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DISSERTATION ABSTRACT 
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157 Typed Pages 
 
Directed by R. Mark Nelms 
 
     The development of an analytical method used for conducting a power flow analysis 
on a DC power system containing multiple motor-drive loads is presented.  The method 
is fast, simplistic, easy to implement, and produces results that are comparable to 
software packages such as PSPICE and Simulink.  The method presented utilizes a 
simplified model of a voltage source inverter-fed induction motor, which is based on the 
steady-state T-type harmonic equivalent circuit model of the induction motor and the 
input-output relationships of the inverter.  In the simplified model, a V-I load 
characteristic curve is established that allows the inverter, motor, and load to be replaced 
by a current-controlled voltage source.  This simplified model can be utilized in the  
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analysis of a multiple-bus DC power system containing motor-drive loads by 
incorporating the V-I load characteristic curve of each motor-drive load into an iterative  
procedure based on the Newton-Raphson method.  The analytical method presented is 
capable of analyzing DC power systems containing induction motor-drive loads fed from 
voltage source inverters with various types of switching schemes.  The speed advantage 
of the analytical method presented versus simulation packages such as PSPICE is 
apparent when analyzing multiple motor-drive systems.   
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CHAPTER 1 
1.1  Introduction 
     This effort has been focused on the analysis of the system shown in Figure 1.1.  In this 
figure, a DC voltage source is connected to a three-phase inverter driving a three-phase 
induction motor with a load attached.  The goal was to develop an analytical method to 
analyze this system that is faster than simulation packages such as PSPICE and Simulink 
and produces comparable results.  The method can be utilized in the analysis of a DC 
power system containing multiple motor-drive loads such as the one shown in Figure 1.2.  
The speed advantage of the analytical method is evident when multiple motor-drive 
systems are analyzed.   
     Some possible applications for DC power systems such as the one shown in Figure 1.2 
are:  transit systems, U.S Navy ships and submarines, and some coal mining operations.  
The induction motor was utilized in Figure 1.2 because it is employed in some of the 
applications mentioned previously.  Induction motors are used in a wide range of 
industrial settings as they are capable of operating in dusty and harsh environments such 
as in underground coal mines.   
     The output voltage waveforms produced by the inverter shown in Figure 1.1 will 
contain harmonics.  The harmonic content of the output waveforms will depend on the 
switching scheme utilized in the voltage source inverter of Figure 1.1.  A more detailed 
drawing of a three-phase voltage source inverter is illustrated in Figure 1.3.  Depending 
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Figure 1.1:  Motor-Drive System Model. 
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Figure 1.3:  Three-Phase Voltage Source Inverter. 
 
upon the method for controlling the switches of the inverter in Figure 1.3, the inverter can 
operate as a six-step inverter, sinusoidal PWM inverter, or a space vector PWM inverter.  
Two methods for determining the harmonic components of the output waveforms of the 
voltage source inverter in Figure 1.3 were developed in this dissertation.  Both methods 
can be used to determine the harmonic content of the inverter output waveforms for 
different switching schemes.  The two harmonic analysis methods developed allow direct 
calculation of harmonic magnitudes and angles without having to use linear 
approximations, iterative procedures, look-up tables, or Bessel functions.  These methods 
can also be extended to other types of multilevel inverters and PWM schemes.   
     Because the voltages at the terminals of the induction motor shown in Figure 1.1 will 
contain harmonics produced by the inverter, a harmonic model of the induction motor 
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was developed that is based on the steady-state T-type equivalent circuit model of the 
induction motor.  A simplified model of the system shown in Figure 1.1 was developed 
using the induction motor harmonic model and the input-output relationships of the 
voltage source inverter.  In the simplified model a V-I load characteristic curve was 
established that allows all of the system components to the right of V
i
 (inverter, motor, 
and load) in Figure 1.1 to be replaced by a current-controlled voltage source.  The 
simplified model developed for the system in Figure 1.1 was shown to be applicable to a 
multiple-bus DC power system such as that shown in Figure 1.2 by forming a V-I load 
characteristic curve for each motor-drive load in the system and incorporating them into 
an iterative procedure used to conduct a power flow analysis. 
1.2  Background 
1.2.1     The Six-Step Inverter 
     The six-step inverter is perhaps the simplest form of three-phase inverter.  A circuit 
diagram of a three-phase voltage source inverter is shown in Figure 1.3.  The output of 
a six-step inverter can be produced by using one of two types of gate firing sequences:  
three switches in conduction at the same time (180? conduction), or two switches in 
conduction at the same time (120? conduction).  With either case, the gating signals are 
applied and removed every 60? of the output voltage waveform.  The switches in Figure 
1.3 are gated in the sequence S1, S2, S3, S4, S5, and S6 every cycle.  The result of this 
type of gating produces six steps in each cycle.  Even though the six-step inverter is 
simplistic compared to the various types of PWM inverters, many articles have been 
written covering different applications and various aspects of the operation of the six-step 
voltage source inverter [1-7]. 
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     Murphy and Turnbull [8] discussed AC motor operation when supplied by a six-step 
voltage source inverter in Chapter 4 of their book.  Voltage waveforms were provided  
along with the Fourier series representations.  Current waveforms were also provided 
with detailed discussions of motor operation when supplied by a six-step inverter.  
     Abbas and Novotny [9] utilized a fundamental component approximation to develop 
equivalent circuits that represent the transfer relations of the six-step voltage source and 
current source inverters during steady-state operation.  Development of the equivalent  
circuits was based on the idealized switching constraints of the inverter circuits.  Only the 
fundamental component of the voltage and current Fourier series was retained in the 
development of the equivalent circuits presented.  This simplification was made due to 
the harmonics resulting in small amounts of average torque. 
     Krause and Lipo [10] presented simplified representations of a rectifier-inverter 
induction motor drive system.  The first simplified representation was developed by 
neglecting the harmonic components due to the switching in the rectifier.  The second 
simplified representation resulted when the harmonic components due to the switching in 
the inverter were neglected.  The final simplification was made by neglecting all 
harmonic components and representing the system in the synchronously rotating 
reference frame.  In the analysis leading to the final simplified system representation, the 
operation of the inverter was expressed analytically in the synchronously rotating 
reference frame with the harmonic components due to the switching in the inverter 
included. 
     Krause and Hake [11] used the method of multiple reference frames and the equations 
of transformation of the inverter to establish a method of calculating the inverter input 
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current.  The method presented allows the current flowing into the inverter to be 
determined during constant speed, steady-state operation. 
     Novotny [12] used time dependent functions called switching functions to represent 
transfer properties of six-step voltage source and current source inverters.  The switching 
functions were expanded as complex Fourier series and applied to steady-state inverter 
operation.  The concepts presented can be extended to PWM inverters. 
     Novotny [13] used time domain complex variables to represent the inverter and the 
induction motor.  Time domain complex variables result from applying the symmetrical 
component concept to instantaneous quantities.  Steady-state analysis of the six-step 
voltage and current source inverter-driven induction motor is provided.  Closed form 
solutions for the instantaneous voltages, currents, and torques were presented.   
1.2.2     The Sinusoidal PWM Inverter 
     Pulse width modulation is a popular technique used to control the magnitude and 
frequency of the AC output voltages of an inverter.  In a sinusoidal PWM inverter, the 
gate signals used to control the switches of the inverter in Figure 1.3 are produced by 
comparing a sinusoidal control signal with a high frequency carrier waveform as shown 
in Figure 1.4 for a two-level sinusoidal PWM inverter.  This technique is widely used in 
industrial applications such as variable-speed electric drives [14, 15] and has been the 
focus of research interests in power electronics applications for many years.  Most of  
the research to date has been focused on determining the harmonic components produced 
as a result of the modulation process due to various schemes and techniques [14, 16-18].        
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Figure 1.4:  Carrier Waveform and Control Signal for a Sinusoidal PWM Inverter. 
 
     Analysis of modulated pulses was first introduced by Bennett [19] in 1933.  Bennett 
used the double Fourier series to analyze modulated pulses in his study of rectified 
waves.  Bennett?s method was shown to be applicable to various types of waveforms 
and complex modulation processes.  A detailed explanation of Bennett?s method as 
applied to communications systems was presented by Black [20].  Bowes [21,22] was the 
first to use Bennett?s method in power electronics applications.  Bowes used a 3-D 
modulation model based on the double Fourier series to apply Bennett?s method to 
inverter systems.  The method introduced by Bennett and applied by Black and Bowes is 
valid only for amplitude modulation ratios less than one.  Using the waveforms of a two-
level sinusoidal PWM inverter with sine-triangle modulation in Figure 1.4, the amplitude 
modulation ratio is defined as: 
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tri
con
a
V
V
m =                                                                                                                        (1.1) 
where V
con 
is the peak amplitude of the control signal in Figure 1.4 and V
tri 
is the peak 
amplitude of the triangular carrier waveform in Figure 1.4. 
     Extensions of Bennett?s method to calculate the harmonic content of the output 
voltage of a PWM inverter for amplitude modulation ratios greater than one were 
presented by Franzo et al. [15] and Mazzucchelli et al. [23].  Carrara et al. [24] used an 
extension of Bennett?s method to find analytical expressions of the output voltage of 
single-phase and three-phase inverters.  Calculations of the harmonic components of the 
output voltage of the inverter were possible for any operating condition, including the 
over modulation region m
a
>1.0.  The analysis presented was applied to various multilevel 
modulation techniques. 
     Holmes [25] presented a generalized analytical approach for calculating the harmonic 
components of various fixed carrier frequency PWM schemes.  The method was based on 
the double Fourier series of the switched waveform.  Holmes produced closed form 
solutions using a Jacobi-Anger substitution.  Analytical solutions were provided for 
various PWM strategies including space vector modulation. 
     Tseng, et al. [26] used a 3-D modulation model and the double Fourier series as first 
proposed by Bennett to analyze the harmonic characteristics of a three-phase two-level 
PWM inverter.  Models of the three-phase inverter system were constructed in PSPICE 
and MATLAB for harmonic analysis purposes.  Equations from the theoretical analysis 
using the 3-D modulation model and the double Fourier series were coded in MATLAB 
for comparison with PSPICE and Simulink results.  It was shown that the harmonic 
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content of waveforms produced from the PSPICE and Simulink models are in good 
agreement with the harmonic content of waveforms calculated using the 3-D modulation 
model and the double Fourier series.   
     Mohan et al. [27] conducted an analysis of two-level PWM inverters in Chapter 8 of 
their book.  Design considerations for the two-level PWM were discussed in Chapter 8 as 
well.  Harmonic analysis of the induction motor was discussed in Chapter 14.   
     Various schemes using pulse width modulation for the purpose of shaping the AC 
output voltages of an inverter to be as close to sinusoidal as possible have been studied 
and continue to be the focus of many power electronics research activities.  For the 
interested researcher, a detailed literature review on pulse width modulation that includes 
various modulation techniques and schemes can be found in [16]. 
1.2.3     The Space Vector PWM Inverter 
     Space vector modulation is a PWM technique that has become extremely popular in 
recent years.  In a space vector PWM inverter, the gate signals used to control the 
switches of the inverter in Figure 1.3 are produced by comparing the control signal 
shown in Figure 1.5 with a high frequency triangular waveform.  The space vector PWM 
inverter is commonly used in vector control drive applications [28] where 
microprocessors are used to generate voltage waveforms [29].  Even though many 
articles are available in the literature [16], space vector pulse width modulation continues  
to be the focus of many power electronics researchers [30, 31].  Space vector modulation 
was first introduced in the mid-1980?s [32-34] and was greatly advanced by Van Der 
Broeck [33] in 1988.  The method was initially developed as a vector approach to pulse  
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Figure 1.5:  Carrier Waveform and Control Signal for a Space Vector PWM Inverter. 
 
width modulation.  The approach used by Van Der Broeck was based on representing 
voltages using space vectors in the ?, ? plane.    
   Harmonic analysis of the space vector PWM inverter has been investigated by various 
researchers [16, 29, 35-37].  Boys and Handley [29] decomposed a general regularly 
sampled asymmetric PWM waveform into symmetrical components that simplified the 
harmonic analysis of the PWM output waveform.  The technique was extended by Boys 
and Handley to analyze waveforms generated by space vector modulation.  Bresnahan et  
al. [35] conducted a harmonic analysis of space vector line-to-line voltages generated by 
a microcontroller.  An FFT analyzer and MATLAB/Simulink routines were used to 
conduct the harmonic analysis.  Moynihan et al. [36] used an extension of the geometric-
wall model to conduct a harmonic analysis on space vector modulated waveforms.  
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Harmonic analysis of two different space vector PWM methods was presented by Halasz 
et al. [37].  Holmes and Lipo presented a technique used to analyze the harmonic content 
of space vector PWM waveforms using a double Fourier series method [16].  A detailed 
explanation of the technique was provided along with the mathematical derivation of the 
analytical results.  
     Panaitescu and Mohan [38] presented an analysis and hardware implementation of 
space vector pulse width modulation used for voltage source inverter-fed AC motor  
drives.  A carrier-based approach was used without the need for sector calculations or 
vector decomposition.   
     Mohan [39] presents a detailed explanation of space vector PWM inverters in Chapter 
7 of his book.  A CD was provided with examples and Simulink? models that are helpful 
in understanding space vector concepts.  Mohan used a carrier-based approach to analyze 
the space vector PWM inverter. 
1.2.4     The Induction Motor 
     Fitzgerald, et al. [40] provided a detailed analysis of the steady-state T-type equivalent 
circuit model of the induction motor in Chapter 7 of their book.  The model presented in 
Chapter 7, and shown in Figure 1.6, can easily be modified in order to perform a 
harmonic analysis on the induction motor.   
     Ozpineci and Tolbert [41] presented a modular Simulink implementation of an 
induction motor model.  In the model presented, each block solved one of the model 
equations.  This ?modular? system model allowed all of the machine parameters to be 
accessible for control and verification of results. 
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Figure 1.6:  Induction Motor T-Type Equivalent Circuit. 
 
Giesselmann [42] developed a PSPICE d-q model of the induction motor for analysis and 
simulation purposes.  The PSPICE model was based on the T-type equivalent circuit 
model of the induction motor.  Implementation of the d-q model equations in PSPICE 
was accomplished using Analog Behavioral Modeling (ABM) devices.  Expression based 
ABM devices allow the user to enter mathematical expressions that can be used in 
PSPICE circuit models.      
     Krause [43] used reference frame theory for the analysis of electric machines in 
Chapter 3 of his book.  In Chapter 4, a detailed d-q analysis of the induction motor is 
presented.  Reference frame theory as applied to the analysis of electric drives is 
discussed in Chapter 13.   
1.3  Organization of the Dissertation 
     In this introductory chapter, a description of the problem to be investigated, the goals 
of the dissertation, and background information on previous work relating to voltage 
source inverter-fed induction motor drives have been presented.  Harmonic analysis of 
the voltage source inverter and two methods for determining the harmonic components of 
the output of a voltage source inverter are discussed in Chapter 2.  A harmonic model of 
 13
the induction motor and the development of a simplified model of an inverter-fed 
induction motor are discussed in Chapter 3.  Multiple motor-drive systems are the focus 
of Chapter 4, with a presentation of an iterative procedure that can be used to conduct a 
power flow analysis on a DC power system containing multiple motor-drive loads.  The 
dissertation concludes with a summary of the dissertation and recommendations for 
future work in Chapter 5. 
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CHAPTER 2 
HARMONIC ANALYSIS OF THE VOLTAGE SOURCE INVERTER 
 
     The focus of this chapter is on the harmonic analysis of different types of voltage 
source inverters.  The types of inverters analyzed in this chapter include:  the six-step 
inverter, the sinusoidal PWM inverter, and the space vector PWM inverter.  Methods for 
determining the harmonic content of the output waveforms of the sinusoidal PWM and 
the space vector PWM voltage source inverters are presented and can be used to conduct 
a harmonic analysis on an induction motor while supplied by a voltage source inverter.  
The waveforms analyzed in sections 2.1and 2.2 are typical voltage source inverter output 
waveforms produced by single-phase inverter topologies, while those analyzed in section 
2.3 are typical waveforms produced by a three-phase voltage source inverter.  The 
equations used to determine the harmonic content of the voltage source inverter output 
waveforms were coded in MATLAB and compared with PSPICE simulation models.  
The chapter concludes with a summary of the harmonic analysis techniques presented in 
the chapter.   
2.1     The Sinusoidal PWM Inverter 
     A method to analyze the harmonic content of modulated pulses was first introduced by 
Bennett in 1933 [19].  Bennett?s method and other methods based on Bennett?s 
work used the double Fourier series to analyze the output PWM signal.  Using a double 
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Fourier series to determine the harmonic components of the PWM output signal required 
the use of Jacobi-Anger expansions to establish closed form solutions.  The end result of 
using Jacobi-Anger expansions was the appearance of Bessel functions in the final 
expression of the output PWM signal.  Understanding and applying these methods can be 
cumbersome, leading to computer programming errors when attempting to implement a 
particular method.  Methods that use the double Fourier series also result in final voltage 
expressions that typically contain three terms:  one term to calculate the amplitude of the 
fundamental harmonic, one term to calculate the carrier frequency harmonic and 
harmonics of the carrier frequency, and another term to calculate the sideband frequency 
harmonics.    
     The purpose of this section is to present a method to calculate the harmonic 
components of the output voltage of a two-level and a three-level sinusoidal PWM 
inverter that is capable of being applied to various types of multilevel inverters and PWM 
schemes.  This method allows direct calculation of harmonic magnitudes and angles 
without the use of linear approximations, iterative procedures, look-up tables, Bessel 
functions, or the gathering of harmonic terms.  The method is valid in the overmodulation 
region (m
a
>1.0) and has the potential to be extended to inverter-drive systems such as the 
one presented in [44]. 
2.1.1     The Two-Level PWM Inverter 
     In a two-level PWM inverter with sine-triangle modulation, a sinusoidal control signal 
at a desired output frequency is compared with a triangular waveform as shown in Figure 
2.1.  The control signal shown in Figure 2.1 can be expressed as:   
tVtv
concontrol 1
sin)( ?=                                                                                      (2.1) 
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Figure 2.1:  Triangular Waveform and Control Signal. 
 
