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Abstract

Techniques are presented for finding homeomorphisms between generalized inverse lim-

its, including a generalization of techniques introduced by Smith and Varagona, and a char-

acterization in terms of category theory.
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Chapter 0

Introduction

Mahavier introduced what later became known as generalized inverse limits in [10], in

which several results that hold for traditional inverse limits of compact metric spaces using

continuous bonding maps are extended to the case where each factor space is the unit interval

and each “bonding map” is not a map at all, but a closed subset of [0, 1]× [0, 1]. Subsequent

work by Mahavier with Ingram (see [4], [5]) allowed the factor spaces to be arbitrary compact

metric spaces and reframed the bonding relations as upper semi-continuous set-valued maps.

The work presented here shows there is value in Mahavier’s original idea of viewing the

“bonding maps” as relations.

In [13], Smith and Varagona showed that traditional inverse limits with factor spaces the

unit interval and “N-type” bonding maps are homeomorphic to a certain class of generalized

inverse limits. They showed this by modifying a technique Baldwin used in [1], showing two

spaces are homeomorphic by constructing an auxiliary space with all but the initial factor

space finite (and not Hausdorff in general), to which each of the two spaces can be shown

to be homeomorphic. The work presented here extends the work of Smith and Varagona

by giving a general set of conditions under which the technique can be applied, worked out

jointly between B and Smith. Additionally, the solenoid is an example where an inverse

limit is has a group structure compatible with the topology. It is shown that the techniques

of S and V can be applied to topological groups under certain circumstances to establish a

topological group isomorphism. This is demonstrated in the case of the solenoid.

Finally, there has been interest (see for example [2]) in characterizing generalized inverse

limits in terms of category theory in such a way that generalized inverse limits are limits

in the category theoretical sense. We give such a characterization in terms of well-known
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categories, which has the property that taking generalized inverse limits is functorial, and

has a nice adjoint functor. This characterization relies on viewing the bonding relations in

a generalized inverse limit as a topological space in its own right, similar to how Mahavier

originally viewed them as noted above.
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Chapter 1

Background

The following are well known theorems in general topology and continuum theory.

Proofs can be found in [7], [8], [12], and [3].

Theorem 1.1. If X is compact and Y is Hausdorff and ϕ : X → Y is a continuous bijection,

then ϕ is a homeomorphism.

Definition Let I be a set, and for each i ∈ I, let Xi be a topological space. Define
∏

i∈I Xi

to be the space having underlying set all functions x such that x(i) ∈ Xi for each i ∈ I, and

topology generated by basis
∏

i∈I Ui, where Ui is an open subset of Xi for each i ∈ I, and

Ui = Xi for all but finitely many i ∈ I. x(i) is typically written xi.

Definition For each i ∈ ω, let Xi be a topological space and fi : Xi+1 → Xi be a continuous

function. Define lim
←−

f to be the subspace of
∏

i∈ωXi with underlying set {x ∈
∏

i∈ωXi |

fi(xi+1) = xi for all i ∈ ω}.

Definition For each i ∈ ω, let Xi be a topological space and ri be a subset of Xi ×Xi+1.

Define lim
←−

r to be the subspace of
∏

i∈ωXi with underlying set {x ∈
∏

i∈ωXi | (xi, xi+1) ∈

ri for all i ∈ ω}. We will occasionally also use the notation lim
←−
{ri}i∈ω for lim

←−
r.

Theorem 1.2. For each i ∈ ω let Xi be a compact space. Then
∏

i∈ωXi is compact. More-

over, if for each i ∈ ω fi : Xi+1 → Xi is a continuous function, then lim
←−

f is compact.

Theorem 1.3. For each i ∈ ω let Xi be a compact space and ri be a closed subset of

Xi ×Xi+1. Then lim
←−

r is compact.
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Theorem 1.4. Let each of X and Y be a topological space, f : X → Y be a continuous

function, U be a subset of X, and V be a subset of Y such that f [U ] ⊆ V . Then f |U is a

continuous function with respect to U and V with the subspace topologies.

Theorem 1.5. For each i ∈ ω let each of Xi and Yi be a topological space, and ϕi : Xi → Yi

be a continuous function. Then ϕ :
∏

i∈ωXi →
∏

i∈ω Yi defined by ϕ(x)i = ϕi(xi) for each

i ∈ ω, is continuous. Moreover, if for each i ∈ ω, ri is a subset of Xi × Xi+1 and si is a

subset of Yi × Yi+1 such that for each x ∈ lim
←−

r, ϕ(x) ∈ lim
←−

s, then ϕ restricted to lim
←−

r is

continuous into lim
←−

s.

Definition Suppose each of X and Y is a topological space and r is a subset of X×Y . The

statement that r is upper semi-continuous means for each x ∈ X, {b | (x, b) ∈ r} is closed,

and if V is an open subset of Y such that {b | (x, b) ∈ r} ⊆ V then there is an open subset

U of X containing x such that {b | ∃u ∈ U such that (u, b) ∈ r} ⊆ V .

Theorem 1.6. Let r be a subset of X × Y such that Y is compact and regular. Then r is

upper semi-continuous if and only if r is closed under the product topology.

Theorem 1.7. For each i ∈ ω let Xi be a group. Then
∏

i∈ωXi is a group under the induced

operation (xy)i = xiyi for each i ∈ ω.
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Chapter 2

Finite Domain Spaces

2.1 Definitions

Definition For each i ∈ ω let Xi be a topological space and ri be a subset of Xi ×Xi+1 (ri

thus can be viewed as a relation). Define lim
←−

r to be the subspace of
∏

i∈ωXi to which an

element x of
∏

i∈ωXi belongs only in the case that for each i ∈ ω, (xi, xi+1) ∈ ri. We will

view an element x of the product as a function from ω into the corresponding factor space,

but will denote x(i) by xi.

Remark This is equivalent to the definition of a generalized inverse limit space. Here we

have chosen to view each bonding map ri as a subset of Xi×Xi+1 (note the indexing by the

domain factor space) rather than a set valued function, which allows us to view the bonding

map as a topological space in its own right. This is in the spirit of how Mahavier defined

generalized inverse limits originally in [10]. We have a choice of viewing ri as a subset of

Xi × Xi+1 or as a subset of Xi+1 × Xi. We have chosen to go counter to the previous sec-

tion since it seems more natural to proceed forwards then backwards, all else being equal.

Additionally, we will be concerned with the case when a certain subset of ri is a function,

whereas if ri were viewed as a subset of Xi+1 × Xi, then a certain subset of r−1i would be

required to be a function.

Before continuing, we establish some notation for use with relations. For a relation r and a

set A, define r[A] = {b | ∃a ∈ A such that (a, b) ∈ r}. The square bracket notation is used

to differentiate the image of sets from the operation on an element denoted by parentheses
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(in the case of functions). If the set A is a singleton, for example {x}, we will omit the

square brackets and write r{x}.

2.2 Conditions Which Ensure Limits are Homeomorphic

We intend to examine non-Hausdorff spaces that induce a Hausdorff limit. The following

condition is sufficient to ensure a limit is Hausdorff.

Definition For each i ∈ ω let Xi be a topological space and ri be a subset of Xi×Xi+1. We

say (X, r) is subsequently separable if for each i ∈ ω, each p ∈ Xi, and each pair a, b ∈ ri{p}

such that a 6= b, there are disjoint open subsets of Xi+1 separating a and b.

Lemma 2.2.1. For each i ∈ ω, let Xi be a topological space such that X0 is Hausdorff, and ri

be a subset of Xi×Xi+1 such that (X, r) is subsequently separable. Then lim
←−

r is Hausdorff.

Proof. Let each of u and v be an element of lim
←−

r, such that there do not exist disjoint open

sets separating them. X0 is a Hausdorff space, so if u0 6= v0, basic open subsets of lim
←−

r

can be constructed separating u and v. Thus u0 = v0. Proceeding by induction, let i be

in ω such that i > 0 and suppose that for all j < i, uj = vj. Note that ui ∈ ri{ui−1} and

vi ∈ ri{vi−1} = ri{ui−1}. If ui and vi are distinct, then since both are in ri{ui−1} and (X, r)

is subsequently separable, there are basic open subsets U and V of Xi separating ui and vi.

So basic open subsets of lim
←−

r can be constructed separating u and v. This contradicts our

assumption, so ui = vi. So by induction, for all i ∈ ω, ui = vi, and thus u = v. So lim
←−

r is

Hausdorff.

Remark We will adopt the habit of defining functions between limit spaces induced by

functions between the factor spaces. Henceforth if we have a limit space lim
←−

r and indexed

functions {ϕi : Xi → Yi}i∈ω, we will define ϕ to be the function with domain lim
←−

r such that

for each x ∈ lim
←−

r, ϕ(x) is the element of
∏

i∈ω Yi such that for each i ∈ ω, ϕ(x)i = ϕi(xi).

Our typical situation can be visualized as below:
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· · · ri−1 // Xi
ri //

ϕi

��

Xi+1
ri+1 //

ϕi+1

��

· · ·

· · · si−1 // Yi
si // Yi+1

si+1 // · · ·

Where the arrows between the ri’s and si’s point from the first coordinate space to the

second coordinate space in each case.We will call such a system a generalized limit system.

Definition For each i ∈ ω let each of Xi and Yi be a topological space, ri be a subset of

Xi ×Xi+1, si be a subset of Yi × Yi+1, and ϕi : Xi → Yi be a continuous function. We say

(X,Y, r, s, ϕ) is a generalized limit system.

It will become clear that if we desire lim
←−

r and lim
←−

s to be homeomorphic, we want the above

diagram to commute. In other words, we will desire that for each i ∈ ω, ϕi+1 ◦ ri = si ◦ ϕi

using the natural definition of composition of relations.

Definition A generalized limit system (X,Y, r, s, ϕ) is said to be commutative if ϕi+1 ◦ri =

si ◦ ϕi for each i ∈ ω.

Lemma 2.2.2. Let (X,Y, r, s, ϕ) be a generalized limit system such that for each i ∈ ω,

ϕi+1 ◦ ri ⊆ si ◦ ϕi. Then for each x ∈ lim
←−

r, ϕ(x) ∈ lim
←−

s.

Proof. Let x be in lim
←−

r and i be in ω. Then:

(xi, xi+1) ∈ ri and by the definition of ϕi+1, (xi+1, ϕi+1(xi+1)) ∈ ϕi+1

=⇒ (xi, ϕi+1(xi+1)) ∈ ϕi+1 ◦ ri ⊆ si ◦ ϕi

=⇒ ∃q such that (xi, q) ∈ ϕi and (q, ϕi+1(xi+1)) ∈ si

=⇒ q = ϕi(xi) and (q, ϕi+1(xi+1)) ∈ si

=⇒ (ϕi(xi), ϕi+1(xi+1)) ∈ si

=⇒ (ϕ(x)i, ϕ(x)i+1) ∈ si.
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So for each x ∈ lim
←−

r, ϕ(x) ∈ lim
←−

s.

Another condition that will be important is that when we consider only those pairs in ri

whose second coordinate lies in a certain range delineated by ϕi+1, we have a function.

Notationally, for a relation r and a set B, we denote by r|B the set {(a, b) ∈ r | b ∈ B},

which mirrors the notation for restriction of the domain of a function.

Definition Let r be a subset of X × Y and ϕ : Y → Z be a function. The statement that

r is function decomposable relative to ϕ means for each z ∈ Z, r|ϕ−1{z} is a function.

Lemma 2.2.3. Let (X,Y, r, s, ϕ) be a generalized limit system such that ϕ0 is an injection

and for each i ∈ ω, ri is function decomposable relative to ϕi+1. Then ϕ is an injection.

Proof. Let each of u and v be in lim
←−

r such that ϕ(u) = ϕ(v).

ϕ0(u0) = ϕ(u)0 =ϕ(v)0 = ϕ0(v0)

=⇒ u0 =v0.

Proceeding by induction, suppose that i ∈ ω, i > 0, and for all j < i, uj = vj.

ui =ri−1|ϕ
−1
i {ϕi(ui)}(ui−1) = ri−1|ϕ

−1
i {ϕ(u)i}(ui−1)

=ri−1|ϕ
−1
i {ϕ(v)i}(vi−1) = ri−1|ϕ

−1
i {ϕi(vi)}(vi−1) = vi.

