANN and SWAT could enrich the 

modeling environment by excluding the calibration and sensitivity analysis to adjust the SWAT 

model parameters and by narrowing down the number of inputs to ANN. SWAT outflow was the 

only input to ANN and in each run a watershed was left out for testing the model. The information 

and knowledge obtained from each model, were coupled together and facilitated addressing the 

problem and predicting the streamflow. Since in this approach, SWAT was not calibrated, the 

proposed method also can help parameter transferability. Assume SWAT was calibrated and 

validated in the neighboring watersheds. To apply the calibrated model to an ungauged nearby 

watershed having similar characteristics, the developed model parameters need to be transferred 

to the target watershed (Wang et al. 2014). SWAT-ANN could be considered another 
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regionalization approach to predict flow in ungauged watersheds because it uses all the information 

from nearby watersheds and comes up with a universal model. The developed ANN models for 

predicting flow during warm and cool seasons had “good” to “very good” accuracy in most test 

watersheds. The developed models in this study work better in an urban watershed than a forested 

watershed, which would be helpful for linking streams water quality conditions near mosquito trap 

sites in the Atlanta area to the Culex mosquito population.  

Although artificial intelligence techniques usually provide appropriate efficiency despite data 

shortage in a watershed, the performance of these models is highly dependent upon utilizing 

patterns in their training, and if an event was beyond their training scope, the performance of the 

model would be extremely poor at predicting the required phenomenon (Jajarmizadeh et al. 2015). 

In this study, the SWAT model calibration was aided by incorporating ANN and combining ANN 

and SWAT resulted in a stronger and with higher accuracy predictive model for streamflow.  

 

Conclusions 

The developed models for predictions of water quality and streamflow in ungauged 

watersheds could have important implications for the control of West Nile Virus spread by Culex 

mosquito species. Since water quality sampling for a large area is time consuming and expensive, 

predictive models provide a revolutionary techniques to estimate water quality for the area of 

interest. However, how accurate and reliable the models are always the major discussion. Results 

of this study reveals that if water quality and LULC data are available from neighboring watersheds 
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with similar characteristic, a predictive model for unmonitored watersheds with an acceptable level 

of accuracy can be developed if streamflow data exist or can be estimated. In this study, we were 

able to generate daily streamflow by coupling SWAT and ANN models. This helps to predict 

continuous water quality data in the Atlanta area. However, wherever observed instantaneous 

streamflow data was missing, average daily flow for USGS stations were used, which can cause 

error in our prediction. Having more reliable streamflow data, and also providing a more accurate 

LULC map instead of NLCD, can improve the model performance. Also predicting nutrient 

concentrations instead of loadings could be the next step of this study.  

The findings of this study can help reduce the costs and efforts required for effective mosquito 

vector control by focusing on areas with lower water quality conditions. However, water quality 

is one of the environmental factors affecting mosquito development. A broader study needs to be 

conducted to combine the different risk factors and to investigate their impacts on transmission of 

WNV for future studies.  

 

References 

Amiri, B.J., Sudheer, K.P., Fohrer, N., 2012. Linkage between in-stream total phosphorus and land 

cover in Chugoku district, Japan: an ANN approach. J. Hydrol. Hydromech. 60 (1), 33–44.  

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. 1998. Large area hydrologic modeling 

and assessment: part I. Model development. JAWRA. 34 (1), 73–89.  

Barbosa, R.M.R., Regis, L.N. 2011. Monitoring temporal fluctuations of Culex quinquefasciatus 

using oviposition traps containing attractant and larvicide in an urban environment in 

Recife, Brazil. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(4): 451-455. 
139 

 



Boyer, E.W., Alexander, R.B., Patron, W.J., Li, Ch., Butterbach-Bahi, K., Donner, S.D., Skaggs, 

R.W., Del Grosso, S.J. 2006. Modeling denitrification in terrestrial and aquatic ecosystems 

at regional sales. Ecol. Appl. 16 (6), 2123-2142.  

Brown, H.E., Childs, J.E., Diuk-Wasser, M.A., Fish, D. 2008. Ecological factors associated with 

West Nile Virus transmission, northeastern United States. Emerg Infect Dis. Vol. 14, No. 

10. 1539-1545. 

Buckner, E.A., Blackmore, M.S., Golladay, S.W., Covich, A.P. 2010. Weather and landscape 

factors associated with adult mosquito abundance in southwestern Georgia, U.S.A. J 

Vector Ecol. 36(2): 269-278. 

Calhoun, L.M., Avery, M., Jones, L., Gunarto, K., King, R., Roberts, J., Burkot, T.R. 2007. 

Combined Sewage Overflows (CSO) Are Major Urban Breeding Sites for Culex 

quinquefasciatus in Atlanta, Georgia. Am. J. Trop. Med. Hyg. 77: 478–484. 

Chadwick, M.A., Thiele, J.E., Huryn, A.D., Benke, A.C., Dobberfuhl, D.R. 2012. Effects of 

urbanization on macroinvertebrates in tributaries of the St. Johns River, Florida, USA. 

Urban Ecosyst, Springer. 15:347-365.  

Chapra, S.C. 1997. Surface water quality modeling. McGraw-Hill, New York.  

Chaves, L.F., Keogh, C.L., Nguyen, A.M., Decker, G.M., Vazquez-Prokopec, G.M., Kitron, U.D. 

2010. Combined sewage overflow accelerates immature development and increases body 

size in the urban mosquito Culex quinquefasciatus. J Appl. Entomol. 135: 611–620. 

Chenini, I. and Khemiri, S. 2009. Evaluation of ground water quality using multiple linear 

regression and structural equation modeling. Int. J. Environ. Sci. Tech. 6 (3), 509-519. 

Chuang, T.W., Ionides, E.L., Knepper, R.G., Stanuszek, W.W., Walker, E.D., Wilson, M.L. 2012. 

Cross-Correlation Map analyses show weather variation influences on mosquito 

abundance patterns in Saginaw County, Michigan, 1989–2005. J Med Entomol, 49(4):851-

858. 

Cibin, R., Sudheer, K.P., Chaubey, I. 2010. Sensitivity and identifiability of stream flow generation 

parameters of the SWAT model. Hydrol. Process. 24(9): 1133–1148.  
140 

 



Dawson, C.W., and Wilby, R.L. 2001. Hydrologic modeling using artificial neural networks. Prog. 

Phys. Geog. 25 (1), 80-108.  

Dixon, B., and Earls, J. 2012. Effects of urbanization on streamflow using SWAT with real and 

simulated meteorological data. Applied Geography, 35, 174-190.  

Fan, M., and Shibata, H. 2015. Simulation of watershed hydrology and stream water quality under 

land use and climate change scenarios in Teshio River watershed, northern Japan. 

Ecological Indicators, 50: 79-89.  

Gardner, A.M., Anderson, T.K., Hamer, G.L., Johnson, D.E., Varela, K.E., Walker, E.D., Ruiz, 

M.O. 2013. Terrestrial vegetation and aquatic chemistry influence larval mosquito 

abundance in catch basins, Chicago, USA. Parasit Vectors. 6:1-11.  

