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Abstract 

 

 

A guide is presented for embedded system designers that details secure design 

considerations for modern embedded systems. The guide focuses on adapting traditional software 

design practices to include adapted methodologies for defining, evaluating and producing effective 

solutions to security problems. Adapted threat modeling and analysis techniques are provided as a 

framework upon which to further critique, analyze and implement other security techniques as 

solutions to security problems. Simple implementations and analysis are provided for three 

encryption algorithms as examples. The encryption algorithms are demonstrated as only one of 

many solutions available to designers for secure development. 

 

 

  



iii 
 

 

 

 

 

 

Acknowledgements 

 

 

To my wife and family: 

 

I want to thank each of you for the abundant love and encouragement. 

I could not have completed my degree without you seeing me through. 

Thank you! 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

Table of Contents 

 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................ vii 

List of Abbreviations ................................................................................................................... viii 

Chapter 1 ......................................................................................................................................... 9 

Introduction ................................................................................................................................. 9 

Thesis Contributions ................................................................................................................. 12 

Profile of a Typical Embedded System ..................................................................................... 13 

Hardware Description ............................................................................................................ 14 

Software/Firmware Description ............................................................................................ 15 

Chapter 2 ....................................................................................................................................... 16 

Notable Cyber Attacks Involving Embedded Systems ............................................................. 16 

Stuxnet ................................................................................................................................... 17 

German Steel Mill ................................................................................................................. 18 

Chapter 3 ....................................................................................................................................... 20 

Pillars of a Secure Embedded System ....................................................................................... 20 

1. Threat Analysis and Modeling ....................................................................................... 20 

2. Secure Development Lifecycle: ..................................................................................... 31 

3. Education ........................................................................................................................ 35 

Chapter 4 ....................................................................................................................................... 36 

Encryption for the embedded system ........................................................................................ 36 

Discussion of Algorithm Types ............................................................................................. 37 

Encryption Cost and Performance Factors ............................................................................ 39 

Data Integrity and Encryption ............................................................................................... 40 

Research Platform ..................................................................................................................... 40 

Analysis of the Tiny Encryption Algorithm (TEA) .................................................................. 41 



v 
 

Description............................................................................................................................. 41 

Feistel Structure ..................................................................................................................... 41 

Encryption ............................................................................................................................. 42 

Decryption ............................................................................................................................. 44 

Performance and Cost Metrics .............................................................................................. 45 

Security Analysis ................................................................................................................... 46 

Analysis of the Advanced Encryption Standard (AES) Algorithm........................................... 47 

Description............................................................................................................................. 47 

Performance and Cost Metrics .............................................................................................. 54 

Analysis of the RSA Encryption Algorithm ............................................................................. 56 

Description............................................................................................................................. 56 

Performance Metrics .............................................................................................................. 59 

Comparison of TEA, RSA, and AES Encryption Algorithms .................................................. 61 

Security .................................................................................................................................. 61 

Encryption and Decryption Time .......................................................................................... 62 

Power Consumption .............................................................................................................. 65 

Memory Requirements .......................................................................................................... 66 

Conclusions ............................................................................................................................... 66 

Chapter 5 ....................................................................................................................................... 68 

Application Scenario for Embedded Encryption Algorithms ................................................... 68 

Design .................................................................................................................................... 68 

Test ........................................................................................................................................ 68 

Performance ........................................................................................................................... 69 

Chapter 6 ....................................................................................................................................... 71 

Final Conclusions ...................................................................................................................... 71 

References ..................................................................................................................................... 73 

 

 

 

 

 

 



vi 
 

 

List of Figures 

 

 

Figure 1. Threat Modeling Process  ............................................................................................ 22 

Figure 2. Secure Development Lifecycle  ................................................................................... 31 

Figure 3. TEA Encryption Routine  ............................................................................................ 43 

Figure 4. TEA Encryption Data Flow for Single Round  ........................................................... 44 

Figure 5. TEA Decryption Routine  ............................................................................................ 45 

Figure 6. AES State Array .......................................................................................................... 48 

Figure 7. AES High Level Operation  ........................................................................................ 54 

Figure 8. Comparison of Encryption Times  .............................................................................. 63 

Figure 9. Comparison of Decryption Times  .............................................................................. 63 

Figure 10. Encryption Time vs. Data Block Size  ...................................................................... 64 

Figure 11. Power vs. Energy Comparison  ................................................................................. 65 

Figure 12. Application scenario setup  ....................................................................................... 69 

 

 

  



vii 
 

 

 

 

 

List of Tables 

 

 

Table 1. TEA Performance and Cost Metrics ............................................................................. 46 

Table 2 Measure of TEA Security vs. Key Size ......................................................................... 47 

Table 3. AES Performance and Cost Metrics  ............................................................................ 55 

Table 4. RSA Cryptosystem Integer Summary........................................................................... 58 

Table 5. RSA Performance and Cost Metrics ............................................................................. 60 

Table 6. Memory Requirements in bytes for TEA, AES, and RSA algorithms ......................... 66 

Table 7. Transfer Rates for Application Scenario ...................................................................... 70 

 

  



viii 
 

 

 

 

List of Abbreviations 

 

 

AES  Advanced Encryption Standard 

BSI  Federal Office for Information Security, Germany 

CAN  Controller Area Network 

CPU  Central Processing Unit 

DOS  Denial of Service 

GPIO  General Purpose Input and Output 

I/O  Input and Output 

I2C  Inter-Integrated Circuit 

IOT  Internet of Things 

IP  Intellectual Property 

JTAG  Joint Test Action Group Interface 

PLC  Programmable Logic Controller 

RSA  Ron Rivest, Adi Shamirand, Leonard Adleman  

SDL  Secure Development Lifecycle 

SPI  Serial Peripheral Interface 

TEA  Tiny Encryption Algorithm 

UART  Universal Asynchronous Receiver/Transmitter 

 

 

  

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman


 

 
 

 

 

 

 

Chapter 1 

 

Introduction 

 

Embedded systems are an integral part of our society today. Every aspect of daily life is 

somehow dependent on an embedded system. Utilities from power and water to gas and internet 

all rely heavily on a vast network of sensors and specialized embedded systems to keep our world 

running. No matter how simple or complex these systems may be, they are links in an 

interconnected web holding up our way of life. A problem with any single link can wreak havoc. 

No matter what the system, be it a large server running thousands of calculations per minute 

promoting stock trades, to a simple servo circuit designed to shut a valve or close a relay, 

unexpected behavior can cause massive problems and be used by an attacker to induce harm. In 

today’s world not everyone follows a moral code of “do unto others as you would have them do 

unto you.” The attackers, often called hackers, are people who work each day not for the greater 

good, but seek to induce harm on others, our way of life and the infrastructure. For this reason, the 

security of embedded systems is vitally important to protect our daily lives. Dependence on these 

systems, has grown beyond simple convenience, and has reached a level of required sustainability. 

To put it another way, failure of these systems would negatively affect daily operation of our 

infrastructure and lives.  The security of embedded systems is often lumped in with computer 

glitches, internet viruses and email scams. While at a high level, many of the same security 

schemes and models apply, at a low level this way of thinking leaves many areas of the embedded 
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system vulnerable and their security needs misunderstood. As the widespread use of embedded 

systems grows, so does their connection to the Internet of Things (IoT). The Internet of Things is 

the network of software and hardware devices collecting and sharing data with each other by means 

of a network infrastructure. The classification of embedded systems as IoT devices often leads to 

traditional software security practices being applied as solutions for embedded systems. This 

practice ignores many of the differences in application and function of embedded systems and 

further opens them to attack. This thesis will present necessary adaptations to traditional software 

practices that enhance the success of security solutions for embedded systems. 

The responsibility to secure embedded systems falls to each and every individual involved 

in the life cycle of an embedded system. This life cycle begins in the research, feasibility, and 

conceptualization phases and carries through to prototyping and manufacturing, continuing until 

the product has reached end of life. The long life of an embedded system makes security very 

difficult, and each phase in a product’s life is vulnerable to attack. Unlike most software, embedded 

systems receive updates less often, enhancing the need to ensure strong security from the start. 

Ensuring the security of an embedded system to protect our nation’s infrastructure and 

personal properties from attack is paramount for engineers developing today. The security of our 

infrastructures and the embedded systems that control their vital operation is not taken seriously 

enough by the market today. The reliance on these systems for daily life, has created the need for 

new security solutions to be developed to ensure these types of systems are robust against attacks. 

There are many avenues to securing embedded systems, including physical security, security 

training through education, encryption and real-time monitoring, to name a few. It is commonly 

said that the best security is the security that one will use or implement. Unfortunately, encryption 

is often the elephant in the room and carries with it a negative connotation. This connotation is 
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evident no matter what stage of planning, design or execution.  Encryption is one of the most easily 

achieved, and secure means to protect an embedded system. In the eyes of both managers and 

engineers alike, it often brings along false synonyms and stereotypes, such as encryption requires 

more time, money, head-ache and complexity. These costs often drive designers to rule out 

encryption before evaluating its benefits.  

One could easily get lost in long mathematical formulas, time complexity calculations, and 

best and worst case analyses, but these topics are largely untouched by practicing engineers 

developing encryption modules for embedded systems. Of equal importance, but less complexity, 

is the application of secure design methodologies, paired with application of simple encryption 

algorithms or readily available encryption modules developed in open source or available for 

purchase as intellectual property (IP).  

The overarching goal of this thesis is to provide engineers with logical, real-world 

application examples, paired with simple performance metrics to facilitate the evaluation of 

encryption algorithms for possible adoption in embedded designs. It encourages designing all 

embedded systems, connected to the IoT or not, with basic and robust security to prevent against 

cyber-attacks. The examples and metrics demonstrated in this thesis help engineers evaluate the 

many tradeoffs associated with implementing embedded security models as part of project 

specification, design and implementation. 
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Thesis Contributions 

 

This thesis furthers the understanding and application of encryption algorithms for the design 

of embedded systems. The contributions made by this thesis are as follows: 

1. Discussion and analysis of performance and design tradeoffs associated with implementing 

encryption in the design of embedded systems. 

