
Extensions of Monotonicity Results to Semisimple Lie Groups

by

Zachary Sarver

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 8, 2016

Keywords: Lie group, Lie algebra, semisimple, Kostant’s preorder, positive definite

Copyright 2016 by Zachary Sarver

Approved by

Tin-Yau Tam, Chair, Professor of Mathematics
Randall R. Holmes, Professor of Mathematics

Luke Oeding, Assistant Professor of Mathematics
Michel Smith, Professor of Mathematics



Abstract

We extend a monotonicity result of Wang and Gong on the product of powers of positive

definite matrices. This result concerns the eigenvalues of such products which written as

vectors have a log majorization relationship. Our extension is in the context of semisimple

Lie groups which relies on the complete multiplicative Jordan decomposition and which we

express with Kostant’s preorder. An analogous result on singular values is also obtained.
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Chapter 1

Introduction

This dissertation concerns the extension of inequalities involving matrices to semisim-

ple Lie groups. The particular inequalities studied were first investigated in mathematical

physics. In [5], Lieb and Thirring showed that for any real number α ≥ 1,

tr((AB)α) ≤ tr(AαBα)

It was further studied by Araki in [10] and by Audenaert in [17] and [18]. This inequality was

of interest outside of mathematical physics, in particular matrix theory. In 1993, Wang and

Gong [13] proved an extension of the Lieb-Thirring inequality, which is also a generalization

of results of Marcus [2], Le Couteur [9], and Bushell and Trustrum [11]. This dissertation

further generalizes Wang and Gong’s extension of the Lieb-Thirring inequality to a general

semisimple Lie group, as well as a similar inequality involving singular values.

The theory of semisimple Lie groups is readily applicable to the study of matrix groups,

and somewhat conversely matrix groups serve as important prototypes and examples for

the study of Lie groups. The matrix groups GLn(C) and SLn(C) have a well known group

structure, and various decompositions and results in these groups serve as natural prototypes

for analogous results in the context of Lie groups. New results involving matrix groups are

often extended to this more general context.

The aforementioned decompositions are important tools in the study of semisimple Lie

groups. Extensive use will be made of the Cartan decomposition, which is the familiar polar

decomposition in the context of SLn(C). Use will also be made of the Iwasawa decomposi-

tion, analogous to the QR decomposition of matrices, as well as the KAK decomposition,
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analogous to the singular value decomposition. These Lie group decompositions are all ap-

proached similarly in that they are built from decompositions of Lie algebras, Lie algebras

having in some respects a simpler algebraic structure which is approachable via the standard

techniques of linear algebra and matrix theory.

Of particular importance is the Complete Multiplicative Jordan Decomposition, here-

after abbreviated CMJD. As the name would indicate, this decomposition, introduced by

Kostant in [4], is an extension of the Jordan-Chevalley decomposition of matrices, itself a

multiplicative version of the familiar Jordan canonical form. The Jordan canonical form

presents a matrix or linear map as a sum of an essentially unique semisimple part and nilpo-

tent part. The Jordan-Chevalley decomposition presents a nonsingular matrix, linear map,

or Lie group element as the product of a semisimple part and a unipotent part, and Kostant’s

CMJD further decomposes the semisimple part into a hyperbolic part and an elliptic part.

This decomposition of a Lie group element g = ehu, where e is elliptic, h is hyperbolic, and

u is unipotent, has several desirable properties, among them the factors being unique and

commuting.

The study of Lie algebras facilitates that of Lie groups because Lie algebras and Lie

groups are closely intertwined. Not only are they diffeomorphic on neighborhoods of their

respective identities, but they also share an important group action. There is a Weyl group

formulated as a quotient of normal subgroups and also a Weyl group describing the symme-

tries of its Lie algebra. Although the definitions of these groups are quite different, they are

in fact isomorphic.

A facet of the correspondence between a Lie group and its Lie algebra may also be de-

scribed in the language of category theory. Let FLGrp be the category of finite dimensional

Lie groups having smooth homomorphisms as morphisms, FMan be the category of finite

dimensional smooth manifolds having smooth maps as morphisms, and FLAlg be the cate-

gory of finite dimensional Lie algebras having Lie algebra homomorphisms as morphism. Let

F : FLGrp→ FMan be the forgetful functor. Every finite dimensional Lie algebra is also
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a vector space, and every finite dimensional vector space over R or C is trivially a smooth

manifold. Likewise, every linear map between finite dimensional vector spaces is also trivially

a smooth map, so we may define a forgetful functor M : FLAlg→ FMan. There is another

functor natural to the study of Lie groups, and that is the functor L : FLGrp → FLAlg,

defined as follows: for a Lie group G, L(G) = g, its associated Lie algebra, and for a smooth

homomorphism, π : g→ h, L(π) = dπ, the differential of π at the identity.

Although Lie theorists speak of the exponential map exp as though there’s only one,

there is actually an exponential map exp = expG : G→ g for each pair of a Lie group and its

associated Lie algebra. It is well known that π ◦ exp = exp ◦dπ for a smooth homomorphism

π, which is to say the diagram given in Figure 1.1 commutes. Moreover, since exp is smooth,

G H

g h

π

dπ

exp exp

Figure 1.1: π ◦ exp = exp ◦dπ

we have the equivalent commuting diagram Figure 1.2 in FMan. Because this diagram

F (G) F (H)

(M ◦ L)(G) (M ◦ L)(H)

F (π)

(M ◦ L)(π)

expG expH

Figure 1.2: Commutative diagram in FMan

commutes, exp is a natural transformation between the functors F and M ◦ L.

This dissertation is organized as follows: in Chapter 2 we examine the definitions and

basic results of Lie theory, having to detour briefly into a discussion of smooth manifolds

to do so. In Chapter 3 we examine the various decompositions and tools of Lie groups

in some details. Chapter 4 is an overview of the matrix inequalities generalized in this
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dissertation, as well as matrix theoretic results that will be useful. In Chapter 5, we state

and prove generalizations of the Wang-Gong inequality. Throughout we assume that every

vector space discussed is finite-dimensional.
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Chapter 2

Lie Groups and Lie Algebras

This chapter contains the necessary background material needed to understand the

subsequent chapters. We will, however, assume the reader has a grasp of the basic definitions

and theorems of linear algebra, group theory, and topology.

A Lie group is both a group and a smooth manifold, and these two disparate mathemat-

ical structures are compatible in a certain specific way. This compatibility may be described

both concisely and precisely by the following categorial definition: a Lie group is a group

object in the category of smooth manifolds. Although this categorial definition is precise, it

requires elaboration. We will expound upon it in some detail, starting with the basic theory

of smooth manifolds. We follow the development of [1], [3], [6]and .

2.1 Smooth Manifolds

We first describe a manifold structure on a topological space M . Let M be a second

countable Hausdorff space, and suppose that for every point m of M , there is an open

neighborhood of m that is homeomorphic to Rn. We call each open set - homeomorphism

pair (U,ϕu) a chart, and we call a collection of charts covering all of M an atlas A. We call

such a topological space with an atlas of charts a topological manifold of dimension n.

If there are two charts (U,ϕU) and (V, ϕV ) such that U and V intersect, then ϕU ◦ ϕ−1
V

and ϕV ◦ϕ−1
U are transition maps Rn → Rn and it is natural to consider the various properties

that real maps may take. If we mandate that each coordinate function of each transition

map has all partial derivatives up to a certain order k, we call the resulting structure a

differentiable manifold of order k or a Ck manifold. If a map f : Rn → Rn has component

functions with partial derivatives of all orders, it is called a C∞ map. If all of the transition
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maps of a given atlas of charts of a differentiable manifold are in fact C∞ maps, then the

resulting structure is a smooth manifold.

Although not strictly necessary, it is often convenient to assume that the atlas of charts

of a smooth manifold M is maximal in the certain following sense: the inclusion of any

additional charts to the atlas would cause the manifold to no longer be smooth.

we now describe maps that preserve smooth structure. These are called smooth maps,

and are defined as follows:

1. A smooth map f : M → N is first a continuous map between the underlying topological

spaces of M and N and

2. for every chart (U,ϕU) of M and every chart (V, ψV ) of N containing f(U), ψV ◦f ◦ϕ−1
U

is C∞.

Smooth maps are the morphisms in the category of differentiable manifolds, and the iso-

morphisms in this category are referred to as diffeomorphisms and may be characterized as

smooth and reversibly smooth bijections.

There is a feature of smooth manifolds that any student in a freshman calculus course

would recognize. We may define intrinsically and in the abstract a tangent space to any

point p on a smooth manifold M , including the more familiar tangent lines and tangent

planes of undergraduate calculus. We first define a tangent vector.

Let f : U → R be a function whose domain U is an open set containing p. Such a

function is also called C∞ if f ◦ϕ−1 : Rn → R is C∞ for all charts ϕ whose domain contains

p. Let C∞(p) denote the set of all real-valued C∞ functions whose domain is an open set

containing p.

C∞(p) has a natural ring structure, where the ring operations are defined as follows for

f : U → R, g : V → R ∈ C∞(p).

1. f + g : U ∩ V → R by (f + g)(x) = f(x) + g(x)

2. fg : U ∩ V → R by (fg)(x) = f(x)g(x)
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This can be extended to an algebra structure by defining scalar multiplication for α ∈ R

by f(αx) = αf(x), or by viewing scalars as constant functions α : M → R and using the

ring multiplication above. We may also describe an algebra structure on C∞(M) = {f :

M → R|f is C∞}, with addition, multiplication, and scalar multiplication defined exactly

as above. In this case U = V = M and hence U ∩ V = M also.

