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Abstract 

 The Kidnapped Robot problem in robotics commonly refers to a situation where an 

autonomous robot can’t locate itself against the map. It can be caused by external force when a 

robot is carried to an arbitrary place, or experiencing a wake-up sequence, etc. 

 In this thesis, a solution is proposed and implemented using feature matching to solve the 

problem in an efficient and robust way.  First a flood coverage algorithm is proposed to mark the 

building with limited number of fiducial markers and environmental features. Then a match-

then-vote method is implemented based on ORB (Oriented FAST and Rotated BRIEF) and SIFT 

matching algorithms to recognize the place. The robot’s position can then be estimated by its 

distance and angle to the marker. After calibration by an AMCL (Adaptive Monte-Carlo 

Localization) node in ROS (Robot Operating System) using feature matching, the position 

message will be published in the robot operating system to locate the robot in a map.  

After tested in Auburn University Broun Hall, the solution proves to be a functional method in 

kidnapped recovery with acceptable error and speed: The average error of the distance 

measurement is below 1%. The average error in position estimation is about 0.31m while the 

angle error in the pose estimation is less than 3.5 degrees. And the recovery process with marker 

in sight cost less than 1.5 second. 
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Chapter 1: Introduction 

Although the term ‘Robot’ was first coined by Asimov in his science fiction in 1941, the idea 

of automata can be traced back to many ancient civilizations, like ancient China and Ptolemaic 

Egypt [1].  An account in Lie Zi, a 3rd century text book, describes a humanoid automata. The 

automata built by Yan Shi, was presented to the king with a life-size, human-shaped figure, and 

filled with artificial organs made by leather and wood. [2] With years of development, robot is 

now a big family with many branches, range from commercial manufacture to medical agent 

inside a human body [3]. 

Today, many of the robots are equipped with legs, wheels or propeller so they can move in 

different terrain or space to finish their task. When a robot is capable of moving, the first 

problem emerges will be the localization problem. To gain accurate knowledge of robot’s 

position within its operating environment, many solutions have been proposed based on human 

interaction, computer vision, RFID or LIDAR feature. Many of them are combing with a 

probabilistic model [4] [5], which is using the recent acquired information and the previous robot 

state information to estimate its current position. This kind of model needs to keep tracking the 

robot past positions to give more precise estimation. What if a robot experiences a power issue or 

is moved by external force, and can’t locate itself? This is when the kidnapped problems comes 

up. 
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1.1    Goals 

The work presented in this thesis aims to develop and implement a feature-based solution to 

recover the autonomous robot’s location when it has been kidnapped. The system, implemented 

in ROS, is mainly based on feature detection using a single camera and LIDAR.  The solution 

also proposes a method to mark building hallway and rooms, and maintain a library of objects 

for detection.   

 

1.2     Motivation  

    Released in 2009, ROS is a flexible framework for robot operating packages. Since it is 

open source and compatible with multiple platforms, it has been widely used around the world 

[6]. Its developers and users have formed a community in which many program packages are 

produced and shared every day [7]. One of the most frequently used programs is ROS navigation 

stack.  The navigation stack provided by Eitan Marder-Eppstein is a simple and efficient solution 

for 2D navigation [8]. However, when the program has been started up and given a task, it still 

needs an input of initial position to localize the robot against a map. This means a robot system 

with navigation stack on board is still a human-in-the-loop system.  

Here, the gap between autonomous and human-in-the-loop control has been referred to as the 

kidnapped robot problem [9] [14]. Solutions proposed based on computer vision can be separated 

into two branches. 

The first group of solutions use computer vision combined with markers for place recognition 

and localization, like in [10], [11] and [12]. In those solutions based on fiducial markers, the 

robot usually needs three markers to locate itself against the map [13]. These algorithms not only 
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require multiple pictures of robot’s surroundings (at least two or more), but also need a large set 

of fiducial markers. Both of them will reduce the recovery speed performance.  

The other branch of solutions is based on visual words, like K-means clustering algorithms 

combined with a vocabulary tree in [20]. These solutions will need a large set of training pictures 

to achieve a high accuracy.  

The solution proposed in this thesis is an attempt to combine those two branches together. 

Instead of a large set of fiducial markers, very limited number of markers combined with a set of 

training objects will be used to mark the place. Instead of computing with multiple pictures, the 

algorithm will finish recognition with only one picture. And a voting algorithm based on fuzzy 

logic similar to vocabulary tree in [20] will be used to increase the speed performance. 

The remainder of this thesis is organized in the following manner: Chapter 2 provides an 

overview of the field of autonomous robot and computer vision with focuses on kidnapped robot 

problem and object matching. Chapter 3 gives a specific implementation of the algorithm, 

followed by Chapter 4, which shows the experiment design and result to demonstrate the 

solution. Chapter 5 presents the conclusion, suggestions and future work. 
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Chapter 2 Literature Review 

 2.1    Autonomous Robot and Kidnapped Robot Problem  

    Autonomous robot is an intelligent machine equipped with computational resources, 

capable of performing tasks in the world without human interaction [16]. Nyagudi summarized 

the following rules for what an autonomous robot could do in [17]: 

1. Gain information about the environment. 

2. Work for an extended period without human intervention. 

3. Move itself throughout its operating environment without human assistance. 

4. Avoid situations that are harmful to people, property, or itself unless those are part of its 

design specifications. 

    Kidnapped problems in robotics commonly refer to a situation when an autonomous robot 

in action lost its location information. It can be caused by external force when a robot is carried 

to an arbitrary place, or experiencing a wake-up sequence, etc. No meter what situation it is, 

when a robot is kidnapped, it means the localization algorithm it uses cannot give its accurate 

position information in current environment, thus the task assigned to it will be forced to stop. 

    Not all the localization algorithms could solve the kidnapped problems properly. For 

example, the localization method used in ROS navigation stack will sometimes fail a kidnapped 

recovery because of its own defect. The algorithm uses a LIDAR feature matching along with a 

probabilistic model to localize the robot against a 2-D map. To demonstrate the kidnapped 
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situation, let us consider the map shown in Figure 1, which is the Auburn University Broun Hall 

third floor hallway map. 

Assuming the robot is working autonomously at position A with a circle indicating its LIDAR 

detection range. Then it is kidnapped to B. We can see with the information gathered from 

LIDAR, the system could report a matching with several places in the map. Tested in ROS 

navigation stack, the kidnapped situation will trigger a recovery sequence, which means the 

robot will rotate to gather more LIDAR information in position B. The recovery proves to be a 

failure every time, simply because the LIDAR feature input at position B will never be enough to 

recognize the place, nor will the former position estimations in the probabilistic model be of any 

help.  

In the situation above, the kidnapped problem could be solved by adding a program package, 

to hang up the former task and send an explore command. So when it moves to position C or 

Figure 1.  Hallway Kidnapped Robot Example 
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position D, the feature matching will give a more influential matching report, and then recover 

its position by a probabilistic model. But this solution could add a huge latency when the 

exploration process interrupts the given task of the robot for too long. 

There are several other localization algorithms that are capable of solving the kidnapped robot 

problem, for example a semantic localization method proposed by Chuho Yi and Byung-Uk in 

[18]. feature based SLAM in [19], or computer vision combined with a vocabulary tree in [20]. 

These localization algorithms above are not primarily designed to solve the kidnapped robot 

problem, but after the kidnapped situation occurs, these solutions are capable of recovering the 

robot’s position in the map. 

 

2.2    Robot Operating System (ROS) 

Robot Operating System, aka ROS, is a collection of software frameworks for robot software 

development. It was first implemented in Stanford AI Lab, to support Stanford AI Robot STAIR 

project [21]. After that, it was developed and maintained by Willow Garage, a robot research 

institute. Now, ROS has become an open source platform provide standard operating system 

services, such as hardware abstraction, low level device control, application implementation, 

message passing between multiple level  processes, and file management, etc. 

