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Abstract 

 

 

Computed tomography (CT) technology is widely used in the medical and industrial fields. 

However, a traditional CT machine costs too much for many researchers to afford it and prevents 

them from doing related research. To solve this problem, this paper explores the possibility of 

CT image reconstruction based on data from an IVIS Lumina XR machine providing X-ray 

projection images. Compared with traditional CT machine, it is much cheaper and widely used in 

animal research field. With the addition of the MiSpinner hardware that successively rotates an 

object through a sequence of angles, data that approximates that of a CT machine can be 

acquired. In this research, we begin by preprocessing the data so that it conforms to the geometry 

of traditional CT.  Then we implement and explore various CT reconstruction algorithms to 

assess performance. Among the algorithms are filtered backprojection (FBP), algebraic 

reconstruction technique (ART), and total variation methods. The final result is satisfactory. 

Detail information is strengthened and artifacts caused by limited projections are removed. In 

addition, 3D rendering is also performed providing improvement in details of the object. This 

work shows the potential for using the MiSpinner hardware in the IVIS Lumina XR machine for 

CT research and provides an alternative choice to those people who want to do CT research 

economically. 

 

Keywords: CT image reconstruction, steepest descent algorithm, ART, Total Variation, IVIS 

Lumina XR, MiSpinner 
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Chapter 1 Introduction 

1.1 Computed Tomography (CT)  

Computed Tomography, known as CT scan, is an advanced technique used for producing cross-

sectional images of an object based on its X-ray scan images taken from different angles, 

allowing the user to see inside information of the object without cutting.[1]  

 

Traditional X-ray technique can only provide object’s projection image. If there exists some 

overlap in the projection path, the image is blur and the objects are undistinguishable. To solve 

that problem, CT aims to reconstruct a cross-sectional image of the object. It sends a narrow X-

ray beam passing through the object from X-ray source and sets a detector on the other side to 

detect the intensity. Then, the source and detector’s position are changed and measurement is 

repeated. Compared to the original intensity, CT technique could find out the loss of X-ray beam 

which records the attenuation information. Once obtained all attenuation information in every 

direction around the body, based on some algorithms, CT technique can reconstruct the cross-

sectional image. 

 

Detected X-ray beam intensity is called projection, and the process of producing cross-sectional 

images is called image reconstruction from projections. 

 

1.1.1 Data Collection for CT 

Image reconstruction technique was proposed in 1963 and it has repeatedly arisen in a large 

number of scientific, medical, and technical fields in recent years for its amazing property, 

providing inside information of an object without harming it.[2] Especially in the diagnostic 
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medicine field, CT has revolutionized the radiology field. Its general idea is measuring the 

attenuation of X-rays along a large number of lines through the human body, and then 

reconstructing the slice images based on the Radon Transform. Each of those data measurements 

is related to a source and a detector. 

 

For each combination of source and detector, two measurements are taken: calibration 

measurement and actual measurement. This is seen in Fig 1.1. 

 

Fig 1.1 Data collection for CT (Illustration provided from Image book Reconstruction from 

Projections) 

 

During the calibration measurement, our object of interest is not in the reconstruction region. The 

X-ray beam, from the source to the detector, traverses through a homogeneous reference material, 

air or water for example. This measurement can tell us the number of photons counted by the 

detector affected by environment. 
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During the actual measurement, the object of interest is inserted into the reconstruction region. 

The procedure of actual measurement is defined the same as the calibration measurement, but 

this measurement counts the number of photons that traverse through the object affected by the 

absorbing and scattering properties. 

 

With these two measurements, some effects caused by external environments can be removed 

using relative linear attenuation coefficients, also known as CT number, to obtain a relative clear 

reconstruction image. However, there are still some physical problems in measurements 

affecting the results that cannot be ignored. 

 

1.1.2 Physical Problems Associated with Data Collection 

When an X-ray beam passes through the body, its attenuation at any point is related with its 

energy distribution and the material at that point.[2] Theoretically, CT is willing to be considered 

as monochromatic for calculation and thus attenuation is only related to the material occupying 

the space. That is desirable for diagnostic purpose. However, in practice, CT is polychromatic 

composed by a variety of energy, its energy changes when passing through the object.  

 

The problem caused by polychromatic is the beam hardening, because attenuation at a fixed 

point is different for beams owing different energy: the lower energy, the greater attenuation is. 

When an X-ray beam passes through the object, its lower energy is absorbed, higher energy is 

left, its spectrum changes and seems hardening. Given a fixed point inside the body, when X-ray 

beams come from different directions (before reaching that point, they have passed through 



 4 

different materials), they have different energy and will be attenuated differently at that point, 

which is a problem for assigning a specific single value of attenuation coefficient at that point. 

 

Another problem is photon statistics which is caused by the photon scatter. When photons are 

emitted in a unit time, some will be absorbed, some will be scattered and only some of them can 

finally reach the detector. We can denote this probability as P and it is referred to as the Poisson 

probability law. 

                 (1) 

 

Fig 1.2 Poisson distribution with  and  (Illustration provided from Image 

Reconstruction from Projections) 

 

There are also some other problems caused by source, detector and scanning mode used. Those 

problems seriously affect the accuracy of the data collection. 

 

1.1.3 CT Scanning Modes 

Nowadays there are many kinds of CT machine, but fundamentally, there are five basic designs 

used for data collection.[2] 
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The first scanning mode uses a single x-ray source and a single detector. There are two motions 

involved. First the source and the detector are moved in a parallel direction obtaining one 

projection sample. Then the apparatus will rotate in a small amount and do the parallel scanning 

again. After repetition of these two motions, projection data are collected for a large number of 

sets of parallel rays. This method avoids beam scatter noise and can be calibrated at the 

beginning of the scan. However, this method will take some time; thus, it is inappropriate for 

organs which cannot stay stationary, such as the lung. 