2. Provide embedded designers with analytical characterizations of simple encryption algorithms 

as implemented for direct application in modern 32-bit microcontrollers, developed using the 

C programming language. 

3. Discuss and remove barriers and road blocks embedded engineers face when selecting, 

implementing and researching encryption algorithms for use in memory constrained and/or 

low power devices. Discussions include, but are not limited to removing initial assessment 

doubt as to the difficulty of implementing algorithms in low cost systems and a discussion on 

performance tradeoffs for embedded systems running encryption in real time. Performance 

tradeoffs regarding memory requirements vs level of security and speed vs level of security 

are discussed. 

4. Provide a comprehensive analysis of secure design practices and methodologies. In addition 

based on this analysis, provide practical applications and adjustments to secure software design 

philosophies for the embedded system.   
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Profile of a Typical Embedded System 

 

An embedded system is any device or collection of devices that is controlled by low-level 

software or firmware to accomplish a finite set of tasks. The term “embed” finds its roots in the 

Latin prefix im- meaning to put in or into. The term embedded therefore describes a computer 

system that is dedicated to performing specific functions within the context of a larger system. It 

is a single portion of a complete electrical or mechanical device. For clarity of discussion and to 

provide examples, the most common embedded system consists of three components: 

1. Microcontroller: This device is brain of the system, and generally controls all functions 

of the system by communicating and directing operation of the system as a whole. 

2. Input and output (I/O) devices: Input devices such as sensors, wireless radios and inter-

circuit buses bring in data for the microcontroller analyze. The microcontroller 

processes this information making logic decisions on the available data in order to 

direct operations of output devices. Output devices such GPIOs enable the 

microcontroller to control peripherals and output data from the system in the form of a 

physical response, such as switching a relay or digital response in the form of data 

distributed to another system for the purpose of further processing or connecting the 

embedded device to a larger system. 

3. Storage: At minimum, an embedded system must have some type of memory to store 

program code. Most embedded systems also have data storage. 

The Internet of Things, a conglomerate or network of embedded systems with a method of 

connecting to each other such as Wi-Fi, hardwire network, Bluetooth etc. is the most active 

development branch in this field.  Of the devices in the IoT, the “embedded sensor” is most 
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common and often attacked point.  The embedded sensor is the backbone of any larger system. 

The sensor is the point at which raw data enters the system. This raw data is what drives the 

software controlling the system. An embedded sensor is often in the control path for actuators, 

motors, alarms etc. and as such has great impact on the function of the system. The sensors are 

often exposed to the environment and are some of the most vulnerable parts of an embedded system 

to attack, due to lack of both physical and software security. Ensuring the security of an embedded 

system both IoT connected and not, must follow a fundamental set of design considerations. These 

design considerations are discussed later in the thesis. 

 

Hardware Description 

 

 At the heart of a typical embedded system, as mentioned above is a microcontroller. The 

microcontroller acts as the brain of system. A microcontroller typically comprises a generic 8-

32bit CPU, program storage, data storage, general purpose input and output (GPIO) and 

communications functions (I2C, SPI, UART, IP etc.). Each component of the hardware is 

susceptible to attack and security measures must be taken to ensure that each is protected. The 

microcontroller gathers all the data from the environment though sensors, user input, network 

connections etc. The microcontroller then processes all this information using its firmware written 

by the designer. Once processed, the microcontroller performs its tasks based on the data it 

collected. This process is repeated, often in cycles or via interrupts, billions of times over the life 

of a typical embedded system. The highly repeatable actions and design of embedded systems 

often makes them prime targets for attack precisely because their actions are predictable.  
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Software/Firmware Description 

 

The software in an embedded system is most correctly categorized as firmware. Firmware 

is the set of read only instructions residing in flash memory of an embedded CPU. These 

instructions are rarely changed during the life cycle of a system. Firmware often has a simple 

structure due to resource constraints. The purpose of firmware is to parse and interpret the data 

entering the embedded system, transform it into a usable form, and make decisions based on a pre-

defined set of rules or algorithms. Firmware must also output data, through its peripherals, to the 

rest of the system in a meaningful way, so as to further the operation of the system as a whole. Due 

to resource constraints and specific application requirements, many designers often focus on 

meeting design requirements and neglect security. This leaves firmware, sensitive data and the 

collective embedded system vulnerable to attacks by hackers. This thesis presents software design 

practices and methodologies that can protect embedded systems from such attacks by moving 

security design earlier into the development cycle.  
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Chapter 2 

 

 

Notable Cyber Attacks Involving Embedded Systems 

 

Cyber security breaches are reported in just about every newspaper and magazine today. 

The majority of recent cyber-attacks revolve around credit cards and email. These types of attacks 

are considered data breaches or software breaches. A data breach is the intentional or accidental 

dissemination of private information to untrusted entities. In these types of attacks, the attacker 

seeks only to damage a person’s dignity or finances, rather than to inflict physical harm on a person 

or organization. Data breaches are consistent with the public perception of a hacker. The over 

generalization of a man and his computer stealing credit cards is what most people associate with 

when they hear of social security or credit card numbers being leaked. Attacks and security 

breaches of embedded systems are more likely to cause real physical harm to people and 

infrastructure. One could draw the analogy that credit cards are attacked by hackers and embedded 

systems are attacked by terrorists. The public’s general view of a terrorist is one who attacks in 

order to cause as much harm as possible. These are the types of consequences exploitation of 

embedded systems can have. Researchers and governments have been warning about the security 

of our nation’s infrastructure for years. Many people believe creating strong passwords and 

keeping your credit card number private are the keys to a secure world. Holding this type of 

narrowly defined notion, regarding what information needs to be protected, restricts the scope of 

threats applicable to embedded systems. To understand embedded security, one must look beyond 
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securing only information that can be used for monetary gain, as is the case for most forms of 

identity and intellectual property theft.  

The nation’s cyber security policy is the first step to changing the understanding of the 

nation’s need for new security measures. In Executive Order 13636, President Barack Obama lays 

out new directions for cybersecurity and one of the top priorities is “Protecting the country's critical 

infrastructure — our most important information systems — from cyber threats”.[1] While this is 

one of the top priorities, it receives little attention from engineers and developers because it has 

been seldom demonstrated that compromising these systems pose a threat to our lives or generate 

monetary gain for attackers. There have been only two widely confirmed instances of physical 

damage caused by embedded systems, Stuxnet in June 2010 and the unnamed German steel mill 

attack. The attacks are unique because they relied heavily on the exploiting embedded systems. 

The attacks caused embedded systems to perform as designed, but in a manner that produced 

malicious results. 

 

Stuxnet 

 

Stuxnet was the first verified case of a computer worm used to attack an embedded system 

[2]. A computer worm is a specially designed virus that is not reliant on a secondary means of 

transportation to its host; worms replicate themselves. The Stuxnet worm is a piece of software 

designed to attack a specific brand and model of programmable logic controller (PLC). PLCs are 

widely used in manufacturing to control many types of equipment. The PLC is one of the most 

basic embedded systems, operating on a basic “see-this, do-that” type of algorithm. They are often 

connected to a network, making them targets of attack from anywhere in the world. PLCs are 

commonly found on assembly lines and often are used to perform repetitive tasks or high speed 
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tasks. A typical PLC consists of analog or digital inputs, outputs, usually relays, and a small simple 

software control program. At its most basic level the PLC takes input, processes it, and then 

controls the output accordingly. Little or no security exists in most PLCs today. The Stuxnet worm 

affected a common Siemens PLC. The target was the Iranian Nuclear Program. The Stuxnet 

software is maliciously installed into the flash memory of a specific Siemens PLC via a network. 

The worm changes the RPM of connected motors and hides the change from the user by displaying 

false motor speeds to the system. These small changes accelerated the failure rate of centrifuges 

in the Natanz nuclear facility in Iran. The Stuxnet worm infected an estimated 58% of computers 

in Iran. While the Stuxnet attack merely slowed the productivity of the centrifuges, one can easily 

extend the possibilities for the worm to cause serious damage by turning off temperature sensors 

or shutting valves unexpectedly. The Stuxnet worm is a prime example of the vulnerability of 

embedded systems and the seriousness of the effects an exploit invoked upon them can be. 

 

German Steel Mill 

 

The incident at an unnamed German steel mill has been heavily redacted by the German 

government, but some information does exist in reports by the German Federal Office for 

Information Security (BSI). In a report released by the BSI, a story familiar to Stuxnet is confirmed 

by the German government [3]. The report explains that an unknown hacker was able to penetrate 

the mill’s business network infrastructure through an email attack and then gain access to the 

computer network controlling production equipment. With access to this system the attacker was 

able to control a blast furnace’s values, rendering the system “unable to shut down” [BSI].The 

result was significant damage to the blast furnace. While there are few details about this attack, 

the message is clear. First, the Internet of Things has connected vulnerable embedded systems to 
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the outside world more readily exposing them to attack. Second, attacks on embedded systems 

strictly for the purpose of damaging infrastructure are possible and must be viewed as valid threats. 

The German mill attack demonstrates that unsecure and vulnerable embedded systems in every 

branch of infrastructure, including both public and private companies can be the target of attacks 

even when monetary gains cannot be considered a motive. 
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Chapter 3 

 

Pillars of a Secure Embedded System 

 

A common safety guideline, known as the “three point rule”, requires that when a person is 

climbing, a ladder for example, three points of contact should always be kept while moving.   To 

ensure the security of an embedded system, designers must likewise study three points to ensure 

that an embedded system can be effectively secured. The three pillars are (1) Modeling and 

Analysis, (2) Secure Development Lifecycle and (3) Education. The three pillars presented below 

are the foundation of any embedded projected intended to produce a secure product.  