So by induction, ui = vi for all i ∈ ω and thus u = v. So ϕ is an injection.

Lemma 2.2.4. Let (X,Y, r, s, ϕ) be generalized limit system such that ϕ0 is a surjection

and for each i ∈ ω, ri is function decomposable relative to ϕi+1 and si ◦ϕi ⊆ ϕi+1 ◦ ri. Then

ϕ is a surjection.
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Proof. Let y be in lim
←−

s. Define x inductively as follows. Since ϕ0 is a surjection, ϕ−10 {y0}

is nonempty, so there is an x0 ∈ ϕ−10 {y0}. Let i be in ω such that i > 0 and suppose that

for all j < i, ϕj(xj) = yj. Note that:

(yi−1, yi) ∈ si−1 and (xi−1, yi−1) ∈ ϕi−1

=⇒ (xi−1, yi) ∈ si−1 ◦ ϕi−1 ⊆ ϕi ◦ ri−1

=⇒ ∃b such that (xi−1, b) ∈ ri−1 and (b, yi) ∈ ϕi

⇐⇒ ∃b such that (xi−1, b) ∈ ri−1 and b ∈ ϕ−1i {yi}

⇐⇒ ∃b such that (xi−1, b) ∈ ri−1|ϕ
−1
i {yi}

⇐⇒ xi−1 ∈ dom(ri−1|ϕ
−1
i {yi}).

So define xi = ri−1|ϕ
−1
i {yi}(xi−1). Then:

ϕ(x)i = ϕi(xi) = ϕi(ri−1|ϕ
−1
i {yi}(xi−1)) ⊆ ϕi[ϕ

−1
i {yi}] = {yi}.

So ϕ(x)i = yi. Since this is true for all i ∈ ω, ϕ(x) = y. So ϕ is surjection.

Theorem 2.1. Let (X,Y, r, s, ϕ) be a commutative generalized limit system such that lim
←−

r

is compact, Y0 is Hausdorff, (Y, s) is subsequently separable, ϕ0 is a bijection, and ri is

function decomposable relative to ϕi+1. Then ϕ is a homeomorphism.

Proof. Since Y0 is Hausdorff and (Y, s) is subsequently separable, lim
←−

s is Hausdorff by

Lemma 2.2.1. Since (X,Y, r, s, ϕ) is commutative, we have that for each i ∈ ω, ϕi+1 ◦

ri ⊆ si ◦ ϕi, so by Lemma 2.2.2, for each x ∈ lim
←−

r, ϕ(x) ∈ lim
←−

s. Since for each i ∈ ω,

ϕi is continuous, ϕ is continuous. Since ϕ0 is an injection and ri is function decomposable

relative to ϕi for each i ∈ ω, by Lemma 2.2.3, ϕ is an injection. Since ϕ0 is a surjection and

(X,Y, r, s, ϕ) is commutative, we have that for each i ∈ ω, si ◦ ϕi ⊆ ϕi+1 ◦ ri. ri is function

decomposable relative to ϕi+1 for each i ∈ ω, so by Lemma 2.2.4, ϕ is a surjection. Since lim
←−

r

is compact, lim
←−

s is Hausdorff, and ϕ is a continuous bijection, ϕ is a homeomorphism.
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2.3 An Induced Limit Space

For the following, let Xi be a topological space for each i ∈ ω and ri be a subset of

Xi × Xi+1, from which we form the limit space lim
←−

r. There is a natural homeomorphism

between this space and another limit space whose factor spaces are the ri’s.

For each i ∈ ω, define ti to be the subset of ri × ri+1 to which ((a, b), (c, d)) belongs only in

case b = c.

When a graph is available for each ri, we can use the following method to visualize the

relation ti.

We depict the graph of ri horizontally next to the graph of r−1i+1. An ordered pair (a, b)

from ri is related to an ordered pair (c, d) from ri+1 if and only if a horizontal line can be

drawn connecting (a, b) and (d, c) in the depiction.

This is shown below for a situation where all the ri’s are the same.
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The horizontal line indicates that (29
64
, 9
16

) ∈ ri and ( 9
16
, 3
8
) ∈ ri+1 are related by ti.

For each i ∈ ω, let φi : ri → Xi be the function so that for each (a, b) ∈ ri, φi(a, b) = a.
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Define φ : lim
←−

t→ lim
←−

r to be the function defined so that for each w ∈ lim
←−

t and each i ∈ ω,

φ(w)i = φi(wi).

Theorem 2.2. φ is a homeomorphism.

Proof. For each i ∈ ω, φi is continuous since it is a projection. So φ is continuous.

Claim. Let w be in lim
←−

t. Then φ(w) ∈ lim
←−

r.

Proof. For each i ∈ ω, φ(w)i = φi(wi) ∈ Xi. For each i ∈ ω, let wi = (a, b) and wi+1 = (c, d).

((a, b), (c, d)) = (wi, wi+1) ∈ ti, so b = c. We have that

(φ(w)i, φ(w)i+1) = (φi(wi), φi+1(wi+1)) = (φi(a, b), φi(c, d)) = (a, c) = (a, b) = wi ∈ ri.

So φ(w) ∈ lim
←−

r.

Claim. φ is a surjection.

Proof. Let y be in lim
←−

r. Define w so that for each i ∈ ω, wi = (yi, yi+1). Since y ∈ lim
←−

r,

wi = (yi, yi+1) ∈ ri. wi = (yi, yi+1) and wi+1 = (yi+1, yi+2), so (wi, wi+1) ∈ ti. Thus w ∈ lim
←−

t.

For each i ∈ ω, we have that φ(w)i = φi(wi) = φi(yi, yi+1) = yi. So φ(w) = y. So φ is a

surjection.

Claim. φ is an injection.

Proof. Let each of w and y be in lim
←−

t so that φ(w) = φ(y). Let i be in ω and let wi = (a, b),

wi+1 = (b, c), yi = (t, u), and yi+1 = (u, v). Then

a = φi(a, b) = φi(wi) = φ(w)i = φ(y)i = φi(yi) = φi(t, u) = t

and

b = φi+1(b, c) = φi+1(wi+1) = φ(w)i+1 = φ(y)i+1 = φi+1(yi+1) = φi+1(u, v) = u.

11



So wi = (a, b) = (t, u) = yi. Since this is true for all i ∈ ω, w = y. So φ in an injection.

Claim. φ is open.

Proof. Let U =
∏

i∈ω(Ui × Vi+1) be a basic open subset of
∏

i∈ω ri, so U ∩ lim
←−

t is an open

subset of lim
←−

t. Note for cofinitely many i, Ui×Vi+1 = Xi×Xi+1, so Ui = Xi and Vi+1 = Xi+1.

Let w be in U ∩ lim
←−

t. Then for each i ∈ ω, wi = (a, b) for some (a, b) ∈ Ui × Vi+1

and wi+1 = (c, d) for some (c, d) ∈ Ui+1 × Vi+2, and since ((a, b), (c, d)) = (wi, wi+1) ∈ ti, it

must be the case that b = c. So Ui+1 intersects Vi+1 for all i ∈ ω.

Note there is no V0, so for convenient notation define V0 = U0.

Let y be in (
∏

i∈ω(Ui ∩ Vi))
⋂

lim
←−

r (an open subset of lim
←−

r since Ui ∩ Vi = Xi for cofinitely

many i). φ is a surjection, so there is a z ∈ lim
←−

t such that φ(z) = y. For each i ∈ ω,

zi = (a, b) for some (a, b) ∈ ri, so a = φi(a, b) = φi(zi) = φ(z)i = yi ∈ Ui ∩ Vi ⊆ Ui.

zi+1 = (c, d) for some (c, d) ∈ ri+1, with b = c since ((a, b), (c, d)) ∈ ti. So b = c =

φi+1(c, d) = φi+1(zi+1) = φ(z)i+1 = yi+1 ∈ Ui+1 ∩ Vi+1 ⊆ Vi+1.

So the open set (
∏

i∈ω(Ui ∩ Vi))
⋂

lim
←−

r is a subset of φ(U ∩ lim
←−

t) containing y. Since

we can find such an open set for each y ∈ φ(U ∩ lim
←−

t), φ(U ∩ lim
←−

t) is open. So φ is an open

function.

So φ is a continuous open bijection, and is thus a homeomorphism.

We will also need the following lemma in the next section:

Lemma 2.3.1. For each i ∈ ω, suppose Xi is a compact Hausdorff space and ri is a reversibly

upper semi-continuous subset of Xi ×Xi+1. Then lim
←−

t is compact.

(By reversibly upper semi-continuous, we mean that r−1i is upper semi-continuous.)
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Proof. Since each Xi is compact Hausdorff, it is regular, so since ri is reversibly upper semi-

continuous, ri is closed. Being a closed subset of the compact space Xi×Xi+1, ri is compact.

So
∏

i∈ω ri is compact.

Claim. lim
←−

t is closed in
∏

i∈ω ri under the product topology.

Proof. Let w be in
∏

i∈ω ri\ lim
←−

t. Since w /∈ lim
←−

t, there is a j ∈ ω such that (wj, wj+1) /∈ tj.

We can write wj = (a, b) and wj+1 = (c, d) for some a ∈ Xj, b, c ∈ Xj+1, and d ∈ Xj+2. It

must be the case that b 6= c. Now b, c are in Xj+1, a Hausdorff space, so there are disjoint

open sets S and T separating b from c.

For each i ∈ ω such that i 6= j and i 6= j + 1, define si = ri, and define sj = (Xj × S) ∩ rj,

sj+1 = (T ×Xj+2)∩ rj+1, open subsets of rj and rj+1 respectively. Each si is an open subset

of ri, and for cofinitely many i ∈ ω, si = ri, so
∏

i∈ω si is an open subset of
∏

i∈ω ri.

Let y be in
∏

i∈ω si with yj = (p, q) and yj+1 = (u, v); (p, q) = yj ∈ sj = (Xj × S) ∩ rj, so

q ∈ S; (u, v) = yj+1 ∈ sj+1 = (T ×Xj+2)∩ rj+1, so u ∈ T . Since S and T are disjoint, q 6= u,

so (yi, yi+1) = ((p, q), (u, v)) /∈ ti. So y /∈ lim
←−

t. So for each element w of
∏

i∈ω ri\ lim
←−

t, there

is an open subset of
∏

i∈ω ri containing w that is a subset of
∏

i∈ω ri\ lim
←−

t. So
∏

i∈ω ri\ lim
←−

t

is open. So lim
←−

t is closed.

Thus lim
←−

t is a closed subset of the compact set
∏

i∈ω ri, and so it is compact.

2.4 Constructing a Finite Domain Space

Given a limit space lim
←−

r our objective is to construct a homeomorphic space to which

other “similar enough” spaces can also be shown to be homeomorphic.

For each i ∈ ω such that i > 0, let Yi be a partition of ri and πi be the function that

maps each element of ri to the partition element containing it.
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Since our intent is to construct bonding maps si that are subsets of Yi × Yi+1 chosen

so that lim
←−

s ∼= lim
←−

t (and hence lim
←−

s is homeomorphic to lim
←−

r) it is natural to define

si = {(πi(a, b), πi+1(c, d)) | ((a, b), (c, d)) ∈ ti}.

· · · ti−1 // ri
ti //

πi
��

ri+1
ti+1 //

πi+1

��

· · ·

· · · si−1 // Yi
si // Yi+1

si+1 // · · ·

In fact, this guarantees that one inclusion of the commutivity condition for the generalized

limit system is satisfied: Let ((a, b), P ) be in πi+1 ◦ ti. Then:

((a, b), P ) ∈ πi+1 ◦ ti

=⇒ ∃(c, d) ∈ ri+1 such that ((a, b), (c, d)) ∈ ti and ((c, d), P ) ∈ πi+1

=⇒ ∃(c, d) ∈ ri+1 such that (πi(a, b), πi+1(c, d)) ∈ si and ((c, d), P ) ∈ πi+1

=⇒ (πi(a, b), P ) ∈ si and ((a, b), πi(a, b)) ∈ πi

=⇒ ((a, b), P ) ∈ si ◦ πi.

So πi+1 ◦ ti ⊆ si ◦ πi.

From this point forward, since Yi is a quotient of ri with the projection πi serving as the

map between factor spaces, the key function ti|π
−1
i+1{P} is equal to ti|P since π−1i+1{P} = P .

