
On the influence of landscape-scale factors on stream ecosystems and 

macroinvertebrate assemblages in the southeastern USA: an examination of 

alternative statistical methods and case studies. 
 

by 

 

Brad Patrick Schneid 

 

 

 

 

A dissertation submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Doctor of Philosophy 

 

Auburn, Alabama 

August 1, 2015 

 

 

 

 

Copyright 2015 by Brad Patrick Schneid 

 

 

Approved by 

 

John W. Feminella, Chair, Professor and Chair, Department of Biological Sciences  

Christopher Anderson, Co-chair, Associate Professor, School of Forestry and Wildlife Sciences 

Ash Abebe, Associate Professor, Department of Mathematics and Statistics 

Brian Helms, Assistant Research Professor, Department of Biological Sciences 

 



ii 

 

Abstract 

The influence of land cover on stream ecosystems has increasingly been the focus of 

research in a variety of fields, including ecology, hydrology, and engineering. Human-altered 

land cover can increase overland storm runnoff and be a source of nutrients, chemicals and 

sediment to streams, which can negatively affect biota. Urbanization has been recognized as a 

particularly influential form of land cover, and low levels of urban development (e.g., suburban 

land) has become the focus of an increasing number of studies, as it is predicted to be a more 

prevalent form of land-cover change over the next century. The coastal plains of the southeastern 

US are a relatively understudied region; however, some research has indicated that these lowland 

streams may be influenced by land cover to a lesser degree than those from more frequently 

studied and higher gradient landscapes. Current trends and predictions in land-cover change and 

human population growth suggest that streams and rivers will become increasingly influenced by 

human activity. Thus, research is warranted to further investigate the influence of low levels of 

urban development on streams and how this influence may vary regionally.  

Studies on the influence of land cover on stream ecosystems are complicated by multiple 

issues, including the following: 1) experimental manipulation of whole watersheds is generally 

impractical, therefore most studies have been observational, 2) land cover is generally expressed 

as proportions; thus, land-cover classes are likely to be correlated, 3) whole-watershed 

replication is frequently low relative to the number of variables considered, thus constraining 

statistical analyses, 4) land cover is typically not the direct cause of biological degradation,  and 

5) real-world data are not ideal and anomalies (outliers) are generally present and not always 
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realized by the investigator. Some of the above issues are problematic when using traditional 

statistical methods, including ordinary least-squares (OLS) regression. Small sample sizes, 

correlated predictor variables, and outliers separately and in combination contribute to unreliable 

estimation and prediction by OLS regression. Whereas no true solution to these problems exists, 

most ecologists often do not consider alternatives that may, to some degree, address or alleviate 

these analytical challenges.         

Overall, my dissertation provides important information regarding appropriate statistical 

choices for analyzing real-world data which usually should not be assumed to conform to 

assumptional requirements of traditional methods. Nowhere are these issues more evident than in 

land-cover or ecological studies in general where small sample sizes are commonplace, predictor 

variables are frequently highly correlated, and outliers are likely present. In addition, my 

dissertation contributes to research on the influence of land cover on stream ecosystems in the 

understudied southeastern coastal plains, suggesting that impervious surface cover ≤ 11% likely 

influences hydrology and physicochemistry of streams. This information is particularly 

important because low-levels of urban development are predicted to be the most prevalent of 

land-cover change along the Gulf Coast in the foreseeable future. Last, my dissertation 

importantly highlights specific differences in macroinvertebrate taxonomic and trait composition 

that exist in lowland coastal plains versus those in highland regions. Macroinvertebrates are the 

most frequently used taxonomic group in stream biomonitoring, and my research reinforces the 

body of literature suggesting that regional bioassessment metrics are needed to accurately 

identify impairment specific to each region.                      
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Chapter 1. Introduction to the influence of land cover on streams and associated analytical 

issues.  

1.1 Introduction 

Biodiversity loss is of great global concern, with freshwater ecosystems experiencing 

rates of loss close to that of tropical forests (Ricciardi and Rasmussen 1999; Dudgeon et al. 

2006). Despite occupying <1 % of the Earth‟s surface, ~10% of all formally described species 

inhabit freshwaters, and 90% of those (~10,000 species) are invertebrates (Strayer and Dudgeon 

2010). The southeastern United States is disproportionately rich in native freshwater invertebrate 

species.  The state of Alabama alone contains 40, 43, and 60% of native U.S. aquatic insect, gill-

breathing snail, and mussel species, respectively (Lydeard and Mayden 1995; Meyer et al. 2007).  

Information regarding the status of most freshwater species is generally inadequate; however, 

losses for freshwater species are estimated to be as high as 4% per decade (Dudgeon et al. 2006).   

Exploitation, pollution, flow modification, habitat degradation, and invasive species have 

been identified as the major threats to freshwater biodiversity, each of which is linked to 

anthropogenic activity at the landscape (or finer) scale (Dudgeon et al. 2006).  Human population 

expansion created a need to alter landscapes to provide additional resources; currently at 7.25 

billion, the global human population is ~35-55 times greater than pre-agriculture populations 

(Cincotta 2011).  Landscape conversion for agricultural and urban use composes roughly one-

third of the Earth‟s surface (Cincotta and Gorenflo 2011). The size of the human population is 

expected to increase by 33% in the next 30 y (Alig et al. 2004; Cincotta and Gorenflo 2011)
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thereby likely causing additional significant landscape alteration (Cincotta 2011).  Urbanization 

(including urban sprawl) is perhaps the most pervasive form of land-use/land-cover (LULC) 

change in the southeastern US (O‟Driscoll et al. 2010), with this region predicted to have the 

greatest regional growth in population and increase in land development in coming decades 

(Xian et al. 2012).   

 Urbanization is a particularly influential form of LULC characterized by high levels of 

impervious surface cover (ISC), which directly alters catchment hydrology and increases runoff 

velocity and volume (Brabec 2002; Brown et al. 2009). The “urban stream syndrome” has been 

coined in reference to a suite of consistently observed alterations to stream ecosystems in 

urbanized watersheds (Walsh et al. 2005). Findings from recent studies suggest that the relative 

magnitude to which urban LULC influences hydrology, sediment export, physical habitat and 

aquatic organisms decreases along a gradient of decreasing topographical relief (Appalachians  > 

Piedmont  > coastal plains) (Utz et al. 2009, 2011; Utz and Hilderbrand 2011). Additional 

research is warranted, as few studies have taken place in the coastal plains relative to other 

regions in the Southeast (O‟Driscoll et al. 2010; Nagy et al. 2011).  

 Declines in diversity and richness and shifts to more tolerant benthic taxa are generally 

associated with LULC change, but exactly why this shift occurs is poorly understood. Utz et al. 

(2009) and Utz and Hilderbrand (2011) reported inter-regional differences in macroinvertebrate 

sensitivity to urban stressors and inter-regional variation in recolonization to disturbance. In their 

study, more rapid recolonization occurred in the coastal plains relative to the Piedmont, with the 

authors hypothesizing that coastal plains macroinvertebrate assemblages consist of more resistant 

and/or resilient taxa better adapted to such disturbance (Utz and Hilderbrand 2011). Ecological 

information regarding biological traits (e.g., functional, morphological) purportedly offers 
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benefits over purely taxonomic-based analyses (Culp et al. 2010), but it is not clear how 

macroinvertebrate assemblages in coastal plains streams differ from those highland (upland) 

streams in the Southeast in terms of traits that may offer resistance or resilience to LULC-related 

stressors.    

To date, most urban studies have focused on high levels of urban development 

(Cunningham et al. 2009; Chadwick et al. 2011), although more recent attention has been given 

to understand abiotic and biotic responses to lower level, suburbanization/exurban development  

(Hansen et al. 2005; Burcher and Benfield 2006). Watershed impervious cover of <10% has been 

shown to alter stream hydrologic and physicochemical conditions and lead to declines in species 

richness (Brabec 2002; Morse et al. 2003; Nagy et al. 2011; Nagy et al. 2012), although some 

studies have shown responses of assemblages to much lower urbanization levels (4.4% ISC; 

Wenger et al. 2009). Research on the potential impacts of low-level urban development is 

generally limited, so additional research is necessary to determine generalities in 

macroinvertebrate response. 

 Coastal areas worldwide are under increasing pressures from to human population growth 

and associated land development (Nagy et al. 2011). In the past 2 decades, roughly half of the 

urban LULC change along the US Gulf of Mexico has occurred within 50 km of the coast; with 

the dominant LULC change from the Florida panhandle to Louisiana has been low-intensity 

development (e.g., suburban, urban-sprawl; Xian et al. 2012). The SE region has led, and is 

predicted to lead US regions in developed LULC and population growth into 2030, and low-

density development is predicted to continue expanding along the coast of the Gulf of Mexico 

(Wear and Greis 2002; Alig et al. 2004; White et al. 2008; Xian et al. 2012); thus, there is an 
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urgent need to predict and understand impacts of low-density development on stream ecosystems 

in such rapidly growing coastal watersheds. 

Identification of mechanisms by which LULC affects stream ecosystems has become a 

priority, and is of obvious importance for prescriptive management (Allan 2004). Ordinary least-

squares (OLS) regression has traditionally been used to develop predictive or descriptive models 

elucidating potential functional relationships between response and predictor variables (Mac 

Nally 2000, 2002). In studies on the influence of LULC on stream ecosystems, land-cover data is 

generally summarized as proportions, and is therefore inherently collinear, leading to inflated 

estimation variance and complicating interpretation of statistical analyses (Allan 2004; King et 

al. 2005). Practitioners have been taught to address collinearity by manually removing one or 

more variables  (Whittingham et al. 2006; Smith et al. 2009) or use automated selection 

techniques (e.g., stepwise regression), which have been criticized and may produce spurious 

results (Murtaugh 2009). Small sample sizes (n) are also common to many land-cover studies 

and ecological research in general (Bissonette 1999; Van Sickle 2003). Estimated coefficient 

variance can be inflated by collinearity, but it also increases with decreasing n (Speed 1994; 

O'Brien 2007); thus, recommendations have been made on the number of observations relative to 

predictors (e.g., ratio of 10:1; Speed 1994; Maxwell 2000). Several alternative estimation 

methods (to standard OLS) offer a trade-off such that they might be biased, but with smaller 

estimation variance and mean squared error; however, most are generally not considered by 

ecologists (Dahlgren 2010). 

Outliers are an unfortunate reality for those dealing with real-world data; outliers often 

are notoriously difficult to detect, especially when dimensions of the data become large (Rocke 

and Woodruff 1996). Alternative statistical methods, including partial least-squares (PLS), have 
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been suggested for consideration in ecological research, but these methods (like OLS) are 

sensitive to outliers (Carrascal et al. 2009; Dahlgren 2010). Currently implemented robust PLS 

methods assume outliers occur across entire rows (Møller et al. 2005); thus, these methods work 

to identify and downweigh influences of whole observations. In ecological data, outliers may not 

be confined to existing as entire observations and can occur randomly within a dataset (Møller et 

al. 2005; Rousseeuw et al. 2006); thus, PLS methods that are robust to randomly positioned data 

outliers are needed. 

 The broad goals of my dissertation are to examine alternative statistical methods (to OLS 

regression) for use in LULC studies, and to focus on pertinent issues regarding LULC change 

and stream ecosystems in the SE, with an emphasis on the coastal plains. The primary objectives 

of my dissertation are: 1) to assess the utility of alternative regression methods for the analysis of 

highly collinear data (e.g., LULC classes) in small sample size situations; 2) to assess the 

performance of a simple modification to an alternative regression method for robust estimation 

when random outliers are present; 3) to determine if empirical evidence suggests that low-levels 

of urban development in coastal watersheds influences stream hydrology, physicochemistry 

and/or benthic macroinvertebrate assemblages; and 4) to determine if empirical evidence 

suggests that coastal plains benthic assemblages are “better” adapted to urban related stressors 

than assemblages in higher-gradient regions     

The 1
st
 chapter of my dissertation provides a brief review of the issues addressed in 

subsequent chapters. In the 2
nd

 chapter, Monte-Carlo simulations are used to compare OLS 

regression and related model selection procedures (e.g., stepwise regression) with alternative 

regression methods that included shrinkage methods (Lasso) and latent variable methods (partial 

least-squares (PLS)). My results suggest that PLS may offer more reliable coefficient estimates 
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and more accurately identify important predictors than OLS when sample sizes are extremely 

small (< 15) and predictor variables are highly correlated.  

In my 3
rd

 chapter, I examined whether empirical evidence suggested that low-levels of 

urban development influences stream hydrology, physicochemistry and/or benthic 

macroinvertebrate assemblages of small coastal streams in southern Alabama, USA. My results 

suggested that such development may lead to increased stormwater flashiness and spate 

frequency, as well as higher median water temperatures, concentrations of total suspended solids, 

and total nitrogen concentrations. Suprsingly, development did not appear to influence 

macroinvertebrate richness or sensitivity metrics, which may be more influenced by natural 

gradients in organic matter and hydrologic permanence.  

In my 4
th

 chapter, I examined the efficacy of a simple modification to the PLS algorithm 

using rank-based cross-products for regression estimation and prediction when outliers exist 

randomly in a dataset. My results indicated that rank-based PLS outperforms standard PLS when 

outliers are present and is also highly efficient compared to standard PLS when outliers are 

absent. In addition, rank-based PLS also outperformed existing “robust” PLS algorithms when 

outliers were placed randomly throughout datasets, as the existing robust algorithms assume 

outliers exist across individual observations (i.e. within rows of data).  

In my final and 5
th

 chapter, I examined the idea that macroinvertebrate assemblages in the 

southeastern US coastal plains are more resistant and/or resilient to stressors associated with 

watershed urbanization than assemblages in adjacent highland regions. This idea stemmed from 

empirical evidence suggesting that the magnitude of response by macroinvertebrates in coastal 

plains streams was lower than those in highland regions. My results suggested that coastal plains 
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assemblages may be more resistant to sedimentation and more tolerant of low dissolved oxygen 

conditions and organic pollution than highland assemblagess.  
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Chapter 2. Small sample sizes, collinear predictors and linear modeling: a simulation study 

comparing alternative methods and a case study on landscape-stream ecosystem research.  

2.1 Introduction 

Deforestation and the general alteration of watersheds can greatly influence stream 

ecosystems (Allan 2004; Walsh et al. 2005). Forested lands, specifically those directly adjacent 

to stream channels (riparian forests), often act as material sinks and natural physical filters, 

mechanistically linked to in-stream sediment conditions and nutrient concentrations (Naiman & 

Décamps 1997). Conversely, human-altered landscapes (e.g., forest conversion to agriculture or 

urban uses) act as sources of various types of pollutants (e.g., nutrients, solids) and can impede 

water infiltration, influencing stream hydrology (e.g., stormflow magnitude; Allan 2004; Walsh 

et al. 2005). Anthropogenic land-cover also is thought to indirectly affect stream biota through 

altered hydrology, physicochemical conditions and habitat (Burcher, Valett & Benfield 2007).  

In studies on the influence of land-cover on stream ecosystems, land-cover data is generally 

summarized as proportions of entire watersheds; as a result, several correlated land-cover 

categories can be associated with a response variable, complicating interpretation of statistical 

analyses (Allan 2004; King et al. 2005).    

 Cost-effective and accurate monitoring tools for predicting stream water-quality from 

remotely sensed (geographic information systems) land-cover data should have great appeal for 

land management. The identification of mechanisms by which land-cover likely affects stream 

ecosystems has become a priority, and is of obvious importance for prescriptive management 
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(Allan 2004). Historically, ordinary least-squares (OLS) regression has been used to develop 

predictive or descriptive models elucidating potential functional relationships between response 

(y) and predictor (x) variables (Mac Nally 2000, 2002; Morrice et al. 2008). Typically, true 

causal mechanisms are never known; however, it is important that statistical modeling be based 

on theoretical/proposed causal relationships to provide optimally informative models and better 

predictive performance given new data (Mac Nally, 2000; Dormann et al. 2013).   

 Simple bivariate regression/correlations can initially measure the strength of relationships 

and potential importance of a predictor variables; however, these simple analyses likely produce 

spurious results when collinearity is present (Van Sickle 2003; King et al. 2005). The goal of 

model/variable selection and an important part of statistical inference is to identify the best 

approximating model (Buckland, Burnham & Augustin 1997). All estimation methods produce 

biased parameter estimates (long-run average not equal to true value) when functionally related 

predictor variables (hereafter “functional”) are omitted; this approach is unfortunate because 

most practitioners address collinearity by removing one or more variables (Whittingham et al. 

2006; Smith et al. 2009; Dormann et al. 2013). In these situations, non-functional collinear 

predictor variables included in the final model may be allocated explanatory power attributable 

to omitted functional variables and falsely classified as “important” by the investigator (Mac 

Nally 2002). Use of partial regression/correlation coefficients can statistically control for the 

effect of additional predictor variables (Graham 2003; King et al. 2005), and in such cases 

collinearity is not generally a problem as long as all important functional variables are included 

(Smith et al. 2009; Dormann et al. 2013). Unfortunately practitioners cannot know if all the key 

functional variables have been included; therefore, if one or more correlated predictors are 
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thought to represent different processes (i.e. not mechanistically redundant) they should remain 

in the analysis (Smith et al. 2009).   

 Small sample sizes (n) are an unfortunate reality of many land-cover studies and 

ecological research in general (Bissonette 1999; Van Sickle 2003). Regardless of n and in all but 

the most extreme cases of collinearity, OLS regression models containing all influential variables 

produce unbiased, conditional (partial) parameter estimates (Farrar & Glauber 1967; Freckleton 

2002; Smith et al. 2009). Coefficient estimation variance can be inflated by collinearity, but it 

also increases with decreasing n (Speed 1994; O'Brien 2007). Small n should impose limits on 

the number of predictors used in model building (Dormann et al. 2013) and recommendations of 

the size of  final models (≥ 5:1 or 10:1, observations to predictors; Speed 1994; Maxwell 2000) 

have left some to rule out use of multiple regression with small n all together (McFarland & 

Hauck 1999). Interestingly, decreasing n does not increase chances of falsely classifying a 

predictor as important (false positive rate; set by α) in a multiple regression when all functional 

variables are included. Rather, decreasing n decreases the power to detect important relationships 

when they exist; thus, the main concern with small sample sizes is overly conservative testing 

and not spurious results (Speed 1994). 

Automated selection techniques (e.g., stepwise regression) have been criticized because 

they inherently remove thought from the model building process and may promote data dredging 

(Murtaugh 2009). An examination of all possible regression model subsets has also been 

criticized for possibly promoting dredging (Anderson, Burnham & Thompson 2000); however, a 

well-defined set of candidate models or theoretically linked variables is of extreme importance 

for the model selection process (Burnham & Anderson 2002). When an a priori variable set is 

defined, analysis of all model subsets (“all subsets”) can be a defendable method for examining 
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the relative effects of a set of predictors, generally forms the basis for model selection or multi-

model inference based on information theory (e.g., Akaike‟s Information Criterion (AIC)), and 

has been recommended for descriptive regression analyses and to avoid problems associated with 

collinear datasets (e.g., excluding variables) (Anderson, Burnham & Thompson 2000, Mac Nally 

2000; Graham 2003; Whittingham et al. 2006).  

 Realistically, there is no perfect solution for problems associated with collinear data 

(Dormann et al. 2013), but there is much interest and research on the use of alternative regression 

methods that address collinearity (Wold et al. 1984; Tibshirani 1996; Graham 2003; Chong & 

Jun 2005; Zou & Hastie 2005; Grömping 2007). Methods to avoid the negative effects of 

collinearity include model averaging with AIC, parameter estimate shrinkage methods (e.g., the 

least absolute shrinkage and selection operator (Lasso)), and latent variable modeling with partial 

least squares (PLS; Wold et al. 1984; Tibshirani 1996; Anderson et al. 2000; Dahlgren 2010).  

These alternative estimation methods (to standard OLS) offer a trade-off such that they might be 

biased, but with much smaller estimation variance (Fig. 1; Full model vs. PLS for example); 

however, most are generally not considered by ecologists (Dahlgren 2010). 

AIC quantifies the strength of evidence and was inspired by information theory as an 

estimate of the relative information lost by a model when approximating truth (Anderson, 

Burnham & Thompson 2000; Burnham, Anderson & Huyvaert 2011). AIC allows for the 

comparative ranking/weighting of a series of models representing alternative hypotheses related 

to a single response variable and has become commonly used for model selection in ecological 

studies (Anderson, Burnham & Thompson 2000; Johnson & Omland 2004). AIC is calculated as 

the sum of model fit (likelihood deviance) plus a model size (complexity) penalty: 

AIC =  −2loge(𝐿(θ |data))  +  2K,                                                                                              [1]                                              
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where loge(L(𝜃 |data)) is the maximized log-likelihood value over the unknown parameters (𝜃) of 

size K. AIC can also be easily calculated for OLS, as maximized log-likelihood is proportional to 

the residual sum of squares (Anderson, Burnham & Thompson 2000). AIC has been modified for 

finite/small sample size (n) situations (AICc) and is given by AIC + 2K(K+1)/(n-K-1) (Hurvich 

& Tsai 1989). AIC allows users to select the single “best” model (model with minimum AIC) or 

comparatively rank models using differences in AIC values (∆𝐴𝐼𝐶𝑖  = AICi – min(AIC)). The 

importance of each model can be indicated by AIC model weights, which can be used for 

averaging across models and are calculated for each of R models as: 

𝑤𝑖  =
exp −0.5∆𝐴𝐼𝐶𝑖 

 exp −0.5∆𝐴𝐼𝐶𝑖 
𝑅
1

 .                                                                              [2] 

Multi-model averaging (MMA) and inference across several models can better incorporate the 

uncertainty of model selection into the model building process (Buckland et al. 1997). MMA can 

be accomplished in two ways: 1) the “natural method”, where averaging occurs over all variable 

subsets, but ignores models where a given variable is excluded and 2) the “zero” method, where 

excluded variables in each model are assigned a zero effect (𝑏  = 0) (Grueber et al. 2011; 

Symonds & Moussalli 2011). The zero method tends to shrink coefficient estimates and has been 

suggested to reduce bias related to model selection uncertainty or collinearity (Burnham et al. 

2011; Grueber et al. 2011; Symonds & Moussalli 2011). Variable importance also can be 

assessed with AIC by summing model weights across all models for each variable separately 

(Burnham & Anderson, 2002). 

 “Alternative methods” to OLS (and associated selection criteria) generally are not used in 

ecological studies (Dahlgren 2010); therefore we provide a brief comparative summary.  Ridge 

regression (although not considered herein) is a method that penalizes the least-squares solution 

to counteract overestimation bias from collinearity by “shrinking” some coefficients close to (but 
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not) zero; therefore, it does not produce parsimonious models (Zou & Hastie 2005). Lasso 

(Tibshirani 1996) and the “elastic net” (EN; Zou & Hastie 2005) are related to ridge regression; 

both also penalize the least-squares solution but can shrink some coefficients to exactly zero, 

thus performing simultaneous variable selection. For comparison, OLS, Ridge, Lasso and EN 

aim to find a set of slope values (β; an “argument”, hence argmin below) that minimize functions 

of the model residuals (𝑦 − 𝐗𝛽): 

𝛽 𝑂𝐿𝑆  =  argmin
     𝛽

  𝑦 − 𝐗𝛽 2
2 ,                                                                                                      [3] 

𝛽 𝑅𝑖𝑑𝑔𝑒  =  argmin
     𝛽

  𝑦 − 𝐗𝛽 2
2 +  𝜆 𝛽 2

2 ,                                                                                   [4] 

𝛽 𝐿𝑎𝑠𝑠𝑜  =  argmin
     𝛽

  𝑦 − 𝐗𝛽 2
2 +  𝜆 𝛽 1 , and                                                                            [5] 

𝛽 𝐸𝑁  =  argmin
       𝛽

  𝑦 − 𝐗𝛽 2
2 + 𝜆2 𝛽 2

2 +  𝜆1 𝛽 1 ,                                                                    [6] 

where y(n, 1) is a centered response vector, X(n, p) is a scaled/centered matrix of predictor variables 

(scaling/centering not necessary for OLS),  𝑣 1 =   𝑣𝑖 𝑖  is the L1 (Taxicab) norm,  𝑣 2 =

(  𝑣𝑖
2 )

1
2 𝑖  is the L2 (Euclidean) norm, and λ, λ1, and λ2 are tuning parameters. While ridge 

regression does not discard any variables, Lasso can indiscriminately discard all but one variable 

if it belongs to a group of highly correlated variables; EN incorporates both penalty types and its 

solution lies intermediate to Ridge and Lasso, thereby discarding variables but capturing „all the 

big fish‟ (Zou & Hastie 2005; Grömping 2009). Lastly, shrinkage methods have been shown to 

outperform subset methods in small sample size situations (Dahlgren 2010).   

 Partial least-squares regression (PLS; Wold et al. 1984) is a multivariate method, related 

to principal components analysis (PCA), which has gained popularity in biological research 

because of its ability to handle large collinear datasets with n << p (Boulesteix & Strimmer 

2007). The basic assumption of PLS is that the system under investigation can be described by a 
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few underlying and unmeasured latent variables (Rosipal & Krämer 2006); PLS directly 

addresses collinear structure in a dataset through linear transformation of X to latent variables 

(projections) maximally related to variation in y (Wold, Sjöström & Eriksson 2001). The 

similarities between PCA and PLS can be seen in the construction of their latent variable 

components (PCs and Ts respectively); the k
th

 components of PCA and PLS are obtained by 

finding their respective weight vectors (w; “loadings”):   

𝑃𝐶𝐴: 𝑤𝑘  =  argmax
          𝑤 2= 1

 𝑣𝑎𝑟(𝑿𝑤) , and                                                                                           [7] 

𝑃𝐿𝑆: 𝑤𝑘  =  argmax
            𝑤 2= 1

 𝑐𝑜𝑣(𝑿𝑤, 𝑦) ,                                                                                              [8] 

which are constrained to have length equal = 1 (unit vectors).  Components (scores) of PCA and 

PLS are required to be orthogonal and are calculated as Xwk (Boulesteix and Strimmer 2007). 