 

The second scanning mode, trying to speed up the collection process, uses an array of detectors 

instead of a single detector. So when source and detectors are moved in parallel, the data are 

collected for several sets of parallel rays. The rotation angle can be increased to save the 

scanning time, and yet the total number of sets of parallel rays is still increasing. However, beam 

scatter in the second scanning mode is indispensable.  

 

The third scanning mode, a more advanced design, only involves one motion. It is still a 

combination of single source and an array of detectors, but the array is large enough to cover the 

whole reconstruction region. So the rays diverge from the source to the detectors can be collected 

simultaneously and whole projection data can be collected by just rotating the source/detectors 

around the patient, which could reduce the scanning time into several seconds. Before using this 

scanning mode, calibration must be done carefully, to make sure in all positions the line from the 

source to the detector goes through the patient, then measurement will be accurate.[2]  
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The fourth scanning mode, an alternative fast method of data collection, uses a stationary array 

of detectors and a movable X-ray source moves inside in a circle. As source moves, the line from 

one detector to the source can form a fanbeam projection. Calibration can be adjusted at any time 

because at the beginning the line from the detector to the source is outside the reconstruction area. 

However, in this mode, it requires more detectors than the previous mode to avoid a situation 

where radiation goes through the body but ends up between two detectors, which is undesirable 

to the patient. Also, beam scatter problem is more serious than before since the direction from 

detector to source always changes. 

 

Actually the first four scanning modes are inappropriate for precise imaging of a rapidly moving 

organ because they cost too much time for scanning compared to the organ’s movement, thus, 

collected data at different time cannot match perfectly. So, the fifth scanning mode, designed to 

solve these problems, applies a totally new method for data collection. An array of X-ray sources 

is arranged in a semicircle and they can be electronically switched on and off.[2] So, most 

projection data could be collected at the same time when sources are switched on, only taking 

one-hundredth of a second. This scanning mode could solve the mentioned problems, but it has 

its own concerns. Firstly, the number of projections is limited by cost and size. Secondly, the 

error due to scatter occurs more frequently. 

 

In this paper, IVIS Lumina XR system is used to collect the projection data. Its source and 

detectors are stationary and its shelf for placing object is movable. The projection images are 

obtained by rotating the object using a MiSpinner, similar to the fourth CT scan mode. 
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1.2 IVIS Lumina XR System 

IVIS Lumina XR system is a high-sensitivity, in vivo imaging platform that provides the 

opportunity to view the inside of the body without harming it and to track cellular and genetic 

activity within a living organism through optical and X-ray modalities. [3] 

 

1.2.1 System Components 

IVIS Lumina XR system is consists of a charged coupled device(CCD) camera that can image 

animal subjects (primarily mice) using three modalities: bioluminescence, fluorescence and X-

ray, an imaging chamber with controlling electronics, an X-ray source and detector including 

controls and safety systems and a Fluorescence Module including excitation and emission 

filters.[3] In imaging chamber, controlling electronics, MiSpinner, are consists of a 3D printed 

stage, an actuated motor, an animal holder, a foam insert, a cap connector and a controller, 

shown as Fig 1.3 a and their combination is shown as Fig 1.3 b. With the help of MiSpinner, 

pictures can be taken through a sequence of angles using that controller and if the system works 

in X-ray mode, these pictures are similar to those obtained from a CT machine.  
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Fig 1.3 IVIS Lumina XR imaging chamber (Illustration provided by Dr. Panizzi and his research 

group) 

 

Actually, IVIS Lumina XR system is just a part of the whole system, controlled by a pre-

configured computer running Living Image software, shown in Fig 1.4. Except the imaging 

system and the computer, there is an extra light source module for fluorescence use under the 

imaging chamber. An XGI-8 Gas Anesthesia Delivery System provides isoflurane for 

anesthetizing small animal in the middle. 

 

Fig 1.4 whole IVIS Lumina XR imaging system (Illustration provided from IVIS Lumina XR 

System Manual) 

 

1.2.2 X-ray Mode 

The imaging system could be simplified as Figure 1.5 when running X-ray mode. The X-ray 

source is located at the bottom of the system and the X-ray beam is directed upward through the 

imaging chamber floor. There is a movable shelf in the chamber room placing MiSpinner and the 

beam will pass through the shelf and hit the scintillation plate. The CCD camera will capture the 
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image produced in the scintillation plate. When not in X-ray mode, the scintillation plate can be 

moved out. 

 

Fig 1.5 Structure of imaging system, X-ray schematic (Illustration provided from IVIS Lumina 

XR System Manual) 

 

In pracitice, X-ray source and CCD camera are stationary. MiSpinner placed on the movable 

shelf is connected with a controller out of the chamber and its actuated motor can rotate the mice 

loaded tube a certain degree when controller is switched on and off once. Thus, after a series of 

operations, the object’s total projection images can be obtained when operating the X-ray mode. 

However, the problem in data collection is taking each projection image will cost almost 30 to 60 

seconds and totally will be about 30 minutes to an hour depending on the number of projections. 

To a live animal, this is a plenty long time that the effects caused by its breath and unconscious 

movement are not ignorable. And these effects can be seen clearly in the obtained images, shown 

in Figure 1.5. Better results will likely be obtained using dead mice instead. These will avoid 

effects caused by its breath and movement, but still there may be a bit of shift in projection 
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images caused by tube rotation. For live mice more sophisticated correction techniques may be 

necessary to get useful results. 

 

 

Fig 1.5 Mouse X-ray images from MiSpinner, left is taken at 180 degree, right is taken at 0 

degree (Illustration provided by Dr. Panizzi and his research group) 

 

From Fig 1.5, we can see the mouse in the left image is a bit more swollen than the right one at 

the lung part, which may be caused by the breath of the mouse, and we can see there is some 

difference at the feet side, which may be caused by the movement of the mouse. Thus, to avoid 

these effects, we use a dead mouse for data collection in the real situation and a wire for 

calibration. 

