Adaptation Service Framework for Wireless Sensor networks with
Balanced Energy Aggregation
Except where reference is made to the work of others, the work described in this thesis
is my own or was done in collaboration with my advisory committee. This thesis does
not include proprietary or classified information.
Eun kyung Kim
Certificate of Approval:
Kai Chang
Professor
Department of Computer Science and
Software Engineering
Alvin S. Lim, Chair
Associate Professor
Department of Computer Science and
Software Engineering
Chung-wei Lee
Assistant Professor
Department of Computer Science and
Software Engineering
Stephen L. McFarland
Graduate School Acting Dean
Adaptation Service Framework for Wireless Sensor networks with
Balanced Energy Aggregation
Eun kyung Kim
A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science
Auburn, Alabama
May 11, 2006
Adaptation Service Framework for Wireless Sensor networks with
Balanced Energy Aggregation
Eun kyung Kim
Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon the request of individuals or institutions and at their expense. The author reserves
all publication rights.
Signature of Author
Date of Graduation
iii
Thesis Abstract
Adaptation Service Framework for Wireless Sensor networks with
Balanced Energy Aggregation
Eun kyung Kim
Master of Science, May 11, 2006
86 Typed Pages
Directed by Alvin S. Lim
Wireless sensor networks consist of tiny, energy-constrained sensor nodes that may
be deployed in large numbers. Considering these unique characteristics, our adaptation
service framework is designed to deliver distributed events and react to changes through
distributed actions. This adaptation service framework makes use of energy efficient data
aggregation which helps to maximize network lifetime under limited energy constraints.
The architecture for efficient adaptation service with distributed events consists of three
type of components: event sensor, adaptation server, and action node. An event sensor
is responsible for detecting, collecting, and sending events to an adaptation server. An
adaptation server receives events from various event sensors and sends action requests to
action nodes. An action node executes the requested action and replies to the adaptation
server when it has completed the action.
Our research primarily focuses on energy-efficiently delivering the large amount of
events by building on prior work done on data aggregation over Directed Diffusion. Al-
though using aggregation paths is energy efficient, nodes at aggregation points consume
more energy than any other nodes since they are expected to have greater load and
iv
processing overhead for aggregating events. As a result, these nodes have a shorter
system lifetime than others. Our new aggregation scheme, called balanced energy aggre-
gation, focuses on maximizing the overall lifetime of the sensor network. When a node at
an aggregation point is overloaded, the next closest node to the sources on a shared path
is selected as a new aggregation point. This allows for energy to be saved by distribut-
ing loads across different paths from the sources to the sinks. Our programming model
is based on a concept of channels which encapsulate properties of the underlying com-
munication system, i.e. a data forwarding path with aggregation points for conserving
energy and maximizing lifetime. Channels are accessible to applications for communi-
cation used between adaptation servers and action nodes as well as event sensors and
adaptation servers. The algorithms have been successfully implemented and tested over
Directed Diffusion protocol. Our experimental results demonstrate that the proposed
aggregation algorithm outperform previous methods such as Greedy Aggregation and
Path Sharing Aggregation in terms of system lifetime, average dissipated energy and
number of events.
v
Style manual or journal used Journal of Approximation Theory (together with the
style known as ?aums?). Bibliograpy follows van Leunen?s A Handbook for Scholars.
Computer software used The document preparation package TEX (specifically
LATEX) together with the departmental style-file aums.sty.
vi
Table of Contents
List of Figures ix
List of Tables xi
1 INTRODUCTION 1
2 BACKGROUND and RELATED WORK 4
2.1 Directed Diffusion . 4
2.1.1 Directed Diffusion Protocol . 4
2.1.2 Directed Diffusion API . 7
2.1.3 Matching Rule . 10
2.2 Data Aggregation . 12
2.2.1 Overview of Data Aggregation . 12
2.2.2 Greedy Aggregation . 14
2.2.3 Path Sharing Aggregation . 15
2.3 Event channel . 17
2.3.1 Overview of Event-Based Middleware 17
2.3.2 Event Web . 18
2.3.3 ECho : Event Delivery system . 20
2.3.4 The Event model for Real-Time Systems 21
3 ARCHITECTURE AND ALGORITHM FOR ADAPTATION SERVICE 23
3.1 Architecture of Adaptation Service . 23
3.2 Balanced Energy Aggregation . 25
3.2.1 Energy Model . 26
3.2.2 Algorithm . 27
3.2.3 Example of BEA . 30
3.3 Sensor Data Aggregation Function . 33
4 IMPLEMENTATION 36
4.1 Software Architecture . 36
4.2 Channel Library . 38
4.2.1 Logical Channel . 38
4.2.2 Channel Library API . 39
4.3 Application Implementation . 41
4.4 Balanced Energy Aggregation Filter . 45
4.5 Gradient Filter . 48
4.6 Data Aggregation Filter . 51
vii
5 PERFORMANCE EVALUATION 54
5.1 Development Environment . 54
5.2 Experimental Design . 55
5.3 Evaluation . 57
5.3.1 Impact of the Number of Sources 57
5.3.2 Impact of Network Size . 62
6 CONCLUSIONS AND FUTURE WORK 65
Bibliography 67
Appendices 69
A class Channel 70
B Example of the Adaptation Service 71
B.1 Example for Sensor : pressure sensor.cc 71
B.2 Example for Server : pressure server.cc . 72
B.3 Example for Action node : pressure action.cc 74
viii
List of Figures
2.1 A simplified schematic for directed diffusion 5
2.2 Path establishment for multiple sources and sinks 6
2.3 An example of late aggregation and early aggregation 13
2.4 Greedy Aggregation . 15
2.5 Path Sharing Aggregation . 17
2.6 Event channels in ECho . 20
3.1 Adaptation service by a channel . 24
3.2 Balanced Energy Aggregation . 31
3.3 Data aggregation function along a shared path 34
4.1 Architecture of Adaptation Service . 36
4.2 Channel Operation . 39
4.3 Example for adaptation service . 44
4.4 Hash table for containing exploratory messages 46
4.5 Flow chart for an exploratory message . 47
4.6 Routing Table in the gradient filter . 49
4.7 Reinforced list and source list added in the gradient filter 50
4.8 Flow for data aggregation . 53
5.1 System lifetime with variable number of sources 57
5.2 The number of Events during the network lifetime with variable number
of sources . 58
ix
5.3 Average dissipated energy with variable number of sources 59
5.4 Average Delay with variable number of sources 60
5.5 The relations between dissipated energy and delay 61
5.6 System lifetime with variable network sizes 63
5.7 Average delay with variable network sizes 63
5.8 The number of events with variable network sizes 64
5.9 Average dissipated energy with variable network sizes 64
x
List of Tables
2.1 Matching rule . 11
2.2 Rule for forwarding an exploratory event in PSA 16
3.1 Algorithm for Balanced Energy Aggregation 29
4.1 Adaptation server . 43
4.2 After timeout of hash entry . 48
xi
Chapter 1
INTRODUCTION
The improvements in digital circuity technology allow for integration of sensing,
processing, and wireless communication on a single chip. Small and inexpensive sensor
nodes can be deployed everywhere, resulting in distributed wireless sensor network to
sense and collect various types of information. A typical task of a wireless sensor network
is the monitoring of a larger area for some given physical quantity, e.g., temperature.
Unexpected events such as network link failure and hardware failure could arise due to
loosely connected wireless networks, sensor node mobility or limited energy. Wireless
sensor network need an adaptation service that delivers continuous events and responds
appropriately to the changes in information conditions or unexpected events.
Event-based communication is well suited for addressing the requirements of the
adaptation service that delivers events and actions. In general, event-based communica-
tion provides communication mechanism for supporting large-scale and dynamic distrib-
uted applications in heterogeneous environment. In wireless sensor networks, event-based
communication mechanisms are used widely in systems involving mobility of mobile com-
puters, adaptive systems which react to changes in resources and demands for quality of
service, and all type of monitoring applications such as earthquake monitoring, habitat
monitoring or target tracking and detection. Distributed event-delivery systems, such as
ECho [10], and Event Web [7] supports event-based communication and handle all types
of events.
1
Distributed event-based systems in sensor networks have several limitations such as
severe energy constraints, redundant data, and data flow over multiple paths. Events
need to be disseminated and routed in ways that increases energy efficiency and network
lifetime in the sensor networks. Data aggregation is an essential paradigm for wireless
routing in sensor networks. If large amount of events are sent to a destination through
individual paths, limited resources in the sensor network may be wasted. Instead of
sending every event individually, aggregated events combined in the intermediate node
are forwarded through shared paths to reduce network traffic. Previous work on Greedy
Aggregation [12] and Path Sharing Aggregation [17] has explored energy conservation.
Greedy aggregation creates greedy incremental tree for data aggregation, introducing the
incremental cost message. In the other hand, path sharing aggregation eliminates the
extra incremental cost messages and creates more energy efficient shared paths compared
to the greedy aggregation.
Although using aggregation paths is energy efficient, nodes at aggregation points
consume more energy than any other nodes since they are expected to have greater
load and processing overhead for aggregating events. As a result, these nodes have a
shorter system lifetime than others. Our new aggregation focus on maximizing the overall
lifetime of the sensor network. Data forwarding path with such an aggregation path for
energy efficiency and maximum lifetime is called a balanced energy efficient channel.
We propose an adaptation service framework that deal with hundreds to thousands
of events as well as various types of events and actions for monitoring systems or adaptive
systems. Efficient data aggregation that maximize network lifetime is used to deliver
events and actions. The architecture for efficient adaptation service with distributed
2
events consists of three type of components: event sensor, adaptation server, and action
node. An event sensor is responsible for detecting, collecting, and sending events to an
adaptation server. An adaptation server receives events from various event sensors and
sends action requests to action nodes. An action node executes the requested action and
replies to the adaptation server when it has completed the action.
