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Abstract 

 

Fossil fuels impart major problems on the global economy and have detrimental effects to 

the environment, which has caused a world-wide initiative of producing renewable fuels. 

Lignocellulosic bioethanol for renewable energy has recently gained attention, because it can 

overcome the limitations that first generation biofuels impose. Nonetheless, in order to have this 

process commercialized, the biological conversion of pentose sugars, mainly xylose, needs to be 

improved. Scheffersomyces stipitis has a physiology that makes it a valuable candidate for 

lignocellulosic bioethanol production, and lately has provided genes for designing recombinant 

Saccharomyces cerevisiae.  

In this study, a system biology approach was taken to understand the relationship of the 

genotype to phenotype, whereby genome-scale metabolic models (GSMMs) are used in 

conjunction with constraint-based modeling. The major restriction of GSMMs is having an 

accurate methodology for validation and evaluation. This is due to the size and complexity of the 

models. A new system identification based (SID-based) framework was established in order to 

enable a knowledge-matching approach for GSMM validation. The SID framework provided an 

avenue to extract the metabolic information embedded in a GSMM, through designed in silico 

experiments, and model validation is done by matching the extracted knowledge with the 

existing knowledge. Chapter 2 provides the methodology of the SID framework and illustrates 

the usage through a simple metabolic network.  

In Chapter 3, a comprehensive examination was carried out on two published GSMMs of 

S. stipitis, iSS884 and iBB814, in order to find the superior model 
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The conventional validation experiments proved to be unreliable, since iSS884 performed 

better on the quantitative experiments, while iBB814 was better on the qualitative experiments. 

The uncertainty of which model was superior was brought to light through the SID framework. 

iBB814 showed that it agreed with the existing metabolic knowledge on S. stipitis better than 

iSS884. 

Chapter 4 showed that the errors in iBB814 were eliminated by refining iBB814 to 

construct a modified model known as iAD828. The SID framework was used to guide model 

refinement, which is typically a labor some and time intensive process. SID framework 

eradicates the trial-and-error approach, but rather has the power to uncover the reaction errors. 

iAD828 predicts xylitol production under oxygen-limited conditions, which is in agreement with 

experimental reports. This was a significant improvement, since iSS884 and iBB814 does not 

have this capability and now iAD828 can be used to properly engineer recombinant strains. Also 

the SID framework results of iAD828 show noteworthy improvement relative to iSS884 and 

iBB814.  

The superior performance of iAD828 propelled the use of this model for strategies to 

increase ethanol production. Understanding cofactor balance during fermentation is crucial in 

obtaining high quality strains for ethanol overproduction. Recently much work has been done on 

cofactor imbalance of the first two reactions of xylose metabolism-xylose reductase and xylitol 

dehydrogenase. There is not a clear understanding in S. stipitis how the cofactor preference of 

xylose reductase affects the metabolism. The cofactor preference of xylose reductase was varied 

and an optimal phenotype was determined. Analysis from this guided in silico metabolic 

engineering strategies resulted in elevated production of ethanol. This information can be found 

in Chapter 5.  
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In Chapter 6, SID enhanced PhPP analysis was developed as a tool to overcome the 

limitations that PhPP analysis imposed. The power of this tool was shown by applying it to an 

illustrated example and an E. coli core model. Here the traditional PhPP analysis was unable to 

uncover the metabolic knowledge that the SID enhanced PhPP analysis was able to accomplish.  

The traditional PhPP analysis used shadow prices to determine the different phenotypes. This 

proved to be problematic for the E. coli core model. SID enhanced PhPP analysis was able to 

detect a ñmissingò phenotype that PhPP analysis failed to uncover. Also as the size of the 

metabolic model increases, the shadow price from PhPP analysis decreases to the point of having 

only miniscule meaning. Error was shown in the shadow price of the formate exchange flux. SID 

enhanced PhPP analysis provides a powerful tool for understanding metabolic phenotypes. 

Chapter 7 describes the conclusions and the future work of this study.  
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Chapter 1: Introduction  

1.1 Renewable energy derived from biomass  

 

 Fossil fuels impose major worldwide economic concerns and environmental pressures, 

due to there being a limited supply that needs to be able to foster an increasing energy 

requirement of the industrialized world, and the adverse effects of the production of greenhouse 

gases (Cherubini, 2010; Gupta and Verma, 2015). The strong dependency on petroleum based 

fuels intensifies the problem, where it accounts for 80% of the energy needs and 73% of carbon 

dioxide emissions worldwide. With the oil demand of world in 2013 being approximately 90 

million barrels a day (Hufbauer and Charnovitz, 2009) and it is projected that in 2030 that it 

reaches 116 milli on barrels a day, with the transportation sector accounting for 60% of this total. 

Therefore there is an imperative mandate for alternative energy source (IEA, 2007). Using 

biomass as an energy source to produce biofuels provides an attractive options in following 

ways: (1) economic potential due to the increasing prices of fossil fuels, (2) provides a 

sustainable source for energy in the future, and (3) affords favorable environmental conditions 

due to no net carbon dioxide emissions and very low amount of sulfur (Balkema and Pols, 2015; 

Eisentraut, 2010; Sobrino and Monroy, 2010).   

