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Abstract 
 

 
 For many species, uncertainty may intervene in accurately estimating population size, 

trend, and demographic parameters. Bayesian state-space models provide a convenient 

framework to account for multiple sources of uncertainty while remaining flexible to model 

structure and available data. We explored the efficacy this approach with Sequential Importance 

Sampling/Resampling for estimation of population size and demographic parameters. We then 

applied these methods to analyze multiple models of population process for Alaskan breeding 

Steller’s eiders. Results strongly support that the Alaskan breeding population experiences 

population level non-breeding, and is open to exchange with the Russian-Pacific breeding 

population. Using this model of population process, we sought to assess viability of the Alaskan 

breeding population of Steller’s eiders. Due to immigration, the Alaskan breeding population is 

under no risk of permanent extinction. However, it is likely that this population will continue to 

be present in low and highly variable numbers on the breeding grounds in Alaska. 
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Chapter 1: 

Effects of model complexity and priors on estimation using Sequential Importance 

Sampling/Resampling for species conservation 

 

Abstract 

We examined the effects of complexity and priors on the accuracy of models used to 

estimate ecological and observational processes, and to make predictions regarding population 

size and structure. State-space models are useful for estimating complex, unobservable 

population processes and making predictions about future populations based on limited data.  To 

better understand the utility of state space models in evaluating population dynamics, we used 

them in a Bayesian framework and compared the accuracy of models with differing complexity, 

with and without informative priors using sequential importance sampling/resampling (SISR). 

Count data were simulated for 25 years using known parameters and observation process for 

each model. We used kernel smoothing to reduce the effect of particle depletion, which is 

common when estimating both states and parameters with SISR. Models using informative priors 

estimated parameter values and population size with greater accuracy than their non-informative 

counterparts. While the estimates of population size and trend did not suffer greatly in models 

using non-informative priors, the algorithm was unable to accurately estimate demographic 

parameters. This model framework provides reasonable estimates of population size when little 

to no information is available; however, when information on some vital rates is available, SISR 

can be used to obtain more precise estimates of population size and process.  Incorporating 

model complexity such as that required by structured populations with stage-specific vital rates 
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affects precision and accuracy when estimating latent population variables and predicting 

population dynamics. These results are important to consider when designing monitoring 

programs and conservation efforts requiring management of specific population segments. 

 

Introduction 

 Scientists and managers are frequently tasked with making management decisions for 

wildlife and fisheries populations using very little data to estimate population state and 

underlying demographic processes. To properly address conservation, managers often need a 

comprehensive understanding of the full state space, including; population structure, abundance, 

trend, and vital rates. For many species, uncertainty may intervene in accurately modelling state 

variables and these population processes. Models typically account for environmental and 

ecological uncertainty, also known as process uncertainty; however, this is rarely an adequate 

representation of the data, which are shaped by an observation process. Failing to adequately 

account for observation process, or measurement uncertainty, can lead to making poor 

management and policy decisions and may have profound impacts on the species of concern 

(Williams et al. 2002).  

Typically, researchers and managers are only able to collect count data and some vital rate 

information on animal populations due to monitoring costs or difficulty in detecting species. This 

makes fitting models of population dynamics to the available counts challenging due to 

imperfect detection and process uncertainty (Hostetler and Chandler 2015, King et al. 2010).  

State-space models (SSM) provide a framework that can account for multiple sources of 

uncertainty while remaining flexible to model structure and available data. Thus, they can 

account for uncertainty through the state process model and observation process model which 
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link a time series of counts to the processes that affect population state. The state-space model 

framework is particularly advantageous because biologically plausible population processes and 

structure can be incorporated and key biological parameters can be estimated as latent variables, 

while explicitly acknowledging uncertainty in population and detection processes (Buckland et 

al. 2004, Thomas et al. 2005). 

State-space models have been used to estimate biomass and make stock assessments of fish 

(Meyer and Millar 1999, Millar and Meyer 2000, Newman 1998), to estimate juvenile out-

migration of salmon (Newman and Lindley 2006), to estimate demographic parameters and 

population size of birds and large mammals (Besbeas et al. 2002, Thomas et al. 2005, Trenkel et 

al. 2000), to estimate spatial and temporal variance in abundance of birds (Hostetler and 

Chandler 2015), and to estimate seasonal fluctuations of abundance and density dependent 

feedbacks of small mammals (Wang and Getz 2007). Central to each of these analyses is the 

availability of count data and little knowledge of demographic parameters and population size. 

Deducing information about demographic and observation processes without empirical data is 

notably beneficial considering the costs typically associated with collecting data on biological 

process and the time constraints managers’ face when making decisions. Although the flexibility 

of state-space models is invaluable to researchers and managers attempting to better understand 

demographic processes and estimate the current and future states of the population in question, 

the effect of incorporating a high degree of complexity on the accuracy of estimates of the 

underlying process is unclear. The examples above used relatively complex state and observation 

process models, however, none of them explicitly address the effects of that level of complexity. 

Conventional state-space models make assumptions of normality for the state process, 

and linear relationships between observations and the process model (Brooks et al. 2004, 
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Newman et al. 2006). Although computationally simpler, these assumptions are often not 

realistic representations of stochastic population dynamics (Brooks et al. 2004, Hostetler and 

Chandler 2015, Newman et al. 2006). Sequential Monte Carlo methods (or particle filtering), 

such as sequential importance sampling/resampling (SISR) have made non-linear population 

dynamics modelling more feasible (Doucet et al. 2001, Liu and Chen 1998, Liu and West 2001, 

Newman et al. 2006). SISR is the process of positing the uncertainty in population state, and the 

parameters influencing demographic and observation processes, then filtering them based on 

their likelihood given count data in a sequential process.  Recent applications of SISR methods in 

animal population modelling include models for red deer (Cervus elaphus) (Trenkel et al. 2000), 

grey seals (Halichoerus grypus) (Thomas et al. 2005), and chinook salmon (Oncorhynchus 

tshawytsha) (Newman and Lindley 2006, Newman et al. 2006). SISR is feasible with both 

known and latent variables, making it particularly useful when little is known about population 

process (Buckland et al. 2004).  

To better understand the utility of SSM’s, we used them in a Bayesian framework and 

assessed the SISR algorithm’s ability to estimate both population size and demographic 

parameters in models of differing complexity using informative and non-informative priors. 

Using simple models that only include the observable portion of the population ensures that all 

parameters are not conflated and therefore identifiable and estimable. While simple models may 

be useful to answer some questions regarding population dynamics, they may fail to accurately 

describe the underlying population processes or structure.  Incorporating additional complexity 

in a model may increase understanding of population ecology and may be critical in addressing 

conservation objectives that focus on a particular population segment or demographic process, 

but additional complexity may lead to a higher degree of parameter conflation. Incorporating 
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appropriate, informative priors and constraints on parameters may reduce parameter conflation, 

improve accuracy and precision of posterior estimates, and allow for more complex process 

models when they are needed (Bailey et al. 2010, Morris et al. 2015). Model complexity is of 

particular interest due to common issues associated with partial observability in most population 

surveys. Segments of a population may be unobservable due to a large geographic range or life 

history strategies that preclude them from surveys (Bailey et al. 2010, King et al. 2010). The lack 

of information for these segments of the state space make it difficult to model the population 

process and can lead to parameter identifiability issues (King et al. 2010). We aimed to 

investigate the consequences of model complexity and the use of priors on obtaining accurate 

and useful information for modelling populations for conservation. 

 

Methods 

State-Space Models 

 The state process model describes the true, but unknown state of a population through a 

time series, and the observation process links the time-series abundance monitoring data to the 

state process. The state process is an unobservable vector, in this case representing the 

abundances of each population segment and is denoted as nit, t = 0, 1, … T, i = 1, 2, … I, where t 

is time and i represents the segment of the population. The state process is composed of 

stochastic sub processes that make up the population model and is first-order Markov; that is, the 

distribution of nit is dependent only on nit-1 and the model parameters. Population models can be 

composed of any number of sub processes that advance nit-1 to nit. The observation process, 

denoted as yit, where t = 0, 1, …, T, and i = 1,2,… I, is an observable vector and is a function of 

the state process. The observation process may include survey data for each segment of the 
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population or only for a subset of the population and is typically stochastic but can also be 

deterministic. The complete state-space model can be defined as three probability distribution 

functions (pdfs): 

Initial state pdf: 𝑔𝑔0(𝑛𝑛𝑖𝑖0|θ) 

State process pdf: 𝑔𝑔𝑖𝑖𝑖𝑖(𝑛𝑛𝑖𝑖𝑖𝑖|𝑛𝑛𝑖𝑖0:𝑡𝑡−1, θ) 

Observation process pdf: 𝑓𝑓𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖|𝑛𝑛𝑖𝑖𝑖𝑖, θ) 

where t = 1, 2, …, T, i = 1,2,… I, and θ is a vector of model parameters. Using this information, 

we can make inferences about both nit  and θ, conditional on the observed data in a Bayesian 

framework. Therefore, we also identify a prior distribution on θ: 

Prior pdf (θ): 𝑔𝑔0(θ). 

 

Population Dynamics Models 

We chose to work with three models of differing complexity to determine how these 

methods worked at increasing levels of model structure. Model formulation is directly linked to 

the purpose of the modelling effort, or questions asked about the population. As models become 

more complex, they may provide more insight than a simpler model. Therefore, we chose to 

investigate models with differing complexity in order to explore the utility of these methods in 

providing accurate information given what data is available. The first state process model was a 

simple birth and death model: 

𝑛𝑛𝑡𝑡+1 = (𝑛𝑛𝑡𝑡 ∗ 𝑆𝑆𝑡𝑡) +  (𝑛𝑛𝑡𝑡 ∗ 𝑆𝑆𝑡𝑡 ∗ 𝑓𝑓𝑡𝑡) 

where S is survival and f is fertility. The observation process for model 1 is 

𝑦𝑦𝑡𝑡 = 𝑛𝑛𝑡𝑡 ∗ 𝑝𝑝 
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where 𝑦𝑦𝑡𝑡 is the observed count and 𝑝𝑝 is detection probability. We assume detection (𝑝𝑝) is known 

with some error 

𝑝𝑝~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛼𝛼,𝛽𝛽) 

with shape parameters 𝛼𝛼 =  279.7,  and 𝛽𝛽 =  652.6, which gives us a distribution with  𝜇𝜇 =

0.30, and 𝜎𝜎 = 0.015. 

The second state process model is a two-sex, two-stage structured matrix model: 

�

𝑛𝑛𝑗𝑗𝑗𝑗
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0 𝑓𝑓𝑚𝑚 0 0
0 0 𝑆𝑆𝑗𝑗𝑗𝑗 𝑆𝑆𝑎𝑎𝑎𝑎⎦

⎥
⎥
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𝑡𝑡
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𝑛𝑛𝑗𝑗𝑗𝑗
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𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛𝑎𝑎𝑎𝑎

�

𝑡𝑡

 

where S is the survival rate of juveniles (j) and adults (a)  of females (f) and males (m), and f is 

fertility for females (f) and males (m) with each parameter allowed to vary independently. The 

observation process for model 2 is 

 �

𝑦𝑦𝑗𝑗𝑗𝑗
𝑦𝑦𝑎𝑎𝑎𝑎
𝑦𝑦𝑗𝑗𝑚𝑚
𝑦𝑦𝑎𝑎𝑎𝑎

�

𝑡𝑡

=   �

𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛𝑎𝑎𝑎𝑎
𝑛𝑛𝑗𝑗𝑗𝑗
𝑛𝑛𝑎𝑎𝑎𝑎

�

𝑡𝑡

∗  [𝑝𝑝𝑗𝑗𝑗𝑗 𝑝𝑝𝑎𝑎𝑎𝑎 𝑝𝑝𝑗𝑗𝑗𝑗 𝑝𝑝𝑎𝑎𝑎𝑎]  

where the probability of detecting juveniles is 𝑝𝑝𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗 = 0  and therefore 𝑦𝑦𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗 = 0. Probability 

of detecting adults is 

𝑝𝑝𝑎𝑎𝑓𝑓,𝑎𝑎𝑎𝑎~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛼𝛼,𝛽𝛽). 