where V
con 
is the peak amplitude of the control signal and ?
1
 is the angular frequency.  
The angular frequency is given as: 
11
2 f?? =                                                                                                                       (2.2) 
 where f
1
 is the desired fundamental frequency of the inverter output.  The triangular 
waveform v
triangle
 in Figure 2.1 is normally kept at a constant frequency f
s
 and a constant 
amplitude V
tri
.  The frequency f
s
 is also known as the switching frequency or carrier 
frequency of the inverter.  The amplitude modulation ratio is defined as: 
tri
con
a
V
V
m = .                                                                                                                      (2.3) 
The frequency modulation ratio is defined as: 
 17
1
f
f
m
s
f
= .                                                                                                                       (2.4) 
If the variables listed in (2.1-2.4) are known, the output PWM signal can be produced by 
comparing the waveforms shown in Figure 2.1.  Referring to Figure 2.2, when v
control
 > 
v
triangle
, T
A+ 
and T
B- 
are closed and the value of the output PMW signal is +V
i
 (where V
i 
is 
the DC input voltage of the inverter).  When v
control
 < v
triangle
, T
A-
 and T
B+ 
are closed and 
the value of the output PWM signal becomes -V
i
.  As noted in [23], the output voltage of 
the inverter can be considered to be a voltage switching from +V
i
 to -V
i
.  The output 
PWM signal produced from comparing the waveforms in Figure 2.1 is shown in Figure 
2.3.   
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Figure 2.2:  Single-Phase Inverter. 
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Figure 2.3:  Two-Level PWM Output Waveform. 
2.1.1.1  Harmonic Analysis of the Two-Level Inverter Using the Method of Pulse Pairs  
     It is desirable to find a general technique to calculate the harmonic components of a 
PWM waveform such as the one shown in Figure 2.3.  To accomplish this task, it can be 
observed that the waveform in Figure 2.3 is made up of multiple positive and negative 
pulse pairs.  Also, another observation that will be helpful in the derivation of the 
analysis technique presented is the fact that the waveform in Figure 2.3 possesses half-
wave symmetry.  This means that for each positive pulse during the first half of the 
period of the PWM signal, there is a corresponding negative pulse in the second half of 
the PWM signal period.  This is illustrated by the arbitrary positive pulse pair shown in 
Figure 2.4 where A is the amplitude of the pulse, a
P
 is the initial time delay of the 
positive pulse, b
P
 is the pulse width of the positive pulse, and T is the period of the 
 19
f(t)
t
T/2 Ta
P
b
P
a
P
b
P
A
-A
 
Figure 2.4:  Positive Pulse Pair. 
PWM waveform.  For each negative pulse in the first half of the PWM signal period,  
there is a corresponding positive pulse in the second half of the period.  This is illustrated 
by the arbitrary negative pulse pair shown in Figure 2.5.  In this figure, a
N
 is the initial 
time delay of the negative pulse, and b
N
  is the pulse width of the negative pulse.     
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Figure 2.5:  Negative Pulse Pair. 
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     The first step in the analysis is to find the trigonometric Fourier series of the 
waveform shown in Figure 2.4.  Since it is known that the waveform in Figure 2.3 has 
half-wave symmetry, the Fourier coefficient a
0
 is zero.  This is due to the fact that the 
average value of a function with half-wave symmetry is always zero.  The Fourier 
coefficients a
n
 and b
n
 are also zero for n even due to half-wave symmetry.  Using the 
above simplifications, the trigonometric Fourier series of the function f(t) shown in 
Figure 2.4 can be expressed as: 
?
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                                                              (2.5) 
where a
n
POS
 and b
n
POS
 are the Fourier coefficients of the positive pulse pair.  The 
coefficient a
n
POS
 can be found from Figure 2.4 as follows: 
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Integrating (2.7) and using the identity sin?-sin ? = 2cos 1/2(?+?) sin 1/2(?-?), (2.7) 
becomes: 
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The coefficient b
n
POS
 can be found from Figure 2.4 as follows: 
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Integrating (2.10), using the identity cos ?-cos ? = -2sin 1/2(?+?) sin 1/2(?-?), and using 
the fact that sin(-?) = -sin ?, (2.10) becomes: 
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     Equations (2.8) and (2.11) can now be substituted into (2.5) and the trigonometric 
Fourier series of the waveform f(t) is established.  The trigonometric Fourier series of the 
waveform g(t) shown in Figure 2.5 is the same as the waveform f(t) in Figure 2.4 except 
that the magnitudes are the negative of each other.  The Fourier coefficients for g(t) are as 
follows:  
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where a
n
NEG
 and b
n
NEG
 
are the Fourier coefficients of the negative pulse pair.  The 
trigonometric Fourier series for g(t) can be expressed in the same form as f(t) in (2.5): 
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     Because the Fourier series of arbitrary positive and negative pulse pairs has been 
established, the Fourier series of a given PWM signal produced by two-level modulation 
can be found by application of the principle of superposition.  A PWM waveform like the 
one in Figure 2.3 is made up of the sum of positive and negative pulse pairs as shown in 
Figure 2.6 where P1-P3 in the figure are positive pulse pairs and N1-N3 are negative 
pulse pairs.  All that is required to find the Fourier series of a signal like the one shown in 
Figure 2.6 is to find the Fourier coefficients of each individual positive and negative 
pulse pair contained in the PWM signal and add them to get the Fourier coefficients of 
the entire PWM signal.  The total a
n
  and b
n
 coefficients of the entire PWM signal can be 
found using (2.8) and (2.11-2.13) as follows: 
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Figure 2.6:  PWM Output Signal with Positive and Negative Pulse Pairs Labeled. 
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where K is the number of positive or negative pulse pairs (Note:  the number of positive 
pulse pairs will equal the number of negative pulse pairs due to symmetry.).  The Fourier 
series of a given PWM signal produced by two-level modulation can be expressed in a 
single-cosine series as: 
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tan? .  It should be noted that the subscript 2-L in 
(2.17) stands for two-level.   
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     The final step in implementing this method is to find the crossing points of the 
waveforms shown in Figure 2.2 that determine the edges of the PWM signal pulses.  In 
order to determine the crossing points, an equation for the triangular wave in Figure 2.2 
must be established.  The signal can be thought of as being made up of straight lines 
having alternating positive and negative slopes with shifted intercepts on the time axis. 
To implement this idea in a computer software package, the triangular waveform can be 
expressed as: 
())1(2)1(
4
)1(),(
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where n is the index number used in a computer program and T
s
 is the period of the 
triangular wave.  Since the PWM signal has half-wave symmetry, only the crossing 
points that occur in the first half of the PWM signal period need to be considered when 
using the method of pulse pairs.  To find the crossing points, set v
control
 = v
triangle
 and 
solve the transcendental equation for t.  To easily solve the transcendental equation in 
MATLAB, declare t as a symbolic object using the syms command.  The solve command 
can then be used to find the crossing points.  However, the use of (2.18) results in some 
special cases where crossing points occur above the peak amplitude V
tri
 of the triangular 
wave as shown in Figure 2.7.  These special cases occur due to the fact that the straight 
lines used to represent the triangular signal extend beyond the value of V
tri
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Figure 2.7:  Special Case Crossing Points. 
and will intersect the control signal at crossing points that are undesired.  These undesired 
points can be eliminated using the find command in MATLAB, leaving the crossing 
points that determine the edges of the PWM signal pulses.  At this point, the only 
requirement to implement the method of pulse pairs is to use the crossing points to 
determine the time delays and the pulse widths. 
2.1.1.2  Simulation Results for the Two-Level PWM Inverter 
     The equations of the control signal, the carrier waveform, and the equations used to 
implement the method of pulse pairs were coded in MATLAB for the purpose of 
computing the harmonic components of a PWM signal such as the one shown in Figure 
2.3.  MATLAB code was also written to find the crossing points, time delays, and pulse 
widths.  Four MATLAB simulations were conducted using different values of m
a
 and m
f
.  
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The following parameter values were used for all simulations:  V
i
 = 270 V, V
tri 
= 10 V, 
and f
1 
= 60 Hz.  The other parameters used for the first simulation were as follows: V
con
 = 
3 V and f
s
 = 540 Hz.  The parameters used for the second MATLAB simulation were:  
V
con
 = 6 V and f
s
 = 900 Hz.  The parameters used for the third simulation were:  V
con
 = 14 
V and f
s
 = 900 Hz.  The fourth simulation was conducted using the following parameters:  
V
con
 = 22 V and f
s
 = 1.5 kHz.    
     PSPICE was used to verify the results from the MATLAB calculations by 
constructing a two-level PWM simulation model.  A PSPICE ABM block was used to 
compare the sinusoidal control signal and the triangular carrier wave.  A Fourier analysis 
was then performed in PSPICE on the PWM output signal of the ABM block.  The  
parameters used in the PSPICE simulations were the same as the ones used in the four 
MATLAB simulations.  
     Results of the MATLAB and PSPICE simulations are shown in Tables 2.1-2.4.  The 
results shown in Table 2.1 and Table 2.2 are for dominant carrier frequency and sideband 
harmonics.  Because the results shown in Table 2.3 and Table 2.4 are for simulations 
conducted in the overmodulation region, all harmonics up to the 31
st
 harmonic were 
included.  The harmonic number of individual sidebands can be found using the 
following formula [27]: 
qpmh
f
?=                                                                                                                  (2.19) 
where p and q are integers.  When p is odd, sideband harmonics exist only for even 
values of q.  When p is even, sideband harmonics exist only for odd values of q.  The use 
of (2.19) is not required when applying the method of pulse pairs and is provided here as  
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TABLE 2.1 
MATLAB AND PSPICE RESULTS FOR m
a
=0.3 and m
f 
=9  
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 81.03 80.999 0.031 -0.030 0.0006 0.03049
7 9.395 9.3652 0.0298 90.190 90.0002 0.1898
9 324.9 324.9511 0.0511 89.910 90.0001 0.0901
11 9.362 9.3652 0.0032 89.980 90.0077 0.0277
25 24.18 24.1504 0.0296 -90.130 269.9971 0.1271
27 64.07 64.1064 0.0364 -90.260 -89.9995 0.2605
29 24.17 24.1504 0.0196 -90.370 269.9822 0.3522
35 49.96 49.9735 0.0135 179.600 180.0004 0.4004
37 49.98 49.9735 0.0065 -0.382 0.0057 0.388
41 4.187 4.1754 0.0116 83.030 83.7006 0.6706
43 29.14 29.1326 0.0074 89.620 89.9774 0.3574
45 1.728 1.7524 0.0244 90.210 89.9252 0.2848
53 22.92 22.9487 0.0287 -0.556 0.002 0.5578
55 22.93 22.9487 0.0187 179.600 180.1294 0.5294
57 15.95 15.942 0.008 -177.400 183.3271 0.7271
 
 
TABLE 2.2  
MATLAB AND PSPICE RESULTS FOR m
a
=0.6 and m
f 
=15  
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 162 161.9981 0.0019 0.003 0.0013 0.001369
13 35.38 35.4205 0.0405 89.830 89.9971 0.1671
15 271.5 271.5686 0.0686 89.850 90.0002 0.1502
17 35.45 35.4205 0.0295 89.790 90.0056 0.2156
27 19.1 19.1058 0.0058 -0.394 -0.0128 0.3815
29 99.99 99.947 0.043 -0.306 -0.0033 0.303
31 99.93 99.947 0.017 179.700 180.0033 0.3033
33 19.17 19.1058 0.0642 179.7 180.0125 0.3125
41 12.63 12.606 0.024 -90.72 269.9957 0.7157
43 54.94 54.9466 0.0066 -90.45 269.9967 0.4467
45 22.52 22.4717 0.0483 89.62 89.9978 0.3778
47 54.9 54.9466 0.0466 -90.47 -89.9949 0.4751
49 12.57 12.6061 0.0361 -90.77 -89.9948 0.7752
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TABLE 2.3 
MATLAB AND PSPICE RESULTS FOR m
a
=1.4 and m
f 
=15 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 311.8 311.8012 0.0012 -0.239 -0.2342 0.0047
3 39.2 39.2488 0.0488 3.519 3.5087 0.0103
5 8.765 8.7275 0.0375 176.100 176.1209 0.0209
7 7.559 7.5407 0.0183 -132.400 227.4985 0.1015
9 4.01 4.0148 0.0048 33.060 33.788 0.728
11 37.26 37.2808 0.0208 87.700 87.8266 0.1266
13 83.63 83.6026 0.0274 91.390 91.5182 0.1282
15 105.4 105.3281 0.0719 89.820 89.9667 0.1467
17 83.65 83.6208 0.0292 88.310 88.4674 0.1574
19 37.29 37.2907 0.0007 92.430 92.5775 0.1475
21 3.731 3.7163 0.0147 143.900 143.55 0.35
23 12.49 12.51 0.02 -26.680 -26.3705 0.3095
25 35.1 35.0952 0.0048 0.798 1.0319 0.2341
27 43.54 43.5175 0.0225 2.872 3.131 0.259
29 20.07 20.0505 0.0195 -4.290 -3.9921 0.2979
31 20.02 20.0147 0.0053 -176.800 183.4837 0.2837
 
TABLE 2.4 
MATLAB AND PSPICE RESULTS FOR m
a
=2.2 and m
f
 =25  
 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 331.5 331.5119 0.0119 -0.187 -0.1964 0.0091
3 80.94 80.8832 0.0568 0.163 0.1361 0.0273
5 21.78 21.7184 0.0616 4.276 4.2415 0.0345
7 2.064 2.0923 0.0283 130.800 131.7061 0.9061
9 7.324 7.3304 0.0064 -176.100 183.8417 0.0583
11 5.917 5.8938 0.0232 -146.200 213.9363 0.1363
13 4.024 4.0355 0.0115 -96.410 264.1293 0.5393
15 2.304 2.3063 0.0023 10.570 9.7675 0.8025
17 11.69 11.6474 0.0426 79.240 79.4863 0.2463
19 27.94 27.9149 0.0251 89.070 89.3683 0.2983
21 45.75 45.7661 0.0161 91.260 91.5431 0.2831
23 59.53 59.573 0.043 90.930 91.2003 0.2703
25 64.71 64.7653 0.0553 89.700 89.9511 0.2511
27 59.55 59.5887 0.0387 88.470 88.7123 0.2423
29 45.77 45.7829 0.0129 88.230 88.4476 0.2176
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an aid in determining sideband harmonic numbers for the example simulations shown in 
Tables 2.1-2.4.  Most techniques that use the double Fourier series approach must include 
a term in the final PWM output voltage expression dedicated to calculating sideband 
harmonics that requires (2.19).  The harmonic spectrum of a PWM inverter output 
voltage waveform with  m
a 
=1.0 and m
f 
=25 is shown in Figure 2.8 for the first 80 
harmonics.  The white bars on the graph in Figure 2.8 are PSPICE results and the gray 
bars on the graph are results from the derived equations that were coded in MATLAB.    
 The harmonic components found using the equations coded in MATLAB are similar 
to the ones found using the PSPICE model as illustrated by the results in the tables and 
Figure 2.8.  These results show that the method of pulse pairs is an accurate method used 
to find the harmonic components of a two-level PWM inverter output waveform.        
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Figure 2.8:  Harmonic Spectrum with m
a
=1.0 and m
f
 =25. 
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2.1.2     The Three-Level PWM Inverter 
     In a three-level PWM inverter with sinusoidal modulation, a control signal at a desired 
output frequency is compared with a multi-level triangular waveform as shown in Figure 
2.9.  The control signal shown in Figure 2.9 can be expressed the same as (2.1).  It should 
be noted that the carrier signal in Figure 2.9 is a different carrier signal than the one used 
for the two-level case in Figure 2.1.  Therefore, a new notation for the carrier waveform 
is needed.  The triangular waveform in Figure 2.9 will be referred to as v
carrier
 and the 
amplitude of the carrier waveform will be denoted as V
car
.  The amplitude modulation 
ratio is defined as: 
car
con
a
V
V
m =  .                                                                                                                   (2.20) 
The frequency modulation ratio is defined the same as in (2.4). 
     If the variables listed in (2.1, 2.2, 2.4, and 2.20) are known, the output PWM signal 
can be produced by comparing the waveforms shown in Figure 2.9.  The switches in 
Figure 2.2 are controlled based on the following conditions:  v
control
<v
tri
: T
A-
 is closed, 
v
control
<-v
tri
: T
B+
 is closed, v
control
>v
tri
:  T
A+
 is closed, and when v
control
>-v
tri
: T
B-
 is closed.  
It should be noted that V
tri
 is the upper half of the carrier waveform and -V
tri
  is the lower 
half of the carrier waveform in Figure 2.9.  Referring to Figure 2.2, when T
A+
 and T
B-
 are 
closed, the value of the output PMW signal is +V
i
.  When T
A-
 and T
B+
 are closed in 
Figure 2.2, the value of the output PWM signal is -V
i
.  When T
A+
 and T
B+ 
are closed or 
when T
A-
 and T
B- 
are closed, the value of the output PWM signal is zero.  A three-level 
PWM output waveform such as the one shown in Figure 2.10 can also be generated by 
comparing a triangular carrier waveform with a sinusoidal control signal and the negative  
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Figure 2.9:  Carrier Waveform and Control Signal. 
 
 
 
 
 
Figure 2.10:  Three-Level PWM Output Waveform. 
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of the sinusoidal control signal as described in [27].  This alternative method of 
generating a three-level PWM output signal is shown in Figure 2.11.   
 
 
Figure 2.11:  Three-Level PWM Alternative Method. 
2.1.2.1    Harmonic Analysis of the Three-Level Inverter Using the Method of Pulse Pairs    
      A technique can be found to calculate the harmonic components of the PWM 
waveform shown in Figure 2.10 that is simple and easy to implement in a computer 
software package such as MATLAB.  It can be observed that the waveform in Figure 
2.10 is made up of multiple positive pulse pairs.  This waveform also possesses half-wave 
symmetry.  This means that for each positive pulse during the first half of the period of  
 33
the PWM signal, there is a corresponding negative pulse in the second half of the PWM 
signal period.  This is illustrated by the arbitrary positive pulse pair shown in Figure 2.12 
where A in the figure is the amplitude of the pulse, a
P
 is the initial time delay of the 
positive pulse, b
P
 is the pulse width of the positive pulse, and T is the period of the PWM 
waveform.       
h(t)
t
T/2 Ta
P
b
P
a
P
b
P
A
-A
 
 
Figure 2.12:  Positive Pulse Pair.  
 