A tangent vector t at p is defined as a certain kind of operator on C∞(p). t : C∞(p)→ R

is a tangent vector if for f, g ∈ C∞(p) and α, β ∈ R

1. t(αf + βg) = αt(f) + βt(g) (t is linear)

2. t(fg) = t(f)g(p) + f(p)t(g) (t satisfies the product rule)

Such an operator is also known as a derivation, so we may more concisely state that tangent

vectors at p are derivations on C∞(p).

The collection of tangent vectors to M at p is denoted Mp and in fact forms a vector

space of the same dimension as M . Mp has a standard basis consisting of the operators

∂
∂xi

∣∣
p
, i = 1, . . . , n, defined by

∂

∂xi

∣∣∣∣
p

(f) = (Di(f ◦ ϕ))(ϕ(p)).

The union ⋃
p∈M

Mp = TM

of all the tangent spaces of M is known as the tangent bundle and is itself a smooth manifold.

Note that while each of Mp is isomorphic to Rn, this is a disjoint union, as for each p v ∈Mp

has a different domain.

The manifold structure of TM becomes somewhat readily apparent once we define a

topology on it. First we denote a tangent vector v ∈Mp by the pair (p, v). A subset of TM
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is open if and only if it is of the form

UTM := {(p, v) : p ∈ U, v ∈Mp}

for a fixed open subset U of M. In this way the open sets of M induce the open sets of

TM , and we can see that each open set of TM is homeomorphic to U × Rn. As U is itself

homeomorphic via some chart ϕU to Rn, we can conclude that each open set of TM is

homeomorphic to Rn × Rn ∼= R2n.

We may express this homeomorphism explicity by recalling that each v ∈ Mp can be

written as
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

.

Thus we may define a chart (UTM , ϕ) by

ϕ(v) = ((ϕU(v))1, . . . , (ϕU(v))n, a1, . . . , an),

where (ϕU(v))i denotes the ith coordinate of ϕU(v) ∈ Rn.

If we have a smooth map π : M → N between smooth manifolds M and N and a fixed

point p ∈ M , we can lift it to a linear map dπp : Mp → Nπ(p) between the tangent spaces

Mp and Nπ(p). As a tangent vector is an operator, we may describe the operator dπp(v) for

v ∈Mp by how it operates. Specifically, dπp is defined by

dπp(v)(f) = v(f ◦ π)

for f ∈ C∞(π(p)). dπp is called the differential of π at p. To use the language of category

theory, we have defined a functor F from the category of pointed manifolds to the category

of vector spaces by F ((M, p)) = Mp and F (π) = dπ. The collection {dπp : p ∈M} gives rise

to a map between tangent bundles dπ∗ : TM → TN by dπ∗(v) = dπp(v) when v ∈Mp.
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In the case of smooth manifolds, we describe more than one kind of submanifold. Let

A be an atlas of charts of M and N be an open subset of M . Define an atlas of charts

B = {(U ∩N,ϕU |U∩N) : (U,ϕU) ∈ A, U ∩N 6= ∅}. If B is an atlas of charts for N such that

N is itself a smooth manifold, then N is called an open submanifold of M .

Because dπp is a linear map, it has rank. If for all p ∈ M , rank dπp = dimM , we call

π an immersion. If a subset N ⊆ M is itself a smooth manifold, with an atlas of charts

not necessarily related to that of M , it is called an immersed submanifold so long as the

inclusion map ι : N →M is an immersion.

A map X : M → TM such that X(p) ∈ Mp for all p ∈ M is a vector field. We will

sometimes refer to X(p) as Xp for notational convenience. A vector field is called C∞ or

smooth in the case that X is itself a smooth map between smooth manifolds. We may

be more specific in saying that as TM is a set of derivations, we may write each X(p)

as
∑n

i=1 a
i(p) ∂

∂xi

∣∣
p

by taking advantage of the standard bases of tangent spaces described

above. We then call X smooth if each of the coordinate functions ai : M → R is smooth.

The set of vector fields V on X has the structure of a vector space over R. Its vector

space structure may be described, for X, Y ∈ V , p ∈M and α ∈ R by

1. (X + Y )p = Xp + Yp

2. (αX)p = α(Xp)

A vector field X also acts on C∞(M) by

Xfp = Xp(f).

Thus Xf is itself an element of C∞(M). This action on C∞(M) is compatible with its

algebraic structure as seen in the following theorem.

Theorem 2.1 ([3, p. 83]). For X ∈ V and f, g ∈ C∞(M),

1. X(f + g) = Xf +Xg, and
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2. X(fg) = gXf + fXg,

which is to say that every smooth vector field X is a derivation on C∞(M).

There is one more operation that we may define on vector fields, known as the Lie

derivative or Lie bracket. The Lie bracket is instrumental in the definition of a Lie algebra,

so it is of value to have two different perspectives. First, we define the flow associated to a

smooth vector field X.

A function γ : R → M is called a C∞ curve if for any chart (U,ϕU) of M , ϕU ◦ γ is

C∞ whenever the image of γ and U intersect. Suppose now that γ is a C∞ curve, p ∈ M ,

and α is a real number such that γ(α) = p. The vector tangent to γ at p is defined as the

operator γ∗α : C∞(p)→ R given by f 7→ (f ◦ γ)′(α) where ′ denotes the ordinary derivative

as a function R→ R.

For any vector field X and p ∈M , there is a unique C∞ curve γp satisfying the following

on an open interval I containing 0:

1. γp∗α = X(γp(α)), and

2. γp(0) = p.

The flow associated with X is

ψ : R×M →M

defined by

ψ(α, p) = γp(α).

It will be useful to fix a particular α ∈ R, and examine the map ψ(α,−) = ψα : M → M ,

which in fact is a diffeomorphism.

We finally define, given a diffeomorphism θ : M → N , the vector field θ∗X on N induced

by θ for q ∈ N and f ∈ C∞(q) as

(θ∗X)qf = Xθ−1(q)(f ◦ θ).
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Definition 2.2. Suppose X and Y are vector fields on the smooth manifold M and ψ is the

flow associated with X. Then the Lie derivative of Y with respect to X is the vector field

[LXY ]p = lim
h→0

Yp − (ψ∗hY )p
h

A much simpler operation to generate a new vector field from two old ones is given by

the Lie bracket.

Definition 2.3. Assume X, Y , and M as above. Then the Lie bracket of X and Y is the

vector field given by

[X, Y ]p(f) = Xp(Y f)− Yp(Xf)

or more concisely we write

[X, Y ] = XY − Y X

In fact

[LXY ] = [X, Y ].

The definition of the Lie derivative is clearly an analytic and geometric one, strikingly re-

sembling the definition of a derivative of a function f : R→ R and giving us a notion of the

infinitesimal change of one vector field with respect to another. The Lie bracket, however,

has a more algebraic flavor, and we can regard the Lie bracket as a sort of noncommutative,

nonassociative multiplication. That the two are in fact the same is remarkable. Although

the Lie bracket is favored by Lie theory texts due to its simplicity, a familiarity with the

Lie derivative significantly reduces the mystique surrounding the relationship between a Lie

group and its associated Lie algebra.

A large number of concepts from Euclidean geometry may be translated to smooth

manifolds via the Riemannian metric tensor. The Riemannian metric tensor is a family of

inner products

{〈·, ·〉p on Mp : p ∈M}.
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This family must satisfy the property that for all smooth vector fields X and Y the map

p 7→ 〈Xp, Yp〉p is a smooth map M → R. A smooth manifold for which a Riemannian metric

tensor exists is called a Riemannian manifold.

Example 2.4. We may define the length of a smooth curve γ : [a, b]→M via the Rieman-

nian metric tensor as

L(γ) =

∫ b

a

√
〈γ∗α, γ∗α〉γ(α)dα

2.2 Lie Groups and Lie Algebras

We begin our discussion by first defining a Lie algebra in the abstract, and only later

asserting that Lie algebras may arise as certain vector spaces associated with Lie groups,

equipped with the Lie derivative or equivalently the Lie bracket.

Definition 2.5. A Lie algebra g is a vector space over a field F, typically R or C, equipped

with a bilinear map µ : g × g → g, usually written µ(X, Y ) = [X, Y ] and called the Lie

bracket, satisfying the following:

1. [X,X] = 0 for all X ∈ g

2. [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]], the Jacobi identity, holds for all X, Y, and Z ∈ g

It must first be observed that for all X, Y ∈ g,

[X, Y ] + [Y,X] = [X, Y ] + [Y,X]− [X,X]− [Y, Y ]

= [X − Y, Y −X]

= −[X − Y,X − Y ] = 0

and hence [X, Y ] = −[Y,X]. Thus if [−,−] is commutative, in which case g is said to be

abelian, [Y,X] = [X, Y ] = −[Y,X] and hence [X, Y ] = 0 for all X and Y . Conversely,

if a Lie algebra with a trivial Lie bracket is abelian. Similarly, the typical Lie algebra is

nonassociative, associativity being replaced by the Jacobi identity.
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Example 2.6. Let V be a vector space. We define the Lie algebra gl(V ). The underlying

vector space of gl(V ) is End(V ), and the Lie bracket is defined as [A,B] = AB −BA where

juxtaposition denotes the ordinary composition of linear maps. This is known as the general

linear algebra of the vector space V .

For the vector space Fn (where F = R or C,) we fix a basis and view the elements of

gl(Fn) as matrices. The resulting Lie algebra is written gln(F).

The structure preserving maps between Lie algebras are Lie algebra homomorphisms. A

Lie algebra homomorphism f : g→ h is a linear map between the underlying vector spaces

of g and h that additionally satisfies

f([X, Y ]) = [f(X), f(Y )]

Much like any other algebraic structure, the image and kernel of a Lie algebra homomorphism

are both necessarily Lie algebras.

