

AGENT-BASED SIMULATION OF BEHAVIORAL ANTICIPATION IN
COMPUTER NETWORKS: A COMPARATIVE STUDY OF
 ANTICIPATORY FAULT MANAGEMENT

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

__
Avdhoot Kishore Saple

Certificate of Approval:

____________________________ ____________________________
Drew Hamilton Levent Yilmaz, Chair
Associate Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

____________________________ ____________________________
Gerry Dozier Stephen L. McFarland
Associate Professor Acting Dean
Computer Science and Software Graduate School
Engineering

AGENT-BASED SIMULATION OF BEHAVIORAL ANTICIPATION IN
COMPUTER NETWORKS: A COMPARATIVE STUDY OF
 ANTICIPATORY FAULT MANAGEMENT
Avdhoot Kishore Saple

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
May 11, 2006
 iii

AGENT-BASED SIMULATION OF BEHAVIORAL ANTICIPATION IN
COMPUTER NETWORKS: A COMPARATIVE STUDY OF
 ANTICIPATORY FAULT MANAGEMENT

Avdhoot K. Saple

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

Signature of Author

Date of Graduation

 iv

THESIS ABSTRACT
AGENT-BASED SIMULATION OF BEHAVIORAL ANTICIPATION IN
COMPUTER NETWORKS: A COMPARATIVE STUDY OF
ANTICIPATORY FAULT MANAGEMENT

Avdhoot K. Saple
Master of Science, May 11, 2006
(B.E., Mumbai University, 2004)

98 Typed Pages
Directed by Dr. Levent Yilmaz

Network fault management is concerned with the detection, isolation and
correction of anomalous conditions that occur in a computer network. Present state of art
in fault management classifies existing methodologies into two main categories: reactive
rule based approaches and intelligent monitoring systems. We explore the concept of
anticipatory behavior to develop an intelligent agent-based network management model,
which uses an anticipatory agent to proactively detect occurrence of faults using a
predictive Bayesian model pertaining to network performance. To analyze the
effectiveness of the anticipatory technique, we compare it with alarm correlation and
rule-based reactive fault management strategies. Results of the comparative analysis are
 v

presented to demonstrate the potential of the anticipatory technique in detecting network
anomalies. Our findings indicate that the anticipatory technique improves network
performance significantly better than the reactive techniques. We furthermore describe a
methodology for adaptive restructuring of the network based on the simulated annealing
process. We observe that adaptive restructuring gives significantly better performance
under the reactive rule-based fault-management technique as compared to the
anticipatory strategy.

 vi

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. Levent Yilmaz for his support and guidance along
the way, above all for being so patient and understanding with me. Thanks to my
committee members for reviewing my thesis. I would also like to thank my colleagues
and friends for the wonderful times together. Above all, thanks to my parents for being
always there to listen. They have been my constant source of inspiration.

 vii

Style manual or journal used APA Style

Computer software used Microsoft Word. Images drawn using Microsoft PowerPoint,
UML Diagrams drawn using ArgoUML.

 viii

TABLE OF CONTENTS

List Of Figures...
List Of Tables???????????????????????????
1 Introduction??????????????????????????....
 1.1 The Need for Fault Management in Computer Networks...............................
 1.2 Anticipatory fault Management...
 1.3 Research Objective..
2 Overview of Fault Management in Computer Networks.......................................
 2.1 Rule Based Approaches...
 2.1.1 Cased-based Reasoning..
 2.2 Alarm Correlation..
 2.2.1 Alarm Correlation using Finite State Machines...
 2.3 Pattern Matching...
 2.4 Statistical Analysis..
 2.5 Intelligent probing for fault management...
 2.6 Proactive Fault Detection using Intelligent Agents..
3 Anticipatory Systems..
 3.1 Anticipatory Agents..
 3.2 Preventive State Anticipation...
4 Agent-based Modeling of Reactive and Anticipatory Control in
 Computer Networks..
 4.1 The DEVS Network Model...
 4.1.1 The DEVS Formalism...
 4.2 Reactive Agents..
 4.3 Anticipatory Agents ? A Bayesian Approach...
 4.4 Adaptive restructuring of the DEVS network model..
5 Detailed Design of the DEVS Network Model...
 5.1 The DEVS Basic and Coupled Model..
 5.2 The Distributed Network Monitoring System..
 5.3 Component Overview...
 5.4 Monitoring Agents..
 5.5 Reactive/Anticipatory Agents...
 5.6 Control Agent..
 5.7 Annealer..
6 Experiment Design and Simulation Results...
 6.1 Experiment Design...
 6.2 Simulation Results..
 6.2.1 Sensitivity Analyses..
 6.2.2 Results with adaptive control using annealer..

x
xiii
1
1
2
3
5
6
7
7
8
9
10
11
12
14
15
16

19
21
22
24
26
29
34
34
36
37
42
44
47
48
52
52
53
56
61
 ix

7 Conclusions...
 7.1 The Limitations of Anticipatory fault management...
 7.2 Future Work...
References..
Appendices????????????????????????????.
Appendix A..
Appendix B..
Appendix C..

64
64
65
67
73
74
75
77

 x

LIST OF FIGURES
3.1 Basic Components for Anticipatory Agents???..
3.2 The Basic Architecture of an Anticipatory Agent in Our Model?.....................
4.1 Reactive and Anticipatory Control?????..
4.2 Conceptual Framework of the DEVS Formalism??..
4.3 Control Flow Diagram Depicting the Operation of the Annealer?....................
5.1 Designed Network Model?????????..
5.2 Experimental Frame???????????????.................................
5.3 Activity Diagram of the Experimental Frame????.....................................
5.4 Sequence Diagram for Interactions of Various Components within
 the Experimental Frame???????????????...........................
5.5 Activity Diagram of Network Component due to Fault(s)???......................
5.6 Activity Diagram of a Monitoring Agent ???????...............................
5.7 Sequence Diagram showing Interaction between Monitoring Agents?............
5.8 Activity Diagram of a Reactive Agent????????................................
5.9 Activity Diagram of an Anticipatory Agent ?????...................................
5.10 Sequence Diagram for Interaction between Monitoring and
 Management Agents. ..
5.11 Activity Diagram of a Control Agent??????..
5.12 Sequence Diagram for Management and Control Agents????.................

16
17
19
23
33
37
38
39

40
41
43
44
45
46

47
48
49
 xi

5.13 Activity diagram of the annealer????????.......................................
6.1 Simulated Model in DEVS Environment???..
6.2 Response Surfaces???????????...
6.3 Sensitivity Analyses for Variation of Complexity for
 Reactive Technique?..
6.4 Sensitivity Analyses for Variation of Complexity for
 Alarm Correlation Technique..
6.5 Sensitivity Analyses for Variation of Complexity for
 Anticipatory Technique??..
6.6 Performance Metrics with and without Annealer for
 Reactive Technique????...
6.7 Performance Metrics - Alarm Correlation and Anticipatory Technique?.........
A.1 Design Class Diagram of the DEVS Network Model?????....................
B.1 Calculation of C.I for Reactive vs Alarm Correlation Technique??..............
B.2 Calculation of C.I for Reactive vs Anticipatory Technique???....................
B.3 Calculation of C.I for Alarm Correlation vs Anticipatory Technique??........

50
53
55

57

58

59

61
62
74
75
76
76

 xii

C.1 Performance Metrics for Low Link Delay and Level 1 Complexity?..............
C.2 Performance Metrics for Moderate Link Delay and Level 1 Complexity..........

C.3 Performance Metrics for High Link Delay and Level 1 Complexity?.............

C.4 Performance Metrics for Low Link Delay and Level 2 Complexity?..............

C.5 Performance Metrics for Moderate Link Delay and Level 2 Complexity?......

C.6 Performance Metrics for High Link Delay and Level 2 Complexity.................

C.7 Performance Metrics for Low Link Delay and Level 3 Complexity?..............

C.8 Performance Metrics for Moderate Link Delay and Level 3 Complexity?......

C.9 Performance Metrics for High Link Delay and Level 3 Complexity?..............

77
78
79
80
81
82
83
84
85

 xiii

LIST OF TABLES
Table1.1 An Overview of Fault Management Techniques?....................................
Table 4.1 Sample Set of Evidence to be Processed by the Na?ve Bayesian
 Classifier..
Table 6.1 Confidence Intervals for Performance Metrics???..............................

13

27
54

 1

Chapter 1
Introduction
Network fault management (Oates 1995) entails the detection, isolation and
correction of anomalous conditions that occur in a network. It can be decomposed into
three subtasks: fault identification (Schwarz and Katzela 1995), fault diagnosis (Agre
1986), and fault remediation. Fault identification involves detecting deviation from
normal behavior followed by identification of its nature, whereas fault diagnosis involves
determining the root cause of the identified problem. Fault remediation is the formulation
of a course of action that addresses the problem. All three stages of fault management
involve reasoning and decision making based on information about current and past states
of the network.
1.1 The Need for Fault Management in Computer Networks
As business and individuals have become increasingly reliant on computer
networks, the complexity of those networks has grown along a number of dimensions.
The phenomenal growth of the Internet in recent years provides a clear example of the
extent to which the use of computer networks is becoming ubiquitous (Oates 1995). As
computer networks increase in size, heterogeneity, complexity and pervasiveness,
effective management of such networks simultaneously becomes more important and
more difficult.
 2