PCs sequentially decrease in the total variation of X explained, whereas PLS‟s T components 

sequentially decrease with regards to their covariation with y; thus PLS seeks latent variables 

maximally related to y. Regression coefficients corresponding to the original X variables can be 

calculated as: 

𝛽 𝑃𝐿𝑆 = 𝑾𝑄′,                                                                                                                                  [9] 

where W is the matrix of PLS loadings and Q’ is a transposed vector of crossproducts between T 

(matrix of PLS scores) and y (Boulesteix and Strimmer 2007). A measure known as “variable 

importance in projection” (VIP) which can be calculated for each of j variables as: 

 𝑉𝐼𝑃𝑗 =   𝑝   𝑆𝑆𝑘 𝑤𝑘𝑗  𝑤𝑘 2
2   𝐾

𝑘=1   𝑆𝑆𝑘 
𝐾
𝑘=1                                                                      [10] 

where p = number of columns of X, k = k
th

 latent variable out of K latent variables retained, and 

SSk is the sums of squares explained by the k
th

 component (Mehmood et al. 2012). Typically VIPj 

> 1 indicates that the j
th

 variable should be retained in model selection (Mehmood et al. 2012). 

PLS has recently been suggested for use in ecological (Carrascal, Galván & Gordo 2009) and 
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land-cover studies (Shi et al. 2013; Zhang et al. 2010) and has been shown to provide reasonable 

results with small sample sizes and large p (Carrascal et al. 2009). Last, PLS is an ordination 

method, so graphics can be used to display interrelationships between X and y (Abdi 2010). 

Alternative methods and their potential benefits may not be well known to ecologists and 

therefore are generally not considered for use. Simulation studies have addressed performance of 

some methods in prediction (Dormann et al. 2013), coefficient estimation (Smith et al. 2009), 

and/or the ability to classify predictors as important/unimportant (Carrascal et al. 2009; Chong & 

Jun 2005) in collinear situations; however, no simulation studies have addressed all three with a 

focus on small sample situations. We provide brief introduction to some alternatives to OLS 

regression and compared these methods using the three performance criteria mentioned above in 

small sample size and collinear settings.   

2.2 Methods 

2.2.1 Simulation Study 

The models/methods compared in this study are summarized in Table 1. Simulation 

settings may be chosen specifically or arbitrarily, but should not be expected to represent reality; 

in this simulation study, we attempted to create variables similar to land-cover type data or 

proportional data in general.  We assumed that relationships were linear, or were made linear 

through transformations (e.g., log-linear), data generally conformed to assumptions of linear 

modeling (Montgomery et al. 2001), data were examined for common problems (e.g., no 

influential observations) and a relatively small set of variables were preselected based on 

theoretical/mechanistic assumptions (i.e. our simulation did not include large p). 

 We created simulations that spanned a range of sample sizes (n = 10 to 25, by 5) and, for 

brevity and clarity, we refrained from creating a large number of simulation settings. We created 
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an initial simulation setting of p = 3 (no. of X variables) to demonstrate the concept of omitted 

variable bias, and used a second simulation setting with p = 7 for the remainder of the study. For 

both settings, we created p-1variables using a multivariate normal random number generator 

from the R package “mvtnorm” (Genz et al. 2014), and set inter-predictor correlation levels to be 

moderately strong (simulation average |r|  0.70) (Table 2). From these variables, we adjusted 

the first two (X1 and X2) so that their minimum values were set to 0; these two variables had a 

maximum ≅ 0.30 and summed to less than one (e.g., similar to land-cover proportions). We then 

created a new variable (X3; to mimic a forest-like variable with initial 100% coverage) as X3 = 1 

– (X1 + X2 + U[0, 0.40]), where U follows a uniform distribution defined by its lower and upper 

limits. For the p=7 simulation, the remaining variables (dubbed X4-X7) were simply considered 

to be other correlated variables of theoretical interest (e.g., population density) with respect to 

the response (y). 

 For simplicity, we created y to be a function of only 2 predictors for both simulation 

settings (p = 3 & 7) as y = X1b1 + X3b3 + є, where є ~ N(0, 0.1); we refer to X1 and X3 as 

“functional predictors” herein. We selected population slope values as b1 = 1 and b3 -0.50 and the 

remaining bi (elements in vector β) are set equal 0 and referred to as “non-functional”. To assess 

predictive performance, for every iteration we created a second independent set of “test” data 

under identical conditions. Simulations settings were iterated 1000 times per setting. Collinearity 

amongst simulated predictors was assessed with bivariate Pearson‟s product-moment 

correlations and variance inflation factors (VIF) calculated for each predictor (Montgomery et 

al., 2001). We compared linear estimation methods based on several performance criteria: 

1. Parameter (slope) estimation  

 Bias𝛽 =  mean(𝛽 ) − 𝛽  
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 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛽   =  
1

𝑚
  𝛽 𝑖 −  𝑚𝑒𝑎𝑛(𝛽 ) 

2𝑚
𝑖=1 , where m is the number os simulation 

iterations 

 𝑀𝑆𝐸𝛽  =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝛽  +  𝑏𝑖𝑎𝑠
𝛽 
2 

2. Classification of predictors (important or not) based on bootstrapped confidence intervals 

(containing 0 or not) and model specific criteria (Table 1). 

 True positive rate (TPR; power, sensitivity) = % iterations each functional 

predictor was correctly classified as important 

 False positive rate (FPR; type I error, 1-specificity) = % iterations each non-

functional predictor was incorrectly classified as important 

 G = geometric mean of TPR for both functional predictors and 1-FPR for all non-

functional predictors each iteration (Chong & Jun 2005) 

3. Prediction of y with test data  

 𝑅𝑀𝑆𝐸𝑦   =   
1

𝑛.𝑡𝑒𝑠𝑡
  𝑦 𝑖 − 𝑦. 𝑡𝑒𝑠𝑡𝑖 2𝑛.𝑡𝑒𝑠𝑡

𝑖=1  

We ran the full OLS model contained all predictor variables using the lm function in the 

“stats” package in R, and AICc was calculated using the function in “MuMIn” (Bartoń 2013). 

We ran stepwise selection with AICc using a modified version of the “stepAIC” function (both 

directions) from the “MASS” package in R (Venables & Ripley 2002); this modified algorithm 

has been used in ecological research (Batáry et al. 2014; Dainese 2011) and the code is available 

online (http://wwwuser.gwdg.de/~cscherb1/stepwise.txt). We performed multimodel averaging 

(MMA) using AICc weights to calculate weighted averages for each coefficient over the models 

the variable is appears in (natural method: MMA.n) or models not containing a variable are given 
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a zero prior to averaging (zero method: MMA.z) (Burnham & Anderson 2002; Grueber et al. 

2011). 

We performed regression with Lasso using the “lars” function in the R package with the 

same name, whereas we conducted EN using the “enet” function in R package “elasticnet” (Zou 

and Hastie 2012). Final models were chosen for Lasso such that they optimized the Lasso 

shrinkage parameter (λ) and for EN based on optimization across a grid of both parameters (λ2, 

λ1; Zou & Hastie 2005). Tuning parameters for Lasso and EN were selected using AICc, 

calculated using model RSS and “effective degrees of freedom” (Zou, Hastie & Tibshirani 2007; 

Rocha & Yu 2008). Cross-validation generally is used to select tuning parameters (Li, Morris & 

Martin 2002); however, in preliminary simulation runs, we noted that AICc consistently led to 

generally more favorable results for EN (and PLS) and was less computationally expensive.  

PLS was executed using the “pls.regression” function in the R package “plsgenomics” 

(Boulesteix et al. 2012). Final models for PLS were chosen such that they optimized the number 

of latent variables retained (k) using AICc, calculated using model RSS and “effective degrees of 

freedom” (Li, Morris & Martin 2002). PLS models were created using standardized X variables, 

as PLS is sensitive to the variation among X, because latent variables are created that maximize 

the cov(y, X); coefficients were unstandardized for examination of estimation bias and 

variability. 

In practice, inference after model selection usually is based on the selected model, with 

uncertainty of model selection being rarely incorporated (Buckland, Burnham & Augustin 1997). 

Using the bootstrap, a proper method for estimating confidence intervals (CIs) would be to apply 

the model selection method to each resample (Buckland et al. 1997). To directly compare ability 

of each method to accurately classify predictors, we bootstrapped model coefficients (resampled 
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observations; 1000 iterations) and calculated CIs. While other CI methods exist, we used the 

percentile method as it is easy to calculate and more stable than the standard method because it 

does not rely on an observed statistic as a central point estimate (Efron 2013). With hard 

threshold selection methods (e.g., shrinkage and stepwise methods), some coefficients are forced 

to zero; thus there is generally some bootstrap density at zero, even when the majority of the 

mass lay elsewhere (Tibshirani 2011, as example, see Fig. 6).  As a result, we used narrower than 

traditional bootstrap confidence intervals (75%, 85%), with 85% being suggested and used with 

other model selection methods (Arnold 2010; Tibshirani & Taylor 2011). 

We also classified predictors according to “method-specific importance criteria” (MSIC, 

Table 1) that would traditionally be used with each method; for example, p-values were used for 

OLS models with thresholds of ≤ 0.05 and 0.10. For MMA with AICc, thresholds of summed 

weights (≥ 0.50 & 0.70) were used (Burnham & Anderson 2002), and variable importance in 

projection (VIP) was used for PLS (≥ 1.0 & 1.05 thresholds; Chong & Jun 2005; Mehmood et al. 

2012). For stepwise selection, the inclusion/exclusion of x-variables from the “best model” was 

used to indicate variable importance, along with non-zero/zero coefficients for Lasso and EN. A 

secondary threshold for these methods was the magnitude of their respective non-zero 

coefficients when standardized (≥ 0.05 threshold).   

2.2.2 Case Study 

 We included data from a study on the influence of land-cover on nitrate concentrations in 

small wadeable streams along the coast of the Gulf of Mexico. In this unpublished study, thirteen 

non-tidally influenced stream reaches were selected, centered on the town of Foley, Baldwin 

County, Alabama, USA (30.4056° N, 87.6815° W). ArcGIS and ArcHydro (Environmental 

Research Systems Institute, Inc., Redland, California) were used to classify land-cover and 
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delineate sub-catchments upstream of sampling reaches. A few land-cover categories that could 

be directly linked to in-stream conditions were considered and included % ISC, % agriculture 

(Ag), and % riparian forest buffer (FB, 100 m width; Allan 2004; Burcher, Valett & Benfield 

2007). The selected stream sites varied in terms of other characteristics including watershed area, 

stream order, and median stream discharge ranged from 112-2481 ha, 1st-2nd order, and 0.04-

0.61 m
3
s

-1
 at these sites (respectively). However, these watershed size factors were not related to 

nitrate and not considered further for this simple demonstration. On approximately ten dates over 

a 1.5 year period, base flow water samples were collected from each site. Concentrations of 

nitrate ([N03
−]; mg L

-1
) were determined by an independent lab using standard procedures (Rice 

& Association 2012) and we used median [N03
−] as our response variable. 

 A “global validation” of adherence to model assumptions was performed (H0: 

assumptions of normality, homoscedasticity, uncorrelatedness and normality of residuals all 

hold) (Peña & Slate 2006) with the R package gvlma (Peña & Slate 2014), along with standard 

graphical analyses (e.g., QQ-plots) of residuals (Montgomery et al. 2001). Collinearity between 

land-cover categories was assessed with simple correlations and variance inflation factors (VIF). 

To simplify discussion, we refer to slope coefficient estimates as “significant” (different from 

zero) if their confidence interval (90 %, unless stated otherwise) does not contain zero. All 

analyses were performed in R-language (R Core Team 2013) and utilized the base packages and 

packages previously mentioned. 

2.3 Results 

2.3.1 Omitted-variable bias 

Our simulation study with three X variables (n = 15 and 20) showed strong correlation 

structure between predictor variables (|r| > 0.67; nearly identical to those in Table 2) and average 
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VIF values were 3.59, 3.61, and 5.35, respectively. Models that included both functional 

variables (1 and 3) were virtually unbiased (simulation average 𝑏   true b) for all slope 

coefficients, including for the non-functional variable (e.g., 𝑏 2  0) in the full model. Large 

differences in average 𝑏 s were observed between either OLS models 1 or 3 and any other model, 

as functional variable(s) were excluded and retained variables are bias (note arrows, Table 3). 

For example, X1 estimates (n=15) varied from 0.996 in the full model (1) to 1.507 in the model 

that excluded X3 (note: 𝑏 3 = -0.506 for model 1; Table 3).  Further, simulation false positive rates 

were higher than designated by α (0.10 in this example) in cases where functional variables 

where excluded (model 6), and low true positive rates (statistical power) was observed in the 

more parameterized true (3) and full (1) models. The correct model (3) had the smallest average 

AICc value; however, this model was chosen as “best” (ΔAICc = 0) only 17- 42% percent of the 

time, depending on n (n = 15 or 20; Table 3). Model 3 had a ΔAICc < 2 or < 4 a much greater 

proportion of the time (44-74% and 94-96%, respectively) (Table 3).   

2.3.2 Simulation Study 

Strongly correlated data were simulated and average |r| ranged from 0.57 to 0.81 (Table 

2). The full OLS model was virtually unbiased (mean value  true value) in coefficient 

estimation, irrespective of sample size (Fig. 1), but showed increasing variability and MSE with 

decreasing n (Table 4). The high variability associated with the full model estimation of 𝑏 1 and 

𝑏 2 corresponded to the high simulation average VIF values for those variables (Table 2).  

Stepwise selection was biased for 𝑏 1 (note more extreme median-bias for 𝑏 1 and 𝑏 3) with 

the smallest sample sizes (n=10 & 15; Fig. 1) and had relatively large variability and total MSE 

about coefficient estimates (Table 4). Stepwise was generally unbiased and with relatively low 

variability and MSE for non-functional predictors irrespective of sample size (Fig. 1, Table 4). 
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The natural model averaging (MMA.n) method with AICc was biased, usually overestimating 

coefficients b1 and b2 (Fig. 1), and had relatively large total MSE (Table 4). Estimation bias as 

shrinkage (underestimation) was observed for zero method MMA.z as well as for Lasso and EN 

regarding 𝑏 1 and 𝑏 3 (Fig. 1; note direction of bias for 𝑏 3 mentioned in caption). In addition, 

MMA.z, Lasso and EN showed relatively low variation and MSE about non-functional 

coefficient estimates and total MSE (Fig. 1, Table 4). PLS also exhibited shrinkage regarding 

coefficient estimation for 𝑏 1 and 𝑏 3, and was the only alternative method to consistently (albeit 

only slightly) overestimate 𝑏2 corresponding to the non-functional “land-cover” proportion 

variable. PLS generally had low variation about non-functional coefficient estimates (Fig. 1), 

although each were slightly biased contributing to a large total MSE relative to MMA.z, Lasso 

and EN; however, this difference decreased with increasing sample size (Table 4).  

The full OLS model had low FPR (type I error  α) for non-functional predictors (X2 & 

X4 - X7), but also low TPR (power) for functional predictors (for X1 & X3); and thus also poorly 

classified all predictors at each iteration (G; Fig. 2). TPR for stepwise and AICc (weights) was 

also relatively low (< 80%) using method specific importance criteria (MSIC), and while AICc 

attained low FPR, stepwise FPR was roughly 20% for sample sizes > 10 and the median G value 

for both methods was below 80% (Fig. 2). Lasso, EN and PLS had MSIC TPR  80% or greater 

for n > 10. Lasso and EN had relatively high (~ 20%) FPR when either |𝑏 | > 0 or standardized |𝑏 | 

> 0.05 was considered (Fig. 2). PLS also had relatively high (~ 20%) FPR with VIP > 1; 

however, rates were much lower when VIP > 1.05 was considered (Fig. 2). Relative to the other 

methods, PLS, Lasso, and EN showed much greater ability to correctly identify predictors (each 

iteration) as seen by median values for G with n > 10 (Fig. 2).  
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Overall, correct classification of predictors was less impressive with the use of bootstrap 

CIs, which yielded much lower TPR than that from method-specific criteria (with n < 25; Fig. 3).  

All methods performed generally well at correctly identifying non-functional predictors (low 

FPR) with the conservative confidence level considered (85%; Fig. 3).  Selection using stepwise 

performed poorly with each sample size, whereas the remaining methods improved markedly 

with increasing n (Fig. 3).      

Predictive accuracy of MMA.z, Lasso, EN and PLS was similar and generally slightly 

higher than the true value of the error term (SD = 0.10). The full model and natural averaging 

MMA.n had much larger and variable 𝑅𝑀𝑆𝐸𝑌  relative to the other methods; however, 

differences between methods and overall prediction variability were more pronounced with 

decreasing n (Fig. 4). 

2.3.3 Case Study 

A reliable assessment of model assumptions is difficult with small sample sizes like that 

of this study (n = 13; Speed 1994); that said, global validation (p-value = 0.94) and graphical 

analyses of residuals did not indicate large deviations from model assumptions (e.g., normality) 

or a need for corrective transformations. We expected the least-squares assumption of 

uncorrelated predictors (Montgomery et al. 2001; Speed 1994) to be violated. Significant 

negative correlations were observed between % FB and both ISC (r = -0.60, p = 0.032) and Ag (r 

= -0.53, p = 0.065). A significant correlation was not detected between % Ag and ISC (r = -

0.073, p = 0.81) and variance inflation factors for the three land use categories were 3.13 for % 

FB, 2.03 for Ag and 2.27 for ISC.  

All possible subsets of OLS models, including the intercept only model (OLS 8) were 

calculated along with RSS, R
2
 and AICc values, and prediction RSS (PRESS; Table 5).  In this 
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model set (Table 5), nitrate concentration ([N03
−]) was negatively related with % FB and 

positively with Ag when each was considered alone (OLS models 5 and 6, respectively); 

however, partial regression coefficients for Ag were small and insignificant (90% level) in 

models that included both categories (OLS models 1 and 4). Slope estimates for FB were 

significant and had similar magnitudes for all OLS models (Table 5, Fig. 5); in addition, FB had 

a summed AICc weight of 0.98. Model fit statistics indicate that FB alone (OLS model 5) 

explained a large amount of the total variation in [N03
−] (R

2
 = 0.643); model 5 also had 2nd 

smallest PRESS and 2
nd

 highest AICc model weight (Table 5). Ag had a low summed AICc 

weight (0.16) and estimates for Ag were small when % FB was included (OLS 1 and 4, Table 5), 

but increased roughly proportionally when FB was removed (OLS 2 and 6). The FB and ISC 

model (OLS 3) had the smallest AICc value, an AICc model weight of 0.457, the highest 

adjusted R
2
 (0.701), smallest RSS (2.003) and PRESS (3.598, Table 5). Percent ISC, on the other 

hand,  had a summed AICc weight of 0.49; however, slope estimates for ISC changed signs 

between OLS models (Table 5), and the ΔAICc of OLS 8 relative to the FB only model (OLS 5) 

was very small (0.33). 

Each of the alternative models explained large, and roughly equivalent amounts of the 

variation in [N03
−] (minimum R

2
 = 0.648); of these, PLS had a PRESS statistic comparable to the 

2 best OLS models (Table 5). Stepwise selection, model averaging, coefficient shrinkage, and 

latent variable estimation methods provided coefficient estimates for % FB of same sign and 

similar magnitude as the OLS models (Table 5, bottom section). In addition, PLS VIP was 1.31 

and AICc summed weights were 0.98 for % FB. These models differed mainly with regards to 

coefficient estimation for % Ag and ISC. Lasso, EN, PLS and MMA.n provided similar 

estimates for % Ag, which corresponded closely to that of OLS model 4 that included only FB 
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and Ag. Conversely, MMA.z and stepwise selection estimated the coefficient for Ag to be very 

small (0.003) or exactly zero (Table 5). CIs for Ag estimates all contained 0 (Fig. 5) and Ag had 

a very small summed AICc weight (0.16); however, Ag had high PLS VIP values (1.11) and 

non-zero estimates from Lasso/EN. As mentioned, ISC had a summed AICc weight of 0.49; 

however, ISC had a PLS VIP value of only 0.23 and coefficients were shrunk to exactly zero by 

Lasso and EN. 

2.4 Discussion 

2.4.1 Simulation Study 

Few have acknowledged the limitations created by collinear land-cover percentages on 

estimation and inference (King et al. 2005). The primary goals of this study were to 1) 

demonstrate problems associated with small n and collinear predictors and 2) to examine the 

relative performance of OLS alternatives for linear modeling. Although applicable to 

observational studies in all subfields of ecology, our results are perhaps most relevant to 

landscape-level studies where collinearity is inevitable and adequate replication is impractical, if 

not impossible. 

 Our results (p =3) provided a simple visual demonstration of how omitting variables can 

lead to estimation bias in retained variables, as well as those omitted (which are estimated as 0). 

In collinear situations, omitting variables can also lead to spurious results as false positive rates 

are inflated. The selection of a single best model (with AIC) is considered bad practice 

(Anderson & Burnham 2002), and our simulation supported this, as AICc infrequently choose 

the correct model. 

As expected, our simulation results (p = 7) indicate high estimation variability and 

extremely low power for OLS when n is small and parameter number is relatively large, which 
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suggests the need for model/variable selection in these situations.  As alternatives to more 

traditional OLS selection methods, shrinkage and latent variable methods appear to offer 

considerable benefits over traditional OLS, or OLS guided by stepwise selection or MMA with 

AICc.  These alternative methods, while biased in terms of coefficient estimation, yielded a 

relatively lower variance about estimates, predict relatively well given new data, and better 

identified functional and non-functional predictors (using method-specific criteria) at an 

apparently much more acceptable rate when n is very small. 

Multimodel averaging (MMA.z), shrinkage methods and PLS each provided lower levels 

of variation and MSE about coefficient estimates, as well as smaller and less variable RMSE of 

prediction relative to the other methods examined (Figs. 2 & 4, Table 4). Of these, Lasso and EN 

had smallest MSE for coefficient estimation separately for each coefficient, and in total (Table 4; 

but see MSE for b3 with PLS & n > 15). Shrinkage and latent variable methods also had much 

higher method specific TPR than the remaining methods. PLS consistently allocated some small 

effect (overestimation) to X2 (the non-functional proportional variable); however, PLS was the 

only method to have both high TPR (> 80%), low FPR (type I error << 20%) and therefore a 

high proportion of correctly identified all predictors each iteration (G; Fig 2). The superior 

ability of PLS in identifying functional variables relative to OLS with small sample sizes has 

been noted by others (Carrascal et al. 2009). Use of PLS with a cutoff slightly higher than the 

VIP > 1 rule has been suggested, while others have suggested lower (0.70) values (Eriksson, 

1999, Chong & Jun 2005; Zhang et al. 2010). Our simulation suggests using VIP > 1 (e.g., 1.05) 

may be more appropriate, especially with extremely small sample sizes (e.g., n=10) to better 

balance true and false positive rates; lower VIP thresholds may lead to unacceptably high FPR (

 20%). 
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Bootstrapped CIs incorporate the uncertainty associated with model selection (Buckland, 

Burnham & Augustin 1997; Efron 2013), and as such, offered a much more pessimistic view of 

rates of correctly classifying predictor variables in this simulation. Because at least some of the 

bootstrapped density for any coefficient might occur at exactly 0, simple examination the CI for 

the presence of 0 may be misleading as a CI endpoint may be exactly 0 (Fig 6).  At present, there 

is no general consensus on how to best calculate CIs for model coefficients in model selection 

scenarios, or how and what to resample (residuals, observations, etc., see Hall, Lee & Park 2009 

and Efron 2014). 

2.4.2 Case Study 

The case study provided an example analysis of a small and collinear dataset where 

results varied according to the model/method chosen. Many of the methods/models fit the data 

similarly and relatively well (most R
2
 > 0.65); cross-validation (PRESS) suggested that OLS 

models 3 and 5 and the PLS model may predict well given new data. Each method/model 

estimated a negative slope of similar magnitude (range: -0.028, -0.048) between the [N03
−] and 

the percentage of riparian zone (100 m width) as forest buffer (% FB). Lasso and EN slope 

estimates were generally comparable and each allotted exactly zero coefficient estimate for % 

ISC, while stepwise estimated Ag to be zero (by dropping variable). Inconsistencies with the sign 

and magnitude of estimated ISC coefficients were observed across OLS models and also 

between the observed and bootstrap median value for PLS (Table 4).  Model averaging and PLS 

latent variable model allotted some effect to each predictor, albeit not significant.  

2.4.3 Concluding Remarks 

Even the best modeling efforts are crude approximations of the true underlying system, 

likely built using mere proxy variables for true (underlying) causal/functional variables. 
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Simulations allow for comparative studies where truth (causality) is known; however, 

simulations may provide an unrealistic set of conditions (Murtaugh 2009). Causation cannot be 

determined in observational/correlative studies; nevertheless, determining causal links (direct or 

indirect) typically is an unstated goal of many correlative land-cover studies. Unfortunately, we 

must make decisions on the inclusion of only a subset variables in a system, as it is 

impractical/impossible to include all functional (“causal”) variables in an analysis, which 

unavoidably leads to estimation bias (Clarke 2005). There may be some consolation in knowing 

if a method is capable (under simulation settings) of correctly classifying predictor variables, 

yielding minimally biased coefficient estimates with low variability, and generating useful 

predictive models given new data. 

Traditional null hypothesis testing is based on the unlikely and uninformative null 

hypothesis (H0) of no effect, which provides no meaningful information (estimation of 

magnitude and precision) for management or planning (Anderson, Burnham and Thompson 

2000). Alpha (α) level is arbitrarily chosen (traditionally 0.05) and sets the upper-limit for the 

FPR (type I error) when all functional variables are included and a threshold for classification of 

a predictor as having either no effect or a “statistically significant” effect. All things equal, and if 

H0 is actually true, setting α smaller (as opposed to larger; e.g., 0.10 vs. 0.05) leads to more 

conservative testing and lower FPR. However, if we assume to be living not “under the null” (if 

H0 were truly false), then setting α small leads only to lower TPR (power). In studies on the 

influence of land-cover on stream ecosystems, the ecological consequences of false positives 

(claiming an increase in some land-cover proportion has an undesirable effect when it doesn‟t) 

may not be as great as type II errors (1-power, false negatives: not making the claim when it 
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does) when the results of research is used to guide landscape management decisions (Johnson, 

1999; Peterman 1990).  

In our case study, PLS seems to have offered reasonable coefficient estimates given the 

estimates from the remaining models. An effect of exactly zero may not be realistic of real-world 

data, and in our simulation, PLS consistently allocated some small effect (non-zero estimate) to 

X2 (the non-functional proportional variable). PLS does not produce partial regression 

coefficients, but instead uses the correlation structure of predictors to estimate latent structures 

maximally related to the response. While this might be considered an unattractive attribute of 

PLS, it might also be viewed as strength in observational studies where randomization does not 

occur and causal attribution is impossible and our predictors (e.g., land-cover proportions) are 

simple proxies for underlying and unmeasured processes anyway. PLS also offers some unique 

advantages relative to the other methods, including fewer and more realistic underlying 

assumptions compared to OLS (Wold et al. 2001), useful graphical representations of 

relationships within the data (Abdi 2010), and generally acts to shrink coefficients (Rosipal & 

Krämer 2006) offering conservative estimates of effect size in the face of collinearity.  