This simplifies our notation.

Definition Let r be a subset of W × X and Y be a quotient of X with quotient map

π : X → Y . The statement that r is compatible with Y means for each P ∈ Y and

x ∈ dom(r|P ), we have π(x) ⊆ dom(r|P ).

14



Lemma 2.4.1. For each i ∈ ω suppose ti is function decomposable relative to πi+1 and

compatible with Yi+1. Then (r,Y, t, s, π) is a commutative generalized limit system.

Proof. Let ((a, b), P ) be in si ◦ πi. Then (πi(a, b), P ) ∈ si. So there is a ((p, q), (u, v)) ∈ ti

such that πi(p, q) = πi(a, b) and πi+1(u, v) = P . So (u, v) ∈ P , and thus ((p, q), (u, v)) ∈ ti|P ,

so (p, q) ∈ dom(ti|P ). So πi(p, q) ⊆ dom(ti|P ). So (a, b) ∈ πi(a, b) = πi(p, q) ⊆ dom(ti|P ). So

there is a (f, g) ∈ ri+1 such that ((a, b), (f, g)) ∈ ti|P , so (f, g) ∈ P . Thus πi+1(f, g) = P . So

((a, b), (f, g)) ∈ ti and πi+1(f, g) = P . Thus ((a, b), P ) ∈ πi+1 ◦ ti, so si ◦ πi ⊆ πi+1 ◦ ti. We

have from above that πi+1 ◦ ti ⊆ si ◦ πi, so si ◦ πi = πi+1 ◦ ti.

For each i ∈ ω, let Xi be a compact Hausdorff space, ri be a reversibly upper semi-continuous

subset of Xi ×Xi+1.

Let Y0 be the partition of r0 where each element of r0 is in a singleton equivalence class.

Define π0 : r0 → Y0 by π0(a, b) = {(a, b)}.

For each i ∈ ω where i > 0, let Yi be a partition of ri, with πi the function that as-

signs each element of ri to the partition element containing it in Yi. Giving ri the subspace

topology from the product Xi×Xi+1, assign Yi the quotient topology inherited from ri via πi.

Finally, for each i ∈ ω let si be {(πi(a, b), πi+1(c, d)) | ((a, b), (c, d)) ∈ ti}.

Theorem 2.3. Suppose for each i ∈ ω, ti is function decomposable relative to πi+1 and

compatible with Yi+1, and (Y, s) is subsequently separable. Then lim
←−

s ∼= lim
←−

r.

Proof. lim
←−

r ∼= lim
←−

t by Theorem 2.2, so we intend to show that lim
←−

s ∼= lim
←−

t.

Define π : lim
←−

t → lim
←−

s to be the function so that for each x ∈ lim
←−

t and each i ∈ ω,

π(x)i = πi(xi). Since Y0 is the discrete partition of r0 with topology induced by π0, π0 is a

homeomorphism and thus Y0 is Hausdorff. By Lemma 2.3.1, lim
←−

t is compact. Since each
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πi is a projection, it is continuous. By Lemma 2.4.1, (r, t,Y, s, π) is commutative. So by

Theorem 2.1, lim
←−

r ∼= lim
←−

t.

Definition For each i ∈ ω let Xi be a topological space and ri be a subset of Xi × Xi+1.

The statement that (X, r) satisfies condition θ′ means there is a sequence of partitions Y

with each Yi a partition of Xi with quotient map πi : Xi → Yi and for each i ∈ ω if

si = {(πi(a), πi+1(b)) | (a, b) ∈ ri} then:

1. Y0 is the discrete partition of X0.

2. (Y, s) is subsequently separable.

3. For each i ∈ ω, ri is function decomposable relative to πi+1.

4. For each i ∈ ω, ri is compatible with Yi+1.

Condition θ′ allows that the factor spaces Yi under the quotient topology may not be Haus-

dorff, while the resulting space lim
←−

s is Hausdorff. We now ask the question, given a limit

space lim
←−

r that induces lim
←−

t, how does one produce partitions Yi that demonstrate that

(r, t) satisfies condition θ′? Consider the case where each bonding map ri (viewed as the

subspace of Xi × Xi+1) is an arc. This is true, for example, when each Xi is the closed

interval [0, 1] and r−1i is a continuous function (as in a traditional inverse limit), but it is

also true for many instances of generalized inverse limits.

We suggest the following technique: Y0 shall be the discrete partition of r0.

For i > 0, the arc ri shall be partitioned into sets that are either singletons or open in-

tervals of the arc. In choosing how to partition the arc, the goal is to partition ri into as few

parts as possible while ensuring that no open interval can be intersected twice by a vertical

line in the graph of ri, and that every element of Yi related by si to a singleton in Yi+1 is

a singleton (i.e., if the graphs of ri and r−1i+1 are lined up horizontally and a horizontal line

16



passes through a point of r−1i+1 that is a singleton in Yi+1 (after swapping coordinates) then

any point of ri intersected by the horizontal line is a singleton in Yi).

Consider the example where each Xi is the interval [0, 1] and each ri has the following

graph:
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We can achieve the desired result by “breaking” the graph at the points where the graph

changes direction:
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Each solid dot and open line segment represents a distinct element in the partition. Note

each element passes the vertical line test when considered individually.

A partition with the above properties will have a quotient topology characterized by the

following basis: Since each ri is an arc and each element of the partition is a connected

subset of the arc, there is a natural ordering of the partition, and the set of all subsets of Yi

of the form {Q | A < Q < B}, {Q | U ≤ Q < B}, or {Q | A < Q ≤ V } where A and B are

17



singletons and U and V are the partition elements containing the left and right endpoints

of the arc, respectively, is a basis for the topology of Yi.
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A basic open set of Yi

Such a partition sequence will demonstrate condition θ′:

1. Y0 is the discrete partition of r0: By construction.

2. (Y, s) is subsequently separable: Let P be in Yi and each of A and B be in si{P} such

that A < B. Suppose there is no singleton T of Yi+1 with A < T < B. Then A and B

are singletons and are the endpoints of an open interval G of Yi+1. Since A and B are

singletons, and A,B ∈ si{P}, P is a singleton.

We can write A = {(s, t)}, B = {(y, z)}, and P = {(u, v)}.

Since (P,A) and (P,B) are in si, which is {(πi(a, b), πi+1(c, d)) | ((a, b), (c, d)) ∈ ti},

((p, q), (u, v)) ∈ ti and ((p, q), (w, z)) ∈ ti, so q = u and q = w. So A = {(q, v)} and

B = {(q, z)}. Since A, G, and B when unioned form an arc in ri+1 and the points asso-

ciated with A and B lie on the same vertical line, G is an open line segment joining A

to B. Thus there must be a vertical line intersecting G twice. This is a contradiction,

so there must be a singleton T of Yi+1 with A < T < B. The sets {Q | U ≤ Q < T}

and {Q | T < Q ≤ V } where U and V are the parts containing the left and right

endpoints of the arc ri+1, respectively, are disjoint open sets separating A and B.
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3. For each i ∈ ω, ti is function decomposable relative to πi+1: Let P be in Yi+1, and

consider ti|P : a point (u, v) in ri is related by ti|P to a point (p, q) in P if and only if

when ri is aligned horizontally with r−1i+1, (u, v) and (p, q) belong to the same horizontal

line. Thus ti|P is a function when no point (u, v) of ri belongs to the same horizontal

line as two points of P in the inverse graph of ri+1.

A horizontal line in the inverse graph of ri+1 corresponds to a vertical line in the

graph of ri+1, and it was stipulated that no two points of P may belong to the same

vertical line.Thus ti|P is a function.

4. For each i ∈ ω, ti is compatible with Yi+1: Let (p, q) be in dom(ti|P ).Suppose πi(p, q) is

not a subset of dom(ti|P ), and (u, v) is an element of πi(p, q) that is not in dom(ti|P ).

So no pair of P has first element v.

Without loss of generality suppose v > q. Let F be the set of all numbers that

are the first number in a pair in P . Then F is connected since it is the continuous

image of the connected set P . Let l be the least upper bound of F ; q ≤ l < v since

(p, q) ∈ dom(ti|P ) and (u, v) /∈ dom(ti|P ). Let G be the set of all numbers that are the

second number in a pair in πi(p, q). G is connected since it the the continuous image

of the connected set πi(p, q). v and q are in G, so [q, v] ⊆ G. Thus there is a pair in

πi(p, q) with second number l. Let (w, l) be such an element.An endpoint of P must

have first coordinate l. Let (l, z) be such an endpoint of P . {(l, z)} must be an element

of Yi+1. So πi(w, l) is a singleton.

This is a contradiction, since q 6= v, so (p, q) 6= (u, v) and (p, q), (u, v) ∈ πi(p, q) =

πi(w, l).So there can be no element (u, v) of πi(p, q) that is not in dom(ti|P ), so

πi(p, q) ⊆ dom(ti|P ).
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This completes the demonstration of the four sub-conditions of condition θ′, so condition θ′

is satisfied.

2.5 Application to Topological Groups

In the case where each Xi is a group,
∏

i∈ωXi is a group under the induced operation

of coordinate-wise multiplication. Under certain conditions, lim
←−

r may be a subgroup of the

product. One sufficient condition is as follows:

Lemma 2.5.1. For each i ∈ ω let Xi be a group and ri be a subgroup of Xi ×Xi+1. Then

lim
←−

r is a subgroup of
∏

i∈ωXi.

Proof. lim
←−

r is a subset of the group
∏

i∈ωXi, so we must show that the identity e of
∏

i∈ωXi

is in lim
←−

r, and lim
←−

r is closed under inversion and the group operation.

The identity element e of
∏

i∈ωXi is defined so that for each i ∈ ω, ei is the identity

element of Xi. For each i ∈ ω, ri is a subgroup of Xi ×Xi+1, so (ei, ei+1) ∈ ri. So e ∈ lim
←−

r.

Let x be in lim
←−

r. The inverse x−1 of x is defined in
∏

i∈ωXi so that for each i ∈ ω,

(x−1)i = x−1i . Let i be in ω. x ∈ lim
←−

r, so (xi, xi+1) ∈ ri. ri is a subgroup of Xi ×Xi+1, so

((x−1)i, (x
−1)i+1) = (x−1i , x−1i+1) = (xi, xi+1)

−1 ∈ ri. So lim
←−

r is closed under inversion.

Let each of x and y be in lim
←−

r. Let i be in ω. Since x ∈ lim
←−

r, (xi, xi+1) ∈ ri. Since

y ∈ lim
←−

r, (yi, yi+1) ∈ ri. Since each of (xi, xi+1) and (yi, yi+1) is in ri, and ri is a subgroup

of Xi ×Xi+1:

((xy)i, (xy)i+1) = (xiyi, xi+1yi+1) = (xi, xi+1)(yi, yi+1) ∈ ri.
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So xy ∈ lim
←−

r.

So lim
←−

r is a subgroup of
∏

i∈ωXi.

Corollary. For each i ∈ ω let Xi be a topological group and ri be a subgroup of Xi ×Xi+1.

Then lim
←−

r is a topological group.

Proof. We need only show that the group operation is continuous on lim
←−

r, and this follows

directly from the fact that the group operation is continuous on
∏

i∈ωXi.

We are interested in examining the conditions under which a limit space lim
←−

r that is a

topological group and a homeomorphic finite domain space lim
←−

s with an induced group

structure are isomorphic as topological groups. Of particular interest are instances where

the factors Yi are not even groups, while lim
←−

s is a topological group.

Definition Let X be a group and Y be a quotient of X. The statement that Y is a semi-

congruent quotient means that if F,G,H are in Y with H ∩ FG nonempty, then H ⊆ FG.

Definition Let (X,Y, r, s, π) be a generalized limit system such that for each i ∈ ω, Xi is

a group and Yi is a partition of Xi with quotient map πi. The statement that (X,Y, r, s, π)

is operation inducing means for each F,G ∈ lim
←−

s, i ∈ ω, and H ∈ Yi with H ⊆ FiGi,

πi+1[Fi+1Gi+1] ∩ (πi+1 ◦ ri)[H] is a singleton.