Similar to rings, Lie algebras have both subalgebras and ideals. A subalgebra of a Lie

algebra g is simply a subset h ⊆ g that is itself a Lie algebra when equipped with the same

bracket as g. An ideal i ⊆ g is a subalgebra that satisfies the sponge property

[X, I] ∈ i whenever I ∈ i.

The inclusion map from a subalgebra or ideal to its parent algebra is a Lie algebra homo-

morphism.

There are several important ideals in the study of Lie algebras.

Example 2.7. 1. The center of g, Zg = {X : [X, Y ] = 0 for all Y ∈ g}

2. The commutator ideal, [g, g] = span{[X, Y ] : X, Y ∈ g}

3. In more generality, if a and b are ideals, then so is [a, b] = span{[A,B] : A ∈ a, B ∈ b}
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4. If f : a→ b is a Lie algebra homomorphism, then ker f is an ideal of a.

Lie algebras are readily studied by the techniques of representation theory. A Lie algebra

homomorphism f : g→ gl(V ) into a general linear algebra is called a Lie algebra representa-

tion. A particularly important and useful representation is the map ad : g→ gl(g) defined by

ad(X)(Y ) = [X, Y ]. Although ad is a useful representation for proving theorems in the field

of Lie algebra, in light of the contents of this dissertation, it will be much more important

as the Lie algebra associated with a particular Lie group representation.

We are now at the point where the definition of a Lie group is needed. Two will be given,

one categorial in nature and one not. Let us first establish notation and basic definitions

needed to discuss the categorial viewpoint. We follow [8, p. 52] and [16].

A category is a class C of objects, and for any two objects x and y there is a set C(x, y)

of morphisms. It is typical that objects are sets with some structure and morphisms are

structure-preserving functions. Categories for which this is the case are called concrete.

For each pair of sets of morphisms C(x, y) and C(y, z) there is a function ◦ : C(y, z)×

C(x, y) → C(x, z) known as composition and written with infix notation or juxtaposition,

i.e. f ◦ g or fg rather than ◦(f, g). For each object x there must also exist a certain special

morphism 1x called the identity. If the category C is concrete, then 1x may be taken to

be the identity map. Composition must satisfy the following properties for all morphisms

f ∈ C(x, y), g ∈ C(y, z) , and h ∈ C(z, w) for which composition is defined:

1. (hg)f = h(gf),

2. 1yf = f , and

3. g1y = g.

Objects and morphisms are depicted visually via directed graphs called diagrams. In a

diagram, an object x ∈ C is a vertex, and a morphism f ∈ C(x, y) is an edge from x to y. A

diagram is said to commute if composing the morphisms along any path between two fixed

objects yields the same result.
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An object t ∈ C is called terminal if for any object x ∈ C there is a unique morphism

in C(x, t).

The product x×y of two objects may be defined. x×y is an object along with morphisms

πx ∈ C(x×y, x) and πy ∈ C(x×y, y) so that for any object z ∈ C and morphisms fx ∈ C(z, x)

and fy ∈ C(z, y), there is a unique morphism ϕ ∈ C(z, x× y) so that the following diagram

commutes.

z

x× y

x y

ϕ

fX fy

πx πy

Figure 2.1: Product diagram

We now define a group object in a concrete category C. C must have a terminal object

t and binary products. A group object is an object g ∈ C with morphisms

1. µ ∈ C(g × g, g), thought of as multiplication

2. ε ∈ C(t, g), thought of as giving the identity of g

3. ι ∈ C(g, g), thought of as group inversion.

The elements of g must satisfy the usual group axioms, where the above maps determine

multiplication, identity, and inversion. These axioms may be given as the statement that

the following diagrams commute:

g × g × g g × g

g × g g

µ× id g

id g × µ µ

µ

Figure 2.2: Multiplication is associative
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g g × g

g × g g

(id g, ε)

(ε, id g)
id g

µ

µ

Figure 2.3: Identity map gives identity element

g g × g

t

g × g g

(id g, ι)

(ι, id g) µ

ε

µ

Figure 2.4: Inverse map gives inverses

If the category of C is the category of smooth manifolds, we call g a Lie group. That

is, a Lie group is simultaneously a group and a smooth manifold where multiplication and

inversion can be regarded as smooth maps.

Example 2.8. Matrix groups G ⊆ Rn×n or G ⊆ Cn×n are often Lie groups when given

the submanifold structure inherited from their parent space Rn×n ∼= Rn2
or Cn×n ∼= R2n2

The general linear group, GLn(C) = {A ∈ Cn×n : detA 6= 0}, and the closed subgroups

of GLn(C) are called closed linear groups. They are Lie groups of particular importance.

Various closed linear groups are known as the classical groups, and several are listed below.

1. The real general linear group GLn(R) = {A ∈ Rn×n : detA 6= 0}

2. The real or complex special linear group SLn(F) = {A ∈ Fn×n : detA = 1} where

F = R or C

3. The real orthogonal group On(R) = {A ∈ Rn×n : ATA = I}

4. The real special orthogonal group SOn = On ∩ SLn(R)

5. The unitary group Un = {A ∈ Cn×n : A∗A = I}
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6. The special unitary group SUn = Un ∩ SLn(C)

7. The complex symplectic group

Spn(C) = A ∈ SL2n(C) : ATJnA = Jn} where Jn =

 0 In

−In 0


8. The real symplectic group Spn(R) = Spn(C) ∩GLn(R)

9. The compact symplectic group Sp(n) = Spn(C) ∩ Un

To every Lie group G, there is associated a Lie algebra g which is unique up to iso-

morphism. The underlying set of this Lie algebra is a set of vector fields on G. Because

multiplication is a smooth map G×G→ G, if we fix a g ∈ G, we can define the left trans-

lation map Lg : G→ G by Lg(h) = gh, which is a diffeomorphism from G to itself. A vector

field X satisfying

dLg(Xh) = Xgh

is called left invariant. The Lie algebra g associated to G is the set of left invariant vector

fields, which forms a vector space, where the bracket product is the Lie bracket of vector

fields.

Equivalently, every left invariant vector field is of the form dLg(v) for a fixed g ∈ G

where v ∈ Me is a vector tangent to G at the group identity. The map v 7→ dLg(v) is a

vector space isomorphism, and after defining [v, w]Me = [dLg(v), dLg(w)], it is a Lie algebra

isomorphism.

Example 2.9. The matrix groups listed above, as Lie groups, have associated Lie algebras,

which are isomorphic to the following matrix algebras, with [X, Y ] = XY − Y X.

1. The real general linear algebra gln(R) = Rn×n associated to GLn(R).

2. The real or complex special linear algebra sln(F) = {X ∈ Fn×n : trX = 0} associated

to SLn(F) where F = R or C
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3. The special orthogonal algebra so(n) = {X ∈ Rn×n : XT = −X} is the Lie algebra of

both O(n) and SO(n), and hence Lie groups and their corresponding Lie algebras are

not in one-to-one correspondence.

4. The unitary algebra u(n) = {X ∈ Cn×n : X∗ = −X} is the Lie algebra of U(n)

5. The complex symplectic algebra

spn(C) =


X1 X2

X3 −XT
1

 : Xi ∈ Cn×n, X2 = XT
2 , and X3 = XT

3


associated to Spn(C)

6. The real symplectic algebra spn(R) = spn(C) ∩ gln(R) associated to Spn(R)

Because a smooth homomorphism π : G → H is a smooth map, dπg : Mg → Mπ(g) is

a linear map of tangent spaces. Thus dπe : g → h is a linear map between the underlying

vector spaces of the Lie algebras g and h. dπe is in fact a Lie algebra homomorphism, and

for the remainder we will denote dπe as simply dπ.

Lie groups are also commonly studied via the techniques of representation theory. A

group representation is a smooth homomorphism π : G → GL(V ) for some vector space V .

A representation is called irreducible if the only subspaces of V invariant under π(G) are the

trivial space 0 and V itself. Similar to the representation theory of finite groups, we may

define the character of the representation π as χπ = tr ◦π.

The real numbers R form a Lie group when equipped with addition, and its Lie algebra

is again R. A smooth homomorphism γ : R → G is known as a one-parameter group. A

one-parameter group is a C∞ curve. Because g is the tangent space to G at e, for each X ∈ g

there is a one-parameter group γ so that dγ : R→ g is a map satisfying dγ(1) = X. In fact

such a γ is unique. The exponential map exp : g → G is defined by exp(X) = γ(1). As

mentioned in the introduction, the exponential map may be viewed in a categorial light as a
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natural transformation. We may more concisely state that for any smooth homomorphism

π : G→ H, exp ◦dπ = π◦exp. exp is an extremely important tool in the study of Lie groups,

in that it further tightens the correspondence between a Lie group and its Lie algebra.

A Lie subgroup of a Lie group is a submanifold that is additionally a subgroup. Suppose

that G is a Lie group with Lie subgroup H with corresponding Lie algebras g and h. Because

the structure of G and g are so closely related, it is only reasonable to suppose that h is a

Lie subalgebra of g. Indeed this is the case. Moreover, as given in a theorem in [6, p .112],

each subalgebra of g is the Lie algebra of exactly one analytic Lie subgroup of G. That is to

say, if H is connected as a topological space, then it is the unique connected subgroup of G

with Lie algebra h. This correspondence between algebraic structures is a strong property

reminiscent of the fundamental theorem of Galois theory [8, p. 245].

A Lie subgroup H that is topologically closed as a subset of G is called a closed subgroup.

Closed subgroups, like connected Lie subgroups, have a remarkable uniqueness property, as

demonstrated in the following theorem.