In this thesis, the solution will be implemented into a ROS node, the most common and basic 

level of application in ROS system. When running, this node could communicate and transfer 

data with other nodes by ROS messages. The message will be published with a standard format 

under a certain topic, so other node could subscribe to this topic and read this message.  

Two main nodes will be used in this solution, one is the AMCL node, provided by ROS 

navigation stack. The function of this node is to localize the robot against a given map, using 
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LIDAR feature matching and an adaptive (or KLD-sampling) Monte Carlo localization 

approach. Another one is based on python language, using computer vision for place recognition 

and distance measurement.  

 

2.3    Computer Vision in Feature Detection and Matching 

2.3.1    Scale-Invariant Feature Transform (SIFT) 

Scale-Invariant Feature Transform was proposed by D. Lowe from University of British 

Columbia in 1999 [24]. It is used to detect and describe local features in images.  

Image features are usually the corners or blobs in the image. Such features are widely used in 

object detection, place recognition, etc. In SIFT, for any object in the image, interesting points 

can be extracted as a feature description of the object. Then the feature description can be used to 

detect and locate the object in another test image which contains many other objects.  

Basically there are four steps for a SIFT sequence.  

1. Scale-space extrema detection 

This stage of the filtering process attempts to identify locations and scales that can be 

repeatably assigned under different views of the same object [22]. This can be achieved using a 

scale-space function based on Gaussian Function shown as below: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) 

    In the function above, ∗ is the convolution operator, 𝐺(𝑥, 𝑦, 𝜎) is a variable-scale Gaussian 

function and 𝐼(𝑥, 𝑦) is the input image. 

Then a Difference-of-Gaussian function can be described as below: 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎) 
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As shown in figure2 [23], each DOG is computed as the difference between two scaled 

images. So the initial image is repeatedly convolved with Gaussians to produce image in the left, 

and adjacent Gaussian images are subtracted to produce DOG images in the right. 

Once the DOG images are produced, local extrema will be extracted by comparing each pixel 

with its 8 neighbors in the same scale and 9 neighbor pixels in the up and down scale images. If 

the value is maximum or minimum, it is an extrema.  

2. Keypoint Localization 

    Due to the poorly defined peak in DOG function, it will introduce a strong response to long 

edges. And some of the edges detected are aligned by locations which can be poorly determined 

and unstable to noises [22]. Thus the candidate points extracted in step one will be dumped if 

they are poorly localized on an edge. For the same reason, points have low contrast will also 

been rejected. 

For each point (𝑥, 𝑦, 𝜎) we got in step 1, 𝑥̂ is defined and calculated as: 

𝑥̂ =  −
𝜕2𝐷−1

𝜕𝑥2

𝜕𝐷

𝜕𝑥
 

Figure 2.    DOG Computing Process [22] 
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If 𝑥̂ is below a certain threshold, as 0.03 as in [23], the keypoint will be rejected for low 

contrast. 

For edge-located keypoints, a principal curvature will be computed at its location and scale 

using a 2x2 Hessian matrix. Since we already know the eigenvalue of Hessian matrix are 

proportional to principal curvatures of D, we can use the magnitude ratio between the largest and 

a smaller one to setup a criterion. If the ratio is below a certain threshold, the keypoint will be 

rejected. 

3. Orientation Assignment 

Orientation will be assigned to each keypoint in this step to make them invariable to image 

rotations. So for each keypoint, gradient magnitude 𝑚(𝑥, 𝑦)  and orientation 𝜃(𝑥, 𝑦)  will be 

calculated using pixel differences [22]: 

𝑚(𝑥, 𝑦) =  √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2 

𝜃(𝑥, 𝑦) =  tan−1((𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))/(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))) 

An orientation histogram will be formed from the gradient orientations of sample points 

within a region around the keypoint. Then it use the highest peak of the histogram with any other 

local peak within 80% of the height of this peak to create a keypoint with that orientation. 

4. Keypoint descriptor  

Now keypoint descriptors are created, a 16 by16 neighborhood around keypoint is taken. It is 

divided into 16 sub-blocks with 4 by 4 size. For each block, 8 bin orientation histogram is 

created. So total 128bin are available for each keypoint. It is represented as a vector to form 

keypoint descriptor. 

After the keypoints descriptor generated in two or more images, several matching algorithms 

could be applied to locate object or place of interest.  
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2.3.2    Oriented FAST and Rotated BRIEF (ORB) 

The ORB algorithm was first brought up by Ethan Rublee, Vincent Rabaud, Kurt Konolige 

and Gary R. Bradski in their paper ‘ORB: An efficient alternative to SIFT or SURF’ in 2011. It 

is basically a fusion of FAST keypoint detector and BRIEF descriptor with many modifications 

to enhance the performance [24]. 

FAST is short for Features from Accelerated Segment Test. Developed by Edward Rosten and 

Tom Drummond, the algorithm is used for high-speed corner detection. Consider the following 

image with pixels enlarged: 

For each pixel P, we calculate its intensity as 𝐼𝑝.  A threshold for intensity will be chosen as 𝑡 

to test four pixels: 1, 5, 9 and 13. If more than two of their intensity values is all larger than 

( 𝐼𝑝 + 𝑡) or all smaller than( 𝐼𝑝 − 𝑡), then test the 16 pixel set around pixel P. if there exist a set 

with number of N pixels, whose intensity values all larger or smaller than the threshold compare 

to 𝐼𝑝, then P is a corner. [25] 

Figure 3.    FAST corner detection [25] 
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After corner keypoint detection in FAST, orientation value will be add to each point in ORB 

algorithm. It computes the intensity weighted centroid of the patch with located corner at center. 

The direction of the vector from this corner point to centroid gives the orientation.[24] 

Then ORB uses a BRIEF descriptor for the keypoints. Binary Robust Independent Elementary 

Features, BRIEF, is proposed by Michael Calonder, Vincent Lepetit, Christoph Strecha, and 

Pascal Fua, as a more robust way to modify the feature descriptors to gain better CPU 

performance [26].  In ORB, for any feature set with N binary tests at pixel(𝑥𝑝,𝑦𝑝), a matrix with 

size ( 2 ∗ 𝑁)  will be defined. The matrix will contain the coordinates of the pixel set 

around(𝑥𝑝,𝑦𝑝). Combined with orientation found before, the matrix will be rotated by a rotation 

matrix to from a new matrix, which will be used as ORB’s descriptor.  

     For performance, according to the author in [25], ORB is much faster than SIFT and SURF 

and ORB’s descriptor works better than SURF descriptor. 

 

2.3.3    Feature Matching 

There are several matching algorithms which can be used to match two data set. In this thesis, 

two of them are used.  

One is Brute-Force Matcher. Its principle is quite sample; it takes the descriptor from one data 

set and compares with all other feature descriptors in the second set to see if there is a similar 

match. Distance will be calculated to evaluate the similarity between two descriptors. 

The other one is FLANN based matcher. FLANN is short for Fast Library for Approximate 

Nearest Neighbors [27]. Basically it perform a nearest neighbor search between two data sets 

[28]. When it comes to a large data set, FLANN based matcher could be a lot faster than Brute-

Force Matcher [29]. 



12 

 

2.3.4    OpenCV (Open Source Computer Vision) 

OpenCV is a programming library mainly aimed at real-time computer vision processing [30]. 

It was originally developed by Intel research center in Russia, and now is maintained by Itseez. 

In the early days of OpenCV, the goals of this project were described as [31]: 

1.  Advance vision research by providing not only open-source but also optimized code for 

basic vision infrastructure.  

2. Disseminate vision knowledge by providing a common infrastructure that developers 

could build on, so that code would be more readable and transferable. 

3. Advance vision-based commercial applications by making portable, performance-

optimized code available for free. 