Gazzaz, N.M., Yusoff, M.K., Aris, A.Z., Juahir, H., Ramli, N.F. 2012. Artificial neural network 

modeling of the water quality index for Kinta River (Malaysia) using water quality 

variables as predictors. Mar Pollut Bull. 64(11):2409-20. 

Glavan, M. Ceglar, A. Pintar, M. 2015. Assessing the impacts of climate change on water quantity 

and quality modelling in small Slovenian Mediterranean catchment lesson for policy and 

decision makers. Hydrol. Process. John Wiley & Sons, Ltd. 

Ha, H., Stenstrom, M.K. 2003. Identification of land use with water quality data in stormwater 

using a neural network. Water Res. 37, 4222-4230. 

Hamon, W.R. 1961. Estimating potential evapotranspiration. Journal of Hydraulics Division, 

Proceedings of the American Society of Civil Engineers. 871: 107–120 

Hargreaves, G. L, Hargreaves G. H., Riley, J.P. 1985. Agricultural benefits for Senegal River 

basin. J. Irrig. Drain. Eng, ASCE. 111(2): 113–124. 

Huang, J., van den Dool, H., Georgakakos, K.P., 1996. Analysis of model-calculated soil moisture 

over the United States (1931-93) and application to long-range temperature forecasts. J. Clim. 

9(6): 1350-1362. 

141 

 

http://www.ncbi.nlm.nih.gov/pubmed/22925610


Isik, S., Kalin, L., Schoonover, J., Srivastava, P., Lockaby, B.G. 2012. Modeling Effects of 

Changing Land Use/Cover on Daily Streamflow: An Artificial Neural Network and Curve 

Number based Hybrid Approach. J. Hydrol. 485: 103-112.  

Jacob, B.G., Shililu, J. , Muturi, E.J., Mwangangi, J.M., Muriu, S.M., Funes, J., Githure, J., Regens, 

J.L., Novak, R.J. 2006. Spatially targeting Culex quinquefasciatus aquatic habitats on 

modified land cover for implementing an Integrated Vector Management (IVM) program 

in three villages within the Mwea Rice Scheme, Kenya. Int J Health Geogr. 5: 1-9.  

Jajarmizadeh, M., Lafdani, E.K., Harun, S., Ahmadi, A. 2015. Application of SVM and SWAT 

models for monthly streamflow prediction, a case study in south of Iran. KSCE Journal of 

Civil Engineering, 19(1):345-357.  

Kalin, L., Isik, S., Schoonover, J.E., Lockaby, B.G. 2010. Predicting Water Quality in 

Unmonitored Watersheds Using Artificial Neural Networks. JEQ. 39(4):1429-1440. 

Kitron, U. 1998. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial 

analysis. J. Med. Entomol. 35: 435-445.  

Krysanova, V. and Srinivasan, R. 2015. Assessment of climate and land use change impacts with 

SWAT. Reg Environ change, 15:431-434.  

Liebhold, A. M., R. E. Rossi, and W. P. Kemp. 1993. Geostatistics and geographic information 

systems in applied insect ecology. Annu. Rev. Entomol. 38: 303-327  

Lu, J., Sun, G., McNulty, S.G., Amatya, D.M., 2005. A comparison of six potential 

evapotranspiration methods for regional use in the Southeastern United States. J. Am. 

Water Resour. Assoc. JAWRA. 41 (3), 621-633. 

Lund, A., McMillan, J., Kelly, R., Jabbarzadeh, Sh., Mead, D.G., Burkot, Th.R., Kitron, U.D., 

Vazquez-Prokopec, G.M. 2014. Long term impacts of combined sewer overflow 

remediation on water quality and population dynamics of Culex quinquefasciatus, the main 

urban West Nile virus vector in Atlanta, GA. Environ. Res. 129: 20-26.  

142 

 



Monteith, J. L. 1965. Evaporation and the environment. In The State and Movement of Water in 

Living Organisms. 19th Symp Soc Exp Biol. Cambridge University Press. Cambridge, 

U.K. 205–234. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. 

Model evaluation guidelines for systematic quantification of accuracy in watershed 

simulations. Trans. ASABE. 50:885–900. 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., King, K.W. 2005. Soil and water 

assessment toll theoretical documentation. Version 2005. Temple, TX.  

Nagy, C., Lockaby, B.G., Kalin, L., Anderson, C. 2011. Effects of Urbanization on Stream 

Hydrology and Water Quality: The Florida gulf Coast, Hydrol. Process. 26:2019-2030. 

Nansen, C., Campbell, J. F., Phillips, T.W., Mullen, M.A. 2003. The impact of spatial structure on 

the accuracy of contour maps of small data sets. J. Econ. Entomol. 96:1617-1625.  

Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models: Part I. A 

discussion of principles. J. Hydrol. 10:282–290.  

Noori, N., Lockaby, G.B., Kalin, L. 2015. Larval development of Culex quinquefasciatus in water 

with low to moderate pollution levels. J. Vector Ecol. Vol. 40 (2).  

Patz, J.A., Daszak, P., Tabor, G.M., Aguirre, A.A., Pearl, M., Epstein, J., Wolfe, N.D., Kilpatrick, 

A.M., Foufopoulos, J., Molyneux, M., Bradley, D.J. 2004. Unhealthy landscape: policy 

recommendations on land use change and infectious disease emergence. Environ. Health 

Perspect. 112: 1092-2098.  

Palani, S., Liong, Sh-Y., Tkalich, P. 2008. An ANN application for water quality forecasting. Mar 

Pollut Bull, Elsevier. 56:1586-1597.  

Palani, S., Tkalich, P., Balasubramanian, R., Palanichamy, J. 2011. ANN application for prediction 

of atmospheric nitrogen deposition to aquatic ecosystems. Mar Pollut Bull, Elsevier. 62, 

1198–1206.  

Paul, M.J. and Meyer, J.L. 2001. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 32: 333-

365. 
143 

 



Priestley, C.H.B., Taylor, R. J. 1972. On the assessment of surface heat flux and evaporation using 

large-scale parameters. Mon. Wea. Rev. 100(2): 81–92. 

Reisen, WK., Milby, M.M., Meyer, R.P., Pfuntner, A.R., Spohele, J., Hazerlrigg, J.E., Webb, J.P. 

1991. Mark-release-recapture studies with Culex mosquitoes (Diptera: Culicidae) in 

Southern California. J Med Entomol. 28(3):357-71. 

Reisen, WK., Milby, M.M., Meyer, R.P. 1992. Population dynamics of adult Culex mosquitoes 

(Diptera Culicidae) along the Kern River, Kern County, California, in 1990. J Med 

Entomol. 29(3): 531-543.  

Reiter, M. and LaPointe, D.A. 2007. Landscape factors influencing the spatial distribution and 

abundance of Mosquito Vector Culex quinquefasciatus (Diptera: Culicidae) in a mixed 

residential–agricultural community in Hawai‘i. J. Med. Entomol. 44(5): 861-868. 

Ribeiro, J.M.C., Seulu, F., Abose, T., Kidane, G., Teklehaimanot, A. 1996. Temporal and spatial 

distribution of anopheline mosquitoes in an Ethiopian village: implications for malaria 

control strategies. Bull. W.H.O. 74: 299-305.  