 

1.3 3D Slicer 

3D Slicer is a free and open source software package for image analysis and scientific 

visualization.[4] In this paper, 3D slicer is used for 3D reconstruction. It could provide front 

view, left view and vertical view of an object and a reconstructed 3D model based on those three 

views. What’s more, in this software, it provides many 3D models for direct 3D reconstruction. 
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Take CT reconstruction for example, it provides CT-bone structure, CT-air structure, CT-

abdomen view, CT-brain view and CT-lung view functions. Users can set a threshold value for 

displaying details, removing undesirable noise, increasing contrast, to present a better 3D model. 

Since it provides powerful functions in 3D reconstruction, especially in medical field, it is a great 

tool to visualize 3D reconstructions in this paper. 
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Chapter 2 Reconstruction Algorithm 

2.1 Introduction 

The major purpose of reconstruction algorithm is to figure out the distribution of the attenuation 

coefficients, known as CT numbers, in the image. Before calculating those coefficients, some 

assumptions are needed: (1) slices are infinitely thin; (2) all X-ray photons travel in the same 

straight line. Then, the distribution of the CT numbers among the objects can represent the 

distribution of the grayness in the reconstructed image.  

 

The basic idea of image reconstruction can be seen in Fig 2.1. Assume original intensity of the 

X-ray beam is , detected intensity is I, attenuation coefficient is µ. 

 

Fig 2.1 a concept map of projection 

 

In the Fig 2.1, there are four parts in the middle region, which represent four unknown 

coefficients, , , , . Also there are four paths for X-ray beam passing through the middle 

region both in horizontal and vertical directions, thus, we can measure four intensities, , , , 

. Then, we can obtain four equations. 

                                                                  

 

μ1 μ4 

μ2 μ3 

Io Io 

I1 

I2 

Io 

Io 

I3 I4 

(2) 
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Theoretically, once have four equations and four variables, the equations are solvable, which 

means the density of the attenuation coefficients could be calculated out. Then the image can be 

reconstructed based on that. This is the basic idea of image reconstruction from projections. 

 

However, in practice, the whole process is more complicated. The reconstruction region is more 

than a 2×2 image; it is consists of thousands of pixels. And the attenuation coefficient is not just 

the sum of two elements; it is an integral along the X-ray path, shown in Fig 1.1. 

                                                                

Since the attenuation out of the reconstruction region is 0, the length of integration is along the 

object. Then image reconstruction problem attempts to estimate all attenuation coefficients based 

on those integrals along a number of lines. 

 

This problem theoretically was solved by Radon in 1917. Radon proved that[2,5] 

                       

Where  denotes the partial derivative of . It seems in 1917, CT image 

reconstruction problem was solved. However, his formula has some practical difficulties in 

applying it: 

 

(a) Radon’s formula requires infinite line integrals to obtain the image; however, in CT image 

reconstruction, there are only a finite set of measurements. 

(3) 

(4) 
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(b) The projection data we obtained is affected by beam hardening, photon scatter, X-ray beam 

width and so on noise. Radon’s inversion formula is sensitive to these effects. 

(c) Radon’s formula is a mathematical solution, involving a lot of calculation. If we want to use 

a computer for calculation, we need an algorithm to realize it. 

 

Thus, in such a limited situation, the development of image reconstruction algorithm from 

limited projection data has been necessary.[6] 

 

2.2 Backprojection 

2.2.1 Direct Backprojection 

Backprojection is one of the basic algorithms to explore the image reconstruction. At the very 

beginning, people use direct backprojection method to reconstruct image.[7] Backprojection 

smear the projections back across the image and adds them together to recover the image. Fig 2.2 

is an example of the direct backprojection method.  

 

Fig 2.2 an example of direct backprojection application (Illustration provided from Computed 

Imaging Process Course by Dr. Denney) 
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Obviously, this method is inaccurate. The reconstructed image obviously is much blurrier than 

the true one. It is consists of a series of straight lines. A more specific explanation is shown in 

Fig 2.3. 

 
Fig 2.3 an explanation of direct backprojection method (Illustration provided from Imaging 

System in Medicine) 

 

From Fig 2.3, we can find that the pattern of reconstructed image is similar to the original image, 

but its center point density is much higher than the normal value, and also there are some 

unexpected values appearing. That’s why there is a cloud shadow around the objects in the 

backprojection summation image in Fig 2.2. It is a good first effort to reconstruct the image, 

although its result is not satisfactory. 

 

To reduce those cloud shadows, some mathematical calculation is needed. Assume projection 

angle is , its projection value is , shown in Fig 2.4. Then based on direct backprojection 

method, the density of attenuation coefficients along the projection theta is   
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Where  stands for the attenuation coefficients. 

 

Fig 2.4 sketch map of one projection (Illustration provided from Imaging System in Medicine) 

 

Given a straight line , any point( , ) on this line is described by the 

equation 

                                      

 

 

 

Then adding all results, the density of attenuation coefficients of reconstructed image  is 

                                                             

(5) 

(6) 

(7) 
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Looking at Fig 2.2 and Fig 2.3,  is different from the original density . To obtain 

, we need to revise . 

 

Assume   , applying polar coordinates, the projection value  becomes 

                                           

 

 

 becomes an impulse response function   

                                        

 

 

 

We can see the relationship between the  and  is   

=  **  

where ** stands for convolution calculation. 

 

(8) 

(9) 

(10) 
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The operator 1/r is the reason that leads to the cloud shadow in the reconstructed image. Hence, 

if we want to improve the image, one possible solution is using the Fourier transform, the 

equation becomes 

 

where functions  and  are the Fourier transform of the functions  and 

. If we can put a corresponding operator  on the both sides, and then do the inverse 

Fourier transform, theoretically we can obtain the original density  in the end. But the 

problem is this method requires a lot of projections and the acquisition process takes a lot of time. 

 

2.2.2 Projection Slice Theorem 

The Fourier transform is employed in another method called the Projection Slice Theorem.  

 

Considering two dimensional Radon transform:             

                                           

where  stands for the projection data,  stands for the density of attenuation 

coefficients,  is projection angle and R is the line distance, seen in Fig 2.4.  