The use of computer networks for business is expanding enormously. The average
number of electronic point-of-sale transactions in the United States went from 38 per day
in 1985 to 1.2 million per day in 1993. An average $800 billion is transferred among
partners in international currency markets every day; about $1 trillion is transferred daily
among US banks; and an average $2 trillion worth of securities are traded daily in New
York markets. Nearly all of the financial transactions pass over information networks.
Consequently, the losses incurred due to faults in these networks are enormously high.
Related dollar losses are estimated to be between $100,000 and $10 million (Herdman
1994). Hence it is important to have an effective and efficient network fault management
technique to restore the proper functioning of computer and information networks.
1.2 Anticipatory Fault Management
Traditionally, network management activities, such as fault management, have
been performed with direct human involvement. However, these activities are becoming
more demanding and data intensive, due to the heterogeneous nature and increasing size
of networks today. For these reasons, it is becoming necessary to automate network
management activities. Artificial intelligence technologies can play an important role in
the problem solving and reasoning techniques that are employed in fault management.
Anticipatory fault management involves a novel approach of designing
autonomous agents that is based on the idea of anticipatory systems (Ekdhal et al. 1994).
An anticipatory system has a model of itself and of the relevant part of its environment
 3

and will use the model to predict the future. The predictions are then utilized to determine
the agent?s behavior. An anticipatory system is thus a system which uses the knowledge
of future states to decide what action has to be taken in the present. Anticipatory fault
management can be carried out by having intelligent processing anticipatory agent reside
on the network under observation. It makes use of adaptive learning methods (Butz et al.
2003) to detect abnormal behavior before a fault actually occurs. The agent first acquires
a picture of the network?s health by means of observation processing to process
performance variables and obtain probability of each measured variable at a given time. It
then combines all the information to build up a predictive model, which provides a
method for estimating probabilities and allows the agent to combine observed
information with prior knowledge. (Hood and Ji 1998) The agent therefore gets a
complete picture of the network?s health to carry out adaptive behavior for fault
identification and diagnosis.
1.3 Research Objective
Given the importance of network fault management, the goal of this research
comprises of coming up with an anticipatory technique for network fault management,
followed by comparison of the same with two widely popular techniques: reactive rule
based strategy and alarm correlation approach. We compare the three techniques based
on the following network performance metrics: throughput, turnaround time, and the drop
rate of packets.
To facilitate the experiment, a simulation model of a computer network is
developed using the DEVS (Zeigler and Sarjaughian 2003) modeling and simulation
framework. Reactive and anticipatory agents are embedded into the network for network
 4

fault management. The reactive agent operates on a simple rule based engine that detects
faults based on predefined fuzzy rule-base. We use a Na?ve Bayesian classifier (Luger
and Stubblefield 1989) as part of the anticipatory agent. The Bayesian classifier acts as a
predictive model for the anticipatory agent to facilitate prediction of faults based on past
data. Our findings indicate that anticipatory fault management performs significantly
better than the reactive and alarm correlation techniques under the experimental
conditions the model is tested. Furthermore, we make a study of which technique
performs better with network reconfiguration. Network reconfiguration comprises of
restructuring the network model as a simulated annealing process (Carley and Svoboda
1996). The restructuring is based on varying network operational parameters such as the
operation of switch, the routing strategy of the router, and the link delay of nodes. The
results of network adaptation shows that simulated annealing can be applied to the
reactive technique since it gives a better performance as compared to the alarm
correlation and the anticipatory technique.
The thesis is organized as follows. Chapter 2 reviews the present state of art in
fault management of computer networks. Chapter 3 comprises of the design of
anticipatory systems. In chapter 4, we discuss the agent based modeling of reactive and
anticipatory control in computer networks. Chapter 5 discusses the detailed design of the
DEVS model. Chapter 6 comprises of experimentation design, simulation, and results.
Finally, in chapter 7 we conclude by discussing the open issues as well as planned future
work.

Chapter 2

Overview of Fault Management in Computer Networks

Researches have approached the problem of fault management using various
techniques such as artificial intelligence (Corn et al. 1988; Joseph et al. 1989; Wright et
al. 1988; Yamahira et al. 1989), machine learning (Langley and Simon 1995) and state
space modeling (Rouvellou and Hart 1995). A fault is simply a malfunction in some
component of the network, either hardware of software. At an abstract level, fault
identification can be thought of as a function, I, with inputs and outputs. The input to the
function is a description of network state, S, and the output is a set of hypothesis, H,
concerning the existence of n different faults. Each hypothesis may specify the
indications in S of the corresponding fault and may contain some amount of diagnosis
information. That is identification and diagnoses are rarely totally decoupled.
Fault identification, therefore is a process of function that maps from network
states to fault hypothesis:
I: S H ?
Different approaches to fault identification define S in a distinct manner (Tim Oates
1995).
 5

 6

2.1 Rule Based Approaches
Early work in the area of fault or anomaly detection was based on expert systems.
In expert systems, an exhaustive database containing the rules of behavior of the faulty
system is used to determine if a fault occurred by matching of predefined rules of
network anomalies (Lewis 1993). Rule based systems are too slow for real time
applications and are dependent on prior knowledge about the fault conditions of the
network. The identification of faults in this approach depends on symptoms that are
specific to a particular manifestation of a fault. Examples of these symptoms are
excessive utilization of bandwidth, number of open TCP connections, total throughput
exceeded etc. (Thottan and Ji 2003). An expert system model using fuzzy cognitive maps
(FCMs) (Ndouusse and Okuda 1996) can be used to obtain an intelligent modeling of the
propagation and interaction of network faults. Fuzzy expert systems (Kandel 1991) are
especially attractive in a dynamic environment because they favor silicon
implementation, learning and they avoid the lengthy symbolic graph search in favor of
computational inference. Traditional expert systems with symbolic knowledge
representation implemented with ?IF/ THEN? conditional statements require complicated
and lengthy matching schemes, to slow for real-time systems such as networks.
Furthermore, traditional expert systems lack support for on-line mathematical analysis, an
essential feature common in engineering systems. Fuzzy Expert Systems (FES) provide
an alternative to symbolic intelligence. In FES, vague causal reasoning is represented
numerically, and hence is amenable to computational processing. In particular, FES
which uses a graph-based knowledge representation can easily be converted into causal
matrices, thus offering an appealing computational feedback memory recall capability.
 7

2.1.1 Cased-Based Reasoning
Case based reasoning is an extension of rule-based systems (Lewis 1993). It
differs from FCM in that, in addition to just rules, a picture of previous of fault scenarios
is used to make the decisions. It differs from FCM in that, in addition to just rules, a
picture of previous fault scenarios is used to make decisions. A picture here refers to the
circumstances or events that led to the fault. In order to adapt the case-based reasoning
scheme to the changing network environment, adaptive techniques are used to obtain the
functional dependence of relevant criteria such as network load, collision rate, etc., to
previous trouble tickets (Lewis and Dreo 1993). The trouble ticketing system is used to
perform two functions: Prepare for problem diagnostics through filtering, and infer the
root cause of the problem. Using case-based reasoning for describing fault scenarios also
suffers from heavy dependence on past information. Furthermore, the identification of
relevant criteria for the different faults will, in turn, require a set of rules to be developed.
In addition, using any function approximation, such as back propagation, causes an
increase in computation time and complexity. The number of functions to be learned also
increases with the number of faults studied.
2.2 Alarm Correlation
A fault is a disorder occurring in the managed network. Faults happen within the
managed networks while alarms are external manifestations of faults (Rouvellou and Hart
1995). Alarms are defined by vendors and generated by network equipment are
observable by network operators. Similar alarm messages with different time stamps are
interpreted as separate alarms. Modern telecommunication networks may produce
thousands of alarms per day, making the task of real-time network surveillance and fault
 8

management difficult. Due to the large volumes of alarms, network operators frequently
overlook or misinterpret them. To reduce the number of alarms displayed on operators?
terminals, current network management systems apply alarm filtering procedures or, in
the case of bursts of alarms, send them directly to a printer or database (Jakobson and
Weissman 1993). Furthermore, a single fault in a large communication network may
result in a large number of fault alarms making the isolation of the primary source of
failure a difficult task (Katzela 1995).
2.2.1 Alarm Correlation Using Finite State Machines
External observations of alarms may instill an impression that one alarm causes
another. However the causality is not between alarms, but rather between faults. Finite
state machines model alarm sequences that occur during and prior to fault events. For
instance, a probabilistic finite state machine model is built for a known network fault
using historical data (Lazar et al. 1992). State machines are designed with the intention of
not just detecting an anomaly but also possibly identifying and diagnosing the problem.
The sequences of alarms obtained from the different points in the network are modeled as
states of a finite state machine. The alarms are assumed to contain information such as
the device name as well as the symptom and the time of occurrence. The transitions
between the states are measured using prior events (Katzela and Schwarz 1995; Rouvelle
and Hart 1995; Bouloutas et. al. 1990). A given cluster of alarms may have a number of
explanations and the objective is to find the best explanation among them. The best
explanation is obtained by identifying a near optimal set of nodes with minimum
cardinality such that all the entities in the set explain all the alarms and at least one of the
nodes in the set is the most likely one to be in fault (Lazer et al. 1992; Jackobson and
 9

Weissman 1993). From an observer?s point of view, fault detection and identification
requires checking whether a network device behaves as the FSM specified and if not,
how it deviates from the expected behavior (Lazer et al. 1992). Alarm correlation may be
used for network fault isolation and diagnosis, selective corrective actions, proactive
maintenance and trend analysis (Jackobson and Weissman 1993).
2.3 Pattern Matching
This approach describes anomalies as deviations from normal behavior and
attempts to deal with the variability in the network environment (Feather and Maxion
1993; Papavassiliou et al. 2000). In this approach online learning is used to build traffic
profile for a given network. Traffic profiles are built using symptom specific feature
vectors such as link utilization, packet loss and number of collisions. These profiles are
then categorized by time of day, day of week and special days, such as weekends and
holidays. When newly acquired data fails to fit within some confidence interval of the
developed profiles then an anomaly is declared. One method includes capturing of
normal behavior of time series as templates and setting of tolerance limits based on
different levels of standard deviation. These limits are tested using extensive data
analysis (Feather and Maxion 1993). The authors also propose a pattern matching scheme
to detect address usage anomalies by tracking each address at 5-min intervals. A template
of the mean and standard deviation on the usage of each address is then used to detect
anomalous behavior. The anomaly vectors from any new data are checked using template
feature vector for a given anomaly and id a match occurs it is declared indicating a fault.
For simple, unvaried data, a mechanism called the Performance and Anomaly Monitoring
System, or PAMS is used (Feather 1992; Maxion 1989; Maxion 1990; Maxion and
 10