The remainder of the thesis is organized as follows. We first discuss the background
information for this research and related research that motivates this research in Chapter
2. We summarize directed diffusion protocol and programming API, which is the basis
for this research. Then, we describe Greedy Aggregation and Path Sharing Aggregation,
that are the prior works on data aggregation mechanisms over Directed Diffusion. We
also discuss an event-based communication model that delivers a large number of events
and supports the implementation of dynamic distributed applications. In Chapter 3, we
present the architecture of the adaptation service and our improved algorithm, Balanced
Energy Aggregation, for optimizing the energy efficiency and event propagation. Fol-
lowing that, Chapter 4 describes the implementation of our energy efficient adaptation
service. Chapter 5 examines the performance of our Balance Energy Aggregation and
compares it with Greedy Aggregation and Path Sharing Aggregation. Finally, Chapter 6
summarizes our conclusions and discusses some key areas for future work.
3
Chapter 2
BACKGROUND and RELATED WORK
2.1 Directed Diffusion
2.1.1 Directed Diffusion Protocol
Directed diffusion is a data-centric network protocol, that is different from a tra-
ditional IP-based network protocol. The traditional IP-based approaches to networking
use IP addresses for finding the shortest routes between pairs of addressable end nodes
whereas a data-centric approach uses the content of data to find the best route from mul-
tiple sources to sinks. A sink node that requests a service sends out a request for data
by flooding an interest to its neighboring nodes. An interest refers to a named descrip-
tion of a service that a sink node requires. The interest is subsequently broadcasted by
neighbors and neighbors? broadcasting is continuing until the interest arrives at a source
node. The source node with the appropriate data for responding to the interest, forwards
to the neighbors exploratory data. When the interest diffuse throughout the network,
a node that receives an interest from neighboring nodes forms a gradient pointing to
the sending node. A gradient specifies both a data rate and a direction for forwarding
events from the sources to the sinks. A sink node eventually receives the exploratory
data sent by a source. A sink that receives exploratory data message from more than one
neighbor, selects one neighbor from whom it first received the latest data. It becomes
empirically the low-delay path [1]. Then, a sink node sends only the selected neighbor
4
reinforced interest which is an interest to receive events at a higher data rate. This cho-
sen neighbor also performs the same procedure on its neighboring nodes from which it
received an exploratory data message. The reinforced interest propagates only along the
low-delay path, formed by reinforcement gradient. When the reinforced interest arrives
at the source, data from a source propagates repeatedly along the reinforced gradient
until new interest arrives. In directed diffusion, a sink send the interest periodically, in
order to cope with varying network dynamics. Reinforced paths can always change and
move because wireless sensor networks are loosely connected and a sensor node itself has
a limited lifetime.
Figure 2.1: A simplified schematic for directed diffusion
As explained above, the directed diffusion can be divided into four steps, namely
the interest propagation step, exploratory data propagation step, reinforcement interest
step, and data delivery step. In the first two step, the message is flooded throughout
the network, creating multiple data paths, but, after the next two steps, future data
messages from the source use only one reinforced path.
5
Figure 2.2: Path establishment for multiple sources and sinks
In describing directed diffusion so far, we imply a single source and single sink
case. However, as Figure 2.2(a) and Figure 2.2(b) show, directed diffusion works also for
multiple sources and sinks. In Figure 2.2(a), data from both sources reaches the sink via
both of its neighbors C and D. If the sink hears A?s exploratory data earlier via C, the
sink reinforces to node C. However, if B?s exploratory data comes to the sink earlier via
D, not C, the sink send a reinforcement to node D and data streams from source B travel
down via D. In this case, the sink gets both sources? data from both neighbors. Similarly,
when two sinks send identical interests, directed diffusion follows the same procedure for
both sinks: interest propagation, exploratory data propagation, reinforcement, and data
delivery step. In Figure 2.2(b), we assume that sink Y has already reinforced to the
source. However, when new sink X uses the same interest as sink Y, it determines the
empirically best path. Although this multi-path for multiple sources or multiple sinks
has an advantage in dispersing data traffic, it has a disadvantage in not aggregating the
6
same type of data to reduce the total network traffic. Data from different sources can be
opportunistically aggregated at intermediate nodes along the reinforcement paths. Data
aggregation performs in-network data reduction, thereby resulting in significant energy
savings in network. Therefore, a proposed data aggregation rule in this thesis is that
energy efficient paths would be selected rather than low-delay paths [1]. We will give
the full detail of the data aggregation algorithms in Section 2.2.
2.1.2 Directed Diffusion API
The directed diffusionrouting andfilter API allows foraccess to the networkprotocol
and extensions to the network mechanisms. The routing API allows user level programs
to generate subscriptions for data and publications of data. Directed diffusion filters can
dictate how the generated packets will be processed within the sensor network based on
the declared attributes of publications or subscriptions. A filter is a process that sits
between the directed diffusion core and the user level processes that access the directed
diffusion core [2].
static NR* NR::createNR()
To initialize the NR class, NR::createNR() is called. This static function returns an
NR pointer, which encapsulates all network routing mechanisms and management. The
following is a description of methods of the network routing API class for implementing
user level applications.
? handle NR::subscribe(NRAttrVec* subAttrs,
const NR::Callback* callback)
7
? subAttrs: A pointer to a vector containing elements describing subscription
information.
? callback: A pointer to a callback object to be invoked when the subscription
attributes are fulfilled.
? handle NR::unsubscribe(handle subscription handle)
? subscription handle: A handle associated with a subscription, return by
the subscribe method.
? handle NR::publish(NRAttrVec* pubAttrs)
? pubAttrs: A pointer to a vector containing elements describing the data to
be sent.
? int NR::unpublish(handle publish handle)
? publish handle: A handle associated with a publication, returned by the
publish method.
? int NR::send(handle publish handle, NRAttrVec* sendAttrs)
? publish handle: The handle of the publication that the data being sent is
associated with.
? sendAttrs : A pointer to a vector of data attributes and the original elements
describing the publication.
8
Filters are application-specific software modules that allow applications to influence
routing and data processing. Our uses of filters? implementations is for routing and in-
network aggregation. A priority is used to define the order filters will be called when
multiple filters match the same incoming message. Higher priority filters are called first.
The following API describes interfaces used in our filter implementation.
? handle addFilter(NRAttrVec* filterAttrs, int16 r priority,
FilterCallback* callback)
? filterAttrs: A pointer to a vector containing the filter attributes.
? priority: A unique filter priority between 2 and 253. The higher the number
the higher the priority.
? callback: A pointer to the object to be called when an incoming packet
matches the filter.
? void sendMessage(Message* msg, handle h, u int16 t priority)
? msg: The pointer to the message to send along to the next filter.
? h: The handle to the filter, returned by addFilter.
? priority: An optional argument to augment the filter matching scheme.
With the Filter API, filters can specify a set of attributes describing what messages they
are interested along with a callback. This causes the filter core to send incoming messages
matching those attributes to the filter callback. The handle h is the same handle returned
by NR::addFilter. The message msg points to a message class containing the message
header and the message.
9
class FilterCallback {
public:
virtual void recv(Message* msg, handle h) = 0;
};
class Message {
public:
int32 t next hop ;
int32 t last hop ;
int8 t msg type ; //INTEREST, DATA, EXPLORATORY DATA,
POSITIVE REINFORCEMENT, NEGATIVE REINFORCEMENT
int32 t pkt num ;
int32 t rdm id ;
. . .
NRAttrVec *msg attr vec ;
}
2.1.3 Matching Rule
In directed diffusion, the publisher sends data when there are matching subscrip-
tions and publications. One-way matching compares non-IS operators in the first set of
attributes against IS operators in the second set, calling it a match if the operation of
operators is successful. Two-way matching procedure executes one-way matching algo-
rithm twice in both directions. For instance, a sensor would publish this set of attributes
[2]:
LATITUDE_KEY IS 30.4
LONGITUDE_KEY IS 104.5
TARGET_KEY IS vehicle
while a user might look for vehicles by subscribing with the attributes:
10
TARGET_KEY EQ vehicle
Whenever a sensor receives a user?s subscriptions, it executes the two-way matching
procedure described in Table 2.1 to decide whether user subscriptions match with the
set of attributes to publish. In the first one-way matching of the sensor, assume that
the first set of attributes(attr1) is the attributes for a subscription and the second set
of attributes(attr2) is the attributes for a publication. The attribute(TARGET KEY
EQ vehicle) which has EQ operator looks for a matching attribute(TARGET KEY IS
vehicle) in the set of attributes to publish, where operator is IS. Then, it compares the
value(vehicle) of a attribute for subscription with the value(vehicle) of a attribute for
publication using operator EQ.
proc OneWayMatch(attr1, attr2)
For each attribute in attr1 that has an operator different than ?IS?,
find a ?matchable? one in attr2
proc MatchAttrs(attr1, attr2)
if (OneWayMatch(attr1, attr2))
if (OneWayMatch(attr2, attr1))
return true;
return false;
Table 2.1: Matching rule
When data or exploratory data messages find matching subscriptions, two-way
matching procedure is performed. Filters are a special case for the matching rules.
When matching filters against incoming messages, only one-way matching is performed.
11
2.2 Data Aggregation
2.2.1 Overview of Data Aggregation
Sensor networks are typically data driven. The network nodes cooperate in for-
warding data from sensors to sinks. However, one of the main challenges is the fact that
they are usually power constrained. Sensor networks? power limitation is aggravated by
the fact that, once deployed, they are left unattended for most of their lifetime. Thus,
a fundamental challenge in the design of wireless sensor networks is to maximize their
lifetimes.
Data aggregation is a well known energy-efficient technique for propagating data
from data sources to sinks. Instead of sending individual messages to data sinks, in-
termediate nodes delay messages, compute an aggregated value of all data, and then
forward only a single message with the aggregated value. Thus, data aggregation in
wireless sensor networks reduces the number of transmissions of sensor nodes, and hence
minimizes the overall power consumption in the network.
Similar to data compression, data aggregation can be classified into two different
types; namely, lossless aggregation and lossy aggregation [12]. Lossless aggregation refers
to concatenating individual data into larger packets, or eliminating redundant informa-
tion e.g., packet headers. Thus, in this case, no data is lost and detailed information is
preserved. On the other hand, lossy aggregation may discard some detailed information
and degrade data quality for more energy savings. The best example of lossy aggrega-
tion is the averaging of sensor values. For example, a user may need to know only of
the average temperature in a region, as opposed the individual readings of all sensors.
