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Abstract

Refactoring is a disciplined technique for restructuring an existing body of code, alter-

ing its internal code structure without changing its external behavior [22]. Refactoring is

specified as a parameterized program transformation that requires a set of preconditions to

be satisfied.

The Go Doctor is a refactoring tool for the Go language. This thesis focuses on the design

and implementation of an Extract Function refactoring adapted to the unique requirements

of the Go language. The code that is to be refactored is parsed and type checked before the

process is initialized. The tool ensures that certain preconditions are met; if they are not,

it warns the user with the exact details as to why the refactoring will not continue. Then,

a Live Variable analysis is used to determine what variables need to be passed to, returned

from and declared in the new function that is created from the extracted code.

To analyze the robustness of the refactoring, it was applied to 200 random statements

selected from the top 100 GitHub projects using Go. These projects were also used to

assess the potential impact of some of the refactoring limitations - specifically, its inability

to extract return statements, defer statements, and anonymous functions.
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Chapter 1

Introduction

According to Fowler [7], Refactoring is a disciplined technique for restructuring an ex-

isting body of code, altering its internal structure without changing its external behavior.

The main purpose of refactoring is to make the code more reusable and easier to understand

and the refactoring that needs to be executed is specified as parametrized program trans-

formations that require a set of preconditions to be satisfied. If the preconditions are met

and if the transformation does not alter the behavior of the code then the transformation is

applied [4].

Refactoring is a cumbersome process when the programmer has to perform them manu-

ally and hence it is necessary that there are automatic refactoring tools integrated with the

development environment to help programmers refactor their code. Refactoring tools aren’t

fully automatic, instead they are directed by the user who determines what refactoring to

perform and input the parameters to perform the refactoring[39][43][40]. For instance, if the

programmer decides to use rename refactoring that makes it easier to rename identifiers and

contexts where they are used inside the code, the user has to enter the identifier to rename as

well as the new name of the identifier. In the case of a Extract Function refactoring, where

the programmer can extract a contiguous lines of code from a long function and create a

new function with the extracted code, the user has to enter a name for the new function.

Some of the problems faced by the programmers who use refactoring tools for Extract

Function refactoring are listed below [45],

• They have difficulty determining the types of language constructs that must be selected.

• They face difficulty while identifying what the error thrown by the refactoring tool is

really about.
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• They have difficulty handling conditional branching statements that are a part of the

statements that are to be refactored.

• When the refactoring tools move the declarations inside the new function, and this can

alter the behavior of the code.

Some of the refactoring tools available in market are, IntelliJ IDEA[40] and a number of

refactoring tools that are built into the Eclipse JDT and CDT[44]. Tools like JUNGL[39] a

refactoring tool, were developed for research purpose.

1.1 About the language

Go Programming Language was made an open source project in November 2009, de-

veloped by Robert Griesemer, Rob Pike and Ken Thompson. Go is a compiled, concurrent,

garbage collected, statically typed language developed at Google. Go is an attempt to

combine the ease of programming of an interpreted, dynamically typed language with the

efficiency and safety of a statically typed, compiled language. Some of the features of Go

Language that makes it more efficient and user friendly when compared to other languages

are[65],

• The dependency management(handling how importing other files into the current pro-

gram) of Go makes Go compilations faster than C or c++ Compilations(that includes

all the files and libraries).

• The dependency graphs have no cycles, since there can be no circular imports in the

graph.

• Unlike traditional C, C++ and Java models, Go includes linguistic supports for con-

currency, garbage collection, interface types, reflection and type switches.
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• Go has no explicit memory-freeing operation, the allocate memory returns to the pool

using garbage collector, unlike C or C++ where too much of programming efforts is

required for memory allocation and freeing.

• Automatic garbage collections in Go, makes concurrency and multithreaded program-

ming code easier to write[66].

1.2 Design of Go

Go Language, an object oriented programming language with C-like syntax is designed

as a systems language and focuses on concurrency and multiprogramming. It supports a

mixture of static and dynamic typing making it more safe and efficient. Go contains objects

and structs instead of classes. Although there is no explicit subtype declarations, sometimes

structural subtypes are inferred. Go Language supports pointer types by putting an asterisk

in front of the type but does not allow pointer arithmetic (C allows pointer arithmetic)[20].

• Objects and Methods - Like in C++, methods in Go Language are defined outside the

struct declarations and the receiver must be explicitly named. Go Language allows

multiple return values although it does not support overloading or multiple methods.

• Embedding instead of Inheritance - Reuse in Go Language is supported by embedding

(including an anonymous field in a struct is known as embedding making all of the

methods of the embedded fields made accessible to the struct[21]). If a method or field

cannot be found in an object’s type definition, then the embedded types are searched

and method calls are forwarded to the embedded object.

• Interfaces - They are abstract representations of methods. If an object implements the

methods of an interface then it has that interface in its type. By default every object

implements a empty interface interface.
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• Functions and Go routines - Go Language supports functions(methods without re-

ceivers), function pointers and closures. Go Language routines are functions that

execute in parallel with other go routines. The keyword go in front of a function call

executes a function as a go routines. Communications between go routines are done

by the concept of message passing which is implemented by channels.

• Object Initialisation - Objects are created from the struct definition with or without

the new keyword. When an new object is created fields are initialized by the user or

they are set to default values. Go Language does not have constructors.

• Packages - The source code in Go Language is structured inside packages and Go

Language provides two scopes of visibility,

– Members beginning with lowercase are only accessible inside their package.

– Members beginning with an upper case letter are publicly visible.

1.3 The Go Doctor

Go Doctor, a Go Language refactoring tool implements few of the most commonly used

refactorings like the Rename refactoring, the Extract Function refactoring, Toggle Variable

refactoring and Extract Local Variable refactoring. This thesis explains how the Extract

Function refactoring in Go Doctor is implemented and the different analysis required to

implement the refactoring. Figure 3.1 explains how the tool works specifically for Extract

Function refactoring.

The refactoring engine is the entry point for Go Doctor which lists all the available

refactoring to the user. The engine calls the refactoring interface, which contains all the

refactoring. The Figure 3.2 describes the package diagram of how the different packages

within Go Doctor is organised.

The user selects the set of statements they want to extract and selects the Extract

Function refactoring and enters a valid function name. The code on which refactoring is
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performed on is parsed and type checked and then the Extract Function refactoring is ini-

tiated. The Go Doctor makes sure that the preconditions are met so that the refactoring

is behavior preserving[23]. After which dataflow analysis is performed on the code and the

code is transformed.

Figure 1.1: Selecting Code for Extract Function Refactoring

Figure 1.2: Initiating Extract Function Refactoring

The Vim version of the steps involves in Extract Function refactoring is explained in

Figure 1.1, Figure 1.2 and Figure 1.3.

