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Abstract

Fossil fuels impanmajor problems on the globatonomy andhave detrimental effects to
the environment,which has caused a wonide initiative of producing renewable fuels.
Lignocellulosic bioethawl for rerewable energy has recently gainattiention, becausig can
overcomethe limitations that first generation biofuels impoNenethelessin order to have this
process commercializgethe biological conversion of pentose sugars, mainly xylose, needs to be
improved. Scheffersomyces stipitisas a physiology that makes at valuable candidate for
lignocellulosic bioethanol production, and lately has provided genedefigningrecombinant
Saccharomyces cerevisiae

In this study, a system dlbgy approach was taken to understémal relationshipf the
genotype tophenotype whereby genomscak metabolic models (GSMMs) aresed in
conjunction with constraidbased modeling. The major restriction of GSMMs is having an
accurate methodolggor validation and evaluation. This due to the size and complexity of the
models.A new system identification based (Sitased) framework was established in order to
enable a knowledgmatching approach for GSMM validationhe SID framework provided an
avenue to extract the metabolic informatembedded in a GSMMhrough designeth silico
experiments, and model validation is done by matching the extracted knowledge with the
existing knowledgeChapter Zprovides the methodology of the SID framework and illustrates
the usage through a simple metabolic network.

In Chapter 3a compreknsive examination was carried out on two published GSMMs of

S. stiptis, ISS884 ad iBB814, in order to find the superior model



The conventional validatioexperiments proved to be unreliable, since iISS884 performed
better on the quantitative experiments, while iBB814 was better on the qualitative experiments.
The uncertainty of which model was superior was brought to light through the SID framework.
iBB814 showed that it agreed with teeistingmetabolicknowledge orS. stiptis better than
iISS884.

Chapter howed that the errors in iBB814 were eliminateddiyning iBB814to
constructa modified model known as iIAD828. The Sifameworkwas usedo guidemodel
refinementwhich is typically a labor some and timet@msive process. SID framework
eradicates the tridnderror approach, but rather has the power to uncover the reaction errors.
IAD 828 predictsxylitol productionunder oxygedimited conditions whichis in agreement with
experimental repori§ his was a significant improvement, since iISS884 and iBB814 does not
have this capability and now iAD828 can be used to properly engineer recombinant strains. Also
the SIDframeworkresultsof iIAD828 shownoteworthy improvement relative to iISS884 and
iBB814.

The superior perforrmee of IAD828 propelled the usé this model for strategies to
increase etham@roduction. Understandingpfactor balancduring fermentation is crucial in
obtaining high quality strains for ethanolesproduction. Recently much work has been done on
cofactor imbalancefdhe first two reactions of xylose metabolistylose reductase and xylitol
dehydrogenase. Thererista clear understanding & stipitishow the cofactor preference of
xylose reductase affects the metaboli$ime cofactor preference of xylose reductase was varied
and an optimal phenotype was determirfgtalysis from this guidedh silico metabolic
engineeringstrategiesesulted in elevad production of ethanadrhis information can be found

in Chapter 5.



In Chapter 6SID enhance®hPPanalysis waslevelopedas a tooto overcome the
limitations thatPhPPanalysis imposed. The power of this tool was shown by applyingit to
illustrated example andnE. colicore modelHerethetraditionalPhPPanalysiswvas unable to
uncover the metabolic knowledge that the SID enhaRt&Panalysis was able to accomplish
The traditionaPhPPanalysis used shadow prices toaistine the differenphenotypes. This
provedto be problematic for thE. colicore model. SID enhanc&hPPanalysis was able to
det ect a A mi s sPhRRaralyss faiked to tnyopee. Al$olasathe size of the
metabolic model increases, the shadow price fatviRParalysis decreases to the point of having
only miniscule meaning. Error was shown in the shadow price of the formate exchange flux. SID
enhancedPhPPanalysis provides a powerful tool for understanding metabolic phenotypes

Chapter 7 describes the conclus@md the future work of this study.
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Chapter 1: Introduction

1.1 Renewablesnergy derived from biomass

Fossil fuels impose majororldwide economic concesiand environmental pressures
due to there being a limited supplthat needs tdbe able tofoster an increasing energy
requirement of the industrialized world, and the adverse effects of ddegtion of greenhouse
gasegCherubinj 2010; Gupta an¥erma 2015) The strong dependency on petroleum Hase
fuels intensifies the pblem, where iaccounts for 8% of the energy needs and%f carlon
dioxide emissions worldwidédith the oil demand of world in 2013 being approxietat90
million barrels a day (Hufbauer ar@harnovitz 2009) and it is projectedhat in 2030 that it
reaches 11@illion barrels a dawith the transportation sector accounting 6686 of thistotal.
Thereforethere is an imperative mandater alternative energy sourc@eA, 2007) Using
biomass as an energy souttce producebiofuels provides an attractive options mlléwing
ways: (1) economic potential due to the increasing prices of fossil fuels, (2) provides a
sustainable source for energy in the future, and (3) affords favorable environmental conditions
due to no net carbon dioxide emissions and very low amosutifoir (Balkema and Pols, 2015;