Again, we assume detection (𝑝𝑝) is known with the same shape parameters and thus the same 

mean and standard deviation as used in model 1. 

The third model was constructed using the same framework as model 2, with added 

parameter constraints to reduce conflation. In this model we assumed adult female survival is a 

proportion of adult male survival, due to decreased survival in reproductively active females 

(Table 1). For many species, it is typical for breeding females to have lower survival than males 
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due to the physiological cost and increased predation risk associated with reproduction (Erikstad 

et al. 1998, Ghalambor and Martin 2001, Stearns 1976, Williams 1966). Juvenile survival was 

set to be proportional to adult female survival, because young animals tend to have decreased 

survival rates due to inexperience (Table 1). Juvenile survival and fertility were not allowed to 

vary independently, and were set equal between the sexes (Table 1). The parameter values are 

indicated by priors that are assumed to be a known proportion of the observable segments of the 

population, therefore reducing parameter redundancy in the model (Bailey et al. 2010, King et al. 

2010). The observation process for model 3 is identical to the observation process for model 2. 

Count data were simulated as annual abundance surveys over 25 years for each model. 

Observations were simulated using an initial population size with  𝜇𝜇 = 1000  and 𝜎𝜎 = 80, 

known parameter values, or “truth” (Table 1), and a deterministic observation process where 

𝑝𝑝 = 0.3 for the observable segment(s) of the population. The values denoted as “truth” would be 

compared against the posterior mean estimates to determine the accuracy and precision with 

which the demographic parameters were estimated using SISR. Each model was run using both 

informative and non-informative priors to determine the effect of prior information on the 

posterior estimates (Figure 1, Table 1). Non-informative priors were beta distributed with shape 

parameters 𝛼𝛼 = 1,𝛽𝛽 = 1 as a uniform flat distribution across the parameter space. This type of 

prior is used when there is no information on the vital rate and allows for any value between the 

minimum and maximum to be chosen. In this modelling effort, we chose to formulate models 

and priors based on the assumption that the model species is characteristic of a K-selected 

species, with high survival and low fertility. Informative prior distributions were chosen to be 

reflective of a great deal of uncertainty in the parameter values, while still being representative of 

the general life history of the species (Figure 1). Posterior estimates from each model run with 
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non-informative and informative priors were compared to the “true” values that were used to 

simulate the data in order to identify the circumstances under which these methods provided the 

most accurate and precise results. 

 

Sequential Importance Sampling/Resampling with Kernel Smoothing 

Sequential Monte Carlo methods such as sequential importance sampling are used to 

solve Bayesian filtering problems when models and observations are non-linear and non-

Gaussian (Doucet et al. 2001, Liu and Chen 1998). The objective of this method is to estimate 

the posterior distribution of population size and demographic parameters conditional on the 

observation. Direct sampling of the posterior or target pdf p(x) is typically not feasible, and 

therefore sequential importance sampling is used to generate samples from a trial pdf q(x) that is 

possible to sample (Doucet et al. 2001). For simplicity and ease of calculation, we chose to set 

the trial pdf q(x) equal to the state pdf 𝑔𝑔𝑡𝑡(𝑛𝑛𝑡𝑡|𝑛𝑛0:𝑡𝑡−1, θ). The evolution of the state pdf through 

time t is based on the processes defined in the population process model, defined in Section 2.2. 

 To initialize the sequential importance sampling/resampling algorithm, we generated J 

sets of 𝑛𝑛0 and the parameters θ, or “particles”, from the initial state distribution 𝑔𝑔0(𝑛𝑛0|θ), and 

joint prior distribution on the parameters, 𝑔𝑔0(θ) and set t = 1.  In our models, we chose 𝐽𝐽 =

 100,000 particles, where 𝑗𝑗 = 1, … , 𝐽𝐽, and used an algorithm based on the steps described below.  

Step 1. Generate a sample of size 𝑁𝑁 particles from the trial pdf, 𝑞𝑞(𝑛𝑛𝑡𝑡) which we set equal to the 

state pdf 𝑔𝑔𝑡𝑡(𝑛𝑛𝑡𝑡|𝑛𝑛0:𝑡𝑡−1, θ).  

Step 2. Calculate weights (𝑤𝑤𝑡𝑡
𝑗𝑗) for each particle.  Because we set the trial pdf, 𝑞𝑞(𝑛𝑛𝑡𝑡), equal to the 

state pdf, 𝑔𝑔𝑡𝑡(𝑛𝑛𝑡𝑡|𝑛𝑛0:𝑡𝑡−1, θ), the weights are proportional to the observation pdf, 𝑓𝑓𝑡𝑡(𝑦𝑦𝑡𝑡|𝑛𝑛𝑡𝑡, θ). 
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Therefore, the resampling selects the best fit sets of values, or particles, according to the 

observed data: 

𝑤𝑤𝑡𝑡
𝑗𝑗  ∝  

𝑓𝑓𝑡𝑡�𝑦𝑦𝑡𝑡�𝑛𝑛𝑡𝑡
𝑗𝑗 , θ𝑗𝑗� ∗ 𝑔𝑔𝑡𝑡�𝑛𝑛𝑡𝑡

𝑗𝑗�𝑛𝑛0:𝑡𝑡−1
𝑗𝑗 ,θ𝑗𝑗�

𝑞𝑞�𝑛𝑛𝑡𝑡
𝑗𝑗�

 

Step 3. Resample the particles with replacement, according to the calculated weights, 𝑤𝑤𝑡𝑡
𝑗𝑗. 

Step 4. For each particle, kernel smooth the parameter distributions θ𝑗𝑗 using combinations of the 

original values and simulated values from a multivariate normal distribution (West 1993a,b; see 

explanation below). 

Step 5. For each particle, 𝑛𝑛𝑡𝑡  is redefined as the weighted resampled states (from step 3) and the 

parameters θ𝑗𝑗  are redefined as the resampled and smoothed parameter estimates (from steps 3 

and 4).  

Step 6.  The algorithm uses these resampled and smoothed values at the next time step and 

continues updating sequentially following Steps 2-6, using a first-order Markov process through 

the last time step of available observation data. 

 Due to the weighted resampling that occurs in Step 2, SISR can suffer from a 

phenomenon known as particle depletion which can lead to biased posterior estimates (Liu and 

West 2001).  Therefore, the number of particles chosen to initialize the algorithm must be very 

large because the number of unique particles is successively reduced at each time step during the 

resampling process (Newman et al. 2006). If there are very few particles left at any time step, 

their distribution becomes heavily skewed. Only a few particles will have a measurable 

importance weight and the resulting distribution will fail to accurately represent the posterior 

distribution (Liu and West 2001). The first technique to mitigate the issue of particle depletion is 

to include bootstrap resampling (Gordon et al. 1993). In our model this takes place directly after 
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the particles are assigned weights. The purpose of this step is to remove particles with 

infinitesimal weight, and to replicate the particles that have high importance weights (Gordon et 

al. 1993). An additional technique that deals with particle depletion is kernel smoothing of the 

parameter distributions. Kernel smoothing introduces new parameter values near to those that 

remain after bootstrapping. This particular method developed by West (1993a,b) smooths the 

parameter distributions using a multivariate normal distribution (𝑁𝑁)   

p(θ|D𝑡𝑡) ≈  �𝑤𝑤𝑡𝑡
(𝑗𝑗)𝑁𝑁(𝜃𝜃|𝑚𝑚𝑡𝑡

(𝑗𝑗),ℎ2𝑉𝑉𝑡𝑡

𝐽𝐽

𝑗𝑗=1

) 

where at time t, we have current posterior parameter samples 𝜃𝜃𝑡𝑡
(𝑗𝑗) and weights 𝑤𝑤𝑡𝑡

(𝑗𝑗), 𝑗𝑗 = 1, … , 𝐽𝐽, 

which provide a discrete Monte Carlo approximation to the posterior distribution 𝑝𝑝(𝜃𝜃|𝐷𝐷𝑡𝑡) (Liu 

and West 2001). The Monte Carlo posterior mean 𝑚𝑚𝑡𝑡 and variance matrix 𝑉𝑉𝑡𝑡 of 𝑝𝑝(𝜃𝜃|𝐷𝐷𝑡𝑡) are 

calculated from the Monte Carlo sample 𝜃𝜃𝑡𝑡
(𝑗𝑗) with weights 𝑤𝑤𝑡𝑡

(𝑗𝑗) (Liu and West 2001). Kernel 

scaling uses 𝑉𝑉𝑡𝑡, the Monte Carlo posterior variance and scales according to ℎ, the smoothing 

parameter (Liu and West 2001). The value of ℎ can be between 0 and 1, when ℎ = 1 there is no 

smoothing, and when ℎ = 0 there is maximum smoothing. We chose ℎ = 0.9 as the smoothing 

parameter, similar to Newman et al. (2006). To correct for over dispersion, West (1993a,b) 

introduced shrinkage of the kernel locations 

𝑚𝑚𝑡𝑡
(𝑗𝑗) = 𝑎𝑎𝜃𝜃𝑡𝑡

(𝑗𝑗) + (1 − 𝑎𝑎)𝜃̅𝜃𝑡𝑡 

where 𝑎𝑎 =  √1 − ℎ2. The resulting normal mixture retains the mean 𝜃̅𝜃𝑡𝑡  and the variance 𝑉𝑉𝑡𝑡 is 

corrected for over dispersion (Liu and West 2001). Kernel smoothing replaces the duplicated 

values that remain after resampling with slightly perturbed and typically unique values, 

increasing the number of particles available at the next time step. The model parameters were 

mapped to the real number line for multivariate normal kernel smoothing, and then back-

 12 



transformed after smoothing. This transformation constrained the parameter space for survival to 

values between 0 and 1, however, with the additional perturbation the parameter space for 

fertility was allowed to be between 0 and 3, which is slightly larger than the prior (Tables 1,2). 

Additional information on kernel smoothing and other particle filter improvements can be found 

in Doucet et al. (2001). Each model was coded using MATLAB version 8.4.0.15 (The 

Mathworks, Inc., Natick, Massachusetts, United States). The use of trade names or products does 

not constitute endorsement by the U.S. Government. 

 

Results 

The posterior distributions of population size included truth and the simulated population 

state, within the 95% credible intervals, regardless of model complexity or prior type (Figure 2). 

Prior information on parameters had little effect on the estimation of population size in any 

model, the only notable effect being wider credible intervals around the estimates from 

simulations with non-informative priors (Figure 2). The fit of population size to each model 

estimates appear to be acceptable, with two exceptions. Over the time series, the non-informative 

version of model 2 was unable to track closely with the true population trend.  It consistently 

overestimated abundance and accuracy did not increase over time (Figure 2). In addition, 

population size was estimated with large credible intervals, which did not contract over time, as 

they did in the other models. It is clear that the algorithm applied relatively high weights to sets 

of parameter values that were implausible and was unable to estimate population size accurately. 

The estimates from the non-informative version of model 3 were initially far from truth, but the 

algorithm was able to learn and became more accurate. At each time step the estimates of 

population size became nearer to truth and credible intervals shrunk as a result. This 
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demonstrates that the algorithm was able to overcome the lack of information regarding 

parameter values, but required several time steps to learn the correct values.  

