
A novel CPU P-State driver for better thermal control with improved
power/performance trade-off

by

Pavan Ravi Teja Uppu

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 12, 2015

Keywords: PID control, Thermald, Model Predictive Control (MPC), Thermal Headroom

Copyright 2015 by Pavan Ravi Teja Uppu

Approved by

Sanjeev Baskiyar, Chair, Associate Professor of Computer Science and Software
Engineering

Xiao Qin, Associate Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering

Abstract

Power Consumption and thermal emergencies in multi-core processors are now a major

bottleneck due to increased heat dissipation caused by running intensive programs on densely

integrated systems. High temperatures lead to unreliable and short lifespan of electronic

devices. Currently, mechanisms are already in place so that whenever CPU reaches a cut-off

temperature, the BIOS increases fan speed and conducts thermal throttling (adjusts the clock

duty cycle and/or reduces the operating frequency/voltage). The problem of thermal control

is exacerbated with the new Intel turbo boost, which opportunistically raises frequency

leading to temperature spikes. Thus, there is increased need to control temperature at a

set point via dynamic voltage and frequency scaling. Fortunately, modern CPUs provide P-

States to operate it at various voltage-frequency pairs. P-States control temperature with the

minimum loss in performance with the help of Proportional, Integral and Derivative (PID)

based control. We implemented a Thermal head room based P-state driver (THBD) to reduce

violations beyond target temperature. The THBD algorithm increases P-state only when

there is enough thermal headroom, thus maintaining a steady temperature below the cut-off

temperature, which could improve reduction in peak temperature and energy consumption

by 1-4◦C and 0.1-1.5 KJoules respectively with 0-7% increase in run-time penalty when

evaluated with SPEC 2006 benchmark suite against PID based control.

ii

Acknowledgments

I am deeply thankful to my advisor Dr. Sanjeev Baskiyar, for his careful guidance,

persistence and perseverance through out this research. This thesis undoubtedly is impossible

without his vision and help in academic writing. I would like to thank Dr. Xiao Qin and

Dr. Dean Hendrix for being part of my thesis committee and for their guidance. I would like

to thank Dr. Weikuan Yu, for his guidance and support during intial stages of my study. I

would like to thank Dr. Hundley and Dr. Ku for awarding me a Teaching Assistant position.

On this occasion, I would like to remember and thank few more people in my life with

out whom my masters at Auburn University would have been a distant dream. First of them

all, I am deeply indebted to my cousin Mr. Naga Veeram for being more than a cousin and

helping me in every cause. With all the respect from the bottom of my heart, I would like

to thank my uncle and aunt, Sada Siva Rao and Chadrvathi. I would like to thank all my

friends and well wishers, who just did not find place in this acknowledgement but in my

heart.

Finally, I would like to thank my parents, Satyanarayana and Manimala, who endured

suffering to provide good life, quality education for their children and they definitely deserve

more than just thanks.

This thesis and further success if any, would undoubtedly be dedicated to my parents

and my loving sister.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . v

List of Tables . vi

1 Introduction . 1

2 Related Work . 4

3 Preliminaries . 7

3.1 States of a Processor and Intel Speed Step technology 7

3.2 Package Control Unit (PCU) . 8

4 Thermal Headroom based P-State Driver . 10

5 Experimental Results . 13

5.1 Experimental Setup . 13

5.2 Results for target temperature 67◦C . 14

5.3 Results for target temperature 70◦C . 16

5.4 Results for target temperature 74◦C . 17

6 Conclusion and Future work . 21

Bibliography . 22

iv

List of Figures

1.1 Thermald Block Diagram . 3

3.1 States of CPU . 8

3.2 C-State and P-State processor power . 8

4.1 Temperature vs Run-time comparison of Headroom, PID and without control . 12

5.1 Power consumption due to Poole-Frenkel effect 16

5.2 CPU Temperature and Energy vs Time for LBM 17

5.3 CPU Temperature and Energy vs Time for SPHINX 18

5.4 CPU Temperature and Energy vs Time for NAMD 18

5.5 CPU Temperature and Energy vs Time for POVRAY 18

5.6 Headroom vs Base vs PID based P-state driver at 67◦C target temperature . . . 19

5.7 Headroom vs Base vs PID based P-state driver at 70◦C target temperature . . . 19

5.8 Headroom vs Base vs PID based P-state driver at 74◦C target temperature . . . 19

v

List of Tables

5.1 Benchmarks setup for different Target temperatures 14

5.2 Results at target temperature 67◦C . 17

5.3 Results at target temperature 70◦C . 20

5.4 Results at target temperature 74◦C . 20

vi

Chapter 1

Introduction

Power consumption and thermal emergencies in multi-core processors have become a

major issue in personal computers as well as servers. The problem of task scheduling now in-