Lemma 2.5.2. For each i ∈ ω let Xi be a topological group, ri be a subgroup of Xi ×Xi+1,

and Yi be a semi-congruent quotient of Xi with quotient map πi and Y0 the discrete quotient

(π0(x) = {x} for all x ∈ X0), si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, so that (X,Y, r, s, π)

is operation inducing. Then for each F,G ∈ lim
←−

s there is a unique H ∈ lim
←−

s such that

Hi ⊆ FiGi for all i ∈ ω.

Proof. Let F,G be in lim
←−

s.

Claim. There is an H ∈ lim
←−

s such that Hi ⊆ FiGi for all i ∈ ω.
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Proof. We define such an H inductively:

F0 = {f0} and G0 = {g0} for some f0, g0 ∈ X0. Define H0 = {f0g0}. H0 = {f0g0} ⊆

{f0}{g0} = F0G0.

Let i be in ω such that for each j ∈ ω with j < i, Hj is defined so that Hj ⊆ FjGj

and (Hj−1, Hj) ∈ sj−1. We have that Hi−1 ⊆ Fi−1Gi−1 so πi[FiGi] ∩ (πi ◦ ri−1)[Hi−1] is

a singleton {Hi}. Also Hi ∈ πi[FiGi], so there is an fi ∈ Fi and a gi ∈ Gi such that

πi(figi) = Hi, i.e., figi ∈ Hi. Since figi ∈ Hi ∩ FiGi, it must be the case that Hi ⊆ FiGi.

Furthermore, Hi ∈ (πi ◦ ri−1)[Hi−1] ⊆ (si−1 ◦πi−1)[Hi−1] = si−1[πi−1[Hi−1]] = si−1{Hi−1}. So

(Hi−1, Hi) ∈ si−1.

By induction H ∈ lim
←−

s and for all i ∈ ω, Hi ⊆ FiGi.

The uniqueness of this H comes from the fact that there is only one partition element

satisfying H0 ⊆ F0G0, and given an Hi−1, there is only one partition element satisfying

Hi ⊆ FiGi and (Hi−1, Hi) ∈ si.

Definition For each i ∈ ω let Xi be a topological group, ri be a subgroup of Xi × Xi+1,

and Yi be a semi-congruent quotient of Xi with quotient map πi and Y0 the discrete quotient

(π0(x) = {x} for all x ∈ X0), si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, so that (X,Y, r, s, π) is

operation inducing. Then for each F,G ∈ lim
←−

s, define F �G to be the unique H ∈ lim
−→

s

satisfying Hi ⊆ FiGi for all i ∈ ω.

Corollary. For each i ∈ ω let Xi be a topological group, ri be a subgroup of Xi × Xi+1,

and Yi be a semi-congruent quotient of Xi with si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, so that

(X,Y, r, s, π) is operation inducing. Then φ : lim
←−

r → lim
←−

s induced by the πi’s has the

property that for each f ,g ∈ lim
←−

r, φ(fg) = φ(f) � φ(g).
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Proof. Let each of f ,g be in lim
←−

r and j be in ω. Then:

φ(fg)j = πj((fg)j) = πj(fjgj) ⊆ πj(fj)πj(gj) = φ(f)jφ(g)j.

So φ(fg) ∈ lim
←−

s and φ(fg)i ⊆ φ(f)iφ(g)i for all i ∈ ω. Since φ(f)�φ(g) is the unique element

of lim
←−

si with this property, φ(fg) = φ(f) � φ(g).

Lemma 2.5.3. For each i ∈ ω let Xi be a topological group, ri be a subgroup of Xi ×Xi+1,

and Yi be a semi-congruent quotient of Xi with si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, φ be a

homeomorphism, and (X,Y, r, s, π) be operation inducing. Then lim
←−

s is a topological group

under the � operation.

Proof. Let e be the identity element of lim
←−

r and each of F, G, and H be an element of lim
←−

s,

and f = φ−1(F), g = φ−1(G), h = φ−1(H).

φ(e) � F = φ(e) � φ(f) = φ(ef) = φ(f) = F. (Also F � φ(e) = F is proved similarly.)

F � φ((f)−1) = φ(f) � φ((f)−1) = φ(f(f)−1) = φ(e). (Also φ((f)−1) � F = φ(e) is proved

similarly.) Finally,

F � (G �H) = F � (φ(g) � φ(h)) = φ(f) � φ(gh) = φ(f(gh))

=φ((fg)h) = φ(fg) � φ(h) = (φ(f) � φ(g)) �H = (F �G) �H.

This establishes that lim
←−

s is a group under the operation �.

Let each of F and G be in lim
←−

s and T be an open set containing F�G. Let f = φ−1(F) and

g = φ−1(G). Consider φ−1[T ], an open subset of lim
←−

r. Since φ(fg) = φ(f)�φ(g) = F�G ∈ T ,

we have that fg ∈ φ−1[T ]. lim
←−

r is a topological group, so there are open sets U and V con-

taining f and g respectively so that UV ⊆ φ−1[T ]. The sets φ[U ] and φ[V ] are open subsets
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of lim
←−

s containing F and G respectively.

Let H be in φ[U ] and K be in φ[V ], and h = φ−1(H), k = φ−1(K) (so h ∈ U and k ∈ V ).

Then:

H �K = φ(h) � φ(k) = φ(hk) ∈ φ[UV ] ⊆ φ[φ−1[T ]] = T.

So � is a continuous operation. Thus lim
←−

s is a topological group.

Theorem 2.4. For each i ∈ ω let Xi be a topological group, ri be a subgroup of Xi ×Xi+1,

Yi be a semi-congruent quotient of Xi with si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, φ be a

homeomorphism, and (X,Y, r, s, π) be operation inducing. Then φ is a topological group

isomorphism.

Proof. We know that lim
←−

s is a group with operation � so by the corollary to Lemma 2.5.3, φ is

a group homomorphism. Since φ is a homeomorphism, it is a bijection, and being a bijective

homomorphism, φ is a group isomorphism.Thus φ is a topological group isomorphism.

Example For the following, we use the realization of the topological group S1 with S1 =

[0, 1] with 0 and 1 identified, and group operation addition mod 1.

For each i ∈ ω, let Xi be S1, ni be a positive integer greater than 1, r0 be the identity

function on S1, and for each i > 0 let ri = {(x, y) | x + m = niy for some m ∈ ni} (shown

below for ni = 2).
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It is easy to verify that lim
←−

r is homeomorphic to the solenoid with winding sequence {ni}i∈ω.

Let Y0 be the discrete partition of S1, k0 be 2, and for each i ∈ ω let ki+1 be the greater of

lcm(ni, ki) and 2ni, Yi = {{ j
ki
}}j∈ki ∪ {(

j
ki
, j+1
ki

)}j∈ki .

Note that since k0 = 2, each ki is a multiple of 2 and thus ki+1 | niki in both the case

where ki+1 = lcm(ki, ni) and where ki+1 = 2ni.

Since for all i ∈ ω, r−1i is a function, for any singleton {p}, ri|{p} is a singleton and thus a

function. As can be seen below, for i > 0 and any of the open intervals S in Yi, ri|S is a

function as well.

The diagram below shows the situation for ni = 2 and ki = 4.
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Each ri|(
j
ki
, j+1
ki

)
= {(x, y) | x + m = niy for some m ∈ ni, y ∈ ( j

ki
, j+1
ki

)} is a function:

Suppose (x, a), (x, b) ∈ ri|(
j
ki
, j+1
ki

)
, so a, b ∈ ( j

ki
, j+1
ki

) and x + ma = nia for some ma ∈ ni,

x+mb = nib−mb for some mb ∈ ni. So,

nia−ma =x = nib−mb

ni(a− b) =ma −mb.
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It must be the case that ni > |ma −mb|, which is a contradiction unless a− b = 0, so a = b.

Thus ri|(
j
ki
, j+1
ki

)
is a function. So for each i ∈ ω, ri is function decomposable relative to πi.

Now we show compatibility. Let x be in the domain of ri|
( j
ki+1

, j+1
ki+1

)
. Then there is an

m ∈ ni, y ∈ ( j
ki+1

, j+1
ki+1

) so that x + m = niy. So x + m ∈ ( nij
ki+1

, ni(j+1)
ki+1

) and x ∈

(nij−mki+1

ki+1
, nij−mki+1+ni

ki+1
). Let t be in πi(x) = ( q

ki
, q+1
ki

). Since ki+1 | niki, there is a ci such that

ki+1ci = niki. Then x ∈ ( cinij−mciki+1

niki
, cinij−mciki+1+cini

niki
) = ( cinij−mniki

niki
, cinij−mniki+cini

niki
) =

( cij−mki
ki

, cij−mki+ci
ki

). Then q ≥ cij−mki and q+1 ≤ cij−mki+ci, so t ∈ ( cij−mki
ki

, cij−mki+ci
ki

) ⊆

dom(ri|
( j
ki+1

, j+1
ki+1

)
) and thus π(x) ⊆ dom(ri|

( j
ki+1

, j+1
ki+1

)
). So ri is compatible with Yi for each

i ∈ ω.

So if we define si = {(πi(x), πi+1(y)) | (x, y) ∈ ri}, then πi+1 ◦ ri = si ◦ πi.

The diagram below show si for ki = 4, and partitions as described.

{0}
(0, 1

4
)
{1
4
}
(1
4
, 1
2
)
{1
2
}
(1
2
, 3
4
)
{3
4
}
(3
4
, 1)

{0}
(0, 1

4
)

{1
4
}

(1
4
, 1
2
)

{1
2
}

(1
2
, 3
4
)

{3
4
}

(3
4
, 1)

s s s s s s s ss s s s s s s s
si

For i > 0, giving Yi the quotient topology yields a topology with basis consisting of singletons

{( j
ki
, j+1
ki

)} for j ∈ ni, and triples

{( j
ki
, j+1
ki

), { j+1
ki
}, ( j+1

ki
, j+2
ki

)}
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for j ∈ ni which consist of singleton sets along with their adjacent open intervals. Since

ki ≥ 2ni−1, this implies that while Yi is not Hausdorff, elements of Yi containing elements of

Xi that are distance 1/ni−1 apart can be separated by open sets.

Since for any P ∈ Yi and A,B ∈ si{P} with A 6= B, A and B contain elements that

are distance 1/ni apart, so A and B can be separated by open sets, and thus (Y, s) is sub-

sequently separable. So lim
←−

r ∼= lim
←−

s as topological spaces.

Note that in each Yi with i > 0, we cannot define a group operation on Yi that is com-

patible with the group operation on Xi. For example for elements (0, 1
ki

) and ( 1
ki
, 2
ki

),

( 1
ki
, 3
ki

) = (0, 1
ki

) + ( 1
ki
, 2
ki

) contains elements of ( 1
ki
, 2
ki

), { 2
ki
}, and ( 2

ki
, 3
ki

). (There is an alge-

braic notion of a set with a multivalued binary operation that is grouplike called a multigroup

[11]. Yi for i > 0 is a multigroup in this case. We don’t define a multigroup here since none

of the properties are needed except what has already been demonstrated here.)

For i = 0, s0 = {(π0(a), π1(b)) | (a, b) ∈ r0} = {({a}, π1(a)) | (a, a) ∈ 1S1}. This is a

function.

Let F,G be in lim
←−

s. F0 = {u} and G0 = {v} for some u, v ∈ S1. So if H ⊆ F0 +

G0 = {u}+ {v} = {u+ v}, then H = {u+ v}. π1(u+ v) ⊆ π1(u) + π1(v) so:

π1[F1 +G1] ∩ (π1 ◦ r0)[H] =π1[s0(F0) + s0(G0)] ∩ (π1 ◦ 1S1){u+ v}

=π1[s0({u}) + s0({v})] ∩ π1{u+ v}

=π1[π1(u) + π1(v)] ∩ {π1(u+ v)}

={π1(u+ v)}.
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Clearly {π1(u+ v)} is a singleton.

For i > 0, for any pair A,B ∈ lim
←−

s the set Ai+1 + Bi+1 is a singleton in the case that

Ai+1 and Bi+1 are singletons, an open interval of length 1/ki+1 ≤ 1/ni in the case that

Ai+1 is a singleton and Bi+1 is an open interval or vice versa, or an open interval of length

2/ki+1 ≤ 2/2ni = 1/ni in the case that Ai+1 and Bi+1 are open intervals. In each of these

cases, πi+1[Ai+1 + Bi+1] cannot contain a pair of elements distance 1/ni+1 apart. Thus if it

can be shown that for each F,G ∈ lim
←−

s, each i ∈ ω, and each H ∈ Yi such that H ⊆ Fi+Gi,

πi+1[Fi+1 +Gi+1] ∩ (πi+1 ◦ ri)[H] is nonempty, then it is a singleton.

