TEAM-RUP: AN AGENT-BASED SIMULATION STUDY OF TEAM BEHAVIOR
IN SOFTWARE DEVELOPMENT ORGANIZATIONS

Except where reference is made to the work of others, the work described in this thesis
is my own or was done in collaboration with my advisory committee. This thesis
does not include proprietary or classified information.

__
Jared Phillips

Certificate of Approval:

Hari Narayanan
Associate Professor
Computer Science & Software
Engineering

Levent Yilmaz, Chair
Assistant Professor
Computer Science & Software
Engineering

David Umphress
Associate Professor
Computer Science & Software
Engineering

Stephen McFarland
Acting Dean
Graduate School
TEAM-RUP: AN AGENT-BASED SIMULATION STUDY OF TEAM BEHAVIOR
IN SOFTWARE DEVELOPMENT ORGANIZATIONS

Jared R. Phillips

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
May 11, 2006
 iii
TEAM-RUP: AN AGENT-BASED SIMULATION STUDY OF TEAM BEHAVIOR
IN SOFTWARE DEVELOPMENT ORGANIZATIONS

Jared R. Phillips

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

Signature of Author

Date of Graduation

 iv
THESIS ABSTRACT
TEAM-RUP: AN AGENT-BASED SIMULATION STUDY OF TEAM BEHAVIOR IN
SOFTWARE DEVELOPMENT ORGANIZATIONS
Jared R. Phillips
Master of Science, May 11, 2006
(M.S., Emory University, 2003)
(B.S., University of Montevallo, 2002)

113 Typed Pages

Directed by Levent Yilmaz

Software production methods are enacted via the interactions of software teams that
cooperate to build software. Therefore, organizational culture has a significant effect on
project coordination. Yet, this is not reflected in current software process simulation
efforts. This thesis introduces a new simulation model development framework, called
Team-RUP, to facilitate exploration of the effects of team behavior on the efficiency and
effectiveness of software development organizations that pursue incremental and iterative
processes such as the Rational Unified Process (RUP). Team-RUP organizes teams
according to the degree of autonomy in collaboration and the degree of concurrency in
coordination, resulting in four distinct team archetypes: Autonomous, Agile, Concurrent,
and Synchronized. Each team archetype embodies a unique combination of autonomy
and concurrency levels, highly reflective of modern organizational paradigms. Using
Team-RUP, we explore the effectiveness and efficiency of team archetypes under various
 v
levels of task complexity and stability (i.e., internal and external turbulence), as well as
team size and workload factors. The conclusions of the simulation study support the
claim that process agility is a valid and useful counterbalance to the inevitable change
involved in most real-world software projects. In particular, small organizations should
consider adopting a software process that encourages agile behavior. If greater
independence among teams is necessitated by a particular project, a large organization
will perform significantly better than a smaller one.
 vi
ACKNOWLEDGEMENTS
 The author would like to thank Dr. Levent Yilmaz for his guidance as well as
other members of his thesis committee: Dr. Hari Narayanan and Dr. David Umphress. In
addition, he appreciates the valuable input offered by the simulation research groups in
both the Department of Computer Science & Software Engineering as well as the
Department of Industrial & Systems Engineering. Finally, a special thanks is owned to
the author?s wife Rebecca Phillips and his family for their continued support.
 vii
Style Manual Used: Publication Manual of the American Psychological Association
Computer Software Used:
? Repast Agent Simulation Toolkit
? Microsoft Word 2003
? Microsoft Excel 2003
? Microsoft Visio 2003
? Microsoft PowerPoint 2003
? Java 1.5.0

 viii

TABLE OF CONTENTS

LIST OF FIGURES...x
LIST OF TABLES ...xi
CHAPTER 1..1
Introduction ...1
CHAPTER 2..7
Software Process Simulation: Making the Case for ..7
the Rational Unified Process..7
1. Software Process Simulation..7
1.1 Analytic Models...8
1.2 System Dynamics...8
1.3 Discrete Models ...9
1.4 Hybrid Models ...10
1.5 Agent-Based Models ..10
2. Rational Unified Process..12
2.1 Definition & History ..12
2.2 Static Structure...13
2.3 Dynamic Structure ...14
CHAPTER 3..19
Conceptualization of Team-RUP: ..19
Organization, Task, and Performance Models..19
1. Organizational Model...20
1.1 Synchronized Teams ..21
1.2 Concurrent Teams ..22
1.3 Agile Teams...22
1.4 Autonomous Teams..22
1.5 Emergent Behavior...23
2. Task Model..24
2.1 Project Configuration ...25
2.2 Risk Management...26
2.3 Shell Sort ...28
3. Performance Model..31
3.1 Software Metrics..31
CHAPTER 4..33
The Design and Implementation of Team-RUP..33
1. High Level Overview...33
2. Team Types via Sorting Algorithms...35
2.1 Autonomous Teams via Merge Sort..36
 ix
2.2 Concurrent Teams via Quick Sort...38
2.3 Agile Teams via Insertion Sort ...39
2.4 Synchronized Teams via Heap Sort ..41
2.5 Incorporating the Experience Factor into the Model43
3. Design and Implementation..44
CHAPTER 5..49
Turbulence...49
CHAPTER 6: ..57
Programmed Model ...57
1. Deadlines & Timing...57
2. Repast..58
3. Verification..58
4. Validation ..61
CHAPTER 7: ..69
Experimental Model ..69
1. Agility Test..69
1.1. Experiment Design..70
1.2 Results ...71
1.3 Discussion..73
2. Team Size Test ..75
2.1. Experiment Design..75
2.2 Results ...75
2.3 Discussion..80
CHAPTER 8: ..84
Conclusion...84
1. Result Summary...85
2. Future Work...86
REFERENCES..89
APPENDICES...95
APPENDIX A ...96
APPENDIX B..97

 x
LIST OF FIGURES

Figure 1.1. The Subject Area of Team-RUP...2
Figure 2.1. Taxonomy of Simulation Techniques..11
Figure 2.2. The RUP lifecycle (adapted from Larman, 2004; Kruchten, 2003)15
Figure 3.1. Realization of the Conceptual Model ...20
Figure 3.2. The Structure of an Organization in the Team-RUP Framework...................20
Figure 3.3: Team Behaviors...23
Figure 4.1. Iteration Workflow for Autonomous Teams...34
Figure 4.2. Operation of Autonomous Teams...36
Figure 4.3. Operation of Autonomous Teams (continued)..37
Figure 4.4. Operation of Concurrent Teams ...38
Figure 4.5. Operation of Concurrent Teams (continued) ..39
Figure 4.6. Operation of Agile Teams..40
Figure 4.7. Operation of Agile Teams (continued) ...41
Figure 4.8. Operation of Synchronized Teams ...42
Figure 4.9. Operation of Synchronized Teams (continued)...43
Figure 4.10. Operation of Synchronized Teams (continued)...43
Figure 4.11. UML Package Diagram for the Overall Design ..45
Figure 4.12. Content of edu.auburn.philljr.team package ...46
Figure 5.1. Ambiguous Inversion Removal of (4,3) ...50
Figure 6.1. Graphical Depiction of List Inversions...59
Figure 6.2. Predictability of Team Productivity..63
Figure 6.3. Predictability of Staff Utilization ...63
Figure 6.4. Predictability of Timeliness ...64
Figure 6.5. Predictability of Quality...64
Figure 6.6. Quality for Agile, Autonomous, and Concurrent Teams...............................66
Figure 6.7. Quality for Synchronized Teams..67
Figure 6.8. Inefficiency of Agile Teams...68
Figure 7.1. Productivity Under Various Turbulence Levels..71
Figure 7.2. Staff Utilization Under Various Turbulence Levels......................................72
Figure 7.3. Timeliness Under Various Turbulence Levels..72
Figure 7.4. Quality Under Various Turbulence Levels ...73
Figure 7.5. Series Legend for Results in Section 2.2 ..75
Figure 7.6. Productivity for Team Sets of Various Sizes ..76
Figure 7.7. Staff Utilization for Team Sets of Various Sizes ..77
Figure 7.8. Timeliness for Team Sets of Various Sizes ..78
Figure 7.9. Quality for Team Sets of Various Sizes..79
Figure A.1. Team-RUP Design Class Diagram ..96
 xi
LIST OF TABLES

Table 6.1. Factor Coding, coordination validation experiment62
Table 6.2. Factor Coding, collaboration validation experiment.......................................66
Table 7.1. Level Definitions for Internal and External Turbulence70
Table 7.2. Level Definitions for Turbulence...70
Table 7.3. Level Definitions for Number of Teams ..75
Table B.1. Factor Levels for the Agility Test ...97
Table B.2. Response Values for the Agility Test..98
Table B.3. Factor Levels for the Team Size Test..100
Table B.4. Response Values for the Team Size Test ..102
 1
CHAPTER 1
Introduction

Software process simulation is a well established, albeit underused, technique for
improving software development. It facilitates prediction capabilities, employee training,
and improvement of tailored processes. Simulation can also be utilized in broadening the
collective understanding of more generic processes and archetypical scenarios. Rather
than matching data collected from real-world enterprises, models used in this latter form
 of simulation capture high-level properties that provide insight into underlying
organizational trends. Simulations of this type are reminiscent of Axelrod?s (1997) tribute
model in the realm of social science. The Team-RUP study falls into this latter category.
As depicted in Figure 1.1, Team-RUP is a multi-faceted framework for exploring the
diverse problem set associated with the intersection of computer science, sociology, and
management science.
Large-scale development of software involves multiple groups of collaborating
professionals collectively influenced by team dynamics: the expertise of sociologists. To
cope with the complexity of software engineering, developers have borrowed ideas from
management science to create formal processes to ensure a measure of conformity and
stability among teams. Such processes, however, have not defined a single, archetypal
software development team. Rather, multiple organizational paradigms have emerged
 2
characterized by the manner in which team members interact, decompose work, and
assemble a final product.

Figure 1.1. The Subject Area of Team-RUP

The intricacy resulting from this confluence of disciplines is further augmented by
the unique nature of software projects. Software engineers develop a product constantly
subject to requirements change. Moreover, software is not bound to the physical world.
It is a symbolic record of the abstract thoughts of its creators. This latter fact elevates the
significance and complexity of communication among teams. For these reasons, an
understanding of the behavior of software development teams cannot be obtained
deductively from knowledge of the three disciplines shown in Figure 1.1.
Software team behavior is a unique domain of phenomena that must be studied
separately from other products of human interaction. Much of the work in this area
derives from personal anecdotes and features useful, albeit subjective, experience-based
heuristics. The few empirical studies of this behavior indicate a vast discrepancy
between the perceived and actual nature of software development teams. For example,
Sawyer and Guinan (1998) have provided evidence that social processes have a greater
 3
effect than production methods on the quality of software created by a team. An example
germane to Team-RUP is research performed by Larry Constantine (1993). Constantine
mapped software team behaviors onto a two-dimensional spectrum that places four
archetypal organizational paradigms at the diagonal extremities. Each paradigm is the
limiting behavior observed as a team progresses along one of four axes: divergence,
reflexivity, hierarchy, and alignment. The author also provides lists of properties that
characterize teams belonging to these paradigms (Constantine, 1993). As is characteristic
of all research bound to irreproducible historical events, these studies lack several
desirable features that can be obtained through simulation.
 Simulation is a tool that allows a researcher to consider a problem from a variety
of viewpoints. In addition to recreating historical events, simulation is useful for
predicting future events, performing ?what-if? and trend analysis, and for problem
modification. One can filter out the variability due to exceptional circumstances to derive
more general, far-reaching results. These benefits motivate the development of a new
simulation framework to address the limitations of empirical research as it pertains to
software process simulation. Team-RUP is a simulation framework designed for the
mutual study of software development, team dynamics, processes, organizational
paradigms, and cultures. Its uses include the validation of empirical studies, the
discovery of general trends among teams in varying environments, and the identification
of causal relationships between management decisions and team performance.
Team-RUP bases its theme on the Team-Soar project. This latter study focused on
decision strategies used by a command and control team consisting of ships, aircraft, and
a land-based unit (Kang, Waisel, and Wallace, 1998). Researchers were able analyze the
 4
effects of various voting rules that give different priorities to majority opinions and team
member knowledge levels. Team-RUP is also a team-centric study. In contrast to Team-
Soar, however, the ?Team? is the software construction division of a software
development company. Its members consist of a project manager, a design manager, and
a variable number of construction teams. Rather than investigating decision making,
Team-RUP is directed at understanding the effects of various team behaviors on the
efficiency and effectiveness of the organization.
The use of simulation to study interactions between software developers and team
behavior is not a new idea. For example, Raffo, Setamanit, and Wakeland (2003)
combined two well-established simulation techniques, system dynamics and discrete-
event, to study processes governing globally distributed software teams. Lucas and Goss
(1999) employed software agents to study team behavior in military applications. Falling
closest to Team-RUP is the work of Wickenberg and Davidsson (2003). They advocate
the use of agents to study software processes and team behavior. Team-RUP, however, is
not a rehashing of old ideas.
It represents a new and unique research tool for several reasons. First, it focuses
on one widely used process framework: RUP. While its intent is to provide general
results, Team-RUP possesses enough grounding to be useful in a real-world context. It
also utilizes a distinctive layered approach allowing features to be modeled at the
individual, team, and enterprise levels. Moreover, cross-cutting factors like internal
turbulence can be captured. Team-RUP presents a new modeling strategy based on
sorting. Finally, it uses inter-agent communication as a central modeling component
rather than as a support tool for agent collaboration.
 5
Team-RUP approaches the problem of classifying team behaviors from an agent-
oriented perspective that differs significantly from Constantine?s (1993) methodology. In
particular, the Team-RUP taxonomy organizes teams according to the degree of
autonomy in collaboration and the degree of concurrency in coordination. The four
combinations in this latter cataloging scheme, however, exhibit characteristics similar to
the former. This research, therefore, provides the opportunity to further explore a well-
established framework using computational methods. Using simulation, the move can be
made beyond identification to implication. Using the Team-RUP framework, we can
predict general trends in the efficiency and effectiveness of teams exhibiting certain
behaviors in particular situations. To achieve this end, the Team-RUP study progressed
through several milestones.
The tasks involved in the Team-RUP study fall into three broad categories. First,
a conceptual framework was chosen that provides a level of specification detailed enough
to bind the simulation model to real-world software development. As evinced by its
name, Team-RUP anchors itself by conforming to the principle tenets of the Rational
Unified Process. A metaphor based on list sorting was selected to simulate software
construction and the various team behaviors. Next, an agent-based model was
constructed combining elements of the event scheduling and activity scanning simulation
worldviews (Banks, 1998; Banks, Carson, Nelson, and Nicol, 2005). Validation
experiments were designed based on documented facts to test the operational validity of
the model in terms of the coordination and collaboration of teams. Because the Agile
behavior is of particular interest to this study, an additional validation experiment was
conducted centering on properties of this particular behavior.
 6
The final phase of this study consisted of conducting experiments to investigate
the effects that turbulence and the number of teams have on varying team behaviors. The
results of these experiments allowed us to conclude that ?agility? is a valid and useful
counterbalance to the inevitable change involved in most real-world software projects. In
particular, small organizations should strongly consider adopting a software process that
encourages agile behavior. If, however, an Autonomous or Concurrent strategy is
somehow necessitated by a particular project, a large organization will perform better
than a smaller one.
 7
CHAPTER 2
Software Process Simulation: Making the Case for
the Rational Unified Process

As a vehicle for software process improvement, Team-RUP lies in the confluence of two
streams of thought and perspective. The first is the use of simulation as a tool for the
understanding and betterment of software processes. These simulation studies may
exhibit significant academic value and often provide support for or suggest changes to
currently used methodologies. The second sources of insight comes from a commercial
venture; namely, the Rational Unified Process. RUP is a collection of methodologies for
creating software whose survival in the marketplace has proven its value. The following
two sub-sections are devoted to these two foundational elements.
1. Software Process Simulation

Little doubt remains over whether software processes are beneficial. When properly
calibrated, a software process greatly aids developers in delivering a product that is high
quality, on time, and at cost. A poorly calibrated process, however, can have the opposite
effect. Moreover, initially implementing a process in the real world can require
significant amounts of time and money. Simulating process decisions before they are
actually implemented can alleviate the risk of failure. Simulation can also be used to
improve processes already in place. With these benefits in mind, software engineers have
 8
developed multiple simulation techniques, each of which has advantages, disadvantages,
and optimal conditions for application.

