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Abstract

When introducing a new product, firms face a hierarchy of decisions at the strategic

and operational levels including capacity sizing, time to market or starting sales, initial

inventory required by the product’s release time, and production management in response

to changes in the demand. Firms also face the dilemma of how to support a fast and

substantial take-off by targeting the right population of potential consumers for seeding.

This dissertation explores the above inter-dependent decisions using a diverse set of analysis

tools, namely agent-based modeling and simulation, Monte Carlo simulation, continuous-

time mathematical models, and parametric and nonparametric statistical approaches. This

work contributes to the marketing and operations management literature in five significant

ways: (1) it shows that ignoring supply and demand uncertainties may lead to potentially

incorrect decisions and that the optimal decision may change if risk is used as the primary

performance measure instead of the commonly used expected (mean) profit; (2) it provides

insights about the optimal introduction time of a new generation of a new product under

market expansion and cannibalization; (3) it provides a joint analysis of marketing and

production strategies and shows that a sequential decision-making process would lead to

suboptimal decisions and reduced profit; (4) it explores the importance of the social network

structure and individuals’ interactions on the optimal combination of seeding and build-up

policies; and, (5) it presents a more realistic analysis by relaxing many of the assumptions

of previous studies and provides empirical evidence by a successful application to the case of

the diffusion of Sony’s PlayStation R©3 game console in Europe. The findings of this work and

its future extensions along the lines discussed in the dissertation have important implications

for innovation diffusion research and can potentially help companies make better decisions

regarding production and marketing of their new products.
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Chapter 1

Introduction

1.1 Motivation and research questions

The significance of new products is conspicuous in the fact that, on average, roughly one-

third of firms’ overall sales and profit comes from their new products (Hauser et al. 2006).

With the increased rate of introduction of new products and shorter product life-cycles,

firms are facing a higher level of competition and demand uncertainty. On the other hand,

forecasting the demand for a new product during the course of its diffusion has been known as

a very difficult problem due to the lack of historical sales data making capacity, production,

and sales management for new products even more challenging. When introducing a new

product/technology, selling as many units as possible without building an initial inventory

(a myopic policy), can lead to supply shortages when demand exceeds production capacity

(due to the high cost and long lead time for capacity expansions). This results in loss of

potential profit. To avoid this problem, companies generally follow an alternative policy that

involves building inventory prior to starting sales as a substitute for the need for capacity

expansion (build-up policy). However, the build-up policy leads to higher inventory costs

and also delays revenue collection from sales. Therefore, an appropriate build-up policy is

critical to the overall sales and profit from the new product.

The initial phase of market penetration is critical to the success of new products. Com-

panies generally rely on promotional activities to support a fast and substantial take-off to

increase the chance of a successful launch and diffusion. A common approach to encourage

adoption and positive word-of-mouth during this initial phase is to distribute reduced-price

products to a set of target consumers in the hope that they will initiate a word-of-mouth

grapevine. This approach is generally referred to as viral marketing or seeding. Given an
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arbitrary social network, individuals with high influence (for instance, consumers with a

high number of ties) can potentially encourage more adoptions faster. Also, seeding a larger

proportion of the population would increase the chance of faster diffusion and adoption.

However, giving away more reduced-price products would decrease total revenue. A faster

adoption rate would also increase the risk of supply shortages and lost sales (i.e., loss of

potential profit). Therefore, targeting and level of seeding affect the overall profit and ap-

propriate decisions regarding the two are crucial for a successful launch and diffusion. More

importantly, these decisions are not independent of the decisions made on the supply side.

There are many cases where companies (even those with significant experience in suc-

cessful new product launches) have faced considerable monetary losses due to inappropriate

decisions regarding the above issues. For instance, due to incorrect over-anticipation of the

demand for PlayStation R©3 that resulted in excessive production and inventory costs, Sony

Electronics Inc. lost $1.8B and laid off 3% of its workforce (Los Angeles Times, June 7,

2007). Another interesting example deals with the case of TamagotchiTM, the first virtual

pet, that rapidly grew beyond expectations and led to excessive lost sales (Higuchi and

Troutt 2004). The company (Bandai Co.) eventually expanded the production capacity to

avoid further loss of potential profit. However, when the capacity expansion took place in

1998, the demand for the product had already begun to decline leading to a $123 million

loss. There are many examples where companies had to delay the product’s launch time

due to production uncertainties. In 2001, Microsoft Co. postponed the launch of Xbox R© in

Japan for a year (New York Times, August 27, 2001) and in the US by a week (New York

Times, September 22, 2001) as they failed to meet the targeted initial inventory of 1 million

units by the originally announced released time. Other examples include the case of Apple’s

iPad R© (New York Times, April 14, 2010) and iPod R© (New York Times, March 26, 2004),

Sony’s PlayStation R©3 (New York Times, January 25, 2007), and Nintendo’s GameCube R©

(CNN, August 23, 2001). There are other examples where demand uncertainties caused
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significant problems for companies including the case of Apple’s Power Mac G4 (New York

Post, September 21, 1999) and PlayStation R©4 (New York Times, December 19, 2014).

Motivated by the above, this dissertation aims at providing an integrated and joint

analysis of the marketing and supply side of new product diffusion. More specifically, the

stream of research performed in this dissertation explores the following research questions

that the current literature leaves unanswered:

1. Does ignoring production and demand uncertainties lead to a potentially incorrect

decision?

2. Does the decision on the optimal production-sales policy change if risk measures are

considered instead of the expected profit?

3. What is the cost of making an incorrect decision if uncertainties are ignored?

4. When should the firm introduce the new generation of a new product to maximize its

profit?

5. What is the optimal production capacity and build-up policy for the new generation?

6. What is the optimal sales plan for the new and previous generations after the new

generation’s launch?

7. Does making decisions sequentially on the seeding and build-up policies lead to sub-

optimal decisions?

8. How does the optimal combination of production and seeding strategies vary for dif-

ferent product categories?

9. Is the seeding strategy that maximizes the adoption rate optimal in the presence of

binding supply constraints?

10. What is the effect of the social network structure on the resulting diffusion dynamics

and the optimal seeding and build-up policies?

3



Table 1.1: Positioning and contributions of this dissertation to the literature

Single-generation Multi-generation
UD DSC SSC JPM UD DSC SSC JPM

Existing Marketing literature X X
Existing Operations Management literature X
Chapter 2 (Negahban and Smith 2016a) X
Chapter 3 (Negahban and Smith 2016c) X
Chapter 4 (Negahban and Smith 2016b) X
Future research Z Z

UD: Unconstrained diffusion (unlimited supply)
DSC: Deterministic supply-constrained
SSC: Stochastic supply-constrained
JPM: Joint analysis of production and marketing strategies

1.2 Background and contributions

In this section, a critical analysis of the strengths and gaps of the two main related

streams of research, namely the marketing and operations management literature is pre-

sented to establish the contributions of this dissertation (a detailed literature review of

related studies is provided in each of the following chapters). The literature analysis and the

contributions of the three papers that constitute this dissertation are summarized in Table

1.1 and explained below.

There is a long history of research on new product diffusion with early studies going

back to the 1960’s. The focus of the marketing research is primarily on demand forecast-

ing. Perhaps the most fundamental diffusion model is the Bass model (Bass 1969), which is

empirically tested and validated for hundreds of product categories (see Sultan et al. (1990)

for a meta-analysis of 213 applications of the Bass model). Common extensions to the Bass

model include incorporation of negative word-of-mouth, stochasticity in the demand, and

modeling the demand of successive technology generations. For a comprehensive analysis of

these extensions, see Hauser et al. (2006) and Peres et al. (2010). The strength of this stream

of research is in the successful application of the Bass model and its extensions to forecast

the demand for hundreds of products. These studies have also developed a better general
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understanding of the diffusion dynamics and the effect of heterogeneity, different marketing

strategies, cross-market and cross-brand factors, differences in growth across countries, com-

petition, and social interactions and its increasing complexity due to digital word-of-mouth.