Similarly, it may be enough to report only the average estimated location of a target,
12
as opposed to the exact locations of all motion sensors. Therefore, Averaging can be a
natural choice in many applications. Our application use a pressure value for detecting
tsunami. Pressure events sensed in each sensors are averaged at aggregation points. We
also refer to perfect aggregation [12], whereby the data size of an aggregate is equal to
the data size of an individual event. An aggregated data packet with average pressure
has a same size.
Data aggregation efficiency is affected by several factors, such as the placement of
aggregation points, the aggregation function, and the density of sensors in the network.
The determination of an optimal selection of aggregation points is extremely important.
To opportunistically determining aggregation points in directed diffusion may not be
energy efficient. Because directed diffusion protocol forward data along low-latency path,
data may not be aggregated near the sources. As shown in Figure 2.3, data is early shared
and merged in early aggregation close to sources, resulting to less transmitting data than
in late aggregation. Thus, we needs to find out proper data aggregation rules to favor the
Figure 2.3: An example of late aggregation and early aggregation
path selection to increase early sharing of paths and reduce energy consumption. Greedy
13
Aggregation [12], that aggregates data in a greedy incremental tree is one of early path
sharing aggregations. However, in greedy aggregation, incremental messages are essential
to create greedy tree introduce extra traffic. Path sharing aggregation [17], proposed by
Shi, eliminates the need for incremental messages and achieves more energy savings. In
such an early path sharing aggregation, many sources send data to an aggregation point,
the node at an aggregation point could be overloaded with processing overhead for data
aggregation. As a result, the lifetime of this sensor network is adversely affected. Thus,
we need to propose an aggregation mechanism to balance the network load. The goal
of our balanced energy aggregation algorithm is to increase both aggregation efficiency
and network lifetime. We define a certain threshold in residual energy for each node.
When the residual energy reach the threshold, the aggregation point is moved to the next
closest neighbor node. We prevent prolonged energy drain of one aggregation point. We
will describe the details in Chapter 3.
2.2.2 Greedy Aggregation
As explained above, the greedy aggregation selects energy efficient paths rather
than low delay paths using a combination of data aggregation rules and reinforcement
rules. To achieve energy saving paths, the energy cost and incremental energy cost are
defined in greedy aggregation. Each exploratory event contains an additional attribute
E, the energy cost for delivering this event from the source to the current node. In
addition, each source generates an incremental cost message when it receives a previously
unseen exploratory message generated by other sources. The incremental cost message
is the same as the original exploratory message except the E field is replaced by C
14
field, indicating the additional energy cost C required for delivering that exploratory
message to the existing tree. Once a sink receives a previous unseen exploratory event,
it reinforces the neighbor that forwarded the exploratory event or the incremental cost
message at the lowest energy cost. In Figure 2.4, assume there is a pre-existing path
2?5?8?10?12 between source 2 and a sink. When source 1 sends exploratory
events, the sink selects node 10 to reinforce among node 10 sent exploratory message
with incremental cost 2 and node 11 sent an exploratory message with energy cost 5.
So, the low energy data path for source 1 is 1?3?5?8?10?12.
Figure 2.4: Greedy Aggregation
2.2.3 Path Sharing Aggregation
Path Sharing Aggregation (PSA) eliminates incremental cost message that introduce
extra complexity and network traffic and redefine the energy cost E. Although the energy
cost E is defined as the extra energy cost to deliver data from the source to the current
node, the increment of the energy cost E is used to decide whether the high gradient
15
for (i = 1; i?number of neighbors; i++)
{
Search the interest cache to determine if neighbor i has high gradient or not;
if (neighbor i has high gradient)
forward this exploratory event without delay and without increment of E;
else
forward this exploratory event with delay Te and with increment of E by one;
}
Table 2.2: Rule for forwarding an exploratory event in PSA
paths exist, as shown in Table 2.2. This is because there is no extra energy cost to send
an aggregated data for perfect aggregation. A node may receive exploratory event from
different nodes with different E (energy cost) values. The minimum of these values is
picked as the energy cost E for this node. When a sink receives all the exploratory event
messages from its neighboring nodes, it reinforces the node with a lowest energy cost.
In an example of PSA(Figure 2.5), there are two paths: one is 4?3?5, and the
other is 2?5?8?10?12. All the nodes on an existing high event-rate path, 3, 5,
8, and 10, have the same energy cost value and node 11 sends an interest to receive data
from source, node 1. It indicates that forwarding the data on these nodes will have no
extra energy cost with PSA. After reinforcement, data from node 1 will be sent by the
following path: 1?3?5?8?10?11. The total energy cost for this choice is only
2.
16
Figure 2.5: Path Sharing Aggregation
2.3 Event channel
2.3.1 Overview of Event-Based Middleware
Event-based middleware allows the applications to interact through event notifica-
tions. Event notifications, or simply events, contain data that represent a change of
the state of the sending application, called event producers [9]. Events are propagated
from producers to the receiving application, called event consumers. Events typically
have a name and may have a set of typed parameters whose specific values describe the
specific change to the producer?s state. In order to receive events, event consumers have
to subscribe to the events in which they are interested and event producers publish the
events. So, event producers are also called publisher and event consumers are called
the subscriber. The sink in directed diffusion is an event subscriber and the source is
17
an event publisher. Directed diffusion provides well-established software architecture
for managing events. An event system using event-based middleware, may consists of
potentially large number of producers and consumers. Event channels allow multiple
producers to communicate with multiple consumers.
The general paradigm of event-based programming has been received widely for
more complex distributed systems. We introduce two event-based middleware, Event
web and Echo to support event-based communication programming. Also, one of the
event models for real-time systems is introduced.
2.3.2 Event Web
Event web [7] is a software architecture to manage dynamic situation, especially
crises. It is an approach for developing distributed applications that help manage crises
in rapidly changing situations. The event web architecture consists of four parts: event
processors that process event streams; the dissemination network that distributes events
among these processors; the event directory that allows for quick discovery of the types
of information available in the system; and a service layer that provides various ser-
vices to the event processors. We will describe details of the event processors and the
dissemination network that influenced our research.
An event processor is an object in the event web that may receive and process event
streams and may generate new event streams. Event processors are classified into an
event generator and an event consumer according to their behaviors with respect to event
streams. Each event generator monitors the environment and generates an event stream
that describes some aspect of that environment. An event consumer is an event processor
18
that receives event streams from event generators. An event consumer performs actions
based on the events it receives. Event generators and event consumers are similar in
functionality to event sensors and adaptation servers in our event channel framework.
An event sensor is responsible for collecting event and sending an event stream to an
adaptation server. An adaptation server receives the events and sends actions to an
action node.
The event dissemination network sends a copy of each event published by the event
generators to every event consumer interested in that event. For each event consumer,
the dissemination network has an associated set of named input event queues. Every
subscription by the event consumer is associated with exactly one of these queues. Thus,
there is one event channel connecting each event generator to each input queue in the
event web. Similarly, in our event channel framework, an adaptation server is responsible
for subscribing for events, and event sensors are responsible for publishing events. One
channel is created for subscribing and publishing and an adaptation server has one input
queue associated with the channel. Although one channel is created for several events
in our event channel framework, applications could create more channel to put different
type of events in the different input queue. In addition, an adaptation server has a
channel for communicating with a set of action nodes. The input queue of the channel
for action store action reply messages from action nodes in the order that they arrive.
Overall, event web provides an architecture to manage crises effectively and the abil-
ity to quickly process potentially large amounts of information about a rapidly changing
world. On the other hand, our event channel framework is for adapting systems which
react to changes in sensor networks.
19
2.3.3 ECho : Event Delivery system
ECho is a distributed event delivery middleware system, developed by Georgia Insti-
tute of Technology [10]. Like most event systems, what ECho implements can be viewed
as an anonymous group communication mechanism. Message are delivered to receivers
according to the rules of the communication mechanism. In this case, event channels
provide the mechanism for matching senders and receivers. Messages (or events) are sent
by sources via channels which may have zero or more subscribers (or sinks). A program
or system may create or use multiple event channels, and each subscriber receives only
the messages sent to the channel to which it has subscribed. Sinks subscribers specify a
handler to be run whenever a message arrives.
Figure 2.6: Event channels in ECho
20
The event channels exists in the network between processes. Channels are created
once by some process and can be opened anywhere else they are used. The process
which creates the event channel is distinguished in that it is the contact point for other
processes wishing to use the channel. The channel ID, which must be used to open the
channel, contains contact information for the creating process as well as information
identifying the specific channel.
Although the functionality of our event channel is similar to that of the event channel
described by ECho, ECho does not specify action channels. Unlike ECho, our event
channel are created and accessed without channel ID since characteristics of channels
and the role of the processes accessing the channels are already defined in the channels.
2.3.4 The Event model for Real-Time Systems
In a real-time event system, the communications architecture substantially affects
the temporal and reliability properties of event dissemination. Specifically, manufac-
turers have access to critical business events and can handle them in a timely fashion.
Watson Research Center presented a proactive, real-time sensing and alert management
system [6]. This system enables continuous monitoring of diverse data sources and gen-
erate alerts based on domain specific rules.
At the center of the system solution is an Event Stream Processor which handles
all events, ultimately deciding on the actions that need to be taken. When running,
the Event Stream Processor proceeds through the following steps: event message re-
ceipt, event transformation, metric calculation, metric evaluation, and Action invocation.
During message transformation, the messages are converted into a common format. The
21
formatted messages are used for metric calculation. Then, the metric evaluation service
determines what actions if any need to be taken based on the newly calculated met-
ric. Our adaptation server may simplify this Event Stream Processor and specify an
abstraction accessible to applications.
22
Chapter 3
ARCHITECTURE AND ALGORITHM FOR ADAPTATION SERVICE
3.1 Architecture of Adaptation Service
Adaptation service in self-organizing distributed sensor networks in prior work by
Wang [16] was defined as a service for modifying the behavior of the sensor network based
on changes in the environment. The adaptation service may initiate self-reconfiguration
in response of changes due to processor or link failures, changes in the communication
patterns, or changes by user requirements in sensor networks. Adaptation servers in such
an adaptation service monitor sensor nodes and execute runtime reconfiguration oper-
ations to recover from failures. Also, the previous work described a general adaptation
service framework for supporting distributed adaptive system. It presents a common
adaptation model that is divided into three phases: change detection, agreement, and
action. The change detection phase monitors possible changes in the environment. The
agreement phase assesses the change to decide if the action is necessary. In action phase,
the action is executed as a result of the agreed changes. The model was used for the
adaptation service in self-organizing sensor networks [16].