Now the library has been released for several versions with modifications, and earned users all 

around the world. In this thesis, most of the image processing work will be based on OpenCV 

library. 

 

2.4    Hardware Specification 

2.4.1    Hokuyo LIDAR 

The Hokuyo URG-04lx-UGO1 is a dedicated laser range finder (LIDAR) used in many robot 

applications and with an accuracy +/-30mm at a 5.6 m range. The sensor have approximately 

240-degree field of view, but here in this thesis, when mounting on our lab’s turtlebot, only front 

180 degree will be used to gather range information for feature matching. 
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2.4.2    Logitech C920 Camera  

    Logitech C920 is a HD web camera with maximum definition of 1920*1080 pixels. Its 

focal length is 3.67mm, with sensor at 3.60mm in height and 4.80mm in width. The camera is 

used in this thesis to gather image information for place recognition and robot localization.  
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Chapter 3 Solution Implementation 

As we could see in Figure 1, when using solutions based on LIDAR feature matching and 

probabilistic model, kidnapped recovery process may introduce a huge latency or even fail. The 

latency is caused not only by the matching process, but also by an exploring operation. The 

exploring operation, which is used to choose one most possible position among many possible 

candidates, sometime may not work even after it explored the whole map. Consider the 

following hallway map, where the gray area will be the rooms or wall, and white area is the 

hallway: 

    In this map, if we use the solution above, the exploring process will always end up giving a 

twin candidates share the same possibility, making it impossible to autonomously recover its 

location. We all know that in the modern building layout, a symmetry room or hallway design is 

Figure 4.   Hallway Map Example 
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widely used. This means the possibility of accruing a huge latency or recovery failure not only 

exist, but also could be very high.  

    To solve the robot kidnapped problem more efficiently, a solution should meet the 

following requirement: 

1. First, the solution should be able to recover the position and direction information of the 

robot. And the information should accurate enough for a later task, like navigation through 

a map to another location.  

2. Secondly, a solution should introduce as little latency as possible. So the algorithm should 

only use a short period of exploring time or none. Since the robot may still have a pending 

task to finish, it shouldn’t spend a long time and distance in location recovery. 

3. For a feature-based solution, the feature library used for matching should keep a small size 

and easy-maintained quality. 

4. No solution will give a position with 100% percent accuracy, so the solution should be 

able to calculate the confidence value for its position estimation. Later in use, if the 

confidence is lower than a certain threshold, it can dump the result and set up another 

recovery process or report a failure. 

5. A good solution should be transferable, which means it is not for a unique map. Once been 

slightly modified, it can be applied to another building or indoor environment.  

To meet the requirement above, a feature based solution is implemented in the following 

sections.  

This solution for robot kidnapped problem mainly contains two parts: place recognition, and 

position estimation. To recognize the place more efficiently, first, a limited number of fiducial 

markers will be used to mark the robot’s operating area. Then, the robot can collect the place 
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information by recognizing the fiducial markers combined with the environmental objects 

around the marker. After this, a voting procedure is introduced to find out which place the robot 

is located and the confidence of the recognition result. Finally, a position estimation will be done 

using the marker and the LIDAR feature obtained.   

In this thesis, the solution implementation is separated into three steps. So when applied to a 

certain building, a specific design could be formed step by step according to these steps.  

 

3.1    Mark the Building 

Since most buildings’ indoor layout are using symmetric design, and these indoor places are 

sharing many similarities, adding fiducial markers will make a place more distinguishable, thus 

speeding up the recognize process.   

Figure 5.   Fiducial Marker Example 
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But if we use a unique marker for each place the robot may operating at, it will be a very large 

marker library to use.  To reduce the size and complexity of the marker library, the solution tries 

to follow the criterion below: 

1. If the kidnapped robot does not need to move, it will take one or several pictures of the 

surrounding. In this scenario, the robot should see at least one marker in the pictures taken. 

2. The fiducial marker combined with the objects nearby should be able to form a unique set 

for each place in the map. 

So in this solution, the idea of a trigger marker will be introduced. As its name indicates, a 

trigger marker is used to initiate a recovery sequence. According to the criterion 1 above, the 

kidnapped robot may not take only one picture, instead it will take several pictures to find a 

marked place to begin the matching algorithm. So instead of matching every marker and object 

in every picture, checking only one or two triggers will save a huge amount of time. Usually the 

same trigger can be used in places sharing the same attribute, for example, places in the same 

floor, places are all rooms or all in the hallway, etc. So triggers can also be used to break the 

place candidates set down into several branches, with each branch using its own interesting 

objects library. 

Another concept introduced here is the distance between two sets of interesting objects. As we 

know, for places inside a building, it is very hard to assign each place with a unique object set 

with unique elements which can’t be found in any other place. The fact is that it is very likely to 

find several places sharing a similar object set, but different combinations, or only one or two 

object in their set are unique to other sets. To compare the similarity of two interesting object 

sets, a distance function is defined.  Here, we use 𝑂𝐴 and 𝑂𝐵 for two object sets in place A and B. 
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𝑁𝑆𝐴𝐵  is the number of elements sharing between 𝑂𝐴  and  𝑂𝐵 , 𝑁𝐴  and 𝑁𝐵  is the number of 

elements in  𝑂𝐴 and 𝑂𝐵. So the distance between  𝑂𝐴 and 𝑂𝐵 is defined as: 

𝐷(𝑂𝐴, 𝑂𝐵) = 1 −
𝑁𝑆𝐴𝐵

𝑁𝐴 + 𝑁𝐵 − 𝑁𝑆𝐴𝐵
 

It can be calculated that when(𝑁𝑆𝐴𝐵 = 0), which means place A and B share no interesting 

object, 𝐷(𝑂𝐴, 𝑂𝐵) = 1. When A and B are holding the same object set, the distance will be zero. 

This calculation not only gives the similarity reference for two set, but also scale it into [0,1], 

which will be easier to use later as performance reference for a feature library. 

Another parameter introduced in this solution is confidence value. It is used to estimate the 

accuracy of a SIFT matching result. When FLANN based matcher in OpenCV is used, it will 

return a matched descriptor set with distance ratio for each pair of descriptors. Then a filter will 

be applied to dump a pair of descriptors if its distance ratio is less than a threshold. A value of 

0.7 is recommended in OpenCV. After filtered, if the number of the good matches is larger than 

a certain number, a positive match result will be reported. Otherwise, a match failure result will 

be given by the program. 

In the program, the number of well-matched descriptors and their distance ratio can be scaled 

into a confidence number. The lower the confidence is, the higher the possibility of a wrong 

match result it will be. Assume the distance ratio for each pair of descriptors is 𝐷𝑟𝑚𝑎𝑡𝑐ℎ with 

total matched pair number 𝑁𝑚, the total keypoints number in the quarry image, for example, a 

fiducial marker, is 𝑁𝑞. The confidence of a successful match is defined as: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑡𝑐ℎ = (𝑟 + (1 − 𝑟) ∗
∑ 𝐷𝑟𝑚𝑎𝑡𝑐ℎ

𝑁𝑚
1

𝑁𝑞
) ∗ 100% 

The confidence of a failed match is defined as: 
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𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑎𝑡𝑐ℎ = (𝑟 + (1 − 𝑟) ∗ (1 −
∑ 𝐷𝑟𝑚𝑎𝑡𝑐ℎ

𝑁𝑚
1

𝑁𝑞
)) ∗ 100% 

 𝑟 is a scale parameter, in this thesis, 𝑟 is 0.8. 