However, perhaps the most important deficiency in the marketing literature is an almost

complete neglect of supply restrictions. The underlying assumption of these studies is that

unlimited supply is available and thus the effect of capacity constraints on the future de-

mand is not considered. As a result, some of the proposed policies seem unrealistic and are

generally not consistent with industry practices. For instance, Wilson and Norton (1989)

propose a two-generation demand model for durable products and develop analytical expres-

sions for the total profit. Their analysis leads to the Now or Never market entry policy which

essentially suggests that the second generation should either be introduced simultaneously

with the first generation or not be introduced at all while many industries, namely fashion,

high-technology, and pharmaceutical, report alternative timing strategies.

As a relatively new stream of research, the marketing-operations interface investigates

the inter-dependency between the demand and supply for new products. The primary anal-

ysis tool used in these studies can be classified as either mathematical or simulation models.

In two seminal works in this stream, Kumar and Swaminathan (2003) and Ho et al. (2002)

independently propose a modified supply-restricted Bass model and develop mathematical

models to determine the optimal production-sales policy (i.e., number of build-up periods,

production capacity, and launch time) for a single generation of a new product. Similar

analytical models are developed to study the optimal production-sales policy under different

supply chain topologies, dynamic pricing, multi-stage ordering, learning phenomenon, etc.

The studies under the marketing-operations management interface category provide valuable

insights about supply-constrained innovation diffusion by showing how supply shortages and

lost sales affect the future demand dynamics and the optimal production capacity, build-up

policy, introduction time, and sales plan for a single generation of a new product. However,

there are three major gaps in this stream of literature: (1) the majority of the proposed

5



mathematical models assume deterministic demand and supply to make the problem ana-

lytically tractable and thus the effect of supply and demand uncertainties are ignored; (2)

regardless of the type of the analysis tool, the studies under this general stream of research

mainly consider the expected life-cycle profit as the primary performance measure while risk

is ignored; and, (3) the effect of seeding and promotional activities on the new product’s

demand, and consequently on the optimal production-sales policy is generally ignored.

This dissertation contributes to the two streams of research by: (1) characterizing the

simultaneous effect of demand and supply uncertainties on the optimal production and sales

plan; (2) considering risk measures and the distribution of profit in the selection of the

optimal production-sales policy; (3) extending previous multi-generation diffusion models to

account for supply constraints, developing more realistic market entry policies, and providing

empirical evidence for the efficacy of the proposed model through a case study on the launch

of Sony’s PlayStation R©3 game console; and, (4) providing a joint analysis of production

and viral marketing strategies that shows the optimal build-up policy varies under different

seeding strategies, social network structures, and consumers’ backlogging behavior.

1.3 Methodology

This dissertation explores the above research questions using a diverse set of analysis

tools, namely agent-based modeling and simulation, Monte Carlo simulation, continuous-

time mathematical models, and parametric and nonparametric statistical approaches. This

section describes the methodology used in each of the following chapters.

The first three research questions are investigated in Chapter 2 (Negahban and Smith

2016a). Through extensive experimentation with a Monte Carlo simulation model of the

supply-constrained new product diffusion, we demonstrate how the optimal production-sales

policy changes when the stochasticity in supply and demand are explicitly considered and

derive perspective results on the magnitude of these changes. As for the primary performance

measures in our analysis, we use the expected net present value of profit over the product’s
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life-cycle as well as the risk associated with it and show that the optimal policy may vary

under different performance metrics. We use parametric and nonparametric statistical tests,

namely the Welch’s t-test and a double bootstrap method, to compare the mean and per-

centiles of profit, respectively, and establish statistically significant changes in the decision

if uncertainties or risk are ignored. More than 300,000 market configurations are studied

resulting in more than 7.1 billion total replications of the Monte Carlo model. The extensive

experimentation generated more than 110 gigabytes of raw simulation output necessitating

a timely and challenging data analysis. We developed and verified several automated pro-

grams to analyze the data to insure consistency; however, the computational aspects of the

analysis process is out of the scope of this dissertation.

Chapter 3 (Negahban and Smith 2016c) explores research questions (4-6). We consider

a single firm contemplating the introduction of a new generation of a product family where

the technology for the new generation becomes available sometime after the introduction

of the predecessor. We start by modifying an existing multi-generation demand model to

account for supply constraints. We then formulate a continuous-time mathematical model

in the context of optimal control theory to determine the optimal sales plan for successive

generations. Closed-form solutions are then derived for the special case of patient customers

(i.e., no lost sales). To gain insight about the optimal build-up policy, production capacity,

and market entry policy for the general case of impatient customers (i.e., partially backlogged

demand with lost sales), a comprehensive numerical study is performed using a discrete-time

version of the model. We also present an application of the proposed model to the case of

Sony’s PlayStation R©3 game console. The results are consistent with the empirical evidence

collected on the sources of the product’s poor performance. Our case study validates the

proposed model and demonstrates its potential in helping companies choose an appropriate

release time and build-up policy for successive generations of their products.

Chapter 4 (Negahban and Smith 2016b) investigates the last four research questions (7-

10) using an agent-based simulation model consisting of a firm agent and socially networked
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consumer agents. We consider the following network structures: (1) regular lattice; (2)

random; (3) small-world; and (4) scale-free. We consider both myopic and build-up policies

as well as five seeding criteria, namely node degree, number of two-step ties, average path

length, clustering coefficient, and random selection, to prioritize consumers and decide who

should be targeted for seeding. Through extensive experimentation with the model, we

jointly analyze the performance of different seeding and production polices in terms of the

net present value of profit under various network structures, product categories, and demand

backlogging behavior. We also systematically experiment with the parameters of the small-

world and scale-free networks to study the effect of long-range connections and distribution of

hubs (high-degree nodes) on the resulting diffusion process (including the adoption, waiting,

and lost sales dynamics) as well as the product’s life-cycle profit.

1.4 Organization of the dissertation

The following chapters of the dissertation are organized as follows. Chapters 2-4 start

by discussing research motivations and the importance of the problem under consideration

followed by a critical analysis of the related literature to identify research strengths and

gaps and establish the contributions of the work presented in the respective chapter. The

methodology, experimental design, and important results are then discussed. At the end

of each chapter, we present a brief discussion on managerial implications, limitations, and

potential extensions. Finally, Chapter 5 presents the concluding remarks by summarizing

the important findings and their implications for innovation diffusion research and practice

and outlining future research opportunities.
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Chapter 2

The effect of supply and demand uncertainties on the optimal production and sales plans

for new products

2.1 Abstract

When introducing a new product, firms face a hierarchy of decisions at the strategic and

operational levels including capacity sizing, time to market or starting sales, initial inventory

required by the product’s release time, and production management in response to changes

in the demand (hereafter referred to as production-sales policies). The goal of this paper is

to show the importance of considering both supply and demand uncertainties in the deter-

mination of the production-sales policy which has been overlooked in the existing literature.

More specifically, we test two main hypotheses: (1) ignoring supply and demand uncertain-

ties may lead to potentially incorrect decisions; and, (2) the decision could be different if risk

is used as the primary performance measure instead of the commonly used expected (mean)

profit. We perform extensive experimentation with a Monte Carlo simulation model of the

stochastic supply-restricted new product diffusion and use different statistical procedures,

namely, the Welch’s t-test and a nonparametric double-bootstrap method to compare the

average and percentiles of the profit for different policies, respectively. The results indicate

that the correctness of the two hypotheses depends on the diffusion speed, consumers’ back-

logging behavior, production capacity, price, and variable production and inventory costs.