1. Code Selection - The code selected should be a part of a block statement(should be

inside a function). The selection has to be a contiguous set of statements.
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Figure 1.3: Program after Transformation

2. Initialize Refactoring - The refactoring engine trigger the Extract Function refactoring

after the extract keyword followed by the user specified name for the new function is

entered.

3. Code after Transformation - After Extract Function refactoring was implemented, the

code has been transformed preserving the behavior of the code.

1.4 Thesis Organization

• Chapter 2 proposes the concept of refactoring to improve the software quality and fa-

miliarizes the reader with the concept of Extract Function refactoring which started off

with they concept of function outlining in compiler. Explains the different refactoring

tools

• Chapter 3 describes the refactoring infrastructure framework for Go Doctor, explains

the implementation the Extract Function refactoring and gives an overview of the

testing framework used.

• Chapter 4 evaluates the Extract Function refactoring by testing it over 4 million lines

of code and argues the reasons why certain decisions were taken.

• Chapter 5 discusses the future work that can be done based of the current work.
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Chapter 2

Related Work

Software Engineering when viewed from a historical perspective had its developments

over decades of integrating software into the daily operations of various institutions, planning

and controlling software projects due to costs and schedule delays[1].

According to Ronan Fitzpatrickcite[2], Software Quality refers to the implementation

of industry-defined set of desirable features into a product that is more efficient, effective

and gives produces reliable performance. Software Inspection, a method used to improve

the software quality involves code walk through, where the code is examined so that every

piece of logic is covered and every branch or case is considered. It also makes sure all

the required functionality is implemented and the errors are caught[3]. Code smells are

metaphors used to describe poorly designed code structure and bad programming practices,

that may lead to bugs that costs a lot of time and effort to identify[4]. There are researches

for developing automated tools that assure software quality by detecting code smells in the

source code in languages like Java [5][6]. Code smells when removed during the earlier phase

of development cycle can be more cost and time effective. Code smells can be avoided while

writing the program but there can be certain times when the programmer may not be aware

of it. In those cases, it is recommended to use refactoring to eliminate code smells.

2.1 Refactoring

According to Martin Fowler[7],Refactoring refers to changes made to the internal struc-

ture of software such that the modified software code is more comprehensible without chang-

ing the observable behavior of code. Refactoring is a technique that is used to clean up code

in a more efficient and controlled manner so as to minimize bugs. There has been a few

7



researches that study the effects of refactoring on errors found in the program[8] and how

refactoring affects the quality of the software[9]. When programmers change the code, the

structure of the code gets distorted and loss of structure can cause a cumulative effect. The

more cluttered the code gets, the more difficult it is to fix the code. Refactoring is the process

of clarifying and simplifying the design of the existing code, without changing its behavior.

In agile software development, programmers maintain and extend their code from iteration

to iteration and without continuous refactoring, the quality of the code can depreciate lead-

ing the code to rot (unhealthy dependencies between classes and package, bad allocation of

responsibilities to classes and functions, duplicate code) that spreads and worsens the code

quality. Refactoring code prevents rot and makes the code easy to maintain and extend (by

adding new features and implementing bug fixes) [10].

2.2 Identifying Refactoring Candidates

Once the developer discovers the perfect situation to do refactoring, he needs to identify

the potential candidates in the code to refactor. In order to determine the prospective

candidates for refactoring, semantic analysis of the code is required.

Kataoka et al [11] proposed a method for identifying refactoring candidates by using

program invariants. If the program invariant matches the invariant pattern that already

exists at a particular point in the program, it indicates the applicability of a specific refac-

toring. The author also talks about how their basic approach is independent as to static or

dynamic analysis of how invariants are found. The static analysis (Human Analysis) requires

the programmer to elucidate his program with respect to the design requirements so that the

implicit invariants can be identified and this can be cumbersome. An alternative approach

was to automatically infer invariants that is done statically or dynamically. With dynamic

approach, the program is trained to trace variables of interest and the result of the dynamic

approach depends on the quality of test suites that is used to infer the invariants. There
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has been more studies on the static and dynamic invariant inference tools by Nimmer and

Ernst[12].

Another study[13] suggests an approach that identifies the refactoring candidates by

using dependency graphs. This techniques identifies classes that can be potential refactoring

candidates where it identifies or searches for dependency cycles in long classes which makes

these classes difficult to understand, test and reuse. There are a few researches who use

metrics to identify refactoring candidates[14, 15, 16].

There are many tools that can be used to identify code smells in programming languages

like Java JLINT[17] and the C analyzer LINT[18] that support automatic code inspection.

JDeodorant[19] is another tool that looks for code smells and identifies God Classes (an

object that controls many other objects in the system), suggests where to apply EXTRACT

CLASS refactoring and helps the programmer perform the refactoring in an effective manner.

When a developer is in the process of writing code, sometimes they are not aware of the

situation that they are manually refactoring until halfway through their code modification

process, this is called late awareness dilemma which contributes to the refactoring tools

under use. A novel refactoring tool called Benefactor[42] try to reduce this by detecting the

manual refactoring that is performed by the developer and suggests the automatic refactoring

options.

2.3 Behavior preserving in Refactoring

Refactoring refers to structural changes made to the program such that these changes

preserve the behavior or the semantics of the code. Although there are works [22] done to

verify how refactoring could improve the program design and structure, we would also need

to focus on the semantics preserving of the program.

Fowler[7] discusses the concept of self-testing code (practise of writing comprehensive

tests in conjunction with software), where he had to write the expected output from the

test code and compare it with the transformed code and check if they are the same if not,
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it indicates that there is a bug in the code transformation. The purpose is to make sure

that code that is transformed matches the expected output written by the programmer. The

author suggests writing a suite of tests including boundary conditions and focus on the areas

where things might go wrong in order to detect the bugs that may gradually appear over

time when additional features are added. Creating a test suite is the best means to find

bugs using regression testing. This approach is not fool-proof because testing the code solely

based on the output is not sufficient. Opdyke[23] came up with a few properties for behavior

preservation of refactored code,

• Unique Superclass - Post refactoring the class must have at most one superclass and

this superclass must not be one of its subclasses.

• Distinct Class Names - Post refactoring each class must have a unique name.

• Distinct Member Names - The members and variables in a the refactored class must

have unique name.

• Inherited Member Variables not Redefined - The member variable that is inherited

from the superclass must not be redefined in the sub class.

• Compatible Signatures in Member Function Redefinition - Post refactoring if the mem-

ber function of a function in the superclass is redefined in the subclass, it has to be

compatible.

• Type-Safe Assignments - Post refactoring the type of the expression assigned to a

variable must be the same as the type the variable was declared with.

• Semantically Equivalent References and Operations - This states that the versions of

the code before and after the refactoring produce semantically equivalent references

and operations.