We do not suggest or promote the use of small sample sizes in landscape-level studies, although, 

we realize this situation is a common and unfortunate reality in this field.  Based on the results of 

this simulation study, we offer the following recommendations: 

 Develop a well thought-out list of potential functionally related predictor variables for 

your study a priori;  

 Avoid small sample sizes where possible; although potentially cost prohibitive, 

increasing n by a small number (e.x. n = 10 to 15) can lead to substantial improvements 

in terms of  power, type-I-error, predictive performance and may be investment worthy; 
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 Avoid reporting of bivariate relationships in land-cover studies, as they can be highly 

misleading due to collinearity and an increase in type I errors;    

 Consider use of alternative regression methods to OLS, especially PLS or shrinkage 

methods as they may better balance estimation bias and variability; 

 Consider use of multiple/complementary methods/criteria (Mac Nally 2002; Morrice et 

al. 2008; Nathans, Oswald & Nimon 2012) when selecting between competing models;   

 Be realistic regarding inference from observational data as it should be very limited, 

especially in small sample and collinear settings. 
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Table 1. Methods and method-specific criteria used to indicate each variable as important 

(functional) or unimportant (non-functional) in explaining Y.   Methods included ordinary least-

squares (OLS), OLS model selection based on stepwise selection using finite sample corrected 

Akaike information criterion (AICc), multi-model averaging (MMA) and alternative methods. 

Importance criteria for MMA was based on summed AICc weights and thus common to both 

natural (MMA.n) and zero (MMA.z) averaging methods. Thresholds are given/shown in the 

order of more-, followed by less-conservative. See text for further information.     

Model Name Model Description and Selection Type 

Method-Specific Criteria and 

Thresholds 

Full Model OLS w/ all X: no selection 𝑏 i p-value < 0.10 & 0.15 

Stepwise Stepwise w/ AICc: Single best model Standardized |𝑏 i| > 0 & 0.05 

MMA.n Natural weighted averaging with AICc Σ(AICc wt) > 0.70 & 0.50 

MMA.z Zero weighted averaging: let NA = 0 Σ(AICc wt) > 0.70 & 0.50 

Lasso Least absolute shrinkage and selection Standardized |𝑏 i| > 0 & 0.05 

EN Elastic Net: shrinkage and selection Standardized |𝑏 i| > 0 & 0.05 

PLS Partial Least-Squares: latent variable PLS-VIP > 1.05 & 1.00 
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Table 2. Average pairwise Pearson product-moment correlation estimates (above diagonal) and 

correlation estimate variances (below diagonal) for Y and X variables simulated in this study (p 

= 7 and n = 20).  Simulation average variance inflation factors (𝑉𝐼𝐹     ) for X variables are given in 

the bottom row.  Correlation average estimates and variance for the p = 3 simulation are virtually 

identical to those given for Y, X1, X2, and X3 below; 𝑉𝐼𝐹      values for p = 3 were 3.61, 3.59, and 

5.35, respectively. 

 

Y X1 X2 X3 X4 X5 X6 X7 

Y ----- 0.81 0.68 -0.82 0.65 -0.57 0.66 -0.57 

X1 0.01 ----- 0.69 -0.81 0.79 -0.58 0.79 -0.59 

X2 0.02 0.02 ----- -0.81 0.59 -0.79 0.59 -0.79 

X3 0.01 0.01 0.01 ----- -0.66 0.66 -0.66 0.66 

X4 0.02 0.01 0.03 0.02 ----- -0.69 0.68 -0.69 

X5 0.03 0.03 0.01 0.02 0.02 ----- -0.69 0.69 

X6 0.02 0.01 0.02 0.02 0.02 0.02 ----- -0.69 

X7 0.03 0.03 0.01 0.02 0.02 0.02 0.02 ----- 

𝑉𝐼𝐹      ----- 29.2 29.1 7.4 15.8 16.2 16.1 15.9 
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Table 3. Simulation results (P = 3) for coefficient estimation across 2 levels of sample size (15 

and 20). Individual OLS models are represented as rows; boldfaced row indicates the true model 

(b1 = 1.00, b 2 = 0.00, b 3 = -0.50).  Average estimates (𝑏 ) are provided and arrows (↑↓) indicate 

direction of bias (> |0.01|) from true b values.   True positive rate (TPR; power) or false positive 

rate (FPR; type I error) is provided in parentheses; α = 0.10 for all calculations.  Average values 

for ΔAICc (Δ) are provided for each model, along with the % of simulation runs where Δ was ≤ 

specified thresholds.   

N Model 𝒃 𝟏(Power) 𝒃 𝟐(FPR) 𝒃 𝟑(Power) 𝚫 (%Δ=0, %Δ <2, %Δ <4) 

 1 0.996 (0.52) -0.003 (0.10) -0.506 (0.41) 5.56 (0.01, 0.04, 0.18) 

 2 ------ ↓-0.101 (0.10) ↓-0.854 (0.84) 5.82 (0.03, 0.09, 0.50) 

 3 0.998 (0.54) ------ -0.506 (0.56) 2.24 (0.17, 0.44, 0.94) 

15 4 ↑1.507 (0.88) ↑0.493 (0.24) ------ 4.98 (0.07, 0.16, 0.57) 

 5 ------ ------ ↓-0.895 (0.99) 3.19 (0.36, 0.52, 0.67) 

 6 ------ ↑1.549 (0.93) ------ 11.20 (0.02, 0.06, 0.11) 

 7 ↑1.849 (0.99) ------ ------ 3.62 (0.34, 0.49, 0.63) 

 1 0.992 (0.71) -0.018 (0.10) -0.503 (0.51) 3.50 (0.03, 0.12, 0.71) 

 2 ------ ↓-0.175 (0.12) ↓-0.940 (0.97) 6.98 (0.03, 0.12, 0.39) 

 3 0.997 (0.74) ------ -0.496 (0.73) 1.22 (0.42, 0.74, 0.96) 

20 4 ↑1.504 (0.99) ↑0.485 (0.41) ------ 4.69 (0.10, 0.25, 0.56) 

 5 ------ ------ ↓-0.877 (0.99) 5.16 (0.21, 0.52, 0.65) 

 6 ------ ↑1.239 (0.87) ------ 18.08 (0.00, 0.01, 0.04) 

 7 ↑1.751 (0.99) ------ ------ 5.05 (0.21, 0.38, 0.53) 
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Table 4. Coefficient estimation mean squared-error (MSE = variance + bias
2
) for each method. Table values represent MSE values at 

sample sizes 10, 15, 20, 25, respectively for b1 – b4 and total across all coefficients. Coefficients b5 – b7 behaved similarly to those for 

b4 (Fig 2) and were omitted to save space. 

Method b1 b2 b3 b4 Total 

Full Model 17.88, 3.67, 1.85, 1.20 19.04, 3.40, 1.91, 1.29 0.99, 0.21, 0.11, 0.08 1.33, 0.26, 0.13, 0.09 41.95, 8.04, 4.28, 2.85 

Stepwise 1.22, 1.20, 0.92, 0.72 0.81, 0.83, 0.63, 0.44 0.28, 0.21, 0.16, 0.12 0.08, 0.06, 0.04 0.03 2.50, 2.42, 1.84, 1.39 

MMA.n 0.82, 0.55, 0.41, 0.29 1.13, 0.62, 0.47, 0.34 0.17, 0.12, 0.08, 0.06   0.12, 0.06, 0.04, 0.03  2.44, 1.45, 1.09, 0.78 

MMA.z 0.68, 0.55, 0.48, 0.39 0.21, 0.18, 0.15, 0.11 0.16, 0.13, 0.10, 0.09 0.02, 0.02, 0.01, 0.01 1.11, 0.91, 0.76, 0.61 

Lasso 0.577, 0.40, 0.32, 0.26 0.11, 0.10, 0.09, 0.07 0.14, 0.09, 0.07, 0.05 0.01, 0.01, 0.01, 0.01 0.86, 0.63, 0.50, 0.41 

EN 0.55, 0.37, 0.29, 0.23 0.14, 0.11, 0.11, 0.08 0.13, 0.08, 0.06, 0.05 0.02, 0.02, 0.01, 0.01 0.84, 0.59, 0.49, 0.38 

PLS 0.72, 0.42, 0.26, 0.20 0.79, 0.40, 0.27, 0.27 0.15, 0.09, 0.05, 0.04 0.07, 0.05, 0.03, 0.02  1.90, 1.03, 0.67, 0.58 
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Table 5. Top:  OLS estimates and standard errors (SE, in parentheses) of regression slopes for 

[N03
−] (mg L

-1
) and all model subsets of three land-cover classes, including the intercept only 

(null) model (OLS 8, where RSS = TSS).  Bold indicates 90% confidence interval (CI, as 

1.645*SE) didn‟t contain 0. Observed residual sum of squares (RSS), unadjusted R
2
 (as 1 – 

(RSS/TSS)), adjusted R
2
, ΔAICc, AICcwt (weights), and leave-one-out predicted residual sum of 

squares (PRESS) are provided for each model (except OLS 8).  Bottom: Stepwise, AICc multi-

model averages, Lasso, Elastic Net (EN) and PLS regression slopes. Bold indicates 90% 

bootstrap CI (see Fig. 6) didn‟t contain 0; † denotes 85% bootstrap CI did not contain zero (for 

top of table as well, all other bootstrap CIs agreed with frequentist CIs). Coefficient estimates (𝒃 ) 

following a comma (right side) are bootstrap median values (“bagged”) of the corresponding left 

hand observed values. 
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Models 𝒃 %𝐅𝐁 𝒃 %𝐀𝐠 𝒃 %𝐈𝐒𝐂 RSS 𝐑𝟐 𝐑𝒂𝒅𝒋
𝟐  ΔAICc AICcwt PRESS 

OLS 1 -0.046 (0.014) 0.004 (0.017) -0.101 (0.068) 1.988 0.753 0.670 5.480 0.029 4.698 

OLS 2 ----- 0.045 (0.017) 0.070 (0.064) 4.523 0.437 0.325 10.590 0.002 6.986 

OLS 3 -0.048 (0.009) ----- -0.110 (0.053) 2.003 0.751 0.701 0 0.457 3.598 

OLS 4 -0.031 (0.010) 0.018† (0.015) ----- 2.479 0.692 0.630 2.772 0.114 4.167 

OLS 5 -0.037 (0.008) ----- ----- 2.867 0.643 0.611 0.330 0.387 3.629 

OLS 6 ----- 0.043 (0.017) ----- 5.064 0.370 0.313 7.725 0.010 7.003 

OLS 7 ----- ----- 0.058 (0.080) 7.671 0.046 -0.041 13.125 0.001 10.441 

OLS 8 ----- ----- ----- 8.040 0 ----- 10.269 0.002 ----- 

Stepwise -0.048, -0.045 0, 0 -0.110, -0.080 2.003 0.751 ----- ----- ----- 7.374 

MMA.n -0.042, -0.042 0.018, 0.018 -0.109, -0.090 2.826 0.648 ----- ----- ----- 4.269 

MMA.z -0.041, -0.039 0.003, 0.004 -0.053, -0.041 2.176 0.729 ----- ----- ----- 4.685 

Lasso -0.028, -0.031 0.013, 0.012 0, 0 2.636 0.672 ----- ----- ----- 5.408 

EN -0.028†, -0.034 0.016, 0.015 0, 0 2.541 0.683 ----- ----- ----- 5.268 

PLS -0.030, -0.035 0.016, 0.017 0.013, -0.020 2.625 0.674 ----- ----- ----- 3.766 
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Figure 1. Box plots of the difference between estimated beta and true beta (𝑏  – b) for each 

iteration and analytical method across a range of sample sizes from 10 (left column of panels) to 

25 (right column of panels). Light gray diamonds show mean value and horizontal lines show 

zero line (unbiased = 0).  For all coefficients except b3, the sign of the y-axis indicates the 

direction of bias; the true value for b3 is negative, thus the opposite is true for this coefficient.  

Plot y-range was restricted to allow for assessment of most data variability; consequently, 

observations fall outside of plot margins.   
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Figure 2. Box plots of geometric mean of % correctly classified variables (functional, or not) 

each simulation iteration according to method specific importance criteria (MSIC; see text and 

Table 1). Bar plots show the frequency that each variable was identified as important, true 

positive rate for functional predictors (striped bars: b1, b3) or else false positive rate (b2, b4, b5, b6, 

b7) according to the MSIC.  Multiple bars indicate values for more and less conservative cutoff 

levels: p-values: 0.10, 0.15; AICc wts: 0.70, 0.50; PLS VIP: 1.05, 1.00; Stepwise/Lasso/EN: 𝑏  ≠ 

0 and standardized 𝑏  > 0.05.   
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Figure 3. Box plots of geometric mean of % correctly classified variables (functional and non-

functional) each simulation iteration. Bar plots show the frequency that each variable was 

identified as important [power (striped bars: b1, b3) or false positive rates (b2, b4, b5, b6, b7)] 

according to bootstrapped CI (containing 0 or not).  Side-by-side boxplots and barplots show 

results for 2 confidence levels: 85% and 75%.   Note: true model contains X1 & X3 only.  
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Figure 4. Box plots of prediction accuracy (as root mean squared error, 𝑅𝑀𝑆𝐸Y ) on test data set 

for each analytical method across sample sizes (n; see Table 1 for summary of methods). Plot y-

range is restricted to allow for detailed comparison; consequently, some observations fall outside 

of plot margin.  Grey horizontal line indicates standard deviation of error term in data creation.     
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Figure 5. Smoothed density curves of (resampled) bootstrap slope estimates (𝑏 ) for the stream 

nitrate concentration case study.  Solid vertical line indicates 0 values for estimated slope values 

(x-axis).  Dotted lines show 90% and dotted/dashed lines show 85% bootstrap confidence 

intervals (percentile method). Additional details can be found in Table 4.  
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Chapter 3. Influence of low-intensity watershed development on small coastal Alabama 

streams: an analysis using partial least-squares 

3.1 Introduction 

 Deforestation from human activity within watersheds can greatly affect stream 

ecosystems (Allan, 2004; Walsh et al., 2005). Forested lands, specifically riparian forests 

bordering stream channels, are thought to act as material sinks and natural filters, 

mechanistically linked to in-stream sediment and nutrient conditions (Naiman & Décamps, 

1997). Changes in these physicochemical conditions occur in both agricultural and urbanized 

watersheds, as both act as sources of nutrients, sediment, and other pollutants (Paul and Meyer 

2001; Allan 2004; Walsh et al. 2005; O‟Driscoll et al. 2010; Nagy et al. 2011). Urbanization is a 

particularly influential land-use/cover (LULC) type that is characterized by high levels of 

impervious surface cover (ISC), which can directly alter watershed hydrology (Brabec, 2002; 

Brown et al., 2009). ISC is generally thought to increase the flashiness (rate of change), 

frequency, and magnitude of flood events and decrease flood duration (Rose and Peters 2001; 

Brown et al. 2009; O‟Driscoll et al. 2010).  

 Stream benthic macroinvertebrates are a diverse group of organisms that exhibit a wide 

range of environmental tolerances and are frequently used as indicators of stream ecosystem 

health (Bonada et al. 2006; Kenney et al. 2009). The ubiquitous and generally sedentary nature 

of benthic macroinvertebrates in freshwaters underlies their use as indicators of local water 

quality (Bonada et al. 2006). Benthic richness, diversity and the proportion of sensitive taxa are 

typically observed to be lower in urbanized streams compared to forested sites (Norris & Thoms,
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 1999; Paul &Meyer, 2001; Walsh et al., 2005; Wenger et al., 2009).  

 Urbanization impacts on streams are generally higher and more detectable at a much 

lower areal proportions than agricultural impacts (Allan 2004). Generalized urbanization 

thresholds (above which impacts are detectable, e.g., ISC <10%) have been suggested (Paul & 

Meyer 2001), but these purported thresholds likely misrepresent what is a continuum of impacts 

on stream ecosystems, even at low urbanization (Brabec 2002; Shuster et al. 2005). To date, 

most urban impact studies have focused primarily on relatively high levels of development, 

whereas, low-density urban development may be more spatially abundant and encouraged by 

LULC policy (Cunningham et al. 2009; Chadwick et al. 2011). Recently, lower levels of urban 

development have gained in research attention as ISC of ≤ 10% has been linked with altered 

stream hydrology and physicochemistry, and reduced species richness (Burcher and Benfield 

2006; Lussier et al. 2008; Cunningham et al. 2009; Nagy et al., 2012). A few studies have 

detected altered macroinvertebrate assemblage responses to much lower urbanization levels 

(4.4% ISC, Wenger et al. 2009); although much additional work is needed in more diverse types 

of systems before generalities can be formed regarding instream impacts. 

 It has been suggested that the magnitude of hydro-geomorphic response to watershed 

urbanization is comparatively less in lowland coastal plains streams than in higher-gradient 

upland regions (e.g., Piedmont; Nagy et al. 2011; Utz et al. 2011). In the southeastern US, 

virtually all of the coastal plains land area has been altered by human activity over the last 2 

centuries, with more recent change stemming from forested/agricultural land converted to urban 

land (Smock & Gilinsky, 1992; O‟Driscoll et al., 2010; Nagy et al., 2011). In areas with 

historical agriculture, low-density urbanization may not be great enough to produce detectable 

changes in hydrology, geomorphology, or physicochemistry (Burcher & Benfield, 2006). Coastal 
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plains watersheds are typically low-gradient with sandy well-drained soils, and thus have lower 

runoff-rainfall ratios, particle entrainment, and hydrogeomorphic alteration than higher-gradient 

upland watersheds (Feeley 1992; Nagy et al. 2011; Nagy et al. 2012). Thus, it might be predicted 

that low-levels of development would not lead to detectable changes in low-gradient coastal 

streams, especially where historical agricultural may have already affected these systems (Nagy 

et al. 2012). 

 Coastal areas worldwide are under increasing pressures from human population growth 

and associated land development (Nagy et al. 2011). Roughly half of the urban LULC change 

along the US Gulf of Mexico in the past 2 decades has occurred within 50 km of the coast, with 

the dominant LULC change from the Florida panhandle to Louisiana being low-intensity 

development (e.g., suburban, urban-sprawl; White et al. 2008; Xian et al. 2012). Furthermore, 

the Southeast is predicted to continue leading the US in population growth developed into 2030, 

with low-density development continuing along the coast of the Gulf of Mexico (Wear and Greis 

2002; Alig et al. 2004; White et al. 2008; Xian et al. 2012); thus, there is an urgent need to 

understand and predict impacts of low-density development on stream ecosystems in this rapidly 

changing region. 

 Identifying potential mechanisms of LULC impacts on stream ecosystems is critically 

important for prescriptive management, and modeling effects based on theoretically derived 

causal relationships that should improve predictive performance (Allan, 2004; Mac Nally, 2000). 

Collinearity among proportionally based LULC categories is inherently problematic and can lead 

to inflated variance about coefficient estimates (Montgomery et al. 2001). Bivariate analyses 

based on these data likely lead to spurious results (Graham, 2003; King et al., 2005; Varanka & 

Luoto, 2012), and commonly used variable selection methods (e.g., stepwise) have been shown 
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to frequently incorrectly identify predictor variables as important (Hegyi and Garamszegi 2011; 

see Chapter 1). Alternative regression methods have been shown to perform well with small 

sample sizes and in collinear situations at correctly identifying important variables and providing 

reasonable (low bias, low variance) coefficient estimates (Dahlgren, 2010; see Chapter 1). 

 Low-density development along the Gulf of Mexico is common and predicted to become 

more prevalent. Due to the extensive history of agriculture in the coastal plains, it is possible that 

low levels of ISC have little influence on stream hydro-geomorphology, physicochemistry or 

benthic assemblages. The goal of the current study is to determine if empirical evidence suggests 

that low-density development influences the hydrology, geomorphology, physicochemistry 

and/or macroinvertebrate assemblages of streams draining small coastal watersheds.  

 We collected data from 13 stream sites in and adjacent to a small coastal Alabama town 

that ranged in ISC from only 1 to 11% so that our analyses would not be influenced by more 

urbanized sites. We used alternative regression methods that have been shown to outperform 

traditional regression and variable selection methods in identifying important predictors with 

small n and collinear data.      

3.2 Methods 

3.2.1 Study Area 

We studied 13 sandy-bottom channel, non-tidal (salinity range: 0.02 - 0.04), wadeable 

streams (1
st
 to 3

rd
 order) spanning a gradient of low ISC (≤ 11%) within or adjacent to the Wolf 

Bay Basin, southern Baldwin County, Alabama, USA (Fig. 1). The SE coastal plains (CPL) are a 

relatively understudied region that differs from its highland counterparts with regards to several 

potentially important physical/climatological characteristics. The CPL has higher annual 

precipitation levels and rainfall:runoff ratios, shorter recurrence intervals for bankfull events 
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(0.19 to 1.0/y) and CPL streams typically have more unstable beds than upland regions (Sweet 

and Geratz 2003; Hardison et al. 2009; Metcalf 2009; Nagy et al. 2011). The stream sites were 

located in close proximity to one another, not connected to major drainage basins and drained 

directly into Perdido Bay, Wolf Bay, or Weeks Bay. At each stream site, we established a 100-m 

study reach chosen to be ≥ 50-m upstream of the nearest stream-road intersection, the typical 

access point, to minimize the proximate effects (e.g., sediment inputs) of roads,. Study reaches 

included run-pool sequences and were typically dominated by sandy substrate and/or organic 

detritus.  

For LULC characterization, we delineated sub-watersheds 10-m digital elevation maps 

(DEM; source: USGS) using ArcHydro (Environmental Research Systems Institute, Inc., 

Redland, California) and contained all land area upstream of sampling location. We quantified 

LULC with and 0.15-m resolution aerial photographs (2009) of Baldwin County; LULC 

classification was based on manual digitization of aerial photographs in ArcGIS (ESRI, Inc., 

Redland, California). We chose LULC categories that could be theoretically directly linked to 

instream conditions: % ISC (e.g., buildings, paved roads), % agricultural cover (Ag), and% 

riparian forest buffer (FB).  While the effectiveness of a FB width likely varies according to 

landform (e.g., slope) and with the goals of the buffer (Osborne and Kovacic 1993), we chose a 

commonly used FB width of 100-m laterally from the stream (Allan, 2004; Burcher, Valett & 

Benfield, 2007). 

3.2.2 Instream Sampling and Response Variables 

Stream hydrology.- We calculated a suite of hydrologic variables using stream stage and 

discharge data.  We used Solnist pressure transducers (Levelogger Gold, model 3001) installed 

in each study reach to quantify water stage (height above fixed datum) and water temperature at 
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15-min intervals; barometers (Solnist Barologger Gold) were installed to adjust stage data for 

atmospheric pressure variation across the study area (period of record: March 2008 to March 

2009). We estimated discharge (Q) at various stage levels during the study period (~ 1.5 yrs) 

using the velocity-area method (Raghunath 2007); velocity was measured using a Marsh-

McBirney Model 2000 Flo-Mate (Marsh-McBirney, Inc.). We developed rating curves to convert 

stage to Q for each study stream using a combination of observed and estimated Q values. We 

estimated Q for high-flow events that prohibited instream measurements in subsections 

(Arcement and Schneider, 1989); in-channel flows were estimated with an equation derived 

specifically for sandy-bottomed streams (Sefick et al., 2015), overbank flows were estimated 

with Manning‟s equation (roughness coefficient = 0.15, Arcement and Schneider, 1989).  

 We quantified several aspects of stream-channel and floodplain geomorphology with 

three cross-sectional surveys per reach at each stream in close proximity to the stage recorders. 

We made width and depth measurements in the approximate bankfull channel in the field and 

derived average floodplain slopes perpendicular to the active channel from field measurements 

and 10m DEM maps using GIS. We determined bankfull depth (BFd) and width (BFw) as the 

elevation corresponding to the minimum of the ratio of width to depth (Pickup & Warner, 1976; 

Copeland et al. 2000). Hydrologic extremes may be more biologically/ecologically relevant than 

characterizing average conditions, so we also calculated cross-sectional dimensions (Max width 

and Max depth) at maximum flood stage from 1-dimensional models created from time-series 

stage data and data from cross-sectional surveys. 

We selected a single representative hydrologic metric from each important flow category 

(i.e., frequency, duration, intensity; Clausen & Biggs, 2000), rather than several 

metrics/category, to reduce the likelihood of spurious relationships between hydrology and 
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LULC and instream biotic/habitat variables. We characterized relative high flow magnitude with 

unit-area Q, standardized by watershed area (Konrad et al., 2005). Event frequency and duration 

are generally characterized relative to set thresholds; while thresholds between 3 and 9 times the 

median have been used (Monk et al. 2006; Schoonover et al. 2006). Frequency and duration 

metrics varying in only thresholds are generally highly correlated (Clausen & Biggs, 2000); thus 

we characterized event frequency and duration as the frequency and number of h Q exceeded 7x 

the median discharge (Q fre7 and Q dur7, respectively). For intensity, many studies have used 

the Richard-Baker flashiness index (RBI; Baker et al., 2007), calculated as the sum of the 

absolute value of daily changes in Q divided by total Q over the period of record. In our work, 

we observed that storm flood duration frequently was <<24 h (see also Phillips & Scatena, 

2010). As a result, we used a stage-based (sensu McMahon et al., 2003) flashiness metric 

calculated as the 97.5
th 

percentile of positive changes in stage (ΔSTG; rising limb) to be a proxy 

of maximum flashiness (less sensitive to erratic fluctuations in 15-min data). The frequency of 

stage increases in absolute terms is likely more ecologically relevant than multiples of site-

specific medians (e.g., Q fre7); therefore, we also calculated frequency of stage increases ≥ 1 m 

(STG fre1.0) to assess its relationship with benthic metrics. In addition, we characterized the 

contribution of ground-water Q (baseflow) to total Q with a baseflow index (BFI = 

baseflow/total Q); alternatively, 1-BFI can be thought of as a flood-flow index (Clausen & 

Biggs, 2000). Baseflow was estimated using a standard automated algorithm (three pass 

recursive digital filter; Nathan & McMahon, 1990).   

 Stream physicochemistry.- We collected water samples to characterize streamwater 

physicochemical conditions at each study site (8-10 dates/site). Grab samples were collected 

during low-flow periods (no rain ≥ 3 days prior) in acid-washed and deionized water rinsed 
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polypropylene bottles, which were rinsed again with stream water at the sites prior to sample 

collection. Grab samples were carefully collected from mid-channel at the most downstream 

portion of the study reach prior to additional field work to prevent the risk of stream disturbance 

(Lurry and Kolbe, 2000). Samples were kept on ice and refrigerated until analyzed (< 24h). 