Feather 1990). PAMS will highlight anomalous points in time series data by developing a
prediction of normal behavior, called a template, and tolerance limits called envelopes,
based on a model of data variance. Current data that falls outside of the tolerance
envelopes is considered anomalous. The efficiency of the pattern matching approach
depends on the accuracy of the traffic profile generated. Given a new network, it may be
necessary to spend a considerable amount of time building traffic profiles. In the face of
evolving network topologies and traffic conditions, this method may not scale gracefully
(Thottan and Ji 1993).
2.4 Statistical Analysis
As the network evolves, each of the methods described above require significant
recalibration or retraining. However using statistical approached (Thottan and Ji 2003), it
is possible to continuously track the behavior of the network. Statistical analysis has been
used to detect both anomalies corresponding to network failures (Thottan 2000) as well
as network intrusions (Wang et al. 2002). Interestingly, both of these cases make use of
standard sequential change point detection approach. The Flooding Detection System,
(Wang et al. 2002), uses measured network data that describes TCP operations to detect
SYN flooding attacks. SYN flooding attacks capitalize on the limitation that TCP servers
maintain all half open connections. Once the queue limit is reached, future TCP
connection request are denied. The sequential change point detection employed here
makes use of the nonparametric cumulative sum (CUSUM) method. Using this approach
on trace-driven simulations, it has been shown that SYN flooding attacks can be detected
with high accuracy and reasonably short detection times. When detecting anomalies due
to failures, we are confronted with the problem of detecting a host of potential scenarios.
 11

Each of these failure scenarios differ in their manifestations as well as their
characteristics. Thus, it is necessary to obtain a rich set of network information that could
cover a wide variety of network operations. The primary source for such in depth
information is in the SNMP MIB data. Designing a failure detection system using MIB
data necessitates the use of a general method since MIB variables exhibit varying
statistical characteristics (Thottan 2000).
2.5 Intelligent Probing for Fault Management
Intelligent probing makes use of probing technology (CAIDA 2005) for cost
effective fault diagnosis in computer networks. Probes are test transactions that can be
actively selected and sent through the network. A distributed system can be represented
as a ?dependency graph? where nodes can be either hardware elements (e.g.,
workstations, servers, routers) or software components or services, and links can
represent both physical and logical connections between the elements. Probes offer the
opportunity to develop an approach to diagnosis that is more active than traditional
?passive? event correlation and similar techniques. A probe is a command or transaction
sent from a particular machine called a probing station to a server or a network element in
order to test a particular service. This work addresses the probing problem using methods
from artificial intelligence. We call the resulting approach intelligent probing. The probes
are selected by reasoning about the interactions between the probe paths. For diagnosis
we use a local inference approximation scheme, for instance a Bayesian network (Huard
and Lazar 1996) or other probabilistic dependency models (Katzela and Schwartz 1995)
that avoids the intractability of exact inference for large networks (Brodie et al. 2002).
 12

 2.6 Proactive Fault Detection using Intelligent Agents
Current fault management implementations generally rely on the expertise of a
human network manager, which is translated to a set of rules and then to threshold levels
on the measurement variables being collected. As networks become more complex and as
changes more frequently, the human network manager will find hard to maintain
sufficient level of expertise on a particular network?s behavior (Hood and Ji 1998). Fault
management research has covered approaches such as expert systems, finite state
machines, advanced database techniques, and probabilistic methods (Lazer et al. 1992).
The drawback to all these approaches is that they require a specification of the faults to
be detected, and it is not feasible to specify all possible faults. Also, changes in network
configuration, applications, and traffic can alter the type and nature of possible faults,
which makes modeling them impractical in many cases. Intelligent agents that reside at
network nodes use adaptive learning methods to detect abnormal behavior before a fault
actually occurs (Ekaette and Far 2003). In this approach, the intelligent agent processes
information collected by Simple Network Management Protocol agents, and uses it to
detect the network anomalies that typically precede a fault (Yemini 1994). The SNMP
agents collect information about the network node through their management information
base, or MIB, which holds a set of variables pertinent to that particular node. The
intelligent agents learn the normal behavior of each measurement variable and combine
the information in the probabilistic framework of a Bayesian network (Huard and Lazar
1996; Pearl 1998). This yields a picture of the network health form the perspective of the
network node, which can be used to trigger local corrective action or a message to a
centralized network manager (Hood and Ji. 1998).
Table1.1 Fault Management Techniques
Proposed
System
Methodology Complexi
ty
Scalab
le
Detect new
fault
patterns
Rule based
approach
Anomaly detection by
conventional rule based
systems.

 Low

 No

 No
Alarm
Correlation
Incorporation of finite
state machines to model
alarm sequences that
occur during and prior to
fault events.

 Moderate

 No

 No

Pattern
matching
An anomaly is
considered as variability
in network environment.

 Moderate

 No
 Yes, but
introduces
overheads
Statistical
analysis
Employment of statistical
approaches to
continuously track the
behavior of the network.

 Moderate

 Yes

 Yes
Intelligent
probing
Use of probing
technology for fault
diagnosis.
 High Yes Yes
Proactive
fault
detection
using agents
Deployment of software
agents that detect,
correlate and selectively
seek to derive a clear
explanation of faults.

 High

 Yes

 Yes

 13

 14

Chapter 3
Anticipatory Systems
The idea that anticipations influence and guide behavior has been increasingly
appreciated over the last decades. Anticipations appear to play a major role in the
coordination and realization of adaptive behavior. Various disciplines have explicitly
recognized anticipations. For example, philosophy had been addressing the sense of
reasoning, generalization, and association for a long time. More recently, experimental
psychology confirmed that the existence of anticipatory behavior processes in animals
and humans over the last decades (Butz et al. 2003).
Anticipation is an important characteristic of intelligence. Proactive behavior
requires anticipatory abilities. A seminal work on anticipatory systems is the one written
by Rosen (1985). A brief introduction to and serious concern about anticipation follows:
?Strictly speaking, an anticipatory system is one in which present change of state depends
upon future circumstances, rather than merely on the present or past. As such,
anticipation has routinely been excluded from any kind of systematic study, on the
grounds that it violates the causal foundation on which all of theoretical science must
rest, and on the grounds that it introduces a telic element which is scientifically
unacceptable. Nevertheless, biology is replete with situations in which organisms can
generate and maintain internal predictive models of themselves and their environments,
and utilize the predictions of these models about the future for purpose of control in the
present. Many of the unique properties of organisms can really be understood only if
 15

these internal models are taken into account. Thus, the concept of a system with an
internal predictive model seemed to offer a way to study anticipatory systems in a
scientifically rigorous way? (Rosen 1985).
3.1 Anticipatory Agents
Perception ability is a required characteristic of agents. Hence, they can be
designed to perceive current state of self and others. They can also be designed to create
current image(s) of future state(s). Perception requires mechanisms that enable
interpretive capabilities. Perception invariably involves sensory qualities, and
introspection entails accessing sensations and perceptions that agent would introspect.
Perceptions are derived as a result of interpretation of sensory inputs within the context of
the current world and agent?s self model. The prototype inference, orientation accounting,
and situational classification mechanisms could be used to realize the interpretation
capabilities of an agent. The interpretation process results in perceptions. An anticipatory
agent needs to deliberate upon perceptions through introspection and reflection to
anticipate. Introspection is deliberate and attentive because higher-order intentional states
are themselves attentive and deliberate. An introspective agent should have access
mechanisms to its internal representation, operations, behavioral potentials, and beliefs
about its context. Reflection used the introspective mechanisms to deliberate its situation
in relation to the embedding environmental context. These features collectively result in
anticipation capabilities that orient and situate an agent for accurate future projections.
Figure 3.1 presents interpretation and introspection as critical components within the
micro-architecture of an anticipatory agent.

Figure 3.1 Basic Components for Anticipatory Agents

3.2 Preventive State Anticipation
A special kind of anticipation is when an anticipated undesired situation makes an
agent adapt its behavior in order to prevent that this situation will occur. For example,
assume that we are going out for a walk and that the sky is full of dark clouds. Using our
internal weather model and our knowledge about the current weather situation, we
anticipate that it will probably begin to rain during the walk. This makes us foresee that
our clothes will get wet which, in turn, might cause us to catch a cold, something we
consider a highly undesirable state. So, in order to avoid catching a cold we will adapt
our behavior and bring an umbrella when going for the walk.
In the suggested framework, an anticipatory agent consists mainly of three
entities: an object system (S), a world model (M) and a meta-level component
(Anticipator). The object system is an ordinary (i.e., non-anticipatory) dynamic system.
M is a description of the environment including S, but excluding the Anticipator. The
importance of having an internal model that includes both the agents as part of the
 16

environment and (a large portion of) its abilities has been stressed by, for instance,
(Zeigler 1990). The anticipator makes predictions using M and uses these predictions to
change the dynamic properties of S. Although the different parts of an anticipatory agent
certainly are causal systems, the agent taken as a whole, nevertheless behaves in an
anticipatory fashion.
When implementing an anticipatory agent, the component S corresponds to some
kind of reactive system similar to the ones mentioned above. This component is referred
as the Reactor. The Anticipator corresponds to a more deliberative meta-level component
that is able to ?run? the world model faster then real time. When doing this, it reasons
about the current situation compared to the predicted situations and its goals, and decides
whether (and how) to change the Reactor. The resulting architecture is illustrated in
Figure 3.2.

 17

Figure 3.2. The Basic Architecture of an Anticipatory Agent in Our Model.

S
E
N
S
O
R
S

E
F
World
Antici ?
F
Model
pator
E
C
T
O
R
S

Reactor
Anticipatory layer
 18

We can summarize the operation of the architecture as follows: The sensors receive input
from the environment. This data is then used in two different ways: (1) to update the
World Model and (2) to serve as stimuli for the Reactor. The Reactor reacts to these
stimuli and provides a response that is forwarded to the effectors, which then carry out
the desired actions(s) in the environment. Moreover, the Anticipator uses the World
Model to make predictions, and on the basis of these predictions the Anticipator decides
if, and what, changes of the dynamical properties of the Reactor are necessary. Every
time the Reactor is modified, the Anticipator should, of course, also update the part of the
World Model describing the agent accordingly. Thus, the working on an anticipatory
agent can be viewed as two concurrent processes, one reactive at the object-level and one
more deliberative at the meta-level (Davidsson 2003).

