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Abstract

Statistical analysis of functional data has been explored extensively over the last decade

and functional partial least squares regression has emerged as a popular choice for classifi-

cation problems. In partial least squares algorithms, uncorrelated components are derived

iteratively by finding linear combinations of the predictors that maximize the variance be-

tween the predictors and the response. In this paper, we will develop a method to extract

the components that explicitly considers the predictive power of the individual predictors.

If an individual predictor does not display high predictive power as well as high covariance

with the response, then their coefficients will be set to zero. This modified partial least

squares method will be used to develop a set of uncorrelated latent variables, called mPLS

components. The mPLS components will be used as the predictor variables in the logistic

regression model. The efficacy of our algorithm will be assessed using fractional anisotropy

data.
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Chapter 1

Introduction

Statistical analysis of functional data has been explored extensively over the last decade.

Generalized linear regression models have been developed by James[10], Cardot and Sarda

[4] and Müler and StadtMüler [15]. Principal component regression by Aguilera et al. [1] and

partial least squares regression by Preda and Saporta [16] propose non-parametric models

for regression on functional data. Partial Least Squares (PLS) regression is an attractive

alternative to Principal Component (PC) regression for classification problems because it

takes into consideration the variance between the predictor and response when selecting

regression components.

In this paper we are interested in using PLS logistic regression to classify a binomial

response when the predictor is functional. Logistic regression using a PLS technique was

developed in Bastien et al. [3]. In their paper, PLS components are derived iteratively by

finding linear combinations of the predictors that maximize the variance between the pre-

dictors and the response. Escabias et al. [8] extended this method to include functional

predictors. We will develop a method to extract the PLS components that explicitly con-

siders the predictive power of the individual predictors. This modified partial least squares

(mPLS) method will be used to develop a set of uncorrelated latent variables, called mPLS

components. The mPLS components will be used as the predictor variables in the logistic

regression model.

An overview of functional data analysis is given in Chapter 2, followed by the essentials

of logistic regression in Chapter 3. A detailed account of the PLS logistic regression model,

with our mPLS component extraction method, will be covered in Chapter 4. Two case studies

will be undertaken in Chapter 5 to determine the efficacy of our method. The first study is
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conducted on simulated curve data. The second is conducted on Fractional Anisotropy (FA)

data collected using Diffusion Tensor Imaging. The MRI/DTI data were collected at Johns

Hopkins University and the Kennedy-Krieger Institute.
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Chapter 2

Functional Data Analysis

Functional data can be defined as data that is accurately described by a continuous

function. Although, by necessity, most data is collected at discrete points in time; there

is a class of data where it is expected that the change in values from time t to time t + 1

possess a certain level of smoothness. Examples of data that can be considered functional

are the height of a child measured monthly, the ambient air temperature at a given location

measured hourly, or a person’s heart rate measured every minute during a 30 minute exercise

period.

If we can adequately describe the functional form of the changes in data over time,

then we can use the entire function as a single predictor variable. This is in contrast to

the approach used in longitudinal data analysis, where every measurement is treated as a

separate data point. Hopefully, by using a functional form of the data, we can exploit the

inherent smoothness of the data when we conduct our statistical analysis.

Suppose we have n subjects and we measure a characteristic of each subject N times

during an interval T . Let {xij} be the set of discrete observations, where i = 1, . . . , n and

j = 1, . . . , N . We will assume that there are smooth functions xi(t) in L2 and in the interval

{0, 1}, such that

xij = xi(tj) + εij, i = 1, . . . , n, j = 1, . . . , N (2.1)

where the εij’s are measurement errors.

The first step in functional data analysis is to define a system to represent the functions

xi(t). We will represent the functions xi(t) as a linear combination of simpler functional

building blocks φ1, . . . , φk, called basis functions.
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2.1 Basis Functions

Basis functions allow us to represent inherently complicated functions with relatively

simpler, computationally efficient functions. Although there are many possible choices of

basis functions, we will only consider two widely used sets of functions: Fourier and B-

spline.

The Fourier basis system use the following trigonometric functions as its building blocks:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt) (2.2)

where ω is related to the period of the function (T ), by the relation ω = 2π/T .

These functions are ideal for describing data that is periodic and working with these

functions is computationally efficient. A set of Fourier basis functions are fully defined by

setting the number of basis functions K and the period T . The left panel of figure 2.1 shows

a thirteen Fourier basis function system with a period of 1.

Figure 2.1: Basis Systems
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Another popular choice is the B-spline basis system. B-splines are piecewise polynomials

of degree n with Cn−1 continuity at common points called knots. Requiring continuity at

the knots ensures smoothness of the function. A B-spline basis system is defined by the

range of validity, the number and placement of knots, and the order of the polynomials.

In this thesis, 4th degree polynomials with the knots equally spaced within the interval of

observation are used. The right panel of figure 2.1 shows a thirteen B-spline basis function

system with equally spaced knots defined on the interval [0, 1].

Regardless of the basis function system that is chosen, the linear expansion of the

observed covariate has the following form for K basis functions:

xi(t) =
∑K

k=1 aikφk(t) (2.3)

where aik is the ith subject’s coefficient associated with the kth basis function.

The number of basis functions K that are used to represent xi(t) is an important factor

to consider. If K = N , then xi(t) will fit the discrete observations perfectly and the εij’s

in equation 2.1 will be equal to zero. In this case, we are modeling the measurement error

in our function and it is unlikely that the function will be smooth. If we use too few basis

functions, K << N , to represent xi(t), then we may smooth out important characteristics

of the data.