Concentrations of total N (TN; mg L
-1

) and P (TP; mg L
-1

) were determined at an independent 

lab by persulfate digestion using standard procedures (Rice & Association, 2012). Dissolved 

organic carbon (DOC) concentrations were determined with a Shimadzu TOC/TN analyzer 

(Shimadzu Scientific Instruments, Columbia, MD). We quantified total suspended solids (TSS; 

mg L
-1

) using the volumetric filtration method (Wallace et al. 2006), whereas we determined 

stream water pH, dissolved oxygen (DO; mg L
-1

) and specific conductivity (SPC; µS cm
-1

) in-

situ with a handheld multi-probe sonde (YSI, Yellow Springs, OH). ). We focused on a select 

few physicochemical variables frequently associated with LULC disturbance (i.e. TP, SPC) and 

those that may be biologically relevant (i.e. pH, DO); some additional variables were quantified, 

but were redundant and excluded from analyses (i.e. NO3  TN, TDS  SPC).  

 We quantified benthic organic matter (BOM) at 10 spots along each stream reach using a 

2.5 x 5 cm PVC corer. Core samples were dried in pre-weighed crucibles at 50°C for 48 h before 

combustion at 550°C for 3 h.  Dry and post-combustion weights were recorded and BOM was 

reported as percent ash-free dry mass (Steinman et al. 2006). In addition, we quantified wetted 

widths and depths at 10 cross sections over the 100m stream reach during benthic sampling. At 

each cross section, large woody debris (LWD; wood > 2.5 cm in diameter) was estimated using a 

modified line-intercept method (Lamberti and Gregory 2006), and expressed as % of total wetted 

surface channel area. 
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 Biotic sampling.- We sampled benthic macroinvertebrates at each site in the fall (Oct 

2008) and spring (March 2009) using a Surber sampler (250 µm mesh, 0.093m
2
 per quadrat) in 3 

randomly selected run habitats (3 quadrats per run, total area sampled per site = 0.84 m
2
) along 

each stream reach. We sampled run habitats because they were common among streams and 

typically contained a large proportion of exposed woody debris, which should provide relatively 

stable substrate and should host a high diversity of organisms (Benke et al. 1985). Invertebrate 

samples were preserved in 95% EtOH, transported to the laboratory and stored in at 4 C until 

processed, where we used a 2-phase method (Feminella 1996). Samples were coarse picked with 

the unaided eye for ≥30 min to remove large (> 2mm) organisms; remaining material was 

volumetrically subsampled from a homogenized, 1000 mL suspension.  Several 50 mL aliquot 

subsamples (≥ 3 aliquots per sample) were removed from the total suspension and picked at 

random microscopically until a minimum total of 300 individuals were removed; this method has 

been found to reduce processing time and yield low within-sample variation (coefficient of 

variation < 10-15%, Feminella 1996).  

 We identified invertebrates, mostly aquatic insects, to the lowest practical taxonomic 

level (usually genus; Epler 2001, Merritt and Cummins 2007). We identified oligochaetes to the 

order level and excluded small meiofauna that were not reliably sampled or the focus of our 

study (arachnida, cladocera, ostracoda, and copepoda). We measured individuals for body length 

to the nearest mm. Enumerations from subsamples were extrapolated according to the fraction of 

the sample examined to estimate totals for the entire samples.  

 We focused on commonly used benthic metrics and those generally negatively associated 

with LULC change as response variables. Among the metrics calculated were numerical density 

(ind. m
-2

), genus richness, diversity (as Shannon‟s H’), Pielou's evenness, percent 
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Ephemeroptera, Plecoptera and Trichoptera (%EPT) excluding purported tolerant families 

Hydropsychidae and Baetidae (% EPT -H/B; Merriam et al. 2011, but see Chang et al. 2014), 

and abundance weighted average pollution tolerance values (PTV; U.S. Environmental 

Protection Agency 2013) (Table 1). We noticed large differences in invertebrate densities during 

the benthic sorting process and calculated rarefied versions of all benthic metrics to remove the 

effect of sample sizes on benthic metrics (Gotelli & Colwell, 2001). Rarefaction was achieved by 

resampling 100 individuals from each site 1000 times without replacement, all metrics were 

calculated and stored for each resample and mean values were used as rarefied metrics (Walker, 

Poos & Jackson, 2008).  

 We included additional benthic metrics that were not a major focus of the study to help 

describe the benthic assemblages, as coastal streams are relatively understudied. We included 

compositional metrics describing proportions of dominant groups (e.g., % Chironomidae) and 

some based on invertebrate traits (Table 1). Multivoltinism, small body size, high fecundity, high 

dispersal abilities, streamlined/fusiform body shape, fast flow preference, and the ability to 

diapause were chosen as these may provide resistance or resilience to frequent flood disturbance 

or extreme temperatures and drought (Townsend and Hildrew, 1994). Trait-based metrics used 

information derived from the USGS trait database at the genus level (Vieira et al. 2006). Trait 

information was unavailable for a few taxa. The abundance of traits within an assemblage has 

been shown to be accurately estimated by family or genus level trait information (Dolédec et al. 

2000), therefore we supplemented respective family-level traits where needed. We included 

small body size (< 2.5 mm) trait based on individual length measurements from this study.     

3.2.3 Statistical Analysis 
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 Partial least-squares.- We described relationships between LULC, potential in-stream 

stressors and commonly used macroinvertebrate assemblage metrics using partial least-squares 

(PLS). In traditional regression analyses, small sample sizes and inherent collinearity among 

proportionally based LULC categories are problematic, as both can lead to inflated variance 

about coefficient estimates (Graham, 2003; King et al., 2005; Varanka & Luoto, 2012). In 

contrast, the latent-variable method PLS uses the correlation structure of predictor variables (X) 

to construct new uncorrelated/orthogonal variables (latent components) that are linear 

combinations of X most related to the response variable(s) and shows comparatively lower 

estimation variance (Wold et al., 1984; see Chapter 1). In addition, PLS assumes that the system 

under investigation is a function of a few unmeasured “latent” variables and assumes very little 

about the observed data or residual distribution (Rosipal and Krämer, 2006). This property of 

PLS may be appropriate in observational studies, where true causal relationships are rarely 

known and collinear LULC variables may simply be proxies for ultimate causal factors.  

 Univariate response.- We determined the number of PLS components by choosing the 

minimum AICc, calculated with model residual sum-of-squares (RSS) and the number of PLS 

components retained (Li, Morris & Martin, 2002). With PLS, “variable importance in projection” 

(VIP) scores are used to indicate variables that contribute greatly to the model (Mehmood et al., 

2012). A recent simulation study suggested that PLS performs relatively well in small sample 

and collinear situations at providing reasonable coefficient estimates and correctly identifying 

important predictors when VIP > 1 or slightly greater (e.g., 1.05) is used as selection criteria (see 

Chapter 1).  

 For each abiotic response variable, we incorporated the uncertainty associated with 

component determination into confidence interval calculations by bootstrapping the selection 
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process (Buckland, Burnham & Augustin, 1997). We used the percentile method for confidence 

interval (CI) estimation and provided bootstrap averaged (“bagged”) coefficient estimates that 

may more accurately estimate coefficients from model selection (Bühlmann and Yu 2002, Efron, 

2014). PLS models were created using standardized X variables, as PLS is sensitive to the 

variation among X because latent variables are created that maximize the covariance between 

predictors and response variables. Regression coefficients were unstandardized for models used 

to assess relationships between LULC, hydrologic and physicochemical variables, as LULC 

classes are on the same scale (%).  

 To analyze relationships between benthic metrics and stressors associated with LULC 

change, we incorporated a relatively large number of predictor variables (compared to sample 

size) that may potentially influence benthic assemblages (e.g., STG fre1.0, maximum flood 

cross-sectional dimensions). Prior to PLS model building, we used principal component analysis 

(PCA) to examine expected redundancy in benthic diversity/sensitivity metrics; if high levels of 

redundancy existed, we considered the use of principle axes as responses instead of the original 

variables. For each biotic response variable, we first conservatively reduced the predictor 

variable set by omitting variables with VIP scores < 0.70, and refit the PLS model with this 

reduced variable set (Mehmood et al., 2012; Wold, Sjöström & Eriksson, 2001). We 

incorporated the uncertainty associated with both variable reduction and component 

determination into confidence interval calculations by bootstrapping the selection process as 

mentioned above. Standardized coefficients were reported for ease of comparison between X 

variables which were measured on different scales. 

 Multivariate response.- We graphically summarized relationships between multiple 

benthic metrics and environmental variables with multi-response PLS models. The predictive 
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performance of multi-response PLS can be poor relative to that for single-response, especially 

when predictors are unrelated (Garthwaite 1994). Multi-response PLS, however, is 

mathematically similar to canonical correlation analysis (CCA; Rosipal and Krämer 2006, He et 

al. 2015) and can be useful for visual assessment of relationships between two sets of variables. 

Initial models were run and final models incorporated only variables with VIP > 0.7 in the initial 

run. For brevity, we provide only graphical output for final models. We created 3 separate multi-

response models, one to describe diversity and sensitivity metrics of central interest to this study, 

as well as a compositional model and functional/trait model. 

 We investigated the degree of collinearity between LULC categories using simple 

correlation analysis and variance inflation factors (VIF; Montgomery et al. 2001). Prior to 

analyses, we transformed (log10 or square-root) some variables (indicated in text) to alleviate 

potentially influential observations and to improve data spread and linearity of relationships 

(Zuur, Ieno & Elphick, 2010). To better balance the probability of type I and II errors with small 

sample sizes we used a confidence level of 90% for tests and confidence intervals used herein 

(Peterman, 1990; Toft & Shea, 1983).  All analyses were performed in R-language (R Core 

Team, 2013) and utilized base packages as well as the packages plsdepot (Sanchez 2012) and 

vegan (Oksanen et al. 2015). 

3.3. Results 

3.3.1 Abiotic variables 

LULC classification.- In this study, ISC was found in high concentrations around the 

town of Foley and was more dispersed in suburban neighborhoods and larger single home lots; 

ISC consisted mainly of roads, buildings, and parking lots. Agriculture was widespread and 

mainly consisted of turf grass and pasture. Riparian forests were generally dense and composed 
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of overstories dominated by Magnolia virginiana (sweet bay), Liriodendron tulipifera (tulip 

poplar), Quercus nigra (water oak), and Liquidambar styraciflua (sweetgum). Riparian 

understories included Acer rubrum (red maple) the invasive Triadica seberifera (popcorn tree) 

and various shrubs and ground plants. Study watersheds spanned gradients of low ISC (1.5 - 

11%), agriculture (15 - 53%; mainly turf grass farms and pasture), and riparian forest cover (28 - 

96%; Table 2). An assessment of LULC classification accuracy based on a random selection of 

25% of the 21,000 total LULC polygons created indicated 96% accuracy. 

 The percentage of riparian forest in a 100 m buffer (% FB) was negatively correlated 

with % ISC (r = -0.60, p = 0.032) and % Ag (r = -0.53, p = 0.065) in the study watersheds, but no 

correlation was detected between % ISC and Ag (r = -0.07, p = 0.81). VIF values for the above 3 

LULC variables as single predictors in OLS framework were 2.27 (for % ISC), 2.028 (% Ag), 

and 3.124 (% FB), indicating some inflation about OLS coefficient estimation likely would exist 

due to collinearity. 

Abiotic response variables.- Most of the abiotic variables examined were related to at 

least one of the LULC classes and the direction of these relationships followed theoretical 

expectations (Table 3). TN was significantly negatively related to FB, and positively to Ag; 90% 

CIs for these variables did not contain zero and VIP values suggested that both were important 

predictors of TN as both showed VIP > 1.0 (Table 3). TP, TSS, SPC, ∆STG, and BFw were 

significantly negatively related with % FB and positively with % ISC (Table 3). Q fre7 and 

median water temperature were positively related to % ISC (alone), whereas BFI was negatively 

related to % ISC. Streamwater pH was not significantly related to any of the LULC classes (CI 

contained zero); however, VIP scores were > 1 for % FB and ISC, indicating some importance in 

explaining pH values within these streams. DOC was significantly positively related to % FB 
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alone, according to CIs; however, the VIP score for % ISC was > 1.0 suggesting some 

importance in predicting DOC. Inspection of scatterplots and PLS CIs and VIP suggested that 

Qmax, duration of Q dur7x, BFh, and DO were unrelated to the LULC categories examined (data 

not shown). Lastly, bagged (average bootstrapped) coefficients, which can be more accurate than 

“observed” values following model selection, were similar to coefficients derived from original 

data indicating general stability in the PLS component selection process . 

3.3.2 Biotic variables 

Benthic macroinvertebrates.- Benthic samples included ~100,000 individuals within 92 

genera and 51 families.  Taxa were most frequently from the dipteran family Chironomidae 

(51%); the top 5 of those were Polypedilum (14.5%), Thienemanniella (5.8%), Corynoneura 

(5.6%), Rheotanytarsus (5%) and Tanytarsus (3.6%) species (spp). Other prevalent groups were 

Simulium spp. (Diptera, 14%), non-insects Lirceus spp. (Isopoda, 11%) and Gammarus spp. 

(Amphipoda, 3%), and members of the order Trichoptera (Chimarra 1.1% and Cheumatopsyche 

spp. 1.6%). Additional taxa contributed < 1% each to overall benthic count data across sites and 

dates (Taxa are listed by site in Appendix 1). Mean invertebrate N varied greatly between sites 

(1,500- 11,000 m
-2

, Table 4). Rarefied metrics also varied greatly across sites; S varied from 10 

to 43, % EPT varied from < 1 to 20% and % Chironomidae from 5 to 90 % (Table 4).  

Seasonal differences in benthic metrics were not an immediate interest of this study; however, 

prior to regression analyses we used paired t-tests to determine if differences in benthic metrics 

existed between sample dates. Within-site differences between sample dates were not observed 

for any benthic metrics (p-value range: 0.25 - 0.61).  As a result, we used cross-season average 

values for metrics in subsequent analyses.  
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Correlation based PCA was used to examine redundancy in invertebrate N, richness, H’, 

evenness, and % EPT -H/B. As expected, a large proportion of the variation in these 6 metrics 

was explained by the 1
st
 two PC axes (70.93 and 10.39% respectively). Richness, H’, evenness, 

% EPT-H/B and PTV were loaded high on PC1 indicating (expected) high redundancy in 

diversity and tolerance metrics. Also as expected, N loaded mainly on PC2, indicating it was 

uncorrelated with the rarefied diversity/sensitivity metrics.  

We examined density and richness in detail and considered richness as a proxy for the 

highly redundant group of diversity and sensitivity metrics. The model for (log-transformed) N 

explained 81% of its total variation; model loadings and regression coefficients indicated general 

associations between N and these predictors (Table 5). % FB and BOM had significant positive 

relationships with N and % ISC, TSS, ∆STG, STG fre1.0, and maximum width and depth had 

negative associations (Table 5). The model created for S explained 74% of its variation. Model 

results indicated that DOC, BOM and maximum temperature were significantly negatively 

related to S, while maximum water depth was positively related to S (Table 5). For both models, 

several variables had relative large VIP values (≥ 0.9) but had CIs that were bound on one end by 

zero (Table 5). Bootstrapped CIs that incorporate the model selection process may be bound on 

one end by 0 because at least some resampled models estimated variable coefficients to be 

exactly zero (generally by exclusion). The interpretation of importance of these variables should 

be made with caution (see Chapter 1).       

A multi-response PLS model described interrelationships between invertebrate N, H’, 

richness, evenness, PTV and % EPT-H/B and environmental variables (Fig. 2). Model results 

also indicated redundancy in rarefied diversity/tolerance metrics that were unrelated to N as 

determined by PCA (Fig. 2). In agreement with the univariate models, richness (H’, J’, % EPT-
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H/B and PTV) was correlated with a gradient of DOC, BOM and maximum water temperature 

and maximum water depth, while N was negatively associated with % ISC, stage-based 

flashiness and frequency and maximum depth and width (Fig. 2).  

 Proportions of abundant families and orders showed some relationships with 

environmental variables (Fig. 3). The proportion of individuals belonging to the families 

Hydropsychidae and Baetidae were related with % ISC and associated hydrologic stressor 

gradient (e.g., ∆STG; Fig. 3). % EPT –H/B, Simuliidae, Dipterans excluding Chironomids and 

Simuliids (Dipt – C/S), and non-insects generally followed the FB, organic matter, maximum 

temperature and depth gradient previously described (Fig. 3). The proportion of small bodied 

and/or streamlined individuals was positively related with ISC and associated hydrologic stressor 

gradient (Fig. 4). Rheophiles, multivoltine individuals, burrowers, sprawlers, and individuals 

with high fecundity and/or adult dispersal abilities were positively associated with a gradient of 

maximum Q and water depth and negatively related to maximum water temperature. The 

percentage of individuals as clingers and/or those capable of diapause were positively associated 

with maximum temperature, while individuals with high larval dispersal abilities were positively 

associated with BFI and negatively with ISC (Fig. 4).    

3.4 Discussion 

The primary goal of this correlative study was to determine if empirical evidence 

suggests that low-density development (i.e., low % ISC) influences aspects of stream hydrology, 

geomorphology, and physicochemistry of small coastal streams.  In addition, we aimed to 

describe relationships between LULC, potential environmental stressors, and common benthic 

macroinvertebrate metrics typically negatively affected by LULC change (e.g., richness). Our 

results suggested that the low-density development observed in this study may be influential over 
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stream hydrology, as storm-event flashiness, frequency and the contribution of stormflow to total 

flow increased across a gradient of % ISC. In addition, there was evidence that low-density 

development may lead to an increase in bankfull width, TP, TSS and ionic concentrations, as 

well as median water temperature. Lastly, our results suggest that low-density development and 

associated hydrologic stressors may reduce invertebrate densities and that these developed sites 

host proportionally more potentially tolerant members of the EPT group (Baetidae and 

Hydropsychidae) than less developed sites in this study. 

Schneid (Chapter 2) demonstrated that PLS models can result in relatively acceptable low 

levels of variance and bias, even in small sample and highly collinear situations (r > 0.7, VIF >> 

10) and more frequently correctly indicated important predictors than selection methods based on 

OLS regression (e.g., stepwise). Collinearity often is a problem with LULC studies (Allan 2004). 

In the current study, correlations among LULC categories were minimal (r = 0.53 – 0.6); 

however, variance inflation factors indicated that some inflation in the variance (maximum VIF 

= 3.1) about regression coefficient estimates would be present if OLS were used. Alternative 

regression methods, including PLS, have generally not been considered by ecologists (Dahlgren 

2010); however, we note that several recent studies have used PLS regression in analyses of the 

effects of LULC on stream systems (Zhang et al. 2010, Shi et al. 2013, Yan et al. 2013). PLS 

may be more appropriate for LULC-stream studies where predictor collinearity is inherent, 

sample sizes are generally low, and because LULC classes should be considered only proxy 

variables for underlying causal mechanisms in most cases. 

ISC directly reduces infiltration and increases watershed runoff volume and velocity, thus 

potentially directly influencing flow regime and channel morphology; further, ISC is 

theoretically linked to the urban heat-island effect and direct thermal pollution from overland 
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runoff (Wenger et al., 2009). Our results suggest that the low-density development observed in 

this study (≤ 11% ISC) may increase median water temperatures, storm-event flashiness, spate 

frequency, bankfull width, and a decrease in the contribution of baseflow to overall stream flow 

(conversely indicating large volume of runoff). A recent study in nearby Apalachicola (FL) also 

examined sites along a gradient of low ISC ( < 15%) and similarly found positive correlations 

between stream flashiness, median water temperatures and % ISC, although no relationship was 

observed for baseflow (as BFI) in that study (Nagy et al. 2012). Decreased stream baseflow is 

not a consistently observed trend associated with urban areas (Walsh et al. 2005, Roy et al. 

2009), and urban stream discharge may be positively influenced by leaky sewers/pipes or 

negatively influenced by lowered water tables due to a combination of channel incision and 

reduced infiltration (Groffman et al. 2003).   

Interestingly, bankfull depth, maximum stormflow magnitude and duration were not 

associated with % ISC or other LULC categories considered. The downcutting of stream 

channels has not been universally observed across the US, but has been associated with 

urbanization in coastal areas of North Carolina with similar bed composition (Hardison et al. 

2009, O‟Driscoll et al. 2010). It is possible that sediment input from ongoing construction 

activities in these watersheds were greater than export associated with storm-event scouring. 

Noticeable shifting of bed material and migration of large “slugs” of sand were observed in the 

more urban sites over the 1.5-y period of this study (BPS, personal observation). Stormflow 

magnitude and duration have also been generally associated with urbanization across the US,         

(Poff et al. 2006, Brown et al. 2009) and Nagy et al. (2010) found a significant relationship 

existed between maximum storm magnitude and low levels of % ISC in coastal Florida.  



75 

 

Urban areas and agricultural lands can also contribute to nutrients, sediments and 

dissolved solids (SPC) in streams through the use of fertilizers and the disturbance of ground 

cover (Allan 2004). In our study, agriculture was positively related to TN concentrations and ISC 

positively related to TP, TSS, and SPC. Riparian forests are thought to act as physical filters for 

sediment, and nutrients as well as being the primary source of organic matter (DOC) in small 

streams (Naiman & Décamps, 1997). TN, TP, TSS, SPC, pH and bankfull width were negatively 

related with the %FB of in the 100 m buffer; therefore, riparian forest may act to reduce the 

overland inputs of nutrients and solids from agricultural and urban LULC in these 

watersheds/streams. These results support the beneficial view of riparian buffers and their use as 

best management practice tools to maintain good water-quality in low-gradient coastal areas. 

Riparian buffers have been shown to drastically reduce sediments from agricultural lands, and 

are generally considered to be sinks for sediment, sediment-bound P and soluble nutrients 

(Gregory et al. 1991, Naiman and Décamps 1997). In a meta-analysis, Mayer et al. (2007) 

showed that wide riparian buffers (> 50 m) were more consistent in nitrogen removal that 

narrower buffers; however, it has also been shown that riparian zones may become less effective 

as nitrogen (NO3
-
) sinks as they become more urbanized (Groffman et al. 2002). 

ISC was not significantly related to macroinvertebrate density or sensitivity metrics; 

however, density was negatively associated with %ISC and hydrologic flashiness and frequency. 

It is generally accepted that LULC indirectly affects biota through intermediate causal factors 

(e.g., hydrology) (Burcher, Valett & Benfield, 2007); therefore, it may be expected that LULC 

categories would exhibit weaker associations than potentially direct sources of influence. 

Interestingly, density was negatively related to TSS, maximum flood width and depth and 

positively related to % FB and benthic organic matter as well; taken together, these results may 
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indicate a scouring influence from increased hydrologic disturbance and/or that of resource 

availability/abundance. 

Benthic richness (as well as diversity and sensitivity metrics) were negatively related 

with maximum stream water temperature, but positively associated with maximum water depth. 

Chadwick et al. (2011) found a weak but positive relationship between high urban LULC and 

taxonomic richness of benthic invertebrates of north Florida streams and concluded this 

observation may be because of greater hydrologic permanence in urban streams (Chadwick et al. 

2011). Hydrologic permanence in urban streams might be beneficial for some organisms, as 

higher flows may increase available habitat, alleviate water chemistry problems through dilution, 

reduce water temperatures, and/or increase dissolved oxygen concentrations and lead to an 

overall higher richness/diversity relative to non-urban streams that experience intermittency in 

summer months (Walsh et al. 2005, Roy et al. 2009). Hydrologic permanence might be a factor 

in our sites as well, as observed maximum water temperatures (15 min data) may be indicative of 

shallow stagnant water and potential stream drying during summer low-flow (personal 

observation).  

 Subtle compositional trends were observed in more developed streams, as the families 

Hydropsychidae and Baetidae positively associated with %ISC and hydrologic 

flashiness/frequency stressor gradient. While variation in tolerance within these two families 

exists, these groups have been generally assumed to be more tolerant than other EPT taxa (but 

see Chang et al. 2014). The traits small and streamlined body shape was also associated with this 

same ISC/hydrology gradient and it was noted that the more developed streams in this study 

were quite abundant in small bodied, early instar baetid and hydropsychid individuals, as well as 

small (streamlined) heptageniid mayflies (BPS, personal observation). We also observed that the 
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traits rheophily, along with high fecundity and high adult dispersal were generally associated 

with maximum flood water depth, maximum discharge and TSS. These observations correspond 

to predictions from the habitat templet concept applied to river systems (Townsend and Hildrew 

1994), in that more hydrologically disturbed sites should be host to a greater abundance of small, 

streamlined individuals that prefer fast flowing water, and/or those with a disproportionate 

ability to recolonize (high fecundity/dispersal) following extreme disturbance events. In addition, 

the percentage of individuals capable of diapause (e.g., desiccation-resistant eggs) was 

interestingly positively associated with maximum temperature and sites that likely experienced 

extreme summer drawdown if not complete drying in some portions of study reaches (BPS, 

personal observation). Most of these sites were dominated by Simulium spp.,  some of which 

produce desiccation-resistant eggs and have been associated with temporary habitats (Bogan et 

al. 2013). Maximum temperature was negatively associated with richness, thus supporting the 

idea that extreme temperatures and stream drying might be highly influential over benthic 

diversity in these streams.   

The current study demonstrated an influence of ISC <  11% on hydrology and 

physicochemistry, but only subtle trends with benthic invertebrates and developed land. In 

contrast, ISC cover < 10% has been shown to influence stream hydrology and physicochemistry 

in some coastal areas (Schiff and Benoit 2007; Lussier et al. 2008; Cunningham et al. 2009; 

Nagy et al. 2012) and negatively impact sensitive taxa in at least a few studies (Walsh et al. 

2007, King et al. 2011). ISC that is directly connected to streams through drainage infrastructure 

is recognized as being a likely more influential to stream systems than whole-watershed ISC 

(Wenger et al. 2009). We note that in this study whole-watershed % ISC and % ISC within 100 

m of the stream channel were highly correlated (r = 0.96, p <<  0.001). Because ISC located 
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immediately adjacent to these streams is proportional to that at the whole watershed, we would 

expect that the general trends observed in this study would be similar those that we would find if 

we did have information on ISC connectivity.       

3.5 Conclusions 

Virtually all of the southeastern coastal plains has been altered by human activity and has 

been historically dominated agriculture and more recently converted to urbanized and 

suburbanized landscapes (Nagy et al. 2011).  The effects of urbanization are often 

reduced/confounded when agricultural lands are converted (Wenger et al. 2009); however, our 

study suggests that ISC ≤ 11% likely influences nutrient, sediment and ionic concentrations in 

these streams as well as channel width, hydrologic flashiness, storm event frequency, and 

baseflow contributions to total stream flow.  

