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Abstract

Assessing and Forecasting Financial Vulnerability in the U.S.: A Fac-

tor Model Approach

This paper presents a factor-based forecasting model for the financial market

vulnerability in the U.S. We estimate latent common factors via the method of the

principal components from 170 monthly frequency macroeconomic data to out-of-

sample forecast the Cleveland Financial Stress Index. Our factor models outperform

both the random walk and the autoregressive benchmark models in out-of-sample

predictability for short-term forecast horizons, which is a desirable feature since

financial crises often come to a surprise realization. Interestingly, the first common

factor, which plays a key role in predicting the financial vulnerability index, seems

to be more closely related with real activity variables rather than nominal variables.

The recursive and the rolling window approaches with a 50% split point perform

similarly well.

The Determinants of the Benchmark Interest Rates in China: A Dis-

crete Choice Model Approach

This paper empirically investigates the determinants of key benchmark interest

rates in China using an array of constrained ordered probit models for quarterly

frequency data from 1987 to 2013. Specifically, we estimate the behavioral equation

of the People’s Bank of China that models their decision-making process for revisions
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of the benchmark deposit rate and the lending rate. Our findings imply that the

PBC’s policy decisions are better understood as responses to changes in inflation

and money growth, while output gaps and the exchange rate play negligible roles.

We also implement in-sample fit analyses and out-of-sample forecast exercises. These

tests show robust and reasonably good performances of our models in understanding

dynamics of these benchmark interest rates.

Estimating Interest Rate Setting Behavior in Korea: A Constrained

Ordered Choices Model Approach

We study the Bank of Korea’s interest rate setting behavior using an array of

constrained ordered choices models, where the Monetary Policy Committee revises

the target policy interest rate only when the current market interest rate deviates

from the optimal rate by more than certain threshold values. Our models explain

changes in the monetary policy stance well for the monthly frequency Korean data

since January 2000. We find important roles for the output gap and the foreign

exchange rate in understanding the Bank of Korea’s rate decision-making process.

We also implement out-of-sample forecast exercises with September 2008 (Lehman

Brothers Bankruptcy) for a split point. We demonstrate that out-of-sample pre-

dictability improves greatly for the rate cut and the rate hike decisions using standard

error adjusted inaction bands.
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Chapter 1

Forecasting Financial Market Vulnerability in the U.S.:

A Factor Model Approach

1.1 Introduction

Financial market crises often occur abruptly and quickly spread to other sectors

of the economy, which often results in prolonged economic downturns. The recent

global financial crisis triggered by the collapse of Lehman Brothers in September 2008

provides one of the most recent and relevant examples. The economics profession has

failed to anticipate this financial crisis, and greatly underestimated severity of the

spillover of the crisis to real activity that resulted in the Great Recession. Since these

crises often come to a surprise realization with no systemic warnings, and because

they create long-lasting harmful effects on real sectors even when turbulent periods

are over, it would be useful to have an instrument that predicts the vulnerability of

financial markets in the near future.

For this purpose, it is crucially important to find appropriate measures of the

financial market vulnerability, which quantifies the potential risk that prevails in

financial markets. Since the seminal work of Girton and Roper (1977), the Exchange

Market Pressure (EMP) index has been frequently employed by researchers in this

literature. See Tanner (2002) for a review.
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One alternative measure that is rapidly gaining popularity since the crisis is the

financial stress index (FSI). Unlike the EMP index that is based on exchange rate

depreciation and reserves changes, the FSI index is constructed using a broad range

of financial market key variables. In the case of the U.S., 12 financial stress indices

has become available (Oet et al., 2011) including three FSIs contributed by regional

Federal Reserve banks. See, among others, Hakkio and Keep (2009), Kliesen and

Smith (2010), Oet et al. (2011), and Brave and Butters (2012). For other recent

research contribution to financial stress, see also Hatzius et al. (2010) and Carlson,

Lewis, and Nelson (2014).1

Conventional approaches to predict financial crises include the following. Eichen-

green et al. (1995) and Sachs et al. (1996) use linear regressions to test the statistical

significance of various economic variables on the occurrence of crises. Other group

of researches employs discrete choice model approaches, either parametric probit or

logit regressions (Frankel and Rose,1996; Cipollini and Kapetanios, 2009) or non-

parametric signals approach (Kaminsky et al., 1998; Brüggemann and Linne, 1999;

Edison, 2003; Berg and Pattillo, 1999; Bussiere and Mulder,1999; Berg et al. 2005;

M.Ei-Shang, Tendlik and Schweinitz, 2013; Christensen and Li, 2014).

Some of recent studies started to investigate what economic variables help pre-

dict financial market vulnerability proxied by newly developed FSIs. For instance,

Christensen and Li (2014) propose a model to forecast the FSIs developed by IMF for

1There’s also an array of work that provides regional financial stress indices such as Grimaldi
(2010, 2011), Hollo, Kremer, and Lo Duca (2012), and Islami and Kurz-Kim (2013) for the Euro
area as well as for individual countries such as Greece (Louzis and Vouldis, 2011), Sweden (Sandhal
et al., 2011), Canada (Illing and Liu, 2006), Denmark (Hansen, 2006), Switzerland (Hanschel and
Monnin, 2005), Germany (van Roye, 2011), Turkey(Cevik, Diboglu and Kenc, 2013), Colombia
(Morales and Estrada, 2010), and Hong Kong (Yiu, Ho, and Lin, 2010).
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13 OECD countries, utilizing 12 economics leading indicators and three composite

indicators. They used the signal extraction approach proposed by Kaminsky et al.

(1998). Slinenberg and de Haan (2011) constructed their own FSIs for 13 OECD

countries and investigated what economic variables have predictive contents for the

FSIs via linear regression models, finding no clear linkages between economic vari-

ables and the FSIs. Misina and Tkacz (2009) investigated the predictability of credit

and asset price movements for financial market stress in Canada.

This paper presents a factor-based prediction model in a data-rich environment

to out-of-sample forecast the Financial Stress Index (FSI) developed by the Federal

Reserve Bank of Cleveland. We extract multiple latent common factors using the

method of the principal components (Stock and Watson, 2002) for a large panel of

170 time series macroeconomic data that include nominal and real activity variables

from October 1991 to October 2014. To avoid complications from nonstationarity

issues, we apply the principle component analysis (PCA) to differenced data then

recover level factors from estimated factors (Bai and Ng, 2004). We implement an

array of out-of-sample forecast exercises with the random walk as well as a stationary

autoregressive model as the benchmark model. We evaluate the predictive accuracy

of our models relative to these benchmark models using the ratio of the root mean

squared prediction errors (RRMSPE) and the Diebold-Mariano-West (DMW ) test

statistics.

Our major findings are as follows. First, our models outperform the benchmark

models in out-of-sample predictability for short-term (1− to 6−month) forecast hori-

zons. It should be noted that this is a desirable feature since financial crises often
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occur abruptly with no prior warnings. Second, parsimonious models with just one

or two factors perform as well as bigger models that use up to 8 factors. Third,

the first common factor that plays a key role in our forecast exercises seems to be

more closely related with real sector variables rather than nominal sector variables.

Lastly, we employ the recursive scheme as well as the fixed rolling window approach

with the 50% split point. Our factor models perform similarly well under these two

schemes.

The rest of the paper is organized as follows. Section 2 describes the econometric

model and the out-of-sample forecasts schemes. We also explain our evaluation

methods as to the out-of-sample prediction accuracy of our models. In Section 3,

we provide a data description and preliminary analyses for estimated latent common

factors. Section 4 reports our major findings from in-sample fit analyses and out-of-

sample forecast exercises. Section 5 concludes.

1.2 The Econometric Model

Let xi,t be a macroeconomic variable i ∈ {1, 2, .., N} at time t ∈ {1, 2, .., T}.

xi,t = ci + λ
′

iFt + ei,t, (1.1)

where ci is a fixed effect intercept, Ft = [F1,t · · · Fr,t]
′

is an r × 1 vector of latent

common factors, and λi = [λi,1 · · · λi,r]
′

denotes an r × 1 vector of factor loading

coefficients for xi,t. ei,t is the idiosyncratic error term. All variables other than those
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that are represented as a percentage term (interest rates, unemployment rates, etc.)

are log-transformed.

Estimation is carried out via the method of the principal components for the

first-differenced data. As Bai and Ng (2004) show, the principal component esti-

mators for Ft and λi are consistent irrespective of the order of Ft as long as ei,t

is stationary. However, if ei,t is an integrated process, a regression of xi,t on Ft is

spurious. To avoid this problem, we apply the method of the principal components

to the first-differenced data. That is, we rewrite (??) by the following.

∆xi,t = λ
′

i∆Ft + ∆ei,t (1.2)

for t = 2, · · · , T . Let ∆xi = [∆xi,1 · · · ∆xi,T ]
′

and ∆x = [∆x1 · · · ∆xN ]. We first

normalize the data before the estimations, since the method of the principal com-

ponents is not scale invariant. Taking the principal components method for ∆x∆x
′

yields factor estimates ∆F̂t along with their associated factor loading coefficients

λ̂i. Estimates for the idiosyncratic components are naturally given by the residuals

∆êi,t = ∆xi,t−λ̂
′
i∆F̂t. Level variables are recovered by re-integrating these estimates,

êi,t =
t∑

s=2

∆êi,s (1.3)

for i = 1, 2, ..., N . Similarly,

F̂t =
t∑

s=2

∆F̂s (1.4)
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After obtaining latent factor estimates, we employ the following regression model.

Abstracting from deterministic terms,

fsit+j = β
′
∆F̂t + αfsit + ut+j, j = 1, 2, .., k (1.5)

That is, we implement direct forecasting regressions for the j-period ahead financial

stress index (fsit+j) on (differenced) common factor estimates (∆F̂t) and the current

value of the index (fsit), which belong to the information set (Ωt) at time t. Note

that (??) is an AR(1) process for j = 1 extended by exogenous common factors.

This formulation is based on our preliminary unit-root test results for the FSI that

show strong evidence of stationarity.2 Applying the ordinary least squares (OLS)

estimator for (??) yields the following j-period ahead forecast for the financial stress

index.

f̂ si
F

t+j|t = β̂
′
∆F̂t + α̂fsit (1.6)

To statistically evaluate our factor models, we employ the following nonstation-

ary random walk model as the (no change) benchmark model.

fsit+1 = fsit + εt+1 (1.7)

It is straightforward to show that (??) yields the following j-period ahead forecast.

f̂ si
R

t+j|t = fsit, (1.8)

2Results are available upon request.
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where fsit is the current value of the financial stress index.

We also employ the following stationary AR(1)-type model as an alternative

benchmark model.

fsit+j = αjfsit + εt+1, (1.9)

where αj is the coefficient on the current FSI in the direct regression for the j-period

ahead FSI variable, which yields the following j-period ahead forecast.

f̂ si
AR

t+j|t = α̂jfsit, (1.10)

For evaluation of the prediction accuracy, we use the ratio of the root mean square

prediction error (RRMSPE), RMSPE from the benchmark model divided byRMSPE

from the factor model. Note that our factor model performs better than the bench-

mark model when RRMSPE is greater than 1.

Also, we employ the Diebold-Mariano-West (DMW ) test in order to statistically

evaluate the out-of-sample predictability of our factor model. For the DMW test,

we define the following function.

dt = L(εAt+j|t)− L(εFt+j|t), (1.11)

where L(·) is a loss function from forecast errors under each model, that is,

εAt+j|t = fsit+j − f̂ si
A

t+j|t (A = R,AR), εFt+j|t = fsit+j − f̂ si
F

t+j|t (1.12)
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One may use either the squared error loss function, (εjt+j|t)
2, or the absolute loss

function, |εjt+j|t|.

The DMW statistic can be used to test the null of equal predictive accuracy,

H0 : Edt = 0,

DMW =
d̄√

Âvar(d̄)

, (1.13)

where d̄ is the sample mean loss differential, d̄ = 1
T−T0

∑T
t=T0+1 dt, and Âvar(d̄)

denotes the asymptotic variance of d̄,

Âvar(d̄) =
1

T − T0

q∑
i=−q

k(i, q)Γ̂i (1.14)

k(·) is a kernel function where T0/T is the split point in percent, k(·) = 0, j > q, and

Γ̂j is jth autocovariance function estimate.3 Note that our factor model (??) nests

the stationary benchmark model in (??). Therefore, we use critical values proposed

by McCracken (2008) for this case. For the DMW statistic with the random walk

benchmark (??), which is not nested by (??), we use the asymptotic critical values,

which are obtained from the standard normal distribution.

1.3 Data Descriptions and Factor Estimations

1.3.1 Data Descriptions

We use the Cleveland Financial Stress Index (CFSI), obtained from the FRED,

to measure the financial market vulnerability. The index integrates 11 daily financial

3Following Andrews and Monahan (1992), we use the quadratic spectral kernel with automatic
bandwidth selection for our analysis.
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market indicators which are grouped into four sectors: debt, equity, foreign exchange,

and banking. See Oet et al. (2011) for details. As we can see in Figure 1, the CFSI

tracks recent financial crises reasonably well. For example, the index shows elevated

level of risk during the recent major crises such as the U.S. subprime mortgage crisis

that started around 2006, global financial market meltdown triggered by the failure

of Lehman Brothers in September 2008, and the European sovereign debt crisis that

started at the end of 2009. That is, the CFSI seems to be an appropriate measure

of the financial market vulnerability. The data is monthly frequency and is traced

back to October 1991.

Figure 1 around here

We obtained 170 monthly frequency macroeconomic time series data from the

FRED and the Conference Boards Indicators Database. Observations span from

October 1991 to October 2014 to match the availability of the CFSI. We organized

these 170 time series data into 9 small groups as summarized in Table 1. Groups #1

through #5 (Data ID #1 to #103) are variables that are closely related with real ac-

tivity, while groups #6 to #9 (Data ID #104 to #170) are mostly nominal variables.

Detailed explanations on individual time series are reported in the appendix.

Table 1 around here
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1.3.2 Latent Factors and their Characteristics

We estimated up to 8 latent common factors via the method of the principal

components for the first-differenced data. In Figure 2, we report estimated first

four (differenced) common factors, ∆F1,∆F2,∆F3,∆F4 and their level counterparts

F1, F2, F3, F4, obtained by re-integrating these differenced factors. One notable ob-

servation is that the first common factor F1 exhibits rapid declines around 2001 and

2008, which correspond to a recession after the burst of the U.S. IT bubble (a.k.a.

the dot-com bubble) and the Great Recession, respectively. In what follows, we

demonstrate that F1 is more closely related with real activity variables, though it

also represent a group of nominal variables as well.

Figure 2 around here

We report the factor loading coefficient (λi) estimates and marginal R2 of each

variable in Figures 3 to 7 to study how each of these factors is associated with the

macroeconomic variables in groups #1 to #9. The marginal R2 is an in-sample fit

statistic obtained by regressing each of the individual time series variables onto each

estimated factor, one at a time, using the full sample of data. The individual series

in each group are separated by vertical lines and labeled by group IDs. The data

IDs are on the x-axis and the descriptions are reported in the Data Appendix.

We investigate the nature of the first common factor using the factor loading

coefficients for F1. It should be noted that loading coefficients of most variables in

the groups #1 (output and income) and #2 (orders) are positive. Among the group
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#3 variables, the loading coefficients are negative for the unemployment-related vari-

ables (IDs 41− 50), whereas they are positive for employment or labor participation

variables (IDs 51− 74) and earnings related data (IDs 75− 80). Positive coefficients

were also found from the group #3 (housing) and #4 (stock price) variables. Also

within the group #8, interest rates have positive loading coefficients, while inter-

est rate spreads including risk premium variables have negative signs. Price level

variables in the group #9 have positive loadings, which are consistent with nega-

tive loading coefficients of foreign exchange rates measured as the price of domestic

currency (US dollars) relative to the foreign currencies. Overall, these observations

imply that the first common factor represent the business cycle of the US economy.

When it comes to the marginal R2 estimation, F1 explains a substantial portion

of variations in measures of production and the employment part in the labor market,

even though it also explain non-negligible portions of variations in price variables as

well. Overall, F1 seems to better represent real activity performance.

Figure 3 around here

As we can see in Figure 4, the second common factor F2 loads heavily on the

group #9 (price variables) as well as the group #5 (exchange rates). The marginal

R2 estimates of these variables are far greater than those of other variables. Factor

loading coefficients of these variables are similar to those in Figure 3 and tend to

be bigger in absolute terms than other coefficients. Therefore, F2 seems to be more

closely associated with the two groups of nominal variables, domestic prices and

foreign exchange rates.
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Figure 4 around here

F3 captures mainly the information on the group #5 stock price variables. As

we can see in the marginal R2 analysis, it explains over 60% of variations in these

variables. The loading coefficient estimates are mostly negative except the first one in

this group, the price-earning ratio (earnings/price), which should be the case. Note

that the sign itself does not matter because the method of the principle components

estimates the loadings and factors jointly.4 Similar reasoning implies that the group

#8 variables (interest rates) are well explained by F4.