2.2 Fitting a Function to Observations

After a basis system has been chosen, the number of basis functions and their corre-

sponding basis coefficients must be determined. For ease of notation, since the basis coef-

ficients for each subject are determined independently, we will drop the subscript i. Thus,

equation 2.1 can be written

xj = x(tj) + εj =
∑K

k=1 akφk(t) + εj, j = 1, . . . , N (2.4)
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where j denotes the observation point, N is the total number of observations, K is the

number of basis functions, a1, . . . , aK are the basis function coefficients, φ1, . . . , φK are the

basis functions, and εj is the error at observation point j.

This can be written in matrix form as

x = x(t) + ε = a′Φ + ε (2.5)

where x = (x1, . . . , xN)′, x(t) = (x(t1), . . . , x(tN))′, ε = (ε1, . . . , εN)′, Φ = (φ1(t), . . . , φK(t))

and a = (a1, . . . , aK)′.

The simplest strategy for estimating the vector of coefficients, a, for a given choice of

K basis functions, is to assume the errors are independent and normally distributed and to

minimize the least squares criterion:

SMSEE(x|a) = (x−Φa)′(x−Φa) (2.6)

This unweighted least squares criteria is only optimal if the residuals at all observation

points are normally distributed with constant variance. A more accurate approach would be

to use a weighted least squares fit. We can account for non stationary and autocorrelated

errors by including a weighting matrix W. In this case, the least squares criterion becomes:

SMSEE(x|a) = (x−Φa)′W(x−Φa), (2.7)

where W = Σ−1ε is the inverse of the residuals covariance matrix. The estimate for the vector

of coefficients is â = (Φ′WΦ)−1Φ′Wx.

A third method of fitting a function to the discrete observations is via a roughness

penalty. Using a high-dimensional basis with a roughness penalty will reduce the probability

that important features of the data are missed, which can occur if we use a basis set that is
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too small for the application. Adding a roughness penalty to equation 2.5 gives us

x = x(t) + λPEN2(x) + ε = a′Φ + λPEN2(x) + ε (2.8)

Once choice for the penalty function is PEN2(x) =
∫

[D2x(s)]2ds. This is the integrated

squared second derivative of the function and λ is a smoothing parameter. The penalty

term allows us to reduce the variation as much as we want to the solution of the differential

equation D2x(s). The best value for λ can be computed using cross-validation. The criterion

to be minimized takes the following form:

PENSSEλ(x|a) = (x−Φa)′W(x−Φa) + λPEN2(x) (2.9)

The expression for the estimated coefficient vector is

â = (Φ′WΦ + λPEN2(x))−1Φ′Wx (2.10)

The R package ”fda” [18] has the necessary functionality to create functional data

objects from discrete observations using any of the three methods discussed above. In the

following example, we look at the curve generation process using a set of simulated curve

data. This simulated data will also be used in the first case study in chapter 5.

2.3 Example

1000 curves were simulated from two different classes. Each class contained 500 curves

simulated using the following functions:

x1(t) = uh1(t) + (1− u)h2(t) + ε(t) (2.11)

x2(t) = uh1(t) + (1− u)h3(t) + ε(t) (2.12)
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where u and ε(t) are simulated uniform and standard normal random variables, respectively,

and

h1(t) = max[6− |t− 1|, 0], h2(t) = h1(t− 4), h3(t) = h1(t+ 4) (2.13)

The discrete observations that make up the curves were simulated at 101 equally spaced

points on the interval [1, 21]. Figure 2.2 shows one of the simulated curves. This is merely

the discrete observations joined piecewise, thus it lacks the smoothness that we expect to

see in a function.

Figure 2.2: Sample Curve

Figure 2.3 shows functional curves for the same data after it is converted to a functional

data object using the ”fda” package in R. In the top left panel, the data was fitted with a set

of 13 Fourier basis functions with a period equal to the interval of observation. In the right

panel, the data was fitted with a set of 13 fourth-order B-spline basis functions. The knots

were equally spaced at the observation times. The bottom left and right panels show the

functional curves produced using 45 Fourier and 45 B-spline basis functions, respectively.

The B-spline and Fourier basis sets appear to fit the data equally well for this particular

curve. The sum of squares of the residuals decreased from 1.1 to 0.96 when we increased the

number of basis functions form 13 to 45. By increasing the number of basis functions, we

8



Figure 2.3: Sample Functions

have made a trade-off between the fit of the curve and the smoothness of the curve, and in

doing so we have increased the chance of modeling measurement errors.

As a comparison, figure 2.4 shows the functional curves generated using 65 basis func-

tions and a penalty parameter to ensure smoothness. The SSE is slightly reduced for both

the Fourier and B-spline basis sets, but the effects of adding additional parameters will need

to be considered when we use these functions for logistic regression.

Figure 2.4: Sample Functions Generated with Roughness Penalty
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Chapter 3

Logistic Regression

Logistic regression is a method of fitting a regression curve when the response Y takes

one of only two possible values, i.e. the presence or absence of a characteristic of interest.

In this case, we could define

yi =


1 if the ith subject has the characteristic,

0 if the ith subject does not have the characteristic.

(3.1)

where yi is a realization of a random variable Yi that can take the values 1 and 0 with

probabilities πi and 1− πi, respectively.

3.1 Multivariable Predictors

In multivariable linear regression, predictive models take the following form

Yi =
∑N

j=0Xijβj + εi, i = 1, . . . , n (3.2)

where n is the number of subjects and N is the number of predictor variables. Yi is the

response of subject i, Xij is the ith subjects value of predictor j, βj is the jth regression

coefficient. The εi term allows for sources of variation considered extraneous, such as mea-

surement error, unimportant additional causal factors, and sources of nonlinearity. These

are assumed to be independently and identically distributed.