Model 1 provided accurate results using both informative and non-informative priors, 

likely because there were only two parameters to estimate and there were no unobservable states 

in the population. Model 2 accurately estimated parameter values with informative priors, 

however using non-informative priors led the model to overestimate fertility and adult survival, 

and underestimate juvenile survival (Table 2). The state process of model 2 included multiple 

latent variables that were conflated. When appropriate prior information was included, the 

posterior estimates of parameters and population size provided accurate estimates of the 

population process. However, lack of prior information and data for multiple parameters caused 

the algorithm to over-estimate the likelihood of unrealistic combinations of parameters, leading 

to inaccurate posterior estimates of both parameters and population size. When using a more 

complex model, similar to model 2, it is necessary to incorporate appropriate prior information, 

data on each segment of the population, or both. The additional constraints on the parameters in 

model 3 resulted in accurate posterior estimates from both the informative and non-informative 

versions of the models (Table 2). Posterior estimates for each model using non-informative 

priors resulted in estimates with greater uncertainty than their better-informed counterparts. The 

lack of information allows the algorithm to heavily weight any combination of parameters that 

could reasonably lead to the observation; however, with no constraints on the parameters the 

model over-estimated the likelihoods of combinations of parameter values that were far from 

accurate. The inaccuracy of the results is most noticeable in the posterior estimates of juvenile 

survival and fertility.  
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Discussion 

While both Sequential Monte Carlo and Markov chain Monte Carlo (MCMC) are proven 

methods available for fitting Bayesian SSM, we chose SISR with kernel smoothing due to its 

ease of implementation (Godsill et al. 2004, Newman et al. 2006, Newman et al. 2009). We 

agree with others who found that these methods are suitable for fitting time series abundance 

data, filtering non-linear models, and non-Gaussian error structures (Trenkel et al. 2000, 

Newman and Lindley 2006, Newman et al. 2006).  

 The performance of each model was assessed by the accuracy and precision with which the 

population size and parameters were estimated. Models with informative priors consistently 

estimated posterior parameters values with greater accuracy and precision than their non-

informative counterparts. Population size and trend were accurately estimated in every model 

except the non-informative prior version of model 2 (Figure 2). Because the parameters in model 

2 were allowed to vary independently and these parameters are inherently conflated, the 

abundance and parameter estimates were inaccurate. By comparison, using informative priors for 

model 2 or constraining the parameters as in model 3, results in accurate estimates of parameters 

and abundance. Thus, we suggest for populations with complex structure, researchers attempt to 

identify appropriate priors and covariance for these parameters.    

The parameters we used to simulate truth were chosen to emulate a relatively long-lived 

animal with low fertility and delayed maturation.  For example, lesser snow goose populations 

have been modelled using annual survival rates of 0.80 and fertilities greater than 0.68 (Cooch et 

al. 2001).  We chose priors to reflect biologically plausible values and relatively great 

uncertainty.  It is conceivable that an analyst would choose informed priors similar to the ones 

we used (Table 1) based on published literature and knowledge of the life history strategies of a 
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species. These were not particularly strong priors (Figure 1) and essentially worked to steer the 

algorithm away from over-weighting parameter combinations that would not be plausible given 

the life history of the species. The models run with non-informative priors resulted in posterior 

parameter estimates that were not realistic for this population, but still estimated population size 

relatively well (Table 2, Figure 2). The issues with using non-informative priors are specifically 

apparent in models 2 and 3, which had unobservable segments of the population. In these models 

the algorithm has no prior information or observation data for the juvenile segments of the 

population. This allows the algorithm to apply a large weight to any possible combination of 

values resulting in a likely estimate of the observation and results in inaccurate posteriors for the 

vital rates (Table 2). The only case in which non-informative priors resulted in biologically 

reasonable parameter estimates was in model 1 (Table 2). This is most likely because the entire 

population was considered observable, rather than just a few segments. Therefore, the observed 

data used in the updating algorithm was the entire state space, which is not the case in the more 

complex models. 

Parameters associated with population segments that were not observable had posterior 

estimates that were much more variable in all of the models suggesting a strong link between the 

ability to accurately estimate parameter values and the observation process. While these results 

are not particularly surprising, they do have serious implications for management and 

conservation. It is common to have unobservable segments of a population, due to large 

geographic extents, life history strategies, or species behavior. For example, many animal 

surveys are conducted on breeding grounds where juvenile animals are infrequently encountered 

(e.g. Waterfowl Breeding Population Surveys; Bowman et al. 2015).  When there is a complete 
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lack of observations and information on vital rates for those population segments, SISR methods 

may be unable to provide sufficient data to inform management.  

 

Conclusion 

SISR can be used to accurately estimate both population size and demographic 

parameters in models of differing complexity, given certain constraints on parameters, prior 

information on vital rates, and/or observation data on important life stages. The accuracy and 

precision of the algorithm is a function of the prior information provided for the parameters and 

the observability of the population segment associated with the parameters. These results suggest 

model complexity should be considered in terms of what objectives need to be met. For instance, 

models 1 and 3 were able to accurately estimate population size and trend using both informative 

and non-informative priors (Figure 2). However, each of the models estimated posterior 

parameter values with more precision and accuracy when initialized with informative priors 

versus non-informative priors (Table 2). If the only objective is to monitor population size and/or 

trend, then simple models using non-informative priors may provide sufficient insight. However, 

if the objectives include understanding population processes and demographic parameters, then 

more complex models and informative priors should be used. 

While our models generally characterize a relatively long lived species, with high 

survival, low fertility, and a closed population, similar methods have been used to model open 

and closed populations of small mammals (Wang and Getz 2007), large mammals (Thomas et al. 

2005, Trenkel et al. 2000), fish (Newman and Lindley 2006, Newman et al. 2006), and birds 

(Besbeas et al. 2002, Hostetler and Chandler 2015). The methods outlined here can be applied to 

open populations and species with different life history strategies by formulating appropriate 
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population process models. Some extensions may include a mixture of informative and non-

informative priors, multiple surveys used for the observation process, hierarchical hyper-

parameters, and setting priors as a function of covariates (Brooks et al. 2004, Buckland et al. 

2007,  Hostetler and Chandler 2015, King et al. 2010, Newman and Lindley 2006, Newman et al. 

2006, Thomas et al. 2005). However, models should be formulated depending on the objectives 

of the modelling effort and the information available on the population.  

SISR can be a valuable tool for the effective management and conservation of animal 

populations; however, researchers and managers should be aware that when observations and 

vital rates are lacking for some segments of populations, estimates obtained using SISR may be 

inaccurate.  This may be extremely important when conservation of those population segments is 

a critical objective. However, information can still be gleaned using simplistic models while 

simultaneously identifying areas in which to target monitoring efforts. 
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Tables and Figures 

 
 
 

  

Table 1.1. Initial values used as parameters (𝛉𝛉) in population models and prior 

distributions. Truth was used to generate simulated observations for comparison to particles 

in the sequential importance sampling resampling algorithm, distributions can be seen in 

Figure 1. 

 
θ Truth Informative  

 𝜇𝜇 
Informative 

𝜎𝜎 
Informative 

 𝑔𝑔0(θ) 
Non-Informative 

𝑔𝑔0(θ) 

Model 1       

 S 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 

 f 0.22 0.25 0.25 beta (0.5, 1.5) beta (1, 1) 

Model 2       
 Sjf 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 

 Saf 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 
 Sjm 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 

 Sam 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 

 ff 0.22 0.25 0.25 beta (0.5, 1.5) beta (1, 1) 

 fm 0.22 0.25 0.25 beta (0.5, 1.5) beta (1, 1) 

Model 3       

 Sjf,jm 0.77 0.64 0.25 0.95* Saf 0.95* Saf 

 Saf 0.81 0.67 0.25 0.95* Sam 0.95* Sam 

 Sam 0.85 0.70 0.25 beta (1.652, 0.708) beta (1, 1) 

 fm,f 0.22 0.25 0.25 beta (0.5, 1.5) beta (1, 1) 
Notes: f indicates sex specific fertility; S indicates sex and stage specific survival. Fertility 

(f) was modelled using a stretched beta, minimum value = 0, maximum value = 2. 
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Figure 1.1. Prior distributions and truth for survival and fertility rates. 
Truth and prior distribution shape parameters, mean, and standard 
deviations are located in Table 1. Truth is denoted as the vertical line, 
non-informative prior distributions are the dashed lines, and the 
informative priors are the solid lines.   
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Figure 1.2. Comparison of true population size simulated over 25 years, 

posterior mean population size, and 95% credible interval for each 

model and prior type.  Posterior means and credible intervals are results 

from the sequential importance sampling resampling process. 
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Table 1.2. Posterior mean (µ), 95% credible interval (CI), and truth for each parameter (θ) 
across all models and prior types compared using sequential importance sampling resampling. 

 θ Truth 
Informative 
𝜇𝜇(95% CI) 

Non-Informative 
𝜇𝜇(95% CI) 

Model 1     

 S 0.85 0.80 (0.57-0.96) 0.73 (0.51-0.98) 

 f 0.22 0.32 (0.05-0.81) 0.46 (0.04-0.97) 

Model 2     
 Sjf 0.85 0.69 (0.37-0.91) 0.29 (0.02-0.89) 

 Saf 0.85 0.87 (0.73-0.96) 0.81 (0.41-0.97) 

 Sjm 0.85 0.69 (0.36-0.92) 0.28 (0.02-0.87) 

 Sam 0.85 0.91 (0.82-0.97) 0.96 (0.89-0.99) 

 ff 0.22 0.21 (0.01-0.87) 0.74 (0.10-2.53) 

 fm 0.22 0.21 (0.01-0.87) 0.74 (0.08-2.93) 

Model 3     

 Sjf,jm 0.77 0.79 (0.69-0.87) 0.62 (0.51-0.73) 

 Saf 0.81 0.83 (0.74-0.91) 0.66 (0.54-0.77) 

 Sam 0.85 0.88 (0.78-0.95) 0.82 (0.51-0.97) 

 ff,m 0.22 0.16 (0.01-0.68) 0.49 (0.15-1.16) 

Note: S indicates sex and stage specific survival, f indicates sex specific fertility. 
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Chapter 2: 

Evaluating models of population process in a threatened population of Steller’s eiders: A 

retrospective approach 

 

Abstract 

The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened 

under the Endangered Species Act in 1997 in response to perceived declines in abundance and 

breeding and nesting range. Aerial surveys suggest the breeding population is small and breeds 

in highly variable numbers, with zero birds counted in 5 of the last 25 years. The primary 

objective of this research is to evaluate competing population process models of Alaskan-

breeding Steller’s eiders through comparison of mode l projections to aerial survey data. To 

evaluate model efficacy and estimate demographic parameters, we used a Bayesian state-space 

modelling framework and fit each model to counts from the annual aerial surveys using 

sequential importance sampling/resampling. The results strongly support that the Alaskan 

breeding population experiences population level non-breeding events, and is open to exchange 

with the larger Russian-Pacific breeding population. Current recovery criteria for the Alaskan 

breeding population rely heavily on the ability to estimate population viability. Our results 

provide an informative model of the population process that can be used to examine future 

population states and assess the population in terms of the current recovery and reclassification 

criteria. 
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Introduction 

Steller's eiders (Polysticta stelleri) are small sea ducks that inhabit the Arctic and 

subarctic regions in Russia and Alaska (Frederickson 2001, Pearce et al. 2005). The Alaskan 

breeding population was listed as threatened under the Endangered Species Act in 1997 in 

response to a perceived decline in abundance throughout their breeding and nesting range 

(Federal Register 1997). The recovery team identified a critical need to estimate and reduce the 

extinction risk of this breeding population (U.S. Fish and Wildlife Service 2002). Assessing 

extinction risk requires a comprehensive understanding of population dynamics and underlying 

population processes, as well as the associated uncertainty. Sufficient information on a 

threatened species is particularly difficult to obtain, specifically for Steller’s eiders. The remote 

nature of their nesting, breeding, wintering, and molting sites makes this species especially 

difficult to observe (Frederickson 2001). The lack of observability makes it challenging to 

accurately estimate demographic processes or population size and trend. Furthermore, there is 

additional uncertainty regarding how the Alaskan breeding population relates to the larger global 

population of Steller’s eiders. The interaction between the global population and the much 

smaller Alaskan breeding population may have serious implications for population viability. 

