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Abstract

Linearity is a key concern in RF systems, particularly an amplifier. Volterra series allow

us to easily identify the contribution of various individual nonlinearities, as well as to identify

the interaction between individual nonlinearities.

Nonlinear current source of Volterra series and direct derivation of Volterra series are

two methods that analyze nonlinear distortion effectively. This thesis applied Volterra series

to circuit linearity analysis and performed with the help of a matrix solver in Matlab. ADS

used is to verify the validity of analytical expressions.

Supported by Volterra series approach, requirement of IM3 cancellation can be found

at both low frequency and high frequency. ADS simulation is used to investigate conditions

required for IM3 cancellation.
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Chapter 1

Introduction

As well known, most of electronic circuits are nonlinear. The linear assumption for

most modern circuit theory is only an approximation in practice. The most commonly used

elements in integrated circuit are transistors, resistors, capacitors, inductances, and diodes.

All these elements mentioned above are always described as a nonlinear equivalent circuit.

Thus analyzing such circuit is usually more complicated.

Contrast with “nonlinearity” and “distortion”, “linearity” refers to the ability of a device

or system to amplify input signals in a linear way. Silicon-germanium heterojunction bipolar

transistors (SiGe HBTs) are in general nonlinear elements like other semiconductor devices.

For instance, it has a very strong exponential IC − VBE nonlinearity.

Although SiGe HBTs can be used in both nonlinear and linear circuits which depend

on the the required application, nonlinearities in transistor still can’t be avoided. These

nonlinearities will create distortion in the signals we are interested in amplifying or trans-

mitting. For instance: the intermodulation of two nearby strongly interfering signals caused

by nonlinearity at the input of a receiver will influence the desired weak signal we are trying

to receive.

Despite the strong I − V and C − V nonlinearities, SiGe HBTs also have excellent lin-

earity in both small-signal (e.g., LNA) and large-signal (e.g., PA) RF circuit. It is clear that

the overall circuit linearity strongly depend on the linear elements in the circuit, the source

impedance, the load impedance and the interaction of I −V and C −V nonlinearities[1]. In

this thesis, Volterra series approach will be used to analyze these nonlinearities.
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1.1 Nonlinearity

When the input signal is sufficiently weak, the operation of a transistor circuit is linear.

The response of a linear and dynamic circuit is characterized by an impluse response function

in the time domain and a linear transfer function in the frequency domain[1]. Generally, using

such approach requires vBE to be much smaller than thermal voltage which is presented as

kT
q

for a bipolar transistor.

For larger input signals, an active transistor circuit becomes a nonlinear dynamic system.

Many of the nonlinearity concepts can be illustrated using simple power series, a concept

which only applies to a memory-less circuit. In practice, even a linear circuit has memory

elements (e.g., capactiors). Nevertheless, the use of power series simplifies the illustration of

many commonly used linearity figures of merit[1].

The output voltage Vout(t) of a nonlinear circuit can be illustrated as a power series

when using a small-signal input VS(t)[2]

Vout(t) = k1VS(t) + k2V
2
S (t) + k3V

3
S (t), (1.1)

where for simplicity we just give the third-order series. The concepts “harmonics”, “inter-

modulation” are introduced below.

2



1.1.1 Harmonics

Substituting VS(t) = Acosωt into (1.1), the output voltage Vout(t) can be obtained as[1]

Vout(t) =k1Acosωt+ k2A
2cos2ωt+ k3A

3cos3ωt

=
k2A

2

2

+ (k1A+
3k3A

3

4
)cosωt

+
k2A

2

2
cos2ωt

+
k3A

3

4
cos3ωt. (1.2)

In (1.2),
k2A

2

2
is dc shift, (k1A+

3k3A
3

4
)cosωt is a fundamental output at ω,

k2A
2

2
cos2ωt

is a second-order harmonic term at 2ω and
k3A

3

4
cos3ωt is a third-order harmonic term at

3ω. Generally, we are interested in the harmonic of a given level respect to the fundamental

output, which is so called harmonic distortion. The second-order harmonic distortion can

be obtained from (1.2) as

HD2 =
k2A

2

2
/(k1A) =

1

2

k2
k1
A, (1.3)

where
3k3A

3

4
is neglected compared to k1A.

IHD2 is defined as the extrapolation of the output at 2ω and ω intersect at a certain

input level[1]. When setting HD2 =1 in (1.3), IHD2 can be obtained as

IHD2 = 2
k1
k2
. (1.4)
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It is clear that IHD2 is independent of the input signal level. Then using (1.4), HD2 can

be calculated for any given small-signal input with amplitude A.

HD2 =
A

IHD2
. (1.5)

OHD2, the output harmonic distortion is simply the product of small-signal gain and

IHD2

OHD2 = G · IHD2 = 2
k21
k22
. (1.6)

The third-order harmonic distortion HD3, the input and output intercept of the third har-

monic distortion IHD3 and OHD3 can be defined similarly.

1.1.2 Intermodulation

Consider a two tone input voltage VS(t) = Acos(ω1t) +Acos(ω2t). The output not only

has harmonics of ω1 and ω2, but also “intermodulation products” at 2ω1 − ω2 and 2ω2 − ω1.

A full expansion of (1.1) using VS(t) = Acos(ω1t)+Acos(ω2t) shows that the output contains

signals at ω1, ω2, 2ω1, 2ω2, 3ω1, 3ω2, ω1 + ω2, ω1 − ω2, 2ω2 − ω1, 2ω2 + ω1, 2ω1 − ω2, and

2ω1 + ω2 [1].

IM3

Figure 1.1: Intermodulation product of two strong interfers can corrupt the desired signals[1].

When ω1 and ω2 are closely spaced, the third-order intermodulation products at 2ω2−ω1

and 2ω1 − ω2 are the major concerns, because they are close in frequency to ω1 and ω2, and

4



thus within the amplifier bandwidth, and cannot be filtered. Consider a weak desired signal

near two strong interferers at the input. One intermodulation product falls in band, and

corrupts the desired component, as illustrated in Fig. 1.1[1].

Substituting VS(t) = Acosω1t+ Acosω2t into (1.1) leads to[1]

Vout(t) = (k1A+
3k3A

3

4
+

3k3A
3

2
)cosω1t+ · · ·

+
3k3A

3

4
cos(2ω2 − ω1)t+ · · · . (1.7)

Neglecting the higher order terms added to k1A, k1Acosω1t and
3k3A

3

4
cos(2ω2 − ω1)t

are the fundamental terms at ω1 and the intermodulation terms respectively.

The third-order intermodulation distortion (IM3) is defined as the ratio of the amplitude

of the intermodulation product to the amplitude of the fundamental output.

IM3 =
3k3A

3

4
/k1A =

3

4

k3
k1
A2, (1.8)

When setting IM3 equal to 1, the input third-order intercept (IIP3) can be obtained from

(1.8), which is defined as the intersect of the fundamental output and the third-order output

versus input at a given input level.

IIP3 =

√
4

3

k1
k3
. (1.9)

It is clear in equation (1.9) IIP3 is independent on the input signal, thus it is more useful

than IM3. Given IIP3, IM3 can be calculated with amplitude of desired small signal.

IM3 =
A2

IIP32
. (1.10)

5



Beacuse in equation (1.8) IM3 grows with A2, thus IIP3 can be measured at a signal

input level A0,

IIP32 =
A2

0

IM30

, (1.11)

where IIP3 and A0 are voltage, then transferring this equation to power level:

20log10IIP3 = 20log10A0 − 10log10IM30. (1.12)

20log10IIP3 is the power expression at intercept point in dB, and 20log10A0 is the input

power in dB. Then (1.12) can be rewritten as

PIIP3 = Pin +
1

2
(Pout,1st − Pout,3rd), (1.13)

and

POIP3 = PIIP3 +Gain = Pout,1st +
1

2
(Pout,1st − Pout,3rd). (1.14)

Clearly, IIP3 is an important figure in RF low-noise amplifier. Because the interfering

signals are often much stronger than the desired signal, thus generating strong intermodu-

lation products will corrupt the weak but desired signal.

1.2 HBT Physical nonlinearities

Fig. 1.2 shows a typical SiGe HBT equivalent circuit. ICE represents the collector cur-

rent which is a nonlinearity controlled by VBE. IBE is the hole current representing hole

injection into the emitter, and is a nonlinearity controlled by VBE as well. ICB represents

the avalanche current which is a strong nonlinearity controlled by both VBE and VCB. CBE

6



CBE

RB

RE

CCS

RC
ICB(VBE,VCB)

I C
E
(V

B
E
,V

C
B
)

XCJC CBC

(1-XCJC) CBC

I B
E
(V

B
E
)

B C

Figure 1.2: SiGe HBT equivalent circuit[1].

is the emitter-base junction capacitance, which includs the diffusion capacitance and deple-

tion capacitance. Since diffusion charge is proportional to the transport current ICE, CBE

becomes a strong nonlinearity controlled by VBE when the diffusion capacitance dominates.

CBC is the collector-base junction capacitance.