Figures 5 and 6 around here

1.4 Forecasting Exercises

1.4.1 In-Sample Fit Analysis

We implement an array of least squares estimations for the CFSI with alternative

sets of explanatory variables from {∆F1,∆F2, ...,∆F8}. Results are reported in Table

2 for the 1−, 2−, 3−, 6−, and 12−month ahead values of the CFSI.

We employ an R2-based selection method for one-factor model to the 8-factor

full model to find good combinations of explanatory variables. The first common

factor ∆F1 seems to play the most important role in explaining variations in the

CFSI for all forecasting time horizons we consider.

4One may multiply both the loadings and the factor by −1 without affecting any stastistical
inferences.
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We note that adding more factors after the first common factor does not substan-

tially increase the fit. That is, it seems that one or two factor models are sufficient

for a good in-sample fit. It should be also noted that factor estimates help explain

CFSIs for relatively short time horizons. For example, factors explain 20 to 30%

variations in 1−month ahead CFSIs, while they explain less than 10% of variations

in 1−year ahead CFSIs even with full 8 factor models.5

Table 2 around here

In Table 3, we also report the least squares estimates of the coefficients in the

regression model of the 1−period ahead CFSI index (cfsit+1). We note that the

first common factor is highly significant whether one period lagged CFSI (cfsit) is

included in the regression or not. The second common factor also plays an important

role when pure factor models without cfsit are employed. Our models are good as to

the In-sample fit especially when cfsit is included, which should be the case because

the CFSI is highly persistent. Our factor models without lagged CFSI index still

exhibit fairly high in-sample fit. The 8 factor full model explains roughly 30% of

variation of the one-month ahead CFSI.

Table 3 around here

5We also considered alternative factor selection methods. For instance, the adjusted R2 selection
method usually chose the 5− or 6−factor model, while a stepwise selection method (Specific-to-
General rule) selected the 4− or 5−factor model for the FSI. However, added gains are still fairly
small.
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1.4.2 Out-of-Sample Forecast Exercises and Evaluations of Models

We implement out-of-sample forecast exercises using two methods. First, we

use a recursive forecast scheme. That is, we begin with an out-of-sample fore-

cast of the j−period ahead CFSI index (fsiT
2
+j) using the 50% initial observa-

tions (t = 1, 2, ..., T
2
). Then, we add one additional observation to the sample

(t = 1, 2, ..., T
2
, T
2

+ 1) and implement another forecast (fsiT
2
+j+1) using this ex-

panded set of observations. We repeat this until we forecast the last observations.

We implement this scheme for up to 12 month forecast horizons, j = 1, 2, 3, 6, 12.

The second scheme is a fixed rolling window method that repeats forecasting by

adding one additional observation with the same split point but dropping one earliest

observation in order to maintain the identical sample size. That is, after the initial

forecast described earlier, we forecast fsiT
2
+j+1 using an updated (shifted to the

right) data set (t = 2, 3, ..., T
2
, T
2

+ 1) maintaining the same number of observations.

We employ two benchmark models for the evaluations of our factor-based fore-

cast models: the nonstationary random walk model and a stationary autoregressive

model. Out-of-sample forecast performance is evaluated using the ratio of the root

mean square prediction error, RRMSPE, of the benchmark model to that of the fac-

tor model. When the RRMSPE is greater than one, the factor model outperforms

the benchmark model. Also, we implement the DMW test to statistically evaluate

prediction accuracy of our models.

RRMSPE estimates of our factor models relative to the random walk bench-

mark are reported in Table 4. We note that our factor models outperform the

benchmark model for all forecast horizons from 1 month to 1 year. The RRMSPE
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estimates are greater than one for all cases both with the recursive and the rolling

window schemes. Similarly as in the in-sample fit analyses reported earlier, one fac-

tor model with the first common factor ∆F1 performs as well as bigger models with

more factor estimates.

The DMW statistics are reported in Table 4. Using the asymptotic critical

values from the standard normal distribution, the test rejects the null hypothesis of

equal predictive accuracy at the 10% significance level in majority cases when the

forecast horizon is 3 month or longer. For shorter forecast time horizon (1 and 2

month), the test rejects the null for just one case even though the test statistic is all

positive meaning that the test favors the factor models.

Tables 4 and 5 around here

We report RRMSPE estimates and the DMW statistics of our factor model

with a stationary autoregressive competing model in Tables 6 and 7. We note that

most RRMSPE estimates are greater than one when the forecast horizon is between

1− and 6−month. The RRMSPE estimates were all less than one for 12−month

ahead out-of-sample forecast. It should be noted, however, that short-term forecast

accuracy is more desirable feature for predicting the financial market vulnerability,

because financial crises often occur abruptly.

Note that our factor models nest the benchmark AR model, which results in

size distortion when the asymptotic critical values are used. Therefore, we use the

critical values from McCracken (2008). The DMW test rejects the null hypothesis
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for most cases at the 10% significance level when the forecast horizon is shorter than

12−month, which is consistent with the results in Table 6.

Tables 6 and 7 around here

1.5 Concluding Remarks

This paper proposes a forecast model for systemic risk in the U.S. financial

market in a data-rich environment. We use the latest financial stress index developed

by Federal Reserve Bank of Cleveland as a proxy variable of the financial market

vulnerability. We employ a parsimonious method to extract latent common factors

from a panel of 170 monthly frequency time series macroeconomic variables from

October 1991 to October 2014. In presence of nonstationarity in the data, we apply

the method of the principle components (Stock and Watson, 2002) to differenced

data (Bai and Ng, 2004) to estimate the latent factors consistently.

We implement an array of out-of-sample prediction exercises using the recursive

and the fixed rolling window schemes for 1-month to 1-year forecast horizons. Based

on the RRMSPE estimates and the DMW statistics, our factor-based forecast

models overall outperform the nonstationary random walk benchmark model as well

as the stationary autoregressive model especially for short-horizon predictions, which

is a desirable feature because financial crises often come to a surprise realization.

The parsimonious models with one or two factors perform as well as bigger models

in providing potentially useful information to policy makers and financial market
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participants. Interestingly, real activity variables represented by the first common

factor are shown to have substantial predictive contents for the financial market

vulnerability even in the short-run.
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Figure 1. Financial Stress Indices

Note: The Cleveland Financial Stress Index is obtained from the FRED. The

index is a z -score monthly frequency data constructed by the Cleveland Fed.

The other two indices are also obtained from the FRED.
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Figure 2. Factor Estimates: Differenced and Level Factors

Note: We obtained up to 8 factors by applying the method of the principal

components to 170 monthly frequency macroeconomic time series variables.

Level factors (second column) are obtained by re-integrating estimated com-

mon factors (first column).
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Figure 3. Common Factor #1

Note: Factor loading coefficients (λi) for each common factor estimate are

reported. The marginal R2 is obtained by regressing each of the individual

time series variables onto each estimated factor, one at a time, using the full

sample of data. The individual series in each group are separated by vertical

lines and labeled by group IDs. The data IDs are on the x-axis.
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Figure 4. Common Factor #2

Note: Factor loading coefficients (λi) for each common factor estimate are

reported. The marginal R2 is obtained by regressing each of the individual

time series variables onto each estimated factor, one at a time, using the full

sample of data. The individual series in each group are separated by vertical

lines and labeled by group IDs. The data IDs are on the x-axis.
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Figure 5. Common Factor #3

Note: Factor loading coefficients (λi) for each common factor estimate are

reported. The marginal R2 is obtained by regressing each of the individual

time series variables onto each estimated factor, one at a time, using the full

sample of data. The individual series in each group are separated by vertical

lines and labeled by group IDs. The data IDs are on the x-axis.
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Figure 6. Common Factor #4

Note: Factor loading coefficients (λi) for each common factor estimate are

reported. The marginal R2 is obtained by regressing each of the individual

time series variables onto each estimated factor, one at a time, using the full

sample of data. The individual series in each group are separated by vertical

lines and labeled by group IDs. The data IDs are on the x-axis.
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Table 1. Macroeconomic Data Descriptions

Group ID Data ID Data Descriptions

#1 1− 21 Output and Income

#2 22− 40 Consumption, Orders and Inventories

#3 41− 80 Labor Market

#4 81− 90 Housing

#5 91− 103 Stock Market

#6 104− 118 Money and Credit

#7 119− 137 Exchange Rate

#8 138− 152 Interest Rate

#9 153− 170 Prices

Note: See the data appendix for descriptions of individual data series.
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Table 2. j-Period Ahead In-Sample R2 Fit Analysis

Factors R2

j = 1 ∆F1 0.211

∆F1,∆F5 0.251

∆F1,∆F2,∆F5 0.270

∆F1,∆F2,∆F3,∆F5 0.283

j = 2 ∆F1 0.194

∆F1,∆F5 0.224

∆F1,∆F2,∆F5 0.255

∆F1,∆F2,∆F3,∆F5 0.267

j = 3 ∆F1 0.183

∆F1,∆F3 0.209

∆F1,∆F2,∆F3 0.228

∆F1,∆F2,∆F3,∆F5 0.247

j = 6 ∆F1 0.103

∆F1,∆F3 0.124

∆F1,∆F2,∆F3 0.137

∆F1,∆F2,∆F3,∆F7 0.147

j = 12 ∆F1 0.020

∆F1,∆F2 0.034

∆F1,∆F2,∆F3 0.047

∆F1,∆F2,∆F3,∆F7 0.061
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Note: We regress each set of estimated factors to j-period (month) ahead

financial stress index, then report the R2 value from each regression.
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Table 3. OLS Estimations for the 1-Period Ahead Index (cfsit+1)

OLS Coefficient Estimates

cfsit 0.848
(26.599)

n.a. 0.857
(26.161)

n.a. 0.855
(25.973)

n.a. 0.851
(24.523)

n.a.

∆F1,t −0.205
(−2.301)

−1.288
(−8.605)

−0.194
(−2.166)

−1.288
(−8.703)

−0.196
(−2.189)

−1.288
(−8.727)

−0.202
(−2.222)

−1.288
(−9.014)

∆F2,t n.a. n.a. −0.118
(−1.143)

0.503
(2.677)

−0.116
(−1.126)

0.504
(2.689)

−0.112
(−1.079)

0.507
(2.793)

∆F3,t n.a. n.a. n.a. n.a. 0.077
(0.653)

0.349
(1.589)

0.080
(0.674)

0.352
(1.655)

∆F4,t n.a. n.a. n.a. n.a. n.a. n.a. −0.003
(−0.022)

0.274
(1.262)

∆F5,t n.a. n.a. n.a. n.a. n.a. n.a. 0.042
(0.296)

1.050
(4.282)

∆F6,t n.a. n.a. n.a. n.a. n.a. n.a. 0.104
(0.694)

−0.108
(−0.399)

∆F7,t n.a. n.a. n.a. n.a. n.a. n.a. −0.289
(−1.843)

−0.452
(−1.602)

∆F8,t n.a. n.a. n.a. n.a. n.a. n.a. 0.055
(0.328)

0.187
(0.616)

c 0.003
(0.109)

0.028
(0.532)

0.003
(0.104)

0.028
(0.528)

0.003
(0.104)

0.027
(0.525)

0.003
(0.096)

0.027
(0.526)

R2 0.782 0.213 0.783 0.234 0.783 0.241 0.786 0.301

R̃2 0.779 0.208 0.779 0.225 0.779 0.229 0.778 0.277

Note: We regress 1-period (month) ahead financial stress index onto a set of

explanatory variables that include factor estimates and lagged financial stress

index. Coefficient estimates that are significant at the 5% are in bold. R2 and

adjusted R2 (R̃2) are also reported. t-statistics are reported in the brackets.

27



Table 4. j-Period Ahead Out-of-Sample Forecast: ARF vs. RW

RRMSPE: Recursive Method

Factors/j 1 2 3 6 12

∆F1 1.021 1.040 1.057 1.099 1.120

∆F1,∆F2 1.019 1.030 1.039 1.082 1.098

∆F1,∆F3 1.018 1.059 1.064 1.112 1.126

∆F1,∆F4 1.018 1.039 1.060 1.091 1.113

∆F1,∆F2,∆F3 1.015 1.048 1.045 1.094 1.108

RRMSPE: Rolling Window Method

Factors/j 1 2 3 6 12

∆F1 1.025 1.044 1.060 1.102 1.129

∆F1,∆F2 1.023 1.032 1.036 1.085 1.113

∆F1,∆F3 1.033 1.072 1.068 1.110 1.126

∆F1,∆F4 1.012 1.042 1.067 1.092 1.126

∆F1,∆F2,∆F3 1.029 1.059 1.043 1.091 1.114

Note: RRMSPE denotes the mean square error from the random walk (RW)

model relative to the mean square error from our factor model (ARF). There-

fore, when RRMSPE is greater than one, our factor models perform better

than the benchmark model.
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Table 5. j-Period Ahead Out-of-Sample Forecast: ARF vs. RW

DMW: Recursive Method

Factors/j 1 2 3 6 12

∆F1 0.735 1.262 1.847∗ 2.892‡ 3.502‡

∆F1,∆F2 0.667 0.974 1.235 2.397† 2.651‡

∆F1,∆F3 0.639 1.572 1.844∗ 3.006‡ 3.268‡

∆F1,∆F4 0.661 1.228 1.899∗ 2.693‡ 3.412‡

∆F1,∆F2,∆F3 0.552 1.291 1.293 2.527† 2.679‡

DMW: Rolling Window Method

Factors/j 1 2 3 6 12

∆F1 0.833 1.271 1.835∗ 2.519‡ 2.905‡

∆F1,∆F2 0.783 0.978 1.078 2.176† 2.545†

∆F1,∆F3 1.110 1.721∗ 1.829∗ 2.501† 2.753‡

∆F1,∆F4 0.429 1.181 1.995† 2.259† 2.791‡

∆F1,∆F2,∆F3 0.988 1.485 1.148 2.100† 2.467†

Note: DMW denotes the Diebold-Mariano-West statistic. ‡, †, and ∗ indi-

cate rejection of the null hypothesis at the 1%, 5%, and 10% significance level,

respectively. Critical values were obtained from the standard normal distribu-

tion, which is the asymptotic distribution of the DMW test statistic.
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Table 6. j-Period Ahead Out-of-Sample Forecast: ARF vs. AR

RRMSPE: Recursive Method

Factors/j 1 2 3 6 12

∆F1 1.013 1.013 1.019 1.008 0.973

∆F1,∆F2 1.011 1.004 1.001 0.992 0.953

∆F1,∆F3 1.010 1.032 1.025 1.020 0.978

∆F1,∆F4 1.010 1.013 1.021 1.001 0.967

∆F1,∆F2,∆F3 1.008 1.021 1.006 1.003 0.962

RRMSPE: Rolling Window Method

Factors/j 1 2 3 6 12

∆F1 1.016 1.018 1.023 1.023 0.996

∆F1,∆F2 1.014 1.006 1.000 1.007 0.981

∆F1,∆F3 1.024 1.045 1.030 1.030 0.993

∆F1,∆F4 1.004 1.016 1.030 1.013 0.993

∆F1,∆F2,∆F3 1.020 1.033 1.006 1.012 0.983

Note: RRMSPE denotes the mean square error from the autoregressive (AR)

model relative to the mean square error from our factor model (ARF). There-

fore, when RRMSPE is greater than one, our factor models perform better

than the benchmark model.
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Table 7. j-Period Ahead Out-of-Sample Forecast: ARF vs. AR

DMW: Recursive Method

Factors/j 1 2 3 6 12

∆F1 0.550∗ 0.531∗ 1.067† 0.594∗ -1.947

∆F1,∆F2 0.484∗ 0.181 0.060 -0.581 -2.586

∆F1,∆F3 0.436∗ 1.079† 1.219† 1.215† -1.672

∆F1,∆F4 0.450∗ 0.512∗ 1.363‡ 0.053 -2.246

∆F1,∆F2,∆F3 0.351∗ 0.803† 0.313∗ 0.194∗ -2.071

DMW: Rolling Window Method

Factors/j 1 2 3 6 12

∆F1 0.571† 0.611† 1.296‡ 1.766‡ -0.344

∆F1,∆F2 0.543† 0.246∗ 0.010 0.583† -1.209

∆F1,∆F3 0.861† 1.335‡ 1.430‡ 1.859‡ -0.558

∆F1,∆F4 0.133∗ 0.527† 1.618‡ 1.031‡ -0.576

∆F1,∆F2,∆F3 0.757† 1.080‡ 0.295† 0.770† -1.134

Note: DMW denotes the Diebold-Mariano-West statistic. ‡, †, and ∗ indicate

rejection of the null hypothesis at the 1%, 5%, and 10% significance level,

respectively. Critical values were obtained from McCracken (2008) since the

factor model nests the benchmark AR model.
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Data Appnnedix

Data ID Series ID Descriptions

1 (Group #1) CUMFNS Capacity Utilization: Manufacturing (SIC), Percent of Capacity, Monthly, S.A.