Rose, S., Peters, N.E., 2001. Effects of urbanization on streamflow in the Atlanta area (Georgia, 

USA): a comparative hydrological approach. Hyrol Process, 15, 1441-1457.  

Sahoo, G.B., Ray, C., De Carlo, E.H. 2006. Use of neural network to predict flash flood and 

attendant water qualities of a mountainous stream on Oahu, Hawaii. J. Hydrol. 327, 525-

538.  

Salas, J.D., M. Markus, and A.S. Tokar. 2000. Streamflow forecasting based on artificial neural 

networks. p. 23–51. In R.S. Govindaraju and A.R. Rao (ed.) Artificial neural networks in 

hydrology. Kluwer Academic, Dordrecht, the Netherlands.  

Saleeza, S.N.R., Norma-Rashid, Y., Azirun, M.S. 2011. Mosquitoes larval breeding habitat in 

urban and suburban areas, Peninsular Malaysia. WASET. 58: 569-573.  

Sefick, S.A., Kalin, L., Kosnicki, E., Schneid, B.P., Jarrell, M.S., Anderson, Ch.J., Paller, M.H., 

Feminella, W., 2015. Emperical estimation of stream discharge using channel gemoerty in 

low-gradient, sand-bed streams of the Southeastern plains. JAWRA.  
144 

 

http://www.pubfacts.com/detail/1875362/Mark-release-recapture-studies-with-Culex-mosquitoes-Diptera-Culicidae-in-Southern-California
http://www.pubfacts.com/detail/1875362/Mark-release-recapture-studies-with-Culex-mosquitoes-Diptera-Culicidae-in-Southern-California


Shi, P., Ma, X., Hou, Y., Li, O., Zhang, Zh., Qu, S., Chen, Ch., Cai, T., Fang, X. 2013. Effects of 

Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, 

China. Water Resour Manage. 27:1263-1278.  

Singh, K.P., Basant, A., Malik, A., Jain, G. 2009. Artificial neural network modeling of the river 

water quality: A case study. Ecol. Model. 220:888–895. 

Tu, J. 2011. Spatial and temporal relationships between water quality and land use in northern 

Georgia, USA. J Integr. Environ. Sci. 8: 151-170. 

U.S. Geological Survey, 2014. The effects of urbanization on water quality: population growth.  

Uttah, E.,C., Wokem, G.N., Okonofua, Ch. 2013 .The Abundance and Biting Patterns of Culex 

uinquefasciatus Say (Culicidae) in the Coastal Region of Nigeria. Hindawi Publishing 

Corporation, ISRN Zoology. Volume 2013, Article ID 640691, pages: 1-7.  

Walsh, A.S., Glass, G.E., Lesser, C.R., Curriero, F.C. 2008. Predicting seasonal abundance of 

mosquitoes based on off-season meteorological conditions. Environ Ecol Stat. 15:279–291. 

Weinstein, P., Laird, M., Browne, G. 1997. Exotic and endemic mosquitoes in New Zealand as 

potential arbovirus vectors. Wellington, Ministry of Health.  

Weterings, R., Umponstira, Ch. Buckley, H.L. 2014. Container-breeding mosquitoes and 

predator community dynamics along an urban-forest gradient: The effects of habitat type 

and isolation. Basic Appl. Ecol. 15. 486-495.  

Wang, R., Kalin, L., Kuang, W., Tian, H. 2013. Individual and combined Effects of land use/cover 

and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrol 

Process. 28, 5530-5546. 

 

 

 

 

 

 
145 

 

http://www.usgs.gov/


Table 4.1. Watershed characteristics of selected USGS sites. 

        Number of Samples 
Station ID IM DF EF MF PA UG Area (km2) NO3 PO4 NH4 
2203603 46% 4% 5% 0% 0% 0% 6 70 - 21 
2203655 36% 7% 8% 1% 0% 0% 58 143 - 40 
2203700 34% 7% 4% 1% 2% 0% 27 110 - 19 
2205522 28% 5% 9% 0% 1% 1% 19 - 39 35 
2207120 23% 10% 10% 0% 1% 1% 420 - 48 95 
2207185 16% 12% 17% 0% 4% 0% 26 - 49 97 
2207220 21% 12% 12% 0% 2% 1% 552 - - 57 
2207385 16% 8% 17% 0% 6% 2% 45 - 54 101 
2207400 16% 6% 13% 1% 11% 4% 21 - 57 95 
2208150 18% 15% 11% 1% 6% 4% 80 - 46 102 
2217274 14% 20% 5% 0% 7% 4% 3 - 55 93 
2218565 17% 17% 6% 1% 2% 2% 15 - 49 92 
2334480 13% 24% 9% 0% 2% 3% 24 - 59 95 
2334578 13% 19% 6% 0% 4% 3% 13 - 58   
2334885 18% 21% 8% 1% 5% 1% 122 - 53 107 
2335350 37% 7% 5% 0% 1% 1% 23 - 55 99 
2335870 20% 8% 13% 1% 1% 0% 80 121 - 104 
2336030 52% 2% 0% 0% 0% 0% 4 - 57 94 
2336120 30% 6% 9% 0% 0% 0% 90 113 - 35 
2336240 24% 8% 9% 1% 0% 0% 71 112 - 33 
2336300 31% 6% 8% 1% 0% 0% 225 115 - 38 
2336313 51% 8% 2% 0% 0% 1% 7 93 - 93 
2336360 26% 8% 10% 1% 0% 0% 69 124 - 32 
2336410 22% 12% 12% 1% 0% 0% 98 116 - 31 
2336517 45% 2% 2% 0% 0% 0% 20 32 -   
2336526 34% 7% 6% 0% 1% 1% 35 100 - 26 
2336658 18% 11% 11% 1% 0% 0% 17 45 -   
2336728 18% 16% 16% 1% 0% 0% 88 88 - 24 
2336644 21% 7% 18% 0% 0% 1% 10 27 - - 

* IM= imperviousness, DF: Deciduous Forest, EF: Evergreen Forest, MF: Mixed Forest, PA: Pasture, UG, 
Urban Grass 
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Figure 4.1. Delineated watersheds for USGS stations in the Atlanta area. Black circles show the 

streamflow stations, blue triangles show climate stations.  

 

(a) Topographic map (b) LULC 2006 (c) Hydrologic soil group map 

   

 Figure 4.2. Topographic (in meter), LULC and soil maps of watersheds around Atlanta, GA. 
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Figure 4.3. ENASH values for each set of run conducted for NO3 prediction. 

 

 

Figure 4.4. Log scaled scatter plots of observed versus ANN generated NO3 loading (kg ha-1 d-1) 

for the test watersheds.  
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Figure 4.5. Log scaled load duration curve of observed versus ANN generated NO3 for 

watersheds with high performance accuracy.  

 

   

Figure 4.6. ENASH values of NO3 predictive models versus (a) percent imperviousness, (b) percent 

forest and (c) area of the test watersheds.  

 

 

149 

 



 

Figure 4.7. ENASH values for each set of run conducted for NH4 prediction. 

 

 

Figure 4.8. Log scaled scatter plots of observed versus ANN generated NH4 loading (kg ha-1 d-1) 

for test watersheds.  
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Figure 4.9. Log scaled load duration curve of observed versus ANN generated NH4 for 

watersheds with high performance accuracy.  