1.2.1 ICE nonlinearity

To first order, ICE is controlled by VBE which results in a nonlinear transconductance

in weakly nonlinear circuit analysis. Assuming the nonlinear current i(t) as a function of

controlling voltage vC(t), one has[1]

i(t) = f(vC(t)) = f(VC + vc(t))

= f(VC) +
∞∑
k=1

1

k!

∂kf(v(t))

∂vk

∣∣∣∣
v=VC

× vkc (t). (1.15)

where i(t) is the sum of the dc current and ac current, vc(t) is the ac voltage and VC is the

dc bias voltage.

7



Generally, it is enough to consider the first three terms of the power series for small

vc(t). Thus the conductance nonlinear coefficients can be defined

g =
∂f(v)

∂v

∣∣∣∣
v=VC

,

k2g =
1

2!

∂2f(v)

∂v2

∣∣∣∣
v=VC

,

k3g =
1

3!

∂3f(v)

∂v3

∣∣∣∣
v=VC

, (1.16)

kng =
1

n!

∂nf(v)

∂vn

∣∣∣∣
v=VC

. (1.17)

Then the ac current can be rewritten as

iac(t) = g · vc(t) +K2g · v2c (t) +K3g · v3c (t) + · · · , (1.18)

where g is the linearized small-signal transconductance element, K2g and K3g are the second-

order and third-order nonlinearity coefficients respectively. The subscript g indicates that

these coefficients are associated with the linearized transconductance “g”. For an ideal SiGe

HBT, ICE is given by

ICE = IS exp (
qVBE
kT

) = IS exp (
VBE
Vt

), (1.19)

8



where
kT

q
is the thermal voltage. The nonlinearity coefficients are

gm =
ICE
Vt

,

k2gm =
1

2!

ICE
V 2
t

,

k3gm =
1

3!

ICE
V 3
t

, (1.20)

kngm =
1

n!

ICE
V n
t

. (1.21)

Thus the effective transconductance generate by ICE − VCE nonlinearity can be obtained as

gm,eff =
ic
vbe

= gm(1 +
1

2

vbe
Vt

+
1

6

v2be
V 2
t

+ · · · ). (1.22)

From (1.22) we can find that the nonlinear contributions to gm,eff increase with the

voltage drop across the emitter-base junction. Generally, vbe decreases as biasing current

increases, making gm,eff closer to constant. Thus the linearity of SiGe HBT can be improved

by increasing biasing current, at the cost of power consumption. By decreasing vbe through

increase emitter resistance or inductance can also help to improve its linearity, although at

the expense of gain.

1.2.2 IBE nonlinearity

The current gain β is constant when considering an ideal SiGe HBT. Then the base

current IBE represents as

IBE =
ICE
β
. (1.23)
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Therefore, the nonlinearity coefficients of the emitter-base conductance can be obtained

similarly with the emitter-collector transconductance.

gbe =
gm
β
,

k2gbe =
K2gm

β
=
ICE
V 2
t β

,

k3gbe =
K3gm

β
=
ICE
V 3
t β

, (1.24)

kngbe =
Kngm

β
=

ICE
V n
t β

. (1.25)

1.2.3 ICB nonlinearity

The ICB current represents the avalanche current

ICB = ICE(M − 1)

= IC0(VBE)Fearly(M − 1). (1.26)

where IC0(VBE) is IC measured at zero VCB, M is the avalanche factor and Fearly is the Early

effect factor.

At low current density, the avalanche factor M in SiGe HBT can be described as a VCB

function using Miller equation

M =
1

1 − (VCB/VCBO)m
, (1.27)

where VCBO and m are fitting parameters.

10



The avalanche current ICB is controlled by two voltages, VBE and VCB. Thus the power

series of this current should be described by 2-D which including the cross-term contribution.

iu = gu · uc +K2gu · u2c +K3gu · u3c + · · · , (1.28)

iv = gv · vc +K2gv · v2c +K3gv · v3c + · · · , (1.29)

iuv = K2gu&gv · vc · uc +K32gu&gv · u2c · vc +K3gu&2gv
· uc · v2c . (1.30)

The first two series iu and iv are 1-D nonlinear transconductance which contain one voltage,

and the cross-term iuv is 2-D nonlinear transconductance which is controlled by two voltage.

Thus the nonlinear coefficient Kmjgu&(m−j)gv with m > j is defined as

Kmjgu&(m−j)gv =
1

j!

1

(m− j)!

∂mf(u, v)

∂uj∂v(m−j)

∣∣∣∣
u=UC ,v=VC

. (1.31)

1.2.4 CBE and CBC nonlinearity

Similarly to the nonlinearity of current, these capacitances are also nonlinear functions

of the terminal voltage. For a small-signal distortion, the charge associated with nonlinear

capacitor can be presented as[1]

Q(t) = f(vC(t)) = f(VC + vc(t)) (1.32)

= f(VC) +
∞∑
k=1

1

k!

∂kf(v(t))

∂vk

∣∣∣∣
v=VC

× vkc (t), (1.33)
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where ac part describes the power series of the stored charge. And nonlinearity coefficients

are defined as

C =
∂f(v)

∂v

∣∣∣∣
v=VC

,

k2C =
1

2!

∂2f(v)

∂v2

∣∣∣∣
v=VC

,

k3C =
1

3!

∂3f(v)

∂v3

∣∣∣∣
v=VC

. (1.34)

The ac charge can be written as

qac(t) = C · vc(t) +K2C · v2c (t) +K3C · v3c (t) + · · · , (1.35)

where C is the small-signal linear capacitance. The diffusion charge QD in SiGe HBT is

proportional to ICE through transit time τf

QD = τfICE = τfIS exp(
qVBE
kT

). (1.36)

Thus,

CD = τfgm = τf
qICE
kT

= τf
ICE
Vt

,

K2CD = τfK2gm = τf
q2ICE
2(kT )2

= τf
ICE
2V 2

t

,

K3CD = τfK3gm = τf
q3ICE
6(kT )3

= τf
ICE
6V 3

t

, (1.37)

KnCD = τfKngm = τf
qnICE
n!(kT )n

= τf
ICE
n!V n

t

. (1.38)
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In equation (1.37), CD, K2CD and K3CD are proportional to gm, K2gm and K3gm respectively.

And the effective capacitance can be written as a function of vbe,

CD,eff =
qD
vbe

= CD(1 +
1

2

vbe
Vt

+
1

6

v2be
V 2
t

+ · · · ). (1.39)

Similar to the effective transconductance gm,eff , increasing bias current can make the effective

diffusion capacitance more linear with expense of power consumption. A larger CD itself also

can improve the circuit linearity since higher IC leads to a larger CD which finally results in

a smaller vbe.

The expression of the emitter-base and collector-base junction depletion capacitance are

often given by

Cdep(Vf ) =
C0

(1 − Vf
Vj

)mj
, (1.40)

where C0, Vj and mj are known model parameters. The nonlinearity coefficients can be

analytical evaluated in this case. But more complicated in other models such as MEXTRAM

model, the nonlinearity coefficients should be evaluated numerically.

Generally the collector-base depletion capacitance is much smaller than the emitter-base

depletion capacitance, because the collector-base junction is under reserve bias for normal

operation.

Through discussing these physical I − V and C − V nonlinearities in a SiGe HBT, we

know how they influence the linearity of a SiGe HBT amplifier.

In order to find out which nonlinearity is dominant in the device, the analysis method

used is Volterra series. This is an approach applies to small signal distortion such as that

found in front-end low-noise amplifiers and mixers. In the next part, we will introduce one

of Volterra series, the nonlinear current source method.
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Chapter 2

Nonlinear current source approach

2.1 Introduction to Volterra series

Volterra series is a general mathematical approach for solving systems of nonlinear

integral and integral-differential equations. Volterra series can be viewed as an extension of

the theory of linear systems to weakly nonlinear systems. The essentials of Volterra series

can be briefly summarized follows[1]:

Firstly, Volterra series describes a nonlinear system the same as a using Taylor series

to approximate an analytic function. Similarly, the analysis is applicable only to weak

nonlinearities.

H1

H2

Hn

xx(t)
y(t)

Figure 2.1: Illustrating basic process of Volterra series[3].

Secondly, the response of a nonlinear system to an input x(t) is equal to the sum of

the response of a series of transfer functions of different orders(H1, H2, ..., Hn), as shown in

Fig. 2.1

Y = H1(x) +H2(x) +H3(x) + · · · +Hn(x), (2.1)
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where in time domain, Hn is described as an impluse response hn(τ1, τ2, · · · , τn). As in

linear circuit analysis, frequency domain representation is often more convenient. Thus

nth order transfer function Hn(s1, s2, · · · , sn) in frequency domain is obtained through a

multidimensional Laplace transform of the time domain impluse response.

Thirdly, the first-order transfer function H1(s) is the transfer function at dc bias.

Thus solving the output of a nonlinear circuit is equivalent to solving the Volterra series

H1(s), H2(s1, s2), and H3(s1, s2, s3), · · ·

X

Ka(t)

Kb(t)

Kc(t)
x(t) y2(t)

Figure 2.2: Illustrating the operation of a simple second-order system[3].