Eisentraut201Q Sobrino and Monroy, 20}0

1.1.1 Production of sustainable fuels

Bioethanol is the primantransportationfuel substitute forgasoline. It has many
favorable properties, one being that it comes fromereewable source and can be used as an
octane enhanceringe it is a high octane fueDn the environment spectrum, it has low toxicity,
it is biodegradable, ah minimal pollution is emittedlt also has the ability to diminish

greenhouse gas emissiondhese it has been shown to decrease greenhgaseompared to



fossil fuels 18% and 88 when using corn derived and cellulosic feedstock respectively
(Service, 2007)Also leading oil producing countries have a stronghold on importing countries,
thus blendng bioethanol with gasolinprovides a greatefuel security for countriesAnother

benefit is that entirely new infrastructure is created tip&ins the doors for employment (Balat

and Balat, 2009Evans, 199) Thelast couple of decades have shown amaasing inclination

for bioethanol production with 31 billion liters in 20Q&erg, 2001)o 39 billion liters in 2006

and it is projected togyto 100 billion liters in 2015 (Licht et al., 2008}e U.S. (United States)

is the leading produceand theU.S. Department of Energy (DOE) and theSUDepartment of
Agriculture (USDA)have recently mandatebat 36 billion gallons of biofuels be produced by
2022.The U.S. being the top producer in bioethanol is due to the strong governmental support,
which stated back in 1978 with the Energy Tax Act that granted tax credits for ethanol usage.
Recently in 2007, congress passed the Energy Independence and Security Act, which mandated
the supply of 12 billion gallons of bioethanol by 2010 and this would incriead® billion

gallons for 2015. Figure 1.1 shows the production of biofuels, specifically hydrotreated
vegetabl e oil (HVO) known as fAgreen diesel 0,
2000- 2013. Bioethanol remains the top biofuel being produegh 75% of the total biofuel
production, and U.S. production is around 50 billion liters, where almost all was from corn
feedstock Brazl is the next largest produceiogetherthe US. and Brazilproduce62% of the
bioethanolin the world,from sugarcane and corn. European countries are getting involved,

where the European Union has set similar goals as.thgCherubinj 2010)
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Figurel.1: Global production of hydrotreated vegetable oil, biodiesel, and bioethanol foii 2000
2013(Globd Status Report REN21, 2014)

1.1.1.1First generation biofuels

First generation biofuels are produced from feedstocks that are derived from food crops.
Some of the commonly used raw materials are sugar cane, corn, animal fats, and vegetable oil
(Naik et al., 2007).Conventional methods are used for production of first generational
bioethanol, and productianf first generation biofuelareconsidered a weestablished industry.
Despite the need to reduce greenhouse gas emission, first generational biofuels provides limited
reduction (Collins, 2007) Another major drawbackof first generation feedstoskis the

compeition with the food industry (Marri2006).

1.1.12 Second generation biofuels

This has brought the incipient of second generatiofuéls, which are based on nonfood
crops or crop resdiuedJnlike corn feedstock which is composed of atarchy material,
ligonocellulosichiomasscomes from the fibrous part of plant thah@starchy.Lignocellulosc

3



biomass are divided into five groups of feedstodsagriculturalresidues (leftover material
from crops, such as corn stov@nd wheat straw); 2) forestiyastes (chips and sawdusom
lumber mills, dead trees, and tree branch&g)nunicipalsolid wastes (household garbage and
paper products); 4) foogrocessing and other industriavastes (black liquor, a paper
manufacturing byproduct); and 5) energy crops (f@gbwing trees and grasses, such as
switchgrass, poplar and willowMansfield et al 2006).Hexose and pentessugars comprise
about 507 80% of the carbohydites in lignocellulosic biomass. Thmarbohydrates are
biologically mnvertedto bioethanolthrough fermentatio (Mousdale, 2006)The carbohydrates
are broken down in two groups, cetiesk and hemicellules Cellulose is composed dhear
glucose polymers that ar eis dn edtensiv& rahchdd pgyeneérh e r .
that is comprise of five-carbonsugars: arabinose and xylose, and acaprbon sugar: aactose,
glucose, and mannosghere is a noarbohydrate group, lignjirwhich provides the structural
foundation of the plant, where this part cannot be fermegi&iedu et al., 2015)

Lignocellulosic biomass is known asgreen gold raw matel, because it has many
advantages: (1) renewable and sustainableg(@)ction of air pollutions that result from burning
and rotting of biomass in fields, (3) alleviating greenhouse gasesofd)igs economic benefits
locally through development and simulation, (5) halting energy dependence on countries that
rely on importing oil, and (6) generating technical jdiBerre et al 1996). It has been
calculated that lignocellulosic biomass ha® tpotential to produce 442 billion liters of
bi oethanol , which is due having t heHakeemm | dos
2014) The two routes for conversion of ligredtulosic biomass to biofuels a@one through
thermochenual and biochemal conversion.Thermochemical conversion first involves the

production of synthesis gas (blend of carbon monoxide and hydrogen) through gasification or



pyrolysis then reformation of fuel through a catalytic process, such as the commonbnesef
the FischerTropsch reactin or by a biological reactioiBiochemical conversiomvolves first
breaking down theugar polymer to sugar monomers through pretreatment processing, and then
microorganisms are used to ferment the sugar into bio{idd&endry, 20@2). A recent study
showed thaproduction costs of second generation biofuels is two to three times more expensive

than petroleum based fuel production c@Btan, 2014)

1.1.2 Microbial strains for biofuels

Preent research efforts focus fermenting glucose and xylose. Cofermentation is one
route that ferments the sugars simultaneously, and it is believed to have fewer costs then solely
fermenting the individual suga(®©hgren et al., 2007; Zhao et al., 2008here are a collection
of microorganisms available, such &accharomyces cerevisja&cheffersomyces stipitis,
Kluyveromyces marxianus, Candida shehatate, Zymomonas natalischerichia coli(Girio
et al., 2010).Prokaryotes K. coli) and lower eukaryotes are strains that have been used to
produce ethanol from biomass feedstocks. Yé&astenhanced properties, becaubkey have
higher ethanol tolerance, resistance to contamination, growth at low pH, and have thicker cell
walls (Jeffries, 2006)Also yeast has already been in industrial applicatitthesefore there ian

established production facilifdahnHagerdalet al., 2007).