Chapter 4

Agent-based Modeling of Reactive and Anticipatory Control in Computer Networks

The overall architecture of the simulation is primarily composed of the following
components as shown in Figure 4.1

Figure 4.1 Reactive and Anticipatory Control
? Network Model: The first component is a basic model of a typical computer
network. The network model is the basis of design and experimentation of the
 19

 20

fault management techniques. The network model is designed on a simulation
framework and comprises of basic network components that would include
switches, routers, hosts and links.
? Monitoring Layer: The monitoring layer consists of multiple monitoring agents
that are embedded over individual network components or on a group of
components. (Eg: a monitoring agent is allocated for each subnet). The
monitoring agents may have disjoint functions or potentially overlapping
responsibilities for increased reliability.
? Management Layer: The management layer comprises of the reactive or the
anticipatory agents according to the technique being used. The reactive agent
works on a rule based approach. It interprets the data acquired from the
monitoring agents and communicates with the control layer to take corrective
action (Thottan and Ji, 2003). Similarly, the anticipatory agent works on the
principle of a Na?ve Bayesian classifier (Luger and Stubblefield, 1989) and
interacts with the control layer to take corrective action.
? Control Layer: The control layer is responsible for carrying our corrective action
with respect to the information if gets from the management layer. The corrective
action by the control layer is carried out by triggering local corrective action or a
message to the individual components of the network model (Hood and Ji 1998).

 21

4.1 The DEVS Network Model
The network model is developed in the DEVS (Discrete Event System
Specification) formalism. A brief description of the simulated network components is as
follows:
? Generator: This component is responsible for generation of network packets
(payloads to be processed by the hosts).
? Transducer: A Transducer is responsible for calculation of the various network
performance metrics.
? Links: Simulation of links is carried out on crucial connections in the network. A
link is looked upon as a processor and its overloading is simulated as the increase
in processing time of the processor.
? Switch: A switch forms a connection between different subnets to facilitate
forwarding of packets among them.
? Router: A router follows routing algorithms such as distance vector routing, link
state routing, hierarchical routing, broadcast routing to facilitate forwarding of
packets among hosts. We use the Distance Vector Routing strategy, by which the
packets are forwarded to the best known distance to each destination (the distance
is measured in terms of processing time of hosts).
? Hosts: Hosts are entities that process jobs or payload. They can be network
clients, servers, printers, plotters etc.
 22

? Monitoring agents: The monitoring agents record performance metrics such as
network throughput, latency and packet drop rate. It reports these data to the
management layer, where the reactive agents infer using their rules, while the
anticipatory agent updates its predictive model.
? Management agents: The management agents are the reactive and the anticipatory
agents. They receive data from the monitoring agents and induce the control agent
to take respective action.
4.1.1 The DEVS Formalism
The Discrete Event System Specification (DEVS) formalism (Zeigler and
Sarjoughian, 2003) provides a means of specifying a mathematical object called a system.
Basically, a system has a time base, inputs, states, and outputs, and functions for
determining next states and outputs given current states and inputs. Discrete event
systems represent certain constellations of such parameters just as continuous systems do.
For example, the inputs in discrete event systems occur at arbitrarily spaced moments,
while those in continuous systems are piecewise continuous functions of time. The
insight provided by the DEVS formalism is the simple way that it characterizes how
discrete event simulation languages specify discrete event systems parameters. Having
this abstraction, it is possible to design new simulation languages with sound semantics
that is easier to understand.
The conceptual framework underlying the DEVS formalism provides is shown in
Figure 4.2. The conceptual framework constitutes the following elements:
? Model: It is a set of instructions for generating data comparable to that observable
in the real system. The structure of the model is its set of instructions. The
behavior of the model is the set of all possible data that can be generated by
faithfully executing the model instructions.

Figure 4.2 Conceptual Framework of the DEVS Formalism (adopted from ?Introduction
to DEVS Modeling & Simulation with JAVA
TM
?, Zeigler and Sarjoughian 2003)

? Simulator: It exercises the model?s instructions to actually generate its behavior.
 23

? Experimental Frame: It captures how the modeler?s objectives impact on model
construction, experimentation and validation. The DEVS experimental frames are
formulated as model objects in the same manner as the models of primary interest.
In this way, model/experimental frame pairs form coupled model objects with the
same properties as other objects of this kind. It will become evident later, that this
uniform treatment yields key benefits in terms of modularity and system entity
structure representation.
 24

The basic objects are related by two relations:
? Modeling relation linking real system and model defines how well the model
represents the system or entity being modeled. In general terms a model can
be considered valid if the data generated by the model agrees with the data
produced by the real system in an experimental frame of interest.
? Simulation relation, linking model and simulator, represents how faithfully the
simulator is able to carry out the instructions of the model.
The basic items of data produced by a system or model are time segments. These
time segments are mappings from intervals defined over a specified time base values in
the ranges of one or more variables. The variables can either be observed or measured.
The structure of a model may be expressed in a mathematical language called formalism.
The discrete event formalism focuses on the changes of variable values and generates
time segments that are piecewise constant. Thus, an event is a change in a variable value,
which occurs instantaneously.
In essence, the formalism defines how to generate new values for variables and
the times the new values should take effect. An important aspect of the formalism is that
time interval between event occurrences are variable (in contrast to discrete time where
the time step is a fixed number).
4.2 Reactive Agents
Fuzzy reactive agents are used in the determination of the proneness of failure.
Reactive agents work in a hard-wired stimulus-response manner. Each and every
situation must be considered in advance. The reactive agent follows a fuzzy rule based
approach to infer the occurrence of a fault. A system becomes fuzzy system when its
 25

operations are entirely or partially governed by fuzzy logic or are based on fuzzy sets. A
crisp set is a collection of distinct (precisely defined) elements. In classical set theory, a
crisp set can be a superset containing other crisp sets. A superset will represent the
universe of discourse if it defines he boundaries in which all elements reside. In any
given situation, a new element can be tested to see whether it belongs to any set. On the
other hand a fuzzy set is a collection of distinct elements with a varying degree of
relevance or inclusion (Berkan and Trubatch 1997). The Reactive Agent gets the network
node information through various performance metrics that are being collected by the
monitoring agents embedded in the network and uses predefined rules to infer failures
based on their degradation. Fuzzy rules consist of antecedents and consequents. The
antecedent variables (one or more variables that represent the conditions to be met before
any conclusion can be made) comprise of the network throughput and latency. The
consequents (set of outputs) comprise of proneness of failure for each of the network
component. A sample set of fuzzy rules that are comprised in the reactive agent for a
network component (for instance, a host) can be outlined as follows:
? If Throughput is High and Latency is Low then Fault_proneness is Low
? If Throughput is Moderate and Latency is Low then Fault_proneness is Low
? If Throughput is Low and Latency is Low then Fault_proneness is moderate
? If Throughput is High and Latency is Moderate then Fault_proneness is Low
? If Throughput is Moderate and Latency is Moderate then Fault_proneness is
Moderate
? If Throughput is Low and Latency is Moderate then Fault_proneness is Moderate

4.3 Anticipatory Agents ? A Bayesian Approach
The architectural framework of the Anticipatory agent is described in the previous
chapter. It primarily comprises of a predictive model and an anticipator. We make use of
a Na?ve Bayesian classifier for constructing the predictive model of the anticipatory
agent. The strength of the Na?ve Bayesian Classifier is that it provides a theoretical
framework for combining statistical data with the prior knowledge about the problem
domain for making future projections.
Before getting to the Na?ve Bayesian, we make an overview of basic probability
theory. is known as a conditional probability of event A happening given event
B has occurred. We can express the conditional probability, as follows:
)/(BAp
)/(BAp
)(/)()|(BpBApBAp ?= or
)/(BAp = (# of times A & B occur) / (# of times B occur).
The following example shows how a fault is detected by the anticipatory agent by making
use of the Na?ve Bayesian classifier. Consider the sample of evidence specified in Table
4.1.

 26

Table 4.1 Sample Set of Evidence to be Processed by the Na?ve Bayesian Classifier

The Network takes value High if there is abnormality above a certain threshold in
a single or both the subnets and is Normal otherwise. The subnet 1 and subnet 2 take
value High if any of the component in the respective subnets have failed and is Normal
otherwise. The probability that there can be a fault in host 1 provided we have evidence
that subnet 1 is high is given by
 High) 1Subnet | yes 1p(Host === == 1Subnet & yes 1Host timesof (#
== High) 1Subnet timesof (# / High) 6/8
Similarly, the probability that there can be a fault in host 1 provided we have evidence
that subnet 1 is high and network is high is given by
===== 1Host timesof (# High) Network High, 1Subnet |yes 1p(Host
== Network &High 1Subnet & yes &High 1Subnet timesof (# / High) =
4/5High) Network ==
But the number of conditional probabilities in a data set can be very high. Here comes the
role of Bayes rule. This is derived as follows:
 27

Given , we know that)(/)()|(BpBApBAp ?=
),(/)()|(ApABpABp ?= and).()/()(ApABpABp =?
Now, since),()(BApABp ?=?
)(
)()|(
)|(
Bp
ApABp
BAp = ,
This is known as Bayesian rule.
Consider the following problem with application of Baye?s rule:
Given that (Subnet1 = High, Network = High), is there a fault in host 1?
We can express this as:
),1|1(HighNetworkHighSubnetyesHostp ===
),1(
)1()1|,1(
NormalNetworkHighSubnetp
YesHostpYesHostHighNetworkHighSubnetp
==
====
=
A general equation for this is:
?
=
)()|...(
)()|...(
)...|(
21
21
21
kknk
iin
ni
CpCAAAp
CpCAAAp
AAACp
However, the conditional probability may be difficult to compute. If
conditional independence among the attributes of the query is assumed, we have the
following:
),|...(
21 in
CAAAp
?
=
)()|()...|()|(
)()|()...|()|(
)...|(
21
21
21
kknkkk
iinii
ni
CpCApCApCAp
CpCApCApCAp
AAACp
The result of Na?ve Bayesian Classification is as follows:
)],|()([maxarg Result
kikk
CApCpC ?= where
)C of (# /)C A of (#)C|p(A
kkiki
?=
 28