1.1 Analytic Models
The idea of creating abstract models to better understand software processes is by no
means new. Analytic models (Albrecht, 1979; Boehm, 1981) that find representation to
this day trace their histories back to the late 1970?s and early 1980?s. These models
consist of mathematical equations that represent relationships between various process
entities. Although useful in certain contexts, analytic models divorce process attributes
from their effects and fail to consider dynamic interaction of process factors (Donzelli
and Iazeolla, 2001; Martin and Raffo, 2000). Simulation modeling has been used to
overcome these deficiencies.
1.2 System Dynamics
The most practiced form of simulation modeling in the context of process simulation is
system dynamics. System dynamics arose from Jay Forrester?s research (1961)
concerning the dynamics of business and social systems. It involves the modeling of
systems in terms of feedback loops and ordinary differential equations. In the field of
software process, a seminal work aimed at understanding human resource management,
software production, controlling, and planning was developed by Abdel-Hamid and
Stuart Madnick in 1991. Lehman and Ramil (1999) have used the system dynamics
approach to provide support for Lehman?s laws: a system of high-level propositions
concerning software systems embedded and used in real-world settings. System
dynamics models have even proven useful in the domain of software acquisition as
 9
evidenced by the work of Haberlein (2004). A drawback of system dynamics, however,
is the need for complete and precise empirical information to calibrate the ordinary
differential equations (Ramil and Smith, 2002).
One solution to this problem that allows the researcher to remain in the realm of
continuous dependent variables replaces the ODE?s from system dynamics with
qualitative differential equations. By showing that well-known quantitative models are
embedded within qualitative models, Ramil and Smith lend support to the idea that
qualitative simulation provides a natural abstraction of system dynamics. Another
strategy for addressing the weaknesses of system dynamics models involves abandoning
a continuous world-view in favor of discrete models.
1.3 Discrete Models
Discrete models have contributed greatly to the understanding of software processes.
Discrete-event models, which utilize event-scheduling, process interaction, or three-phase
simulation techniques, allow queues to be easily represented and can postpone processing
until required resources become available (Martin and Raffo, 2000). For example,
Padberg (2002) has used discrete-event modeling to study software project scheduling
policies. Another benefit of this technique is that model entities can be described in detail
via assigned attributes (Martin and Raffo, 2000). Raffo, Harrison, and Vandeville (2000)
took advantage of this characteristic in designing a predictive framework for process
models that links models to dynamically updated metric repositories. State-based
modeling is another discrete approach that has proven useful. State-based models adeptly
represent process-level details and are highly compatible with graphical representation
(Raffo, Vandeville, and Martin, 1999). For example, Raffo et al. (1999) developed a
 10
state-based model of the software lifecycle used by Northrop Grumman?s Surveillance
and Battle Management Systems Division to serve as a business case for high process
maturity. Concrete examples of state-based models include Petri-net and cellular
automata models.
1.4 Hybrid Models
Efforts have also been made to combine continuous and discrete models. Donzelli and
Iazeolla (2001) created a hybrid model of a waterfall lifecycle in which high-level details
were managed in a discrete-event fashion, whereas lower level aspects combined features
of system dynamics and analytic models. Martin and Raffo (2000) developed a similar
model in which a discrete approach was used to model software development steps,
whereas the environment in which the steps were carried out varied continuously. This
hybrid approach to simulation modeling, however, remains in its infancy. An area of
process simulation with a similar level of maturity centers on agents.
1.5 Agent-Based Models
Agent-based simulation presents a wealth of possibility to the software process
community. Unlike other simulation techniques, agent-based simulation allows societies
to emerge within the technical process structure. In the words of Wickenberg and
Davidsson (2003), agent-based simulation of processes provides ?a natural way to
describe both communication between individuals, individual characteristics, and the
discrete decisions made during the negotiations? (p. 10). Strangely enough, research in
this field is limited but not new. For example, Mi and Scacchi (1990) used agents to
simulate processes more than a decade ago in their work developing the Articulator
environment. Scacchi reports that interest in the agents themselves supplanted his
 11
research group?s interest in studying processes (Scacchi, 1999). Wickenberg and
Davidsson (2003), however, have provided new impetus to the field by developing
sufficiency tests for the usefulness of agent-based process simulation as opposed to other
simulation techniques. As shown in Figure 2.1, the agent-based approach typically
serves as a shell for one of the other simulation techniques.

Figure 2.1. Taxonomy of Simulation Techniques

The UML (conceptual) class diagram in Figure 2.1 provides a simple taxonomy
of representation techniques used to derive information about a system. Aside from the
implements association between the Simulation and Agent-Based Model entities, the
dependencies depicted in this figure are is-a relationships. For example, event-
scheduling is a type of discrete-event simulation. Hybrid simulations combine
continuous and discrete simulation techniques. Note that agent-based models are not
bound to a particular low-level simulation technique. Instead, they are an abstraction that
can be implemented in a variety of ways. Activity Scanning and State-Based approaches
fit nicely with the agent-based paradigm.
 12
2. Rational Unified Process

2.1 Definition & History
What RUP is and how it came to be are two inextricably bound concepts. This
relationship results from the fact that RUP is both a software engineering process and a
process product. That is, it was developed and is maintained in the same manner as every
other software product. In particular, Rational Software Corporation has collected and
integrated the best practices of the software development industry; in parallel, it has
created a suite of tools to aid in the implementation of these practices. Over a period of
ten years, the process and its progenitor meta-process have been expanded and honed
(Krutchen, 2003).
Although Rational?s association with the process spans a decade, the beginning of
RUP can be found eight years earlier in 1987. Deriving from his work at Ericsson, Ivar
Jacobson created Objectory process, which merged his earlier invention, the use case,
with an approach to developing object-oriented software. This early ancestor of RUP
became a product of Jacobson?s company Objectory AB, which merged with Rational in
1995. This merger resulted in a hybridization of the Objectory process with the Rational
Approach, an iterative technique for software development. Mergers with Requisite, Inc.
and SQA, Inc. added requirements management and a testing process to the mixture. The
adaptation of this combination to incorporate concepts from the Unified Modeling
Language resulted in the creation of the Rational Objectory Process. A merger with Pure-
Atria led to advances in configuration management and the first use of the name
?Rational Unified Process? in 1998 (Krutchen, 1999).
 13
Since this time, RUP has continued to evolve under a wide variety of
environmental influences. Applying its iterative and incremental meta-process, Rational
has continued to make adjustments to their product. Moreover, IBM acquired Rational in
2002 endowing RUP with access to one of the largest asset pools in the technology
sector. Also, RUP has harvested ideas emerging from the parallel development of the
Unified Process, a more general, public domain process (Larman, 2002). Finally, RUP
has borrowed many ideas seeded in Agile community. For example, newer editions to
RUP resemble methods found in Extreme Programming and Scrum (Pollice, Augustine,
Lowe, and Madhur, 2004). This diversity of components alludes to a final face of RUP:
process framework.
Because of its size and heterogeneity, RUP can be complicated and unwieldy if
taken as a whole. For this reason, it should be viewed as a process framework that is
tailored to meet the needs of its user. In other words, an organization should only use
those parts (e.g., artifacts) of RUP that it needs. Otherwise, its use can be more of a
hindrance than an aid (Probasco, 2001). For this very reason, RUP lists the Development
Case among its key artifacts. This document details how an organization will adjust the
RUP to suit its needs (Pollice, 2004). The Development Case is an element of RUP?s
static structure.
2.2 Static Structure
The static structure of the RUP provides a detailed description of the overall process.
Four modeling elements compose it (Krutchen, 1999):
? Workers
? Activities
? Artifacts
 14
? Workflows
The worker elements define roles played by developers. While a many-to-many
relationship may exist between workers and developers, our model defines a one-to-one
mapping between the two sets for simplification purposes. The Project Manager and
Designer workers, for example, feature prominently in the model. Activities address the
question of ?how?? in an RUP project. These are work units that can be addressed to
individuals acting as a particular worker. For example, Find use cases and actors is an
activity assigned to the system analyst worker. Activities are represented metaphorically
in this research. According to Leffingwell and Widrig (2000), an artifact is a piece of
information controlled, modified, or created by a worker. As work products, artifacts are
?what? the RUP produces in the form of tangible outputs. Most artifacts are considered
part of a configuration and are therefore subject to change and version control. While
RUP artifacts cover a wide range of activities, the artifacts modeled in this study concern
analysis, design, and implementation. Krutchen (1999) defines a workflow as a
succession of activities producing an outcome of discernable value. Workflows answer
the question of ?when? to do something in RUP. The Design and Implementation
workflows are of particular interest in this simulation study. It is important to realize that
workflows occur in parallel rather than sequentially. In fact, they run orthogonal to the
time-sequenced elements of RUP, which comprise the dynamic structure of the process
(Krutchen, 1999).
2.3 Dynamic Structure
A lifecycle is to a process what a melody is to a song. On a quantitative level, it controls
how a process unfolds. From a qualitative perspective, it is the most recognizable part of
 15
the process. Both these observations are true in the case of RUP. As shown in Figure 2.2,
it is an iterative, incremental process superimposed on a modified spiral process. We
consider each of these aspects individually.

Figure 2.2. The RUP lifecycle (adapted from Larman, 2004; Kruchten, 2003)

Iteration allows RUP to cope with two major causes of project failure: change and
unforeseen consequences. Change is particularly prevalent in the form of requirements
churn. The customer?s needs change because of a development in the market. The
customer is dissatisfied with a partial product and corrects an earlier miscommunication
or lack of communication. New government regulations imposed on the customer?s
industry could also cause requirement churn (Fowler, 2004). Other forms of change,
however, often arise during a project. Turnover within the development organization is
the most obvious example. Also, new tools may become available to the organization. In
the software industry, geographic redistribution of personnel is a common source of
 16
change (Pollice, 2004). The existence of unforeseen consequences is closely tied to
change.
Human beings can rarely predict every outcome of their actions. Since humans
create it, software encodes this uncertainty. Despite thorough planning, problems still
arise. Components may be inconsistent or incompatible. The software may not account
for certain hardware limitations such as restricted memory. These technical surprises as
well as the previously discussed change inevitably lead to a certain amount of rework
(Krutchen, 1999).
Iteration minimizes the amount of rework that has to be performed. Like all
iterative processes, RUP repeatedly focuses on a subset of the requirements until all
requirements are met or a deadline is reached. This technique allows the developer to
delve deep into a project early in the process and discover potential pitfalls. It also gives
the customer an early impression of the final product that will evolve under the current
requirements set. This insight allows changes to be made near the beginning of the
project minimizing wasted effort. Also, iteration maximizes staff utilization on a
particular project. More employees can work on the same project at the same time. Two
characteristics, however, separate RUP from other iterative processes (Krutchen, 1999).
RUP iterations are time-boxed and risky requirements are considered in early
iterations. A time-boxed iteration is one with fixed start and end times. A certain number
of activities are scheduled for each time-box. Rather than move a deadline, activities are
moved to later iterations. Time-boxing shields an iteration?s work product from becoming
outdated. It also has a positive psychological impact on developers and customers who
can regularly observe tangible results. By addressing risky requirements early in a
 17
project, the development organization can avoid last minute crises, the resolution of
which requires significant alteration to earlier work (Krutchen, 1999). This technique also
provides an opportunity to abandon part or all of a project before substantial amounts of
time and money have been wasted (Leffingwell and Widrig, 2000). Many of these
benefits are enhanced by RUP?s incremental nature.
The word ?incremental? means different thing to different people. In RUP,
?incremental? refers to the way the software product grows. In other processes, multiple
new additions are merged with previous work products to create a new build. In RUP,
additions are made one at a time. First, a small piece of software is coded and tested.
Then, it is added to the working product, and the combination is tested. Finally, the tested
combination is placed under configuration management, and the cycle repeats. The
product is incremented within each iteration. The benefits of incremental development
complement RUP?s iterative nature (Krutchen, 1999).
Three main advantages arise from incremental development. First, fault location
is simplified. Because the baselined portion of the new build has been more thoroughly
tested, any faults are more likely to be found in the new addition. Also, components are
exercised more thoroughly, thereby decreasing the chance of having latent defects. As
was the case with iterations, incremental development provides early, tangible results.
Having a running system boosts confidence in the project among customers and
developers. Although iterations and increments serve valuable purposes, additional
process elements are needed to evaluate progress on a project-wide basis. RUP services
this need by overlaying the collection of iterations with a modified spiral process
(Krutchen, 1999).
 18
Since iterations have a depth-first ?feel? to them, it is easy to get the impression
that they are all the same and their order of completion is irrelevant. While it is closer to
the truth on a small project, this misperception is grossly inaccurate on a large project. An
early iteration might focus more on requirements and architecture, whereas an iteration
late in the project might focus more on implementation and testing. To reflect this reality,
RUP maps iterations onto phases. These phases correspond to the regions of a traditional
spiral model (Krutchen, 1999).
RUP divides a (spiral) cycle into four phases: Inception, Elaboration,
Construction, and Transition. Although their composition varies with each cycle, each
phase has some general characteristics. In Inception, the scope and vision of the project
are defined. The organization may also specify a business case during this phase.
Elaboration is characterized by the development of an architecture, the planning of
activities, and the gathering of resources. During Construction, work products from
earlier phases are evolved and the product is actually built. In the Transition phase, the
product is delivered to the user and maintenance activities are performed. At the end of
each phase, a milestone is reached that serves as a point to evaluate the overall progress
of the project and to affirm the practicality in continuing. The exact nature of the phases
will also depend on the context in which RUP is applied (Krutchen, 1999).
 19
CHAPTER 3
Conceptualization of Team-RUP:
Organization, Task, and Performance Models

Dispelling the myth that software is manufactured was not a recent development. The
production of software has been recognized as a creative process for quite some time
(Pressman, 2005). Unfortunately, the study of software development often mirrors that
of manufacturing processes and fails to account for the implications of software?s
uniqueness. The foremost among these implications centers on the creators?
relationships. Due to mechanization, manufacturing teams are often best characterized as
secondary social groups. Communication is often standardized, formal, and minimized.
In contrast, software teams are primary groups. Even when roles are specialized, the
creative process necessitates open communication. (Tischler, 2002).
The Team-RUP model explicitly addresses collaboration and coordination of
agent team members via communication. In fact, the representation and measurement of
aspects related to these concepts pervade and unify the three components of the Team-
RUP framework. To decrease coupling and allow for future modification, we partition
the Team-RUP conceptual model into disjoint sub-models: the organizational model, the
task model, and the performance model (Figure 3.1). Collectively, these models describe
the structure of the virtual organization, the work it performs, and how well it performs
the work.
 20
Conceptual Model
Organizational Model Performance Model Task Model

Figure 3.1. Realization of the Conceptual Model
1. Organizational Model

The organizational model addresses the structure of the organization and agents, the
coordination of tasks, and agent collaborations. As is most common among businesses,
the Team-RUP organization is structured as a hierarchy of agents. It consists of a project
manager, a design manager, and teams of engineers. The project manager performs high-
level coordination tasks, whereas the design manager provides oversight to the design
process and decomposes tasks of large granularity. The teams of engineers create the
actual artifacts of the software development process. The remainder of the software
development organization, including an independent testing group, is implemented using
standard object orientation. The structure of an organization modeled in the Team-RUP
framework is shown in Figure 3.2.