Fig. 2.2 shows a basic second-order system. It is clear that a second-order nonlinearity

combines two signals to produce a second-order signal. With this simple system shown in

Fig. 2.2, we can explain the operation of a second-order system in generally as follows: the

two linear blocks represent the impulse response ka(t) and kb(t) which is fed from incoming

signal x(t), za(t) and zb(t) are the two output respectively. Then these two signals are

combined by a multiplier and the higher impulse response term is kc(t). y2(t) is the overall

output of this linear system.

For this general system, it is not difficult to give the Volterra kernel equation[3]:

h2(τ1, τ2) =

∫ ∞
−∞

kc(σ)ka(τ1 − σ)kb(τ2 − σ)dσ. (2.2)

In this thesis we analyze nonlinear behavior in frequency domain, thus we can get

equation in frequency domain using Fourier transforms. The Fourier transform of h2(τ1, τ2)
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is denoted as H2(jω1, jω2). The equation shows as follows[3]:

H2(jω1, jω2) = Ka(jω1)Kb(jω2)Kc(jω1 + jω2), (2.3)

where Ka(jω), Kb(jω) and Kc(jω) denote the Fourier transfforms of the linear subsystems

described by the impluse response ka(t), kb(t) and kc(t) respectively.

X

Ka(t)

Kb(t)

Kc(t)

XX

Kd(t)

Ke(t)
x(t)

y3(t)

Zb(t)

Za(t)

F2

Figure 2.3: Illustrating the operation of a simple third-order system[3].

Similar to the second-order system, we can obtain a general block diagram to represent

a third-order Volterra operator. It is clear that this third-order system will require two

multipliers. In this way except the second-order signal, this system will combine three

signals to produce a third-order signal. Fig. 2.3 shows a basic third-order system. x(t) is

the common input to a second-order system F2 with the output za(t) , it’s also the input

to a linear system with impulse response kd(t) and output zb(t). The second-order system

F2 is defined in Fig. 2.2. Combining the output za(t) and zb(t), we will obtain the impulse

response ke(t) and total output y3(t).

The third-order kernel transform of this system in frequency domain is given by:

H3(jω1, jω2, jω3) = Ka(jω1)Kb(jω2)Kc(jω1 + jω2)Kd(jω3)Ke(jω1 + jω2 + jω3). (2.4)

There are two approaches to solve nonlinear system based on Volterra series. One is

nonlinear current source method[3], the other is direct derivation[11].
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2.2 Nonlinear current source approach

In this section, the computation of first-order, second-order and third-order Volterra

kernel of voltages and currents in a weakly nonlinear network will be explained.

2.2.1 First-order transfer function

VS

rB

r�Cbe

rL 

gmvbe

+

-

vbe

+

-

vout

1 2

0

rS

Figure 2.4: First-order small signal equivalent circuit.

At first, the response of the equivalent circuit to the external input should be transferred

to a frequency domain function. In this way, every nonlinearity symbol is replaced by a

linearized one. Considering the output voltage, all node voltage of this nonlinearity can be

calculated. Fig. 2.4 shows the equivalent circuit of the first-order response. In general this

calculation can be represented by the solution of the following matrix equation[3][4]:

Y (s)H1(s) = IN1, (2.5)

where Y (s) is the admittance matrix in this circuit, H1(s) is the vector of first-order Volterra

kernel transforms of the node voltage 1 and 2, IN1 is the vector of excitation. This admit-

tance matrix can be calculated using Kirchoff’s current law at every node. Thus in this

equation the only unknown parameter is the Volterra transfer function. Applying Kirchoff’s

current law at node 1 in Fig. 2.4. we can obtain:

gS · gB
gS + gB

(V1 − VS) + gπV1 + s1CbeV1 = 0. (2.6)
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At node 2 we can obtain the equation in the same way:

gmVbe + gLV2 = 0. (2.7)

In (2.6), gS is the admittance of the source resistance and gB is the admittance of the

base resistance. Cbe is the sum of diffusion capacitance Cπ and depletion capacitance Cje.

In (2.7), Vbe equal to V1.

Then combine (2.6) and (2.7) into one matrix equation:

 gS · gB
gS + gB

+ gπ + sCbe 0

gm gL


 V1

V2

 =

 gSVS

0

 . (2.8)

In this matrix, V1 and V2 become the first-order Volterra transfer function when VS is

equal to 1. These transfer functions are denoted as H11(s) and H12(s). And in these two

transfer function, the first subscript indicates the order of transfer function and the second

subscript indicates the number of node. Then (2.9) can be rewritten as following:

 gS · gB
gS + gB

+ gπ + sCbe 0

gm gL


 H11(s)

H12(s)

 =

 gS

0

 . (2.9)

This matrix equation can be solved using Cramer’s rule. Then through defining the

ratio of two determinants, H11(s) and H12(s) can be calculated.

det(s) = (
gS · gB
gS + gB

+ gπ + sCbe)(gL). (2.10)
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Then H11 is obtained as

H11(s) =

∣∣∣∣∣∣∣
gS 0

0 gL

∣∣∣∣∣∣∣
det(s)

=
gS(gL)

dets(s)
=

gS
gS · gB
gS + gB

+ gπ + sCbe
. (2.11)

H12 is obtained as

H12(s) =

∣∣∣∣∣∣∣
gS · gB
gS + gB

+ gπ + sCbe gS

gm 0

∣∣∣∣∣∣∣
det(s)

=
−gmgS
dets(s)

=
−gmgS

(
gS · gB
gS + gB

+ gπ + sCbe)gL
. (2.12)

2.2.2 Second-order transfer function

In fact the first-order kernels are a linear transfer function. The method that was used

for calculation of linear transfer functions described earlier can also be used to calculate the

second-order Volterra kernels, but now with the so-called nonlinear current sources placed

in parallel with the corresponding linearized circuit elements for each nonlinear element. In

this way the node voltages that are found are equal to the second-order kernel transforms.

rB

r�Cbe

rL 

gmvbe

+

-

vbe

+

-

vout

1 2

0

iNL2gπ
iNL2Cπ iNL2gm

rS

Figure 2.5: The computation of second-order kernels equivalent circuit.

Fig. 2.5 shows the circuit that has to be solved for the computation of H2(s1, s2). Every

nonlinearity symbol in the original circuit gives rise to a nonlinear current source in the

linearized circuit, which is placed parallel to each nonlinear element. And the direction of
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these nonlinear current source is the same as the controlled current in the original nonlinear

circuit.

In this case, we assume the base resistance rB is a linear element. In Fig. 2.5, iNL2gπ ,

iNL2cπ and iNL2gm are the second-order nonlinear current sources.

type of basic nonlinearity expression for nonlinear current source of order two
(trans)conductance K2g1H1k(s1)H1k(s2)

capacitance (s1 + s2)K2C1
H1k(s1)H1k(s2)

2-D conductance(only cross term) 1
2

[
K2g1&g2H1k(s1)H1l(s2) +K2g1&g2H1k(s2)H1l(s1)

]
3-D conductance(only cross term) 0

Table 2.1: Different basic nonlinearities of second-order nonlinear current source which is
used for the calculation of the second-order Volterra series[3].

The value of these current sources depends on the second-order nonlinearity coefficient,

on the type of the nonlinear element (ie:transconductance, capacitance) in original circuit,

and on the first-order kernels of the controlling voltage. The second-order nonlinear current

source are given in Table (2.1). In this table H1k(s) is the first order transfer function of the

node voltage which controls nonlinearity conductance and capacitance. H1l(s) is the first-

order transfer function the second controlled voltage. K2g1 and K2C1
are the seconder-order

nonlinearity coefficient respectively. It is clear that the value of nonlinear current source

is equal to the second-order nonlinearity coefficient multiply with the first-order transfer

function of the voltage at different frequency.