 

1. Threat Analysis and Modeling 

 

In order to ensure security for embedded systems over the wide range of potential attacks 

from the highly sophisticated to the simple, an entire ecosystem must be protected. An 

embedded system undergoes many stages throughout its development cycle including design, 

manufacturing, end user deployment and firmware upgrading. In order to ensure a secure 

system, care must be taken to secure each stage. Any unsecure point in the ecosystem can 

introduce a security risk, not only to the end user but to the developer. Threat Analysis is the 

first step toward any attempt to secure a system. The term “threat analysis” refers to the 

organized, systematic process of examining an embedded systems’ points of target and sources 
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from which it will be attacked. Before any design decisions are made regarding methods of 

protection from attack, such as the use of encryption for data protection and integrity, a 

thorough threat analysis must be performed. The chart in Figure 1 demonstrates a proposed 

iterative threat modeling flow for an embedded system. The system design must first be 

reviewed to determine points of weakness and attack, followed by a detailed review of security 

requirements and objectives. Then modeling must occur for each security requirement, taking 

into account the three points of view of an attack scenario. Both the modeling of specific 

security requirements and system objects are then iteratively evaluated until a high level of 

certainty is reached that the model developed provides adequate security against the identified 

threats and no new vulnerabilities have been introduced. 
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Figure 1. Threat Modeling Process 
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Attacker-Centric Threat Modeling 

 

Threat modeling that is attacker-centric takes on the point of view of the attacker. This type 

of modeling is the most abstract of the three types of threat modeling. Why? This is because 

the best way to sum up attacker-centric threat modeling is to say: “Get inside the head of the 

attacker!” The attacker is studied to produce a profile that is used to understand the attacker’s 

motives and capabilities. The attacker centric threat model is heavily reliant on attack tree 

diagrams, projected thinking, and profiling, which often lead to some ambiguity, but ultimately 

provide guidance towards appropriate attacker mitigation methods. 

 

 

Asset-Centric Threat Modeling 

 

Asset-Centric modeling can be quite limited in the embedded world; nonetheless it is still 

very important. Assets in an embedded system can be defined as the information that passes 

through the system from component to component, or entering and leaving the system via the 

Internet of Things. Bus communications, flash memory contents, etc. are all assets modeled by 

the asset-centric modeling method. To model for asset-centric threats, the developer starts with 

the asset itself. Assets in embedded systems can also include the peripherals connected to the 

embedded system. Devices such as sensors, actuators, motors, relays, etc. are all assets to the 

embedded system because they bring in, or distribute out information valuable to the operation 

of the entire system. These devices are often used by both the recipients of an attack and the 

attacker to characterize the effectives or response of an attack. Assets often connote a sense of 
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security, because designers view these as internal to the system and therefore not exposed to 

attack. The assets in traditional software design are trusted as reliable data sources and often 

the context of the data received from these assets is not analyzed for potential compromises.  

Asset-centric modeling should focus on modeling devices internal to the embedded system that 

send or receive data, whose integrity cannot be directly confirmed. This is achieved by creating 

contextual or situationally secure states of operation for a system. Secure software design must 

analyze all available data to ensure these systems are not comprised and evaluate the system 

as whole to decide whether trusted data can truly be trusted. Excessive resets, non-default 

configurations, monitored values above or below thresholds limits, excessive memory reads 

and writes, and other device statistics can be analyzed and monitored to gather situational 

awareness about the state of an embedded system. The asset-centric modeling should iterate 

on this data to generate a figure of certainty describing the level of trust in data. When this 

figure is determined to be outside of an acceptable range, data cannot be trusted even if no 

attack is detected. A simple example of this type of situational awareness is found in many 

modern desktop computers that have a mechanism to detect when the case is open and 

subsequently do not allow the user to boot the computer. The biggest security weakness of 

trusted assets is that compromised assets often act in a manner consistent with non-

compromised assets. This is used by attackers to introduce nefarious data, code, or 

functionality into a system that the system views as valid. Assets of the system can easily be 

turned into assets for an attacker. If they are not included in threat models, and normal system 

operation is not characterized to determine acceptable variances, these assets become security 

weaknesses. 
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Attack Tree Diagrams 

 

Attack Trees are a methodical graphical way to lay out potential threats against the embedded 

system. Each attack tree represents a unique threat to the system. The root node of each tree is 

a goal, either of the attacker or the developer, and leaf nodes are ways or paths to be followed 

in order to achieve that goal. Some attack tree models support additional levels of complexity 

by allowing each leaf to hold a value representing the likelihood that that event will occur. This 

ranking system can be used to filter a very large attack tree to show only the highest priority 

attacks. The nodes of an attack tree can be connected as either AND scenarios or OR scenarios. 

In the AND scenario the goal root node is achieved if all leaf nodes are traversed. Likewise in 

the OR scenario only a subset of the leave nodes must be traversed to achieve the root node’s 

goal. 

 

STRIDE Model adapted for Embedded Systems 

 

The SRIDE model was developed by Microsoft as a model for application security. This 

model is highly accepted in the software realm as a tool for guiding secure software design. It 

can easily be extended to embedded systems. This thesis extends the scope of the STRIDE 

model to included embedded systems. STRIDE is an acronym that describes the six threats to 

a system. 

1. Spoofing 

2. Tampering 

3. Repudiation 

4. Information Disclosure 

5. Denial of Service Attacks 

6. Elevation of privilege 
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Purpose of STRIDE 

 

The STRIDE model should be used as a guide for discussions in developing threat 

trees. The model categorizes the types of attacks developers need to protect against. By 

progressing through the STRIDE model, each type of threat can be discussed and organized 

into the six categories for later dissection and implementation. The model gives the developers 

a sense of scale to easily determine how much time it will take to develop the needed security 

measures for the embedded system. The following sections describe the six threats as seen 

from the point of view of an embedded system. 

 

Spoofing 

 

In layman’s terms, spoofing is the act of one embedded system or device claiming to 

be, or acting like, an entity that it is not. Spoofing varies widely in the Internet of Things, from 

e-mail spoofing that a person gets in their inbox every day to IP address spoofing. Spoofing in 

the context of embedded systems can take one of two forms. First, hardware spoofing. Flash 

memory chips can be removed and replaced with alternative chips with new application code. 

In addition, sensors and other I/O peripherals can be emulated and or replaced with attacker 

modified models. The second form is protocol spoofing. Protocol spoofing is the introduction 

of an outside source or receiver onto a bus that listens to bus traffic (a bus scanner) or transmits 

on the bus. Embedded systems are especially susceptible to protocol spoofing because they use 

bit-level protocols with litte or no protection. Protocols like I2C, SPI, CAN etc. are highly 

susceptible to eavesdropping and the bus can be hijacked at any time and spoofed data injected 

on the bus. 
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Tampering 

 

Embedded systems are also highly susceptible to tampering. Tampering is the act of an 

attacker damaging or disabling a portion of an embedded system. This often means physically 

tampering with sensors or other peripherals in order to inject real, but unexpected and potentially 

malicious, data into the embedded system. Attackers can also attack hardware subsystems such as 

fans, temperature sensors, power supplies etc. in order to facilitate the needed criteria for their 

attack. This criteria can in the form of a reset, over/under temperature situation, power failure, 

system lockup, etc. that puts the system into a state where an attack is not protected against. The 

attacker can modify sensor readings, voltage supplies and other seemingly unconnected entities in 

order to force the system into an undesired state, in which an attack is easier to assert. This can 

lead to or cause damage to a system, while the attacker was never required to modify code, break 

passwords, or steal sensitive data. On the other hand, tampering may not always result in damage 

to a system. Simply tampering in order to disable a system temporarily can allow an attacker the 

needed window of time to launch a more complex attack without triggering alarms or suspicion. 

  

Repudiation 

 

 Repudiation, by definition, is the denial of the truth or validity of something. In embedded 

systems, repudiation is the most difficult of the six STRIDE attacks to prepare for. In traditional 

software applications, when a violation occurs or inter-module communication fails, a log file is 

usually created to store not only user keystrokes, but commands, timestamps etc. In the embedded 

world, developers are usually bound by speed and/or resource constraints and these advanced 
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logging methods are often out of the question. This allows the user to perform almost any 

command or tampering and then reset the device to clear the evidence. In the embedded world, 

this threat is generally handled by trying to limit effects once invalid actions are detected. While 

logging of the current state may not be realizable, due to constraints, well designed shut down 

procedures, lock out states and error handling can be used to ensure security when the possibility 

of attack is detected. 

 

Information Disclosure 

 

Information disclosure comes in four forms in the embedded system. First, disclosure by 

protocol. A protocol, by definition, systematically structures data for easy transport and display. 

The orderly nature of protocols also makes them easily deciphered by attackers. Using unencrypted 

protocols is the most common method for an attacker to find information about the system. 

Developers should remember that the same data sheet used to develop the system is also available 

to the attacker. Bitmasks, binary strings, and bit patterns become decidedly less arbitrary and 

unique when these tools are also available to the attacker. Second, disclosure by physical copying. 

Programs and flash data can be easily read by an attacker by removing flash memory or connecting 

via developer interfaces, such as JTAG, allowing an attacker direct access to the internal elements 

of a system. Any information stored in flash memory should be assumed to be readable by an 

attacker; therefore measures must be taken to ensure that sensitive data is stored using encrypted 

flash or software encryption. Third, disclosure via the IoT. Embedded systems with an internet 

connection are inherently more vulnerable to information disclosure than non-connected systems. 

Developers of these systems must also follow secure design practices for standard internet 

protocols. Lastly, disclosure by source code. The source code is the most valuable piece of 
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information available to the attacker. With the source code, the attacker can completely control 

every aspect of the embedded system.  

 

Denial of Service 

 

Denial of Service (DOS) attacks render embedded systems unusable, or very usable, 

depending on how one looks at it. The purpose of a denial of service attack is to render a system 

unable to respond. Herein lies the dual nature of DOS attacks. For example, imagine a large 

building with a card reader at every door. A single compromised card reader, might cause someone 

to use another door, while on the other hand, when every card reader is compromised, the entire 

building becomes locked down. By this, ‘very usable’ becomes clear, the attacker has now severely 

restricted the movement of personnel in or out of the building, potentially as a pretext to a larger 

or more complex attack scheme. Embedded systems have a unique role in the DOS attack realm. 