Burcher and Benfield (2006) found no relationships between suburban land cover and 

macroinvertebrate metrics (e.g., taxa richness), the authors concluded that it is likely these sites 

did not exceed the lower ISC threshold to induce a measureable effect, but noted slight 

compositional differences using multivariate ordination (Burcher and Benfield 2006). In the 

current study, the data suggest that ISC and associated stressors (e.g., hydrologic flashiness) may 

influence invertebrate densities; however, rarefied benthic diversity and sensitivity metrics were 

not detectably associated with ISC.  We conclude that ISC levels in this study were not large 

enough to lead to a detectable effect of ISC on these diversity and sensitivity/tolerance metrics 

and that underlying gradients of stream flow permanence, temperature extremes, oxygen levels, 

organic matter, and potential stream drying (supported by % diapauses trait) may play an 

important role in the observed variation.  Interestingly, more subtle compositional differences in 

purportedly tolerant families (Baetidae and Hydropsychidae) were observed along a gradient of 
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ISC and related hydro-geomorphic stressors, as well as relationships in agreement with 

theoretical considerations from the habitat templet concept that likely confer resistance/resilience 

to hydrologic disturbance (Southwood 1977; Townsend and Hildrew 1994).  
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Table 1. Abbreviations and descriptions of benthic metrics used in this study. 

 

Measure Metric Definition 

Abundance Numerical density (N) No. individuals per m2 
Diversity Richness (S) No. of taxa 
 Shannon’s diversity (H’) = - 𝑝𝑖

𝑆
𝑖=1 ln 𝑝𝑖 ; where 𝑝𝑖  is proportion of ith taxa 

 Pielou’s evenness (J’) = 𝐻′ 𝑙𝑛𝑆  

 Pollution tolerance (PTV) = 
1

𝑁
 𝑝𝑖

𝑆
𝑖=1 𝑃𝑇𝑉𝑖  

Composition % EPT %  as Ephemeroptera, Plecoptera, Trichoptera 
 % EPT-H/B %  as EPT minus Hydropsychidae and Baetidae 
 % Hydropsychidae %  as family Hydropsychidae 
 % Baetidae % as family Baetidae 
 % Chironomidae % as family Chironomidae 
 % Simuliidae %  as family Simuliidae 
 % Diptera–C/S %  as order Diptera minus Chironomidae and Simuliidae 
 % Colepotera % as order Colepotera 
 % Odonata % as order Odonata 
 % Non-insect % as non-insect taxa 
Habits Burrower Burrows in fine sediments 
 Sprawler Lives on plants or surface of fine sediments 
 Clinger Clings to stable substrates 
Traits Multivoltine > 1 generation per year 
 Small Body length < 2mm 
 Streamlined Body shape resists drag/flow forces 
 Rheophile Prefers fast flowing water 
 High adult dispersal Flying up to 100 km 
 High larval dispersal Crawling up to 100 m  
 High fecundity > 10,000 eggs 
 Diapause Ability to diapause (dormancy) 
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Table 2.  Basic watershed attributes including watershed impervious surface cover (ISC), agriculture (Ag), riparian forest buffer (FB), 

watershed area, and stream order (SO). Median values and standard deviations (in parentheses) for are given for observed stream 

discharge, salinity (SAL), pH, specific conductivity (SPC), dissolved oxygen (DO), total nitrogen (TN) and total phosphorus (TP). 

 

Site ISC 

(%) 

Ag 

(%) 

FB 

(%) 

Area 

(ha) 

SO Discharge 

(m
3
 s

-1
) 

SAL 

(ppt) 

pH 

(unitless) 

SPC 

(µS cm
-1

) 

DO 

(mg/L) 

TN 

(mg/L) 

TP 

(mg/L) 

BON12 8.7 49.4 33.8 2481 2 0.58 (1.76) 0.04(0.01) 5.62 (0.20) 75.0 (8.9) 7.32 (0.9) 2.37 (0.6) 0.02 (0.09) 

FPR29 5.1 45 75.1 253 1 0.05 (0.11) 0.03(0.01) 4.86 (0.34) 58.0 (11.0) 6.82 (2.2) 0.66 (0.2) 0.01 (0.01) 

FPR30 2.2 15.3 95.5 222 1 0.04 (0.10) 0.02(0.00) 4.45 (0.35) 49.0 (7.8) 5.07 (1.7) 0.4 (0.2) 0.01 (0.01) 

GUM13 5.7 28.7 53.6 655 1 0.06 (0.73) 0.03(0.01) 6.11 (0.36) 69.0 (14.1) 8.34 (2.0) 1.05 (0.5) 0.02 (0.01) 

HMK33 3.7 22.2 74.2 621 1 0.04 (0.32) 0.02(0.01) 4.90 (0.29) 49.0 (11.3) 7.99 (2.0) 0.58 (0.2) 0.01 (0.00) 

MAG65 9.5 38.5 27.8 2306 2 0.54 (1.87) 0.03(0.01) 5.48 (0.21) 66.0 (8.5) 7.45 (0.6) 2.45 (0.6) 0.01 (0.04) 

MFL08 4.4 45.1 49.6 854 2 0.18 (0.65) 0.04(0.01) 5.78 (0.28) 74.0 (11.6) 7.42 (1.7) 2.57 (0.8) 0.03 (0.03) 

MFL83 2.6 52.9 50.7 112 1 0.05 (0.06) 0.04(0.00) 5.63 (0.14) 86.0 (7.5) 6.86 (2.0) 2.19 (0.2) 0.01 (0.02) 

PLM20 1.9 36.8 56.5 466 1 0.11 (0.11) 0.03(0.00) 5.5 (0.17) 63.0 (7.1) 6.89 (1.4) 1.77 (0.3) 0.01 (0.01) 

SAN06 4.3 36 64.6 1493 3 0.61 (1.11) 0.02(0.01) 5.68 (0.33) 54.0 (6.2) 8.32 (0.9) 1.58 (0.4) 0.01 (0.02) 

SAN7E 6.8 31.4 48.3 202 1 0.04 (0.35) 0.03(0.00) 5.52 (0.19) 61.0 (8.5) 8.03 (1.0) 2.08 (0.4) 0.02 (0.06) 

SAN7W 1.5 43.1 55.7 699 1 0.06 (0.42) 0.03(0.01) 5.33 (0.23) 58.0 (10.9) 8.96 (0.9) 2.88 (0.9) 0.02 (0.06) 

WLF01 10.9 22 50.2 845 2 0.17 (1.00) 0.04(0.01) 6.10 (0.21) 88.5 (16.7) 6.44 (2.1) 1.92 (1.2) 0.58 (0.29) 
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Table 3. Summary table for PLS model coefficient estimates for each LULC category (𝑏 LULC) 

and model intercepts (𝑏 0). Bootstrap aggregated (bagged) average coefficients are in parenthesis, 

and bootstrap 90% confidence intervals (CI) are provided below each coefficient estimate. R
2
 

(cor(y,𝑦 )
2
) is provided in the far right column for each model.  Boldfaced values indicate CI (for 

slopes only) does not contain 0.  † = PLS-VIP ≥ 1.0.  Coefficients were un-standardized, and 

some multiplied by 100 (*100) to improve readability. Transformations are noted in the left-hand 

column. 

 

Response 𝒃 0 𝒃 FB 𝒃 Ag 𝒃 ISC R
2
 

       

TN 𝑏  2.80 (2.71) -0.031 (-0.030) 0.017 (0.020) 0.013 (-0.005) 0.674 

 CI 0.92, 4.71 -0.062, -0.009† 0.001, 0.049† -0.173, 0.108 --- 

log(TP) 𝑏  -3.47 (-3.74) -0.017 (-0.014) 0.004 (0.004) 0.030 (0.035) 0.355 

 CI -4.74, -2.56 -0.031, -0.003† -0.006, 0.017 0.001, 0.111† --- 

log(TSS) 𝑏  2.13 (1.95) -0.018 (-0.016) -0.001 (-0.003) 0.042 (0.054) 0.398 

 CI 0.81, 3.40 -0.034, -0.002† -0.026, 0.014 0.003, 0.141† --- 

DOC 𝑏  4.195 (6.43) 0.012 (0.078) -0.029 (0.036) -0.054 (-0.049) 0.481 

 CI -0.637, 10.96 0.015, 0.155† -0.303, 0.473 -0.119, 0.017† --- 

SPC 𝑏  81.07 (73.56) -0.458 (-0.365) 0.175 (0.199) 0.771 (0.975) 0.424 

 CI 46.82, 107.31 -0.803, -0.096† -0.096, 0.632 0.014, 2.503† --- 

Temp. 𝑏  20.26 (20.04) -0.011 (-0.007) -0.000 (-0.003) 0.048 (0.060) 0.443 

 CI 18.87, 21.43 -0.024, 0.006 -0.024, 0.011 0.006, 0.167† --- 

sqrt(pH) 𝑏  239.7 (241.5) -0.151 (-0.214) 0.0176 (0.010) 0.303 (0.567) 0.503 

*100 CI 224.5, 269.1 -0.705, 0.017† -0.245, 0.270 -0.204, 2.102† --- 

∆STG 𝑏  3.229 (3.379) -0.022 (-0.028) -0.003 (-0.009) 0.059 (0.128) 0.607 

*100 CI 1.604, 6.419 -0.071, -0.001† -0.046, 0.020 0.008, 0.314† --- 

Q freq7 𝑏  18.02 (11.62) 0.038 (0.103) -0.162 (-0.104) 1.419 (1.534) 0.300 

 CI -34.565, 39.078 -0.249, 0.579 -0.519, 0.318 0.175, 3.975 --- 

BFI 𝑏  69.73 (73.73) 0.162 (0.094) 0.105 (0.131) -0.921 (-1.164) 0.268 

*100 CI 53.01, 91.68 -0.130, 0.370 -0.113, 0.509 -3.015, -0.167† --- 

BFw 𝑏  13.574 (10.782) -0.176 (-0.121) 0.011 (-0.001) 0.395 (0.445) 0.575 

 CI 3.234, 20.671 -0.246, -0.029† -0.137, 0.107 0.108, 0.989† --- 
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Table 4.  Mean benthic density and diversity/sensitivity metric values for the 13 study streams. 

Abbreviations are provided in Table 1. 

 

Site N S H’ J’ % EPT % Chironomidae PTV 

BON12 1,622 35 2.79 0.78 11.63 64.55 4.87 

FPR29 11,159 22 1.99 0.64 3.33 16.82 4.88 

FPR30 7,116 10 1.03 0.43 0.14 5.40 7.23 

GUM13 2,247 29 2.48 0.74 16.25 66.59 4.90 

HMK33 9,785 20 1.58 0.53 1.43 14.35 5.80 

MAG65 1,556 31 2.52 0.73 13.23 63.78 5.18 

MFL08 6,168 24 1.47 0.46 0.91 89.69 5.24 

MFL83 9,138 28 2.38 0.71 9.67 57.90 5.13 

PLM20 6,726 37 2.84 0.78 10.38 44.52 4.59 

SAN06 2,286 38 2.88 0.79 11.90 53.55 4.69 

SAN7E 1,501 30 2.03 0.60 2.86 65.59 5.51 

SAN7W 2,486 43 2.91 0.77 9.10 56.60 4.65 

WLF01 2,293 28 2.53 0.76 19.44 64.19 4.93 
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Table 5.  Summary results from PLS regression models explaining invertebrate density (N) and rarefied genus richness. Variable 

importance in projection scores (VIP), PLS model loadings, standardized regression coefficients (𝛽 ), and 90% confidence intervals 

(CIs) are provided for each model. Only variables included in final PLS models are shown, and each had initial model VIP > 0.7. 

Boldface rows indicate 90% CI for regression coefficients did not contain zero, and “---“ indicates variables not retained in final 

model. R
2
 for the model describing density was 0.81 and R

2 
was 0.74 for the model describing richness. 

 
Log10(N) Richness 

Variables VIP Loadings  𝛽  (bagged 𝛽 ) 𝛽  CIs VIP Loadings 𝛽  (bagged 𝛽 ) 𝛽  CIs 

FB (%) 1.05 +0.264 0.087 (0.075) 0.021, 0.106 1.03 -0.284 -0.100 (-0.070) -0.116, 0 

Ag (%) --- --- --- --- 0.86 +0.237 0.083 (0.069) 0, 0.135 

ISC (%) 1.01 -0.252 -0.083 (-0.076) -0.111, -0.034 --- --- --- --- 

DOC (mg/L) 0.99 +0.248 0.082 (0.082) 0, 0.166 1.37 -0.379 -0.133 (-0.134) -0.227, -0.083 

DO (mg/L) 0.71 -0.178 -0.058 (-0.054) -0.115, 0 1.09 +0.303 0.106 (0.093) 0, 0.196 

log(BOM) (%) 1.34 +0.334 0.110 (0.108) 0.076, 0.159 1.19 -0.332 -0.116 (-0.095) -0.134, -0.0411 

log(TSS) 1.33 -0.333 -0.110 (-0.115) -0.187, -0.073 0.77 +0.213 0.075 (0.063) 0, 0.125 

sqrt(pH) 0.89 -0.222 -0.073 (-0.060) -0.093, 0 0.96 +0.266 0.093 (0.064) 0, 0.115 

LWD --- --- --- --- 0.86 -0.238 -0.083 (-0.074) -0.154, 0 

Temp. max 0.54 +0.134 0.044 (0.028) -0.025, 0.078 1.32 -0.366 -0.128 (-0.119) -0.184, -0.072 

∆STG 1.00 -0.251 -0.083 (-0.073) -0.107, -0.001 --- --- --- --- 

Stg fre1.0 1.13 -0.282 -0.093 (-0.085) -0.117, -0.036 0.43 +0.118 0.041 (0.017) -0.047, 0.062 

Q fre7 --- --- --- --- 0.75 -0.207 -0.072 (-0.080) -0.163, 0 

Q dur7 0.57 +0.141 0.047 (0.038) -0.061, 0.113 0.78 -0.216 -0.076 (-0.080) -0.163, 0 

Max depth 1.38 -0.345 -0.114 (-0.115) -0.182, -0.080 1.17 +0.325 0.114 (0.103) 0.059, 0.158 

Max width 1.22 -0.306 -0.101 (-0.098) -0.135, -0.066 --- --- --- --- 
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Figure 1. Study site locations in and adjacent to the Wolf Bay Basin, Baldwin County, Alabama, 

USA.  Light grey lines indicate watershed boundaries; circles indicate approximate sample 

locations.  
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Figure 2.  Multi-response PLS plot illustrating relationships between environmental predictor 

variables (gray), benthic metrics (black) and PLS axes. Graphic depicts correlations (as angles) 

between predictors, responses, and PLS axes, vector length represents the strength of the 

relationship with ordination axes, and the circles represent thresholds of correlation (r = 0.50 and 

1.0). Variables with initial PLS VIP < 0.70 were excluded from final model. Benthic metric 

abbreviations and descriptions are described in Table 1. Environmental variables included the 

frequency and duration discharge (Q) was above 7 times the median (Q fre7 and Q dur7), 

frequency stage increased by ≥ 1m, maximum flood width (Max width), benthic organic matter 

(BOM), dissolved organic C (DOC), base flow index (BFI), and large woody debris (LWD).  
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Figure 3.  Multi-response PLS graphic illustrating relationships between predictor variables 

(gray), compositional responses (black) and PLS ordination axes. See Figure 2 for more details 

and Table 1 for information on compositional metrics. Environmental variables included the 

frequency and duration discharge (Q) was above 7 times the median (Q fre7 and Q dur7), 

frequency stage increased by ≥ 1m, maximum flood width (Max width), benthic organic matter 

(BOM), dissolved organic C (DOC), large woody debris (LWD), total suspended sediment (TSS) 

and base flow index (BFI). 
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Figure 4.  Multi-response PLS graphic illustrating relationships between predictor variables 

(gray), trait responses (Y, black) and PLS ordination axes. See Figure 2 for more details and 

Table 1 for information on trait metrics. Environmental variables included the frequency and 

duration discharge (Q) was above 7 times the median (Q fre7 and Q dur7), frequency stage 

increased by ≥ 1m, maximum flood width (Max width), benthic organic matter (BOM), 

dissolved organic C (DOC), base flow index (BFI), and large woody debris (LWD).
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Chapter 4. On the Robustness of PLS with Simple SIMPLS Modifications 

4.1 Introduction 

Data are becoming increasingly larger in dimension in the biological sciences, especially 

in fields of genomic research (Boulesteix and Strimmer 2007).  In ecology, researchers also 

frequently consider large numbers of explanatory/predictor variables (p) as potentially important; 

this will likely increase with advances in data accumulating technology (e.g., remotes sensing, 

automated data loggers) (Mac Nally 2000). Ecological datasets can be quite large (p) relative to 

the number of observations (n; n < p) (Mac Nally 2000) and are typically collinear in nature as 

well (Graham 2003). Traditional methods (e.g., least-squares (OLS) regression) cannot handle 

cases where n < p, and perform poorly when X-variables are highly correlated, therefore, 

alternative statistical methods have been suggested for consideration in ecological research 

(Carrascal et al. 2009; Dahlgren 2010). 

Generally, methods to deal with problems of n < p and collinearity do so by variable 

selection and/or dimension-reduction (Graham 2003; Carrascal et al. 2009). Variable selection 

methods (e.g., forward stepwise) can be used to find a subset (< n) of predictors that optimize 

some criteria based on model fit (e.g., RSS); however, these methods have been criticized for 

several reasons, including potentially large estimation bias when predictors are omitted 

(Whittingham et al. 2006). Principal components analysis offers reduction in the dimensionality 

of a collinear predictor matrix (X) through the creation of an orthogonal set of variables (linear 
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combinations of X) that can be sequentially regressed against a response variable(s); however, 

the relationship between the response (Y) and X is not incorporated in the dimension reduction 

step and does not guarantee the best predictive model (Garthwaite 1994; Carrascal et al. 2009). 

Partial least squares (PLS) reduces dimensionality in X with respect to the variance in Y, and is 

likely preferential over PCA-regression when the goal is prediction (Carrascal et al. 2009).  

PLS exists as two general algorithms: 1) NIPALS (Wold 1966; Wold et al. 1984) and 2) 

SIMPLS (de Jong 1993; described below); the latter is computationally more efficient (faster), 

especially when dimensions are large. PLS finds a set (size k; k ≤ p) of orthonormal vectors Tk 

(Tk=Xwk), where weights (wk) are chosen to maximize covariance between Y and Tk. Yis then 

regressed on Tk and conventional regression coefficients (relating X to Y) are back-calculated 

(de Jong 1993). PLS solutions are biased; however, under non-ideal conditions (e.g., small n, 

collinearity), PLS can offer lower variability (with only small bias) about parameter estimates 

and more accurate predictions relative to least-squares (OLS; see Chapter 1).  PLS has few 

assumptions other than the underlying system is actually a function of underlying and 

unmeasured “latent” variables (Wold et al. 2001). PLS does not assume independence (and 

uncorrelatedness) in X, and unlike OLS, which assumes X was designed (fixed X values) and 

measured w/o error, PLS tolerates noise in X (Wold et al. 2001). 

PLS has obvious appeal, but relies on estimates of location (mean) and scale (variance) 

and is therefore sensitive to outliers and otherwise non-normally distributed data (e.g., wide tails, 

skewness) (Kruger et al. 2008). Outliers are generally thought of as unusual observations (a.k.a. 

cases, entire rows, objects: xi.) that do not conform to the patterns shown by, or are distant from, 

the majority of the data (Møller et al. 2005). Almost every proposed robust method (e.g., 

multiple regression, PCA) in the literature was created assuming outliers occur across entire rows 
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(Møller et al. 2005); thus, these methods work to identify and downweigh the influence of whole 

observations. While unusual data may be correct and valid data, outliers exist in real data almost 

as a rule due to (among others) machine error, calibration issues, and copying/recording mistakes 

(Møller et al. 2005; Rousseeuw et al. 2006). Therefore, outliers are not confined to existing as 

entire observations and can occur as variables (columns: x.j) or as individual elements within a 

dataset (xij) (Møller et al. 2005; Rousseeuw et al. 2006).  

 The first attempt at robust PLS consisted of the replacement of one or more OLS 

solutions in the nonlinear iterative partial least-squares (NIPALS) algorithm with a robust 

alternative (e.g., Theil-Sen), and offered local or global-levels of robustness, but at potentially 

high computational costs and low relative efficiency (Wakeling and Macfie 1992; Møller et al. 

2005). PLS can be made resistant to outliers in at least several other ways and many methods 

have been proposed (reviewed/mentioned in Gil and Romera 1998, Møller et al. 2005, and 

Kruger et al. 2008). Iterative reweighed PLS algorithms use either simple regression residuals to 

reweigh “internally” (OLS residuals within NIPALS) or “externally” (PLS residuals); but 

residual reweighing only protects against vertical outliers (in y-space) (Møller et al. 2005). The 

statistically inspired modification of PLS (SIMPLS) algorithm (de Jong 1993) is computationally 

efficient and can be made robust by the replacement of the initial covariance estimate with a 

robust version (Møller et al. 2005).  

The covariance matrix describes the primary dimensions of the data as an n-dimensional 

ellipsoid, whose volume is given by its determinant, directions of principal axes given by 

eigenvectors and axes lengths by corresponding eigenvalues (Johnson and Wichern 2007). The 

minimum covariance-determinant (MCD) is a robust covariance alternative that searches 

subsamples of the empirical observations (data rows; e.g., of size 0.75n) for the subset with the 
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minimum ellipsoid volume, which ideally describes covariation in the majority of the data and is 

representative of the population (Rousseeuw et al. 2006). Most robust multivariate covariance 

matrices, however, including MCD, cannot be used in situations where n < p (Gil and Romera 

1998; Kruger et al. 2008; Rousseeuw et al. 2006).  

A few robust PLS algorithms (RSIMPLS and PRM) are readily available and have been 

shown to perform relatively well in simulation studies (Hubert and Branden 2003; Serneels et al. 

2005). RSIMPLS (Hubert and Branden 2003) estimates robust PLS scores (T) using SIMPLS 

and a robust covariance matrix estimated by a low-dimensional projection of the data [X,Y] via a 

robust PCA algorithm (ROPCA; based on projection pursuit and MCD). Outlier information is 

obtained in the ROPCA step and used to robustify the regression step (Y on T) (Hubert and 

Branden 2003). Partial robust M-estimator (PRM) is an external iteratively reweighted M-

estimator that uses the geometric mean of continuous weights (on [0, 1]) based on 1) residuals 

and 2) leverage scores to provide resistance to outliers in Y- and/or X-space (Serneels et al. 

2005). RoPLS is an external reweighing algorithm that uses outlier detection (e.g., BACON) to 

identify potential outlying observations and iteratively assigns weights to reduce the influence of 

outlying observations on the PLS solution (Turkmen 2008).  

While the abovementioned and additional “complicated” robust PLS algorithms exist 

(González et al. 2009; Kruger et al. 2008; Møller et al. 2005), plugging robust estimators into 

classical/standard algorithms may adequately reduce the influence of outliers (Daszykowski et al. 

2007). The most simple robust covariance estimators are likely rank based (e.g., bivariate 

Spearman‟s correlation), and while rank-based alternatives are not a novel idea, this simple 

approach was not discussed in some recent reviews on robust multivariate methods or in most 

robust PLS simulation studies (Daszykowski et al. 2007; Gil and Romera 1998; Møller et al. 
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2005; Rousseeuw et al. 2006; Serneels et al. 2005). In this study, we used simulations to 1) 

determine if the simple replacement of covariance estimates with robust estimates based on 

Spearman‟s or Kendall‟s rank correlation estimates result in outlier-resistant PLS, and 2) to 

compare the performance of rank-based PLS to existing robust PLS algorithms. 

4.2 METHODS 

4.2.1 PLS algorithms 

PLS was developed by Herman Wold using the NIPALS algorithm he originally 

developed as an alternative method for principal components analysis (PCA) (Wold 1966; Wold 

et al. 1984). Similarities between PCA and PLS can be seen in the construction of their 

respective weight vectors (wk, aka: loadings) and orthogonal components (𝑡𝑘  = Xwk, aka: scores) 

(Boulesteix and Strimmer 2007):   

𝑃𝐶𝐴: 𝑤𝑘  =  argmax
          𝑤 2= 1

 𝑣𝑎𝑟(𝐗𝑤𝑘) , and                                                                                         [1]                                            

𝑃𝐿𝑆:  𝑤𝑘  =  argmax
            𝑤 2= 1

 𝑐𝑜𝑣(𝐗𝑤𝑘 , 𝐘) .                                                                                            [2] 

PCA components sequentially decrease in the total variation of X each explains; PLS‟s X 

components sequentially decrease with regards to their covariation with, or ability to explain 

variance in, Y.   

NIPALS uses an iterative series of OLS solutions (power iteration) to calculate the 

largest left and right eigenvectors (PLS weights) of the cross-products X‟Y matrix (denoted S 

hereafter; as it is ∝ covariance matrix) (Wakeling and Macfie, 1992).  Successive PLS 

component weights are calculated with updated X and Y matrices (“deflated” using regression 

residuals) orthogonal to the components created previously (Wakeling and Macfie, 1992). The 

(next) largest eigenvectors are calculated, the data are deflated, and so on; thus, NIPALS quickly 

becomes computationally expensive with high dimensional data (Wakeling and Macfie 1992; Gil 
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and Romera 1998). The SIMPLS algorithm is computationally much faster than NIPALS due to 

the use of singular value decomposition (SVD) to obtain eigenvalues directly from S and 

sequential deflation of S (not X) before each calculation additional PLS components (Table 1) 

(de Jong 1993).  Due to deflation differences, the two algorithms produce slightly different 

results when Y is multivariate, but identical results in the case of univariate Y (y) (de Jong 1993).  

4.2.2 Rank-based SIMPLS 

We created two SIMPLS alternatives by replacing the initial cross-product between Y and X 

in the SIMPLS algorithm (Table 1) with cross-products based on Kendall‟s and Spearman‟s 

pairwise correlation coefficients (Visuri et al. 2000). If x and y are centered, then: 

1) Pearson‟s product-moment correlation (PPMC), rxy(x,y) = x‟y (𝑠𝑑(𝑥)𝑠𝑑(𝑦)(𝑛 − 1)) −1; 

where sd(x) is the standard deviation of x. 

2) Spearman‟s rank correlation, rhoxy(x,y) = rxy(rankc(x), rankc(y)); PPMC as described 

above with input as centered ranks (rankc) of x and y. 