When Y is a binomial variable, instead of modeling Yi directly, we want to model the

Pr(Yi = 1|Xi), which will be denoted by πi. Substituting πi into the linear regression
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equation above gives the following:

πi =
∑p

j=0Xijβj + εi ≈
∑p

j=0Xijβj = β0 +Xβ (3.3)

However, πi only takes values on the interval [0, 1] and linear functions are unbounded. To

deal with this problem, we use the logit transform of πi, i.e. logit(πi) = log(πi/1 − πi), as

the response. This gives us the logistic regression model:

logit(πi) = log πi
1−πi = β0 +Xβ (3.4)

After logit regressing the πi on the covariates X, we will reverse the transformation to obtain

πi = expβ0+Xβ

1+expβ0+Xβ
(3.5)

Finally, classification of subjects into groups is made using the following simple rule: when

πi ≥ 0.5, we predict that Yi = 1 and when πi < 0.5, we predict that Yi = 0.

3.2 Functional Predictor

Functional logistic regression is used when the response is a binary variable and at

least one of the covariates is functional. In this case, we consider a functional analogue

of multivariable logistic regression analysis and replace the observed scalar covariates with

functional covariates. This also means that the parameter β will be a continuous function.

The conditional probability of the response Yi given the functional covariate Xi(t) is

Bernoulli(πi), giving us the following functional form of the logistic regression model:

πi = P [Yi = 1|Xi(t) = xi(t)] =
exp{β0+

∫
T xi(t)β(t)dt}

1+exp{β0+
∫
T xi(t)β(t)dt}

, i = 1, . . . , n (3.6)
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Taking the logit transformation gives the following equivalent expression:

li = log πi
1−πi = β0 +

∫
T
xi(t)β(t)dt (3.7)

This is a functional generalized linear model. The following key assumptions were made to

develop the model:

(1) The xi(t)
′s are a random sample of observations of a functional variable Xi(t)

(2) X and Y are defined on the same sample space

(3) X is in a separable Hilbert space L2
T with inner product < α, β >=

∫
T
α(t)β(t)dt

There are two issues of concern: (1) the functional form of xi(t) cannot be observed

continuously and (2) estimating the parameter function β(t) is not possible with a finite

number of observations. These issues can be handled if we assume that xi(t) and β(t) can

be expressed in terms of the same basis functions that span the space that the sample paths

xi(t) belong.[6] The basic concept is as follows:

(1) Let Φ = (φ1(t), . . . , φK(t))′ be a vector of K basis functions. Then

(a) xi(t) = a′iΦ, where ai = (ai1, . . . , aiK)′ are the sample path basis coefficients.

(b) β(t) = β′Φ, where β = (β1, . . . , βK)′ are the parameter function basis coefficients.

(2) li = β0 +
∫
T

a′iΦβ
′Φdt = β0 + a′iψjkβ, where ψjk =< φj, φk >

(3) L = (l1, . . . , ln)′ = 1β0 + AΨβ is the multiple logistic regression model where

(a) A is an (nxK) matrix of the sample path basis coefficients

(b) Ψ is an (KxK) matrix of the inner products of the basis functions.

(c) AΨ is the design matrix.

We can regress the log-odds of the response on the design matrix AΨ to find β̂, which

is an estimate of the parameter function β(t). Then we can convert β̂ into a function using

the same basis functions used to describe X.

Another issue that must be dealt with, when logistic regression is performed, is the high

multicollinearity of the covariates. This can cause inaccurate estimation of the parameter
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function β(t). To mitigate the multicollinearity issue, a PLS logit model that uses the logit

PLS components of the design matrix as covariates will be used. Details on the computation

of PLS components are covered in the next chapter.
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Chapter 4

Functional PLS Logistic Regression

Wold [20] introduced a PLS analysis for multivariate linear regression. In the analysis

he obtained a set of uncorrelated latent variables, he called factor scores, that takes into

account the relationship between the response and the predictor variables. He then fit a

regression model using the latent variables as covariates. PLS regression is an alternative

to principal component regression (PCR) for dealing with the multicollinearity issue. It is

generally believed that PLS is better suited for classification problems than PCR, since the

value of the response is considered in extracting PLS components.

Since Wold’s introduction of PLS regression, there have been numerous studies that

have looked to (1) improve PLS algorithms, (2) adapt PLS linear regression to the logistic

regression model, and (3) extend PLS logistic regression to include functional covariates. Of

particular interest to this thesis is the work of Escabias et al. [8], in which they propose a

functional PLS logit regression model to forecast a binary response variable from a functional

predictor.

4.1 Partial Least Squares

Consider the generalized linear model Y = Xβ + ε, where Y is an (n x 1) response

vector, X is an (n x N ) matrix of predictors, β is an (N x 1) vector of unknown coefficients,

and ε is an (n x 1) vector of errors. The errors are assumed to be normally distributed with

zero mean and constant variance σ2.

The least squares solution for the coefficient matrix β is given by

β = (X ′X)−1X ′Y (4.1)

14



When there are more variables than observations, X ′X is singular. One way to handle this

problem is by using a dimension reduction method, such as principal component regression

or partial least squares regression (PLS).

In PLS regression, we try to find a set of uncorrelated vectors to simultaneously de-

compose the predictor matrix X and the response vector Y , with the constraint that these

vectors must maximize the covariance between X and Y . These vectors form the columns

of what is called the scores matrix T and they span the column space of X. The predictor

matrix is decomposed as the product of T and a loading matrix P , such that X = TP ′.

Then the response Y is regressed on just the first few columns of T .

A popular PLS algorithm, SIMPLS by de Jong [7], is given below. Let S0 = X ′Y and

s be a non-negative integer less than or equal to the number of subjects n.