According to Tom Mens et al[67], depending on domain or user-specific concerns there can

be a wider range of behavior that may or may not be preserved in refactoring,
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• Real-time Software - The crucial aspect of behavior is the execution time of certain

sequence of operations and requires the refactoring to preserve all the temporal con-

straints(time related factors of the software).

• Embedded Sofware - The crucial aspect of behavior that needs to be preserved by

refactoring are the memory constraints and power constraints.

• Safety-crtical Software - There are concrete behaviors of safety ( such as liveliness,

stability, reliability of the system) that needs to be preserved by refactoring.

The author suggests that dealing with behavior preservation in a pragmatic way is with the

help of rigorous testing and ample number of test cases that passes after refactoring gives a

good evidence that the refactoring is behavior preserving, but there are also cases when the

tests rely on the program structure that is modified causing certain refactoring to invalidate

the tests. The author gives another approach for behavior preservation by adopting a weaker

notion of behavior preservation that is insufficient to formally guarantee the full preservation

of program semantics.

2.4 Types of Refactoring

2.4.1 Rename Refactoring

One of the most commonly used refactoring among all the available refactorings. This

refactoring is used by the programmer who wants to change the name of an identifier to

another name (that is not a keyword) that is more appropriate for it.

• When the name of an identifier is changed, then all references to that identifier must

be changed to new name.

• Naming Analysis - When a programmer tries to rename a method that is a part of

an interface, it may affect all the classes that implement that interface in different

packages too. Hence the programmer uses reflexive transitive closure[24] to get a list

11



of references to the method that is to renamed, so that behavior of the code is not

changed.

2.4.2 Extract Function Refactoring

According to Clean Code [68], a function has to be small; perform just one task that

is not repetitive; must have a descriptive name. To make the function do just one task, the

programmer needs to make sure that all the statements within the function are of the same

level of abstraction. It is always advisable to limit a method to one functionality for better

design, the effect of Extract Function refactoring is improving the code maintainability. Some

of the things that needs to be taken care of while performing Extract Function refactoring

are,

• The newly extracted method must have access to all local variables it uses and must

return those local variables that would be used by the code following extracted block.

• Branch statements and exit statements like return must be handled in a effective

manner if they are a part of the extracted code.

• Extracting code that has more than one assignment statement cannot be extracted

since the method can return only one variable.

• Live variable analysis[25] is used to eliminate those definitions of the variables that

are not used in the program. This is also used to identify those variables that needs

to be passed, returned and declared inside the extracted code. Live variable analysis

is mainly used to determine the variable definitions inside a loop. If the variable is

redefined inside for loop and used in statements following the extracted code, it must

be returned.
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2.4.3 Reverse Conditional Refactoring

This refactoring is done to improve the readability of the code. When the programmer

comes across conditional statements such as,

Figure 2.1: Reverse Conditional Refactoring

The programmer may want to improve the readability of code by swapping the ‘if’ and

the ‘else’ part of the code. This transformation would require the conditions of the original

‘if’ statement to be reversed. This involves inverting the condition that is in the original ‘if’

statement, switch the clauses interchange the statements under the ‘if’ and ‘else’ statement

and test for behavior preservation[7].

2.4.4 Consolidate Duplicated Conditional Fragments

This refactoring can be applied whenever there occurs a situation where the same frag-

ment of code is in all branches of the conditional expression such as ‘cases’ in the type switch

statements. Refactoring this kind of design defects is called code hoisting, an optimization

to reduce the code size by removing those statements that occur in multiple code paths from

a single common point in Control Flow Graph(CFG). We need to make sure that the code

inside the branches and the duplicated code fragments are independent of each other.

2.4.5 Inline Method Refactoring

Method inlining is basically the inverse of method extraction. When a programmer

identifies a method that is too small too be a independent method, the programmer may

want to merge it with another method. Those variables that are local to the inline method
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must become a part of the target method now; hence the naming conflicts between the

variables of the inline method and the target method must be resolved which may otherwise

cause a compilation error. This might change the behavior of the code if not used carefully,

it can change the access specifier of the inline method to that of the target method.

2.4.6 Move Method Refactoring

This refactoring is performed if the programmer thinks that the method defined in a

particular class does not fit in and needs to be moved to a class where it would be a more

apt function. This involves more collaboration between classes and there are changes that

needs to be made in the target class so that it can accommodate the new method that is

being moved into it making both the classes highly coupled.

2.4.7 Create Abstract Superclass

This refactoring is used when there is a duplicate code in both classes, making that part

of code common among the two classes, hence there can be an inheritance structure created

from this scenario by creating a blank abstract superclass and then making the original

classes subclasses of this superclass[27].

2.5 Most Commonly used Refactoring

Negara et al [28] studied the popularity of various refactorings, considering both manual

and automated with the help of 23 participants, based on whether they used the automated

refactoring option offered by the eclipse tool, or how they performed the refactoring manually.

It was said that the programmers used 11% more manual refactoring than the automated one.

It was also proved that developers who were less than 5 years in experience tend to perform

28% more manual refactoring than automated than those with experience. Developers with

more than 10 years experience performed 49% more manual refactoring than automated

refactoring, the reasons could be that the experienced programmers learnt how to refactor
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even before the automated refactoring tools came into existence. Studies by Mohsen Vakilian

et al [29] talks about some factors that may affect automated refactoring such as, awareness,

trust, invocation method and major mismatch between what the programmer wants and

what the automated tool does.

When talking about the most popular refactoring tools among the manual and the

automated versions of refactoring. The top five most popular refactorings used were Re-

name Local Variable, Rename Method, and Extract Local Variable (these three were com-

mon in automated and manual refactoring), Extract Function (popular in manual), Rename

Field(automated). Hence when building a refactoring tool, the tool builders must be more

focused on building the popular refactorings first and make sure they are accurate.

They also studied the amount of time needed by these developers to perform refactorings,

and it appeared that Extract Function refactoring consumed the max amount of time, in

manual and automated refactoring, followed by extract local variable and rename class.

2.6 Function Outlining

According to Pettis and Hansen, in their work on code positioning[69], whose primary

purpose was to reduce the overhead of instruction memory hierarchy. The main idea is to

separate the frequently executed statements from the rarely executed statement in a program

unit for the purpose of optimizing the code layout. Suganuma et al [70] explains the concept

of region based compilation technique using dynamic compilation system, where the compiled

regions are selected code potions without rarely executed code. The paper assumes that each

method is represented as a control flow graph(CFG) with a single entry and single exit block.

Peng Zhao et. al [71] describe function outlining as a technique that splits a region of code

into an independent, new function and replaces that region with the function call to the

new function that was created. Some of the positive impacts of function outlining is that it

enables function inlining and improves code locality. With function outlining, new function

15



calls are introduced and this causes program control to jump between the original program

unit and the outlined function.