1.1.2.1Saccharomyces cerevisiae

S. cerevisiaas the most common microorganism used fitraaol production, which is
accomplished through fermentation of hexssgars. When pentose sugars are present in the
feedstock the productivity diminishes. Itshtéhe capability only to metabolizghosphorylated
pentose sugarslike ribose 5phosphate, but assilation of pentoses such asylose is

problematic S. stipitisand E. coli can natively fermenkylose (Kim et al., 2007) however
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ethanol productivity is stillow so metabolic engineering to creadeombinant strainsuch ass.
cerevisiaeor Z. mobils has been a major focus on reseadbachimsthal and Rogers, 2000
Martgnet al., 2002]Jeppssoret al, 2002 The recombinant strains also have limitations, nyainl
the one being a cofactanbalance of the engineered Ipagy of the xylose metabolism, which
are xylose reductase and xylitol dehydrogen@®eca et al., 2003Matsushikaet al, 2008;
Matsushikeet al, 2009). Another approacthat has beeunsed to bypass the cofactorbalance
problem is to implement Xgse isomease; however most strains metabolized in this manner
havelow xylose consumption rat€¥an Mariset al, 2007; Kuyper et al, 200Barhumaeet al,
2007). Other factors limiting xylose utilization in recombinant celise inefficient xylose
transportergKotter andCiriacy, 2003) lower capacity for the pentose phosphate pathway (PPP)
(Walfridssonet al 1995)andinappropriate regulatory mechanis(dgeffries and/an Vleetet al,
2009). Effortswere made to increase the affinity of the xylose transp@tefincreasd ethanol
productivity; however capacity of the yeast was $titlited (Katahiraet al., 2008)Knowledge

of how yeasts such &S. stipitisnatively ferment xylose is still limiteth terms ofrelavant
biochemical reactionsthermodynamics,enzyme kinetics, and mechanistic understandsng
These factors all limit the extent which could be the main reasorathmetabolic engineering
can succeedPart of my research focuses on using geneoae metabolic modeling & stipitis

to gain abetter understanding of itellular metabolismn order to understanghich key steps

to change in order tamprove bothS. stipitisand engineere&. cerevisiador lignocellulosic
ethanol production. Specifically, a gencfegel understanding of xylosmetabolism inS.

stipitiswould help identifyeffective strategies for metabolic engineeri@gign



1.12.2 Scheffersomyces stipitis

1.1.2.2.1 Introduction

Scheffersomyces stipig@weviously calledPichia stipitis that was first isolated from the
excreted frass oWwoodingesing beetles (Shi et al., 2002pue to its important role in the
production of lignocellulosic ethanol, a second generation biofuel (Naik et al., Z50]itis
has drawn increasing research interest in the last few de¢Bdentraut 2010). Currently
efficient pentose uiitation remains one of the economic barriergptoducing coseffective
lignocellulosic ethanol through biological conversion (Margeot et al., 2009)Sastipitishas
the highest native capacity to ferment xylose into ethanol (Van Dijken et al., 1986; Du Preez et
al., 1989).The concentration of ethanol can be up to 61 g/L in media containing xylose and
nutrients Sliningeret al, 2006). The ethanol yield spandween 0.3% 0.48 g/g, which makes
this yeast strain one of the most effective for xylose fermentation for ethanol production
(Agbogbo andCowardKelly et al., 2008). Other reportlkat used a fethatch setup were able to
produce up to 47 g/L of ethanobfn xylose(Du Preezt al., 1989)with ethanol yields of 0.3
0.44 g/g(HahnHagerdal and Pamment, 2004With most of the carbon flux going toward
ethanol production, this leaves very little xylitol being produced. Nonethééesgentation rate
is still low on xylose when compared to glucose fermentatidd. @erevisiae

It also has the capability to digest a spectrum of sugars that in are comprised in the
hydrolysate, such as glucose, galactose, mannose, and celldbiesent study showetthat S.
stipitis outperformed industrial strains in terms of fermentat{datsushikaet al, 2009b).

Under xylose fermentation conditions most of the carbon flux goes to ethanol production, while
a small amount goes to xylitol. The fermentation rateloéage onS. cerevisiags a lot higher

than xylose fermentation @. stipitis. S. stipitiscan produce ethanol at a yield close to the



theoretical maximum und@xygenlimitation. In addition, low ethanol tolerance and no growth
under anaerobic conditiorare also limitations that complicate utilization in industrial
applications(Du Preez et al., 1989; Grootjen et al., 1990; Shi & Jeffries, 1998). To address these
limitations, attempts have been made to improve the xylose uptake r&e stipitisunder
oxygenlimitation, as well as to introduce enzymes for the xylose fermentation pathway$from
stipitis into engineeredS. cerevisiae(Johansson & HahHagerdal 2002; Karhumaa et al.,
2005). Many metabolic engineering and adapgtievolution strategieshat been used witls.
cerevisiag(Harhangiet al., 2003;Sondereggeet al., 2004)However, these attempts have not
been entirely successful (Kotter & Ciriacy, 1993; Eliasson et al., 2000; De D#Ré6;
Bruinenberg, et al. 1983), which is due redox balance, lack of sugar transports and digestion
geneslt is important to gain further understanding to either improve it as a host strain or even as

a gene provider for other strains.