Based on the general adaptation service and event driven architecture in Chapter 2,
we develop an energy efficient adaptation service. We divide an adaptation service into
event service and action service. Event service receives events or changes from sensor
nodes and action service performs actions in response to events or changes. Three types
of components are involved in an adaptation service: event sensors, adaptation servers,
and action nodes. An event sensor is responsible for collecting and sending events related
23
to changes in an environment to an adaptation server. An adaptation server receives the
events, performs agreement for actions and sends action requests to an action node. An
action node executes the requested action and replies to an adaptation server when it
has completed the action.
These components in an adaptation service are distributed in the sensor network
and have to be able to deal with hundreds to thousands of events as well as various
types of events and actions, such as earthquake monitoring, target detection, or changes
in a network configuration. So, we need event channels capable of delivering all types
of events and actions among nodes in a energy efficient way. Shared paths for data
aggregation as described in Section 2.2, are use for delivering events and actions.
Figure 3.1: Adaptation service by a channel
24
As shown in Figure 3.1, a sensor network forms channels between sensors, adapta-
tion server, and action nodes. The event data or action data are propagated to and from
the adaptation server through these channels. Channel could be logically classified into
two types of channel: event channel and action channel. In general, an event channel is
shared between sensors and adaptation servers and an action channel is shared between
action nodes and adaptation servers. Each channel may create its own data aggregation
path or shared path. An event channel implements many-to-one communication rela-
tion whereas an action channel implements one-to-many communication relation. Each
adaptation server could communicate with multiple event sensors, i.e. the subscriptions
of a adaptation server may be received by many event sensors and multiple event sensors
may respond to them by sending data to a adaptation server. An adaptation server
can receive all types of events and decide if actions are necessary. On the other hand,
each adaptation server could communicate with multiple action nodes. Action request
messages sent by an adaptation server may be received by multiple action nodes which
has same type of actions. Action nodes that receive action request message and send
action reply messages to an adaptation server.
3.2 Balanced Energy Aggregation
Balanced Energy Aggregation (BEA) is an algorithm of sharing paths for efficiently
delivering events and actions. BEA not only achieves energy saving due to in-network
data aggregation, but also provides methods for maximizing system lifetime of sensor
networks. In this section, we will give an algorithm of BEA and see how it works through
an example in a simple sensor network.
25
3.2.1 Energy Model
Before we descirbe details of the balanced energy aggregation, we compute the en-
ergy cost and the extra cost for balanced energy aggregation in this section. Many energy
models for predicting energy has been presented. Among them, Heizellman et al. pre-
sented a simple energy model where transmission energy is twice that of receiving energy
[19]. Energy consumption on sensor node is given by,
EC = R+2T (3.1)
where R is the number of receiving packets and T is the number of sending packets.
Intanagonwiwat et al. [12] used an energy model such that the power dissipation in
the idle time was about 39 mW, receive power dissipation was about 396 mW, and
the transmit power dissipation was about 660 mW. This model is close to Heizellman?s
model. The energy cost calculation of this research follows these two energy models.
Thus, dissipated energy in a node is defined by,
E = DissipatedEnergy (3.2)
= Er(EnergyForReceiving)+Et(EnergyForSending) (3.3)
= ReceivingBytesTransmissionRate?receivePowerDissipation (3.4)
+ SendingBytestransmissionRate?transmitPowerDissipation (3.5)
= #bytes/(1000bps)?0.395W +#bytes/(1000bps)?0.660W (3.6)
26
Usually, energy is defined by time?power, and TransmissionRate is calculated as the
measured number of units of data, such as bits, transmitted during a time interval divided
by the time. The dissipated energy that is estimated by counting the number of packets
sent and received could be redefined as (numberofbits?TransmissionRate)?power.
Residual energy rate, r is the ratio of residual energy to initial energy in the node.
The residual energy can be redefined as the difference between the initial energy of each
node and the dissipated energy computed by Equation 3.2 to 3.6. So, residual energy
rate is calculated by using the dissipated energy as shown in Equation 3.10.
r = ResidualEnergyRate (3.7)
= R(ResidualEnergy)I(InitialEnergy) (3.8)
= I?EI (3.9)
= 1?E/I (3.10)
Finally, extra cost measures the ratio of a pre-defined threshold to residual energy
rate, r. The threshold is the level of residual energy rate below which the sensor node
may not have sufficient energy to sustain continuous transmissions.
ExtraCost = Thresholdr (3.11)
3.2.2 Algorithm
Nodes at aggregation points consume more energy than any other nodes since they
are expected to have heavy load and high processing overhead for aggregating data. As
27
a result, the nodes has lower system lifetime than others. Balanced Energy Aggregation
(BEA) improves the overall lifetime of the sensor network. Though it may not perform
the most efficient aggregation, i.e. aggregating data at the closest point to the sources
as shown in Figure 2.3, BEA will prolong the network life time by balancing the load.
When a node at an aggregation point is overloaded, new aggregation point is the next
closest node near sources along the shared path. The algorithm chooses balanced energy
aggregation to achieve energy efficiency as well as extensions for network lifetime.
Balanced energy aggregation implements energy efficient load-balancing aggregation
by following the path sharing aggregation scheme, proposed by Shi [17] with a special
modification for balancing a load. As in the greedy aggregation, and path sharing aggre-
gation, EnergyCost is defined as the cost to deliver data from the source to the current
node in the normal case. The energy cost is increased by one when an unreinforced hop
is taken. If a path already exists, the energy cost is not incremented. When nodes are
overloaded, an extra cost is added to the energy cost. Table 3.1 shows a pseudo code
of the the Balanced Energy Aggregation algorithm. Whenever exploratory messages are
received in each node, Balanced Energy Aggregation examines the residual energy of
this node. If the residual energy is less than a defined threshold, it sets an extra cost.
The extra cost would be greater than 1 since it is computed as the ratio of a pre-defined
threshold to residual energy rate, r, as shown in Equation 3.11. It is only set when the
residual energy rate is less than the threshold. If this node has enough residual energy,
the extra cost is 0. When the extra cost is 0, this node is not overloaded and the en-
ergy cost of this node is same as the minimum energy cost of all the energy costs from
neighbors. When an exploratory timer (introduced in order to receive the exploratory
28
messages from all the neighbors) expires, a node computes its own energy cost. The
if (message type is EXPLORATORY DATA)
compute residual energy rate, r = R(ResidualEnergy)I(InitialEnergy) ;
if (Residual energy rate(r) less than Threshold)
set ExtraCost = Thresholdr ;
else
set ExtraCost to 0
if (exploratory timer is expired)
Set energy cost as follows:
find MinEnergyCost, which is the minimum value among energy costs of
all incoming exploratory messages;
EnergyCost = MinEnergyCost+ExtraCost;
for (i = 1; i?number of neighbors; i++)
{
determine if neighbor i is placed on a reinforced path;
if (neighbor i is on a reinforced path)
forward this exploratory event without delay
and without incrementing EnergyCost;
else
forward this exploratory event with delay
and after incrementing EnergyCost by one;
}
Table 3.1: Algorithm for Balanced Energy Aggregation
energy cost is the minimum value of the energy costs in all exploratory messages re-
ceived from neighbors plus the extra cost. The exploratory message with the computed
energy cost have to be forwarded to the neighbors. The procedure for forwarding the
exploratory message is same as that of Path Sharing Aggregation shown in Table 2.2. If
the neighbor has high gradient, i.e. the neighbor to forward the exploratory message is
29
on an existing reinforced path, the exploratory message is forwarded without increment
of the energy cost. Otherwise, the exploratory message is forwarded with some delay
after incrementing the energy cost by one. The delay is introduced to make sure that
exploratory messages with low energy cost sent along an existing path arrives earlier
than the exploratory messages with the high energy cost [17].
When the source sends an exploratory message to its neighbors, it decides if the en-
ergy cost should be increased. On the existing reinforced path, source sends exploratory
message with energy cost 0 to neighbors. Otherwise, it sends exploratory data with en-
ergy cost of 1 to neighbors not already on an existing reinforced path. An intermediate
node caches exploratory messages in order to find the neighbor with the minimum energy
cost. After a exploratory timer for cache expires, nodes compute its own energy cost
using the extra cost. Like the source, the intermediate nodes decide whether to send
incremented energy cost to their neighbors before sending exploratory data messages to
them. When the sink node receives all exploratory messages, it checks the energy cost for
every exploratory messages from its neighbors and favors the neighbor with the lowest
energy cost to reinforce. Similarly, all the intermediate nodes select the neighbor in the
same way and a lowest energy cost path can be set up between the source and the sink.
3.2.3 Example of BEA
Figure 3.2 shows how Balanced Energy Aggregation works, compared to path shar-
ing aggregation in the same network configuration. Path Sharing Aggregation, as ex-
plained in Section 2.2, is first used in the scenario of Figure 3.2(a). Initially, there is an
existing reinforced path, from node 2 to node 12 (2 ? 5 ? 8 ? 10 ? 12). Source 1
30
then sends an exploratory message to sink 1, which sends a reinforcement interest back
through 12?10?8?5?3?1. Before the residual energy of node 5 reaches the
threshold, data flows through the same path as PSA(2?5?8?10?12). As node 5
becomes overloaded and the residual energy drops below the threshold, using BEA, the
reinforced interest from sink 1 goes through 12?10?8?6?3?1.