2.7 Extract Function Refactoring

Extract Function refactoring helps decomposing large multifunctional methods into

smaller methods that performs a single task, making re-usability possible when the methods

are finely grained.

2.7.1 Identification of Extract Function opportunities

Nikolas Tsantalis and Alexander Chatzigeorgiou[33] studied some of the design flaws

listed in Fowler et al ,1999 [22] that can be fixed with the help of Extract Function refactoring

which are,

• Duplicated Code, a set of statements that perform a particular function and is

repeated throughout the code, this code can be extracted and put into a single method

to which a method call can be made.

• Long Method, long multifunctional methods are decomposed into methods that per-

form a single task using Extract Function refactoring.

• Feature Envy, a term used to describe a situation when a method is a part of a class

but uses several data from another class. This method is extracted from the current

class and placed inside the class from which it uses the data.

They came up with a set of methods to identify two main categories of Extract Function

refactoring opportunities,

1. Complete Computation Slice returns those variables whose value is modified by

assignment statements throughout the body of the original method. The algorithm

takes in an input method M and identifies all the variables whose values are modified
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within the method using at least one assignment statement covering the computation

of the corresponding variable and returns a set of slice for extract refactoring.

2. Object State Slice returns object references (the local variables or fields of class

containing the original method) that points to the objects whose states are affected by

the method invocation that modifies at least one of its attributes. This algorithm takes

as input a method M and returns a set of slice for each reference inside the method M

that points to an object whose state is affected by at least one statement containing

an appropriate method invocation or direct field modification.

2.8 Refactoring Tools

In 1997, Don Roberts and his research group developed the Smalltalk Refactoring

Browser[34]. The Refactoring Browser is a tool that renders automatic support for many of

the common refactorings in Smalltalk development. The earlier versions of Smalltalk Refac-

toring Browser was a stand-alone tool making it difficult for developers to use them. Some

of the important features that needs to be considered when building a refactoring tool such

that the programmers may frequently use it are,

• Integrate the refactoring tool into the standard development tools.

• The refactorings must be fast and reasonably correct.

• The refactoring tool must avoid purely automatic reorganization.

Another refactoring tool, JUNGL[39] focuses on making transformation to the source

code of a program rather than any convenient intermediate representation of the code using

scripting transformation. JUNGL introduced the idea of using a scripting language for

refactoring. Making use of scripting languages for such transformations can be beneficial

for functional features such as manipulating AST (Abstract Syntax Tree) and graphs more

generally, logical queries for expressing complex relationships between program elements.
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This language is implemented in a .NET platform. The main data structure is the program

graph built from functions of the program, where each node and edge has a kind represented

by string. Only if there is a successor to a node or statement, is there a lazy edge added

from the current node to the next node.

In order to transform a program based on rename refactoring there are a certain set of

conditions that needs to be checked,

1. Variable Binding

2. Conflicting declarations

To implement Extract Function Refactoring one needs to,

• Check Validity of the extracted code - Single Entry Single Exit criteria that follows the

concept of nodes that dominate the other, it takes three parameters entry node to the

method that contains the block, start node and end node of the block. The start node

is said to dominate the end node if there is only path from the start node to reach the

end node. Checking on the scoping information as well.

• Parameters to the new function - When trying to extract a code into a new function,

the programmer needs to consider those parameters that are,

– passed by value,

– passed by reference,

– output parameters that only return a result.

• Placing Declarations - Moving them inside or outside the block depending on their

usage.

• Transforming - Inserting the new function call and replacing the extracted code with

the function call to the new function.
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Refactoring Rubicon for Extract Function refactoring can require some serious work,

the method has to be analyzed and temporary variables need to be identified and placed in

the proper positions so as not to change the behavior of the code. IntelliJ IDEA[40] was

one of the first java IDE to cross-refactoring Rubicon. This consists of a parser and AST

that converts the source code into a form of AST called Program Source Interface (PSI) that

supports low level tree traversal and higher level semantic operations. Followed by building a

CFG of the methods to be processed, which consists of nodes that are language independent

instructions linked by edges specifying the possible variants of control flow graph.

Eclipse[41], an open source project is a generic development environment and has refac-

toring support and also performs some analysis on the code and supports various kinds of

refactorings.
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Chapter 3

Implementation

3.1 Refactoring Infrastructure Framework

The purpose of refactoring and the commonly used refactorings were discussed in the

previous section, this section is dedicated to explain the implementation of the Extract

Function Refactoring. Clean Code [68] states that a function has to be small; perform just

one task that is not redundant; must have a descriptive name. To make the function do just

one task, the programmer needs to make sure that all the statements within the function are

of the same level of abstraction. It is always advisable to limit a method to one functionality

for better design, hence programmers use Extract Function refactoring on long functions for

improving the code maintainability. The main purpose of Extract Function refactoring is to

decompose large code fragments into small cohesive functions, the user is asked to select the

code and enter the new name for the new function that is to be created.

Go Doctor[60], a Go Language refactoring tool works on vim. Some of the refactorings

that can be implemented by Go Doctor are Rename refactoring, Toggle Variable refactor-

ing, Extract Function refactoring and Extract Local Variable refactoring. As explained in

the introduction section, the below flow chart describes the generalized working of Extract

Function Refactoring.

1. Get User Input - There has to be an interface that interacts with the user to get

the lines selected by the user and the new name for the function, this is done by the

Command Line Interface (CLI) and Protocol that provides the standard mechanism

for text-editors to communicate with refactoring engines.
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Figure 3.1: Working of Extract Function Refactoring

2. Parse and Type Check - The FileSystem Interface manages the files that are loaded

and those files that are changed after the refactoring has been applied. This provides

the ability to read files, load files, modify and remove files.

3. Initiate Refactoring - The Engine is the entry point for Go Doctor refactoring, all

available refactorings must be given a unique name and this unique name must be

added to the refactoring list by creating a refactoring object for it. For example,

Unique name - extract

Refactoring Object - refactoring.ExtractFunc

4. Refactoring Tool - The refactoring package Package Refactoring contains all of the

refactoring supported by the Go Doctor, as well as types that are used to interact with

those refactorings. The parameters for a specific refactoring must be mentioned in

order to implement that refactoring on the code. For example in Rename refactoring,

the user may select an identifier to rename, but the refactoring tool must also elicit, (1)
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a new name for the identifier and (2) whether or not occurrences of the name should

be replaced in the comments.