For h = 1, . . . , s
qh = dominant eigenvector of S ′h−1Sh−1
wh = Sh−1qh
th = Xwh
th = th − t̄h
wh = wh/‖th‖
th = th/‖th‖
ph = X ′th
qh = Y ′qh
uh = Y qh
vh = ph
if h > 1, then
vh = vh − V (V ′ph)
uh = uh − T (T ′uh)

end if
vh = vh/‖vh‖
Sh = Sh−1 − vh(v′hSh−1
W = [W,wh]

Append th, ph, qh, uh, vh to T, P,Q, U, V respectively
end for
B = WQ′

B0 = Ȳ

15



4.2 Functional Partial Least Squares

The functional linear regression model to predict a scalar response with a functional

predictor assumes that

Yi =
∫
T
Xi(t)β(t)dt+ εi, i = 1, . . . , n (4.2)

The data that we observe for the ith subject are {Yi, Xi(t), t ∈ T}, i = 1, . . . , n. X(t) is

a random curve which is observed for each subject and corresponds to a square integrable

stochastic process on a real interval T . The response variable Y is a real valued random

variable that is defined on the same probability space as X(t). Although it may be continuous

or discrete; in this thesis we consider the case were Y is a binomial random variable. β(t) is

a real-valued function and εi is the random error term.

Using the ordinary least squares method provides inconsistent estimates of β(t), and

thus functional regression on the principal components of X(t) or the partial least squares

components of X(t) and Y have been developed as an alternative. As with multivariable

PLS, the functional PLS method obtains a set of PLS components, (t1, . . . , ts) using an

iterative procedure. The PLS components are linear combinations of the predictor variables

that provide maximum covariance with the response. Details of an algorithm to find the

functional PLS components for the special case of logistic regression are given in the next

few sections.

4.3 Functional PLS Logistic Regression

Assume we have a data set of observations {Yi, xi(t)), t ∈ T}, where xi(t) is a random

sample of a functional curve Xi(t), each Yi ∈ {0, 1}, and T is the interval of observations.

A primary goal of this thesis is to develop a modified functional PLS logistic regression

algorithm that can be used to predict the response Yi with the following functional logistic
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regression model:

πi = P [Yi = 1|Xi(t) = xi(t)] =
exp{β0+

∫
T xi(t)β(t)dt}

1+exp{β0+
∫
T xi(t)β(t)dt}

, i = 1, . . . , n (4.3)

where β is the parameter function, n is the number of subjects, and πi is the conditional

probability that subject i will have a response Yi = 1, given the functional predictor Xi(t).

Further assume that we have represented the functional predictor as a linear combination

of basis functions {φ1, . . . , φK} and the parameter function is in the space spanned by the

set of basis functions. Then we have the following functional data components:

(1) Φ = (φ1(t), . . . , φK(t))′, the vector of K basis functions

(2) A, the (nxK) matrix of sample path basis coefficients

(3) Ψ, the (KxK) matrix of inner products of the basis functions

Escabias et al. [8] showed that under these conditions, the functional logistic regression

model is equivalent to the following multivariable logistic regression model

L = 1β0 + AΨβ = 1β0 +Hβ (4.4)

where L = (l1, . . . , ln) is an n x 1 vector, with li being the log-odds of the response of the ith

subject, β = (β1, . . . , βK)′ is the vector of parameters for the multivariable logistic model,

and H is the design matrix.

Our first goal is to extract PLS components, which we will denote by ti, from the design

matrix H. To do this, we must find uncorrelated linear combinations of Hi using a maximum

covariance criteria. The algorithm we will use to extract the PLS components is a modified

version of the method proposed by Escabias et al. [8]. Our modifications are based on power

of prediction statistics that are discussed in the next section.
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4.4 Power of Prediction Statistics

We considered modified functional PLS logistic regression algorithms that use the pre-

dictive power of the individual covariates, i.e. the columns of the design matrix H, to build

the PLS components, in hopes of improving the correct classification rate.

Mittlböck and Schemper [13] reviewed 12 psuedo-R2 measures and Menard [11] consid-

ered several others. The measures that we assessed in this thesis are McFadden’s R2, Efron’s

R2, Tjur’s coefficient of discrimination, and area under the receiver operator characteristic

(ROC) curve.

McFadden’s R2 uses the ratio of log-likelihoods to show the level of improvement over

the intercept-only model provided by the predictor. It is given by

R2 = 1− lnL̂(Mfull)

lnL̂(Mint)
(4.5)

where Mfull is the model with the predictor and Mint is the model without the predictor.

If the full model has no predictive information about the response, the likelihood value will

only be slightly larger than the likelihood of the intercept only model. Thus the ratio of the

two log-likelihoods will be close to 1, and R2 will be close to 0. If the full model explains

nearly all of the variation in the response, then the likelihood value for the full model will

be close to 1. In this case, the log-likelihood of the full model will be close to 0 and R2 will

be close to 1.

For Efron’s R2, the model residuals are squared, summed, and divided by the total vari-

ability in the response. This is equivalent to the squared correlation between the predicted

values and the actual values. It is given by

R2 = 1−
∑

(yi−πi)2∑
(yi−ŷ)2 (4.6)

where πi is the model predicted probability.
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Tjur’s coefficient of discrimination measures the difference between the expectations of

the distributions of successes and failures, that is

D = π̄1 − π̄0 (4.7)

where π̄1 and π̄0 denote the averages of fitted values for successes and failures, respectively.

The ROC curve is a plot of the true positive rate versus the false positive rate for the

different possible cut-points of a diagnostic test. It shows the tradeoff between sensitivity

and specificity and the closer the ROC curve comes to the diagonal of the ROC space, the

less accurate the test. Figure 4.1 is an example ROC curve.