1.1.1 Production of sustainable fuels 

  

Bioethanol is the primary transportation fuel substitute for gasoline. It has many 

favorable properties, one being that it comes from a renewable source and can be used as an 

octane enhancer, since it is a high octane fuel. On the environment spectrum, it has low toxicity, 

it is biodegradable, and minimal pollution is emitted. It also has the ability to diminish 

greenhouse gas emissions, where it has been shown to decrease greenhouse gas compared to 
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fossil fuels 18% and 88% when using corn derived and cellulosic feedstock respectively 

(Service, 2007). Also leading oil producing countries have a stronghold on importing countries, 

thus blending bioethanol with gasoline provides a greater fuel security for countries. Another 

benefit is that entirely new infrastructure is created that opens the doors for employment (Balat 

and Balat, 2009; Evans, 1997). The last couple of decades have shown an increasing inclination 

for bioethanol production with 31 billion liters in 2001 (Berg, 2001) to 39 billion liters in 2006 

and it is projected to go to 100 billion liters in 2015 (Licht et al., 2006). The U.S. (United States) 

is the leading producer, and the U.S. Department of Energy (DOE) and the U.S. Department of 

Agriculture (USDA) have recently mandated that 36 billion gallons of biofuels be produced by 

2022. The U.S. being the top producer in bioethanol is due to the strong governmental support, 

which started back in 1978 with the Energy Tax Act that granted tax credits for ethanol usage. 

Recently in 2007, congress passed the Energy Independence and Security Act, which mandated 

the supply of 12 billion gallons of bioethanol by 2010 and this would increase to 15 billion 

gallons for 2015. Figure 1.1 shows the production of biofuels, specifically hydrotreated 

vegetable oil (HVO) known as ñgreen dieselò, biodiesel, and bioethanol through the years of 

2000 - 2013. Bioethanol remains the top biofuel being produced with 75% of the total biofuel 

production, and U.S. production is around 50 billion liters, where almost all was from corn 

feedstock. Brazil is the next largest producer; together the U.S. and Brazil produce 62% of the 

bioethanol in the world, from sugar cane and corn. European countries are getting involved, 

where the European Union has set similar goals as the U.S. (Cherubini, 2010).  
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Figure 1.1: Global production of hydrotreated vegetable oil, biodiesel, and bioethanol for 2000 ï 

2013 (Global Status Report - REN21, 2014) 

 

1.1.1.1 First generation biofuels  

 

First generation biofuels are produced from feedstocks that are derived from food crops. 

Some of the commonly used raw materials are sugar cane, corn, animal fats, and vegetable oil 

(Naik et al., 2007). Conventional methods are used for production of first generational 

bioethanol, and production of first generation biofuels are considered a well -established industry. 

Despite the need to reduce greenhouse gas emission, first generational biofuels provides limited 

reduction (Collins, 2007). Another major drawback of first generation feedstocks is the 

competition with the food industry (Marris, 2006).  

1.1.1.2  Second generation biofuels 

 

 This has brought the incipient of second generation biofuels, which are based on nonfood 

crops or crop resdiues. Unlike corn feedstock, which is composed of a starchy material, 

ligonocellulosic biomass comes from the fibrous part of plant that is non-starchy. Lignocellulosic 
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biomass are divided into five groups of feedstocks: 1) agricultural residues (leftover material 

from crops, such as corn stover and wheat straw); 2) forestry wastes (chips and sawdust from 

lumber mills, dead trees, and tree branches); 3) municipal solid wastes (household garbage and 

paper products); 4) food processing and other industrial wastes (black liquor, a paper 

manufacturing by-product); and 5) energy crops (fast-growing trees and grasses, such as 

switchgrass, poplar and willow) (Mansfield et al., 2006). Hexose and pentose sugars comprise 

about 50 ï 80% of the carbohydrates in lignocellulosic biomass. The carbohydrates are 

biologically converted to bioethanol through fermentation (Mousdale, 2006). The carbohydrates 

are broken down in two groups, cellulose and hemicellulose. Cellulose is composed of linear 

glucose polymers that are ɓ linked together.  Hemicellulose is an extensive branched polymer 

that is comprised of five-carbon sugars: arabinose and xylose, and a six-carbon sugar: galactose, 

glucose, and mannose. There is a non-carbohydrate group, lignin, which provides the structural 

foundation of the plant, where this part cannot be fermented (Sindu et al., 2015).     

Lignocellulosic biomass is known as a green gold raw material, because it has many 

advantages: (1) renewable and sustainable, (2) reduction of air pollutions that result from burning 

and rotting of biomass in fields, (3) alleviating greenhouse gases, (4) provides economic benefits 

locally through development and simulation, (5) halting energy dependence on countries that 

rely on importing oil, and (6) generating technical jobs (Bjerre et al., 1996). It has been 

calculated that lignocellulosic biomass has the potential to produce 442 billion liters of 

bioethanol, which is due having the worldôs largest renewable source of bioethanol (Hakeem, 

2014). The two routes for conversion of lignocellulosic biomass to biofuels are done through 

thermochemical and biochemical conversion. Thermochemical conversion first involves the 

production of synthesis gas (blend of carbon monoxide and hydrogen) through gasification or 
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pyrolysis, then reformation of fuel through a catalytic process, such as the commonly used one of 

the Fischer-Tropsch reaction or by a biological reaction. Biochemical conversion involves first 

breaking down the sugar polymer to sugar monomers through pretreatment processing, and then 

microorganisms are used to ferment the sugar into biofuels (Mckendry, 2002). A recent study 

showed that production costs of second generation biofuels is two to three times more expensive 

than petroleum based fuel production costs (Balan, 2014).  