Theorem 2.10 ([6, p. 115]). Let G and g be as above. Suppose that, disregarding Lie

structure, H is a subgroup of G. That is, H is a subgroup, but not necessarily a Lie subgroup.

Suppose further that H is closed as a subset of G. Then there is a unique smooth manifold

structure on H so that H is a Lie subgroup of G.

That is to say, Lie groups are so tightly structured that there is exactly one way to

embed a group into a Lie group as a closed set.

For g ∈ G let Φg : G → G by Φg(x) = gxg−1. Φg is a group automorphism. Because

multiplication is smooth, Φg is in fact a smooth automorphism. Hence dΦg : g→ g is a Lie

algebra automorphism, which is often denoted Ad(g). The set AdG = {Ad(g) : g ∈ G} is

a Lie group when Ad(g) Ad(h) is defined to be Ad(gh). We may after this definition regard

Ad itself as a smooth smooth homomorphism G → AdG where g 7→ Ad(g). This is called

the Ad representation of G.
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Because Ad is a smooth homomorphism, we may discuss its differential dAd, known as

ad : g → g. Note that exp ◦ ad = exp ◦dAd = Ad ◦ exp. ad is given by ad(X)(Y ) = [X, Y ]

and is known as the ad representation of g. An automorphism of g of the form ad(X) for

some X is known as an inner derivation.

In the study of Lie algebras, we often want to study the action of AdG with explicit

reference to G itself. Thus we define Int g to be the analytic subgroup of Aut g having ad g

as its Lie algebra. In fact Int g ⊆ AdG, and the two are identical in the case that G is

connected [6, p. 127]. Elements of Int g are called inner automorphisms.

Recall that the Lie algebra of a Lie group is a vector space, thus we may use familiar

linear algebra techniques to study g and hence G. g, however, is a real vector space whereas a

variety of matrix theoretic tools require the base field to be algebraically closed. We therefore

define here a complex vector space gC closely related to g, known as the complexification of

g. This idea of complexification runs quite deep, having ultimately a manifestation in the

theory of modules over a ring [8, p. 216]. In our case, we follow the construction of [15,

p. 33]. Because C is a field extension of R and hence can be viewed as a vector space over

R, we define

gC = g⊗R C.

⊗R denotes a tensor product which is sesquilinear with respect to multiplication by a scalar

in R. We will assume this is always the case and use only the symbol ⊗ to follow. To give gC

a complex structure we define for a complex number z and X ⊗ a ∈ gC, z(X ⊗ a) = X ⊗ za.

When beginning with a complex vector space we may restrict scalar multiplication to R.

The result of applying this to gC is denoted (gC)R and is decomposed as g⊕ ig. If a complex

vector space W and a real vector space V are such that WR = V ⊕ iV , we say that V is a

real form of W . This encapsulates the relationship between g and its complexification. In

short, the real form of gC is g itself.
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Having discussed the vector space structure of gC, we must now imbue it with the

structure of a Lie algebra. For X ⊗ a and Y ⊗ b in gC, define

[X ⊗ a, Y ⊗ b] = [X, Y ]⊗ ab

We may now identify g with g ⊗ 1 ⊆ gC and work within the confines of a complex vector

space should it prove useful.

There are several classes of Lie groups that are analogous to classifications in the theory

of finite groups. We will now define what it means for a Lie group to be simple, solvable, or

nilpotent. Unlike the theory of finite groups, however, these classes are defined in terms of

Lie algebras and then lifted to Lie groups. We begin by defining the commutator series and

lower central series.

We define recursively

g0 = g g1 = [g, g] gk = [gk−1, gk−1]

The sequence g0 ⊇ g1 ⊇ g2 ⊇ . . . is called the commutator series of g. Each of gi is by

definition an ideal of g, and g is said to be solvable if the commutator series terminates.

That is, there exists an integer k so that gk = 0.

We again recursively define

g0 = g g1 = [g, g] gk = [g, gk−1]

The sequence g0 ⊇ g1 ⊇ g2 ⊇ . . . is called the lower central series of g. Each of gi is again an

ideal by definition, and g is nilpotent if the lower central series terminates. Every nilpotent

Lie algebra is solvable, however the converse is not necessarily true.
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Finally, a Lie algebra is simple if it is nonabelian and has no nontrivial ideals. A Lie

group is simple, solvable, or nilpotent if it is analytic and its Lie algebra is simple, solvable,

or nilpotent respectively.

Let g be a finite-dimensional Lie algebra. The sum of all solvable ideals of g is solvable,

and it is the unique maximal solvable ideal of g. This ideal is known as the radical of g and

is denoted Rad g. g is called semisimple if Rad g = 0, that is, the only solvable ideal of g

is the trivial one. In particular, a semisimple Lie algebra is not itself solvable. In a certain

sense, the radical of g measures the degree to which g is solvable, as is made precise by the

following theorem.

Theorem 2.11 ([15, p. 33]). If g is finite-dimensional, then g/Rad g is semisimple.

Semisimplicity also behaves well with regards to complexification, further justifying the

use of complexification in studying semisimple Lie algebras. Specifically, gC is semisimple if

and only if g is also.

We will frequently rely on a certain bilinear form on g reflecting its Lie structure. The

Killing form is defined as

B(X, Y ) = tr(adX adY )

and satisfies the useful property that

B([X, Y ], Z) = B(X, [Y, Z]).

The Killing form is in particular crucial to the study of semisimple Lie groups and semisimple

Lie algebras, which are the focus in chapters to come.

The Killing form is a symmetric bilinear form in general. In addition, Cartan’s criterion

characterizes the Lie algebras for which the it is nondegenerate.

Theorem 2.12 (Cartan’s Criterion, [15, p. 50]). B(X, Y ) = tr(adX adY ) is nondegenerate

if and only if g is semisimple.
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A consequence of cartan’s Criterion is an equivalent characterization of semisimplic-

ity that resembles the definition of semisimple for other algebraic objects. That is, g is

semisimple if and only if there exist simple ideals i1, i2, . . . , im such that

g = i1 ⊕ i2 ⊕ · · · ⊕ im
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Chapter 3

Lie Group Decompositions

In this chapter we discuss the decompositions and structure of semisimple Lie groups

which facilitates the results given later.

3.1 Cartan Decomposition

Our prototype for the Cartan decomposition is the polar decomposition of matrices. It

is well known that an n× n nonsingular matrix A can be decomposed as A = PU where P

is positive semidefinite and U is unitary. P is (AA∗)1/2 and if A is nonsingular, then U can

easily be written as U = P−1A. It is the aim of this section to give a similar decomposition

for elements of Lie groups. We start with a decomposition on the Lie algebra level.

Every real semisimple Lie algebra g, which we will view as a matrix algebra, has a Cartan

involution θ : g→ g. A Cartan involution is an involution such that Bθ(X, Y ) := −B(X, θY )

is positive definite. While there is not necessarily a unique Cartan involution, there is a

canonical involution that may be easily defined for any semisimple matrix Lie algebra over

C, θ(X) = −X∗, where X∗ is the Hermitian adjoint of X.

Once we have a Cartan involution, we may decompose g as k⊕ p where p and k are the

−1 and +1 eigenspaces of θ respectively.

Example 3.1. Let g = sln(C) and θ(X) = −X∗. Then p consists of Hermitian matrices

and k consists of skew-Hermitian matrices. We have the ordinary decomposition of a matrix

into its Hermitian and skew-Hermitian parts.

We now extends this Lie algebra decomposition to a decomposition on the group level.
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Theorem 3.2 ([15, p. 362]). Let G be a semisimple Lie group with associated Lie algebra g.

Let g = k ⊕ p be a Cartan decomposition. Then G = KP where K is the analytic subgroup

of G with Lie algebra k and P = {expX : X ∈ p}. So for any g ∈ G, g = kp where k ∈ K

and p ∈ P , and K × P → G via (k, p) 7→ kp is a diffeomorphism.

We may further describe the Cartan decomposition in terms of the global Cartan invo-

lution. If g = k⊕ p is a Cartan decomposition with the Cartan involution θ as above, there

must exist an automorphism Θ of G with dΘ = θ and Θ2 = 1. Furthermore, the subgroup

of G fixed by Θ is K. Θ is called the global Cartan involution corresponding to θ

3.2 Root Space Decomposition

The root space decomposition is a cornerstone in the complete classification of semisim-

ple Lie algebras, and is a useful tool in other contexts as well. We begin by assuming that

g is a semisimple Lie algebra over C. The analogous decomposition in the case of a real

semisimple Lie algebra is called the restricted root space decomposition, and will be detailed

later.

Let h be a maximal abelian subalgebra of g such that the endomorphism adH is semisim-

ple for all H ∈ h. Recall that a linear map is semisimple if there exists a basis for which its

matrix representation is diagonal. Such a subalgebra is called a Cartan subalgebra.

Theorem 3.3 ([15, p. 376]). Every semisimple Lie algebra over C contains a Cartan subal-

gebra.

Let α ∈ h∗. That is, α : h→ c is a linear functional. Let gα denote the subspace

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h}
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of g. For almost every α, gα will be the trivial subalgebra {0}. If, however, gα 6= {0}, then

α is called a root of g with respect to fh, and gα is called a root space. Observe that

g0 = {X ∈ g : [H,X] = 0 for all H ∈ h},

so g0 is an abelian subalgebra of g. In particular, [H,H ′] = 0 for all H,H ′ ∈ h, and hence

h ⊆ g0. Since h is a maximal abelian subalgebra, we have that h = g0. Let ∆ be the set of

all nonzero roots of g with respect to h.