cludes thermal aware scheduling in order to conserve energy and increase lifetime of electronic

circuits. A 10◦C increase in overall temperature reduces the life span of electronic devices by

half [1]. The cost for cooling and packaging also increases with increasing power [2,3]. Previ-

ously DTM, DVFS were used to control temperature once they reached the threshold [4] but

with some loss of performance. Thermal aware strategies have emphasized distributing the

performance both temporally and spatially to mitigate temperature [5]. Intel uses a thermal

daemon based on a closed loop PID, controlling the P-States explained later in preliminar-

ies section for reducing thermal emergencies. A brief description of Intel thermal daemon

from [6] is explained in this paper and shown in Figure 1.1. For monitoring and controlling

core temperatures Intel’s Linux Thermal Daemon offers a viable solution. As the demand

for high performance is growing, nowadays thinner and smaller computing systems such as

laptops, ultra-books are being used for running HPC applications, which in turn demands

innovative ways to monitor and reduce system heat dissipation. Based on temperature, the

BIOS controls the system fan. It increases or decreases fan speed and can do thermal throt-

tling accordingly. Thermal throttling adjusts the duty cycle of the processor clock or reduces

the operating frequency, voltage. Such controls significantly impact performance [7]. When

the maximum specified CPU temperature settings are exceeded performance loss occurs due

to the intervention of BIOS, In order to prevent such an effect, the thermal daemon proac-

tively cools the CPU by managing performance and thermal states. For controlling these

states, P-state drivers and other cooling devices are being used in the Linux kernel developed

1

by Intel. The block diagram for such an implementation is shown in Figure 1.1 which has

been reproduced from [7]. Although these P-states perform quite well for the power and

performance trade-off, they are not suitable for temperature control at a set point because

they are discrete in nature and makes temperatures oscillate below and above the set point.

The official information as to how many states are available in a system are not yet pub-

lished and we know that they are limited in number [8]. After trying several approaches

and experiments, we determined that that a modified approach based on thermal headroom

works well for temperature and offers energy savings with low schedule length penalty. In

this research, a P-State driver was built which distributes performance temporally while

governing the target temperature with minimal modifications to the underlying operating

system. Although temperature could be predicted using a temperature prediction model as

in [9–11] but we used the thermal virtual file system (i.e., /sys/class/hwmon) in Advanced

Configuration and Power Interface (ACPI) to directly read the temperature. Temperature

reaction time (rise and fall time) was found to be of a tenth of a second similar to that in [12].

Thermal virtual file system reports temperature every 2 seconds which we choose as the sam-

pling interval. Hardware performance counters, thermal virtual file system were made use of

in gathering data for temperature, performance and power. Using the above data, the cor-

relation between the cpu maximum performance and temperature was exploited. Thermal

Head Room analysis helps determine if the temperature may exceed the target temperature

in future. The Thermal Headroom approach takes into account the discrete nature of the

P-States. Transition to higher P-States is made only when the headroom is available. This

approach reduces thermal oscillations and conserves energy by avoiding unnecessary cool-

ing. We tested our approach on HPC applications such as SPEC CPU 2006 benchmarks.

The overall peak temperature was reduced with minimum schedule length penalty. The

key idea behind our approach was to limit performance when temperature crosses the set

point. As power is proportional to the square of processor frequency, there is conservation

of energy [13,14].

2

Figure 1.1: Thermald Block Diagram

The remainder of this thesis is organized as follows. Chapter 2 discusses related work

in the area of temperature aware scheduling. Chapter 3 gives preliminaries for this research.

In Chapter 4, we present our Thermal Headroom based Performance Driver. Chapter 5

presents our experimental analysis and results. Finally, in Chapter 6 we conclude this thesis.

3

Chapter 2

Related Work

Many researchers in thermal aware scheduling have explored the use of DVFS and

adaptive process scheduling in reducing the core temperature. Choi, et al., [12] proposed

different methods for temperature control like Heat Balancing, Deferred execution of hot

tasks, cool loops, core hopping. Their potentials to leverage temporal heat slack was also

discussed.