1.1.2.2.2 Xylose ratabolism

Figure 1.2 shows the xylose metabolism $rstipitis where xylose is converted into
xylitol by a xylose reductase (XRjhathas the ability to use both NADH and NADPH with an
activity ratio of 0.7 for NADH/NADPH (Jeffries et al., 1999ylitol is then oxidized to
xylulose by xylitol dehydrogenase (XDH)here NAD is used as the cofactor. NADP is given a
dasted line, since there have been reports that this cofactor has also been used for this reaction
(Matsushikaet al., 2008;Yablochkovaet al, 2004).Xylulose is phosphorylated to xylulose 5
phosphate, which then enters the +ooudative branch of PPP. The end products of the non
oxidative branch of PPP is carbon compounds of fructegko8phate rad glyceraldehyde -3

phosphate (Jeffrie2006).
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Figure 1.2 Xylose Metabolism of5. stipitis Red letters without parenthesis represent enzymes.
Red letters in parenthesis represgares that encode the enzymes

Diauxic behavior is shown fd8. stipitis when glucose and xylose areorporated into
the same media3rootjenet al, 1991;Sliningeret al., 2011)Gene expression data showed that
Xyll, Xyl2, and Xyl3 were upregulated for both oxygdmmited and aerobic conditions, when
xylose was used as the substrate, but these gdrere downregulated when glucose was used
(Jeffries et al., 2007). When Xyl1 expression was incre@Baklimaet al., 1991}his resulted in
enzymatic activity incrasing twefold, however this hado profit for ethanol productio(Dahn,

et al, 1996).

1.1.2.2.3 Oxygenation characteristics

S. stipitisis a Crabtreaegative yeast, meaning that the presescabesncef oxygen
regulates the fermentation rate, as opposed to the Crglutsé&ve yeastS. cerevisiag where
fermentation is regulated lilye level of the sugar concentration present, such as glucose, making
it independent of oxygen uptake rate. Resf@ronentative behavior is seen only under oxygen
limited condition forS. stipitis(Klinner et al., 2005) Under oxygedimitation, the enzyras
pyruvate decarboxylase and alcohol dehydrogenase show increased éSkoilg andHahn
Hagerdal, 1990; Skoog et al., 19925 well as their corresponding gergésffries et al 2007).

These are the enzymes that catalyze reactions for ethanol production, where pyruvate
decarboxylase (Pdcl and Pdc5) and alcohol dehydrogenase (Adhl and Adh2) are shown in

Figure 1.3.Alcohol dehydrogenase (Adhl) was ten times higieder oxygedimited than



aerobic conditions. Also pyruvate decarboxylase was activated when oxygen levels switched

from aerobic to oxygefimited condition Cho andleffries 1999).
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Pyruvate
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Figure 1.3:0Outline of glucose and xylose metabolism in yeasts. Enzi@s@gnations are fro
assignedloci in Saccharomyces cerevisiam Pichia stipitis Hxkl Hexokinase P1;Hxk2
hexokinasePll; Glk glucokinase;Pgi phosphoglucose isomeradetk phosphofructokinase 1;
Fbafructosebisphosphate aldolas&dh (G3p) glyceraldehye-3-phosphate dehydrogenastgk
3-phosphoglycerate kinas&pmphosphoglycerate mutagenoenolase (dhosphoglycerate
dehydratasePykpyruvate kinasePdcpyruvate decarboxylas@édhalcohol dehydrogenase;
Pdhpyruvate dehydrogenadgha aldehyde deydrogenasefcsacety tcoenzyme A synthetase;
6Pg6-phosphogluconate dehydrogenase, decarboxyld@peribulosephosphate
3-epimeraseRkiribose5-phosphate isomerasekl transketolaseral transaldolasexor

xylose (aldose) reductaseid xylitol dehydrogenaseXxksxylulokinase(Jeffries and Shi, 1999)

One major disadvantage 8t stipitisis its inability to groweven though itan produce
ethanolunder anaerobic conditior{Bruinenberget al., 1994)lt is still unclear whys. stipitis
cannotgrow under anaerobically it needs orntyinimal oxygen present to achievgptimal

ethanol production condition€fio andleffries 1999).
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1.1.2.2.4Electron Transport ChaiiETC)

S. stipitis has the standardespiration machinery along with alternadive respiratory
components thadllow the transfer of electron transfer to occur with or witlamutpling to ATP
production. This allows electrons either to enter through Complex mitachondrialNADH
oxidation or througlthe external or internal neproton translocases of NADH or NADPH. A
clear depiction of this can be seen in Figure 1.4. At the terminal of the ETC is Complex IV,
which is part of the standard machinery or an alternative oxidase, which can be used ynder ver

low oxygen conditions and only on xylose not glucose.