Theorem 3.4 (Root Space Decomposition).

g = h⊕
⊕
α∈∆

gα

We reproduce here the proof given in [6, p. 166].

Proof. Suppose that the sum is not direct. In this case, there would exist some H ∈ h and

Xi ∈ gαi such that H +
∑
Xi = 0 where each of the αi are distinct and nonzero. We may

also choose an H ′ such that αi(H
′) are all distinct and nonzero. This means H and the Xi

are in separate eigenspaces of adH ′, and are therefore linearly independent. Thus we have

a contradiction and the sum must be direct.

Now ad h is a collection of semisimple linear maps with (adH)h = 0 for all H ∈ h,

and hence (adH)(adH ′) = (adH ′)(adH), and ad h forms a commuting family. Thus they

are simultaneously diagonalizable and there exists a collection of one-dimensional subspaces

gi ⊆ g invariant under ad h so that g =
∑

gi. Hence each of gi ⊆ gα for a suitable α, and

g = h⊕
∑

α∈∆ gα.

A useful property of the root space decomposition is that the Killing form is nondegen-

erate when restricted to h × h. More specifically, for each root α, there is an Hα ∈ h such

that α(H) = B(H,Hα) for all H ∈ h.
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3.3 Restricted Root Space Decomposition

Suppose now that g is a semisimple Lie algebra over R. We begin with fixing a Cartan

decomposition g = k ⊕ p. Let a be a maximal abelian subalgebra of p. a will here play the

role that h does in the root space decomposition of a complex semisimple Lie algebra. We

proceed analogously. The set {adH : H ∈ a} is a commuting family of linear maps, giving

us a decomposition of g into a direct sum of one-dimensional eigenspaces. We may view the

simultaneous eigenvalues of this collection as members of a∗, the dual space of a. Thus we

may now define as before restricted root spaces for λ ∈ a∗

gλ = {X ∈ g : (adH)X = λ(H)X for all H ∈ a}.

Those λ ∈ a∗ such that gλ 6= {0} are called restricted roots, and Σ denotes the set of restricted

roots of g with respect to a.

Theorem 3.5 (Restricted Root Space Decomposition).

g = g0 ⊕
⊕
λ∈Σ

gλ

The proof is analogous to that of the root space decomposition.

For each restricted root λ we may define a hyperplane Pλ = {H ∈ a : λ(H) = 0} having

codimension 1 in a. The set

a \
⋃
λ∈Σ

Pλ

consists then of a finite number of open connected components of a. We call each of these

components a Weyl chamber.
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3.4 Iwasawa Decomposition

We begin as above with a real semisimple Lie algebra g and a fixed Cartan decomposition

g = k ⊕ p. Suppose G is a Lie group having g as its Lie algebra. In the case of SLn(C),

the Iwasawa decomposition is the Gram-Schmidt orthonormalization process, written as a

matrix decomposition.

The Iwasawa decomposiion has three factors, the first of which being k from the Cartan

decomposition. For the second factor, let a be a maximal abelian subalgebra of p as in the

restricted root space decomposition g = g0 ⊕
⊕

λ∈Σ gλ. We obtain the third by introducing

a notion of positivity to the restricted root space decomposition as follows.

For a restricted root λ, our notion of positivity must satisfy λ:

• exactly one of λ and −λ is positive, and

• any linear combination of positive restricted roots with positive scalar coefficients is

positive.

Any notion of positivity meeting these two requirements is satisfactory for the Iwasawa de-

composition, but we give the construction from [15, p. 155]. Fix a spanning set {A1, . . . , Am}

of a. λ is called positive, written λ > 0, if there exists an index k, 1 ≤ k ≤ m, satisfying

λ(Ai) = 0 if 1 ≤ i ≤ k − 1 and λ(Ak) > 0. Let Σ+ denote the set of positive roots once a

notion of positivity has been established. The final factor of the Iwasawa decomposition is

n =
⊕
λ∈Σ+

gλ,

and we have

Theorem 3.6 (Iwasawa Decomposition, [15, p. 373]). With, g, g, a, and n as above,

g = k⊕ a⊕ n.
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Much like the Cartan decomposition, we now seek to lift the Iwasawa decomposition of

g to an Iwasawa decomposition of G. Unlike the global Cartan decomposition, the factors

of the global Iwasawa decomposition are subgroups of G. Let K, A, and N be the analytic

subgroups of G corresponding to k, a, and n respectively. We then have

Theorem 3.7 (Global Iwasawa Decomposition, [15, p.374]). With G,K,A, and N as above,

G = KAN

3.5 Weyl Groups

The Weyl group is a group that reflects the symmetries of a Lie structure. It may be

defined for both a Lie group and a Lie algebra, and there are Weyl group actions on each.

The Weyl groups for a Lie group and its Lie algebra are isomorphic, serving as another close

link between the two concepts. We provide both equivalent definitions of the Weyl group,

starting with the more group-theoretic definition.

Fix an Iwasawa decomposition g = k⊕a⊕n such that a is a maximal abelian subalgebra

of p. Let

Z = {k ∈ K : Ad(k)X = X for each X ∈ a}

be the centralizer of a in K and

N = {k ∈ K : Ad(k)a ⊆ a}

be the normalizer of a in K. The (analytic) Weyl group is the quotient

W = W (G, a) = N/Z.
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Each of N and Z is compact, and they have isomorphic Lie algebras. For this reason, the

Weyl group W is compact and 0-dimensional. It must therefore be a finite group. W acts

on g via Ad.

We may equivalently define the Weyl group without any reference to G whatsoever. Let

α be a root, not necessarily restricted, of g. Define the reflection

sα(X) = X − 2
B(X,Xα)

B(Xα, Xα)
Xα = X − 2

α(X)

α(Xα)
Xα

where Xα is an element of a such that B(X,Xα) = α(X). The Weyl group is the group

generated by these reflections. As previously mentioned, it is isomorphic to the analytic

Weyl group. We will use the term Weyl group to refer to both, as the distiniction does not

matter in practice.

The orbits of the action of the Weyl group will be of great importance to us, so we spend

some time here describing them. Let X ∈ g and w(X) = {Y ∈ a : (∃g ∈ G) Ad(g)X = Y },

the set of all elements in a that are conjugate to X. Similarly, for h ∈ G, let W (h) = {a ∈

A : (∃g ∈ G)ghg−1 = a}, the set of elements in A that are conjugate to h. X is said to be

real semisimple if adX is diagonalizable over R. h is said to by hyperbolic if there exists

a real semisimple Y such that h = expY . From [4, p. 422] we know the following for real

semisimple X and hyperbolic h.

Theorem 3.8. Let X ∈ g. If X is real semisimple, then w(X) is a single Weyl group orbit

in a, and if h is hyperbolic, then W (h) is a single Weyl group orbit in A. Moreover, for such

an X, expX is hyperbolic and W (expX) = exp(w(X)).

We may also lift the action of the Weyl group to act on Weyl chambers. Let C1 and C2

be Weyl chambers, and let w ∈ W . If there is a single X ∈ C1 such that w.X ∈ C2, then it

is the case that w.X ∈ C2 for all X ∈ C1. So we may say w.C1 = C2. In fact this action on

the level of Weyl chambers by the Weyl group is simply transitive.
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We may also rephrase our notion of positivity in the language of Weyl chambers. The

choice of positivity corresponds to a choice of Weyl chamber, which we will denote a+ and

call the fundamental Weyl chamber. Then a root α is positive if it is positive on a+.

3.6 The KAK and KA+K Decompositions

Let the notation be as in the previous sections. Let G = PK be a global Cartan

decomposition of G with the Cartan involution θ of g and the global Cartan involution Θ of

G. Let g ∈ G and define g∗ to be Θ(g−1). Then (fg)∗ = Θ((fg)−1) = Θ(g−1f−1) = g∗f ∗.

If g = pk is the Cartan decomposition of the element g, then p∗ = Θ(p−1) = (p−1)−1 = p

and k∗ = θ(k−1) = k−1 so that g∗ = k∗p∗ = k−1p. In fact, p = (gg∗)1/2 because (gg∗)1/2 =

(pkk−1p)1/2 = (p2)1/2 = p.

By [4, p. 434], any element p ∈ P is conjugate via K to an element a ∈ A. That is

p = k1ak
−1
1 ,

so that g = pk = k1ak
−1
1 k = k1a(K−1

1 k) = k1ak2 and we have the G = KAK decomposition.

Fix a Weyl chamber a+ to be the fundamental Weyl chamber, and let A+ = exp a+.

Again from [4, p. 434], p is K-conjugate to a unique element in the closure of A+ so that

p = k1a
′k−1

1 .

Then we have that g = pk = k1ak
−1
1 k and the G = KA+K decomposition.

Example 3.9. Let G = SLn(R). Then K = U(n) and A is the set of diagonal matrices

with positive elements. It is well know that a non-singular matrix M ∈ SLn(C) has a non-

unique singular value decomposition M = V ΣW where V,W are unitary and Σ is diagonal

with positive entries. V and W are non-unique, but Σ is unique up to permutation of the

diagonal. Thus the singular value decomposition is the KAK decomposition in SLn(R).
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In this case the Weyl group W is the full symmetric group on n symbols, denoted Sn,

and its action on GLn(R) is by conjugation by a permutation matrix. In the case of a

diagonal matrix, this is permutation of the diagonal. Thus a Weyl chamber a+ (and hence

A+) may be selected by imposing a particular ordering on the diagonal of matrices in a (and

hence A.) Thus we arrive at the KA+K decomposition, a special case of the singular value

decomposition.