Figure 4.1: Receiver Operator Characteristic Curve
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The area under the ROC curve (AUC) may be broadly interpreted as follows:

AUC = 0.5 useless

0.7 ≤ AUC < 0.8 acceptable

0.8 ≤ AUC < 0.9 excellent

AUC ≥ 0.9 outstanding

(4.8)

We chose to incorporate predictive power measures in our algorithm instead of goodness

of fit measures because our goal was to improve correct classification rate. After extensive

analysis, we found that all four power of prediction measure provided similar results in terms

of the classification error rates. Therefore we will only report the results obtained using the

AUC metric when we discuss the case studies in chapter 5.

4.5 PLS Components Extraction

As is the case for all PLS algorithms, the goal of component extraction is to find a

set of uncorrelated vectors that are linear combinations of the predictive variables X(t) and

maximize the covariance between the predictor and the response. This is done iteratively.

Extraction of 1st PLS component, t1:

(1) Logit regress Y on each Hj, j = 1, . . . , K

(a) Results of interest are the regression coefficients associated with Hj, denoted by

a1j

(b) If a1j is not significant, as determined by the predictive power measure, then set

a1j equal to zero. This ensures that only those covariates that predict the response are used

to build the PLS component.

(c) Form a (K x 1) vector of the regression coefficients; a1 = (a11 . . . a1K)′

(2) Set

t1 = a11H1+...+a1KHK
‖a1‖ = Ha1

‖a1‖ (4.9)
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Extraction of kth PLS component, tk, for k > 1:

(1) Logit regress Y on t1, . . . , tk−1 and each Hj, j = 1, . . . , K

(a) Results of interest are the regression coefficients associated with Hj, denoted by

akj

(b) If akj is not significant, as determined by the predictive power measure, then set

akj equal to zero.

(c) Form a (K x 1) vector of the regression coefficients; ak = (ak1 . . . akK)′

(2) In order to find a PLS component that is orthogonal to all previous PLS components,

linearly regress each significant Hj, identified in step (1), on t1, . . . , tk−1

(a) Primary result of interest is the (n x 1) vector of residuals, denoted by rk−1,j,

which will be used to form the PLS component tk in step (3).

(b) Also of interest are the regression coefficients associated with each ti, denoted by

p
(k−1)
ij . These coefficients will be needed to rewrite the final logit regression equation in terms

of the original covariates.

(c) Form an (n x K) matrix of the residuals; Rk−1 = (rk−1,1, . . . , rk−1,K)′

(3) Set

tk =
ak1rk−1,1+...+akKrk−1,K

‖ak‖
= Rk−1ak

‖ak‖
(4.10)

Note: Stop calculating PLS components when none of the akj’s are considered significant

when Y logit regressed on t1, . . . , tk−1 and xj. This will result in a set of s uncorrelated PLS

components, where s < K.

4.6 Regressing Response on PLS Components

The next step is to perform logistic regression of the log-odds of the response on the

extracted PLS components. The result is a set of regression coefficients, c0, c1, . . . , cs, where

s ≤ K. The regression equation in terms of the PLS components can be written as follows:

L̂ = c0 + c1t1 + . . .+ csts (4.11)
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If we let T = [t1 t2 . . . ts] and c = (c1 c2 . . . cs)
′, then we can write the equation in matrix

form

L̂ = 1c0 + Tc (4.12)

4.7 Regression Coefficients in Terms of Original Variables

Equation 4.12 gives us the log-odds in terms of the PLS components. For clearer inter-

pretability of the results and to allow prediction of class for similar data sets, we need to

rewrite the regression coefficients in terms of the original variables. Recall that

t1 = a11H1+...+a1pHK
‖a1‖ = Ha1

‖a1‖ (4.13)

is already written in terms of the original variables. For k > 1

tk =
ak1rk−1,1+...+akKrk−1,K

‖ak‖
= Rk−1ak

‖ak‖
(4.14)

where akj’s are the coefficients of Hj found by regressing the response on t1, . . . , tk−1 and

Hj, and Rk−1 = (rk−1,1, . . . , rk−1,p)
′ is the matrix of residuals.

We also know from step (2) of the algorithm, that

Hj = p
(k−1)
1j t1 + p

(k−1)
2j t2 + . . .+ pk−1(k−1,j)tk−1 + rk−1,j (4.15)

which can be rewritten as

rk−1,j = Hj − p(k−1)1j t1 − p(k−1)2j t2 − . . .− pk−1(k−1,j)tk−1 (4.16)

This expression can be substituted into equation 4.14 to give the PLS components in terms

of the original variables.
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The result is a matrix of parameter function coefficients, denoted by β̂. Finally, using

the same basis functions that were used to convert the discrete observations into functional

covariates X(t), we can convert the β̂’s into a parameter function, β(t).
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Chapter 5

Case Studies

5.1 Case Study 1: Two Class Curve Simulation

In this example, the simulated curves discussed in chapter 2 are used. Recall that we

have 1000 curves from two different classes and each class has 500 curves simulated using

the following functions:

x1(t) = uh1(t) + (1− u)h2(t) + ε(t) (5.1)

x2(t) = uh1(t) + (1− u)h3(t) + ε(t) (5.2)

where u and ε(t) are simulated uniform and standard normal random variables, respectively,

and

h1(t) = max[6− |t− 1|, 0], h2(t) = h1(t− 4), h3(t) = h1(t+ 4) (5.3)

The sample curves were simulated at 101 equally spaced points on the interval [1, 21]. The

response was a binary variable with Y = 0 for the first curve and Y = 1 for the second curve.

The simulated curves are shown in figure 5.1. The simulated curves were randomly divided

into a training set containing 800 curves (400 from each class) and a test set containing 200

curves.