Cytosol
H* - -
A NADH,,  NADPHg Stol . Cyte
oy I — T A
| 77 LA _
| e g || ()
{
A 1[ CoQ  SHAM L] m W
- —— ./' ‘
NADH,,  NADPFH, e = Cyel
) ) 1120, I: 0 120, R0
: ? [Site TV]

[Site I)
Maitrix

Figure 1.4 ETC of S. stipitis Contains the protoetranslocating NADH dehydrogenase

(Complex I); internal and external nqmoton translocating NADH dehydrogena$¢ADH |,
NADHEex);internal andexternal norproton translocating NADPH dehydrogena®&ADPHy,
NADPHey); succinate dehydrogenase (Complex Il); ubiquinone complex (CoQ); SHAM
sensitive alternative terminal oxidasgtochromebcl (Complex Ill); cytochrome (Cyt c); and
cytochromec oxidase (Complex IV{JoseplHorneet al., 2004)

1.2 System biology

System biology is a rapidly growinfield of study that wagprimary developedin
academiaand is gaining popularity in commercial industrigdeker et al 2001). Biological
systems present a great challenge to researduerso the great complexity. Conventionally,
scientists have adopted the reductionist point of vielich states that examining the simplest

parts of a system are critical in understanding yis¢esn as a whole. The system is broken down
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to the most reduced state of comptigxand then worked upward in complexity. Tlsparates
biological systems into specific partand thenstudies them under isolatigqiderem, 2005;
Gallagheret al., 1999 Then once all the parts are understaben the pieces can put together
like a puzzle andhe understanding of the system can be establisBeiéntistshave devotel

their lives to study one particular gene or proteirorder to gain knowledgeAlthoughsuccess

has been achievassing the reductionist approach, however when applied to biological system
there are great limitations, such that it is a grueling process that makes it pretty much impossible
to unravel the mechanisms involved. Ths mainly due to gaining aidher level of
understandinghe interactions between genes, proteins, and their effect on the metabbdlesm.
development of innovative technologies has brought about the production of complex biological
datasets. Genetic synthe technologies and sequencing has emergbiblaogical research that

have reaped the sequencing the first genome gambmescale metabolic modelsSystem
biology providesa comprehensive functionality of biological systems through studying the
behaviorand relationship of the biological elements simultaneo(Blrabasiet al, 2004).
Mainly it utilizes a holistic approach from whicjuantitative data can be extracted. Rather than
examining an individual biological entity, it allows for studying thewflof information as a
whole on all biological levels, such as on proteins, genomics, regulation networks, and
metabolically(Spenceret al., 2008; Tang et al., 2005; Palsson, 20BRure 1.5 provides the
general concept of system biology versios tradgtional reductionist approach.h& reductionist
approach investigates the individual comgots of a system, such as the components of a
computer network or genes of a specific organ. System biologists integrate information together
globdly, therefore ingead of performingheir research to the far left as the reductionstir

research proceeds to the right, where the whole system can be studied (@Gpditski, 2012).
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Reactions

Figurel.5: Integrative approach of system biology (Galitski, 2012)

A recentpaper (Sauer et al., 2007) stressed on the significance of using a-Exéapproach

for studying cellular metabolisms i Rat her than a reductionist v

genetic view), the pluralism of cause and effects in biological ar&twnis better addressed by

observing, through quantitative measures, multiple components simultaneously, and by rigorous

data integration with mathematical models. Such a systielm perspective (soalled systems

biology) on component interactions is végd so that network properties, such as a particular

functional state or robustness, can be quant.i
My work used anntegrative perspective by comparing, refining, and validating genome

scale metabolic network models in order to gain a systems level understabeting now look

at the literatue of themodelng techniques that were employed

1.2.1 Modeling of metabtic networks

The primary goal of modeling ewabolic networks is to deconstruttie complex
information of the microorganism into a computational framework with the objective of
predicting the cellular phenotype from the genotyperdbaret al., 2014) Compared to other

biological systems, metabolic networks are reldyiweell understood, which isittributed to
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knowledge ofthe metabolites and the reactions that convert the biological constitliéiets.
structure of the metabolic reactions and themmectivity is estabkhed, thus we have a
fundamental understanding tife metabolic network. Btabolism is a key player for regulating

the homeostasis of aigisms, because of the constanbstrate being taken up and conversion
into building blocks for bomass and bproducts. The size of metabolic networks is typically
classified under two camps: central carbon metabolism models (~80 reactions, 40 metabolites)
and genomescale models (>1000 reactions,500 metabolites)(Kromer et al, 2014).
Commonly, there ar®our primary approaches are taken to model metabolic netwSiiedling
2004;Zomorrodiet al., 2012) 1. Interactiorbased networks neglect the stoichiometry of the
network and emphasize the network connectivity. The main assumigtithat the system
remains stationaryAre used in largescale systems (transcription of genes and proteomics) that
focus on how information is propagated. 2. Dynamic modetsdinary differential equations

with kinetic information are used to depicetdlynamics of the syster. Stoichiometric models

T examine fundamental cellular biochemistry that is used to quantify the intracellular mass flow
at steady state, where the system is used to be statidn&@toichiometric models with kinetic
information i very similar to type 3 (Stoichiometric models) except now there exists at least one
kinetic equation that relates the concentration of a metabolite to the reaction rate.

Modeling that is done in biological systems usually invokes thbasgd models, fich
involves a particular inpuith a set equation for a specific solution. Theses$ypf models are
troublesome, because the kinetic parameteeed to be determined through expensive
experimerg (Famili et al., 2005;Segre et al, 2003). The accurate determination of the
parametergan be often questioned, due to the varigbédnd difficulty of their measurements

Parameters need to be quantified usually have signiferant or have not even been measured
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underin vivo conditiors (Rizzi ¢ al., 1997;Teusinket al, 2000Vaseghiet al., 1999Wright and
Kelly, 1981).Due to these shortcomings, there has been no gescatetheorybased model
constructedJamshidiand Palsson, 2008Another commorapproach is cybernetic modeling,
which finds unknown or hiddeparameters through various assumptifempalaet al, 1984;
Young et al, 2008).