3) Kendall‟s rank correlation, tauxy(x,y) =  #𝐶𝑝 − #𝐷𝑝   0.5N N − 1  
−1

 ; where Cp and 

Dp are the number of concordant (agreeing on ranking; e.g., xi > xj and yi > yj) and 

discordant (disagreeing; e.g.,  xi > xj and yi < yj) pairs, based on rank order agreement.    

Kendall‟s rank correlation (tau) and Spearman‟s rank correlation (rho) quantify different 

population-level values than PPMC, but comparable values can be obtained at the normal model 

using angular transformations (Moran 1948; Visuri et al. 2000; Croux and Dehon 2010; Boudt et 

al. 2012). Robust cross-products using transformed rank correlations can be calculated as: 

Stau =  sin[(1/2)π•tauxy(X,Y)]•sd(X)•sd(Y)•(n-1)                                                                          [3] 

Srho =  2sin[(1/6)π•rhoxy(X,Y)]•sd(X)•sd(Y)•(n-1)                                                                       [4] 

4.2.3 Simulation details 
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Data generation 

We generated y to be a function of 4 of 60 X variables (y = - 1.25X1 + 1.25X2 + 1.25X3 - 

1.25X4 + N(0, 1)), where X(40,60) follows a multivariate normal distribution, with a mean vector 

of 0s and correlation structure derived from an Environmental Protection Agency (EPA) dataset 

(Paulsen et al. 2008). These EPA data included 52 highly collinear variables (Fig. 1; the last 

eight in X were uncorrelated random variables) characterizing various measures of land-cover, 

water chemistry, stream hydrology and geomorphology from 40 stream/watershed sites from the 

Piedmont ecoregion of the eastern US  (Paulsen et al. 2008).  

Simulated variables X1, … , X4 corresponded to percent watershed as agriculture (Ag, 

X1), mean substrate diameter (mm, X2), mean stream width (m, X3), and stream water 

ammonium (mg/L, X4) concentration in the real EPA dataset. The sign of population slope (β) 

values for our simulated response (y) were chosen so that X1 (Ag) and X4 (NH4
+
) negatively, and 

X2 (substrate size) and X3 (stream width) positively influenced y.         

We created clean training and test datasets as described above.  A percentage of outlying 

data points (ε; 0 – 40%) were added to training data in either y, X, or [y, X]. Outliers placed in X, 

or [y, X] were done so as either 1) in n•ε entire rows (observations/cases) or 2) n•ε•p elements 

were randomly replaced (independent of row/column). In both cases, the same total number of 

elements were randomly replaced, and each at a distance of 5  N(0, 0.1) from the data edge 

(min or max). 

4.2.4 PLS methods 

For comparison, we included several available robust PLS algorithms: 1) RSIMPLS 

(Hubert and Branden 2003) available in the Matlab Libra library, 2) PRM (Hubert and Branden 

2003) in R package “chemometrics”, and 3) RoPLS (Turkmen 2008), Matlab code was obtained 
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from the author.  We adapted MATLAB code for use in Octave; then the package “RccpOctave” 

allowed us to use Octave/MATLAB functions in R-based simulations.       

The choice of the number of latent variables to retain (k) in practice is generally 

determined with cross-validation (CV) or by the optimization of some function of the model 

residual sum of squares (Wold et al. 2001). With every iteration and method, we used 2/3
rds

 

random subset CV (20 iterations) on the training set and determined optimal choice of k as the 

model size with minimum mean RMSE. Robust-CV is suggested to improve the choice of k 

when outliers are present; one such way is to remove observations with large residuals before 

calculating RMSE (Hubert and Branden 2003).   

In preliminary runs with no upper limit, most chose k < 8; to reduce computational time, 

we allowed CV to consider the 1
st
 eight model sizes only (k = 1 to 8, of 60), forming an nx8 

matrix of residuals. The BACON algorithm (Billor et al. 2000) was then used to identify 

unusually large residuals (observations) to discard prior to the calculation of RMSE for that CV 

iteration (Turkmen 2008). We retained simulation information for both k chosen with CV and 

robust-CV; each simulation setting was iterated 500 times. 

4.2.5 Performance criteria 

We compared standard PLS (as SIMPLS), RSIMPLS, PRM, RoPLS and rank-based 

SIMPLS algorithms using the following performance criteria based on coefficient estimation and 

prediction:     

1) Mean square error (MSE) of slopes estimation (𝛽 )  = MSE𝛽  = 
1

𝑃
 (𝑃

𝑖=1 𝛽𝑖
 –𝛽pop )

2
, where p 

= number of predictors 

2) MSE of prediction (𝑦 ) on test data = MSE𝑦  = 
1

𝑛
  𝑦𝑖 − 𝑦test 𝑖

 
2𝑛

𝑖=1 , where n = number of 

observations in test set 
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3) Relative efficiency (RE) of an alternative method, relative to the standard, in terms of 

coefficient estimation (𝛽 ) or prediction (𝑦 ), where: REalternative  = 
MSE      

standard

MSE      
alternative

  

4.2.6 Real data example 

We focus on univariate response (y) for this simulation study; however, rank-based PLS 

methods should behave similar with multivariate (Y; PLS2), relative to other methods, whether it 

is uni- or multivariate. As real data example, we compared model components (T, 𝛽 ) from 

standard PLS2 model and rank-based PLS2 models with highly correlated responses. These data 

are from 20 small-sized streams (< 4
th

 order) in the Piedmont region of Virginia and were 

collected as a part of the EPA‟s wadeable stream assessment program (Paulsen et al. 2008). 

Stream water total nitrogen (TN) and phosphorus (TP) were used as the response matrix (Y), and 

19 predictor variables (X) included watershed size, several land-use and geomorphic variables, 

other chemical variables (etc.). We fit models to these data, then introduced a small amount of 

outliers (5%) and compared changes in model estimates graphically and with sum-of-squared 

differences (SS) relative to the standard PLS2 solution.   

4.3 Results 

4.3.1 No outliers 

Average variance of correlations between simulated predictors (without outliers) was 

very small (0.022), thus correlation structure was consistently near to the specified values (in 

Fig. 1). In our simulation, both Spearman and Kendall rank-based PLS algorithms showed 

relative efficiencies (RE; to standard PLS) of coefficient estimation and prediction around 95-

96% at the normal model (Fig 2; top panel). RoPLS and PRM had the highest efficiencies (97-

100%) and RSIMPLS had the lowest (89-94%). Between-method trends were similar with 
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regards to RMSE of both coefficient estimation and prediction; although the former was more 

variable (Fig. 2; top panel).  

4.3.2 Vertical outliers 

Note that with vertical outliers (in y), the placement of outliers (rows or random) is 

irrelevant and identical results should be expected. PRM performed quite well relative to the 

other methods when outliers were placed only in y (Figs. 3 & 5, left panels). RSIMPLS also 

predicted well for contamination between 2.5- 25%, corresponding to the (25%) default setting 

for the proportion of outlying observations to resist. Rank-based PLS did predict better (lower 

𝑅𝑀𝑆𝐸𝑦 ) than standard PLS starting with low proportion of outliers placed across observation in 

each setting (  5% in y or [y, X]; Figure 3). Robust CV did not improve performance for any 

method with outliers only in y (Fig. 3, bottom left panel). 

4.3.3 Outliers placed across observations/rows 

Every method had a lower median RMSE of coefficient estimation and prediction 

compared to standard PLS with 10% outlier contamination across entire rows in [y,X] and 

RSIMPLS and PRM predicted markedly better than the other methods in terms of prediction 

(Fig. 2; middle panel). RSIMPLS and PRM predicted well across a range of contamination 

percentages when outliers were placed in [y,X] (Fig. 3). Rank-based PLS did predict better 

(lower 𝑅𝑀𝑆𝐸𝑦 ) than standard PLS starting with low percentages of outliers placed across 

observation in each setting (  5% in y or [y, X]; Figure 3). Rank-based PLS generally performed 

similar to the other robust methods (roughly equivalent RMSE) when outliers occurred in X or 

[y, X], and performed better when contamination exceeded 25%. RSIMPLS, while having poor 

RE (at 0% contamination) resisted outliers well between 0-25% (default setting to resist 25% 
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contamination). PRM did not outperform rank-based or standard PLS when outliers were placed 

only in X (Fig. 3).  

When outliers where placed in X or [y,X], but not y alone, choosing optimal k with robust 

CV (training set) improved test set predictions for all methods, including standard SIMPLS (Fig. 

3). Across all methods, more PLS components were retained each iteration for robust CV than 

standard CV (krob – kstd ranged from + 2 to 6) when outlying rows are identified and eliminated 

(Fig. 4).   

4.3.4 Outliers placed randomly throughout 

Rank-based PLS estimated linear model coefficients and predicted markedly better than 

the remaining methods with 10% outlier contamination placed randomly as individual elements 

(Fig. 2; bottom panel). Rank-based PLS also predicted better across a range (starting ~ 5%) of 

contamination percentages, whereas RSIMPLS predicted worse and PRM predicted either worse 

than or roughly equivalent to standard PLS (Fig 5). Robust CV did not improve, or otherwise 

noticeably change test set predictions for any methods choice of number of components retained 

(Fig. 5).   

Although these results are not provided, the same trend of diverging RMSE for rank-

based PLS relative to the other methods (as in Fig. 5) can be seen with a set 10% contamination, 

but by varying the distance of outliers; this divergence began with outliers as few as 1 units 

distance from the data edge (prior results used a set distance of 5 units +/- N(0, 0.1)).  

4.3.4 Real data example 

Rank-based multivariate Y PLS (PLS2) estimated very similar 1
st
 component (T1) scores 

and slope vectors (𝑏 1, 𝑏 2) to standard PLS2 with these data (Fig. 6, top 2 panel rows). Five 

percent of the data elements (in [Y, X]; 21 total) were randomly replaced with outliers and 
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models were fit using standard PLS and the rank-based PLS methods. Standard PLS estimates 

for T1 were highly influenced by at least two data points and coefficient estimates were greatly 

different than those calculated with the original data (Fig.6, middle row). Conversly, rank-based 

PLS model estimates for these data with outliers were much more reasonable and more similar to 

standard PLS estimates without outlier contamination (Fig.6, bottom 2 rows).   

4.4 Discussion and Conclusions 

Little research has focused on multivariate methods to handle outliers as individual 

elements (Møller et al. 2005) and none for robust PLS. In this simulation, rank-based PLS 

algorithms were 95-96% efficient, relative to standard PLS with no outlier contamination, in 

terms of regression coefficient estimation and prediction (Fig. 2). These simulation results also 

indicated that rank-based PLS generally outperformed standard PLS in terms of both coefficient 

estimation and prediction when outliers are present either y, X, or [y, X] across rows or randomly 

placed in individual elements. Lastly, the positive attributes highlighted for univariate y PLS 

(PLS1) in this simulation also appear to extend to multivariate Y PLS (PLS2) as well (Fig. 6).    

Not surprisingly, the observation-based robustification of PLS (i.e. RSIMPLS, PRM) can 

work well when outliers are nicely placed across observations. Although RSIMPLS and PRM 

were highly efficient relative to standard PLS in this simulation without outliers, these methods 

showed no resistance to outliers when they were placed randomly throughout the data. In 

addition, the robust CV procedure used in this simulation also works based on removing 

influential observations and only improved predictions when outliers were placed across 

observations. These observation-based strategies/methods might be ideal for situations where 

entire observations are susceptible to mislabeling, contamination, or machine error; however, 
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observation-based approaches should not be expected to impart robustness against randomly 

placed outliers.  

Interestingly, the ways to robustify PLS can be thought of as modular. For example, we 

incorporated rank cross-products into the PRM algorithm and it performed slightly better than 

rank-based PLS did in the current study with randomly placed outliers (similar to Fig. 5; results 

not included), but this rank-PRM performed intermediate to rank-based PLS and PRM when 

outliers were placed across rows or just in y (see Fig. 3). These results suggest that it would be 

fruitful to examine the performance of different combinations of these “modular parts” for the 

robustification of the SIMPLS algorithm to be used with various data types. 

 While an examination of multivariate Y PLS2 was not a major component of this study, 

the real data example provided in our study indicated that rank-based PLS2 can produce results 

similar to standard PLS with no (additional) contamination and provided more reasonable results 

when the data were contaminated with outliers. PLS2 is mathematically similar to several 

methods commonly used in ecological research, including canonical correlation analysis (CCA; 

Borga et al. 1997) and co-inertia analysis (Dolédec and Chessel 1994, Dray et al. 2003). 

Therefore, rank-based PLS could be used in a similar way as CCA or co-inertia have been used 

in ecology or robust rank-based modifications for these methods could similarly and easily be 

achieved.  

Lastly, additional research should examine the efficacy of rank-based PLS followed by 

linear discriminate analysis for binary or multi-class classification. This two-step classification 

process has gained much attention in recent years for use with high-dimensional data, such as 

gene expression data for the classification of disease. Preliminary results (not provided) using 

rank-based PLS algorithms have indicated that Spearman-based PLS-LDA may provide some 
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outlier resistance in high-dimensional classification settings and interestingly out-performed 

standard PLS-LDA when outliers were absent from the simulated data.   
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Table 1.  Simplified SIMPLS algorithm (de Jong 1993) for PLS regression with univariate y. 

Step Algorithm Description 

1 S = X‟Y Cross-product of mean centered X and Y 

2 For  i = 1, …, K  

3   q = VSVD(S) [,1]  VSVD(S)[,1] = 1
st
 column of right singular value of 

SVD(S); q = 1 when Y is univariate 

3   w = Sq X-component weights 

4   t   = Xw X-component scores 

5   t = t(t‟t)
-1/2

 Normalize scores 

6   w = w(t‟t)
 -1/2

 Adapt weights for normalized t 

7   p = X‟t X-component loadings 

8   q = Y‟t Y-component loadings 

10   u = Yq                                      Y-component scores 

9   v = p Initialize orthogonal loadings 

11       If  i > 1  

12         v = v – VV‟p Make current loadings orthogonal to previous 

13         v = v(v‟v)
 -1/2

 Normalize orthogonal loadings 

12         u = u – TT‟u Make v orthogonal to previous loadings 

13       End  

14   S = S – vv‟S Deflate S with respect to orthogonalized loadings 

15   Mab   

𝑚11 … 𝑚1𝑏

… … …
𝑚1𝑎 … 𝑚𝑎𝑏

  
Store w, t, p, q and v vectors as columns in 

respective uppercase & bold-face matrices 

16 End  

17 β = WQ‟ Calculate regression coefficients 
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Figure 1. Black and white heat map showing correlation structure from US EPA dataset; 

correlation structure was used to simulate collinear data.  Dark grey to black colors indicate high-

levels to perfect correlation (either positive or negative). X variables 1-4 are functionally related 

to y in this study.    
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Figure 2. Boxplots of root mean square error (RMSE) with no outliers (top panels), 10% outliers 

in entire rows (middle panels) and 10% randomly placed outliers (bottom panels). The left 

column is coefficient estimation RMSE𝑏 , and the right column is prediction RMSE𝑦 . Relative 

efficiencies of alternative methods to standard PLS (RE =  RMSE        
PLS  / RMSE        

alt ) are provided 

below respective boxplots. Horizontal dashed line shows mean RMSE for standard PLS (for 

comparison). 
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Figure 3. Simulation mean RMSE𝑦  of prediction for each method with outliers in y, X, and [y, X] 

spaces; the x-axes indicate the proportion of outlying cases (entire rows). Outliers placed at 5 

units past (+/-) data max/min; test data contain no outliers.  Top graphs indicate mean RMSE𝑦  

values with model components chosen with standard CV, while lower graphs depict values using 

robust CV. 
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Figure 4. Difference in choice of k for robust cross validation (CV) versus standard CV (each 

iteration) for each method with 20% outliers in y, X, and [y, X] spaces.  Zero indicates robust and 

standard CV methods chose the same value for k; positive values indicate robust CV chose larger 

k.   
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Figure 5. Simulation mean RMSE𝑦  of prediction for each method with outliers in y’, X, and [y, 

X] spaces; the x-axes indicate the average proportion of outliers randomly dispersed within each 

column. Outliers placed at 5 units past (+/-) data max/min; test data contain no outliers.  Top 

graphs indicate mean RMSE𝑦  values with model components chosen with standard CV, while 

lower graphs depict values using robust CV. 

 



125 

 

 
 



126 

 

Figure 6. Real data example, prediction of multivariate Y: total nitrogen and phosphorus. Left 

column: 1
st
 PLS component (T) scores, middle column: coefficient estimation for total nitrogen, 

right column: coefficient estimation for total phosphorus. X-axis is standard PLS estimates for all 

panels. Top 2 rows are Kendall and Spearman estimates with original data (no outliers). Bottom 

3 rows are standard PLS, Kendall and Spearman estimates for the data with added outliers. 1:1 

line of perfect agreement (solid line) to standard PLS estimates without outliers (x-axes) are 

provided in each plot. Sum-of-squared differences (SS) between standard PLS model fir to 

original data and other models is provided in each panel.     
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Chapter 5. Benthic macroinvertebrate assemblages across ecoregions in the southeastern USA: 

are lowland assemblages composed of taxa inherently more resistant or resilient to land-cover 

stressors than those in highland regions?   

 

5.1 Introduction 

 Relative to forested sites, agricultural and urban-dominated streams have been 

consistently associated with altered in-stream hydrology, chemical composition, physical habitat, 

thermal regimes, and loss of many sensitive aquatic species (Paul and Meyer 2001, Allan 2004, 

Walsh et al. 2005, Strayer 2006, Feld and Hering 2007). The southeastern US (SE) has 

experienced substantial deforestation and changes in land-use/cover (LULC) over the last 2 

centuries (Feeley 1992, Mulholland and Lenat 1992, Smock and Gilinsky 1992, Turner et al. 

2003). Agriculture dominated much of the SE in the 1800 and 1900s; this period was followed 

by natural and commercial reforestation of a large amount of agricultural land (Feeley 1992, 

Turner et al. 2003). Much of the current LULC conversion in the SE occurs as urban 

development; population growth and urban LULC change in this region are predicted to be 

among the highest across US regions over the next quarter century (Alig et al. 2004, White et al. 

2008, Nagy et al. 2011). 

Urbanization can be the source of both direct and indirect stressors on macroinvertebrate 

assemblages (Paul and Meyer 2001, Walsh et al. 2005). Fine sediment accumulation in stream 

beds occurs in the initial phases of urbanization when sediment delivery is high from disturbed 

ground cover and construction activities, filling interstitial benthic habitat (Paul and Meyer 

2001). Increasing levels of impervious surface cover (ISC) alters watershed hydrology and can 
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lead to increased flood magnitude, frequency, and flashiness (Rose and Peters 2001, Walsh et al. 

2005, Brown et al. 2009, O‟Driscoll et al. 2010). As the % of ISC increases and construction 

declines, sedimentation is reduced, high flow events become more frequent, which increase 

erosion of accumulated sediment; greater hydraulic (shear) forces generally lead to channel 

enlargement and scouring of organic matter, large woody debris, food sources and invertebrates 

(Cobb et al. 1992, Walsh et al. 2005, Cordova et al. 2008, Wilzbach and Cummins 2008). In 

addition to hydrogeomorphic stressors to benthic organisms, extreme alterations to thermal 

regimes can occur in urbanized streams, which can exceed tolerance limits and impact biotic 

distributions (Paul and Meyer 2001, Nelson and Palmer 2007).  

 Across the SE, the degree to which urban LULC influences hydrology, sediment 

transport, thermal regimes and aquatic biota appears to decrease along a gradient of decreasing 

topographical relief (Utz et al. 2009, Nagy et al. 2011, Utz et al. 2011, Utz and Hilderbrand 

2011). The steep topography and resistant underlying bedrock of the Appalachians (APL) greatly 

contrasts with the low-gradient, sandy terrain of the coastal plains (CPL; Feeley 1992, Wallace et 

al. 1992). These stark geomorphic contrasts translate to inter-regional differences in infiltration, 

runoff velocity, and the potential for urban LULC to induce a response in stream hydrology and 

associated biota (Booth 1990, Elosegi et al. 2010, Nagy et al. 2011, Nagy et al. 2012).  

 Greater proportions of the sensitive aquatic insect order Ephemeroptera were more 

negatively affected by watershed urbanization in the Piedmont (PMT) relative to CPL (Utz et al. 

2009). Some have suggested that CPL macroinvertebrate assemblages consist of taxa that are 

relatively tolerant of fine sediments, unstable substrates, higher water temperatures and other 

urban related stressors (Utz et al. 2009, Utz and Hilderbrand 2011). CPL assemblages 

recolonized experimental benthic habitats faster than PMT assemblages (Utz and Hilderbrand 
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2011); regional differences in species traits, like recolonization potential, may help to explain 

differences in tolerances to environmental stressors. Some traits impart resistance to physical 

stressors; for example, an organism with hooks may more easily cling to stable substrate and 

resist extreme flows (Townsend and Hildrew 1994). On the other hand, some traits facilitate 

resilience, or an ability to rebound in population size following catastrophic disturbance and may 

include high reproductive output and/or high dispersal capabilities (Townsend and Hildrew 

1994). While some difficulties exist in the analysis of traits (e.g., correlations among traits; Culp 

et al. 2010), the use of traits in addition to taxonomic information may provide insight into 

mechanistic relationships between species and their environment, and be generalizable for 

application in different regions (Verberk et al. 2013). While one nationwide (US) study indicated 

slight differences in trait composition of assemblages in least disturbed CPL and southern APL 

(which included PMT) streams (Zuellig and Schmidt 2012), a detailed comparson of traits 

among SE ecoregions is lacking. 

 Future land development and associated degradation of freshwater resources appear 

imminent in the SE (Alig et al. 2004, White et al. 2008), thus highlighting the need for research 

to describe regional variability in biotic responses to LULC conversion. In this study, we 

quantified macroinvertebrate taxonomic and trait diversity, richness, and composition within and 

between regions of the SE US. Our primary objective was to determine if benthic 

macroinvertebrate assemblages in these regions differ in trait composition, specifically those that 

may provide resistance/resilience to LULC-related disturbances.  

5.2 Methods 

5.2.1 Data description 
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 We used data from 2 large-scale stream assessment surveys performed by the 

Environmental Protection Agency (EPA) for the current study. The Wadeable Streams 

Assessment (WSA, 2004-2005) consisted of  > 1000 stream sites and the National Rivers and 

Streams Assessment (NRSA, 2008-2009) consisted of ~ 2000 river and stream sites that spanned 

the conterminous US (Herlihy et al. 2008, Paulsen et al. 2008 , U.S. EPA 2013). Site selection 

for both the WSA and NRSA programs was random and based upon all possible stream sites 

(Paulsen et al. 2008, Stoddard et al. 2008). Sites were sampled during summer low-flow and 

used identical (or similar) sampling protocols (e.g., D-net with 500 μm mesh, identical habitat 

protocols). These databases included macroinvertebrate count data as well as suite of 

environmental variables and are available online 

(http://water.epa.gov/type/rsl/monitoring/streamsurvey/web_data.cfm and 

http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm).  

 The EPA used aggregate ecoregions for the WSA and NRSA projects (Herlihy et al. 

2008); similarly, we established the following aggregations of level III ecoregions for this study: 

1) appalachian (APL: Central and S.W. APL, Blue Ridge, Ridge and Valley), 2) piedmont 

(PMT: Piedmont and N. Piedmont), and coastal plain (CPL: Mid. Atlantic CPL, W. Gulf CPL, S. 

Central Plains, S. CPL, Atl. Coastal Pine Barrens, S.E. Plains, MS Valley Loess and Alluvial 

Plains, E. Central TX Plains). We referred to these aggregate ecoregions herein simply as regions 

and occasionally referred to APL and PMT combined as highlands as comparison with the 

lowland CPL region. We excluded dry/intermittent stream sites, those that were non-wadeable or 

with a Strahler stream order > 5, and those missing data.   

 Stream sites were randolmly chosen; however, we wanted to compare streams that were 

typical of each region. We used environmental criteria designated by the EPA to classifiy 
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streams as least-disturbed (Herlihy et al. 2008, U.S. EPA 2013) or highly-disturbed (“trashed”; 

ATH personal communication), but modified criterion thresholds because they varied slightly 

between the projects (see Table 2 in Herlihy et al. 2008 and Table B-2 in U.S. EPA 2013). For 

the current study and for each region, if any site exceeded any of the 90
th

 quantiles for TN, TP, 

CL, SO4, turbidity, or % fine substrate (each log10 transformed) or if it failed an inorganic acidity 

criterion (ANC ≤ 0 ueq/L and DOC < 5 mg/L) then we classified it as a highly-disturbed (H) site. 

Few sites met the least-disturbed criteria using 10
th

 quantiles for each criteron, thus we classified 

the remaining sites as least-moderately (M) disturbed.   

 We used a suite of environmental variables, including spatial location, elevation, slope, 

stream order, riparian cover, channel geometry (wetted and bankfull), substrate composition, 

large woody debris volume, and various water chemical parameters (e.g., TN, TP, DOC, pH; see 

Appendix 1). Only candidate stream sites with a complete set of benthic and physicochemical 

data were retained for the analysis. The WSA dataset included a summary of watershed land-

cover from the National Land Cover Dataset (NLCD); however, the NRSA did not. Thus, we 

derived local land-cover within a 1000 m radius of sample sites for all sites from the NLCD 

(2001 coverage for WSA, 2006 for NRSA).  

  Benthic metrics were available from both the WSA and NRSA datasets, although we 

recalculated metrics after standardizing benthic count data for consistency between datasets. For 

example, we grouped genera that were difficult to differentiate when small (e.g., Orthocladius 

and Cricotopus spp. as a group, all baetids at family level; see Stribling et al. 2008). In addition, 

the NRSA benthic count matrix contained some individuals resolved at the family level; thus, we 

distributed family among genera according to relative proportions of genera within that family at 

each site (Cuffney et al. 2007). Lastly, we summarized some taxa at the family (e.g., mollusks) 
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or order level (e.g., oligochaetes) and excluded some non-insect groups from analyses (e.g., 

mites). 

We used information for 32 macroinvertebrate trait states derived from the USGS 

macroinvertebrate trait database (Vieira et al. 2006; see Appendix 2). Traits represented a series 

of life history attributes (body size, shape, mode of respiration, etc.), behavioral habits (e.g., 

clinger) and ecological habitat preferences (e.g., velocity, oxygen). Invertebrates were usually 

identified to genus and trait data was appropriately summarized at this level. Genera 

unrepresented for all states within a trait were supplemented with family-level values to 

maximize information (Sokol et al. 2011). Categorical trait records were converted to binary trait 

states where necessary; this binary information was then summed for each taxon and the state 

with the highest representation was given a value of 1 (else 0) for that taxon (Vieira et al. 2006). 