1.1.2 Microbial strains for biofuels 

 

Present research efforts focus on fermenting glucose and xylose. Cofermentation is one 

route that ferments the sugars simultaneously, and it is believed to have fewer costs then solely 

fermenting the individual sugars (Ohgren et al., 2007; Zhao et al., 2008). There are a collection 

of microorganisms available, such as Saccharomyces cerevisiae, Scheffersomyces stipitis, 

Kluyveromyces marxianus, Candida shehatate, Zymomonas mobilis and Escherichia coli (Gírio 

et al., 2010). Prokaryotes (E. coli) and lower eukaryotes are strains that have been used to 

produce ethanol from biomass feedstocks. Yeast has enhanced properties, because they have 

higher ethanol tolerance, resistance to contamination, growth at low pH, and have thicker cell 

walls (Jeffries, 2006). Also yeast has already been in industrial applications, therefore there is an 

established production facility (Hahn-Hägerdal et al., 2007).  

1.1.2.1 Saccharomyces cerevisiae 

 

S. cerevisiae is the most common microorganism used for ethanol production, which is 

accomplished through fermentation of hexose sugars. When pentose sugars are present in the 

feedstock the productivity diminishes. It has the capability only to metabolize phosphorylated 

pentose sugars, like ribose 5-phosphate, but assimilation of pentoses such as xylose is 

problematic. S. stipitis and E. coli can natively ferment xylose (Kim et al., 2007), however 
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ethanol productivity is still low so metabolic engineering to create recombinant strains, such as S. 

cerevisiae or Z. mobilis has been a major focus on research (Joachimsthal and Rogers, 2000; 

MartēӢn et al., 2002; Jeppsson et al, 2002). The recombinant strains also have limitations, mainly 

the one being a cofactor imbalance of the engineered pathway of the xylose metabolism, which 

are xylose reductase and xylitol dehydrogenase (Roca et al., 2003; Matsushika et al, 2008; 

Matsushika et al, 2009a).  Another approach that has been used to bypass the cofactor imbalance 

problem is to implement xylose isomerase; however most strains metabolized in this manner 

have low xylose consumption rates (Van Maris et al, 2007; Kuyper et al, 2005; Karhumaa et al., 

2007). Other factors limiting xylose utilization in recombinant cells are inefficient xylose 

transporters (Kötter and Ciriacy, 2003), lower capacity for the pentose phosphate pathway (PPP) 

(Walfridsson et al, 1995) and inappropriate regulatory mechanisms (Jeffries and Van Vleet et al., 

2009). Efforts were made to increase the affinity of the xylose transporter. Sut1 increased ethanol 

productivity; however capacity of the yeast was still limited (Katahira et al., 2008). Knowledge 

of how yeasts such as S. stipitis natively ferment xylose is still limited in terms of relavant 

biochemical reactions, thermodynamics, enzyme kinetics, and mechanistic understandings. 

These factors all limit the extent to which could be the main reason that metabolic engineering 

can succeed. Part of my research focuses on using genome-scale metabolic modeling of S. stipitis 

to gain a better understanding of its cellular metabolism in order to understand which key steps 

to change in order to improve both S. stipitis and engineered S. cerevisiae for lignocellulosic 

ethanol production. Specifically, a genome-level understanding of xylose metabolism in S. 

stipitis would help identify effective strategies for metabolic engineering design.  
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1.1.2.2 Scheffersomyces stipitis 

 

1.1.2.2.1 Introduction 

 

 Scheffersomyces stipitis previously called Pichia stipitis that was first isolated from the 

excreted frass of wood-ingesting beetles (Shi et al., 2002). Due to its important role in the 

production of lignocellulosic ethanol, a second generation biofuel (Naik et al., 2010), S. stipitis 

has drawn increasing research interest in the last few decades (Eisentraut, 2010). Currently 

efficient pentose utilization remains one of the economic barriers to producing cost-effective 

lignocellulosic ethanol through biological conversion (Margeot et al., 2009), and S. stipitis has 

the highest native capacity to ferment xylose into ethanol (Van Dijken et al., 1986; Du Preez et 

al., 1989). The concentration of ethanol can be up to 61 g/L in media containing xylose and 

nutrients (Slininger et al., 2006). The ethanol yield spans between 0.31 ï 0.48 g/g, which makes 

this yeast strain one of the most effective for xylose fermentation for ethanol production 

(Agbogbo and Coward-Kelly et al., 2008). Other reports that used a fed-batch setup were able to 

produce up to 47 g/L of ethanol from xylose (Du Preez et al., 1989) with ethanol yields of 0.35 ï 

0.44 g/g (Hahn-Hägerdal and Pamment, 2004).  With most of the carbon flux going toward 

ethanol production, this leaves very little xylitol being produced. Nonetheless, fermentation rate 

is still low on xylose when compared to glucose fermentation of S. cerevisiae.   

  It also has the capability to digest a spectrum of sugars that in are comprised in the 

hydrolysate, such as glucose, galactose, mannose, and cellobiose. A recent study showed that S. 

stipitis outperformed industrial strains in terms of fermentation (Matsushika et al., 2009b).  

Under xylose fermentation conditions most of the carbon flux goes to ethanol production, while 

a small amount goes to xylitol. The fermentation rate of glucose on S. cerevisiae is a lot higher 

than xylose fermentation of S. stipitis. S. stipitis can produce ethanol at a yield close to the 
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theoretical maximum under oxygen-limitation. In addition, low ethanol tolerance and no growth 

under anaerobic condition are also limitations that complicate utilization in industrial 

applications. (Du Preez et al., 1989; Grootjen et al., 1990; Shi & Jeffries, 1998). To address these 

limitations, attempts have been made to improve the xylose uptake rate of S. stipitis under 

oxygen-limitation, as well as to introduce enzymes for the xylose fermentation pathways from S. 

stipitis into engineered S. cerevisiae (Johansson & Hahn-Hagerdal, 2002; Karhumaa et al., 

2005). Many metabolic engineering and adaptive evolution strategies that been used with S. 

cerevisiae (Harhangi et al., 2003; Sonderegger et al., 2004). However, these attempts have not 

been entirely successful (Kotter & Ciriacy, 1993; Eliasson et al., 2000; De Deken, 1966; 

Bruinenberg, et al. 1983), which is due redox balance, lack of sugar transports and digestion 

genes. It is important to gain further understanding to either improve it as a host strain or even as 

a gene provider for other strains.  