Lee, et al., [5] proposed a thermal aware scheduler collaborating with OS and archi-

tecture where an incoming thread is classified based on variation of the core temperature

dynamically and scheduled at appropriate time on a core based on its temperature. This

scheduling method succeeds only when there is a good mixture of cold and hot processes.

When the core temperature reaches specified maximum, the cold jobs are always preferred

jeopardizing execution of hot jobs.

Yue, et al., [15] proposed a thermal aware feedback control scheduling for Soft Real-Time

Systems using cache-miss ratio as feedback where they could set temperature at a reference

point, with a tight feedback loop controlling frequency via cache-miss ratio. However, in

presence of noise due to fan and heat from other cores in case of a multi core general purpose

computing CPU, the frequency-miss rate model does not work as intended. Thus, a direct

control over frequency such as DVFS is indeed necessary.

Jayaseelan and Mitra, [16] proposed a Thermal Aware Scheduler for Embedded Proces-

sors. They developed a temperature-aware scheduling scheme which exploits the variability

between soft real-time and best effort applications to maintain the system temperature below

4

a desired level while satisfying requirements such as throughput and fairness in temperature-

constrained systems. The thermal model proposed as above would not support rapid tem-

perature change because in a turbo state, the processor frequencies are opportunistically

scaled [17] which in-turn leads to abrupt changes in temperature.

Li, et al., [18] proposed a fully loaded thermal-aware process scheduling on priority based

scheduling for the hot process and cold process, which were classified based on instructions

per cycle. Their techniques targeted scenarios common to high-performance computing

where processors are fully loaded. However when the system runs out of cool process, there

is a rapid temperature increment, then DVFS takes corrective action to maintain temperature

below cut-off suggesting that process scheduling cannot be a complete alternative to DVFS

when the temperature emergencies could happen at a granularity of millisecond.

Other important research in the thermal aware scheduling was to tackle the problem of

performance optimization of set of tasks executing on a processor under thermal constraints.

Zhang and Chatha, [11] addressed latency minimization of a set of periodic tasks with dis-

crete voltage/frequency states under thermal constraint. They formulated it as a knapsack

problem by incorporating process sleep time in the problem. The solution technique is to

assign voltage states for each job and selecting a process sleep time using dynamic program-

ming approach. A polynomial time solution within 1% quality bound of the optimal solution

was proposed. Fundamental problems such as performance under a thermal constraint with

discrete DVFS which were not focused before were addressed. But it did not take account of

leakage power due to supply voltage and DVFS state transition overhead. As a consequence,

overall energy consumption may not be minimized.

Rajan and Yu, [19] showed that often constant policies are better than Zig-Zag policies

except in case where one is forced to Zig-Zag, where the system can operate in only few

discrete states. The zig-zag scheme executes jobs at highest speed till cut-off temperature

and then speed is reduced to allow the processor to cool. They have formulated an optimal

Zig-Zag policy by selecting processor speeds for jobs with different priorities for reduction

5

in schedule length. One such problem associated with discrete P-states are temperature

violations which occur while trying to optimize performance under at a particular target

temperature.

In this paper we used the real time data to predict and prevent future thermal violations

while not compromising on the performance of the applications.

6

Chapter 3

Preliminaries

3.1 States of a Processor and Intel Speed Step technology

Thermal and power management has been standardized in Enhanced Intel Speed Step

Technology by centralizing hardware implementation using Package Control Unit (PCU)

explained later in subsection 3.2. It provides better features for controlling the system

transition between states shown in Figure 3.1. To manage increasing constraints on power

and thermal budgets, performance state transitions can be dynamically controlled.

A brief description of Enhanced Intel Speed Step Technology from [20] is explained here.

Multiple Voltage Identification (VID) pins, which signal desired voltage, are connected to

voltage regulator in processors featuring Enhanced Intel SpeedStep Technology. These VID

pins can be set to a demand voltage for the CPU. The voltage regulator subsequently provides

this VID output to the core processor. Embedded operating systems and applications can

easily change and control operating states using centralized implementation of real-time

frequency/voltage transitions in the processor’s module specific registers. A CPU can be put

to different power states, depending on the current workload. These states are determined

by the active parts of the CPU. C0 is active mode running instructions, C1, C1E are auto

halt mode scaling frequency and voltage opportunistically. C3 corresponds to L1/L2 caches

flush and clock off. G1 (Sleeping mode) encompasses S1 corresponding to standby mode,

S3 Suspend to Ram (STR) and S4 Hibernate mode. G3 is when the system is mechanically

switched off. Processor P-states are defined as frequency/voltage operating states. All P-

states are sub-states of C0 and the processor actually executes instructions in all P-States

unlike other states, such as C1, C2 and C3. The maximum performance and the most power

7

consuming state is P0. The whole system states and voltage, frequency varying with these

states are illustrated in Figures 3.1 and 3.2 which are reproduced from [21].