3.7 Complete Multiplicative Jordan Decomposition

Here we describe the complete multiplicative Jordan decomposition. For brevity we will

henceforth refer to the complete multiplicative Jordan decomposition as CMJD. CMJD can

be seen as an extension of the Jordan-Chevalley decomposition of a nonsingular linear map,

so we begin by detailing that. We recall first some definitions.

The vector space automorphism αs is said to be semisimple if there exists a basis B such

that αs written as a matrix with respect to B is diagonal. The vector space endomorphism

αn is said to be nilpotent if there exists a positive integer k such that αkn = 0. Equivalently,

αn is nilpotent if and only if it has all 0 eigenvalues. A vector space automorphism αu is

unipotent if and only if its eigenvalues are all 1. We call an automorphism αe elliptic if it is

diagonalizable over C with modulus 1 eigenvalues, and we call an endomorphism hyperbolic

if it is the exponential of a semisimple map.

Let id denote the identity map, which we may think of as the familiar identity matrix

I.

Lemma 3.10 (Jordan Decomposition, [6]). Let α : V → V be a vector space automorphism.

Then we may uniquely decompose α = αsαu = αuαs with αs semisimple and αu unipotent.

Proof. Begin with the additive Jordan decomposition α = αs + αn where αn is nilpotent,

αs is semisimple and αsαn = αnαs [7]. This decomposition is the familiar Jordan canonical

form of matrices, expressed as the sum of a semisimple and a nilpotent linear map which
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may, after appropriate choice of basis, be expressed as a diagonal matrix and a strictly upper

triangular matrix. Let αu = id +α−1
s αn.

The characteristic polynomial of αu is

pαu(t) = det(αu − t · id)

= det(id +α−1
s αn − t · id)

= det(α−1
s αn + (1− t) id) = pα−1

s n(t− 1)

So the roots of pαu(t) are the roots of pα−1
s αn

(t) plus 1. Note that because αs and αn commute,

so do α−1
s and αn, and hence (α−1

s αn)k = 0 for the same integers k that αkn = 0. That is to

say, α−1
s αn is nilpotent, and hence αu is unipotent.

Finally,

αuαs = (id +α−1
s αn)αs = αs + α−1

s αnαs = αs + α−1
s αsαn = αs + αn = α

and,

αsαn = αs(id +α−1
s αn) = αs + αn = α.

Uniqueness follows from the uniqueness of the additive Jordan decomposition.

We now seek to develop fully CMJD in GLn(C), which we will then extend to an

arbitrary semisimple Lie group. Thus, we need to further decompose the semisimple element

of the Jordan-Chevalley decomposition as follows.

Lemma 3.11. αs = αeαh = αhαe, where αe is elliptic and αh is hyperbolic.
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Proof. Fix a basis and write αs as a matrix. Let d−1αsd be diagonal, and write its diagonal

entries in (complex) polar form

d−1αsd =



eiθ1λ1

eiθ2λ2

. . .

eiθnλn


Let h = diag(λ1, λ2, . . . , λn) and e = diag(eiθ1 , eiθ2 , . . . , eiθn). Clearly d−1αsd = eh =

he. Let αh = dhd−1 and αe = ded−1. Then αs = αhαe = αeαh. Observe that h =

exp(diag(lnλ1, lnλ2, . . . , lnλn)), where exp here is the ordinary matrix exponential func-

tions. h and is therefore hyperbolic, and consequently so is αh. Similarly αe is elliptic.

We have decomposed the vector space automorphism α = αeαhαu. All three factors

commute, and uniqueness follows from the uniqueness of the Jordan-Chevalley decompo-

sition. With this prototype firmly in mind, we now move to constructing CMJD for an

arbitrary semisimple Lie group. We follow the proof given in [4, p. 419].

As before, let G be a semisimple Lie group with associated Lie algebra g. Let gC be

the complexification of g. Let GC be the analytic subgroup of Aut gC having ad gC as its Lie

algebra, that is GC = Int gC. Note that Ad maps G into GC. Because Ad g for g ∈ G is a

Lie algebra homomorphism, it is also a linear map, and we may use the argument above to

decompose it into Ad g = e′h′u′ with e′ elliptic, h′ hyperbolic, and u′ unipotent, all unique

and commuting.

Each of e′, h′, and u′ is a Lie algebra automorphism, and moreoever the exponential of

a derivation. We now require the following theorem, as given in [15, p. 102].

Theorem 3.12. Let g be a semisimple Lie algebra, real or complex. Then every derivation

of g is adX for some X ∈ g.
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Thus in particular h′ = exp adX and u′ = exp adZ for some unique X,Z ∈ gC, where

X is semisimple and Z is nilpotent. Because h and u commute, it is the case that h′ adZ =

(adZ)h′, and similarly adX adZ = adZ adX. Hence [X,Z] = 0.

We now seek to show that e′, h′, and u′ are genuinely in AdG and not GC \ AdG. Let

σ be the automorphism on gC defined by σ(A + iB) = A − iB. If a ∈ GC, then it is an

automorphism of gC and so the map a 7→ aσ = σaσ gives an automorphism of GC. We have

that

σAd gσ(A+ iB) = σAd g(A− iB)

= σ(Ad gA− i(Ad gB))

= Ad gA+ i(Ad gB) = Ad g(A+ iB)

because g is invariant under Ad g as a subspace of gC. Thus Ad g is fixed under (·)σ. So

Ad g = σAd gσ = σe′h′u′σ = σe′σσh′σσu′σ

because σσ = id, and each of σe′σ, σh′σ, and σu′σ remains elliptic, hyperbolic, and unipotent

respectively. Thus by the uniqueness of the decompositoin

Ad g = e′h′u′ = σe′σσh′σσu′σ

we have that

e′ = σe′σ, h′ = σh′σ, u′ = σu′σ

and so each of e′, h′, and u′ is invariant under (·)σ.

Lemma 3.13. If a ∈ GC is invariant under (·)σ then g is invariant under a.

Proof. Suppose a = σaσ and Y ∈ g. Then a(Y ) = σaσ(Y ) = σa(Y ) and hence a(Y ) ∈ g.
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So we have that g is invariant under each of e′, h′, and u′. In particular, h′(Y ) =

(exp adX)Y ∈ g and hence (adX)Y ∈ g. Similarly, g is invariant under adZ, imply-

ing X,Z ∈ g. Let h = expX and u = expZ, and then h and u are hyperbolic and

unipotent, respectively, and moreover they commute. Ad g commutes with h′ because

(Ad g)h′ = e′h′u′h′ = h′e′h′u′ = h′(Ad g). Similarly Ad g commutes with u′, and so g

commutes with both h and u. Moreover, Adh = h′ and Adu = u′.

Let

e = gh−1u−1.

Then

Ad e = Ad g(Adh)−1(Adu)−1 = Ad gh′−1u′−1 = e′,

and so e is elliptic and g = ehu.

We now need only show uniqueness of this decomposition. Suppose g = ehu = e1h1u1.

Because the decomposition Ad g = e′h′u′ is unique, it must be the case that Ad e1 = e′,

Adh1 = h′, and Adu1 = u′. h1 = exp(log h1) and so

Adh1 = Ad exp log h1 = exp ad log h1 = exp adX = h′

By the uniqueness of the decomposition of Ad g, log h1 must be X. Similarly, log u1 must be

Z, and thus h1 = h, u1 = u, and it must be the case that e1 = e

3.8 Kostant’s Preorder

Let the notation be as in the previous sections.

Recall that an element h ∈ G is hyperbolic if there exists a unique real semisimple

X ∈ g such that h = expX, in which case it is said that X = log h. Let h(g) denote the

unique hyperbolic part of g in CMJD.
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Suppose g = k+ a+ n is an Iwasawa decomposition of g with associated global Iwasawa

decomposition G = KAN . Let w(X) denote the set of all elements in a conjugate to the

real semisimple element X ∈ g. In this case, due to [4], w(X) is a single Weyl-group orbit

in a.

Define the set

A(g) = exp(convw(log h(g)))

where conv is the convex hull. Two elements f, g ∈ G satisfy f ≺G g if and only if A(f) ⊆

A(g). While ≺G is clearly a preorder on G, it is in fact not a partial order, as two distinct

Lie group elements with the same hyperbolic part would satisfy both f ≺G g and g ≺G f ,

but f 6= g. ≺G is called Kostant’s preorder.

While the above definition of Kostant’s preorder is good for geometric intuition, in

practice it is unwieldy, and so there is the following equivalent formulation, also given in [4].

Theorem 3.14.

f ≺G g

is and only if

ρ(π(f)) ≤ ρ(π(g))

for all irreducible finite dimensional representations π of G, where ρ is the ordinary spectral

radius operator.
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Chapter 4

Matrices and Inequalities Involving Matrices

4.1 Positive Definite Matrices

We first recall some facts about positive definite matrices [12]. An n × n matrix A

is positive definite if and only if A is Hermitian and x∗Ax > 0 for all x ∈ Cn. Thus a

positive definite matrix has all positive eigenvalues, and in fact its eigenvalues coincide with

its singular values. We will denote the set of n× n positive definite matrices by Pn.

We may define non-integer, and in fact arbitrary non-rational, exponents of positive

definite matrices as follows. Let A ∈ Pn, and let A = V ΣW be a singular value de-

composition of A with Σ = diag(σ1, σ2, . . . , σn)T . Then we define Aα := V ΣαW where

Σα = diag(σα1 , σ
α
2 , . . . , σ

α
n)T . Note that Aα is also positive definite and Aα/2Aα/2 = Aα.

Although Pn is a Riemannian manifold, it does not form a Lie subgroup of GLn(R), as

the product AB of A,B ∈ Pn is not necessarily in Pn. Indeed, the set P2
n := {AB : A,B ∈

Pn} can be characterized as the set of all matrices with positive eigenvalues. However,

Aα/2BαAα/2 ∈ Pn for any real number α.