There are three geographically distinct breeding populations of Steller’s eiders; the 

Russian-Atlantic population, Russian-Pacific population, and the Alaskan population (U.S. Fish 

and Wildlife Service 2002, Pearce et al. 2005). The Russian-Atlantic population nests in northern 

Norway and in Russia west of the Taimyr Peninsula, and winters in the Barents and Baltic seas 

(Nygard et al. 1988, 1995, Pearce et al. 2005, Petersen et al. 2006). The largest population is the 

Russian-Pacific population, which nests in Siberia east of the Taimyr Peninsula (Pearce et al. 

2005). The smallest of the three populations is the Alaskan breeding population, which may 
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contain fewer than 600 individuals (Stehn and Platte 2009). This small breeding population nests 

on the Arctic Coastal Plain (ACP) of Alaska, primarily near the town of Barrow. Both the 

Russian-Pacific and Alaskan breeding populations congregate on the same molting and wintering 

areas along the Alaskan Peninsula (Martin et al. 2015, U.S. Fish and Wildlife Service 2002). 

They exhibit high rates of fidelity to specific molting areas in Alaska and pair bonding occurs on 

the wintering grounds (Flint and Herzog 1999). There are alternative hypotheses regarding 

closure between the Russian-Pacific and Alaskan breeding populations. Movement between 

these two populations could have serious implications for assessing extinction risk and recovery 

(Martin et al. 2015).) Determining if the Alaskan breeding population is open or closed to 

movement is a critical component to better understand the processes that govern this population. 

Planning for the conservation and recovery of an imperiled species requires an 

assessment of population status. Like many threatened or endangered species, the Alaskan 

breeding population of Steller’s eiders is monitored annually. Road-based and transect surveys 

for breeding pairs are conducted near the town of Barrow, Alaska (Obritschkewitsch et al. 2001, 

Safine 2013, Stehn et al 2013). Additionally, aerial surveys have been flown annually since 1989 

along the ACP (Obritschkewitsch et al. 2001, Safine 2013, Stehn et al. 2013). These surveys 

indicate that the Alaskan breeding population is present in low and highly variable numbers 

(Stehn et al. 2013). Based on 25 years of aerial survey data from the ACP, the number of birds 

counted ranged from zero (in 5 years) up to 635 (SE 405) birds (Stehn et al. 2013). These 

variable counts make it particularly difficult to characterize a reliable population trend and the 

risk of extinction. Typically, the results of these annual surveys can be used to develop models 

and estimate population viability, however, highly variable counts, zero count years, and the 

large amount of uncertainty surrounding these counts makes it particularly challenging to 
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quantify viability. Furthermore, there is additional uncertainty regarding of demographic rates. 

Survival rates have been estimated for this species using birds marked on the molting grounds 

(Flint et al. 2000(b), Frost et al. 2013, Reynolds 2007). These studies typically included a large 

portion of non-breeding birds, and birds from both the Russian-Pacific and Alaskan breeding 

populations. While these studies provide a foundation for understanding survival rates for this 

species, demographic rates of the Alaskan breeding population are likely to differ from the birds 

studied on the molting sites.  

A central problem in conserving a threatened or endangered species is the difficulty in 

properly quantifying uncertainty. For Steller’s eiders, uncertainty in population process hinders 

the ability to accurately assess the population’s extinction risk, which, for the Alaskan breeding 

population, must be < 1% over 100 years to meet one of the criteria for down-listing (U.S. Fish 

and Wildlife Service 2002). A principal objective outlined in the recovery of this population was 

to gain a more comprehensive understanding of the dynamics of Alaskan breeding population 

and use this information to estimate the past, current, and future breeding population status 

(USFWS 2002). We sought to develop and identify explicit models of population processes to 

evaluate the status of the Alaskan breeding population. We used Bayesian state-space models to 

formally account for the multiple sources of uncertainty associated with the observation process, 

parameters, and population closure. Bayesian state-space models provided a flexible framework 

to explicitly account for uncertainty, which is particularly important when modelling a 

threatened species (e.g., Buckland et al 2004, Buckland et al. 2007, Dunham and Grand 2015 in 

review, Newman and Lindley 2006, Newman et al. 2006, Newman et al. 2009, Thomas et al. 

2005).  
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It is vital to adequately account for uncertainty when making management and policy 

decisions for species of conservation concern. State-space models provide a convenient 

framework to explicitly acknowledge uncertainty in population and observation processes while 

simultaneously modelling biologically plausible population processes and estimating key 

demographic parameters (Buckland et al. 2004, Dunham and Grand in review, Thomas et al. 

2005). This approach allowed for the direct comparison of multiple models of population process 

and fit each model to the available observation data from the aerial surveys. The sequential 

nature of the aerial survey data provided a convenient opportunity to employ sequential Monte 

Carlo methods, and more particularly Sequential Importance Sampling with Resampling (SISR), 

to fit process models to observation data. This method was appropriate for analyzing sequential 

data, and provided posterior estimates of demographic rates and population state at each time 

step (Newman et al. 2009). Therefore, we were able to incorporate time-varying or hierarchical 

parameters and estimate posterior distributions for each parameter after each time step (Newman 

et al. 2009). This was particularly important for this modelling effort because it allowed us to 

account for movement between the Russian-Pacific and Alaskan breeding populations. 

Additionally, we directly compared the results from each process model, after each time step, to 

determine which model of population process best fit the observational data. This approach 

provided us with the opportunity to explicitly account for process uncertainty, observation 

uncertainty, and model uncertainty, while simultaneously providing estimates of demographic 

rates and identifying the most appropriate population process model. 

We developed four competing models to reflect alternative hypotheses and uncertainty in 

the underlying population processes. Our primary objective was to evaluate support, based on 

count data, for competing models that represent hypotheses for the population dynamics of the 
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Alaskan breeding population of Steller’s eiders. Additionally, because we used SISR, we also 

were able to estimate underlying demographic rates. 

Methods 

Survey Methods 

Given the importance of the ACP for breeding waterfowl, the U.S. Fish and Wildlife 

Service Division of Migratory Bird Management conducted aerial surveys sampling roughly 

60,000 km2 in the ACP to monitor the distribution, abundance, and trend of bird species. The 

original ACP surveys were flown from 1986 – 2006, monitoring many avian species in the area. 

Following the listing of the spectacled eider (Somateria fischeri) in 1992, the North Slope Eider 

(NSE) survey was established and flown through 2006, monitoring primarily spectacled and 

Steller’s eiders. In 2007, the ACP and NSE surveys were merged. Stehn et al. (2013) conducted 

analyses to combine the data sets from all surveys from 1986 to 2013 and determine population 

trends of the monitored species. The aerial survey data used in our research to evaluate 

population process models were taken from the combined survey results in Stehn et al. (2013). 

The data set used in our analysis of population process models used the number of indicated 

breeding Steller’s eiders estimated each year from 1989 to 2013. Stehn et al. (2013) estimated 

the number of indicated breeding birds as 

((2 ∗  number of single birds)  +  (2 ∗  number of pairs)). 

The number of single birds is doubled under the assumption that only pairs are present on the 

surveyed area.  This number was corrected using an adjustment ratio according to timing of the 

survey, the percentage of the area sampled, and the stratum to account for the average relative 

difference between observed densities amongst the different survey types. This included 

differences in seasonal chronology, survey timing, weather conditions, movement of birds, and 
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observers (Stehn et al. 2013). The adjustment ratio converted aerial index densities observed on 

the ACP survey as if they had been observed on the NSE survey (Stehn et al. 2013). Therefore, 

the data set used in our analysis to evaluate models of population process correspond to the time 

while eiders are in breeding pairs, before the males depart, consequently corresponding to a pre-

breeding census and is treated as such in our models and analysis. The adjustment ratios used to 

combine the results from the surveys are not indicative of detection probability, which was 

accounted for in our model below. Additional information on timing, stratification, sampling, 

and analysis of these surveys and the data collected is available in Stehn et al. (2013). 

 

State-Space Model Formulation 

Bayesian state-space models (SSM) provide a flexible modeling framework to account 

for multiple sources of uncertainty (Brooks et al. 2004). State-space models account for 

uncertainty through a state process and observation process which link time series of counts to 

the underlying processes that affect the population state (Buckland et al. 2004, Newman 1998, 

Thomas et al. 2005). We used a SSM framework and developed four competing state process 

models to examine the possibilities of Steller’s eider population dynamics. The general Bayesian 

state-space modelling framework consists of four probability distribution functions (pdfs): 

Initial state pdf: 𝑔𝑔0(𝑁𝑁0|θ) 

State process pdf: 𝑔𝑔𝑡𝑡(𝑁𝑁𝑡𝑡|𝑁𝑁0:𝑡𝑡−1, θ) 

Observation process pdf: 𝑓𝑓𝑡𝑡(𝑐𝑐𝑡𝑡|𝑁𝑁𝑡𝑡, θ) 

Prior pdf: 𝑔𝑔0(θ) 

where t = 1, 2, …, T and θ is a vector of model parameters. Using this information, we can can 

make inferences about both 𝑁𝑁𝑡𝑡 and θ, conditional on the observed data. 
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The full state process model was defined as: 
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where 𝑁𝑁𝑡𝑡 represented the number of individuals in each age-sex class, 𝑆𝑆𝑡𝑡 was the age-sex 

specific survival rate, and 𝑓𝑓 was the sex-specific fertility, and I was the sex-specific number of 

adult immigrants added to the breeding population at time t. Immigration, 𝐼𝐼𝑡𝑡, was treated as a 

random effect, or time-varying parameter. At each time step, the number of immigrants was 

modelled using a zero-inflated uniform distribution parameterized as: 

𝐼𝐼𝑡𝑡 = �
0,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ~ 0.5

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚 (1, 3000) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ~ 0.5 . 

The number of immigrants estimated at time step 𝑡𝑡 was added to the population size at time step 

𝑡𝑡, and became part of the state-space at that time because they were available to be counted, but 

did not contribute to the population previously. In addition, we assumed that immigrants only 

moved into the population as breeding adults, and the estimated number of immigrants was 

added to the adult male and female class assuming equal sex ratios. Immigration was only 

included in the two open population models, and was excluded from the two closed population 

models, described in detail below.  

Each state process model was linked to the count data from the ACP surveys through an 

observation process model. The aerial survey was conducted on the breeding grounds, prior to 

nesting; therefore, the survey only detected adult birds (age 2+) (Frederickson 2001, Quakenbush 

et al. 1995). The observation process model for each state process model was: 
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where 𝑐𝑐𝑡𝑡 represented the number of animals counted in each age-sex class, and  𝑝𝑝𝑡𝑡 was the 

detection probability of individuals. Because the aerial survey only detected adult birds, the 

probability of detecting juveniles, 𝑝𝑝𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗 = 0 and therefore, 𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗 = 0. Otherwise, detection 

probability, 𝑝𝑝𝑡𝑡, was modelled using a beta distribution with 𝜇𝜇 = 0.3 and 𝜎𝜎 = 0.02 to reflect 

additional uncertainty in detection probability (Table 1). We assumed detection probability was 

approximately 30% for adult Steller’s eiders on the ACP aerial surveys, and that detection was 

relatively constant across years (Stehn and Platte 2009).  