An element { f
ki
} of Yi is si-related to an element { t

ki+1
} if and only if f

ki
is ri-related to

t
ki+1

, in other words, there is an integer u such that f
ki

+ u = ni
t

ki+1
, or f+uki

niki
= t

ki+1
. Note

that since ki+1 is a multiple of ni, there is an integer pi such that nipi = ki+1. Then:

f + uki
niki

=
t

ki+1

⇐⇒ f + uki
ciki+1

=
t

ki+1

⇐⇒ ci | f + uki

⇐⇒ cini | fni + uniki

⇐⇒ cini | fni + uciki+1

⇐⇒ cini | fni + ucinipi

⇐⇒ cini | fni

⇐⇒ ci | f.

Case 1: Fi = { f
ki
}, Gi = { g

ki
} for f, g ∈ ki. Then Fi + Gi = {f+g

ki
}. Let H be in Fi + Gi.

H = {f+g
ki
}, so ri[H] = {f+g+mki

niki
}m∈ω.
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Subcase 1a.: ci | f and ci | g. Then:

Fi+1 =

{
f + uki
niki

}
for some u ∈ ω,

Gi+1 =

{
g + vki
niki

}
for some v ∈ ω,

Fi+1 +Gi+1 =

{
f + g + (u+ v)ki

niki

}
.

Since f + g is divisible by ci, (πi+1 ◦ ri)[H] = {{f+g+mki
niki

} | m ∈ ki+1} which intersects

Fi+1 +Gi+1.

Subcase 1b.: ci | f and ci - g. Then:

Fi+1 =

{
f + uki
niki

}
for some u ∈ ω,

Gi+1 =

(
g − g mod ci + vki

niki
,
g − g mod ci + vki + ci

niki

)
for some v ∈ ω,

Fi+1 +Gi+1 =

(
f + uki + g − g mod ci + vki

niki
,
f + uki + g − g mod ci + vki + ci

niki

)
=

(
f + g − g mod ci + (u+ v)ki

niki
,
f + g − g mod ci + (u+ v)ki + ci

niki

)
.

Since ci - f+g, (πi+1 ◦ri)[H] = {(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ki+1} =

{(f+g−g mod ci+mki
niki

, f+g−g mod ci+mki+ci
niki

) | m ∈ ki+1} which intersects Fi+1 +Gi+1.

Subcase 1c.: ni+1 - f and ni+1 | g. Similar to above.
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Subcase 1d.: ci - f , ci - g, and ci | f + g, then f mod (ci) + g mod ci = ci and:

Fi+1 =

(
f − f mod ci + uki

niki
,
f − f mod ci + uki + ci

niki

)
for some u ∈ ω,

Gi+1 =

(
g − g mod ci + vki

niki
,
g − g mod ci + vki + ci

niki

)
for some v ∈ ω,

Fi+1 +Gi+1 =
(
f−f mod ci+uki+g−g mod ci+vki

niki
, f−f mod ci+uki+ci+g−g mod ci+vki+ci

niki

)
=

(
f + g − ci + (u+ v)ki

niki
,
f + g − ci + (u+ v)ki + 2ci

niki

)
=

(
f + g + (u+ v)ki − ci

niki
,
f + g + (u+ v)ki + ci

niki

)
.

Since ci | f + g, (πi+1 ◦ ri)[H] = {{f+g+mki
niki

} | m ∈ ki+1} which intersects Fi+1 + Gi+1 when

m = u+ v + 1.

Subcase 1e.: ci - f , ci - g, and ci - f + g. Then:

Fi+1 =

(
f − f mod ci + uki

niki
,
f − f mod ci + uki + ci

niki

)
for some u ∈ ω,

Gi+1 =

(
g − g mod ci + vki

niki
,
g − g mod ci + vki + ci

niki

)
for some v ∈ ω,

Fi+1 +Gi+1 =
(
f−f mod ci+uki+g−g mod ci+vki

niki
, f−f mod ci+uki+ci+g−g mod ci+vki+ci

niki

)
=
(
f+g−f mod ci−g mod ci+(u+v)ki

niki
, f+g−f mod ci−g mod ci+(u+v)ki+2ci

niki

)
.

Since ci - f + g, (πi+1 ◦ ri)[H] = {(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈

ki+1} = {(f+g−f mod ci−g mod ci+mki
niki

, f+g−f mod ci−g mod ci+mki+ci
niki

) | m ∈ ki+1} which inter-

sects Fi+1 +Gi+1.

Case 2: Fi = ( f
ki
, f+1
ki

), Gi = { g
ki
}. Fi + Gi = (f+g

ki
, f+g+1

ki
). Let H be in Fi + Gi. Then

H = (f+g
ki
, f+g+1

ki
).
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Subcase 2a.: ci | g. Then:

Fi+1 =(f−f mod ci+uki
niki

, f−f mod ci+uki+ci
niki

) for some u ∈ ω,

Gi+1 =

{
g + vki
niki

}
for some v ∈ ω,

Fi+1 +Gi+1 =

(
f − f mod ci + uki + g + vki

niki
,
f − f mod ci + uki + ci + g + vki

niki

)
=

(
f + g − f mod ci + (u+ v)ki

niki
,
f + g − f mod ci + (u+ v)ki + ci

niki

)
.

We have that ri[H] = ∪{(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci} and (πi+1 ◦

ri)[H] = {(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci} = {(f+g−f mod ci+mki
niki

, f+g−f mod ci+mki+ci
niki

) |

m ∈ ci} which intersects Fi+1 +Gi+1.

Subcase 2b. ci - g. Then:

Fi+1 =(f−f mod ci+uki
niki

, f−f mod ci+uki+ci
niki

) for some u ∈ ω,

Gi+1 =

(
g − g mod ci + vki

niki
,
g − g mod ci + vki + ci

niki

)
for some v ∈ ω,

Fi+1 +Gi+1 =
(
f−f mod ci+uki+g−g mod ci+vki

niki
, f−f mod ci+uki+ci+g−g mod ci+vki+ci

niki

)
=
(
f+g−f mod ci−g mod ci+(u+v)ki

niki
, f+g−f mod ci−g mod ci+(u+v)ki+2ci

niki

)
.

We have that ri[H] = ∪{(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci} and

(πi+1 ◦ ri)[H] ={(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci}

={(f+g−f mod ci−g mod ci+mki
niki

, f+g−f mod ci−g mod ci+mki+ci
niki

) | m ∈ ci}

which intersects Fi+1 +Gi+1.

Case 3: Fi = { f
ki
}, Gi = ( g

ki
, g+1
ki

). Similar to above.
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Case 4: Fi = ( f
ki
, f+1
ki

), Gi = ( g
ki
, g+1
ki

). Fi + Gi = (f+g
ki
, f+g+2

ki
). Let H be in Fi + Gi.

Then H = (f+g
ki
, f+g+1

ki
), H = {f+g+1

ki
}, or H = (f+g+1

ki
, f+g+2

ki
). Then:

Fi+1 =(f−f mod ci+uki
niki

, f−f mod ci+uki+ci
niki

),

Gi+1 =(g−g mod ci+vki
niki

, g−g mod ci+vki+ci
niki

),

Fi+1 +Gi+1 =(f−f mod ci+uki+g−g mod ci+vki
niki

, f−f mod ci+uki+ci+g−g mod ci+vki+ci
niki

)

=(f+g−f mod ci−g mod ci+(u+v)ki
niki

, f+g−f mod ci−g mod ci+(u+v)ki+2ci
niki

).

Subcase 4a.: H = (f+g
ki
, f+g+1

ki
). Then:

ri[H] = ∪ {(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci},

(πi+1 ◦ ri)[H] ={(f+g−(f+g) mod ci+mki
niki

, f+g−(f+g) mod ci+mki+ci
niki

) | m ∈ ci}

={(f+g−f mod ci−g mod ci+mki
niki

, f+g−f mod ci−g mod ci+mki+ci
niki

) | m ∈ ci}

which intersects Fi+1 +Gi+1.

Subcase 4b.: H = {f+g+1
ki
} and ci | f + g + 1. Then:

ri[H] ={f + g + 1 +mki
niki

| m ∈ ci},

(πi+1 ◦ ri)[H] ={{f + g + 1 +mki
niki

} | m ∈ ci}

={{f + g + 1− (ci − 1) + ci − 1 +mki
niki

} | m ∈ ci}

={{f + g − (f + g) mod ci +mki + ci
niki

} | m ∈ ci}

={{f + g − f mod ci − g mod ci +mki + ci
niki

} | m ∈ ci}
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which intersects Fi+1 +Gi+1.

Subcase 4c.: H = {f+g+1
ki
} and ci - f + g + 1. Then:

ri[H] = ∪ {(f+g+1−(f+g+1) mod ci+mki
niki

, f+g+1−(f+g+1) mod ci+mki+ci
niki

) | m ∈ ci},

(πi+1 ◦ ri)[H] ={(f+g+1−(f+g+1) mod ci+mki
niki

, f+g+1−(f+g+1) mod ci+mki+ci
niki

) | m ∈ ci}

={(f+g−f mod ci−g mod ci+mki
niki

, f+g−f mod ci−g mod ci+mki+ci
niki

) | m ∈ ci}

which intersects Fi+1 +Gi+1.

Subcase 4d.: H = (f+g+1
ki

, f+g+2
ki

). Then:

ri[H] = ∪ {(f+g+1−(f+g+1) mod ci+mki
niki

, f+g+1−(f+g+1) mod ci+mki+ci
niki

) | m ∈ ci},

(πi+1 ◦ ri)[H] ={(f+g+1−(f+g+1) mod ci+mki
niki

, f+g+1−(f+g+1) mod ci+mki+ci
niki

) | m ∈ ci}

={(f+g−f mod ci−g mod ci+mki
niki

, f+g−f mod ci−g mod ci+mki+ci
niki

) | m ∈ ci}

which intersects Fi+1 +Gi+1.

By exhaustion, πi+1[Fi+1 + Gi+1] ∩ (πi+1 ◦ ri) is a singleton for each F,G ∈ lim
←−

s, each

i ∈ ω, and each subset H of Fi+1 +Gi+1. So lim
←−

s equipped with the induced operation � is

a topological group isomorphic to the solenoid with winding sequence {ni}i∈ω.
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Chapter 3

Categorical Characterization

3.1 Definitions

Definitions from category theory follow [6] and [9].

Definition A category C consists of the following:

• A class called the objects of C.

• For each pair x, y of objects, a set C(x, y), the elements of which are called morphisms

from x to y. For a morphism α ∈ C(x, y), x and y are called the source and target of

α, respectively. Notationally morphisms are treated like functions, although in general

they may not be. So α : x → y means α ∈ C(x, y) for objects x, y of C. (In the

literature some authors permit C(x, y) to be a proper class. In this understanding, a

category for which C(x, y) is a set for each pair x, y of objects is called locally small.)

• For each triple x, y, z of objects, a map C(y, z)×C(x, y)→ C(x, z) called composition

and denoted (α, β)→ α ◦ β with the following properties:

1. (α◦β)◦γ = α◦(β◦γ) for all trios of morphisms α, β, γ such that the compositions

exist.

2. For each object x of C, there is a morphism 1x : x → x called the identity on

x such that α ◦ 1x = α and 1x ◦ β = β for all morphisms α, β for which the

compositions exist.

Definition Let each of C and D be a category. The statement that F : C→ D is a functor

means that F is a class function with domain all the objects and morphisms of C, mapping

objects of C to objects of D and morphisms of C to morphisms of D, having the properties:
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1. For each morphism α : x→ y of C, F (α) has source F (x) and target F (y). Sometimes

subscript notation is used, e.g. Fα : Fx → Fy.

2. For each object x of C, F (1x) = 1F (x) (or F1x = 1Fx).

3. For each pair α, β of morphisms of C for which α◦β is defined, F (α◦β) = F (α)◦F (β)

(or Fα◦β = Fα ◦ Fβ).