Figure 3.2. The Structure of an Organization in the Team-RUP Framework
Project
Manager
<<non-agent>>

Requirements
Elicitation and
Analysis
<<non-agent>>

Independent
Testing Group Design
Manager
Team of
Engineers
Team of
Engineers
Team of
Engineers
Team of
Engineers
 21
To represent cooperation at the team level, this model considers four group
archetypes based on characteristics resulting from collaboration and coordination
techniques. Ferber (1999, p. 80) defines a collaboration technique as ?being of those that
enable agents to distribute tasks, information and resources (among themselves) in the
advancement of a common labour.? We classify teams in terms of the degree of
autonomy afforded by such strategies. In particular, team collaboration strategies are
classified as top-down or bottom-up. As the former entails step-wise refinement, a large
degree of oversight is required, which diminishes autonomy. The latter, however,
provides much more flexibility since the structure of the final integrated product is not
entirely preconceived. These categories are further subdivided in terms of coordination.
According to Ferber (1999, p. 400), coordination of actions means ?the articulation of the
individual actions accomplished by each of the agents in such as way that the whole ends
up being a coherent and high-performance operation.? We classify team behavior
according to the degree of concurrency realized through coordination. In particular,
teams can function sequentially or concurrently. Varying degrees of collaboration and
concurrency, therefore, lead to four team archetypes. These archetypes match closely
with Constantine?s (1993) four organizational paradigms. The four team archetypes in
Team-RUP are Synchronized, Concurrent, Agile, and Autonomous.
1.1 Synchronized Teams
Synchronized teams approach problems in a linear, top-down fashion. Such teams work
under a traditional hierarchy and have specialized skill sets. At each stage of step-wise
refinement, task dependencies are delineated and work progresses along the dependency
 22
chain in a sequential manner. Synchronized teams correspond to Synchronous teams in
Constantine?s (1993) framework.
1.2 Concurrent Teams
Concurrent teams approach problems in a concurrent, top-down manner. Like
Synchronized teams, they have a hierarchical structure. Task decomposition, however,
creates a less flexible framework that is based on a centralized design strategy. This
initial coordination effort minimizes the time and effort that must be expended on system
integration activities. An essential characteristic of Concurrent teams is that decisions are
handed down from above. Concurrent teams correspond to Closed teams in
Constantine?s (1993) framework.
1.3 Agile Teams
Agile teams approach problems in a linear, bottom-up fashion. Collectively, these teams
have some idea concerning the direction in which a project needs to go. They work
together to determine who does what in a particular situation. Agile teams complete their
tasks in an incremental manner, adding new features until a final product is achieved.
The label ?Agile? derives from the fact that many agile processes such as Extreme
Programming and DSDM advocate this form of team behavior (Pressman, 2005). Agile
teams are similar to Constantine?s (1993) Random teams.
1.4 Autonomous Teams
Autonomous teams follow a concurrent, bottom-up approach. Teams work
independently of one another to create pieces of a solution. These pieces must be
integrated to form the final system. A higher value is placed on innovation than on
organization. Therefore, a large amount of effort must be expended to patch the system
 23
together. Constantine?s (1993) Open teams fit well with Autonomous teams. Figure 2
summarizes team behavior in Team-RUP.

Figure 3.3: Team Behaviors

1.5 Emergent Behavior
The final facet of the organizational model concerns emergent behavior. Each agent has
a certain level of experience, which increases as simulation time passes. At the start of a
simulation run, the experience of every agent is randomly assigned. Greater experience
decreases the likelihood of that agent making a mistake. How an agent makes a mistake
is determined by the type of agent as well as the context of the situation.
 24

2. Task Model

In accord with RUP, the development of software in Team-RUP is viewed as a multi-
stage transformation. Representatives of the development organization elicit
requirements from the customer and users. These requirements are validated, refined,
and translated into an analysis model. Team-RUP models perform these tasks
procedurally. The agent organization becomes involved when software construction
takes place.
Construction begins with the analysis model being passed to the project manager
who forwards it to the design manager. During a series of time-boxed iterations, the
design manager and its subordinates map the analysis model into a design model and
implementation. For simplification purposes, the latter two artifacts are not syntactically
distinct entities in the model. As will be evident later, both are sub-lists of the same
(semi-) sorted list. To reflect RUP?s incremental nature, testing occurs during each
iteration.
We recall that in the Rational Unified Process, software projects are completed
through a sequence of time-boxed iterations, each of which may comprise design,
implementation, and/or testing (Krutchen, 1999). Development organizations using RUP
should complete some subset of the final system at the end of each iteration. Because of
its iterative nature, however, RUP allows an organization to cope with requirements
changes. RUP also stipulates that those parts of the project involving greater risk should
be addressed in early iterations so that overall risk to the project can be mitigated. To
model this incremental and iterative process, the organization sorts integer arrays using a
 25
variation of a well-known iterative sorting algorithm; namely, Shell sort (Krutchen, 1999,
Pollice, 2004).
2.1 Project Configuration
In the Team-RUP framework, an array of integers represents a project configuration, and
problem facets are modeled as ordered pairs of elements. The set of all possible facets
pertaining to a configuration C (and hence a project) is the following set:

Suppose (x
i
 , y
j
) is a problem facet corresponding to a configuration C and let z
k
 be an
element of C. If k ? j, comparing x
i
and z
k
 translates into performing a task associated
with (x
i
 , y
j
) . Similarly if ik ? , comparing z
k
and y
j
is also analogous to performing a
task associated with (x
i
 , y
j
). Clearly, many tasks can be accomplished via a single
comparison. As in the real world, not all facets of a problem need to be addressed to
complete a given project; certain tasks can remain undone. Team-RUP classifies tasks
according to two categories. A supporting task does not reverse the order of a problem
facet pair. Principal tasks are the second form of task, and they address a special form of
problem facet.
Team-RUP represents requirements in terms of inversions; that is, pairs of array
elements that are out of order. A single inversion is interpreted as a principal, atomic task
yet to be performed. Thus, a set of inversions is an incomplete requirement fulfillment
(i.e., principal task), and removing a set of inversions corresponds to fulfilling a
requirement. Sets of inversions can be decomposed into subsets just as a task can be
decomposed into subtasks. Each principal, atomic task is associated with a risk.

 26
2.2 Risk Management
Mark Akhed (2003) defines risk as ?an ongoing or upcoming concern that has a
significant probability of adversely affecting the completion of major milestones and
product quality?. That is, a risk is something that (if it happens) prevents requirements
from being fulfilled. Although a broader definition could be adopted (in which this sort
of risk would be classified as a technical risk), a requirements-centered meaning is most
relevant to the simulation of a generic software company. Note that a risk has not
occurred. When a risk develops into actuality, it ceases to be a risk and becomes an issue
(Akhed, 2003). Therefore, risk projection is an essential part of managing risk. Risk
projection involves ranking risks by their likelihood of occurrence and their potential
impact (Pressman, 2005). Thus, a less costly issue that has a high probability of occuring
may be more risky than a more costly issue with a smaller probability of occuring.
Observe that risk varies throughout a project. RUP recommends that requirements
involving greater risk should be performed in early iterations (Akhed, 2003).
The Team-RUP model captures the concept of risk by extending our earlier
analogy involving inversions. Because risk estimation precedes the development of a
risk mitigation strategy, we initially assume that sorting takes place through the iterative
swapping of randomly chosen array elements. The risk probability R
ij
 associated with a
particular inversion i at the instant before the j
th
 swap of the project should be defined in a
manner adhering to the analogy of inversion removal as requirements fulfillment.
Ultimately, we must associate R
ij
 with the probability that i will not be removed
during the course of the project. Assuming a success occurs when swap j removes
inversion i, define the random variable X
ij
 to be 1 in case of a success and 0 in case of a
 27
failure. Since the probability that X
ij
records an inversion removal can be determined
entirely from the state of the requirements array, it follows that the sequence {X
ij
} is a
Markov Chain for fixed i and varying j. Note, however, that the X
ij
s are dependent. It
might appear that risk probability for a project involving n swaps should be defined as
follows:
)0,0,,0,0(
,1,2,1,
=====
?++ ninijijiij
XXXXPR K
This definition, however, fails to draw a distinction between actual and perceived risk
probability.
In the real world, risk probabilities are typically derived using the Delphi
technique, which essentially involves the iterative polling of experts (Charette, 1989);
that is, via opinion. Such opinion is founded upon the forseable nature of the
requirement. It would be erroneous to model risk probability as an actual probability
based on the entire remainder of the project, during which the perceived nature of the
requirement could change. After all, the risk associated with requirements change (i.e.,
project risk) is typically considered separately from technical risk (Pressman, 2005).
Instead, the calculation of the risk probability of a technical risk should assume the
requirement stays the same for the rest of the project. This assertion makes clear the need
for frequent, iterative risk assessment.
In Team-RUP, the risk probability associated with an inversion at a particular
point in time is defined as the probability that the inversion will be removed before the
end of the project with the assumption that neither of the elements of the inversion
change array locations before the inversion is removed. This assumption makes the X
ij

independent of one another. It is also assumed that the inversion will never be
 28
reintroduced. Therefore the probability of removing the inversion via the next swap does
not change from swap to swap. In other words, we have reduced the Markovian chain
problem to a simple binomial experiment. The risk probability associated with the
inversion is the probability that every trial will result in a failure. Since a numerical
value for risk probability is not calculated in the current implementation of Team-RUP,
the important observation to make centers on the relative probabilities of different types
of inversions.
In particular, we observe a difference between inversions involving array
locations that are far apart and those involving array locations that are close together. To
remove an inversion, at least one of the inversion elements must be chosen for swapping.
Furthermore, the other array element chosen for swapping cannot lie between the two
inversion elements. For example, there is no swap involving 3 that will remove the
inversion (4,2) from the list 5, 4, 3, 2, 1. Therefore, inversions consisting of elements
that are close together in terms of array location have a higher probability of being
removed. Stated another way, inversions consisting of far-apart elements have a greater
risk probability.
2.3 Shell Sort
With the mapping of tasks to inversions, Shell sort provides a strong analogy for RUP for
several reasons. Obviously, the algorithm?s approach of removing inversions in phases
coincides with RUP iterations. Of greater significance is the fact that a Shell sort phase
does not undo work performed in earlier phases: 2-sorting a 5-sorted list generates a 5-
sorted (as well as 2-sorted) list. This reflects the fact that each RUP iteration produces
 29
part of the final system rather than draft-quality, throw-away workproducts. Shell sort
also captures RUP?s risk mitigation strategy.
Recall that Shell sort initially swaps unordered elements that are far apart and
decreases with each phase the distance between the elements it compares. Because it
eventually sorts the set of adjacent elements, the algorithm is guaranteed to sort the entire
list. We see from Section 2.2 that Shell sort addresses requirements with high risk
probabilities during early iterations. Given two requirements with the same risk
probabilty, does Shell short differentiate between the requirements based on risk cost?
The answer is yes, but the reasoning is subtle.
Shell sort can be thought of as a tournament (not to be confused with the
tournament sort algorithm). Each phase of Shell sort is a ?round?. ?Matches? occur
between elements that are kn array locations apart, where k is an integer and n is the Shell
increment. If we think of higher numbers as better players, we can make the following
observation: With each round of the tournament, better numbers move to the end of the
array, mediocre numbers move to the middle, and less skilled numbers move to the front
of the array. The further the tournament progresses, the more defined this ordering
becomes until finally the number are completely sorted. If the tournament is cut short,
however, a general relative trend will still exist: small numbers will appear near the front
of the array, medium numbers will appear near the middle of the array, and large
numbers will appear near the end of the array. At such a point, two numbers which have
a large difference in terms of absolute value are more likely to appear in sorted order than
two that differ little in value. In other words, inversions representing a higher risk cost
are removed during earlier iterations. Therefore Shell sort captures RUP?s suggestion
 30
that requirements involving high technical risk be addressed in early iterations. As
mentioned in Section 2.2, however, changes in requirements involve another type of risk.
As discussed in Section 2.3, RUP assumes the presense of change. The iterative
nature of RUP mitigates the negative impacts of this unavoidable reality. Because it
represents a significant divergence from older processes, our analogy must somehow
incorporate this characteristic. The key insight is that Shell sort will still properly order
an array even if none but the last sorting phase actually occurs. Since inversions inserted
by an outside entity during the execution of Shell sort will ultimately be removed by later
phases, the algorithm reflects RUP?s ability to cope with changing customer
requirements.
As mentioned before, we interpret Shell sort phases to be RUP iterations. In each
phase of Shell sort, the base array is partitioned into sub-arrays whose lengths are
determined by a particular increment sequence. Each of these sub-arrays is sorted using
some secondary sorting algorithm (typically insertion sort) (Weiss, 1999). By varying
the way this secondary sorting occurs, we use this feature of Shell sort to model
alternative team behaviors. Comparing array elements and performing element
exchanges represent the design and implementation phases. Ascertaining the number of
inversions in sub-arrays is seen as testing. Several sub-arrays can be tested during each
iteration. Thus, in accord with RUP, our model organization avoids a linear lifecycle
approach (Pollice, 2004). The project ends when the originally proposed deadline for the
final time-box expires, regardless of the state of the array.
 31
3. Performance Model