The population models were based on a two-sex, two-age structured matrix population 

model. Juveniles were 1-year old and annual juvenile survival rate, (𝑆𝑆𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗) was the probability 

of the animal surviving from 1-year old to 2-years old. Juvenile survival of Steller’s eiders was 

estimated to be relatively high, and we chose a prior distribution based on expert opinion, 

previous studies, and data on spectacled eiders to reflect the range of values that we believed to 

be likely (Flint et al. 2000(a), Runge 2004). In addition, we assumed juvenile survival was equal 

between the sexes to reduce model complexity and therefore parameter redundancy (Bailey et al. 

2010, Dunham and Grand in review). Survival of eiders prior to their first birthday (i.e., duckling 

& immature survival) was accounted for in the estimate of fertility (𝑓𝑓𝑓𝑓,𝑚𝑚). Expert opinion and 

data from the Steller’s eiders that nest near Barrow suggest that fertility was low, which is 

typical of a long-lived sea duck (Quakenbush and Suydam 1999, Quakenbush et al. 1995, 

Quakenbush et al. 2004, Safine 2013). Fertility was assumed to produce an equal sex ratio, and 

was therefore set equal between the sexes. Adult survival was the annual survival rate (𝑆𝑆𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎) of 
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birds 2 years and older. Adult male survival is characteristically high, with average annual 

estimates from previous studies reported to range between 0.77 and 0.87 (Flint et al. 2000(b), 

Frost et al. 2013, Reynolds 2007). We assumed adult female survival would be lower and more 

variable than male survival due to the increased energetic costs and increased predation risk 

associated with nesting (Erikstad et al. 1998, Ghalambor and Martin 2001, Flint et al. 2000(b), 

Stearns 1976, Williams 1966). However, average annual survival rates of adult females from 

previous studies range from 0.81 to 0.90 (Flint et al. 2000(b), Frost et al. 2013, Reynolds 2007). 

Higher survival of females than males is uncommon in ducks species, and we believe these rates 

may have been higher because the studies were conducted on the molting grounds therefore 

including only non-breeding females. Additional uncertainty was incorporated into each of the 

parameter values to account for additional sampling and process variance (Figure 1,Table 1).  

 Four models were formulated to represent competing hypotheses about the dynamics of 

the Alaskan breeding population of Steller's eiders. Each model used the general state process 

model framework defined above. Due to the timing of the aerial surveys and the treatment of 

model parameters, the differences in the competing models originated in the interpretations of 

the observed data. The interpretations of zero count years were particularly important for Steller's 

eiders. For birds to be detected they must arrive at the grounds to breed; however, there were 

alternative hypotheses about the reason for zero count years. Models 1 and 2 assumed that the 

population was closed to immigration and emigration between the Alaskan breeding population 

and the Russian-Pacific breeding population. Models 3 and 4 assumed an open population, and 

therefore both models included the hierarchical time-varying parameter (𝐼𝐼𝑡𝑡), corresponding to 

immigration.  
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Model 1 assumed a closed population with no probability of a population level non-

breeding event. Therefore, the only circumstance in which there could be zero birds observed 

was a catastrophic event causing the population to collapse. The observation model for state 

process Model 1 was the same as above for non-zero years, however, in zero count years 𝑐𝑐𝑡𝑡 = 0 

and 𝑁𝑁𝑡𝑡 = 0. Model 2 also assumed a closed population; however, we assumed that years in 

which zero birds were counted represented a population level non-breeding event. Therefore, the 

expected count, 𝑐𝑐𝑡𝑡, was allowed to equal zero in years zero birds were observed. However, 

unlike Model 1, a zero count year strictly represented a non-breeding event, and not a population 

crash. In the zero count years, the parameters (θ) are not updated due to the lack of data. It 

follows that, survival in the zero count year was equal to the survival rates estimated in the 

previous time step, and fertility was set to zero, to indicate non-breeding. The number of 

individuals in the population (𝑁𝑁𝑡𝑡), was the number of individuals expected to survive the non-

breeding year. 

 Model 3 was reflective of a more transient population, which assumed population level 

emigration events corresponding with the zero count years. This was modelled using the 

assumption that in the zero count years, the Alaskan breeding population emigrated and joined 

the Russian-Pacific population. In these zero count years, 𝑐𝑐𝑡𝑡 = 0 and 𝑁𝑁𝑡𝑡 = 0. Therefore, in years 

following these zero counts, 𝑁𝑁𝑡𝑡 was entirely made up of immigrants, 𝐼𝐼𝑡𝑡. Years in which there 

were successive non-zero counts are representative of breeding birds that exhibit breeding area 

fidelity and constitute the Alaskan breeding population. However, in any zero count years these 

birds emigrated from the breeding population, resulting in 𝑁𝑁𝑡𝑡 = 0. The estimated number of 

immigrant birds was added to 𝑁𝑁𝑡𝑡 during the pre-breeding census period and were therefore 

accounted for in the estimated count, in any non-zero count year. If 𝑐𝑐𝑡𝑡 = 0, both 𝑁𝑁𝑡𝑡 and 𝐼𝐼𝑡𝑡 were 
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zero because there were zero birds present. Immigration was treated as a random effect, thus it 

was not defined through a Markov process, and was therefore not dependent on the estimate of 

immigrants at any previous time step.  

 Model 4 also assumed an open population; however, zero count years represented a 

population level non-breeding event (𝑓𝑓 = 0). Therefore, when the observation was zero, 𝑐𝑐𝑡𝑡 = 0, 

but the population size 𝑁𝑁𝑡𝑡 remains intact, and in these years there were no immigrants added 

(𝐼𝐼𝑡𝑡 = 0). All other years allow for immigrants that were added into the resident population at the 

current time step. These immigrants were incorporated into the population at this time and then 

remain in the population throughout the time series becoming resident birds, under the 

assumption they were exhibiting breeding area fidelity. 

Each model was fit to the available historic observation data from the aerial surveys on 

the ACP using Sequential Importance Sampling with Resampling that simultaneously estimated 

population size 𝑁𝑁𝑡𝑡, and both time invariant (θ) and time varying (It) model parameters. 

 

Fitting the population models 

 We estimated the demographic parameters, population size, and dynamics that most 

likely described the observation data from the ACP surveys. There are several inferential 

procedures that can be used to estimate both parameters and population size including, but not 

limited to Sequential Monte Carlo (Doucet et al. 2001) and Markov Chain Monte Carlo (MCMC; 

Gilks et al. 1996) methods. Newman et al. (2009) compared both Sequential Importance 

Sampling (SIS) and MCMC methods for making inference about unknown states and parameters 

of Bayesian state-space models for British grey seal (Halichoerus grypus) meta-population and 

simulated data for a Chinook salmon (Oncorhynchus tshawytscha) population. Although MCMC 
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methods are more commonly implemented in deriving inference from SSM’s, Newman et al. 

(2009) suggests that both methods are useful for analyzing time-series observation data. While 

MCMC typically produced results with less MC variation, they were also more difficult to 

implement and, in the case of complex models, may require employing a simpler model. 

Sequential Importance Sampling algorithms are typically very easy to implement, are 

computationally and statistically efficient, and offer the posterior distributions after each 

intermediate time step, providing a useful diagnostic for model deficiencies.  

 The SISR algorithm is initialized by generating a large number 𝑋𝑋 of “particles” or 

samples from the prior distribution on the parameters, 𝑔𝑔0(θ0x), and the initial state distribution 

𝑔𝑔0(𝑁𝑁0𝑥𝑥|𝜃𝜃0𝑥𝑥), which generates 𝑔𝑔0(𝑁𝑁0𝑥𝑥,𝜃𝜃0𝑥𝑥). We chose 𝑋𝑋 = 500,000 particles, where 𝑥𝑥 = 

1… , … ,𝑋𝑋. Each particle, 𝑥𝑥, represents a single realization of the demographic parameters, 𝜃𝜃𝑡𝑡𝑥𝑥 

combined with a single realization of the population 𝑁𝑁𝑡𝑡𝑥𝑥. Each particle is projected forward 

to 𝑡𝑡 = 1, generating the state pdf 𝑔𝑔1(𝑁𝑁1𝑥𝑥|𝑁𝑁0:𝑡𝑡−1
𝑥𝑥  ,𝜃𝜃1𝑥𝑥). The particles are assigned weights 

proportional to the likelihood of the observation at 𝑡𝑡 = 1, 

𝑤𝑤1𝑥𝑥𝑤𝑤1𝑥𝑥𝑤𝑤1𝑥𝑥  ∝  
𝑓𝑓1(𝑐𝑐1|𝑁𝑁1𝑥𝑥, 𝜃𝜃1𝑥𝑥) ∗ 𝑔𝑔1(𝑁𝑁1𝑥𝑥|𝑁𝑁0:𝑡𝑡−1

𝑥𝑥 ,𝜃𝜃1𝑥𝑥)
𝑔𝑔1(𝑁𝑁1𝑥𝑥|𝑁𝑁0:𝑡𝑡−1

𝑥𝑥  ,𝜃𝜃1𝑥𝑥) . 

Each particle is resampled according to its associated weight 𝑤𝑤𝑡𝑡
𝑥𝑥, using a bootstrap filtering 

technique (Gordon et al. 1993). The parameter distributions are then kernel-smoothed using a 

multivariate normal distribution, to mitigate the issue of particle depletion (Dunham and Grand 

in review, Newman and Lindley 2006, Newman et al. 2009, West 1993a,b). The parameters are 

transformed to the real number line, 𝑅𝑅1, before smoothing and back-transformed afterwards. The 

survival rates were logit-transformed, and the fertility rates were square-root transformed to 

ensure normality. For each particle, 𝑁𝑁𝑡𝑡𝑥𝑥 is redefined as the weighted resampled state, and the 

parameters θ𝑡𝑡𝑥𝑥 are redefined as the resampled and smoothed values. The resulting particles are 
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used to generate the prior distribution at the subsequent time step, following a first-order Markov 

process. This procedure is repeated sequentially through the final time step of available 

observation data, using the state process distribution to project forward to the next time step, then 

adjusting the resulting predicted state distribution using the weighted resample according to the 

observation process, followed by kernel smoothing the parameter distributions. For additional 

information on the methodology, refer to Doucet et al. (2001), Dunham and Grand in review, 

Newman et al. (2006), and/or Newman et al. (2009) for more detailed descriptions on the 

sequential importance sampling/resampling algorithm. 

 

Model Selection 

 To evaluate which model best fit the aerial survey data, we used Bayesian model weight 

updating. One of the primary benefits of SISR is the production of posterior estimates at each 

time step (Newman et al. 2009). This provides an estimate from each model, for each year, 

which can then be used to evaluate the fit of the models to each year of available data. Initially, 

each model was assigned equal weight. Using Bayes’ theorem, the model weights were updated 

sequentially, given the prediction provided by each model compared to the actual observation 

from that year: 

𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
𝑗𝑗�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡� =

𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡−1
𝑗𝑗 � ∗ 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡

𝑗𝑗�
∑ 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡−1

𝑗𝑗 � ∗ 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
𝑗𝑗�𝑗𝑗

 

where 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
𝑗𝑗�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡� is the model weight for model 𝑗𝑗 in time step 𝑡𝑡, 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡−1

𝑗𝑗 � is the 

prior probability of model 𝑗𝑗, 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
𝑗𝑗� is the likelihood of the data given the model, and 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 is the actual observation from the aerial survey at that time step. This method was used in 

similar applications by McGowan (2015) and Robinson et al. (in press) to compare multiple 
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competing models of population dynamics using sequential observation data. Additionally, this 

approach was discussed in Barker and Link (2013) and in Hooten and Hobbs (2015).The models, 

SISR algorithm, and analysis were coded using MATLAB version 8.4.0.15 (The Mathworks, 

Inc., Natick, Massachusetts, United States).  