Figure 3.2: Package Diagram of Go Doctor

3.2 Extract Function Refactoring

The Extract Function refactoring extracts a sequence of statements from the existing

block of code into a new function. There are two main parts to the Extract Function

refactoring of the tool,

• Precondition Check

• Transformation

Before starting with the refactoring the user is expected to,

• Make sure the statement to be extracted is a part of the function that is, only state-

ments inside a block(a function or if statement etc) can be extracted.
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• Enter a valid function name for the new function the extracted code is put.

3.2.1 Precondition Check

1. Valid Selection Check - Whenever a set of statements are extracted, in order to

check if the user made a valid selection the tool performs the following steps,

(a) Gets the Path Enclosing Intervals for the first statement of extracted code

(b) Get the Path Enclosing Intervals for the last statement of extracted code

(c) If the nodes in the path enclosing intervals match, then the selection is valid

Figure 3.3: A Go Language Source Code

Path Enclosing Interval of a given statement refers to a list of nodes that encloses the

given node or statement. These nodes that encloses the given node ar all the ancestors

of the node up to the AST root[61].

In Figure 3.3, the Path Enclosing Interval for the highlighted statement is ,

Figure 3.4: Nodes of Path Enclosing Interval of highlighted statement in Figure 3.3
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where *ast.AssignStmt refers to the selected statement for which we are finding the

Path Enclosing Interval for. Figure 3.5 gives the better representation of the the path

enclosing interval of the selected statement “c:=a+b” which is an *ast.AssignStmt

Since the statement extracted has the same set of enclosing intervals *ast.BlockStmt,

*ast.FuncDecl and *ast.File, this statement can be extracted.

Figure 3.5: Path Enclosing Interval of highlighted statement in Figure 3.3

2. Valid Statement Check - The extracted code must not contain the following state-

ments; if they do, the code fails.

• Defer () Statements - These statements are used to simplify functions and for

clean up actions. This pushes the given function call to a list, and the given list

of function calls are executed after the surrounding function returns[62]. Hence

extracting a defer statement would cause the deferred function call to dispatch

when the extracted function returns, which could change the behavior of the

program. Figure 3.6 gives an example of how defer statements are used and

Figure 3.7 describes the output of the program in Figure 3.6 based on the order

the defer statements calls specific functions.
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Figure 3.6: An Example for Defer Statement

Figure 3.7: Output of Program in Figure 3.6

• Return Statements - When a return statement alone is extracted from the

original function into a new function, the control would return from the extracted

new function rather than the original function, and this may not preserve the

behavior of the code[63].

Figure 3.8: Example of Anonymous function

• Anonymous functions - Those functions that are useful when you want to

define a function inline without having to name it. This mainly refers to creating

a function inside of another function. The Control Flow Graph(CFG) that is built

from the code, only uses a single function as input based on which it determines
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the variables dataflow analysis, the Go Doctor is limited to normal functions and

the tool still explores the possibilities of accommodating more than one function

in its control flow graph. Figure 3.8 is the example of an anonymous function.

3. Single Entry Single Exit Criteria - In a control flow graph G, two nodes x and y

are said to be enclosed in a single entry and single exit region if,

• x dominates y,

• y post dominates x,

• x and y are cycle equivalent in G.

The first two rules ensures that when control reaches y whenever it reaches x and vice

verse. The third rules ensures that whenever control reaches x, it reaches y before

reaching x again and vice verse. The author uses the ordered pair (x,y) to denote the

Single Entry Single Exit (SESE) regions where x is the entry node and y is the exit

node[64].

A piece of code is likely to be easily understood if it has only one entry point and one

exit point at the bottom of its listing. A set of statements that are supposed to be

extracted is said to have more than one entry or exit point if,

(a) There are one or more return statements in the extracted code.

(b) There are branch or jump statements like break, goto and continue in the extracted

code.

(c) The branch statements can be handles as long as some conditions are met.

(d) Checking for valid entry criteria of each node,

i. If there is just one predecessor, then the statement node can be extracted.

ii. If there is more than one predecessor then,

• Check if the predecessor is a part of the extracted code.
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• Check if there is only one other node apart from the extracted nodes is

the predecessor of the selected node.

(e) Checking for valid Exit criteria,

i. If there is one successor, then the statement can be extracted.

ii. If there is more than one successor then,

• Check if the Successor is a part of the extracted code.

• Check if there is only one other node apart from the extracted nodes is

the successor of the selected node.

4. Labeled Branch Statement Check - Whenever a branch statements like goto, break,

continue and fallthrough are encountered, they may or may not have labels. Labels

can have its own has a set of statements below it. Some of the conditions that have

been set up to handle branch statements are,

• If any of the branch statement with a label is extracted , then the label it refers

to must also be extracted along with it like the example in Figure 3.9.

Figure 3.9: Extract Function Refactoring on a labeled branch statement break

• Whenever there is a break statement, it can only be extracted if it is inside of a

for, switch or select statement block.

• Whenever a continue statement is encountered it should be inside of a for state-

ment block if it has to be extracted
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• Whenever a goto statement is encountered, then it must have a label statement

extracted along with it.

3.2.2 Live Variable Analysis

1. Building a Control Flow Graph [48]

A Control Flow Graph(CFG) is a directed graph in which each node represents a basic

block and each edge represents the flow of control between basic blocks. To build a

control flow graph, we first need to identify the basic blocks, which is nothing but

a sequence of consecutive statements in which the flow of control must enter in the

beginning of the first node of the block and leave at the end or at the last node of the

block without halt or possibility of branching except at the end. Once we construct the

basic blocks, add the edges that represent the control flow between these basic blocks.

The Go Doctor uses the abstract syntax tree of the program to construct CFG, where

it considers each statement to be a basic block that is, each individual statement that

is a part of a block (expressions, function calls, assignment statements, etc.) or a block

on itself (if, for, switch, select, type switch blocks, etc.).

The Go Doctor then creates an entry and exit nodes and traverses the list of statements

in a depth first search and create an adjacency list implemented as a map of blocks.

Adjacent blocks are stored as predecessors and successors separately for control flow

information. The last node of the program has an edge to the exit node, also if there

are statements in any other part of the program that makes the program exit, those

statements have an edge to the exit node as well. The CFG is created for a separate

functions and hence the anonymous functions become just one statement in the CFG,

the statements within the anonymous functions are not considered. Figure 3.10 is the

example of a program and its corresponding control flow graph in Figure 3.11
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Figure 3.10: Extract Function Refactoring on Branch Statement break

The highlighted nodes in the Control Flow Graph refers to the extracted code in Figure

3.10. This code satisfies the SESE criteria and the branching statement break is inside

a for loop and hence it can be extracted without altering the behavior of code.

2. Dataflow Analysis[49]

Once the CFG is built, the dataflow analysis is performed to find the definitions and

uses of variables. A variable is said to be defined when the variable is assigned a value.