The findings also have important implications for managers regarding market entry time,

parameter estimation, production strategy, and the implementation of the proposed model.

keywords: Innovation diffusion; myopic and build-up policies; production uncertain-

ties; stochastic Bass model; simulation

10



2.2 Introduction

There are many examples where companies had to delay the product’s launch time due

to a scarce supply caused by production uncertainties. In 2001, Microsoft Co. postponed

the launch of Xbox R© in Japan for a year (New York Times, August 27, 2001) and in the US

by a week (New York Times, September 22, 2001) as they failed to meet the targeted initial

inventory of 1 million units by the originally announced released time. Other examples

include the case of Apple’s iPad R© (New York Times, April 14, 2010) and iPod R© (New

York Times, March 26, 2004), Sony’s PlayStation R©3 (New York Times, January 25, 2007),

and Nintendo’s GameCube R© (CNN, August 23, 2001). Demand variability can also have

a significant impact on the success of new products. For instance, due to incorrect over-

anticipation of the demand for PlayStation R©3 that resulted in excessive production and

inventory costs, Sony Electronics Inc. lost $1.8B and laid off 3% of its workforce (Los Angeles

Times, June 7, 2007). Another interesting example deals with the case of TamagotchiTM,

the first virtual pet, that rapidly grew beyond expectations and led to excessive lost sales

(Higuchi and Troutt 2004). The company (Bandai Co.) eventually expanded the production

capacity to avoid further loss of potential profit. However, when the capacity expansion took

place in 1998, the demand for the product had already begun to decline leading to a $123

million in after-tax loss. Other examples of the impact of demand uncertainties include the

case of Apple’s Power Mac G4 (New York Post, September 21, 1999) and PlayStation R©4

(New York Times, December 19, 2014).

When introducing a new product/technology, selling as many units as possible without

building an initial inventory (a myopic policy), can lead to supply shortages when demand

exceeds production capacity (due to the high cost and long lead time for capacity expansions).

This results in loss of potential profit. To avoid this problem, companies generally follow

an alternative policy that involves building inventory prior to starting sales as a substitute

for the need for capacity expansion (build-up policy). However, the build-up policy leads to

higher inventory costs and also delays revenue collection from sales. It may also lead to lost
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sales during the build-up period as some of the potential consumers are not willing to wait

until the product’s launch. Developing an appropriate production-sales plan requires a deep

understanding of the diffusion dynamics and necessitates a joint analysis of the impact of

supply and demand uncertainties on future sales. Manufacturing systems exhibit significant

uncertainties that affect the production throughput (Li et al. 2009) and thus supply levels

for the new product. On the other hand, due to the lack of historical sales data, there is a

high level of uncertainty associated with demand forecasts. The demand for new products

is also subject to randomness due to disturbances in the market caused by economic and

financial conditions, technological improvements, and competition.

In this paper, through extensive experimentation with a Monte Carlo simulation model

of the supply-constrained new product diffusion, we demonstrate how the optimal production-

sales policy changes when the stochasticity in supply and demand are explicitly considered

and derive perspective results on the magnitude of these changes. As for the primary per-

formance measures in our analysis, we use the expected net present value of profit over

the product’s life-cycle as well as the risk associated with it and show that the optimal

policy may vary under different performance metrics. In order to address the general prob-

lem of considering the effect of demand and supply uncertainties in the determination of

the production-sales plan, we explore the following important questions that the existing

literature leaves unanswered:

1. Does ignoring uncertainties lead to a potentially incorrect decision? (Section 2.7.1)

2. Does the decision on the optimal production-sales policy change if risk measures are

considered instead of the expected profit? (Section 2.7.1)

3. How does the effect of uncertainties vary for different production levels and product

categories (with different diffusion characteristics)? (Section 2.7.2)

4. How different would the decision be from the optimal policy (in terms of the length of

the build-up period) if uncertainties are ignored? (Section 2.7.3)
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5. What is the cost of making an incorrect decision if uncertainties are ignored? (Section

2.7.4)

While the importance of production and demand uncertainties is understood from many

real-world examples (e.g., the ones mentioned above), ignoring their impact on the diffusion

dynamics and choice of the production-sales policy has been identified as one of the major

gaps in the existing literature (see the results of survey papers by Bilginer and Erhun (2010),

Hauser et al. (2006), Peres et al. (2010), and Negahban and Yilmaz (2014)). This paper con-

tributes to both the marketing and operations literature by: (a) providing a formal analysis

of the effect of supply and demand uncertainties and their interaction on demand and sales

dynamics; (b) showing that ignoring these uncertainties could yield a potentially incorrect

decision on the optimal production-sales policy; and, (c) evaluating risk and showing that

the policy with the maximum expected profit is not necessarily optimal under risk measures.

The remainder of the paper is organized as follows. An overview of the literature is

presented in Section 2.3. Section 2.4 provides a detailed description of the stochastic supply-

constrained new product diffusion problem. The Monte Carlo simulation model is explained

in Section 2.5. The experimental design, performance measures, and the statistical tests

used for comparing policies are described in Section 2.6. Section 2.7 provides the analysis

of simulation results and summarizes important findings. Finally, Section 2.8 presents the

conclusions, a brief discussion on managerial implications for real-world applications, and

potential future research opportunities.

2.3 Literature review

The related studies can be categorized into three main streams of research: the marketing

literature, the operations/production management literature, and a more recent category on

the interface of the two. Here, we provide a brief review of the literature with the goal to

illustrate existing research gaps and characterize the main contributions of this work to the

body of knowledge.
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Early studies on new product and technology diffusion in the marketing literature go

back to the 1960’s (Fourt and Woodlock 1960). Perhaps the most fundamental diffusion

model is the Bass model (Bass 1969). It is the most widely used forecasting tool in the

industry and its predictive power has been empirically proven over decades. The majority

of the models that were later proposed are essentially rooted in the Bass model (Bass 2004).

These models include the following extensions: diffusion of successive technology genera-

tions (Norton and Bass 1987), effect of negative word-of-mouth (Mahajan et al. 1984), and

stochastic Bass models (Niu 2002, Kanniainen et al. 2011, Skiadas and Giovanis 1997). The

third group, which is of particular interest here, mainly focuses on modeling demand un-

certainties to enhance forecasting. For critical analyses of this stream of research see the

review papers by Peres et al. (2010), Bilginer and Erhun (2010), and Hauser et al. (2006).

The strength of this stream of research is in the successful application of the Bass model and

its extensions to forecast the demand for hundreds of products (see Sultan et al. (1990) for

a meta-analysis of 213 applications of the Bass model). These studies have also developed

a better general understanding of the diffusion dynamics and the effect of heterogeneity,

different marketing strategies, cross-market and cross-brand factors, differences in growth

across countries, competition, and social interactions and its increasing complexity due to

digital word-of-mouth. However, perhaps the most important deficiency in the marketing

literature is an almost complete neglect of supply restrictions. The underlying assumption of

these studies, including the stochastic demand models, is that unlimited supply is available

and thus the effect of capacity constraints on the future demand is not considered. This

work contributes to this stream of research by considering the dependence of the demand on

supply and investigating how demand and supply uncertainties interact.

The operations literature extensively considers different types of production uncertainty

including but not limited to random processing times (Azadeh et al. 2012), machine failures

and maintenance operations (Rezg et al. 2004), worker availability (Erel et al. 2001), lack
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of accurate information about the production process (Azadeh et al. 2011), and stochas-

tic production throughput due to quality inspection (Li et al. 2009). See Stevenson et al.

(2005) for a comprehensive review of classical production planning and control approaches

and Mula et al. (2006) for an analysis of studies that consider different types of uncertainty.