 

   

Figure 4.10. ENASH values of NH4 predictive models versus (a) percent imperviousness, (b) percent 

forest and (c) area of the test watersheds.  
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Figure 4.11. ENASH values for each set of run conducted for PO4 prediction. 

 

 

Figure 4.12. Log scaled scatter plots of observed versus ANN generated PO4 loading (kg ha-1 d-1) 

for test watersheds.  
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Figure 4.13. Log scaled load duration curve of observed versus ANN generated PO4 for 

watersheds with high performance accuracy.  

 

   

Figure 4.14. ENASH values of PO4 predictive models versus (a) percent imperviousness, (b) percent 

forest and (c) area of the test watersheds.  
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(a) Warm Season 

 
(b) Cool Season 

 
Figure 4.15. ENASH values for each set of run conducted during (a) warm and (b) cool seasons flow 

predictions. 
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(a) Warm Season (b) Cool Season 

  

Figure 4.16. Scatter plots of observed versus ANN generated daily streamflow for (a) warm 

season, (b) cool season.  
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(a) Warm Season 

   

(b) Cool Season 

   

Figure 4.17. ENASH values of streamflow predictive models for (a) warm season and (b) cool 

season versus percent imperviousness, percent forest and area of the test watersheds.  
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Chapter 5. Environmental predictors of Culex quinquefasciatus abundance associated with 

West Nile Virus 

 

 

Abstract 

West Nile Virus (WNV) is a mosquito-borne infectious disease of global public health 

concern. The occurrence of this virus is influenced by many risk factors such as climate variability, 

land use/cover (LULC) characteristics and hydrologic and water quality conditions. The combined 

role of these environmental factors on Culex quinquefasciatus abundance and potential WNV 

outbreak in Atlanta area, Georgia, U.S.A. were examined and discussed in this chapter. 

Considering findings from previous chapters and linking them together helped assess the virus risk 

in a broader view and investigate the combined impacts of those factors on mosquito population 

and the consequent WNV risk. Detailed assessment of environmental risk factors would help 

predict spatial patterns of human WNV risk in the Atlanta metropolitan area. It will also be 

effective for early warning of WNV risk outbreaks by directing surveillance activities and 

environmental monitoring and public health interventions.  

 

Keyword: West Nile Virus, mosquito population, Environmental factors, climate, water quality, 

land use, hydrology.  
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Introduction  

West Nile Virus (WNV) is the most widespread flavivirus in the world, distributed in Africa, 

Eurasia, and the Americas (Tran et al. 2014). This virus is transmitted between birds as the 

principal hosts via mosquito vectors. In the southeast U.S., over 96% of the West Nile Virus 

positive mosquito pools reported to the CDC from 1999 to 2010 have been obtained from Culex 

mosquitoes, among which 65% were from Culex quinquefasciatus (Andreadis, 2012). The state of 

Georgia, and especially the metro Atlanta area has been a hotspot of WNV incidence in 2012 with 

117 WNV human cases, 6 deaths and 125 WNV positive mosquito pools (among which over 81% 

were from Culexquinquefasciatus) reported by the Georgia Department of Public Health. Feeding 

behaviors of these mosquitoes can affect transmission, amplification and geographic distribution 

of this virus (Munoz et al. 2012). Biotic and abiotic conditions affect mosquito behaviors and 

consequently the risk of WNV epidemics (Paz et al. 2013). The occurrence of this virus is impacted 

by many risk factors such as the presence of susceptible avian hosts, infected birds, mosquito 

abundance that feed on birds and human or horses, and the interaction of the vector with the biotic 

and abiotic environment. The most important environmental factors influencing the maintenance 

of WNV are climate variability, land use/cover (LULC) characteristics, water quality conditions 

of mosquito breeding sites and socio-economic conditions. Understanding the ecology of the 

vectors, suitable habitats and preferential hosts is important for predicting the amplification of 

WNV infection (Bisanzio et al. 2011).  
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Climate is the main driver of the vector abundance carrying this virus (Roiz et al., 2014). 

Culex species display a seasonal behavior. Their activity reaches its minimal level in the winter, 

then rises in the spring to the peak levels of summer and continues until mid-fall (Strickman, 1988). 

Elevated temperatures accelerate the growth rates of vector populations, decrease the interval 

between blood meal and speed the development of viruses within the mosquito carriers (Epstein, 

2001; Patz et. al., 2008; Wang et. al., 2010). Rainfall and the surface moisture also prepare 

potential breeding habitats for female mosquitoes to lay their eggs (Shaman et al., 2002).  

Characteristics of LULC, forest to urban conversion and its impact on water quality also affect 

the virus incidence by preparing suitable conditions for mosquitoes to develop through the 

landscape. Urbanization and shifting from forest to urban cause increase in nutrient loading into 

the urban streams. As nutrients are limiting resources for bacteria and mosquito larvae feed on 

bacteria, stream pollution is a major determinant of the abundance of mosquito vectors (Chaves et 

al. 2010; Calhoun et al. 2007). The selection of mosquito breeding sites is the result of the 

recognition of key physical and chemical factors. Sites with higher nutrient concentrations provide 

greater microbial food resources and mitigate resource competition (Dowling et al. 2013).  

Spatial analysis of epidemiological data can help identify the geographic locations of 

populations at risk. Temporal analysis can also clarify inter-annual and seasonal variation of the 

vector abundance, and long-term predictions of shifts in mosquito abundance which can help 

identify high-risk periods for WNV. These analyzes can facilitate the development of hypotheses 
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about the epidemiological and ecological processes that drive these patterns (Rezaeian et al. 2007; 

Zeger et al. 2004; Wimberly et al. 2013). 

The mosquito population density is a function of all the above environmental determinants 

and the complex nature of each of the drivers makes the impacts of potential future changes 

difficult to quantify (Paz et al. 2013). The geographic and seasonal patterns of Culex mosquito 

density can shift toward a specific region or occur earlier in the transmission season (Wimberly et 

al. 2013). The impacts of spatially heterogeneous environmental and ecological factors on 

mosquito population dynamics are complex and understanding the inter-relationships between 

vectors, hosts, and their environment can provide valuable information for identifying conditions 

suitable for pathogen transmission (Bisanzio et al. 2011).  

In the previous chapters, a set of environmental conditions including the climate variability, 

LULC characteristics and water quality conditions favorable for Culex mosquito developments 

were identified and predictive models were developed for each factor separately. The main goal 

of this chapter is to discuss the significance of above environmental drivers of WNV, in a broader 

view and to investigate the combined impacts of those factors on mosquito population and the 

consequent WNV risk. This will lead to a better integration of environmental monitoring and to 

build a virus risk map based on the updated variations of abiotic factors.  
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Methodology 

WNV for the first time was detected in 2001 in Georgia and has caused human disease each 

year since it arrived in Georgia. Continuous mosquito and human cases reported to the Georgia 

Department of Health since 2001 followed by a recent outbreak in 2012, made the virus endemic 

in this state and particularly in Atlanta. In this study, for a better integration of environmental 

monitoring, the combined impacts of environmental factors on mosquito abundance in Atlanta 

area was discussed. Figure 5.1 shows a schematic of the methodology followed.  