 

Results 

The expected annual counts from each model indicate that Models 1 and 2, which 

represented closed systems, did not fit the observations well, likely due to the inability of the 

closed model predictions to vary enough to capture the variability of the data(Figure 1). Models 

3 and 4, which characterized open populations, tracked well with the aerial survey data (Figure 

1). While the annual estimates for Models 3 and 4 both seemed to fit the data, the results of the 

model weight updating suggested that Model 4 fit the data the best (Figure 2). The combined 

results of the SISR algorithm and the Bayesian model weight updating strongly support that the 

Alaskan breeding population is an open population, with movement between the Alaskan and 

Russian-Pacific breeding populations. 

 Considering the overwhelming support for Model 4 as the most likely population process 

model, we focused on the results from Model 4. The posterior results at the final time step for the 

parameter estimates from Model 4 indicated that adult survival and fertilities may be lower than 

previously expected (Figure 33, Table 1). The posterior on juvenile survival rates remained very 

similar to the prior distribution. Despite the large distribution over which the algorithm had to 

choose from for each demographic parameter, the posteriors for the time-invariant parameters 

were similar although more precise that the priors.  
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Because the time-varying parameter 𝐼𝐼𝑡𝑡 was treated as a random effect, and therefore did 

not evolve over time, we report the weighted, resampled posterior for three time periods (Figure 

4). These three time periods were chosen because they represent the variability in the estimated 

number of immigrants. The prior distribution on 𝐼𝐼𝑡𝑡 was roughly half non-zero particles, over a 

uniform distribution from 1 to 3000 individuals (Figure 4). In 1997, which immediately followed 

a non-breeding (i.e., zero count) year, and a generally stable population, the estimated number of 

immigrants was very low (<300), with a high probability (approximately 85%) of there being 

zero immigrants (Figure 1). In 1995, the posterior estimate of immigrants suggests there was 

about a 50% probability of zero immigrants, but the remainder of the distribution suggested that 

there were likely between 300 and 600 immigrants. In 2004, the posterior distribution was 

heavily skewed toward an immigration event. The probability of zero immigrants was very small 

(approximately 15%), suggesting that the observation from this year (following successive low 

count years) was very likely the result of a relatively large number of immigrants, approximately 

600 to 1100 individuals. 

Discussion 

 To properly and efficiently monitor and manage a species, it is critical to understand the 

population’s dynamics, and most importantly, understand the fundamental structure and 

underlying processes that govern the population. Bayesian state-space models provide a flexible 

framework to incorporate multiple sources of uncertainty while addressing competing models of 

population process. For further analysis of population status and trend required for Steller’s 

eiders, an appropriate model of population process is necessary. Previous attempts at estimating 

population trend and extinction risk suggest that to effectively model population dynamics, one 
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must allow for movement between the larger Russian-Pacific population and the Alaskan 

population, otherwise predictions from these models will be inaccurate (J. Runge pers. comm.).  

Our results indicate that the most likely process model includes both immigration and 

non-breeding events, and therefore, it will be necessary to include these events in projection 

models for predicting future population states and estimating extinction risk. In addition, 

previous studies of the three geographically distinct breeding populations suggest that there is no 

significant genetic differentiation between the Alaskan and Russian-Pacific breeding populations 

(Pearce et al. 2005). While there may not have been sufficient time since de-glaciation for 

significant genetic differences to evolve, these results are consistent with movement between the 

two breeding populations, providing additional support for our conclusion that the Alaskan 

breeding population is open.  

 This conclusion is evident based on model weight updating after the first two years of 

observation data. At this point, Models 3 and 4 provided the best fit to the data (Figures 1 and 2). 

Following the first set of zero count years in 1996 and 2000, Models 3 and 4 were the only 

models that were able to fit the observations because they included immigration (Figure 1). This 

was expected because a species with such low fertility would be highly unlikely to recover from 

zero years or successive low count years from recruitment alone. The high variability in the 

number of observed birds, combined with the extremely low fertility rates of this species, points 

to frequent supplementation to the Alaskan population through immigration from the Russian-

Pacific population.  

Model 4 gained the majority of the weight following updates based on data from 1997 

because the high count in 1999 was better explained by a resident population and a large influx 

of immigrants. Model 3 was representative of a population that was predominantly transient; the 
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algorithm was unable to provide an adequate estimate of the 1999 count based entirely on 

immigrants. Biologically, an entirely transient population is relatively unlikely, specifically in 

waterfowl which typically exhibit high breeding area fidelity (Anderson et al. 1992). The support 

for Model 4 over Model 3 provides further evidence for breeding area fidelity by the Alaskan 

breeding population. While there is some evidence for this behavior (D. Safine, pers. comm.), 

and it is typical in sea duck species (Mallory 2015, Phillips and Powell 2006), the low and highly 

variable breeding numbers and difficulty associated with tracking these birds over multiple 

years, has made it extremely challenging to estimate breeding area fidelity for this population. 

Periodic non-breeding has been observed in Steller’s eiders near Barrow (Quakenbush et 

al. 2004) and in Russia on the Lena River (Solovieva 1999), and in common eiders (S. 

mollissima) in Northumberland (Coulson 1984, 2010), making it an important parameter to 

incorporate into population models. However, in some years when zero birds were counted on 

the ACP survey, some birds were present and bred near Barrow (Safine 2013). Their number and 

distribution appears to have been very limited, and would not be sufficient to explain the large 

number of breeding birds present in subsequent year.  Thus, our conclusions would be 

unaffected. Speculation regarding the factors influencing these non-breeding events in Steller’s 

eiders include associations with high lemming density, nesting pomarine jaegers (Stercorarius 

pomarinus), and snowy owls (Bubo scandiacus) (Quakenbush et al. 2004). Correlation of non-

breeding with low lemming density is based on hypotheses that, in years with high lemming 

density, the lemmings provide an alternative prey source for predators of eiders (Quakenbush et 

al. 2004). Non-breeding in correlation with high density of nesting pomarine jaegers and snowy 

owls have been suggested because these species are highly territorial of their nests and may 

provide protection for neighboring Steller’s eiders (Quakenbush et al. 2004). Additional 
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explanations for non-breeding events in eiders may be related to food availability, climate 

change impacts, and/or oceanic regime shifts, where non-breeding may be a strategy to reduce 

the risk of mortality associated with breeding when in poor condition (Coulson 1984, 2010). 

Cross-seasonal effects of nutrient availability and storage have been shown to affect breeding 

success in common eiders (Lehikoinen et al. 2006, Descamps et al. 2010) and oceanic regime 

shifts have been shown to be correlated with population changes in eider species (Coulson 2010, 

Flint 2013). It is possible that oceanic conditions and relative seasonal climate may have strong 

effects on the overall body condition and therefore breeding probability of Steller’s eiders, 

because they are inextricably linked to the ocean for the majority of their food resources 

(Frederickson 2001, Flint 2013). The cross-seasonal and carryover effects of climate, regime 

shifts, and resource availability on breeding are extremely complex and vary among species and 

location (Alisaukas and Devink 2015, Flint 2013). These effects could be important ecological 

mechanisms behind the non-breeding events of this population, and additional studies regarding 

their effects on breeding of this population would be invaluable to the greater understanding of 

this population’s dynamics. Although it remains difficult to say with any certainty what 

ultimately causes periodic non-breeding, the results of this modelling effort are supportive of 

periodic population level non-breeding.  

 This species is characteristically long-lived, with high adult survival, and low fertility 

(Frederickson 2001). Previous studies and expert opinion informed the prior distributions on the 

demographic rates, therefore providing reasonable estimates and relative uncertainty in these 

rates (Flint et al. 2000(b), Frost et al. 2013, Reynolds 2007). However, survival estimates for 

adults were based on studies that included largely non-breeding adults at Izembek Lagoon, 

Alaska (Flint et al. 2000(b), Frost et al. 2013, Reynolds 2007). We would expect lower survival 
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for breeding adults because of the relative costs associated with reproduction (Williams 1966). 

Posterior estimates of mean adult survival of both sexes were significantly lower than values 

estimated from previous studies (Table 1) (Flint et al. 2000(b), Frost et al. 2013, Reynolds 2007). 

These low survival rates may indicate that the studies conducted on the molting grounds are not 

truly representative of the Alaskan breeding population, and that this population has considerably 

lower survival than the larger Russian-Pacific population. The mean posterior estimate for 

fertility was also lower than expected (Table 1). While low fertility is common amongst long-

lived sea ducks, these results are surprising because predator control, primarily fox control, was 

implemented in 2005toto increase fertility and adult female survival (Savory et al. 2009, 2010). 

This may indicate that fox control either did not affect the demographic rates, or the effect was 

not significant enough to detect through the observed data. There could also be an unidentified 

relationship with removal of foxes and an increase in nest predation from avian predators which 

would offset any positive effect on nest survival. Additional explanations for lower demographic 

rates could be attributed to a population breeding on the periphery of its range. Öst et al. (2016) 

found that common eiders breeding along the eastern edge of their range had significantly lower 

reproductive success than a population breeding in the core of their range. Low fertility may be 

the result of negative impacts on survival immature birds once they leave the breeding grounds 

(birds younger than 1 year old). Local climate issues on breeding and wintering sites may not 

only affect non-breeding behavior, but also negatively impact survival of young birds which 

would lead to reduced fertility rates (Mallory 2015). It is difficult to point to one specific cause 

of such low fertility, and it may be that it is caused by any combination of factors that exacerbate 

the overall effects of predation and climate on fertility. 
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 Current recovery criteria for the Alaskan breeding population rely heavily on the ability 

to estimate population viability in the future (USFWS 2002). This modelling effort provides an 

informative model of population process that can be used to examine future population trends 

and assess the population in terms of the current recovery and reclassification criteria. Previous 

attempts to quantify population viability and trend concluded that the Alaskan breeding 

population was declining (Stehn et al. 2013, J. Runge pers. comm.). However, J. Runge (pers. 

comm.) suggested that, without accounting for dispersal from the larger Russian-Pacific 

population, these results were likely an inaccurate representation of the population. The results of 

this modelling effort demonstrate that immigration and periodic non-breeding are necessary to 

explain the observations, and therefore should be included in any predictive modelling of this 

population to obtain accurate estimates of population viability. 
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Tables and Figures 
 
Table 2.1. Prior mean, standard deviation, and distribution for the parameters used to initialize 

each model. Posterior mean and standard deviation are reported the final time step (year 2013) 

from Model 4. 