The strength of this stream of literature is in the development and application of numerous

approaches (including conceptual models, analytical models, artificial intelligence, and sim-

ulation) for production planning, inventory management, and supply chain planning under

uncertainty. These studies can be divided into two primary groups based on their demand

model: (1) studies that assume either a constant demand or a changing demand with a

deterministic and known pattern; and, (2) stochastic studies where the randomness in the

demand follows a known probability distribution. Therefore, the main gap in this stream of

research is that, regardless of the consideration of demand uncertainties, the demand pro-

cess is assumed to be exogenous and thus independent of the decisions made on the supply

side unlike most real-world applications. The current paper contributes to this literature

by considering endogenous demand that is affected by the build-up policy and showing how

supply uncertainties impact the diffusion dynamics.

As a relatively new stream of research, the studies in the marketing-operations interface

investigate the inter-dependency between the demand and supply for new products. The

primary analysis tool used in these studies can be classified as either analytical approaches

or simulation models. In two independent studies, Kumar and Swaminathan (2003) and

Ho et al. (2002) propose a modified supply-restricted Bass model and develop mathematical

models to determine the optimal production-sales policy. Similar analytical studies provide

valuable insights about the optimal production-sales policy by considering dynamic pricing

(Shen et al. 2011, 2014), multi-period diffusion (Bilginer and Erhun 2015), learning phe-

nomenon (Cantamessa and Valentini 2000), and different supply chain topologies (Amini

and Li 2011). However, the majority of the analytical studies assume deterministic demand

and supply to make the problem analytically tractable. On the other hand, the results of
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a comprehensive analysis on the application of simulation in marketing by Negahban and

Yilmaz (2014) show that while the role of marketing strategies, positive and negative word-

of-mouth, and theoretical and empirical social network structures have received considerable

attention, only a few simulation studies address supply constraints while production uncer-

tainties are ignored (see, Negahban et al. (2014), Amini et al. (2012), Negahban (2013)).

Moreover, regardless of the type of the analysis tool, the studies under this general stream

of research mainly consider the expected life-cycle profit as the primary performance mea-

sure while risk is ignored. Therefore, this paper contributes to this stream of research by

characterizing the simultaneous effect of demand and supply uncertainties on the optimal

production and sales plan. Also, to the best of our knowledge, this work is the first to

consider risk measures in the selection of the optimal production-sales policy.

This paper extends a preliminary analysis by the authors (Negahban and Smith 2014)

where the effect of production uncertainty is studied for a given production level under

deterministic demand. Here, we generalize the results of the earlier study by incorporating

the effect of demand uncertainty and its interaction with supply uncertainty under different

production levels.

2.4 Supply-restricted new product diffusion

As discussed earlier, the Bass model (Bass 1969) lays the foundation for the supply-

constrained diffusion models. Based on analogies from contagion models in epidemiology,

product adoptions in the Bass model are driven by two sources: (1) mass media advertise-

ment; and, (2) word-of-mouth. The Bass model formulates the first-time demand for a new

durable product (i.e., no repeat purchases) at time period t, d(t), by

d(t) = p(m−D(t)) + (q/m)(m−D(t))D(t).
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The model considers two main groups of consumers, namely innovators and imitators

categorized based on their innovativeness, a personality trait that measures an individual’s

likelihood of adopting new ideas/technologies earlier than others in the market (Rogers

2003). For a product with a market size m, a proportion, p (coefficient of innovation) of the

remaining potential adopters at time t will adopt the product independently (i.e., innovators)

while the number of adopting imitators will be proportional to the cumulative demand up

to time t, D(t), representing the effect of word-of-mouth (where q denotes the coefficient of

imitation). Finally, the unit of time represents the period over which the initial sales (p×m)

occur.

In essence, the Bass model assumes infinite supply by considering the diffusion of a prod-

uct class that is marketed by many different companies which makes production constraints

less relevant. However, when the new product is produced and marketed by a single firm, it

is possible that the demand grows beyond the production capacity resulting in supply short-

ages and unsatisfied demand. Therefore, the cumulative sales up to time t, S(t), may not

necessarily be equal to the cumulative demand, D(t). Assuming that only those adopters

that have actually received the product will spread word-of-mouth, supply shortages can

influence the number of imitator adopters. Moreover, in the presence of a “binding” capac-

ity constraint, customers with unsatisfied demand will either impatiently abandon the new

product (i.e., lost sales) or wait (i.e., demand backlogging) – common real-world phenomena

that cannot be explored using the Bass model.

To address the above issues, Ho et al. (2002) and Kumar and Swaminathan (2003)

independently propose the following supply-restricted diffusion model, where at any given

time t, the number of adopters due to the operation of word-of-mouth is proportional to the

cumulative sales, S(t), rather than the cumulative demand, D(t):

d(t) = p(m−D(t)) + (q/m)(m−D(t))S(t).
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(a) Demand with no backlogging
(β = 0).

(b) Sales with no backlogging (β =
0).

(c) Sales with no lost sales (β = 1).

Figure 2.1: Supply-restricted new product diffusion for the case of zero initial inventory
build-up periods (TBuild−up = 0). The average values of p = 0.03 and q = 0.38 are used based
on a meta-analysis of 213 applications of the Bass model (Sultan et al. 1990). We choose a
market potential of m = 3000 which has been shown to be large enough to capture demand
dynamics and provide statistically reliable results (Cowan and Jonard 2004, Goldenberg et al.
2007). Under these parameter choices, the market will be exhausted in approximately 30
time steps with an average demand of 100 per period. Note that production level, inventory,
backlogged demand, and lost sales are not shown to make the figures easier to understand.

In this model, the market dynamics depend not only on past demand but also on

past realized sales. It is worth noting that the model is valid for any probability of wait-

ing/backlogging (β) and reduces to the Bass model under unlimited supply where we have

S(t) = D(t). Figure 2.1 illustrates the effect of capacity constraints and demand backlogging

on demand growth rate, peak time, and magnitude of the peak demand.

2.4.1 Modeling production and demand uncertainties

We adopt a simple but general approach that is commonly used to incorporate random-

ness keeping in mind that our goal is not to develop complex stochastic analytical models

for demand and production yield but rather to evaluate the impact of uncertainties on the

optimal build-up policy (see the papers by Shen et al. (2014) and Xu (2010) that also use

the same approach). We multiply the instantaneous demand rate at time t, d(t), by a ran-

dom variable U1(t) that is uniformly distributed between 1− vd and 1 + vd, where vd is the

maximum variation from the expected deterministic demand (Equation (2.1)). Similarly,
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(a) Three sample paths of the
stochastic
demand (vd = 0.15) under unlim-
ited su-
pply.

(b) Demand (vd = 0) with random
yield
(vp = 0.10), mean production level
(L0

= 100), full backlogging (β = 1).

(c) Sales with random yield (vp =
0.10), deterministic demand (vd =
0), mean production level (L0 =
100), full backlogging (β = 1).