If an embedded system is connected to the IOT, it is both vulnerable to DOS attacks and can be 

used to generate DOS attacks. When an embedded system is subject to a DOS attack, it can shut 

down unexpectedly or cease to respond to user commands. This can result in unintended operation 

or the inability to stop operation in an emergency. On the other hand, a compromised embedded 

system can be used as part of a larger attack to launch a DOS attack on another system (as in the 

card reader example). Both of these are situations must be planned for by an embedded systems 

developer. The developer must understand what affect a compromised device has on the larger 

collective network. Questions such as:  “If a single device fails does it bring down an entire 

system?” or “Does a compromised asset expose other areas to an attacker?” can help guide the 

design.    
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Escalation of Privilege 

 

     Escalation of Privilege for embedded systems can be viewed in one of two ways. First, at the 

lowest level, operating systems, software locks, interrupts and many bus protocols rely on priority 

levels to control the flow and response to information. The priority levels can be manipulated, to 

perform many unintended tasks. For, example elevating the priority of an interrupt can place a 

system into a state of continuous interrupt, starting a self-inflicted DOS. Likewise lowering a 

priority could hide or mask an important interrupt from being handled, such as a warning from a 

temperature sensor. The second way to view escalation of privilege is from the viewpoint of an 

already compromised system. Attackers often target simple systems first, then rely upon other 

devices in the network implicitly trusting the data distributed by the previously uncompromised 

device. By this method, the attacker gains credibility in the ecosystem. Malicious actions then 

invoked by an attacker, may be overlooked by other devices or systems, because they are cloaked 

under the guise of a trusted device. 

 

Application of Encryption to Threats 

 

Each of the threats discussed above can be partially mitigated by designing encryption into 

embedded systems. The focus of this thesis is encryption as tool, but not directly focused toward 

any one threat or threat solution. Encryption is widely applicable and therefore is a first step to 

protecting against the wide range of attacks out there. While often used as a catch all or first line 

of defense, it should not be considered a full security solution by itself and must be paired with 

hardware security solutions, secure development and good education as discussed further in the 

next sections. 
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2. Secure Development Lifecycle: 

A secure development lifecycle covers the entire life time of an embedded system from 

initial planning stages to end of life. There are five phases in a secure development lifecycle. 

They are (1) Training (2) Design (3) Development (4) Production (5) De-commission. Figure 

2 demonstrates a traditional waterfall style software development cycle consisting of design, 

development and production stages. To this traditional path, security training is added, that 

focuses on phase specific secure practices that designers must be educated on. This training is 

project specific, and must be continually refined as new threats emerge. This thesis should be 

viewed as a resource for designers in the design and development stages. It can be considered 

a tool in the training and education phase used to gain understanding and guide research and 

development cycles that incorporate encryption as a security tool. The secure development 

lifecycle also adds a secure upgrade and de-commission phase often left out of non-secure 

project life cycles. 

 

Figure 2. Secure Development Lifecycle 
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Training 

 

 Training is by far the most important element of a secure development lifecycle (SDL). 

The development lifecycle of any project exposes the system to many hands un-trained in security. 

Therefore, it is in the best interest of parties requiring security in a product to ensure the entire 

lifecycle is protected. Each phase of the lifecycle requires specific training for personnel involved 

in that phase. A secure development lifecycle, by default, requires that every stage, every person, 

every decision be made with security in mind. 

 

Design 

 

 The design stage is generally understood as the secure part of the development lifecycle. 

This fact hinges on one very important criteria, which is secure intellectual property. During the 

design phase of any product, there can be countless diagrams, flow charts, code examples, emails, 

and other documents generated by the design team. Every one of these documents must be 

considered intellectual property and training must be provided to each team member on how to 

ensure these documents are kept private. Care must be taken to ensure that traditional design 

methods do not make information accessible to attackers. 
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Development 

 

 The development stage is often where security breaches can be traced to. The development 

stage is all about source code and coding decisions. To put it plain and simple, source code must 

be kept in a secure location. Source code is the golden ticket to any hacker. It gives an attacker a 

perfect map of the system they are attacking, both exposing security techniques, and security holes. 

This security is generally ensured by using source and version control on a secure server properly 

managed by IT personnel. 

Production 

 

 To ensure security, the production stage must be completely separated from the 

development stage. All intellectual property (source code, etc.) must be secured in this stage. 

Encrypted bit streams should be used to ensure secure programming. The production stage should 

never have access to raw source code. Encryption at this stage allows the product to be handled in 

a much less secure factory environment, especially if this stage is outsourced. 

Secure Upgrade and De-commission 

 

 A secure upgrade progress starts in the design stage. After the device leaves the 

manufacturer, it is open for attack by all. A secure upgrade process requires secure key storage 

and the use of encrypted bit files. A secure upgrade process should never expose the original source 

code or any part of the system to attack. It is important to ensure that regression testing has been 

performed to ensure that old firmware does not introduce new security flaws into a product. 
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 Secure de-commission is the hardest aspect of the life cycle to control. It is more often than 

not unreasonable to assume a device will be returned and properly disposed of at the end of its life. 

For practical purposes, efforts should focus on preventing misuse of a product once it has reached 

end of life. This includes continued protection of intellectual property, proper de-commissioning 

of production equipment and properly designed operational expectations of the devices in failure 

and compromised modes of operation. 

 

Application 

 

The type of analysis and self-education this thesis provides directly reinforces the need for 

enhanced training before and during the secure development lifecycle. For a secure design to be 

effective, designers must research and analyze the performance and security of each element of an 

embedded system. This thesis provides, at minimum, a scope of understanding upon which is 

needed to effectively modify existing design practices of a development lifecycle to include secure 

elements.  The secure element discussed here is encryption but the frame work allow for the 

inclusion of other security tools such a secure hardware devices into an embedded design. 
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3. Education 

Leonardo da Vinici one said “learning never exhausts the mind”. The reason the third pillar 

of security is education is because security is an ever-changing challenge. Threats to embedded 

systems are constantly evolving. As hardware changes, new threats are introduced and old 

threats are removed. Any plan for security that does not involve a continued and iterative path 

of education is a weak plan for security. The education here applies to not only designers, but 

anyone involved in the product lifecycle. Education is by far the most valuable tool a system 

can have as a defense. Place an embedded system in the hands of an educated designer, 

educated user, and educated environment and security becomes a tool, not a hindrance.  
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Chapter 4 

 

 

Encryption for the embedded system 

 

Encryption in embedded systems serves three primary purposes. First and foremost it 

protects intellectual property. Secondly, it protects sensitive data. Lastly, it protects against un-

authorized use.  The six threats to embedded systems, spoofing, tampering, repudiation, 

information disclosure, denial of service and elevation of privilege, are specific examples of 

attacks exploiting one or more of the purposes of encryption. Encryption is only one tool for 

combating these attacks, but unique in the fact that it is the only tool that can be used to combat 

all threats. The cross attack effectiveness of encryption allows for the ideas and analyses presented 

in this thesis not only to be applied to a wide range of threats but also to create a framework for 

studying other tools and characterizing their effectiveness against an attack. The first two purposes 

of encryption are quite familiar. Intellectual property is often highly protected. Take, for example, 

the Coke recipe stored in a highly secure vault in Atlanta, GA. The intellectual property of an 

embedded system is most often its collective source code. Sensitive data is often data stored on 

the system, such as encryption keys or usernames and passwords. These first two purposes of 

encryption have obvious gains and clear consequences when not implemented. These 

consequences are that competitors can steal intellectual property and reproduce products, and 

thieves can steal sensitive data. Encryption as a form of anti-tampering or system protection takes 
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on a less clear role, with often undefined consequences. Designers focus heavily on IP protection 

and data security without looking at how a device could be exploited. Encryption for this purpose 

protects against the system being used for nefarious purposes. This is the new frontier for hackers 

and designers must prepare for it. 

In this chapter, three encryption algorithms are presented as tools designers can use to 

secure embedded systems. The algorithms’ operations, as well as their security and performance 

are discussed. Each section is focused on a specific algorithm’s strengths, weaknesses and 

performance. Closing the chapter is a comparison of the algorithms and a discussion of the 

recommended application for each of the algorithms. 

 

Discussion of Algorithm Types 

 

The two main types of encryption algorithms for embedded use are symmetric and 

asymmetric algorithms. Each algorithm type has its advantages and disadvantages. Symmetric and 

asymmetric algorithm architectures are discussed below.  

Symmetric Algorithms 

 

Symmetric algorithms date back as far as 1900 BC, beginning with substitution ciphers, 

wherein A is replaced by A + delta, and so forth. Symmetric algorithms encrypt and decrypt data 

using the same key or secret. This is most commonly embodied by performing repeated rounds of 

a mathematically invertible operation, such as XOR, add, subtract, multiply or divide, whereupon 

in decryption, the same round is repeated using the same key, but with the inverse mathematical 

operation. The simplest symmetric cipher is the substitution cipher. Using the alphabet as an 
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example, a secret key is defined as “shift by 3”. In this case the word CAT is encrypted as cipher 

text as FDW. To decrypt, the letters are shifted or substituted back and the word CAT is retrieved 

as the plain text. Likewise, no matter how complex the operation on the data or encryption method 

is, a similar pattern is followed for many symmetric algorithms. The secret key, which can be any 

defined as a sequence or number, is applied to data, transforming it into cipher text. To unencrypt 

the cipher text the same key must be used. This poses the problem of distributing the key securely 

to the receiver and is the biggest drawback to symmetric key algorithms.  