 

   LULC and water quality and Culex quinquefasciatus Population 

To characterize the water quality conditions of streams around Atlanta and to link it to 

distribution of WNV transmission risk, mosquito trap sites that have been used at least 10 times in 

Fulton, DeKalb and Cobb counties and were located near a stream network with the distance of 1 

km or less were selected (Figure 5.2). 58 sites were selected in the Atlanta metropolitan area and 

1 km radius around each field site was considered based on the maximum distance traveled per 

day of Culex quinquefasciatus (Reisen et al. 1991, 1992). Watersheds were delineated for each 

trap site with a water body inside a 1 km radius using SWAT. To link the water quality conditions 

in streams near selected mosquito traps to the mosquito abundance, daily streamflow and nutrient 

loadings were predicted using the ANN models developed in chapter 4. Watersheds were 

delineated for each trap site using the Soil and Water Assessment Tools (SWAT) and streamflow 

was simulated. The simulated streamflows were divided into warm and cool seasons and were 
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used as inputs to ANN models. The predicted flow along with the percentage of different LULC 

types and water temperature were used as inputs to the ANN models for predicting PO4, NH4 and 

NO3 loadings. Average daily air temperature was obtained from National Climatic Data Center 

(NCDC) stations in the city of Atlanta (Figure 5.2) and temepratrue-dependant expression of the 

Arrhenius equation was used as an input to ANN (refer to chapter 4).  

The predicted water quality constituents were linked to the developed regression models in 

chapter 2 to estimate Culex quinquefasciatus population under water quality conditions in Atlanta 

area from 2002 to 2010.  

 

Results and discussion 

Watersheds delineated for the mosquito trap sites are shown in Figure 5.2 and the watersheds 

characteristics are also given in Table 5.1. Percent imperviousness ranged from 0% to 68% and 

percent forest cover ranged from 0% to 100%. Also the area of these watersheds varied from 0.01 

km2 to 325.25 km2. For daily flow during cool and warm seasons, the top 5 predictive models with 

best performance accuracy were chosen and to summarize the data, median value of monthly 

streamflow averaged through all 100 watersheds for the period 2002-2010 and their 95% upper 

and lower bounds were given in Figure 5.3. Among all the watersheds, the total daily predicted 

streamflow ranged from 0.005 to 139.4 m3/s.  

The predicted daily streamflow along with the percent LULC types and Teff were used as inputs 

to the developed ANN models to predict PO4, NO3 and NH4 loadings. The top three ANN models 
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with high performance accuracy were selected for each nutrient. Since the climate-mosquito data 

in the previous chapter was analyzed in four weeks moving average scale, the nutrient loadings 

were also estimated in the same scale and the log scaled values are given in Figure 5.4. The median 

and 95% upper and lower bounds of loading values for the period 2002-2010 along watersheds 

nearby 58 mosquito trap sites were calculated. The predicted loading values ranged from 0 to 2.28 

kg ha-1 d-1 for NO3, 0 to 1.22 kg ha-1 d-1 for NH4 and 0 to 0.16 kg ha-1 d-1 for PO4. There are high 

fluctuations in PO4 values for watersheds nearby mosquito trap sites, this could be due to lower 

performance of the developed predictive model for PO4 loadings compared to the other two 

models.  

To show how much nutrient actually exists in the stream water regardless of the size of the 

watershed, the nutrient load was predicted in this study. To link the predicted nutrient values 

around the Atlanta area to the mosquito population, the dose-response relationships between larval 

development and nutrients developed through a mesocosm experiment were applied here. The 

predicted nutrient yield by the best developed ANN model were converted to concentration and 

were linked to the dose-response curves. Four weeks moving average nutrient concentrations were 

calculated and are given in Figure 5.5. Median of nutrient concentrations and the 95% upper and 

lower bounds along the watersheds for the period 2002 to 2010 are shown in this figure. Since 

flow was one of the input to the nutrient predictive models and the streamflow model performances 

gradually decreased as the watershed size increased (Figure 4.16), large watersheds were excluded. 

The highest mean NO3 concentrations over the period 2002-2010 for four weeks moving average 
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scale was 2.7 mg/L and belonged to the watershed #37 with the size of 73 km2, 31% 

imperviousness and 17% forest cover. The watershed #22 with the area of 3.8 km2 and percent 

imperviousness of 21 and percent forest cover of 25 had the second highest mean NO3 

concentration of 2.6 mg/L. Based on the mesocosm experiment, high NO3 concentrations favor 

the development of male mosquitoes and suppresses the development of female mosquitoes. 

Therefore, sites #37 and #22 could have less number of female Culex quinquefasciatus in 

comparison to other sites.  

The highest mean NH4 concentrations over the period 2002-2010 was 0.40 mg/L and belonged 

to watersheds #40. The area of this  watershed was 11 km2 with 14% imperviousness and 29% 

forest cover. Findings of chapter 2 revealed that for adult males, increased NH4 concentrations 

decreased pupation time. Therefore, NH4 enhances the rate of development of male mosquitoes. 

Also higher NH4 concentrations increases the number of surviving mosquito larvae and the number 

of larvae successfully pupating. In above mentioned sites, the abundance of Culex 

quinquefasciatus should be higher due to high NH4 concentrations.  

For PO4, the highest mean predicted concentration levels belonged to watersheds with percent 

imperviousness of less than 10% or percent forest cover above 40%, and since they were outside 

the ranges of delineated watersheds of USGS stations (see Figure 4.16) and extrapolation reduces 

the model accuracy, these watersheds were considered as outliers. Excluding these outliers, the 

highest PO4 concentrations averaged over the period 2002-2010 for four weeks moving average 

scale were 2.6 and 0.44 mg/L for watersheds #1-1 and #37 respectively. The area of these 
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watersheds varied from 0.27 to 73 km2. In terms of LULC, they had 50% to 17% forest cover 

and13% to 31% imperviousness. PO4 concentration exerts a positive influence on late aquatic 

stages of mosquito larvae. This nutrient plays a significant role in keeping larvae alive longer but 

inhibits pupation in absence of NO3 or NH4. Moreover, the mesocosm experiment showed that in 

containers with the combinations of either PO4 and NO3 or PO4 and NH4, fewer days are required 

for both females and males to emerge than other groups. The high PO4 concentration level in 

highly forested watershed indicates that the potential breeding habitats for Culex mosquito 

development can be found even in non-developed areas. However, the predicted PO4 values for 

watersheAds nearby mosquito trap sites had high fluctuations with a wide 95% bound as shown in 

Figure 5.5. This could be due to lower performance of the developed predictive model for PO4 

loadings compared to the other two models. Also, the developed predictive model for the test 

watershed with the highest percent forest cover had the weakest performance indicating that it is 

less reliable to apply the model to forested watersheds for prediction purposes.  

The results of water quality prediction indicated that the breeding sites with high nutrient 

concentrations can occur in both forested and urban areas and the developed models can be applied 

in watersheds similar to the watersheds delineated for USGS stations which were used for 

developing predictive water quality and streamflow models. These watersheds had the percent 

imperviousness of 13% to 52% and percent forest cover of 2% to 33%. Also, as the watershed size 

increased, the streamflow model performances gradually decreased (Figure 4.16). This indicates 
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that the developed models are reliable to be applied in watersheds with the size of less than 200 

km2 (See Figure 4.16) and with LULC types within the mentioned ranges.  