Figure 2.2: Sample paths generated under stochastic demand and supply (p = 0.03, q =
0.38, m = 3000, and TBuild−up = 0). The demand and sales dynamics presented in (b) and
(c) correspond to the same two sample paths. The figure shows how the uncertainties affect
sales and the timing and magnitude of the peak demand.

the production yield at time t, y(t), is obtained by multiplying the average production level,

L(t), by a random variable U2(t) that is uniformly distributed between 1 − vp and 1 + vp,

where vp is the maximum deviation from the mean production level (Equation (2.2)). With

no variation (i.e., vd = 0 or vp = 0), the stochastic demand model reduces to the deter-

ministic supply-constrained diffusion model and the throughput will always be equal to the

production level. Figure 2.2 shows the impact of uncertainties on the demand and sales

dynamics.

d(t) = [p(m−D(t)) + (q/m)(m−D(t))S(t)]× U1(t) (2.1)

and

y(t) = L(t)× U2(t). (2.2)

2.5 Monte Carlo simulation model

Monte Carlo simulation (aka risk simulation) is commonly used in many business ap-

plications and is widely known as an effective technique to evaluate risk (Loizou and French
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2012, Zhang et al. 2015). The main advantage of Monte Carlo simulation is that it helps

the decision maker examine the effect of uncertainties in the inputs on the distribution of

the outcome(s) of interest. It also allows for sensitivity analysis to help better understand

the dynamics of the system being modeled. As a result of its advantages, many business

decision-making tools such as Crystal Ball and @Risk utilize Monte Carlo simulation to help

managers assess the uncertainties pertaining to the outcomes. In the context of our problem,

Monte Carlo simulation allows us to predict the distribution of the NPV of profit (outcome)

and thus evaluate the risk associated with different production-sales policies under stochastic

demand and supply (inputs).

Algorithm 1 summarizes the logic of the Monte Carlo simulation model. The simulation

run starts by initializing model parameters at time t = 0. At the beginning of each time

period, the total demand, dtotal(t), is determined by:

dtotal(t) = dnew(t) +B(t− 1), (2.3)

where dnew(t) is the demand from new adopters at t sampled using (2.1) and B(t − 1)

denotes the backlogged demand (i.e., number of waiting customers). At each time period,

a proportion (denoted by β) of the unmet demand will be backlogged for future fulfillment.

The production yield, y(t), is then sampled using (2.2). Given I(t − 1) as the remaining

inventory at the end of the previous time step, y(t)+I(t−1) will be the total supply at time

t. Let TBuild−up be the number of inventory build-up periods. If t ≤ TBuild−up (i.e., during

the build-up period), sales will be zero since the product is not launched. Otherwise, if sales

have begun, the company will sell as many units as possible (proven by Ho et al. (2002) and

Kumar and Swaminathan (2003) to be the optimal sales plan) and sales (s(t)) will be the

minimum of the current supply and total demand as given by
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Algorithm 1 The logic of the Monte Carlo simulation model

Initialize model parameters/variables at time t = 0
while there is still demand for the product (either new or backlogged demand) do

Determine total demand using Equation (2.3)
Adjust mean production level using Equation (2.5)
Sample production yield using Equation (2.2)
Determine sales using Equation (2.4)
Update cumulative demand and sales
Determine remaining inventory, I(t), and backlogged demand, B(t), where I(t) ×

B(t) = 0
Calculate profit for the current time period

end while
Compute net present value of profit when diffusion is complete

s(t) =


0 t ≤ TBuild−up,

s(t) = min(y(t) + I(t− 1), dtotal(t)) t > TBuild−up.

(2.4)

At the end of every time period, the profit is obtained by subtracting the production cost,

inventory cost, and cost of waiting customers from revenue. At the end of the simulation run

when the market potential is entirely exhausted, the net present value of profit is calculated

based on a given discount rate. To avoid unnecessary production and inventory costs near the

end of the diffusion process and also to be consistent with the assumptions of the previous

studies (Ho et al. 2002, Kumar and Swaminathan 2003), the company produces at the

maximum mean production level (L0) until the demand drops below L0 for the first time

(we represent this time by τ), after which L(t) will be set to a level so that there will

be enough supply to meet the demand, a common strategy known as the lagging demand

(Olhager et al. 2001). We have:

L(t) =


L0 t ≤ τ,

min(L0,max(dtotal(t)− I(t− 1), 0)) t > τ.

(2.5)
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2.6 Experimentation

Extensive experimentation was conducted using the Monte Carlo simulation model.

This section describes the experimental design, performance measures, scenario comparison

and statistical tests.

2.6.1 Experimental design

The experimental design is summarized in Table 2.1. In order to provide a com-

mon ground for comparison, we adopt most of the parameter choices from (Kumar and

Swaminathan 2003) and (Negahban and Smith 2014). Our experimental design results in

4×3×3×4×5×4×3×3×3×4 = 311, 040 parameter configurations for which the optimal

number of build-up periods is found by performing a one-dimensional search between 0 to

25, resulting in a total of 8,087,040 runs. We use the mean and percentiles of the net present

value (NPV) of profit to compare different polices under each parameter configuration. While

a preliminary analysis of the results indicates that the mean NPV can be estimated fairly ac-

curately with a few hundred replications, since estimating the percentiles generally requires

more data points, we set the number of replications to 1,000 which results in more than

7.1 billion total replications. It is worth noting that there are two main reasons behind our

extensive experimentation. First, our objective is to demonstrate that, in general, demand

and supply uncertainties can change the choice of the optimal policy and not necessarily to

solve a specific case or family of cases. Secondly, the results (as will be discussed in Section

2.7) indeed show that the likelihood of making an incorrect decision varies based on different

levels for most of these parameters - important findings that would not have been detected

without a such comprehensive experimental design.

2.6.2 Performance measures and statistical tests

In classical decision theory, risk (commonly perceived as the variability of the distribu-

tion of outcomes) has been recognized as one of the most important factors for managers
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Parameter Levels Value/Range
Demand-related parameters
Demand variability, vd 4 0%, 5%, 10%, 15%
Coefficient of innovation, p 3 0.01, 0.03, 0.05
Coefficient of imitation, q 3 0.2, 0.4, 0.6
Market size, m 1 3000
Backlogging percentage, β 4 0, 0.5, 0.8, 1

Production-related parameters
Maximum mean production level, L0 5 40, 80, 100, 120, 200
Variability in production yield, vp 4 0%, 5%, 10%, 15%
Unit production cost, χ 1 1.0
Unit inventory/holding cost, h 3 0.001, 0.005, 0.01
Per customer waiting cost, w 3 0.001, 0.005, 0.01
Unit selling price, π 3 1.1, 1.2, 1.3
Discount rate, r 4 0, 0.003, 0.005, 0.01

Parameter related to the production-sales policy
Number of inventory build-up periods, TBuild−up 26 0 – 25

Table 2.1: Parameter choices for the Monte Carlo simulation experiments.

when making any financial investment (March and Shapira 1987). Uncertainty and the shape

of the probability distribution continues to play a critical role in decision-making in modern

operations management (Kaki et al. 2013) and inventory control (Liang et al. 2014). While

previous innovation diffusion studies mainly use the expected NPV of profit as the primary

performance measure, we will also assess the risk associated with different production-sales

policies using the percentiles of the NPV distribution obtained from Monte Carlo simula-

tion. As discussed by Nelson (2008), the focus on the mean statistic as the primary metric

diminishes the power of the tool in characterizing risk. The mean is essentially an expected

long-run performance indicator that can provide a good single-point estimate; however, un-

like percentiles, it does not provide any information about the uncertainty in the future

outcome.

In order to show the importance of percentiles in evaluating the level of uncertainty,

Figure 2.3 provides the histogram, mean, 25th and 75th percentiles of the NPV of profit
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(a) Myopic policy (TBuild−up = 0).

(b) Build-up policy (TBuild−up = 8).