Asymmetric Algorithms 

 

Asymmetric algorithms, in which encryption is comprised of both secret on non-secret 

portions, is relatively new, beginning with the Diffie Hellman algorithm in 1976 [4]. Asymmetric 

algorithms encrypt and decrypt data using a key pair. A key pair contains one private key and one 

public key. Asymmetric algorithms, known as public key encryption algorithms currently do not 

have known time-efficient solutions for cracking. These algorithms rely on large mathematical 

computations on prime numbers or elliptic curves, requiring enhanced processing power, for both 

encryption and decryption. Unlike symmetric algorithms, a public key can be shared in plain text 

without necessarily using a secure exchange. This also allows the receiver to accept encrypted 

messages from anyone with a public key - a many-to-1 relationship. The high security of 

asymmetric algorithms relies on the inability to generate the private key from the public key in a 

computationally feasible amount of time. Higher security comes at a cost. Increased encryption 

and decryption time, and complex key generation routines are common in asymmetric algorithms. 

Often these algorithms are used to provide a means of secure key exchange for symmetric 

algorithms. This removes the disadvantage of symmetric algorithms, requiring a key exchange, 

but retains the speed of symmetric algorithms. 
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Encryption Cost and Performance Factors 

 

Embedded encryption is bound by many cost vs. performance trade-offs. The costs 

discussed in this thesis are (1) algorithm size (measured in ROM and RAM usage bytes), (2) energy 

consumption and (3) data integrity. The performance factors discussed in this thesis are: (1) 

encryption time, (2) decryption time and (3) brute force security. The algorithms characterized in 

the next three sections focus on these cost and performance metrics. These metrics provide a way 

to compare the algorithms despite their widely different implementations and complexity. Similar 

metrics should be developed or studied by designers of encryption modules to determine the 

security scheme that maximizes performance while reducing costs. It is suggested that algorithm 

size has been given somewhat lesser weight than energy consumption for most embedded systems. 

This is especially true for embedded systems that operate on battery power. In fact, in the course 

of researching for this thesis, 8-bit microcontrollers were considered as a target for simple 

encryption techniques adapted for use with single byte operands, but the cost in dollars of 32-bit 

systems has been reduced so drastically that it is more cost effective to use 32-bit platforms for 

research and development projects. In addition, many 32-bit platforms have been designed from 

the ground up for low-power performance. Low-power optimized processors are outfitted with 

low-power modes, allowing designers tweak out long battery lives. These advances for 32-bit 

platforms have allowed designers to move to 32-bit solutions, while still retaining the low power 

consumption of 8-bit microcontrollers. As for the performance factors, encryption time and the 

metric of brute force security remain of equal weight and both weigh heavily into designers’ 

decisions. 
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Data Integrity and Encryption 

 

Data integrity and encryption are not one in the same. It is a misconception that encryption 

provides data integrity. Encryption does not increase the quality of transmitted data or raise the 

likelihood that transmitted data will be received exactly as it was sent. Traditional error detection 

schemes such as cyclic redundancy check (CRC) or digital signatures must still be used. For 

completeness, data integrity is viewed as a cost in this thesis, because the effect of errors in an 

encrypted data set is often larger amounts of corrupt data than had the same error occurred in an 

unencrypted data set. The loss of data integrity in an encrypted data set can result in a single error 

being propagated forward or the corruption of the entire data set. To ensure the integrity of 

encrypted data a cryptographic hash function must be used to compute a hash on the data, which 

is separate step requiring separate tools and time. This topic is left for future research. 

 

Research Platform 

 

The research tools for this thesis were provided by Cypress Semiconductor through 

Cypress University Alliance. More information about this program can be found at 

http://www.cypress.com/university-alliance. Provided for the research were two Cypress 

Programmable System-on-Chip Solutions. The kits were model CY8CKIT-5-PSoC 5 Low Power 

Development Kits. The CPU is a 32-bit ARM Cortex-M3. The kit offered a great development 

platform, for this research integrating power monitoring tools, a breadboard and extensive I/0, 

including a LCD. All code development was done using the Cypress PSOC Creator software. 
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Analysis of the Tiny Encryption Algorithm (TEA) 

 

Description 

The Tiny Encryption Algorithm (TEA) is a symmetric encryption algorithm designed for 

high speed and low memory usage. The algorithm makes use of a Feistel type structure for the 

manipulation of data blocks for encryption. TEA was proposed by Wheeler et al. in 1994 as an 

algorithm designed to “get security with simplicity” [5]. The algorithm relies on the functional 

building blocks of most microcontrollers and only uses shift, add, subtract and multiply 

instructions to manipulate data. These operations are practically universal and are supported across 

most programming languages and handled directly in hardware on most microcontrollers. The use 

of common instructions, which most microcontrollers have optimized, allows for high speed to be 

assured across devices and platform architectures. 

Feistel Structure 

The Feistel structure is performed in rounds. The Feistel structure is displayed as a 

invertible mathematical function F(P,K) which represents a sequence of n Feistel rounds. The input 

data vector P, is the plain text data set. It is divided equally into two blocks (𝑃𝑙 ,𝑃𝑟 ). K, the 

encryption key is divided into n sub-keys, 𝐾0 … 𝐾𝑛−1, one for each round. A round function R(P,K), 

is used to manipulate one half of the input data at a time. This function is an invertible 

mathematical function.  For each P, Feistel Structure computes 𝐹(𝑃,𝐾):  

    𝐹(𝑃, 𝐾)  =  
     

     𝑓𝑜𝑟 (𝑖 =  0 𝑡𝑜 𝑛) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 
{ 

𝑃𝑙𝑖+1 =  𝑃𝑟𝑖  
 

𝑃𝑟𝑖+1 =  𝑃𝑙𝑖  𝑋𝑂𝑅 𝑅(𝑃𝑟𝑖,𝐾𝑖) 
      } 

 

  

After n rounds, P is transformed to cipher text, C, i.e. [𝑃𝑙0, 𝑃𝑟0] →  [𝐶𝑙, 𝐶𝑟] 𝑤ℎ𝑒𝑟𝑒  
𝐶𝑙 =  𝑃𝑙𝑛+1 𝑎𝑛𝑑 𝐶𝑟 =  𝑃𝑟𝑛+1 . 
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For decryption, the Feistel structure uses the inverse of R, R’, to re-compute the plain text. 

𝐹(𝐶, 𝐾)  =  
     

     𝑓𝑜𝑟 (𝑖 =  𝑛 𝑡𝑜 0) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 
{ 

 𝐶𝑟𝑖 = 
  
𝐶𝑙𝑖+1 

𝐶𝑙𝑖 =  𝐶𝑟𝑖+1 𝑋𝑂𝑅 𝐶(𝑃𝑙𝑖+1,𝐾𝑖)′ 
      } 

 

  

After n rounds, C is transformed to plain text, P, i.e[𝐶𝑙0, 𝐶𝑟0] →  [𝑃𝑙, 𝑃𝑟] 𝑤ℎ𝑒𝑟𝑒  
𝑃𝑙 =  𝐶𝑙𝑛+1 𝑎𝑛𝑑 𝑃𝑟 =  𝐶𝑟𝑛+1 . 

 

 

The two Feistel rounds are identical, apart from an inversion of the sub key K order and 

data order. The sub key order for decryption is reversed, i.e. the sub key blocks are processed from 

𝐾𝑛 down to 𝐾1 . Likewise the data blocks, C, are processed from 𝐶𝑛 down to 𝐶1. The Feistel 

structure allows for significant code reuse and results in both performance and memory savings. 

 

Encryption  

The encryption routine provided by Wheeler et al. is written for the C programming 

language. Data is provided in v[0] and v[1], 32-bit word vectors. The 128-bit encryption key is 

provided in 32-bit words, K[0] – K[3]. Figure 3 demonstrates the C routine used to implement the 

TEA algorithm for this thesis. The input n is the cycle count, used as a security scale factor. Delta, 

is a constant, suggest by the designers to ensure variability of the cipher text when single bit 

changes occur in the plain text. Finally, v is a vector representing the data to encryption and k a 

vector key to encrypt the data. 
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Figure 3. TEA Encryption Routine 

The key, K, is 128 bits, split into four 32-bit sub key vectors K[0],  K[1], K[2], K[3], where 

K[0] is the most significant 32 bits of K. The plain text D, 64 bits, is divided into two equal halves, 

D[0] and D[1], where D[0] is the most significant 32 bits of D. The keys and data split at word 

boundaries and are recombined as bitwise concatenations. Each half, in turn, is then used to seed 

the other half for the Feistel round. The delta constant used here, and specified by the designers, 

has no security significance, other than assurance that the data is effectively transformed. The TEA 

algorithm uses a running sum, modulo 32 bits, instead of the XOR of the Feistel structure. This 

adaptation allows for improved speed and applicability across programming languages and is 

acceptable by its ability to be inverted mathematically. The shifts are performed bitwise, with zeros 

shifted into vacant bit locations. Figure 4 demonstrates the logical structure of the TEA encryption 

module. 

  

void encrypt (uint32_t* v, uint32_t * k)  

{ 

     uint32_t y=v[0],z=v[1], sum=0,          /* set up */ 

     delta=0x9e3779b9 ,           /* a key schedule constant */ 

     n=32 ;            /* number of rounds */ 

     while (n-->0)  

     {              /* basic cycle start */ 

          sum += delta ;      

          y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;   /*Feistel Rounds */ 

          z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; 

     }              /* end cycle */ 

v[0]=y ; v[1]=z ;  

} 
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Figure 4. TEA Encryption Data Flow for Single Round 

 

Decryption 

 

The Decryption routine is displayed in Figure 5. The decryption routine is formed by 

processing the input block, using the crypto keys in the inverse order and applying the inverse of 

the running total, i.e. the running subtraction, modulo 32 bits.  

Data Input 

D0 D1 

XOR 
+= 

Delta 

K[1]+ (D0 >> 5) 

K[0]+ (D0 << 4) 

+= 

XOR 
+= 

Delta 

Delt

K[3]+ (D’ >> 5) 

K[2]+ (D’ << 4) 

+= 
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Figure 5. TEA Decryption Routine 

 

 

Performance and Cost Metrics 

 

The TEA algorithm performance and cost metrics were gathered for a constant data set size 

of 1024 bytes. The CPU clock speed was varied from 4-24 Mhz. Over this range, the encryption 

and decryption time of TEA was captured and the power costs were monitored. Table 1 

demonstrates the fast performance of the TEA algorithm, with respect to other more complicated 

block ciphers such as AES discussed in the next section; Table 4 also shows energy related costs. 