To maximize the applicability of the results across the vast diversity of software
development objectives and constraints, efficiency and effectiveness have been chosen as
the principle indicators of utility in this study.
3.1 Software Metrics
We measure efficiency in terms of productivity and staff utilization. Effectiveness is
viewed as a combination of timeliness and software quality. In accord with Practical
Software Measurement (Office of the Under Secretary of Defense for Acquisition and
Technology [OUSDAT], 1998), productivity P is defined as the ratio of the product size
to the effort, where effort is typically quantified in terms of labor hours. Taking a
functional view of product size, we define this quantity as the total number I of inversions
removed from the requirements list. Effort E is the product of the number of agents A
and the number of time ticks T in the simulation. That is,
TA
I
P =
The formula for staff utilization Su also contains effort in its denominator. The
numerator, however, equals the total number Pt of ?productive ticks? taken across all
agents. A time tick is considered productive for a particular agent provided that agent
performs some work-related activity during that time tick. For example, consider a three
tick experiment with two agents. If one agent works during every tick and the other
agent only works during the second tick, we have Pt = 4. In summary,
TA
Pt
Su =
 32
Timeliness is measured as a function of build content. The build content measure
is the number of components Cc completed during an iteration divided by the number of
components Ca allotted to the iteration at its start (OUSDAT, 1998). In this study, the
granularity of a measurable component is the same as that of a testable component: a
single cell of an n-cell partition of indices created during an attempt to n-sort the values
corresponding to those indices. Timeliness Tm is the mean value of the build content
measures taken over all iterations. In an experiment with n iterations, we have
?
=
=
n
i
i
i
Ca
Cc
n
Tm
1
1

Quality Q is measured in terms of defect density. PSM defines defect density as
the number of defects in a component divided by the size of that component (OUSDAT,
1998). Translating this definition into the language of the Team-RUP model, quality
equals 1 minus the number of remaining inversions Ri divided by the total number In of
inversions in the original requirements list:
In
Ri
Q ?= 1
 33
CHAPTER 4
The Design and Implementation of Team-RUP

Much of the design model follows directly from the problem statement as outlined in
Chapter 1. For example, the mapping between RUP iterations and Shell sort phases is
immediate; sorting algorithms in general match well with process lifecycles. Mapping
team behaviors to sorting algorithms, however, is far more complicated.
1. High Level Overview

We first take a look at how the software organization as a whole operates. That is, we
can consider the workflow of a simulated software development project. A software
project is not the simple execution of a predefined sequence of atomic steps. Rather, it is
a progression through a series of interdependent states governed by a complex system of
time-dependent conditions. To illustrate this workflow, we utilize a UML activity
diagram.
Figure 4.1 reveals the workflow of Autonomous teams during a single iteration.
Although it focuses on a single team type, it illustrates high-level coordination activities
common to all the behaviors. The project manager is ultimately responsible for starting
and stopping each iteration. At the start of an iteration, it tells the design manager to
implement a set of components. The design manager chooses one of the components and
creates a work breakdown structure. Each leaf of this tree represents a sub-component to
 34
be implemented by a single team. These sub-components are assigned to teams until
either the leaves or the available teams are exhausted. As teams finish sub-components,
the assignment process continues. Once some of the leaves have been addressed, the
design manager may assign interior nodes.

Figure 4.1. Iteration Workflow for Autonomous Teams

 35
Interior nodes can be assigned to teams once all their descendents have been
completed. Interior nodes represent integration tasks and are assigned to two teams.
Each team should have previously been assigned a child of this node. They collaborate to
integrate the sub-components. Once all the nodes of a work breakdown structure are
addressed, the completed component is sent to the testing division. If the testing division
does not find it acceptable, the component is returned to the design manager?s queue of
components to implement during the current iteration. The construction division
continues the process of designing and implementing components until the component set
is exhausted or the time-box expires.
The workflow presentation presented in the preceding paragraphs is specific to
autonomous teams only in the handling of each component. For example, concurrent
teams perform integration tasks throughout component implementation rather than
delaying the task until (potentially) all sub-components have been completed. The basic
steps of starting an iteration, implementing a set of components, testing each component,
revisiting components that fail to withstand testing, and ending an iteration are common
to each organizational archetype.
2. Team Types via Sorting Algorithms

A direct mapping between team behaviors and sorting algorithms would reveal nothing
more than is covered in an algorithms course and would fail to capture member
collaboration. The algorithm?s approach to sorting, not its efficiency or exact details, is
what needs to be captured. One successful match is made between Autonomous teams
and merge sort.
 36
2.1 Autonomous Teams via Merge Sort
Under every team behavior, each iteration begins with the design manager selecting
components to be completed during that iteration. The scope of a team behavior's
influence is a single component; i.e., a set of indices. As shown in Figure 4.2, when an
Autonomous design manager considers a component, it first creates a work breakdown
structure.

Figure 4.2. Operation of Autonomous Teams

This structure is a binary tree in which the root contains the entire component. Sibling
nodes split the indices of the parent nodes. Each leaf node contains a set of indices no
larger than the value of the workload parameter and has a parent that contains a set of
 37
indices of size greater than the workload. The work breakdown structure corresponds to
the tree of recursive calls in the standard version of merge sort.
Once the tree has been constructed, each leaf is assigned to a single engineering
team, which sorts the sub-array determined by the node?s index set. Moving from bottom
to top in the tree, the design manager assigns each interior node to two teams as shown in
Figure 4.3. These teams sort the sub-array determined by the node?s index set by
merging the sub-arrays in the node?s two children. Whenever possible, the team assigned
a parent node will have been involved in sorting one of the child nodes. The two teams
assigned to a node each manage a single child node and must collaborate to sort the sub-
array determined by the union of the sets of indices contained in the child nodes. The
way the two teams collaborate to merge the sub-arrays is very similar to the method used
in the standard merge sort operation. A similar mapping exists between Concurrent
teams and the quick sort algorithm.

Figure 4.3. Operation of Autonomous Teams (continued)

 38
2.2 Concurrent Teams via Quick Sort
The implementation of quick sort in the Team-RUP model closely resembles that
typically found in a textbook on algorithms. As shown in Figure 4.4, when the design
manager considers a component, it enters a design phase that corresponds to the recursive
partitioning in quick sort.

Figure 4.4. Operation of Concurrent Teams

A single engineering team partitions the array determined by the component.
Each half of the partitioned array is itself partitioned by other teams. This process
continues until the size of a sub-array is at most the value of the workload parameter. At
this point, a team implements the sub-component; i.e., sorts the corresponding sub-array
(Figure 4.5). The design manager is in charge of assigning sub-components to
 39
engineering teams. The manifestation of insertion sort in Team-RUP is somewhat more
complicated.

Figure 4.5. Operation of Concurrent Teams (continued)

2.3 Agile Teams via Insertion Sort
Insertion sort provides an analogy for the Agile behavior. For teams operating under this
behavior, tasks corresponding to a given requirement are associated with a single
engineering team. In concrete terms, this statement means a team manages a particular
set of values regardless of where they appear in the array. This strategy is markedly
different from the index-tracking strategies used with the other behaviors. The design
manager must follow which teams are managing what values and what values are located
in which index locations.
 40
As shown in Figures 4.6 and 4.7, when the design manager considers a
component, it logically partitions the array indices into sorted locations (the first index)
and unsorted locations (all other indices).

Figure 4.6. Operation of Agile Teams

In ascending order of indices, the design manager adds unsorted locations to the sorted
locations list. First, the design manager contacts the team T in charge of the value in the
next unsorted location. Team T contacts teams managing values in the sorted locations
and exchanges indices with these teams until the value belonging to T is in the
appropriate location. A value leaves the active state and enters the passive state once it
has been inserted into the sorted locations. At this point, the inserting team can accept
another value to be managed. At any point in time, the number of active values managed
 41
by a team must not exceed the workload. The modified heap sort is the last and most
complex algorithm modification.

Figure 4.7. Operation of Agile Teams (continued)

2.4 Synchronized Teams via Heap Sort
Heap sort provides an analogy for the Synchronized behavior. As shown in Figures 4.8,
4.9, and 4.10, when a design manager first considers a component, the sorted array
indices (not values) are divided into disjoint, contiguous sets. Each set represents an area
of specialization and is managed by a single team. Only engineering teams that share a
border communicate with each other. Collectively, the indices in the areas of
specialization form a heap tree. The design manager gives a single, atomic order to
heapify at a node or to delete the maximum element and reduce the size of the heap. The
 42
teams collaborate to satisfy these demands passing values via the pipeline created by
specialization. Blocking can sometimes occur in the pipeline.

Figure 4.8. Operation of Synchronized Teams

Pipeline blockages are the result of special tasks associated with values when they
enter a team?s specialization boundary. A certain number of productivity units are
attached to each of these tasks, and a value cannot cross a specialization boundary until
the productivity units have been depleted by the specialist team. Each team can expend a
fixed number of productivity units on its tasks during each time tick.
 43

Figure 4.9. Operation of Synchronized Teams (continued)

Figure 4.10. Operation of Synchronized Teams (continued)

2.5 Incorporating the Experience Factor into the Model
Experience allows otherwise identical agents to exhibit divergent behavior in identical
scenarios. For example, the experience of a team is directly proportional to the
 44
expediency with which it completes an implementation task. That is, an experienced
team will consume fewer time ticks than an inexperienced team while implementing the
same component. Each agent encodes its experience as number between 0 and 1. At the
start of a simulation, experience values are chosen randomly. Whenever an iteration
ends, each value is increased by a randomly-chosen, nonnegative increment that is at
most half the difference of 1 and the current value. Experience updates are another
example of scheduled events.
 Experience also affects how well an agent performs its job. An experienced agent
is less likely to ?make mistakes? than a less experienced agent. In Team-RUP, making a
mistake amounts to incorrectly comparing two array elements in terms of their size.
Whenever an agent compares two numbers a and b, a random number is sampled from a
uniform distribution. If this variate is less than the agent?s experience, the agent correctly
determines which of a and b is smaller. Otherwise, it performs the comparison
incorrectly. Thus, team experience can indirectly affect each of the performance
measures in Team-RUP. This inclusion of experience in the model promotes a tighter
coupling with reality. While experience is an emergent behavior, it can be affected by
turbulence parameters set by the experimenter. Because of its vast importance, we
relegate a discussion of turbulence to its own chapter.
3. Design and Implementation

The structure of synthetic organizations in Team-RUP reflects that characterizing
traditional software construction groups. In particular, agents are assembled
hierarchically with a project manager agent at the apex. A design manager agent reports
 45
to the project manager and has team aggregate agents as its subordinates. Each team
agent encapsulates the roles of designer, programmer, and team leader. The number of
team agents is a factor to be varied during simulation. Development activities falling
outside software construction are realized as services performed by objects rather than
agents. Agents communicate with hierarchical peers as well as direct superiors and
subordinates. The package diagrams in Figures 4.11 and 4.12 reveal that the synthetic
hierarchy is captured using a hierarchy of software components.

Figure 4.11. UML Package Diagram for the Overall Design

Communication is achieved via direct routing using an architecture patterned after
postal service (Ferber, 1999). As shown in Figure A.1, each agent has a unique address,
mailbox, and address book. To converse, an agent delivers to the appropriately addressed
 46
mailbox, a message containing a performative, a return address, and any context-sensitive
content. Agents periodically retrieve messages from their mailboxes and respond
according to the environment and their current status. It is important to note that these
addresses are not programmatic references or pointers. That is, agents are pairwise
decoupled in the strictest sense. Though its use may reflect qualitative interpersonal
characteristics in future implementations, the purpose of messaging at this point is strictly
collaborative.

Figure 4.12. Content of edu.auburn.philljr.team package

 In the Team-RUP model, the nature of collaboration varies with the selection of
team behavior. Both centralized and distributed task allocation find representation
(Ferber 1999). Task assignments involving the project manager are imposed. The design
manager can exhibit trader qualities. For example, Agile teams consult the design
manager to discover which team manages a particular requirement. In contrast, imposed
allocation characterizes the autonomous team behaviors. Unlike teams of other types,
Synchronized teams exhibit a form of distributed allocation. By utilizing acquaintance
networks to ascertain the team whose skill set matches a service needed by the inquiring
 47
team, Synchronized teams participate in direct allocation. Team interaction, another
aspect of collaboration, exhibits even greater diversity among behaviors.
Each team behavior elicits a different interaction situation. Although an opposing
argument could be made in cases of insufficient time, the teams in the Team-RUP model
have compatible goals. Divergence arises in terms of resource and skill sufficiency.
Synchronized teams, for instance, have unlimited access to the asset pool of the
organization. Due to specialization among teams, however, interactions can be classified
as simple collaboration. The symmetric situation marks Agile team interactions. Skill
sets overlap, but a single team harbors the resources associated with any given
requirement. Therefore, interactions among Agile teams exhibit obstruction.
Independence, the simplest form of interaction, matches the Concurrent team behavior.
Concurrent teams work cooperatively but without inter-team collaboration. Finally,
Autonomous teams have neither sufficient skills nor resources. While seemingly
paradoxical, this situation arises during component integration. A team can manage (with
skill) only those components that it creates. If a component is paired with a team not
involved with its creation, a time penalty is incurred. When two components are
integrated, each team is limited to the resources associated with the component it
previously created. Except in the case of Concurrent teams, the interdependence of team
actions sometimes leads to conflict (Ferber, 1999).
From the enterprise perspective, teams serve the same goal of completing the
development project. From the perspective of an individual team, however, the goal is
completing whatever task has been assigned to it by the design manager as efficiently as
possible. Due to skill or resource limitations, the efficiency qualification sometimes
 48
leads to conflict. For instance, the case frequently arises among Synchronized teams in
which a team must wait for one or more other teams to finish some activities before it can
complete a task that has already been assigned by the project manager. This example
illustrates one of the two conflict resolution strategies employed in Team-RUP. All
things being equal, team requests are satisfied non-preemptively in a random order.
Events are scheduled that recommence the activities of waiting teams when resources
become available. The other conflict resolution technique is simple avoidance. The
design manager orders tasks so as to minimize conflicts. For Autonomous teams, the
design manager decomposes project units into a tree that partially orders tasks in terms of
dependencies. Tree ancestors can only be completed after all descendents have been
completed. Therefore, such an ancestor task is not even assigned to a team until the
corresponding descendents are finished. The random allocation resolution technique
resolves conflicts corresponding to unrelated nodes of the task tree (Ferber, 1999).
 49
CHAPTER 5
Turbulence

Within a company, internal turbulence results from employee turnover. Employees can
be fired or laid off. Also, they can quit their jobs. Internal turbulence significantly
affects both the efficiency and effectiveness of an organization. Since these two
characteristics are of principal interest in applications of the framework, Team-RUP
explicitly addresses internal turbulence.
Three variables, each of which takes on a value between 0 and 1, influence the
 level of internal turbulence. The base rate parameter B represents the degree to which a
company is downsizing. Its value has the greatest impact among these variables in
determining the security and desirability of any given employee?s job. With a high base
rate, an employee is more likely to be fired or quit due to pressure or an ample severance
package. Notice that Team-RUP treats firing and quitting as dependent events. While an
individual?s decision to quit his job may not be related to a projected payroll size, the rate
at which such decisions are made for the company as a whole is closely linked in the
general case. That we are concerned with a generic company is paramount. After all, a
company that implements an unpopular decision (e.g., cutting employees? health
insurance) may see an increase in the rate at which employees are quitting even if the
company is not intentionally downsizing. The sensitivity to performance parameter S
determines the degree to which an employee?s performance affects his chance of
 50
separating with the company. This number, of course, has little meaning without the
performance variable P.
Performance is measured at the team level. Initially, the performance for each
team is 0.5. It varies with respect to the team?s current and overall historical
productivity. In the Team-RUP framework, certain team behaviors, by definition,
involve asynchronous development efforts. From a high-level, logical perspective,
multiple teams change the locations of multiple elements in the requirement array at the
same time. Since teams asynchronously manipulate interleaved sets of elements,
attributing credit for particular tasks to individual teams presents a complication. It is not
enough to know what team considered which locations. In Figure 5.1, for example, team
A and team B asynchronously 2-sort an array consisting of 4 elements. From a logical
perspective, the simulation progresses directly from step I to step III. Which team,
therefore, deserves credit for completing task (4,3)? In general, we must introduce some
rule for disambiguating such case, which could involve inversion removal or
introduction.