In this chapter, an algorithm to mark the building hallway will be implemented first, then it 

could be slightly modified to mark the rooms. With the use of the triggers and distance, the 

following steps can be taken to mark a hallway map: 

 

3.1.1    Find Out the FOV and Angle Limitation of the Robot’s View 

In this solution, the FOV is a range with boundaries as the longest and smallest distance at 

where the robot’s camera could recognize the trigger marker and another objects. The distance 

could be determined by an object matching test, which involves setting up the camera, and 

matching a sample set of the objects and markers. If all the SIFT matching result could pass the 

confidence threshold, for example 85%, then the distance will be inside the FOV range. Then try 

to increase the distance, repeat the matching, until we have a distance long enough to apply in 

step 3.1.2, or the confidence is below the threshold. It will give us the upper boundary of the 

FOV range. Similarly, the lower boundary of the range can be found by decreasing the distance 

from camera to objects set.  

To increase the FOV range, we can try to enlarge the size of the trigger marker. Since an ORB 

algorithm will be used in matching triggers, a bigger-sized trigger can increase the ORB’s 

performance. But the size of the marker should not be too big. Since we can’t increase the 

object’s size, an oversized trigger can't give more confidence on object matching. Also it can be 

seen in the following section that a bigger trigger may introduce a larger distance error. 
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The angle limitation of the view is also required since the marker is not always facing directly 

to the camera. It means the angle formed by the marker plain and image plain when robot is 

facing directly to the marker direction. If the space indoor is too big, and the angle to too big, for 

example close to 90 degrees, the robot will not be able to recognize the marker no matter how 

many photos are taken.  

 

3.1.2    Pick a Start Point of the Map and Start Marking Sequence 

In this step, first we need to choose a start point, then a flood coverage sequence will be 

applied to pick place candidates around the map, mark the places and form a feature library. 

Here, the hallway example shown in Figure 4 will be used for demonstration. Each corner, 

which is formed by two walls, can be marked as below in Figure 6. Here, we use 𝐶𝐴𝐵 for the 

corner at place 1, as another four corners marked as 𝐶𝐶𝐷,𝐶𝐸𝐹  and 𝐶𝐺𝐻 . Similarly the hallway 

could be marked as 𝐻𝐼𝐽,𝐻𝐴𝐹 etc. As for the starting point, the corner of the map, like place 1 or 2 

is recommend. Because if a start point is chosen in the middle of the hall way, like place 3, the 

‘flood’ will spread to multiple directions, and increase the complexity of calculation. 

Figure 6.   Hallway Marking Example 
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Each white pixel in the map, is a possible position for the robot. So we perform the flood 

sequence by changing every pixel in the white area with the RGB value of (0,0,0) into black 

pixel with RGB value of (255,255,255). The sequence to change all the pixels from black to 

white is like a flood map coverage, so it is called flood marking sequence. Thus when there is no 

pixel in white area, we will know the marking work has covered all possible positions of the 

robot in map.  

In Figure 6, it can be seen that each corner or hallway will propose two place candidate. For 

instance, in corner AB, a marker can be put either on A or B. Now, let’s start the flood sequence. 

Note that in the map, the gray area means the unknown places, while black lines mark the 

boundary of the hallway.  The flooding procedure is shown in Figure 7. 

    When we first start the flood sequence in map shown in Figure 6 at position 1, we can 

simply choose a place nearby inside the FOV. Here we choose A and put a trigger marker. Then, 

we choose the objects beside the trigger, which is used to form a set of interesting objects for 

place A. 

Then, for every new pixel been flooded through, we do the following test. Firstly, within the 

FOV and angle criterion, does there already exist a place with a trigger marker? If the answer is 

yes, then move on to the next position. If the answer is no, then we check the hallway in which 

the robot is located. As in the Figure 6, we begin in position 1, the first set of flooded positions 

Figure 7.    Hallway Marking Flood Sequence 
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should be able to locate themselves at hallway 𝐻𝐵𝐶 and 𝐻𝐴𝐹, the hallway will help to locate four 

candidate places, A,B,C and F.  

Consider position a, b, c and d in Figure 8, let’s mark locate them one by one. For position b, 

check the FOV first. Because it is too close to A and B, assume it can’t recognize the marker in 

place A, and also won't recognize the possible marker in B. So we are left with place candidates 

C and F. Then we consider the FOV again, is place F covered in FOV when the robot is at 

position b? If not, candidate F will be dumped. The same test will be done on place C. If both 

answers are yes, then an interesting object set will be formed for C and F. Then the candidate set, 

which is 𝑂𝐶 and 𝑂𝐹, will be used to calculate Hausdorff distance to every set already existing in 

the library. In this case, it will be set 𝑂𝐴 . For each distance calculated, it will be first compared 

to a threshold. If the distance is below the threshold, the new candidate set will be rejected. If 

more than one candidate set passes the threshold test, the total distance (dissimilarity) will be 

calculated as: 

Figure 8.    Hallway Marker Assignment 
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𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =  ∑ 𝐷(𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , 𝑂𝑙𝑖𝑏𝑟𝑎𝑟𝑦)

𝑆𝑖𝑧𝑒(𝑙𝑖𝑏𝑟𝑎𝑟𝑦)

1

 

After the calculation, candidate holing the least total distance value will be chosen as a new 

member in the feature library.     

In the same way, the place is chosen for position a, c and d. One situation that may happen is 

that the FOV of a robot is so limited, that it can’t detect any hallway end. For example, in 

position c, if a robot’s FOV cannot reach place A and F, the algorithm will fail. In this situation, 

the first thing to do is trying to increase the FOV. This could be done by using a camera with 

higher resolution or enlarging the trigger’s size. If the FOV still can't reach any hallway end, we 

can hang the trigger image under the ceiling to solve the problem.  

When feature library comes into a large scale, another situation may occur that for one 

position, all its place candidates can’t pass the distance threshold test. This could also happen 

when each candidate for a place holds an exactly same object set as another set in library. In this 

case, a fiducial marker will be added to each candidate place. The distance test will be performed 

all over again too choose the most suitable candidate. If the threshold still can't be reached, we 

could add a second marker, a third, and so on.  

During the process above, more than one fiducial marker may be added to the library to satisfy 

the distance test. When this happens, every next time we need to add a fiducial marker, we first 

pick from the markers which are already been used before. Only if they all fail the distance test 

will we add a new fiducial marker to the library. This principle will help to reduce the total 

fiducial marker used. 

The main marking sequence could also be described as a flow chart shown in Figure 9. 
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Figure 9.    Main Marking Sequence Flow Chart  
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Another fact that needs to be mentioned is that different start points for flooding sequence may 

give different libraries. Because different places may be chosen, different marker allocation may 

be used. Here, the performance of a library can be evaluated by calculating average distance 

between each pair of place sets in it. 

 

3.1.3    Form and Maintain a Feature Library  

For each place newly added to the library, it will be numbered, as well as the objects in the 

new set. So a following table could be formed to represent the library. ‘1’ means the object is 

included in the set of a place, while ‘0’ means not included. The column shows that for each 

place, which object is included in its set. And the row could tell us for each object, which place it 

belongs to.  

 Place A Place C Place B Place F Place G Place I 

Trigger 1 1 1 1 1 1 1 

Object 1 1 1 0 0 0 1 

Object 2 1 0 1 1 0 1 

Object 3 0 1 1 0 1 0 

Object 4 0 0 1 0 1 1 

Object 5 0 0 0 1 0 1 

Table 1 shows one possible marking result for the right wing of the hallway in Figure 6. Using 

places as columns and object as rows, the computer could simply keep the library as a matrix. To 

maintain a library in operation, for example, if a new object is added into one or several existed 

Table 1.  Feature Library 
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set, we can add a new row in the matrix. Similarly each time we add a new place, a new column 

will be added into the matrix. 

 

3.1.4    Mark the Rooms If Needed 

The steps to mark the rooms will be similar to the steps to mark the hallway. Choose one room 

to start, or use room number to mark them one by one. For a room with small size and non-

blocked space, only one trigger is needed. If a room is too big to be reached by the robot FOV, 

place candidates will be picked similar like the hallway, and proceed with the distance test.  