2 TCU Capacity Utilization: Total Industry, Percent of Capacity, Monthly, S.A.

3 INDPRO Industrial Production Index, Index 2007=100, Monthly, S.A.

4 IPBUSEQ Industrial Production: Business Equipment, Index 2007=100, Monthly, S.A.

5 IPCONGD Industrial Production: Consumer Goods, Index 2007=100, Monthly, S.A.

6 IPDCONGD Industrial Production: Durable Consumer Goods, Index 2007=100, Monthly, S.A.

7 IPDMAT Industrial Production: Durable Materials

8 IPFINAL Industrial Production: Final Products (Market Group), Index 2007=100, Monthly, S.A.

9 IPFPNSS Industrial Production: Final Products and Nonindustrial Supplies

10 IPFUELS Industrial Production: Fuels

11 IPMANSICS Industrial Production: Manufacturing (SIC), Index 2007=100, Monthly, S.A.

12 IPMAT Industrial Production: Materials

13 IPMINE Industrial Production: Mining, Index 2007=100, Monthly, S.A.

14 IPNCONGD Industrial Production: Nondurable Consumer Goods

15 IPNMAT Industrial Production: nondurable Materials

16 IPUTIL Industrial Production: Electric and Gas Utilities, Index 2007=100, Monthly, S.A.

17 NAPMPI ISM Manufacturing: Production Index

18 PI Personal Income

19 RPI Real Personal Income,S.A. Annual Rate,Billions of Chained 2009 Dollars

20 W875RX1 Real personal income excluding current transfer receipts

21 (Group #2) CMRMTSPL Real Manufacturing and Trade Industries Sales

22 NAPM ISM Manufacturing: PMI Composite Index,S.A.

23 NAPMII ISM Manufacturing: Inventories Index

24 NAPMNOI ISM Manufacturing: New Orders Index;S.A.

25 NAPMSDI ISM Manufacturing: Supplier Deliveries Index, S.A.

26 A0M057 Manufacturing and trade sales (mil. chain 2009 $)

27 A0M059 Sales of retail stores (mil. Chain 2000$)

28 A0M007 Mfrs’ new orders durable goods industries (bil. chain 2000 $)

29 A0M008 Mfrs’ new orders consumer goods and materials (mil. 1982 $)

30 A1M092 Mfrs’ unfilled orders durable goods indus. (bil. chain 2000 $)

31 A0M027 Mfrs’ new orders nondefense capital goods (mil. 1982 $)

32 A0M070 Manufacturing and trade invertories(bil.Chain 2009$)

33 A0M077 Ratio mfg. and trade inventories to sales (based on chain 2009 $)

34 DDURRG3M086SBEA Personal consumption expenditures: Durable goods (chain-type price index)

35 DNDGRG3M086SBEA Personal consumption expenditures: Nondurable goods (chain-type price index)
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36 DPCERA3M086SBEA Real personal consumption expenditures (chain-type quantity index)

37 DSERRG3M086SBEA Personal consumption expenditures: Services (chain-type price index)

38 PCEPI Personal Consumption Expenditures: Chain-type Price Index

39 U0M083 Consumer expectations NSA (Copyright, University of Michigan)

40 UMCSENT University of Michigan: Consumer Sentiment

41 (Group #3) UEMP15OV Number of Civilians Unemployed for 15 Weeks Over (Thousands of Persons)

42 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks

43 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over

44 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks

45 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks

46 UEMPMEAN Average (Mean) Duration of Unemployment, S.A.

47 UEMPMED Median Duration of Unemployment

48 UNEMPLOY Civilian Unemployment Thousands of Persons, Monthly, S.A.,

49 UNRATE Civilian Unemployment Rate, Percent, Monthly, S.A.

50 A0M005 Average weekly initial claims unemploy

51 A0M441 Civilian Labor Force

52 CE16OV Civilian Employment, Thousands of Persons, Monthly, S.A.

53 NAPMEI ISM Manufacturing: Employment Index c©

54 A0M090 Ratio civilian employment to working-age population (pct.)

55 CIVPART Civilian Labor Force Participation Rate, Percent, Monthly, S.A.

56 LNS11300012 Civilian Labor Force Participation Rate - 16 to 19 years

57 LNS11300036 Civilian Labor Force Participation Rate - 20 to 24 years

58 LNS11300060 Civilian Labor Force Participation Rate - 25 to 54 years, Percent, Monthly, S.A.

59 LNS11324230 Civilian Labor Force Participation Rate - 55 years and over, Percent, Monthly, S.A.

60 LNS11300002 Civilian Labor Force Participation Rate - Women, Percent, Monthly, S.A.

61 LNU01300001 Civilian Labor Force Participation Rate - Men, Percent, Monthly, Not S.A.

62 MANEMP All Employees: Manufacturing

63 DMANEMP All Employees: Durable goods

64 NDMANEMP All Employees: Nondurable goods

65 PAYEMS All Employees: Total nonfarm

66 SRVPRD All Employees: Service-Providing Industries

67 USCONS All Employees: Construction

68 USFIRE All Employees: Financial Activities

69 USGOVT All Employees: Government

70 USMINE All Employees: Mining and logging

33



71 USPRIV All Employees: Total Private Industries

72 USTPU All Employees: Trade, Transportation Utilities

73 USTRADE All Employees: Retail Trade

74 USWTRADE All Employees: Wholesale Trade

75 AHECONS Average Hourly Earnings Of Production And Nonsupervisory Employees:Construction

76 AHEMAN Average Hourly Earnings Of Production And Nonsupervisory Employees:Manufacturing

77 A0M001 Average Weekly Hours: Manufacturing

78 AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing

79 CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing

80 CES0600000008 Average Hourly Earnings Of Production And Nonsupervisory Employees:Goods-Producing

81 (Group #4) HOUST Housing Starts: Total: New Privately Owned Housing Units Started

82 HOUSTMW Housing Starts in Midwest Census Region

83 HOUSTNE Housing Starts in Northeast Census Region

84 HOUSTS Housing Starts in South Census Region

85 HOUSTW Housing Starts in West Census Region

86 PERMIT New Private Housing Units Authorized by Building Permits

87 PERMITMW New Private Housing Units Authorized by Building Permits in the Midwest

88 PERMITNE New Private Housing Units Authorized by Building Permits in the North

89 PERMITS New Private Housing Units Authorized by Building Permits in the South

90 PERMITW New Private Housing Units Authorized by Building Permits in the West

91 (Group #5) P/E S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)

92 Dvd 12M Yld - Gross S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)

93 SP500 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE

94 S5INDU S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS

95 SPF S&P’S COMMON STOCK PRICE INDEX: Financials

96 S5UTIL S&P’S COMMON STOCK PRICE INDEX:Utilities

97 S5ENRS S&P’S COMMON STOCK PRICE INDEX: Energy

98 S5HLTH S&P’S COMMON STOCK PRICE INDEX: Health Care

99 S5INFT S&P’S COMMON STOCK PRICE INDEX: Information Technology

100 S5COND S&P’S COMMON STOCK PRICE INDEX: Consumer Discretionary

101 S5CONS S&P’S COMMON STOCK PRICE INDEX: Consumer Staples

102 S5TELS S&P’S COMMON STOCK PRICE INDEX: Telecommunicaiton Services

103 S5MART S&P’S COMMON STOCK PRICE INDEX: Materials

104 (Group #6) AMBSL St. Louis Adjusted Monetary Base

105 BUSLOANS Commercial and Industrial Loans, All Commercial Banks
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106 CILDCBM027SBOG Commercial and Industrial Loans, Domestically Chartered Commercial Banks

107 CILFRIM027SBOG Commercial and Industrial Loans, Foreign-Related Institutions

108 M1SL M1 Money Stock

109 M2REAL Real M2 Money Stock(Billions of 1982-83 Dollars)

110 M2SL M2 Money Stock

111 MABMM301USM189S M3 for the United States c©

112 MBCURRCIR Monetary Base; Currency In Circulation

113 NONBORRES Reserves Of Depository Institutions, Nonborrowed

114 REALLNNSA Real Estate Loans, All Commercial Banks

115 TOTRESNS Total Reserves of Depository Institutions

116 NONREVSL Total Nonrevolving Credit Owned and Securitized, Outstanding

117 NREVNSEC Securitized Consumer Nonrevolving Credit, Outstanding(Billions of Dollars);Not S.A.

118 A0M095 Ratio consumer installment credit to personal income (pct.)

119 (Group #7) EXCAUS Canada / U.S. Foreign Exchange Rate

120 EXCHUS China / U.S. Foreign Exchange Rate

121 EXDNUS Denmark / U.S. Foreign Exchange Rate

122 EXHKUS Hong Kong / U.S. Foreign Exchange Rate

123 EXINUS India / U.S. Foreign Exchange Rate

124 EXJPUS Japan / U.S. Foreign Exchange Rate

125 EXKOUS South Korea / U.S. Foreign Exchange Rate

126 EXMAUS Malaysia / U.S. Foreign Exchange Rate

127 EXNOUS Norway / U.S. Foreign Exchange Rate

128 EXSFUS South Africa / U.S. Foreign Exchange Rate

129 EXSIUS Singapore / U.S. Foreign Exchange Rate

130 EXSLUS Sri Lanka / U.S. Foreign Exchange Rate

131 EXSZUS Switzerland / U.S. Foreign Exchange Rate

132 EXTAUS Taiwan / U.S. Foreign Exchange Rate

133 EXTHUS Thailand / U.S. Foreign Exchange Rate

134 EXALUS Australia/U.S. Foreign Exchange Rate

135 EXNZUS New Zealand/U.S. Foreign Exchange Rate

136 EXUKUS U.K./U.S. Foreign Exchange Rate

137 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies

138 (Group #8) FEDFUNDS Effective Federal Funds Rate

139 GS1 1-Year Treasury Constant Maturity Rate

140 GS10 10-Year Treasury Constant Maturity Rate
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141 GS5 5-Year Treasury Constant Maturity Rate

142 TB3MS 3-Month Treasury Bill: Secondary Market Rate

143 TB6MS 6-Month Treasury Bill: Secondary Market Rate

144 AAA Bond Yield: Moody’s Aaa Corporate(% Per Annum)

145 BAA Bond Yield: Moody’s Baa Corporate(% Per Annum)

146 sfyGS1 GS1-FEDFUNDS

147 sfyGS10 GS10-FEDFUNDS

148 sfyGS5 GS5-FEDFUNDS

149 sfy3mo TB3MS-FEDFUNDS

150 sfy6mo TB6MS-FEDFUNDS

151 sfyAAA BAA-FEDFUNDS

152 sfyBAA AAA-FEDFUNDS

153 (Group #9) CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel(Index 1982-84=100)

154 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items

155 CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy

156 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care

157 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation

158 CUSR0000SA0L2 Consumer Price Index for All Urban Consumers: All items less shelter

159 CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: All items less medical

160 CUSR0000SAC Consumer Price Index for All Urban Consumers: Commodities

161 CUSR0000SAD Consumer Price Index for All Urban Consumers: Durables

162 CUSR0000SAS Consumer Price Index for All Urban Consumers: Services

163 NAPMPRI ISM Manufacturing: Prices Index c©

164 PPICMM Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals

165 PPICRM Producer Price Index: Crude Materials for Further Processing

166 PPIFCG Producer Price Index: Finished Consumer Goods

167 PPIFGS Producer Price Index: Finished Goods

168 PPIITM Producer Price Index: Intermediate Materials: Supplies Components

169 DCOILWTICO Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma

170 PINDU Index Industrial Inputs Price Index, 2005 = 100, includes Agri Raw Materials and Metals Price Indices not S.A.
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Chapter 2

The Determinants of the Benchmark Interest Rates in China:

A Discrete Choice Model Approach

2.1 Introduction

China is one of the fastest growing economies and has been considered as a

new engine of world growth for many years. Naturally, when and to what extent the

central bank in China, People’s Bank of China (PBC), revises their target benchmark

interest rates draw substantial attention of the public. In the present paper, we

attempt to estimate the behavioral equation of the PBC as to the determination of

the two benchmark interest rates in China: the deposit rate and the lending rate.

As is well documented, the PBC appears to have employed combinations of

multiple policy instruments that include both the quantitative and interest rate in-

struments (Xie, 2004; Peng, Chen and Fan, 2006; Geiger, 2008; Zhang, 2009; Zhang

and Liu, 2010; Xiong, 2012; Giardin, Lunven, and Ma, 2013; Sun, 2013). We are par-

ticularly interested in the PBC’s benchmark interest rates among these instruments,

because those interest rates have been always employed as policy instruments with

no break since 1986 (Xiong, 2012). Also, as shown by He and Wang (2012), market

interest rates in China have been heavily influenced by these benchmark rates.1

1In addition to these instruments, the importance of so-called window guidance has been also
noted. See, among others, Chen, Chen, and Gerlack (2011).
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We recognize that the PBC will soon allow a transition of these benchmark

interest rates to deregulated interest rates. However, it is likely for the PBC to

employ another interest rate targets, such as the target federal funds rate in the

US, in a market oriented economic system. Therefore, studying the decision making

process for revisions of these rates would provide useful information on how the PBC

will determine their monetary policy stance in the future.

One natural approach to study the PBC’s interest rate setting behavior would

be estimating a Taylor Rule type equation with an assumption that revisions of the

target interest rate take place continuously. Since the work of Xie and Luo (2004)

who employed the Taylor Rule to study China’s monetary policy, Zhao and Gao

(2004), Bian (2006), Wang and Zou (2006), and more recently, Fan, Yu, and Zhang

(2011) also implemented similar linear Taylor rule models, while Zhang and Zhang

(2008), Ouyang and Wang (2009), Chen and Zhou (2009), Zheng, Wang and Guo

(2012), and Jawadi, Mallick, and Sousa (2014) used nonlinear models for China’s

monetary policy.

It should be noted, however, that the Monetary Policy Committee (MPC) under

the PBC normally meets every quarter to make decisions on monetary policy stance.

Furthermore, it turns out that the PBC revised their benchmark interest rates with a

less than 30% frequency in 106 quarterly observations since 1987. Such a high degree

inertia in dynamics of the policy interest rates may call for an alternative approach

in studying the monetary policy decision-making process in China.

Since the seminal work of Dueker (1999), an array of researches has employed a

discrete choice model framework to study the monetary policy stance of the Federal
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Reserve System. For example, Hamilton and Jordà (2002) used the autoregressive

conditional hazard (ACH) model in combination with the ordered probit model. Hu

and Phillips (2004a,b) extended the work of Park and Phillips (2000) to a nonstation-

ary discrete choice model and studied the monetary policy decision-making process

in Canada and in the US. Kim, Jackson, and Saba (2009) used Hu and Phillips’

models to implement out-of-sample forecast exercises for the Fed’s interest rate set-

ting behavior. Using a similar discrete choice model, Monokroussos (2011) reported

structural changes in the US monetary policy reaction function estimates around

the pre- and the post Volcker eras. Also, Gerlach (2007) employed a discrete choice

model framework to study policy actions of the European Central Bank (ECB), while

Kim (2014) investigated interest rate setting behavior of the Bank of Korea.

There are quite a few papers that study the monetary policy stance decision-

making process of the PBC using qualitative response models. He and Pauwels (2008)

constructed a monetary policy stance index using multiple policy instruments. Then

they studied how macroeconomic and financial variables explain realized policy ac-

tions that are measured by changes in this policy stance variable.2 Constructing a

refined policy stance index variable for a longer sample period, Xiong (2012) inves-

tigated the PBC’s decision making process using a similar discrete choice model.3

Unlike these work, we take a direct approach to study dynamics of specific

policy instruments instead of monetary policy index variables that are constructed

2Instead of using all data series, they used multiple latent common factor components estimated
from a big set of macroeconomic and financial variables via the method proposed by Bai and Ng
(2004).

3He and Pauwels (2008) use the ordered probit model that allows covariates to be nonstationary
(Hu and Phillips, 2004a,b), while Xiong (2012) employs the conventional discrete choice model
where all covariates are stationary.
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by authors. Put it differently, we study policy decision-marking processes of the

PCB in revising the benchmark interest rates that are actually observable to the

public. Therefore, our analysis could provide practically more useful information to

the market participants. In contrast to He and Pauwels (2008) and Xiong (2011), we

employ a constrained ordered probit model that allows policy makers to revise the

interest rate only when the on-going interest rate deviates sufficiently from a newly

calculated optimal interest rate.

Using quarterly frequency data from 1987 to 2013, we estimate an array of our

discrete choice models. Our findings highlight important and statistically significant

roles of inflation and money growth rate in determination of the benchmark interest

rates in China, while output gaps and the foreign exchange rate play negligible roles.

In-sample fit analyses and out-of-sample forecast exercises demonstrate quite robust

and reasonably good performances of our models.

The rest of the paper is organized as follows. Section 2 describes the econometric

model employed in the present paper. In Section 3, we provide a data description

and preliminary test results that present empirical justification of using discrete

choice models. Section 4 reports our probit model estimation results and in-sample

fit analyses. In Section 5, we discuss our out-of-sample forecast exercise results.