1.1.2.2.2 Xylose metabolism 

 

 Figure 1.2 shows the xylose metabolism for S. stipitis, where xylose is converted into 

xylitol by a xylose reductase (XR), that has the ability to use both NADH and NADPH with an 

activity ratio of 0.7 for NADH/NADPH (Jeffries et al., 1999). Xylitol is then oxidized to 

xylulose by xylitol dehydrogenase (XDH), where NAD is used as the cofactor. NADP is given a 

dashed line, since there have been reports that this cofactor has also been used for this reaction 

(Matsushika et al., 2008; Yablochkova et al., 2004). Xylulose is phosphorylated to xylulose 5-

phosphate, which then enters the non-oxidative branch of PPP. The end products of the non-

oxidative branch of PPP is carbon compounds of fructose 6-phosphate and glyceraldehyde 3-

phosphate (Jeffries, 2006).  
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Figure 1.2: Xylose Metabolism of S. stipitis. Red letters without parenthesis represent enzymes. 

Red letters in parenthesis represent genes that encode the enzymes 

 Diauxic behavior is shown for S. stipitis, when glucose and xylose are incorporated into 

the same media (Grootjen et al., 1991; Slininger et al., 2011). Gene expression data showed that 

Xyl1, Xyl2, and Xyl3 were upregulated for both oxygen-limited and aerobic conditions, when 

xylose was used as the substrate, but these genes where downregulated when glucose was used 

(Jeffries et al., 2007). When Xyl1 expression was increased (Takuma et al., 1991) this resulted in 

enzymatic activity increasing two-fold, however this had no profit for ethanol production (Dahn, 

et al., 1996).  

1.1.2.2.3 Oxygenation characteristics 

 

 S. stipitis is a Crabtree-negative yeast, meaning that the presence or abesnce of oxygen 

regulates the fermentation rate, as opposed to the Crabtree-positive yeast (S. cerevisiae), where 

fermentation is regulated by the level of the sugar concentration present, such as glucose, making 

it independent of oxygen uptake rate. Respiro-fermentative behavior is seen only under oxygen-

limited condition for S. stipitis (Klinner et al., 2005). Under oxygen-limitation, the enzymes 

pyruvate decarboxylase and alcohol dehydrogenase show increased activity (Skoog and Hahn-

Hägerdal, 1990; Skoog et al., 1992) as well as their corresponding genes (Jeffries et al., 2007). 

These are the enzymes that catalyze reactions for ethanol production, where pyruvate 

decarboxylase (Pdc1 and Pdc5) and alcohol dehydrogenase (Adh1 and Adh2) are shown in 

Figure 1.3. Alcohol dehydrogenase (Adh1) was ten times higher under oxygen-limited than 
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aerobic conditions. Also pyruvate decarboxylase was activated when oxygen levels switched 

from aerobic to oxygen-limited condition (Cho and Jeffries, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Outline of glucose and xylose metabolism in yeasts. Enzyme designations are from 

assigned loci in Saccharomyces cerevisiae or Pichia stipitis. Hxk1 Hexokinase P1; Hxk2 

hexokinase PII; Glk glucokinase; Pgi phosphoglucose isomerase; Pfk phosphofructokinase 1; 

Fbafructose-bisphosphate aldolase; Tdh (G3p) glyceraldehyde-3-phosphate dehydrogenase; Pgk 

3-phosphoglycerate kinase; Gpm phosphoglycerate mutase; Eno enolase (2 phosphoglycerate 

dehydratase); Pyk pyruvate kinase; Pdc pyruvate decarboxylase; Adh alcohol dehydrogenase; 

Pdh pyruvate dehydrogenase; Dha aldehyde dehydrogenase; Acs acety l-coenzyme A synthetase; 

6Pg 6-phosphogluconate dehydrogenase, decarboxylating; Rpe ribulose-phosphate 

3-epimerase; Rki ribose-5-phosphate isomerase; Tkl transketolase; Tal transaldolase; Xor 

xylose (aldose) reductase; Xid xylitol dehydrogenase; Xks xylulokinase (Jeffries and Shi, 1999) 
  

One major disadvantage of S. stipitis is its inability to grow even though it can produce 

ethanol under anaerobic conditions (Bruinenberg et al., 1994). It is still unclear why S. stipitis 

cannot grow under anaerobically it needs only minimal oxygen present to achieve optimal 

ethanol production conditions (Cho and Jeffries, 1999). 
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1.1.2.2.4 Electron Transport Chain (ETC) 

 S. stipitis has the standard respiration machinery along with alternative respiratory 

components that allow the transfer of electron transfer to occur with or without coupling to ATP 

production. This allows electrons either to enter through Complex I for mitochondrial NADH 

oxidation or through the external or internal non-proton translocases of NADH or NADPH. A 

clear depiction of this can be seen in Figure 1.4. At the terminal of the ETC is Complex IV, 

which is part of the standard machinery or an alternative oxidase, which can be used under very 

low oxygen conditions and only on xylose not glucose.  