In order to test the mfPLSLR algorithm, smooth curves through the discrete observa-

tions were generated using a set of 25 B-spline basis functions with knots equally spaced

on the interval [1, 21]. Area under the ROC curve (AUC) was used as a criterion during

extraction of the functional logit PLS components for the training data set. We set the

coefficient of a predictor variable to zero if AUC < 70 in the PLS extraction step of our
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Figure 5.1: Simulated Curves

algorithm, thus ensuring that PLS components were linear combinations of only predictors

with high predictive power. The extracted PLS components were used to find the logistic

regression parameter function, β(t), and the intercept. The parameter function is shown in

figure 5.2.

Then smooth curves were generated for the test data and these were used with the inter-

cept and β(t) to predict the class of each observation in the test data set. This procedure was

repeated 100 times and the mean error rate and standard deviation were calculated. Results

for our modified functional PLS algorithm (mfPLSLR) are shown in table 5.1. Also included

in the table for comparison purposes, are results obtained using an existing functional par-

tial least squares logit regression algorithm (fPLSLR), a functional principal component logit

regression algorithm (fPCLR), and a multivariable PLS logit regression algorithm (PLSLR).

The classification error rates are comparable for all of these methods, with the fPCLR

performing the best. We observed a slight improvement with our mfPLSLR algorithm when

compared to an existing fPLSLR algorithm.
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Figure 5.2: Logistic Regression Parameter Function

Method Error Rate Standard Deviation
mfPLSLR 0.025 0.083
fPLSLR 0.032 0.083
fPCLR 0.020 0.098
PLSLR 0.045 0.071

Table 5.1: Simulated Curves: Classification Error Rates

5.2 Case Study 2: Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) of the brain is a method for characterizing microstruc-

ture changes or differences with neuropathology (Alexander et al. [2]). One common DTI

measure is fractional anisotropy (FA), which indicates the degree of unequal diffusion prop-

erties along different axis. FA is a scalar value between zero and one, with a value of one

meaning that diffusion occurs only along one axis and is fully restricted along all other

directions. An FA value of zero means that diffusion is isotropic.
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5.2.1 Analysis of DTI - FA Data

The data set used for this example contains FA tract profiles from DTI data collected

at Johns Hopkins University and the Kennedy-Krieger Institute. The data set includes 382

DTI scans from a total of 142 subjects: 100 with multiple sclerosis (MS) and 42 healthy

subjects. The FA tract profiles, measured along the corpus callosum, were sampled on a grid

of 93 positions and they form relatively smooth functions. In addition to the tract profiles,

each subjects MS status (coded 0 for healthy and 1 for MS) is included in the data. Figure

5.3 shows the FA tract profiles for the two groups. The black line is the mean curve for each

group.

Figure 5.3: FA Tracts

Several of the subjects had multiple DTI scans during the study and there were more

MS patients that healthy controls in the data set. In order to obtain a balanced design for

our analysis, a random sample of 42 of the MS subjects were selected and only the first DTI

scan from each subject was used. The resulting data set contained 84 DTI scans with each

subjects MS status.
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The goal was to properly classify each subject as either an MS subject or a healthy

control using a functional form of the FA tract profiles as the predictor. In our analysis we

assessed not only the effectiveness of our mfPLSLR algorithm; but also the effect that basis

type, number of basis functions used, and the use of curve smoothing have on classification

error rates. The results are shown in tables 5.2 and 5.3.

Method Basis Functions Smoothing Error Rate Standard Deviation
mfPLSLR 15 None 0.238 0.083
mfPLSLR 45 None 0.249 0.076
mfPLSLR 63 Roughness Penalty 0.239 0.083
fPLSLR 15 None 0.243 0.097
fPLSLR 45 None 0.237 0.082
fPLSLR 63 Roughness Penalty 0.248 0.068
fPCLR 15 None 0.265 0.076
fPCLR 45 None 0.280 0.081
fPCLR 63 Roughness Penalty 0.279 0.087

Table 5.2: DTI-FA: Classification Error Rates Using B-spline Basis Functions

For this data set, the lowest error rates were obtained when using B-splines for the basis

functions and both fPLSLR models performed better than the fPCLR model. However,

the differences in the error rates between our mfPLSLR algorithm and an existing fPLSLR

algorithm were not statistically significant. It was also noted that neither the number of basis

functions nor the implementation of smoothing via a roughness penalty had a significant

effect on error rates.
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Method Basis Functions Smoothing Error Rate Standard Deviation
mfPLSLR 15 None 0.276 0.073
mfPLSLR 45 None 0.277 0.075
mfPLSLR 63 Roughness Penalty 0.277 0.084
fPLSLR 15 None 0.283 0.075
fPLSLR 45 None 0.284 0.082
fPLSLR 63 Roughness Penalty 0.288 0.086
fPCLR 15 None 0.284 0.084
fPCLR 45 None 0.268 0.080
fPCLR 63 Roughness Penalty 0.269 0.087

Table 5.3: DTI-FA: Classification Error Rates Using Fourier Basis Functions
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Chapter 6

Conclusions and Recommendations

In this thesis we have considered several modifications to the functional PLS logistic

regression model in an attempt to decrease the error rate. We found that using power

of prediction measures, such as McFadden’s R2 or AUC, as criteria in extracting the PLS

components, reduced the number of components needed in the final model. However, the

classification error rate for our modified fPLSLR model was not significantly different from

the error rate obtained using existing fPLSR models.

Also of note is the fact that the various power of prediction measures all gave similar

results. We found that the optimum cutoff criteria needed for each criteria were slightly

different, but once the criteria were optimized for the each metric, the prediction error rates

were similar.

Another goal was to analyze the effect that different types and numbers of basis functions

used for curve generation would have on the classification error rate. We found that the use

of B-spline basis functions yielded a slightly lower classification error rate for our fPLSLR

algorithm, when compared to Fourier basis functions. The number of basis functions used

and the use of a roughness penalty in creating the functional predictors did not have a

significant effect on the classification error rate.