Figure 5.1. Ambiguous Inversion Removal of (4,3)
 51

One approach is to distribute credit equally among all teams that could have
possibly removed or introduced the inversion in question. In addition to being
algorithmically difficult, this technique has several disadvantages in terms of theory and
validity. Whether a swap of elements occurs or not is strongly influenced by a team?s
experience; conversely, the outcome a swap influences whether a member of the team
leaves the company or not, which affects the team?s experience. This linkage is severely
weakened if task responsibility is diluted over several teams. Also, this approach does
not have a clear analog in the real world. One could argue that such ambiguous cases
represent tasks that cannot be decomposed to the team level, but instead are tasks
requiring input from multiple teams. Due to the random nature of the simulation,
however, an inversion removal that is ambiguous during one replication may not be
ambiguous during another even if the original requirements array is seeded identically.
This situation could arise, for example, if an inversion is removed during the first
iteration of one replication but is passed over until the last iteration in another replication
due to a mistake made by some team. A superior analogy relates ambiguous tasks to the
representation of dependencies among components.
When a system is decomposed during requirements elicitation, dependencies
among behaviors become apparent. In RUP, system behaviors are modeled as use cases
(Krutchen, 1999), and dependencies as identifying relationships (Bruegge and Dutiot,
2000). Regardless of whether they share an identifying relationship, two use cases can be
processed independent of one another until software components are integrated. By
completing a seemingly isolated assignment, a team can fulfill requirements never
 52
specified in the assignment itself. Put simply, software is more than the sum of its
components.
A second approach to dealing with ambiguous inversion removal and introduction
allows us to model this aspect of software development. In Figure 5.1, assume the left-
hand path represents the event that actually occurs. Considering its assignment in
isolation, team A fulfills the requirement {(5,3)}. At the project level, however, it
contributes to the fulfillment of the requirement {(5,3), (5,4)}. This sorting action,
however, may not place all elements of the set in their final locations. A use case may
have dependencies, and the team has just implemented the use case (feature) assigned to
it. At a later time, other teams or the same team will implement other features that will
result in an array where all elements end up in their final locations. Until that time, the
array is not completely sorted. Hence, the implementation is not complete. With respect
to team A, the important point to note, however, is that team A exerted no effort (and
may have had no knowledge of) completing requirement {(5,4)}. Therefore, this
requirement should not factor into team A?s performance rating. The Team-RUP
framework ignores ambiguous inversions when team performance is evaluated.
By ignoring ambiguous inversions, we can know exactly how many
(unambiguous) inversions a team should have removed during any particular iteration.
Suppose the requirements array is to be n-sorted by k teams during iteration i, and m
inversions should be removed by this operation. The expected number ?
ti
 of removed
inversions for team t is defined as follows:
=
ti
?
k
m
 (5.1)
 53

Assuming team t actually removed ?
ti
inversions during iteration i, the milestone
performance ?
ti
 of t during i is define by Equation 5.2:
ti
ti
ti
?
?
? =
(5.2)

While milestone performance is measured each iteration, team performance is
computed over a window consisting of multiple iterations, and involves a moving average
of the milestone performance measures observed during these iterations. This moving
average mitigates the effects of variance, thereby providing a more accurate indicator of
typical performance. For example, a team which does little during earlier iterations but
accomplishes a great deal just before team evaluations will not fair as well as a team
which works adequately but steadily. A team of the latter type represents less risk to a
development organization and should be valued more highly. In addition to the moving
average, a record of past shortcomings factors into the performance criteria and further
diminishes the merit of short bursts of team effort.
Since ?
ti
 represents a statistical expectation, Equation 5.2 should on average equal
1 in the case that teams have an equal chance of removing any particular inversion. Since
assignments are distributed to teams randomly, the only factor disrupting this ?equal
chance? criterion is the quality of the team. For a less competent team, ?
ti
will on average
be less than 1. To exploit this information, we define the failure history f
ti
 of a team t for
iteration i as follows:
 54
?
?
?
<+
?
=
??
?
.11
;10
)1()1(
)1(
itit
it
ti
f
f
?
?

(5.3)

For a performance window of size w, we define the team performance P
tk
 of team t at the
end of iteration k via Equation 5.4:
?
+?=
+
=
k
wki
ti
ti
tk
fw
P
1
1
1 ?

(5.4)

Performance evaluations take place every w/2 iterations providing the aforementioned
moving average of milestone performance measures. In the current implementation,
performance evaluations occur every two iterations and are based on four milestone
performance measures (i.e., w=4).
During a performance evaluation, teams with a performance measure greater than
a predefined threshold (0.3 in the current implementation) are immune to employee
turnover. Of the teams below this threshold, the team with the smallest performance
rating undergoes subjective appraisal. As evinced by Equation 5.4, team performance is
purely an objective matter. In the real world, however, perceived performance is of far
greater consequence and is subject to human error.
When a real-world team is evaluated, the evaluator has incomplete information
concerning a team and is influenced by various biases. To reflect this fact, the separation
of an employee from the company in the Team-RUP framework is a probabilistic event.
The probability F
ti
 that some member of team t will separate from the company at the end
of iteration i is given by the following equation:
 55
()
3
1
titi
PSBF ??+= (5.5)

Notice that F
ti
is computed for at most one team per performance window. Also, the
cubed term in Equation 5.5 ranges between 0.343 and 1 since P
ti
 lies in the interval from
0 to 0.3. If a team is eligible for subjective appraisal, two uniform random variates u
1
 and
u
2
are sampled. If u
1
< F
ti
, a single member of team t leaves the company, and an
additional variate u
3
 is sampled. If u
3
 < 0.25, the team leader is the member who leaves;
otherwise, it is one of the other members. If the leader leaves, the team undergoes a
reorganization period in which productive work ceases. A new leader is assigned to the
group, and the team as a whole adjusts to the new circumstances. In Team-RUP, this
situation corresponds to a stall period of three days in which the team remains idle. In
addition, the experience of the team decreases by the following amount:
()
2
25.025.02.1 u+?
In contrast, the experience of the team decreases by a lesser amount if the departing
member is not the leader:
2
25.025.0 u+
Moreover, the team does not stall in this case. If no member of the team is fired, the
experience of the team is increased by an amount dependent on the team?s current
experience e
c
:
2
1
2
c
e
u
?
?
From the above discussion, we see that internal turbulence can be influenced by
the researcher by adjusting the base rate and sensitivity to performance parameters. A
 56
strict interpretation of Equation 5.5 requires these two parameters to sum to 1 in order to
satisfy the definition of a probability. If we assume all values outside the interval [0,1]
form an equivalence class with the nearest endpoint, however, this requirement can be
bypassed. For example, a value of 2 for F
tk
 is interpreted as a certain event. Internal
turbulence T can then be quantified as any linear combination of the base rate and
sensitivity to performance:
SBT ?? +=
In the current implementation, ? and ? are set to 1 and B=S.
 57
CHAPTER 6:
Programmed Model

The Team-RUP framework is implemented in Java 1.5. As described in Chapter 4,
agents are implemented as collection of objects. No agent has a programmatic reference
to any other agent. Instead, each agent is endowed with an address book containing
mailbox numbers of all the agents in its acquaintance network. Agents do have
references to the post office through which messages are sent and received. For each
agent, checking the mail is the event that starts most activities. Agents can retrieve a
single message from their mailboxes once per time tick. Therefore, the duration of
activities triggered by such events must be a carefully considered component of Team-
RUP.
1. Deadlines & Timing

In the Team-RUP model, we make the assumption that one workday equals 15 time ticks.
Therefore, a month of five-day work weeks maps to approximately 300 ticks. RUP
iterations typically range from one to three months. Because the scope of a project has
the greatest impact on the time it takes to complete the project, the following restrictions
are made. A project with a very small (low) scope is allowed 300 ticks (one month) per
iteration. Iterations for projects with small or medium scope are allotted 600 ticks (two
months). Finally, projects with large or very large scope are allowed 900 ticks (three
 58
months) per iteration. To maintain configuration integrity, the deadlines associate with
an iteration may ?slip? by a small number of ticks. An absolute deadline equal to the
number of iterations times the time-box length is set for the entire project. The
simulation ends regardless when this deadline is reached. While the scheduling and
execution of events is carried out by classes unique to the Team-RUP implementation, an
open source simulation engine developed at the University of Chicago controls the event
calendar.
2. Repast

Management of the schedule is handled by the Recursive Porous Agent Simulation
Toolkit (Repast 3.0). The Team-RUP model extends a basic model class of Repast and
makes use of its visualization components for verification. Also, events subclass Repast
objects intended for this purpose. The agents, communication system, work medium, and
utility components are assembled from Java classes external to the simulation toolkit.
3. Verification

Jerry Banks (1998, p. 336) defines verification as, ?substantiating that the model is
transformed from one form into another, as intended, with sufficient accuracy.?
Verification of the Team-RUP programmed model involved several steps. Each class
was subjected to a code review immediately after it was programmed. Similarly, code
reviews were performed on each package upon its completion. A final code review was
performed on the entire model after it was completely implemented. To supplement the
review process, thorough testing was performed on the compiled project.
 59
Testing took place on two levels. Pictured in Figure 6.1, a graphical component
was implemented to verify that a modified Shell sort was actually occurring.

Figure 6.1. Graphical Depiction of List Inversions

In Figure 6.1, each ordered pair present in the requirements array is plotted in accord with
a rectangular coordinate system in which the origin lies in the upper left-hand corner of
the graph. The abscissas increase from left to right and the ordinates increase from top to
bottom. Each green pixel represents two correctly ordered array elements. Elements out
of order are represented by red pixels. The shade of the red pixels corresponds to the
 60
distance between ordered pair elements in the requirements array. Two elements that are
far apart in the array appear in a darker shade than those appearing closer together. From
Chapter 3, Section 2.2, we see that darker pixels correspond with more risky
requirements. The blue pixels are always present in the display and correspond to pairs
with equal elements.
By viewing this display while simulations were running, we could confirm several
model requirements. First, the requirements arrays are actually being sorted. Second,
inversions far apart in the array are being removed in early RUP iterations. This feature
reveals a primary characteristic of Shell sort. Another Shell sort characteristic revealed
through the display is its iterative ?semi-sorting? approach. As the simulation progresses,
the red pixels migrate toward the blue line. Thus, inversions involving numbers that
differ by a small amount are the last inversions to be removed. A final verification point
confirmed by the display is the lack of duplicates in the requirements array. While not
vital to Team-RUP?s conceptual design, this feature provides a useful method for
tracking which team is doing a particular activity over some duration of time. That array
elements are distinct is verified by observing that the blue pixels never change to green
pixels. Another important part of verification involves the coordination of teams.
In the Team-RUP framework, teams coordinate according to protocols reflecting
the sorting algorithms discussed in Chapter 4, Section 1. Since these protocols are the
principle modeling component for team behavior, it is paramount that they be
implemented correctly. For each team behavior, driver programs were developed that
printed a notification of each agent action as it occurred. This text allowed us to confirm
that teams with the appropriate qualifications were managing the correct array locations
 61
and elements at the appropriate times during simulations. Ensuring that these protocols
actually encoded the desired team behaviors was part of validation.
4. Validation

To validate the Team-RUP implementation, we must show that the model ??behaves
with satisfactory accuracy consistent with the study objectives? (Banks, 1998, p. 336).
The objective of this study is to research the efficiency and effectiveness of software
development teams with archetypal behaviors that define the degree of autonomy in
collaboration and the degree of concurrency in coordination. Because of its widespread
advocacy and following among software professional today, we are particularly
interested in the Agile behavior and whether or not its validity is computationally
verifiable. With these three objectives in mind, we developed three validation tests.
 The first test focuses on the degree of concurrency in coordination. Whenever
multiple tasks and multiple labor sources co-exist, the issue of synchrony arises. It is a
topic common to the social sciences, business, and engineering. Typically, asynchronous
systems are implemented with the hope of improving performance. Depending on the
task at hand, however, this strategy may or may not be effective. Performance, therefore,
can not be used to distinguish between linear and concurrent systems. Stability, however,
can be used as a delineating factor.
 Asynchronous systems are less predictable than synchronous systems (Shamsi,
Chu, and Brockmeyer, 2005). This lack of stability results from the fact that asynchrony
provides for a greater number of potential scenarios. For example, consider two software
developers implementing four components. In one scenario, the developers complete
 62
work at the same pace and address two components each. In another scenario, one
developer finishes work more rapidly than the other and completes three of the four
components. These two situations could give rise to drastically different process
measures. If the developers addressed components in a linear fashion, however, the
manner in which tasks are completed is not affected by the performance of the individual
developer. This reduces variability among output statistics. It is important to note that
this is not necessarily a value judgment concerning synchrony. Rather, it isolates an
inherent trait that can be validated against.
 To validate the Team-RUP programmed model in terms of coordination, we
designed a test quantifying predictability in terms of standard deviation. This test utilizes
a 5
2
 factorial design defined by Table 6.1 (Law and Kelton, 2000).
Level Workload Number of Teams
Low 2 2
Moderately Low 3 3
Moderate 5 5
Moderately High 7 7
High 9 9

Table 6.1. Factor Coding, coordination validation experiment

With each behavior type, 50 replications were run for each factor combination.
Productivity, staff utilization, timeliness, and quality measures were collected. For each
of these metrics, we calculated the standard deviations across each set of replications.
This calculation resulted in 25 data points per metric per team behavior type. The
average of each set of 25 data points was calculated and histograms were generated
(Figures 6.2-6.5).