Also, a feature library will be formed. Here, if the trigger used in the room is the same as the 

hallway, we can add these two libraries together into one matrix. If not, it is recommended to 

store them in different matrices to improve the query performance later.  

A major difference for marking the rooms is for every trigger, another marker will be assigned 

beside them with a certain distance. This marker will be used for every room and will not change 

with the triggers, meaning all the room could share a same marker. The latter marker will not be 

in the library. The marker is added for position estimation, which will be illustrated in Section 

3.3.3. 

 

3.2    Place Recognition 

Once we finished marking the map, the feature library matrix can be imported into the 

recovery program in a robot’s computer, and the kidnapped robot recovery process can start. 

When the robot is kidnapped or powered-on, it will start a recovery program. First a picture 

will be taken by the onboard camera. The picture will be matched with the trigger marker using 

ORB detector.  If there is no match report, the robot will rotate a certain angle to take another 



27 

 

picture. The procedure will be repeated until there is a match report. Although the ORB detector 

is not good at precision compared with SIFT, it can still provide a reliable match report with 

speed several times faster than SIFT.   

Once the trigger is recognized, the robot will know that the place it is looking at is one of the 

places in the feature library. When several triggers are used, the robot will also know which 

feature library the place belongs to.  Then the next step to take is to decide which place it is. To 

achieve this, robot needs to match the picture with objects in the feature library. Since every 

place in the library holds a unique combination of objects, a unique result should be reported 

after a full library check. Due to the precision quality of the SIFT detector, it is used in the 

feature library matching. So when a trigger marker is detected, the algorithm will take the object 

one by one from the library to match with the picture using SIFT. SIFT matching will report two 

kinds of result, either a successful match along with a confidence ratio, or a match failure with a 

confidence ratio. But SIFT is much slower than the ORB algorithm. If we run the test for the 

whole feature library, it will introduce a huge amount of latency, especially when we have a 

large number of place candidates. To speed up the process, a voting process based on fuzzy logic 

will be performed right after every object match test.  

First let’s consider a voting with result in true or false. When an object is in the picture, we 

vote for true. It means each place holding a set including this object will gain one vote, while 

each place without this object will lose one vote. The vote cannot be less than zero. When the 

object is not in the picture, any place holding a set with this object inside will lose one vote. Note 

that no set will gain a positive vote in this situation, because it will reduce the accuracy of the 

estimation later. 
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But when SIFT algorithm reports a match, it won’t be a 100% match or match failure. Instead 

a confidence number in percentage will be reported, telling us the probability of the object 

existing or not existing in the picture. Here, we use 𝑅𝑐 to represent the ratio of confidence. Since 

we know 0 ≤ 𝑅𝑐 ≤ 1 ,instead of voting 1 or 0, we can split the vote into  𝑅𝑐 and (1 − 𝑅𝑐). For 

each object that reports a match with confidence of 𝑅𝑐, we assign 𝑅𝑐 v for true, and (1 − 𝑅𝑐) for 

false. Thus a place with this object will receive (2 ∗ 𝑅𝑐 − 1) vote in total, and a place without 

this object will receive (−𝑅𝑐) vote. Similarly, for the failure report with 𝑅𝑐 , place with the object 

will receive (1 − 2 ∗ 𝑅𝑐) vote, while place without the object will receive (𝑅𝑐 − 1) vote. 

After each object matching, we will update the vote for each place, and then calculate the 

weighting number for each place’s vote in the total vote. If one place got a leading vote, and it is 

the only one in the leading position, we will break the matching loop and report a successful 

recognition. A threshold test can also be introduced here. It is an optional test, when applied to 

the voting, the winning place not only need to have a leading vote, but also a weighting above 

threshold.  The threshold can force the matching algorithm to match for more object than needed, 

thus to increase the accuracy of the recognition.  

Here, let’s demonstrate the voting process using feature library in Table 1. Assume the robot is 

kidnapped in the hallway showed in Figure 8, at position c, facing place A. The confidence ratio 

for each detection is 0.9.  

After the test for object 1, program will report a match, and voting result is shown in Table 2: 

 Place A Place C Place B Place F Place G Place I 

vote 0.8 0.8 0 0 0 0.8 

weighting 0.3333 0.3333 0 0 0 0.3333 

Table 2.  Voting after object 1 
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After the test for object 2, the program will report a match, with result in Table 3: 

 Place A Place C Place B Place F Place G Place I 

vote 1.6 0 0.8 0.8 0 1.6 

weighting 0.3333 0 0.1667 0.1667 0 0.3333 

After the test for object 3, program will report a match failure, with result in Table 4: 

 Place A Place C Place B Place F Place G Place I 

vote 1.5 0 0 0.7 0 1.5 

weighting 0.4054 0 0 0.1892 0 0.4054 

After the test for object 4, program will report a match failure, with result in Table 5: 

 Place A Place C Place B Place F Place G Place I 

vote 1.4 0 0 0.6 0 0.7 

weighting 0.5185 0 0 0.2222 0 0.0.2593 

After this round of voting, we can see place A holds a leading vote weighting number as 

0.5185. So we can call an end to the matching process now. In this case, the voting process will 

reduce the time cost by skipping the matching operation on the object 5. However, if the program 

do the match for more objects, it will increase the accuracy of the voting result. This can be done 

by setting a weighting threshold larger than 0.5185. So the algorithm will take object 5 for 

match. 

After the test for object 5, program will report a match failure, with result in Table 6: 

Table 3.  Voting after object 2 

Table 4 Voting after object 3 

Table 5.  Voting after object 4 
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 Place A Place C Place B Place F Place G Place I 

vote 1.3 0 0 0 0 0 

weighting 1 0 0 0 0 0 

After this round, the weighting number is 1, which is above the threshold for sure, we can 

break the further possible loop and report a recognition. 

However, the possibility may exist that with all object matched, the leading weighting number 

is still below the threshold. This means the threshold setting has a flaw. This could be solved 

either by using a lower threshold, or by adding more markers to increase the distance between 

two similar sets. 

 

3.3    Position Estimation 

Once a robot has recognized the place it is facing, the next step is to get the position 

information against a known map. Here, the distance from the robot to the trigger marker will be 

calculated first. Then the position of the robot will be estimated by one of the two algorithms 

depending on which kind of place it is located: a room, or a hallway. 

 

3.3.1    Distance Estimation    

In a sample camera projection model shown in Figure 10, distance 𝑑 is the distance between 

fiducial marker and camera projection center along z axis. 

Table 6.  Voting After object 5 
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In the model above, the camera’s y axis and fiducial marker is always perpendicular to the 

ground, and the fiducial marker’s center is located at y-z plain. Assume the height of the fiducial 

marker is 𝑙𝑓, and it is 𝑙𝑖 when projected into the image plain. When the focal distance is f, we 

have: 

𝑑

𝑓
 =  

𝑙𝑓

𝑙𝑖
 

But the marker’s center is not always in the y-z plain of the camera coordinate. When it is not, 

as shown in Figure 11 at camera’s x-z plain, the projection triangles in Figure 10 will become a 

line with 𝑑 and 𝑓’. Assume the line will form an angle of 𝜕. It is not hard to see that 𝑑 can be 

calculated as below: 

𝑑 =  
𝑙𝑓

𝑙𝑖
∗

𝑓

cos 𝜕
 

 

Image 

Plain 

𝑧 

𝑦 

ℎ 

Figure 10. Camera projection model y-z plane 
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Since we know that 𝑙𝑓 is proportional to the pixel number 𝑃𝑓𝑖𝑑 in the fiducial marker image 

file, and  𝑙𝑖 is proportional to the pixel number 𝑃𝑐𝑎𝑚 of the marker in camera image, the distance 

can be calculated as  

𝑑 = 𝑟 ∗
𝑃𝑓𝑖𝑑

𝑃𝑐𝑎𝑚 ∗ cos 𝜕
  

In the equation above, 𝑟 is a parameter that can be estimated by experiment. So we don't have 

to know the camera technical parameter when camera is changed.  For 𝜕 estimation, we can use 

the Taylor series. In figure 11, we can see 𝜕 is not proportional to the marker-to-image-center 

offset, but tan 𝜕 does. For a camera with limited FOV, for example less than [−30,30] degrees, 

it is accurate enough to estimate 𝜕  in [0,30]  or [−30,0]  using two stage Taylor series. The 

parameter of the Taylor series can be calculated by sample points in camera image with  𝜕 

number manually measured.  