Definition Let each of I and C be a category, and F : I→ C be a functor. The statement

that (x, α) is a cone to F means for each object i of I, αi : x→ Fi is a morphism of C and

if τ : i→ j is a morphism of I then Fτ ◦ αi = αj.

x
αi

��

αj

��
Fi Fτ

// Fj

Definition Let each of I and C be a category (I can be thought of as an index category),

and l be an object of C. The statement that (l, π) is a limit of F means (l, π) is a cone to

F , and if (x, α) is a cone to F , then there is a unique morphism γ : x→ l of C such that for

each object i of I, πi ◦ γ = αi. In this case (l, π) is also said to be a terminal cone to F .

x
∃!γ //

αi ��

l

πi��
Fi

Definition Define I to be the category with objects n and (n, n + 1) for each n ∈ ω, and

morphisms the symbols n∗ : (n, n+ 1)→ n and (n+ 1)∗ : (n, n+ 1)→ n+ 1 for each n ∈ ω,

as well as the identity morphism on each object.

· · ·
n∗

��

(n, n+ 1)

n∗

zz

(n+1)∗

&&

· · ·
(n+1)∗
||

· · · n n+ 1 · · ·
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Definition The category Top is the category having topological spaces as objects, and

continuous functions as morphisms. Identity and composition are defined as the terminology

suggests.

Definition Let each of C and D be a category and each of F and G be a functor from C

to D. η : F → G is called a natural transformation from F to G if for each object x of C,

ηx : F (x)→ G(x) is a morphism, such that for each morphism α : x→ y of C the following

square commutes:

F (x)

F (α)

��

ηx // G(x)

G(α)

��
F (y) ηy

// G(y)

That is, G(α) ◦ ηx = ηy ◦ F (α).

Definition Define a category TopI having objects functors from I to Top and morphisms

natural transformations between functors. In this case a natural transformation η : X → Y

will make the diagram below commute.

· · ·
Xn∗

  

X(n,n+1)

Xn∗
zz

X(n+1)∗

%%
η(n,n+1)

��

· · ·
X(n+1)∗
||

· · · Xn

ηn

��

Xn+1

ηn+1

��

· · ·

· · ·
Yn∗

  

Y(n,n+1)

Yn∗

zz
Y(n+1)∗

%%

· · ·
Y(n+1)∗
||

· · · Yn Yn+1 · · ·

For each object X of TopI, the identity 1X on X is defined by (1X)i = 1Xi for each object

i of I. The composition θ ◦ η is defined by (θ ◦ η)i = θi ◦ ηi for each object i of I. Note

that each functor in TopI can in a certain sense be thought of as a structural copy of the

category I that lies within Top.
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Definition Let C be a category with object class O, morphism class M , and composition

operator ◦, and let O′ be a subset of O and M ′ be a subset of M , such that every morphism

of M ′ has source and target in O′. Then O′,M ′, ◦′ (where ◦′ is ◦ restricted to M ′) is said to

be a subcategory of C if it is a category.
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3.2 Main Results

Theorem 3.1.

1. For each functor X from I to Top, a limit (U, π) of X exists and is unique up to

homeomorphism.

2. If each of X and Y is a functor from I to Top, (L(X), πX) is a limit of X, and

(L(Y ), πY ) is a limit of Y , then each morphism η : X → Y of TopI induces a continu-

ous function L(η) : L(X)→ L(Y ) unique in having the property that πYi ◦L(η) = ηi◦πXi

for each object i of I.

3. Let D be a subcategory of TopI, (L(X), πX) be a limit of X for each functor X of D,

and L(η) be as in 2 for each morphism η of TopI in D. Then L : D → Top is a

functor.

Proof.

To prove (1), we note that I is what is known as a small category, meaning its object

and morphism classes are sets. It is well known that a limit of X exists in Top for every

functor X from a small category (see [9], p. 133) (when a category has this property we say

it is small complete or complete). The canonical construction of such a limit is

U = {p ∈
∏
i∈O(I)

Xi | Xα(py) = pz for every morphism α : y → z of I}

(Where O(I) is the object class of I). The topology for this space is the subspace topology

inherited from the product topology. (We will later be using a different, homeomorphic con-

struction of the limit of a functor X.) The construction for π is given by defining πi(p) = pi

for each object i of I and each p ∈ U .

Category theoretical limits are well known to be unique up to isomorphism (homeomor-

phism in this case) in all contexts (see [9], p. 69).
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(2) is well known ([9], p. 114 exercise 3). The outline of the proof is that for each morphism

η : X → Y of TopI, (L(X), η ◦ πX) is a cone to Y , and since (L(Y ), πY ) is a terminal cone

to Y , there is a unique morphism L(η) : L(X)→ L(Y ) having the desired property.

(3) is a slight generalization of a special case of a well known theorem of category the-

ory ([9], p. 114 exercise 3) that says that if a category C is small complete and I is small

then L : CI → C is a functor (our modification is to extend this notion to the case where

the map is defined on a subcategory of CI). We give the proof here although it is essentially

the proof for the non-generalized version.

Let X be an object of D, i be an object of I. πXi ◦ 1L(X) = πXi = 1Xi ◦ πXi = (1X)i ◦ πXi and

L(1X) is the unique morphism such that πXi ◦ L(1X) = (1X)i ◦ πXi , so L(1X) = 1L(X). Let

each of η : X → Y and θ : Y → Z be a morphism of D. Then L(θ) is the unique morphism

from L(Y )→ L(Z) such that for each object i of I, πZi ◦L(θ) = θi ◦πYi . Furthermore L(η) is

the unique morphism from L(X)→ L(Y ) such that for each object i of I, πYi ◦L(η) = ηi◦πXi .

Let i be an object of I. Then:

πZi ◦ L(θ) ◦ L(η) = θi ◦ πYi ◦ L(η) = θi ◦ ηi ◦ πXi = (θ ◦ η)i ◦ πXi .

L(θ ◦ η) is the unique morphism from L(X) → L(Z) such that for each object x of I,

πZx ◦L(θ◦η) = (θ◦η)x◦πXx . We have that L(θ)◦L(η) has this property, so L(θ)◦L(η) = L(θ◦η).

So L is a functor.

Definition Define GLim to be the subcategory of TopI of which a functor X : I → Top

is an object only in case for each n ∈ ω:

1. X(n,n+1) is a subspace of Xn ×Xn+1.

2. Xn∗ : X(n,n+1) → Xn is the restriction of the projection map onto the left coordinate.
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3. X(n+1)∗ : X(n,n+1) → Xn+1 is the restriction of the projection map onto the right

coordinate.

A natural transformation η is a morphism of GLim if η is a morphism of TopI with source

and target belonging to GLim.

Note that if X is an object of GLim and for each n ∈ ω we define rn = X(n,n+1), then

{Xn}n∈ω, {rn}n∈ω is a generalized inverse sequence. Then lim
←−
{X(n,n+1)}n∈ω = lim

←−
{rn}n∈ω =

lim
←−

r.

Theorem 3.2. Let X be an object of GLim. Define πX such that for each n ∈ ω,

πXn : lim
←−
{X(n,n+1)}n∈ω → Xn is defined by πXn (p) = pn for each p ∈ lim

←−
{X(n,n+1)}n∈ω,

and πX(n,n+1) : lim
←−
{X(n,n+1)}n∈ω → X(n,n+1) is defined by πX(n,n+1)(p) = (pn, pn+1) for each

p ∈ lim
←−
{X(n,n+1)}n∈ω. Then (lim

←−
{X(n,n+1)}n∈ω, πX) is a limit of X.

Proof.

Claim. (lim
←−
{X(n,n+1)}n∈ω, πX) is a cone to X.

Proof. We want to show the following diagram commutes for each n ∈ ω:

lim
←−
{X(n,n+1)}n∈ω

πXn



πX
(n,n+1)

��

πXn+1

��

X(n,n+1)

Xn∗

ww

X(n+1)∗

''
Xn Xn+1

Let p be in lim
←−
{X(n,n+1)}n∈ω. We have that

(Xn∗ ◦ πX(n,n+1))(p) =Xn∗(π
X
(n,n+1)(p)) = Xn∗(pn, pn+1)

=pn = πXn (p).
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So Xn∗ ◦ πX(n,n+1) = πXn . Also,

(X(n+1)∗ ◦ πX(n,n+1))(p) =X(n+1)∗(π
X
(n,n+1)(p)) = X(n+1)∗(pn, pn+1)

=pn+1 = πXn+1(p).

So X(n+1)∗ ◦ πX(n,n+1) = πXn+1. So (lim
←−
{X(n,n+1)}n∈ω, πX) is a cone to X.

Claim. (lim
←−
{X(n,n+1)}n∈ω, πX) is a terminal cone to X, that is, if W is space with family α

such that for each object i of I, αi : W → Xi is a continuous map, such that

W

αn

��

α(n,n+1)

��
αn+1

��

X(n,n+1)

Xn∗
zz

X(n+1)∗

%%
Xn Xn+1

commutes for each n ∈ ω, then there is a unique γ : W → lim
←−
{X(n,n+1)}n∈ω such that

πXi ◦ γ = αi for each object i of I.

Proof. Let W be such a space with α such a family. Define γ : W → lim
←−
{X(n,n+1)}n∈ω such

that for each w ∈ W , n ∈ ω, γ(w)n = αn(w).

γ is well defined: For all n ∈ ω,

(γ(w)n, γ(w)n+1) =(αn(w), αn+1(w))

=((Xn∗ ◦ α(n,n+1))(w), (X(n+1)∗ ◦ α(n,n+1))(w))

=(Xn∗(α(n,n+1)(w)), X(n+1)∗(α(n,n+1)(w)))

=α(n,n+1)(w) ∈ X(n,n+1).
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So γ(w) ∈ lim
←−
{X(n,n+1)}n∈ω.

γ is continuous: By the fact that it is the product of continuous maps.

γ has the desired commutative property: Let w be in W . Then:

(πXn ◦ γ)(w) = πXn (γ(w)) = (γ(w))n = αn(w).

So πXn ◦ γ = αn. Furthermore:

Xn∗((π
X
(n,n+1) ◦ γ)(w)) =Xn∗(π

X
(n,n+1)(γ(w))) = Xn∗(γ(w)n, γ(w)n+1)

=Xn∗(αn(w), αn+1(w)) = αn(w)

=(Xn∗ ◦ α(n,n+1))(w)

=Xn∗(α(n,n+1)(w)),

X(n+1)∗((π
X
(n,n+1) ◦ γ)(w)) =X(n+1)∗(π

X
(n,n+1)(γ(w))) = X(n+1)∗(γ(w)n, γ(w)n+1)

=X(n+1)∗(αn(w), αn+1(w)) = αn+1(w)

=(X(n+1)∗ ◦ α(n,n+1))(w)

=X(n+1)∗(α(n,n+1)(w)).

Since Xn∗ and X(n+1)∗ are the projections onto the first and second coordinates respec-

tively for a subspace of Xn × Xn+1, and Xn∗((π
X
(n,n+1) ◦ γ)(w)) = Xn∗(α(n,n+1)(w)) and

X(n+1)∗((π
X
(n,n+1) ◦γ)(w)) = X(n+1)∗(α(n,n+1)(w)) we have that (πX(n,n+1) ◦γ)(w) = α(n,n+1)(w)

for each w ∈ W , and hence πX(n,n+1) ◦ γ = α(n,n+1).

γ has this property uniquely: Let γ′ : W → lim
←−
{X(n,n+1)}n∈ω have the property that
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πXn ◦ γ′ = αn and πX(n,n+1) ◦ γ′ = α(n,n+1) for each n ∈ ω. Then for all w ∈ W , n ∈ ω,

(γ(w))n = πXn (γ(w)) = (πXn ◦ γ)(w) = αn(w) = (πXn ◦ γ′)(w) = πXn (γ′(w)) = (γ′(w))n.

So γ(w) = γ′(w) and thus γ = γ′. Thus (lim
←−
{X(n,n+1)}n∈ω, πX) is a terminal cone.

Thus (lim
←−
{X(n,n+1)}n∈ω, πX) is a limit of X.

Corollary 3.2.1. L(X) = lim
←−
{X(n,n+1)}n∈ω and L(η) as in part 2 of Theorem 3.1 defines a

functor L from GLim to Top.