This can either be done by using a short assign operator( i := 5 ) or by assigning value to

the variable when they are being declared (var i int = 5). In dataflow analysis, the Go

Doctor keeps track of the variables that are being assigned, these are variables whose

values get changed anywhere in the code other than where they are being declared or

created. A use for variable occurs whenever the value of the variable is fetched or used

in the code.

The execution of a program is nothing but a set of transformation of the program

state which consists of the values of the variables in the program. The input state

is associated with the program point before the statement and the output state is
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Figure 3.11: Control Flow Graph for Program in Figure 3.10

associated with the program point after the statement. The execution path from point

p1 to point pn to be sequence of points p1, p2, p3, p4 ... pn ,

• pi is the point in code immediately preceding a statement and pi+1 is the point

immediately following that statement, or

• pi is the end of some block and pi+1 is the beginning of the successor block

In dataflow analysis the Go Doctor associates with every program point a dataflow

value, which is a set of variable definitions. The Go Doctor denotes the dataflow value

before and after each statement S by IN[S] and OUT[S] respectively. The dataflow
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problem is to find a solution to a set of constraints on the IN[S]s and OUT[S]s for

statement S. There are two sets of constraints,

• Those based on the semantics of the statements (Transfer Function) the relation-

ship between dataflow values before and after an assignment statement

• Those based on the flow of control ( which is what we are more concerned about)

Consider a basic block and the constraints due to control flow between basic blocks

(i.e statement B) can be written as IN[B] and OUT[B] and if the dataflow values

are information about a set of constants that may be assigned to a variable and if

statement P is a predecessor of statement B then

IN[B] =
⋃

OUT[P ]

If statement S is a successor of statement B then,

OUT[B] =
⋃

IN[S]

3.2.3 Live Variable Analysis in Detail

Given program X with Control Flow Graph G. We say that a definition d reaches the

point p in G if there is a path in G from point immediately following d to p, such that d is

not “killed” along that path. A definition of a variable b is killed at some node n if there

is a definition of b at the statement that corresponds to n. We can find the points where

the definitions of a variable reaches by considering each variable definition in the program

individually, and map it along all paths from the definition until either the definition is killed

or or the exit node of the program is reached, which states that the program exited.

To understand the reaching definition for every statement in the program, we need to

set up the two constraints for every single statement. Consider a definition,

d : a = b+5
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This statement “generates” a definition of variable a and kills all the other definitions

in the program that define variable a, while leaving the remaining incoming definitions

unaffected.

In Live Variable analysis,

• gend set is the set of variables used in the expression or the statement

• killd set is the set of all variables assigned, that is, they are not live above that point

since their value will be overwritten.

Since definition reaches a program point as long as there exists at least one path along

with the definition reaches, OUT [X] ⊆ IN [Y ] whenever there is a control flow edge from X

to Y.

• IN set for a node is a set of definitions in the program that reach the point immediately

before the node.

IN[Y ] =
⋃

AllofX that are predecessors of Y OUT[Y ]

• OUT set for a node is the set of definitions in the program that reach the point

immediately following the node. The OUT set for a node Y consists of all definitions

that either (1) are generated in Y or, (2) reach the entry to node Z but are not killed

within Y

OUT[Y ] = genY ∪ (IN[Y ]− killY )

In Live Variable analysis, consider a variable x and point p, we try to find whether the

value of x at p could be used in any expression along some path in the control flow graph

starting at p. If so, x is live at p; otherwise, x is dead at p. Consider a basic block B, the
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dataflow equations can directly be written in terms of IN[B] and OUT[B], which represents

the set of variables live at the points immediately before and after block B.

• defB - Set of variables defined ( declared and assigned ) in B prior to any use of that

variable in B.

• useB - Set of variables whose values may be used in B prior to any definition of the

variables.

As a consequence of the definitions, any variables in useB must be considered live at the

entrance to block B, while definitions of variables in defB are dead at the beginning of B.

The equations relating def and use to the unknowns IN and OUT are defined as follows,

IN [EXIT ] = φ

and for all basic blocks B other than EXIT,

IN[B] = useB ∪ (OUT[B]− defB)

OUT[B] =
⋃

S a successor of B IN[S]

3.2.4 Implementation of the Dataflow analysis in Go Doctor

When trying to implement the dataflow analysis on the Go source code, one has to

identify those variables that are being assigned and those variables that are being defined.

Some of the conditions that each variable needs to satisfy if it has to be placed in the right

category is given below,

Defined

1. Defined - This set refers to those variables that are defined in the extracted code such

as, The variable i is defined as an integer with value 5 using a var keyword declaration

in the first line and short assignment operator(:=) in the second line.
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Figure 3.12: Variables Defined

Figure 3.13: Variables Defined and Assigned

2. Assigned - This set refers to those variables that are assigned to in the extracted code,

In the first two lines, variable k and i is defined to 5 and 7 respectively. In the third

line variable k is assigned to the value 22. Hence there is a difference between variables

that are defined and variables that are assigned.

Figure 3.14: Extraction of Partially Assigned Variables

3. Partially Assigned - While dealing with structures with more than one variable defined

in the struct, there are certain things that needs to be considered and this is illustrated

in Figure 3.14

When trying to extract the part of the code inside the red box into a new function

which means, Pt is partially assigned inside function main and partially assigned inside

function foo (which would be the name of the new function into which the code is
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Figure 3.15: Illustration of Partially Assigned Variables after Extraction

extracted into). In this case, the Go Doctor would pass the entire structure Pt as a

parameter to the new function as seen in Figure 3.15. Consider the Figure 3.16,

Figure 3.16: Structure Declaration by Value

the variable p is assigned to the value of the structure Pt, and p can be passed by value

into new function

• When passed as a value, any changes made to any variables of the structure ,

the structure variable has to be returned to the original function and if that’s the

only variable that is being return by the new function, then there should not be

a short assign(:=) operator used when trying to call the function, as the line in

Figure 3.15

Figure 3.17: Function Call for Structure Passed by Value

• When there are more than one variable returned by the function, then we use the

short assign statement
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Sometimes, the definition of the structure variable could be a address location,

Figure 3.18: Structure Declaration by Reference

this means, p is assigned to reference the struct Pt, and p has to be passed by reference

into the new function

• when passed as a reference, any changes made to any variables of the struct, the

struct variable need not be returned into the original function, since the value has

already been modified. Hence there is no need to return the modified variable to

the original calling function

Figure 3.19: Function Call for Structure Passed by reference

• When there are more than one variable returned by the function, then we use

the short assign statement for the new variables that are returned but we never

return the structure, since its value has already been changed.

Used

1. In Figure 3.20, line 2 the variable i which is on right side of = or := operator is said

Figure 3.20: Variables Used

to be used. where as k is defined in line 2.