Example 4.1. Let

A =

2 0

0 1

 , B =

2 1

1 1

 .

Then

AB =

4 2

1 1
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which is not even Hermitian. However,

B1/2AB1/2 =

19/5 8/5

8/5 6/5


which is positive definite.

4.2 Majorization, Weak Majorization, and Log Majorization

We use the standard definitions as found in, for example, [12]. Let x, y ∈ Rn. Fix a basis

for Rn so that we may treat x and y as n-tuples. Let x↓ be the vector having the same entries

as x but in nonincreasing order, that is x↓ = (x[1], x[2], . . . , x[n])
T where x[1] ≥ x[2] ≥ · · · ≥ x[n]

and each of x[i] is an entry of x. y is said to majorize x, or x ≺ y, if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for all k = 1, 2, . . . , n− 1 and (4.1)

n∑
i=1

xi =
n∑
i=1

yi (4.2)

There is an equivalent definition which appeals to a more geometric intuition. First,

define the following action of Sn, which permutes entries of a vector:

σ · x = (xσ−1(1), xσ−1(2), . . . , xσ−1(n))
T .

Define the set C(x) = convSn · x, where Sn · x is the orbit of the above action and convA

is the convex hull of the set A. Now x ≺ y if and only if C(x) ⊆ C(y). Note the similarity

to Kostant’s preorder, where f ≺G g if and only if A(f) ⊆ A(g).

If we weaken the condition (4.2), then we have weak majorization,

x ≺w y if and only if
k∑
i=1

x[i] ≤
k∑
i=1

y[i] (4.3)

39



for all integers k in [1, n].

Now suppose that x and y are vectors with only positive entries. A slight mutation of

(4.1) and (4.2) gives us log majorization: x ≺log y if and only if

k∏
i=1

x[i] ≤
k∏
i=1

y[i] for all k = 1, 2, . . . , n− 1 and (4.4)

n∏
i=1

xi =
n∏
i=1

yi (4.5)

There is no direct implication relationship between majorization and log majorization.

Example 4.2. Let x = (2, 2)T and y = (3, 1)T . Then x ≺ y, but x and y have no log

majorization relationship, because
∏
xi 6=

∏
yi.

Similarly, let x = (1, 1)T and y =
(
2, 1

2

)T
. Then x ≺log y, but x 6≺ y and y 6≺ x. Note,

however, that x ≺w y.

We do have that log majorization is stronger than weak majorization:

Proposition 4.3 ([13]). If x ≺log y, then x ≺w y.

4.3 The Lieb-Thirring and Wang-Gong Inequalities

In [5], Lieb and Thirring proved the following:

Theorem 4.4. Let A,B ∈ Pn and α ∈ R with α ≥ 1. Then

tr((AB)α) ≤ tr(AαBα). (4.6)

Let λ(A) = (λ1(A), λ2(A), . . . , λn(A))T , the vector of eigenvalues of A, in nonincreasing

order if they are all real. For α ∈ R, let λα(A) = ((λ1(A))α, (λ2(A))α, . . . , (λn(A))α) Be-

cause tr(A) =
∑n

i=1 λi(A), it makes sense to reinterpret the theorem as a statement about

eigenvalues.
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Wang and Gong extended (4.6) in [13] as a majorization relationship between vectors

of eigenvalues. Specifically, they proved the following theorem.

Theorem 4.5. If A,B ∈ Pn and 0 < α ≤ β, then

λ1/α(AαBα) ≺log λ
1/β(AβBβ). (4.7)

The proof of Wang and Gong is matrix theoretic in nature, first requiring an assortment

of lemmas regarding compound matrices and inequalities with rational exponents. We will

establish these lemmas, and then these rational inequalities are extended to real ones via a

continuity argument.

Recall that the kth compound matrix Ck(A) of A is the
(
n
k

)
×
(
n
k

)
matrix of all k × k

minors of A ordered lexicographically. To be more precise, let Qk,n be the set of strictly

increasing length k tuples of the integers in [1, n]. Order Qk,n lexicographically, and for

τ ∈ Qk,n and i = 1, 2, . . . , n, let τ(i) denote the ith entry of τ . Let A[τ, υ] be the submatrix

of A with rows given by τ ∈ Qk,n and columns given by υ ∈ Qk,n. The τ, υ entry of Ck(A)

is det(A[τ, υ]).

The following properties of Ck(A) are known and relevant [12]:

1. Ck(AB) = Ck(A)Ck(B)

2. Ck(A
T ) = Ck(A)T for matrices A over any field

3. Ck(A
∗) = Ck(A)∗ for matrices A over C

The final property above gives us that if A is Hermitian, so is Ck(A) because

Ck(A)∗ = Ck(A
∗) = Ck(A).

Let σ(A) = (σ1(A), σ2(A), . . . , σn(A))T , the vector of singular values of A in nonincreas-

ing order. We aim to show
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Theorem 4.6. The largest singular value of Ck(A) is
∏k

i=1 σi(A).

This is a consequence of [13, Lemma 2]. Wang and Gong, however, offer no proof, so

we do so here. We use the following lemmas.

Lemma 4.7. If A and B are unitarily equivalent, then σ(A) = σ(B).

Proof. Suppose A = U∗BU . Then

AA∗ = (U∗BU)(U∗BU)∗ = U∗BUU∗BU = U∗BB∗U

so AA∗ and BB∗ have the same eigenvalues, and hence A and B have the same singular

values.

Lemma 4.8. If U is unitary, then Ck(U) is unitary.

Proof.

Ck(I) = Ck(UU
∗) = Ck(U)Ck(U)∗.

Lemma 4.9. If T is triangular, then Ck(T ) is also triangular.

Proof. Assume without loss of generality that T is upper triangular.

The subdiagonal elements of Ck(T ) are of the form detA[τ, υ] with υ < τ . Because υ <

τ , there exists and integer i such that υ(i) < τ(i), in which case there is a row of T [τ, υ] with

a zero on the diagonal. As T [τ, υ] is upper triangular, we have that detT =
∏

diag(T ) = 0.

Hence, the subdiagonal elements of Ck(T ) are all 0, and Ck(T ) is upper triangular.

A mutatis mutandis argument gives us that if L is lower triangular, so is Ck(L). Thus

it is also the case that if D is diagonal, then so is Ck(D).

Now suppose that A ∈ Pn. We unitarily triangularize A = U∗TU , assuming without loss

of generality that the diagonal of T is in nonincreasing order, whence the diagonal of Ck(T )
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is also in nonincreasing order. The (1, 1) entry of Ck(T ) is detT [τ, τ ] where τ = (1, 2, . . . , k),

the minimum element of Qk,n, and

detT [τ, τ ] =
k∏
i=1

λi(A) =
k∏
i=1

σi(A).

Hence we have proved (4.6). A similar argument gives us that the eigenvalues of Ck(A) are

all positive, and because Ck(A) is Hermitian, it must be the case that Ck(A) is itself positive

definite.

We will now need several more lemmas to complete the proof of (4.7). Real numbers will

be used whenever possible, however we will not be able to escape relying on the rationals.

Lemma 4.10. If A is positive semi-definite, then for any real number α, Ck(A
α) = Ck(A)α.

Proof. Begin by unitarily diagonalizing A = U∗DU . Then Ck(A
α) = Ck(U

∗DαU) =

Ck(U)∗Ck(D
α)Ck(U). Similarly, Ck(A)α = Ck(U)∗Ck(D)αCk(U). Thus it suffices to prove

that Ck(D
α) = Ck(D)α.

Let τ ∈ Qk,n, using the notation from the proof of (4.9). Then

(Ck(D
α))ττ = detDα[τ, τ ] =

k∏
i=1

λατ(i) =

(
k∏
i=1

λτ(i)

)α

= det(D[τ, τ ])α = (Ck(D)α)ττ .

Lemma 4.11 ([13]). For A,B ∈ Pn,

λ1(AB) ≤ λ1(A)λ1(B).

Moreover, for arbitrary n× n matrices X and Y ,

|λ1(XY )| ≤ σ1(XY ) ≤ σ1(X)σ1(Y ).
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Lemma 4.12. Suppose A and B are positive semidefinite matrices and m ∈ N. Then

λ
1/m
1 (AmBm) ≤ λ

1/m+1
1 (Am+1Bm+1).

Proof. We prove by induction on m. In the case that m = 1, we have that

λ1(AB) ≤ σ1(AB) = λ
1/2
1 ((AB)(AB)∗) = λ

1/2
1 (ABBA) = λ

1/2
1 (A2B2).

Now with m arbitrary, define X = A(m+1)/2B(m+1)/2 and Y = B(m−1)/2A(m−1)/2.

|λ1(AmBm)| = |λ1(XY )| ≤ σ1(x)σ1(Y ) = λ
1/2
1 (Am+1Bm+1)λ

1/2
1 (Am−1Bm−1).

Observe that

λ
1/2
1 (Am−1Bm−1) = λ

(m−1)/2(m−1)
1 (Am−1Bm−1) ≤ λ

(m−1)/2m
1 (AmBm)

by the inductive hypothesis. Thus

λ1(AmBm) ≤ λ
1/2
1 (Am+1Bm+1)λ

(m−1)/2m
1 (AmBm).

Dividing both sides of the inequality yields

λ
(m+1)/2m
1 (AmBm) ≤ λ

1/2
1 (Am+1Bm+1).

Finally we raise both sides of the inequality to the power of 2/(m+ 1) to obtain

λ
1/m
1 (AmBm) ≤ λ

1/(m+1)
1 (Am+1Bm+1).