Section 6 concludes.
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2.2 The Econometric Model

The People’s Bank of China (PBC) is assumed to set an optimal interest rate

(i∗t ), a latent variable, based on observed exogenous macroeconomic variables (xt) at

time t. We model this by the following linear equation.

i∗t = x′tβ − εt, (2.1)

where β is a k × 1 vector of coefficient and εt denotes a scalar error term.

We assume that the PBC revises the benchmark interest rate (it) only when

the newly calculated optimal interest rate i∗t in (??) deviates sufficiently from the

prevailing interest rate from the previous period (it−1). It is convenient to define the

following deviation variable between i∗t and it−1.

y∗t = i∗t − it−1, (2.2)

where y∗t is also a latent variable. Note that the greater y∗t is (in absolute value), the

stronger the incentive to revise it would be. This framework has been first employed

by Dueker (1999), then by Hu and Phillips (2004a, 2004b) and Kim et al. (2009),

while He and Pauwels (2008) and Xiong (2012) use ordered probit models with no

such concern. Xiong employed a lagged policy stance variable instead, however, he

reported negligible and insignificant coefficient estimates.

We employ a trichotomous discrete choice model. That is, we assume that the

PBC chooses one of the following three policy actions: cut the interest rate (C), let

it stay where it is (S), or raise the interest rate (H), which implies a three-regime
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model that requires two threshold variables, τL and τU . When y∗t is less than the

lower threshold (τL), it would indicate that the PBC should cut the interest rate

(yt = −1). A difference greater than the upper threshold (τU) would require an

interest rate hike (yt = 1), and any minor deviation between τL and τU , an inaction

band, would indicate that the PBC will choose S (yt = 0). Formally,

yt =


−1,

0,

1,

if

if

if

y∗t < τL

τL ≤ y∗t ≤ τU

y∗t > τU

: C

: S

: H

(2.3)

and

Ij,t =


yt(yt−1)

2
,

1− y2t ,
yt(yt+1)

2
,

if

if

if

j = C

j = S

j = H

(2.4)

where Ij,t is the indicator function for each of the realized policy index variables (yt).

The log likelihood function for a random sample of size T , {yt}Tt=1, is the follow-

ing.

L =
T∑
t=1

(Ic,t lnPc (xt : θ) + Is,t lnPs (xt : θ) + Ih,t lnPh (xt : θ)) (2.5)

where θ is the parameter vector (β, τ). The probability function Pj is defined as

follows.

Pj =


1− F

(
x
′
tβ − it−1 − τL

)
,

F
(
x
′
tβ − it−1 − τL

)
− F

(
x
′
tβ − it−1 − τU

)
,

F
(
x
′
tβ − it−1 − τU

)
,

if

if

if

j = C

j = S

j = H

(2.6)
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We assume that F (·) is the standard normal (or logistic) distribution function, that

is, we employ the constrained trichotomous ordered probit (or logit) model where

the coefficient on it−1 is restricted to be −1.

2.3 Data and Preliminary Analysis

2.3.1 Data Descriptions

We use quarterly frequency observations that span from 1987:I to 2013:IV. As

Xiong (2012) pointed out, the PBC has been using a set of policy instruments that

includes its refinancing to banks, benchmark interest rates, and the required reserve

ratio. We focus on the determination of the two benchmark interest rates in China,

the lending rate and the deposit rate, which have been continuously employed by the

PBC for key instruments since 1986.4

Figure 1 around here

We plot these interest rates in the first panel of Figure1. It should be noted

that these interest rates are infrequently revised. Among 106 quarterly observations,

there were 14 cuts and 14 hikes for the benchmark deposit rate (second panel), while

15 cuts and 16 hikes were observed for the lending rate (third panel). That is, the

PBC chose ”stay” decisions with a little over 70% frequency, which implies that

the PBC revises the rates only when the differential between its perceived optimal

4The benchmark lending rate gives the commercial banks a certain degree flexibility in setting
their interest rates based on their credit assessment of their customers. The deposit interest rate is
the rate paid by commercial or similar banks for demand, time, or savings deposits.
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interest rate and the prevailing rate becomes greater than certain threshold values.

The ordered probit model described earlier thus seems to be appropriate to esti-

mate such decision-making processes. Corresponding trichotomous discrete choice

variables (yt = −1, 0, 1) are reported in the last two panels.

We also note that these interest rates exhibit highly persistent dynamics. In

response to the Asian financial crisis in 1997:IV, the deposit rate declined from

7.47% to 5.67% and the lending rate went down from 10.08% to 8.64%. The rates

continued to decrease for about 8 years, then started to increase from 2004:IV until

the beginning of the recent financial crisis in 2008. In what follows, we show that

linear models such as the Taylor rule, which often rely on the ordinary least squares

(OLS) estimator, may not be appropriate to study the interest rate setting behavior

of the PBC under such circumstances, because the OLS estimator may not perform

well in the presence of highly persistent (possibly nonstationary) data.

Inflation (πt) is the quarterly log difference of the All Items Consumer Price

Index (CPI). For the output gap (ỹt), we consider the following two measures:

the quadratically detrended real industrial production index (ỹQt ) and the Hodrick-

Prescott (HP) filtered cyclical component of the real industrial production index

(ỹHt ) setting the smoothing parameter at 1,600 for quarterly data. Money growth

rate (∆mt) is the quarterly log difference of the M1. The appreciation rate of Chinese

Yuan (∆st) is the quarterly log difference of the nominal effective exchange index.

All interest rates are divided by 4 to make them conformable to these quarterly

growth rates. The CPI data is from the Organization for Economic Cooperation and

Development (OECD), and real industrial production index is from the Economist
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Intelligence Unit (EIU) and the National Bureau of Statistics in China. All other

data are obtained from the International Financial Statistics (IFS). We report graphs

of these macroeconomic covariates in Figure 2.

Figure 2 around here

2.3.2 Unit Root Tests

We implement the Augmented Dickey-Fuller (ADF) test for all variables used

in the study. Results are reported in Table 1.

The test fails to reject the null of nonstationarity for the primary lending rate and

the deposit rate even at the 10% significance level, which seems to be consistent with

their highly persistent movements shown in Figure 1. Note that the OLS estimator is

not appropriate when some variables in regression equations are nonstationary. The

ordered probit model employed in this paper, however, can avoid such problems, since

the trichotomous policy index variable yt = {−1, 0, 1} is used instead of potentially

nonstationary interest rates.

It should be also noted that the MLE estimation for the ordered probit/logit

model may yield wrong standard errors if covariates are nonstationary. The proce-

dure proposed by Hu and Phillips (2004a,b) applies in such cases. Since the ADF

test strongly rejects the null of nonstationarity for all covariates irrespective of the

specification of deterministic components, we employ the conventional MLE instead

of Hu and Phillips’ method.
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Table 1 around here

2.3.3 Linear Taylor Rule Model Estimations

For comparison, we first implement estimations for an array of Taylor rules using

the OLS method as follows.

it = α + γππt−1 + γyỹt−1 + Θxt−1 + εt (2.7)

where xt−1 is either a scalar or a vector of additional explanatory variables. γπ and

γy denote the long-run coefficients that provide information on how the central bank

responds to innovations in inflation and the output gap, respectively. Following Xiong

(2012), we assume that policy makers can access information on the macroeconomic

covariate variables with one quarter lag. We also implement estimations for Taylor

rules with the interest rate smoothing consideration (see Clarida, Gaĺı, and Gertler,

2000, for example).

it = α + γsππt−1 + γsy ỹt−1 + Θsxt−1 + ρit−1 + εt (2.8)

Note that the short-run coefficients γsπ and γsy and the smoothing parameter ρ in

(??) jointly imply that the long-run effects on the interest rate are γsπ/(1 − ρ) and

γsy/(1− ρ), which correspond to γπ and γy in (??), respectively.

All estimation results for (??) and (??) are reported in Table 2 for the lending

rate and in Table 3 for the deposit rate. We note that the coefficient on inflation is
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always significant at the 1% level, while that of the output gap is mostly insignificant.

All other explanatory variables are insignificant as well. Further, ỹt−1 and ∆st−1 often

have incorrect signs.5

We also note that these estimates violate the Taylor principle (γπ > 1) no matter

what specifications are used. For example, the implied long-run inflation coefficient is

about 0.40 and 0.60 for the lending rate and the deposit rate, respectively. It should

be also noted that the degree of interest rate inertia measured by ρ in (??) is close

to one. If the interest rate obeys a nonstationary stochastic process, as is implied

by the ADF test in the previous section, the OLS estimates presented in Tables 2

and 3 might not be appropriate. The probit model, however, does not have such a

problem since we use the policy index variable which assumes discrete numbers.

Tables 2 and 3 around here

2.4 Probit Model Estimation and In-Sample Fit Analysis

This section reports our findings based on the probit model estimations described

in Section 2. Our benchmark model (Model 1) is motivated by the Taylor Rule with

an assumption that the policy-makers observe inflation and the output gap with

one period lag. Extended models with additional covariates are also considered.

That is, Models 2 and 3 include ∆mt−1 and ∆st−1, respectively, in addition to the

5Depreciations (decreases in ∆st−1) tend to make inflationary pressure build up, which implies
a negative coefficient on ∆st−1.
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Taylor Rule variables πt−1 and ỹt−1. Model 4 is the full model that includes all key

macroeconomics covariates. Results are provided in Table 4 and 5.

Major findings are roughly tri-fold. First, all threshold estimates are highly sig-

nificant at any conventional levels, which imply that the PBC revises the benchmark

lending and deposit rates only when there is a substantial deviation of the current

rate from the optimal rate. Second, the coefficient estimate on inflation is always

significant, while the output gap coefficient estimates are all insignificant. Third,

Models 2 and 4 estimations show that money growth coefficient is significant at least

at the 10% level, while the yuan appreciation rate (∆st−1) coefficient estimates are

always insignificant.

These results suggest inflation and money growth rate play important roles in

the PBC’s interest rates decision-making process, which is consistent with findings

by He and Pauwels (2008) and Xiong (2012) who also reported an important role of

inflation in understanding the monetary policy stance in China.6

Tables 4 and 5 around here

We implement a robustness check analysis to see how stable these coefficient

estimates are over our sample period. For this purpose, we repeatedly estimate our

model beginning with the first half observations (1987:II to 2000:III) by adding one

additional observation for each round of estimations, which gives 52 sets of coefficient

estimates for each model. We report results in Figure 3 for the lending rate and

6Shu and Ng (2010) use a narrative approach by compiling indices of the PBC’s policy stance
on the basis of meeting notes and the policy statements. They also find that the money growth
rate and inflation are key determinants of the monetary policy in China.
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in Figure 4 for the deposit rate, which confirms the robustness of our full-sample

estimates. The inflation coefficient estimates are significant at the 5% level and the

money growth rate coefficient estimates are mostly significant at the 10% level. The

output gap coefficient estimates are negligible and always statistically insignificant.

Figures 3 and 4 around here

Next, we evaluate our ordered probit models for the PBC’s decision-making

process in terms of the in-sample fit performance analysis. For this purpose, we

report correct prediction rates of our models in Tables 6 and 7. For the benchmark

lending rate, Model 1 predicted 5 C decisions correctly out of 15 actual cut decisions,

resulting in a 33% success rate. The model correctly predicted 85% of S decisions,

while its prediction success rate for H decisions was 13%. Combining all results,

Model 1’s overall performance was 66%. Models 2, 3, and 4 performed similarly.

The in-sample-fit performances for the deposit rate are also similar to those of the

lending rate.

Tables 6 and 7 around here

It should be noted that the overall success rate is heavily influenced by high suc-

cess rates for S decisions, which is about 70.75% for the lending rate and 73.58% for

the deposit rate. On the other hand, we have very low success rates for C and H de-

cisions that occur infrequently. Note that these results are obtained when predictions
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are formulated solely based on the point estimates. Given the uncertainty around

the point estimates, one has to be more careful about making reliable statistical

inferences. For this purpose, we calculate the probability of each policy intervention

for all observation points using the estimated coefficients in Model 2. In Figures 5

and 6, the estimated probabilities are illustrated with actual decisions (bar graphs)

over the full sample period. These figures show that our models explain changes in

the probabilities fairly well. The probability of each event tends to rise rapidly when

corresponding actions take place. For instance, the probability of a C goes up rapidly

during the Asian financial crisis around in 1998. Also, the estimated probability of

an H climbs up fast around 2007 and 2011 when the PBC raised the interest rates

several times.

As to mismatches between the predicted possibilities and the actual decisions in

these figures, we might rely on the following institutional features of the monetary

decision-making process in China. Although the PBC might propose that it was time

to take certain policy actions based on macroeconomic or financial market signals,

the State Council might not be in a position to dispose in a timely manner because

it makes decisions based on consensus. In other words, other ministries (e.g. the

National Development and Reform Commission, the Ministry of Commerce, and the

Ministry of Finance) will need to be on board with the proposed change in monetary

policy stance before the State Council makes a decision. Therefore, there might be

some time lags between PBC’s proposals and the State Council’s disposal.

Figures 5 and 6 around here
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Recall that the our models predict C and H decisions less successfully when we

use the point estimates for τL and τU . Recognizing the uncertainty around these point

estimates for thresholds, we re-evaluate the in-sample performance of our models

as follows. In Figure 7, we plot the estimated latent variable y∗t from Models 2

for the lending rate and deposit rate along with the estimates for τL and τU and

their 95% confidence bands. Obviously, a more compact inaction band such as

[τL + std(τL), τU − std(τU)] will yield more C and H predictions with a cost of lower

success rates for S decisions. With such a strategy, overall in-sample fit performance

declines because of substantial decreases in the success rate for S decisions (see Tables

8 and 9). However, we observe significantly higher success rates for other decision

choices.

Figure 7 around here

Tables 8 and 9 around here

2.5 Out-of-Sample Forecasting

This section evaluates the out-of-sample predictability of our ordered probit

models for the interest rate setting behavior in China. Predicting the PBC’s revision

decisions on these rates provides crucially useful information not only to financial

market participants but also entrepreneurs who make important investment deci-

sions.
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We first implement our exercises by a recursive method with the first half of

the observations as the split point. The recursive forecasting approach begins with a

memory window of 2000:III from the beginning point. That is, we start calculating

one-period ahead forecast on the policy variable (C, S, and H) using first 53 observa-

tions. Then adding the 54th observation, we re-estimate and formulate the forecast

of the next policy outcome with this expanded set of observations. We continue to

do this until we forecast the last policy action in 2013:III using the full sample data

from 1987:I to 2013:II.

As is well-known, the recursive forecasting strategy may not perform well if there

are structural changes in the underlying data generating process. Put it differently,

if regime changes occur some time during the early period of analysis, then including

earlier data in the estimation could reduce the forecastability of our model. To

address this possibility, we also employ a fixed rolling window approach described as

follows.

Here we begin with the same initial 53 observations. After estimating and

predicting the first policy action, we add the 54th observation, but drop the 1st

observation, thereby retaining an updated 53-observation estimation window, which

is used to produce the next policy outcome. We repeat this procedure until we

forecast the last policy outcome variable using the last sample set of 53 observations.

We report calculated out-of-sample probabilities of cuts and hikes in Figures 8

and 9, for the lending rate and the deposit rate, respectively. Realized C and H

policies are also reported in bar graph.
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We note that the rolling window method performs better than the recursive

method in our experiment. The probability of a cut increases faster with the rolling

window scheme. Similarly, the probability of a hike rises rapidly reaching almost

100% with the rolling window, while the highest probability with the recursive

method was below 50%. We observed similar out-of-sample forecast performances

for the deposit rate. These findings suggest that some changes, either gradual or

abrupt, have occurred to the PBC’s interest rate setting behavior. In Figures 3 and

4, we noted that inflation and money growth coefficients decreased steadily, which

might have been caused by relatively moderate movements of macroeconomic vari-

ables including inflation (see Figure 2). Also, as we can see in Figure 1, revisions to

the benchmark interest rates have been quite modest in absolute sizes compared with

earlier adjustments. All these observations imply that the PBC is moving toward

the direction of fine-tuning the interest rate.

Figures 8 and 9 around here

2.6 Concluding Remarks

This paper estimates the response function of the PBC to changes in macroe-

conomic variables as to revisions of their benchmark interest rates: the deposit rate

and the lending rate. We employ an array of constrained ordered probit models for

quarterly frequency data from 1987 to 2013, because the conventional least squares

estimator for Taylor rule type models seems inappropriate given inertial movements
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of these policy interest rates. Our preliminary analysis also justifies the use of qual-

itative response models.