2. Those variables in index expressions x[i].

3. Those variables in a selector expression such as,x.Time.
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Variables Passed, Returned, and Defined

To compute the variables that need to be passed in as a parameter, returned from the

new function or defined inside the new function, the Go Doctor manipulates the following

variables,

1. The set of variables alive at the first line of the extracted code - Based on the live-in

and live-out sets computed by the live variables analysis, the Go Doctor gets the set of

variables that are live at the entry to the first statement of the extracted code. These

variables are referred to as ALIVE FIRST.

2. Variables initialized at the for statement - While checking for the live-in variables in

the first statement of the extracted code, variables that are defined as a part of the if,

switch, typeswitch, range, for statements and those variables are temporarily declared

and used inside the about block statements. The set of such variables is referred to as

INIT VARIABLES.

3. The set of variables that are alive at the last line of the extracted code - This is possible

only if the variables are being used in the statements after the selected set of statements.

These variables will be referred to as ALIVE LAST.

• Based on the sets of live-in and live-out variables, the tool gets the set of variables

that are live at the exit from the last statement of the extracted code.

• However, if it is a for loop, the tool uses the live-in set of the statement immedi-

ately after the end of the for loop.

4. Variables that are Defined, Assigned and Partially Assigned - Where variables that are

defined or declared in the selected statements are part of the DEFINED and variables

whose values are changed in the set of selected statements but are not declared becomes

a part of the ASSIGNED set.
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5. Variables that are used (but not declared or assigned) in the selected statements - This

is the USED set.

Now, the following variables are passed as parameters to the extracted function,

PARAMETER LIST := (ALIVE FIRST− INIT VARIABLES) ∩ USED.

In order to manipulate those variables that are returned from the extracted function,

RETURN LIST := (ALIVE LAST− PARAMETER LIST) ∩DEFINED.

Finally, the following variables need to be defined inside the extracted function,

TEMP VARIABLE := (ASSIGNED− PARAMETER LIST) ∪ (USED− ALIVE FIRST)

VAR DEFINED := TEMP VARIABLE− INIT VARIABLES

Function Call to Extracted Function

When returning arguments from a new function, if there is any new variable that is de-

fined inside of the extracted function that is used in the original function, then theshortAssignFlag

is set to true, this defines if the function call to the new function must have a ‘:=’ operator or

just a ‘=’ operator when trying to return variables into the calling or the original function.

For example in Figure 3.21 and 3.22.
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Figure 3.21: Example Program for Function Call Replacement

Figure 3.22: Output Program Function Call Replacement
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Chapter 4

Evaluation

4.1 Purpose

The purpose of my research is to prototype Extract Function refactoring adapted to

the unique features of the Go language using dataflow analysis to ensure that behavior of

code is not changed when a contiguous block of code is being extracted from a block of

code inside a particular function. The Extract Function refactoring is implemented for Go

programming language, which combines the efficiency of a statically typed language with the

ease of programming in a dynamically typed language. A control flow graph is built from the

abstract syntax tree (AST) of the program, the control flow graph is intraprocedural (it is

limited to single function of the program) mainly to the function that contains the selected

block of statements that is to be extracted. Dataflow analysis was performed on the control

flow graph, which lists the variables that are live or killed in every statement of the function

based on how and where the variables are defined to be used in the program.

Unit testing was used during the initial development. A testing platform was created

which pulled in close to one million lines of Go language code on which the refactoring was

made to run. The errors were noted, and their cause was also analyzed and decisions were

made accordingly.

4.2 Testing Framework

Refactoring engines automate the application of refactoring, where the programmer

just needs to select the refactoring they need to apply on the particular code they select,

the engine will automatically check the preconditions and apply the transformation across
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the entire program if the preconditions are satisfied. The reason why programmers are

encouraged to use refactoring engines is because its the safest way of transforming a program,

since manual refactoring is erroneous and cumbersome. It is critical that refactoring engines

are reliable since the bug found in the engine might cascade its way to the transformed

program.

There have been many techniques that were proposed that automates testing of refactor-

ing engines, which includes both generation of test inputs and checking the test outputs[50].

One of which is the one where a general framework ASTGen which allows the program-

mers to write imperative generators whose executions produce complex input programs for

refactoring engine. This makes the developer focus on the creative aspects of testing rather

than the mechanical production of test inputs [51]. ASTGen follows the bound-exhaustive

approach[52][53] for exhaustively testing all inputs within the given bound. This approach

covers all corner cases within the given bound. However such techniques have several defi-

ciencies. First, they require substantial manual effort for writing test generators. Second,

the generated test inputs may not represent real refactoring scenarios; the tests are basi-

cally corners cases the IDE nor the programmers care about or hardly use. Third, they do

not provide any estimate of how reliable refactoring engines are for tasks on real software

projects.

Some researches proposes a testing refactoring engines and evaluating properties such as

stability, efficiency, real time reliability can be tested by systematically applying refactoring

on a large number of places in real software projects and keep track of the real time failures

and take the necessary actions [54]. Their approach consists of,

1. Collect a set of real time projects, apply refactoring and collect the scenarios where

the refactoring engine throws exception or produces code that doesnt compile.

2. Once the scenarios are collected, analyse them to check if they are valid errors and if

they are duplicated.
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3. Inspect the failures and minimize them and identify the non-duplicate bugs and report

them.

4.2.1 Go Patient

Go Patient [55] is a tool that is used to test the Go Doctor. The process that is being

used in the Go Patient tool is listed below,

1. Creating a Test Code Workspace - In order to begin with the testing, the Go Patient

creates a separate test code workspace, that has nothing to do with the refactoring tools

code, so that the developer is free to modify, add and delete test inputs in the workspace

without affecting the refactoring code. The tool cloned the top 100 Github repositories

that use Go programming and their dependencies. The Go Patient determines those

packages that are runnable on the system and keeps track of them for testing on the

tool.

2. Overview of the testing process - Once the testing workspace is created with the code

from Github, the Go Patient creates a test planner based on,

• A template that tells the test planner what commands to execute to run a test

(the test number, Go package being tested, and the selected region).

• The selection the Go Patient wants to test. For example, identifiers in the case of

rename refactoring or contiguous set of statements in the case of Extract Function

refactoring.

4.3 Test Code

The data or input programs on which Extract Function refactoring was performed took

into account quite a few boundary conditions. A total of 274 test cases were written to verify

the durability,stability and the error catching ability of the refactoring tool. There were a
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lot of corner cases that had to be taken into account, some of which were very particular to

the Go language syntax.

The data used to test the code was based on open source code in Go language that

was adopted from GitHub. The programs that did not compile were removed then 100 test

cases were created each time, and the result was documented and analyzed. The programs

that failed compilation were ignored and removed from the array of codes that were set for

testing.

4.4 Testing Results

Figure 4.1 and Table 4.1 is the result evaluation from more than 200 test cases.