 

Taking 1D Fourier transform of both sides of R, denoted as , then 

                                                                          

 

 

 

(11) 

(12) 

(13) 
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According to sifting property,  

 

 

 

The one dimensional Fourier transform of projection data  equals to the two dimensional 

Fourier transform of density coefficients . 

 

Thus, the basic procedure of image reconstruction using PST is: 

(1) take the 1D FFT of each projection 

(2) use the PST to transform into 2D Fourier transform  

(3) Interpolate those data onto a regularly-spaced grid 

(4) take inverse FFT to obtain the density of attenuation coefficients 

 

Theoretically PST method could provide accurate result, but the problem is interpolation costs a 

lot of time. 

 

2.2.3 Filtered Backprojection 

An improved method is called filtered backprojection. To avoid the interpolation in the PST 

method, filtered backprojection inverses the Fourier Transform first, and then smears back across 

the image like direct backprojection method. 

 

 

 

(14) 
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Given 2D Inverse Fourier Transform equation 

 

the density of attenuation coefficients   could be obtained from its Fourier frequency 

components. 

 

From the equation (14), we can obtain the Fourier frequency components of . Then 

according to the 2D IFT equation, we can obtain the f(x,y), for simplify, applying polar 

coordinate system  

 

                

Re-write the  in the forms like 

 

 

                                               

 

It is similar to the equation (7) in the 2.2.1 part, if we set a new projection data  

                                                        

Hence, if we can revise the projection data  to  by timing an operator  in the 

frequency domain, we can obtain the original attenuation density  and reconstruct the 

image using direct backprojection method. 

 

 

(15) 

(16) 

(17) 

(18) 
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The basic procedure is: 

(1) take the 1D Fourier transform of projection data 

(2) multiply the operator in the frequency domain 

(3) take the inverse Fourier transform of the result of Step 2 

(4) smear back across the image  

(5) loop the procedure to all projection data 

 

2.2.4 Convolution Backprojection 

Convolution backprojection method is an alternative to the filtered backprojction method; they 

are same essentially. Equation (18) could re-write like 

   

The difference is convolution backprojection method uses a convolution calculation in space 

domain to replace the FT and IFT calculation in frequency domain. It simplifies the calculation 

and we can still get the revised projection data  and obtain the original density .  

 

Assume function C(R) is the inverse Fourier Transform of the operator ,  

 

then  

                                

However, a big problem is theoretically there is no inverse Fourier Transform of operator  

because the function  is non-integrable. Hence, if we want to continue using this method, a 

solution is to find an approximate function to replace the C(R) or adding a window function on it, 

and that is where many researchers focus.[6~8] Some famous filter functions like R-L window 

(19) 

(20) 

(21) 
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function, S-L window function and Hamming window function are widely used in the image 

reconstruction field. 

 

2.3 Algebraic Reconstruction Technique 

Algebraic Reconstruction Technique (ART) is another kind of method to reconstruct the image, 

including a lot of reconstruction algorithms. All of them are iterative procedures. 

 

Assume we have an object and it is divided into n×n cells, shown in Fig 2.5, the attenuation 

coefficient of every cell is , i stands for the row number from 1 to M and k stands for column 

number from 1 to N. Then, the attenuation equation at row i could be written as 

 

 

Fig 2.5 a concept map of discretization 

 

To any projection path from the source to the detector, its attenuation equation could be  

 

(22) 

(23) 
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Equation (24) could be simplified as  

                                                           

Considering the noise or error, then the equation could be  

 

where  is a matrix, x is wanted image vector and b is an attenuation vector 

calculated from the projection. 

 

If we can solve the equation, we can reconstruct the image. However, there are several problems, 

(1) we have M×N variables but not so many equations, limited by the projections, (2) noise or 

error is hard to incorporate in the equation. Thus, equation (25) can’t be solved directly and ART 

method is applied to solve this problem. 

 

The basic procedure is  

(1) set an initial vector of x 

(2) calculate the result and compare with the attenuation vector 

(3) revise the vector x based on the difference 

(4) repeat those procedures until reaching the error range 

 

That is, ART will produce a sequence of vectors , , … until it converges to x*, where x* 

is the required estimate.  is obtained from the , matrix A and attenuation vector b.  

 

(24) 

(25) 

(26) 
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 is a function of iteration number. Various ART methods differ from each other in the way the 

sequence of ’s chosen.[2]  

 

2.3.1 Relaxation Method 

In equation (25), due to the existence of e, Ax is smaller than vector b.  

 

( , ) denotes the inner product of two vectors.  

 

Set    

 

 

Ni is the set of vectors which satisfies the ith of the M inequalities and N satisfies all the M 

inequalities. The relaxation method attempts to find an element of N.  

 

A general way of using ART to solve the inequalities is 

(1) assume  is an arbitrary initial vector 

(2) update the solution as 

 

where  is a real number as relaxation parameter, i(k)=k(mod M)+1. 

 

 

(27) 

(28) 

(29) 

(30) 
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If relaxation parameter satisfies  

 

Then we can prove that vectors , , …derived from the relaxation method converge to a 

vector in N, only N is not empty. And the proof is shown in reference [2] chapter 11. If there are 

multiple solutions, then there must be a solution , for any solution x, , 

. 

 

2.3.2 Steepest Decent Method 

An alternative ART method is called steepest descent method, It is a first-order optimization 

algorithm designed to find the local minimum of a function, also known as gradient descent 

method.[9] Its definition is, given point a, if a real function f(x) is defined and differentiable, 

then f(x) decreases fastest in the direction of  at point a, shown in Fig 2.6.  

 

Fig 2.6 a concept map of steepest descent algorithm (Illustration from Wikipedia, “Gradient 

Descent”) 

 

(31) 

https://en.wikipedia.org/wiki/Category:First_order_methods
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
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In Fig 2.6, function f is a bowl shape image. The blue curves stands for the constant values in 

function f. The red arrow is the direction of the negative gradient at that point; it is orthogonal to 

the curves going through that point. From the picture, we can see that the gradient descent leads 

the function to the bottom of the bowl, where the minimum value is found. For example, if 

 , then 

                                                                              

 is called step size and it is allowed to change at every iteration. If we choose particular values 

of in each iteration, then we can converge the function to its local minimum value.  