Figure 2.3: Performance measures: mean vs. percentiles (p = 0.01, q = 0.2, m = 3000,
vd = 0.15, L0 = 80, vp = 0.1, β = 0.8, χ = 1, h = 0.001, w = 0.01, π = 1.2, r = 0.003).

for 200 replications of the simulation model for a myopic (TBuild−up = 0) and a build-up

policy with 8 build-up periods (TBuild−up = 8) under a given parameter configuration. The

mean NPV value for the two policies is virtually the same making us indifferent towards

the two policies based on this metric. However, there is a substantially higher uncertainty

associated with the build-up policy. While there is a 25% chance of making more than 482

in the build-up policy (which seems not to be achievable with the myopic policy that has

a maximum of 469), there is also a 25% possibility of making less than 418 (which is much

lower than the minimum observation of 433 from the myopic policy). Therefore, ignoring

the uncertainty could lead to a decision with limited potential in making high profits. We

also note that the mean value of 451 was not observed in 200 replications of the build-up

policy, which represents a case where the mean could be misleading by providing a point

estimate of an average outcome that might never actually realize (the bi-modal shape of the

NPV distribution for this scenario is justified in Section 2.7.2).
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We evaluate different policies with respect to three performance measures: (1) average

NPV of profit; (2) the 25th percentile of NPV of profit; and, (3) the 75th percentile of NPV

of profit. It is worth noting that the choice of the 25th and 75th percentiles is somewhat

arbitrary, and in fact, any percentile of the NPV of profit could be used with the choice

being dependent on how the decision maker defines and measures the uncertainty. From

the experimentation point of view, an important implication of using extreme percentiles

(such as the 5th and 95th percentiles) is that more data (i.e., replications) would be needed

to collect enough observations of these less frequently occurring values to get an accurate

estimate.

We use two statistical tests to compare the performance of different production-sales

policies (all tests are performed at a 95% confidence level):

• Welch’s t-test for comparing average NPV: Consider two policies (with different num-

bers of build-up periods, TBuild−up) under a specific parameter configuration. The

Welch’s t-test is performed on the replication results from the two policies to deter-

mine a statistical difference between their expected NPV of profit.

• Nonparametric double bootstrap method for comparing percentiles: Nonparametric tests

are generally useful when standard statistical tests are not readily available, e.g., for

comparing ordinal values of two populations (Conover 1980). We use a nonparametric

double bootstrap method to determine a statistical difference between a particular

percentile of two policies. The general steps of the method (which is also based on a

Monte Carlo sampling process) are summarized in Algorithm (2) while the reader is

referred to Spiegelman and Gates (2005) for more details.

2.7 Analysis of simulation results

The extensive experimentation performed in this study generated more than 110 gi-

gabytes of raw simulation output necessitating a timely and challenging data analysis. We
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Algorithm 2 The double bootstrap method for comparing percentiles (95% confidence level)

Let n denote the number of observations from each policy (i.e., number of replications)
Let p denote the percentile of interest
Step 1. Combine both samples into one column (under the hypothesis that the quantiles
for the two samples are the same)
for the number of iterations in the first bootstrap procedure do

Step 2. Draw two samples of size n from the pooled data
Step 3. Compute the pth percentile of the two samples

end for
Step 4. Compute estimates of the variances for the pth percentile of the two samples from
the collection of bootstrap samples
Step 5. Form a t-like statistic for the difference in the bootstrapped sample percentiles
for the number of iterations in the second bootstrap procedure do

Step 6. Repeat steps 2 through 5 and compute the 95% percentile of the t-like statistic
to determine the critical value (tcritical)
end for
Step 7. Compute the t-like statistic for the original data by using the results of the first
bootstrap run, t̂
Step 8. A statistical difference exists if t̂ > tcritical

developed and verified several automated programs to analyze the data to insure consistency

(the computational aspects of the analysis process is out of the scope of this paper). This

section presents selected results and outlines the most important findings. To test the main

hypotheses of the paper, we consider two types of changes in the optimal policy as a result

of the consideration of supply and demand uncertainties in the decision-making process:

• Type-1 (change in the decision from the deterministic case): We are inter-

ested in finding the number of scenarios where ignoring uncertainties would yield to

a potentially incorrect decision. Under each parameter configuration and level of de-

mand and production uncertainty, we find the optimal policy and determine whether

it is different from the optimal policy for the corresponding deterministic case. We

then test the statistical difference between the performance of the two polices in the

presence of uncertainties (we use the Welch’s t-test and double bootstrap method to
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compare the mean NPV and its percentiles, respectively). A significant statistical dif-

ference suggests that the policy selected in the deterministic case is not optimal in the

stochastic case under the given performance metric.

• Type-2 (change in the decision based on risk): We would like to identify the

scenarios where the optimal build-up policy selected based on the expected NPV is

different from the optimal policy selected based on risk (percentiles). We use the

double bootstrap method to identify a significant statistical difference between the

selected percentile of the two policies. A statistical difference then suggests that the

policy with the maximum mean NPV is not optimal under the risk measure.

2.7.1 Production and demand uncertainties

Figure 2.4 illustrates the main effects of demand and production variability on the

number of changes in the decision. As demand and production uncertainties increase, their

effect on the optimal number of build-up periods increases so does the number of Type-1

and Type-2 changes and thus the likelihood of making a potentially incorrect decision if

uncertainties are ignored.

Figure 2.5 shows how the two sources of uncertainty interact. By looking at the slope

of the lines, an interesting finding is that production yield variability has the highest impact

under deterministic demand. For higher demand variations, the slopes become gradually

gentler suggesting a decrease in the effect of production yield variation. As the level of

uncertainty in the demand increases, production uncertainties become less relevant meaning

that most of the detected changes in the decision will be due to demand uncertainty. Another

important finding is that under any demand variation level, the number of Type-1 and Type-

2 changes increases with production uncertainty which is consistent with the general behavior

observed in Figure 2.4(b).

27



(a) Effect of demand uncertainty. (b) Effect of production uncertainty.

Figure 2.4: Number of changes in the optimal build-up policy (out of 77,760 scenarios).

Figure 2.5: Number of changes in the optimal build-up policy (out of 19,440 scenarios).
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2.7.2 Production level and diffusion parameters

Figure 2.6 shows that under different production levels (L0) and coefficients of innovation

(p) and imitation (q), the total number of Type-1 and Type-2 changes increases with higher

production variability (consistent with the general findings previously discussed). However,

perhaps the most interesting finding is that, in general, we see fewer changes in the decision

under the following circumstances: (1) low production level and a relatively fast growing

demand; and, (2) high production level and a relatively slow demand growth rate. Consider

the case of L0 = 40, where except for p = 0.01 and q = 0.2 (i.e., a very slow demand growth

rate), in the other cases where the diffusion speed is relatively higher than production, we see

smaller number of changes. In such situations, the demand will remain higher than supply for

a long time. The excessive demand surplus reduces the effect of demand variations making

sales strictly dependent on the supply level. As an extreme case, consider the case of an

infinite demand for the product at each period which will result in sales being completely

independent of demand fluctuations. On the other hand, with high production rates and a

relatively slow demand process (take (L0, p, q)=(120,0.01,0.2), (200,0.01,0.2), (200,0.01,0.4),

(200,0.03,0.2), (200,0.05,0.2) for instance), due to the abundance of supply, small variations

in the production throughput will have virtually no impact on sales (consider the pathological

case of infinite production level).

The high number of Type-1 and Type-2 changes under intermediate levels of produc-

tion level and diffusion speed, e.g., (L0, p, q)=(120,0.03, 0.2), (80,0.01,0.2), (100,0.01,0.2),

(200,0.03,0.4), where a mix of the above two effects exists, can be explained by Figure 2.7

that represents two replications of a parameter configuration. In Figure 2.7(a), the firm pro-

duces at maximum capacity until around time period t = 30 and then switches to the lagging

demand strategy. However, Figure 2.7(b) shows a situation where misinterpreting a random

decrease in the demand at time t = 12 as the beginning of the decline in demand, misled

the firm into making the switch too early. While not plotted in the figure, due to the high
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Figure 2.6: Number of changes in the decision broken down by mean production level vs.
diffusion parameters (out of 1,728).

inventory level at the time of the switch (582 units), production is stopped and the inven-

tory is used to satisfy demand. By the time that the firm detects the mistake and ramps up

production to its maximum level (t = 18), the inventory is almost entirely exhausted leading

to significant supply shortages and lost sales as demand remains higher than production for

several periods (total sales for this scenario is 2,506 units compared to 2,822 for Scenario

1). It is worth noting that this example considers the same set of parameters used in Figure

2.3(b) in Section 2.6.2 which explains the bi-modal shape of the NPV distribution.