Again matrix equation can be obtained as[3][4]:

Y (s1 + s2)H2(s1, s2) = IN2. (2.13)

In this equation, second-order kernel transforms of the node voltage is represented as the

vector H2(s1, s2). Vector IN2 relate to the nonlinear current sources of order two. Comparing

equation (2.5) and (2.13), we can find that they have the same admittance matrix, but with

different frequency.
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In this way, the second-order nonlinearity can be calculated through combining two

first-order controlling voltages to produce a second-order signal. To calculate the second-

order kernel transform, the circuit should be linearized and the nonlinear current source of

order two are applied. Through using Kirchoff’s current law at node 1 and node 2 in Fig.,

the matrix equation can be obtained as follows:

 gS · gB
gS + gB

+ gπ + (s1 + s2)Cbe 0

gm gL


 H21(s1, s2)

H22(s1, s2)

 =

 −iNL2gπ − iNL2cπ

−iNL2gm

 . (2.14)

The leftmost matrix is similar with the one in linear circuit, but now evaluated at

(s1 + s2) instead of s1. In (2.14) the unknown parameters are the second-order kernels of the

two node voltage H21(s1, s2) and H22(s1, s2). The nonlinear current iNL2gπ is given according

to Table (2.1):

iNL2gπ = K2gπH11(s1)H11(s2). (2.15)

Using H11(s) getting from (2.11), we can obtain (2.15):

iNL2gπ =
K2gπg

2
S

det(s1)det(s2)
. (2.16)

Similarly, we can find the value of iNL2gm and iNL2Cπ :

iNL2gm = K2gmH11(s1)H11(s2) =
K2gmg

2
S

det(s1)det(s2)
(2.17)

iNL2Cπ = (s1 + s2)K2Cπ
H11(s1)H11(s2) =

(s1 + s2)K2Cπ
g2S

det(s1)det(s2)
. (2.18)
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Applying Cramer’s rule on (2.14) and using the value of second-order nonlinear current

source, H21(s1, s2) can be obtained as:

H21(s1, s2) =

∣∣∣∣∣∣∣
−iNL2gπ − iNL2Cπ 0

−iNL2gm gL

∣∣∣∣∣∣∣
det(s1 + s2)

=
−gL

dets(s1 + s2)
(iNL2gπ + iNL2Cπ ). (2.19)

Then using (2.16) and (2.18), (2.20) can be rewritten as:

H21(s1, s2) =
−gLg2S(K2gπ + (s1 + s2)K2Cπ

)

dets(s1 + s2)det(s1)det(s2)
. (2.20)

For the second-order kernel transfer function at node 2:

H22(s1, s2) =

∣∣∣∣∣∣∣
gS · gB
gS + gB

+ gπ + (s1 + s2)Cbe −iNL2gπ − iNL2Cπ

gm −iNL2gm

∣∣∣∣∣∣∣
det(s1 + s2)

(2.21)

=

−(
gS · gB
gS + gB

+ gπ + (s1 + s2)Cbe)iNL2gm + gm(iNL2gπ + iNL2Cπ )

dets(s1 + s2)
(2.22)

Using (2.10), (2.16), (2.18) and (2.17), we can obtain:

H22(s1, s2) =

−g2S(K2gm (
gS · gB
gS + gB

+ gπ + (s1 + s2)Cbe) − gm(K2gπ + (s1 + s2)K2Cπ
)

det3(s1)det3(s2)det(s1 + s2)
(2.23)

2.2.3 Third-order transfer function

In the next step, the third-order transfer functions are calculated. Similarly, the third-

order must be solved as a mix of order one and two[3][4]:

Y (s1 + s2 + s3)H3(s1, s2, s3) = IN3 (2.24)
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type of basic nonlinearity expression for nonlinear current source of order two
(trans)conductance K3g1H1k(s1)H1k(s2)H1k(s3)

+2
3

[H1k(s1)H2k(s2, s3) +H1k(s2)H2k(s1, s3)
+H1k(s3)H2k(s1, s2)]

capacitance (s1 + s2 + s3)K3C1
H1k(s1)H1k(s2)H1k(s3)

+2
3
(s1 + s2 + s3)K2C1 [H1k(s1)H2k(s2, s3)

+H1k(s2)H2k(s1, s3) +H1k(s3)H2k(s1, s2)]
2-D conductance(only cross term) 1

3
K2g1&g2 [H1k(s1)H2l(s2, s3) +H1k(s2)H2l(s1, s3)

+H1k(s3)H2l(s1, s2) +H2k(s1, s2)H1l(s3)
+H2k(s1, s3)H1l(s2) +H2k(s2, s3)H1l(s1)]

1
3
K32g1&g2 [H1k(s1)H1k(s2)H1l(s3) +H1k(s1)H1k(s3)H1l(s2)

+H1k(s2)H1k(s3)H1l(s1)]
1
3
K3g1&2g2

[H1k(s1)H1l(s2)H1l(s3)
+H1k(s2)H1l(s1)H1l(s3) +H1k(s3)H1l(s1)H1l(s2)]

3-D conductance(only cross term) 1
6
K3g1&g2&g3 [H1k(s1)H1l(s2)H1m(s3)

+H1k(s1)H1l(s3)H1m(s2) +H1k(s2)H1l(s1)H1m(s3)
+H1k(s2)H1l(s3)H1m(s1) +H1k(s3)H1l(s1)H1m(s2)

H1k(s3)H1l(s2)H1m(s1)]

Table 2.2: Different basic nonlinearities of third-order nonlinear current source which is used
for the calculation of the third-order Volterra series transfer function[3].

The nonlinear current source of order three are shown in Table (2.2). H1k(s) and H2k(s)

are the first-order and second-order transfer functions of the voltage respectively.

The nonlinear current source consist of two components. One is caused by the third-

order nonlinearity, which combines three first-order signals into a third-order signal at fre-

quency (s1 + s2 + s3). Another component is the average terms which acts upon a second-

order signal and a first-order signal at controlling voltage. Then all these third-order signals

propagate to the output.

Then the third-order transfer functions’ matrix equation is given by:

 gS · gB
gS + gB

+ gπ + (s1 + s2 + s3)Cbe 0

gm gL


 H31(s1, s2, s3)

H32(s1, s2, s3)

 =

 −iNL3gπ − iNL3cπ

−iNL3gm

 ,
(2.25)

where H31(s1, s2, s3) and H32(s1, s2, s3) are the third-order transfer functions at node 1 and

node 2 respectively. From (2.25), H31(s1, s2, s3) and H32(s1, s2, s3) can be found using rule
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of Cramer

H31(s1, s2, s3) =
gL(iNL3gπ + iNL3cπ)

det(s1 + s2 + s3)
(2.26)

H32(s1, s2, s3) =

−(
gS · gB
gS + gB

+ gπ + (s1 + s2 + s3)Cbe)iNL3gm + gm(iNL3gπ + iNL3cπ)

det(s1 + s2 + s3)
, (2.27)

where iNL3gm , iNL3gπ and iNL3cπ can be calculated using Table (2.2).

iNL3gm = K3gmH11(s1)H11(s2)H11(s3)

+
2

3
K2gm [H11(s1)H21(s2, s3) +H11(s2)H21(s1, s3) +H11(s3)H21(s1, s2)] (2.28)

iNL3gπ = K3gπH11(s1)H11(s2)H11(s3)

+
2

3
K2gπ [H11(s1)H21(s2, s3) +H11(s2)H21(s1, s3) +H11(s3)H21(s1, s2)] (2.29)

iNL3cπ = (s1 + s2 + s3)K3cπH11(s1)H11(s2)H11(s3)

+
2

3
(s1 + s2 + s3)K2cπ [H11(s1)H21(s2, s3) +H11(s2)H21(s1, s3)

+H11(s3)H21(s1, s2)] (2.30)

Substituting first-order transfer function and second-order transfer function into iNL3gm ,

iNL3gπ and iNL3cπ , we can obtain H32(s1, s2, s3).

In next part, direct derivation method is illustrated. It is more complex than nonlinear

current method. The equation of nonlinear output must be the same in same conditions for

two approaches.
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Chapter 3

Direct derivation approach

3.1 First order derivation

Cje Ic

Zb

Cπ Ib

VS

Figure 3.1: Circuit that has to be used for the analysis of distortion based on direct derivation
approach[11].

Another approach is direct derivation. Fig. 3.1 shows the circuit that used to analyze

distortion. This circuit ignores the effect of base-collector junction capacitance (Ccb)as we

do in nonlinear current source circuit. VS is the voltage source. Zb is the impedance between

voltage source and base of transistor which set as the sum of source resistance (rs) and

base resistance of transistor (rb). Qπ is the base-emitter diffusion charge, which is linearly

proportional to the collector current Ic and the forward transit time τf . Cπ is the base-emitter

difussion capacitance, which is equal to
dQπ

dVπ
= gmτf . Cje is the base-emitter depletion

capacitance which is assumed to be a constant value in this model. Ib is the base current,

which is equal to
Ic
β

, where β is the small signal low-frequency current gain.But at high-

frequency Ib still have effect on the nonlinearity, thus it can’t be ignored.

Using Kirchhoff’s Voltage Law at Fig. 3.1, we can obtain an equation of the circuit[2][11]

VS = (ICje + ICπ + Ib)Zb, (3.1)
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where ICje is the current of Cje and ICπ is the current of Cπ. Then we can obtain

VS = (sCjeVπ + sτfgmVπ +
Ic
β

)Zb + Vπ, (3.2)

where Vπ is the base-emitter voltage drop accross Cπ and Cje. For collector current Ic, a

Volterra series expression is given by

Ic = A1(s) ◦ VS + A2(s1, s2) ◦ V 2
S + A3(s1, s2, s3) ◦ V 3

S , (3.3)

where V n
S is the n’th power of the voltage source. An(s) is the Volterra series coefficient.

The operator ′◦′ in equation (3.3) indicates each component in V n
S should multiply An(s) at

each frequency which result into a phase shifting by An(s) of each frequency component in

V n
S .

Ic = IC + IQ exp(
Vπ
Vt

)

= IC + IQ

[
(
Vπ
Vt

) +
1

2
(
Vπ
Vt

)2 +
1

6
(
Vπ
Vt

)3 + · · ·
]
, (3.4)

where IQ is the bias current of transistor, IC is dc current and Vt is the thermal voltage.