 63
Stability of Productivity
0.0024
0.00245
0.0025
0.00255
0.0026
0.00265
0.0027
0.00275
0.0028
0.00285
0.0029
Team Behaviors
S
t
a
n
d
a
r
d
 D
e
vi
at
i
o
n
Agile
Autonomous
Concurrent
Synchronous

Figure 6.2. Predictability of Team Productivity

Stability of Staff Utilization
0
0.005
0.01
0.015
0.02
0.025
Team Behaviors
S
t
a
n
d
a
r
d
 D
e
vi
at
i
o
n
Agile
Autonomous
Concurrent
Synchronous

Figure 6.3. Predictability of Staff Utilization

 64
Stability of Timeliness
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Team Behaviors
S
t
an
d
a
r
d
 D
evi
at
i
o
ns
Agile
Autonomous
Concurrent
Synchronous

Figure 6.4. Predictability of Timeliness

Stability of Quality
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
Team Behaviors
S
t
a
n
d
a
r
d
 D
e
vi
at
i
o
n
Agile
Autonomous
Concurrent
Synchronous

Figure 6.5. Predictability of Quality

In each of these graphs, Autonomous and Concurrent behaviors exhibit greater variability
than Agile and Synchronous teams. That is, teams that coordinate their work efforts
concurrently are less predictable than those that synchronize their activities.
 65

Our second test focuses on the degree of autonomy in collaboration. That is, it
focuses on the delineating characteristics of teams that use top-down versus bottom-up
collaboration strategies. Top-down strategies offer a tighter fit between the set of
requirements and the implemented product. They are more intuitive and match well with
strategies employed by other engineering disciplines. Unfortunately, they respond poorly
to requirements change. A new development plan must be created or the original plan
must be adapted. Because implemented components are delayed until the end of the
project, strict deadlines may result in unfulfilled requirements. Bottom-up strategies
reverse this trend. Though less intuitive, a bottom-up strategy is more adept at
responding to change (Pizka, M. and Bauer, A., 2004). Rather than affecting the entire
project, the impact of requirements change is limited to those components that have
already been implemented and which fail to meet the new requirements. Thus, bottom-
up teams are still able to complete a large percentage of the requirements even in the face
of changing requirements. For high levels of external turbulence, however, this
difference diminishes.
To validate the Team-RUP programmed model in terms of collaboration, we
designed a test involving five levels of stability. Note that lower levels of stability
correspond to higher levels of requirements change, whereas higher levels of stability
correspond to lower levels of requirements change. These levels are defined by Table
6.2. For each factor level, 50 replications were run. The average quality measure across
each set of replications was calculated. Recall that quality records the fraction of
 66
requirements completed. Figures 6.6 and 6.7 reveal the results of this test for each team
behavior.
Level Stability
Low U(0.0,0.2)
Moderately Low U(0.2,0.4)
Moderate U(0.4,0.6)
Moderately High U(0.6,0.8)
High U(0.8,1.0)

Table 6.2. Factor Coding, collaboration validation experiment

Quality for Various Stability Levels
0.94
0.945
0.95
0.955
0.96
0.965
0.97
0.975
0.98
0.985
Low Mod.
Low
Mod. Mod.
High
High
Stability
Qu
a
l
i
t
y
Agile
Autonomous
Concurrent

Figure 6.6. Quality for Agile, Autonomous, and Concurrent Teams

We place Synchronized teams in a separate graph because the quality level is so much
lower than it is with the other behaviors. Each of the aforementioned validation points is
supported by these diagrams. The Autonomous and Agile teams cope better with
requirements change than Concurrent and Synchronized teams. Especially for the teams
appearing in Figure 6.6, the differences are less pronounced at lower levels of stability.
 67
Quality for Various Stability Levels (Synchronized Behavior)
0
0.02
0.04
0.06
0.08
0.1
0.12
Low Mod.
Low
Mod. Mod.
High
High
Stability
Qu
a
l
i
t
y
Synchronized

Figure 6.7. Quality for Synchronized Teams

 Our final validation test centers on the Agile team behavior. Though the Team-
RUP behavior taxonomy differs significantly from that proposed by Constantine (1993),
a high degree of similitude exists between Agile and Random teams. Both emphasize
innovation and posture themselves as the antithesis of the traditional hierarchy. We
therefore rely on the following characteristic of Random teams to test the validity of
Agile teams: Parent organizations absorb the inefficiencies of Random (Agile) teams and
shield them from fluctuating market trends; therefore, efficiency is not an inherent trait of
Random (Agile) teams (Constantine, 1993). An efficient team accomplishes more work
in less time with fewer people. Therefore, efficiency can be quantified as the ratio of
productivity to staff utilization.
To validate the Team-RUP programmed model with respect to Agile teams, we
utilized a 5
2
 factorial design defined earlier by Table 6.1. For each factor level
combination, 50 replications were run. Efficiency measures were calculated for each
 68
replication. Averages were computed across each replication set. Each of these averages
is represented by a single point in Figure 6.8.
Efficiency for each Combination of Number of Teams and
Workload
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
P
r
o
d
u
c
ti
v
i
t
y
/
S
ta
ff
 U
t
i
l
i
z
a
t
i
o
n
Agile
Autonomous
Concurrent
Synchronized

Figure 6.8. Inefficiency of Agile Teams

Note that labels on the horizontal axis have been omitted due to space limitations. These
labels correspond to combinations of level factors and do not carry any particular
significance. The important point illustrated by this figure is the fact that Agile teams are
not particularly efficient in comparison to other team behaviors. We will see in the
experimentation section, however, that Agile teams more than compensate for this
deficiency in their ability to operate amidst turbulence: a fact of life in the real world.
 69
CHAPTER 7:
Experimental Model

Because Team-RUP is an extensible framework rather than a narrowly-defined
simulation model, the opportunities for experimentation are vast. In this initial study,
however, we considered two questions that are of particular interest to both academia and
industry today.
1. Agility Test

To address a very broad audience, we considered the issue of whether or not the claims of
the agile process community are valid. Are better results achieved from adhering to
principles such as those of the Agile Manifesto? For example, should software
developers strive for ??early and continuous delivery of software? (Agile Alliance,
2001): a goal that requires at least a degree of bottom-up development? Can developers
work in virtual independence (i.e., concurrent coordination) or is the following true:
?Business people and developers must work together daily throughout the project? (Agile
Alliance, 2001)? Finally, is it wise to ?welcome changing requirements, even late in
development? (Agile Alliance, 2001)?

 70
1.1. Experiment Design
In this experiment, we compare the four team behavior in terms of their ability to cope
with the combination of internal and external turbulence. Levels for these two factors
appear in Table 7.1.
Level Internal Turbulence External Turbulence
Low U(0.5,0.7) U(0.0,0.2)
Moderately Low U(0.7,0.9) U(0.2,0.4)
Moderate U(0.9,1.1) U(0.4,0.6)
Moderately High U(1.1,1.3) U(0.6,0.8)
High U(1.3,1.5) U(0.8,1.0)

Table 7.1. Level Definitions for Internal and External Turbulence

Rather than test every combination of internal and external turbulence, we define levels
for aggregate turbulence. The level definitions for this ?fuzzy? factor are defined by
Table 7.2 in terms of internal and external turbulence.
 Internal

External
Low
Moderately
Low
Moderate
Moderately
High
High
Low low
moderately
low
moderate
moderately
high
high
Moderately
Low
moderately
low
moderately
low
moderate
moderately
high
high
Moderate moderate moderate moderate
moderately
high
high
Moderately
High
moderately
high
moderately
high
moderately
high
moderately
high
high
High high high high high high

Table 7.2. Level Definitions for Turbulence

For each turbulence level, we run 50 replications. In each replication, a white cell from
Table 7.2 with a corresponding turbulence level is randomly selected. The row and
 71
column headings for this cell are used as the factor levels for internal and external
turbulence during the replication. Metric averages for productivity, timeliness, staff
utilization, and quality are taken across replication sets.
1.2 Results
Figure 7.1 records the productivity of teams with each behavior type under the various
levels of turbulence.
Productivity vs. Turbulence
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
Low Mod. Low Mod. Mod. High High
Turbulence
P
r
oduc
t
i
v
i
t
y Agile
Synchronized
Autonomous
Concurrent

Figure 7.1. Productivity Under Various Turbulence Levels

The staff utilization of these teams is pictured in Figure 7.2.
 72
Staff Utilization vs. Turbulence
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Low Mod. Low Mod. Mod. High High
Turbulence
S
t
a
f
f U
t
i
l
i
z
a
ti
o
n
Agile
Synchronized
Autonomous
Concurrent

Figure 7.2. Staff Utilization Under Various Turbulence Levels

Figure 7.3 reveals the timeliness results of team behavior type.
Timeliness vs.Turbulence
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Low Mod. Low Mod. Mod. High High
Turbulence
Ti
m
e
l
i
ne
s
s
Agile
Synchronized
Autonomous
Concurrent

Figure 7.3. Timeliness Under Various Turbulence Levels

Finally, the quality results for teams of each behavior type are shown in Figure 7.4.
 73
Quality vs. Turbulence
0
0.2
0.4
0.6
0.8
1
1.2
Low Mod. Low Mod. Mod. High High
Turbulence
Qu
a
l
i
t
y
Agile
Synchronous
Autonomous
Concurrent

Figure 7.4. Quality Under Various Turbulence Levels

We now consider the implications of these graphs.
1.3 Discussion
Figures 7.2-7.4 provide some very useful insights into the nature of teams operation
under turbulence. Note for example the linear, flat nature of each of the series. This
trend reveals the insulating nature of the Rational Unified Process. Though each team
behavior is drastically different, all are able to establish bounds on the negative effects of
requirements change and employee turnover. Productivity adheres to this trend the least
among the metrics; however, an increase in productivity can hardly be seen as a negative
result. Moreover, this direct relationship between turbulence and productivity makes
perfect sense. To meet deadlines in the presence of change, teams must accomplish more
in a shorter amount of time. It is also interesting to note which team type adheres to this
pattern the least.
 In every graph but Figure 7.2, the series for the Concurrent team behavior has a
definite positive or negative slope. As mentioned in the previous paragraph, the
 74
productivity of Concurrent teams increases as turbulence increases. At the same time, the
timeliness and quality of these teams decreases. This trend, however, should not be
surprising. Concurrent teams work in a non-linear, top-down fashion. As discussed in
Chapter 6, Section 4, this strategy is quite brittle with respect to change. Its top-down
nature in particular leads to delays. Another interesting aspect of the graphs is observed
when one compares the series to each other in absolute terms.
 Each graph depicts either a clear ?loser? or clear ?winner?. In every category but
timeliness, the Synchronized behavior has a clear disadvantage in comparison to the other
archetypes. This trend results from the fact that the Synchronized behavior is the most
formal and rigid. Synchronized teams work in a top-down, synchronized fashion, which
does not respond well to change. From Figures 7.1 and 7.2, we see that these teams are
plagued by overhead. Even though the developers are exerting a great deal of effort,
Figure 7.4 reveals that the quality of the final product still suffers. The most interesting
observation that can be made from these graphs addresses the purpose of this experiment.
 These results provide quantitative evidence that an agile approach to software
development is the most effective strategy when coping with an unstable development
environment. The Agile teams produce higher quality software and are more capable of
meeting deadlines. From a customer?s point of view, these are the only two factors that
matter. A development firm, however, is also quite interested in productivity and staff
utilization. Although they fail to surpass all the teams with other behaviors, it is evident
from Figures 7.1 and 7.2 that Agile teams certainly hold their own. We conclude,
therefore, that ?agility? is a valid and useful counterbalance to the inevitable change
involved in most software projects.
 75
2. Team Size Test

Our second experiment addresses an important but often neglected segment of the
development community: small businesses. In particular, we are interested in
discovering how well small development organizations cope with turbulence. We
suspect that larger organizations are better able to absorb the ill effect of turbulence.
When requirements change or people leave the organization, the impact on smaller teams
is felt on a global level. We wish to discover how different team behaviors fair with
respect to varying levels of turbulence.
2.1. Experiment Design
In this experiment, we vary the number of teams under various turbulence levels. The
turbulence levels and implementation are the same as in the first experiment. The levels
of the number of teams factor are defined by Table 7.3.
Level Number of Teams
Low 2
Moderately Low 3
Moderate 5
Moderately High 7
High 9
Table 7.3. Level Definitions for Number of Teams

For each level and team behavior, we run 50 replications. Metric averages for
productivity, timeliness, staff utilization, and quality are taken across replication sets.
2.2 Results
We group the results according to metric. Figure 7.5 provides a legend for each graph.

Figure 7.5. Series Legend for Results in Section 2.2
 76

Figure 7.6 shows the productivity of each team behavior for various levels of the number
of teams factor.

Figure 7.6. Productivity for Team Sets of Various Sizes
 77

The staff utilization for each level of the number of teams factor is shown in Figure 7.7.

Figure 7.7. Staff Utilization for Team Sets of Various Sizes

 78
Figure 7.8 reveals the results with respect to the timeliness metric.

Figure 7.8. Timeliness for Team Sets of Various Sizes

Finally, the results for the quality metric appear in Figure 7.9.
 79

Figure 7.9. Quality for Team Sets of Various Sizes

 80
2.3 Discussion
The results for this experiment reveal several interesting trends. In terms of productivity,
all the teams perform similarly. As would be expected, increasing the number of teams
leads to a decrease in productivity. More resources (teams) are expended on the same
number of requirements. It is interesting to note that a point of inflection exists for each
team and each turbulence level at some point between 3 and 5 teams. A similar trend
exists for the staff utilization graphs.
 Except for an initial increase for Synchronized teams, staff utilization also
decreases as the number of teams increases. The initial utilization increase for
Synchronized teams can be explained in terms of specialization. As the number of teams
increases, the more specialized teams become. This increases the likelihood that a team
will encounter a task with which it requires another team?s specialized skills. Since more
teams must be involved, staff utilization increases. This trend is confounded by the fact
that adding teams creates more opportunities for idleness. Another interesting feature of
Figure 7.7 centers on the variability across turbulence levels. The series lines for Agile
and Synchronized teams overlap almost entirely, whereas those for Autonomous and
Concurrent teams diverge. In the case of the latter behaviors, higher turbulence
corresponds to slightly higher staff utilization. This trend is a result of the concurrent
coordination strategy of these two team types. A team that finishes its assignment
independently of the other teams may address newly added requirements, thereby raising
the utilization. This split along coordination strategies is also observed in terms of
timeliness.
 81
 Figure 7.8 reveals the first major differences between team behaviors in this
experiment. As with staff utilization, the series lines are tightly grouped for Agile and
Synchronized teams, whereas significant divergence exists between the series lines for
Autonomous and Concurrent teams. This fact reveals that teams working in a linear
fashion are less disrupted by change. Of greater interest to this study, however, is the fact
that Agile and Synchronized teams are timelier when fewer teams are present. The
synchronization tasks are less costly when fewer people are involved. In contrast,
Autonomous and Concurrent teams are timelier when more teams are present. Because
of the greater number of teams, more components can be distributed at any given time for
concurrent implementation. The payoff associated with this staff increase is significantly
reduced as turbulence increases. A final point of interest concerning Figure 7.8 center on
the Agile team behavior. The Agile team behavior surpasses all other behaviors for every
factor combination. At its worst setting of 9 teams, the Agile team is timelier than
Autonomous and Concurrent teams. Figure 7.9 reveals that Agile teams face a tradeoff
between timeliness and quality.
 The quality graphs in Figure 7.9 display several interesting characteristics.
Although the relationship between the number of teams and timeliness is linear for the
Agile behavior, an optimal setting can be found for the former value in terms of quality.
In particular, 5 teams yield the best quality response for Agile teams. For the Agile
behavior, quality is less uniform over the turbulence levels than with other metrics. The
trend is particularly evident when only two teams are present. This point supports our
claim that smaller organizations are more deeply affected by change regardless of their
process strategy. On the other hand, the difference between the best and worst quality
 82
resulting from Agile teams is less than 2 percentage points. Furthermore, this worst
quality rating surpasses the best generated by any other team. This fact reveals the
superiority of the Agile behavior with small organizations. Another interesting tradeoff
can be found with Synchronized teams.
 Figure 7.9 further condemns the Synchronized strategy. This most rigid strategy
produces low quality software for each setting. It performs its worst for teams of size 3
and 5. Recall from Figure 7.7 that these two levels corresponded to higher levels of staff
utilization due to specialization. Specialization also explains the low quality responses at
these levels. When many specialists are involved on a project, quality increases because
worker skill sets are more finely honed. This observation is a simple restatement of
Adam Smith?s (1993 version) division of labor principle. We see this trend in Figure 7.9
with the use of 7 and 9 teams. For a small number of teams, however, the specialization
areas are too large for skill improvement to lead to performance increase. However, the
labor divisions prevent teams from aiding one another, which creates blockages in the
workflow. A final important aspect of Figure 7.9 centers on the teams that work in a
non-linear manner.
 The quality graphs for Autonomous and Concurrent teams closely match the
corresponding timeliness graphs. That is, the utilization of more teams results in higher
quality. Due to concurrent work efforts, a greater number of components can be
addressed when more teams are present. Initial versions of components are produced
more quickly and the time available for revisiting components is increased. Thus,
deadlines are met more regularly and a greater number of requirements are fulfilled.
 83
Based on Figures 7.8 and 7.9, we can therefore conclude that the Autonomous and
Concurrent team behaviors are better suited for large, rather than small, enterprises.
 84
CHAPTER 8:
Conclusion