2.7.3 Change in the length of the build-up period

An important question is: how much does the optimal policy change? Figure 2.8 illus-

trates a significant perspective difference for Type-1 and Type-2 changes. The range of the

box plots show that ignoring demand and production uncertainties could result in build-up

periods that are from as much as 7 periods shorter to 21 periods longer than the optimal pol-

icy selected with the uncertainties taken into account with most of the differences (roughly
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(a) Scenario 1 (NPV of profit = 481.2). (b) Scenario 2 (NPV of profit = 419.8).

Figure 2.7: Two replications of the stochastic supply-restricted simulation model (p = 0.01,
q = 0.2, m = 3000, vd = 0.15, L0 = 80, vp = 0.1, β = 0.8, χ = 1, h = 0.001, w = 0.01,
π = 1.2, r = 0.003).

97%) ranging from 6 periods shorter to 3 periods longer than the respective deterministic

cases (Type-1 changes). Moreover, the optimal build-up period selected based on risk can

be from as much as 17 periods shorter to 21 periods longer than the policy selected based

on the mean NPV of profit with most differences (roughly 98%) being between -6 to +5

(Type-2 changes). An interesting observation is that, when using the average NPV or the

75th percentile of profit, in a considerable number of cases that the decision is affected, ig-

noring uncertainties would yield to a policy with a longer build-up period by one time unit

which can be explained as follows. If the yield becomes more than the average production

level in several consecutive periods early in the diffusion process while at the same time the

demand is growing slower than expected (relative to the deterministic model), then the net

effect would be two-fold. First, the targeted initial inventory is reached faster enabling the

company to start sales earlier; and secondly, there will be fewer lost customers during the

build-up period. This will move the revenues closer to the present time, reduce inventory

costs, and increase cumulative sales and thus profit. On the other hand, when using the 25th

percentile, a considerable number of differences indicate that we would incorrectly select a

build-up period that is one period shorter if uncertainties are ignored. This can be attributed

to the fact that the company will generally need longer periods of build-up to guarantee a

certain level of supply that reduces lost sales when demand variations make it grow faster
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(a) Change in TBuild−up from the deterministic case (Type-1).

(b) Change in TBuild−up based on risk as the primary objective
(Type-2).

Figure 2.8: Box plots and histograms of the magnitude of change in the number of initial
inventory build-up periods.
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(a) Change in the performance from the deterministic case (Type-1).

(b) Change in the performance based on risk as the primary objective (Type-2).

Figure 2.9: Magnitude (percentage) of change in the performance.

than expectations. It is worth noting that these results are also consistent with industry

practices as most of the changes in new products’ launch time are not too long.

2.7.4 Magnitude of change in the performance measures

The magnitude of change in the performance metrics can be thought of as the cost of

making a potentially incorrect decision if uncertainties are ignored and thus is important to

managers. As shown in Figure 2.9(a), the policy selected based on a deterministic analysis

could perform up to 18% worse than the policy that accounts for these uncertainties (Type-

1). Figure 2.9(b) shows that the difference in the performance for Type-2 changes can be

as high as 14%. In both cases, more than 90% of the cases report up to 4% difference in

the performance. While the above differences are all statistically significant, the concept of
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meaningful practical difference (δ) becomes relevant which can be defined as the minimum

difference that is important to detect. A difference of less than δ is considered practically

insignificant meaning that the statistical difference between the two policies is negligible

and the decision maker will be indifferent towards selecting either of the two policies. It is

then up to the firm to decide whether the identified differences are practically significant.

Also, note that a sufficiently large sample size enables us to detect even minute statistical

differences (at any chosen confidence level). As a result, the number of replications of the

simulation model can be determined by sequentially increasing the number of replications

and then stop if a statistical difference of less than δ is detected.

2.7.5 Selling price, backlogging percentage, waiting cost, and inventory cost

Under any discount rate, a higher selling price increases the impact of uncertainties

on the profit and thus we expect a higher number of Type-1 and Type-2 changes. Also,

high discount rates reduce the effect of sales variations on the NPV for the periods later

in the diffusion process and the number of changes in the decision decreases (Figure 2.10).

As shown in Figure 2.11, for any waiting cost, the number of Type-1 and Type-2 changes

decreases with higher levels of demand backlogging due to the decreased impact of demand

and supply uncertainties on lost sales. Finally, as inventory costs increase, long periods of

build-up become less attractive even though they are more likely to reduce lost sales. In other

words, this reduction in lost sales does not outweigh the higher inventory cost. Therefore,

we expect a decrease in the number of Type-1 and Type-2 changes, particularly, for cases

where a longer build-up period would have otherwise been preferable (Figure 2.12).

2.8 Conclusions

Motivated by real-world problems, we investigate the effect of supply and demand un-

certainties on the optimal production-sales policy for new products. We develop a Monte
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Figure 2.10: Number of changes (out of 25,920) in the decision broken down by discount
rate and unit selling price.

Figure 2.11: Number of changes (out of 25,920) in the decision broken down by waiting
cost and backlogging percentage.
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(a) Number of changes from the deterministic
case.

(b) Number of changes based on risk.

Figure 2.12: The effect of inventory cost on the number of changes in the decision (out of
8,640 cases).

Carlo simulation model of the stochastic supply-restricted new product diffusion and through

extensive experimentation, we investigate the five important questions posed in Section 2.2:

1. We show that, regardless of the primary performance measure, the optimal policy from

a deterministic analysis may not necessarily be optimal under stochastic supply and

demand.

2. Using percentiles as measures of risk, we show that the policy selected based on the

expected profit is not necessarily optimal under risk measures.

3. The results show that as the level of uncertainty in the demand increases, production

uncertainties become less important. We also show that under any demand variation

level, the likelihood of making an incorrect decision increases with production uncer-

tainty. The effect of the diffusion speed on this likelihood is shown to vary depending
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on the production level. Moreover, this likelihood is found to have an inverse relation-

ship with the cost per waiting customer, unit inventory cost, and discount factor while

a direct relationship with selling price is observed.

4. We provide perspective results on the effect of uncertainties on the optimal number of

build-up periods. Our analysis suggests that, in most cases, ignoring uncertainties or

focusing solely on the expected NPV of profit can lead to a sub-optimal policy with

a build-up period that is from as much as 6 periods shorter to 6 periods longer than

that of the optimal policy.

5. The results indicate that the cost of overproduction or underproduction as a result of

ignoring supply and demand uncertainties can lead to as much as 18% less profit.

Managerial implications: The above findings have important implications for managers

in real-world applications:

• Ignoring demand and supply constraints may result in either underestimation or over-

estimation of the required pre-launch inventory, both leading to decreased profit. In-

sufficient build-up inventory increases the likelihood of stock-outs and lost sales while

overproduction incurs excessive production and inventory costs. However, the nega-

tive impact of longer build-up periods and thus later market entry is aggravated in

the presence of competition. The marketing literature provides strong and consistent

support suggesting that market-share rewards to pioneers. Pioneers also have other

advantages, namely shaping consumers preferences and establishing consumer loyalty,

avoiding consumer switching cost compensations, gaining performance advantages from

early sales, establishing and maintaining standards, and preempting preferred patents

and suppliers (Hauser et al. 2006). Therefore, consideration of supply and demand

uncertainties becomes even more important in an oligopolistic market structure and

thus our assumption of a monopolistic market will not undermine our major findings.
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• Our findings can also help managers allocate resources to parameter estimation more

effectively. In general, the likelihood of making an incorrect decision is more sensitive

to the uncertainty in the demand rather than production yield which implies it is more

important to obtain a precise estimate of the diffusion parameters and market volatility.