Vπ = C1(s1) ◦ VS + C2(s1, s2) ◦ V 2
S + C3(s1, s2, s3) ◦ V 3

S . (3.5)

The way to calculate An(s) is substituting equation (3.3) and (3.5) into equation (3.2).

For the first order derivation,

VS = Aejω1t,

ic = IQ(
Vπ
Vt

),

Vπ = C1(s1) ◦ VS = C1(s1)e
jω1t,
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where we assuming A equal to 1, ic is ac current. Then C1(s1) can be calculated as

ejω1t =

[
s1CjeC1(s1)e

jω1t + s1τf
IQ
Vt
C1(s1)e

jω1t +
IQ
Vt
C1(s1)e

jω1t/β0

]
· Zb(s1) + C1(s1)e

jω1t,

1 = C1(s1)

[
(s1Cje + s1τf · gm +

gm
β0

) · Zb(s1) + 1

]
,

C1(s1) =
1

s1CjeZb(s1) + s1τf · gmZb(s1) + gmZb(s1)/β0 + 1
. (3.6)

Then A1(s1) can be obtained as

A1(s1) =
ic
N

=
gmC1(s1)e

jω1t

ejω1t

= gmC1(s1), (3.7)

where N = ejω1t.

3.2 Second order derivation

For the second order derivation, the mixed frequency ω1 + ω2 occurs due to the square

operator.

Vs = ejω1t + ejω2t,

V 2
S = (ejω1t + ejω2t)2 = e2jω1t + e2jω2t + 2ej(ω1+ω2)t,

ic = IQ[(
Vπ
Vt

) +
1

2
(
Vπ
Vt

)2],

Vπ = C1(s1) ◦ VS + C2(s1, s2) ◦ V 2
S

= Vπ = C1(s1)e
jω1t + C1(s2)e

jω2t + C2(s1, s2)2e
j(ω1+ω2)t. (3.8)
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Since second-order C2(s1, s2) only considering the frequency at ω1 +ω2, thus neglect the

influence of e2jω1t&e2jω2t. Then we can calculate V 2
π as

V 2
π =

[
C1(s1)e

jω1t + C1(s2)e
jω2t + C2(s1, s2)2e

j(ω1+ω2)t
]2
.

For the same reason the second-order only considering the frequency at ω1 + ω2, the

square of each numerator in V 2
π will lead to a even higher order. Thus neglect influence of

these orders and we can rewrite V 2
π as

V 2
π = 2C1(s1)C2(s2)e

j(ω1+ω2)t. (3.9)

Within (3.8) and (3.9), ic can be obtained as

ic =
IQ
Vt

2C2(s1, s2)e
j(ω1+ω2)t +

IQ
2V 2

t

2C1(s1)C1(s2)e
j(ω1+ω2)t. (3.10)

Substuiting (3.8), (3.9) and (3.10) into equation (3.2), C2(s1, s2) can be obtained as

VS =
{

(s1 + s2)CjeC2(s1, s2)2e
j(ω1+ω2)t

+ (s1 + s2)τf

[
IQ
Vt

· 2C2(s1, s2)e
j(ω1+ω2)t +

IQ
2V 2

t

· 2C1(s1)C1(s2)e
j(ω1+ω2)t

]
+
IQ
Vt

· 2C2(s1, s2)e
j(ω1+ω2)t/β0 +

IQ
2V 2

t

· 2C1(s1)C1(s2)e
j(ω1+ω2)t/β0

}
· Zb(s1 + s2)

+ C2(s1, s2) · 2ej(ω1+ω2)t, (3.11)

28



where VS = ejω1t + ejω2t. Since no item relates to the frequency of ω1 + ω2 in this VS, thus

VS = 0. Placing this requirement into equation (3.11)

0 = C2(s1, s2)

[
(s1 + s2)CjeZb(s1 + s2) · 2ej(ω1+ω2)t + (s1 + s2)τf

IQ
Vt
Zb(s1 + s2) · 2ej(ω1+ω2)t

+
IQ
Vt
Zb(s1 + s2) · 2ej(ω1+ω2)t/β0 + 2ej(ω1+ω2)t

]
+ C1(s1)C1(s2)

[
(s1 + s2)τf

IQ
2V 2

t

Zb(s1 + s2) · 2ej(ω1+ω2)t +
IQ

2V 2
t

Zb(s1 + s2) · 2ej(ω1+ω2)t/β0

]
.

(3.12)

The equation in first bracket is equal to
2

C1(s1 + s2)
· ej(ω1+ω2)t. Then (3.12) can be

rewritten as

−C2(s1, s2) ·
2

C1(s1 + s2)
ej(ω1+ω2)t = C1(s1)C2(s2)

IQ
2V 2

t

[(s1 + s2)τf · 2Zb(s1 + s2)

+2Zb(s1 + s2)/β0] e
j(ω1+ω2)t

C2(s1, s2) = −C1(s1)C1(s2)C1(s1 + s2)
gm
2Vt

[
(s1 + s2)τfZb(s1 + s2) +

Zb(s1 + s2)

β0

]
. (3.13)

Then A2(s1, s2) can be obtained as

A2(s1, s2) =
ic
N2

, (3.14)

where N2 = 2ej(ω1+ω2)t. Substuiting (3.10) into (3.14), we can obtain

A2(s1, s2) = gm · C2(s1, s2) +
IQ

2V 2
t

C1(s1)C1(s2). (3.15)
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3.3 Third order derivation

For the third order derivation, frequency ω1+ω2+ω3 occurs at three first order frequency

mixed or the first order and second order frequency mixed.

VS = ejω1t + ejω2t + ejω3t,

ic = IQ

[
(
Vπ
Vt

) +
1

2
(
Vπ
Vt

)2 +
1

6
(
Vπ
Vt

)3
]
,

Vπ = C1(s1) ◦ VS + C2(s1, s2) ◦ V 2
S + C3(s1, s2, s3) ◦ V 3

S .

Since third-order only considering the frequency at ω1 + ω2 + ω3, thus we can get the

expression of IC as

ic =
IQ
Vt

· 6C3(s1, s2, s3)e
j(ω1+ω2+ω3)t +

IQ
6V 3

t

· 6C1(s1)C1(s2)C1(s3)e
j(ω1+ω2+ω3)t

=
IQ

2V 2
t

· 12C1C2e
j(ω1+ω2+ω3)t, (3.16)

where

C1C2 =
C1(s1)C2(s2, s3) + C1(s2)C2(s1, s3) + C1(s3)C2(s1, s2)

3
. (3.17)

Substituting Vπ and (3.16) in (3.2)

VS =
{

(s1 + s2 + s3)Cje · 6C3(s1, s2, s3)e
j(ω1+ω2+ω3)t

+

(
(s1 + s2 + s3)τf +

1

β0

)[
IQ
Vt

· 6C3(s1, s2, s3)e
j(ω1+ω2+ω3)t

+
IQ

6V 3
t

· 6C1(s1)C1(s2)C1(s3)e
j(ω1+ω2+ω3)t +

IQ
2V 2

t

· 12 C1C2e
j(ω1+ω2+ω3)t

]
· Zb(s1 + s2 + s3)

+ 6C3(s1 + s2 + s3)e
j(ω1+ω2+ω3)t, (3.18)
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where VS = ejω1t+ ejω2t+ejω3t. This VS has no item related to the frequency of ω1 +ω2 +ω3,

thus it is equal to 0. Then the equation (3.18) can be rewritten as

0 = 6C3(s1, s2, s3)e
j(ω1+ω2+ω3)t

[
(s1 + s2 + s3)Cje + (s1 + s2 + s3)τf

IQ
Vt

+
IQ
Vtβ0

]
· Zb(s1 + s2 + s3) + 1

+
IQ

6V 3
t

· 6C1(s1)C1(s2)C1(s3)e
j(ω1+ω2+ω3)t

[
(s1 + s2 + s3)τf +

1

β0

]
· Zb(s1 + s2 + s3)

+
IQ

2V 2
t

· 12 · C1C2e
j(ω1+ω2+ω3)t

[
(s1 + s2 + s3)τf +

1

β0

]
· Zb(s1 + s2 + s3). (3.19)

The expression in the first bracket is equal to
1

C1(s1 + s2 + s3)
. Then (3.19) can be

rewritten as

−C3(s1, s2, s3)
6

C1(s1 + s2 + s3)
=

[
(s1 + s2 + s3)τf +

1

β0

]
· Zb(s1 + s2 + s3)

[
C1(s1)C1(s2)C1(s3)

IQ
V 3
t

+
2IQ
V 2
t

C1(s1)C2(s2, s3) +
2IQ
V 2
t

C1(s2)C2(s1, s3) +
2IQ
V 2
t

C1(s3)C2(s1, s2)

]
(3.20)

C3(s1, s2, s3) = −A1(s1 + s2 + s3)IQ
6V 3

t

[
(A1(s1)A1(s2)A1(s3) + 6VtA1A2)

]
· [(s1 + s2 + s3)τf

+
1

β0

]
Zb(s1 + s2 + s3), (3.21)

where

A1A2 =
A1(s1)A2(s2, s3) + A1(s2)A2(s1, s3) + A1(s3)A2(s1, s2)

3
. (3.22)
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A3(s1, s2, s3) can be obtained as

A3(s1, s2, s3) =
ic
N3

= gm C3(s1, s2, s3) +
IC

6V 3
t

C1(s1)C1(s2)C1(s3) +
IC
V 2
t

C1C2, (3.23)

where N3 = 6ej(ω1+ω2+ω3)t[11].