 
Figure 1.4: ETC of S. stipitis. Contains the proton-translocating NADH dehydrogenase 

(Complex I); internal and external non-proton translocating NADH dehydrogenase (NADH IN, 

NADHEX);internal and external non-proton translocating NADPH dehydrogenase (NADPHIN, 

NADPHEX); succinate dehydrogenase (Complex II); ubiquinone complex (CoQ); SHAM-

sensitive alternative terminal oxidase, cytochrome bc1 (Complex III); cytochrome c (Cyt c); and 

cytochrome c oxidase (Complex IV) (JosephȤHorne et al., 2004) 

1.2 System biology   

 

System biology is a rapidly growing field of study that was primary developed in 

academia, and is gaining popularity in commercial industries (Ideker et al., 2001).  Biological 

systems present a great challenge to researchers due to the great complexity. Conventionally, 

scientists have adopted the reductionist point of view, which states that examining the simplest 

parts of a system are critical in understanding the system as a whole. The system is broken down 
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to the most reduced state of complexity, and then worked upward in complexity. This separates 

biological systems into specific parts, and then studies them under isolation (Aderem, 2005; 

Gallagher et al., 1999). Then once all the parts are understood, then the pieces can put together 

like a puzzle and the understanding of the system can be established. Scientists have devoted 

their lives to study one particular gene or protein in order to gain knowledge.  Although success 

has been achieved using the reductionist approach, however when applied to biological system 

there are great limitations, such that it is a grueling process that makes it pretty much impossible 

to unravel the mechanisms involved. This is mainly due to gaining a higher level of 

understanding the interactions between genes, proteins, and their effect on the metabolism. The 

development of innovative technologies has brought about the production of complex biological 

datasets. Genetic synthesis technologies and sequencing has emerged in biological research that 

have reaped the sequencing the first genome and genome-scale metabolic models. System 

biology provides a comprehensive functionality of biological systems through studying the 

behavior and relationship of the biological elements simultaneously (Barabasi et al., 2004). 

Mainly it utilizes a holistic approach from which quantitative data can be extracted.  Rather than 

examining an individual biological entity, it allows for studying the flow of information as a 

whole on all biological levels, such as on proteins, genomics, regulation networks, and 

metabolically (Spencer et al., 2008; Tang et al., 2005; Palsson, 2002). Figure 1.5 provides the 

general concept of system biology versus the traditional reductionist approach. The reductionist 

approach investigates the individual components of a system, such as the components of a 

computer network or genes of a specific organ. System biologists integrate information together 

globally, therefore instead of performing their research to the far left as the reductionist, their 

research proceeds to the right, where the whole system can be studied together (Galitski, 2012).  
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Figure 1.5: Integrative approach of system biology (Galitski, 2012) 

A recent paper (Sauer et al., 2007) stressed on the significance of using a system-level approach 

for studying cellular metabolisms: ñRather than a reductionist viewpoint (that is, a deterministic 

genetic view), the pluralism of cause and effects in biological networks is better addressed by 

observing, through quantitative measures, multiple components simultaneously, and by rigorous 

data integration with mathematical models. Such a system-wide perspective (so-called systems 

biology) on component interactions is required so that network properties, such as a particular 

functional state or robustness, can be quantitatively understood and rationally manipulatedò.   

 My work used an integrative perspective by comparing, refining, and validating genome-

scale metabolic network models in order to gain a systems level understanding.  Let us now look 

at the literatue of the modeling techniques that were employed.  

1.2.1 Modeling of metabolic networks    

 

The primary goal of modeling metabolic networks is to deconstruct the complex 

information of the microorganism into a computational framework with the objective of 

predicting the cellular phenotype from the genotype (Bordbar et al., 2014). Compared to other 

biological systems, metabolic networks are relatively well understood, which is attributed to 
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knowledge of the metabolites and the reactions that convert the biological constituents. The 

structure of the metabolic reactions and their connectivity is established, thus we have a 

fundamental understanding of the metabolic network. Metabolism is a key player for regulating 

the homeostasis of organisms, because of the constant substrate being taken up and conversion 

into building blocks for biomass and by-products. The size of metabolic networks is typically 

classified under two camps: central carbon metabolism models (~80 reactions, 40 metabolites) 

and genome-scale models (>1000 reactions, >500 metabolites) (Krömer et al., 2014). 

Commonly, there are four primary approaches are taken to model metabolic networks (Stelling, 

2004; Zomorrodi et al., 2012): 1. Interaction-based networks ï neglect the stoichiometry of the 

network and emphasize the network connectivity. The main assumption is that the system 

remains stationary. Are used in large-scale systems (transcription of genes and proteomics) that 

focus on how information is propagated. 2. Dynamic models ï ordinary differential equations 

with kinetic information are used to depict the dynamics of the system. 3. Stoichiometric models 

ï examine fundamental cellular biochemistry that is used to quantify the intracellular mass flow 

at steady state, where the system is used to be stationary. 4. Stoichiometric models with kinetic 

information ï very similar to type 3 (Stoichiometric models) except now there exists at least one 

kinetic equation that relates the concentration of a metabolite to the reaction rate. 

Modeling that is done in biological systems usually invokes theory-based models, which 

involves a particular input with a set equation for a specific solution. These types of models are 

troublesome, because the kinetic parameters need to be determined through expensive 

experiments (Famili et al., 2005; Segrè et al., 2003). The accurate determination of the 

parameters can be often questioned, due to the variability and difficulty of their measurements. 