Figure 3.1: States of CPU

Figure 3.2: C-State and P-State processor power

3.2 Package Control Unit (PCU)

Package Control Unit is an embedded controller in Intel’s core i7 processor for running

power management firmware and communicates with all cores monitoring and regulating

conditions like Package Temperature and power states using CPU voltage and frequency.

The decision of switching among power management states (P/T/C/S) in order to effectively

balance power and performance is taken by the PCU firmware dynamically [8]. The Core

i7s entire microprocessor package, and the overall computer system are in turn controlled

through these states. The firmware for the power management software can be upgraded

8

and is scalable [8]. Those components which are not active like last level caches are switched

off by the PCU [22].

9

Algorithm 1 Thermal Head Room Based P-State Driver

1: const P-state-max ; P-state-min; . max and min possible states
2: procedure Thermal headroom(int Target-temp)
3: int T; lookup-headroom=0; THR=0; . Temperature; flag; Thermal headroom
4: while (1) do
5: Wait(δt) . polling interval
6: T ← Read Temperature
7: if (T > Target-temp) and (P-state > P-state-min) then
8: P-state−− . cool CPU
9: lookup-headroom ← 1 . set flag to compute headroom later
10: else if T < Target-temp then
11: if lookup-headroom and (P-state < P-state-max) then
12: P-state++ . switch to upper state for computing THR
13: Wait(δt)
14: T

′ ← Read Temperature
15: P-state−− . switch to lower state after computing THR
16: THR ← T

′ − T . Compute headroom and turn-off flag
17: lookup-headroom ← 0
18: else if (Target-temp - T) ≥ THR and (P-state < P-state-max) then
19: P-state++ . headroom available, so speed-up
20: end if
21: end if
22: end while
23: end procedure

Chapter 4

Thermal Headroom based P-State Driver

This research controls the CPU temperature and it’s variations by changing P-States

using an approach that is inspired by Model Predictive Control (MPC). The description of

MPC in [23] has been adopted and re-explained for Thermal Headroom approach. MPC is

a linear algebra method for predicting the results of a sequence of control variable changes.

After a few initial observations, the controller can use a control sequence which produces the

desired output. This method could be compared to ”look ahead” in chess. Specific knowledge

10

of the process could be used to optimize the best long-term output by forecasting the results

of action in future. MPC methods could prevent actions taken by conventional PID control

to achieve short term goals, which are costly in the long-term. Deviations from the desired

output yd, either specified by another mathematical model or reference trajectory, produce

an error function e(t) = y(t) - yd(t) for increments of control actions ∆u(t) = u(t)-u(t−∆t).

Here y(t) is the output and u(t) is the control action. In case of P-State control p+ 1th state

and pth state can be considered as control actions and yd(t) is the desired target-temperature

and y(t) is the current temperature. Thermal Head Room based algorithm is inspired by

MPC control. However, it uses reference trajectory for measurements of y(t), obtaining a

reference trajectory through a system model may not be accurate in case of processors where

the temperature varies both with program transformation and input control signal. Thus,

We measure ∆y(t) as headroom for ∆u(t). We switch to higher P-State only when e(t) is

less than or equal to this headroom. We switch to a lower P-State whenever the observed

temperature is greater than target temperature. Such an approach prevents unnecessary

oscillations of temperature around the target temperature because the P-State is increased

only if it is predicted that doing so will not increase the temperature above the target

temperature.

This approach is necessary as the P-States are discrete. The Thermal Head Room

based P-State driver provides a history based learning where thermal head room is measured

during the time when the P-State is boosted. The simulated example in figure 4.1 shows the

functioning of the algorithm. When the temperature overshoots the target temperature, the

Thermal Headroom is measured to be 5◦C and 4◦C in two instances as shown in figure 4.1,

which is the temperature change occurred due to change in P-State. The algorithm learns

that there is an overshoot of temperature with an increase in P-State, thus an increase in

P-State is performed only when this thermal headroom is available next time.