Simulation has been an invaluable tool to researchers in a variety of disciplines. Its uses
include what-if analysis, validation of empirical results, teaching complex skill sets, and
exploring abstract relationships. Quite recently, software developers have employed
simulation to the study of software processes in an attempt to stabilize an industry
plagued by faultiness and an inability to meet deadlines. The multi-disciplinary nature of
software development, however, has limited the scope of these efforts. The engineering
of software lies at the confluence of computer science, sociology, and management
science. Though uncommon in process simulation today, an agent-based approach
allows for a more complete representation of the subject area.
 Team-RUP is an agent-based simulation framework that supports the mutual
study of software development, team dynamics, processes, organizational paradigms, and
cultures. Used to create exploratory models, the framework is designed to discover
general results applicable on an industry-wide basis. In order for these results to be
useful in a real-world context, however, Team-RUP is firmly grounded in one of the most
widely used process frameworks: the Rational Unified Process. Team-RUP uses a
distinctive layered approach allowing features to be modeled at the individual, team, and
enterprise level. Cross-cutting features like internal turbulence can also be captured.
 85
Also, it uses a unique modeling approach based on sorting. Finally, inter-agent
communication serves as a central modeling component.
 In the current Team-RUP implementation, agency is represented on the team
level. That is, the simulated development of software takes place on the level of
interacting teams. A central feature of the Team-RUP framework is the classification of
team behaviors according to the degree of autonomy in collaboration and the degree of
concurrency in coordination. This classification yields four archetypical team behaviors:
Agile, Autonomous, Concurrent, and Synchronous. In the current implementation, the
efficiency and effectiveness of teams of these types under turbulent conditions have been
of primary interest.
1. Result Summary

With the current implementation of Team-RUP, we have focused on two experiments.
The first experiment centered on how teams with various team behaviors responded to
different levels of internal and external turbulence. The second considered teams of
various sizes in order to study the impact of turbulence on small development
organizations. Each provided a plethora of interesting insights. First, we observed that
the Rational Unified Process provides a layer of insulation against the negative effects of
employee turnover and requirements change regardless of the team behavior type.
However, Concurrent teams are most affected by turbulence. As turbulence increases,
timeliness and quality decrease despite an increase in productivity. Although turbulence
has the greatest impact on Concurrent teams, this behavior does not yield the lowest
performance among the team types.
 86
 With its rigid structure, the Synchronized behavior is the least suited for
adaptation to changing requirements and immovable deadlines. Division of labor among
specialized teams can be either a help or a hindrance to Synchronized teams. When a
large number of teams is present, the skill improvement due to specialization leads to
increases in timeliness and quality. For a small number of teams, specialization can lead
to blockages in the workflow, which ultimately reduces timeliness and quality. Standing
in direct contrast to the Synchronized behavior is the Agile behavior.
 This study provides quantitative evidence that agility is a valid and useful
counterbalance to the inevitable change involved in most real-world software projects. If
quality and timeliness are the primary objectives of a development effort, small
organizations should strongly consider adopting an agile process to promote Agile team
behavior. If, however, an Autonomous or a Concurrent approach is desirable for some
project-specific purpose, it will be most applicable in larger organizations.
2. Future Work

The Team-RUP framework is highly extensible, adaptable, and modular. For example,
each team agent could be replaced by a collection of agents, each representing some
individual role. Each team could consist of designers, programmers, and testers. This
addition would allow for the study of intra-team communication, collaboration, and
coordination. To add these features would only require changing a single line of code in
the current implementation. Furthermore, reducing the granularity of agents to the level
of individuals would allow for the capture of individual emotions.
 87
 Human decisions and behavior are rarely derived solely from logical deduction.
Also, inexperience is not the only reason developers make mistakes. Instead, an
emotional dynamic influenced by a host of factors such as stress, trust, and competition
often has a far greater impact on a development project. Team-RUP could be extended to
encode these traits in individuals. This extension would be of particular value in studies
of situations in which certain emotional states are expected. For example, stress levels
could be elevated near a project deadline. Another potential extension centers on
attaching meaning to the numbers within the requirements list.
 In the current implementation, team performance is not directly affected by the
value of the numbers being considered. It might be beneficial at some point to relate
these numbers to skill sets or some aspect of risk management. For example, a team
might be particularly adept at sorting inversions involving only even numbers but may
not have all the skills needed to correctly sort inversions involving only odd numbers.
Note that skill knowledge is quite distinct from general experience, a property already
captured in Team-RUP.
 Another extension to the Team-RUP framework would involve expanding the
agent hierarchy to include the entire development organization. At present, the project
manager, design manager, and construction teams are represented by agents.
Requirements elicitation and testing are currently handled procedurally. To study
employee interactions within these divisions, collections of agents could be developed to
provide the functionality of the procedures.
 Perhaps the most interesting addition to Team-RUP would involve the use of
multiple requirements arrays. At present, we only consider a single development project
 88
at a time. In the real world, however, development companies have multiple projects
running concurrently. These projects compete for time and staffing resources. This
competition could have a significant effect on the efficiency and effectiveness of an
organization.
 The Team-RUP framework represents a significant contribution to software
process simulation in particular and software engineering in general. It promises far-
reaching results grounded in a real-world process. Also, it adds a new technique to the
toolbox of the simulation engineer: the list sorting model. Finally, it provides a plethora
of outlets for extension. Formulated around the concepts of agency, requirements
change, collaboration, and cooperation; Team-RUP provides a uniquely cohesive
mapping between simulation reality and the manner in which software is truly engineered
in the world today.
 89
REFERENCES
Abdel-Hamid, T. and Madnick, S. (1991). Software Project Dynamics: An Integrated
Approach. Upper Saddle River, NJ: Prentice Hall.
Agile Alliance. (2001, February 11-13). Manifesto for Agile Software Development
(Principle Behind the Agile Manifesto). Retrieved February 26, 2006, from
http://agilemanifesto.org/principles.html.
Aked, M. (2003). Risk reduction with the RUP phase plan. The Rational Edge. Retrieved
January 30, 2006, from http://www-
128.ibm.com/developerworks/rational/library/1826.html.
Albrecht, A. (1979). Measuring application development productivity. Proceedings of
IBM Application Development Joint SHARE/GUIDE Symposium, Monterey,
CA.
Axlerod, R. (1997). The Complexity of Cooperation. Princeton, NJ: Princeton University
Press.
Banks, J. (1998). Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice. New York, NY: John Wiley & Sons, Inc.
Banks, J., Carson, J.S. II, Nelson, B.L., and Nicol, D.M. (2005). Discrete-Event System
Simulation (4
th
 ed.). Upper Saddle River, NJ: Prentice Hall.
Boehm, Barry. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall.
 90
Bruegge, B. and Dutoit, A. H. (2000). Object-Oriented Software Engineering:
Conquering Complex and Changing Systems. Upper Saddle River, NJ: Prentice
Hall.
Charette, R. N. (1989). Software Engineering Risk Analysis and Management. New York,
NY: McGraw-Hill.
Constantine, L. (1993). Work Organization: Paradigms for Project Management and
Organization. Communications of the ACM, 36(10), 35-43.
Donzelli, P. and Iazeolla, G. (2001). A Hybrid Software Process Simulation Model.
Software Process Improvement and Practice. 6, 97-109.
Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. New York, NY: Addison Wesley Longman Inc.
Forrester, J. (1961). Industrial Dynamics. Waltham, MA: Pegasus Communications.
Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Boston, MA: Pearson Education, Inc.
Haberlein, T. (2004). Common Structures in System Dynamics Models of Software
Acquisition Projects. Software Process Improvement and Practice. 9, 67-80.
Kang, M., Waisel, L., and Wallace, W. (1998). Team Soar: A Model for Team Decision
Making. In M.J. Prietula, K.M. Carley, and L. Gasser (Eds.), Simulating
Organizations (pp. 23-45). Menlo Park, CA: The MIT Press.
Krutchen, P. (1999). The Rational Unified Process: An Introduction. Reading, MA:
Addison Wesley Longman.

 91
Krutchen, P. (2003). What is the Rational Unified Process? The Rational Edge. Retrieved
May 5, 2005 from http://www-
106.ibm.com/developerworks/rational/library/content/RationalEdge/feb03/Whatis
RUP_TheRationalEdge_Feb2003.pdf.
Larman, C. (2002). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Upper Saddle River, NJ: Prentice
Hall.
Law, A. and Kelton, D. (2000). Simulation Modeling and Analysis (3
rd
 ed.). New York:
McGraw-Hill.
Leffingwell, D., and Widrig, D. (2000). Managing Software Requirements: A Unified
Approach. Reading, MA: Addison Wesley Longman.
Lehman, M., and Ramil, J. (1999). The impact of feedback in the global software
process. Journal of Systems and Software. 46(2/3), 123-134.
Lucas, A., and Goss, S. (1999). The Potential for Intelligent Software Agents in Defense
Simulation. Proceedings of the 1999 Information, Decision, and Control
symposium, Adelaide, Austria, 579-583.

Martin, R. and Raffo, D. (2000). A Model of the Software Development Process Using
Both Continuous and Discrete Models. Software Process Improvement and
Practice. 5, 147-157.
Mi, P. and Scacchi, W. (1990). A knowledge-based environment for modeling and
simulating software engineering processes. IEEE Trans. Knowledge and Data
Engineering. 2(3), 283-294.
 92
Myers, R. (1971). Response Surface Methodology. Boston, MA: Allyn and Bacon, Inc.
Office of the Under Secretary of Defense for Acquisition and Technology, Joint Logistics
Commanders, Joint Group on Systems Engineering. (1998). Practical Software
Measurement: A Foundation for Objective Software Measurement, Version 3.1a,
April 17, 1998, United States: Author.
Padberg, F. (2002). A Discrete Simulation Model for Assessing Software Project
Scheduling Policies. Software Process Improvement and Practice, 9, 127-139.
Pizka, M. and Bauer, A. (2004). A Brief Top-Down and Bottom-Up Philosophy on
Software Evolution. 7
th
 International Workshop on Principles of Software
Evolution, Kyoto, Japan, 131-136.
Pollice, G., Augustine, L., Lowe, C., and Madhur, J. (2004). Software Development for
Small Teams: A RUP-Centric Approach. Boston: Addison-Wesley.
Pressman, R. (2005). Software Engineering: A Practitioner?s Approach. New York:
McGraw Hill.
Probasco, L. (2001). The Ten Essentials of RUP. The Rational Edge. Retrieved on May
1, 2005 from http://www-
106.ibm.com/developerworks/rational/library/content/RationalEdge/dec00/TheTe
nEssentialsofRUPDec00.pdf.
Raffo, D., Harrison, W., and Vandeville, J. (2000). Coordinating Models and Metrics to
Manage Software Projects. Software Process Improvement and Practice. 5, 159-
168.
Raffo, D., Setamanit, S., and Wakeland, W. (2003). Towards a Software Process
Simulation Model of Globally Distributed Software Development Projects. Paper
 93
presented at the meeting of the ProSim, Portland, OR. Retrieved January
27,2006, from http://prosim.pdx.edu/prosim2003/paper/prosim03_setamanit.pdf.
Raffo, D., Vandeville, J., and Martin, R. (1999). Software Process Simulation to achieve
higher CMM levels. Journal of Systems and Software. 46(2/3), 163-172.
Ramil, J. and Smith, N. (2002). Qualitative Simulation of Models of Software Evolution.
Software Process Improvement and Practice. 7, 95-112.
Scacchi, W. (1999). Experience with software process simulation and modeling. Journal
of Systems and Software. 46(2/3), 183-192.
Sawyer, S. and Guinan, P. (1998). Software Development: Processes and performance.
IBM Systems Journal, 4(4), 552-569. Retrieved January 26, 2006, from the
Academic Search Premier EBSCO Host Research database.
Shamsi, J., Chu, C., and Brockmeyer, M. (2005). Towards Partially Synchronous
Overlays: Issues and Challenges. Paper presented at the International Workshop
on Advanced Architectures and Algorithms for Internet Delivery and
Applications, Orlando, FL. Retrieved on February 24, 2006 from
http://www.cs.wayne.edu/~mab/publications/shamsi_j_partialsynchrony.pdf
Smith, A. (1993). The Wealth of Nations (E. Cannan, version). New York: Random
House Publishing Group. (Original work published in 1776).
Tischler, H. (2002). Introduction to Sociology (7
th
 ed.). USA: Wadsworth Thomson
Learning.
Weiss, M. (1999). Data Structures & Algorithm Analysis in Java. Reading
Massachusetts: Addison Wesley Longman.
 94
Wickenberg, T. and Davidsson, P. (2003). On Multi-Agent Based Simulation of Software
Development Processes. Retrieved May 1, 2005 from
http://www.ide.bth.se/~pdv/Papers/MABS2002.pdf
 95
APPENDICES
 96
APPENDIX A

Figure A.1. Team-RUP Design Class Diagram
 97
APPENDIX B

For each experiment in this appendix, we performed 50 replications per replication set.
Each statistic in the following tables reflects an arithmetic mean taken across a
replication set.