 
Parameter 

θ  
Prior 
𝜇𝜇  

Prior 
𝜎𝜎  

Prior Distribution 
𝑔𝑔0(θ) 

Posterior 
𝜇𝜇  

Posterior 
𝜎𝜎  

𝑓𝑓𝑓𝑓,𝑚𝑚
𝑎𝑎 0.009 0.03 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (0.085, 18.82) 0.0062 0.00015 

 
𝑆𝑆𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗

𝑏𝑏 0.75 0.10 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (13.31 ,4.43) 0.748 0.011 
 

𝑆𝑆𝑎𝑎𝑎𝑎𝑐𝑐 0.80 0.10 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (12, 3) 0.754 0.015 
 

𝑆𝑆𝑎𝑎𝑎𝑎𝑐𝑐 0.85 0.075 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (18.42, 3.25) 0.81 0.009 
 

𝑝𝑝𝑡𝑡𝑑𝑑 0.30 0.02 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (157.2, 366.8) -- -- 
Note: S indicates sex and age specific survival, f indicates sex specific fertility, and p indicates 
detection rate. 
a Mean fertility from estimates in Safine (2013), Quakenbush and Suydam (1999), Quakenbush 
et al. (1995), Quakenbush et al. (2004), and J. Runge pers. comm. Additional error was 
incorporated into the prior standard deviation to account for process and sampling error. 
b Estimated juvenile survival based on expert opinion. 
c Adult survival taken from Flint et al. (2000), Frost et al. (2013), and Reynolds (2007). 
Additional error was incorporated into the prior standard deviation to account for process and 
sampling error. 
d Detection rate assumed to be relatively constant (Stehn and Platte 2009), incorporated 
additional error to account for process and sampling error.  
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Figure 2.1. Posterior means of expected counts from SISR for four 
candidate models compared to annual estimated counts from aerial surveys 
of Steller’s eiders on the Arctic Coastal Plain of Alaska from 1989 to 2013. 
Models 3 and 4 fit the observed data closely, and represented open 
population models, while Models 1 and 2 were closed population models 
and were unable to track with the highly variable observations.  
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Figure 2.2. Model weight evolution from Bayesian updating for four candidate 
models of Steller’s eider populations on the Arctic Coastal Plain of Alaska from 1989 
to 2013. Although both Model 3 and 4 produced reasonable count estimates, Model 4 
outperformed all of the other models. 
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Figure 2.3. Prior and posterior distributions for fertility and survival rates. Posterior 
distributions are from the final time step (year 2013) from Model 4. Posterior means 
were lower and more precise than priors for each parameter. 
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Figure 2.4. Prior and three posterior distributions for immigration (𝐼𝐼𝑡𝑡) from Model 4. 
The prior distribution is a zero inflated uniform distribution, and the posterior 
distributions are representative of years with low (1997), medium (1995), and high 
(2004) probability of immigrants. 
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Chapter 3:  

Population viability of the Alaskan breeding population of Steller’s eiders 

 

Abstract 

The U.S. Fish and Wildlife Service is tasked with setting objective and measurable criteria for 

delisting species or populations listed under the Endangered Species Act. Determining the 

acceptable threshold for extinction risk for any species or population is a challenging task, 

particularly when facing marked uncertainty. The Alaskan breeding population of Steller’s eiders 

(Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 due to a 

perceived decline in abundance and nesting range and geographic isolation from the Russian 

breeding population. However, previous genetic studies and modeling efforts suggest that there 

may be dispersal from the Russian breeding population. Additionally, there is evidence of 

population level non-breeding events. This research is aimed to estimate population viability of 

the Alaskan breeding population of Steller’s eiders using both an open and closed model of 

population process for this threatened population. Projections suggest under a closed model of 

population process this population has a 100% probability of extinction within 42 years. 

Projections from the open population model suggest that with immigration there is no probability 

of permanent extinction. However, due to random immigration process and non-breeding 

behavior it is likely that this population will continue to be present in low and highly variable 

numbers on the breeding grounds in Alaska. Monitoring the winter population, which contains 
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both Russian and Alaskan breeding birds, may offer a more comprehensive indication of 

population viability. 

 

Introduction 

 The U.S. Fish and Wildlife Service is tasked with setting objective and measurable 

criteria for delisting species or populations listed under the Endangered Species Act. These 

criteria are described within a Recovery Plan, which serves as a guide for the management and 

recovery of threatened and endangered species. Common recovery criteria include assessing the 

imperiled population in terms of extinction risk, and setting extinction risk thresholds that once 

reached indicate when the population can be delisted. Determining the acceptable threshold for 

extinction risk for any species or population is a challenging task, particularly when facing 

marked uncertainty. This becomes increasingly difficult when considering that imperiled species 

are typically rare or uncommon at the time of listing, and generally little is known about their 

biological or population processes. Assessing a population’s risk of extinction requires in depth 

knowledge of the populations processes and dynamics. If applicable, these processes may 

include interactions with nearby populations of the same species. Considering the potential 

influence of exchanges between two or more populations may be imperative to determining 

persistence or extinction risk.   

Species or populations listed under the Endangered Species Act typically face an 

increased risk of extinction due to any host of factors. The Alaskan breeding population of 

Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 

1997 due to a perceived decline in abundance and nesting range and geographic isolation from 

the Russian breeding population (Federal Register 1997, Pearce et al. 2005). The Alaskan 
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breeding population is the smallest of three geographically distinct breeding populations of 

Steller’s eiders (Frederickson 2001, U.S. Fish and Wildlife Service 2002, Pearce et al. 2005).  

A Recovery plan was drafted for the Alaskan breeding population of Steller’s eiders in 

2002, defining the listed “population” as any Steller’s eiders that breed in Alaska, and the term 

“subpopulation” to mean a group of Steller’s eiders that form a geographic subunit of the Alaska 

breeding population (USFWS 2002). According to the recovery plan, there are two 

subpopulations of Steller’s eiders, denoted as the northern and western Alaskan subpopulations 

(USFWS 2002). One of the primary reasons for listing the Alaskan breeding population was the 

near extirpation of the western subpopulation along the Yukon-Kuskokwim Delta (USFWS 

2002). Since the mid-1970’s, only 7 nests have been found on the Yukon-Kuskokwim Delta , 

with no indication of an established population (Kertell 1991, Flint and Herzog 1999, USFWS 

2002). The recovery criterion for delisting and reclassification from threatened to endangered 

includes considerations of the viability of both subpopulations (USFWS 2002). However, due to 

the lack of any evidence of breeding birds in the western subpopulation, we cannot consider the 

western subpopulations influence on overall population viability. Therefore, we will focus on 

assessing the viability of the northern subpopulation of Alaskan breeding Steller’s eiders within 

the current recovery criteria from the recovery plan (USFWS 2002).  

Population viability analysis (PVA) is a tool commonly used to evaluate population 

persistence and estimate extinction risk (Shaffer 1990, Boyce 1992, Goodman 2002, Morris and 

Doak 2002, Robinson et al. 2014). Additionally, metapopulation viability analyses assess 

viability in systems that are composed of interacting local populations that are open to 

immigration and emigration events. This approach accounts for migration amongst these local 

populations and its effect on dynamics, most importantly, this allows for the possibility of 
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recolonization following a local extinction (Levins 1974, Hanksi and Simberloff 1997). These 

populations can exhibit source-sink dynamics, in which there are populations that births 

outnumber deaths (source populations) and populations where deaths outnumber births (sink 

populations) (Hanksi and Simberloff 1997). These dynamics have critical implications for the 

assessment of local population viability, and therefore conservation and management of any 

local population within a metapopulation. Population and metapopulation viability analyses are 

used to estimate the future state of the population(s), and quantify the probability of persistence 

or extinction (Goodman 2002, Morris and Doak 2002). 

The Alaskan breeding population of Steller’s eider nests primarily on the Arctic Coastal 

Plain, annual aerial surveys from 1989 to 2013 indicated that Steller’s eiders were present in low 

and highly variable numbers, with multiple years resulting in estimated counts of zero (Kertell 

1991, Pearce et al. 2005, Stehn and Platte 2009, Stehn et al. 2013). Using the aerial survey data 

set in previous work, we sought to develop and evaluate competing models of population process 

to determine the most likely process model for the Alaskan breeding population (Dunham and 

Grand in prep). Results indicated that the Alaskan breeding population is likely open to 

immigration from the nearby Russian-Pacific breeding population and experiences population 

level non-breeding events (Dunham and Grand in prep). The dispersal of individuals from the 

Russian-Pacific breeding population to the Alaskan breeding population will likely have 

profound consequences for assessing the viability of the listed population. Additionally, the years 

in which zero birds are present on the breeding grounds presents further challenges regarding 

extinction risk. The years in which there are zero birds documented would typically qualify as 

years in which the population was extinct, followed by recolonizations of the breeding area. 

However, this behavior is believed to be representative of periodic non-breeding, a strategy 
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employed by many long lived species, including eiders (Coulson 1984, Quakenbush et al. 1995, 

Solovieva 1999, Obritschkewitsch et al. 2001, Quakenbush et al. 2004, Coulson 2010, Safine 

2013).  

While our previous work strongly supports that this population is open to immigration 

and non-breeding events, there are still alternative hypotheses that suggest this is a closed 

population. Therefore, this research is aimed to estimate population viability of the Alaskan 

breeding population of Steller’s eiders using both an open and closed model of population 

process for this threatened population. 

 

Methods 

Population Models and Parameterization 

In previous work, we developed and evaluated multiple models of population process and 

estimated key demographic parameters of the Alaskan breeding population (Dunham and Grand 

in prep). We fit these models to annual aerial survey data collected from the Arctic Coastal Plain 

(ACP) of Alaska to determine which process model(s) best fit the data, and estimated the key 

demographic parameters associated with each model. The best fit process model included 

population level non-breeding and time-varying immigration, in addition to survival and fertility 

of the two sexes and the juvenile and adult age classes (Dunham and Grand in prep). It has long 

been assumed that this breeding population is closed; however, the likelihood of population 

closure has never been formally evaluated. To address previous notions that this population is 

closed to immigration from the larger Russian-Pacific breeding population, we also assessed 

population viability under assumptions of population closure. While our previous work points to 

this breeding population being open to immigration, we chose to evaluate population viability 
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under both process models for transparency. Model parameters and details are described in detail 

below. 

Closed Population Model 

We developed a two-stage, two-sex matrix population model corresponding to a pre-

breeding census for the Alaskan breeding population of Steller’s eiders. We used the resulting 

posterior distributions for each vital rate from our previous Bayesian analysis to construct and 

parameterize each projection matrix model (Dunham and Grand in prep). Using the posterior 

probability distributions from our previous analysis allowed us to incorporate the most accurate 

information available while accounting for multiple sources of uncertainty. The population 

dynamics model for the closed population was defined as: 
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where  𝑁𝑁 represents the number of individuals in each age-sex class, 𝑆𝑆 is age-sex specific 

survival, and 𝑓𝑓 is sex specific fertility. The first stage represents birds that were 1 year old and 

reproductively immature, and survival (𝑆𝑆𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗) was set equal between the sexes. Juvenile 

survival was chosen from a beta distribution with mean of 0.748 and a standard deviation of 

0.011 (Dunham and Grand in prep). Adult survival was the annual survival rate (𝑆𝑆𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎) of birds 

2 years and older and we assumed all adult birds (age 2+) of the same sex experienced a similar 

survival rate. Adult male survival was estimated to be high, chosen from a beta distribution with 

a mean of 0.81 and a standard deviation of 0.009 estimated from our previous analysis (Dunham 

and Grand in prep). Adult female survival is characteristically lower than male survival and more 

variable due to the increased energetic costs and increased predation risk associated with nesting 
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(Erikstad et al. 1998, Ghalambor and Martin 2001, Flint et al. 2000, Stearns 1976, Williams 

1966). Adult female survival was pulled from a beta distribution with a mean of 0.754 and 

standard deviation of 0.015 (Dunham and Grand in prep). Fertility rates for the Alaskan breeding 

population are exceptionally low (Dunham and Grand in prep). While low fertility rates are 

typical of a long lived sea duck, results from our previous analysis indicate that they are lower 

than previously expected (Dunham and Grand in prep). Fertility rates were set equal between the 

sexes, and pulled from a stretched beta distribution with a mean of 0.0062 and standard deviation 

of 0.00015 (Dunham and Grand in prep). 

Open Population Model 

The open population model used the same general framework as the closed population 

model, with two additional parameters. The open population model included an additional 

vector 𝐼𝐼𝑡𝑡, to represent immigration, and fertility was set dependent on a binomial random 

variable, breeding probability. The open population dynamics model was as follows: 
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where 𝐼𝐼𝑡𝑡 includes the number of adult female (af) and adult male (am) immigrants estimated at 

the current time step, 𝑡𝑡. This population is strictly made up of breeding birds, and more 

specifically breeding pairs, and therefore the number immigrants simulated in any time step is 

divided equally between the sexes. Additionally, because this is representative of the breeding 

population, and juveniles do not breed, we did not allow for juvenile immigrants in this model. 

Immigration, 𝐼𝐼𝑡𝑡, was treated as a random effect, or time-varying parameter. At each time step, 
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the number of immigrants was simulated from a zero-inflated Uniform distribution which we 

parameterized as: 

𝐼𝐼𝑡𝑡 = �
𝑃𝑃𝑃𝑃(0) ~ (0.2)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (1, 1500) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ Pr (1 − Pr(0)). 