The Thermal Head Room Based P-State Driver algorithm waits for polling interval on

line 6 and the temperature is read on line 7, if the observed temperature is greater than target

11

Figure 4.1: Temperature vs Run-time comparison of Headroom, PID and without control

temperature, the P-State is simply reduced to next lower State as in line 9 and a lookup-

headroom bit is set and the temperature if found to be less than target temperature on line

11 based on lookup-headroom the P-State is raised and Thermal Headroom is calculated

on line 16.In consecutive iterations, the difference between target temperature and current

temperature if greater than measured headroom will lead to increment in P-State on line 19.

12

Chapter 5

Experimental Results

5.1 Experimental Setup

The PID and Thermal Headroom based techniques were coded in C and the experiments

were performed on Intel i7-2630 quad core processor of HP Probook 4530 Laptop running

Ubuntu 14.04 LTS at base frequency of 2 Ghz with 4 GB RAM. L1 cache comprises of 4

x 32 KB 8-way set associative instruction caches and 4 x 32 KB 8-way set associative data

caches, L2 cache is 4 x 256 KB 8-way set associative and L3 cache is a 6 MB 12-way set

associative shared. We obtained the temperature through system files /sys/class/hwmon/h-

wmon1/temp2 input and energy was measured using Intel RAPL and perf tool which reports

energy consumed by the package with in specified poll interval. We choose 10 P-States and

poll-interval of 4 seconds similar to the default settings of thermald software. The system

performance percentage from 100 to 0 was split into 10 ranges each corresponding to a P-

State, which inturn affects frequency and voltage where the frequency would be varied from

3 Ghz to 300 Mhz. The values of voltage and frequency pairs associated with P-States of

core i7 are not yet published by Intel [8]. We used task set in Linux to pin the processes to a

single core, making it fully loaded while the OS runs on the remaining cores. Ambient room

temperature was set to 21 ◦C. We set the target temperatures at 67◦C, 70◦C and 74◦C which

correspond to day to day use of the laptop, and ran 26 SPEC CPU2006 benchmarks. At the

target temperature of 67◦C individual benchmarks were enough to create sufficient enough

thermal stress. At 70◦C and 74◦C we grouped the benchmarks as shown in table 5.1, so that

the outcome at target temerature could be more prominent with longer run-times. The focus

was to stress the algorithm as much as possible by overloading multiple processes on a core

using the taskset command. We have included run-time graphs of the benchmarks where

13

in the difference between PID based and the Thermal Headroom based drivers is clearly

shown. Energy conservation was significantly better when multiple processes were run with

not much schedule length penalty at 70◦C and 74◦C.

Table 5.1: Benchmarks setup for different Target temperatures

Target temperature Benchmarks Group

67◦C

lbm Group 1
sphinx Group 2
povray Group 3
namd Group 4

70◦C

calculix+omnetpp Group 5
perlbench+soplex Group 6

h264ref+astar Group 7
gamess+gromacs Group 8

tonto+leslie3d Group 9

74◦C

bzip2+gemsfdtd Group 10
bwaves+gcc Group 11

sjeng+cactusadm Group 12
lbmquantum+wrf Group 13
hammer+gobmk Group 14

xalanbmk+zuesmp Group 15

5.2 Results for target temperature 67◦C

Using Thermald, the PID based approach was evaluated under different scenarios under

stress using different SPEC CPU 2006 benchmarks. We see from Figures 5.2, 5.3, 5.4,

5.5 that there were temperature swings until the temperature gets stabilized at the target

temperature of 67◦C. An XML configuration file has been provided in Thermald, where one

can tune the PID controller with different gains but cooling due to fan, the heat from other

cores, program transformations can drive the control variable to shift from equilibrium thus

leading to instability. In such an unstable state, The THBD approach auto-tunes itself using

past behavior of the temperature and making an appropriate decision to switch P-States.

It waits every time the temperature goes below the target temperature until the thermal

headroom is available before the P-State is increased. From the run-time graphs in 5.2, 5.3,

14

5.4, 5.5 we see that temperature violations in the headroom approach are fewer compared

to the PID based approach. Furthermore, Each P-State transition takes time; by making

fewer transitions to higher P-States, the headroom approach incurs small run time penalty

when compared to PID based approach. This mechanism provides system reliability by

maintaining temperature below target temperature even in turbo mode where processor is

overclocked in the highest performance state.