Proof. From Theorem 3.2, (lim
←−
{X(n,n+1)}n∈ω, πX) is a limit.

Each morphism η : X → Y of GLim is a morphism of TopI, so part 2 of Theorem 3.1

allows us to define a continuous function L(η) : L(X)→ L(Y ) uniquely having the property

that πYi ◦ L(η) = ηi ◦ πXi for each object i in I.

So by part 3 of Theorem 3.1, L is a functor.

Note that in our construction of TopI and GLim, we have imposed none of the stan-

dard conditions, such as requiring that each factor space be a compact metric space or that

each bonding map be upper semi-continuous. Because of the general nature of Theorem 3.1

part 3, we may replace GLim with any subcategory of TopI we desire and achieve the same

result. For example, if we define GLimCMet,USC to be the subcategory of GLim where each

functor maps each object n of I to a compact metric space and each object (n, n+ 1) of I to

a closed subset of Xn ×Xn+1 (which is a graph corresponding to an upper semi-continuous

set-valued bonding map) then we can similarly construct a functor from this category of

inverse sequences to Top.

Theorem 3.2 leads to a characterization of generalized inverse limits as “category theo-

retical” limits of functors in GLim, which can be thought of as inverse sequences of the
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form

· · ·
Xn∗

  

X(n,n+1)

Xn∗
zz

X(n+1)∗

%%

· · ·
X(n+1)∗
||

· · · Xn Xn+1 · · ·

with each X(n,n+1) the graph of a set valued map bonding Xn and Xn+1, and Xn∗ , X(n+1)∗

the projections of this graph into the factor spaces.

Corollary 3.2.2. A space U is representable as a generalized inverse limit on factor spaces

{Xn}n∈ω if and only if for each n ∈ ω, there is a subset X(n,n+1) of Xn × Xn+1 so that if

Xn∗ : X(n,n+1) → Xn and X(n+1)∗ : X(n,n+1) → Xn+1 are as defined earlier, X is a functor of

GLim having U as (the object part of) a category theoretical limit.

Proof. Let U be a topological space.

( =⇒ ): Suppose U is representable as an inverse limit on factor spaces {Xn}n∈ω. Then

U is homeomorphic to lim
←−
{X(n,n+1)}n∈ω where X(n,n+1) is a subset of Xn×Xn+1. Define Xn∗

and X(n+1)∗ to be the projections onto the left and right coordinates, respectively. Then X

is a functor belonging to GLim having lim
←−
{X(n,n+1)}n∈ω as a limit by Theorem 3.2. Since

U is homeomorphic to lim
←−
{X(n,n+1)}n∈ω, U is a also a limit.

( ⇐= ): Suppose for each n ∈ ω, there is a subset X(n,n+1) of Xn × Xn+1 so that if

Xn∗ : X(n,n+1) → Xn and X(n+1)∗ : X(n,n+1) → Xn+1 are as defined earlier, X is a func-

tor of GLim having U as (the object part of) a category theoretical limit. By Theorem

3.2, lim
←−
{X(n,n+1)}n∈ω is also a limit, and since limits are unique up to homeomorphism,

U and lim
←−
{X(n,n+1)}n∈ω are homeomorphic. So U is representable as the generalized limit

lim
←−
{X(n,n+1)}n∈ω on factor spaces {Xn}n∈ω.

Another characterization arises as follows. (For the following, for a function α, im(α) is

the image of α.)

44



Theorem 3.3. A topological space U is representable as a generalized inverse limit on factor

spaces {Xn}n∈ω if and only if there are continuous functions {ψX(n,n+1) : U → Xn×Xn+1}n∈ω

such that π∗ ◦ ψX(n,n+1) = π∗ ◦ ψX(n+1,n+2) for each n ∈ ω (where π∗, π
∗ are the projections

onto the left and right coordinates respectively), having the property that if W is a space with

continuous functions {α(n,n+1) : W → im(ψX(n,n+1))}n∈ω such that π∗◦α(n,n+1) = π∗◦α(n+1,n+2)

for each n ∈ ω, then there is a continuous function γ : W → U uniquely having the property

that ψX(n,n+1) ◦ γ = α(n,n+1) for each n ∈ ω.

U

ψX
(n,n+1)

xx
ψX
(n+1,n+2)

''
Xn ×Xn+1

π∗

&&

Xn+1 ×Xn+2

π∗
xx

Xn+1

Proof. Let U be a topological space and Xi be a topological space for each i ∈ ω.

( =⇒ ): Suppose U is representable as a generalized inverse limit on factor spaces {Xi}i∈ω.

Then by Corollary 3.2.2, for each n ∈ ω, there is a subset X(n,n+1) of Xn × Xn+1 so that

if Xn∗ : X(n,n+1) → Xn and X(n+1)∗ : X(n,n+1) → Xn+1 are as defined earlier, X is a

functor of GLim having U as (the object part of) a category theoretical limit. So there

are continuous functions ψXn : U → Xn and ψX(n,n+1) : U → X(n,n+1) for each n ∈ ω so

that (U, ψX) is a category theoretical limit. Let W be a space with continuous functions

{α(n,n+1) : W → im(ψX(n,n+1))}n∈ω such that π∗ ◦ α(n,n+1) = π∗ ◦ α(n+1,n+2) for each n ∈ ω.

Note that for each n ∈ ω since im(ψX(n,n+1)) ⊆ X(n,n+1), α(n,n+1) is also a continuous func-

tion into X(n,n+1). For each n ∈ ω define αn = π∗ ◦ αn,n+1. Then for each n ∈ ω, note

that Xn∗ = π∗|X(n,n+1)
and X(n+1)∗ = π∗|X(n,n+1)

, so Xn∗ ◦ α(n,n+1) = π∗ ◦ α(n,n+1) = αn and

X(n+1)∗ ◦α(n,n+1) = π∗ ◦α(n,n+1) = π∗ ◦α(n+1,n+2) = αn+1. So (W,α) is a cone to X, and thus

since (U, ψX) is a category theoretical limit of X, there is a continuous function γ : W → U

45



uniquely having the property that ψXn ◦ γ = αn and ψX(n,n+1) ◦ γ = α(n,n+1) for each n ∈ ω.

So the family {ψX(n,n+1) : U → Xn ×Xn+1}n∈ω has the desired properties.

( ⇐= ): Suppose there are continuous functions {ψX(n,n+1) : U → Xn × Xn+1}n∈ω such

that π∗ ◦ ψX(n,n+1) = π∗ ◦ ψX(n+1,n+2) for each n ∈ ω (where π∗, π
∗ are the projections onto the

left and right coordinates respectively), having the property that if W is a space with con-

tinuous functions {α(n,n+1) : W → im(ψX(n,n+1))}n∈ω such that π∗ ◦ α(n,n+1) = π∗ ◦ α(n+1,n+2)

for each n ∈ ω, then there is a continuous function γ : W → U uniquely having the prop-

erty that ψX(n,n+1) ◦ γ = α(n,n+1) for each n ∈ ω. For each n ∈ ω, define ψXn : U → Xn

by ψXn = π∗ ◦ ψX(n,n+1), define X(n,n+1) = im(ψX(n,n+1)), define Xn∗ = π∗|X(n,n+1)
, and define

X(n+1)∗ = π∗|X(n,n+1)
. Note that X is a functor of GLim. The pair (U, ψX) is a cone to

X since Xn∗ ◦ ψX(n,n+1) = π∗ ◦ ψX(n,n+1) = ψXn and X(n+1)∗ ◦ ψX(n,n+1) = π∗ ◦ ψX(n,n+1) = π∗ ◦

ψX(n+1,n+2) = ψXn+1.

Claim. (U, ψX) is a terminal cone to X.

Proof. Let W be a topological space and α be a family such that for each n ∈ ω, αn :

W → Xn and α(n,n+1) : W → X(n,n+1) is each a continuous function, Xn∗ ◦ α(n,n+1) = αn

and X(n+1)∗ ◦ α(n,n+1) = αn+1. Since X(n,n+1) = im(ψX(n,n+1)), we have a family {α(n,n+1) :

W → im(ψX(n,n+1))}n∈ω of continuous functions with the desired domain and codomain, and

for each n ∈ ω:

π∗ ◦ α(n,n+1) = X(n+1)∗ ◦ α(n,n+1) = αn+1 = X(n+1)∗ ◦ α(n+1,n+2) = π∗ ◦ α(n+1,n+2).

So by assumption there is a continuous function γ : W → U uniquely having the property

that ψX(n,n+1) ◦ γ = α(n,n+1) for each n ∈ ω. Thus,

ψXn ◦ γ = π∗ ◦ ψX(n,n+1) ◦ γ = π∗ ◦ α(n,n+1) = Xn∗ ◦ α(n,n+1) = αn.
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So (U, ψX) is a terminal cone to X.

So (U, ψX) is a category theoretical limit of X, so by Corollary 3.2.2, U is representable

as a generalized inverse limit on factor spaces {Xn}n∈ω.
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3.3 Adjoint Pairs

It is well known that every topological space U can be realized as a traditional inverse

limit where all the factor spaces are U , by letting each bonding map be the identity. We

intend to show that this idea induces a functor from Top to GLim, which together with the

functor L forms what is called an adjoint pair.

Definition Let each of C and D be a category and each of F : C→ D and G : C→ D be

a functor. (F,G) is said to be an adjoint pair if for each object x of D and object y of C,

there is a bijection ηxy : D(F (x), y) → C(x,G(y)) such that for each morphism α : x → x′

of C and each morphism β : y → y′ of D, the following diagram commutes:

D(F (x′), y)
ηx′y //

F (α)∗

��

C(x′, G(y))

α∗

��
D(F (x), y)

ηxy //

β∗
��

C(x,G(y))

G(β)∗
��

D(F (x), y′)
ηxy′ // C(x,G(y′))

Where for each morphism γ : x → y of a category A, γ∗ : A(z, x) → A(z, y) is left

composition by γ, and γ∗ : A(y, z) → A(x, z) is right composition by γ. Adjoint pairs

describe a relationship between functors which is similar to but weaker than the relationship

functors have which map between isomorphic or equivalent categories. If (F,G) is an adjoint

pair then F is said to be left adjoint to G, and G is said to be right adjoint to F .

We begin by defining a functor from TopI to its subcategory GLim.

Theorem 3.4. Let I : GLim→ TopI be the inclusion functor. For each functor X in TopI,

define φX so that for each n ∈ ω, φXn = 1Xn and φX(n,n+1) is defined so that φX(n,n+1)(p) =

(Xn∗(p), X(n+1)∗(p)) for each p ∈ X(n,n+1). For each functor X in TopI define P (X) so

that for each n ∈ ω, P (X)n = Xn and P (X)(n,n+1) is the space im(φX(n,n+1)) endowed with
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the subspace topology inherited from Xn × Xn+1, and for each n ∈ ω define P (X)n∗ and

P (X)(n+1)∗ to be the projection maps onto the left and right coordinates. Then:

1. For each morphism η : X → Y of TopI there is a morphism P (η) : P (X)→ P (Y ) of

GLim uniquely having the property that I(P (η)) ◦ φX = φY ◦ η.

2. P is a functor from TopI to GLim.

3. φ is a natural transformation from the identity functor on TopI to I ◦ P .

4. For any functor X or morphism η of GLim, φI(X) = 1I(X), P (I(X)) = X, and

P (I(η)) = η.

Proof.

To prove (1), let η : X → Y be a morphism of TopI, and define P (η) so that for each

n ∈ ω, P (η)n = ηn and P (η)(n,n+1) = (ηn × ηn+1)
∣∣∣
P (X)(n,n+1)

.

P (η) is well defined: We want to show that (ηn(a), ηn+1(b)) is in P (Y )(n,n+1) for each

(a, b) ∈ P (X)(n,n+1). Since (a, b) ∈ P (X)(n,n+1), (a, b) ∈ im(φX(n,n+1)), so (a, b) = φX(n,n+1)(p) =

(Xn∗(p), X(n+1)∗(p)) for some p ∈ X(n,n+1). So a = Xn∗(p) and b = X(n+1)∗(p). So we have:

(ηn(a), ηn+1(b)) =(ηn(Xn∗(p)), ηn+1(X(n+1)∗(p)))

=((ηn ◦Xn∗)(p), (ηn+1 ◦X(n+1)∗)(p))

=((Yn∗ ◦ η(n,n+1))(p), (Y(n+1)∗ ◦ η(n,n+1))(p))

=(Yn∗(η(n,n+1)(p)), Y(n+1)∗(η(n,n+1)(p)))

=φY(n,n+1)(η(n,n+1)(p)) ∈ im(φY(n,n+1)) = P (Y )(n,n+1).