     The first step in the analysis is to find the trigonometric Fourier series of the 
waveform shown in Figure 2.12.  Because it is known that the waveform in Figure 2.10 
has half-wave symmetry, the Fourier coefficient a
0
 is zero.  The trigonometric Fourier 
series of the function h(t) shown in Figure 2.12 can be expressed as: 
?
?
=
?
?
?
?
?
?
+=
oddn
n
nn
t
T
n
bt
T
n
ath
POSPOS
1
2
sin
2
cos)(
??
                                                            (2.21) 
where a
n
POS
 
and b
n
POS
 are the Fourier coefficients of the positive pulse pair.  The 
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coefficients a
n
POS
 and b
n
POS
 
can be found using (2.6-2.11).  The Fourier coefficients can 
then be substituted into (2.21) and the trigonometric Fourier series of the waveform h(t) 
is established.   
     Because the Fourier series of an arbitrary positive pulse pair has been established in 
(2.21), the Fourier series of a given PWM signal produced by three-level modulation can 
be found by application of the principle of superposition.  A PWM waveform like the one  
in Figure 2.10 is made up of the sum of positive pulse pairs as shown in Figure 2.13 
where P1-P3 in the figure are positive pulse pairs.  All that is required to find the Fourier 
series of the signal in Figure 2.13 is to find the Fourier coefficients of each individual 
positive pulse pair contained in the PWM signal and add them to get the Fourier 
coefficients of the entire PWM signal.  The total a
n
 and b
n
 coefficients of the entire PWM 
signal can be found using (2.8) and (2.11) as follows: 
()
??
?
==
=
oddn
n
K
j
nn
P
j
POS
aa
11
,                                                                                                      (2.22) 
()
??
?
==
=
oddn
n
K
j
nn
P
j
POS
bb
11
,                                                                                                      (2.23) 
where K
P
 is the number of positive pulse pairs.  The Fourier series of a given PWM 
signal produced by three-level modulation can be expressed in a single cosine series as: 
?
?
?
?
?
?
+=
?
?
=
? n
oddn
n
nL
t
T
n
Dtv ?
?2
cos)(
1
3
                                                                                (2.24) 
where 
22
nnn
baD +=  and 
?
?
?
?
?
?
?
?
?=
?
n
n
n
a
b
1
tan? .  The subscript 3-L in (2.24) stands for 
three-level. 
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Figure 2.13:  PWM Output Signal with Pulse Pairs Labeled. 
 
     The final step in implementing this method is to find the crossing points of the 
waveforms shown in Figure 2.9 that determine the edges of the PWM signal pulses.  In 
order to determine the crossing points, an equation for the carrier wave in Figure 2.9 must 
be established.  The signal can be thought of as being made up of straight lines having 
alternating positive and negative slopes with shifted intercepts on the time axis in the first 
half cycle of the control signal.  To implement this idea in a computer software package, 
the carrier waveform can be expressed as: 
t
T
V
tV
s
car
carrier
?
?
?
?
?
?
?
?
=
2
),1( ,                                                                                                (2.25)  
even,;
2
),( mmVt
T
V
tmV
car
s
car
carrier
+
?
?
?
?
?
?
?
??
=                                                                  (2.26) 
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= ,                                                                (2.27) 
where m and n are index numbers used in a computer program, and T
s
 is the period of the 
triangular wave.  Because the PWM signal has half-wave symmetry, only the crossing 
points that occur in the first half of the PWM signal period need consideration when 
using the method of pulse pairs.  To find the crossing points, set v
control 
= v
carrier
 and solve 
the transcendental equation for t using MATLAB.  Special cases exist as shown in Figure 
2.14.   
 
 
Figure 2.14:  Special Case Crossing Points. 
 
2.1.2.2     Simulation Results for the Three-Level PWM Inverter 
     The equations of the control signal, the carrier waveform, and the equations used to 
implement the method of pulse pairs were coded in MATLAB for the purpose of 
computing the harmonic components of a PWM signal such as the one shown in Figure 
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2.10.  MATLAB code was also written to find the crossing points, time delays, and pulse 
widths.  Four MATLAB simulations were conducted using different values of m
a
 and m
f
.  
The following parameter values were used for all simulations:  V
i
=270 V, V
car
=10 V, and 
f
1
=60 Hz.  The other parameters used for the first simulation were as follows:  V
con
= 8V 
and f
s
=600 Hz.  The parameters used for the second MATLAB simulation were:   
V
con
=14V and f
s
=960 Hz.  The parameters used for the third simulation were:    V
con
=18 V 
and f
s
=1.2 kHz.  The fourth simulation was conducted using the following parameters: 
V
con
=22 V and f
s
=1.2 kHz.   
     PSPICE was used to verify the results from the MATLAB calculations by 
constructing a three-level PWM simulation model.  A PSPICE ABM block was used to 
compare the sinusoidal control signal and the multi-level triangular carrier wave.  A 
Fourier analysis was then performed in PSPICE on the PWM output signal of the ABM 
block.  The parameters used in the PSPICE simulations were the same as the ones used in 
the four MATLAB simulations.  
     Results of the MATLAB and PSPICE simulations are shown in Tables 2.5-2.8.  The 
results shown in these tables include all harmonics up to the 31
st
 harmonic.  The 
harmonic spectrum of a PWM inverter output voltage waveform with  m
a 
=0.9 and m
f 
=16 
is shown in Figure 2.15 for the first 61 harmonics.  The white bars on the graph in Figure 
2.15 are PSPICE results and the gray bars on the graph are results from the derived 
equations that were coded in MATLAB.   
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TABLE 2.5 
MATLAB AND PSPICE RESULTS FOR m
a
=0.8 and m
f 
=10 
 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 215.8 215.9948 0.1948 -0.012 0.0012 0.0132
7 37.59 37.6563 0.0663 179.900 179.9988 0.0988
9 84.96 84.9067 0.0533 179.900 180.0002 0.1002
11 84.46 84.382 0.078 -0.148 -0.0001 0.1477
13 32.93 32.9386 0.0086 -0.239 0.0035 0.2422
15 19.32 19.3161 0.0039 179.600 179.9957 0.3957
17 31.02 30.9192 0.1008 179.900 179.9998 0.0998
19 27.46 27.4984 0.0384 -0.304 -0.0085 0.2954
21 33.53 33.6488 0.1188 179.700 180.0046 0.3046
23 14.63 14.5081 0.1219 -0.134 0.017 0.1512
27 18.4 18.4752 0.0752 -0.200 -0.01 0.1899
29 13.18 13.2756 0.0956 179.800 180.0031 0.2031
31 4.428 4.376 0.052 179.500 179.9848 0.4848
 
 
 
 
TABLE 2.6 
MATLAB AND PSPICE RESULTS FOR m
a
=1.4 and m
f 
=16  
 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 310 310.1109 0.1109 -0.018 0.0014 0.0193
3 37.36 37.4979 0.1379 0.005 0.0012 0.0040
5 6.103 6.0378 0.0652 179.400 180.0546 0.6546
7 2.777 2.8288 0.0518 179.500 180.1123 0.6123
9 8.475 8.5533 0.0783 -179.700 180.0023 0.2977
11 32.62 32.6266 0.0066 -180.000 179.9948 0.0052
13 45.23 45.1691 0.0609 179.900 179.9989 0.0989
15 21.71 21.6852 0.0248 179.700 180.008 0.3080
17 21.85 21.7923 0.0577 -0.077 -0.0083 0.0690
19 44.53 44.445 0.085 -0.220 0.0015 0.2211
21 27.06 27.0322 0.0278 -0.288 0.0112 0.2996
23 7.486 7.4276 0.0584 179.700 179.9614 0.2614
25 22.21 22.1277 0.0823 179.600 179.9976 0.3976
27 8.243 8.2003 0.0427 179.600 180.0215 0.4215
29 9.591 9.5887 0.0023 -0.527 -0.0266 0.5003
31 6.533 6.5106 0.0224 -0.748 -0.0297 0.7187
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TABLE 2.7 
MATLAB AND PSPICE RESULTS FOR m
a
=1.8 and m
f 
=20  
 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 323.9 324.0214 0.1214 -0.001 0.0016 0.0028
3 63.97 64.1346 0.1646 0.008 0.0031 0.0044
5 7.55 7.6989 0.1489 0.131 -0.0262 0.1575
7 5.1 5.0645 0.0355 180.000 180.0812 0.0812
9 4.785 4.8727 0.0877 -179.700 180.0647 0.235
11 8.907 9.0402 0.1332 -179.700 180.0037 0.296
13 21.08 21.1577 0.0777 -180.000 179.9912 0.009
15 32.33 32.3006 0.0294 179.900 179.9946 0.0946
17 30.68 30.5728 0.1072 179.900 180.0012 0.1012
19 12.55 12.4589 0.0911 179.800 180.0195 0.2195
21 12.98 12.9781 0.0019 -0.113 -0.0196 0.0933
23 30.45 30.3457 0.1043 -0.174 -0.0013 0.1731
25 29.61 29.4787 0.1313 -0.177 0.0086 0.1854
27 13.05 12.9782 0.0718 -0.062 0.0317 0.09339
29 6.237 6.1935 0.0435 179.300 179.9469 0.6469
31 15.05 14.9172 0.1328 179.600 179.9953 0.3953
 
 
 
 
TABLE 2.8 
MATLAB AND PSPICE RESULTS FOR m
a
=2.2 and m
f 
=20  
 
Voltage Voltage Voltage Voltage
Harmonic Magnitude Magnitude ?VAngle Angle ??
Number (PSPICE) (MATLAB) (PSPICE) (MATLAB)
1 334.3 334.3343 0.0343 -0.009 0.0019 0.0114
3 87.19 87.3399 0.1499 -0.034 0.0025 0.0362
5 26.6 26.7078 0.1078 -0.081 -0.0104 0.07055
7 3.268 3.2849 0.0169 -179.800 180.1529 -0.0471
9 19.23 19.3552 0.1252 179.900 180.0165 0.1165
11 26.1 26.2223 0.1223 179.900 179.9973 0.0973
13 26.27 26.2904 0.0204 179.800 179.9883 0.1883
15 21.58 21.4839 0.0961 179.800 179.9916 0.1916
17 13.83 13.6935 0.1365 179.800 180.0146 0.2146
19 4.882 4.8219 0.0601 179.900 180.1015 0.2015
21 3.428 3.3572 0.0708 -0.465 -0.1208 0.3441
23 9.581 9.4353 0.1457 -0.284 0.0037 0.2876
25 12.7 12.5928 0.1072 -0.247 0.041 0.2877
27 12.68 12.7009 0.0209 -0.251 0.053 0.3042
29 10.12 10.2469 0.1269 -0.302 0.0378 0.3398
31 5.985 6.1173 0.1323 -0.427 -0.0196 0.407
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Figure 2.15.  Harmonic Spectrum with m
a
=0.9 and m
f 
=16. 
 
2.1.2.3     Comparison of New and Old Methods 
     A paper written in 1981 by Mazzucchelli, et al. [23] claims to have a Fourier series 
representation for the output voltage waveform of a three-level PWM inverter based on 
an extension of Bennett?s method [19] that is valid for amplitude modulation ratios 
greater than one.  The equations used to calculate the harmonic components of the output 
voltage waveform of a three-level PWM inverter from [23] were coded in MATLAB.  A 
MATLAB simulation was conducted using the three-level PWM inverter equations from 
[23] with V
i 
=270V, m
a
=1.4, and m
f 
=18. 
     A three-level PWM simulation model was constructed in PSPICE for comparison 
purposes.  A PSPICE ABM block was used to compare the sinusoidal control signal and 
the multi-level triangular carrier waveform.  A Fourier analysis was then performed in 
PSPICE on the PWM output signal of the ABM block.  The parameters used in the 
PSPICE simulation were the same as the ones used in the MATLAB simulation.   
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     The results from the MATLAB coded equations of the Bessel function method 
presented in [23] were compared with the PSPICE simulation.  The results from the 
comparison are shown in Table 2.9 for a few harmonics.  Table 2.9 shows that the 
method presented in [23] is not very accurate when used to calculate the 3
rd
, 11
th
, and 39
th
 
harmonic components.   
     A MATLAB simulation using the method of pulse pairs was conducted using the 
same parameter values that were used in the previous two simulations.  Table 2.10 shows 
the results from the method of pulse pairs compared with the PSPICE simulation.  This 
table shows that the method of pulse pairs is a more accurate method than the one 
presented in [23].  It should be noted that the PSPICE values in Tables 2.9 and 2.10 were 
assumed to be the base (or benchmark) values and the percent error was calculated as: 
%100% x
valuePSPICE
valueMATLABvaluePSPICE
error
?
= .                                                 (2.28) 
Unless otherwise noted, all percent error calculations shown in the tables in this 
dissertation will be calculated as in (2.28).   
 
TABLE 2.9 
BESSEL FUNCTION METHOD AND PSPICE RESULTS FOR m
a
=1.4 and m
f 
=18 
 
Voltage Voltage Voltage
Harmonic (Bessel Function Method) (PSPICE) ?V% Ero
Number (V) (V) (V) (% of PSPICE values)
1 311.7518 311.6 0.1518 0.05
3 34.3703 38.3 3.9297 11.43
11 11.4749 9.509 1.9659 17.13
13 34.8965 35.6 0.7035 2.02
17 20.0398 20.19 0.1502 0.75
21 43.3644 44.36 0.9956 2.30
39 7.7607 13.35 5.5893 72.02
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TABLE 2.10 
METHOD OF PULSE PAIRS AND PSPICE RESULTS FOR m
a
=1.4 and m
f 
=18 
 
Voltage Voltage Voltage
Harmonic (Method of Pulse Pairs) (PSPICE) ?V% Er
Number (V) (V) (V) (% of PSPICE values)
1 311.7425 311.6 0.1425 0.05
3 38.5205 38.3 0.2205 0.57
11 9.6195 9.509 0.1105 1.15
13 35.6043 35.6 0.0043 0.01
17 20.1429 20.19 0.0471 0.23
21 44.2791 44.36 0.0809 0.18
39 13.5071 13.35 0.1571 1.16
 
 
 
 
2.2     The Space Vector PWM Inverter 
     The analytical methods for determining the harmonic components of the output 
waveforms of a space vector PWM inverter presented in [16, 29, 36, 37] resulted in the 
appearance of Bessel functions in the final expression of the output PWM signal.  
Methods such as those presented in [16, 36] use the double Fourier series in the analysis.  
The purpose of this section is to present a method used to calculate the harmonic 
components of the output voltage waveforms of a space vector PWM inverter that is 
general and capable of being applied to various types of multilevel inverters and PWM 
schemes.  This method allows direct calculation of harmonic magnitudes and angles 
without using the double Fourier series in the analysis.  The final expression of the output 
voltage is compact, and does not contain Bessel functions.  The method presented in this 
section also has the potential to be extended to inverter-drive systems such as the one 
presented in [44]. 
 
 43
2.2.1     Carrier-Based Approach 
     Space vector modulation involves the vector decomposition of a desired voltage space 
vector into voltage vector components that can be generated using a typical six-switch, 
three-phase, voltage source inverter.  The instantaneous output voltages are determined 
by the state of the inverter switches.  Eight states are possible that correspond to the six 
possible instantaneous voltage vectors [29].  However, implementing this ?classical? 
space vector PWM approach can be a complex task to perform.  The implementation 
requires the use of Park?s transformation, sector calculations, hexagon of states, and 
vector decomposition.  A newer ?carrier-based? approach can be used to implement the 
space vector PWM as shown by different researchers in the literature [45, 46].  The 
carrier-based method is less complex, more intuitive, and easier to implement than the 
classical method and will be used to generate the space vector PWM output voltages.      
     Space vector pulse width modulation can be realized by comparing a control signal 
with a triangular carrier signal as shown in Figure 2.16.  The control signal shown in 
Figure 2.16 is the same control signal used in Mohan?s carrier-based approach [38, 39].   
The control signal shown in Figure 2.16 can be expressed as [29]:               
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Figure 2.16:  Triangular Waveform and Space Vector Control Signal. 
 
 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
???
?
?
?
?
?
?
???
?
?
?
?
?
+
??
??
???
?
?
?
?
?
?
???
?
?
?
?
?
+
??
=
??
?
?
?
?
??
?
?
?
??
?
?
???
??
?
?
?
?
??
?
?
?
??
?
?
??
2
6
11
,sin
2
3
6
11
2
3
,
6
sin
2
3
2
3
6
7
,
6
sin
2
3
6
7
,sin
2
3
6
5
,sin
2
3
6
5
2
,
6
sin
2
3
26
,
6
sin
2
3
6
0,sin
2
3
)(
ttM
ttM
ttM
ttM
ttM
ttM
ttM
ttM
tv
control
                                                   (2.29) 
 
 45
where M is the modulation index, and ? is the angular frequency.  The range of values of 
(2.29) is limited to M ?1.15.  Once the level of M =1.15 is reached, different regions of 
overmodulation are defined as described in [16].  Each region of overmodulation requires 
a different space vector modulation strategy.  Extension of space vector modulation into 
the overmodulation region above M =1.15 requires extensive computations and the use of 
look-up tables as noted in [16].  The output PWM signal can be produced by comparing 
the waveforms shown in Figure 2.16.  Referring to Figure 2.2, when v
control
 > v
triangle
, T
A+ 
and T
B- 
are closed and the value of the output PMW signal is +V
i
 (where V
i 
is the DC 
input voltage of the inverter).  When v
control
 < v
triangle
, T
A-
 and T
B+ 
are closed and the value 
of the output PWM signal becomes - V
i
.  The output PWM signal produced from 
comparing the waveforms in Figure 2.16 is shown in Figure 2.17. 
 
 
Figure 2.17:  Space Vector PWM Output Waveform. 
 