It can be illustrated by the following example. Suppose we are given that (subnet 1 =
High, and Network = High) and we need to know if there is a fault on host 1?
From the above Na?ve Bayesian Classifier equation:
Result
 (host1 =yes)
= p (Host 1 = Yes) * p (Subnet 1 = High ? Host 1 = Yes) * p (Network =
 High ? Host 1 = Yes)
 = (6/14)*(1)*(3/6)
 = 0.21428
Result
 (host1 =no)
= p (Host 1 = No) * p (Subnet 1 = High ? Host 1 = No) * p (Network =
 High ? Host 1 = No)
 = (8/14)*(3/8)*(3/8)
 = 0.08035
Hence we see that Result
 (host1 =yes)
> Result
 (host1 =no)
, and hence the predictive
model predicts the potential of fault in host 1. The Anticipator thereby notifies the control
layer to take respective corrective action for host 1. Note that, the set of evidence to the
Bayesian classifier is continuously updated according to the events taking place in the
network. After a fixed interval of time (say 5 time units), the classifier computes the
result (Result =)])|()([maxarg
kikk
CApCpC ? based on the state of the components at that
time instant.
4.4 Adaptive Restructuring of the DEVS Network Model
Adaptive restructuring can be described as modifying the operating regimes of the
DEVS network model in an effort to improve its performance based on the network
conditions at a particular instant of time. We intend to find which fault management
technique performs better under adaptation. In this section we describe the methodology,
 29

 30

by which operating regimes of the DEVS network model are modified based on certain
parameters to preserve the proper functioning of the network.
In case of the DEVS network model, we need to decide the set of operating
regimes that we intend to modify in the DEVS environment with the intention that the
normal operation of the network model is preserved. Based on the above requirement we
come up with the following modes of operation of certain components of the network
model. We then club three of those modes to form a particular operating regime.
Following are the modes of operation
Sw_Mode_0: Original operation of the switch.
Sw_Mode_1: Operation of switch with random forwarding of packets to each of
the subnet
Ro_Mode_0: Original configuration of the router
Ro_Mode_1: Modification of packet forwarding strategy with forwarding packets
to the host with the highest instantaneous value of throughput.
Li_Mode_0: The original value of link delay as defined.
Li_Mode_1: Increase value of link delay by 50%
Li_Mode_2: Decrease value of link delay by 50%
Following are the operating regimes of the DEVS environment
1) Sw_Mode_0 AND Ro_Mode_0 AND Li_Mode_1
2) Sw_Mode_0 AND Ro_Mode_0 AND Li_Mode_2
3) Sw_Mode_1 AND Ro_Mode_0 AND Li_Mode_0
4) Sw_Mode_0 AND Ro_Mode_1 AND Li_Mode_1
5) Sw_Mode_1 AND Ro_Mode_1 AND Li_Mode_0
6) Sw_Mode_1 AND Ro_Mode_1 AND Li_Mode_1
7) Sw_Mode_1 AND Ro_Mode_1 AND Li_Mode_2
Adaptivity can be modeled as a simulated annealing process. Simulated annealing
consists of capturing a new state of the DEVS model. The new state is obtained by
applying any of the operating regimes. This is followed by recording the performance
metric (network throughput) of the network with the new state for a finite amount of
time. This recorded metric is then compared with the metric obtained in the previous state
(state of the DEVS model before the operating regimes are modified) and the change in
performance metric is recorded. The metropolis criterion (Carley and Svoboda 1996) is
then used to determine whether or not to adopt the new state. The metropolis criteria
states that, a change is always accepted if the forecast performance for a hypothetical
organization is better than the known performance of the current organization. A
?hypothetical organization? can be interpreted as a new organization that can be obtained
by applying design changes to the current organization. Furthermore, when the forecast is
poorer that change may still be accepted with a probability which is calculated using the
Boltzman equation
Ttt
ePP
/)(cos
0
?
=
such that cost(t) = 0 ? performance (t), and is the probability of accepting a ?bad?
design for the previous iteration. The above process is then repeated until the temperature
reaches a freezing point or until the simulation time ends, whichever is earlier.
Temperature is defined as the model?s current level of risk aversion. In other words, the
degree to which the DEVS network model is open to accept change of state. The
Temperature always drops after every new state has been adopted for the DEVS model.
0
P
 31

Freezing point is the point at which a state is in its final form and no more adaptation or
change is allowed. (Carley and Svoboda 1996).
To implement the above notion in the DEVS environment, we include an
additional component in the network design called as the ?annealer?. The total simulation
time for the network operation is fixed to 1000 time units and the annealer is made to
operate after every 100 time units. After application of a new state, the annealer records
the performance metric for a finite amount of time as mentioned above, this finite time is
fixed to 50 time units. Each operation of the annealer can be termed as iteration.
The annealer operates based on the following algorithm.
1. Set the initial value of temperature T=0.433 and ? = 0.975 where ? is the rate at
which the DEVS model learns to be risk averse. The initial value of temperature
(0.433) corresponds to a probability of 0.9 for changes to be accepted.
2. Derive the new state of the DEVS model by applying an operating regime at
random as described above and record the performance metric (network
throughput) of the DEVS model in the new state.
3. If the recorded performance metric is better than the one obtained in the old state,
continue with step 2, else proceed with step 4
If the new recorded metric is poorer than the older ones, use the metropolis
criteria to determine whether the new state can be adopted in the network.
4. Set the new values of temperature and probability
0
P = P
)()1(tTtT ?=+ ?
 32

5. Continue steps 2 thru 5 until a freezing point is reached or the simulation time
ends, whichever is earlier. (P = 0.55 and T = 0.345).
The above algorithm, followed by the annealer can be depicted by the following control
flow model:

Figure 4.3 Control Flow Diagram Depicting the Operation of the Annealer

We then compare the final results of performance metrics when simulated
annealing is implemented, with our original results (without adaptation) for each of the
fault management technique to analyze the network performance under adaptive
reconfiguration.
 33

 34

Chapter 5
Detailed Design of the DEVS Network Model
Chapter 4 describes the detailed architecture for agent based modeling of reactive
and anticipatory control in computer networks. This chapter provides details pertaining to
design of the DEVS network simulation model that implements a distributed network
monitoring system (DNM) (Prietula et al. 1998).
5.1 The DEVS Basic and Coupled Models
In the DEVS formalism, one must specify 1) basic models from which larger ones
are built, and 2) how these models are connected together on hierarchical fashion. A basic
model contains the following information
? the set of input ports through which external events are received
? the set of output ports through which external events are sent
? the set of state variables and parameters: two state variables are usually present,
?phase? and ?sigma? (in the absence of external events the system stays in the
current ?phase? for the time given by ?sigma?)
? the time advance function which controls the timing of internal transitions - when
the ?sigma? state variable is present, this function just returns the value of
?sigma?.
? the internal transition function which specifies to which next state the system will
transit after the time given by the time advance function has elapsed.
 35

? the external transition function which specifies how the system changes state
which an input is received ? the effect is to place the system in a new ?phase? and
?sigma? thus scheduling it for a next internal transition; the next state is computed
on the basis of the present state, the input port and the value of the external event,
and the time that has elapsed in the current state.
? the confluent transition function which is applied when an input is received at the
same time that an internal transition is to occur - the default definition simply
applies the internal transition function before applying the external transition
function to the resulting state
? the output function which generates an external output just before an internal
transition takes place.
Basic models may be coupled in the DEVS formalism to form a Coupled model. A
coupled model tells how to couple (connect) several component models together to form
a new model. This latter model can itself be employed as a component in a larger coupled
model, thus giving rise to a hierarchical construction. A coupled model contains the
following information
? the set of components
? the set of input ports through which external events are received
? the set of output ports through which external events are received
? the external input coupling which connects the input ports of the coupled model to
one or more of the input ports of the components
? the external output coupling which connects output ports of components to output
ports of the coupled model, thus when an output is generated by a component it
 36

may be sent to a designated output port of the coupled model and thus be
transmitted externally
? the internal coupling which connects output ports of components to input ports of
other components , hence when an input is generated by a component, it may be
sent to the input ports of designated components (in addition to being sent to an
output port of the coupled model) (Zeigler and Sarjoughian, 2003).
5.2 The Distributed Network Monitoring System
A distributed network monitoring (DNM) system consists of a hierarchical
structure with a set of network components and is endowed with monitoring agents that
cooperate in monitoring the network. The network can be divided into several regions or
sub networks (in our case we consider two distinct subnets). Within each sub network, a
set of monitoring agents are jointly responsible for maintaining up-to-date models of host
and router performance and availability. These monitoring agents belong to the
monitoring layer as described in the previous chapter. Monitoring agents are responsible
for notifying the management layer regarding the status of network components as well
as sub networks. The management layer which consist of the reactive and the anticipatory
agents, utilize the data acquired from the monitoring layer to make control decisions for
management of network faults. Figure 5.1 shows a hypothetical network structure based
on the notion of distributed network monitoring system (DNM).

Figure 5.1 Designed Network Model
5.3 Component Overview
We give a brief description and functions of the crucial components in our
network model
? Experimental frame
The experimental frame primarily consists of 3 sub components, the generator,
the transducer and the fault injection mechanism. The generator generates packets
to be processed by the network components on the basis of a specific inter-arrival
time. The transducer is responsible for computation of network performance
metrics (throughput, latency and drop rate of packets). The throughput is defined
as the average rate of job departures from the architecture, estimated by the
 37

number of jobs processed during the observation interval, divided by the length of
the interval. A job?s turnaround time is the length of time between its arrival to
the processor and its departure as a completed job. The drop rate of packets is
defined as the percentage of packets dropped due to network faults. The fault
injection mechanism, which is embedded in the experimental frame, generates
?fault packets? at a random rate. A ?fault packet? when encountered by a network
component, induces a certain level of degradation in the throughput and latency of
the component.

Figure 5.2 Experimental Frame
The activity diagram for the experimental frame is shown in Figure 5.3. The
generator and the fault injection mechanism start as soon as the simulation begins.
The transducer computes the performance metrics based on the number of packets
and the number of faults incurred. The packet generator and the fault injection
mechanism cease to operate when the simulation time ends.