The data sets analyzed in this thesis are considered relatively smooth and do not contain

outliers. Since our algorithm could be considered a form of variable selection, it would

be interesting to see if outlying observations would be filtered out in the PLS component

extraction process.
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Appendix

# Classification using a functional PLS logistic regression algorithm

# Fractional anisotropy (FA) tract profiles from diffusion tensor imaging (DTI)

# Data collected at JHU and the Kennedy-Krieger Institute

# 382 DTI scans from 142 patients:

# 100 with multiple sclerosis (MS)

# 42 healthy controls

# FA profiles obtained along the corpus callosum (CCA)

library(fda)

library(pls)

library(LogisticDx)

library(pscl)

library(binomTools)

CCA <- read.table("~/Desktop/AUMasters/DTI/FAcca.txt", header=TRUE,sep="\t")

CCA <- t(t(CCA))

CCA <- na.omit(CCA)

index <- seq(1,93)

MS1 <- matrix(1,nrow=42)

MS0 <- matrix(0,nrow=99)

MS <- rbind(MS1,MS0)

profiles <- cbind(CCA,MS)

#par(mfrow=c(1,2))

#matplot(index,t(CCA[1:42,1:93]),type=’l’,main=’MS = Yes’,

# xlab=’CCA Tract Location’,ylab=’FA-CCA’,col=’red’)

#matplot(index,t(CCA[43:141,1:93]),type=’l’,main=’MS = No’,

# xlab=’CCA Tract Location’,ylab=’FA-CCA’,col=’blue’)

#par(mfrow=c(1,1))

X <- CCA[1:84,]

Y <- factor(MS[1:84])

nvar <- ncol(X)

X1 <- X[1:42,]

X0 <- X[43:84,]
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Y1 <- Y[1:42]

Y0 <- Y[43:84]

nobs <- nrow(X)

obs <- nrow(X1)

########################################################################

Error <- NULL

Betacoefs <- NULL

# Calculate sampling distribution of CCR and Error rate

for (s in 1:100) { # set number of sampling runs

Prob <- NULL

#Split data into training and test data

# 64 observations randomly assigned to training set

train <- sample(1:obs,32)

X0train <- NULL

X0test <- NULL

X1train <- NULL

X1test <- NULL

for(i in 1:obs) {

if(i %in% train) {

X0jl <- NULL

X1jl <- NULL

for(l in 1:nvar) {

X0jl <- cbind(X0jl,X0[i,l])

X1jl <- cbind(X1jl,X1[i,l])

}

X0train <- rbind(X0train,X0jl)

X1train <- rbind(X1train,X1jl)

}

else{

X0jl <- NULL

X1jl <- NULL

for(l in 1:nvar) {

X0jl <- cbind(X0jl,X0[i,l])

X1jl <- cbind(X1jl,X1[i,l])

}

X0test <- rbind(X0test,X0jl)

X1test <- rbind(X1test,X1jl)

}

}

Xtrain <- rbind(X0train,X1train)

Xtest <- rbind(X0test,X1test)

train <- rbind(cbind(X0train,0),cbind(X1train,1))

test <- rbind(cbind(X0test,0),cbind(X1test,1))

Ytrain <- factor(train[,94])

Ytest <- factor(test[,94])
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################################################################################

# Generate functional data curves

# Each observation curve will be a linear combination of the basis functions

rangeval <- c(1,93)

# Use a roughness penalty

norder <- 4

deriv <- 2

lambda <- .01

nbasis <- length(index) + norder - 2

evalbasis = create.bspline.basis(rangeval, nbasis, norder, index) # use B-spline basis

#evalbasis = create.fourier.basis(rangeval, nbasis, 93) # use Fourier basis

basismat <- eval.basis(index,evalbasis)

curvefdPar = fdPar(evalbasis, deriv, lambda)

curvefd = smooth.basis(index,t(Xtrain),curvefdPar)$fd

#plotfit.fd(t(Xtrain)[,1], index, curvefd[1],lty=1, lwd=2,

# main="Penalty B-Spline Basis",xlab=’Time’,ylab=’X(t)’)

A <- t(curvefd$coefs) # sample path basis coefficients

PSI <- crossprod(basismat) # coefficients of basis functions at knots

H <- A %*% PSI # Design matrix

I <- diag(nbasis)

#########################################################################

# Compute the modified functional PLS logit regression (mFPLSLR) model

# Computation of a set of PLS components

# Step 1: First logit PLS component

delta <- NULL

gofp <- NULL

auc <- NULL

T <- NULL

Ti <- NULL

Tj <- NULL

z <- 0.01

for (j in 1:nbasis) {

logit.fit <- glm(Ytrain ~ H[,j],family=binomial)

# aucj <- gof(logit.fit,plotROC=TRUE)$auc[1] # calculate AUC

# auc <- rbind(auc,aucj)

PseudoR2c <- Rsq(logit.fit)

Tjurj <- PseudoR2c[8] # calculate Tjur’s coefficient

Tjur <- rbind(Tjur,Tjurj)

deltaj <- logit.fit$coefficients[2]

sedeltaj <- summary(logit.fit)$coefficients[2,2]

pvaluej <- summary(logit.fit)$coefficients[2,4]
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# if(pvaluej > z) deltaj <- 0 # use pvalue criteria

# if(aucj < 70) deltaj <- 0 # use AUC criteria

if(Tjurj < .2) deltaj <- 0 # use Tjur criteria

delta <- rbind(delta,deltaj)

}

V1 <- delta/norm(delta,type=’F’)

V <- V1

T1 <- H %*% V1

################################################################################

# 2nd logit PLS component

delta <- NULL

R <- NULL

P1 <- NULL

for (j in 1:nbasis) {

logit.fit2 <- glm(Ytrain ~ H[,j] + T1,family=binomial)