One more advantage with this mechanism is the reduction of run-time power consump-

tion. As the temperature increases leakage current in the insulator dielectric in the CPU

increases [24] as modeled by the Poole-Frenkel effect. This effect has been illustrated in

figure 5.1 which has been reproduced from [24]. Reducing the temperature spikes lead to

energy conservation amounting approximately up to 10 Joules/spike as seen in the run-time

graphs in 5.2, 5.3, 5.4, 5.5. The performance loss for Thermal headroom approach is not

significant during these phases as seen from Figures 5.2, 5.3, 5.4, 5.5 and is compensated by

the P-State transition time. A PID control is generally used for all the active and cooling

devices such as P-States, Fan. However P-State transitions further optimize energy by lim-

iting the temperature just below the set-point. The energy savings obtained from leakage

current by maintaining temperature below set-point combined with dynamic energy savings

were plotted and are shown in Figures 5.2, 5.3, 5.4, 5.5. Figures 5.6, 5.7, 5.8 show run-time,

energy and peak temperature for PID, Baseline(W/O Controller) and Thermal headroom

based approach. The increase in run-time penalty when lbm was run was observed to be

1.15% with a 3◦C reduction in temperature and 1.5% reduction in energy consumption.

When sphinx was run the increase in run-time penalty was 4.3% with reduction in peak

temperature and energy of 3◦C and 1% respectively. When povray was run the increase in

run-time penalty was 4% with reduction in peak temperature and energy of 2◦C and 3%

respectively. When namd was run, the increase in run-time penalty was 0.4% with reduction

in peak temperature and energy of 2◦C and 1.3% respectively.

15

Figure 5.1: Power consumption due to Poole-Frenkel effect

5.3 Results for target temperature 70◦C

The increase in schedule length penalty when calculix, omnetpp were scheduled together

was observed to be 3.9% while contributing to 3◦C reduction in temperature and 2.5%

reduction in energy consumption. When perlbench, soplex were scheduled together the

increase in schedule length penalty was 6.4% with reduction in peak temperature and energy

of 1◦C and 7.2% respectively. When h264ref, astar were scheduled together the increase in

schedule length penalty was 5.3% with reduction in peak temperature and energy of 3◦C and

5.9% respectively. When gamess, gromacs were scheduled together the increase in schedule

length penalty was 4.46% with reduction in peak temperature and energy of 2◦C and 4.88%

respectively. When tonto, leslie3d were scheduled together the increase in schedule length

penalty was 1% with reduction in peak temperature and energy of 3◦C and 4.7% respectively.

One striking observation is that when benchmarks are scheduled in groups together without

much change in schedule length penalty, the energy conservation is improved with Head

Room based P-state Driver without any significant schedule length penalty.

16

Figure 5.2: CPU Temperature and Energy vs Time for LBM

5.4 Results for target temperature 74◦C

The increase in schedule length penalty when bzip2, gemsfdtd were scheduled together

was observed to be 0.2% while contributing to 1◦C reduction in temperature and 8% re-

duction in energy consumption. When bwaves, gcc were scheduled together the increase in

schedule length penalty was 1.4% with reduction in peak temperature and energy of 2◦C and

0.3% respectively. When sjeng, cactusadm were scheduled together the increase in schedule

length penalty was 1.3% with reduction in peak temperature and energy of 2◦C and 3.8%

respectively. When lbmquantum, wrf were scheduled together the increase in schedule length

penalty was 3.4% with reduction in peak temperature and energy of 1◦C and 4% respectively.

When hammer, gobmk were scheduled together the increase in schedule length penalty was

2.3% with reduction in peak temperature and energy of 2◦C and 3% respectively. When

xalanbmk, zuesmp were scheduled together the increase in schedule length penalty was 1.2%

with reduction in peak temperature and energy of 1◦C and 2.2% respectively.