Figure 4.1: Graphical Report for Tests

Figure 4.1 provides a list of errors that were thrown during the testing phase and their

percentage of occurrence. The reason for not handling return and anonymous statements

are explained in following sections. The second highest set of errors was thrown since the
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S.No Test Case Type Fixed Occurrence

1 PARAMETER FORMATTING YES 1
2 SELECTION BRACKETS YES 10
4 RETURN STATEMENT NO 15
5 SESE ERROR YES 1
6 RETURN NAME TYPE YES 1
7 RETURN PARAMETER OF TYPE ERR YES 1
8 EDITING THE NEW FUNCTION YES 1
9 METHOD RECEIVER/PARAMETER SAME NAME YES 1
10 FILE NOT FOUND/LOADED NO 5

Table 4.1: List of Test Cases

automated testing environment made a selection from the midpoint of a statement. This was

rectified by selecting the entire statement under consideration. Other errors that occurred

were elemental in nature that occurred after unit testing. Unit test cases were written for

them, and these errors were fixed respectively.

4.5 Decision made based on Results

The Go Doctor does not handle return statements, anonymous functions and defer

statements. These decisions were justified by analysing 4 million lines of Go Language code,

where go patient[55] parsed through the statements in the go files to give a number of

statements for return, anonymous, and defer is explained in Figure 4.2. The reason for not

handling these statements are discussed below in detail.

4.5.1 Return Statements

It is evident that most number of errors thrown was due to the presence of the return

statement in the extracted part of code. The return statement cannot be extracted since it

tends to change the behavior of code [63]. Some of the places where return statement was

commonly used us depicted in Figure 4.3. As seen in the bar graph, identifiers and function

calls are the most commonly returned entities and when trying to extract this into a new

function, the behavior of code changes, whenever the new function is called. The second
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Figure 4.2: Proof for Decisions

most commonly returned entity is none, which means the return statement has no value to

be returned. For example, in Figure 4.4, inside the if statement, if the variable i equals 6,

then the program exits as the function returns from the main function, in the case Figure

4.5 after the if statement is extracted into the new function, when the return statement is

executed, then control flow returns from the new function into the calling function which is

the main function.

According to Max Schafer et al. [73], there are certain ways return statements can be

handled,

1. When trying to extract block statements with return statements, such that the last

statement extracted is the return statement. For example, Figure 4.6 the block state-

ment inside the function foo can be extracted provided, the function call is returned

from the calling function as on Figure 4.7.

2. Every statement in the extracted function must have the same predecessors and suc-

cessors as before the extraction.
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Figure 4.3: Return Statement Usage

Figure 4.4: Program with Return Statement

4.5.2 Anonymous Functions

The control flow graph that is built from code, only uses a single function as input

based on which it determines the variables dataflow analysis, hence the go doctor is limited

to normal functions and the tool still explores the possibilities of accommodating more than

one function in its control flow graph. Accordingly, an error is thrown when the extracted

code has an anonymous function statement or is inside an anonymous function.
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Figure 4.5: Program with Extracted Return Statement

Figure 4.6: Program with Return Statement that can be Extracted

4.5.3 Defer Statements

Extracting a defer statement would cause the deferred function call to dispatch when

the extracted function returns, this may change the program behavior. The Defer statement

moves function call to a list. This list of function calls that is saved is executed after the

surrounding function returns. Defer is used to simplify functions that performs clean-up

actions[72]. It is an effective way to deal with situations such as resources that must be

released regardless of which path a function takes to return. Some of the situations where

defer statement is commonly used is while unlocking a mutex or while closing a file[59].

Below is a thorough analysis of what each defer statements in the 4 million lines of code

analyzed meant.
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Figure 4.7: Program with Extracted Return Statement from Figure 4.6

Where Selector Expression refers to an expression followed by a selector for example,

defer fileset.Close(); While deferring identifier refers to deferring a function call for example,

defer teardown(c); Deferring caller expression with selector expression for example, defer

util.Run()() and deferring caller expression with identifier meaning defer teardown(c)();

Deferring Inline function can have various implementations.
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Figure 4.8: Defer Statement Usage
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Chapter 5

Conclusion and Future Works

This thesis focuses on importance of code refactoring, a technique for restructuring

the internal design of the code without changing its external behavior. One of the most

commonly used refactoring is Extract Function refactoring. This explains the basics of

function outlining in compiler which leads to the concept Extract Function refactoring.

Extract Function refactoring decomposes large code fragments into small cohesive func-

tions. This is implemented by two main conditions checks, the precondition and variable

analysis, where the precondition check, selection check, validation check, single entry single

exit criteria, and variable analysis that determines the variables that needs to be passed,

returned and declared inside the new function. This thesis lists out the limitation of the

Figure 5.1: Removing Local Variable Declaration

Extract Function refactoring that was implemented for go language, where handling anony-

mous functions, defer statements and return statements for which proper explanation was

given. In addition to that, this version of Go Doctor the user makes a selection and only

that selection is extracted into a new function. The Go Doctor could parse through the

entire program and find the statements that are just as same as the extracted statements

and replace them with the function call to the new function.

Finally, one other functionality that could be added to the Go Doctor is removing the

local variable declaration in a program. Consider Figure 5.1, here variable b is declared as
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7, but even before it is used anywhere else in the program, it is reassigned to 10, hence the

declared of variable b to 7 was invalid. Removing these invalid local variable declaration can

help reduce memory usage.
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Appendix A

Toggle Variable Refactoring

A ToggleVar refactoring converts between explicitly-typed variable declarations (var n
int = 5) and short assignment statements (n := 5).The user makes a valid statement selection
that he wants convert and this statement should either be a assignment statement, that have
to be converted into a variable declaration statement or vice-verse.

A.1 Precondition Check

The selected statement must be an assignment statement or a variable declaration.
Assignment statements that are a art of another statements such as conditional statements
etc cannot be used.

A.2 Working

When an assignment statement with a short assignment symbol is selected,

• The name of the variables in the Left Hand Side of the assignment statement are saved
to an array

• The type of the variables, or expression on the right hand side of the assignment
statement is calculated and stored into an array

• The replacement strings are created based on the Left Hand Side of the assignment
statement array and right hand side of the assignment statement array that is returned.

• Whenever there is a function on the right hand side of the assignment statement that
returned two values of different type, when toggled, the type of the variables are not
mentioned.

• Whenever there is a function on the right hand side of the assignment statement that
returned two values of same type, when toggled, the type of the variables are mentioned.

• Whenever there are two different expressions on right hand side of the assignment
statement that return two different types, they are split into two assignment statements
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Figure A.1: Multivalued Function

Figure A.2: Multivalued Function returns of the Same Type

Figure A.3: Multiple Expression Declaration
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