 

In image processing, steepest descent method can be used to minimize the noise or error in the 

image. 

 

Set , then 

                                                        

Set 

                                                                  

                          

 

Calculate the partial derivative of  

                                                        

When  

                                                                      

(33) 

(34) 

(35) 

(32) 

(36) 
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 is minimum means x is the estimated result for image reconstruction.  

 

2.4 Total Variation for Image Recovery  

Based on those reconstruction algorithms above, we can obtain a cross-sectional image of the 

object. But when projections are limited, the quality is poor no matter which kind of algorithm is 

used, and the existence of noise only makes the result worse. Hence, a more sophisticated image 

recovery technique is necessary in image processing. 

  

In this section, we describe a signal processing method called Total Variation (TV) denoising in 

noise removal. It is based on the principle that signals with excessive and possibly spurious detail 

have high total variation; that is, the integral of the absolute gradient of the signal is high. 

According to this principle, reducing the total variation of the signal subject to it being a close 

match to the original signal, removes unwanted detail whilst preserving important details such as 

edges.[10,11] That is much better than the fundamental algorithm in image processing such as 

linear smoothing or median filtering, which will reduce the noise but at the same time smooth 

away the edges. 

 

A mathematical definition of the Total Variation is, given a digital signal  

                                                               

And the definition becomes given an input signal , trying to find an approximation , which 

has smaller fluctuation than  but “close” to it. 

(37) 

https://en.wikipedia.org/wiki/Total_variation
https://en.wikipedia.org/wiki/Gradient
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Fig 2.7 Illustration of 1D total variation  

 

Take Fig 2.7 for example, both curve a and b represent the same information, “a” stands for the 

desirable signal and “b” stands for the one with noise. TV denoising is trying to find a curve, 

closer to “a” but with less fluctuation than “b”. 

 

Hence, one measure of closeness is  

                                                             

One measure of fluctuation is  

                                                               

Then a total variation denoising process could be to find the minimum value of the equation 

below 

                                                                 

(38) 

(39) 

(40) 
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 is called the regularization parameter, and it plays an important role in the denoising problem. 

When , there is no denoising and y is always identical to the x, when , to make 

equation (40) still make sense, V(y) has to be very small, meaning there is no variation. Then y 

will behave like a constant and less like the input signal x, which will increase the value of 

. Thus, the choice of is very important to achieve the best noise removal. 

 

In image processing, given a 2D signal x, its TV norm proposed by Rudin et al. is[12]  

                                               

or 

             

It is called  norm, denoted as  in this paper and Total Variation denoising form becomes 

 

                                                           

This form is much more widely seen in many papers. To solve variants of this problem, many 

algorithms are invented.[13~16]  

 

2.5 Adopted Algorithms      

In this paper, different from traditional image processing, working on a phantom image, we have 

25 wire projection images and 96 mouse projection images from experiments. We use MATLAB 

to reconstruct a high quality cross-sectional image.  

 

(41) 

(42) 

(43) 
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In MATLAB, there is a CT reconstruction command called iradon function which can 

reconstruct the image quickly and easily based on backprojection theorem, but due to the limited 

number of projections, the quality of reconstructed image is not satisfactory. 

 

An improvement may be possible using the ART method. Set iradon image as initial vector , 

define  function, minimize the noise vector using iteration and find the best result x. In this 

paper, steepest descent method is adopted and revised. 

 

Set 

                                                          

Its partial derivative is 

                                               

 

Then   

,                                                         

 

where b is attenuation vector, A stands for Radon transform, x is image vector,  is 

regularization parameter, L is Laplace operator,  is step size. 

  

Normally, when , its solution x is the estimated result, but actually x is a M*N matrix, 

involving a lot of calculation. So, we use iteration instead of solving the equations directly, 

gradually approaching the solutions.   

 

(44) 

(45) 

(46) 
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For simplicity, we set , then equation (46) becomes 

                                                 

For given  and  values, we find the x that minimizes . 

  

A further step is adding TV model into the steepest descent algorithm, replacing the  part 

by , image vector itself total variation.  

 

There are many forms of total variation, based on equation (42), in this paper, we define 

                                                    

It is similar to the function |x|, but the difference is  has derivatives throughout the whole 

function, and its derivative is  

                                                               

Then  becomes  

                                         

Based on equation (33), set 

                                                          

Then  

,                                                         

                       

For a given choice of ,  and T values, find the x that minimize , and the estimated x is 

what we want to describe the inner information of an object. 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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Chapter 3 Experiment 

3.1 Phantom Image  

Before processing the actual projection data, we can run a phantom image first. The phantom 

image is consists of perfect data without any noise, thus, its reconstructed image could present 

the best result of reconstruction algorithm. In this paper, I got 25 wire projection images and 96 

mouse projection images separately for image reconstruction. Phantom image reconstruction 

from 25 projections and 96 projections are shown in Fig 3.1.  

 

   
  a           b     c 

 

Fig 3.1 a) is a true phantom image, b) is a phantom image reconstructed from 25 projections, c) 

is a phantom image reconstructed from 96 projections 

 

.From Fig 3.1, we can see that the number of projections play an important role in image 

reconstruction. The more projections, the better image quality is. Image c is much better than 

image b. Although it is hard to reach this level in actual cases, these phantom images can direct 

us in image processing. 
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3.2 Image Pre-processing 

Before image reconstruction, we need to do some pre-processing work to the projections, to 

obtain an accurate sinogram image. A sinogram image is the basis for image reconstruction in 

MATLAB and it is consists of all projection images.  

The original projection image from the IVIS Lumina XR is shown in Fig 3.2. The object in the 

tube is our interest, but we can see it is sloping clearly in the image. That is a problem for 

obtaining an accurate sinogram image, hence, image pre-processing is indispensable. 