Table 5.2: Results at target temperature 67◦C

Group
Run-time (seconds) Peak temperature (◦C) Energy consumed (KJ)

PID Headroom Base PID Headroom Base PID Headroom Base

G1 347 351 325 72 69 80 6.66 6.56 7.58
G2 717 748 657 73 70 83 11.75 11.62 14.34
G3 193 201 181 71 69 77 3.55 3.44 3.84
G4 486 488 454 71 69 78 8.22 8.11 9.28

17

Figure 5.3: CPU Temperature and Energy vs Time for SPHINX

Figure 5.4: CPU Temperature and Energy vs Time for NAMD

Figure 5.5: CPU Temperature and Energy vs Time for POVRAY

18

lbm sphinx povray namd

200

400

600

800
R

u
n
-t

im
e

(s
ec

on
d
s)

PID
Headroom

Base

(a) Run-time

lbm sphinx povray namd

68

72

76

80

84

P
ea

k
te

m
p

er
at

u
re

(◦
C

) PID
Headroom

Base

(b) Peak temperature

lbm sphinx povray namd

5

10

15

E
n
er

gy
co

n
su

m
ed

(K
J
ou

le
s)

PID
Headroom

Base

(c) Energy consumption

Figure 5.6: Headroom vs Base vs PID based P-state driver at 67◦C target temperature

G5 G6 G7 G8 G9

800

1000

1200

1400

R
u
n
-t

im
e

(s
ec

on
d
s)

PID Headroom Base

(a) Run-time

G5 G6 G7 G8 G9

70

75

80

85

90

P
ea

k
te

m
p

er
at

u
re

(◦
C

) PID Headroom Base

(b) Peak temperature

G5 G6 G7 G8 G9

15

20

25

E
n
er

gy
co

n
su

m
ed

(K
J
ou

le
s)

PID Headroom Base

(c) Energy consumption

Figure 5.7: Headroom vs Base vs PID based P-state driver at 70◦C target temperature

G10 G11 G12 G13 G14 G15

800

1000

1200

1400

1600

R
u
n
-t

im
e

(s
ec

on
d
s)

PID Headroom Base

(a) Run-time

G10 G11 G12 G13 G14 G15

75

80

85

P
ea

k
te

m
p

er
at

u
re

(◦
C

) PID Headroom Base

(b) Peak temperature

G10 G11 G12 G13 G14 G15

10

15

20

25

30

E
n
er

gy
co

n
su

m
ed

(K
J
ou

le
s)

PID Headroom Base

(c) Energy consumption

Figure 5.8: Headroom vs Base vs PID based P-state driver at 74◦C target temperature

19

Table 5.3: Results at target temperature 70◦C

Group
Run-time (seconds) Peak temperature (◦C) Energy consumed (KJ)

PID Headroom Base PID Headroom Base PID Headroom Base

G5 1305 1356 1210 77 74 86 21.42 20.88 23.81
G6 740 788 702 74 73 88 13.43 12.45 14.78
G7 1192 1256 1055 75 72 87 20.35 19.13 22.92
G8 806 842 762 74 72 85 14.92 14.19 16.01
G9 1214 1226 1036 76 73 85 19.64 18.71 22.32

Table 5.4: Results at target temperature 74◦C

Group
Run-time (seconds) Peak temperature (◦C) Energy consumed (KJ)

PID Headroom Base PID Headroom Base PID Headroom Base

G10 964 966 887 78 77 85 18.53 17.04 18.98
G11 783 794 732 80 78 85 15.20 15.15 16.31
G12 1439 1459 1377 78 76 84 27.27 25.65 28.88
G13 1100 1138 1054 78 77 87 21.81 20.93 23.40
G14 1061 1086 1005 78 76 85 19.76 19.16 21.325
G15 782 792 748 78 77 84 14.52 14.20 15.44

20

Chapter 6

Conclusion and Future work

In this thesis, we investigated the trade-off among schedule length, temperature and

energy of a new Thermal Head Room based P-State driver. We could significantly re-

duce temperature overshoots beyond set-point and the energy conservation is observed as a

side affect of this approach. To the best of our knowledge, this research is first to analyze

Thermald for temperature violations beyond reference temperature and propose a new mech-

anism for reducing violations under a thermal constraint. We have conducted an extensive

architectural study of the PID and Head room based thermal drivers. In future we would

like to extend the approach to distributed processing with a high performance computing

perspective.

21

Bibliography

[1] L. Yeh and R. Chu, “Thermal management of microelectronic equipment: Heat transfer
theory,” Analysis Methods, and Design Practices, ASME, New York, 2002.

[2] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall, “Managing the impact of in-
creasing microprocessor power consumption,” Intel Technology Journal, vol. 5, no. 1,
pp. 1–9, 2001.

[3] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-
limited microprocessors: Direct temperature and power distribution measurements,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 56–65, 2007.