When applied to the computer program, SIFT detector will be used to find a pair of matched 

points between the fiducial marker and the camera image, then calculate their coordinate 

Figure 11 Camera projection model x-z plain 
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difference along camera’s y axis to solve the distance. To pick a good pair of matched point, 

here, two filters will be used. 

The first filter is used to reduce the error of distance estimation. During the estimation, error is 

introduced mainly from two sources. The first one is the estimation of 𝑙𝑖. 𝑙𝑖 is calculated by the 

number of pixels. Since the number is a discrete integer value, 𝑙𝑖 will always come with a certain 

error. However, the error can be reduced by increasing the number of total pixels along y axis. It 

means to pick a pair of the matched keypoints with the biggest pixel distance along y axis. The 

second source of the error is caused by the perspective transformation. A pair of points reported 

may have a difference along x coordinate of the image plain and the marker plain. So when the 

points have been transformed from maker plane into image plane, this difference will cause a 

change in their distance along image y axis. Assume the lower point is in the height of h in 

Figure 10. Then the z axis forms an acute angle with the marker plane as 𝜕, and the distance of 

the points in the fiducial marker in image x coordinate is ∆𝑥. According to [32], the ratio of the 

error to length 𝑙𝑓 as 𝑟𝑒𝑟𝑟𝑜𝑟 can be given in: 

𝑟𝑒𝑟𝑟𝑜𝑟 =  
ℎ∆𝑥 cos 𝜕

𝑑𝑙𝑓
 

So to reduce this error, we can lower the position of the fiducial marker and choose the points 

will smaller ∆𝑥. Usually for each fiducial marker, there will be about 3 to 16 points reported as 

matches. So for each pair of the points coordinates, we set up a criterion as 𝐶, calculated as: 

𝐶 =  
∆𝑥

𝑙𝑖
2  

 The pair of points with the smallest 𝐶 value will be chosen to estimate the distance. 
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The second filter is used to eliminate a wrong match. During the recognition process,  there is 

a possibility that the SIFT detector will report a match with the point outside the fiducial marker. 

The wrong-match point can easily have a leading position in the first filter’s test, cause an 

estimation failure. 

During the test, observation reveals that wherever the wrong-matched point is, it is usually 

located outside the fiducial marker’s keypoints cluster. If we calculate the geometric center of all 

matched points and its distance to each point, it can be seen that the wrong-matched point 

usually have the longest distance to the geometric center. So here, an average distance to the 

center will be calculated, then a ratio between distance of one point to average distance can be 

found. If the ratio exceeds a certain threshold, it will be dumped before the first filter taken into 

action. 

With the distance calculated, position can be found according to the type of the place. There 

stands two possibilities: hallway, or a room.  

 

3.3.2    When the Place Is a Hallway   

𝑑 

𝑝 

Marker 

Hallway 

Figure 12.    Hallway Position Illustration   
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When the place is a hallway, due to the angle and FOV we got in 3.1.1, the robot position can 

always be located at an arc shown in figure 12. 

Since the place with the marker can be found in the map with a coordinate reference, the 

center of the arc can be calculated as 𝑝 in figure 12. Then position will then be input into the 

AMCL node in ROS. Based on LIDAR feature matching using the wall of the hallway, AMCL 

will publish a position estimation using TF publisher in ROS. 

 

3.3.3    When the Place Is a Room 

When the place is in a room. The LIDAR features may have a confusing layout because of the 

indoor objects. So here a second marker is been used to estimate the position. The marker is 

located with certain distance or angle with the trigger marker. For accuracy consideration, it is 

recommended to put this marker in a place where the robot camera can’t acquire it in the image 

frame with the trigger.  So after the robot recognize the room and the marker, it needs to rotate a 

Marker 1 

𝑑1 

Room 

𝑝1 

𝑝2 

Marker 2 

𝑑2 

Figure 13.    Room Position Illustration   
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certain angle to find the second marker and its distance information, similar as the process to 

locate the trigger. When both markers’ distance are calculated, program can find two possible 

positions shown in figure 13.  

An extra position can be dumped according to the rotation of the camera. For example if the 

camera is been rotated counterclockwise and marker 2 is in the first frame, marker 1 is in one of 

the followed frames, then 𝑝2 is the robot position, 𝑝1 will be dumped. The heading direction of 

the robot can be estimated by the second marker’s position in the camera frame. Then a full 

position estimation can be published in ROS topics. 

 

3.4    Error Prediction  

3.4.1    Error in Place Recognition 

For place recognition, error accrues when a wrong place is recognized and reported. In this 

part, the weighting number of the final vote can also be used to calculate a confidence reference. 

For place A in library, assume we do a voting with all matching result at 100% confidence, a 

winning vote weighting can be calculated as 𝑉𝑏𝑖𝑛𝑎𝑟𝑦. If place A is the winner in a voting process, 

with the final vote weighting 𝑉𝑝, the confidence for the recognition is defined as: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑝𝑙𝑎𝑐𝑒 =  
𝑉𝑝

𝑉𝑏𝑖𝑛𝑎𝑟𝑦
∗ 100% 

This confidence can be used to evaluate the possibility of a wrong recognition result reported. 

 

3.4.2    Error in Position Estimation  

For position estimation. When in the hallway, error will come from both distance calculation 

and AMCL feature matching. AMCL in ROS will usually give a result with fix covariance for 
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reference. The error in distance calculation could be estimated use a normal distribution as 

below, with distance value as mean value 𝜇, and 𝜎 given through a distance test. The distance 

test program will take a known marker, calculate the distance for hundreds of times, and 

calculate 𝜎 against a known distance. 

𝑓(𝑥|𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  

When the robot is in the hallway, we can estimate error in a similar way as above. With two 

distance in two normal distribution sharing same  𝜎 , a bivariate normal distribution can be 

described as follow [34] 

𝑓(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−
(𝑥−𝜇𝑥)2(𝑦−𝜇𝑦)2

4𝜎4  

Basically it will locate a circle of possible positions with distribution similar to figure 14.  

 

 

 

  

Figure 14.    Bivariate Normal Distribution 
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Chapter 4 Experiment Setup and Results 

In this thesis, the west wing of Auburn University Broun Hall Third floor along with room 368 

will be used to form a map for test. First, we use a flood sequence to mark the map and form up a 

feature library. Then test the recovery program at multiple positions to see the result and 

accuracy of the recovery solution. 

 

Since the kidnapped recovery sequence only need a camera and a LIDAR, we don't need to 

test the robot in a fully functional mode. So the robot will be remotely controlled, move to a 

certain position of the map, and a recovery program will be started to test the performance. The 

rotation of the robot can be achieved by remote control or manually, both of them won’t affect 

the recovery sequence.  

Figure 15.    Broun Hall Third Floor West Wing Test Map   
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Before the camera is mounted on the robot, it will be calibrated for radial and tangential 

distortions. It can be done by using the functions provided in OpenCV based on an algorithm 

proposed in [36]. 

With a calibrated camera. First the FOV and camera angle will be calculated, then the map 

will be marked with a feature library in 4.1. With a marked map, the recovery result will be 

given in 4.2. Finally, the performance of the system will be analyzed in 4.3. 