Constraintbased models are known as structural metabolic network modeling, which
does not require kinetic parametdrst rather defined constraintThey are based on the miero
evolutionary principle that biological systems have adapted to diverse environments over time
and as they multiply they are not identical to their parent cells. Palsson describes the phenomena
this way: ATo witomment, \organisms mast sgtisfy ,eynad eonstraints, which
limit the range of available phenotypes. All expressed phenotypes resulting from the selection
process must satisfy the governing constraints. Therefore, clear identification and statement of
congraints to define ranges of allowable phenotypic states provides a fundamental approach to
understanding biological systems that is consistent with our understanding of the way in which
organi sms operate and GConstalntbasedfotels havesbeem areund a |
for more than 25 years, sin@®86 (Fell and Small, 1986peaking in the mid 9 9 (Savanell (
and Palssonet al, 1992; Varma et .al1993 they were used to computee metabolic flux

distribution and cellular growth.

The differen types and magnitudeof the constraints will limit the cellular function. A
recent paper summarizes the types of constraints in four categhmeEmentalphysice
chemical constraints, topological constraints, environmental constraints, and regulatory

constraints.
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(i)

(ii)

(iii)

(iv)

Physicachemic# constraints: Numerous constrairgevern cellular metabolism

and are known as hard constraints. Hard constraints are the laws of conservation
of mass, energy, and thermodynamiCs\ertet al, 2001; Edwards et al., 2002).
These constraints will not change with the environmental pressures.

Topological constraints: This deals with the crowding of molecules inside the cell.
For instancethe length of dacterial genome is on the magnituael000 times

the length of the cell. Thus this means thatDiNA must be crammetightly, but

fully accessible in order to be unraveled into cellular machinery.

Environmental constraints: These constraints are time and condition dependent.
Examples ofthese constraints are availability of nutrients, pH, temperature, and
osmolality

Regulatory constraints: These constraints are different from the three types
described above, because they are-isgosed constraints. They can change
based on the evolutiany conditions and can vary with time. These constraints
are used to eradicate suboptimal phenotype states and improve fRaesastly,

there are regulatory constraints based on transcriptional levels of genes (Reed et

al., 2012).
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Constraintbased modsl have become populamang researchers, because they operate

under steadgtate conditions and only neélake network stoichiometry. This has brought about a

myriad of tools/algorithms developed for modeglimetabolic networks. The maomes are: flux

balance analysis (FBA)XVarma et al. 1993; Edwards et al., 1999etabolic flux analysis

(MFA) (Schilling et al 1999; Varma and Palsson, 199%ementary mode analysis (EMA)

(Schusteret al, 1999), extreme pathway analysis (EPAS$chilling et al, 1999), robustness

analysis (RNA) (Edwards and Palsson, 2000), phenotype phase plane aRdlip$)Edwards

et al.,, 2002), minimization of metabolic adjustment (MOMAegre et al., 2002), flux

variability analysis (FVA) (Mahadevan a&thilling, 2003), and redatory orroff minimization

(ROOM) (Shlomi et al., 2005More than 100 methodsave been developed to predict and

analyze metabolic activity througtonstrairtbased modelgrigure 1.6 shows the phylogenetic

tree of them.
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Modeling techniques discussed above comgtaéc metabolic states. omever, there
are disadvantages: h e ¢ e |l | Gebaviad gannatrbe determinegthere are difficulties on
implementing cellular regulatiomndmost experiments are done in batch anddetth cultures,
where a dynamic model is requir@dintoniewicz 2013 Kauffmanet al, 2003. Presently, the
dynamic behavior is modeled throughe@rmodeling techniques, which are kinetic modeling,
cybernetics, and dynamic FBA. For kinetic modeling and cybernetics require parameters that
need to be fitted through designed experiméR@man andChandra 2009 Smallboneet al,
2010) Dynamic FBA is an extension of FBA, however it does require empirical substrate
equations, such as using michaehienten kinetic§¥Hanly andHenson 2011; Hjersted and
Henson 2009). Dynamic modeling is noéxamined in this work, but is a future stdyattis

needed to improve model prediction.

1.2.2 Flux Balance Analysis

Flux balance analysis (FBAs a powerful technique thatas developed in 199¥arma
and Palsson, 1993)t was the first optimizaticbased tool for determining the metabdliax
distribution (Varma and Palsson, 1994Yhe metabolic network is treated as a linear
programming problem, and an objective function, typically growth rate, is used to calculate an
optimal solution. Reversibility data for reactions are used for therl@md upper bounds in
order to constrain the reaction fluxes, which are the variables in the problem. The other
constraints are the extracellular uptake rates of the substrates, such as carbon and oxygen source.
This method is used calculate the flow raetabolites in a metabolic network, metabolite of
interest(Orth et al, 2010). There are currently more than 35 organisms that have metabolic

network models developednd highthroughput technologies allow the construction of many
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more each year, thus PBs extremely important tool for gaining biological knowledge in these
models(Gianchandaet al, 20100rth et al, 2011; Schellenberger et &011).