 

Fig 3.2 left image is an example of 25 wire projection images and right image is an example of 

96 mouse projection images 

 

In image pre-processing, the first step is to extract the middle part of the image where recording 

the interested information; the second step is to rotate the central axis: (1) calculating slant angle 

of central axis, (2) rotating the axis in order to make it flat in the horizontal direction, (3) 

calculating the slant angle again for a double check, if it reaches the error range, the central axis 

can be regarded as flat, if not, do the rotation again. (4) shifting the object into the center region. 

The processed image is shown below in Fig 3.3. 
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Fig 3.3 two images after image pre-processing, left is wire image, right is mouse image 

 

Fig 3.3 shows an example of the projection images after pre-processing. The object of interest is 

in the center of the image, and the central axis is now flat in the horizontal direction. Then, let us 

concentrate on the pixels, every value of the projection images stands for an X-ray beam 

intensity detected by detector. With these values, we can figure out the distribution of the density 

of attenuation coefficients. 

 

3.3 Image Reconstruction 

Normally, the projection images should look like the image in Fig 3.4. When X-ray beam passes 

through the object, it will be absorbed or scattered by the material, thus, its intensity should be 

weaker than those detected out of the reconstruction region. Fig 3.4 shows the proper projection 

image, the outside part is brighter than the inside. 
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Fig 3.4 the same mouse image in Fig 3.1 in dicom format 

 

In this project, the projection images were all in PNG format and look similar to the example in 

Fig 3.3. Since projection images are not in the right format, we can infer that the IVIS Lumina 

XR machine has done some image processing itself when producing the projection images. 

Based on the phenomenon it only turns dark region into bright, bright region into dark, we can 

guess it is a simple subtraction algorithm. 

 

According to equation (2), projection values are 

                                                                  

We can assume 

                                                                        

Where d is the value in projection images, k is a default constant as minuend, I is X-ray beam 

intensity, real projection value. Our aim is to calculate I for image reconstruction. 

 

 (53) 

 (54) 
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When X-ray beam passes through the object, especially high density parts, it will be seriously 

attenuated, , then the corresponding place in the projection images should be very bright and 

its value is close to the default constant k; when X-ray beam goes through the space out of the 

reconstruction region, it suffers almost no loss, , then the corresponding place should be 

very dark, its value is close to the difference, k-I. So we can get the equations below 

;                                                                     

 

 

What we want is attenuation coefficient , its value can be obtained as   

                                                                     

 

 

To avoid , we set  

                                                               

where  is a very small constant used to avoid error in the denominator. Data from wire 

projection images is more suitable for calculation, because X-ray beam could hardly pass 

through the wire which makes  more precise. 

 

Obviously, when taking the projection pictures, noise exists. Calculation will remove some 

evenly distributed noise, and the remaining noise does not affect the image reconstruction too 

much, and it will be solved by TV denoising later. 

 (55) 

 (56) 

 (57) 
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Once we obtained all attenuation coefficients, we can form a sinogram image, picking the same 

column in every image. That is the basis for image reconstruction and it looks like  

 

    
 

Fig 3.5 left image is a sinogram image obtained from 25 wire projections and right is a sinogram 

image obtained from 96 mouse projections  

 

From the IVIS Lumina XR system manual, the size of the machine is 48cm×71cm×100cm, and 

the field of view in the X-ray mode is 12.5 cm
2
, the door opening dimension is 38cm×51cm, so 

the distance between  the shelf and CCD camera is 51 cm and the distance between the shelf and 

the X-ray source is 49 cm. The cone angle from the X-ray source to the shelf is 6.8 degrees along 

the length and 2.3 degrees along the width. Curvature of plane curves after calculating is small 

enough that we could regard those X-ray beams as parallel rays reaching the shelf and detected 

by the detector. Then we can use iradon function in MATLAB directly, and reconstructed images 

are shown in Fig 3.6 
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Fig 3.6 upper left image a is a slice image reconstructed from 24 wire projections, upper right 

image b is a slice image reconstructed from 24 mouse projections, bottom left image c is 

reconstructed from 48 mouse projections, bottom right image d is reconstructed from 96 

projections 

  

From Fig 3.6, we could conclude again that the number of projections plays an important role in 

image reconstruction. Comparing images b, c and d shows that reconstructed images can present 

more detail when provided more projections. And by comparing images a and b, we can see, 

given the same number projections, slice image from high density and simple structure object, 

like wire, is much easier to reconstruct than a complex  object, like mouse. Image b could hardly 
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provide any information for a mouse. However, since the number of projections is limited, even 

in image d there are still many artifacts existing. We still need to do image enhancement work. 

 

3.4 Image Enhancement  

From digital signal processing[17], we can learn some fundamental image processing methods 

for noise removal. 

 

3.4.1 Interpolation  

Since projections play an important role in image reconstruction and its number is limited by 

measurement, an image processing idea is to construct extra projections artificially. In image 

processing, there is a method called interpolation that can enlarge information based on the 

known information nearby. We can use interpolation method in a sinogram image to create extra 

information for image reconstruction, and its result is shown in Fig 3.7 
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Fig 3.7 ‘a’ is original wire slice image, ‘b’ is image ‘a’ after bilinear interpolation image 

processing, ‘c’ is ‘a’ after bicubic interpolation image processing; ‘d’ is original mouse slice 

image, ‘e’ is image ‘d’ after bilinear interpolation image processing, ‘f’ is ‘d’ after bicubic 

interpolation image processing 

 

Fig 3.7 shows the result of image processing after two kinds of interpolation; from the upper row, 

we can see that interpolation has done some work, increasing the high density part in the image. 

But from the bottom row, we find this method is not as good as expected. It does remove the 

noise around the body, but it also blurs the whole reconstructed part in the image and loses the 

ribs information. Hence, this image processing method is not suitable. 
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3.4.2 ART method 

As mentioned before, ART can gradually approach the best result in reducing the noise in the 

image. In this paper, we have designed our own ART algorithm for image reconstruction based 

on steepest descent algorithm. First we set the reconstructed image from the MATLAB iradon 

function as initial x value in ART iteration, based on equation (47).  Then we consider selecting 

proper ,  and n values to find the best x to minimize the reconstruction error. 