If 2+ trait states shared highest representation, each state was equally represented (e.g., 0.5, 0.5) 

within a trait category (Vieira et al. 2006). We calculated abundance weighted averaged trait 

values for each site and trait category as  𝑝𝑖𝑥𝑖
𝑆
𝑖=1  , where pi is the proportion of the ith species 

(or other taxonomic level), and xi is its corresponding trait state value (Vandewalle et al. 2010). 

We focused mainly on trait states (hereafter “traits”) that allow for a priori predictions, as they 

may provide resistance (RST) or resilience (RSL) to environmental stressors associated with 

LULC conversion (Table 1). RST traits, including morphological attachment and/or streamlined 

body shape may lead to disproportionate survival following high flow disturbance events. Other 

traits may offer RST to sedimentation or elevated temperatures associated with LULC 

conversion. In addition, strong dispersal abilities, high reproductive output and other RSL traits 

may allow for faster or disproportionately greater recolonization following disturbance 

(Townsend and Hildrew 1994).   
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Taxonomic differences likely exist between regions; therefore, we also calculated 

taxonomic richness (S) and Shannon‟s diversity (H’) at the genus and family levels and richness 

and percentages of taxa in the purportedly sensitive/intolerant aquatic insect orders 

Ephemeroptera, Plecoptera, and Trichoptera (EPT). We also calculated metrics based on specific 

taxonomic groups, including % Chironomidae, Odonata, Coleoptera and the percent of non-

insect invertebrates (e.g., amphipods, isopods). We calculated assemblage-averaged pollution 

tolerance values (PTV), which were derived for the WSA and NRSA projects based on 

combined regional lists (U.S. EPA 2013). A simultaneous set of rarefied taxonomic- and trait-

based metrics was created by repeatedly and randomly drawing 100 individuals without 

replacement from each site (reported as mean of 100 iterations) to minimize the influence of 

initial sample densities and rare taxa (Walker et al. 2008, Bêche and Statzner 2009).  

5.2.2 Statistical Analysis 

  Because the CPL covers a much larger land-area, we were concerned with the possibility 

that CPL assemblages would be more dissimilar to each other than assemblages in either the 

APL or PMT regions. We used average pairwise Bray-Curtis dissimilarities (Bray and Curtis 

1957) to assess within- and between-region taxonomic differences at the family and generic 

levels. 

 We were specifically interested if 1) M sites differed in central tendencies of benthic 

metrics (e.g., diversity, trait values) between regions, and 2) if differences existed between M 

and H sites within each region. We assessed differences in medians of metric distributions 

graphically using boxplots and statistically with 1-way Kruskal-Wallis (Hollander and Wolfe 

1999) with groupings of region-M/H (e.g., APL M vs. APL H). Following a significant global 

test (p < 0.05), planned comparisons between regions (M sites only), and between M and H 
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within each region were assessed using individual Wilcoxon rank sum tests (Hollander and 

Wolfe 1999) with adjusted p-values using the sequential Holm-Bonferroni method (Holm 1979) 

to control family-wise error rates (Ruxton and Beauchamp 2008). Non-parametric rank sum tests 

have high relative efficiency (~ 95%) to parametric t-tests (Hollander anfd Wolfe 1999) and were 

chosen because some of the distributions were observed to be skewed in boxplots (Fig. 4).   

 For descriptive purposes and to informally assess the distinctiveness of regions in our 

study, we used principal component analysis (PCA) by performing singular value decomposition 

on Pearson product-moment transformed (sin 𝑡𝑎𝑢0.5𝜋 ) Kendall (tau) correlation matrices 

(Moran 1948, Visuri et al. 2000, Syms 2008). We used PCA on a set of environmental variables 

and on assemblage-averaged trait values to graphically display sites in distance biplots in both 

environmental and separately in trait spaces. We used circle of correlation plots to aid in 

interpretation of PCA models, which show the correlation between the original variables and the 

derived component axes (González et al. 2012). Angles (𝜃) between variable vectors and 

ordination axes represent their correlations (correlation = cos 𝜃), such that oppositely positioned 

vectors represent negative correlations and 90° angles represent orthogonality (Syms 2008, 

González et al. 2012). Vectors positioned closer to the outer circle (radius 1) have strong 

relationships with the displayed axes and can be directly interpreted, whereas those closer to the 

origin are weakly related and interpretation should be made with caution (Syms 2008, González 

et al. 2012). Circles centered at the origin with radii of 0.5 and 1 are included to help assess the 

contribution/importance of each variable to the displayed axes (Abdi and Williams 2010). 

We used indicator species analysis (ISA; Dufrêne and Legendre 1997) to determine what 

taxa at the genus level were indicative of M sites within each region. Indicator values (IndV) for 

genus i and site group j are calculated as a function of both the relative abundance of genus i in 
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site group j, and the number of occurrences (presence/absence) of genus i in site group j (De 

Cáceres and Legendre 2009). Taxa with large IndV for a site group indicate that they are 

generally ubiquitous to those sites and occur in relatively high proportions. In addition, we 

calculated several resistance (RST) metrics for flow, sediment, and thermal stressors and a 

general resilience (RSL) metric. We created RST/RSL metrics as combinations of 2 traits picked 

specifically for each stressor. For each metric, a taxon was assigned a value of 1 if it was 

characterized by at least one of the specified traits (else 0). RST traits for flow stressors (FLO 

RST) included streamlined/flattened body shape and flow adaptations (e.g., hooks, silk). RST 

traits for sedimentation (SED RST) included burrowing habit and tolerance of silty/turbid water. 

RST traits for elevated water temperature (TMP RST) included tolerance of high temperatures 

and tolerance of low dissolved oxygen (DO). General RSL traits (GEN RSL) were high 

fecundity and multivoltinism (> 1 generation/y).  

 We assessed relationships between selected traits and environmental variables with 

partial least squares (PLS) regression, which displays much lower estimation variance than 

ordinary least-squares regression with collinear data (Dahlgren, 2010; Chapter 1). We used rank-

based (Kendall) PLS, which provides similar results to standard PLS (relative efficiency ≅ 95%), 

while also being robust to random outliers or entire outlying observations (Schneid, Chapter 4). 

The number of components to retain was chosen as that having the smallest average RSS from 

100 repeated random data hold-out (2/3) cross-validation. We used PLS as a constrained 

ordination to display relationships between traits and environmental variables, and displayed 

distance biplots and circle of correlation plots (González et al. 2012). We also calculated PLS 

variable importance in projection (VIP) scores as an indication of importance of each predictor 

variable to the overall model (Mehmood et al. 2012). Our goal was not to build the best 
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predicting model, and to reduce circularity, we excluded region-indicative but potentially 

important variables (e.g., slope, geographic coordinates) from descriptive models. 

 We used the nonparametric permutational MANOVA to test for significant among region 

differences in multivariate trait centroids (Anderson 2001). If regions were different in terms of 

traits, we assessed distinctiveness of benthic trait composition within each region by examining 

ability of traits to classify region membership using PLS followed by linear discriminate analysis 

(PLS-LDA). This 2-step procedure allows for highly correlated explanatory variables to be used 

with LDA by guiding dimension reduction prior to classification such that derived PLS latent 

variables maximally explain group membership (Barker and Rayens 2003). We created an initial 

PLS model with region indicator variables as response variables and a suite of traits (Appendix 

2) used as explanatory variables. LDA then used derived orthogonal PLS variables to create 

classification rules that best discriminated regional groups. Last, we used cross-validation to 

determine the number of PLS components required to maximize classification ability. 

  Some environmental variables were log or square-root transformed to improve skewness 

(Appendix 1). We conducted all analyses in R (R Core Team 2015). Permutational MANOVA 

and Bray-Curtis dissimilarties were calculated using the package vegan (Oksanen et al. 2015), 

and ISA was performed with the indicspecies (De Caceres and Legendre 2009) package. We 

modified PCA and PLS algorithms found in vegan (Oksanen et al. 2015) and plsgenomics 

(Boulesteix et al. 2012) packages to incorporate rank-based correlation and covariance matrices.   

5.3 Results 

5.3.1 General site information 

 We compared randomly selected sites across 3 SE ecoregions and between 2 general 

disturbance categories (M/H) within each region. After pre-selection (e.g., dry sites removed), 
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127 APL (64 M, 63 H), 119 PMT (69 M, 50 H) and 154 CPL (92 M, 62 H) sites were retained 

(Fig. 1). M/H classes were created for each region based on several abiotic variables (filters, see 

methods), thus H sites tended to have greater values of filters than M sites (Fig. 2). Trends of 

general increasing in TP, TN, turbidity and DOC also were observed from highlands (APL and 

PMT) to lowlands (CPL) in M sites (Fig. 2). 

 Stream sites were similar in terms of average values for land-cover and stream size. 

Means (SD) of % land-cover in a 1000m radius of sample sites were 0.64 (0.27) for forest 

(included wetlands and grasslands), 0.21 (0.22) for agriculture (Ag), and 0.14 (0.17) for urban 

(and developed land). Sites were constrained to those < 5
th

 order; the median order was 2 within 

each of the regions. Mean channel dimensions were 2.20-m (1.28) for stream widths and 2.80-m 

(1.13) for stream depths. 

 Results from a PCA of 37 environmental variables indicated that the 1
st
 principal 

component (PC1) explained 20.72% of the total variation and described general gradients in 

substrate size and flow and PC2 (17.31%) a gradient of LULC disturbance. PC1 was most 

heavily loaded by variables describing substrate size (-), TSS (+) and turbidity (+), stream 

velocity (-), relative bed stability (RBS, +; Fig. 3).  In contrast, water chemistry variables (-) and 

% forest cover (+) were most highly loaded on PC2. Biplots of site order along PC1 and PC2 

indicated general separation between CPL and APL or PMT sites in this reduced environmental 

space (Fig. 3). The 3
rd

 PC axis (not shown) explained an additional 11% of variation in 

environmental variables and showed similar shift between CPL and highland (APL and PMT) 

sites. M/H class information was not implicitly used in this PCA; however, the shift in the 

distributions of H sites observed within each region relative to M sites (Fig. 3) should be 

expected as it included variables used to create M/H classes.    
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5.3.2 Patterns for moderately disturbed (M) sites 

Although the CPL region covers a much larger area of the SE US than either the APL or 

PMT, median values of within-region Bray-Curtis dissimilarities for M sites were only sightly 

higher for the CPL than for the APL or PMT with family-level or genus-level taxonomic 

resolution (≅ 5-6% higher; Table 2). Among-region dissimilarities were not much higher than 

within-region dissimilarities, with APL vs. PMT being more similar than either APL vs. CPL or 

PMT vs. CPL for family and genus-level resolution respectively (Table 2). The highest 

dissimilarity was between APL and CPL at the genus level (0.805, Table 2).       

 Within M sites, CPL differed from highlands (APL or PMT) for many metrics (Fig. 4, 

shaded boxes). CPL had significantly lower median values for rarefied genus and family-level 

richness and Shannon‟s diversity (H’) than APL or PMT, which were similar to each other in 

richness values (Fig. 4). CPL also had significantly lower EPT richness, proportions of EPT, and 

lower Coleopterans than either APL or PMT (Fig. 4). Conversely, CPL had higher % non-insects 

(e.g., Isopoda, Amphipoda, Oligochaeta) than APL or PMT (Fig. 4). CPL also had higher median 

proportion of Chironomidae (38%) than APL (27%); however, PMT (35%) was not statistically 

distinguishable from either APL or CPL (Fig. 4). Other major taxonomic groups, including the 

orders Odonata and Diptera (excluding Chironomidae) were low in numbers and similar between 

regions within M sites (Fig. 4). 

ISA indentified taxa that were both highly abundant and ubiquitous at sites within each 

SE region (Table 3). The top 12 and 25 taxa in each region (largest IndV) were examined; taxa in 

the top 12 and 25 had p-values ≤ 0.001 and 0.040, respectively. The number of genera (462) 

considered resulted in general non-significance after adjustment for multiple testing (19 total had 

adjusted p ≤ 0.05); however, we proceeded with this analysis as our goal was simply to describe 
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traits of taxa with highest affinities to each region. Individuals of the family Chironomidae 

(Diptera) composed 48% of the top 25 TolV taxa in the CPL compared to only 32% for PMT and 

20 % for APL. Conversely, EPT taxa composed only 8% of the top 25 CPL taxa compared to 

36% for PMT and 52% for APL. We examined the proportion of taxa with resistance/resilience 

traits among these top indicator taxa. The proportion of individuals with traits imparting 

resistance to flow disturbances (FLO RST) was higher in the APL and PMT (84, 76%) than in 

the CPL (52%; Table 3). In contrast, trends of increasing resistance or resilience were observed 

from highland to lowland sites (APL < PMT < CPL) for sediment resistance (SED RST: 48, 64, 

92%), high temperature/low DO resistance (TDO RST: 44, 60, 92%) and resilience by high 

reproductive (REP RSL: 60, 80, 96%) or dispersal potential (REP RSL: 92, 96, 100%; Table 3). 

Permutational MANOVA indicated multivariate differences existed between at least 2 

study regions based on a suite of traits (p < 0.001; Appendix 2). Using 3 retained PLS 

components, a PLS-LDA model correctly classified CPL sites 86% of the time (average of 100 

¾ hold-out runs), whereas APL and PMT regions were only correctly classified 55 and 30% of 

the time, respectively. These results indicate that CPL has a relatively distinctive trait structure 

because of the disproportionately higher ability to distinguish CPL sites from highland (APL and 

PMT) sites based on trait data. The 1
st
 discriminant function (LDA) explained 94% of between-

class variance. The 1
st
 PLS component (input to LDA) had a much larger weight (-0.46) 

associated with the 1
st
 discriminant than either PLS component 2 (0.28) or 3 (-0.22). Graphical 

results from the PLS step (not provided) showed relatively large separation along the 1
st
 model 

axis, with most CPL sites negatively positioned and highland sites positioned positively on PLS 

1. According to loading magnitudes and VIP values (> 1 for PLS axis 1), the traits streamlined-

flattened body shape (PLS1 loading = 0.19), flow adaptation (0.20), rheophily (0.32), clinger 
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(0.30) and burrower (-0.25) habits, large (0.32) and small (-0.29) substrate size preferences, 

multivoltinism (-0.17), high larval dispersal ability (-0.23), and low O2 tolerance (-0.20) 

contributed the most to discrimination of lowlands (CPL) from highlands.  

Several univariate differences existed in assemblage-averaged trait values within M sites 

among regions (shaded boxes, Fig. 5). Most strikingly, regional median values for streamlined 

body shape, flow adaptations, % clingers and % rheophiles decreased from highlands (APL and 

PMT) to lowlands (CPL). Conversely, median values for % burrowers, low O2 tolerance, organic 

pollution tolerance, and multivoltinism increased from highlands (APL) to lowlands (CPL) (Fig. 

5). Median proportions of individuals with generally decreased from highlands to lowlands, 

whereas other traits (e.g., high temperature tolerance) were similar across regions (Fig. 5). For 

EPT taxa, CPL sites had a greater median proportion of individuals that were small bodied, 

multivoltine, and low O2 and pollution tolerant than highland regions (details excluded for 

brevity); although CPL showed had much lower values for % EPT and EPT richness (13%, 3, 

respectively) than PMT (29%, 7) or APL (34%, 8). 

5.3.3 Moderately (M) vs. highly (H) disturbed sites 

Many differences existed between M and H sites within each region. PMT and CPL had 

lower genus- and family-level richness and diversity (H’) in H compared to M sites; similar 

trends occured in APL sites (Fig. 4) but differences were not detectable. M sites showed higher 

EPT richness on average compared to H sites for each region (Fig. 4). Significantly lower % EPT 

also was observed in H sites relative to M sites in PMT; a similar, but non-significant trend 

occured in APL, whereas there was no difference in CPL (Fig. 4). The proportion of 

macroinvertebrate taxa as non-insects was higher in H vs. M sites in the highlands (APL and 
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PMT), but not in the lowland CPL. Suprisingly, additional taxonomic differences were not 

observed between M and H sites (e.g., % Dipteran, Fig. 4).    

 A few traits displayed differences between M and H sites (Fig. 5). Proportion of clingers 

was lower in H than M sites in the APL and PMT, whereas proportions of burrowers were 

generally higher in H than M sites in the APL and CPL. Similar, but weak trends occurred for 

clingers in CPL and burrowers in PMT, but differences were not detectable. Median proportion 

of individuals with morphological adaptations for high flow was lower in H vs. M sites in PMT 

and CPL, but not in APL (Fig. 5). In addition, there was a general trend for lower median 

proportion of streamlined-fusiform individuals in H relative to M sites the highlands (Fig. 5, 

APL difference not detected).  Conversely, hydrodynamic body shapes were more prevalent in H 

relative to M sites in CPL, which also showed more sprawlers in H than M (Fig. 5). Last, H sites 

showed higher median assemblage-level pollution tolerance values than M sites in each of region 

(Fig. 5).          

 A PCA of 31 traits was performed to informally assess distinctness of each region in 

multiple assemblage-level traits, as well as associations between trait compositions. The first 2 

PC axes explained 53% of the total variation on traits. A distance biplot of sites in trait space 

showed distinct separation between highland and CPL sites along the major axis of variation 

(PC1, Fig 6). M/H class information was not incorporated into this PCA model of traits, although 

distributions of H sites were slightly shifted to the positive end of PC1 and negative end of PC2 

for each region (similar to that seen on the abiotic PCA, Fig. 6). PC1 was most highly positively 

loaded (eigenvectors) by low O2 tolerance (0.37), preference for small substrate (0.34), and 

burrowing taxa (0.27) and negatively loaded by clinger taxa (-0.35), ability to cement/adhere 

eggs (-0.25) and/or to diapause (-0.23), preferences for fast water (-0.27), riffle habitat (-0.25), 



142 

 

and/or large substrate (-0.34) (Fig. 6). In contrast, PC2 was most highly positively loaded by 

small-bodied taxa (0.32), taxa with a propensity to drift (0.26), and collector gatherer taxa (0.28), 

and negatively loaded by taxa with long adult life (-0.30), that are scrapers (-0.30), are large (-

0.29) and/or hardshelled (-0.40; Fig. 6).      

A multi-response PLS regression model of resistance and resilience (RST/RSL) trait 

combinations and site averaged pollution tolerance values was performed to describe 

relationships between these traits and environmental variables in streams across the SE and in 

both impact designations (M/H). An initial PLS model was performed and variables were 

excluded in the final model with VIP < 1.0. Two PLS components were retained and these axes 

explained between 13 and 48 % of the variability of each response variable (Fig. 7). Traits were 

explained mainly by the 1
st
 PLS axis, which was highly loaded by environmental predictors 

describing sediment size, water velocity and bed stability (Fig. 7). TOL VAL, SED RST, DSP 

RSL and TDO RST were each positively correlated with PLS 1, which was most highly loaded 

by TSS, turbidity, % fines, % slow water, DOC and TP. FLO RST was diametrically opposed on 

PLS1, which was which was most associated with % fast water, larger and more stable substrate 

(RBS) and erodible substrate diameter (Dmm). Site positions in a PLS distance plot indicate 

general separation between CPL and highland regions, and also a slight shift between M and H 

sites for each region in the same directions in reduced space (positive in PLS1 and PLS2 

directions, Fig. 7). This M-H sift corresponded with axes generally describing increased fine 

sediments, TSS and turbidity (PLS1) and decreased local % forest and increased channel size 

(BKFw, INCh) and concentrations of several chemical constituents (e.g., SPC, pH, Fig. 7).         

5.4 Discussion 
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Benthic macroinvertebrate assemblages have been shown to respond to watershed 

urbanization to a lesser degree in the CPL relative to highland regions of the SE and it has been 

suggested that lowland assemblages are composed of more resistant (RST) and/or resilient (RSL) 

taxa compared to highland regions (Utz et al. 2009, Nagy et al. 2011, Utz et al. 2011, Utz and 

Hilderbrand 2011). We examined data from 2 large scale EPA data sets to determine the degree 

to which lowland CPL region differs from highland APL and PMT regions in invertebrate traits, 

which have been useful in characterizing stream conditions (Horrigan and Baird 2008, Pollard 

and Yuan 2010). Our study provided supporting evidence for the general distinctiveness of CPL 

assemblages in relatively undisturbed sites relative to highlands in the composition of multiple 

traits and indicated higher prevalence of resistance traits that may be beneficial in coping with 

adverse conditions (e.g., increased fine sediments, decreased DO). In addition, multivoltinism (> 

1 generation/y) showed trends of increasing proportion in assemblages from highlands to 

lowlands (APL < PMT < CPL), which may be an important factor for recolonization rates 

following disturbance. In general, our results are in agreement with Utz and Hilderbrand (2011) 

and Utz et al. (2011), who suggested that CPL assemblages may be more adapted for hyporheic 

habitat and shifting (unstable) sediments and generally less sensitive to stressors associated with 

land cover change.        

  Harsh environmental conditions can “filter” poorly adapted species from any given site 

(Poff 1997); thus, it seems logical to assume that trait filtering has led to regionally distinct trait 

composition among SE regions as a result of strong contrasts in environmental conditions. Our 

results strongly suggest distinct trait differences between the CPL and highland regions that 

appear to coincide with contrasting environmental conditions observed across these regions. 

Highland (APL and PMT) streams tended to have fast-flowing (likely well-oxygenated) waters 
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and were dominated by relatively large, stable bed particles, and assemblages were 

correspondingly dominated by rheophilic taxa with adaptations and habits that allow them to 

anchor to stable substrates and persist in fast-flow. Alternatively, lowland CPL streams were 

predominantly slow-moving (likely oxygen-depleted) with small and unstable substrate, and 

assemblages dominated by taxa with an affinity for small substrates, a burrowing lifestyle, and 

tolerance of low dissolved oxygen levels.  

 Previous studies have suggested that magnitudes of hydrologic alterations associated with 

urbanization (e.g., flood frequency, magnitude, and flashiness) are greater in high-gradient than 

lower-gradient streams (Brown et al. 2009; Utz et al. 2011). Such geographic contrasts in 

hydrologic response to urbanization may translate to interregional differences in influence on 

abiotic and biotic components of receiving streams. In SE highlands, urban sites often show a 

higher proportion of fine sediments relative to non-urban streams in some studies (Walters et al. 

2003, Freeman and Schorr 2004); however, the opposite pattern also has been observed (Helms 

et al. 2009, Utz and Hilderbrand 2011). Utz and Hilderbrand (2011) found that CPL urban 

streams were not different in sediment size (measured at ≥ D50) than rural CPL streams and 

particles were more mobile in CPL streams than PMT streams in both rural and urban streams. 

The conflicting results regarding fine sediments and urbanization in highland streams may be 

from differences in the age of the urban development across sites and studies, as sediment 

delivery slows and erosional forces are thought to dominate at some point after construction 

activities have ceased (Nagy et al. 2011).     

 The fact that CPL benthic assemblages consisted of more sediment-RST taxa, and 

highland assemblagess with more flow-disturbance RST taxa should not be suprising. However, 

the lower magnitude of benthic responses to urbanization observed in CPL relative to highland 
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regions is likely because of the prevalence of natural adaptations to survive in unstable, sandy 

streams. Urban-related increases in fine sediments are likely more important in highlands relative 

to CPLs, where dominant sediment sizes are naturally small (Utz and Hilderbrand 2011). 

Highland taxa evolved to inhabit streams with large and relatively stable substrate and may 

generally lack traits that facilitate survival of sediment accumulation associated with agriculture 

and (initial phases) of watershed urbanization. In addition, the magnitude of hydrologic change is 

lower in the CPL along a gradient of LULC change (Nagy et al. 2011), and a lack of flow RST 

traits in CPL assemblages may be inconsequential for taxa in this region.  

 Within each region, there were biotic differences characterizing M and H sites; most 

notably were generally lower richness/diversity, fewer clingers but more burrowers, and higher 

tolerance values in H vs. M sites (Figs. 4 and 5). As expected, a general shift was seen between 

M and H sites in reduced PC space for environmental variables (Fig. 3); interestingly, this same 

pattern occurred separately for multiple assemblage-averaged traits (Fig. 6). The M-H shifts 

observed in the environmental ordination (PCA) and constrained ordination of covariance in trait 

categories and environmental variables (PLS) was similarly observed in an unconstrained (no 

environmental input) trait ordination. These shifts are expected in environmental-based 

ordinations as some of these data (e.g., % fines, turbidity, TP, CL) were used in creation of the 

M/H classes and resulting gradients. Interestingly, the unconstrained PCA trait model indicated a 

similar M-H shift along an axis describing a gradient of clingers/rheophiles to burrowing/low O2 

tolerant taxa (Fig. 6). H sites were generally positioned further toward directions of increased 

sedimentation (environmental variables, Fig. 3) or burrowing-dominated assemblages (traits, Fig. 

6) along their respective major axes (1
st
 PCs), or shifted toward greater land-cover disturbance 
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and elevated chemistries (environmental variables) or toward the direction of larger, more 

armored individuals with long adult lifespan that can exit the water (2
nd

 PCs).  

 The use of M and H classes are far from ideal, as they represent multiple LULC stressors 

- not a single stressor gradient - and also lacked detailed hydrologic data. Historical agriculture 

and channel alterations were so widespread in the Southeast that unimpacted streams may not 

exist, and current conditions may be influenced by historical land use (Maloney et al. 2008, 

Hardison et al. 2009). Likely for this reason, least-disturbed sites were relatively uncommon 

these probabilistic surveys (randomly sampled sites; Stoddard et al. 2008). Our M/H designations 

were based on the WSA/NRSA reference screening process, and were intended to indicate and 

separate highly disturbed H sites from less disturbed M sites. Detailed LULC data were not 

derived for these data as a whole. However it is important to point out that local (1000m) 

estimates of LULC % for WSA sites were highly significantly, but weakly correlated with entire 

watershed values (r ≅ 0.40); however, mean local % Urb values were consistently higher than 

that for whole watershed estimates; therefore, we are somewhat confident that our M sites were 

relatively low in urban LULC (generally < 20% summed NLCD developed classes). Because 

least-disturbed sites are generally uncommon, it could be argued that this M classification may 

be more representative of a “pre-urban state” within these regions. 

 Use of taxonomic-based indices (e.g., richness, diversity, or composition) may not be 

generalizable across regions in respect to stressor gradients due to spatial turnover in species; 

however, traits common within a taxonomic group (e.g., benthic invertebrates in general) may 

serve as more consistent indicators of anthropogenic impact (Dolédec et al. 1999, Charvet et al. 