Figure 3.2: Balanced Energy Aggregation
31
Exploratory messages from source 1 include the energy cost. When a node receive
exploratory messages with the energy cost from all its neighbors, it computes a new
energy cost and forwards the exploratory messages with the new energy cost to its
neighbors. Node 5 may receive two exploratory messages before a timer for this message
has expired. One is from node 3 and the other from node 2. Both of the energy costs
are 2, and the message from node 3 arrives earlier than the one from node 2. Therefore,
normally, node 5 would forward the exploratory data with lowest energy cost, 2 to node
8 without incrementing the energy cost, because the path between node 5 and node 8 is
an already reinforced path. Node 8 performs the same procedure. The energy cost of the
exploratory message from node 5 is 2, and that of the exploratory message from node
6 is 3. Therefore, the energy cost of node 8 is 2 and later, it can forward reinforcement
interest to node 5. Once the residual energy of node 5 is less than the pre-defined
threshold, the energy cost of node 5 is increased to a higher value than 2 due to the
extra energy cost. The extra energy cost in Figure 3.2 is 1.2 calculated by Equation
3.11 if the residual energy rate is 0.5 and the threshold is 0.6. Node 5 forwards the
exploratory message to node 8 with the energy cost 3.2, which is the sum of the lowest
energy cost, 2 and the extra cost, 1.2. Node 8 receives the exploratory message with the
energy cost 3.2 from node 5 and the exploratory message with the energy cost, 3 from
node 6. Node 8 will choose the lowest energy cost, 3, and will now forward reinforcement
interest from the sink to node 6 instead. The extra cost expressed in Equation 3.11 is
always greater than 1. When data travels down on non-reinforced paths, energy cost is
proportional to the number of hops. If the extra cost in the node 5 is less than 1, node
8 will still forward the reinforce interest to node 5. This is because the energy cost from
32
node 8 is 3 and that from node 5 is less than 3. This means, the extra cost should be
greater than 1 to make the next closest neighbor an aggregation point.
3.3 Sensor Data Aggregation Function
The key idea for data aggregation is to combine data from different sensors to elimi-
nate redundant transmissions. Although data aggregation results in fewer transmissions,
it comes at the cost of latency. There is a tradeoff between data delay and aggregation
efficiency (energy efficiency). To aggregate more data and save more energy, it is nec-
essary to introduce more delay in intermediate nodes. Also, tradeoffs must be made
between energy efficiency, data accuracy and freshness. There is a study that shows
considerable energy savings while maintaining data accuracy and freshness [20]. Here,
the data aggregation method we will propose, is concerned with reducing a data size and
network traffic. Our application presents simple perfect aggregation, without consider-
ing data accuracy or freshness. The goal of our data aggregation method is to achieve
minimum data delay and maximum energy saving.
To aggregate data from different sources at aggregation points, we have two design
goals. First, data from one source should be distinguished from data from other sources.
Second, if intermediate nodes keep receiving data from only one source, it should not
introduce extra delay to forward the data. To achieve these design goals, a message
window in every node buffers all incoming data messages. Data messages remain in the
message window until the node receives the next message from the same source.
Given the protocol, we will see how each node performs data aggregation in the
message window in Figure 3.3.
33
Figure 3.3: Data aggregation function along a shared path
? Node 3 : when node 3 receives the first message, it keeps the data message in
the message window. When node 3 receives the second message from Source 1 it
forwards the first message to node 5 and keeps the second message in the message
window, since the two messages come from the same source.
? Node 5 : Node 5 receives S22, the second message from Source 2. Because it
already has a message from Source 2 in the message window, it aggregates all
previous messages from different sources. Then, it sends an aggregated message
including the location information of Source 2. If node 5 receives S12, the second
message from Source 1, not S22, the aggregated message includes the location
information of Source 1. Now, only S22 is in the message window, waiting for the
next message.
34
? Node 8 : Node 8 receives only aggregated data messages with one location infor-
mation. Node 3 functions in a similar manner.
? Node 10 : Node 10 receives aggregated data from node 5, and data from Source
4. When data S42 comes to the message window, there is the message from the
same source. So, node 10 aggregates and forwards data with S41 and S21? to the
sink(node 12), leaving S42 in the message window.
? Node 7 : Node 7 performs same function as node 3 about data from source 4.
All data messages from a node?s neighbors are first placed in the message window.
They are not aggregated or forwarded to the next node until a message from the same
source arrives. The data event rate is the speed that sources send data. Once a message
from the same source as some message in the message window arrives, all messages in
the message window are aggregated. All messages are forwarded at the same rate as the
event rate defined by the sources. For instance, the first message from Source 1 received
at node 3 remains in the message window until the second message arrives from Source
1, at the event rate of Source 1. So, an aggregation delay corresponds to the fastest event
rate of all sources that forward packets to the aggregation point. All nodes keep track
of the message window to aggregate data. Unlike a sliding window in TCP protocol,
the message window does not have a fixed window size. The window size is variable,
depending on the number of sources and the event rates of the sources.
35
Chapter 4
IMPLEMENTATION
4.1 Software Architecture
The implementation of adaptation service consists of a channel library and applica-
tion, a data aggregation filter, a balanced energy aggregation filter, and a modification of
gradient filter. As shown in Figure 4.1, directed diffusion core receives data from the net-
work or applications. As mentioned previously, filters in directed diffusion have priorities
for message pre-processing. The data aggregation filter, balanced energy aggregation fil-
ter, and modified gradient filter have the priority to pass data. The filters are prioritized
in the following descending order: balanced energy aggregation filter, modified gradient
filter and data aggregation filter. Therefore, the messages that are forwarded into the
network will pass through these three filters.
Figure 4.1: Architecture of Adaptation Service
36
While passing through each filter, the message is manipulated according to the
purpose of the filters. First, the BEA filter receives all exploratory messages from all the
neighbors, even though they are duplicated. Then, the BEA filter finds the exploratory
message with the lowest energy cost and forwards it to the modified gradient filter. The
gradient filter forward messages to the neighbors. The energy cost of the forwarded
exploratory message is either the same energy cost as it receives from the BEA filter if
the neighbor is on a reinforced path (the gradient reinforcement flag is true). Otherwise,
the energy cost increased by one. The reinforcement flag is true if the neighbor is
on an existing high gradient path, otherwise it is false. The exploratory messages are
forwarded to the sink as it is. The sinks send the reinforcement interest through nodes
that have the lowest energy cost. The source, after receiving the reinforcement, sends
data to a reinforced neighbor. Finally, the data aggregation filter handles the data
messages. As described in Section 3.3, it integrates the data messages from different
sources and send an aggregated data. Although each message passes through three filters,
the message types that each filter subscribes to are different. While the BEA filter see
only exploratory data messages, the data aggregation filter handles only data messages.
The gradient filter handles all the message types, including interest, exploratory, and
reinforcement messages.
The channel library is a collection of directed diffusion APIs, that allows appli-
cations to communicate through the channel mechanism and diffusion core. It uses
those publish/subscribe APIs of directed diffusion, and shares the callback function,
recv(). Event-based applications are implemented using four methods provided by the
channel library: Channel(), setupChannel(), sendData(), and receiveData(). A
37
typical event-based adaptive application consists of three types of components: adapta-
tion server, event sensor, and action node. Although details of these components were
explained in the Chapter 3, we will discuss here how they are implemented using the
channel library in the next section.
4.2 Channel Library
4.2.1 Logical Channel
In the previous chapter, channels are logically classified as event channels or action
channels. An event channel is used for communication between sensors and adaptation
servers, whereas, an action channel is used for communication between action nodes and
adaptation servers. An adaptation server on an event channel has a event queue to
receive events from sensors and a reply queue to receive reply messages for actions. A
request queue in action nodes store request messages sent from an adaptation server. All
queues are of the first-in-first-out type.
All data sent from sensors regardless of data type, are stored at first in the event
queue. An adaptation server is responsible for classifying the events and deciding to
request actions. An adaptation server creates a channel by subscribing interest for the
events and sensors publish data through the directed diffusion APIs and the BEA path.
Similarly, action nodes subscribe interest to receive action requests and an adaptation
server publish action requests. The message of published action request includes a re-
quest ID which is incremented by one for each new request from an adaptation server.
Optionally, the request message may include an action type that specifies what kind of
action an adaptation server requests and a node ID to perform the action. Using an
38
Figure 4.2: Channel Operation
action type and a node ID the right action nodes are selected, since only action nodes
subscribe to action type and the node ID could receive the published request message.
The reply message also includes an reply ID which is the same as the request ID that
the action nodes received. In reply, an adaptation server subscribe interest to receive
action reply messages and action nodes publish action reply messages.
4.2.2 Channel Library API
Channel library provides API for applications, particularly event sensors, an adap-
tation server, and action nodes. It is composed of Channel class (Appendix A) and
39
implemented using directed diffusion application API discussed in Chapter 2. Appendix
B shows a case example how each application is implemented using this APIs.
? Channel(int argc, char **argv)
? The constructor for channel class.
? The arguments could be ?nodeinfo.txt? file specifying node?s characteristics
or ?config.txt? file specifying node?s network configuration [18].
? This method parses command of the applications from the arguments and
stores the information for the applications such as a latitude, longitude, dif-
fusion port and node ID.
? setupChannel(int node type, NRAttrVec *input list)
? node type determines whether an application subscribes interest or publishes
data. We provide four node types for creating channel objects in the im-
plementation. Applications for sensors specify a node type, ?SENSOR? that
publishes events when they call setupChannel(). ?SERVER EVENT? type
subscribes interest for receiving events from sensor and ?SERVER ACTION?
type publishes action request and subscribes interest for getting action reply
as specified in applications for adaptation servers. For the action channel,
action nodes need to set the channel with a node type, ?ACTION? that sub-
scribes interest for action request and publishes action reply. In the case of
an adaptation server, objects for two channels are created with node type,
?SERVER EVENT? for the event channel, and ?SERVER ACTION? for the
action channel.
40
? input list allows applications to specify more characteristics for events or ac-
tions using attribute-value pairs. Channels are named by this set of attribute-
value pairs. The real usage for input list serves as an example in Section
4.3.
? sendData(NRAttrVec *data attr)
? it sends data with attributes, data attr
? receiveData()
? Whenever the node that subscribed interests receive data, the data is placed
in an input queue which is the event queue, request queue or reply queue. In
input queue, the least recently sent data is placed in the head and the most
recently sent data is placed in the tail. This method indicates if there are
data in input queue.
? getData():
? it returns the data at the front and the data is deleted in the input queue
which is the event queue, request queue or reply queue.
4.3 Application Implementation
A great variety of applications with requirements and demands for adaptivity can be
implemented using an adaptation service. Applications for our adaptation service may
consist of sensors, an adaptation server, and action nodes that use the channel library
APIs for communication.