 

4.1    Marking the Map  

The first step is to measure the FOV and angle limitation of the camera. The FOV can be 

measured by a trigger maker. In this case, the fiducial marker shown in the figure 16 is been 

used. The marker is chosen as the trigger because it has a good height-to-width ratio, and a good 

size of the keypoint set in SIFT, which will help reduce the error in distance calculation later.  

In this test, for every frame taken by the camera, it will be matched with the marker in figure 

16 using ORB detector. A certain threshold of the matched descriptors will be set. If number of 

Figure 16.    Trigger Marker Used In Experiment   
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the matched descriptors exceeds the threshold, it will be shown as follow in picture 15, means we 

have a match. 

The FOV will be reported as a range of the distance. The lower boundary is where the camera 

will lose the fiducial marker and other objects in the image.  The Higher boundary is where the 

ORB detector can’t report a match when facing directly to the trigger marker. After tested, the 

Logitech C920 camera with trigger marker in figure 16 got a FOV from about 2 meters to 

approximately 14 meters in the hallway, 1 to 14 meters in a room, and the angle of the FOV is 

about 60 degrees. The FOV in the room will have a lower boundary to the FOV in a hallway, 

because the objects in the rooms are mostly chairs, desks, vase or bookshelf, which are in a lower 

height level compare to the posters and fire alarms in the hallway. 

Now, we can start marking the map in figure 15. First, all the place candidates will be marked 

as in figure 18. Since the size of room 368 shows in the map is a small one, it will be marked as 

one place.  The number of the place candidates in the map use is below 26, so they will be 

marked alphabetically to help the illustration. For same reason, sample positions will be marked 

Figure 17.   FOV Test Matching    
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form 1 to 6. In this map, distance threshold between two sets in feature library is 0.6. So the least 

distance between two places in library is 0.6. 

 

Here, we choose the bottom left corner in figure 18, which is corner 𝐶𝐵𝐷 to start the flooding 

sequence. So the first place to added in the library will be place A, since at position 1, near 𝐶𝐵𝐷, 

marker at BD is out of the range in FOV.  

Now the feature library will be like the table below, after we choose the objects. Here, a 

fiducial marker will be used because place A only have one object, which gives us a low distance 

number when adding another place candidate.  

 Place A 

Trigger marker 1 

Fiducial marker 1 1 

Fire alarm 1 

 

Figure 18.    Place Candidates in Map   

B 

D 

C A 

H 

G 

E F 

1m 

1 

2 
3 

4 

6 

5 

Table 7.  Feature Lib after Place A Added 
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With the flood sequence going on to position 2 and 6, B and D will marked, with the library 

updated as table 8. 

 

 

 

 

 

 

 

When position 3 is flooded, two new candidates will be reported as place E and H. Place E 

have fire alarm and a poster different from poster 1, while place H have a door and a fire alarm. 

In this condition, distance will be calculated as table 9. 

 Distance to A Distance to B Distance to D Total 

Place E 0.75 0.6 0.8 2.15 

Place H 0.6667 0.5 0.75 1.9167 

As can be seen in table 9, place H not only failed the threshold test, but also hold a lower total 

distance. So here, place E will be added into the feature library.  

When position 5 is flooded, place C and G will be chosen as candidate. C have a door in 

object set, while G have only a fire alarm. It is not hard to see that they will both fail the distance 

 Place A Place B Place D 

Trigger marker 1 1 1 

Fiducial marker 1 1 0 0 

Fire alarm 1 1 0 

Fire extinguisher 0 1 0 

Door  0 1 1 

Poster 1 0 0 1 

Table 8.  Feature Lib after Place B, D Added 

Table 9.  Distance Test for Candidate E and H 
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test. So fiducial marker 1 is added to C and G for a new round of distance test. The result is G 

fail the distance test, while C passed all the test. So C is added to the library.   

After the hallway been marked, place F will be added as a room place candidate. So when the 

marking processes been finished, the library will be as table 10. 

 Place A Place B Place C Place D Place E Place F 

Trigger marker 1 1 1 1 1 1 

Fiducial marker 1 1 0 1 0 0 0 

Fire alarm 1 1 0 0 1 0 

Fire extinguisher 0 1 0 0 0 0 

Door  0 1 1 1 0 1 

Poster 1 0 0 0 1 0 0 

Poster 2 0 0 0 0 1 0 

Road Block 0 0 0 0 0 1 

Chair 2 0 0 0 0 0 1 

Turbot  0 0 0 0 0 1 

 

4.2    The Experiment Recovery System Implementation 

    This section is the initiation of the recovery system.  Before start up the recovery system, 

the following parameter and data will be feed to recovery program or published around ROS to 

prepare for the recovery sequence.  

Table 10 Final feature library 
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1. The reference point of the trigger marker in each place. Each trigger’s position in the map 

is recorded by saving its top left corner’s coordinate in an array. It is used to calculate the 

robot’s position in map coordinate. 

2. The parameter used in distance calculation. First is the estimation of  𝜕 , as discussed 

before, a set of image point with offset and angle already measured is used to form a 

Taylor series. Then parameter r in the distance function can be estimated by measure a set 

of sample points with distance already know. With both 𝜕 and r settled, we can calculate 

the covariance of distance estimation by taken a large set of sample distance. After 

calculation, the covariance is 43.376𝑚𝑚. 

3. The map is provided by ROS map server, with a resolution at 0.05𝑚/𝑝𝑖𝑥𝑒𝑙, under the 

frame named ‘map’. 

4. The LIDAR information is provided by ROS URG node. Using hokuyo LIDAR, it will 

publish scanned LIDAR features under the ‘laser’ frame in topic ‘scan’. 

5. Static transform publisher, to publish the transform form frame ‘laser’ all the way to 

‘odom’, so the AMCL node can receive the message form hokuyo LIDAR and work 

functionally.   

Map_

server 

Recovery 

node 

AMCL 

urg_

node 

Static

_TF 

Odom TF 

Figure 19.    Message Flow in Recovery System 
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The message flow among the whole system is shown in figure 19. In this experiment, the input 

of the recovery program is the camera pictures, the output will be the initial pose of the robot 

published in the ROS topic, and a transform form map frame to ‘Odom’ frame. The second 

transform can be enabled optionally to replace the initial pose setting of the AMCL node. But the 

main function of the initial pose send by recovery node is a filter threshold, so if the AMCL 

report an initial pose too far from the one in recovery node, it will be filtered. 

After a successful recovery, the recovery node will have an output in its terminal window as in 

figure 20. We can see that after the trigger been detected, a match-then-vote sequence will begin 

according to the feature library. The voting sequence stop when one place become the only 

leading winner among the place candidates. Then the distance will be calculated, followed by the 

initial pose in the map coordinate. After calculated by AMCL node, the final recovery result will 

be like figure 21.  As we can see in the image section in the bottom left figure, text will be 

printed on the image showing the matched objects. The right part is the estimated pose array 

calculated by AMCL node. The array is shown as a set of arrows indicates the robot possible 

Figure 20.    Terminal Window of the Recovery Node 
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positions. The black line is part of the hallway map, while the white line showing the laser 

feature in the surrounding environment.  

 

 

4.3    The Recovery Result and Analyzation  

4.3.1    Random Recovery Test 

 

The first table below shows some random positions recovery results in the hallway. Here, the 

real coordinate is manually measured and calculated. Since the map been used have a resolution 

of 0.05m/pixel, and is drawn by a SLAM ‘gmapping’ node in ROS, error in the measured 

coordinates in the table may not be very accurate. But the map hold a distance error measured 

less than 1%, so the map and recovery result is still acceptable by ROS navigation stack. 