 

Conclusions 

Applying developed predictive models to the urbanized watersheds around Atlanta can help 

us identify potential mosquito breeding sites through the landscape. Due to urbanization and 

deforestation in the Atlanta area and increase in surface runoff, the suitability of breeding 

mosquitoes has improved. Also animal communities that serve as hosts and vectors for pathogens 

are modified due to LULC changes. Loss of bird habitat due to forest fragmentation can increase 

avian densities within remaining fragments and may facilitate the transmission and amplification 

of WNV (Wang et al. 2010). In addition, climate alters pathogen and vector demographic rates 

(Kilpatrick 2011). Climate variability influences landscape through drought or flooding or through 

dry and wet period. Drought can affect the nutrient concentrations especially in standing waters 

through evaporation. During drought conditions, the reduced water flow creates stagnant water 

pools which become richer in organic material ideal for breeding mosquitoes (Aharonson-Raz et 

al. 2014). This may bring the mosquitoes and birds into close contact and around small water holes 

and thus facilitate the virus circulation. When drought ends and water resource increase, infected 

mosquitoes and bird disperse, initiating the early transmission phase of WNV cycle (Shaman et al. 

2002). Also, intense spring or summer rain or floods, provide pools for mosquitoes to breed along 

the stream bank and if the stream water is polluted, it would help mosquitoes to develop faster 
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which can lead to an outbreak. The rise and fall of the water table in the land surface determines 

where and when pools of water form at the land surface, creating potential larval mosquito habitats 

(Shaman et al. 2005 & 2010). The virus could occur in inundated lowland habitats in floodplain 

forest ecosystem (Hubalek 2008). Our findings from chapter 3 are in an agreement with the above 

statements. Combining the findings of chapters 3 and 4 indicates that areas with higher PO4 or 

lower NO3 level coupled with above average total weekly rain events over March to April and 

mild spring, provide favorable conditions for mosquito development in mid-July. However, more 

detailed studies need to be conducted to develop an integrated model for predicting mosquito 

population under the combined impacts of the most important WNV risk factors. There are large 

uncertainties that need to be clarified regarding the linkage of each environmental factor and 

mosquito development. Also the accuracy and reliability of the identified relationships play an 

important role in understanding and predicting the dynamic of mosquito population. Detailed 

assessment of environmental risk factors would help predict spatial patterns of human WNV risk. 

WNV human risk map may assist with selecting surveillance sites, guiding preventive control 

measures such as catch basin, and determining the thresholds for initiating responsive control 

activities in the highest risk areas. Early warning and identification of outbreaks is critical to 

limiting the animal and human losses to this disease (Valiakos et al. 2014). Targeted surveillance 

and control efforts prioritized for high WNV risk areas should start earlier in the season or after 

detection of WNV enzootic activity and should lead to increased public health protection during 
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outbreaks while reducing costs, labor, and environmental impacts associated with these measures 

(Rochlin et al. 2011).  

To identify the hotspots of WNV, birds behavior also needs to be accounted since this virus 

is maintained in a bird-mosquito transmission cycle (Bisanzio et al. 2011). Local movements of 

resident birds and long-range travel of migratory birds may contribute to pathogen dispersion 

(Valiakos et al. 2014). Determining area that provide favorable habitats for local and migratory 

birds along with abundant larval breeding sites for local mosquito species would help understand 

the spatial distribution of Culex species. Human behaviors such as time spent outdoors and use of 

repellants, must also align. To understand the distribution of WNV risk in an area, both landscape 

as well as socio-economic attributes need to be considered. Socio-economic conditions, 

particularly housing age and income create elevated WNV transmission risk at particular sites. 

Areas with high poverty rates appear to face a greater threat from WNV (Tackett et al. 2006). 

Spatial patterns of disease risk may be associated with socioeconomic factors due to effects of 

urbanization on the natural environment (Ruiz et al. 2007). An understanding of why certain 

populations are more vulnerable may can provide a stronger basis for decisive action by public 

health practitioners.  
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Table 5.1. Watersheds characteristics of selected mosquito trap sites. 

Site Number IM  DF EF MF PA UG Area (km2) 
3 11% 16% 12% 0% 0% 0% 2.50 
4 32% 6% 12% 4% 0% 0% 9.83 
7 8% 30% 13% 0% 9% 8% 7.06 

11 18% 7% 12% 1% 0% 0% 21.48 
12 22% 3% 24% 3% 0% 7% 2.48 
14 49% 1% 1% 0% 1% 0% 10.03 
15 20% 11% 13% 1% 0% 0% 73.13 
16 17% 0% 0% 0% 8% 0% 1.19 
18 10% 19% 16% 2% 5% 0% 3.83 
22 21% 5% 15% 5% 0% 0% 3.76 
28 29% 9% 12% 0% 0% 0% 8.48 
29 27% 8% 11% 1% 0% 0% 35.07 
30 20% 9% 9% 0% 0% 0% 3.91 

35** 31% 7% 9% 1% 0% 0% 225.33 
36 31% 6% 6% 0% 0% 0% 1.38 

37-1 31% 7% 10% 0% 0% 0% 73.16 
39 21% 3% 9% 2% 0% 0% 5.73 
40 14% 11% 15% 2% 10% 2% 10.94 
42 53% 6% 2% 0% 0% 0% 4.24 
44 36% 8% 8% 0% 0% 0% 5.83 
47 27% 3% 8% 0% 0% 0% 3.69 

51** 15% 24% 8% 1% 6% 3% 325.25 
52 21% 4% 25% 1% 3% 0% 6.17 
55 17% 23% 9% 1% 2% 0% 13.52 
56 12% 23% 10% 0% 8% 0% 4.73 
57 7% 11% 16% 0% 3% 3% 3.58 

10-1 30% 0% 0% 0% 0% 0% 0.42 
10-2 17% 0% 20% 0% 0% 0% 0.46 
10-3 13% 29% 29% 0% 0% 0% 0.62 
10-4 6% 50% 13% 0% 0% 0% 0.68 
10-5 47% 0% 0% 0% 0% 0% 0.38 
1-1 13% 50% 0% 0% 25% 0% 0.27 
1-2 11% 9% 9% 9% 0% 0% 1.00 
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1-3 8% 22% 0% 0% 22% 0% 0.75 
13-1 27% 5% 10% 0% 2% 0% 17.70 
13-2 10% 14% 7% 0% 0% 0% 1.22 
13-3 6% 0% 0% 0% 0% 0% 0.32 
1-4 1% 60% 0% 0% 20% 0% 0.56 

17-1 17% 6% 12% 2% 0% 0% 12.85 
17-2 8% 0% 44% 0% 0% 0% 0.85 
19-1 39% 2% 0% 0% 0% 0% 4.85 
19-2 34% 14% 7% 0% 0% 0% 1.23 
19-3 28% 0% 0% 0% 0% 0% 0.21 
20-1 52% 0% 0% 0% 0% 0% 0.50 
20-2 68% 0% 0% 0% 0% 0% 0.41 
2-1 10% 14% 43% 0% 14% 5% 1.84 
2-2 16% 5% 38% 0% 0% 3% 3.19 