P (η)(n,n+1) is continuous since it is constructed from continuous functions using continuity-

preserving operations. So P (η) is well defined.
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Let n be in ω and p be in X(n,n+1). Then:

(I(P (η)) ◦ φX)(n,n+1)(p) =(I(P (η))(n,n+1) ◦ φX(n,n+1))(p)

=I(P (η))(n,n+1)(φ
X
(n,n+1)(p))

=I(P (η))(n,n+1)(Xn∗(p), X(n+1)∗(p))

=(ηn(Xn∗(p)), ηn+1(X(n+1)∗(p)))

=((ηn ◦Xn∗)(p), (ηn+1 ◦X(n+1)∗)(p))

=((Yn∗ ◦ η(n,n+1))(p), (Y(n+1)∗ ◦ η(n,n+1))(p))

=(Yn∗(η(n,n+1)(p)), Y(n+1)∗(η(n,n+1)(p)))

=φY(n,n+1)(η(n,n+1)(p)) = (φY(n,n+1) ◦ η(n,n+1))(p)

=(φY ◦ η)(n,n+1)(p).

So (I(P (η)) ◦ φX)(n,n+1) = (φY ◦ η)(n,n+1). Let p be in Xn. Then:

(I(P (η)) ◦ φX)n(p) =(I(P (η))n ◦ φXn )(p) = (ηn ◦ 1Xn)(p) = ηn(p)

=(1Yn ◦ ηn)(p) = (φYn ◦ ηn)(p) = (φY ◦ η)n(p).

So (I(P (η)) ◦ φX)n = (φY ◦ η)n. Thus I(P (η)) ◦ φX = φY ◦ η. Let γ : P (X) → P (Y ) be a

morphism of GLim such that I(γ) ◦ φX = φY ◦ η. Let n be in ω. Then:

I(γ)n =I(γ)n ◦ 1Xn = I(γ)n ◦ φXi = (I(γ) ◦ φX)n = (φY ◦ η)n

=(I(P (η)) ◦ φX)n = I(P (η))n ◦ φXn

=P (η)n ◦ 1Xn = I(P (η))n ◦ 1P (X)n = I(P (η))n

=⇒ γn =P (η)n.
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Let (a, b) be in P (X)(n,n+1). Then (a, b) = φX(n,n+1)(p) for some p ∈ X(n,n+1). So:

I(γ)(n,n+1)(a, b) =I(γ)(n,n+1)(φ
X
(n,n+1)(p)) = (I(γ)(n,n+1) ◦ φX(n,n+1))(p)

=(I(γ) ◦ φX)(n,n+1)(p) = (φY ◦ η)(n,n+1)(p)

=(I(P (η)) ◦ φX)(n,n+1)(p) = (I(P (η))(n,n+1) ◦ φX(n,n+1))(p)

=I(P (η))(n,n+1)(φ
X
(n,n+1)(p)) = I(P (η))(n,n+1)(a, b)

=⇒ I(γ)(n,n+1) =I(P (η))(n,n+1)

=⇒ γ(n,n+1) =P (η)(n,n+1).

So γ = P (η) and P (η) has the desired property uniquely.

For (2), let n be in ω, each of X, Y, Z be a functor of TopI and each of η : X → Y

and θ : Y → Z be a morphism of TopI. Then:

(P (1X))n =1Xn = 1(P (X))n = (1P (X))n,

(P (1X))(n,n+1) =(1Xn × 1Xn+1)
∣∣∣
(P (X))(n,n+1)

= 1(P (X))(n,n+1)
= (1P (X))(n,n+1),

(P (θ ◦ η))n =(θ ◦ η)n = θn ◦ ηn = P (θ)n ◦ P (η)n = (P (θ) ◦ P (η))n

P (θ ◦ η)(n,n+1) =((θ ◦ η)n × (θ ◦ η)n+1)
∣∣∣
(P (X))(n,n+1)

=((θn ◦ ηn)× (θn+1 ◦ ηn+1))
∣∣∣
(P (X))(n,n+1)

=(θn × θn+1) ◦ (ηn ◦ ηn+1)
∣∣∣
(P (X))(n,n+1)

=(θn × θn+1)
∣∣∣
(P (Y ))(n,n+1)

◦ (ηn ◦ ηn+1)
∣∣∣
(P (X))(n,n+1)

(Since im((ηn ◦ ηn+1)
∣∣∣
(P (X))(n,n+1)

) ⊆ (P (Y ))(n,n+1))

=(P (θ))(n,n+1) ◦ (P (η))(n,n+1) = (P (θ) ◦ P (η))(n,n+1).
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So P (1X) = 1P (X) and P (θ ◦ η) = P (θ) ◦ P (η). So P is a functor.

(3) follows directly from 1 and 2.

For (4), let X be an object of GLim and η : X → Y be a morphism of GLim. Then

X(n,n+1) ⊆ Xn ×Xn+1, Xn∗ is projection onto the left coordinate, and X(n+1)∗ is projection

onto the right coordinate for all n ∈ ω (and thus I(X) has those same properties). We have

that φ
I(X)
n = 1(I(X))n for each n ∈ ω and φ

I(X)
(n,n+1)(a, b) = ((I(X))n∗(a, b), I(X)(n+1)∗(a, b)) =

(a, b) for all n ∈ ω. So φ
I(X)
(n,n+1) = 1(I(X))(n,n+1)

and thus φI(X) = 1I(X). (P (I(X)))n =

(I(X))n = Xn for all n ∈ ω while (P (I(X)))(n,n+1) = im(φ
I(X)
(n,n+1)) = im(1(I(X))(n,n+1)

) =

(I(X))(n,n+1) = X(n,n+1) for all n ∈ ω. So P (I(X)) = X. We have that (P (I(η)))n =

(I(η))n = ηn for all n ∈ ω, and for all n ∈ ω:

(P (I(η)))(n,n+1)(a, b) = ((I(η))n × (I(η))n+1)
∣∣∣
(P (I(X)))(n,n+1)

(a, b)

=((I(η))n(a), (I(η))n+1(b))

=(((I(η))n ◦ (I(X))n∗)(a, b), ((I(η))n+1 ◦ (I(X))(n+1)∗)(a, b))

=(((I(Y ))n∗ ◦ (I(η))(n,n+1))(a, b), ((I(Y ))(n+1)∗ ◦ (I(η))(n,n+1))(a, b))

=(I(η))(n,n+1)(a, b) = η(n,n+1)(a, b).

So P (I(η)) = η.

Theorem 3.5. (P, I) is an adjoint pair.

Proof. For each ρ ∈ GLim(P (X), Y )→ TopI(X, I(Y )) define θXY (ρ) = I(ρ) ◦ φX .

θXY is an injection: Let each of σ, ρ be in GLim(P (X), Y ) (that is, each of σ, ρ is a mor-

phism between generalized inverse sequences P (X) and Y of GLim) with θXY (σ) = θXY (ρ).
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For each n ∈ ω, φXn = 1Xn so:

σn =σn ◦ 1Xn = σn ◦ φXn = (σ ◦ φX)n = (θXY (σ))n

=(θXY (ρ))n = (ρ ◦ φX)n = ρn ◦ φXn = ρn ◦ 1Xn = ρn.

Let (a, b) be in P (X)(n,n+1). Then (a, b) = φX(n,n+1)(p) for some p ∈ X(n,n+1). So:

σ(n,n+1)(a, b) =σ(n,n+1)(φ
X
(n,n+1)(p)) = (σ(n,n+1) ◦ φX(n,n+1))(p)

=(σ ◦ φX)(n,n+1)(p) = (θXY (σ))(n,n+1)(p)

=(θXY (ρ))(n,n+1)(p) = (ρ ◦ φX)(n,n+1)(p)

=(ρ(n,n+1) ◦ φX(n,n+1))(p) = ρ(n,n+1)(φ
X
(n,n+1)(p))

=ρ(n,n+1)(a, b).

So σ(n,n+1) = ρ(n,n+1) and thus σ = ρ. So θXY is an injection.

θXY is a surjection: Let ξ be in TopI(X, I(Y )). Note φI(Y ) = 1I(Y ) since Y is an object

of GLim. Then:

θXY (P (ξ)) = I(P (ξ)) ◦ φX = φI(Y ) ◦ ξ = 1I(Y ) ◦ ξ = ξ.

So θXY is a surjection.

Having shown that θXY is a bijection for each object X of TopI and object Y of GLim, it

remains to be shown that for a morphism α : X → X ′ of TopI and a morphism β : Y → Y ′
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of GLim, the following diagram commutes:

GLim(P (X ′), Y )
θX′Y //

P (α)∗

��

TopI(X ′, I(Y ))

α∗

��
GLim(P (X), Y )

θXY //

β∗
��

TopI(X, I(Y ))

I(β)∗
��

GLim(P (X), Y ′)
θXY ′ // TopI(X, I(Y ′))

Let σ be in GLim(P (X ′), Y ). Then:

(α∗ ◦ θX′Y )(σ) =α∗(θX′Y (σ)) = α∗(I(σ) ◦ φX′) = I(σ) ◦ φX′ ◦ α

=I(σ) ◦ I(P (α)) ◦ φX = I(σ ◦ P (α)) ◦ φX = I(P (α)∗(σ)) ◦ φX

=θXY (P (α∗)(σ)) = (θXY ◦ P (α)∗)(σ).

So α∗ ◦θX′Y = θXY ◦P (α)∗ and thus the top square commutes. Let ρ be in GLim(P (X), Y ).

Then:

(I(β)∗ ◦ θXY )(ρ) =I(β)∗(θXY (ρ)) = I(β)∗(I(ρ) ◦ φX) = I(β) ◦ I(ρ) ◦ φX

=I(β ◦ ρ) ◦ φX = θXY ′(β ◦ ρ) = θXY ′(β∗(ρ)) = (θXY ′ ◦ β∗)(ρ).

So I(β)∗ ◦ θXY = θXY ′ ◦ β∗ and thus the bottom square commutes. So (P, I) is an adjoint

pair.

Define a functor ∆ from Top to TopI so that for each topological space U , (∆(U))n =

(∆(U))(n,n+1) = U and (∆(U))n∗ = (∆(U))(n+1)∗ = 1U for each n ∈ ω. It is easy to verify

that this is a functor, known as the diagonal functor. Then the following is well known ([9],

p. 88 table):

Lemma. Any limit functor from TopI to Top as described in Theorem 3.1 is right adjoint

to ∆.
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We may then define a functor L′ from TopI to Top so that L′(X) = L(X) for every

object X of GLim, and L(Y ) is the canonical limit described in the proof of Theorem 3.1

part 1. Note then that L = L′ ◦ I.

Theorem 3.6. (P ◦∆, L) is an adjoint pair.

Proof. It is easy to verify that since (∆, L′) is an adjoint pair and (P, I) is an adjoint pair,

then (P ◦ ∆, L′ ◦ I) = (P ◦ ∆, L) is an adjoint pair. Indeed this is true in general for two

adjoint pairs that share a category in common.

Note what P ◦∆ does to a topological space U . The object ∆(U) represents the inverse

sequence below:

· · ·
1U

  

U
1U

��

1U

��

· · ·
1U

~~
· · · U U · · ·

This is of course not a generalized inverse sequence, so

(P (∆(U)))(n,n+1)(u) = (1U(u), 1U(u)) = (u, u) for all n ∈ ω, u ∈ U.

So P (∆(U)) is the generalized inverse sequence where each factor space is U and the graph

of each bonding map is the diagonal graph, which corresponds to the identity bonding map.

This inverse sequence is known to have inverse limit homeomorphic to U . So P ◦∆ can be

thought of as the functor which sends each topological space U to this generalized inverse

sequence and each continuous function α : U → V to (P ◦ ∆)(α) where for each n ∈ ω,

(P ◦∆)(α)n = α and (P ◦∆)(α)(n,n+1) is defined by (P ◦∆)(α)(n,n+1)(u) = (α(u), α(u)) for

all u ∈ U .
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