Our previous study resulted in posterior distributions for immigration at each time step (Dunham 

and Grand in prep). Considering the posterior distributions from this work, we chose to use a 

Uniform distribution to capture the uncertainty we have surrounding the drivers of immigration. 

An additional constraint on immigration was set by the relationship with the non-breeding years. 

In our previous modelling effort, years in which zero birds were detected were representative of 

years that the population did not breed and did not experience any immigration (Dunham and 

Grand in prep). The annual surveys and our model indicated that there were 5 non-breeding years 

out of the 25 years of annual survey data (Dunham and Grand in prep). Therefore, the probability 

of a non-breeding year was roughly 20%. Furthermore, the 25 years of aerial survey data did not 

include any consecutive non-breeding events, and therefore we constrained non-breeding years 

to never occur consecutively in this model. Fertility,𝑓𝑓𝑓𝑓,𝑚𝑚, is defined as the number of offspring 

recruited to the juvenile (one-year old) age class per female annually, and is dependent on the 

non-breeding probability, which is parameterized as a random binomially distributed variable 

that returns a 0 to represent non-breeding years, and 1 for breeding years. Therefore, in breeding 

years, fertility was drawn from a beta distribution with a mean of 0.0062 and standard error of 

0.00015, and in non-breeding years, fertility was set equal to zero. Survival rates were simulated 

from the same distributions described in the section above. 
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Simulations 

Both models of population dynamics were projected to 100 years using 5,000 iterations. 

The closed population model was initialized with an initial population size (𝑁𝑁1) chosen from the 

following distribution: 

𝑁𝑁1 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) 

where 𝜆𝜆 = 1,325, this distribution was reflective of the posterior distribution of population size 

from our previous analysis (Dunham and Grand in prep). The initial population size for the open 

population model was estimated by adding 𝑁𝑁𝑁𝑁 and 𝐼𝐼1. The initial age distribution was distributed 

according to the mean age distribution of the posterior results from our previous analysis, with 

additional variation to reflect our uncertainty in this estimate. 

We were interested in comparing the projections to the metrics defined in the Recovery 

Plan (USFWS 2002). However, some metrics are not presently applicable, according to the 

current wording of the Recovery Plan. For this reason we are only interested in the metrics that 

are currently applicable to this population. Therefore, we calculate the : (1) the probability of 

quasi-extinction, (2) time to quasi-extinction, (3) probability of local extinction and, (4) time to 

local extinction for the open and closed population models, and (5) λ (population growth rate) for 

the closed population model. Quasi-extinction was defined as the population size being ≤ 10 

individuals and the time to quasi-extinction was defined as the year in which the population size 

of every iteration had reached 10 individuals or less. Extinction was defined as the population 

size being 0 individuals and time to extinction was the year in which every iteration had reached 

0 individuals.  
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Results 

The closed model resulted in a 100% probability of quasi-extinction within 29 years, and 

100% probability of extinction within 42 years (Figure 1).  The open population model resulted 

in 19.28% of the iterations reaching the quasi-extinction threshold of 10 individuals, and 0.006% 

of the iterations reaching extinction at some point in the 100 years of projection. Because this 

population occurs in low and highly variable numbers on the breeding grounds, there is still 

some expectation that this local population will experience temporary decreases in population 

size. However, because of frequent immigration, there is no probability of long-term or 

permanent quasi-extinction or extinction for this breeding population. Due to the rescue effect of 

immigration, it is not possible to measure a time to quasi-extinction or time to extinction, 

because there was no time in which all iterations reached either threshold (Figure 1).  

 

Discussion 

 Without the reintroduction or recolonization of the Yukon-Kuskowim Delta by the 

western subpopulation of Alaskan Steller’s eiders or the designation of the subpopulations as 

distinct vertebrate population segments, the recovery criteria as listed in the plan cannot be met 

(USFWS 2002). However, we sought to assess the viability of the northern subpopulation of 

Alaskan breeding Steller’s eiders using two models. The results of the closed population 

projections suggest that the population would rapidly decline and become extinct within 42 

years, and would therefore qualify to be reclassified as Endangered, according to the current 

recovery criteria (Figure 1). While our previous models suggest a closed model is an unlikely 

representation of this population process, we included this model for transparency. Additionally, 

previous studies of the geographically distinct breeding populations (Russian-Atlantic, Russian-
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Pacific, and Alaskan) suggest there is no significant genetic differentiation between the Alaskan 

and Russian-Pacific breeding populations (Pearce et al. 2005). The results of these studies 

illustrate that it is highly unlikely that this breeding population is closed because the productivity 

and survival rates do not support a self-sustaining population. This information is critical for the 

management and monitoring of this listed breeding population.  

The Alaskan breeding population was listed due to perceived declines in abundance in 

their nesting and breeding range, specifically along the Yukon-Kuskokwim Delta (USFWS 

2002). One of the primary objectives listed in the Recovery Plan was to gather more information 

on breeding population dynamics to assess population viability (USFWS 2002). Analysis of 25 

years of aerial survey data indicate that this population has been rescued through immigration 

events and experiences intermittent breeding (Dunham and Grand in prep). Given this updated 

understanding, we believe the model put forth in this research is the best available representation 

of population process and dynamics. The mean projected results from this model indicate that the 

Alaskan breeding population will likely remain relatively stable throughout the next 100 years, 

with no probability of permanent local extinction; however, this is dependent on immigration 

(Figure 1). The outcome of this study combined with those from our previous research, suggest 

that immigration plays a critical role in the population dynamics and consequently the viability 

of the Alaskan breeding population of Steller’s eiders (Dunham and Grand in prep).  

Our previous study highlighted the importance of immigration in accounting for the 

highly variable observed counts of the breeding population on the Arctic Coastal Plain (Dunham 

and Grand in prep). Furthermore, this study identifies the role of immigration as being vital to 

the viability of the Alaskan breeding population. The significant role of immigration may be 

representative of source-sink dynamics. In this case, the source population would be the Russian-
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Pacific breeding population and Alaskan breeding population would act as the sink. Öst et. al 

(2016) found that immigration played a similar role in population dynamics of Common eiders 

(Somateria mollissima) breeding in two different geographic locations in the Baltic Sea. After 

analyzing long-term individual-based data on eider breeding success and survival, they detected 

these dynamics because this population segments offspring production was not high enough to 

explain the population growth during the times of rapid increase (Öst et. al 2016). In addition, 

the location which experienced low reproductive success and speculated immigration is located 

in the eastern range margin and not in what is thought to be the core breeding range (Öst et. al 

2016). While Common eiders do exhibit strong breeding site fidelity, Öst et. al (2016) believes 

natal dispersal could be a strong driver of the apparent source-sink dynamics. Similarly, our 

previous research indicated that the best model of population process allowed for birds to enter 

the population, but at that point they remained in the population to mimic breeding site fidelity 

(Dunham and Grand in prep). Furthermore, Steller’s eiders are thought to prospect for breeding 

sites in the year previous to becoming sexually mature. Considering that most eider species 

exhibit breeding site fidelity, but results indicate immigration is an important mechanism in 

regulating population dynamics, it is likely that natal dispersal plays a large part in providing 

immigrants to the Alaskan breeding population.  

 Mean population projections suggest a relatively stable population, however, it is 

probable that the northern subpopulation of Steller’s eiders will continue to be present in low and 

highly variable numbers on the ACP breeding grounds (Figure 2). Typically, local extinction 

would be defined as any time in which there were zero individuals of that population in the 

designated geographic area. In the case of this breeding population, the probability that the 

population will not breed and consequently not be detected on the aerial surveys is ~20% 
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(Dunham and Grand in prep). Therefore, over the course of the next 100 years the breeding 

population would likely be designated as extinct under this definition. Currently, there is no 

definition of what would constitute local extinction for this breeding population in the Recovery 

Plan (USFWS 2002). It may be important to reconsider what quantifiable metrics apply to this 

highly variable population.  

While results strongly support that this breeding population is open to immigration and 

experiences population level non-breeding events, we do not know what factors directly 

influence these occurrences. Further research is needed to identify what factors drive these 

important biological processes. Previous studies have indicated that there may be a relationship 

between breeding probability and density of lemmings, pomarine jaegers (Stercorarius 

pomarinus), and snowy owls (Bubo scandiacus) (Quakenbush et al. 2004). However, direct links 

of the effects of interspecies relationships to breeding probability in Alaskan breeding Steller’s 

eiders have not been established. Additional hypotheses for causes of intermittent breeding in 

eider species may be linked to environmental factors, including direct and indirect effects of 

climate and/or oceanic regime shifts that alter food availability (Coulson 1984, 2010). If 

breeding of Steller’s eiders is linked to species specific densities on the breeding grounds or by 

environmental factors that influence survival and/or breeding probability, we may be able to 

better predict their effects on population viability in the future. However, it is likely that as long 

as there is an available pool of immigrants from the Russian-Pacific population, then the Alaskan 

breeding population will persist.  

Our results suggest that immigration is necessary to sustain the Alaskan breeding 

population of Steller’s eiders. We demonstrated that the variability on the breeding grounds and 

population viability of this breeding population are influenced by intermittent breeding and 
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dispersal from the Russian-Pacific breeding population (Dunham and Grand in prep). While 

there is little information on the Russian-Pacific breeding population, we do know that they share 

molting and wintering grounds in southwestern Alaska with the Alaskan breeding population 

(Dau et al. 2000, Flint et al. 2000, Larned 2012, Frost et al. 2013, Martin et al. 2015). 

Additionally, previous studies found that both sexes showed high rates of fidelity to specific 

molting sites (Flint et al. 2000). This provides a unique opportunity to monitor both breeding 

populations on the molting and/or wintering grounds, to gain a more comprehensive 

understanding of metapopulation dynamics. Analysis of aerial surveys conducted from 1992 to 

2010 on the spring staging areas along the Bristol Bay coast of the Alaskan Peninsula indicate 

that the long-term trend is an exponential decline of 2.4 percent per year (Larned 2012). This 

apparent decline of the number of staging birds warrants further research and monitoring as this 

may indicate whether the metapopulation viability is at risk, which could increase the permanent 

probability of extinction of the Alaskan breeding population.  

Finally, one of the most challenging issues faced when managing this species has been 

estimating population size and/or trend because of the difficulty associated with detectability. 

Throughout their annual cycle they are dispersed over large geographic extents and are difficult 

to detect with precision. At this point we do not have recent or precise data to inform detection 

probability for Steller’s on the aerial surveys on the ACP. Without understanding the detection 

process we cannot accurately estimate population size or trend. We incorporated a large amount 

of uncertainty in initial population size to reflect our uncertainty in this estimate. Furthermore, 

the annual aerial survey point count estimates are imprecise, leading to further uncertainty 

around population trend and size. With estimates of detection probability, we could reduce the 

uncertainty around each annual point count estimate, and consequently reduce the uncertainty in 
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population size and trend. Calculating precise estimates of detection probability on the aerial 

breeding ground surveys and on any surveys conducted on the molting or wintering grounds will 

be critical to the management and conservation of this species. 
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Figure 3.1. Mean population size projections with 95% credible intervals for the 
closed population model of Alaskan breeding Steller’s eiders (Polysticta stelleri). 
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Figure 3.2. Prior distribution for year 1 and posterior distributions of population size 
from projections for years 50, and 100 from the open model of population process for 
Alaskan breeding Steller’s eiders (Polysticta stelleri). Posterior distributions are 
skewed heavily towards zero; suggesting very small population sizes are highly 
likely. 
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	Table 1.1. Initial values used as parameters (𝛉) in population models and prior distributions. Truth was used to generate simulated observations for comparison to particles in the sequential importance sampling resampling algorithm, distributions can be seen in Figure 1.