23-1 & 24 & 21 51% 0% 1% 0% 0% 0% 3.35 
23-2 16% 6% 6% 0% 0% 0% 3.22 
25-1 19% 4% 13% 0% 0% 0% 2.30 
25-2 20% 0% 5% 0% 0% 0% 1.63 
26-1 40% 11% 6% 0% 0% 0% 1.71 
26-2 26% 7% 17% 0% 1% 0% 8.27 
26-3 24% 14% 14% 7% 0% 0% 1.13 
27-1 46% 7% 2% 0% 0% 0% 3.97 
27-2 6% 0% 0% 0% 0% 0% 0.36 
32-1 33% 3% 8% 0% 0% 0% 9.75 
32-2 27% 4% 13% 0% 0% 0% 22.53 

33-1** 28% 11% 10% 1% 0% 0% 300.56 
33-2 35% 10% 6% 0% 1% 1% 31.86 
34-1 42% 29% 0% 0% 0% 0% 0.52 
34-2 10% 33% 0% 0% 0% 0% 0.52 
34-3 3% 25% 25% 0% 0% 0% 0.25 
37-2 9% 21% 21% 0% 0% 0% 1.38 
38-1 20% 4% 10% 0% 0% 0% 4.68 
38-2 20% 14% 10% 0% 0% 0% 3.70 
41-1 2% 0% 75% 0% 0% 0% 0.39 
41-2 10% 15% 15% 0% 0% 0% 3.53 
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43-1 43% 0% 10% 0% 0% 0% 0.93 
43-2 18% 17% 17% 0% 0% 0% 1.00 
45-1 29% 10% 0% 0% 0% 0% 1.08 
45-2 36% 0% 0% 0% 0% 0% 0.27 
45-3 3% 0% 0% 0% 25% 0% 0.30 
45-4 52% 0% 0% 0% 0% 0% 0.01 
46-1 22% 15% 11% 0% 0% 0% 0.43 
46-2 28% 7% 7% 0% 0% 0% 2.41 
46-3 10% 33% 67% 0% 0% 0% 1.37 
48-1 16% 7% 21% 0% 7% 0% 0.18 
48-2 8% 22% 11% 0% 0% 0% 0.11 
49-1 28% 20% 0% 0% 0% 0% 1.41 
49-2 3% 0% 33% 0% 0% 0% 1.74 
49-3 11% 20% 13% 0% 0% 0% 0.56 
49-4 22% 0% 0% 0% 0% 0% 0.26 
49-5 18% 15% 0% 0% 0% 0% 1.24 
50-1 27% 0% 17% 0% 0% 0% 0.34 
50-2 12% 11% 21% 0% 0% 0% 1.16 
5-1 1% 37% 26% 0% 0% 5% 0.49 
5-2 4% 53% 0% 0% 16% 0% 9.99 

53-1 29% 7% 2% 0% 0% 0% 1.59 
53-2 22% 25% 0% 0% 0% 0% 1.74 
54-1 19% 5% 8% 0% 0% 0% 5.03 
54-2 24% 6% 24% 0% 0% 0% 0.80 
58-1 3% 47% 28% 0% 0% 6% 3.68 
58-2 1% 25% 25% 0% 25% 0% 1.53 
6-1 23% 10% 19% 0% 0% 0% 1.81 
6-2 12% 11% 29% 0% 0% 0% 2.52 
8-1 0% 25% 46% 0% 10% 7% 6.24 
8-2 0% 29% 18% 0% 6% 24% 1.40 
9-1 43% 0% 0% 0% 0% 0% 1.04 
9-2 28% 20% 0% 0% 0% 0% 0.57 

Average 21% 12% 12% 0% 2% 1% 13.75 
Maximum 68% 60% 75% 9% 25% 24% 325.25 
Minimum 0% 0% 0% 0% 0% 0% 0.01 
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STDEV*** 0.15 0.14 0.15 0.02 0.06 0.04 57.74 
* IM= imperviousness, DF: Deciduous Forest, EF: Evergreen Forest, MF: Mixed Forest, PA: Pasture, UG: 

Urban Grass 
** Watersheds with large areas were considered as outliers.  
***Standard deviation 
 

 

Figure 5.1. Schematic of methodology. 
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Figure 5.2. Delineated watersheds for 58 selected mosquito trap sites in the Atlanta area. 
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Figure 5.3. Predicted average monthly streamflow obtained from top 5 ANN models with best 

performances along 100 watersheds nearby mosquito trap sites.  
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 Figure 5.4. Log scaled predicted four weeks moving average (a) NO3, (b) NH4, and (c) PO4 

loadings using ANN models with best performances for watersheds nearby mosquito trap sites. 
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Figure 5.5. Predicted four weeks moving average and 95 % upper and lower bounds (a) NO3, (b) 

NH4, and (c) PO4 concentrations along all watersheds.  
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Chapter 6. Conclusion 

 

 

Summary and Conclusions 

WNV transmission risk depends on different ecological and environmental factors (Chevalier 

et al. 2014). Biotic and abiotic conditions affect mosquito behaviors and consequently the risk of 

WNV epidemics (Paz et al. 2013). Several elements of biological and ecological knowledge are 

still missing and experimental studies are needed to quantify key parameters. To assess the 

prevalence of vector-borne diseases within an area and to implement control measures, 

understanding the spatial and temporal dynamics of mosquito communities is vital (Buckner et al. 

2010). To do so, developing predictive models that link environmental variables and insect 

abundance is essential to increase the efficiency and efficacy of management. The main goal of 

this research was to advance our understanding of the transmission of mosquito-borne arboviruses 

under the influence of different environmental and climatic drivers of WNV disease. The most 

important findings of this research and the study implications are highlighted below. 

 

Water quality and Culex quinquefasciatus population 

The mesocosm experiment results have demonstrated the impacts of nutrients on mosquito 

pre-adult development and the quantitative relationships between specific nutrient concentrations 

in water and developmental parameters. The major findings of this experiment were:  
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1) Increased NO3 levels alone in the larval habitat favors the development of male mosquitoes 

and suppresses the development of female mosquitoes. However, those adult females that do 

emerge, develop faster in containers with the NO3 constituent compared to the reference group. 

Female mosquitoes are larger than males and also their development time is longer than males, 

therefore, they need more food than males.  

2) Addition of PO4 alone to the larval habitat increases the larval development time. The 

increase in the developmental time occurs in the absence of nitrogen. Nitrogen is required for chitin 

development and severely limiting for larval growth. Therefore, the combination of NO3 and PO4 

or NH4 and PO4 nutrients in the container favors mosquito development and shortens pupation 

time. 