44



We now give the rational version of the Wang-Gong inequality, which we we shortly

extend to the real version given above.

Theorem 4.13.

λ1/m(AmBm) ≺log λ
1/(m+1)(Am+1Bm+1). (4.8)

Proof. Suppose 1 ≤ k < n. Observe that from (4.10) we have that

Ck(A
mBm) = Ck(A

m)Ck(B
m) = Ck(A)mCk(B)m

and from (4.6)

λ1(Ck(A)mCk(B)m) = λ1(Ck(A
mBm)) =

k∏
i=1

λi(A
mBm).

We may now apply (4.12) to obtain

k∏
i=1

λ
1/m
1 (AmBm) = λ

1/m
1 (Ck(A)mCk(B)m)

≤ λ
1/(m+1)
1 (Ck(A)m+1Ck(B)m+1)

=
k∏
i=1

λ
1/(m+1)
1 (Am+1Bm+1)

Now in the case that k = n,

n∏
i=1

λ
1/m
1 (AmBm) = det(AmBm)1/m = detA detB =

n∏
i=1

λ
1/(m+1)
1 (Am+1Bm+1).

We may now finally construct a proof of the Wang-Gong inequality. While our argument

follows that of [13], we provide many details omitted therein.
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Proof of (4.7). Suppose 0 < α < β, where α and β are rational numbers. So there exist

r, s, p ∈ N such that α = r/p and β = s/p. We may conclude that r < s and

λ1/α(AαBα) = λp/r(Ar/pBr/p)

= [λ1/r((A1/p)r(B1/p)r)]p

≺log [λ1/s((A1/p)s(B1/p)s)]p

= λp/s(As/pBs/p) = λ1/β(AβBβ).

Fixing A and B we may view x 7→ λ1/x(AxBx) as a map Q → Rn, which may then be

uniquely extended to a continuous map R→ Rn.

Having proven the Wang-Gong inequality, we now seek to twist it to our purposes.

Because λ(AB) = λ(BA), we may equivalently write

λ(AαBα) = λ(Bα/2Bα/2Aα) = λ(Bα/2AαBα/2)

and hence describe the inequality (4.7) as the statement that the map

α 7→ λ1/α(Bα/2AαBα/2) (4.9)

is monotonic increasing on (0,∞) with respect to log majorization. This has a geometric

advantage relevant to a Lie theory perspective, in that this map describes a smooth, linearly

ordered curve through the manifold Pn.

In fact, because λ1/α(Bα/2AαBα/2) = λ−1/α((Bα/2AαBα/2)−1) = λ−1/α(B−α/2A−αB−α/2),

we can also say that (4.7) is true for any 0 < |α| ≤ |β|.
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4.4 A Singular Value Inequality

While Wang and Gong provided an inequality of Lieb-Thirring type for eigenvalues of

positive definite matrices, it is also possible to arrive at such an inequality for singular values.

We begin with the fact that

α 7→ ‖AαBα‖1/α (4.10)

is monotonic increasing on (0,∞) where ‖ · ‖ is the spectral norm [14]. Recall that the

spectral norm of A is the largest singular value of A.

(4.10) gives us that the map

α→ ‖Ck(A)αCk(B)α‖1/α

is monotonic increasing for all k, and hence

k∏
i=1

σ
1/α
i (AαBα) ≤

k∏
i=1

σ
1/β
i (AβBβ)

when 0 < α ≤ β and k = 1, 2, . . . , n− 1. To establish equality in the k = n case, note that

σ
1/α
1 (Cn(AαBα)) =

n∏
i=1

σ
1/α
i (AαBα)

=
n∏
i=1

λ
1/α
i (AαBα)

= (det(AαBα))1/α

= (det(AB)α)1/α = detAB.

Hence
n∏
i=1

σ
1/α
i (AαBα) = detAB =

n∏
i=1

σni=1σ
1/β
i (AβBβ)
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and we have demonstrated the following inequality of Wang-Gong type for singular values.

While the existence of this result is hinted at in [13], we state it explicitly here:

Proposition 4.14.

σ1/α(AαBα) ≺log σ
1/β(AβBβ)

when 0 < α ≤ β.
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Chapter 5

Extension to Semisimple Lie Groups

We now present novel results analogous to those of Wang and Gong in the setting of

semisimple Lie groups.

5.1 Extension of the Wang-Gong Inequality

Theorem 5.1. Let G be a Lie group with Lie algebra g and Cartan decomposition G = PK.

Suppose p, q ∈ P , and α, β ∈ R with 0 < |α| ≤ |β|. Then

(pα/2qαpα/2)1/α ≺G (pβ/2qβpβ/2)1/β.

To prove (5.1) we first need the following lemma.

Lemma 5.2. Let π : G → GL(V ) be an irreducible finite-dimensional representation of

G = PK. Let p ∈ P and α ∈ R. Then

π(pα) = πα(p)

Proof. Fix a basis of B of V such that π(p), when written as a matrix with respect to B, is

positive definite for all p ∈ P [4, p. 435]. Because every element of P is hyperbolic, we can
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say that p = expX for some unique X ∈ g. Thus

π(pα) = π(expαX)

= exp(dπ(αX))

= exp(αdπ(X))

= (π(p))α = πα(p).

Proof of (5.1). Let π : G → GL(V ) be an irreducible finite-dimensional representation of

G = PK. As above fix a basis of V such that π(p) written as a matrix with respect to this

basis is positive definite for all p ∈ P [4, p. 435].

ρ(π[(pα/2qαpα/2)1/α]) = ρ([π(pα/2qαpα/2)]1/α)

= (ρ[π(pα/2qαpα/2)])1/α (because π(pα/2qαpα/2) is positive definite)

= ρ1/α[(π(p))α/2(π(q))α(π(p))α/2)]

= λ
1/α
1 [(π(p))α/2(π(q))α(π(p))α/2)]

≤ λ
1/β
1 [(π(p))β/2(π(q))β(π(p))β/2)] (by (4.9))

= ρ1/β[(π(p))β/2(π(q))β(π(p))β/2)]

= ρ(π[(pβ/2qβpβ/2)1/β]).

And thus by the equivalence (3.14) we have the desired result.

We have also the following equivalent inequality of Wang-Gong type involving only

hyperbolic Lie group elements.

Theorem 5.3. Let G = PK, p, q, α, and β as in (5.1). Then

h1/α(pαqα) ≺G h1/β(pβqβ).
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Proof.

ρ(π((pα/2qαpα/2)))1/α = ρ1/α(πα/2(p)πα(q)πα/2(p))

= ρ1/α(πα(p)πα(q))

= ρ1/α(π(pαqα))

= ρ1/α(π(h(pαqα))) (by [4, Proposition 3.4])

= ρ(π(h1/α(pαqα))).

Thus,

(pα/2qαpα/2)1/α ≺G (pβ/2qβpβ/2)1/β

if and only if

h1/α(pαqα) ≺G h1/β(pβqβ).

5.2 Extension of the Singular Value Inequality

We obtain another inequality of Wang-Gong type as an extension of the singular value

inequality (4.14). First, decompose G as G = KA+K, and for g ∈ G, let a(g) be the unique

element of A+ such that g = ka(g)k′.

We need two lemmas.

Lemma 5.4. Let l ∈ L = P 2 for G = PK. Then a2(l) = a(ll∗).

Proof. Suppose l = kak′ so that a(l) = a. Then

ll∗ = kak′(kak′)∗ = kak′(k′)−1a∗k−1 = kaa∗k−1
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and hence a(ll∗) = aa∗ = a(l)(a(l))∗. Then because (a(l))∗ = a(l∗) = a(l), we have

a2(l) = a(l)a(l) = a(l)(a(l))∗ = a(ll∗).

Lemma 5.5. Let f, g ∈ G. If f ≺G g then mfm−1 ≺G ngn−1 for any m,n ∈ G. That is to

say, conjugacy preserves Kostant’s preorder.

Proof. Let π be an irreducible finite-dimensional representation of G as above. Because for

linear maps α and β we have that the eigenvalues of αβ are also the eigenvalues of βα, it

must also be the case they have the same spectral radius. Thus

ρ(π(mfm−1)) = ρ(π(m)π(f)π(f)−1)

= ρ(π(f)π(m)−1π(m))

= ρ(π(f))

≤ ρ(π(g)) = ρ(π(ngn−1))

Theorem 5.6. Let notation be as above with 0 < |α| ≤ |β|. Then

a1/α(pαqα) ≺G a1/β(pβqβ).

Proof. Without loss of generality, we examine a2/α(pαqα). Note that

a2(pαqα) = a((pαqα)(pαqα)∗) = a(pαq2αpα).

By [4], a(pαq2αpα) is conjugate to h(pαq2αpα) and in turn to h(p2αq2α). Conjugacy preserves

Kostant’s preorder, and by (5.3) we have that h2/α(p2αq2α) ≺G h2/β(p2βq2β). The desired

result follows.
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5.3 Character Inequalities

Due to the following theorem of Kostant, Huang, and Kim, we also obtain inequalities

for the character χπ of an irreducible finite dimensional representation π.

Theorem 5.7 ([4],[19]). If g, h ∈ G are hyperbolic, then

g ≺G h

if and only if

χπ(g) ≤ χπ(h)

for all π ∈ Ĝ.

We then have the corollary

Corollary 5.8. If p, q in P, then

1. χπ((qα/2pαqα/2)1/α) ≤ χπ((qβ/2pβqβ/2)1/β)

2. χπ(h1/α(pαqα)) ≤ χπ(h1/β(pβqβ))

3. χπ(a1/α(pαqα)) ≤ χπ(a1/β(pβqβ))
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