 38

Figure 5.3 Activity Diagram of the Experimental Frame
The interaction among the different components of the experimental frame is
shown by a sequence diagram in Figure 5.4. As shown in the sequence diagram,
the generator initially starts generating network packets to be processed by the
hosts in the network. As soon a packet is generated, the transducer is
simultaneously triggered. The transducer records the simulation time the packet is
generated. On completion of packet processing by any of the hosts in the network,
the transducer records the completion time. Based on the arrival and completion
time parameters, it computes the value of throughput and turn around time. If the
transducer fails to record the completion time due to packet loss, it records the
packet as being lost and appends it to the list of dropped packets which is used to
calculate the drop rate of packets. On completion of the simulation time, when no
more metrics are to be recorded, the transducer triggers the generator and the fault
injection mechanism to cease generation of network packets and fault packets
respectively.
 39

Figure 5.4 Sequence Diagram for Interactions of Various Components within the
Experimental Frame
Switches, routers, and hosts:
The operational specifications of the switch, router, and hosts are
discussed in the previous chapter. We now give a brief description about the
effect on each of these components due to a fault. The switch, router, and the
hosts degrade in a similar way when a fault packet in encountered. The
degradation can be seen as a 3 step process. On encountering the first fault packet,
the component?s normal working is disrupted and it?s said to change to a ?low
degradation? state or in other words when a fault is encountered, the processing
time of these components is doubled. This can be interpreted as the fact that
 40

degradation causes the components to delay the operation they are carrying out.
This in turn affects the throughput, turn around time and drop rate of packets
pertaining to that component and hence the subnet to which it belongs and
consequently the complete network. On encountering a control packet, the
operation is again returned to normal. Similarly, if another fault packet is
encountered before a control packet, the components degrade further to a state of
?moderate degradation? and furthermore ?high degradation? after which it
completely ceases to operate. The activity diagram describing the behavior of a
network component on encountering fault packet(s) is as shown in Figure 5.5.

Figure 5.5 Activity Diagram of Network Component due to Fault(s).

 41

 42

? Links
Links are the interface between different components of the network. They
regulate the flow of packets. Since we need to vary the delay of the links for
experimental purpose, the links should be implemented in such a way that the
variation of delay is practical. Hence we implement a link as a form of processor
which can be considered as an entity which takes some finite amount of time (link
delay) to process a job and forward it. The DEVS processor component, which
models a link, has no buffering capability. Therefore, when a job arrives while the
processor is busy, it simply ignores it. This affects the drop rate of packets.
5.4 Monitoring Agents
Monitoring agents are deployed within each of the subnets to record the
individual performance metrics of components. These metrics include the throughput, the
turn around time, and the drop rate of packets. The fault proneness of network
components is being reported by the monitoring agents to the reactive or anticipatory
agents, which in turn take the required action according to their functionality. The
activity diagram depicting the behavior of an individual monitoring agent is shown in
Figure 5.6.

Figure 5.6 Activity Diagram of a Monitoring Agent
The monitoring agents are being deployed at various levels in the DEVS network
model. Those include, (1) the component level monitoring agents that monitor the
individual performance of routers and hosts, (2) the subnet level monitoring agents that
monitor a subnet as whole, and (3) the network monitoring agent that monitors the
performance of the complete network. The sequence diagram shown in Figure 5.7 depicts
the interaction between the monitoring agents at different levels in the DEVS network
model.
 43

Figure5.7 Sequence Diagram showing Interaction between Monitoring Agents

5.5 Reactive / Anticipatory agents
The data received from the monitoring agents form as inputs to the reactive and
anticipatory agents. The reactive agent functions on simple fuzzy rules while the
anticipatory agent functions on the basis of a Na?ve Bayesian classifier as described in the
previous chapter. Figure 5.8 shows the activity diagram of the reactive agent.

 44

Figure 5.8 Activity Diagram of a Reactive Agent
As shown in the Figure 5.8, the reactive agent gets the data from the monitoring
agent, which has the details of proneness of faults in the various components among the
network. The reactive agent then matches those with the predefined fuzzy rules and
triggers the control agent to take respective action. The activity diagram of the
anticipatory agent is as shown in Figure 5.9. In contrast to the reactive agent, the
anticipatory agent has an additional ?learner? component which builds a predictive model
of fault proneness in the network based on the Na?ve Bayesian Classifier. It then
computes probabilities of failure of the components as described in the Chapter 4. and
thereby triggers the control agent to take corrective action.
 45

Figure 5.9 Activity Diagram of an Anticipatory Agent
The interactions between the monitoring and the management agents (reactive and
anticipatory) are shown with a sequence diagram in Figure 5.10. From the sequence
diagram, it can be seen that the reactive agent is supplied data only by the component
level monitoring agents. Since the reactive agent works on simple fuzzy rules, it
interprets the data obtained by the component level monitoring agents to determine the
components that require corrective action. The anticipatory agent, on the other hand,
predicts the proneness of fault among the various network components, and hence it
needs a complete picture of the network. The monitoring agent at the subnet and the
network level help the anticipatory agent to dynamically learn the network behavior for
the proneness of faults and thereby constantly update the evidence of the Na?ve Bayesian
Classifier.

 46

Figure 5.10 Sequence Diagram for Interaction between Monitoring and
Management Agents
5.6 Control Agent
The control agent operates on the basis of the output from the reactive and
anticipatory agents. The data it obtains from the management agents consists of details
pertaining to the network component which is under degradation. The control layer then
triggers corrective action to those components in the form of corrective messages (Hood
and Ji 1998). When these corrective messages are encountered by network components,
 47

they regain their normal operation. The activity diagram of the control agent operation is
shown in Figure 5.11.

Figure 5.11 Activity Diagram of a Control Agent
The interactions among the control agent and the management agents are as shown below
(Figure 5.12). As described above, the control agent is only responsible to trigger
corrective action to the respective components that are under degradation or may be
prone to degradation based on the output from the reactive or anticipatory agent
respectively.
5.7 Annealer
The function of the annealer is to facilitate dynamic updating of the parameters of
the DEVS model based on different operating regimes. The annealer operates
independently of the management and control agents as described in the previous chapter.
The activity diagram depicting the various states traversed is as shown in Figure 5.13.
The annealer starts by modifying the operating regimes of the DEVS network based on
certain parameters to reconfigure the network. It then records performance metrics of the
 48

reconfigured network for a finite amount of time. If the recorded metrics of the
reconfigured network are better than the previous configuration, the new configuration
with the new operating regimes is adapted.

Figure 5.12 Sequence Diagram for Management and Control Agents.

If the metrics recorded are poorer, the metropolis criterion is used to decide
whether or not to adopt the new state. According to the metropolis criteria, the new
configuration (with poor performance) is accepted with a certain probability that depends
on the temperature of the network (the probability decreases as temperature decreases).
Temperature is defined as the degree to which the DEVS network model is open to
 49

accept change of state. The temperature drops after every new state has been adopted for
the DEVS model.

Figure 5.13 Activity diagram of the annealer
A complete class diagram of all the components described above is shown in
Figure 1 of Appendix. The class Entity, Devs, Coupled, Viewabledigraph and
Viewableatmic form the basic components of the DEVS framework. Entity is the base
class of objects to be put into containers. The class Devs contains two main model
classes, atomic and coupled. The class atomic realizes the atomic level of the underlying
DEVS formalism. It has elements corresponding to each of the parts of this formalism.
Coupled is the major class which embodies the hierarchical model composition
constructs of the DEVS formalism. A coupled model is defined by specifying its
component models. Components are instances of the Devs class thus enabling
hierarchical composition. Class Viewable digraph is a derived class of coupled which
 50

 51

enables to define a coupled model in an explicit manner. In addition to components, it
enables the specification of the coupling relation, which establishes the desires
communication links among the components (internal coupling) and between them and
the external world (external input and external output coupling). The processor class is a
simple processor representing storage of jobs and passage of time for its execution. The
class switch, control, reactive, subnet1, subnet2, generator, transducer, anticipator,
monitor have their respective functions as described in the above sections and in previous
chapters. The Multiserver coordinator routes incoming jobs for processing and collects
results for final output.

 52

Chapter 6
Experiment Design and Simulation Results
The following chapter describes the detailed experimental design of the network
model designed in DEVS followed by experimental results. We make use of Borland
Jbuilder
TM
 as the Integrated Development Environment (IDE) for implementing the
network model in DEVS.
6.1 Experiment Design
The DEVS-based network model comprises of two subnets. Each subnet includes
a router and 3 hosts. An experimental frame generates the packets to be processed by the
network components on the basis of a specific inter-arrival time. A fault injection
mechanism is also embedded in the experimental frame which generates ?fault packets?
at a random rate. A ?fault packet? when encountered by a network component, induces a
certain level of degradation in the throughput and latency of the component. Monitoring
agents are deployed throughout the network over each of the network components to
record the performance metrics (throughput, latency and the drop rate) throughout the
simulation. The throughput is defined as the average rate of job departures from the
architecture, estimated by the number of jobs processed during the observation interval,
divided by the length of the interval. A job?s turnaround time is the length of time
between its arrival to the processor and its departure as a completed job. The drop rate of
packets is defined as
the percentage of packets dropped due to network faults. A sample screen shot of the
DEVS environment is shown in Figure 6.1.