These findings should promote the development of targeted larviciding interventions, thus 

reducing the costs and efforts required for effective mosquito vector control. The results of this 

experiment may also help identify specific larval habitats for Culex mosquitoes by predicting 

which water quality conditions in urban landscapes are most likely to support mosquito 

development, which could lead to improved control of WNV transmission. However, it is 

important to take into account the accuracy of the developed dose-response relationships and their 

uncertainties when applying them to the real world and real cases.  
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Climatic variability and Culex quinquefasciatus abundance and its infection rate 

This study clarified the temporal patterns (inter-annual variations and deviations from 

expected seasonal cycles) of Culex mosquito population and its infection rate anomalies and their 

application to predict future WNV risk and to identify high-risk periods and to suggest new 

hypotheses about the drivers of temporal variability at different scales. The major findings of this 

study were: 

1) Elevated temperature and PET averaged over late winter and spring were associated with 

increased abundance of Culex quinquefasciatus and their related infection rate in summer. Also, 

drier than normal condition during spring with low available moisture in surface layers creates 

favorable conditions for the development of Culex vectors in summer.  

2) Rain events of 6 cm and higher averaged over March to April in weekly scale combined 

with mild spring with average weekly temperature of 20 to 24 °C, favor mosquito development in 

mid-July. Also, total weekly rain events of 2 cm or less in March through May coupled with 

temperature around 26 °C, increases the chance of getting higher number of infectious mosquitoes 

in mid-July.  

3) Addition of 1 week antecedent mosquito count data to the ANN model as a predictor 

increased the ENASH value from 0.54 to 0.68 and from 0.62 to 0.89 respectively for weekly and four 

weeks moving average scales. For the Vector Index, addition of the antecedent infection rate one 

week prior the capture increased the ANN model performance accuracy and the ENASH value 
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changed from 0.54 to 0.69 and from 0.72 to 0.93 respectively for weekly and four weeks moving 

average scales. 

These findings and the developed models can be used to estimate the size of vector populations 

that are likely to be seen in summer and to monitor the possible abnormalities in the increase of 

rates of WNV infection. Also, long-term predictions of shifts in mosquito abundance and in WNV 

risk can be estimated by modeling the significant climate factors under future warming conditions. 

These information can be used for an early detection of virus circulation in mosquitoes and to 

provide early warning for WNV outbreaks. However, more detailed climate analysis and data 

mining are needed to understand the variance in mosquito population and their infection rate year 

to year. Also considering other climate variables such as wind speed and humidity as predictors 

and selecting the optimal input layer to the model can lead to a more powerful prediction with 

reduced uncertainty.  

 

Linkage between LULC and water quality 

This study revealed that water quality can be predicted with Artificial Neural Networks in 

ungauged watersheds using data from the neighboring watersheds with similar characteristics. In 

addition, simulating the streamflow by SWAT and using the simulated flow as input to the ANN 

model, resulted in a stronger model with higher predictive power. 

1) The developed ANN models could predict NO3 and NH4 loadings with “good” to “very 

good” level of accuracy. The performance of the developed predictive model for PO4 loadings was 
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lower than the other two models, however, the model could provide a useful degree of predictive 

power.  

2) The developed ANN models for predicting flow during warm and cool seasons had “good” 

to “very good” accuracy in most test watersheds.  

3) No general trend was observed between percent imperviousness or percent forest cover or 

watershed size and the water quality model performances. However for the streamflow predictive 

models, as the percent forest cover or the size of test watershed increased, the model performance 

gradually decreased.  

The developed models for predictions of water quality and streamflow in ungauged 

watersheds could help identify where an increase in vector population size and associated WNV 

transmission risk should be expected. Based on this information, implementation of risk-based 

surveillance programs could be conducted to better assess the virus outbreak. The significance of 

developing predictive water quality models become more evident for a large area due to time 

consuming and expensive process of water quality sampling. However, the developed models are 

not reliable to be applied in large watersheds (> 200 km2) with high percentage forest cover. 

Applying a more accurate LULC map and more reliable instantaneous streamflow data can help 

improve the model performance. Also predicting nutrient concentrations by coupling SWAT and 

ANN models can lead to more powerful and accurate prediction.  
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Environmental predictors of Culex quinquefasciatus abundance associated with West Nile 

Virus 

In this part of the study, daily streamflow and nutrient loadings were predicted in streams near 

selected mosquito traps in Atlanta using the developed ANN models from chapter 4 to link the 

water quality conditions to the mosquito abundance. Also for a better integration of environmental 

monitoring, the combined impacts of environmental factors on mosquito abundance was discussed. 

Major findings of this part of the study were: 

1) The predicted loading values along the 58 sites ranged from 0 to 2.28 kg ha-1 d-1 for NO3, 

0 to 1.22 kg ha-1 d-1 for NH4 and 0 to 0.16 kg ha-1 d-1 for PO4.  

2) Sites #37 and #22 had the highest four weeks moving average NO3 concentrations averaged 

over the period 2002-2010. Based on the findings of the mesocosm experiment, these sites could 

have less number of female Culex quinquefasciatus in comparison to other sites.  

3) The highest mean NH4 concentrations over the period 2002-2010 was 0.40 mg/L and 

belonged to watersheds #40. Findings of chapter 2 revealed that for adult males, increased NH4 

concentrations decreased pupation time. Therefore in this site, the abundance of Culex 

quinquefasciatus should be higher due to high NH4 concentrations.  

4) The highest PO4 concentrations averaged over the period 2002-2010 for four weeks moving 

average scale were 2.6 and 0.44 mg/L for watersheds #1-1 and #37 respectively. This nutrient 

plays a significant role in keeping larvae alive longer but inhibits pupation in absence of NO3 or 

NH4.  
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Findings from previous chapters and linking them together helped assess the virus risk in a 

broader view. Information from epidemiological surveillance should be integrated with 

environmental monitoring to provide more effective predictions of the likelihood of future WNV 

outbreak (Wimberly et al. 2013). However, the developed models had weak performance for 

highly forested watersheds, therefore, it is safer to apply them to urbanized watersheds for water 

quality and streamflow prediction purposes. Because of all these uncertainties, can should be taken 

in interpreting results from these models.  

 

Future research 

The potential future study that could be conducted as an extension of this work is modeling 

the impacts of preceding climate conditions over a range of time on Culex vector species under 

climate change scenarios so that long-term predictions of shifts in mosquito abundance can be 

estimated. Also the linkage between El Nino Southern Oscillation (ENSO) and the mosquito count 

data can be studied.  

For streamflow prediction, wherever observed instantaneous streamflow data was missing, 

average daily flow for USGS stations were used, which can cause error in our prediction. Having 

more reliable streamflow data, and also providing a more accurate LULC map instead of NLCD, 

can improve the model performances. Also lumped and semi-distributed models can be coupled 

for predicting water quality concentrations by simulating the nutrients using SWAT and applying 

the simulated values as inputs to the ANN model.  
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In addition, to determine the WNV human risk, the socio-economic conditions need to be 

studied. Selection of risk factors characterized socio-economic conditions relevant to human 

ecology such as education, housing and income can help predict spatial patterns of WNV human 

cases. The risk of WNV to humans can be reduced by combining mosquito control and targeted 

health education outreach. Finally, there is a need to develop an integrated physically-based model 

by combining both temporal and spatial environmental factors and to investigate their impacts 

together on transmission of WNV. This could help properly predict the dynamic of Culex 

mosquitoes carrying this virus and consequently human risk at a given location and to implement 

adapted surveillance systems. 
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