41
Different types of applications for sensors can be implemented using different types
of sensed event. They first starts by accessing a channel and defining the event type
to send through the channel. Sensors need the module for sensing and collecting user-
defined events. When the events are detected, they are sent, using sendData(). Our
example in Appendix B is a sensor application that detect the events of a pressure and
send it to an adaptation server periodically. Other sensor applications detecting and
sending a different type of events could be implemented. The events in our example
contain a timestamp used for calculating data delays in forwarding the events from the
sensors to an adaptation server.
An adaptation server must create two channels: an event channel and an action
channel. It receives events through an event channel, and decides to send action request
triggered by the events. When it setups an event channel, it may specify various types
of events it is interested in receiving. An adaptation server may specify a special group
of actions or particular nodes to request actions on an action channel. Table 4.1 shows
a simple procedure for an adaptation server. Each application for action nodes can
specify a set of actions that it can serve in an adaptation service. For instance, when an
adaptation server request an alarm action, only action nodes serving ALARM may reply
to the request with their node ID. Action nodes serving other action could not reply to
the request. Reply messages include reply ID which is the same as the request ID of the
request message that the adaptation server sent.
Assume there are two types of sensors that detect the events of a temperature and
a pressure in each, other sensors, and one adaptation server in a sensor network field
(Figure 4.3). In the field, we have two action nodes that serves ALARM and REPORT.
42
proc Adaptation server
setup event channel;
setup action channel;
req id?1;
repeat
need action?false;
receive data from event channel;
if (event received)
Check events to see if the following action is necessary;
if (need action)
request an action in action channel;
increment req id;
receive action reply
if (reply received)
check reply to see from where the reply comes;
until END
Table 4.1: Adaptation server
If the adaptation server need to receive the events of temperature and pressure, the
application for an adaptation server must specify both of events in the input list and
call setupChannel(). The adaptation server subscribes the interest on an event channel.
Each sensor also sets up the channel for the events that it wants to send. The sensor that
detects the events of a temperature call setupChannel() with an argument, input list
specifying the events of a temperature. The sensor that detects the events of a pressure
performs the same procedure withthe input list specifying the events ofa pressure. Then,
sensors that detected each events send the events to a adaptation server along an event
channel. The other sensors may not send any events on an event channel. An adaptation
server also, sets up the action channel to receive actions of ALARM and REPORT by
calling setupChannel(). The input list for this channel includes the specification for the
43
Figure 4.3: Example for adaptation service
actions of ALARM and REPORT. Each action node sets up the action channel using
the action specification that it can serve. The action node that serves ALARM calls
setupChannel() with input list specifying the action of ALARM. The action node that
serves REPORT calls setupChannel() with input list specifying the action of REPORT.
When an adaptation server receives all events that it is interested in, it decides if it needs
to request either or both types of actions. The adaptation server sends action request
messages along an action channel. The reply message from both action nodes also comes
back along the action channel. The source code of our applications can be found in
Appendix B.
44
4.4 Balanced Energy Aggregation Filter
The balanced energy aggregation filter is a filter to handle all exploratory messages.
The implementation of this filter is based on the directed diffusion filter API described in
Section 2.1. The BEA filter at each node contains important data structure for storing
exploratory messages from all its neighbors and finding the lowest energy cost. The data
structure which contains the neighbor ID that sent an exploratory data message, the
energy cost of the message, and an exploratory data information is called Energy Entry.
An energy entry is an entry in a hash table. This code uses the Tcl hash table, which
is used in the directed diffusion core and the gradient filter. The hash key in a hash
table for exploratory messages is created from a packet number and a packet ID of the
exploratory data message. Each hash entry is composed of the energy list which is a
linked list of energy entries. This hash table is capable of containing up to 100 entries.
When the hash table reached the maximum size, it deletes the ten oldest hash entries.
Figure 4.5 shows the flow chart for processing the exploratory message when BEA
filter receives an exploratory message. If the exploratory message comes from local host,
this means this node is a source node. Thus, it sets the initial energy cost to 0 and
forwards it to the gradient filter. Otherwise, it receives the exploratory message from a
neighbor and computes its energy cost. Then, it creates a new energy entry with the
energy cost and the neighbor ID that sent this exploratory message, as shown in Figure
4.4. If exploratory messages exists in the hash table, the BEA filter searches the energy
list to find out if it has already received an exploratory message from that neighbor. If
this is the first exploratory message from that neighbor, the BEA filter inserts the energy
entry at the end of the energy list. If this is the first exploratory message received from
45
Figure 4.4: Hash table for containing exploratory messages
any neighbor, the BEA filter creates a new hash entry and start a exploratory timer to
receive exploratory messages from all neighbors. The timeout values is based on the delay
for forwarding data, as defined in the directed diffusion protocol. When the exploratory
timer for exploratory messages from a source expires, it finds the exploratory message
with a lowest energy cost and sends it to a gradient filter (Table 4.2).
46
Figure 4.5: Flow chart for an exploratory message
47
proc FilterTimeout()
move to the energy list in the next hash entry;
set first energy entry to min energy entry in energy list;
while each energy entry in energy list do
compare energy cost of the energy entry to min energy entry;
if energy cost is less than the energy cost of min energy entry
then
min energy entry ?this energy entry;
endif;
endwhile;
energy cost?energy cost of the min energy entry+ extra cost;
send the message of the min energy entry
end FilterTimeout
Table 4.2: After timeout of hash entry
4.5 Gradient Filter
The gradient filter plays the essential role of the interest flooding, gradient setup,
data propagation, and reinforcement in directed diffusion. It processes messages of
types: INTEREST, DATA, EXPLORATORY DATA, POSITIVE REINFORCEMENT,
and NEGATIVE REINFORCEMENT. It deals with new messages of each type though
exploratory data from many neighbors could be duplicated. We need the BEA filter to
process all exploratory messages from all neighbors before a gradient filter process only
a new message. The BEA filter is thus set at a higher priority than the gradient filter.
Basically, the gradient filter maintains the routing table. Figure 4.6 shows a routing
table. Routing entries are created by INTEREST and POSITIVE REINFORCEMENT
48
Figure 4.6: Routing Table in the gradient filter
messages. The gradient filter finds a routing entry that matches the DATA and EX-
PLORATORY DATA messages. If messages are of the type INTEREST, it searches the
routing table to find a matching routing entry and inserts a new routing entry if there
is no matching routing entry. If the node that sent this interest is a sink, it updates an
agent list by adding a new agent entry containing a port number on which the sink is
running the directed diffusion. It also searches interest subscriptions in an attribute list
and update the list. The reinforced flag of a gradient list could be set when a gradi-
ent filter receives POSITIVE REINFORCEMENT messages. When data or exploratory
messages come to a gradient filter, the attributes of the messages are examined against
attributes of the routing entries to find matching routing entries according to the match-
ing rule explained in Section 2.1. If there is a matching routing entry, it updates a data
neighbor list of the matching routing entry with the neighbor ID that sent the data.
49
In addition to the basic functions of a gradient filter, we modified the gradient filter
to send exploratory data messages with energy cost. A local rule for forwarding an
exploratory data in the gradient filter is defined in Table 2.2. We need the following new
lists (Figure 4.7) and methods to update the lists in order to find the neighbors that will
forward that exploratory message without incrementing the energy cost. The reinforced
list is the list of neighbors that was reinforced at least once. It is updated when positive
Figure 4.7: Reinforced list and source list added in the gradient filter
reinforcement messages are received. The source list contains the location information
of sources that sent the events. If there are reinforced paths, they may not be shared
paths. Neighbors on shared paths have received data from more than two sources. So,
50
exploratory messages that do not increment the energy cost are forwarded to neighbors
on shared paths.
? void updateReinforcedList(int32 t last hop) :
? last hop is the neighbor ID that sent the positive reinforcement message.
? bool checkSourceList(float latitude, float longitude) :
? latitude and longitude are the location of sources that sent the events and
obtained from message attributes
? it returns true or false, depending on whether there are information about
two or more sources in the source list, otherwise it returns false.
? void updateSourceList(float latitude, float longitude):
? it updates the sources list
4.6 Data Aggregation Filter
Data aggregation filter is application dependant. It is depending on the target ap-
plication. For example, suppose that in a controlled pressure environment, the data
aggregation filter monitors the pressure value and average them. However, the data ag-
gregation filter could not average other value (i.e. temperature). When it receives other
value, it forwards the value without any aggregation to the network. Our aggregation
filter averages the pressure readings from several sensors. We create the message window
to keep track of all data messages. The entries of the message window has the latitude
and longitude information of data sources in order to compare and find data messages
51
from different sources. The data aggregation filter searches the message window. If
there exists data messages from the same sources, it adds the pressure values from the
beginning of the message window to end of message window and averages it. Aggregated
data message are deleted and data messages that newly arrive at the data aggregation
filter is inserted at the front in the message window. Figure 4.8 shows more details of
the algorithm.
52
Figure 4.8: Flow for data aggregation
53
Chapter 5
PERFORMANCE EVALUATION
In this chapter, we discuss the implementation environment and the results from
performance tests. We describes our methodology and compares the performance of
the balanced energy aggregation against the path sharing aggregation and the greedy
aggregation.
5.1 Development Environment
All implementations are developed using Directed Diffusion code, diffusion-3.2.0
that is provided by ISI (the Information Systems Institute). Since Diffusion-3.2.0 has
been implemented using C++, our implementations which access the dynamic libraries
compiled from C++ code of Diffusion-3.2.0 are also implemented using C++. Applications
that implement sensors, adaptation servers, and action nodes using our channel library,
may be implemented in C++.
The testing environment could support emulation or real-world testing. The test-
ing environment could involve real nodes or nodes that closely mimic the real nodes.
Emulation allows for the running of target code on non-target hardware that may be
more closely controlled and monitored. All our tests are emulated on 48 Linux-based
machines. The machines used are faster than the actual nodes (sensors) in the field.
Each is 400Mhz with 128 megabytes of ram and has 100Mbps wired connections with
three network switches. Though each test machine can run multiple virtual directed
diffusion nodes, we mapped one machine to one virtual node.