 46
2.2.2     Method of Multiple Pulses 
     The method of multiple pulses was developed due to the fact that there is a possibility 
of a loss of half-wave symmetry in the output waveform of the space vector PWM 
inverter as described in [16, 35].  A function has half-wave symmetry if it satisfies  
f(t)= - f(t-T/2).  The method of pulse pairs would fail if half-wave symmetry is lost, 
because there would not be corresponding positive and negative pulse pairs in the output 
waveform.  There is no limitation due to a loss of symmetry when the method of multiple 
pulses is used.  This method is a general method that is valid regardless of the scheme 
utilized to produce a PWM waveform.  The method of multiple pulses is less complex 
and easier to implement than other methods found in the literature.  To begin the analysis, 
it can be observed that the waveform in Figure 2.17 is made up of multiple positive and 
negative pulses.  Harmonic analysis of the PWM waveform shown in Figure 2.17 can be 
conducted by breaking up the waveform into multiple positive and negative pulses  
analyzed individually. An arbitrary positive pulse is shown in Figure 2.18 where A in the 
figure is the amplitude of the pulse, a
P
 is the initial time delay of the positive pulse, b
P
 is 
the pulse width of the positive pulse, and T is the period of the PWM waveform.  An 
arbitrary negative pulse is shown in Figure 2.19 where a
N
 is the initial time delay of the 
negative pulse and b
N
 is the pulse width of the negative pulse. 
     The first step in the analysis is to find the trigonometric Fourier series of the 
waveform shown in Figure 2.18.  The trigonometric Fourier series of the function x(t) can 
be expressed as: 
?
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Figure 2.18:  Positive Pulse. 
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Figure 2.19:  Negative Pulse. 
 
where a
0
POS
, a
n
POS 
, and b
n
POS
 are the Fourier coefficients of the positive pulse.  The 
coefficient a
0
POS
 can be found from Figure 2.18 as follows: 
?
=
T
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0
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1
,                                                                                                        (2.31) 
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The coefficient a
n
POS
 can be found from Figure 2.18 as follows: 
dtt
T
n
tx
T
a
T
n
POS ?
=
0
2
cos)(
2 ?
,                                                                                       (2.34) 
.
2
cos)(
2
dtt
T
n
A
T
a
PP
P
POS
ba
a
n
?
+
=
?
                                                                                   (2.35)     
Integrating (2.35) and using the identity )(
2
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The coefficient b
n
POS
 can be found from Figure 2.18 as follows: 
,
2
sin)(
2
0
dtt
T
n
tx
T
b
T
n
POS ?
=
?
                                                                                        (2.37) 
.
2
sin
2
dtt
T
n
A
T
b
PP
P
POS
ba
a
n
?
+
=
?
                                                                                       (2.38) 
Integrating (2.38), using the identity )(
2
1
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2
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the fact that sin(-?)= -sin(? ), (2.38) becomes: 
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Equations (2.33), (2.36), and (2.39) can now be substituted into (2.30) and the 
trigonometric Fourier series of the waveform x(t) can be established.  The trigonometric 
Fourier series of the waveform y(t) shown in Figure 2.19 is the same as the waveform x(t) 
in Figure 2.18 except that the magnitudes are the negative of each other.  The Fourier 
coefficients for y(t) are as follows: 
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where a
0
NEG
, a
n
NEG
, and b
n
NEG
 
are the Fourier coefficients of the negative pulse.  The 
trigonometric Fourier series for y(t) can be expressed in the same form as x(t) in (2.30): 
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   Because the Fourier series of arbitrary positive and negative pulses has been 
established, the Fourier series of a given PWM signal produced by space vector 
modulation can be found by application of the principle of superposition.  A PWM 
waveform like the one in Figure 2.17 is made up of the sum of positive and negative 
pulses as shown in Figure 2.20 where P1-P6 are positive pulses and N1-N5 are negative 
pulses.  All that is required to find the Fourier series of a signal like the one shown in 
Figure 2.20 is to find the Fourier coefficients of each individual positive pulse and 
negative pulse contained in the PWM signal and add them to get the Fourier coefficients  
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Figure 2.20:  PWM Output Signal with Positive and Negative Pulses Labeled. 
 
of the entire PWM signal.  The total Fourier coefficients of the entire PWM signal can be 
found using (2.33), (2.36), and (2.39-2.42) as follows: 
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where K
N
 is the number of negative pulses, and K
P
 is the number of positive pulses.  The 
Fourier series of a given PWM signal produced by space vector modulation can be 
expressed in a single-cosine series as: 
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where 
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tan? .  The subscript SV in (2.47) 
stands for space vector. 
   The final step in implementing this method is to find the crossing points of the 
waveforms shown in Figure 2.16 that determine the edges of the PWM signal pulses.  In 
order to determine the crossing points, an equation for the triangular wave in Figure 2.16 
is needed.  An expression used to represent this waveform is given in (2.18).   
2.2.3     Simulation Results for the Space Vector PWM Inverter 
     The equations of the control signal (2.29), the carrier waveform (2.18), and the 
equations used to implement the method of multiple pulses (2.33), (2.36), (2.39), (2.40-
2.42), and (2.44-2.47) were coded in MATLAB for the purpose of computing the 
harmonic components of a PWM signal such as the one shown in Figure 2.17.  MATLAB 
code was also written to find the crossing points, time delays, and pulse widths.  Four 
MATLAB simulations were conducted using different values of M and m
f
.  The 
following parameter values were used for all simulations:  V
i
 = 270 V, V
tri 
= 10 V, and f
1 
= 60 Hz.  The other parameters used for the first simulation were as follows: M=0.5 and f
s
 
= 540 Hz.  The parameters used for the second MATLAB simulation were:  M=0.866 and 
f
s
 = 540 Hz.  The parameters used for the third simulation were:  M=0.7 and f
s
 = 900 Hz.  
The fourth simulation was conducted using the following parameters:  M=0.65 and f
s
 = 
900 Hz.  
     PSPICE was used to verify the results from the MATLAB calculations by 
constructing a space vector PWM simulation model.  A PSPICE ABM block was used to 
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compare the control signal and the triangular carrier wave.  A Fourier analysis was then 
performed in PSPICE on the PWM output signal of the ABM block.  The parameters 
used in the PSPICE simulations were the same as the ones used in the four MATLAB 
simulations.  
     Results of the MATLAB and PSPICE simulations are shown in Tables 2.11-2.14.  The 
results shown in Tables 2.11-2.14 include all harmonics up to the 31
st
 harmonic.  The 
harmonic spectrum of a space vector PWM inverter output voltage waveform with  
M=1.1 and m
f 
=27 is shown in Figure 2.20 for the first 61 harmonics.  The light colored 
bars on the graph in Figure 2.21 are PSPICE results and the darker colored bars on the 
graph are results from the derived equations that were coded in MATLAB.   
TABLE 2.11 
MATLAB AND PSPICE RESULTS FOR M=0.5 and m
f 
=9 
 
Voltage Voltage Voltage Voltage
Magnitude Magnitude Angle Angle
Harmonic PSPICE MATLAB ?VPSPICEMATLAB  ??
Number (V) (V) (V) (degrees) (degrees) (degrees)
1 135 135.023 0.023 0.06184 0.0636 0.00176
3 28.2 28.156 0.044 2.501 2.4728 0.0282
5 10.26 10.2734 0.0134 90.5 90.7438 0.2438
7 15.01 14.997 0.013 90.94 91.0142 0.0742
9 290.2 290.2518 0.0518 90.59 90.6879 0.0979
11 14.69 14.7426 0.0526 84.83 84.975 0.145
13 12.47 12.4597 0.0103 62.8 62.9017 0.1017
15 24.97 24.9186 0.0514 4.298 4.4682 0.1702
17 101.3 101.2876 0.0124 1.046 1.2386 0.1926
19 101.5 101.4705 0.0295 182.2 182.3483 0.1483
21 24.68 24.6842 0.0042 194.5 194.576 0.076
23 23.31 23.2777 0.0323 256.2 256.5535 0.3535
25 30.9 30.9417 0.0417 267.66 267.9628 0.3028
27 7.847 7.832 0.015 105.3 105.5191 0.2191
29 31.75 31.7658 0.0158 261.47 261.8123 0.3423
31 27.25 27.2818 0.0318 237 237.3195 0.3195
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TABLE 2.12 
MATLAB AND PSPICE RESULTS FOR M=0.866 and m
f 
=9 
Voltage Voltage Voltage Voltage
Magnitude Magnitude Angle Angle
Harmonic PSPICE MATLAB ?VPSPICEMATLAB ??
Number (V) (V) (V) (degrees) (degrees) (degrees)
1 233.9 233.8479 0.0521 0.209 0.2088 0.0002
3 47.01 47.0461 0.0361 4.994 4.9453 0.0487
5 27.8 27.8464 0.0464 90.67 90.811 0.141
7 41.82 41.7877 0.0323 90.64 90.7053 0.0653
9 194.1 194.1243 0.0243 90.18 90.2867 0.1067
11 42.54 42.5242 0.0158 81.34 81.446 0.106
13 36.57 36.6615 0.0915 52.58 52.6732 0.0932
15 32.97 32.9496 0.0204 7.404 7.6133 0.2093
17 86.3 86.3222 0.0222 -0.635 -0.4072 0.2278
19 86.32 86.3061 0.0139 187.5 187.7082 0.2082
21 37.8 37.7688 0.0312 213.3 213.6108 0.3108
23 36.79 36.719 0.071 228.9 229.1608 0.2608
25 36.01 35.999 0.011 251.1 251.4222 0.3222
27 74.91 74.9134 0.0034 101.3 101.5967 0.2967
29 37.6 37.6243 0.0243 244.2 244.5293 0.3293
31 30.27 30.3025 0.0325 232.2 232.5469 0.3469
 
 
TABLE 2.13 
MATLAB AND PSPICE RESULTS FOR M=0.7 and m
f 
=15  
Voltage Voltage Voltage Voltage
Magnitude Magnitude Angle Angle
Harmonic PSPICE MATLAB ?VPSPICEMATLAB ??
Number (V) (V) (V) (degrees) (degrees) (degrees)
1 189 189.001 0.001 -0.02108 -0.0173 0.00378
3 38.87 38.8784 0.0084 -0.5511 -0.4735 0.0776
5 1.459 1.4856 0.0266 268.14 268.6838 0.5438
7 1.856 1.8592 0.0032 90.16 91.2928 1.1328
9 4.675 4.6945 0.0195 141.7 141.6784 0.0216
11 19.65 19.6529 0.0029 89.55 89.7153 0.1653
13 28.19 28.1499 0.0401 89.47 89.7296 0.2596
15 242.3 242.2973 0.0027 89.57 89.7477 0.1777
17 28.07 28.1285 0.0585 90.49 90.6927 0.2027
19 19.88 19.8898 0.0098 91.16 91.5545 0.3945
21 3.032 3.0604 0.0284 85.27 85.1494 0.1206
23 4.105 4.0833 0.0217 31.64 31.7633 0.1233
25 13.85 13.8198 0.0302 -9.223 -8.7861 0.4369
27 29.9 29.8562 0.0438 -1.691 -1.3571 0.3339
29 103.7 103.8003 0.1003 -0.7829 -0.4568 0.3261
31 103.8 103.768 0.032 178.8 179.1586 0.3586
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TABLE 2.14 
MATLAB AND PSPICE RESULTS FOR M=0.65 and m
f 
=15  
Voltage Voltage Voltage Voltage
Magnitude Magnitude Angle Angle
Harmonic PSPICE MATLAB ?V PSPICE MATLAB ??
Number (V) (V) (V) (degrees) (degrees) (degrees)
1 175.5 175.501 0.001 -0.008324 -0.0141 0.005776
3 36.16 36.1635 0.0035 -0.5121 -0.4455 0.0666
5 1.29 1.321 0.031 268.19 268.697 0.507
7 1.576 1.6077 0.0317 91.21 91.3396 0.1296
9 4.255 4.2918 0.0368 144.9 144.7438 0.1562
11 17.18 17.1535 0.0265 89.68 89.7168 0.0368
13 24.52 24.536 0.016 89.49 89.7247 0.2347
15 255.4 255.4661 0.0661 89.55 89.7422 0.1922
17 24.54 24.4988 0.0412 90.56 90.6821 0.1221
19 17.36 17.3766 0.0166 91.36 91.5882 0.2282
21 2.663 2.6327 0.0303 96.75 96.0965 0.6535
23 3.399 3.3937 0.0053 34.62 34.5675 0.0525
25 11.56 11.5085 0.0515 -9.882 -9.618 0.264
27 28.77 28.8084 0.0384 -1.752 -1.3321 0.4199
29 105.7 105.7049 0.0049 -0.8627 -0.4768 0.3859
31 105.7 105.6959 0.0041 178.8 179.2077 0.4077
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Figure 2.21:  Harmonic Spectrum with M=1.1 and m
f 
=27. 
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     The harmonic components found using the equations coded in MATLAB are similar 
to the ones found using the PSPICE model as illustrated by the results in the tables and 
Figure 2.21.  The method of multiple pulses is an accurate method used to find the 
harmonic components of a space vector PWM inverter output waveform as illustrated by 
the results. 
2.3     Line-to-Neutral Voltage Fourier Series Development 
     The focus of the previous sections of this chapter has been on determining the 
harmonic content of the output voltages of the sinusoidal PWM inverter and the space 
vector PWM inverter.  The methods developed were shown to be effective methods for 
determining the harmonic content of the inverter output waveforms.  However, the 
inverter output waveforms are typical waveforms produced from single-phase inverters.  
The focus of Chapter 3 and Chapter 4 will be on analyzing a three-phase, voltage source 
inverter supplying an induction motor.  A general diagram of the system is shown in 
Figure 2.22.  The purpose of this section is to develop a general Fourier series expression 
of the phase a line-neutral voltage produced from the three-phase inverter system shown 
in Figure 2.22 that can be used in the harmonic analysis of an induction motor supplied 
by a three-phase inverter.   
DC Voltage
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Figure 2.22:  Three-Phase Inverter Block Model. 
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2.3.1     The Six-Step Inverter 
     In this section, the Fourier series of the six-step voltage source inverter line-to-neutral 
voltage for both 180? and 120? conduction will be presented.  The Fourier series of the 
line-to-neutral voltage of the six-step voltage source inverter can be easily found in the 
literature [8, 47].  However, the Fourier series will be presented in this section due to the 
fact that the Fourier series of the six-step inverter will be used in analyses presented in 
Chapter 3 and 4.  It should be noted that the method of pulse pairs or the method of 
multiple pulses can be used to produce the Fourier series of the line-to-neutral voltage of 
the six-step voltage source inverter.   
2.3.1.1     120? Conduction 
     A plot of the phase a line-to-neutral voltage of the six-step inverter with 120? 
conduction is shown in Figure 2.23. The Fourier series of the six-step inverter phase a 
line-to-neutral voltage waveform with 120? conduction can be expressed as [8, 47]: 
?
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As can be seen from (2.48), harmonics exist at 16 ?= kh  for ...,3,2,1=k .  The other  
phase voltages can be found by substituting ??
3
2
?t  and ??
3
2
+t  into (2.48) in place 
of ?.   
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Figure 2.23:  Six-Step Phase a Voltage Waveform with 120? Conduction.      
2.3.1.2     180? Conduction 
     A plot of the phase a voltage of the six-step inverter with 180? conduction is shown in 
Figure 2.24.  The Fourier series of the basic six-step inverter representing the phase a 
voltage during normal, balanced operation with 180? conduction can be expressed as  
[8, 47]:  
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It is easy to recognize from (2.49) that harmonics exist at 16 ?= kh  for ...,3,2,1=k   
The other phase voltages can be found by substituting ??
3
2
?t  and ??
3
2
+t  into (2.49) 
in place of ?.   
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Figure 2.24:  Six-Step Phase a Voltage Waveform with 180? Conduction. 
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2.3.2     Two-Level Sinusoidal PWM Inverter  
     When the motor in Figure 2.22 is supplied from a three-phase two-level sinusoidal 
PWM inverter, the line-to-negative DC bus voltage waveforms (the negative DC bus is 
denoted with an N in Figure 2.22) produced under balanced operating conditions for 
m
a
=1.4 and m
f 
=15 can be produced by comparing the three sinusoidal control signals 
shifted 120? from each other with a triangular carrier waveform as illustrated in Figure 
2.25.  The resulting line-to-negative DC bus voltage waveforms are shown in Figure 
2.26.  A harmonic analysis can be conducted on these waveforms by using the method of 
multiple pulses that was discussed in Section 2.2.2.  As can be observed from Figure 
2.26, the waveforms shown can be broken up into multiple positive pulses as shown in 
Figure 2.27 and analyzed individually as in Section 2.2.2.  The equation of the triangular 
carrier waveform used to find the crossing points is the same as in (2.18).  It should be 
noted that the waveform in Figure 2.26 will contain a DC component.  The Fourier series 
of the phase a line-to-negative DC bus voltage produced by two-level sinusoidal 
modulation can be expressed as: 
?
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     The trigonometric Fourier series of the line-to-negative DC bus voltage has now been 
established in (2.50).  However, a trigonometric Fourier series representation of the phase  
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Figure 2.25:  Three-Phase Sinusoidal PWM Control Signals and Carrier Waveform. 
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Figure 2.26:  Line-to-Negative DC Bus Voltage Waveforms. 
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Figure 2.27:  Waveform v
aN
(t) with Pulses Labeled. 
 
a line-to-neutral voltage of the system shown in Figure 2.22 is needed.  The phase a line-
to-neutral voltage waveform for this system while supplied by a two-level sinusoidal 
PWM inverter is shown in Figure 2.28.  Before beginning to develop a Fourier series 
representation of the line-to-neutral voltage, it is appropriate to first look at the harmonic 
spectrums of the phase a line-to-negative DC bus voltage and the phase a line-to-neutral 
voltage by creating the waveforms in MATLAB and using the FFT command to produce 
the harmonic spectrums.  The harmonic spectrum of the phase a line-to-negative DC bus 
voltage is shown in Figure 2.29 and the harmonic spectrum of the phase a line-to-neutral 
voltage is shown in Figure 2.30.  It can be observed from Figure 2.29 and Figure 2.30 
that the magnitudes of the harmonics and the harmonic content of each voltage waveform 
is the same except that the line-to-neutral voltage does not contain a DC component nor 
any zero-sequence harmonics (triplen harmonics).  For maximum cancellation of 
dominant harmonics in the line voltages of a three-phase inverter, m
f
  should always be 
odd and a multiple of three [27].  The results from the comparison of the harmonic  
 62
 
Figure 2.28:  Phase a Line-to-Neutral Voltage Produced using MATLAB. 
 