We find that the PBC’s interest rate setting behavior could be well-explained

by discrete responses to changes in inflation and in money growth rate. Output

gaps and the yuan appreciation rate seem to play negligible and insignificant roles

in determining revision decisions on these benchmark interest rates. We evaluated

our models using an in-sample fit criteria, which demonstrated fairly good perfor-

mances. We also implemented out-of-sample prediction exercises, employing both

the recursive and the fixed rolling window schemes with initial 50% observations as a

split point. Our model performed fairly well especially when the fixed rolling window

method is used.
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Table 1. Augmented Dickey-Fuller Test Results

ADFc ADFt

iLt −1.308 −2.721

iDt −1.162 −1.974

πt −3.845‡ −4.170‡

ỹQt −3.366† −3.363∗

ỹHt −4.313‡ −4.305‡

∆mt −4.149‡ −4.459‡

∆st −9.404‡ −9.594‡

Note: ADFc and ADFt denote the augmented Dickey-Fuller unit root test

statistics when an intercept is included and when both an intercept and

time trend are present, respectively. We select the number of lags by the

general-to-specific rule with a maximum 12 lags and the 10% significance

level. *, †, and ‡ denote rejections of the unit root null hypothesis at the

10%, 5%, and 1% significance level, respectively.
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Table 2. Linear Taylor Rule Coefficient Estimations: Lending Rates

Long-Run Coefficients

πt−1 0.166(0.024) 0.165(0.025) 0.171(0.027) 0.171(0.028)

ỹt−1 −0.004(0.026) −0.003(0.027) −0.008(0.028) −0.008(0.029)

∆mt−1 n.a. 0.002(0.016) n.a. 0.002(0.016)

∆st−1 n.a. n.a. 0.004(0.009) 0.004(0.009)

Short-Run Coefficients with Interest Rate Smoothing

πt−1 0.037(0.007) 0.036(0.007) −0.038(0.008) −0.037(0.008)

ỹt−1 −0.002(0.007) −0.001(0.007) −0.003(0.007) −0.002(0.007)

∆mt−1 n.a. 0.001(0.004) n.a. 0.001(0.004)

∆st−1 n.a. n.a. 0.001(0.002) 0.001(0.002)

it−1 0.904(0.023) 0.903(0.023) 0.903(0.023) 0.903(0.023)

Note: Standard errors are in parenthesis. Output gap is the HP cyclical

component. Using the quadratically detrended gap yields qualitatively

similar results. All results are available upon request.
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Table 3. Linear Taylor Rule Coefficient Estimations: Deposit Rates

Long-Run Coefficients

πt−1 0.268(0.033) 0.264(0.043) 0.265(0.035) 0.262(0.036)

ỹt−1 0.009(0.018) 0.011(0.018) 0.001(0.018) 0.011(0.019)

∆mt−1 n.a. 0.015(0.023) n.a. 0.015(0.023)

∆st−1 n.a. n.a. −0.002(0.013) −0.002(0.013)

Short-Run Coefficients with Interest Rate Smoothing

πt−1 0.046(0.008) 0.045(0.008) 0.049(0.009) 0.048(0.009)

ỹt−1 −0.004(0.004) −0.004(0.004) −0.006(0.004) −0.005(0.004)

∆mt−1 n.a. 0.007(0.005) n.a. 0.008(0.005)

∆st−1 n.a. n.a. 0.004(0.003) 0.004(0.003)

it−1 0.923(0.020) 0.922(0.019) 0.924(0.019) 0.923(0.019)

Note: Standard errors are in parenthesis. Output gap is the HP cyclical

component. Using the quadratically detrended gap yields qualitatively

similar results. All results are available upon request.
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Table 4. Probit Model Estimations: Lending Rates

Model 1 Model 2 Model 3 Model 4

πt−1 0.289(0.077) 0.263(0.073) 0.290(0.090) 0.262(0.084)

ỹt−1 −0.006(0.060) 0.023(0.059) −0.006(0.071) 0.024(0.066)

∆mt−1 n.a. 0.063(0.034) n.a. 0.063(0.034)

∆st−1 n.a. n.a. 0.000(0.029) −0.001(0.027)

τL −0.793(0.145) −0.843(0.144) −0.793(0.145) −0.844(0.144)

τU 0.757(0.124) 0.797(0.139) 0.757(0.124) 0.797(0.139)

Note: Standard errors are in parenthesis. Output gap is the HP cyclical

component. Using the quadratically detrended gap yields qualitatively

similar results. All results are available upon request.

Table 5. Probit Model Estimations: Deposit Rates

Model 1 Model 2 Model 3 Model 4

πt−1 0.442(0.103) 0.399(0.096) 0.462(0.126) 0.418(0.118)

ỹt−1 −0.003(0.083) 0.049(0.086) −0.022(0.087) 0.031(0.095)

∆mt−1 n.a. 0.113(0.055) n.a. 0.113(0.055)

∆st−1 n.a. n.a. 0.015(0.034) 0.016(0.032)

τL −1.206(0.207) −1.321(0.229) −1.207(0.212) −1.320(0.232)

τU 1.208(0.184) 1.311(0.230) 1.207(0.186) 1.308(0.230)
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Note: Standard errors are in parenthesis. Output gap is the HP cyclical

component. Using the quadratically detrended gap yields qualitatively

similar results. All results are available upon request.
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Table 6. In-sample Fit evaluations Base on Point Estimates: Lending

Rate

Model 1 Model 2

Cut Stay Hike Cut Stay Hike

Cut predicted 5 6 0 4 4 0

Stay predicted 10 63 14 11 67 13

Hike predicted 0 5 2 0 4 3

Correct Prediction (%) 33% 85% 13% 27% 89% 19%

Overall Performance (%) 66% 70%

Model 3 Model 4

Cut Stay Hike Cut Stay Hike

Cut predicted 5 6 0 5 6 0

Stay predicted 10 63 14 10 63 14

Hike predicted 0 5 2 0 5 2

Correct Prediction (%) 33% 85% 13% 33% 85% 13%

Overall Performance (%) 66% 66%

Note: In-sample fit results are based on the point estimates for the latent

equation coefficients and the threshold values.
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Table 7. In-sample Fit evaluations Base on Point Estimates: Deposit

Rate

Model 1 Model 2

Cut Stay Hike Cut Stay Hike

Cut predicted 3 3 0 3 3 0

Stay predicted 11 71 12 11 71 12

Hike predicted 0 3 2 0 3 2

Correct Prediction (%) 21% 92% 14% 21% 92% 14%

Overall Performance (%) 72% 72%

Model 3 Model 4

Cut Stay Hike Cut Stay Hike

Cut predicted 3 3 0 3 2 0

Stay predicted 11 71 12 11 73 12

Hike predicted 0 3 2 0 2 2

Correct Prediction (%) 21% 92% 14% 21% 95% 14%

Overall Performance (%) 72% 74%

Note: In-sample fit results are based on the point estimates for the latent

equation coefficients and the threshold values.
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Table 8. In-sample Fit evaluations with Point Estimates and Standard

Errors: Lending Rate

Model 1 Model 2

Cut Stay Hike Cut Stay Hike

Cut predicted 6 8 0 6 9 0

Stay predicted 9 61 13 9 60 12

Hike predicted 0 5 3 0 5 4

Correct Prediction (%) 40% 82% 19% 40% 81% 25%

Overall Performance (%) 67% 67%

Model 3 Model 4

Cut Stay Hike Cut Stay Hike

Cut predicted 6 8 0 6 9 0

Stay predicted 9 61 13 9 60 12

Hike predicted 0 5 3 0 5 4

Correct Prediction (%) 40% 82% 19% 40% 81% 25%

Overall Performance (%) 67% 67%

Note: In-sample fit evaluations are based on the point estimates for the

latent equation coefficients and the threshold values adjusted by their

standard errors. The inaction band for this table is [τL + std(τL), τL −

std(τL)].
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Table 9. In-sample Fit evaluations with Point Estimates and Standard

Errors: Deposit Rate

Model 1 Model 2

Cut Stay Hike Cut Stay Hike

Cut predicted 4 5 0 5 7 0

Stay predicted 10 67 12 9 66 10

Hike predicted 0 5 2 0 4 4

Correct Prediction (%) 29% 87% 14% 36% 86% 29%

Overall Performance (%) 70% 71%

Model 3 Model 4

Cut Stay Hike Cut Stay Hike

Cut predicted 5 6 0 5 8 0

Stay predicted 9 66 12 9 65 10

Hike predicted 0 5 2 0 4 4

Correct Prediction (%) 36% 86% 14% 36% 84% 29%

Overall Performance (%) 70% 70%

Note: In-sample fit evaluations are based on the point estimates for the

latent equation coefficients and the threshold values adjusted by their

standard errors. The inaction band for this table is [τL + std(τL), τL −

std(τL)].
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Figure 1. Interest Rates and Policy Actions
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Figure 2. Key Macroeconomic Covariates

Note: We use two measures of the output gap: quadratically detrended

real industrial production (solid) and the cyclical component of real in-

dustrial production(dashed) by the Hodrick-Prescott filter. Two detrend-

ing methods produce similar output gaps. Inflation is the quarterly

change in the log CPI. The money growth rate denotes the quarterly

change in the log M1. The yuan appreciation rate is the quarterly change
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in the log nominal effective exchange rate, which is a trade weighted aver-

age of the nominal exchange rates of renminbi relative to a set of foreign

currencies.
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Figure 3. Constancy of the Latent Coefficient Estimates: Lending Rate

Note: We recursively estimate the latent equation coefficients repeatedly

beginning with the initial half of the sample period, 1987:I to 2000:II,

adding one more observation in each round of estimations. Dashed lines

are corresponding 95% confidence bands.
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Figure 4. Constancy of the Latent Coefficient Estimates: Deposit Rate

Note: We recursively estimate the latent equation coefficients repeatedly

beginning with the initial half of the sample period, 1987:I to 2000:II,

adding one more observation in each round of estimations. Dashed lines

are corresponding 95% confidence bands.
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Figure 5. In-Sample Fit Performance of Probit Models: Lending Rate

Note: We calculate estimated in-sample probabilities for each policy ac-

tion from the model with the covariates (πt−1, ỹ
H
t−1,∆mt−1). Bar graphs

indicate realized policy actions.
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Figure 6. In-Sample Fit Performance of Probit Models: Deposit Rate

Note: We calculate estimated in-sample probabilities for each policy ac-

tion from the model with the covariates (πt−1, ỹ
H
t−1,∆mt−1). Bar graphs

indicate realized policy actions.

71



Figure 7. Deviations from the Optimal Rate and Thresholds: Lending

Rate

Note: We calculate deviations from the optimal interest rate (y∗t = i∗t −

it−1) along with the upper and lower threshold values (τU , τL) from the

model with the covariates (πt−1, ỹ
H
t−1,∆mt−1). Dashed lines are τU and

τL point estimates and dotted lines are their associated one standard

deviation confidence bands.
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Figure 8. Out-of-Sample Forecast Performance: Lending Rate

Note: We calculate the one-period ahead out-of-sample forecast probabil-

ity of each policy action using the model with the covariates (πt−1, ỹ
H
t−1,∆mt−1).

Bar graphs indicate realized events for each action. Out-of-sample fore-

casting is done with the recursive method and the fixed rolling window

method, both beginning with the first half observations (53 initial obser-

vations).
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Figure 9. Out-of-Sample Forecast Performance: Deposit Rate

Note: We calculate the one-period ahead out-of-sample forecast probabil-

ity of each policy action using the model with the covariates (πt−1, ỹ
H
t−1,∆mt−1).

Bar graphs indicate realized events for each action. Out-of-sample fore-

casting is done with the recursive method and the fixed rolling window

method, both beginning with the first half observations (53 initial obser-

vations).
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Chapter 3

Estimating Interest Rate Setting Behavior in Korea:

A Constrained Ordered Choices Model Approach

3.1 Introduction

When and to what extent central banks revise their target interest rates draw

substantial attention of the public. In Korea, the Monetary Policy Committee (MPC)

of the Bank of Korea (BOK) meets every month to revise the target RP rate (policy

interest rate) that plays a key role in determining the interbank overnight interest

rate, which is a market interest rate.1The present paper employs a discrete choice

model approach to study the interest rate setting behavior of the BOK.

There are quite a few papers that investigate the BOKs monetary policy decision-

making process using linear or nonlinear Taylor rules that specifies the policy interest

rate as a continuous variable on a non-negative support.2 For example, Eichengreen

(2004) and Park (2008) report statistically significant roles for the real exchange

rate, inflation, and output gaps from their linear Taylor rule estimations for the

BOK, while Aizenman, Hutchinson, and Noy (2008) report a weak role of the out-

put from their panel estimations for 16 emerging market countries including Korea.

On the other hand, Oh (2006), Kwon (2007), Kim and Seo (2008), and Koo, Paya,

1Since the BOK officially employed the inflation targeting system in 1998, they have been im-
plementing monetary policies by setting policy interest rates such as the target RP rate

2Nominal interest rates are bounded below by 0%.
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and Peel (2012) employed nonlinear Taylor rule type policy rules, finding somewhat

mixed evidence of nonlinearity.

To the best of our knowledge, our paper is the first attempt that employs a

discrete choice model to approximate the BOKs interest rate setting behavior. The

motivation of this approach is the following. The MPC does not revise the target

interest rate continuously. Historically, the MPC holds monthly meetings and revises

the target RP rate in multiples of 25 basis points. For instance, they may cut the

target rate by 0.50%, or they may give a 0.25% interest rate hike, or they may let it

stay where it is. These discrete actions may be better investigated using qualitative

response (discrete choices) models such as the ordered probit model.

In the case of the US, Dueker (1999) followed by Hamilton and Jord (2002),

initiated a seminal study on the Feds rate decision process by employing discrete

choice model frameworks, the ordered probit and the autoregressive conditional haz-

ard models, respectively. Hu and Phillips (2004a) extended the work by Park and

Phillips (2000) on the nonstationary binary choice model to a nonstationary dis-

crete choice model, then estimated the Feds policy decision-making process, allowing

the covariates in their latent equation to be nonstationary.3Kim, Jackson, and Saba

(2009) employed the method of Hu and Phillips (2004a, 2004b) to out-of-sample fore-

cast the Feds monetary policy actions. Xiong (2012) used the ordered probit model

to investigate the monetary policy stance of the Peoples Bank of China.

3Hu and Phillips (2004b) also investigated the Bank of Canadas monetary policy behavior using
a similar methodology. Phillips, Jin, and Hu (2005) corrected the errors in Hu and Phillips (2004b)
with regard to the convergence rates of Maximum Likelihood estimates
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We employ an array of (constrained) ordered choices models that include the

probit model, the logit model, and the newly proposed robit model (Liu, 2005), for

the period between January 2000 and September 2013.4 Unlike Kim et al. (2009) and

Hu and Phillips (2004a, 2004b), we dont correct for nonstationarity, because we did

not find any strong evidence of nonstationarity in the covariates we consider in this

paper. We obtain solid evidence of important roles for the output gap and the won-

dollar depreciation rate in understanding the Bank of Koreas rate decision-making

process.

We report good in-sample fit performance of our models in predicting changes in

the monetary policy stance of the BOK. Also, we implement out-of-sample forecast

exercises using September 2008 (Bankruptcy of Lehman Brothers) as a split point.

We obtained empirical evidence that shows satisfactory out-of-sample predictability

with the recursive and the fixed size rolling window methods. We also show prediction

accuracy for the rate cut and the rate hike decisions can improve greatly by employing

standard error adjusted inaction bands.

The organization of the paper is as follows. Section 2 describes the main econo-

metric model used in the present paper. In Section 3, we provide a data description

and preliminary statistical analysis including unit root test results and linear Taylor

rule model estimates. Section 4 reports and interprets the coefficient estimates from

4A referee pointed out that forecasting cut or hike decisions might be more important than
predicting stay decisions correctly. For this purpose, the referee suggested to use the robit model
that may help improve the fit of tails.
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the probit, the logit, and the robit model. In Section 5, we present our in-sample-

fit performance analyses and discuss the results. Section 6 reports out-of-sample

prediction results. Section 7 concludes.

3.2 The Econometric Model

We assume that policy makers at the BOK set their target interest rate i∗t by

the following linear function at time t.

i∗t = x′tβ − εt, (3.1)

where xtisak?1vectorofmacroeconomiccharacteristicsvariables(covariates)oftheeconomy.Notethatthetargetoptimalinterestrate(i∗t )

is not directly observable, that is, it is a latent variable. As in Kim et al. (2009) and

Hu and Phillips (2004a, 2004b), we define another latent variable as follows.

y∗t = i∗t − it−1 = x′tβ − it−1 − εt, (3.2)

where it−1 is the market interest rate (interbank call rate) in previous period. Note

that y∗t measures deviations of the new optimal interest rate from the previous period

market interest rate. That is, the greater y∗t is in absolute value, the stronger the

incentive to revise the target interest rate is.

We assume that the MPC of the BOK makes policy decisions on the target

interest rate (target RP rate) in the following manner. Since rate revisions have his-

torically been made in multiples of 25 basis points during monthly regular meetings,

it seems to be reasonable to expect minor divergence of i∗t from it−1 to elicit no policy
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action. Put it differently, the MPC might revise the target interest rate only when

y∗t exceeds some threshold values.