Figure 6.1 Simulated Model in DEVS Environment
6.2 Simulation Results
Each of the fault management techniques (reactive, alarm correlation and
anticipatory) are simulated by varying the levels of the link delay and the complexity of
the network. The number of replications for each fault management technique is 270.
This results from the sum of the replications under each combination of configuration
levels (i.e., link delay, network complexity). Each replication is run for 1000 time units.
The t test is performed with respect to the mean values obtained for throughput,
 53

turnaround
and the con
percen
anticipato
hence th vals
obtained for the reactiv eters
comprises of zero. Hence the d
significant. Table 6.1 shows th

 time and the drop rate of packets for each of the fault management technique
fidence intervals are recorded. From the confidence intervals obtained at 95
t level, we observe that the intervals obtained for the reactive vs. anticipatory and
ry vs. alarm correlation for all the three parameters does not contain zero and
e difference in their mean values is statistically significant. The inter
e vs. alarm correlation technique for all the three param
ifference between their means is not statistically
e results of the t-test.
Table 6.1 Confidence Intervals for Performance Metrics
 Reactive
Alarm
Correlation Anticipatory

 Reactive ------- (-0.001,0.019)
(-0.025,-
0.006)
Alarm
Correlation (-0.019,0.001) -------
(-0.035,-
0.014)
Anticipatory (0.006,0.025) (0.014,0.035) -------

 6.1.1 Performance of Network Throughput

54

 Reactive Alarm Correlation Anticipatory
 Reactive ------- (-38.69,15.55)
(25.11 ,
70.19)
Alarm
Correlation (-15.55, 38.69) -------
(33.62,
84.81)
Anticipatory (-70.19, -25.11) (-84.81, -33.62) -------

 6.1.2 Performance of Network Turnaround Time

 Reactive Alarm Correlation

Anticipatory
 Reactive ------- (-8.54, 1.96) (5.67, 9.59)
Alarm
Correlation (-1.96,8.54) ------- (5.9, 15.93)
Anticipatory (-9.59, -5.67) (-15.93, -5.9) -------

 6.1.3 Performance with Respect to Drop Rate of Packets

We analyze the behavior of each of the performance metrics (throughput, turnaround
time and drop rate of packets) with respect to the variation of link delay and complexity
of the network, for each of the fault management techniques. We plot response surfaces
with respect to each of the dependent variables that include throughput, turn around time
and drop rate of packets, against the independent variables (link delay and complexity).
Figure 6.2 shows the responses obtained.

Figure 6.2 Response Surfaces
 55

 56

We observe that the throughput obtained in each of the techniques is significantly
better at a lower value of link delay while throughput is less dependent on the complexity
of the network. There is a considerable improvement in the turnaround time at higher
levels of complexity. For the drop rate of packets, the percentage is significantly less at
lower values of link delay; also, there is a significant reduction of drop rate of packets at
higher values of complexity. As shown in Figure 6.2, performance parameters for the
alarm correlation technique shows a linear dependency with respect to variation of the
link delay. Also, reactive and anticipatory techniques are less prone to link delay until a
certain threshold. The linearity exhibited by the alarm correlation technique can be
explained by the fact that the fault patterns are recorded beforehand and hence the
variation of the performance metrics is linear, whereas for the other two techniques this is
not the case.
6.2.1 Sensitivity Analyses
We perform sensitivity analysis based on each level of network complexity. We
fix the value of complexity and analyze the variation of each of the performance metrics
with respect to variation of link delay. The graphs obtained for the reactive, alarm
correlation and the anticipatory techniques are shown in Figure 6.3, Figure 6.4, and
Figure 6.5 respectively.

Figure 6.3 Sensitivity Analyses for Variation of Complexity for Reactive Technique

 57

Figure 6.4 Sensitivity Analyses for Variation of Complexity for Alarm Correlation Technique

 58

`

Figure 6.5 Sensitivity Analyses for Variation of Complexity for Anticipatory Technique

From the graphs above, we interpret the effect of complexity on each of the
performance metrics for the fault management techniques.
a. Throughput
It can be observed that the complexity has no observable effect on the throughput
in case of the reactive technique. The throughput is observed to decline with
respect to the increase in link delay of the network and is seen to be constant for
increase in link delay from level 3 to level 4. For the alarm correlation technique,
variation of throughput is observed to be almost linearly dependent on the link
delay. At complexity level 2, the throughput is observed to be constant for level 2
 59

 60

and 3 of link delay. In case of the anticipatory technique, at low complexity level,
it can be observed that throughput is not sensitive to link delay at the initial levels,
after which it varies linearly with link delay. The throughput is again observed to
be independent at very high levels of link delay. For moderate and high levels of
complexity, the throughput is observed to be sensitive to link delay at low and
moderate levels of link delay. At high levels of link delay, the throughput is less
sensitive to increase in link delay.
b. Turnaround Time
For the reactive technique, the turnaround time is less sensitive to link delay at
very low and very high levels of link delay. This trend is observed for all levels of
complexity for the reactive technique. For the alarm correlation technique, the
turnaround time is observed to be highly dependent on link delay for level 1 and 2
of complexity. At level 3 of complexity, the turnaround time is seen to be less
sensitive at higher values of link delay. For the anticipatory technique, the
turnaround time is less sensitive to very low and very high levels of link delay for
low complexity. The turnaround time is seen to be more sensitive to link delay
with increase in complexity levels, except for level 3 and level 4 of link delay,
where the turnaround time is seen to depreciate to some extent.
c. Drop Rate of Packets
The drop rate of packet is observed to follow a very similar trend as the variation
in turnaround time as described in the above section.

6.2.2 Results with Adaptive Control using Annealer
The experimental design is kept the same with addition of the annealer
component. We perform 30 replications for each of the fault management technique with
network adaptation. The link delay and complexity values are fixed to ?Low? and ?Level
1? respectively. We then compare the final values of throughput, turn around time and
drop rate for each of the replication with enabling and disabling network adaptation.
Figure 6.6 and 6.7 show the graphs obtained for the reactive, alarm correlation, and
anticipatory technique.
Comparision of Network Throughput for Reactive
technique
0
0.1
0.2
0.3
1 3 5 7 9 11131517192123252729
Replications
Thr
oughpu
t
With Annealer
Without
Annealer

Comparision of Network Turnaround Time for
Reactive Technique
0
50
100
150
1 3 5 7 9 11 13 15 17 19 21 23 25 27 2 9
Replications
Tur
na
r
ound
Ti
m
e
With Annealer
Without
Annealer

Comparision of Drop Rate of Packets for Reactive
Technique
0
10
20
30
1 4 7 10131619222528
Re plications
D
r
op
 R
a
t
e
 of

P
a
cket
s
With Annealer
Without
Annealer

Figure 6.6 Performance Metrics with and without Annealer for Reactive Technique
 61

Figure 6.7 Performance Metrics - Alarm Correlation and Anticipatory Technique
From Figure 6.6, we see that the reactive technique performs exceptionally better with
network adaptation in terms of performance metrics. In contrast, the performance metrics
obtained for the alarm correlation and anticipatory technique are not satisfactory (Figure
6.7). This can be explained by the fact that the adaptation works independently of the
recorded behavior of faults in case of alarm correlation technique and independently of
the predictive model (the Na?ve Bayesian classifier) in case of anticipatory technique.
This leads to a high number of control packet generations due to lack of communication
between the control agent and the annealer. This is consequently responsible for the
 62

 63

degradation of network performance for the alarm correlation and the anticipatory
technique. For example, the na?ve Bayesian classifier triggers the control agent based on
the evidence it collects. This piece of evidence may not be correct once the network is
reconfigured by the annealer.

 64

Chapter 7
Conclusions
Network fault management is a crucial area in the field of computer networks.
The goal of fault management is to detect, log, notify users of, and (to the extent
possible) automatically fix network problems to keep the network running effectively.
Because faults can cause downtime or unacceptable network degradation, fault
management is perhaps the most widely implemented element of the ISO network
management elements. Our approach towards anticipatory fault management provides a
novel methodology of applying agent based behavioral anticipation towards effective
fault management. The comparative analyses presented in the previous chapter describe
the effectiveness of our technique with respect to reactive techniques. It can be observed
that the anticipatory technique performs significantly better compared to the reactive and
alarm correlation techniques with respect to network throughput, turnaround time, and
the drop rate of packets. The results obtained from the network adaptation methodology
shows that the annealer technique performs exceptionally well for the reactive technique
as compared to the alarm correlation and anticipatory technique.
7.1 The Limitations of Anticipatory Fault Management
In our approach, the topology of the network is assumed to be fixed and static.
The Na?ve Bayesian approach will cease to work if the topology is changed (dynamic)
and hence cannot be applied to Ad Hoc networks. Furthermore, network adaptation
cannot be effectively carried out for anticipatory technique due to lack of communication
 65

between the control agent and the annealer. To get around this problem, an additional
component must be incorporated in the architecture to act as an interface between the
annealer and the control agent.
Another limitation to our approach is the level of network detail being considered.
For instance, we do not consider any hardware details like faults occurring in the network
components due to hardware failure or physical wear and tear. One more problem with
the adaptation technique is the selection of operating regimes that are to be modified. The
operating regimes are decided based on the DEVS toolkit; hence these regimes do not
include possible adaptation parameters such as addition, deletion, or modification of
component functionality.
7.2 Future Work
Given the limitations from the previous section, the improvement on the
anticipatory technique for network fault management requires additional efforts and
better tools that would capture additional details about network operation and network
components. Furthermore, a framework needs to be devised that would enable
anticipatory fault management in Ad Hoc networks, whereby the network topology needs
to be modified dynamically. A methodology needs to be invented to undertake hardware
implementation of the design. This could be done by embedding the Anticipatory control
in an Integrated Circuit (IC) and embedding the fabricated IC in a real time network.
Another important issue be taken care is the improvement of the network adaptation
framework. The Na?ve Bayesian classifier should be designed with additional logic to
consider the decisions taken by the annealer. The same can be also achieved by having an
additional component that would act as an interface between the control agent and the
 66

annealer. The additional efforts described above would result in a high degree of
improvement in network fault management.
The methodology of agent based behavioral anticipation towards fault
management in networks can be effectively deployed in the present computer industry
and will effectively contribute towards reducing losses incurred due to network faults.
Making improvements on our technique as mentioned above will provide a versatile
framework for effective fault management in computer networks.