As previousl y di s c ulgnstie parameteButd osessvellddefined e q u i
constraintdased on fundamental laws of nature. However, there are limitations to this, such that
it does not calculate metabolite concentratioee et al, 2006). Also the focus is solely on the
metabolism, so it does not incorporategulatory effects of genesr enzyme activity
(Ramakrishneet al, 2001). Because it isa steadystate approach, only uses timenvariant
substrate and nutrient consumption rates, thus it is only uses predictioncémaimuous

experiments.

A simplified metabolic networknodé of 4 reactions and 3 metalitals is displayed in
Figure 1.7to demonstrate how FBA is carried oufhis can be thought of a network flow
problem in the field linear programming, where the metabolites are nodes and the reactions are
the edges.The next sction will discuss how genonszale metabolic network models are
construction, but briefly these are generdiedn an annotad genome and other biochemical
and physiological databaseshe reconstruction process is extensigach that it can take
months or years to complef€hiele andPalsson2010; Henry, et gl2010). A mass balace is
prescribed on each metabolite in the netwanll is written in the form of a stoichiometric matrix
(S). The rowsand columngepresentach unique redion and metabolite, respectively. Each
column entry represents the stoichiometric coefficient of each metabolite. The sign determines
whether a metabolite is consumed or produced, a positive sign is production and a negative sign
is consumption. If thenetabolite is not present in theaction the entry receives a zefde
stoichiometric matrix is mass balanced, meaning the total consumption and production each

metabolite is balanced at steady stétes common for the reactions to exceed the numlber o
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metabolites. Thibecomesan underdetermined problem, meaning that tisenm&inite numbelof
solutions. Here the key assumptioina steady state systasimade whichransforms this from a
dynamic problem into a static ondhis assumption is justified the assumptions that (1)
intracellular metabolites reach thermodynamic equilibrium orders of magnitude faster than
enzyme level change or cells double, and (2) in constrast to metaboliteinticacellular
metaboliteconcentratioa changeminimally in response to physiological changes in the cell
because they are largely determined by enzyme affinities rather than reaction sadeesalt
metabolite levelsare balancedinetically and thermodynamically at each flukhe x term
represents the metabolite concentration, where this is shown in the derivative with respect to
time, and the v is thenatrix of fluxes of individual reactiongombined FBA lessens the
computational load by assuming a steady state, wisereh is turned o a timeinvariant

problem, which is essentially like solving for the null space.

Using the assumption of a steady state is a generally acceptable practice in systems
biology, which eliminates the convolutesystem dynamics ofmetabolism that takes tm
consideration the kinetics amthzyme activities. As stated above the justification steams the
fact that the metabolite levels are highhansientrelative to the cellular growth and the
extracellular environmental changestudies showed that thmetabolic transients only last a
couple of minutes, therefore the metabolic fluxes are in a-Gteaily state in comparison to the

growth and process transieift&arma and Palsson, 2004)

From there the redons are constrained, that are primaitythe pickupand output
reactions, such as sstbates, oxygen, and byproductstracellular reactionsan beconstrained
if there is supportingexpeiment information, such as througfC labeledexperiments of the

metabolic flux(Sauer, 2006Wiechert 2001) The variablev; represents an individual reactjon
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where it is constrained between a lower bolh@nd an upper bounf. Implementation of
constraints generates solution spaceof an n dimensional polytopevhich is the allowable
solution space of flux distributiondngrafting constraints is why researchers have named this

approach, constraifitased metabolic models (Llaneras &) 2010).

The final stepgs to determine an objective function in order to pinpoint a unique solution
in the feasible space of the polytope. In the early years of FBA, there were many objective
functions selectedPfamanik andeasling,1997; Varma and Palsson, 1994), however then the
maximization of the biomass objective function emerged as the main oneh whis the
stoichiometric yield for biomass. It is contains in equation format the building blocks that make
up the biomass component. It has been determinedlthathifrough the biomass reaction rate is
directly proportional to the growth of the orgam Stephanopoulost al., 98). The micre
evolution principle is applied, which states that surviving microorganisms have gained an
advantage over the competing microorganisms by growing in more of an effective way.

Therefore optimization guides cellular decision making.
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R2Z—R3:A=<=B ——  _
R D e
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~ —
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Matrix S In the steady state.
m compunds Sv=0
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r
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Figure 1.7 FBA construction on a simplified metabolic network mogdRatifioet al., 2012)
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The biomass growth reaction is based on experimentally determined biomass components
(Feistet al., 2010Schuetzet al, 2007).0Other maximization objective functions are metabolite
synthesis Montagudet al., 2010) and a plural objective scheme of biomass and metabolite
synthesis Burgardet al., 2003;Pharkyaet al, 2004). In constrast, the minimization objective
functions areredox power, (Knorr et al2007),ATP formulation(Knorr et al, 2007;Vo et al.,

20049, and nutrient uptakesegreet al., 2002).

There arenumerousof software tools that carry out FBAuch ashte COBRA toolbox
(Becker et al., 2007) that is coded in Matl&kthers are Pathway tools (Paley et al., 2012),
BioMet toolbox (online usage) (Cvijovic et al., 2010) and OptGene (offline ugRagé) et al.,

2005; Rocha et al2008)

1.2.3 Genomescak metabolic models (GSMM s)

Genomescale metabolic mode(&SMMs) provide a relationship between the genotype
andphenotypethey provide a holistic view of the cellular metabolism. ©wralidated, GSMMs
provide a platform to effectively interrogate cellular metabolism, such as characterizing
metabolic resource allocation, predicting phenotymedesigning experiments to verify model
predictions, as well as designing mutant strains with desired pegpériu et al., 2010;
Oberhardtet al, 2009) More importantly, GSMMs allow systematic assessment of how a
genetic or environmental perturbation would affect the organism as a whole (Becker et al.,
2007).