We assume that there are three policy actions: cut (C) the interest rate, let it

stay (S) where it is, or hike (H) the interest rate, which implies three regimes for

the support of y∗t . These three regimes suggest that there are two thresholds, τL

and τU such that a difference, y∗t=i
∗
t - it−1), less than the lower threshold τLwould

indicate that the interest rate should be lowered, a difference greater than the upper

threshold τU would indicate that the MPC should raise the target RP rate, and any

difference between the two thresholds, say, an inaction band, would indicate that

the target RP rate should not be changed.5We allow the inaction band [τL,τU ] to

be asymmetric because we do not impose any restriction on the thresholds. We may

assume τL=-τU for symmetric bands when τL is restricted to be less than zero.. Based

on this trichotomous-choice model framework, we define the following policy index

measure yt and its associated indicator functions Ij,t.

yt =


−1,

0,

1,

if

if

if

y∗t < τL

τL ≤ y∗t ≤ τU

y∗t > τU

: C

: S

: H

(3.3)

and

Ij,t =


yt(yt−1)

2
,

1− y2t ,
yt(yt+1)

2
,

if

if

if

j = C

j = S

j = H

(3.4)

5We allow the inaction band [?L, ?U ]tobeasymmetricbecausewedonotimposeanyrestrictiononthethresholds.Wemayassume?L =
−?Uforsymmetricbandswhen?Lisrestrictedtobelessthanzero.
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Unlike y∗t , the policy variable yt is observable. The log likelihood function for a

random sample of size T , {yt}Tt=1, is given as follows

L =
T∑
t=1

(Ic,t lnPc (xt : θ) + Is,t lnPs (xt : θ) + Ih,t lnPh (xt : θ)) (3.5)

where θ is the parameter vector (β, τ). The probability function Pj is defined as

follows.

Pj =


1− F

(
x
′
tβ − it−1 − τL

)
,

F
(
x
′
tβ − it−1 − τL

)
− F

(
x
′
tβ − it−1 − τU

)
,

F
(
x
′
tβ − it−1 − τU

)
,

if

if

if

j = C

j = S

j = H

(3.6)

We consider the following three types of constrained ordered choices models.

When F (·) is assumed to be the standard normal distribution function, the model

becomes the constrained ordered probit model with a restriction on the coefficient

of the previous period interbank call rate (it−1) that appears in y∗t .
6Similarly, we

employ the logit model as well as the newly proposed robit model (Liu, 2005) that

use the logistic and the t-distribution functions, respectively. Since the robit model

approximates the probit model as the degree of freedom goes to infinity, we focus on

cases when the degree of freedom is fairly small to ensure the distribution to have a

fat tail property. 7

6Note that its coefficient is restricted to be -1, since we are interested in the divergence measure
of newly set optimal interest rate from the current market interest rate.

7The robit model approximates the logit model when the degree of freedom is seven. See Liu
(2005) for details.
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3.3 Data Descriptions and Preliminary Estimation Results

3.3.1 Data Descriptions

We use monthly frequency observations that span from January 2000 to Septem-

ber 2013. The target RP rate (iRt ) is used as the policy interest rate of the BOK,

which directly influences the interbank overnight interest rate (call rate, iCt ). 8 Infla-

tion (πt) is the monthly log difference of the Consumer Price Index (CPI). As to the

output gap (ỹt), we consider the following two conventional measures: the quadrati-

cally detrended real industrial production index (ỹQt ) and the Hodrick-Prescott (HP)

filtered cyclical component of the real industrial production index (ỹHt ). 9 M2 growth

rate (∆mt) is the monthly log difference of the M2, while the won depreciation rate

(∆st) denotes the monthly log difference of the Korean won price of one US dollar.

Long-short spread (∆st) is the 3-year government bond yield minus the 3-month gov-

ernment bond interest rate. All interest rates were transformed to monthly interest

rates by dividing them by 12. We obtained all data from the BOK.

We plot the target RP rate and the call rate on the first panel of Figure 1,

which exhibit very persistent co-movement dynamics over time. It should be noted

that there is a sharp decline in these rates right after the recent financial crisis that

began in September 2008. Changes in the target RP rate appear on the second

panel, which clearly show that the MPC has revised the target rate infrequently in

8The target RP rate and the call rate correspond to the target federal funds rate and the effective
federal funds rate in the US, respectively, prior to the recent US financial crisis.

9For the quadratically detrended gap, we demeaned and detrended the real industrial production
using an intercept, linear trend, and quadratic trend. See Clarida, Gal, and Gertler (2000), among
others, who employed the same method. We separated HP cyclical components of the monthly real
industrial production using 125,000 for the smoothing parameter.
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multiples of 25 basis points. More specifically, there were 16 cuts (C) and 15 hike

(H) decisions, while the MPC chose not to revise (S) the rate in the remaining 131

meetings. Furthermore, only for 5 out of 31 non-Stay (C or H) decisions, the MPC

changed the target rate by more than 25 basis points. These observations led us

to simplify the model to a trichotomous discrete choices model that is graphically

represented on the third panel of Figure 1, which renders -1, 0, and 1 for cases of C,

S, and H, respectively. 10

Figure 1 around here

We also provide graphs for the remaining macroeconomic variables in Figures 2

and 3. For the output deviations shown in Figure 2, we note virtually no meaningful

differences between the quadratically detrended gap (ỹQt ) and the HP filtered gap

(ỹHt ). Hence, in what follows, we provide our major empirical findings with ỹHt only.

As can be seen in Figures 1, 2, and 3, all variables other than policy-related

interest rates in the present paper seem to exhibit low degree persistence, which is

desirable for the maximum likelihood estimator (MLE), because the MLE may yield

wrong standard errors when there are nonstationary covariates (Park and Phillips,

2000; Hu and Phillips, 2004a,b).11 In what follows, we provide formal test results

that imply stationarity of all covariates in our latent variable equation (1).

10Adding additional thresholds, we may extend the model to incorporate these 50 and 100 basis
points changes. Since these are quite rare events (5 out of 162 observations), a trichotomous
specification seems to be a more efficient choice.

11However, this caveat does not apply to out-of-sample forecast when one uses point estimates
to formulate the conditional expectation (see Kim et al., 2009).
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On the other hand, target RP rate (iRt ) and call rate (iCt ) exhibit very high

degree persistence, which may have issues in statistical inferences when the Least

Squares (LS) estimator is employed, because these data may contain a unit root.

However, since we use discrete choice models for the policy variable, this does not

cause such a problem in our models, because we transform the target RP rate into

policy actions that have integer values -1,0,1. The (lagged) call rate in (2) is still a

continuous variable. This is not a problem again, because its coefficient is constrained

to be -1, so we do not estimate it.

Figures 2 and 3 around here

3.3.2 Unit Root Tests

We first implement the augmented Dickey-Fuller (ADF) test for all variables

used in the present paper. The current empirical literature on the monetary policy

heavily relies on the LS estimator or the generalized method of moments (GMM)

estimator. For instance, one may use the LS estimator for backward looking Taylor

rules, while the GMM estimator may be used for forward-looking Taylor rules (see

Clarida et al., 2000). Since the LS and the GMM estimators require stationary

dependent and independent variables, we first implement the conventional ADF test

and report results in Table 1.

The ADF test rejects the null hypothesis of nonstationarity at the 5% signifi-

cance level for the inflation rate, both output gap measures, and the won depreciation
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rate against the US dollar when an intercept is included and when both an intercept

and time trend are included in the regression. The test rejects the null at the 10%

level for the long-short spread and the M2 growth rate when an intercept is included.

In a nutshell, all candidate covariate variables seem to exhibit fairly low persistence

over time. These results are also consistent with eyeball metrics from Figures 2 and

3.

On the contrary, the test fails to reject the null of nonstationarity for the target

RP rate and the interbank call rate even at the 10% significance level. They also

show highly persistent movements as we can see in Figure 1. Since these (nominal)

interest rate variables are bounded below by 0%, it is not technically appropriate to

claim that they are nonstationary. However, they may still exhibit locally nonstation-

ary movements which may hinder proper statistical inferences when one implement

estimations for Taylor rule type linear regression models.

Table 1 around here.

3.3.3 Linear Taylor Rule Estimations

This subsection implements estimations for an array of Taylor rules using the

LS method for the following equation.

it = α + γππt−1 + γyỹt−1 + Θsxt−1 + εt (3.7)
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where xt−1) is either a scalar or a vector of additional explanatory variables. Note

that we assume that policy makers can access information on the macroeconomic

variables with one-month lag. We also implement estimations for Taylor rules with

the interest rate smoothing consideration (see Clarida et al., 2000, for example),

it = α + γsππt−1 + γsy ỹt−1 + Θsxt−1 + ρit−1 + εt (3.8)

where ρ measures the degree of interest rate inertia. Note also that the coefficient

with a subscript S denotes the short-run coefficient. For example, γπ=γsπ/(1− ρ) is

the long-run coefficient on the inflation rate. Put it differently, if ρ=0.75 and γπ=1.5,

then the central bank responds to a 1% inflation gap by raising the nominal interest

rate by 0.375% (γsπ = 1.5?0.25 = 0.375)contemporaneouslybutwillcontinuetoraiseitby1.5%inthelong−

run.

All estimation results for (??) and (??) are reported in Table 2. We note that

the coefficient on the output gap is always significant at the 1% level, while the

coefficient on inflation is mostly insignificant. All other explanatory variables seem

overall highly significant.

However, the long-run coefficients for the won depreciation rate and the long-

short spread have incorrect signs when the interest rate smoothing is not considered.

For example, when the won depreciates against the US dollar, the BOK may raise the

target interest rate because inflationary pressure tends to build up, which implies a

positive sign for the won depreciation rate. The conventional expectation hypothesis

of the term structure of interest rates implies that widening long-short spread reflects

higher expected inflation in near future, which then implies a positive sign as well
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by the same token. The LS estimator yielded a correct sign for the coefficients of

∆st−1 and ∆lst−1 only when the interest rate smoothing is incorporated. Our overall

findings from these estimations include: (i) coefficient estimates for ? that are close

to one; (ii) quantitatively smaller short-run coefficient estimates for most explanatory

variables than those of (??); (iii) correct signs for the won depreciation rate and the

long-short spread. It should be noted that (i) and (iii) imply that the equation

(??) may be mis-specified since it ignores very high degree persistence, possibly

nonstationarity, in the policy interest rate. Hence, including the lagged dependent

variable (it−1)) as in (??) may yield better estimates as long as it is stationary. But

if the interest rate obeys a nonstationary stochastic process, statistical inferences

based on these linear models may not be valid. Further, the estimated long-run

coefficients for inflation in either specification seem to violate the Taylor Principle

that requires γπ¿1 for the determinacy of inflation. For example, the first model for

(??) yields γsπ=0.005 and ρ=0.961, thus the long-run coefficient becomes γπ=0.161

that is strictly less than 1. Since γπ¡1, inflation may become indeterminate, which

seems to be at odds with stable inflation dynamics in Korea since 2000.

Table 2 around here

These findings all together imply that linear Taylor rules may not be ideal to

investigate monetary policy decision-making processes in Korea. We avoid these

potential issues by employing a qualitative response model for the monetary policy

decision-making process. We report our findings in the next section.
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3.4 Constrained Ordered Choices Model Estimations

This section reports our estimation results for the latent equation (??) via the

three ordered choices models, the probit model, the logit model, and the robit model

that uses the t-distribution with 5 degrees of freedom. We implement an array of

economic models with alternative sets of covariates. Our backward looking models

assume that the MPC observes key macroeconomic variables with one month lag.

For instance, we estimate the coefficients for the past inflation rate (πt−1) and the

output gap (ỹt−1) in the latent equation (Model Taylor B). We also estimate extended

version models with additional covariates, again with one month lag. Probit model

estimates for these backward looking models are provided on the first panel of Table

3.

Major findings are as follows. First, all threshold estimates are highly significant

at least at the 10% level, which support the conjecture that the MPC revises the

target RP rate only when theres a substantial deviation from the optimal rate based

on the state of the economy. Second, the coefficient estimates for the output gap are

highly significant at the 1% for 3 out of 5 models. The coefficient is significant at the

5% and 10% levels for the remaining two models. Third, the inflation rate is signifi-

cant at the 10% level for 3 out of 5 models, which is somewhat surprising because the

BOK has employed the inflation targeting system since 1998.12 However, this does

not necessarily imply that the BOK has neglected the inflation targeting system, be-

cause output gaps provide information on accelerating inflationary pressure, which

12The BOK switched from the total CPI inflation to the core CPI inflation for the period between
2000 and 2006. They returned to the total CPI inflation in 2007. Replacing πt with the core inflation
yields similar results, because these two inflation measures exhibit quite similar dynamics over time.
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can be realized in near future. Highly significant coefficient estimates for ỹt, there-

fore, implies that the BOK has responded to expected inflation instead of realized

inflation. Fourth, the M2 growth rate, the won depreciation rate, and the long-short

spread have overall correct signs, but none was significant at the conventional level.

We then implement estimations with alternative assumptions on the information

set of the MPC. Results are reported on the second panel of Table 3. Taylor C model

utilizes the current period Taylor Rule variables (πt, ỹt), assuming that the MPC can

observe those variables without delay. We obtained significant coefficients for ỹt and

the threshold values, τL and τU , but not for πt. Next, we try an array of hybrid

models, recognizing that the MPC is able to observe the current period financial

market variables such as the won depreciation rate (∆st) and the long-short spread

(∆lst). Interestingly, the coefficient on ∆st has a correct sign and significant at the

10% in Taylor H1 model, while the coefficient on ∆st−1) was insignificant in Taylor

B2 and Taylor B4 models. The current period long-short spread (∆lst) has a correct

sign but is not significant. In all cases, the inflation rate is insignificant, while the

coefficient on the output gap is always significant. We again find strong evidence

of nonlinear adjustments of the target RP rate, because all threshold estimates are

significant.

Table 3 around here

Logit model coefficient estimates (Table 4) are overall larger than but qualita-

tively similar as those from the probit model. The coefficient on the output gap is
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highly significant at the 1% level in all models we consider, whereas the inflation rate

coefficient estimates are insignificant at any conventional significance levels. The cur-

rent won depreciation rate (∆st) and the long-short spread have the correct sign and

are highly significant at the 1% level. All threshold estimates are highly significant

at the 1% level. The coefficient estimate for the lagged M2 growth rate (∆mt) was

always insignificant.

Table 4 around here

We also implemented estimations with the robit model specification that uses the

t-distribution. We experimented with 3, 5, 7, and 30 degrees of freedom and obtained

qualitatively similar results.13 Coefficient estimates with 5 degrees of freedom are

reported in Table 5. Results are overall similar to those from the logit model, which

makes sense because the robit model approximates the logit model with 7 degrees of

freedom (see Liu, 2005).

We again obtained highly significant coefficient estimates for the output gap,

the current won deprecation rate, both the current and the lagged long-short spread,

and the upper and lower threshold variables. Coefficients on the inflation rate and

the money growth rate were again insignificant in all models. In comparison with

the probit model estimates, the robit and the logit model specifications provided

more efficient estimates with smaller p-values with an exception of the inflation rate

coefficient.

13Results with other specifications are available upon requests.
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Table 5 around here

In a nutshell, the output gap (ỹt) plays a dominantly important role in under-

standing monetary policy decision-making processes in Korea, while we obtain a lot

weaker evidence for the other Taylor rule variable, πt. These findings imply that the

BOK has responded to expected inflation rather than realized inflation, because out-

put gap provides information on incoming inflationary pressure that may be realized

in the near future. Also, the current period won depreciation rate seems to play a key

role, which makes sense because Korea is a small open economy. Note that this result

contrasts sharply with the work by Hu and Phillips (2004a) and Kim et al. (2009)

who find a negligible role of the foreign exchange rate in the Feds decision-making

processes.

We then investigate the stability of our coefficient estimates over the entire

sample period. For this purpose, we recursively estimated our models beginning

with the first half observations, January 2000 to June 2006, adding one additional

observation in each round of estimations, which gives 82 sets of coefficient estimates

for each model. We report the results from the probit model specification in Figure

4 for Models Taylor B and Taylor H1. 14

We note that our results are quite robust over time as to the statistical signifi-

cance of the estimates. That is, ỹt−1 is overall highly significant at the 5%, while πt−1

and ∆st are significant at the 10%. We also note that the coefficient estimates are

mildly rising as the sample period expands. For example, the coefficient estimate on

∆st was 0.022 when the first half observations are used, while it increased gradually

14Results from other models are qualitatively similar.
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to 0.060 when we used all available observations. That is, it seems that the BOK

has gradually increased the weights on the won-dollar exchange rate in determining

its optimal policy interest rate.

Figure 4 around here

3.5 In-Sample Fit Performance of the Discrete Choices Models

Next, we evaluate our ordered choices models for the MPCs decision-making

process in terms of the in-sample fit performance. We report results based on the

probit model specification that performs qualitatively similarly but slightly better

than the logit and the robit models. 15

We plot estimated probabilities of C and H predictions from Models Taylor B,

Taylor C, and Taylor H1 along with actual policy decisions (bar graphs) over time in

Figure 5. All models yield very similar probability estimates, implying that our re-

sults are robust to alternative assumptions on the BOKs information set. The figure

shows that changes in the probabilities calculated with the model estimates are over-

all consistent with the occurrences of actual rate decision actions. The probability

of each event tends to increase rapidly when corresponding actual rate revisions (C

and H) are implemented. Note that the probability of a C goes up to almost 100%

during the recent financial crisis. Also, the estimated probability of an H climbs up

fast in 2011 when the MPC raised the target RP rate several times.