2000, Bonada et al. 2006, Culp et al. 2010). Individuals with adaptive “resistance” traits (e.g., 

small body size, streamlined morphology) may disproportionately survive disturbance events, or 
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those with “resilience” traits (e.g., short generation times, large clutch sizes, strong dispersal 

ability) may re-colonize faster or in disproportionately higher numbers following disturbance 

(Townsend and Hildrew 1994); thus, some traits may have the added benefit of being potentially 

predictable due to mechanistic-based relationships. Trait-based analyses can be complicated by 

several factors; for example, species are characterized by a suite of non-independent traits that 

may be highly interrelated (confounding interpretation) and/or linked to its evolutionary history 

(taxonomic and trait variation coincide) (Townsend and Hildrew 1994, Poff et al. 2006). Some 

traits, including adult size, voltinism, and habit are considered to be less dependent on taxonomy 

and responsive to local selection, therefore potentially useful for biomonitoring purposes (Poff et 

al. 2006, Horrigan and Baird 2008). 

 Across the US, the invertebrate habit of clinging to stable substrates was a more 

consistent and mechanistically linked indicator of sedimentation than traditional indicators based 

on sensitive taxa (EPT; Pollard and Yuan 2010). The proportion of a trait-state represented 

within an assemblage is directly linked to the proportion of other states within that trait group 

(e.g., clinger and burrower habits), but these states are also potentially influenced by one or more 

of the same stressors. For example, fine sediment deposition can bury large/stable bed particles 

and lead to a loss of individuals who cling to stable substrates during extreme flow events; 

conversely, fine sediments provide suitable habitat for borrowing individuals (Pollard and Yuan 

2010, Monaghan and Soares 2012). In our study, graphical representation of assemblage-

averaged trait values in reduced multivariate space (PCA) allowed for an assessment of trait 

correlations in relation to the major axes of variation in those traits. Correlations naturally 

existed in these data between traits that may be considered effective resistance traits for dealing 
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with flow-related disturbances and those likely to be beneficial in high sediment environments 

are problematic in terms of the use of these traits in a mechanistic (causal) framework.  

It is also possible that a single effective trait may ensure individual success in an extreme 

environment without the need for additional traits; and, unless an assemblage collectively solves 

environmental problems in a related way, detection of clear trends between assemblage-level 

traits and environmental conditions will be unlikely (Townsend and Hildrew 1994). These 

complications combined with the correlated nature of traits suggest that additional research into 

whether trait combinations, tailored multimetrics (Monaghan and Soares 2012) or metrics based 

on trait syndromes/strategies (Verberk et al. 2008) more consistently respond to known 

environmental gradients, and are therefore better suited for bioassessment purposes than 

individual traits. Our results suggest CPL assemblages may be well equipped to deal with certain 

stressors associated with LULC change (e.g., sedimentation), although the questions remain of 

what aspects of CPL assemblage structure, or what summary metrics are consistent indicators of 

urban LULC change in this lowland region.   

Suprisingly, we did not observe any differences in the relative proportions of high 

temperature tolerant taxa among regions in these data (Fig. 4). Differences in urban water 

temperature responses have been observed between regions in the SE (Utz et al. 2011). Cooler, 

higher-gradient, streams may be affected to a greater degree by temperature increases associated 

with urbanization, compared to relatively benign heat additions to naturally warmer low-gradient 

coastal plains streams (Utz et al. 2011).  In addition, biota of higher-gradient streams may be 

adapted to natural cool-water conditions, making them relatively more susceptible to LULC 

shifts than warm-water coastal plains species (Utz et al. 2011). While it is possible that 

differences in (assemblage-averaged) warm water tolerances do not exist, it may be that the 
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currently available trait data on thermal tolerances is not sufficient at the resolution we used 

(genus level, supplemented with family level). For example, few taxa were represented by high 

temperature tolerance (i.e. “warm eurythermal”) in a recent study in the western US on climate 

change that included warm streams (Poff et al. 2010).      

 The ecoregion concept was created to organize ecologically homogenous areas based on 

land form, soils, climate and vegetation, and provides the basis for hypotheses regarding how 

environmental variables affect biota (Gerritsen et al. 2000, Hawkins and Norris 2000, Johnson 

and Host 2010). The aggregate ecoregions in this study represented an environmental gradient 

from highlands to lowlands in terms of important environmental variables such as substrate size 

and flow regime (Fig. 3), both of which are known to be important in stream settings (Clausen 

and Biggs 1997, Jones et al. 2011). Our findings are in general agreement with Feminella (2000) 

who examined SE ecoregions and concluded that lowland streams were taxonomically distinct 

from highland streams, with the CPL region having lower levels of richness and diversity as well 

as lower proportions and richness of EPT taxa than the highland APL and PMT regions (Fig. 4). 

The general similarity observed between APL and PMT in this study agrees with Feminella 

(2000) who concluded that while the PMT is considered transitional zone between highland and 

lowland regions, both biologically and environmentally, it was more taxonomically similar to 

more mountainous Appalachians (APL) than lowland regions, which was unexpected as it is a 

subregion of Coastal Plains (CPL).  

The size of the human population is expected to increase by 33% in the next 30 y (Alig et 

al. 2004, Cincotta and Gorenflo 2011), thereby likely leading to additional and substantial 

landscape alteration (Cincotta 2011). Urbanization (including urban sprawl) is one of the more 

pervasive forms of land-use/land-cover (hereafter LULC) change in the Southeast US 
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(O‟Driscoll et al. 2010, Nagy et al. 2011), and this region is predicted to have the greatest 

regional growth in population and increase in land development in coming decades (Xian et al. 

2012).  Our findings emphasize the need for region-specific metrics and models for assessing the 

influence of land-cover on stream ecosystems, which may reduce variation attributable to natural 

differences in environmental conditions and reliance on biotic taxonomy on large scales and 

improve overall model performance and interpretability (Gerritsen et al. 2000). A more detailed 

analysis of data from these regions that includes watershed land-cover and estimates basic stream 

hydrology (baseflow magnitude) is warranted. Specifically, future research should focus on how 

these regions vary in terms of the relative influence of important environmental variables on 

individual traits, and whether trait-combinations may be better suited as indicators of 

anthropogenic disturbance in the SE.    
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Table 1. Resistance (RST) and resilience (RSL) traits for several impact types associated with 

land-cover change. Predicted associations (↑ = increase, ↓ = decrease) between trait states and 

impact type and rationale for expected relationships are provided.  †Small body size is listed as 

RSL trait due to association with r-strategy (to maximize population growth rate), but has been 

regarded as flow RST trait as well.   

 

Impact 

type 

RST 

/RSL 

Trait state & 

prediction (↑/↓) 
Rationale Source 

↑ Flow RST Streamlined-flat shape ↑ Resistance to high flow events 1, 3, 4 

↑ Flow RST Attachment (e.g., hooks) ↑ Holdfast ability in high flow 1, 2, 3 

↑ Flow RST Clinger habit ↑ Clings to stable substrates  5 

↑ Flow RST Rheophily preference ↑ Fast water habitat tolerant 1 

↑ Sediment RST Burrower habit ↑ Prefers fine sediments 3,  4, 6 

↑ Sediment RST Silt/turbidity tolerance ↑ Tolerant of suspended sediments 1 

↓ O2 RST Atm. Breather ↑ Independent of O2 concentrations 3 

↓ O2 RST Low O2 tolerance ↑ Resistant to low dissolved O2 1 

↑ Temps RST High T tolerance ↑ Ability to withstand  high T 1, 6 

General RSL Multivoltine ↑ Short generation time 1, 2, 3 

General RSL †Small body size ↑ Linked with short life span 1  

General RSL High fecundity ↑ Many offspring for recolonization 1, 2, 3 

General RSL High dispersal ↑ High recolonization potential 1, 2 

Sources: 1 = Townsend and Hildrew (1994), 2 = Resh et al. (1994), 3 = Statzner et al. (2005), 4 = 

Statzner and Bêche (2010), 5 = Merritt et al. (2008), 6=Monaghanans and Soares (2012). 
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Table 2.  Median (SD) values for pairwise Bray-Curtis dissimilarities within least-moderately 

disturbed (M) sites at the family and genus levels; comparisons are within (e.g., APL-APL) and 

between (e.g., APL-PMT) aggregate ecoregions: Appalachain (APL), Piedmont (PMT) and 

coastal plains (CPL). Standard deviations for dissimilarities are in parentheses. Taxa represented 

in less than 5% of the sites were excluded.  

 
Level APL-APL PMT-PMT CPL-CPL APL-PMT APL-CPL PMT-CPL 

Family 0.602 

(0.112) 

0.556 

(0.106) 

0.618 

(0.113) 

0.587 

(0.106) 

0.685 

(0.112) 

0.636 

(0.120) 

Genus 0.730 

(0.106) 

0.681 

(0.097) 

0.733 

(0.105) 

0.716 

(0.099) 

0.805 

(0.101) 

0.758 

(0.107) 
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Table 3. The top indicator taxa and values (IndV) for moderately disturbed (M) sites in the three 

SE ecoregions (Reg.): Appalachain (APL), Piedmont (PMT) and coastal plains (CPL). Taxa 

were ordered for each Reg. by decreasing IndV statistics. Binary indicators for traits that may 

provide resistance (RST) or resilience (RSL) to extreme flow events (FLO), sedimentation 

(SED). A value of 1 is given if that taxa was represented by at least one trait in each category. 

The proportion of taxa (top 25 IndV) represented for each trait category is given in the terminal 

row for each Reg. To save space, “ae” was removed from Family names and Order names 

abbreviated: Amph = Amphipoda, Clpt = Coleoptera, Dptr = Diptera, Ephm = Ephemeroptera, 

Hplt = Haplotaxida, Ispd = Isopoda, Ntng = Neotaenioglossa, Plcp = Plecoptera, Trch = 

Trichoptera, Vnrd = Veneroida.  
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Reg. IndV Order Family Taxa 
FLO 

RST 

SED 

RST 

TDO 

RST 

REP 

RSL 

DSP 

RSL 

APL 0.628 Ephm Baetid Baetidae 1 0 0 1 0 

APL 0.606 Clpt Elmid Optioservus 1 0 0 1 1 

APL 0.586 Dptr Chironomid Parametriocnemus 0 1 1 1 1 

APL 0.556 Dptr Chironomid Micropsectra 0 1 1 1 1 

APL 0.534 Clpt Elmid Oulimnius 1 0 0 1 1 

APL 0.528 Dptr Chironomid Eukiefferiella 0 0 0 1 1 

APL 0.520 Ephm Ephemerellid Eurylophella 1 0 0 1 1 

APL 0.514 Dptr Chironomid Cricotopus 1 0 1 1 1 

APL 0.509 Odnt Gomphid Gomphidae 1 1 1 0 0 

APL 0.505 Trch Hydropsychid Diplectrona 1 0 0 1 1 

APL 0.485 Ephm Hepageniid Leucrocuta 1 1 1 1 1 

APL 0.479 Mglp Corydalid Nigronia 1 1 0 0 1 

APL --- --- --- --- 84% 48% 44% 60% 92% 

PMT 0.758 Trch Hydropsychid Cheumatopsyche 1 0 0 1 1 

PMT 0.577 Dptr Chironomid Microtendipes 1 1 1 1 1 

PMT 0.549 Trch Hydropsychid Hydropsyche 1 1 1 0 1 

PMT 0.524 Dptr Chironomid Cladotanytarsus 1 1 1 1 1 

PMT 0.482 Clpt Elmid Dubiraphia 1 1 0 1 1 

PMT 0.480 Ephm Baetiscid Baetisca 1 1 1 0 1 

PMT 0.470 Clpt Elmid Macronychus 1 0 0 1 1 

PMT 0.465 Trch Hydroptilid Hydroptila 1 0 0 1 1 

PMT 0.447 Dptr Empidid Hemerodromia 0 1 1 1 1 

PMT 0.442 Dptr Chironomid Corynoneura 0 1 1 1 1 

PMT 0.420 Vnrd Corbiculid Corbiculidae 1 1 1 1 1 

PMT 0.408 Dptr Chironomid Parakiefferiella 0 1 1 1 1 

PMT --- --- --- --- 76% 64% 60% 80% 96% 

CPL 0.636 Dptr Chironomid Dicrotendipes 0 1 1 1 1 

CPL 0.610 Dptr Chironomid Ablabesmyia 0 1 1 1 1 

CPL 0.575 Dptr Ceratopogonid Ceratopogonidae 0 1 1 1 1 

CPL 0.575 Ntng Hydrobiid Hydrobiidae 1 1 0 1 1 

CPL 0.564 Dptr Chironomid Cryptochironomus 0 1 1 1 1 

CPL 0.561 Hplt Naidid Naididae 0 1 1 1 1 

CPL 0.550 Ephm Caenid Caenis 1 1 1 1 1 

CPL 0.517 Dptr Chironomid Chironomus 1 1 1 0 1 

CPL 0.486 Trch Leptocerid Oecetis 1 0 1 1 1 

CPL 0.478 Dptr Chironomid Labrundinia 0 1 1 1 1 

CPL 0.477 Amph Hyalellid Hyalella 1 1 1 1 1 

CPL 0.475 Dptr Chironomid Clinotanypus 0 1 1 1 1 

CPL --- --- --- --- 52% 92% 92% 96% 100% 
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Figure 1. Map of 400 study sites located in the Appalachain (APL), Piedmont (PMT) and coastal 

plains (CPL) aggregate ecoregions. Symbols denote site locations and region designation. Highly 

disturbed (H) sites are marked by black dots (●), moderately disturbed (M) sites lack dots. Solid 

lines indicate state boundaries and dotted lines indicate Level III Ecoregion boundaries.   
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Figure 2. Boxplots of environmental filter variables used to create M/H impact classes (modified 

from Herlihy et al. (2008), see methods). Separate boxplots are provided for Appalachain (APL), 

Piedmont (PMT) and coastal plains (CPL) regions and moderately (M) and highly-disturbed (H) 

sites within each region. Dark lines show median values, boxes cover the interquartile range. TP 

= total phosphorus, TN = total nitrogen, Fines = fine sediment, ANC = acid neutralizing 

capacity, DOC = dissolved organic carbon.  
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Figure 3. PCA on the (rank-based) covariance matrix of 37 environmental variables. Top-left panel shows sites in environmental space 

for the 1
st
 two PC axes. Top-middle panel shows circle of correlations between variables and PC axes. Identical boxplots along the 

bottom row show distribution of site positions in each region and impact designation along PC1; boxplots in the far right column show 

site positions along PC2. Sites are shown in reduced space, shapes denote region designation (see legend). Highly-disturbed (H) sites 

are marked additionally by black dots (●), moderately-disturbed (M) sites lack these dots. See Appendix 5.1 for variable 

abbreviations, transformations, and descriptions. 
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Figure 4. Boxplots of rarefied benthic metrics: richness/diversity at the levels of family and 

genus, richness/proportions of taxonomic groups including Ephemeroptera, Plecoptera and 

Trichoptera (EPT). Separate boxplots are provided for each aggregate region (see Fig. 1 for 

abbreviations) and moderately (M) and highly-disturbed (H) sites within each region. Dark lines 

show median values, boxes cover the interquartile range and small black dots show mean values. 

For M sites only, significant differences in regional means are indicated by A, B, C groupings. 

Arrows between grey- and white-filled boxes show significant differences between the M and H 

groups within a region. An absence of letters or arrows indicates no differences between medians 

(see methods for details) of groups.    
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Figure 5. Boxplots of select trait states for each aggregate region and disturbance designation 

(M/H, see Figs. 1 and 4 for additional details and abbreviations). 
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Figure 6. Major axes of variability in assemblage averaged trait values determined by principal component analysis; variability 

explained by each axis is provided next to axis label. Top-left panel shows sites in trait space for the 1
st
 two principal components 

(PC) axes. See Fig. 1 for abbreviations and Fig. 3 for details regarding site symbols, boxplots, and circle of correlations plot.  

Additional traits not outlined in Table 1 are listed in Appendix 5.2.
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Figure 7. Partial least-squares (PLS) model of resistance (RST) and resilience (RSL) trait values (Ys) and environmental variables 

(Xs; see Fig. 2 and Appendix 1). X variables with VIP < 1.0 in initial model were excluded from final model. Top-left panel shows 

site positions in reduced space that describe axes of greatest correlation between Y and X. See Fig. 1 for abbreviations and Fig. 3 for 

details regarding site symbols, boxplots, and circle of correlations plot. RST traits were for flow (FLO), sediment (SED), 

temperature/dissolved O2 (TDO), and RSL traits were related to reproductive output (REP) and dispersal potential (DSP). * indicates 

environmental variables with final model VIP > 1.0. Final model R
2
 (as cor(𝐘, 𝐘 )

2
) are printed next to variable name in the circle of 

correlation plot. See Appendix 5.1 for variable abbreviations, transformations, and descriptions. 
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Appendix 3.1. Taxa list for 13 sites in/near Foley AL, Wolf Bay. Site number corresponds to 

order in Table 1 (PP = private property): 1) BON12 = Bon Secour at AL Hwy 12 ,2) FPR29 = 

Foley preserve, Graham bayou creek, north crossing, 3) FPR30 = south crossing, 4) GUM13 = 

Gum branch (PP), 5) HMK33 = Hammock creek (PP), 6) MAG65 = Magnolia river at Hwy 65, 

7) MFL08 = Miflin creek at Hwy 98, 8) MFL83 = Miflin creek tributary (PP), 9) PLM20 = 

Palmetto creek at Hwy 20, 10) SAN06 = Sandy creek at Hwy 98, 11) SAN 7E = Sandy east 

tributary at Hwy 98, 12) SAN 7E = Sandy west, 13) WLF01 = Wolf creek at Doc McDuffy Rd.      

 

Order Family Taxon Site presence 

Amph Gammaridae Gammarus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Amph Hyalellidae Hyalella 1, 9, 13 
Clpt Dytiscidae Dytiscidae 4, 7, 9 
Clpt Elmidae Ancyronyx 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Clpt Elmidae Dubiraphia 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13 
Clpt Elmidae Gonielmis 6, 10 
Clpt Elmidae Macronychus 1, 4 
Clpt Elmidae Microcylloepus 1, 2, 4, 8, 9, 10, 12, 13 
Clpt Elmidae Promoresia 10 
Clpt Elmidae Stenelmis 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Clpt Gyrinidae Dineutus 7, 9, 11, 12 
Clpt Helodidae Scirtes 1, 13 
Clpt Hydrophilidae Berosus 2, 5 
Clpt Psephenidae Ectopria 6, 12 
Dcpd Cambaridae Procambarus 1, 2, 3, 4, 5, 6, 7, 9, 10, 12 
Dptr Ceratopogonidae Atrichopogon 7, 10, 12 
Dptr Ceratopogonidae Probezzia 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Ablabesmyia 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Apedilum 6, 9 
Dptr Chironomidae Chironomus 7 
Dptr Chironomidae Clinotanypus 2, 5, 9 
Dptr Chironomidae Corynoneura 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Cricotopus 1, 2, 4, 6, 7, 8, 10, 11, 12, 13 
Dptr Chironomidae Cryptochironomus 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Demicryptochironomus 1, 11 
Dptr Chironomidae Harnischia 10, 11, 12 
Dptr Chironomidae Labrundinia 4, 7, 8 
Dptr Chironomidae Larsia 1, 4, 5, 9, 10, 11, 12, 13 
Dptr Chironomidae Microtendipes 6, 9, 10 
Dptr Chironomidae Nanocladius 1, 7 
Dptr Chironomidae Paracladopelma 1, 6, 7, 9, 10, 11, 12, 13 
Dptr Chironomidae Parakiefferiella 10 
Dptr Chironomidae Parametriocnemus 1, 2, 4, 6, 7, 8, 9, 10, 11, 12 
Dptr Chironomidae Paratendipes 10 
Dptr Chironomidae Polypedilum 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
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Dptr Chironomidae Pseudorthocladius 1, 6, 7, 9, 10, 12 
Dptr Chironomidae Pseudosmittia 1 
Dptr Chironomidae Rheocricotopus 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Rheosmittia 1, 5, 6, 10, 11, 12, 13 
Dptr Chironomidae Rheotanytarsus 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Robackia 11, 12 
Dptr Chironomidae Saetheria 4, 7, 11, 12 
Dptr Chironomidae Stelechomyia 1, 6, 10, 12 
Dptr Chironomidae Stempellina 10 
Dptr Chironomidae Stempellinella 1, 2, 10 
Dptr Chironomidae Stenochironomus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Tanytarsus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Thienemanniella 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Thienemannimyia 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Tribelos 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Chironomidae Tvetenia 1, 4, 6, 10 
Dptr Chironomidae Xylotopus 1, 6, 7, 9, 10, 11, 12, 13 
Dptr Empididae Hemerodromia 1, 6, 7, 8, 9, 10, 11, 12 
Dptr Psychodidae Pericoma 7 
Dptr Simuliidae Simulium 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Dptr Tabanidae Tabanus 1, 10, 11, 12 
Dptr Tipulidae Hexatoma 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
Dptr Tipulidae Pilaria 2 
Dptr Tipulidae Tipula 1, 5, 6, 7, 12 
Ephm Baetidae Baetidae 4, 6, 7, 9, 10, 11, 12, 13 
Ephm Caenidae Caenis 1, 6, 7, 9, 10, 11, 12, 13 
Ephm Heptageniidae Stenonema 1, 4, 6, 7, 8, 9, 10, 12, 13 
Ephm Leptophlebiidae Paraleptophlebia 9, 12 
Ispd Asellidae Lirceus 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13 
Mglp Corydalidae Nigronia 2, 11 
Mglp Sialidae Sialis 9 
Odnt Aeshnidae Boyeria 2, 4, 5, 7, 8, 9, 10, 11, 12 
Odnt Calopterygidae Calopteryx 2, 4, 5, 7, 8, 9, 10, 11, 12, 13 
Odnt Coenagrionidae Argia 4, 5, 7, 9, 11, 12, 13 
Odnt Coenagrionidae Enallagma 4, 5, 8, 9, 12 
Odnt Cordulegastridae Cordulegaster 8 
Odnt Corduliidae Didymops 9, 12 
Odnt Corduliidae Epitheca 2 
Odnt Corduliidae Neurocordulia 2, 5, 9, 11, 12 
Odnt Gomphidae Gomphus 4, 7, 8, 9, 12 
Odnt Gomphidae Progomphus 1, 4, 6, 7, 8, 10, 11, 12, 13 
Odnt Libellulidae Libellulidae 5, 12 
Odnt Libellulidae Perithemis 1, 2, 3, 8, 9, 12 
Plcp Leuctridae Leuctra 1, 9, 11, 12 
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Plcp Perlidae Perlidae 4, 6, 10, 11, 12 
Trch Calamoceratidae Anisocentropus 10 
Trch Hydropsychidae Cheumatopsyche 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
Trch Hydropsychidae Hydropsyche 1, 2, 4, 8, 9, 10, 11, 12, 13 
Trch Hydroptilidae Hydroptila 2, 4, 5, 6, 9, 10, 12 
Trch Hydroptilidae Oxyethira 2, 4, 5, 8, 12, 13 
Trch Leptoceridae Oecetis 1, 4, 7, 9, 10 
Trch Leptoceridae Setodes 2, 8 
Trch Limnephilidae Pycnopsyche 2, 5 
Trch Philopotamidae Chimarra 1, 4, 6, 8, 9, 11, 12, 13 
Trch Polycentropodidae Cyrnellus 5, 6 
Trch Polycentropodidae Polycentropus 9 
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Appendix 5.1 List of environmental variables used and transformations to improve distributional 

symmetry (reduce skewness). 

 

Variable  Original variable abbreviation (if different) and 

description (if necessary) 

Transformation 

(additional) 

TP PTL, Total phosphorous log10 

TN NTL, Total nitrogen log10 

NO3 Nitrate log10 

NA NA. log10 

NH4 Ammonium log10 

DOC Dissolved Organic Carbon log10 

CA Calcium log10 

pH  none 

SO4 Sulfate log10 

ANC Acid neutralizing capacity log10 

SPC COND, Conductivity log10 

TSS Total suspended solids log10 

Turbidity TURB log10 

Ripar. cover XC, riparian cover log10 

Ripar. dist. W1_HALL, riparian disturbance none 

INCh XINC_H, Incised height log10 

BKFw XBKF_W, Bankfull width log10 

BKFh XBKF_H, Bankfull height log10 

Slope XSLOPE log10 

% Fines PCT_FN none 

% SaFn PCT_SAFN, % sand and fines log10 

% Fast water PCT_FAST log10 

% Slow water PCT_SLOW none 

% Pools PCT_POOL none 

Substr. Dmm LSUB_DMM, log  mean substrate diameter  none 

Erodable Dmm LSUB_DMM, log  erodible substrate diameter  none 

RBS LRBS_BW5, log relative bed stability  none 

LWD XFC_LWD, % large woody debris Rank transformed 
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Appendix 5.2 List of species traits derived from USGS trait database.  

 

Trait state Original trait name, trait state 

Streamlined Body_shape, Streamlined / fusiform 

Small Max_body_size, Small (length < 9 mm) 

Large Max_body_size, Large (length > 16 mm) 

Hard shelled Armor, Hard shelled 

Flow adapt. Morph_adapt_suckers, Morph_adapt_friction, Morph_adapt_hooks, 

Morph_adapt_silk, Morph_adapt_ballast, and Morph_adapt_hairy 

Clinger Habit_prim, Clinger 

Burrower Habit_prim, Burrower 

Climber Habit_prim, Climber 

Sprawler Habit_prim, Sprawler 

Swimmer Habit_prim, Swimmer 

C. Filterer Feed_mode_prim, Collector-filterer 

C. Gatherer Feed_mode_prim, Collector-gatherer 

Scraper Feed_mode_prim, Scraper/grazer 

Shredder Feed_mode_prim, Shredder 

Semivolt Voltinism, < 1 Generation per year 

Multivolt Voltinism, > 1 Generation per year 

Diapause Diapause, Yes 

Rheophily Current_fast_lam, and Current_fast_turb 

High fecundity Fecundity, > 10,000 eggs 

Long adlt life Adult_lifespan, Months 

Hi adlt disp. Adult_disp, 100 km or less 

Hi larval disp. Larval_disp, 11-100 m 

Drift Drift_early and Drift_late, Strong (active / often) 

Riffles Lateral_preference, Lat_riffle 

Large sub. Microhab_gravel, Microhab_rocks, and Microhab_boulder 

Small sub. Microhab_sand and Microhab_silt 

Low pH tol. pH_acidic 

Hi temp. tol. Thermal_pref, Hot euthermal 

Hi turb tol. Turbidity, Silted/murky water 

Lo O2 tol. O2_low 

Air breather Resp_early and Resp_late, Atmospheric breathers 

Exits Exit_temporarily, Yes 

Egg cement Eggs_cement, Yes 

 