 67

REFERENCES
A. Bouloutas, G. Hart, and M. Schwartz, ?On the design of observers for failure detection
of discrete event systems,? in Network Management and Control. New York: Plenum,
1990.
A. Lazar, W. Wang, and R. Deng, ?Models and algorithms for network fault detection
and identification: A review,? in Proc. IEEE Int. Contr. Conf., 1992.
B. Ekdahl, E. Astor and P. Davidson, ?Towards Anticipatory Agents?, Intelligent Agents:
ECAI-94 Workshop on Agent theories, architectures and languages. pp 191-202.
1994.
B. Zeigler and H. Sarjaughian, ?Introduction to DEVS modeling and Simulation with
JAVATM: Developing component-based Simulation Models?, Arizona State
University, August 2003.
CAIDA. Cooperative association for internet data analysis. [Online]. Available:
http://www/caida.org/Tools.
Carley K. and Svoboda D.,? Modeling Organizational Adaptation as a Simulated
Annealing Process?, Sociological methods & research, Vol. 25 No. 1, August 1996.
Corn, P.A., Dube, R., McMichael, A.F., & Tsay, J.L. (1988), ?An autonomous distributed
expert system for switched network maintenance?. In Proceedings of IEEE
GLOBECOM?88(pp.1530-1537).
 68

C. Hood and Chaunyi Ji, ?Intelligent agents for proactive fault detection?, IEEE, March
1998.
Davidsson P, ?A Framework for Preventive State Anticipation?, M.Butz et al. (Eds.):
Anticipatory behavior in adaptive learning systems, LNAI 2684, pp. 151-166, 2003.
Edidiong Uyai Ekaette and Behrouz Homayoun Far, ?A framework for distributed fault
management using intelligent software agents?, CCECE 2003 ? CGGEI 2003, IEEE,
2003.
F. Feather and R. Maxion, ?Fault detection in an ethernet network using anomaly
signature matching,? in Proc. ACM SIGCOMM, vol. 23, San Francisco, CA, Sept.
1993, pp. 279?288.
Frank E. Feather. ?Fault Detection in an Ethernet Network via Anomaly Detectors?. PhD
thesis, Department of Electrical and Computer Engineering, Carnegie MelIon
University, 1992.
G. Jakobson and M. D.Weissman, ?Alarm correlation,? IEEE Network, vol. 7, pp. 52?59,
Nov. 1993.
H. Wang, D. Zhang, and K. G. Shin, ?Detecting syn flooding attacks,? in Proc. IEEE
INFOCOM, 2002.
I. Katzela and M. Schwarz, ?Schemes for fault identification in communication
networks?, IEEE/ACM Trans. Networking, Vol. 3, pp. 753-764, Dec. 1995.
I. Rouvellou and G. Hart, ?Automatic alarm correlation for fault identification,? in Proc.
IEEE INFOCOM, Boston, MA, Apr. 1995, pp.553?561.
 69

J. Agre, ?A message-based fault diagnosis procedure,? Proceedings of the ACM
SIGCOMM conference on Communications architectures & protocols, Vol 6 Issue 3,
Aug 1986.
Joseph, C., Kindrick, J. Muralidhar, K. So, C. & Toth-Fejel, T. (1989) ?MAP fault
management expert system?. In Meandzija, B.& Westcott, J. (Eds.) Integrated
Network Management, I.North-Holland: Elsevier Science Publishers B.V.
J. F. Huard and A. A. Lazar, ?Fault Isolation Based on Decision-Theoretic
Troubleshooting?, Technical Report 442-96-08, Center for Telecommunications
Research, Columbia University, New York (1996).
J. Pearl, ?Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference?, Morgan Kaufmann, San Mateo, Calif., 1988.
Hood C. and Ji C., ?Intelligent agents for proactive fault detection?, IEEE Information
Communication Conference (Infocom 97). 1997.
K. Carley and D. Svoboda, ?Modeling Organizational Adaptation as a Simulated
Annealing Process?, Sociological methods and research, Vol. 25 No. 1, August 1996.
L. Lewis, ?A case based reasoning approach to the management of faults in
communication networks,? in Proc. IEEE INFOCOM, vol. 3, San Francisco, CA,
Mar. 1993, pp. 1422?1429.
L. Lewis and G. Dreo, ?Extending trouble ticket systems to fault diagnosis?, IEEE
Network, vol. 7, pp. 44-51, Nov 1993. Kandel A, ?Fuzzy Expert Systems.? CRC
press, 1991.
 70

Luger G. F. and Stubblefield W. A., ?Artificial Intelligence: Structures and Strategies for
Complex Problem Solving?, The Benjamin/Cummings Publishing Company, Inc.
1989
M. Brodie, I. Rish and S. Ma. ?Intelligent probing: A cost ?effective approach to fault
diagnosis in computer networks?, IBM systems journal, Vol 41, No.3, 2002.
M. Thottan and Chuanyi Ji, ?Anomaly detection in IP Networks?, IEEE Transactions on
signal processing, vol.51, No.8, August 2003.
M. Thottan, ?Fault detection in ip networks,? Ph.D. dissertation, Rensselaer Polytech.
Inst., Troy, NY, 2000. Under patent with RPI.
M. Butz, O. Siguad and P. Gerard, ?Internal Models and Anticipations in Adaptive
Learning Systems?, Anticipatory behavior in adaptive learning systems, LNAI 2684,
pp. 86-109, 2003.
Pat Langley and Herbert A. Simon. (1995) ?Applications of Machine Learning?.
Communications of the ACM. Vol.38. No.11
Prietula M., Carley K., and Gasser L., ?Simulating organizations: computational models
of institutions and groups?, Menlo Park, CA: AAAI Press/MIT Press, 1998.
R. Herdman, ?Information security and privacy in network environments?, The Office of
Technology Assessment (OTA), September 15, 1994.
Roy Maxion. ?Unanticipated Behavior as a Cue for System-Level Diagnosis?, In 8th
International Pheonix Conference on Computers and Communications, IEEE, March,
1989.
Roy A. Maxion. ?Anomaly Detection for Diagnosis?. In Twentieth International
Symposium on Fault-Tolerant Compufing. IEEE, March, 1990.
 71

Rosen. R, ?Anticipatory Systems ? Philosophical, Mathematical and Methodological
Foundations?. Pergamon Press, New York.
R.A. Maxion and F.E. Feather. ?A Case Study of Ethernet Anomalies in a Distributed
Computing Environment?. IEEE Transactions on Reliability 39(4),433-443, 1990.
T Oates, ?Fault identification in Computer Networks: A review and a New
Approach?, CS-TR 95-113. 1995.
T. D. Ndousse and T. Okuda, ?Computational intelligence for distributed fault
management in networks using fuzzy cognitive maps,? in Proc. IEEE ICC, Dallas,
TX, Jun. 1996, pp. 1558?1562.
Thottan M. and Ji C., ?Anomaly detection in IP Networks?, IEEE Transactions on signal
processing, vol. 51, No. 8, August 2003.
Wright, J.R., Zielinski, J.E. & Horton, E.M. (1988) ?Expert systems development: the
ACE system?. In Liebowitz, J. (Ed.) Expert System Applications to
Telecommunications.New York: John Wiley & Sons.
Yamahira, T., Kiriha, Y. & Sakata, S. (1989) ?Unified fault management scheme for
network troubleshooting expert system?. In Meandzija, B. & Westcott, J. (Eds.)
Integrated Network Management, I.North-Holland: Elsevier Science Publishers B.V.
Y. Yemini, ?A Critical Survey of Network Management Protocol Standards,? in
Telecommunications Network Management into the 21st Century, S. Aidarous and T.
Plevyak, eds, IEEE Press, Piscataway, N.J.1994.
Zeigler B.P., ?Object ?Oriented Simulation with Hierarchical. Modular Models ?
Intelligent Agents and Endomorphic Systems?, Academic Press, 1990.
 72

Zeigler B. and Sarjoughian H. ?Introduction to DEVS Modeling & Simulation with
JAVA
TM
 : Developing Component-based Simulation Models?, August 2003.

 73

APPENDICES

Appendix A
Design Class Diagram

Figure A.1 Design Class Diagram of the DEVS Network Model
 74

Appendix B

Calculation of Confidence Intervals for the T test

A two sided 100(1 -?)% C.I (Confidence Interval) for comparison of means
21
?? ? is
given by:
)...(...
21
,
2
21 YYestYY ???
?
?

where,
21
21
11
)...(.
RR
SYYes
p
+=?

21
, RR are the number of replications and

2
)1()1(
21
2
22
2
11
2
?+
?+?
=
RR
SRSR
S
p

where, is an unbiased estimator of the variance and
2
p
S
2
i
? 2
21
?+= RR? degrees of
freedom. We perform the t test at 95% confidence interval. Tables B.1, B.2 and B.3
shows the tabulated calculations for Confidence Intervals
.
B.1 Calculation of C.I for Reactive vs Alarm Correlation
Technique

1
S
2
S
es. IC.
Throughput 0.001675 0.002685 0.00538 (-0.001, 0.019)
Turnaround Time 11504.17 17237.6 13.84 (-38.69, 15.55)
Drop Rate 471.63 607.11 2.68 (-8.54, 1.96)

 75

B.2 Calculation of C.I for Reactive vs Anticipatory Technique

1
S
2
S
es. IC.
Throughput 0.001675 0.001813 0.004822 (-0.025, -0.006)
Turnaround Time 11504.17 8359.43 11.5 (25.11, 70.19)
Drop Rate 471.63 379.17 2.38 (5.67, 9.59)

B.3 Calculation of C.I for Alarm Correlation vs Anticipatory Technique

1
S
2
S
es. IC.
Throughput 0.002685 0.001813 0.00547 (-0.035, -0.014)
Turnaround Time 8359.43 17237.6 13.06 (33.62, 84.81)
Drop Rate 379.17 607.91 2.56 (5.9, 15.93)

 76

Appendix C

Sample Data Sets

For each experiment, we perform 30 replications with certain levels of complexity and
link delay. The data sets obtained for the performance metrics are as follows:

Figure C.1 Performance Metrics for Low Link Delay and Level 1 Complexity

 77

Figure C.2 Performance Metrics Moderate Link Delay and Level 1 Complexity

 78

Figure C.3 Performance Metrics for High Link Delay and Level 1 Complexity

 79

Figure C.4 Performance Metrics for Low Link Delay and Level 2 Complexity

 80

Figure C.5 Performance Metrics for Moderate Link Delay and Level 2 Complexity

 81

Figure C.6 Performance Metrics for High Link Delay and Level 2 Complexity

 82

Figure C.7 Performance Metrics for Low Link Delay and Level 3 Complexity

 83

Figure C.8 Performance Metrics o for Moderate Link Delay and Level 3 Complexity

 84

Figure C.9 Performance Metrics for High Link Delay and Level 3 Complexity
 85