15Results from other specifications are available upon requests.
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Figure 5 around here

We report correct prediction (success) rates to evaluate the in-sample fit per-

formance of our models. Recall that our models predict a C decision when ỹt falls

below τL. Likewise, when ỹt rises above τU , our model predicts an H action. It should

be noted, however, that these threshold estimates come with uncertainty. Since it

is more important to correctly predict revision actions (C and H) than S decisions,

we adjust the inaction band using the standard errors of these threshold variable

estimates in order to catch tail events more often.

To see this, we plot the estimated latent variable ỹt for Models Taylor B, Taylor

C, and Taylor H1 in Figure 6 along with the point estimates for τL and τU and their

one standard error confidence bands. It is clear that a more compact inaction band

such as [τL+std(τL),τU -std(τU)] would yield C and H predictions more frequently

with a cost of lower success rate for S decisions. Employing inaction bands based

solely on point estimates, one may obtain a very high success rate for S decisions,

while correct prediction rates for C and H actions tend to become low.16 Since it is

more important to predict C and H actions, our in-sample fit analyses are based on

standard error adjusted inaction bands.

Figure 6 around here

16For example, correct prediction rates for C, S, and H actions from Taylor B model were 18.75%,
96.28%, and 6.67%, respectively, when we employed a point estimate-based inaction band. Model
Taylor H1 performed similarly, yielding 31.25%, 99.24%, and 6.67%, respectively.
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We report correct prediction (success) rates based on the probit model estima-

tions for four alternative models in Table 6. The first panel provides results with one

standard error inaction bands, [τL+std(τL),τU -std(τU)]. Taylor B4 model performed

the best in predicting C and H decisions correctly, even though its performance is

the worst for S decisions, predicting 94 out of 131 S actions (71.76%). The model

correctly predicted 9 out of 16 cut decisions (56.25%) and 8 out of 15 hike decisions

(53.33%). Models Taylor C and Taylor H1 performed similarly well for C actions,

whereas their performance for H actions were less satisfactory. As we discussed ear-

lier, in-sample-fit performance improves for C and H actions when narrower inaction

bands are employed. Success rates for C decisions with 1.5 standard error inaction

bands, [τL+1.5?std(τL),τU -1.5?std(τU)], reported on the second panel range from

62.60% to 87.50%, while hike decisions were predicted with 40% to 60% accuracy. It

should be noted that such improvement in prediction of C and H actions come with

poorer performance for S actions. However, if one is more interested in predicting

changes in the monetary policy stance, narrower inaction bands would be a better

choice for that purpose.

Table 6 around here

3.6 Evaluating Out-of-Sample Predictability of the Models

This section evaluates the out-of-sample predictability of our ordered choices

models for the interest setting behavior in Korea. Predicting the monetary policy
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stance is crucially important not only to financial market participants but also to

entrepreneurs who make investment decisions that are heavily influenced by their

prospect on interest rate dynamics in near future. We implement an array of out-

of-sample forecast exercises to see if our model helps predict the BOKs monetary

policy decisions in the future.

We implement our exercises using the following two forecast strategies: the

recursive method and the fixed-size rolling window method, both beginning with

the initial 104 observations for the sub-sample period between January 2000 and

September 2008. We choose this split point because this initial set of observations

corresponds to the pre-Lehman Brothers Bankruptcy period, which may help eval-

uate how well our models out-of-sample predict the BOKs responses to the recent

financial crisis.

The recursive forecasting approach begins with a memory window of the pre-

Lehman Brothers Failure period and ends with a window of the entire sample period,

January 2000 to September 2013. That is, we start calculating a one-period ahead

forecast on the policy action (C, S, H) using the initial 104 observations. Then, we

add the 105th observation and predict the next policy outcome with this expanded

set of observations. We continue to do this until we forecast the last policy action

in September 2013 using the data from January 2000 to August 2013. As is well-

known, the recursive forecasting strategy may not perform well in the presence of

a structural change in the data generating process (DGP). If regime changes occur

sometime during the early period of the analysis, inclusion of earlier data in the
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estimation could worsen the forecastability of our model. To address this possibility,

we also employ a fixed-size rolling window scheme described as follows.

Here we begin with the same initial 104 observations for the pre-Lehman Broth-

ers Failure period. After estimating the model, we forecast the next month (105th)

policy outcome. Then, we add the 105th actual observation, but drop the 1st obser-

vation, thereby retaining an updated 104-observation estimation window, which is

used to produce the 106th policy outcome. We repeat this process until we forecast

the last policy outcome using the most recent 104 observations from December 2004

to August 2013.

Note that our out-of-sample forecast exercises are naturally based only on back-

ward looking Taylor Rule type models. Since we are doing out-of-sample forecast,

we assume that econometricians utilize currently available information set (Ωt) to

predict the policy action in the next period. We employ two conditional expecta-

tion models for E(ỹt+1 —Ωt )=-1,0,1, where the information set is either Ωt=πt,ỹt or

Ωt=πt,ỹt,∆st.

Again, we report probit model estimation results only in Table 7. Taylor Recur-

sive denotes the forecast results using the recursive method with πt,ỹt for covariates

in the latent equation, whereas Taylor Extended Rolling is the results with the rolling

window method using πt,ỹt,∆st. Again, results on the top panel are based one stan-

dard error bands and results with 1.5 standard error bands are reported on the second

panel.

During the post-Lehman Brothers Bankruptcy period, there were 8 cut decisions,

47 stay decisions, and 5 hike decisions. With one standard error bands, extended
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version Taylor Rule model out-of-sample forecasts 7 out of 8 cut decisions correctly

(87.5%) when the rolling window scheme is employed. Also, the model predicted

3 out of 5 hike decisions correctly (60%). Overall, out-of-sample forecasts with

the rolling window forecast scheme performed slightly better than those with the

recursive scheme, implying a possible structural change in the DGP. When we use the

1.5 standard error bands, we observe a further improvement in out-of-sample forecast

performance for C decisions for the models with the rolling window method. That

is, extended version Taylor Rule model out-of-sample forecasts all 8 cut decisions,

while Taylor Rule model forecasts 7 out of 8 cut decisions. Again, we observed better

out-of-sample forecast performance from the rolling window method compared with

those from the recursive scheme. Note also that we enhanced the out-of-sample

forecastability for C and H decisions with a cost of lower success rate for S decisions

by adopting standard error adjusted inaction bands.

Table 7 around here

Market participants (say, Fed watchers) who are particularly interested in changes

in the monetary policy stance would be eager to learn how likely the central bank

would be to revise the target policy rate. So, we report estimated probabilities of

a C and an H from our out-of-sample forecast exercises in Figure 7. Results from

our extended version Taylor Rule model are reported because we obtain qualitatively

similar estimates from other models. We also show actual occurrences of realized C

and H decisions on the same graphs. We observe rapidly escalating probability of a
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cut decision right after the Lehman Brothers Failure episode in both models, match-

ing with multiple cut decisions during that period. We also see the probability of a C

action to climb up in 2012 and 2013 after a long period of virtually 0% probability of

a C, which coincide with three actual cut decisions. The probability of an H action

goes up rapidly in late 2009 until 2011 that are encountered with 5 interest rate hike

decisions.

It is interesting to see that the predicted probability of an H action has stayed

quite high before actual H actions occurred, which might have happened that the

MPC delayed their actions facing political pressure against contractionary policy

actions. Or they might wanted to decide on their interest rate revision more carefully

probably due to sluggish recovery in other economies outside Korea or possibly some

other non-macroeconomics issues.

Figure 7 around here

Lastly, we report estimates for ỹt(solid lines), τL and τU (dashed lines), and one

standard error inaction bands (dotted lines) in Figure 8. This is to demonstrate how

forecast performances can improve for C and H actions by employing a standard error

adjusted (narrower) inaction band. For example, when the rolling window method is

used for our models, ỹt falls below the inaction band but stays above the τL estimate

at the end of the sample. That is, our model cannot out-of-sample forecast the last

cut decision that occurred at the end of the sample if one uses the point estimate

based criteria instead of using standard error adjusted inaction bands. Similarly,
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standard error unadjusted inaction bands would not be able to predict H actions

in 2010 to 2011, whereas our models correctly predict 60% such actions using 1.5

standard error inaction bands.

Figures 8 around here

3.7 Concluding Remarks

This paper investigates the BOKs monetary policy decision-making process us-

ing ordered discrete choice models. Historically, the MPC has revised the target

policy interest rate in multiples of 25 basis points during their monthly meetings.

This convention leads us to use ordered choices models where the MPC changes the

policy rate only when there is substantial divergence of the current interest rate from

the optimal interest rate based on key macroeconomic variables.

Using monthly frequency data for an array of alternative model specifications,

we report empirical evidence of good in-sample fit performance. Our latent equation

estimates from the probit, the logit, and the newly suggested robit models imply

important roles for the output gap and the won depreciation rate in describing the

BOKs interest rate setting behavior. These findings imply that the BOK has re-

sponded to expected inflation instead of realized inflation utilizing information on

future inflation through changes in the output gap. Significant coefficient estimates

for the won exchange rate indicate that the BOK has paid close attention to it

because Korea is a small open economy.
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We also evaluate out-of-sample prediction performance of our approach using

September 2008 as a split point for the recursive and the fixed size rolling window

forecast schemes. Again, our models perform well for out-of-sample predictions. For

instance, our Taylor rule type models in combination with the fixed size rolling win-

dow scheme predicted most rate cut decisions as well as the majority hike decisions

since the Lehman Brothers Bankruptcy episode. We also show that forecast perfor-

mance for tail actions (C and H) can improve greatly with a cost of lower success

rates for S actions by employing standard error adjusted inaction bands, which is a

desirable feature for market participants who are particularly interested in changes

in the monetary policy stance.
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Table  1.  Augmented  Dickey-­‐‑Fuller  Unit  Root  Test  Results  
  

  
ADFc   ADFt  

RP  Rate  (𝑖!!)   -­‐‑1.956   -­‐‑2.952  
Call  Rate  (𝑖!!)   -­‐‑2.262   -­‐‑2.881  
Inflation  Rate  (𝜋!)   -­‐‑3.216†   -­‐‑3.478†  
Quad  Detrended  (𝑦!

!)   -­‐‑3.909‡   -­‐‑3.940†  
HP  Detrended  (𝑦!!)   -­‐‑4.014‡   -­‐‑4.027‡  
M2  Growth  Rate  (∆𝑚!)   -­‐‑2.548∗   -­‐‑2.679  
Won  Dep  Rate  (∆𝑠!)   -­‐‑4.238‡   -­‐‑4.271‡  
Long-­‐‑Short  Spread  (𝑙𝑠!)   -­‐‑2.601∗   -­‐‑2.628  
Note:  ADFc  and  ADFt  denote  the  augmented  Dickey-­‐‑Fuller  unit  root   test  when  an  
intercept  is  included  and  when  both  an  intercept  and  linear  time  trend  are  present.  
We   select   the   number   of   lags   by   the   general-­‐‑to-­‐‑specific   rule  with   a  maximum  12  
lags  and  the  10%  significance  level  criteria.  ∗,  †,  and  ‡  denote  rejections  of  the  unit-­‐‑
root  null  hypothesis  at  the  10%,  5%,  and  1%  significance  level,  respectively.  
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Table  2.  Taylor  Rule  Type  Linear  Model  Coefficient  Estimations  

Long-­‐‑Run  Coefficients  
Inflation  Rate  
(𝜋!!!)  

0.034  
(0.023)  

0.028  
(0.023)  

0.033  
(0.023)  

0.042*  
(0.022)  

0.035  
(0.022)  

Output  Gap  
(𝑦!!!)  

0.006‡  
(0.001)  

0.006‡  
(0.001)  

0.007‡  
(0.001)  

0.005‡  
(0.001)  

0.006‡  
(0.001)  

M2  Growth  Rate  
(∆𝑚!!!)  

-­‐‑  
  

0.035†  
(0.013)  

-­‐‑  
  

-­‐‑  
  

0.039‡  
(0.013)  

Won  Dep  Rate  
(∆𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑0.006†  
(0.003)  

-­‐‑  
  

-­‐‑0.003  
(0.003)  

Long-­‐‑Short  Spread  
(𝑙𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

-­‐‑0.544‡  
(0.123)  

-­‐‑0.536‡  
(0.125)  

                 
Short-­‐‑Run  Coefficients  with  Interest  Rate  Smoothing  

Inflation  Rate  
(𝜋!!!)  

0.005  
(0.004)  

0.005  
(0.004)  

0.005  
(0.004)  

0.004  
(0.004)  

0.004  
(0.004)  

Output  Gap  
(𝑦!!!)  

0.002‡  
(0.000)  

0.002‡  
(0.000)  

0.001‡  
(0.000)  

0.002‡  
(0.000)  

0.001‡  
(0.000)  

M2  Growth  Rate  
(∆𝑚!!!)  

-­‐‑  
  

0.000  
(0.002)  

-­‐‑  
  

-­‐‑  
  

-­‐‑0.001  
(0.002)  

Won  Dep  Rate  
(∆𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

0.001†  
(0.000)  

-­‐‑  
  

0.001  
(0.000)  

Long-­‐‑Short  Spread  
(𝑙𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

0.054†  
(0.021)  

0.049*  
(0.022)  

Smoothing  Parm  
(𝑖!!!)  

0.961‡  
(0.012)  

0.960‡  
(0.012)  

0.965‡  
(0.012)  

0.972‡  
(0.012)  

0.976‡  
(0.013)  

Note:  The  policy   interest   rate   is   the   target  RP   rate.  Taylor   rule   reference  variables   are   lagged  by  
one-­‐‑period.   Output   gap   is   the   HP   cyclical   component   of   the   real   industrial   production   index.  
Quadratically   detrended   index   yielded   qualitatively   similar   results,   thus   are   not   reported.   All  
results   are   available   upon   request.   ∗,   †,   and   ‡   denote   significance   at   the   10%,   5%,   and   1%  
significance  level,  respectively.  
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Table  3.  Probit  Model  Coefficient  Estimation  Results    

Backward  Looking  Models  
   Taylor  B   Taylor  B1   Taylor  B2   Taylor  B3   Taylor  B4  

Inflation  Rate  
(𝜋!!!)  

0.217*  
(0.131)  

0.189*  
(0.115)  

0.220*  
(0.133)  

0.283  
(0.240)  

0.240  
(0.193)  

Output  Gap  
(𝑦!!!)  

0.043‡  
(0.014)  

0.040‡  
(0.011)  

0.043‡  
(0.014)  

0.074*  
(0.043)  

0.066†  
(0.033)  

M2  Growth  Rate  
(∆𝑚!!!)  

-­‐‑  
  

0.068  
(0.062)  

-­‐‑  
  

-­‐‑  
  

0.057  
(0.097)  

Won  Dep  Rate  
(∆𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

0.002  
(0.017)  

-­‐‑  
  

-­‐‑0.012  
(0.023)  

Long-­‐‑Short  Spread  
(𝑙𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

3.197  
(2.459)  

2.776  
(1.908)  

Lower  Threshold  
(𝜏!)  

-­‐‑0.342‡  
(0.108)  

-­‐‑0.320‡  
(0.090)  

-­‐‑0.347‡  
(0.112)  

-­‐‑0.636*  
(0.378)  

-­‐‑0.556*  
(0.285)  

Upper  Threshold  
(𝜏!)  

0.347‡  
(0.107)  

0.325‡  
(0.087)  

0.353‡  
(0.114)  

0.641*  
(0.379)  

0.559*  
(0.288)  

  
Alternative  Models  

   Taylor  C   Taylor  H1   Taylor  H2   Taylor  H3  
Inflation  Rate  
(𝜋!!!)  

-­‐‑   0.215  
(0.154)  

0.292  
(0.226)  

0.255  
(0.230)  

Output  Gap  
(𝑦!!!)  

-­‐‑   0.058‡  
(0.021)  

0.072*  
(0.038)  

0.085†  
(0.044)  

Inflation  Rate  
(𝜋!)  

0.077  
(0.158)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Output  Gap  
(𝑦!)  

0.064‡  
(0.027)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Won  Dep  Rate  
(∆𝑠!)  

-­‐‑   0.060*  
(0.031)  

-­‐‑  
  

0.078  
(0.050)  

Long-­‐‑Short  Spread  
(𝑙𝑠!)  

-­‐‑   -­‐‑   2.766  
(2.008)  

2.443  
(1.884)  

Lower  Threshold  
(𝜏!)  

-­‐‑0.490‡  
(0.193)  

-­‐‑0.462‡  
(0.168)  

-­‐‑0.586*  
(0.308)  

-­‐‑0.699*  
(0.366)  

Upper  Threshold  
(𝜏!)  