54
5.2 Experimental Design
We select four metrics for analyzing the performance of the balanced energy aggre-
gation and comparing it to the path sharing aggregation and the greedy aggregation:
average dissipated energy, average delay, system lifetime, and the number of events. The
average dissipated energy and average delay were used in earlier work to compare the
opportunistic aggregation of the directed diffusion with the greedy aggregation [12]. The
metric of system lifetime were defined to show the efficiency of Maximum Residual En-
ergy Path (MREP) routing protocol [21]. Average dissipated energy measures the
ratio of total dissipated energy per node in the network to the number of distinct events
received by sinks. This metric computes the average work done by a node in delivering
information to the sinks. Average delay measures the average one-way latency ob-
served between transmitting an event and receiving it at each sink. System lifetime
defined as the time until the first node in the network runs out of energy. Since we want
to balance the network traffic as well as achieve substantial aggregation efficiency, the
lifetime of each sensor node should be increased. The number of events measures
the number of distinct events received by sinks during the system lifetime. These met-
rics which is system lifetime and the number of events indicates the overall lifetime of
network.
Theoretical results in Krishnamachari et al ?s paper [11] shows that the greatest
gains due to data aggregation are obtained when the sources are close together and far
away from the sink. Thus, our network configuration is intended for the high-level data
aggregation and, also maximizing the system lifetime in our Balanced Energy Aggrega-
tion. For studying the impact of the number of sources, we use at least 25 nodes in the
55
sensor network. The number of sources ranges from 2 to 8 sources in increment of 1.
We use only one sink. The network configuration shapes like one-eighth pie. All sources
are randomly selected from nodes at the left side of the pie and the sink is selected from
nodes at the right side of the pie. One of sensors in the left side and the sink forms an
existing path and the intermediate nodes are scattered around the path. We also, stud-
ied five different network configuration in order to evaluate how network density affects
the performance. The network size ranges from 10 to 32 nodes in increments of 5 nodes
and the average number of neighbors ranges from 3 to 7. All network configuration in
this test have 2 sources and 1 sink.
Events in each source is generated every two seconds. Thus, the aggregation delay
is set to 2 seconds. Event messages are modeled as 124 byte packets, including location
information (longitude and latitude) of the sources, event value of the pressure, and the
header information for the directed diffusion. Since our test performs perfect aggregation,
the aggregate event message size is 124 bytes. The threshold for evaluating the impact
of the number of sources is 50%. When the remaining energy is less than 50% of the
initial energy, the node could be considered overloaded. When the remaining energy is
one tenth of threshold, 5%, we regard the node as a dead node. On the other hand,
we increased the threshold (70%) for testing in variable network size. By choosing high
threshold, we could expect higher system lifetime.
56
5.3 Evaluation
5.3.1 Impact of the Number of Sources
We evaluate three types of data aggregation algorithm discussed before, namely
Greedy Aggregation(GA), Path Sharing Aggregation(PSA), and Balanced Energy Ag-
gregation(BEA). Figure 5.1 shows the system lifetime as a function of the number of
sources. Assuming that data are aggregated at one aggregation point near the sources,
the balanced energy aggregation has much more lifetime than other algorithms. More
network traffic go through the node at the aggregation point and as a result, the node is
over-loaded. When the residual energy is less than the threshold, BEA chooses another
path. It could reduce the data message going through the previous aggregation point,
(except broadcasting message such as exploratory message and interest), and increase
Figure 5.1: System lifetime with variable number of sources
57
the lifetime of the node. However, path sharing aggregation and greedy aggregation
could not change the path before the node is dead. Obviously, the balanced energy
aggregation achieves higher system lifetime than the other two algorithms. Comparing
the path sharing aggregation with the greedy aggregation, the greedy aggregation that
introduces extra incremental messages shows lower system lifetime. The system lifetime
for all approaches decreases with the number of sources due to increased network traffic.
As expected, the graph of the number of events received by the sink during the
system lifetime shows that BEA has the highest number of events, followed by PSA
(Figure 5.2). The number of events also decreases with the number of sources.
Figure 5.2: The number of Events during the network lifetime with variable number of
sources
Figure 5.3 plots the average dissipated energy observed as a function of the number
of sources. Although the balanced energy aggregation increase the system lifetime, it
58
achieves this at the expense of increasing the average dissipated energy in the network.
However, the increase in average dissipated energy is only slightly higher than PSA and is
still generally lower than GA. It is able to do this by reducing the number of transmissions
and reducing the number of nodes involved. When nodes sleep, we can save as much
as 90% of the energy. Since the dissipated energy is defined as the total dissipated
energy per node, the balanced energy aggregation achieves an increase in the system
life through the distribution of loads, but does not try to save energy. Since the path
sharing aggregation shares paths at the closest point to the sources, it encourages early
sharing of paths and reduces energy consumption. The balanced energy aggregation may
not perform early aggregation, if the residual energy of the aggregation node falls below
the threshold. Despite early path sharing of the greedy aggregation, the incremental
messages of the greedy aggregation increase the average dissipated energy.
Figure 5.3: Average dissipated energy with variable number of sources
59
Figure 5.4 shows the average delay as a function of the number of sources. It seems
that the average delay may not be different for each aggregation algorithm. This is
because all algorithms favor an energy efficient shared path rather than a shared path.
When an aggregation node is overloaded, the shared path in BEA would be switched to
another path with a new aggregation node. However, the new aggregation node, that
is the next closest node near the sources, is still on the shared path and that shared
path may not also be the shortest path. Though an average delay in each algorithm
shows little difference, we can see the relation between the average dissipated energy
and the average delay in all the aggregation algorithms we have compared, as shown in
Figure 5.5. The average dissipated energy is inversely proportional to the average delay
in all, i.e. the lower the average dissipated energy, the higher the delay of events from
the sources to the sinks. This explains why our data aggregation function described in
Section 3.3 is efficient in reducing delay.
Figure 5.4: Average Delay with variable number of sources
60
(a) Balanced Energy Aggregation
(b) Path sharing Aggregation
(c) Greedy Aggregation
Figure 5.5: The relations between dissipated energy and delay
61
5.3.2 Impact of Network Size
Comparisons of the performance with variable network size shows that the balanced
energy aggregation has much higher system lifetime than the other two algorithms (Fig-
ure 5.6). We used higher threshold(70%) than in the previous experiments for compar-
isons with variable number of sources (Figure 5.1). The balanced energy aggregation
changes the shared path when the residual energy rate in a node at an aggregation point
is below 70%. Path switching happens earlier than when the threshold is 50%. Thus, we
could save more energy of the aggregation node and increase the lifetime of that node.
After the residual energy rate reaches the threshold, it introduces an extra cost which
is grater than 1. The extra cost is increased as the residual energy rate is decreased.
The increased extra cost increase the energy cost of the neighbor nodes close to sources.
When many neighbors near the sources have high energy cost, the source may choose
a longer delay path. Balanced energy aggregation results in longer average delay for
delivering data from the sources to the sink (Figure 5.7). At a threshold of 70%, we
also observed that some node that is not on the original existing path is the first to die,
particularly when the network size (the number of neighbors) is increased. Though the
nodes on an existing path initially have higher chance of losing their energy than other
nodes, BEA may switch path and force the other nodes that are not on the original
existing path to forward the data.
As expected, the number of events received by the sink during the system lifetime
in BEA is higher than PSA and GA (Figure 5.8). This is because BEA has the higher
lifetime than other two algorithms. Also, the average dissipated energy of BEA is slightly
higher than PSA and is lower than GA (Figure 5.9).
62
Figure 5.6: System lifetime with variable network sizes
Figure 5.7: Average delay with variable network sizes
63
Figure 5.8: The number of events with variable network sizes
Figure 5.9: Average dissipated energy with variable network sizes
64
Chapter 6
CONCLUSIONS AND FUTURE WORK
We presented an adaptation service underlying an event-based communication and
data aggregation algorithms. Our adaptation service delivers distributed events and
react to changes in an environment. It consists of three components: event sensors,
adaptation servers, and action node. An event sensor is responsible for collecting and
sending events to an adaptation server. An adaptation server receives the events and
sends action requests to an action node. An action node executes the requested actions.
Events and actions need to be disseminated and routed in ways that increase energy
efficiency and network lifetime of the sensor networks. We proposed a novel approach to
deliver events or actions by employing a balanced energy aggregation that maximizes the
lifetime of the sensor network while limiting the energy consumption. It use mechanisms
to save energy through the distribution of loads that switch paths from the sources to the
sinks. Results of our evaluations from the experiments shows that the balanced energy
aggregation prolonged the network lifetime by balancing loads, compared to the path
sharing aggregation and greedy aggregation.
Our programming model is based on a concept of channels that encapsulates proper-
ties of the underlying sensor network communication system accessible to an application.
Channels was classified into event channels and action channels by their attributes.
There are several outstanding issues that have to be addressed in future research
work. First, our balanced energy aggregation need to be tested in various network sizes.
In a high-density network with more neighbors, the balanced energy aggregation will be
65
more effective in balancing loads, resulting in an increase in the overall network lifetime
of the sensor network. Second, our data aggregation function does not guarantee data
accuracy. It was used just as a simple tool for demonstrating energy efficiency and
implementing a perfect aggregation whereby the data size of an aggregate is equal to
the data size of an individual event. Future work is needed to design an aggregation
function that supports data accuracy as well as energy efficiency when it is implemented
in complex applications.
In the future, applications of our adaptation service will be implemented to enable
adaptation in a more practical environment. We need to design experiments to evaluate
more aspects of an adaptation service, such as contributions of methods for link failure
detection and animal habitat monitoring. Also, we need to come up with a generic
communication protocol to synchronize between all the distributed servers such as lookup
servers, composition servers [15], and adaptation servers. Currently, we assume only one
adaptation server is used for an adaptation service. A more effective adaptation service
will consists of lookup servers, composition servers and adaptation servers, collaborating
together to achieve some global and distributed adaptation objectives. The distributed
service architecture needs to avoid a centralized control.
66
Bibliography
[1] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann,
and Fabio Silva, ?Directed Diffusion for Wireless Sensor Networking,? IEEE/ACM
Transactions on Networking, Vol. 11, No. 1, February 2003.
[2] Dan Coffin, Dan Van Hook, Ramesh Govindan, John Heidemann, Fabio Silva, ?Net-
work Routing Application Programmer?s Interface (API) and Walk Through 9.1?,
July 12, 2003.