We can use these transfer functions to determine which part of nonlineartity is more

important, or to analyze the output of nonlinear systems.

In the next chapter, we will compare two Volterra series approach using Matlab and sim-

ulator to verify the way that we used to analyze distortion is correct. Based on these transfer

functions, third-order intermodulation distortion cancellation analysis can be achieved.
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Chapter 4

Third-order intermodulation distortion cancellation

4.1 Intercept point

As we discussed in chapter 1, second-order intercept point (IP2) and third-order in-

tercept point (IP3) have significant influence on nonlinear device. In this section, we will

use Volterra series method implemented in Matlab and Harmonic balance implemented in

Advanced Design System (ADS) to analyze the output of nonlinear system. Volterra series

include direct derivation method and nonlinear current source method.

4.1.1 IP2

The second-order intercept point which is known as IP2 including IIP2 (input intercept

point) andOIP2 (output intercept point), is a second-order distortion generated by nonlinear

systems and devices.

Pout 

(dB)

Pin (dB)

(IIP2, OIP2)

Figure 4.1: The definition of the second-order intercept point
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At low power level, the fundamental output power has a one-to-one ratio with the input

power, while the second-order output power is two-to-one to the input power. But if the

input power is high enough to reach saturation, the out put power will flatten out at some

point in both first-order and second-order case.

The IIP2 is the input power at the intercept point where the first-order and second-

order line intersect with each other. Similarly to OIP2, which is the output power at that

intercept point. Fig. 4.1 shows the magnitude response of a two-tone mixer as a function of

input power.

The actual value of IIP2 and OIP2 of a device can be measured, being related by the

small signal gain of the device or system. Power gain can be obtained as[4]

Gain = 10 log10(
Pout
Pin

) = 10 log10(
V 2
out

2rL

8rS
V 2
S

) = 10 log10(
V 2
out

rL
4rS), (4.1)

where the unit of power gain is dB, rS and rL are source resistance and load resistance

respectively. Output power Pout =
A2
IP2

2rL
, input power Pin =

A2
IP2

8rS
. AIP2 is the input voltage

amplitude at the IP2 point which is equal to

AIP2 =

√
H12(s) gL2nd
H22(s) gL1st

, (4.2)

where gL1st and gL2nd are the load impedance of the first-order and second-order respectively.

H12 is the first-order transfer function at node 2 and H22 is the second-order transfer function

at node 2.

IIP2, the input power at the second order intermodulation intercept can be obtained as

IIP2 = 10 log10(
A2
IP2

2 · 2 · (rL + rS)
) + 30 = 10 log10(

A2
IP2

8rS
) + 30, (4.3)
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where the unit is dBm. In (4.3) the first “2” is the average value, the second “2” is the

available value. We set rS = rL in (4.3), thus IIP2 =
A2
IP2

8rS
. OIP2 can be obtained as:

OIP2 = IIP2 +Gain. (4.4)

Figure 4.2: ADS simulation circuit and parameters setting.

parameter name value
IS 139.146aA
Bf 480
Rb 8.6Ω
Ct 37.18fF
τf 9.36ps

Table 4.1: Parameters used in Volterra series method.

Fig. 4.2 shows the ADS simulation circuit, parameters of BJT model and simulation

equations. In this simulation, we set Pin = −38dBm, RS = RL = 50Ω, f1 = 2GHz and

f2 = 2GHz ± 6MHz. Vce = 1V and Vbe is swept from 0.75V to 0.84V . X8 in this circuit

is a mextram model, the device size is 0.12×18µm2. τf and Ct can be approximated from
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(4.5) and the plot is shown in Fig. 4.3

Cbe = Ct + gmτf , (4.5)
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Figure 4.3: Using Cbe − gm plot to obtain τf and Ct.

Cbe is the base-emitter diffusion capacitance. We obtain Cbe from operation point infor-

mation of mextram Verilog-A. Put the value of Cbe − gm in Matlab and use polyfit function

to obtain its slope and zero bias point. The value of the slope of Cbe− gm is τf and zero bias

of Cbe − gm is Ct.

Fig. 4.4 shows the plot of cutoff frequency versus IC . IC under peak fT is around 20mA,

thus we just considering the condition of IC smaller than 20mA.

The plot of power gain is shown in Fig. 4.5. It is obvious that based on Volterra series,

plots of nonlinear current source approach and direct derivation are exactly the same. But

when comparing the result with Harmonic balance in ADS simulation, the plots can match

only at low current. Because the model of Volterra series approach just considering the

influence of IC and IB. gm simplifies to
IC
Vt

, where Vt = 25.8mV is thermal voltage. Thus it

is not accurate any more when IC becomes higher.
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Figure 4.4: fT versus IC plot.

Fig. 4.6 and Fig. 4.7 show the plot of IIP2 and OIP2 respectively. Similarly we simplify

IC , IB and gm in the model of Volterra series method, thus Volterra series method cannot

match well with Harmonic balance implemented in ADS simulation .

4.1.2 IP3

Pout 

(dB)

`

Pin (dB)

(IIP3, OIP3)

Figure 4.8: The definition of the third-order intercept point

The third-order intercept point (IP3), also based on the idea that the nonlinearity of a

device can be modeled using a low-order polynomial and derived by Taylor series expression.
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Figure 4.5: Comparing power gain versus Ic between Volterra series method in Matlab and
Harmonic balance in ADS.

Similarly, Fig. 4.8 shows the IP3 point at the intercept of ratio one-to-one line and

three-to-one line. Then the x-axis of IP3 is IIP3 and y-axis is OIP3.

In IIP3 case[4],

3

4
A3H32(s1, s1,−s2) = AH12(s1), (4.6)

AIP3 can be obtained as

AIP3 =

√
4

3

H12 gL3rd
H32 gL1st

, (4.7)

where gL3rd is the third-order load impedance and H32 is the third-order transfer function of

voltage at node 2.

Using (4.7) and (4.1), we can obtain IIP3 and OIP3 as

IIP3 = 10log10(
A2
IP3

8rS
) + 30, (4.8)

OIP3 = IIP3 +Gain, (4.9)

where the unit of IIP3 and OIP3 in these two equations are in dBm.
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Figure 4.6: Comparing IIP2 versus IC between Volterra series method in Matlab and Har-
monic balance in ADS at f1 + f2.
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Figure 4.9: Comparing IIP3 versus IC between Volterra series method in Matlab and Har-

monic balance in ADS at 2f1 − f2.
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Figure 4.7: Comparing OIP2 versus IC between Volterra series method in Matlab and
Harmonic balance in ADS at f1 + f2.
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Figure 4.10: Comparing OIP3 versus IC between Volterra series method in Matlab and

Harmonic balance in ADS at 2f1 − f2.

Fig. 4.9 and Fig. 4.10 show the plot of IIP3 and OIP3 vs IC between calculation and

ADS simulation respectively. RS = RL = 50Ω, f1 = 2GHz and f2 = 2GHz + 6MHz. We

can find that two curves based on Volterra series can match well. Because of simplification

of Volterra series’ model, Harmonic balance implemented in ADS cannot match well with

Volterra series method at higher IC .
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4.2 Third-order intermodulation distortion cancellation

One of the advantages to analyze IP2 and IP3 is that we can reduce this nonlinear

distortion to meet the increasing demands on linearity made by todays mobile communication

standards. Generally bipolar devices are strongly nonlinear due to their exponential terms.

In order to achieve linearity, dc power consumption will be increasing since linearity is traded

off against collector current. Thus it is important to find a way to facilitate linearity at low

dc collector current. This IM3 cancellation approach is based on [5].

Vs

ZS

gπCt
ZL 

gmvbeCπ

b

e

c

Figure 4.11: Simplified model of a bipolar transistor in common-emitter configuration.