0.493‡  
(0.188)  

0.471‡  
(0.167)  

0.586*  
(0.311)  

0.701*  
(0.368)  

Note:   The   policy   interest   rate   is   the   target   RP   rate.   Output   gap   is   the   HP   cyclical   component   of   the   real  
industrial  production  index.  Quadratically  detrended  index  yielded  qualitatively  similar  results,   thus  are  not  
reported.   All   results   are   available   upon   request.   ∗,   †,   and   ‡   denote   significance   at   the   10%,   5%,   and   1%  
significance  level,  respectively.     
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Table  4.  Logit  Model  Coefficient  Estimation  Results  

Backward  Looking  Models  
   Taylor  B   Taylor  B1   Taylor  B2   Taylor  B3   Taylor  B4  

Inflation  Rate  
(𝜋!!!)  

1.183    
(0.773)  

1.154    
(0.774)  

1.179    
(0.787)  

1.002    
(0.752)  

0.991    
(0.752)  

Output  Gap  
(𝑦!!!)  

0.221‡  
(0.043)  

0.222‡  
(0.042)  

0.216‡  
(0.04)  

0.278‡  
(0.052)  

0.281†  
(0.05)  

M2  Growth  Rate  
(∆𝑚!!!)  

-­‐‑  
  

0.154    
(0.469)  

-­‐‑  
  

-­‐‑  
  

0.031    
(0.378)  

Won  Dep  Rate  
(∆𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

0.076    
(0.092)  

-­‐‑  
  

-­‐‑0.022    
(0.092)  

Long-­‐‑Short  Spread  
(𝑙𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

15.831‡  
(4.228)  

16.128‡      
(4.235)  

Lower  Threshold  
(𝜏!)  

-­‐‑2.579‡  
(0.303)  

-­‐‑2.581‡  
(0.301)  

-­‐‑2.584‡  
(0.304)  

-­‐‑2.805‡  
(0.297)  

-­‐‑2.810‡  
(0.294)  

Upper  Threshold  
(𝜏!)  

2.617‡  
(0.293)  

2.623‡  
(0.294)  

2.636‡  
(0.302)  

2.932‡  
(0.394)  

2.936‡  
(0.393)  

              
Alternative  Models  

   Taylor  C   Taylor  H1   Taylor  H2   Taylor  H3  
Inflation  Rate  
(𝜋!!!)  

-­‐‑   1.112    
(0.831)  

1.076    
(0.732)  

0.981    
(0.794)  

Output  Gap  
(𝑦!!!)  

-­‐‑   0.293‡  
(0.045)  

0.288‡  
(0.053)  

0.354†  
(0.053)  

Inflation  Rate  
(𝜋!)  

0.288    
(0.913)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Output  Gap  
(𝑦!)  

0.301‡  
(0.052)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Won  Dep  Rate  
(∆𝑠!)  

-­‐‑   0.361‡  
(0.110)  

-­‐‑  
  

0.333‡    
(0.119)  

Long-­‐‑Short  Spread  
(𝑙𝑠!)  

-­‐‑   -­‐‑   15.551‡  
(4.679)  

13.640‡  
(5.032)  

Lower  Threshold  
(𝜏!)  

-­‐‑2.726‡  
(0.300)  

-­‐‑2.772‡  
(0.320)  

-­‐‑2.791‡  
(0.290)  

-­‐‑2.978‡  
(0.298)  

Upper  Threshold  
(𝜏!)  

2.768‡  
(0.322)  

2.827‡  
(0.318)  

2.912‡  
(0.401)  

3.075‡  
(0.395)  

Note:   The   policy   interest   rate   is   the   target   RP   rate.   Output   gap   is   the   HP   cyclical   component   of   the   real  
industrial  production  index.  Quadratically  detrended  index  yielded  qualitatively  similar  results,   thus  are  not  
reported.   All   results   are   available   upon   request.   ∗,   †,   and   ‡   denote   significance   at   the   10%,   5%,   and   1%  
significance  level,  respectively.  
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Table  5.  Robit  Model  Coefficient  Estimation  Results  

Backward  Looking  Models  
   Taylor  B   Taylor  B1   Taylor  B2   Taylor  B3   Taylor  B4  

Inflation  Rate  
(𝜋!!!)  

0.839  
(0.543)  

0.818  
(0.544)  

0.830    
(0.561)  

0.715  
(0.535)  

0.709    
(0.534)  

Output  Gap  
(𝑦!!!)  

0.151‡  
(0.029)  

0.152‡  
(0.028)  

0.148‡  
(0.026)  

0.195‡    
(0.036)  

0.196‡  
(0.035)  

M2  Growth  Rate  
(∆𝑚!!!)  

-­‐‑  
  

0.108    
(0.322)  

-­‐‑  
  

-­‐‑  
  

0.023    
(0.168)  

Won  Dep  Rate  
(∆𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

0.056    
(0.063)  

-­‐‑  
  

-­‐‑0.011    
(0.068)  

Long-­‐‑Short  Spread  
(𝑙𝑠!!!)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

10.96‡    
(3.032)  

11.08‡    
(3.066)  

Lower  Threshold  
(𝜏!)  

-­‐‑1.744‡  
(0.216)  

-­‐‑1.743‡  
(0.215)  

-­‐‑1.748‡  
(0.218)  

-­‐‑1.902‡  
(0.210)  

-­‐‑1.904‡    
(0.21)  

Upper  Threshold  
(𝜏!)  

1.771‡  
(0.204)  

1.775‡  
(0.205)  

1.791‡  
(0.212)  

2.032‡    
(0.292  )  

2.034‡    
(0.292)  

                 
Alternative  Models  

   Taylor  C   Taylor  H1   Taylor  H2   Taylor  H3  
Inflation  Rate  
(𝜋!!!)  

-­‐‑       0.787      
(0.589)  

0.761    
(0.520)  

0.685    
(0.562)  

Output  Gap  
(𝑦!!!)  

-­‐‑   0.199‡  
(0.031)  

0.202‡    
(0.037)  

0.243  ‡  
(0.038)  

Inflation  Rate  
(𝜋!)  

0.214    
(0.649)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Output  Gap  
(𝑦!)  

0.205‡  
(0.036)  

-­‐‑  
  

-­‐‑  
  

-­‐‑  
  

Won  Dep  Rate  
(∆𝑠!)  

-­‐‑   0.248‡  
(0.078)  

-­‐‑  
  

0.225  ‡      
(0.084)  

Long-­‐‑Short  Spread  
(𝑙𝑠!)  

-­‐‑   -­‐‑   10.93‡    
(3.368)  

9.288  ‡      
(3.696)  

Lower  Threshold  
(𝜏!)  

-­‐‑1.836‡  
(0.211)  

-­‐‑1.877  ‡  
(0.229)  

-­‐‑1.893  ‡    
(0.204)  

-­‐‑2.011  ‡      
(0.211)  

Upper  Threshold  
(𝜏!)  

1.876‡  
(0.229)  

1.920‡  
(0.227)  

2.025  ‡    
(0.301)  

2.111  ‡      
(0.297)  

Note:  We  use  the  robit  model  with  5  degrees  of  freedom  for  estimations.  Results  with  3,  7,  and  30  degrees  of  
freedom  are  qualitatively  similar.  The  policy  interest  rate  is  the  target  RP  rate.  Output  gap  is   the  HP  cyclical  
component  of  the  real  industrial  production  index.  Quadratically  detrended  index  yielded  qualitatively  similar  
results,  thus  are  not  reported.  All  results  are  available  upon  request.  ∗,  †,  and  ‡  denote  significance  at  the  10%,  
5%,  and  1%  significance  level,  respectively.  
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Table  6.  In-­‐‑Sample  Fit  Evaluations  
  

(A)  Inaction  Band:  [𝜏! + 𝑠𝑡𝑑 𝜏! , 𝜏! − 𝑠𝑡𝑑(𝜏!)]  

  
Taylor  B  

  
Taylor  B4  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   5   8   1  
  

9   10   1  
Stay  Predicted   11   114   11  

  
7   94   6  

Hike  Predicted   0   9   3  
  

0   27   8  
Correct  Prediction  (%)   31.25   87.02   20.00  

  
56.25   71.76   53.33  

Overall  Prediction  (%)   75.31  
  

68.52  
                       

  
Taylor  C  

  
Taylor  H1  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   8   7   0  
  

7   5   0  
Stay  Predicted   8   111   10  

  
9   113   11  

Hike  Predicted   0   13   5  
  

0   13   4  
Correct  Prediction  (%)   50.00   84.73   33.33  

  
43.75   85.50   26.67  

Overall  Prediction  (%)   76.54  
  

75.93  
  

(B)  Inaction  Band:  [𝜏! + 1.5×𝑠𝑡𝑑 𝜏! , 𝜏! − 1.5×𝑠𝑡𝑑(𝜏!)]  

  
Taylor  B  

  
Taylor  B4  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   10   14   1  
  

14   37   1  
Stay  Predicted   6   99   8  

  
2   50   5  

Hike  Predicted   0   18   6  
  

0   44   9  
Correct  Prediction  (%)   62.50   75.57   40.00  

  
87.50   38.17   60.00  

Overall  Prediction  (%)   59.26  
  

45.06  
                       

  
Taylor  C  

  
Taylor  H1  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   11   12   0  
  

10   11   0  
Stay  Predicted   5   91   9  

  
6   95   9  

Hike  Predicted   0   28   6  
  

0   25   6  
Correct  Prediction  (%)   68.75   69.47   40.00  

  
62.50   72.52   40.00  

Overall  Prediction  (%)   66.67  
  

68.52  
Note:   In-­‐‑sample   fit   results   are   based   on   the   ordered   probit   model   point   estimates   for   the   latent   equation  
coefficients  and  the  threshold  values.  
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Table  7.  Out-­‐‑of-­‐‑Sample  Forecasts  
  

(A)  Inaction  Band:  [𝜏! + 𝑠𝑡𝑑 𝜏! , 𝜏! − 𝑠𝑡𝑑(𝜏!)]  

  
Taylor  Recursive  

  
Taylor  Rolling  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   5   2   0  
  

6   7   0  
Stay  Predicted   3   28   3  

  
2   23   2  

Hike  Predicted   0   17   2  
  

0   17   3  
Correct  Prediction  (%)   62.50   59.57   40.00  

  
75.00   48.94   60.00  

Overall  Prediction  (%)   58.33  
  

54.33  
                       

  
Taylor  Extended  Recursive  

  
Taylor  Extended  Rolling  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   5   3   0  
  

7   9   0  
Stay  Predicted   3   28   2  

  
1   21   2  

Hike  Predicted   0   16   3  
  

0   17   3  
Correct  Prediction  (%)   62.50   59.57   60.00  

  
87.50   44.68   60.00  

Overall  Prediction  (%)   60.00  
  

51.67  
  

(B)  Inaction  Band:  [𝜏! + 1.5×𝑠𝑡𝑑 𝜏! , 𝜏! − 1.5×𝑠𝑡𝑑(𝜏!)]  

  
Taylor  Recursive  

  
Taylor  Rolling  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   5   6   0  
  

7   10   0  
Stay  Predicted   3   23   2  

  
1   19   2  

Hike  Predicted   0   18   3  
  

0   18   3  
Correct  Prediction  (%)   62.50   48.94   60.00  

  
87.50   40.43   60.00  

Overall  Prediction  (%)   51.67  
  

48.33  
                       

  
Taylor  Extended  Recursive  

  
Taylor  Extended  Rolling  

  
Cut   Stay   Hike  

  
Cut   Stay   Hike  

Cut  Predicted   5   6   0  
  

8   13   0  
Stay  Predicted   3   23   2  

  
0   16   2  

Hike  Predicted   0   18   3  
  

0   18   3  
Correct  Prediction  (%)   62.50   48.94   60.00  

  
100.00   34.04   60.00  

Overall  Prediction  (%)   51.67  
  

45.00  
Note:   Out-­‐‑of-­‐‑sample   forecast   results   are   based   on   the   ordered   probit   model   estimates   with   the   recursive  
method  and  the  fixed  size  rolling  window  method,  both  beginning  with  the  pre-­‐‑Lehman  Brothers  Bankruptcy  
period  data  (104  initial  observations),  September  2008.       
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Figure  1.  Interest  Rates  and  Monetary  Policy  Actions  
  

  
Note:  The  target  RP  rate  (solid)  and  the  market  call  interest  rate  (dashed)  appear  on  the  
first   panel.   Revisions   of   the   target   RP   rate   have   been   made   in   multiples   of   25   basis  
points   as   we   can   see   in   the   second   panel.   We   model   policy   actions   to   include   three  
possible  choices  for  the  Bank  of  Korea  as  to  the  interest  rate  settings:  Cut  (-­‐‑1),  Hike  (1),  
and  Stay  (0)  as  can  be  seen  in  the  last  panel.     
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Figure  2.  Real  Industrial  Production:  Trend  and  Cyclical  Components  
  

  
Note:  We  use   two  measures   of   the   output   gap:   quadratically   detrended   real   industrial  
production  (solid)  and  the  cyclical  component  of  real   industrial  production  (dashed)  by  
the  Hodrick-­‐‑Prescott  filter.  Two  detrending  methods  produce  very  similar  output  gaps.  
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Figure  3.  Inflation  Rate  and  Other  Key  Macroeconomic  Data  
  

  
Note:  The  inflation  rate  is  the  monthly  change  in  log  CPI.  The  M2  growth  rate  denotes  
the  monthly  change  in  the  log  M2.  We  use  the  won-­‐‑dollar  exchange  rate,  which  is  the  
unit  price  of  the  US  dollar  in  terms  of  Korean  won.  The  won  depreciation  rate  is  the  
monthly   change   in   the   log   exchange   rate.   The   long-­‐‑short   spread   is   the   3-­‐‑year  
government   bond   (monthly)   yield   minus   the   (monthly)   yield   of   the   91-­‐‑day  
government  bond.  
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Figure  4.  Constancy  of  the  Latent  Coefficient  Estimates  

  
Note:  We  estimated  the   latent  equation  coefficients  repeatedly  beginning  with  the   initial  
half   of   the   sample   period,   2000M1   to   2006M10,   adding   one   more   observation   in   each  
round   of   estimations.   Inflation   and   output   gap   are   lagged   once,  while   the   appreciation  
rate   is   the   contemporaneous   one.   Dashed   lines   are   95%   confidence   bands.   Reported  
graphs  are  based  on  the  probit  model  specification.  
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Figure  5.  In-­‐‑Sample  Fit  Performance  of  Probit  Models  
  

  
Note:   We   calculate   in-­‐‑sample   probability   of   each   action   for   the   models   with   the  
following   three   sets  of   covariates   in   the   latent  equation  and  plotted   in   solid,  dashed,  
and   dotted   lines,   respectively:   (𝜋! , 𝑦! ),   (𝜋!!!, 𝑦!!! ),   (𝜋!!!, 𝑦!!!,∆𝑠! ).   Bar   graphs  
indicate  realized  policy  actions.  
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Figure  6.  Deviations  from  the  Optimal  Rate  and  Thresholds  
  

  
Note:  We  calculate  deviations  from  the  optimal  interest  rate  (𝑦!∗ = 𝑖!∗ − 𝑖!!!)  and  upper  and  
lower  threshold  values  (𝜏! , 𝜏!)  for  the  models  with  the  following  three  sets  of  covariates  in  
the  latent  equation:  (𝜋!!!, 𝑦!!!),  (𝜋! , 𝑦!),  (𝜋!!!, 𝑦!!!,∆𝑠!).  Sold  lines  are  𝑦!∗  estimates,  dashed  
lines   are   estimated  𝜏!  and  𝜏!  point   estimates,   and   dotted   lines   are   one   standard   deviation  
confidence  bands  of  threshold  estimates.  
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Figure  7.  Out-­‐‑of-­‐‑Sample  Forecast:  Probability  Estimates  
  

  
Note:  We  calculate  the  one-­‐‑period  ahead  out-­‐‑of-­‐‑sample  forecast  probability  of  each  action  
in  the  next  period  using  (𝜋! , 𝑦! ,∆𝑠!).    Bar  graphs  indicate  realized  actions.  Out-­‐‑of-­‐‑sample  
forecasting   is   done   with   the   recursive   method   and   the   rolling   window   method,   both  
beginning   with   the   pre-­‐‑Lehman   Brothers   Bankruptcy   data   (104   initial   observations),  
September  2008.    
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Figure  8.  Out-­‐‑of-­‐‑Sample  Forecast:  𝒚𝒕∗  and  Inaction  Band  Estimates  
  

  
Note:  The  solid  line  represents  𝑦!∗  estimates,  the  dashed  lines  are  𝜏!  and  𝜏!  estimates,  and  the  dotted  lines  are  
𝜏! + 𝑠𝑡𝑑(𝜏!)  and  𝜏! − 𝑠𝑡𝑑(𝜏!)  estimates.   The   area   between   the   dotted   lines   indicates   the   one   standard   error  
inaction  band,  [𝜏! + 𝑠𝑡𝑑 𝜏! , 𝜏! − 𝑠𝑡𝑑 𝜏! ].  
	
  