Figure 2.29:  Harmonic Spectrum of the Phase a Line-to-Negative DC Bus Voltage. 
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Figure 2.30:  Harmonic Spectrum of the Phase a Line-to-Neutral Voltage.  
 
spectrums can be proven mathematically by first considering some basic three-phase 
relationships for the system shown in Figure 2.22.  The inverter line-to-neutral voltages 
can be expressed as [27]:     
)()()( tvtvtv
sNaNas
?= ,                                                                                                (2.51) 
)()()( tvtvtv
sNbNbs
?= ,                                                                                                (2.52) 
)()()( tvtvtv
sNcNcs
?= .                                                                                                 (2.53) 
The following condition for the inverter voltages must hold under balanced conditions 
[27]: 
0)()()( =++ tvtvtv
csbsas
.                                                                                            (2.46) 
The following relationship can be obtained by substituting (2.51-2.53) into (2.54): 
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By substituting (2.54) into (2.50), the phase a line-to-neutral voltage can be expressed as:  
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Using (2.56) it is easy to prove that no DC component exists in the phase a line-to-neutral 
voltage by considering the DC component of each line-to-negative DC bus voltage: 
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As can be seen from (2.58), no DC component exists in the line-to-neutral voltage.  It can 
also be shown that the magnitudes of the harmonic components in the harmonic spectrum 
of the line-to-neutral voltages are the same as the magnitudes of the line-to-negative DC 
bus voltages.  This can be accomplished by considering a balanced set of fundamental 
line-to-negative DC bus voltages: 
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These voltages can be substituted into (2.56) as follows: 
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Using the trigonometric identity ( ) ?????? sinsincoscoscos m=? , (2.62) can be 
written as: 
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The result in (2.64) matches (2.59), verifying that the harmonic spectrums of the phase a 
line-to-neutral and the line-to-negative DC bus voltages are the same excluding the 
triplen harmonics and the DC component.  Perhaps the most important result is to show 
that the triplen harmonics are not present in the line-to-neutral voltages.  To prove this, 
consider the following balanced set of 3
rd
 harmonic voltages: 
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The voltages in (2.65-2.67) can be substituted into (2.56) as follows: 
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The trigonometric identity ( ) ?????? sinsincoscoscos m=?  can be used to express 
(2.68) as:   
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The result in (2.71) proves that no zero-sequence (or triplen) harmonics exist in the line-
to-neutral voltages.  No zero-sequence current can flow in an ungrounded wye circuit 
under balanced or unbalanced conditions.  At this point, the expression in (2.50) can be 
modified to produce a Fourier series representation for the phase a line-to-neutral voltage 
waveform shown in Figure 2.28 as: 
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     The equation used to calculate the Fourier series of the phase a line-to-negative DC 
bus voltage produced by two-level sinusoidal modulation (2.50) and the equation used to 
calculate the Fourier series of the phase a line-to-neutral voltage produced by two-level 
sinusoidal modulation (2.72) were both coded in MATLAB for the purpose of computing 
the harmonic content of each waveform for a given set of parameter values.  The 
equations of the control signal, the carrier waveform, and the equations used to 
implement the method of multiple pulses were also coded in MATLAB.  The following 
parameter values were used for the simulation:  V
i
 = 270 V, V
tri 
= 10 V,  V
con
 = 14 V,  f
1 
= 
60 Hz, and f
s
 = 900 Hz.   
   PSPICE was used to verify the results from the MATLAB calculations by constructing 
a two-level sinusoidal PWM inverter simulation model using PSPICE ABM blocks.  A 
Fourier analysis was then performed in PSPICE on the phase a line-to-negative DC bus 
voltage and the phase a line-to-neutral voltage.  The parameters used in the PSPICE 
simulations were the same as the ones used in the MATLAB simulation.   
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   Results of the MATLAB and PSPICE simulations are shown in Tables 2.15 and 2.16.   
The harmonic components found using the equations coded in MATLAB are similar to 
the ones found using the PSPICE model as illustrated by the results in Tables 2.15 and 
2.16.  Based on these results, (2.50) and (2.72) are correct and the method of multiple 
pulses is an accurate method used to find the harmonic components of the voltage 
waveforms produced by a two-level sinusoidal PWM inverter.  
 
 
 
TABLE 2.15 
LINE-TO-NEGATIVE DC BUS VOLTAGE COMPONENTS FOR m
a
=1.4 and m
f 
=15  
 
 V
aN
V
aN
V
aN
V
aN
Magnitude Magnitude ?V Angle Angle ??
Harmonic PSPICE MATLAB PSPICE MATLAB
Number (Volts) (Volts) (Volts) (degrees) (degrees) (degrees)
DC 134.8817 134.9002 0.0185  
1 155.9 155.9006 0.0006 -0.239 -0.2342 0.0047
3 19.6 19.6244 0.0244 3.519 3.5087 0.0103
5 4.3825 4.36375 0.01875 176.100 176.1209 0.0209
7 3.7795 3.77035 0.00915 -132.400 -132.5015 0.1015
9 2.005 2.0074 0.0024 33.060 33.788 0.728
11 18.63 18.6404 0.0104 87.700 87.8266 0.1266
13 41.815 41.8013 0.0137 91.390 91.5182 0.1282
15 52.7 52.66405 0.03595 89.820 89.9667 0.1467
17 41.825 41.8104 0.0146 88.310 88.4674 0.1574
19 18.645 18.64535 0.00035 92.430 92.5775 0.1475
21 1.8655 1.85815 0.00735 143.900 143.55 0.35
23 6.245 6.255 0.01 -26.680 -26.3705 0.3095
25 17.55 17.5476 0.0024 0.798 1.0319 0.2341
27 21.77 21.75875 0.01125 2.872 3.131 0.259
29 10.035 10.02525 0.00975 -4.290 -3.9921 0.2979
31 10.01 10.00735 0.00265 -176.800 -176.5163 0.2837
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TABLE 2.16 
LINE-TO-NEUTRAL VOLTAGE COMPONENTS FOR m
a
=1.4 and m
f 
=15  
 
V
as
V
as
V
as
V
as
Magnitude Magnitude ?VAngleAngle ??
Harmonic PSPICE MATLAB PSPICE MATLAB
Number (V) (V) (V) (degrees) (degrees) (degrees)
DC
1 155.9 155.9006 0.0006 -0.239 -0.2342 0.0047
3
5 4.3825 4.36375 0.01875 176.100 176.1209 0.0209
7 3.7795 3.77035 0.00915 -132.400 -132.5015 0.1015
9
11 18.63 18.6404 0.0104 87.700 87.8266 0.1266
13 41.815 41.8013 0.0137 91.390 91.5182 0.1282
15
17 41.825 41.8104 0.0146 88.310 88.4674 0.1574
19 18.645 18.64535 0.00035 92.430 92.5775 0.1475
21
23 6.245 6.255 0.01 -26.680 -26.3705 0.3095
25 17.55 17.5476 0.0024 0.798 1.0319 0.2341
27
29 10.035 10.02525 0.00975 -4.290 -3.9921 0.2979
31 10.01 10.00735 0.00265 -176.800 -176.5163 0.2837
 
 
2.3.3     The Space Vector PWM Inverter 
     When the motor in Figure 2.22 is supplied from a three-phase space vector PWM 
inverter, the line-to-negative DC bus voltage waveforms produced under balanced 
operating conditions can be produced by comparing the three space vector control signals 
shifted 120? from each other with a triangular carrier waveform as illustrated in Figure 
2.31.  The resulting line-to-negative DC bus voltage waveforms are shown in Figure 
2.32.  The phase a line-to-neutral voltage waveform produced by the system in Figure 
2.22 while supplied by a space vector PWM inverter is shown in Figure 2.33.  It can be 
observed by comparing Figure 2.26 and Figure 2.28 with Figure 2.32 and Figure 2.33 that 
the waveforms are similar and the method of multiple pulses presented in Section 2.3.1  
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Figure 2.31:  Space Vector PWM Control Signals and Carrier Waveform. 
 
Figure 2.32:  Line-to-Negative DC Bus Voltage Waveforms. 
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Figure 2.33:  Phase a Line-to-Neutral Voltage Waveform. 
 
can be used.  The equation of the triangular waveform used to find the crossing points is 
the same as the one in (2.18) and the equation of the space vector control signal is given 
in (2.29).  Using the method of multiple pulses from Section 2.3.1, the Fourier series of 
the phase a line-to-negative DC bus voltage produced by space vector modulation can be 
expressed as:   
?
?
?
?
?
?
++=
?
?
=
n
n
naN
t
T
n
CCtv ?
?2
cos)(
1
0
                                                                            (2.73) 
where 
00
aC = , 
22
nnn
baC += , and 
?
?
?
?
?
?
?
?
?=
?
n
n
n
a
b
1
tan? .      
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Because mf should be selected to be odd and a multiple of three, in order to cancel 
dominant harmonics [27], no triplen harmonics will appear in the line voltages.  
Therefore, the Fourier series of the phase a line-to-negative DC bus voltage of the space 
vector PWM inverter can be expressed as: 
?
?
?
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?
+=
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=
n
k
kn
n
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n
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cos)(
,...3,2,1
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                                                                                  (2.74) 
where 
22
nnn
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b
1
tan? .       
     The Fourier series in (2.73) and (2.74) were both coded in MATLAB for the purpose 
of computing the harmonic content of the phase a line-to-negative DC bus voltage and 
the phase a line-to-neutral voltage produced by space vector modulation for a given set of 
parameter values.  The equations of the space vector control signal, the carrier waveform, 
and the equations used to implement the method of multiple pulses were also coded in 
MATLAB.  The following parameter values were used for the simulation:  V
i
 = 270 V, 
M=0.7,  f
1 
= 60 Hz, and f
s
 = 900 Hz.   
   PSPICE was used to verify the results from the MATLAB calculations by constructing 
a space vector PWM inverter simulation model using PSPICE ABM blocks.  A Fourier 
analysis was then performed in PSPICE on the phase a line-to-negative DC bus voltage 
and the phase a line-to-neutral voltage.  The parameters used in the PSPICE simulations 
were the same as the ones used in the MATLAB simulation.   
   Results of the MATLAB and PSPICE simulations are shown in Tables 2.17 and 2.18.   
The harmonic components found using the equations coded in MATLAB are similar to 
the ones found using the PSPICE model as illustrated by the results in Tables 2.17 and 
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2.18.  These results show that (2.73) and (2.74) are valid and that the method of multiple 
pulses is an accurate method used to find the harmonic components of the voltage 
waveforms produced by a space vector PWM inverter.  
 
 
 
 
 
 
TABLE 2.17 
LINE-TO-NEGATIVE DC BUS VOLTAGE COMPONENTS FOR M=0.7 and m
f 
=15  
 
 V
aN
V
aN
V
aN
V
aN
Magnitude Magnitude ?VAngleAngle ??
Harmonic PSPICE Matlab (PSPICE) (Matlab)
Number (V) (V) (V) (degrees) (degrees) (degrees)
DC 134.7298 134.7314 0.0016  
1 94.49 94.5005 0.0008 -0.021 -0.0173 0.00378
3 19.44 19.4392 0.0132 -0.551 -0.4735 0.0776
5 0.7296 0.7428 0.0018 -91.860 -91.3162 0.5438
7 0.9278 0.9296 0.00925 90.160 91.2928 1.1328
9 2.338 2.34725 0.00055 141.700 141.6784 0.0216
11 9.827 9.82645 0.02505 89.550 89.7153 0.1653
13 14.1 14.07495 0.05135 89.470 89.7296 0.2596
15 121.2 121.14865 0.02425 89.570 89.7477 0.1777
17 14.04 14.06425 0.0039 90.490 90.6927 0.2027
19 9.941 9.9449 0.0142 91.160 91.5545 0.3945
21 1.516 1.5302 0.01035 85.270 85.1494 0.1206
23 2.052 2.04165 0.0131 31.640 31.7633 0.1233
25 6.923 6.9099 0.0219 -9.223 -8.7861 0.4369
27 14.95 14.9281 0.03015 -1.691 -1.3571 0.3339
29 51.87 51.90015 0.026 -0.783 -0.4568 0.3261
31 51.91 51.884 0.026 178.800 179.1586 0.3586
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TABLE 2.18 
LINE-TO-NEUTRAL VOLTAGE COMPONENTS FOR M=0.7 and m
f 
=15  
 
V
as
V
as
V
as
V
as
Magnitude Magnitude ?VAngleAngle ??
Harmonic PSPICE Matlab (PSPICE) (Matlab)
Number (V) (V) (V) (degrees) (degrees) (degrees)
DC
1 94.49 94.5005 0.0105 -0.021 -0.0173 0.00378
3
5 0.7296 0.7428 0.0132 -91.860 -91.3162 0.5438
7 0.9278 0.9296 0.0018 90.160 91.2928 1.1328
9
11 9.827 9.82645 0.00055 89.550 89.7153 0.1653
13 14.1 14.07495 0.02505 89.470 89.7296 0.2596
15
17 14.04 14.06425 0.02425 90.490 90.6927 0.2027
19 9.941 9.9449 0.0039 91.160 91.5545 0.3945
21
23 2.052 2.04165 0.01035 31.640 31.7633 0.1233
25 6.923 6.9099 0.0131 -9.223 -8.7861 0.4369
27
29 51.87 51.90015 0.03015 -0.783 -0.4568 0.3261
31 51.91 51.884 0.026 178.800 179.1586 0.3586
 
 
2.4     Summary 
     Two methods for finding the harmonic components of the output voltage of sinusoidal 
PWM inverters and space vector PWM inverters were presented in this chapter.  The 
method of pulse pairs was the first method discussed.  This method was shown to be 
applicable to different multilevel inverter types such as the two-level sinusoidal PWM 
inverter and the three-level sinusoidal PWM inverter.  The method allowed direct 
calculation of harmonic magnitudes and angles without having to use linear 
approximations, iterative procedures, look-up tables, or Bessel functions.  The main 
limitation of the method of pulse pairs is the possibility of a loss of symmetry in the 
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output voltage waveform of the inverter.  To rectify this problem, the method of multiple 
pulses was developed.  This method is entirely general and has the potential to be used to 
analyze the harmonic content of inverter output waveforms produced by various types of 
multilevel inverters and PWM schemes.  There is no limitation of the method of multiple 
pulses due to loss of symmetry or the harmonic content of the inverter output voltage 
waveform.  The line-to-neutral voltage Fourier series of the six-step, two-level sinusoidal 
PWM, and space vector PWM inverters were presented.  The method of multiple pulses 
can be used to determine the harmonic content of the line-to-neutral voltages of all of the 
voltage source inverter types studied, including the space vector PWM inverter.  This 
method will be utilized during MATLAB simulations conducted in Chapters 3 and 4.   
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CHAPTER 3 
THE INVERTER-FED INDUCTION MOTOR 
 
     The focus of this chapter is on the inverter-fed induction motor.  A steady-state 
harmonic model of the induction motor operating under balanced conditions is presented.  
The harmonic model is based on the T-type equivalent circuit of the induction motor, and 
is capable of being used to analyze induction motors supplied from nonsinusoidal 
sources.  A simplified model of an inverter-fed induction motor that is based on the 
steady-state T-type equivalent circuit of the motor and the input-output relationships of 
the voltage source inverter is presented.  A V-I load characteristic curve that allows the 
inverter, motor, and load to be replaced by a current-controlled voltage source is 
established.  MATLAB and PSPICE simulation results are presented in order to validate 
the use of the simplified model.   
3.1     Induction Motor Equivalent Circuit 
     All analysis and simulation in this dissertation are based on the steady-state T-type 
equivalent circuit model of the induction motor [40], shown in Figure 3.1a (note:  all 
quantities have been reflected to the stator).   This model is the positive-sequence 
equivalent circuit of the induction motor where balanced three-phase operation is 
assumed.  
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Figure 3.1:  (a)  Induction Motor T-Type Equivalent Circuit; (b)  Thevenin Equivalent  
                   of (a). 
 
     Thevenin?s theorem can be used to transform the network to the left of points a and b 
in Fig. 3.1a into an equivalent voltage source 
a
V
1
 in series with an equivalent impedance 
R
e1
+jX
e1
 as shown in Figure 4.1b.  The equivalent source voltage can be expressed as 
[40]: 
)(
11
11
m
m
a
XXjR
jX
VV
++
=                                                                                               (3.1) 
where 
1
V  is the stator positive-sequence line-to-neutral voltage, X
m
 is the magnetizing 
reactance, R
1
 is the stator resistance, and X
1
 is the stator leakage reactance.  The 
Thevenin-equivalent stator impedance is: 
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11
11
111
XXjR
jXRjX
jXRZ
m
m
eee
++
+
=+= .                                                                          (3.2)  
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From the Thevenin-equivalent circuit of Figure 3.1 (b), the magnitude of the rotor current 
referred to the stator is: 
2
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)( XX
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++
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?
?
?
?
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=                                                                                 (3.3) 
where R
2
 is the rotor resistance, X
2
 is the rotor leakage reactance, and s
1
 is the 
fundamental slip.   
     The internal mechanical power developed by the motor can be expressed as [40]:  
1
1
2
2
2
1
s
s
RmIP
d
?
=                                                                                                           (3.4) 
where m is the number of stator phases.  The internal power (3.4) can also be written as: 
sed
sTP ?)1(
1
?=                                                                                                             (3.5) 
where T
e
 is the internal electromagnetic torque (N-m), and ?
s
 is the synchronous angular 
velocity (rad/s).  The synchronous angular velocity is given as: 
P
f
s
?
?
4
=                                                                  (3.6) 
where f is the excitation frequency and P is the number of poles.  Substituting (3.5) into 
(3.4) and solving for T
e
 yields an expression for the electromagnetic torque as follows: 
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Substituting (3.3) into (3.7) yields: 
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Equation (3.8) can be rearranged and solved in terms of the slip as follows: 
A
ACBB
s
2
4
2
1
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where
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The torque and rotor speed are related by [48]: 
Lrm
r
e
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JT ++= ?
? 22
                                                                                      (3.10)    
where J is the inertia of the rotor and the connected load, ?
r
 is the angular velocity of the 
rotor, B
m
 is the damping coefficient associated with the rotational system of the machine 
and mechanical load, and T
L
 is the load torque.  The coefficient B
m
 is typically small and 
often neglected.  Some simplifications of (3.10) can be made when considering the 
steady-state operation of the induction motor [48].  The speed is constant during steady-
state operation and the acceleration is zero.  Using these simplifications and the fact that 
B
m
 can be neglected, (3.10) becomes: 
Le
TT =                                                                                                                          (3.11) 
during steady-state operation.  Substituting (3.11) into (3.9) produces an equation for the 
slip in terms of variables that are generally known.   
     The total impedance looking into the circuit of Figure 3.1 (a) is: 
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The magnitude of the stator current can now be found using the following formula: 
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1
1
1
Z
V
I = .                                                                                                                       (3.13) 
The power factor can be found by taking the cosine of the angle from (3.12). 
     The equations developed in (3.1-3.13) are valid for the steady-state analysis of the 
induction motor under balanced operating conditions when the motor is supplied from a 
pure sinusoidal source.  These equations can easily be modified to perform a harmonic 
analysis on an induction motor when supplied from a nonsinusoidal source.  It is 
necessary to account for the k
th
 harmonic number in (3.1-3.13) and define the slip for 
both positive and negative sequence harmonics.  It should be noted that the frequency 
dependence of the motor resistances will be ignored in all analyses in this dissertation.  
Ignoring the frequency dependence of the resistances is a typical practice [8, 27, 40, and  
43] that produces reasonable results for the practicing electrical engineer.  For the 
interested researcher, a paper that investigates the frequency dependence of the rotor 
resistance of an inverter-fed induction motor can be found in [49].   
     The equivalent source voltage for the k
th
 harmonic can be determined by examining 
Figure 3.2 and using Thevenin?s theorem: 
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where 
k
V  is the k
th
  harmonic stator line-to-neutral voltage.  The k
th
 harmonic Thevenin-
equivalent stator impedance is:  
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The magnitude of the rotor current referred to the stator for the k
th
 harmonic is: 
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Figure 3.2:  (a)  Induction Motor Harmonic Equivalent Circuit; (b)  Thevenin  
                            Equivalent of (a). 
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where s
k
 is the k
th
 harmonic slip.  The internal mechanical power developed by the 
motor can be expressed as: 
k
k
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The internal power (3.17) can also be written as: 
sked
sTP
kk
?)1( ?= .                                                                                                      (3.18) 
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Substituting (3.18) into (3.17) and solving for T
ek
 yields an expression for the k
th
 