[4] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance
microprocessors,” in Proceedings of the 7th International Symposium on High-
Performance Computer Architecture. Washington, DC, USA: IEEE Computer Society,
2001, pp. 171–182. [Online]. Available: http://dl.acm.org/citation.cfm?id=580550.
876439

[5] C.-Y. Lee, S.-J. Yang, and R.-G. Chang, “Thermal-aware scheduling collaborating with
os and architecture,” in 42nd International Conference on Parallel Processing. IEEE,
2013, pp. 1044–1051.

[6] L. Michael, “Intel releases linux thermal daemon,” 2013. [Online]. Available:
http://www.phoronix.com/scan.php?page=news item&px=MTM2OTk

[7] S. Pandruvada, “Linux thermal daemon,” Intel. [Online]. Available: https:
//01.org/linux-thermal-daemon/documentation/introduction-thermal-daemon

[8] “Intel and core i7 (nehalem) dynamic power management.” Arizona State University,
2011. [Online]. Available: https://impact.asu.edu/cse591sp11/Nahelempm.pdf

[9] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang, “Feedback
thermal control for real-time systems,” in 16th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium. IEEE, 2010, pp. 111–120.

[10] I. Yeo and E. J. Kim, “Temperature-aware scheduler based on thermal behavior grouping
in multicore systems,” in Proceedings of the conference on Design, Automation and Test
in Europe. European Design and Automation Association, 2009, pp. 946–951.

[11] S. Zhang and K. S. Chatha, “Approximation algorithm for the temperature-aware
scheduling problem,” in 10th IEEE/ACM Proceedings of the international conference
on Computer-aided design. IEEE Press, 2007, pp. 281–288.

22

[12] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose, “Thermal-aware
task scheduling at the system software level,” in Proceedings of the 2007 International
Symposium on Low Power Electronics and Design. New York, NY: ACM, 2007, pp.
213–218. [Online]. Available: http://doi.acm.org/10.1145/1283780.1283826

[13] S. Baskiyar and R. Abdel-Kader, “Energy aware dag scheduling on heterogeneous sys-
tems,” Cluster Computing, vol. 13, no. 4, pp. 373–383, 2010.

[14] S. Baskiyar and K. K. Palli, “Low power scheduling of dags to minimize finish times,”
in High Performance Computing-HiPC 2006. Springer, 2006, pp. 353–362.

[15] J. Yue, T. Zhang, Y. Liu, B. Quan, and C. Tianzhou, “Thermal-aware feedback control
scheduling for soft real-time systems,” in IEEE 9th International Conference on Embed-
ded Software and Systems, IEEE 14th International Conference on High Performance
Computing and Communication, Liverpool, United Kingdom, June 2012, pp. 1479–1486.

[16] R. Jayaseelan and T. Mitra, “Temperature aware scheduling for embedded processors,”
in 22nd International Conference on VLSI Design, New Delhi, India, Jan 2009, pp.
541–546.

[17] O. Lempel, “2nd generation intel core processor family: Intel core i7, i5 and i3,”
2011. [Online]. Available: http://download.intel.com/newsroom/kits/embedded/pdfs/
2nd Gen Intel Core i3 i5 i7 PlatformBrief.pdf

[18] D. Li, H.-C. Chang, H. K. Pyla, and K. W. Cameron, “System-level, thermal-aware,
fully-loaded process scheduling,” in IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp. 1–7.

[19] D. Rajan and P. S. Yu, “On temperature-aware scheduling for single-processor
systems,” in Proceedings of the 14th International Conference on High Performance
Computing (HiPC), Goa,India. Springer-Verlag, 2007, pp. 342–355. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1782174.1782214

[20] “Enhanced intel speedstep technology for the intel pentium-m processor,” White
Paper, Intel, 2004. [Online]. Available: http://download.intel.com/design/network/
papers/30117401.pdf

[21] L. Brown, “Acpi in linux,” in Linux Symposium, vol. 51, 2005.

[22] A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power
management architecture of the 2nd generation intel core microarchitec-
ture, formerly codenamed sandy bridge,” p. 0, 2011. [Online]. Avail-
able: http://www.hotchips.org/wp-content/uploads/hc archives/hc23/HC23.19.9-
Desktop-CPUs/HC23.19.921.SandyBridge Power 10-Rotem-Intel.pdf

[23] “Model predictive control.” [Online]. Available: https://controls.engin.umich.edu/
wiki/index.php/MPC

23

[24] “Effect of temperature on power-consumption with the i7-2600k.” [Online]. Available:
http://forums.anandtech.com/showthread.php?t=2200205

24