First, we calculate the full expression of IM3 and decide the requirements for low-

frequency cancellation. Fig. 4.11 shows the large-signal model of a bipolar transistor. We

assume the base-emitter depletion capacitance Ct approximate to a constant value when Vbe

change at a very small range. The influence of Cbc can be ignored at low frequency because

it only has a big influence at high frequency. Thus either using the approach of nonlinear

current source or directly nonlinear circuit calculation, the first-order transfer function can

be obtained as[5][6]

H12(s) =
−gmZL(s)

N(s)
, (4.10)

where N(s) = [1 + ZS(s)gπ + s(Ct + Cπ)ZS(s)]. ZS(s) is the source impedance which does

not include base resistance. Because RB = 8.6Ω can be neglected when comparing RB with

RS. ZL(s) is the load impedance. We can find gm, gπ and Cπ in equation (1.21),(1.24) and

(1.37).
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Then the expression of the third-order Volterra kernel which is calculated at third-order

intermodulation frequency (2ω1 − ω2) is given by

H32(s1, s1,−s2) =
−gm3ZL(2s1 − s2) [1 + (2s1 − s2)CtZS(2s1 − s2)]T (s1, s1,−s2)

N(s1)2N(−s2)N(s1 − s2)N(2s1)N(2s1 − s2)
, (4.11)

where

T (s1, s1,−s2) = 1 − gπZS(s1 − s2) − 2(gπ)2ZS(2s1)ZS(s1 − s2)

+2s1(s1 − s2) [(Ct − 2Cπ)(Ct + Cπ)]ZS(2s1)ZS(s1 − s2)

+(s1 − s2) [Ct − Cπ(1 + 2gπZS(2s1))]ZS(s1 − s2)

+2s1 [Ct − gπ(Ct + 2Cπ)ZS(s1 − s2)]ZS(2s1).

(4.12)

IM3 can be calculated as[5]

IM3 =
3

4
A2

∣∣∣∣H32(s1, s1,−s2)
H12(s1)

∣∣∣∣ (4.13)

where A is the amplitude of input voltage. Substituting (4.11) and (4.12) into (4.13), then

we can rewrite IM3 as

IM3 =
A2

8V 2
t

∣∣∣∣ [1 + (2s1 − s2)CtZS(2s1 − s2)]T (s1, s1,−s2)
N(s1)N(−s2)N(s1 − s2)N(2s1)N(2s1 − s2)

∣∣∣∣ . (4.14)

The numerator in equation (4.14) relates two part, (2s1−s2)CtZS(2s1−s2) and T (s1, s1,−s2).

In the first part, both Ct and ZS work at the third-order intermodulation frequency (2s1−s2).

Thus this term can be canceled when using an inductance as source impedance at this certain

frequency. The second part T (s1, s1,−s2) is expanded into equation (4.12). It is clear that

the linearity parameters and source impedance of this term only depend on the second-order

intermodulation (IM2) frequency (s1 − s2) and the second-order harmonic (H2) frequency

(2s1). In order to result in a cancellation of IM3, T should be zero at some value. At low
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frequency, (4.12) can be rewritten as

T (s1, s1,−s2) = 1 − gπZS − 2g2πZ
2
S. (4.15)

When setting T (s1, s1,−s2) in (4.15) to zero, we can achieve the source impedance

cancellation requirement at low-frequency

ZS =
rπ
2

=
βfVt
2IC

. (4.16)

At high frequency, substituting ZS(s1 − s2) = ZS(2s1) = rS into (4.12) and setting T

equal to zero, T (s1, s1,−s2) in (4.15) can be rewritten as

0 = 2s1(s1 − s2) [(Ct − 2Cπ)(Ct + Cπ)] r2S

+(s1 − s2) [Ct − Cπ(1 + 2gπrS)] rS

+2s1 [Ct − gπ(Ct + 2Cπ)rS)] rS,

(4.17)

where 1 − gπrS − 2(gπ)2r2S can be ignored when comparing this part with terms relate to

s1−s2 or s1. Similarly, the part of 2s1 and s1−s2 can also be ignored when comparing them

with terms relate to 2s1(s1 − s2). Thus (4.17) can be rewritten as

0 = 2s1(s1 − s2) [(Ct − 2Cπ)(Ct + Cπ)] r2S, (4.18)

assuming s1 and s2 close with each other,

0 = 4s21 [(Ct − 2Cπ)(Ct + Cπ)] r2S, (4.19)
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Ct = 2Cπ and Ct = −Cπ are two solutions of (4.19). Because Ct cannot be a negative value,

thus IM3 cancellation requirement at high frequency can be obtained as

Ct = 2Cπ = 2τf
IC
Vt
. (4.20)

Within these two requirements, a frequency independent cancellation of T can be

achieved. We can observe that IC at which cancellation occurs is fixed for a given Ct and

τf . Thus (4.16) and (4.20) can be rewritten as a single requirement for ZS at fixed IC

ZS(s1 − s2) = ZS(2s1) = rS =
βfτf
Ct

(IC = Vt
Ct
2τf

). (4.21)

Vs

ZS

gπCt
ZL 

gmvbeCπ

Cbc
b

e

c

Figure 4.12: The circuit for high-frequency oip3 cancellation[5].

Fig. 4.12 shows the circuit used for high-frequency IM3 cancellation. Since capacitance

Cbc added to our model, the expression of this circuit should be recalculated. Using nonlinear

current source method in Fig. 4.12, the first-order transfer functions can be produced as[3][5]

Y (s) ·H1(s) = IN1,

 YS(s) + gπ + s(Ct + Cπ + Cbc) −sCbc

gm − sCbc YL(s) + sCbc


 H11(s)

H12(s)

 =

 YS(s)

0

 , (4.22)
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where Y (s) is the admittance matrix of the circuit, H1(s) is the first-order Volterra kernel

transforms of the node voltage, IN1 is the vector excitation when source voltage (VS) equal

to 1 (V ). Then by solving (4.22) using Cramer’s rule, H12(s) can be given as

H12(s) =
−(gm − sCbc)ZL(s)

1 + ZS(s)gπ + sCbc(1 + ZL(s) + ZL(s)(gm − sCbc))ZS(s) + s(Ct + Cπ)ZS(s)
.

(4.23)

(4.10) can be obtained when setting Cbc=0 in (4.23).

Then the second-order Volterra kernel transforms of the node voltage can be solved in

the same way

Y (s1 + s2) ·

 H21(s1, s2)

H22(s1, s2)

 =

 −(inl2cπ + inl2gπ)

−inl2gm

 = IN2, (4.24)

where H21(s1, s2) and H22(s1, s2) are the second-order ransfer functions. IN2 is the matrix

of the nonlinear current sources of order two which are parallel to their linear equivalents

respectively in Fig. 4.12. The second-order nonlinear current sources are

inl2gπ = gπ2H11(s1)H11(s2)

inl2gm = gm2H11(s1)H11(s2)

inl2cπ = (s1 + s2)cπ2H11(s1)H11(s2) (4.25)

Using Cramer’s rule, H21(s1 + s2) and H22(s1 + s2) can be solved

H21(s1, s2) =
−(YL(s) + (s1 + s2)Cbc)(inl2gπ + inl2cπ) − (s1 + s2)Cbcinl2gm

det(Y (s1 + s2))

H22(s1, s2) =
−(YS(s) + gπ + (s1 + s2)(Cπ + Ct + Cbc))inl2gm

det(Y (s1 + s2))

+
(gm− (s1 + s2)Cbc)(inl2gπ + inl2cπ)

det(Y (s1 + s2))
. (4.26)
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The third-order transfer functions of node 2 can be obtained as

Y (s1 + s2 + s3) ·

 H31(s1, s2, s3)

H32(s1, s2, s3)

 =

 −(inl3cπ + inl3gπ)

−inl3gm

 = IN3, (4.27)

where H31(s1, s2, s3) and H32(s1, s2, s3) are the third-order Volterra kernels. IN3 is the

nonlinear current sources of order three. These current sources are placed parallel with their

equivalents in Fig. 4.12 which is given by

inl3gπ = gπ3H11(s1)H11(s2)H11(s3) + 2gπ2H11H21

inl3gm = gm2H11(s1)H11(s2)H11(s3) + 2gm2H11H21

inl3cπ = (s1 + s2 + s3)(cπ3H11(s1)H11(s2)H11(s3) + 2cπ2H11H21), (4.28)

where

H11H21 = (
H11(s1)H21(s2, s3) +H11(s2)H21(s1, s3)H11(s3)H21(s1, s2))

3
)

.

By solving (4.27) with Cramer’s rule and setting s1 = s2 = jw1, s3 = −jw2, Cbc = 0,

we can get equation (4.11).

Since for high-frequency capacitance Cbc would cause a voltage-current feedback to the

base, this feedback influence the condition of IM3 cancellation at input. Thus the voltage

drop across Cbc should be zero for second-order harmonic signals, which means the second-

order voltage at the base (VB,2) and collector (VC,2) must be equal.

VC,2 = (inl2gm− gmVB,2)ZL(s1 + s2)

VB,2 =
inl2gπ + inl2cπ

gs(s1 + s2) + gπ + (s1 + s2)(Ct + Cπ)
, (4.29)

46



where gs is the admittance of input impedance. Then by solving equation (4.29), we can

obtain the value of RL(s1 + s2) which is used for compensation the disturb of Cbc.