harmonic electromagnetic torque as follows:  
ks
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The positive torque in (3.19) is produced by positive-sequence harmonics and the 
negative torque in (3.19) is produced by negative-sequence harmonics [8].  Substituting 
(3.16) into (3.19) yields: 
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     The total impedance looking into the circuit of Figure 3.2a is: 
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The magnitude of the stator current for the k
th
 harmonic can now be found using the 
following formula: 
k
k
Z
V
I
k
1
1
= .                                                                                                                    (3.22) 
     The positive-sequence harmonic equivalent circuit of the induction motor used for 
analysis and simulation purposes is shown in Figure 3.3, where k
p
 is the positive-
sequence harmonic number and s
k
P
 is the slip for the 
th
p
k  positive-sequence harmonic,  
which may be calculated using (3.23): 
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The negative-sequence harmonic equivalent circuit is shown in Figure 3.4, where 
n
k is 
the negative-sequence harmonic number and s
k
n
is the slip for the 
th
n
k  negative-sequence 
harmonic, which may be calculated using (3.24): 
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Figure 3.3.  Positive-Sequence Harmonic Equivalent Circuit. 
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Figure 3.4.  Negative-Sequence Harmonic Equivalent Circuit. 
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3.2     Verification of Induction Motor Harmonic Model  
     The equations of the induction motor based on the circuits shown in Figure 3.1 and 
Figure 3.2 were coded in MATLAB along with the six-step inverter output voltage 
Fourier series.  A harmonic analysis was performed on a 50 HP, 3-phase induction motor 
with parameters listed in Table 3.1 using MATLAB.  Results from a harmonic analysis of 
the induction motor operating at a speed of 1748.9 rpm while supplied by a six-step 
voltage source inverter with 180? conduction and a DC input voltage to the inverter of 
V
i
=461V are shown in Table 3.2.  This table also shows results from an EMAP 
simulation [50] for the same motor and operating conditions.  Table 3.3 compares the 
results of the two simulations by showing the differences and percent errors between 
MATLAB analysis and EMAP.  The EMAP values in Table 3.2 were assumed to be the 
base (or benchmark) values and the percent error listed in Table 3.3 was calculated as: 
%100% x
valueEMAP
valueMATLABvalueEMAP
error
?
= .                                                    (3.25) 
From Table 3.2 and Table 3.3, it can be observed that the MATLAB code produces 
results that are comparable to EMAP.  The MATLAB code can be used in the analysis of 
an induction motor supplied by nonsinusoidal voltages.   
3.3     Motor-Drive System Model 
    The proposed motor-drive system to be analyzed is shown in Figure 3.5.  This figure 
shows a DC source connected to an inverter driving a three-phase induction motor with a  
load attached.  In  Figure 3.5, V
i
 is the inverter DC input voltage and I
i
 is the inverter DC 
input current. 
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TABLE 3.1 
50 HP, 3-phase, Induction Motor Parameters 
 
f = 60 Hz
number of poles = 4
R
1 
= 0.087?
R
2 
= 0.228?
X
1 
= 0.302 ?
X
2 
= 0.302 ?
X
m 
= 13.08 ?
J = 1.662 kg-m
2
Machine Ratings:
V
L-L
= 460V
Rated Speed = 1710 rpm
Rated Torque = 200 N-m
 
Note:  All quantities in Table 3.1 have been reflected to the stator. 
 
 
 
 
 
TABLE 3.2 
MATLAB AND EMAP SIX-STEP INVERTER RESULTS 
 
V
as
I
a
V
as
I
a
 (V)  (A)  (V) (A)
Harmonic Slip (RMS) (RMS) Slip (RMS) (RMS)
 Number (EMAP) (EMAP) (EMAP) (Matlab Code) (Matlab Code) (Matlab Code)
1 0.0284 207.53 29.75 0.0284 207.52 29.75
5 1.1943 41.52 13.85 1.1943 41.51 13.83
7 0.8612 29.66 7.07 0.8612 29.65 7.07
11 1.0883 18.89 2.87 1.0883 18.87 2.87
13 0.9253 16 2.06 0.9253 15.96 2.06
17 1.0572 12.25 1.21 1.0572 12.21 1.2
19 0.9489 10.97 0.97 0.9489 10.92 0.96
23 1.0422 9.08 0.66 1.0422 9.02 0.66
25 0.9611 8.37 0.56 0.9611 8.3 0.56
29 1.0335 7.23 0.42 1.0335 7.16 0.413
31 0.9687 6.78 0.37 0.9687 6.69 0.362
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TABLE 3.3 
DIFFERENCES AND PERCENT ERRORS 
 
Slip V
as
I
a
Harmonic ?Vas ?I
a
% error % error % error 
 Number ?Slip (V) (A) (% of EMAP) (% of EMAP) (% of EMAP)
1 0 0.01 0 0 0.00 0.00
5 0 0.01 0.02 0 0.02 0.14
7 0 0.01 0 0 0.03 0.00
11 0 0.02 0 0 0.11 0.00
13 0 0.04 0 0 0.25 0.00
17 0 0.04 0.01 0 0.33 0.83
19 0 0.05 0.01 0 0.46 1.03
23 0 0.06 0 0 0.66 0.00
25 0 0.07 0 0 0.84 0.00
29 0 0.07 0.007 0 0.97 1.67
31 0 0.09 0.008 0 1.33 2.16
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Figure 3.5.  Motor-Drive System Model. 
 
     It is possible to develop a simplified model of the system shown in Figure 3.5 using 
the induction motor equivalent circuits and a power balance at the input and output 
terminals of the voltage source inverter.  If a value of V
i
 is assumed at the input terminals 
of the inverter in Figure 3.5, a corresponding voltage value on the output side of the 
inverter can be found using a power balance as follows: 
kkk
k
ii
IVIV ?cos
2
3
1
?
?
=
=                                                                                                  (3.26) 
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where V
k
 is the k
th
 harmonic stator line-to-neutral voltage and I
k
 is the k
th
 harmonic stator 
current.  Power inverters used in practical applications are not 100% efficient and inverter 
losses would need to be included in a power balance.  However, it should be noted that 
all inverters analyzed in this dissertation are assumed to be ideal inverters that are 100% 
efficient and (3.26) applies.   
     Assuming a value of V
i
 at the input terminals of the inverter will allow the line-to-
neutral voltage at the input terminals of the induction motor to be found regardless of the 
PWM scheme employed in the inverter.  The induction motor can be analyzed from 
knowledge of the line-to-neutral voltage and the load torque (or the line-to-neutral 
voltage and the motor speed) using the standard equations of the induction motor (3.1-
3.24).  Once the harmonic analysis of the induction motor has been completed for an 
assumed value of V
i
, the corresponding value of the DC input current I
i
 can be found 
from (3.26). 
      For any value of V
i
 in Figure 3.5, a corresponding value of I
i
 can be found from (3.26) 
using the process described in the previous paragraph.  If this process is continually 
repeated, a V-I load characteristic curve can be generated at the input terminals of the 
inverter in Figure 3.5.  For a six-step inverter, PSPICE and MATLAB simulations have 
shown that the resulting V-I load characteristic curve has the following form: 
cbIaIIV
iii
++=
2
)(                                                                                                     (3.27) 
where a, b, and c are constants determined using the polyfit command in MATLAB 
which fits a curve to the generated V-I data.  To illustrate why a quadratic was used to 
curve fit the generated V-I data, the equations of the induction motor and six-step inverter 
(180? conduction) relationships were coded in MATLAB for the purpose of simulating 
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the system shown in Figure 3.5.  The source voltage of Figure 3.5 was varied over a 
range of 478V-577V with all other parameters remaining unchanged.  The motor used in 
the simulation was a 50 Hp, three-phase induction motor having parameters as listed in 
Table 3.1.  A graph of the generated V-I data is shown in Figure 3.6.  The data was 
initially fit with a linear curve in Excel as shown in Figure 3.7.  Excel calculates an R
2
 
value when a curve fit is performed.  The R
2
 value is the square of the correlation 
coefficient.  The correlation coefficient provides a measure of the reliability of the curve 
fit.  The closer the R
2
 value is to 1, the better the curve fit.  The R
2
 value for the linear 
curve fit was R
2
=0.9973.  The V-I data was then fit with a quadratic curve as shown in 
Figure 3.8.  The R
2
 value for the quadratic curve fit was R
2
=1.  The system in Figure 3.5 
can now be replaced by a current-controlled voltage source having the characteristics of 
(3.27).  The simplified model of the inverter drive system is shown in Figure 3.9.  The 
current-controlled voltage source shown in this figure represents all system components 
to the right of V
i
 (inverter, motor, and load) in Figure 3.5.   
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Figure 3.6:  V-I Data Points. 
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Figure 3.7:  Linear Curve Fit. 
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Figure 3.8:  Quadratic Curve Fit. 
3.3.1     Simplified Model Simulation Results 
     The purpose of this section is to demonstrate using PSPICE and MATLAB that the 
system shown in Figure 3.5 can be replaced by a V-I load characteristic curve that allows 
the inverter, motor, and load to be replaced by a current-controlled voltage source.   
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Figure 3.9:  Simplified System Model. 
 
Simulation results are shown for the six-step inverter (180? conduction), the two-level 
sinusoidal PWM inverter, and the space vector inverter. 
3.3.2     Six-Step Inverter Results 
     The equations of the induction motor and six-step inverter (180? conduction) 
relationships were coded in MATLAB for the purpose of simulating the system shown in   
Figure 3.5.  The source voltage of Figure 3.5 was varied over a range of 240V-480V with 
all other parameters remaining unchanged. The parameters of the motor studied were:  
R
1
=0.25?, R
2
=0.28?, X
1
=0.754?, X
2
=0.85?, X
m
=18?, J=0.1kg m
2
, P=4, and HP=5.  
Using MATLAB, the V-I characteristic found for this motor and inverter is: 
26.904526.447197.0)(
2
+?=
iii
IIIV .                                                                        (3.28) 
A plot of (3.28) is shown in Figure 3.10.  Equation (3.28) represents everything to the 
right of the inverter input voltage (V
i
 in Figure 3.5).    
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Figure 3.10: V-I Load Curve Produced From MATLAB Code. 
 
     A PSPICE model of the system shown in Figure 3.5 was simulated in order to produce 
a V-I characteristic curve.  The load applied to the motor during simulations was a pulsed 
torque load with the following characteristics:  T
L
=30N-m, T=6s, and D=2/3.  Where T is 
the pulse period and D is the duty cycle.  During PSPICE simulation tests, the source 
voltage of Figure 3.5 was varied over a range of 240V-480V with all other parameters 
remaining unchanged.  The motor parameters were the same as the ones used in the 
MATLAB analysis.  After conducting each simulation, the DC components of the 
inverter input voltage and inverter input current were recorded.  These components were 
used to produce a plot of inverter input voltage vs. inverter input current as shown in 
Figure 3.11.  The V-I load characteristic curve that resulted is as follows: 
34.899106.447089.0)(
2
+?=
iii
IIIV .                                                                          (3.29) 
     It can be seen from Figures 3.10 and 3.11 that the MATLAB code produces results 
that are similar to PSPICE.  Based on these results, there is a potential to use a V-I 
characteristic curve to represent a motor-drive load in a DC power flow analysis.   
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Figure 3.11:  V-I Load Curve Produced From PSPICE Simulations. 
 
3.3.3     Two-Level Sinusoidal PWM Inverter Simulation Results 
     The equations of the induction motor and the two-level sinusoidal PWM inverter were 
coded in MATLAB for the purpose of simulating the system shown in Figure 3.5.  The 
source voltage of Figure 3.5 was varied over a range of 401V-500V with all other 
parameters remaining unchanged. The parameters of the 50 HP, three-phase, induction 
motor used to conduct the simulation study presented in this section are listed in Table 
3.1.  Other parameters used for the simulation were:  f
1 
= 60 Hz, m
a
=1.4, m
f 
=15, and a 
constant load torque of T
L
=100 N-m.  The V-I characteristic curve that results from the 
MATLAB simulation is shown in Figure 3.12.  A quadratic curve fit of the V-I 
characteristic curve is shown in Figure 3.13.  Using the polyfit command in MATLAB, 
the following V-I characteristic can be developed for this motor and inverter: 
13003124.0)(
2
+?=
iii
IIIV .                                                                                        (3.30) 
Equation (3.30) represents everything to the right of the inverter input voltage (V
i
 in 
Figure 3.5).   As can be observed from Figure 3.13, the quadratic fit matches the original  
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Figure 3.12:  V-I Characteristic Curve for a Sinusoidal PWM Inverter with T
L
=100 N-m. 
 
Figure 3.13:  Quadratic Curve Fit for T
L
=100 N-m.  
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curve very well, which illustrates that the V-I characteristic curve of a two-level 
sinusoidal PWM inverter drive can be fit with a quadratic curve with good results.        
3.3.4     Space Vector PWM Inverter Simulation Results 
     The equations of the induction motor and the space vector PWM inverter were coded 
in MATLAB for the purpose of simulating the system shown in Figure 3.5.  The source 
voltage of Figure 3.5 was varied over a range of 401V-500V with all other parameters 
remaining unchanged. The parameters of the 50 HP, three-phase, induction motor used to 
conduct the simulation study presented in this section are listed in Table 3.1.  Other 
parameters used for the simulation were:  f
1 
= 60 Hz, M=0.7, m
f 
=15, and a constant load 
torque of T
L
=80 N-m.  The V-I characteristic curve that results from the MATLAB 
simulation is shown in Figure 3.14.  A quadratic curve fit of the V-I characteristic curve 
is shown in Figure 3.15.  Using the polyfit command in MATLAB, the V-I characteristic 
for this motor and inverter is as follows: 
13003937.0)(
2
+?=
iii
IIIV .                                                                                      (3.31) 
Equation (3.31) represents everything to the right of the inverter input voltage (V
i
 in 
Figure 3.5).   As can be observed from Figure 3.15, the quadratic fit matches the original 
curve very well.  This shows that the V-I characteristic curve of a space vector PWM 
inverter drive can be fit with a quadratic curve with good results.    
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Figure 3.14:  V-I Curve for a Space Vector PWM Inverter with T
L
=80 N-m. 
 