Notably, of the three algorithms profiled, TEA has the most symmetric encrypt and decrypt times, 

averaging only a 0.55ms difference between the encrypt and decrypt paths. This figure is regardless 

of clock rate, resulting in a predicable delta between encryption and decryption cycle times. This 

allows the necessary buffers between encryption and decryption modules to remain fixed size, 

void decrypt (uint32_t* v, uint32_t * k)  

{ 

     uint32_t y=v[0],z=v[1], sum=0,         /* set up */ 

     delta=0x9e3779b9 ,          /* a key schedule constant */ 

     n=32 ; 

     sum = delta * 32; 

     while (n-->0)  

     {             /* basic cycle start */ 

          sum -= delta ; 

          y -= ((z<<4)+k[2]) ^ (z+sum) ^ ((z>>5)+k[3]) ; 

          z -= ((y<<4)+k[0]) ^ (y+sum) ^ ((y>>5)+k[1]) ; 

     }             /* end cycle */ 

v[0]=y ; v[1]=z ;  

} 
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regardless of clock speed. An advantage of this fact is that the clock rate can be adjusted to meet 

low power needs, without modifying buffer size. 

   

Performance Cost 

Clock 

(Mhz) 

Encrypt  

Time(s) 

Decrypt 

Time(s) 

Avg. I (mA) Power(w) Energy (J) 

24 0.01864 0.01812 0.013387 0.0441771 0.00082346 

12 0.03743 0.03681 0.00729 0.024057 0.00090045 

8 0.05665 0.05608 0.005264 0.0173712 0.00098408 

6 0.07473 0.07404 0.004248 0.0140184 0.0010476 

4 0.11206 0.11163 0.003312 0.0109296 0.00122477 

Table 1. Performance metrics gathered on the TEA Algorithm for a data set size 1024 bytes on a 

Cypress CY8C58LP. 

    

Security Analysis 

TEA suffers from the existence of equivalent keys. Each key has four equivalent keys that produce 

the same cipher text when applied to the same plain text. This results in an effective key length of 

n-2 bits. For a 128-bit key, the effective key length is 126 bits. This results in a minor loss of 

security. A more significant security concern is that, some research has shown that the TEA 

algorithm can be broken with 223 attempts using a reduced set of keys [6]. This complexity makes 

a brute force attack reasonable. The implication of a 223brute force time complexity on a 128-bit 

key is projected to 64 and 256-bit keys sizes in Table 2, using calculations provided by Vikram 

Reddy Andem [7]. Key sizes below 64-bits are not projected, because their security level is too 

weak for practical use. It should be noted that TEA should not be used as a hash algorithm due to 

the existence of equivalent keys. 
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Table 2. Measure of TEA Security vs Key Size 

 

Analysis of the Advanced Encryption Standard (AES) Algorithm 

 

Description 

 

The AES algorithm was designated a standard by the U.S. National Institute of Standards 

and Technology (NIST) in 2001 [8]. AES is based on the cipher proposed by Rijndael, known as 

the Rijndael cipher [9]. Like TEA, AES is a symmetric key cipher and uses the same key for 

encryption and decryption. Unlike TEA, AES uses a substitution-permutation network, the 

mathematics of which are not within the scope of this thesis. The key sizes specified are 128, 192 

and 256-bit keys. The algorithm’s round count is specified by key size and is 10, 12 and 14 rounds 

respectively. AES 128 is characterized in this thesis. The analysis structure can be extended to 

other key sizes.  

S-box 

 The substitution box, or s-box is the basis of the AES algorithm operation. The s-box serves 

as a lookup table, with which both key bytes and data bytes are transformed during the operation 

of the AES algorithm. This lookup table replaces the traditional mathematical operations of other 

ciphers with fast-performing matrix operations. The S-box is defined as the multiplicative inverse 

Key Size 
Key 

Permutations 

Projected 

Security 

1 1 - 

2 1 - 

4 4 - 

8 64 - 

16 16384 - 

32 8.38E+06 - 

64 7.03E+13 2.00E+11 

128 9.67E+24 2.00E+23 

256 9.35E+49 2.00E+45 



48 
 

of a number defined as Rijndael’s finite field. The field is represented by the equation 𝐺𝐹(28) =

𝐺𝐹(2)[𝑥]

(𝑥8+𝑥4+𝑥3+𝑥+1)
. The s-box’s generation is beyond the scope of this thesis. The s-box is readily 

available in many formats for implementation in the most common architectures. Both the s-box 

and the inverse s-box are usually stored in RAM to ensure fast access times. 

 

Algorithm Operation 

 

AES operates in rounds, like a traditional block cipher. For AES-128, ten rounds are 

performed on a 128-bit block. All rounds are performed the same, except the final round. This 

applies to the final round for all keys sizes. The input data block D is called the input state array. 

The state array has the form of a 4x4 matrix, as shown in Figure 6. The input D is divided into 16 

single bytes. Each column is called a word. 

 

          Figure 6. AES State Array 

 

A single round of AES comprises four steps. The four steps are explained next. 

 

 

Step 1. Round Key Expansion 

In each round the 128-bit key must be expanded into a key schedule. The key 

schedule is the data set representing the expanded original key, which the algorithm uses 

for encryption and decryption. The original 128-bit key is placed into a 4x4 key state array 

Input_State = {  b0, b4, b8, b12, 
               b1, b5, b9,  b13, 
               b2, b6, b10, b14, 
               b3, b7, b11, b15 } 
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in the same manner as the input state. The 4 words, or 4 columns, of the key state are 

expanded into a key schedule. For a 128-bit key, the key schedule is 4x44 array. 

 

The Key Expansion Algorithm 

 

The key expansion algorithm is a designed to ensure that single bit changes in the 

input key produce a key schedule expansion that results in a new round key for more than 

one round. The key expansion for a 128-bit key produces a 4x44=176 byte round key. AES 

uses a round constant defined as a 32-bit word. This word’s lower three bytes are always 

zero and the upper byte is 2𝑖, where i is the round number. This is usually a separate 

function denoted as “rcon(i)”. This constant performs the same role as the delta constant in 

TEA and prevents back to back rounds from producing the same cipher value. The key 

expansion routine is best implemented as multiple smaller functions to ensure proper 

operation. The expansion steps are detailed below.  

1. Expand the four key state words into the first 16 bytes of the round key, 

as they exist in the original key 

2. rcon = rcon(1) 

3. Until 40 words are expanded do: 

a. Word 1 

i. Create a new word temp initialized to the previous four 

bytes of the round key 

ii. Rotate word 8 bits left 

iii. Substitute each byte using the s-box 

iv. Apply rcon(i++); to most significant word 

v. XOR temp with the first word of the previous 16-byte 

expansion 

vi. Temp now holds the next four bytes of the round key 
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b. Words 2-4 

i. Create a new word temp, initialized to the previous 4 

bytes of the round key 

ii. XOR temp with the word 16 bytes previous in the 

updated round key from step a. 

iii. Append word to round key and repeat 

The round key has been expanded. A sample expanded key would be as follows: 

Input Key: 

  0x00000000000000000000000000000000 

Expanded Key Schedule: 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

62 63 63 63 62 63 63 63 62 63 63 63 62 63 63 63 

9B 98 98 C9 F9 FB FB AA 9B 98 98 C9 F9 FB FB AA 

90 97 34 50 69 6C CF FA F2 F4 57 33 0B 0F AC 99 

EE 06 DA 7B 87 6A 15 81 75 9E 42 B2 7E 91 EE 2B 

7F 2E 2B 88 F8 44 3E 09 8D DA 7C BB F3 4B 92 90 

EC 61 4B 85 14 25 75 8C 99 FF 09 37 6A B4 9B A7 

21 75 17 87 35 50 62 0B AC AF 6B 3C C6 1B F0 9B 

0E F9 03 33 3B A9 61 38 97 06 0A 04 51 1D FA 9F 

B1 D4 D8 E2 8A 7D B9 DA 1D 7B B3 DE 4C 66 49 41 

B4 EF 5B CB 3E 92 E2 11 23 E9 51 CF 6F 8F 18 8E 
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Step 2.  Add Round Key 

This step occurs once for each 128-bit block and is performed before any encryption 

rounds. In this step the bytes of the input state array are XORed with the first 16 bytes of 

the key. This is performed in index order, i.e.  

k = 1 

for(i = 1 to 4) 

for(j = 1 to 4) 

input_state[i,j] XOR key[k++] 

 

Step 3. Encryption Rounds 

Step 3a. Substitute Bytes 

This step is a non-linear substitution of the input state with the s-

box. The substitution is performed via a lookup table. For example, the 

input_state(2,2) is replaced with s-box(2,2). 

 

  Step 3b. Shift Rows 

In the shift rows step, the first row of the state is not modified. Then 

state rows 2, 3 and 4 are circularly shifted logically left by 1, 2 and 3 bytes, 

respectively. 
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  Step 3c. Mix Columns 

Each byte in the state is operated on by a function of all the bytes in 

the containing column.  The function bytes, by row, are as follows:  

state(0,x) = 2*state(0,x) XOR 3*state(1,x) XOR state(2,x) XOR state(3,x) 

state(0,x) = state(0,x) XOR 2*state(1,x) XOR 3*state(2,x) XOR state(3,x) 

state(0,x) = state(0,x) XOR state(1,x) XOR 2*state(2,x) XOR 3*state(3,x) 

state(0,x) = 3*state(0,x) XOR state(1,x) XOR state(2,x) XOR 2*state(3,x) 

 

Step 4c. Add Round Key 

In this step the bytes of the input state array are XORed with the first 

16 bytes of the key. This is performed in index order of bytes, i.e. 

input_state[i] XOR key[i]. This is the same step as two. 