Parameters need to be quantified usually have significant error or have not even been measured 
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under in vivo conditions (Rizzi et al., 1997; Teusink et al, 2000; Vaseghi et al., 1999; Wright and 

Kelly, 1981). Due to these shortcomings, there has been no genome-scale theory-based model 

constructed (Jamshidi and Palsson, 2008). Another common approach is cybernetic modeling, 

which finds unknown or hidden parameters through various assumptions (Kompala et al, 1984; 

Young et al, 2008).  

Constraint-based models are known as structural metabolic network modeling, which 

does not require kinetic parameters, but rather defined constraints.  They are based on the micro-

evolutionary principle that biological systems have adapted to diverse environments over time 

and as they multiply they are not identical to their parent cells. Palsson describes the phenomena 

this way: ñTo survive in a given environment, organisms must satisfy myriad constraints, which 

limit the range of available phenotypes. All expressed phenotypes resulting from the selection 

process must satisfy the governing constraints. Therefore, clear identification and statement of 

constraints to define ranges of allowable phenotypic states provides a fundamental approach to 

understanding biological systems that is consistent with our understanding of the way in which 

organisms operate and evolve (Palsson et al, 2006)ò. Constraint-based models have been around 

for more than 25 years, since 1986 (Fell and Small, 1986), peaking in the mid-1990ôs (Savinell 

and Palsson et al, 1992; Varma et al., 1993) they were used to compute the metabolic flux 

distribution and cellular growth.  

The different types and magnitudes of the constraints will limit the cellular function. A 

recent paper summarizes the types of constraints in four categories: fundamental physico-

chemical constraints, topological constraints, environmental constraints, and regulatory 

constraints. 
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(i) Physico-chemical constraints: Numerous constraints govern cellular metabolism 

and are known as hard constraints. Hard constraints are the laws of conservation 

of mass, energy, and thermodynamics (Covert et al, 2001; Edwards et al., 2002). 

These constraints will not change with the environmental pressures.  

(ii)  Topological constraints: This deals with the crowding of molecules inside the cell. 

For instance, the length of a bacterial genome is on the magnitude of 1000 times 

the length of the cell. Thus this means that the DNA must be crammed tightly, but 

fully accessible in order to be unraveled into cellular machinery.  

(iii)  Environmental constraints: These constraints are time and condition dependent. 

Examples of these constraints are availability of nutrients, pH, temperature, and 

osmolality 

(iv) Regulatory constraints: These constraints are different from the three types 

described above, because they are self-imposed constraints. They can change 

based on the evolutionary conditions and can vary with time. These constraints 

are used to eradicate suboptimal phenotype states and improve fitness. Recently, 

there are regulatory constraints based on transcriptional levels of genes (Reed et 

al., 2012). 
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Constraint-based models have become popular among researchers, because they operate 

under steady-state conditions and only need the network stoichiometry. This has brought about a 

myriad of tools/algorithms developed for modeling metabolic networks. The main ones are: flux 

balance analysis (FBA) (Varma et al., 1993; Edwards et al., 1999) metabolic flux analysis 

(MFA) (Schilling et al, 1999; Varma and Palsson, 1994) elementary mode analysis (EMA) 

(Schuster et al., 1999), extreme pathway analysis (EPA) (Schilling et al, 1999),  robustness 

analysis (RNA) (Edwards and Palsson, 2000), phenotype phase plane analysis (PhPP) (Edwards 

et al., 2002), minimization of metabolic adjustment (MOMA) (Segrè et al., 2002), flux 

variability analysis (FVA) (Mahadevan and Schilling, 2003), and regulatory on-off minimization 

(ROOM) (Shlomi et al., 2005). More than 100 methods have been developed to predict and 

analyze metabolic activity through constraint-based models. Figure 1.6 shows the phylogenetic 

tree of them.  

  

 

 

 

 

 

 

Figure 1.6: Phylogenetic tree of constraint-based tools (Lewis et al., 2012) 
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Modeling techniques discussed above compute static metabolic states.   However, there 

are disadvantages: the cellôs dynamic behavior cannot be determined, there are difficulties on 

implementing cellular regulation, and most experiments are done in batch and fed-batch cultures, 

where a dynamic model is required (Antoniewicz, 2013; Kauffman et al., 2003). Presently, the 

dynamic behavior is modeled through three modeling techniques, which are kinetic modeling, 

cybernetics, and dynamic FBA.  For kinetic modeling and cybernetics require parameters that 

need to be fitted through designed experiments (Raman and Chandra, 2009; Smallbone et al., 

2010).  Dynamic FBA is an extension of FBA, however it does require empirical substrate 

equations, such as using michaelis-menten kinetics (Hanly and Henson, 2011; Hjersted and 

Henson, 2009).  Dynamic modeling is not examined in this work, but is a future step that is 

needed to improve model prediction.  

1.2.2   Flux Balance Analysis    

 

 Flux balance analysis (FBA) is a powerful technique that was developed in 1993 (Varma 

and Palsson, 1993). It was the first optimization-based tool for determining the metabolic flux 

distribution (Varma and Palsson, 1994). The metabolic network is treated as a linear 

programming problem, and an objective function, typically growth rate, is used to calculate an 

optimal solution. Reversibility data for reactions are used for the lower and upper bounds in 

order to constrain the reaction fluxes, which are the variables in the problem. The other 

constraints are the extracellular uptake rates of the substrates, such as carbon and oxygen source.  

This method is used calculate the flow of metabolites in a metabolic network, metabolite of 

interest (Orth et al., 2010). There are currently more than 35 organisms that have metabolic 

network models developed, and high-throughput technologies allow the construction of many 
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more each year, thus FBA is extremely important tool for gaining biological knowledge in these 

models (Gianchandan et al, 2010; Orth et al, 2011; Schellenberger et al., 2011).  