Figure 3.15:  Quadratic Curve Fit for T
L
=80 N-m.  
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3.4     Summary  
     A harmonic model of the induction motor operating under balanced, steady-state 
conditions was presented in this chapter.  The model that was presented was shown to be 
applicable to induction motors supplied from nonsinusoidal sources.  It was shown in this 
chapter that a motor-drive system can be represented by a simplified model.  In this 
simplified model, a V-I load characteristic curve was established that allowed the 
inverter, motor, and load to be replaced by a current-controlled voltage source.  It was 
determined through model simulations that the current-controlled voltage source should 
be a quadratic function of the inverter current.  The model was shown to be applicable to 
six-step, sinusoidal PWM, and space vector PWM inverters.  
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CHAPTER 4 
MULTIPLE MOTOR-DRIVE SYSTEMS 
 
     This chapter focuses on the analysis of a DC power system containing multiple motor-
drive loads.  An iterative procedure is presented that incorporates the simplified model 
from Chapter 3 into an algorithm used to perform a power flow analysis on a DC power 
system.  The power flow algorithm presented is verified by conducting a power flow 
analysis on a 4-bus DC power system.  The algorithm is then coded in MATLAB and 
power flow analyses are conducted on a 10-bus DC power system containing six-step 
inverter-drive loads and PWM inverter-drive loads.  PSPICE simulation results are 
compared to the MATLAB power flow results for verification purposes.  This chapter 
also includes a study conducted on an individual six-step inverter drive system that 
examines the effects on a system caused by larger line resistance values.  A system with 
higher line resistances is simulated in PSPICE and the results are used to examine the 
effects of higher line resistances on a multiple motor-drive system.  A 10-bus DC power 
system containing six-step inverter drive loads and higher line resistance values is also 
investigated.  The chapter concludes with a summary of simulation results and findings 
from the study conducted on a system containing higher line resistance values.       
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4.1     DC Power Flow 
     A DC power system containing motor-drive loads is shown in Figure 4.1.  The 
simplified model discussed in the previous chapter can be extended to a system 
containing more than one motor drive.  MATLAB can be used to produce a V-I load 
characteristic curve for each motor drive load in a DC power system that can be 
incorporated into an iterative procedure to conduct a power flow analysis.  
The network shown in Figure 4.1 can be represented as [51]: 
VGI
~~
=                                                                                                                           (4.1) 
where I
~
is the current vector (nx1), G is the network conductance matrix (nxn), V
~
is the 
bus voltage vector (nx1), and  n is the number of buses.  The system studied contains 
motor-drive loads only and each bus voltage element of V
~
(except for the swing bus) will 
be of the same form as (3.26): 
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where bus 1 was chosen as the swing bus.  Note that the currents in (4.2) are the DC 
inverter input currents of each individual motor drive load at the specified bus.  The  
conductance matrix can be formed using the following rules [52]:    
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Figure 4.1:  DC Power System Model. 
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where R
ij
 is the line resistance between bus number i and bus number j.    
     When the conductance matrix has been formed and the DC network equations placed 
in the form of (4.1), Kron reduction can be used to eliminate all non-contributing buses 
using the following formula [47]: 
kjinji
G
GG
GG
kk
kjik
ij
new
ij
?=?= ,,,..,1,, .                                                               (4.5) 
It should be noted that non-contributing buses are buses that have no external load or 
source connected.  The voltage is normally not of interest at a non-contributing bus, and 
the bus can be eliminated.  A Kron-reduced system can now be formed as follows: 
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KronKronKron
VGI
~~
=                                                                                                             (4.6) 
where 
Kron
I
~
 is an (n-m)x1 vector, G
Kron
 is an (n-m)x(n-m) matrix, 
Kron
V
~
 is an (n-m)x1 
vector, and m is the number of non-contributing buses. 
     An iterative method based on the Newton-Raphson method [51] is well suited to solve 
for the load currents, because (4.6) represents a system of simultaneous nonlinear 
algebraic equations [53].  Moving all of the variables in (4.6) to one side and setting them 
equal to zero will produce a system of (n-m) nonlinear equations in (n-m) unknowns as:      
0),...,,(
,0),...,,(
,0),...,,(
43
433
431
=
=
=
??
?
?
mnmn
mn
mn
IIIf
IIIf
IIIf
M
                                                                                                 (4.7) 
where the notation in (4.7) is based on the assumption that bus 1 is the swing bus and bus 
2 is a non-contributing bus.  In vector form, (4.7) becomes: 
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where k is the k
th
 iteration value.  The system Jacobian matrix (based on (4.7)) is: 
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The load current correction for the k
th
 iteration is: 
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The values of the new updated load currents are: 
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Once the initial estimates for the load currents are made, (4.8-4.11) can be used to 
iteratively compute the load currents of a DC power system containing motor drive loads.  
Convergence of the power flow iterations is based on the following criteria: 
 ?<?
?
??
)1()(
~~
k
mn
k
mn
II                                                                                                       (4.12) 
where ? is the convergence tolerance.  To determine convergence, each current vector 
element of the present iteration is compared to the previous iteration element value.  
When the absolute value of the difference between these elements is less than ? in (4.12), 
the currents have converged.  After the currents have converged, the individual bus 
voltages can be found using (4.2). 
4.2     Verification of the Power Flow Algorithm  
     The 4-bus system in Figure 4.2 is utilized to demonstrate that the iterative method 
described in Section 4.1 can be used to conduct power flow studies on a DC power 
system containing motor-drive loads.  Bus 1 in Figure 4.2 is the swing bus, bus 2 is a 
non-contributing bus, and bus 3 and bus 4 are load buses with motor-drive loads attached.  
The line resistances and load torques for the system are shown in Table 4.1.  The motors 
used in the system were 50 Hp motors with parameters as listed in Table 3.1.  The 
inverters used in the system in Figure 4.2 are six-step voltage source inverters with 180? 
conduction, and the swing bus in Figure 4.2 has a value of 550V.   
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Figure 4.2:  Four-Bus DC Power System. 
 
TABLE 4.1 
4-BUS SYSTEM LINE RESISTANCES AND LOAD TORQUES  
 
Load Line
Bus Torque Line Resistance
 Number (N-m) Section (?)
1
2 1 - 2 0.1
375 2 - 3 0.4
440 2 - 4 0.6
 
 
     To begin the analysis of the system in Figure 4.2, the network conductance matrix 
must be formed using the rules listed in (4.3) and (4.4).  Using these rules, the 
conductance matrix entries are: 
1.0
11
12
12
?=?=
R
G ,                                                                                                     (4.13) 
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0
3113
== GG ,                                                                                                              (4.15) 
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44
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From these results, the conductance matrix for the system in Figure 4.2 can be formed as 
follows: 
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Since bus 2 is a non-contributing bus, it can now be eliminated using the Kron reduction 
formula in (4.5).  The entries of the Kron reduced conductance matrix can be found as 
follows: 
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The Kron reduced matrix is: 
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2941.00588.27647.1
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Bus 2 has now been eliminated from (4.1), and the system can be expressed as shown in 
(4.6).  Because only the load buses are of interest in this example problem, the entire 
swing bus row of the Kron-reduced conductance matrix and the current for bus 1 can be 
removed.  This leaves only the two load bus currents to be solved for.  The new system 
can be expressed as: 
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
??
=
?
?
?
?
?
?
4
3
4
3
550
4706.12941.01765.1
2941.00588.27647.1
V
V
I
I
.                                            (4.42) 
     The loads in the system in Figure 4.2 are motor-drive loads and the voltages V
3
 and V
4
 
have the same form as the voltages shown in (4.2).  This means that the loads at buses 3 
and 4 can be replaced by current-controlled voltage sources as demonstrated in Chapter 3.  
All that is required now is to find the V-I load characteristic for each individual motor-
drive load in Figure 4.2.  MATLAB is utilized to produce the V-I characteristic curves 
for the two motor-drive loads in the system.  The equations of the induction motor and 
the six-step inverter relationships were coded in MATLAB, and all of the known 
parameters were entered.  To develop the V-I characteristic curve for the 75 N-m 
constant torque load at bus 3, the voltage at bus 3 at the inverter input terminals was 
varied over a range of 478V-577V with all other parameters remaining unchanged.  The 
V-I load characteristic curve produced is shown in Figure 4.3.  The polyfit command in  
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Figure 4.3:  V-I Characteristic Curve for T
L
=75 N-m. 
 
MATLAB was used to determine the coefficients of the quadratic curve fit of the V-I 
data.  The V-I characteristic for the motor-drive load at bus 3 was: 
663,186.6073235.0)(
3
2
333
+?= IIIV .                                                                         (4.43) 
The quadratic curve fit of Figure 4.3 is shown in Figure 4.4.  To produce the V-I 
characteristic curve for the 40 N-m constant torque load at bus 4, the voltage at the 
inverter terminals was varied over a range of 478V-577V with all other parameters 
unchanged.  The V-I load characteristic curve produced is shown in Figure 4.5.  The 
polyfit command was again used to find the coefficients of the quadratic curve fit of the 
V-I data.  The V-I characteristic for the motor-drive load at bus 4 was: 
3.767,164.1237951.2)(
4
2
444
+?= IIIV .                                                                      (4.44) 
The quadratic curve fit of Figure 4.5 is shown in Figure 4.6.  The relationships in (4.43) 
and (4.44) can be substituted back into (4.42) and put into the form of (4.9) as follows: 
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Figure 4.4:  Quadratic Curve Fit for T
L
=75 N-m. 
 
 
 
 
 
Figure 4.5:  V-I Characteristic Curve for T
L
=40 N-m. 
 107
 
 
Figure 4.6:  Quadratic Curve Fit for T
L
=40 N-m. 
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The elements of the Jacobian matrix can be found using (4.9): 
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4
4
4
?=
?
?
I
I
f
.                                                                                             (4.50) 
The Jacobian matrix can now be formed as follows: 
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?
?
?
?
?
?
?+?
+??
=
825.180221.88989.174308.0
3625.36644.12986.1240156.3
43
43
II
II
J .                                            (4.51) 
     An initial estimate can be made for the currents at buses 3 and 4.  The two load buses 
were estimated to be at 530V each based on the swing bus having a value of 550V.  The 
value of 530V was placed into (4.43) to determine the initial estimate for I
3
 as:  
3
)0(
333
2
33)0(
3
2
)(4
a
Vcabb
I
????
= ,                                                                             (4.52)     
)73235.0(2
)5301663)(73235.0(4)86.60(86.60
2
)0(
3
????
=I ,                                                (4.53) 
AI 16.28
)0(
3
= .                                                                                                              (4.54)    
The initial estimate for I
4
 was determined to be: 
)7951.2(2
)5303.1767)(7951.2(4)64.123(64.123
2
)0(
4
????
=I ,                                            (4.55) 
AI 3.15
)0(
4
= .                                                                                                                (4.56)    
It should be noted that the currents could have been arbitrarily chosen and the system 
currents would still converge.  This is due to the fact that Newton-Raphson based 
methods have a fast rate of convergence and produce accurate results unless the first 
estimates of the currents are very poor [51].  The convergence tolerance for the power 
flow analysis was selected to be ? = 0.001A.  At this point, all essential information is 
known and the iterations can now begin. 
First Iteration:    
     The initial current estimates from (4.54) and (4.56) can be substituted into (4.51) to 
find J
(0)
 as: 
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?
?
?
?
?
?
?
?
=
0437.557676.5
2093.113793.39
)0(
J .                                                                              (4.57) 
The initial current estimates from (4.54) and (4.56) can then be substituted into (4.45) to 
find f
3
(0)
(I
3
,I
4
): 
2241.7),(
43
)0(
3
?=IIf .                                                                                                 (4.58) 
The initial current estimates from (4.54) and (4.56) can be substituted into (4.46) to find 
f
4
(0)
(I
3
,I
4
) as follows:       
3435.8),(
43
)0(
4
?=IIf .                                                                                                (4.59) 
The values in (4.57), (4.58), and (4.59) can be substituted into (4.10) to find the current 
corrections as: 
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
1761.0
2336.0
)0(
4
3
I
I
.                                                                                                (4.60) 
The updated current values can be found using (4.11): 
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
=
?
?
?
?
?
?
1761.0
2336.0
3.15
16.28
)1(
4
3
I
I
,                                                                                  (4.61) 
?
?
?
?
?
?
=
?
?
?
?
?
?
A
A
I
I
1239.15
9264.27
)1(
4
3
.                                                                                                 (4.62) 
The convergence tolerance can be checked using (4.12) as follows: 
,001.0
3.151239.15
16.289264.27
<
?
?
                                                                                           (4.63) 
001.0
1761.0
2336.0
< .                                                                                                         (4.64) 
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It can be seen that the statement in (4.64) is not satisfied.  So, more iterations must be 
performed. 
Second Iteration: 
     The first iteration current values can be substituted into (4.51) to find J
(1)
 as: 
?
?
?
?
?
?
?
?
=
4914.568682.5
4988.110837.40
)1(
J .                                                                             (4.65) 
The first iteration current values from (4.62) can now be substituted into (4.45) to find 
f
3
(1)
(I
3
,I
4
) as: 
0577.0),(
43
)1(
3
=IIf .                                                                                                   (4.66) 
The first iteration current values from (4.62) can be substituted into (4.46) to find 
f
4
(1)
(I
3
,I
4
) as follows:       
1181.0),(
43
)1(
4
=IIf .                                                                                                   (4.67) 
The values in (4.65), (4.66), and (4.67) can be substituted into (4.10) to find the current 
corrections as: 
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
0023.0
0021.0
)1(
4
3
I
I
.                                                                                                    (4.68) 
The updated current values can be found using (4.11): 
?
?
?
?
?
?
+
?
?
?
?
?
?
=
?
?
?
?
?
?
0023.0
0021.0
1239.15
9264.27
)2(
4
3
I
I
,                                                                                 (4.69) 
?
?
?
?
?
?
=
?
?
?
?
?
?
A
A
I
I
1262.15
9285.27
)2(
4
3
.                                                                                                 (4.70) 
The convergence tolerance can be checked using (4.12) as follows: 
 111
,001.0
1262.151239.15
9264.279285.27
<
?
?
                                                                                       (4.71) 
001.0
0023.0
0021.0
< .                                                                                                          (4.72) 
It can be seen that the statement in (4.72) is not satisfied.  So, another iteration must be 
performed. 
Third Iteration: 
     The second iteration current values can be substituted into (4.51) to find J
(2)
 as: 
?
?
?
?
?
?
?
?
=
4725.568673.5
495.110774.40
)2(
J .                                                                               (4.73) 
The second iteration current values from (4.70) can now be substituted into (4.45) to find 
f
3
(2)
(I
3
,I
4
) as: 
000009.0),(
43
)2(
3
?=IIf .                                                                                            (4.74) 
The second iteration current values from (4.70) can be substituted into (4.46) to find  
f
4
(2)
(I
3
,I
4
) as follows:       
0305.0),(
43
)2(
4
=IIf .                                                                                                   (4.75) 
The values in (4.73), (4.74), and (4.75) can be substituted into (4.10) to find the current 
corrections as: 
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
00056.0
00016.0
)2(
4
3
I
I
.                                                                                                 (4.76) 
The updated current values can be found using (4.11): 
?
?
?
?
?
?
+
?
?
?
?
?
?
=
?
?
?
?
?
?
00056.0
00016.0
1262.15
9285.27
)3(
4
3
I
I
,                                                                               (4.77) 
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?
?
?
?
?
?
=
?
?
?
?
?
?
A
A
I
I
1268.15
9287.27
)3(
4
3
.                                                                                                 (4.78) 
The convergence tolerance can be checked using (4.12) as follows: 
,001.0
1262.151268.15
9285.279287.27
<
?
?
                                                                                       (4.79) 
001.0
0006.0
0002.0
< .                                                                                                         (4.80) 
The statement in (4.80) has now been satisfied.  Therefore, the currents have converged 
and no other iterations are necessary.  After three iterations, the currents converged to the 
following values: I
3 
=27.9287 A and I
4 
=15.1268 A.  These current values can now be 
substituted into (4.43) and (4.44) to solve for the bus voltages at buses 3 and 4 as follows: 
663,1)9287.27(86.60)9287.27(73235.0)9287.27(
2
3
+?=V ,                                    (4.81) 
,5013.534)9287.27(
3
VV =                                                                                           (4.82) 
,3.767,1)1268.15(64.123)1268.15(7951.2)1268.15(
2
4
+?=V                                    (4.83) 
VV 5974.536)1268.15(
4
= .                                                                                          (4.84) 
After three iterations, the voltages converged to the following values:  V
3 
=534.5013 V 
and V
4 
=536.5974 V.   
     For comparison purposes, the system in Figure 4.2 was simulated in PSPICE.  The 
PSPICE model of the system is shown in Figure 4.7.  Each block in Figure 4.7 contains 
an induction motor drive as shown in Figure 4.8.  The induction motor part shown in 
Figure 4.9 was developed by Dr. Michael Giesselmann [42] and used in all PSPICE 
simulations of the system in Figure 4.2 due to the accuracy of the induction motor model 
represented by the part.  The part in Figure 4.9 is only the top-level portion of the  
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PSPICE induction motor part.  All of the parameters in the PSPICE model were the same 
as the ones used for the hand calculations.  The results of the PSPICE simulation are 
shown in Table 4.2, which also lists the converged currents and voltages from the hand 
calculations.  As can be observed from the table, the results from the hand calculations 
match the PSPICE results very well.  Therefore, the iterative procedure presented in this 
section is comparable in accuracy to PSPICE, which indicates that this algorithm can be 
used to analyze multiple-bus DC power systems with reasonable results.   
 
 
 
 
 
Figure 4.7:  PSPICE 4-bus System Model. 
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Figure 4.8:  PSPICE Six-Step Motor-Drive Model. 
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Figure 4.9:  PSPICE Induction Motor Part. 
 
TABLE 4.2 
POWER FLOW RESULTS FOR THE 4-BUS SYSTEM 
Current Converged Current Voltage Converged Voltage
from Current Percent from Voltage Percent 
Bus PSPICE (Hand Calculations) ?I Error PSPICE (Hand Calculations) ?V Error
 Number (A) (A) (A) (% of PSPICE) (V) (V) (V) (% of PSPICE)
3 27.6632 27.9287 0.2655 0.9597 534.6356 534.5013 0.13430 0.025120
4 15.3282 15.1268 0.2014 1.3140 536.5039 536.5974 0.09350 0.017428
 
 
4.3  Six-Step Simulation Results for a 10-bus System 
     The algorithm presented in Section 4.2 was coded in MATLAB for the purpose of 
conducting a power flow analysis on a larger DC system such as the one shown in Figure 
4.10.  The system shown in Figure 4.10 contains ten buses.  Bus 1 is the swing bus, bus 2 
is a non-contributing bus, and buses 3-10 all have motor-drive loads attached.  The first  
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Figure 4.10:  10-bus DC Power System Model. 
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simulation of the system shown in Figure 4.10 was conducted with six-step voltage 
source inverters (180? conduction) with all of the induction motors in the system having 
the specifications listed in Table 3.1.  The swing bus voltage was chosen to be 550V, 
with all of the line resistance values and load torques for the first simulation provided in 
Table 4.3.    
     The induction motor equations, six-step inverter relationships, and the power flow 
equations were all coded in MATLAB for the purpose of simulating the system in Figure 
4.10.  The voltage at each load bus of the system in Figure 4.10 was varied over a range 
of 496V-595V with all other parameters remaining unchanged.  For comparison purposes 
and to verify the MATLAB power flow results, a PSPICE model of the DC power system 
in Figure 4.10 was constructed.  The PSPICE model of the 10-bus system is in Figure 
4.11.  All parameters used in the PSPICE model were the same as the ones in MATLAB.     
     The converged voltages and currents from the MATLAB power flow program are 
shown in Table 4.4.  The bus currents and bus voltages that resulted from the PSPICE 
simulation of the 10-bus system in Figure 4.10 are shown in Table 4.4.  It can be 
observed from Table 4.4 that the MATLAB and PSPICE values for the bus voltages and 
currents closely match each other.  This verifies that the simplified model discussed in 
Chapter 3 can be extended to a larger multiple-bus DC power system containing six-step 
voltage source inverter drive loads.         
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TABLE 4.3 
SYSTEM LINE RESISTANCES AND LOAD TORQUES  
 
Load Line
Bus Torque Line Resistance
 Number (N-m) Section (m?)
1
2 1 - 2 0.1
3 70 2 - 3 0.2
4 65 2 - 4 0.3
5 10 2 - 5 0.4
6 60 2 - 6 0.5
7 50 2 - 7 0.6
8 40 2 - 8 0.7
9 30 2 - 9 0.8
10 20 2 - 10 0.9
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Figure 4.11:  PSPICE 10-bus Power System Model. 
 