      

Step 4. Final Round 

 The final round is a repeat of step three, with the mix columns routine removed. Therefore 

the final round, Step 4, is comprise a repeat of the steps detailed above. The steps performed are: 

  4a. Substitute Bytes 

  4b. Shift Rows 

  4c. Add Round Key 
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AES Algorithm Steps Summary 

1. Key Expansion 

2. Add Round Key 

3. Rounds 

a. Substitute Bytes 

b. Shift Rows 

c. Mix Columns 

d. Add Round Key 

4. Final Round 

a. Substitute Bytes 

b. Shift Rows 

c. Add Round Key 

 

The operation of AES is summarized in the high level flow chart in Figure 7. This figure uses 

matrix state notation for input plaintext, output cipher text, the key, and key schedule.  
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Figure 7. AES High Level Operation 

 

 

 

Performance and Cost Metrics 

 

The AES algorithm developed showed good speed performance as a block cipher, 

operating at approximately one half the speed of the TEA implementation. Table 3 lists the 

performance characteristics and cost the implemented AES algorithm. The average encryption 
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time for 1024 bytes was 36ms. The data demonstrates that, unlike TEA, the difference between 

encryption and decryption times is not constant and linearly increases with respect to clock rate. 

The code size for AES is significant, at 344 bytes of ROM for the support and main algorithm 

routine and two 256-byte blocks of ROM for the forward and reverse s-boxes. The algorithm also 

requires 68 bytes of RAM, or 244 bytes if the key schedule is stored in RAM. The real performance 

gains come from the increased security, with 128-bit key brute force attacks requiring 3.4E38 

combinations.  

 

Performance Cost 

Clock 

(Mhz) 

Encrypt 

Time(s) 

Decrypt 

Time(s) 

Avg. I (mA) Power(w) Energy (J) 

24 0.036782 0.023939 0.012731 0.0420123 0.0015453 

12 0.072354 0.047718 0.007206 0.0237798 0.00172056 

8 0.109221 0.074144 0.005306 0.0175098 0.00191244 

6 0.145631 0.095262 0.004355 0.0143715 0.00209294 

4 0.219004 0.142983 0.003404 0.0112332 0.00246012 

Table 3. Performance metrics gathered on the AES Algorithm for a data set size 1024 bytes. 
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Analysis of the RSA Encryption Algorithm 

Description 

 

The RSA encryption algorithm was developed by Rivest, Shamir, and Adelman (RSA) in 

1978 [10]. RSA is an asymmetric public key algorithm. The encryption key is public and can be 

shared without compromising the integrity of data. The decryption key is considered secret and 

must be protected in the same manner as symmetric keys. The RSA algorithm works by first 

generating a public key, seeded by two very large prime numbers. The key is shared with anyone 

wanting to encrypt data to be sent to the receiver. The receiver, which retains the large prime 

number used to generate the key, uses these numbers to produce a decryption key. The security of 

RSA is directly related to the ability of modern computers to factor the product of very large prime 

numbers in reasonable time. The RSA algorithm, at currently computational efficiencies, is 

immune to a brute force attack for all key sizes, with a 1024 bit key requiring greater than 10200 

operations to attempt all possibilities. Other research has shown achievable factorability of primes 

up to 768-bit keys [11]. This research suggests that 2048-bit keys, and greater should be used to 

provide security for timespans of more than 20 years. The security and prime factorization problem 

is outside the scope of this research and a designer can reasonably trust published reports of RSA’s 

security.  

The following sections detail the operation of RSA. 

Algorithm Operation 

 

Key Generation 

  As discussed above, RSA uses both a public and a private key derived from two 

large prime numbers p and q.  The process of key generation is detailed below. 
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  Step 1: Prime Selection 

The prime integers p and q should be pseudo-randomly generated 

prime numbers with different lengths. For this thesis, prime integers were 

generated and verified using a brute force primality test. For a 1024-bit key 

the average time was greater than 30 seconds. No optimization was 

attempted for this method, although many methods exists that can 

significantly reduce verification time.  

 

Brute force Primality Verification: 

 

for(i = 1; i < n; i++) 

{ 

if(n % i == 0) return false; 

} 

return true; 

 

  Step 2: Compute Key Length 

The key length of the private and public keys is computed as n = 

p*q. The key length is used in step 5. 

  Step 3: Compute ϕ 

ϕ is computed using Euler’s totient function: ϕ = (p-1)*(q-1). This 

value should be kept secret and is used in calculating the private key. 

Step 4: e Selection 

The integer e is selected with the constraint 1 < e < ϕ, and             

gcd(e, ϕ) = 1. This value is the modular exponentiation factor used to 

produce the cipher and plain text. This value is the public exponent. 
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Step 5: Compute d 

The value d, the modular multiplicative inverse of e, is the private 

exponent. The private exponent, d, is solved for by calculating: d*e = 1 

(mod ϕ(n)). In code, this can be implemented as: 

 

  d = 1; 

  while(temp != 1)  

  { 

   temp = (d*e)*mod(phi); 

  } 

  d = temp- 1; 

 

  Step 6: Key Generation 

 Finally, the public key is represented as public(n,e). The cipher text 

can be calculated as   C(m)  =  𝑚𝑒 𝑚𝑜𝑑(𝑛). 

   

 

In review, the private and public values needed for key generation, encryption and decryption are 

summarized in Table 4. Public values are those needed for encryption, but that can be shared freely 

allowing anyone to encrypt a message. Private values are those needed for decryption and must be 

kept secret by the decrypting party. 

 

RSA Cryptosystem 

Integer Public Private 

P and Q  ▲ 

N (modulus)  ▲  

E (public key exponent) ▲  

D (private key 

exponent) 

 ▲ 

Φ  ▲ 

     Table 4. RSA Cryptosystem Integer Summary 
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Encryption 

 The transmitter uses the public key, public(n,e) to encrypt the data. The data 

P, plain text, is first transformed to a message m, with the following constraint: 

 0 ≤ 𝑚 < 𝑛 and gcd(𝑚, 𝑛) = 1. This transformation takes place in the context of 

a pre-defined padding scheme. The padding scheme is used to prevent the m value 

from being mathematically structural and introduces randomness to the encryption 

message, ensuring encryptions produce semantically secure results. The padding 

scheme is not considered a secure element of the algorithm, as both parties must 

know the padding scheme. It is conjectured that additional security can be achieve 

with a one-way padding scheme, in which the inverse of the padding scheme can 

be kept secret. Following transformation of the plaintext P, into integer m, the 

cipher C is computed as: C(m)  =  𝑚𝑒  𝑚𝑜𝑑(𝑛). 

 

 

 

Decryption 

 The receiver use the private key private(n,d) to decrypt the cipher text C. 

Using P(m) = 𝐶𝑑  𝑚𝑜𝑑(𝑛), the result, m, is then transformed using the inverse of 

the padding scheme used for encryption.  

 

Performance Metrics 

 

The performance metrics for RSA are based on the assumption that the necessary keys are 

pre-computed. The initialization time to compute these keys is significant, but is not considered a 

factor in steady state data transfer. After the key computation has occurred, data can be encrypted 

using they calculated key as the data is transmitted, i.e. during steady state data transfer, without 
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introducing significant delay. The RSA algorithm demonstrates that asymmetric algorithms have 

a higher time cost than symmetric algorithms for encryption and decryption, yet still produce linear 

results as a function of clock speed. The power consumption is also significantly increased. These 

results are summarized in Table 5. The encryption time trends show that RSA has data rates five 

times slower than those of faster symmetric algorithms. The difference between encryption and 

decryption module time requirements demonstrates a trend similar to that of TEA in which the 

encryption time – decryption time delta is a constant.  

The performance of key generation cannot be ignored all together. Key verification time is 

non-trivial, as discussed greater than 30 seconds on the hardware used for this research without 

optimization. With optimization, sub-second generations can be achieved. These results were not 

tested and are left for further analysis.   

 

Performance Cost 

Clock 

(Mhz) 

Encrypt 

Time(s) 

Decrypt Time(s) Average 

Current (mA) 

Power(w) Energy (J) 

24 0.10091 0.08654 0.012416 0.040973 0.004135 

12 0.20217 0.18764 0.007027 0.023189 0.004688 

8 0.30281 0.28818 0.005183 0.017104 0.005179 

6 0.40394 0.38921 0.004263 0.014068 0.005683 

4 0.60533 0.52021 0.003454 0.011398 0.0069 

Table 5. Performance metrics gathered on the RSA Algorithm for a data set size 1024 bytes. 
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Conclusions 

 RSA is a highly secure algorithm for data exchange. It is the only viable choice, of the 

algorithms discussed, for secure data transfer when a secure key exchange cannot be guaranteed. 

The enhanced security comes at the cost of significantly slower real-time encryption and 

decryption as well as substantial overhead and initialization for key generation. RSA is quite 

efficient in terms of memory requirements as discussed in the next section, if the key generation 

and verification logic is removed and only encryption and decryption routines are considered. This 

would be the case in a one way sensor network, in which data is transmitted back to a server and 

client nodes only need to know the public key. 

 

Comparison of TEA, RSA, and AES Encryption Algorithms 

 

Security  

 

 Level of security is the most important performance characteristic of any algorithm, yet is 

often the hardest to quantify. The two algorithm types, symmetric and asymmetric, serve different 

purposes in encryption. High data rates are best served by symmetric algorithms, while ultimate 

security is best served by asymmetric algorithms. Comparing their security, in the most simplistic 

terms, leads to a conclusion that symmetric algorithms are more secure and asymmetric algorithm 

are less secure. In reality, designers must realize that the resources needed to implement 

asymmetric algorithms, such as RSA, are not realistic in every situation. The highest level of 

security is not always achievable. In order to evaluate whether an algorithm provides a suitable 

level of security, one can look at the resources required to reach a stated security level objective. 