Figure 21.    Recovery Result Showing in RVIZ 
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Place 
Vote 

weighting 
Confidence Distance/mm 

Distance 

measured/mm 

Angle 

Error/

degree 

Coordinate 
Coordinate 

Measured 

Coordinate 

Error/mm 

A 0.5053 100% 5773.88 5760.0 1.52 (478.532, 107.642) (481, 105) 176.78 

A 0.4926 98.52% 7420.58 7442.0 2.51 (501.935, 130.230) (498, 139) 490.43 

A 0.4938 98.76% 8988.92 9000.0 1.22 (524.122, 153.125) (527, 151) 176.14 

B 1.0 100% 3429.02 3467.0 1.67 (525.109, 161.817) (525, 162) 11.18 

B 1.0 100% 6820.32 6806.0 1.75 (440.609, 80.709) (438, 74) 359.34 

B 1.0 100% 8046.75 8110.5 3.00 (463.17, 100.800) (471, 94) 518.52 

C 0.9077 90.77% 5401.23 5422.0 1.07 (357.618, 114.382) (360, 115) 130.00 

C 0.9062 90.62% 6650.39 6671.0 1.66 (339.95, 132.045) (344, 134) 225.85 

D 1.0 100% 5672.96 5702.0 0.89 (518.772, 229.214) (522, 235) 340.66 

D 1.0 100% 10099.56 10005.0 3.12 (456.460, 291.538) (482, 302) 1380.71 

D 1.0 100% 6740.22 6812.0 1.50 (478.532, 107.642) (481, 105) 180.35 

D Failure Failure  N/A 15000.0 N/A N/A N/A N/A 

E 1.0 100% 4229.89 4242.0 0.65 (370.746, 311.193) (372, 313) 109.97 

E 1.0 100% 6082.34 6100.0 1.27 (343.237, 284.987) (343, 288) 150.47 

E 1.0 100% 7829.85 7888.0 2.7 (319.281, 260.380) (322, 268) 404.52 

F 1.0 100% 3758.74 3757.0 1.5 (543.015, 384.458) (542, 382) 132.68 

F 1.0 100% 5055.97 5032 2.3 (528.467,363.877) (527, 361) 161.47 

From the results shown in table 11, we can see: 

1. Within the FOV, all the places in the map can be recognized with acceptable confidence. 

2. The distance measurement in table 11 have a convenience in 30.12mm. The maximum 

error in the test is 98.56mm at a distance about 10000mm, which is still below 1%.  

Table 11 Random Recovery Test 1 
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3. The coordinates can be used to estimate the error distance in recovered position. The 

maximum error distance is 1.38m, with an average error at about 0.309m. 

4. It can be seen that when the distance number is larger, the error in the distance 

measurement will also increase. 

5. The recovery angle will be slightly larger when distance increase. But we can see all the 

angle errors are below 5 degrees. 

6. Even with the trigger detected, the place may still fail the recognition, as the example 

shown in table 11. Although the trigger can be detected at 15 meters to start a voting 

process. The place still cannot be recognized with multiple match failures. 

 

4.3.2    Experiment for Error Observation   

To get more information about the system’s performance, two experiments are set to observe 

the error in position estimation and recognition failure. 

The first experiment is a recovery test at similar distances around one place. The recovery 

node give the position estimation in the center of the arc as shown in figure 12, where AMCL 

take this pose to give a more accurate estimation. Here, in this test, the robot is moved roughly 

along an arc like in figure 12 with different rotation angles. The recovery results are shown as 

table 13. 

It can be seen that in the same position, increasing the angle of rotation will also increase the 

distance value. This is because the 𝜕 angle used in distance calculation is estimated by a two 

stage Taylor series. So when angle increased, the Taylor series approximation cannot well follow 

the 𝜕  value, thus introduced more error.  



49 

 

Place 
Distance 

to the arc 

center/mm 

Rotation 

along map 

x-axis 

Distance/

mm 

Distance 

measured/

mm 

Angle 

Error/

degree 

Coordinate  
Coordinate 

measured  

B 5.0 0 degree 8097.85 8083.0 1.80 (461.915,  98.918) (462, 98) 

B 5.0 8.2 degree 8152.87 8083.0 2.8 (460.624, 97.618) (462, 98) 

B 212 0 degree 8060.87 8086.0 1.2 (462.034, 99.037) (465, 95) 

B 212 5.8 degree 8082.5 8086 2.1 (461.951, 98.932) (465, 95) 

B 543 0 degree 8063.02 8099.0 1.94 (462.023, 99.045) (469, 91) 

B 543 -7 degree 8072.0 8099.0 2.2 (461.988, 98.965) (469, 91) 

B 1035 0 degree 8032 8110.0 2.6 (463.786, 101.234) (471, 94) 

B 1035 5.7 degree 8046.75 8110.0 3.00 (463.17, 100.800) (471, 94) 

Another fact shown in table 13 is the distance form robot to the canter line of the hallway will 

also affect the pose estimation result. The further the distance is, the larger the error will be. This 

is because the recovery node is using an arc for estimation. When robot is getting further from 

the center line of the hallway, it will still be treated as it was in the center. So the error will 

increase. Also we can see, the AMCL node cannot correct this error very effectively.  

The second experiment been done is to test is how a wrong match will affect the recovery 

result. If the robot can’t recognize the trigger, there is no doubt the recovery will fail. After the 

trigger been detected, the match process will go through the feature library. During the 

experiment in 4.3.1, it can be observed that when a place wins a voting test, some objects in its 

feature set may still remain untested.  Assume place B is being tested, as shown in figure 20. 

After the matching test on fire extinguisher, which gives a positive result, place B will be 

recognized. So in this case, object ‘door’ is a redundant object.  

Table 13 Recovery test 3 result 
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The second experiment is implemented to recognize place A to E with one object covered by 

white paper. The experiment in 4.3.1 shows that place B is the only one among A to E who has a 

redundant object. And result in this test shows B is the only place who got a chance to be 

recognized with one covered object. It can also be proved by simulating a voting using feature 

library. As the result shows, with one object mismatched, a place with redundant object may still 

be recognized, while a place without redundant object will fail the recognition for sure.  

Another fact need to mention is that during the test, with no object been blocked deliberately 

like above, place F is most likely to experience a recovery failure. Since the object in the room is 

been moved or blocked frequently.  

4.3.3    The Speed of the Recovery Program 

    The speed of the recovery node can be evaluate using the publish rate of the initial pose 

message. As shown in picture 20. After tested for all the places, for each recovery procedure, 

when the camera is capable of taking a picture with trigger in sight, the maximum recovery time 

is 1.332s, the minimum time is 1.199s.  

Figure 22 Recovery Speed 
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Chapter 5 Conclusion and future work 

5.1    Summary and Recommendation  

This thesis proposed a solution to the kidnapped robot problem. First a set of fiducial markers 

combined with environmental features are used to mark a building. Then a voting algorithm is 

implemented based on object matching to recognize the place, followed by a position estimation 

based on marker’s distance and angle.  

As can be seen in the experiment result, using the algorithms above and a map marked with 

feature library, the robot can recover its position with an acceptable speed and error. The average 

error of the distance measurement is below 1%, while the average error in position estimation is 

about 0.31m. And the angle in pose estimation haS an error less than 3.5 degrees. It is an error 

which can be calibrated later with the LIDAR feature and probabilistic model in AMCL node.  

However, we can see this solution may still failed to recover robot’s position at a certain 

situation. So the following recommendations is provided. 

1. When marking the building, each place is recommend to have one or more redundant 

object, so the algorithm can be more robust and reliable. 

2. The algorithm works more efficiently in a hallway than in a room, since objects in a room 

is more likely to be obscured.  

3. More accurate estimation method for angle 𝜕 is recommend to reduce the total error. 
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5.2    Future Work 

    One of the problem emerged in this solution is: when applied in room recognition, the 

object in the room may be blocked or rotated, cause a recovery failure. So here, a machine 

learning algorithm can be used and make the recognition process more robust.  

    In a more broad scope, the library building process can also be replaced by computer 

program. A program can be implemented to detect the trigger autonomously, pick the object and 

store it in to a library. This will make the solution more user friendly.  
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