 

 

Fig 3.8 image reconstruction from projections under different  values using ART, 500 iterations: 

in image a, ; in image b, ; in image c, ; 

in image d, . 
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Fig 3.8 shows the effect of .  is step size parameter in steepest descent algorithm, it determines 

the increment size of x every iteration, it is shown as contrast in the image. If  is too large, x 

will increase a lot every iteration and miss the minimum value of f(x), thus, image quality 

becomes worse,  like image d shows; if  is too small, x will increase a little every iteration and 

cannot obtain the best result in a short time. Hence, we need to find the relationship between  

value and the image quality, and pick the best value for further research. In Fig 3.8, it shows 

when , the image quality is better than others. 

 

 

Fig 3.9 image reconstruction from projections under different  values using ART, 500 iterations: 

in image a, ; in image b, ; in image c, 

; in image d, . 
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Fig 3.9 shows the effect of another parameter, , in equation (47). Variable  determines the 

amount of high frequency details, shown as those projection lines, image edges, bone details and 

noise in the image. When  is large, high frequency details will miss in the image, like image d 

shows, image seems blurrier; when  is small, high frequency detail will keep which means 

noise is also not removed, that is not desirable to the image reconstruction. Thus, it is important 

to select an appropriate  for image reconstruction and in Fig 3.9, when  equals to 0.001 and 

0.01, both of their reconstructed images show a great work in reconstruction. Thus, we need to 

work further to find out the tiny difference. 
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Fig 3.10 further step of image reconstruction from projections under different  values using 

ART, 500 iterations: in image a, ; in image b, ; in 

image c, ; in image d, ; in image e, 

; in image f, ; in image g, ; in 

image h,  

 

Fig 3.10 is a further research on variable  and the range is among 0.001 to 0.1. From Fig 3.9, we 

can observe that when  value is small, the reconstructed image works well in removing high 

frequency details caused by limited projection lines. From Fig 3.10, we can see image e shows 

more contrast than image a in bone details. And image f also removes edge spines, better than 

image e. Thus, we can say  is best for image reconstruction in ART method. 
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Fig 3.11 image reconstruction from projections under different iterations using ART 

 

Compared with the original image Fig 3.6, Fig 3.11 shows the effect of iteration: with high 

iteration, image quality is improved. It increases the contrast and reduces the noise, those tiny 

points in the original image are removed, image edge artifacts are blurred. However, compared 

with 250 iteration and 500 iteration images, we can find they are similar, improvement of image 

quality is limited, hence, iteration is no necessary unlimited increasing, 500 iteration is enough. 

 

3.4.3 Total Variation denoising  

ART algorithm has made some progress in image enhancement, but it still cannot remove the 

image edge spines caused by limited projections. A further step is using TV model, x itself 
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variation, instead of high frequency operator L. Based on equation (52), we can also use an 

iterative algorithm to find the best result, assuming  at first. 

 

Fig 3.12 image reconstruction from projections under different  values using TV, 500 iterations: 

in image a, ; in image b, ; in image c, 

; in image d, . 

 

Fig 3.12 shows the effect of step size parameter  in steepest descent algorithm with TV model. 

It determines the increment size of x  every iteration, which is shown as contrast in the image. 

From Fig 3.12, image c,  shows the best result. 
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Fig 3.13 image reconstruction from projections under different  values using TV, 500 iterations: 

in image a, ; in image b, ; in image c, 
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; in image d, ; in image e, ; in 

image f, . 

 

Fig 3.13 shows the effect of variable  in total variation algorithm, aiming to decrease image 

itself total variation in the image. From 3.13, we can observe that image d, , 

has the best result in this image group, reducing the high frequency noise whilst keeping the 

contrast. 

 

Fig 3.14 image reconstruction from projections under different  values using TV, 500 iterations: 

in image a, ; in image b, ; in image c, ; in image d, . 
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Fig 3.14 shows the effect of threshold value T in total variation algorithm. And we can see that 

when T increases, those tiny noise points appear again in the reconstruction image, so as the edge 

spines. Image becomes noisy as T grows. Thus, T should be small in TV algorithm to obtain a 

good result and in Fig 3.11, we can see T=0.001 provides the best result. Hence, in TV algorithm, 

the best parameter values are  

 

3.5 3D Reconstruction 

The algorithm above works on each slice image of the object separately. Since it involves 

changing the image information, this may affect the continuity of the estimated object 

perpendicular to the slices. Hence, we need to consider image processing in 3D mode, removing 

the noise and maintaining the continuity of the object simultaneously. Therefore, we investigated 

3D rendering.   

 

3.5.1 ART in 3D Mode 

One approach to 3D image reconstruction is to use a 3D ART algorithm, an improvement of the 

original ART algorithm made by replacing the Laplacian operator by a 3D one. The 

reconstruction result is shown in the Fig 3.13. 
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Fig 3.13 same slice image of object reconstructed in ART and 3D ART algorithm 

 

From the grayscale image in Fig 3.13, it is hard to distinguish any difference between the two 

images; both of them present the details well. Thus, we transform them into another colormap, 

shown in the bottom row. Then we can see that 3D rendering has done a better job in reducing 

noise. Most of cross lines in the image caused by limited projections are removed. Hence, we can 

say 3D ART algorithm has made some progress in the image processing. 

 

3.5.2 Total Variation in 3D 

From Section 3.4, we know that TV denoising process also works well in noise removal.  