In the sections below, more quantifiable benchmarks than a simple ‘brute force security level’ are 

presented to help the designer narrow which algorithms best serve the interests of a specific design. 
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Metrics such as key size and encryption speed can be used to rule out the practical implementation 

of the most secure algorithms. Using metrics such as block encryption time, power consumption, 

and memory requirements, can narrow the available algorithms to a few choice algorithms. Using 

the various scale factors of each algorithm, such as TEA’s number of Feistel rounds, or  the key 

length of AES, the selected algorithms’ levels of security can be maximized by finding the 

optimum set of scale factors that provides the most security within the resource constraints.  

 

Encryption and Decryption Time 

 

Comparing TEA, AES, and RSA, the results demonstrated similar performance for the two 

symmetric algorithms TEA and AES. In all cases, RSA took significantly longer to transform the 

data. Encryption for all algorithms took slightly longer that the decryption routines. To generate 

the plots in Figures 8 and 9, below, the clock speed was varied from 4 – 24 Mhz and the time to 

encrypt 1024 bytes was measured. The difference in speed was most apparent at lower clock 

speeds. If higher clock speeds can be support by architecture and power requirements the higher 

security of AES and RSA can be easily achieved with minimal delays. 
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Figure 8. Comparison of Encryption Times 

 

Figure 9. Comparison of Decryption Times  

For small data blocks, less than 1024 bytes, the time required can be considered similar. 

As the data size increases, the time required to implement RSA becomes much larger. Figure 10 

shows the encryption times for each algorithm, for plain text block sizes 1024 to 8192 bytes. The 

trends show a highly predictable linear increase for all the algorithms profiled. This trend makes 
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it easy to predict encryption times and extends to predicting decryption times based on previous 

analysis of the algorithms’ encryption – decryption delta factor. The data also shows that, as data 

block size increases AES and TEA provide a much more efficient solution for encryption and 

decryption than RSA. For large block sizes, 8192 bytes and greater, time becomes the largest factor 

to consider, possibly outweighing the security benefits.  

Figure 10. Encryption Time vs. Block Size 

 

To enhance the security of TEA or AES, RSA can be used to transmit private encryption 

keys. Following a secure key exchange the faster symmetric algorithms can be used for transferring 

large data sets efficiently. In real world scenarios, the increased encryption time of RSA might not 

justify the security level increase over AES. One might be better served to increase the key size of 

AES to achieve the same level of security.  
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Power Consumption 

 

Power analysis of each of the three algorithms demonstrates an advantage to running at 

higher clock speeds for battery operated devices. As illustrated in Figure 11, power consumption 

is higher, increased speed reduces encryption/decryption time, resulting in overall less energy 

used. The use of processor sleep and low power states can extend and realize these gains. Low 

power and sleep states should be used any time interrupt or time-driven operation is feasible. The 

power consumption and energy statistics are for the encryption routines only, and are only 

measured for the duration of encryption. Without using low power or sleep states, faster clock 

speeds could result in increased energy consumption if the processor runs continuously.  For these 

test, low power states of the PSOC were used immediately before and immediately after the 

encryption routine. 

                 Figure 11. Power vs Energy Comparison  

 

 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

24 12 8 6 4

P
O

W
ER

EN
ER

G
Y

CLOCK RATE(MHZ)

POWER AND ENERGY 
CONSUMPTION

Power-RSA

Power-TEA

Power-AES

Energy-RSA

Energy-TEA

Energy-AES



66 
 

Memory Requirements 

 

 In Table 6, the RAM/ROM requirements for each algorithm are listed. RSA is the most 

efficient algorithm for memory usage, followed by TEA, and then AES. The small code size of 

RSA makes it attractive as an add-on algorithm for secure key exchange of private keys. AES is 

by far the largest algorithm, due to the lookup tables required. This cost must be weighed against 

its high speed and high security.  TEA and RSA also do not require large stack allocations during 

operation because they do not require any key expansions. While AES modules could be side-

loaded from flash memory when needed, applications needing AES should be aware of the large 

amount of temporary space needed for the key expansion. It should be noted that a combined 

encrypt and decrypt routine for AES was used in this work to allow code sharing and reduce 

memory usage. 

 

 Encrypt Routine Decrypt Routine 

 ROM Stack ROM Stack 

TEA 172 29 178 29 

AES 856 244 856 244 

RSA 30 16 26 16 

   Table 6. Memory Requirements in bytes for TEA, AES, and RSA algorithms 

 

 

Conclusions 

 

This section has detailed the costs, performance characteristics and operational steps of 

three common encryption algorithms used in embedded systems today. This analysis was 
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performed as a demonstration of the types of analyses that designers should perform when 

researching security tools to be implemented for embedded designs. Following a secure design 

cycle that includes both modeling of attacks and characterization of solutions, such as the 

encryption algorithms presents above, provides high assurance that the chosen security solution 

effectively protects against the modeled attack. Careful study of algorithm function and operation 

ensures that no new weaknesses are introduced by incorrect implementation. Performing modeling 

and solution characterization in an iterative manner can enhance the confidence in the security 

solution developed. 
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Chapter 5 

 

Application Scenario for Embedded Encryption Algorithms 

 

Design 

 A simple application scenario was developed to provide context for the performance 

characteristics and research discussed in Chapter 4. The design represents a simulated IoT network 

of nodes. A high level diagram of the design is shown in Figure 12. The design represents a sensor 

network in which a collection node receives measurements from the environment and transmits 

these measurements, securely, to another node for processing. Two PSOC Developer boards were 

used for the nodes. The first node used a simple electret microphone to capture tones. This node is 

called the encryption unit. The second developer board was used to replay the tones on a piezo 

speaker, the decryption unit. The nodes communicated via a simulated wireless link. The link 

simulates a wireless link such as Bluetooth, Wifi, or RF. The link was implemented as an I2C 

interface for simplicity and debugging. 

Test 

 A tone was played into the capture microphone, this tone was converted by an analog to 

digital converter into a data stream for encryption. The stream was encrypted, sent across the I2C 

bus, and then decrypted in decryption unit. From the decrypted stream the tone’s frequency was 

detected. The appropriate tone was then output to the piezo speaker using PWM. The test was 

performed for multiple tones, using each encryption algorithm, TEA, AES, and RSA. The buffer 
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size for each algorithm was different in order to accommodate the block size needed for each 

algorithm. The buffer sizes were 8 bytes, 16 bytes, and 8 bytes, respectively. This buffer represents 

the initial amount of data need to perform a single run of the encryption or decryption routine. The 

buffer size is at minimum equal the block size each algorithm. 

Figure 12. Application scenario setup 

 

Performance 

 The test results are displayed in Table 7. The achieved data transfer speeds were 

consistent with the data presented in Chapter 4. RSA was the slowest algorithm, achieving a 

transfer rate of 81.83kbps. AES was three times faster with a demonstrated transfer rate of 

222.7kbps. Finally, TEA was projected to achieve a transfer rate of 440kbps, but the I2C bus on 

the PSOC boards was unable to reach this speed limiting the actual transfer rate to 375.5kbps. 

The results demonstrate the various time impacts the different algorithms would have on 

Encryption 
Unit 

 

Decryption 
Unit 

Tone capture microphone Tone replay speaker 

Simulated wireless link (IoT) 
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transmitting data from node to node. The data shows that AES suffers from high initial delay due 

to the algorithm’s large buffer size. This would negatively affect the performance of AES in a 

multi-hop type environment. Using RSA would result in significant delays if data was 

transmitted, verified, then retransmitted over many hops due to a large transfer time. TEA was 

the best performing algorithm for this type of test, and had minimal buffering delay. Its 

simplicity, and speed allowed it to outperform the other algorithms while providing an 

acceptable level of security of such an application. For this application, each algorithm was 

configured for the currently accepted level of security that is not easily broken by attack 

capabilities. These configurations are TEA-128, AES-128, and RSA-1024. If higher levels of 

security are desired it is up to the designer to evaluate the performance trade-offs of using larger 

key sizes.  

 

Algorithm 
Transfer 

Rate 

Time to 

Transfer 

1MB 

Initial 

Buffering 

Delay 

TEA 375.5kbps 22.34s 0.145us 

AES 222.7kbps 35.9s 1.14ms 

RSA 81.83kbps 102.5s 0.788us 

Table 7. Transfer Rates for Application Scenario   
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Chapter 6 

 

Final Conclusions 

  

This thesis has provided designers with a guide for evaluating and characterizing data 

encryption as tools to protect against embedded attacks. Encryption is a valuable tool for protecting 

against spoofing, tampering, repudiation, information loss, DOS attacks, and privilege escalation. 

Encryption is the first line of defense in protecting our nation’s embedded infrastructure from 

being attacked from within by the systems that control its operation. The three algorithms profiled 

in this thesis, TEA, AES, and RSA, all serve unique purposes in the encryption field. TEA excels 

in its speed and simplicity and allows designers to quickly implement encryption in the most 

restrained resource environments. AES provides military-level security to designers, but proper 

implementation requires good research of algorithm operation and implementation is quite 

complex. RSA, despite a complex key generation process, provides the highest level of security, 

requiring no private key exchange to take place. RSA’s slow speed prevents it from being used for 

time-sensitive applications, but its robust security makes RSA ideal for handshake transactions 

before data is transmitted using a technique such as AES. The manner in which these 

characterization and modeling structures have been presented is intended to be a framework for 

any security solution. The framework is a foundation, discussed with the intention that it can be 

adapted to fit any security technique in the embedded field. The three pillars of a secure embedded 

system, (1) threat analysis and modeling, (2) secure development lifecycle and (3) education, 
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provide designers with a path to understand the threats to which embedded systems are exposed. 

The model allows these threats to be characterized in manner such that clearly defined security 

solutions can be developed to mediate attack success. 

Research in embedded security must evolve as the threats against embedded systems 

change. Research in the areas of infrastructure security and cyber warfare is increasing and 

becoming a priority for many groups both public and private. The nation’s infrastructure, the 

largest connected embedded system ever seen, is a prime target for attacks. More research can be 

done to understand how these systems are vulnerable to attack and what steps need to be taken to 

more effectively develop secure embedded systems protected against exploitation. 
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