[3] Tsung-Han Lin; Huang, P., ?Sensor data aggregation for resource inventory applica-
tions,? Wireless Communications and Networking Conference, 2005 IEEE Volume
4, 13-17 March 2005.
[4] Gupta, G., Younis, M., ?Load-balanced clustering of wireless sensor networks Com-
munications,? 2005 IEEE International Conference on Volume 3, Issue , 11-15 May
2003.
[5] Tsung-Han Lin, Huang, P. ?Sensor data aggregation for resource inventory applica-
tions,? Wireless Communications and Networking Conference, 2005 IEEE Volume
4, 13-17 March 2005.
[6] Mitchell A. Cohen, Jakka Sairamesh, Mao Chen, ?Reducing business surprises
through proactive, real-time sensing and alert management,? Proceedings of the
2005 workshop on End-to-end, sense-and-respond systems, applications and services
EESR ?05, Pages: 43 - 48, June 2005.
[7] K. Mani Chandy, Brian Emre Aydemir, Elliot Michael Karpilosky, S.M. Zimmer-
man, ?Event Webs for Crisis Management,? IASTED Conference, 2003.
[8] Chandy, K. M., Aydemir, B. E., Karpilovsky, E. M., and Zimmer- mann, D., ?Event-
driven architectures for distributed crisis management,? 15th IASTED International
Conference on Parallel and Distributed Computing and Systems, November 2003.
[9] Meier, R., Cahill, V., ?STEAM: event-based middleware for wireless ad hoc net-
works,? Distributed Computing Systems Workshops, 2002. Proceedings. 22nd In-
ternational Conference on 2-5 July 2002.
[10] Eisenhauer, G., Bustamante, F.E., Schwan, K., ?Event services for high perfor-
mance computing,? High-Performance Distributed Computing, 2000. Proceedings.
The Ninth International Symposium on 1-4 Aug. 2000.
67
[11] B. Krishnamachari, D. Estrin, and S. Wicker. ?The Impact of Data Aggregation in
Wireless Sensor Networks,? In Proc. of Intl. Workshop on Distributed Event-Based
Systems, 2002.
[12] Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J., ?Impact of network
density on data aggregation in wireless sensor networks,? Distributed Computing
Systems, 2002. Proceedings. 22nd International Conference on 2-5 July 2002.
[13] Dasgupta, K., Kalpakis, K., Namjoshi, P., ?An efficient clustering-based heuristic
for data gathering and aggregation in sensor networks,? Wireless Communications
and Networking, 2003. WCNC 2003. 2003 IEEE Volume 3, 16-20 March 2003.
[14] Alvin Lim, ?Distributed Services for Information Dissemination in Self-Organized
Sensor Networks,? Special Issue on Distributed Sensor Networks for Real-Time Sys-
tems with Adaptive Reconfiguration, Journal of Franklin Institute, Elsevier Sciences
Publisher, vol. 338, 2001, pp. 707-727.
[15] Xuan Yu, ?Implementation of Lookup Service Protocols for Self-Organizing Sensor
Networks,? Master Thesis, Auburn University, 2001.
[16] Ye Wang, ?A Dynamic Adaptation Service Framcework in Self-Organizing Sensor
Networks,? Master Thesis, Auburn University, 2002.
[17] Qiao Shen, ?Energy Consumption Improvements of Sensor Networks Using
Directed-Diffustion Protocol,? Master Thesis, Auburn University, 2004.
[18] Mark Ivester, ?Interactive and Extensible Runtime Framework for Execution and
Monitoring of Sensor Network Services,? Master Thesis, Auburn University, 2005.
[19] Wendi R. Heinzelman, Hoanna Kulik, and Hari Balakrishnan, ?Adaptive protocols
for information dissemination in wireless sensor networks,? In proceedings of the
ACM/IEEE International Conference on Mobile Computing and Networking, pp.
175 185, August, 1999.
[20] Ignacio Solis, Katia Obraczka, ?The impact of timing in data aggregation for sensor
networks,? Communications, 2004 IEEE International Conference on Volume 6, 20-
24 June 2004.
[21] Qiling Xie, Chin-Tau Lea, Golin, M.J., Fleischer, R., ?Maximum residual energy
routing with reverse energy cost,? Global Telecommunications Conference, 2003.
GLOBECOM ?03. IEEE Volume 1, 1-5 Dec. 2003.
68
Appendices
69
Appendix A
class Channel
class Channel {
uint16_t port_;
int nodeid_;
float latitude_;
float longitude_;
NR *mdr_;
handle subHandle_;
handle pubHandle_;
int num_subscriptions_;
ChannelReceive *recvCallback_;
bool event_received_;
queue<NRAttrVec *> input_queue_;
public:
Channel(int argc, char **argv);
void setupChannel(int type, NRAttrVec *attrs);
void recv(NRAttrVec *data, NR::handle my_handle);
handle setupSubscription(NRAttrVec *attrs);
handle setupLocalSubscription(NRAttrVec *attrs);
handle setupPublication(NRAttrVec *attrs);
bool sendData(NRAttrVec *data);
bool receiveData();
int getNodeid();
NRAttrVec* getData();
}
70
Appendix B
Example of the Adaptation Service
B.1 Example for Sensor : pressure sensor.cc
int main(int argc, char **argv) {
NRAttrVec input_list;
NRAttrVec event_list;
SensedData event;
SensorApp *sensor;
Channel *sensor_channel;
time_t now;
struct timeval tv;
NRSimpleAttribute<void *> *timeAttr;
NRSimpleAttribute<float> *pressureAttr;
// create or open new channel
sensor_channel = new Channel(argc, argv);
input_list.push_back(TargetAttr.make(NRAttribute::EQ,
TARGET_PRESSURE));
sensor_channel->setupChannel(SENSOR, &input_list);
// For check latency
timeAttr = STimeStampAttr.make(NRAttribute::IS, &tv,
sizeof(struct timeval));
event_list.push_back(timeAttr);
pressureAttr = AppPressureAttr.make(NRAttribute::IS, 0.0);
event_list.push_back(pressureAttr);
sensor = new SensorApp
("/home/kimeunk/todo/adapServ-2.0.0/test/sensed_data.txt");
while (1) {
event = sensor->detection();
if (event.valid()) { // event detected
pressureAttr->setVal(event.value); // from Diffusion API
gettimeofday(&tv, NULL);
timeAttr->setVal(&tv, sizeof(struct timeval));
if (sensor_channel->sendData(&event_list)) {
71
DiffPrint(DEBUG_ALWAYS, "----------->Sending Data
%f\t%d.%d\n", event.value, tv.tv_sec, tv.tv_usec);
sensor->deleteSensedEvent();
}
} else {
DiffPrint(DEBUG_ALWAYS, "no event!\n");
}
sleep(2); // event rate: 2 secs/event
}
return 0;
}
B.2 Example for Server : pressure server.cc
// to handle with multiple events and actions,
// you should follow operator and valiable
int main(int argc, char **argv) {
Channel *event_channel, *action_channel;
bool event_received;
bool need_action;
bool reply_received;;
int req_id;
NRAttrVec input_list;
NRAttrVec action_request;
NRSimpleAttribute<int> *requestidAttr;
event_channel = new Channel(argc, argv);
input_list.push_back(TargetAttr.make(NRAttribute::IS,
TARGET_PRESSURE));
// To get multiple events..specify more
//input_list.push_back(TargetAttr.make(NRAttribute::IS,
TARGET_PING));
event_channel->setupChannel(SERVER_EVENT, &input_list);
ClearAttrs(&input_list);
// create or open new channel for action_request
action_channel = new Channel(argc, argv);
72
// request action to a Group
input_list.push_back(ActionAttr.make(NRAttribute::EQ, ALARM));
// request action to a particular node in the Group
//action_request.push_back(ActionNode.make(NRAttribute::EQ, 2007));
action_channel->setupChannel(SERVER_ACTION, &input_list);
if ((fp = fopen("energy_delay", "w")) == NULL) {
DiffPrint(DEBUG_ALWAYS, "open error Delay file\n");
}
req_id = 1;
requestidAttr = ActionRequestID.make(NRAttribute::IS, req_id);
action_request.push_back(requestidAttr);
while (1) {
need_action = false;
event_received = event_channel->receiveData();
if (event_received) {
need_action = check_event(event_channel);
}
if (need_action) {
if (action_channel->sendData(&action_request)) {
DiffPrint(DEBUG_ALWAYS, "########-----> Send
[ACTION REQUEST] with req_id, %d\n", req_id);
requestidAttr->setVal(++req_id);
}
}
reply_received = action_channel->receiveData();
if (reply_received) {
check_reply(action_channel);
}
sleep(1); // polling : depend on user application
}
fclose(fp);
}
73
B.3 Example for Action node : pressure action.cc
void check_request(Channel *channel, NRAttrVec &action_reply) {
NRAttrVec *data;
NRSimpleAttribute<int> *nodeAttr;
NRSimpleAttribute<int> *requestidAttr;
NRSimpleAttribute<int> *replyidAttr;
int req_id;
while (data = channel->getData())
{
requestidAttr = ActionRequestID.find(data);
if (requestidAttr)
{
req_id = requestidAttr->getVal();
DiffPrint(DEBUG_ALWAYS, "########----->
RECEIVED [ACTION REQUEST],%d from server\n", req_id);
}
replyidAttr = ActionReplyID.find(&action_reply);
replyidAttr->setVal(req_id);
if (channel->sendData(&action_reply))
{
DiffPrint(DEBUG_ALWAYS, "-----> Action node:
SENDS [ACTION REPLY], %d to server. \n", req_id);
}
}
}
int main(int argc, char **argv) {
Channel *action_channel;
bool request_received;
NRAttrVec input_list;
NRAttrVec action_reply;
action_channel = new Channel(argc, argv);
// specify Action Group
input_list.push_back(ActionAttr.make(NRAttribute::IS, ALARM));
// specify this node in Action Group
input_list.push_back(ActionNode.make(NRAttribute::IS,
action_channel->getNodeid()));
action_channel->setupChannel(ACTION, &input_list);
74
action_reply.push_back(ActionReplyID.make(NRAttribute::IS, 0));
while (1)
{
request_received = action_channel->receiveData();
if (request_received)
{
check_request(action_channel, action_reply);
} else {
sleep(1); // polling : depend on user application
}
}
}
75