Therefore, we investigate whether TV can improve the results in a fully 3D reconstruction. 
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Based on equation (42), we define a 3D Total Variation as  

                    

 

Then taking 3D variable x and  into equation (51), we can obtain an approximate TV 

denoising algorithm in three dimensional space. The result is shown in Fig 3.13 

 

Fig 3.14 same slice image of object reconstructed in TV and 3D mode TV algorithm 

 

From Fig 3.14, we can see the result of applying 3D TV algorithm appears very close to the 

single slice reconstruction image no matter in which colormap. An advantage of 3D TV 

 (58) 
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algorithm is its rendering image seems smoother than 2D slice reconstruction image, especially 

at object’s edge side, artifacts are removed clearly. That is a great improvement in image quality 

recovery, thus, we can be sure that 3D rendering is very important in image processing when our 

interest is an object not just an image. The continuity of whole object really matters. 

 

3.5.3 3D Reconstruction 

Based on section 3.5.1 and section 3.5.2 work, we have created two 3D reconstruction 

algorithms. To explore their performance, we can use 3D Slicer software to reconstruct 3D 

models and their results are shown in Fig 3.14. 

 

 



 53 

 
 

 

Fig 3.14 3D model rendering based on ART 3D mode algorithm, slice TV algorithm and Total 

Variation 3D mode algorithm: upper model is rendered from ART 3D mode algorithm, middle 

one is rendered from slice TV algorithm, bottom one is rendered from TV in 3D  

 

Fig 3.14 shows the comparison between three 3D models rendered from three different 

algorithms. From the image, we can observe that all of them present the outline of mouse bone 
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structure, and models rendered from ART 3D and slice TV algorithms can show more details, 

including mice fingers. From the image, especially head part, we could find an amazing result 

that 3D model reconstructed from normal TV algorithm has the best presentation of the details 

and its model seems “cleaner” than the others, however, if we look at the noise, artifacts and 

spines, around the mouse, model rendered from  3D mode TV algorithm seems better. Thus, due 

to their different properties, we cannot make a judgement which method is better, but all of them 

is a good start in exploring 3D rendering field. And it shows the possibility of an application that 

3D reconstruction from the IVIS Lumina XR system. 
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Chapter 4 Conclusion 

4.1 Conclusion 

Throughout all experiments, we could find that the most important factor in image reconstruction 

is the number of projections; the more projections, the better the reconstructed image is. Some 

fundamental image processing method like interpolation can do a good job in a high density, 

simple structure image, like wire slice image. But for a complicated image, its improvement is 

limited; even worse, interpolation will destroy original image information. The best result we got 

is using our own designed algorithm, a combination of TV model with steepest descent ART 

method, to recover a reconstructed image. It increases the contrast, blurs the spines caused by 

limited projections, and simultaneously saves the original image information. In contrast to 

processing a phantom image, in the real-data case, image processing should consider more 

situations, including measurement error, all kinds of noise, continuity of the whole object and so 

on. In this work, 3D models are obtained from the volume reconstructions. Good results were 

obtained; the rendered model shows many details of the mouse, even its fingers. To improve 3D 

model, firstly, we can obtain more projections for accurate reconstruction; secondly, we can 

develop some more sophisticated algorithms, concentrating on volume noise removal; thirdly, 

we can do some detail adjustment in 3D slicer when learning the software better. Our work is a 

great start in 3D model rendering, but if we want to step further, it requires more time.  

 

 

 

 

 



 56 

Reference: 

[1] https://en.wikipedia.org/wiki/CT_scan, 2016, April 7 

[2] Gabor T. Herman, Image reconstruction from projections, the fundamentals of computerized 

tomography, 1980 

[3] IVIS Lumina XR Real-Time Bioluminescence, Fluorescence & X-Ray Imaging System, 

System Manual, 2009, Oct.  

[4] Pieper S, Halle M, Kikinis R, 3D SLICER, Proceedings of the 1
st
 IEEE International 

Symposium on Biomedical Imaging: From Nano to Macro 2004, vol.1, pp, 632-635. 

[5] G.T. Herman, Image reconstruction from projections, Implementation and Application, 

Topics in Applied Physics, 1979, vol. 32,  

[6] T. Saito, H. Kudo, High quality CT image reconstruction from a small number of projections, 

IEEE conference publication, 1988, vol. 2, pp,1272-1275, 

[7] Shangkai Gao, Imaging system in medicine, 2000 

[8] Shi BY, Wang C, Chen SH, et al, A novel method of CT reconstruction filter function design, 

CT Theory and Applications, 2010, vol. 19, No. 4, pp, 35-43. 

[9] https://en.wikipedia.org/wiki/Gradient_descent, 2016, April 7 

[10] https://en.wikipedia.org/wiki/Total_variation_denoising, 2016, April 7 

[11] Strong D, Chan T, Edge-preserving and scale-dependent properties of total variation 

regularization, Inverse Problems, 2003, vol. 19, pp, S165–S187. 

[12] Rudin L. I., Osher S., Fatemi E, Nonlinear total variation based noise removal algorithms, 

Physica D, 1992, vol. 60, pp, 259–268. 

https://en.wikipedia.org/wiki/CT_scan
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Total_variation_denoising


 57 

[13] S. Fang, W. Wu, H. Guo, Iteratively Refined Nonlocal Total Variation Regularization for 

Parallel Variable Density Spiral Imaging Reconstruction, Natural Computation (ICNC), Ninth 

International Conference, 2013, pp, 1382~1387 

[14] Y. Hu, S. Ramani, M Jacob, A fast majorize minimize algorithm for higher degree total 

variation regularization, Biomedical Imaging (ISBI), IEEE 10th International Symposium, 2013, 

pp, 326~329  

[15] D. Needell, R. Ward, Near-Optimal Compressed Sensing Guarantees for Total Variation 

Minimization, IEEE Transaction on Image Processing, 2013, vol. 22, pp, 3941~3949 

[16] Byung Gyu Chae, and Sooyeul Lee, Sparse-View CT Image Recovery Using Two-Step 

Iterative Shrinkage-Thresholding Algorithm, ETRI Journal Vol. 37, No. 6, Dec. 2015, pp. 1251-

1258 

[17] Alasdair McAndrew, Introduction to Digital Image Processing with Matlab, Asia edition, 

2004  

 

 

 

 

 

 

 