Experiment 1: Agility Test
REPLICATION
SET
TYPE TURBULENCE WORKLOAD SCOPE COMPLEXITY TEAMS
1 Agile Low 5 120 0.492795445 5
2 Agile Mod. Low 5 120 0.496051976 5
3 Agile Mod. 5 120 0.49619988 5
4 Agile Mod. High 5 120 0.500999823 5
5 Agile High 5 120 0.517297541 5
6 Synchronous Low 5 120 0.503560578 5
7 Synchronous Mod. Low 5 120 0.500937619 5
8 Synchronous Mod. 5 120 0.486810614 5
9 Synchronous Mod. High 5 120 0.495231466 5
10 Synchronous High 5 120 0.501508096 5
11 Autonomous Low 5 120 0.482563196 5
12 Autonomous Mod. Low 5 120 0.510589997 5
13 Autonomous Mod. 5 120 0.490344683 5
14 Autonomous Mod. High 5 120 0.500867129 5
15 Autonomous High 5 120 0.509257847 5
16 Concurrent Low 5 120 0.509206642 5
17 Concurrent Mod. Low 5 120 0.487430728 5
18 Concurrent Mod. 5 120 0.507232866 5
19 Concurrent Mod. High 5 120 0.491274695 5
20 Concurrent High 5 120 0.504179166 5

Table B.1. Factor Levels for the Agility Test

 98
Experiment 1: Agility Test
REPLICATION SET PRODUCTIVITY
STAFF
UTILIZATION
TIMELINESS QUALITY
1 0.025328846 0.231140154 0.440316877 0.96509466
2 0.025327223 0.230382858 0.439246148 0.965331789
3 0.025960513 0.230647675 0.435901661 0.965002604
4 0.026268255 0.229222744 0.43890831 0.964103427
5 0.026970226 0.229981082 0.437321071 0.966720034
6 0.023335065 0.642720218 0.292401489 0.071943243
7 0.023615427 0.642125773 0.29284277 0.064871543
8 0.02352542 0.6419996 0.292617552 0.068865499
9 0.024221423 0.641766512 0.290952536 0.072609209
10 0.024997594 0.641311526 0.291381207 0.126947075
11 0.025331712 0.190298548 0.29443539 0.678906763
12 0.026653118 0.190425866 0.252664708 0.687680819
13 0.026146871 0.194835978 0.220097001 0.679297956
14 0.026888272 0.193823064 0.233288766 0.691685123
15 0.027092029 0.19309859 0.209989504 0.701111544
16 0.026411194 0.197775971 0.284803795 0.827527847
17 0.02600541 0.199222974 0.258121465 0.782418654
18 0.026860975 0.200113842 0.235610027 0.768374242
19 0.026630691 0.200132711 0.224455529 0.751175646
20 0.026826836 0.203330749 0.220628672 0.744913224

Table B.2. Response Values for the Agility Test

Experiment 2: Team Size Test
AGILE
REPLICATION
SET
TURBULENCE WORKLOAD SCOPE COMPLEXITY TEAMS
1 Low 5 120 0.507566872 2
2 Low 5 120 0.492509003 3
3 Low 5 120 0.494292946 5
4 Low 5 120 0.508440247 7
5 Low 5 120 0.503936501 9
6 Mod. Low 5 120 0.487158775 2
7 Mod. Low 5 120 0.507247658 3
8 Mod. Low 5 120 0.481746178 5
9 Mod. Low 5 120 0.505034409 7
10 Mod. Low 5 120 0.487197266 9
11 Mod. 5 120 0.495859032 2
12 Mod. 5 120 0.492768288 3
13 Mod. 5 120 0.488520584 5
14 Mod. 5 120 0.491357918 7
15 Mod. 5 120 0.507890472 9
16 Mod. High 5 120 0.504902039 2
17 Mod. High 5 120 0.497990532 3
18 Mod. High 5 120 0.510723915 5
19 Mod. High 5 120 0.507437592 7
20 Mod. High 5 120 0.505601082 9
21 High 5 120 0.484216995 2
 99
22 High 5 120 0.499557953 3
23 High 5 120 0.515345497 5
24 High 5 120 0.493893585 7
25 High 5 120 0.483649635 9
SYNCHRONOUS
REPLICATION
SET
TURBULENCE WORKLOAD SCOPE COMPLEXITY TEAMS
26 Low 5 120 0.506517067 2
27 Low 5 120 0.502209625 3
28 Low 5 120 0.490453186 5
29 Low 5 120 0.504317245 7
30 Low 5 120 0.506039238 9
31 Mod. Low 5 120 0.492678947 2
32 Mod. Low 5 120 0.508490639 3
33 Mod. Low 5 120 0.508122559 5
34 Mod. Low 5 120 0.493064766 7
35 Mod. Low 5 120 0.501874504 9
36 Mod. 5 120 0.498804474 2
37 Mod. 5 120 0.501498833 3
38 Mod. 5 120 0.505621948 5
39 Mod. 5 120 0.501907845 7
40 Mod. 5 120 0.49899334 9
41 Mod. High 5 120 0.509307442 2
42 Mod. High 5 120 0.500957909 3
43 Mod. High 5 120 0.495966949 5
44 Mod. High 5 120 0.513373718 7
45 Mod. High 5 120 0.496787643 9
46 High 5 120 0.50466938 2
47 High 5 120 0.506278419 3
48 High 5 120 0.480222969 5
49 High 5 120 0.512956429 7
50 High 5 120 0.486804581 9
AUTONOMOUS
REPLICATION
SET
TURBULENCE WORKLOAD SCOPE COMPLEXITY TEAMS
51 Low 5 120 0.504437981 2
52 Low 5 120 0.494516602 3
53 Low 5 120 0.515584564 5
54 Low 5 120 0.500924187 7
55 Low 5 120 0.489090614 9
56 Mod. Low 5 120 0.483288422 2
57 Mod. Low 5 120 0.503692856 3
58 Mod. Low 5 120 0.482916412 5
59 Mod. Low 5 120 0.509558907 7
60 Mod. Low 5 120 0.508256798 9
61 Mod. 5 120 0.501806602 2
62 Mod. 5 120 0.502840004 3
63 Mod. 5 120 0.502829933 5
64 Mod. 5 120 0.496880951 7
65 Mod. 5 120 0.490814857 9
66 Mod. High 5 120 0.490543747 2
67 Mod. High 5 120 0.492832184 3
68 Mod. High 5 120 0.494958954 5
69 Mod. High 5 120 0.501601181 7
70 Mod. High 5 120 0.509886665 9
71 High 5 120 0.504381638 2
 100
72 High 5 120 0.501154861 3
73 High 5 120 0.490907822 5
74 High 5 120 0.4907547 7
75 High 5 120 0.508830681 9
CONCURRENT
REPLICATION
SET
TURBULENCE WORKLOAD SCOPE COMPLEXITY TEAMS
76 Low 5 120 0.512141724 2
77 Low 5 120 0.50306324 3
78 Low 5 120 0.506592216 5
79 Low 5 120 0.496863937 7
80 Low 5 120 0.493643379 9
81 Mod. Low 5 120 0.505849609 2
82 Mod. Low 5 120 0.503745651 3
83 Mod. Low 5 120 0.509353104 5
84 Mod. Low 5 120 0.508011055 7
85 Mod. Low 5 120 0.487565842 9
86 Mod. 5 120 0.50994812 2
87 Mod. 5 120 0.496735764 3
88 Mod. 5 120 0.498604012 5
89 Mod. 5 120 0.510730362 7
90 Mod. 5 120 0.501268578 9
91 Mod. High 5 120 0.500176506 2
92 Mod. High 5 120 0.51145195 3
93 Mod. High 5 120 0.494881821 5
94 Mod. High 5 120 0.490365829 7
95 Mod. High 5 120 0.506875153 9
96 High 5 120 0.487911987 2
97 High 5 120 0.484253769 3
98 High 5 120 0.506429214 5
99 High 5 120 0.499536057 7
100 High 5 120 0.500761528 9

Table B.3. Factor Levels for the Team Size Test

Experiment 2: Team Size Test
AGILE
REPLICATION SET PRODUCTIVITY
STAFF
UTILIZATION
TIMELINESS QUALITY
1 0.044051743 0.378005524 0.595186005 0.966042023
2 0.034348104 0.312981548 0.521366425 0.966084976
3 0.025159695 0.23119257 0.441159821 0.966228104
4 0.020402493 0.182635918 0.388178291 0.964067993
5 0.016710329 0.151353331 0.348864555 0.959812698
6 0.043163648 0.376634941 0.593599129 0.96248848
7 0.035920982 0.31204361 0.518868103 0.966102142
8 0.024949787 0.231146088 0.443113861 0.964397583
9 0.020536547 0.181842976 0.388081017 0.964103317
10 0.016491178 0.151069822 0.348748589 0.95980011
11 0.043713193 0.376317863 0.596150208 0.958249512
12 0.035134928 0.311978054 0.522726021 0.963125763
13 0.025388844 0.230444336 0.440440102 0.964057159
14 0.02028404 0.181699028 0.387325783 0.960935059
15 0.016987174 0.151326818 0.349285851 0.959202576
16 0.045265956 0.376638374 0.597470741 0.952550964
 101
17 0.035864072 0.311935253 0.52032711 0.96167099
18 0.02662405 0.229608994 0.437987709 0.965223618
19 0.020830314 0.181645393 0.388093567 0.963506622
20 0.016961488 0.150890436 0.348357544 0.95918602
21 0.044276781 0.375775223 0.596898499 0.949793625
22 0.036745334 0.311433983 0.521682777 0.963297119
23 0.026985364 0.229490891 0.437680931 0.965915604
24 0.020424116 0.181579514 0.387562523 0.962319183
25 0.016685095 0.150764418 0.349659653 0.959286804
SYNCHRONOUS
REPLICATION SET PRODUCTIVITY
STAFF
UTILIZATION
TIMELINESS QUALITY
26 0.041179385 0.634200935 0.3962463 0.197500477
27 0.032430801 0.68140007 0.326033211 0.041608076
28 0.023040829 0.642899094 0.294361191 0.035669727
29 0.018192199 0.576714935 0.286881409 0.100382853
30 0.015213822 0.516616898 0.283368053 0.143276119
31 0.041352606 0.633155746 0.390564919 0.149114256
32 0.033630962 0.681340179 0.3247649 0.028966477
33 0.024397221 0.64187973 0.292392254 0.048919411
34 0.018153853 0.576359749 0.287161369 0.059004359
35 0.015038776 0.516223717 0.284099026 0.126769342
36 0.042171841 0.632630692 0.388496323 0.123129187
37 0.034000595 0.679490128 0.321274376 0.067042351
38 0.024155076 0.642472687 0.292336617 0.071619201
39 0.018669291 0.576135025 0.286163197 0.093624048
40 0.015380079 0.515999374 0.282573071 0.13342123
41 0.042980351 0.632119293 0.384306183 0.146244364
42 0.034026537 0.679242325 0.319381485 0.019472237
43 0.024491615 0.642160263 0.291736794 0.070431833
44 0.019296339 0.576832466 0.285464745 0.126118917
45 0.015384932 0.516050453 0.282969418 0.137346582
46 0.043151126 0.631100273 0.381346207 0.206139374
47 0.034948885 0.679811554 0.317774506 0.120081911
48 0.024560139 0.642046814 0.290286999 0.064396501
49 0.019531357 0.575749474 0.285720787 0.15351428
50 0.015693961 0.515414772 0.282995567 0.160785713
AUTONOMOUS
REPLICATION SET PRODUCTIVITY
STAFF
UTILIZATION
TIMELINESS QUALITY
51 0.04633482 0.319705906 0.217772541 0.559238167
52 0.036211948 0.265480137 0.250014458 0.698878021
53 0.026568155 0.19239954 0.281757374 0.741624527
54 0.020516992 0.152884817 0.292305031 0.757556
55 0.016242467 0.122460995 0.316630974 0.803800735
56 0.044749265 0.321155396 0.196761074 0.474672775
57 0.03715286 0.269266834 0.221647549 0.656551666
58 0.025662475 0.193089981 0.251653881 0.670110474
59 0.020459924 0.152909594 0.257929249 0.727322922
60 0.016896591 0.124730186 0.274538136 0.755026016
61 0.04687808 0.326842995 0.160072079 0.445630112
62 0.037131999 0.265239277 0.21048193 0.625786934
63 0.02669383 0.190632534 0.243129787 0.690319214
64 0.020778284 0.156069651 0.236034298 0.721896362
65 0.016755232 0.125230532 0.268688316 0.765222549
66 0.046258535 0.329226723 0.159258509 0.444599686
 102
67 0.037022779 0.264811935 0.210744972 0.640887756
68 0.026191192 0.19473917 0.232602406 0.646861191
69 0.020595665 0.153961849 0.243648319 0.737329788
70 0.017135768 0.12746726 0.24778944 0.752881317
71 0.04684164 0.344193611 0.143241291 0.46414505
72 0.037874436 0.263098373 0.20477314 0.632759666
73 0.02649564 0.199744415 0.215062542 0.653595657
74 0.020625527 0.161586571 0.201779995 0.653775711
75 0.01709568 0.126785088 0.254164219 0.766575089
CONCURRENT
REPLICATION SET PRODUCTIVITY
STAFF
UTILIZATION
TIMELINESS QUALITY
76 0.04670042 0.326758041 0.243448563 0.807180634
77 0.036557169 0.268515205 0.260863037 0.822886963
78 0.026532564 0.19576252 0.28093338 0.834212189
79 0.020177579 0.153982468 0.299499683 0.858339996
80 0.016220839 0.127072706 0.306020412 0.864841003
81 0.046279535 0.32998909 0.214358006 0.752946777
82 0.037313282 0.271869164 0.223312569 0.762961426
83 0.026680987 0.195205994 0.26438303 0.831045456
84 0.020652111 0.156262388 0.274119015 0.836172028
85 0.016284063 0.129494791 0.271660442 0.806089172
86 0.046617651 0.340140877 0.171421528 0.653751526
87 0.036538477 0.271179352 0.206061001 0.729413528
88 0.026788754 0.2007967 0.237194462 0.779173203
89 0.020955527 0.156121264 0.248999977 0.80977417
90 0.016939917 0.129288912 0.259693584 0.81110199
91 0.046227717 0.338670349 0.164122467 0.657293777
92 0.03787406 0.269842796 0.207387581 0.731854095
93 0.026636744 0.201142235 0.221683102 0.767559738
94 0.020457425 0.158801594 0.241037312 0.777952499
95 0.016984755 0.130797281 0.251054211 0.786829834
96 0.046388512 0.346093903 0.152824764 0.6084198
97 0.036829069 0.271491909 0.207048168 0.738629761
98 0.027304196 0.208163147 0.194357815 0.712818146
99 0.021035635 0.158337145 0.234183197 0.775438461
100 0.016927701 0.1298458 0.254258995 0.802528763

Table B.4. Response Values for the Team Size Test