 As previously discussed, FBA doesnôt require kinetic parameters, but it uses well defined 

constraints based on fundamental laws of nature. However, there are limitations to this, such that 

it does not calculate metabolite concentration (Lee et al., 2006).  Also the focus is solely on the 

metabolism, so it does not incorporate regulatory effects of genes or enzyme activity 

(Ramakrishna et al, 2001).  Because it is a steady-state approach, it only uses time-invariant 

substrate and nutrient consumption rates, thus it is only uses prediction from continuous 

experiments.   

  A simplified metabolic network model of 4 reactions and 3 metabolites is displayed in 

Figure 1.7 to demonstrate how FBA is carried out.  This can be thought of a network flow 

problem in the field linear programming, where the metabolites are nodes and the reactions are 

the edges. The next section will discuss how genome-scale metabolic network models are 

construction, but briefly these are generated from an annotated genome and other biochemical 

and physiological databases. The reconstruction process is extensive, such that it can take 

months or years to complete (Thiele and Palsson, 2010; Henry, et al., 2010).  A mass balance is 

prescribed on each metabolite in the network and is written in the form of a stoichiometric matrix 

(S). The rows and columns represent each unique reaction and metabolite, respectively. Each 

column entry represents the stoichiometric coefficient of each metabolite. The sign determines 

whether a metabolite is consumed or produced, a positive sign is production and a negative sign 

is consumption.  If the metabolite is not present in the reaction the entry receives a zero. The 

stoichiometric matrix is mass balanced, meaning the total consumption and production each 

metabolite is balanced at steady state. It is common for the reactions to exceed the number of 
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metabolites. This becomes an underdetermined problem, meaning that there is infinite number of 

solutions. Here the key assumption of a steady state system is made which transforms this from a 

dynamic problem into a static one. This assumption is justified the assumptions that (1) 

intracellular metabolites reach thermodynamic equilibrium orders of magnitude faster than 

enzyme level change or cells double, and (2) in constrast to metabolite flux, intracellular 

metabolite concentrations change minimally in response to physiological changes in the cell 

because they are largely determined by enzyme affinities rather than reaction rates. As a result, 

metabolite levels are balanced kinetically and thermodynamically at each flux. The x term 

represents the metabolite concentration, where this is shown in the derivative with respect to 

time, and the v is the matrix of fluxes of individual reactions combined. FBA lessens the 

computational load by assuming a steady state, where, such is turned into a time-invariant 

problem, which is essentially like solving for the null space.    

 Using the assumption of a steady state is a generally acceptable practice in systems 

biology, which eliminates the convoluted system dynamics of metabolism that takes into 

consideration the kinetics and enzyme activities. As stated above the justification stems from the 

fact that the metabolite levels are highly transient relative to the cellular growth and the 

extracellular environmental changes. Studies showed that the metabolic transients only last a 

couple of minutes, therefore the metabolic fluxes are in a quasi-steady state in comparison to the 

growth and process transients (Varma and Palsson, 2004).  

  From there the reactions are constrained, that are primarly in the pickup and output 

reactions, such as substrates, oxygen, and byproducts. Intracellular reactions can be constrained 

if there is supporting experiment information, such as through 
13

C labeled experiments of the 

metabolic flux (Sauer, 2006; Wiechert, 2001). The variable vi represents an individual reaction, 
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where it is constrained between a lower bound Ŭi and an upper bound ɓi. Implementation of 

constraints generates a solution space of an n dimensional polytope, which is the allowable 

solution space of flux distributions. Ingrafting constraints is why researchers have named this 

approach, constraint-based metabolic models (Llaneras and Picó, 2010).  

The final step is to determine an objective function in order to pinpoint a unique solution 

in the feasible space of the polytope. In the early years of FBA, there were many objective 

functions selected (Pramanik and Keasling, 1997; Varma and Palsson, 1994), however then the 

maximization of the biomass objective function emerged as the main one, which it is the 

stoichiometric yield for biomass. It is contains in equation format the building blocks that make 

up the biomass component. It has been determined that flux through the biomass reaction rate is 

directly proportional to the growth of the organism (Stephanopoulos et al., 1998). The micro-

evolution principle is applied, which states that surviving microorganisms have gained an 

advantage over the competing microorganisms by growing in more of an effective way. 

Therefore optimization guides cellular decision making.  

 

Figure 1.7:  FBA construction on a simplified metabolic network model (Patiño et al., 2012) 
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The biomass growth reaction is based on experimentally determined biomass components 

(Feist et al., 2010; Schuetz et al., 2007). Other maximization objective functions are metabolite 

synthesis (Montagud et al., 2010) and a plural objective scheme of biomass and metabolite 

synthesis (Burgard et al., 2003; Pharkya et al, 2004).  In constrast, the minimization objective 

functions are: redox power, (Knorr et al., 2007), ATP formulation (Knorr et al., 2007; Vo et al., 

2004), and nutrient uptake (Segrè et al., 2002).  

 There are numerous of software tools that carry out FBA, such as the COBRA toolbox 

(Becker et al., 2007) that is coded in Matlab. Others are Pathway tools (Paley et al., 2012), 

BioMet toolbox (online usage) (Cvijovic et al., 2010) and OptGene (offline usage) (Patil et al., 

2005; Rocha et al., 2008)   

1.2.3 Genome-scale metabolic models (GSMMs)    

 

Genome-scale metabolic models (GSMMs) provide a relationship between the genotype 

and phenotype; they provide a holistic view of the cellular metabolism. Once validated, GSMMs 

provide a platform to effectively interrogate cellular metabolism, such as characterizing 

metabolic resource allocation, predicting phenotype, and designing experiments to verify model 

predictions, as well as designing mutant strains with desired properties (Liu et al., 2010; 

Oberhardt et al., 2009). More importantly, GSMMs allow systematic assessment of how a 

genetic or environmental perturbation would affect the organism as a whole (Becker et al., 

2007). 