GSMMs were developed in thda 9900 s d u e getce of segencirgnaole
genomes (Schiltig et al., 1999). The first GIMs were achieved in the organismbaicteria for
H. influenza(Schilling and Palsson, 200@ndE. coli (Edwards ad Palsson, 2000). However,
there weremetabolic models before thistarting with Fell and Small (1986Mavrovouniotis
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and Stephanopoulo$1992), and Savinell and Palsson (1992), however these models did not
contain all the reactions in the genome due to the lack of sequencing techiidlegyice of
sequencing entireegmomes habeen educed in recent yearand this has opened the door for
metabolic reconstructions (Henry et al., 2010).

Developing a reliabl&SMM is comprised in four steps: (hetwork reconstructign(2)
manual curation and building mathematical model, (3) model validation using experimental data,
and (4)refinement of the model by iterations between computational and experimentafparts.
annotated genome must be supplied toometruct a GSMM. Gears accounfor metabolic
functions and draft reconstructions are constructed, which tell us the relationship between genes,

reactions, and metabolites.

Figure 1.8 depictshe biochemistry hierarchgtaring fromgenomics to metabolomics
The GSMMs that areused in this work only gather information frometbenome, and does not
take into account data from transcriptome, proteome, and metabolome. The study of the
transcriptome allows researchers to draw information about the gene expression patterns
(Marioni et al., 2008;Mockler andEcker, 2005; Wang et al., 2009Proteomics looks at the
guantification of protein concentrations, where this is commonly measured through mass
spectrometry (Gstaiger adebersold 2009;Sabidoet al., 2012). Information from redtolome
and fluxome provide information that is closest mepicting what is happening in the cellular
state. The metabolome measures all the intracellular and extracellular metabolites, such as lipids

and amino acids either over time or under a givemition (Scalbertet al., 2009).
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Figure 1.8 Plurality of levels for reconstruction of GSMNMIémutluet al., 2012)

Fluxomics provides the rate of metabolic reactions at the scale of the network. Again mass
spectrometry provides a steadfast way to ddteste metabolites. Fluxomics @one through
isotope labeling, where thenetabolic flux analysis is applied to determine the rate of metabolite
conversion (Kromer et al., 2009; Sanford et al., 2002). There have recently been the
devel opme ndese ad fimodel® ¢hattinclude these omics measurements with other
advances, such asotein translocation in the cell membrane, protein structures in enzymes, and

enzyme production costKifg et al., 2015).

Metabolic databases provide a plethora of ways to map a gene to a reBRiitNDA
(Schomburget al, 2002),MetaCyc(Karp et al, 2002) and KEGG(Kanehisa and Got@®000)
are commonly used onek is important to have a vast amount of diverse sourcesder to

avoid the presence of false negasivend false psitives A standard procedure for the
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reconstruction proceshas been publishedFeist et al., 2009:Thiele andPalsson 2010).
Literature papers and textbooks apsovide a valuableairceof knowledge about reactions and
enzymes, such as EC numgeeraction localization, reaction reversibility, and gene association.

It is important to have strain specific information.

Next, gap filling is needed to balance out timetabolites, where they can balance out
stoichiometries or cofactor usage. The stoichiometric matrix is then formulated, and constraints
are definedThe biomass reaction equation is found by knowing the relative amounts of lipids,
amino acids, carboldyates, and nucleic acids. Computational analysis is then carried through
FBA and these simulation results are compared with validation experiments. There are various
validation experimentscomparing production rates, lethal reactions, and omipgrenents,
such measuring fluxe&aining information on the exchange reactiansboundary parameters,
and this constrasthe model to be operating in experimental regions. Our recent work provides
another validation approach that looks at how metabolic pathvesgonse as the system is
perturbed Here qualitative information is extracted and this can be compared with established

claims (Damiani et al., 2015).

Overall thereconstruction process can be thought as assembling a jigsaw puzzle, where
the pieces of the puzzle are supplied, but the problem lies in fitting everything together. This
results in this being an iterative process, where there are many repetitivefcstepedel
refinement The pieces of the puzzle can be viewed as the genomics, physiological and
biochemical data and putting the pieces together using gap filling strategies of experimental data
and computational analysiskigure 1.9 exhibits the workfloior constructing a high qu#ji

GSMM.
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Figurel.9: Procesgor formulating high quality genorrgcale model§Thiele andPalsson2010)

Once a GSM has been validated and there are a plethbegpplications investigating
hypothesisdriven discovery, study of multi species interactions, contextualization of high
throughput data, and guidance of metabolic engineering (Kim et al., @d&2hardet al., 2009;
Osterluncet al., 2012).

Tablel.1. Success of GSMsfor production of biofuels. EthandE. coli (Anesiadiset al.,
2008),S. cerevisia€Bro et al., 2006 Mahadevarand Henson, 2007) arfd mobilis(Lee et al.,

2010). ButanolE. coli (Ranganathast al., 2010; Lee et al., 2011), C. acetobutylicorfien
et al., 2010; Lutkdeversloh andBahl, 2011), and.. brevis(Berezinaet al.,2010).
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