# aucj <- gof(logit.fit2,plotROC=TRUE)$auc[1] # calculate AUC

# auc <- rbind(auc,aucj)

PseudoR2c <- Rsq(logit.fit2)

Tjurj <- PseudoR2c[8] # calculate Tjur’s coefficient

Tjur <- rbind(Tjur,Tjurj)

deltaj <- logit.fit$coefficients[2]

sedeltaj <- summary(logit.fit)$coefficients[2,2]

pvaluej <- summary(logit.fit)$coefficients[2,4]

deltaj <- logit.fit2$coefficients[2]

sej <- sqrt(diag(vcov(logit.fit2)))

sedeltaj <- sej[2]

pvaluej <- summary(logit.fit2)$coefficients[2,4]

# if(pvaluej > z) deltaj <- 0 # use pvalue criteria

# if(aucj < 70) deltaj <- 0 # use AUC criteria

if(Tjurj < .2) deltaj <- 0 # use Tjur criteria

delta <- rbind(delta,deltaj)

}

V2 <- delta/norm(delta,type=’F’)

V <- cbind(V,V2)

for (j in 1:nbasis) {

linreg.fit <- lm(H[,j] ~ T1 - 1)

Rj <- t(t(linreg.fit$residuals))

p1j <- linreg.fit$coefficients[1]

R <- cbind(R,Rj)

P1 <- rbind(P1,p1j)

}

D1 <- I - V1 %*% t(P1)

T2 <- H %*% D1 %*% V2

T <- cbind(T1,T2)
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###################################################################

# 3rd logit PLS component

delta <- NULL

R <- NULL

V3 <- NULL

P21 <- NULL

P22 <- NULL

for (j in 1:nbasis) {

logit.fit3 <- glm(Ytrain ~ H[,j] + T1 + T2,family=binomial)

# aucj <- gof(logit.fit3,plotROC=FALSE)$auc[1]

# auc <- rbind(auc,aucj)

PseudoR2c <- Rsq(logit.fit3)

Tjurj <- PseudoR2c[8] # calculate Tjur’s coefficient

Tjur <- rbind(Tjur,Tjurj)

deltaj <- logit.fit3$coefficients[2]

sej <- sqrt(diag(vcov(logit.fit3)))

sedeltaj <- sej[2]

pvaluej <- summary(logit.fit3)$coefficients[2,4]

# if(pvaluej > z) deltaj <- 0 # use pvalue criteria

# if(aucj < 70) deltaj <- 0 # use AUC criteria

if(Tjurj < .2) deltaj <- 0 # use Tjur criteria

delta <- rbind(delta,deltaj)

}

V3 <- delta/norm(delta,type=’F’)

V <- cbind(V,V3)

for (j in 1:nbasis) {

linreg.fit <- lm(H[,j] ~ T1 + T2 - 1)

Rj <- t(t(linreg.fit$residuals))

p21j <- linreg.fit$coefficients[1]

p22j <- linreg.fit$coefficients[2]

R <- cbind(R,Rj)

P21 <- rbind(P21,p21j)

P22 <- rbind(P22,p22j)

}

D21 <- I - V1 %*% t(P21)

D22 <- V2 %*% t(P22)

T3 <- H %*% (D21 - D1 %*% D22) %*% V3

T <- cbind(T,T3)

###################################################################

# Logit regression fitting of the response on the PLS components

logit.fit21 <- glm(Ytrain ~ T1,family=binomial)

int <- logit.fit21$coefficients[1]

t1coef <- logit.fit21$coefficients[2]

#t2coef <- logit.fit21$coefficients[3]
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#t3coef <- logit.fit21$coefficients[4]

pred <- round(logit.fit21$fitted.values,digits=2)

pvalueT1 <- summary(logit.fit21)$coefficients[2,4]

pvalueT <- rbind(pvalueT,pvalueT1)

# Find logit regression coefficients in terms of orginal variables

# Calculation of values of Xcoef depend on the number of PLS components used

Xcoef <- (t1coef*V1)

#Xcoef <- (t1coef*V1 + t2coef*D1 %*% V2)

#Xcoef <- (t1coef*V1 + t2coef*D1 %*% V2 + t3coef * (D21 - D1 %*% D22) %*% V3)

# Calculate parameter function beta(t)

betahat <- Xcoef

beta <- fd(betahat, evalbasis)

betacoefsj <- matrix(beta$coefs,nrow=1)

Betacoefs <- rbind(Betacoefs,betacoefsj)

plot(beta, lty=1, lwd=2, col=1,main="Parameter Function",xlab=’CCA Tract Location’,ylab=’Beta’)

# Predict response for Xtest

curvefdtest = smooth.basis(index,t(Xtest),curvefdPar)$fd # Use with roughness penalty

#plotfit.fd(t(Xtest)[,1], index, curvefdtest[1],lty=1, lwd=2,

# main="Penalty B-Spline Basis",xlab=’Time’,ylab=’X(t)’)

Atest <- t(curvefdtest$coefs)

Htest <- Atest %*% PSI

one <- matrix(1,nrow=nrow(Htest))

Lhat <- int*one + Htest %*% betahat

Prob1 <- 1/(1 + exp(Lhat))

Prob2 <- exp(Lhat)/(1 + exp(Lhat))

# Check classification accuracy

Ypredict <- factor(round(Prob2,digits=0))

CC <- 0

for (i in 1:length(Ytest)) {

if(Ytest[i] == Ypredict[i]) CC <- CC + 1

}

CCR <- CC/length(Ytest)

ER <- 1 - CCR

Error <- rbind(Error,ER)

}

####################################################################

# Examine sampling distribution of Error

Errorrate <- mean(Error)

Errorsd <- sd(Error)

hist(Error)
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