GSMMs were developed in the 1990ôs due to the emergence of sequencing whole 

genomes (Schilling et al., 1999). The first GSMMs were achieved in the organism of bacteria for 

H. influenza (Schilling and Palsson, 2000) and E. coli (Edwards and Palsson, 2000). However, 

there were metabolic models before this, starting with Fell and Small (1986), Mavrovouniotis 
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and Stephanopoulos (1992), and Savinell and Palsson (1992), however these models did not 

contain all the reactions in the genome due to the lack of sequencing technology. The price of 

sequencing entire genomes has been reduced in recent years, and this has opened the door for 

metabolic reconstructions (Henry et al., 2010).   

Developing a reliable GSMM is comprised in four steps: (1) network reconstruction, (2) 

manual curation and building mathematical model, (3) model validation using experimental data, 

and (4) refinement of the model by iterations between computational and experimental parts. An 

annotated genome must be supplied to reconstruct a GSMM. Genes account for metabolic 

functions and draft reconstructions are constructed, which tell us the relationship between genes, 

reactions, and metabolites.  

Figure 1.8 depicts the biochemistry hierarchy staring from genomics to metabolomics. 

The GSMMs that are used in this work only gather information from the genome, and does not 

take into account data from transcriptome, proteome, and metabolome. The study of the 

transcriptome allows researchers to draw information about the gene expression patterns 

(Marioni et al., 2008; Mockler and Ecker, 2005; Wang et al., 2009). Proteomics looks at the 

quantification of protein concentrations, where this is commonly measured through mass 

spectrometry (Gstaiger and Aebersold, 2009; Sabido et al., 2012). Information from metabolome 

and fluxome provides information that is closest in depicting what is happening in the cellular 

state. The metabolome measures all the intracellular and extracellular metabolites, such as lipids 

and amino acids either over time or under a given condition (Scalbert et al., 2009). 
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Figure 1.8: Plurality of levels for reconstruction of GSMM (Nemutlu et al., 2012) 

Fluxomics provides the rate of metabolic reactions at the scale of the network. Again mass 

spectrometry provides a steadfast way to detect these metabolites. Fluxomics is done through 

isotope labeling, where then metabolic flux analysis is applied to determine the rate of metabolite 

conversion (Krömer et al., 2009; Sanford et al., 2002). There have recently been the 

developments of ñnext-generationò models that include these omics measurements with other 

advances, such as protein translocation in the cell membrane, protein structures in enzymes, and 

enzyme production costs (King et al., 2015). 

Metabolic databases provide a plethora of ways to map a gene to a reaction. BRENDA 

(Schomburg et al., 2002), MetaCyc (Karp et al., 2002) and KEGG (Kanehisa and Goto, 2000) 

are commonly used ones. It is important to have a vast amount of diverse sources in order to 

avoid the presence of false negatives and false positives. A standard procedure for the 
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reconstruction process has been published (Feist et al., 2009: Thiele and Palsson, 2010). 

Literature papers and textbooks also provide a valuable source of knowledge about reactions and 

enzymes, such as EC numbers, reaction localization, reaction reversibility, and gene association.  

It is important to have strain specific information.  

Next, gap filling is needed to balance out the metabolites, where they can balance out 

stoichiometries or cofactor usage. The stoichiometric matrix is then formulated, and constraints 

are defined. The biomass reaction equation is found by knowing the relative amounts of lipids, 

amino acids, carbohydrates, and nucleic acids. Computational analysis is then carried through 

FBA and these simulation results are compared with validation experiments. There are various 

validation experiments: comparing production rates, lethal reactions, and omics experiments, 

such measuring fluxes. Gaining information on the exchange reactions are boundary parameters, 

and this constrains the model to be operating in experimental regions. Our recent work provides 

another validation approach that looks at how metabolic pathways response as the system is 

perturbed. Here qualitative information is extracted and this can be compared with established 

claims (Damiani et al., 2015).  

Overall the reconstruction process can be thought as assembling a jigsaw puzzle, where 

the pieces of the puzzle are supplied, but the problem lies in fitting everything together.  This 

results in this being an iterative process, where there are many repetitive steps for model 

refinement. The pieces of the puzzle can be viewed as the genomics, physiological and 

biochemical data and putting the pieces together using gap filling strategies of experimental data 

and computational analysis.  Figure 1.9 exhibits the workflow for constructing a high quality 

GSMM.  
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Figure 1.9: Process for formulating high quality genome-scale models (Thiele and Palsson, 2010) 

Once a GSMM has been validated and there are a plethora of applications: investigating 

hypothesis-driven discovery, study of multi species interactions, contextualization of high-

throughput data, and guidance of metabolic engineering (Kim et al., 2012; Oberhardt et al., 2009; 

Österlund et al., 2012).  

 

Table 1.1. Success of GSMMs for production of biofuels. Ethanol: E. coli (Anesiadis et al., 

2008), S. cerevisiae (Bro et al., 2006; Mahadevan and Henson, 2007) and Z. mobilis (Lee et al., 

2010). Butanol: E. coli (Ranganathan et al., 2010; Lee et al., 2011), C. acetobutylicum (Borden 

et al., 2010; Lütke-Eversloh and Bahl, 2011), and L. brevis (Berezina et al., 2010).  

 