 
 
 
 120
TABLE 4.4 
POWER FLOW RESULTS FOR THE SIX-STEP INVERTER  
 
Current Converged Current Voltage Converged Voltage
from Current Percent from Voltage Percent 
Bus PSPICE (Matlab) ?I Error PSPICE (Matlab) ?VEro
 Number (A) (A) (A) (%) (V) (V) (V) (%)
3 24.9224 24.8885 0.0339 0.1359 549.9825 549.9826 0.00010 0.000018
4 23.1865 23.1518 0.0347 0.1497 549.9805 549.9806 0.00010 0.000018
5 4.2002 4.1618 0.0384 0.9141 549.9858 549.9859 0.00010 0.000018
6 21.4528 21.417 0.0358 0.1669 549.9768 549.9768 0.00000 0.000000
7 17.9889 17.9522 0.0367 0.2038 549.9767 549.9768 0.00010 0.000018
8 14.5318 14.4944 0.0374 0.2571 549.9773 549.9774 0.00010 0.000018
9 11.0815 11.0434 0.0381 0.3438 549.9786 549.9787 0.00010 0.000018
10 7.6380 7.5992 0.0388 0.5084 549.9806 549.9807 0.00010 0.000018
 
 
4.4     Two-Level Sinusoidal PWM Simulation Results 
     A simulation of the system in Figure 4.10 was conducted with two-level sinusoidal 
PWM voltage source inverters and induction motors with parameters as listed in Table 
3.1.  Bus 1 is the swing bus, bus 2 is a non-contributing bus, and the other buses are load 
buses with motor drive loads attached.  The swing bus voltage was chosen to be 550V, 
with all of the line resistance values and load torques listed in Table 4.5.  The inverter 
parameters used for all of the inverters in the system were:  f
1
=60 Hz, m
a
=1.4, and m
f 
=15.   
     The induction motor equations, the two-level PWM inverter relationships, and the 
power flow equations were all coded in MATLAB in order to simulate the system in 
Figure 4.10.  The voltage at each load bus of the system was again varied over the range 
of 496V-595V, with all other parameters in the system remaining unchanged.  For 
comparison purposes and to verify the MATLAB power flow results, a PSPICE model of 
the DC power system in Figure 4.10 was constructed.  This model was the same as the 
one in Figure 4.11 except that each block in the figure contained a two-level sinusoidal 
PWM inverter as shown in Figure 4.12.   
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TABLE 4.5 
SYSTEM LINE RESISTANCES AND LOAD TORQUES  
 
Load Line
Bus Torque Line Resistance
 Number (N-m) Section (m?)
1
21 - 210
370 2 - 320
465 2 - 430
5 100 2 - 5 40
660 2 - 650
750 2 - 760
840 2 - 870
930 2 - 980
10 80 2 - 10 90
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Figure 4.12:  PSPICE Sinusoidal PWM Motor-Drive Model. 
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     The converged voltages and currents from the MATLAB code are shown in Table 4.6.  
Simulation results from PSPICE for the bus voltages and currents are also shown in this 
table.  These results verify that the simplified model discussed in Chapter 3 can also be 
extended to a larger multiple-bus DC power system containing sinusoidal PWM inverter 
drive loads.    
 
 
TABLE 4.6 
POWER FLOW RESULTS FOR THE TWO-LEVEL SINE PWM INVERTER 
Current Converged Current Voltage Converged Voltage
from Current Percent from Voltage Percent 
Bus PSPICE (Matlab) ?I Error PSPICE (Matlab) ?VEro
 Number (A) (A) (A) (% of PSPICE) (V) (V) (V) (% of PSPICE)
3 24.6824 24.6512 0.0312 0.1262 547.7546 547.7583 0.00370 0.000675
4 22.9430 22.9104 0.0326 0.1422 547.5599 547.564 0.00410 0.000749
5 35.2968 35.253 0.0438 0.1241 546.8364 546.8412 0.00480 0.000878
6 21.2136 21.1773 0.0363 0.1710 547.1876 547.1924 0.00480 0.000877
7 17.7230 17.6864 0.0366 0.2063 547.1849 547.1901 0.00520 0.000950
8 14.2392 14.2022 0.0370 0.2595 547.2515 547.2571 0.00560 0.001023
9 10.7636 10.726 0.0376 0.3490 547.3871 547.3932 0.00610 0.001114
10 28.3157 28.2638 0.0519 0.1834 545.6998 545.7076 0.00780 0.001429
 
 
4.5     Power Flow Results for Systems with Higher Line Resistance Values 
     The focus of this section is on studying the behavior of a multiple-bus DC power 
system containing motor-drive loads when the line resistances in the system are 
increased.  To begin the study, it is of interest to first analyze a single motor-drive system 
with a small line resistance such as the one shown in Figure 4.13.  The inverter in this 
figure is a six-step voltage source inverter (180? conduction).  The motor is a 50 HP 
induction motor with parameters as listed in Table 3.1.  The source voltage is 460V, the 
line resistance is 0.1m?, and the load torque is 100 N-m.  The PSPICE model, shown in 
Figure 4.13, was simulated for the purpose of studying the system behavior with a low  
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Figure 4.13:  Six-Step Inverter System with a Low Line Resistance Value. 
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line resistance value.  The line-to-line voltage waveforms that resulted from the 
simulation are shown in Figure 4.14.  The inverter current and inverter voltage 
waveforms are shown in Figure 4.15.      
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Figure 4.14:  Line-to-Line Voltages with Low Line Resistance. 
 
 
Figure 4.15:  Inverter DC Input Current and Voltage with Low Line Resistance. 
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     The line resistance of the system in Figure 4.13 was changed to 0.3 ? as shown in 
Figure 4.16 and the system was simulated again in PSPICE to investigate the effects of 
increasing the line resistance on the behavior of the system.  The line-to-line voltage 
waveform V
ab
 that resulted from the simulation is shown in Figure 4.17.  As can be seen 
in Figure 4.17, the line-to-line voltage is beginning to deviate from the shape shown in 
Figure 4.14.  The inverter input voltage waveform that resulted from the simulation is 
shown in Figure 4.18.  It can be seen from this figure that the inverter input voltage is 
no longer a stiff DC voltage.  The inverter input current waveform is shown in Figure 
4.19.          
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Figure 4.16:  Six-Step Inverter System with a Higher Line Resistance Value. 
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Figure 4.17:  Line-to-Line Voltage (V
ab
) with a Higher Line Resistance. 
 
 
 
 
 
 
           Time
4.000s 4.002s 4.004s 4.006s 4.008s 4.010s 4.012s 4.014s 4.016s
V(Rs:2,Vs:-)
440V
450V
460V
Figure 4.18:  Inverter Input Voltage with a Higher Line Resistance. 
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Figure 4.19:  Inverter Input Current with a Higher Line Resistance. 
 
 
     A Fourier analysis was conducted as part of the PSPICE simulation on the inverter 
input current and inverter input voltage.  The results of this Fourier analysis are shown in 
Table 4.7.  It can be seen that the inverter input current and voltage are both rich in even 
harmonic content.  Harmonics with multiples of six are present in both waveforms.  It is 
obvious from these results that the distortion in the inverter input voltage will effect the 
output voltage waveforms of the inverter as shown in Figure 4.17.   
     In order to examine the effects of the presence of even harmonics on the input side of 
the inverters in a multiple-bus DC power system, the system in Figure 4.10 was modeled 
using the line resistance and load torque values listed in Table 4.8.  The PSPICE model 
was constructed the same as in Figure 4.11 except for the line resistance values.  The new 
system was also coded in MATLAB using the new line resistance values shown in Table 
4.8.  The results of the PSPICE simulation and the MATLAB power flow are shown in 
Table 4.9.  As can be seen in this table, the presence of even harmonics on the input side 
of the inverters produces some larger differences between the MATLAB and PSPICE  
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TABLE 4.7 
HARMONIC CONTENT OF INVERTER CURRENT AND VOLTAGE  
Inverter Input Inverter Input Inverter Input Inverter Input
Harmonic Voltage Voltage Harmonic Current Current
Number Magnitude Angle Number Magnitude Angle
(V) (degrees) (A) (degrees)
DC 446.8914 DC 43.69524
6 5.598 -94 1 1.557 -100.3
12 3.254 153.5 2 1.35 99.05
18 2.23 45.13 6 18.66 86
24 1.692 -62.17 8 1.107 -20.55
30 1.362 -169.2 12 10.85 -26.54
14 1.013 -127.1
18 7.434 -134.9
22 1.002 32.53
24 5.638 117.8
28 1.057 -74.12
30 4.54 10.85
 
 
 
TABLE 4.8 
SYSTEM LINE RESISTANCES AND LOAD TORQUES 
Load Line
Bus Torque Line Resistance
 Number (N-m) Section (?)
1
2 1 - 2 0.1
3 70 2 - 3 0.0009
4 65 2 - 4 0.1
5 35 2 - 5 0.15
6 60 2 - 6 0.2
7 50 2 - 7 0.25
8 40 2 - 8 0.3
9 30 2 - 9 0.35
10 25 2 - 10 0.4
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TABLE 4.9 
POWER FLOW RESULTS WITH LARGER LINE RESISTANCES  
Current Converged Current Voltage Converged Voltage
from Current Percent from Voltage Percent 
Bus PSPICE (MATLAB) ?I Error PSPICE (MATLAB) ?VEo
 Number (A) (A) (A) (% of PSPICE) (V) (V) (V) (% of PSPICE)
3 26.0388 26.0361 0.0026 0.0102 535.5256 535.7882 0.26260 0.049036
4 24.4279 24.3197 0.1082 0.4429 533.1062 533.3797 0.27350 0.051303
5 13.7282 13.3794 0.3488 2.5409 533.4898 533.8048 0.31500 0.059045
6 22.7914 22.5762 0.2152 0.9441 530.9907 531.2964 0.30570 0.057572
7 19.2409 18.9213 0.3196 1.6609 530.7388 531.0813 0.34250 0.064533
8 15.7097 15.2617 0.4480 2.8518 530.8361 531.2332 0.39710 0.074807
9 12.1906 11.6049 0.5857 4.8047 531.2823 531.7499 0.46760 0.088013
10 10.3826 9.7839 0.5987 5.7665 531.3959 531.8981 0.50220 0.094506
 
 
results.  The code written in MATLAB does not model the effects of the even harmonics, 
but PSPICE does account for the impact of even harmonics on the system.  However, it 
can be observed from Table 4.9 that the higher line resistance values and the presence of 
even harmonics on the input side of the inverter did not significantly impact the accuracy 
of the MATLAB results.  In practical applications, the line resistances in a system such as 
the one shown in Figure 4.10 are small due to the fact that the cable length between each 
drive and motor is typically less than 50 feet [54-56].  With cable lengths greater than 50 
feet, it is possible to experience a voltage wave reflection at the motor terminals up to 
two times the applied voltage [57, 58].  This effect can be shown by using transmission 
line theory [54].  The line resistances that would result from the cable requirements 
outlined in [54-56] would be in a range similar to the ones listed in Table 4.5.  In this line 
resistance range, the MATLAB code produced excellent results as can be seen in Table 
4.6. 
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4.6     Summary 
     In this chapter, an iterative procedure was presented that can be used to conduct a 
power flow analysis on a DC power system containing motor-drive loads.  It was shown 
that a V-I load characteristic curve can be developed for each motor-drive load and can 
then be incorporated into an iterative procedure to conduct a power flow analysis on a 
given system.  The power flow algorithm was verified by conducting a power flow 
analysis on a 4-bus DC power system using hand calculations.  The algorithm was coded 
in MATLAB and power flow results were presented for a 10-bus DC power system 
containing six-step voltage source inverter drive loads and a 10-bus DC power system 
containing sinusoidal PWM inverter drive loads.  PSPICE models of each system were 
built and the results were compared to the MATLAB power flow results.   
     A study was conducted on an individual six-step inverter drive system that had a 
larger line resistance value to examine the effects of higher line resistances on a multiple-
bus system.  Even harmonics were present in the inverter input voltage and current 
waveforms of the system with a higher line resistance.  However, the higher line 
resistance and the presence of even harmonics on the input side of the inverter did not 
significantly impact the accuracy of the MATLAB results.     
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CHAPTER 5 
CONCLUSIONS 
5.1     Summary 
     A simplified model of an inverter-fed induction motor has been developed to be used 
in the analysis of a DC power system containing motor-drive loads.  The model was 
based on the steady-state T-type equivalent circuit of an induction motor and the input-
output relationships of a voltage source inverter.  In the simplified model, a V-I load 
characteristic curve was established that allowed the inverter, motor, and load to be 
replaced by a current-controlled voltage source.  Power flow analyses were conducted in 
MATLAB using the simplified model and the results were comparable to PSPICE.  The 
simplified model used in the analysis of a multiple-bus DC power system by 
incorporating the V-I load curves of each motor-drive load in a particular system into a 
Newton-Raphson type iterative procedure.   
     The focus of Chapter 2 was on the harmonic analysis of different types of voltage 
source inverters.  The types of inverters analyzed in Chapter 2 included:  (1)  the six-step 
inverter, (2)  the sinusoidal PWM inverter, and (3)  the space vector PWM inverter.  Two 
methods for finding the harmonic components of the output voltage of sinusoidal PWM 
inverters and space vector PWM inverters were presented in Chapter 2.  The method of 
pulse pairs was the first method discussed.  This method was shown to be applicable to 
different multilevel inverter types such as the two-level sinusoidal PWM inverter and the 
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three-level sinusoidal PWM inverter.  The main limitation of the method of pulse pairs 
was the possibility of the loss of symmetry in the output voltage of the inverter.  In this 
scenario, there would no longer be corresponding pulse pairs.  The method of multiple 
pulses was developed to overcome this limitation.  This method was used to calculate the 
Fourier coefficients of individual positive and negative pulses of the output PWM 
waveform.  The coefficients of the individual pulses were added together using the 
principle of superposition to calculate the Fourier coefficients of the entire PWM output 
signal.   
     The final expression for the PWM output voltage can be expressed compactly in a 
single-cosine Fourier series that allows direct calculation of harmonic components and 
can easily be implemented in a computer software package such as MATLAB.  This 
method allows direct calculation of harmonic magnitudes and angles without having to 
use look-up tables, linear approximations, iterative procedures, Bessel functions, or the 
gathering of harmonic terms required by other methods.  The method of multiple pulses, 
presented in Chapter 2, is entirely general and has the potential to be used to analyze the 
harmonic content of inverter output waveforms produced by various types of multilevel 
inverters and PWM schemes.  There is no limitation to the method of multiple pulses due 
to loss of symmetry or the harmonic content of the inverter output voltage waveform.  
The method of multiple pulses can also be used to calculate the harmonic content of 
inverter waveforms produced by the six-step inverter.  This method can be extended to 
analyze other types of multilevel inverters and PWM schemes not studied in this 
dissertation.   
 135
     A harmonic model of the induction motor operating under balanced, steady-state 
conditions was presented in Chapter 3.  The model produced simulation results for an 
induction motor supplied from a nonsinusoidal source that was comparable to EMAP 
[49].  A simplified model of an inverter-fed induction motor that was based on the 
steady-state T-type equivalent circuit and the input-output relationships of the voltage 
source inverter was developed.  A V-I load characteristic curve was established that 
allowed the inverter, motor, and load to be replaced by a current-controlled voltage 
source.  The model was coded in MATLAB and compared with PSPICE simulations.  
The model was shown to be applicable to six-step, sinusoidal PWM, and space vector 
PWM inverters.  
     An iterative procedure was presented in Chapter 4 that can be used to perform a power 
flow analysis on a DC power system containing motor-drive loads.  The simplified model 
presented in Chapter 3 was shown to be applicable to the analysis of a multiple-bus DC 
power system containing motor-drive loads by forming the V-I characteristic curve of 
each motor-drive load in a given system.  The V-I load characteristic curve developed for 
each motor-drive load in a DC power system can then be incorporated into an iterative 
procedure to perform a power flow analysis on a particular system.  The power flow 
algorithm was verified by conducting a power flow analysis on a 4-bus DC power system 
using hand calculations.  The algorithm was then coded in MATLAB and power flow 
analyses were conducted on a 10-bus DC power system containing six-step inverter-drive 
loads and PWM inverter-drive loads.  PSPICE models of each system were constructed 
and simulated.  The MATLAB power flow results were found to be comparable to 
PSPICE. 
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     Chapter 4 also included a section on the impact of larger line resistance values for an  
individual six-step inverter drive system.  The system was constructed in PSPICE for 
simulation purposes.  The results of the PSPICE simulations were used to examine the 
effects of higher line resistances on a multiple-bus system.  The larger line resistance was 
shown via PSPICE simulations to produce even harmonics in the inverter input voltage 
and inverter input current waveforms.  Power flow results from simulation of a 10-bus 
DC power system containing six-step inverter drives demonstrated that the higher line 
resistance values and the presence of even harmonics in the inverter input current and 
voltage did not have a significant impact on the accuracy of results.     
5.2     Recommendations for Future Work 
     An area for future consideration is the study of the effects caused by higher line 
resistance values.  Even harmonics appear in the inverter input voltage waveform when 
the line resistances are higher.  The appearance of even harmonics in the inverter input 
voltage will affect other machine variables such as the line-to-line voltages.   
     Various researchers have developed methods for calculating the inverter input current 
of a six-step voltage source inverter [9-13 and 59].  Most of these methods use a power 
balance between the inverter input and the inverter output to establish an expression for 
the inverter current.  An instantaneous power balance between the inverter input and 
inverter output was used by some of the researchers [10, 11, and 59] to develop an 
expression for the inverter current in terms of the synchronously rotating reference frame 
currents.   
     In the methods that used instantaneous power balance [10, 11, and 59], electric 
machine reference frame transformations and the Fourier series of the six-step inverter 
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voltage waveforms were used to represent the inverter-drive system in the synchronously 
rotating reference frame.  An expression for the inverter input current was then developed 
in terms of the synchronously rotating reference frame currents.  However, the results 
presented in [10, 11, and 59] are based on the assumption that the inverter input voltage is 
a stiff DC voltage.  As noted by [59], the determination of harmonics on both the input 
and output sides of an inverter that has even harmonics present in the input voltage is a 
complex problem and normally requires a detailed computer simulation using PSPICE or 
other computer circuit simulation packages to produce accurate results.        
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