ZL(s1 + s2) = RL =
inl2cπ + inl2gπ

inl2gm[gs+ gπ + (s1 + s2)(Ct + Cπ)] − gm(inl2gπ + inl2cπ)
, (4.30)

substituting (4.25) into (4.30) we can obtain

ZL(s1 + s2) = RL =
gπ2H11(s1)H11(s2) + (s1 + s2)Cπ2H11(s1)H11(s2)

gm2H11(s1)H11(s2)[gS + gπ + (s1 + s2)(Ct + Cπ) − gmgπ2 − gm(s1 + s2)Cπ2]

=
gπ2 + (s1 + s2)Cπ2

gm2[gS + gπ + (s1 + s2)(Ct + Cπ)] − gm[gπ2 + (s1 + s2)Cπ2]
, (4.31)

where gπ =
gm
βf

, gπ2 =
gm

2βfVt
, Cπ = τfgm, Cπ2 = τf

gm
2Vt

and gm2 =
gm
2Vt

. (4.31) can be

rewritten as

ZL(s1 + s2) = RL =

gm
2βfVt

+ (s1 + s2)τf
gm
2Vt

gm
2Vt

[
gS +

gm
βf

+ (s1 + s2)(Ct + τfgm)

]
− gm

[
gm

2βfVt
+ (s1 + s2)τf

gm

2Vt

]

=

1

βf
+ (s1 + s2)τf[

gS +
gm
βf

+ gm + (s1 + s2)Ct

] , (4.32)

because (s1 + s2)τf and (s1 + s2)Ct are much larger than other parts in (4.32), thus
1

βf
, gS,

gm
βf

and gm can be ignored. We can obtain RL as

ZL(s1 + s2) = RL =
τf
Ct

=
RS

βf
. (4.33)

IM3 cancellation depends on the proper ratio between fundamental voltage and second-

order voltage, which means the linear feedback would not influence the cancellation when

ZS is fixed at a proper value.
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Figure 4.13: Equivalent circuit of a bipolar transistor in common-emitter configuration.

Fig. 4.13 shows the circuit of ADS simulation. C1, C2, L1 and L2 are capacitance and

inductance of bias tee respectively. In order to meet requirement of (4.21) and (4.33), these

capacitances and inductances should be very large which are set as C1 = C2 = 10F and

L1 = L2 = 10H. There has two DC voltage and one power source with N level frequency

and power. X8 is a Mextram bipolar transistor, device size is 0.12×18µm2.
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Figure 4.14: IM3 cancellation result in different fundamental frequency with MULT=1,

where RS = 4361.5Ω and RL = 10.9Ω

Fig. 4.14 shows the simulated OIP3 versus IC at different fundamental frequency and

a fixed ∆f = 6MHz. We can get a approximate value of Ct and τf by using Cbe versus

gm curves which is similar to Fig. 4.3. When MULT = 1, Ct = 52fF and τf = 0.63ps.

Thus RS = 4361.5Ω can be calculated in (4.21), RL = 10.9Ω can be calculated in (4.33). IC

at which cancellation occurs is equal to Vt
Ct
2τf

, then IC = 1.1mA can be calculated. Using

Harmonic balance in ADS simulation, we can find that IC for peak OIP3 is around 1.18mA.

It means the calculated IC is close to the simulated IC . βf = 400.

IC at peak OIP3 under frequency of 1GHz, 2GHz, 5GHz and 10GHz are not far

away from each other, which means the peak OIP3 is largely independent of frequency as

expected from expression. But when comparing IC for peak OIP3 at high frequency to the

IC at low frequency, there still exists some difference.
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Figure 4.15: IM3 cancellation result in different fundamental frequency with MULT=2,

where RS = 2647.7Ω and RL = 6.16Ω

Fig. 4.15 shows OIP3 versus IC when MULT = 2. Since the device size changed in

a ideal way when changing MULT , Ct and τf should be recalculated. Similarly, Ct and τf

can be obtained from Cbe − gm plot, Ct = 104.1fF , τf = 0.641ps. Within (4.21) and (4.33),

RS = 2647.7Ω and RL = 6.16Ω. IC = 2.1mA can be calculated from (4.21). The simulated

IC for peak OIP3 is around 2.05mA, which is very close to the calculated IC . βf = 430.
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Figure 4.16: IM3 cancellation result in different fundamental frequency with MULT=5,

where RS = 1220.2Ω and RL = 2.6Ω
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Figure 4.17: Ct changed with MULT .

Fig. 4.16 shows OIP3 versus IC when MULT = 5. Similarly, Ct and τf are obtained

from Cbe− gm plot, Ct = 260fF , τf = 0.675ps. RS = 1220.2Ω and RL = 2.6Ω are calculated
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from (4.21) and (4.33) respectively. IC = 5mA can be calculated from (4.21). The simulated

IC in Fig. 4.16 is around 4.8mA, which is close to the calculated IC . βf = 470.

We can find that IC under peak OIP3 get closer when MULT become larger. In this

MULT scale, Ct is proportional to MULT which is shown in Fig. 4.17, current inversely

proportion to MULT . τf doesn’t change much.
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Figure 4.18: IM3 cancellation result in different fundamental frequency with MULT=5,

where RS = 1220.2Ω and RL = 26Ω.

Fig. 4.18 shows OIP3 versus IC when MULT = 5. All parameters are the same as

Fig. 4.16 except RL. We change RL 10 times larger than RL we used in Fig. 4.16 and find

that IC = 2.9mA under peak OIP3 in ADS simulation is no longer close to the calculated

IC = 5mA. IM3 cancellation even not occurs at 100MHz. Thus RL should be calculated

from (4.33) and IM3 cancellation is not independent of RL.
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Figure 4.19: Comparing IM3 cancellation at fundamental frequency of 2GHz, MULT=5,

RS = 1220.2Ω and RL = 2.6Ω.

Fig. 4.19 shows the plot of IM3 cancellation in Matlab and ADS simulation. The

Volterra series model use in Matlab does not include Cbc influence but Harmonic balance

implemented in ADS simulation includes it. We can find that the value of IC under peak

OIP3 of Volterra series is around 4.8mA, IC for peak OIP3 of Harmonic balance is also

around 4.8mA, and the calculated IC for peak OIP3 from (4.21) is 5mA. They are very

close at 2GHz.
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Figure 4.20: The circuit used for IM3 cancellation which placed a capacitance C3 parallel

with base-emitter junction.

Scaling MULT is one way to change the position of IC under peak OIP3, another way

give more freedom choice of IC is to place a capacitance C3 parallel to base-emitter junction

which is shown in Fig. 4.20.
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Figure 4.21: IM3 cancellation result in different fundamental frequency with Cparallel =

10fF , where RS = 4064.5Ω and RL = 10.16Ω
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Figure 4.22: IM3 cancellation result in different fundamental frequency with Cparallel =

100fF , where RS = 1657.9Ω and RL = 4.14Ω

Fig. 4.21 shows the IM3 cancellation when placed a capacitance with C3 = 10fF to

base-emitter junction. Similarly, Ct = 52fF , τf = 0.63ps can be obtained from Cbe − gm
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plot. RS = 4064Ω and RL = 10.16Ω can be calculated using (4.21) and (4.33) respectively.

IC = 1.3mA is calculated from (4.21). The simulated IC in Fig. 4.21 is around 1.3mA at

four higher frequency, which is close to the calculated IC . βf = 400.

Fig. 4.22 shows the IM3 cancellation when placed a capacitance C3 = 100fF parallel to

base-emitter junction. Ct, τf and βf are the same as above. RS = 1657.9Ω and RL = 4.14Ω

can be calculated in (4.21) and (4.33). IC = 3.1mA is calculated from (4.21). The simulated

IC in Fig. 4.22 is around 2.45mA at four higher frequency.
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Chapter 5

Conclusion

In this thesis, nonlinearities of SiGe HBT are discussed and calculated by using volterra

series and direct derivation approach.

Chapter 1 introduces the importance of nonlinearities in electric ciruit. Because these

nonliearities will create distortion in the signals that we are interested in amplifying and

transmitting. There are two types of nonlinearties, harmonic and intermodulation which is

based on different frequency we used. Thorough understanding of HBT physical nonlinearties

is very necessary.

Chapter 2 illustrates the nonlinear current source approach of obtaining Volterra series.

Volterra series is a general mathematical approach for solving nonlinear systems, and non-

linear current source method is a way that put nonlinear current source parallel with each

nonlinear element. The basic matrix is Y (s) · H(s) = I(s). Solving transfer function H(s)

at first-order, second-order and higher order we can obtain the output of nonlinear system.

Chapter 3 illustrate direct derivation approach.

In chapter 4, two approaches are compared with each other in Matlab. We also do

Harmonic balance simulation in ADS with Mextram model and compare results with Volterra

series approach. The plots of nonlinear current source and direct derivation approach are

exactly the same, and they are very close to the simulation result. Based on the theory of

Volterra series IM3 cancellation is discussed in this chapter. ZS =
βf τf
Ct

and ZL = τf
Ct

= RS
βf

are the requirements of IM3 cancellation at both low frequency and high frequency. IC under

peak OIP3 in ADS simulation is very close to the calculated IC at 1GHz, 2GHz, 5GHz

and 10GHz with the same ∆f , but not good at low frequency 100MHz. IM3 cancellation

is strongly dependent of RL and RS. Cbc will has a big influence of IM3 cancellation at
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high frequency. From the simulation results, IC under peak OIP3 get closer when MULT

become larger.
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