However, for the case of a relatively slow demand, it is critical to accurately predict the

production yield variation. A precise estimate of the price is crucial when the discount

rate is small or for products with very short life-cycles. The company should also

give more importance to estimating the backlogging percentage rather than the cost

associated with waiting customers. In situations where a high percentage of customers

are willing to wait for new supply, such as the monopolistic market of landline phone

in Israel (Jain et al. 1991), supply and demand uncertainties become less relevant.

• Managers can easily misinterpret random fluctuations as suggesting general patterns in

the demand process. We showed the high cost of stopping production due to misjudging

a random decrease in the demand as the beginning of the decline in the diffusion process

and its dramatic impact on the distribution of the NPV of profit. Therefore, a wise

strategy would involve smooth changes in production level until there is sufficient

evidence of decline. This balanced strategy will depend on the trade-off between the

cost of possible overproduction and lost sales due to an early and dramatic production

ramp-down.

• The non-linear first- and higher-order interaction effects of different factors prohibit

any sort of extrapolation/interpolation on the results. Therefore, experimentation

would still be necessary to determine the optimal policy for the estimated parameters.

Moreover, while our focus is on statistically significant changes in the decision, further

analysis of the simulation results reveals that for many parameter configurations, two or

more policies perform virtually the same in terms of the net present value of profit. In

such cases, multi-criteria decision-making processes can be used to compare inventory,
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backlogged demand, production cost, and sales trajectories to select an appropriate

policy.

Our model involves several assumptions and certainly does not capture every dimension

of this complex problem. We consider random fluctuations in the demand process that cause

deviations from a base pattern predicted by a deterministic demand model. Our assumption

is that accurate estimates of the actual diffusion parameters are available to the decision

maker. In the real world, this may not always be the case and a robust production-sales

policy needs to be selected through sensitivity analysis on a range of possible parameter

values to account for forecasting errors. The model can be modified to implement any com-

plex production planning approach. Moreover, an agent-based version of the model can also

be developed to account for more realistic behavioral and adoption rules. Alternative ap-

proaches to incorporate stochasticity into the demand and production processes could also

be investigated. For the case of the production yield variability, if the probability distribu-

tion turns out to have a significant effect, then it would be necessary to explicitly analyze

the production/supply process to estimate an appropriate distribution (using discrete event

simulation or any other analysis tool). Other interesting extensions include consideration of

competition (using a multi-product supply-restricted demand model), outsourcing options,

and other types of uncertainties that exist in a supply chain for a new product.
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Chapter 3

Optimal entry time and production-sales policies for successive generations of new products

3.1 Abstract

This paper explores the optimal entry timing, capacity, initial inventory at launch,

and sales plan for a new generation of a product. We modify an existing multi-generation

demand model to account for supply constraints. A mathematical model of the supply-

restricted multi-generation diffusion problem is then developed and solved both analytically

and numerically to find the optimal solution to the above set of inter-dependent decision-

making problems. The paper provides insights about the effect of consumers’ backlogging,

cost of production capacity, unit profit margin for the products, market expansion by the

new generation, and cannibalization of older generations. We show that the consideration of

supply restrictions and lost sales adds realism to the analysis and generalizes previous findings

on market entry policy by showing that there is a continuous range of optimal introduction

times depending on the level of cannibalization and market extension. Empirical implications

of the proposed model are explored for the diffusion of Sony’s PlayStation R©3 game console in

Europe. The model describes the diffusion of the successive generations of the game console

fairly accurately. The results of our application suggests that the company introduced the

product too late and overproduced inventory which, as supported by empirical evidence,

had a negative impact on the product’s performance. Limitations and considerations for the

application of the model are also discussed.

keywords: multi-generation innovation diffusion, market entry timing, myopic and

build-up policies, PlayStation R©3 game console
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3.2 Introduction

When introducing a new generation of a product, firms need to consider several key

factors including high investment costs, cannibalization of the older generations, the risk of

supply shortages and lost sales due to insufficient production capacity or inventory at launch,

and the risk of not reaching the full market potential and losing potential profit due to a

non-optimal launch time (pre-matured or delayed). Firms need to determine an appropriate

combination of initial inventory and production capacity to satisfy future demand. Due to the

high cost of production capacity and long lead time for capacity expansions (or reductions),

companies generally try to build sufficient inventory prior to starting sales as a cushion in

case the demand grows rapidly and exceeds the production capacity (build-up policy). While

this policy delays revenue collection from sales and leads to additional inventory costs, the

risk of substantial lost sales associated with the alternative myopic policy (i.e., starting sales

without building an initial inventory) is often too high for managers to take. These supply-

related decisions also depend on the choice of the product’s launch time which in turn is

dependent on the expansion in the potential market as well as the cannibalization effect.

Cannibalization is when the new generation of the product gains additional sales that would

have otherwise gone to the existing product generations. Cannibalization becomes critically

important when the older generation has a higher unit profit margin which necessitates

evaluating the trade-off between the market extension versus losing a percentage of high-

margin sales from the existing product. Finally, the company needs an appropriate sales

plan for its product generations.

Due to the complexity of the problem, even companies with significant experience in

successful new product launches have faced considerable monetary losses due to inappropriate

decisions. For instance, Sony Electronics Inc. lost $1.8B in its game division and laid off

3% of its workforce due to delayed launch and excessive production and inventory costs

for PlayStation R©3 (PS3) when, opposite to expectations, the product’s growth was slower

than its predecessor (Los Angeles Times, June 7, 2007). While demand uncertainties and
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misjudging the diffusion parameters could be part of the problem, understanding the inter-

dependence of these decisions is the first step towards better decisions. This paper aims at

taking this first step by exploring three main research questions about the supply-constrained

multi-generation diffusion that the current literature leaves unanswered:

1. When should the firm introduce the new generation to maximize its profit?

2. What is the optimal production capacity and build-up policy for the new generation?

3. What is the optimal sales plan for the new and existing generations?

Figure 3.1 summarizes the research methodology. We consider a single firm contem-

plating the introduction of a new generation of a durable product (i.e., our focus is on the

first-time demand with no repeat purchases) where the technology for the new generation

becomes available sometime after the introduction of the predecessor. We start by modifying

an existing multi-generation demand model to account for supply constraints. We then for-

mulate the problem in the context of Optimal Control Theory (Sethi and Thompson 2000)

and determine the optimal sales plans for successive generations (Section 3.4). Closed-form

solutions are then derived and analyzed for the special case of patient customers with no

lost sales (Section 3.5). To gain insight about the optimal build-up policy, production ca-

pacity, and market entry policy for the general case of impatient customers (i.e., partially

backlogged demand with lost sales), a comprehensive numerical study is performed using a

discrete-time version of the model (Section 3.6). While previous studies suggest that the

new generation must be introduced either simultaneously with the previous generation, at

the maturity of the previous generation, or should never be introduced at all, our model

suggests a continuous range from Now to Never for the optimal entry time. We present

an application of the proposed model to the case of Sony’s PlayStation R©3 game console in

Europe (Section 3.7). The results indicate a late introduction and overproduction of the

product which are inline with the empirical evidence on the product’s poor performance.
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Figure 3.1: The research methodology.

We discuss important considerations for decision-making in real-world applications and the

limitations of the proposed model (Section 3.8).

To the best of our knowledge, this work is the first to study the supply-constrained multi-

generation diffusion problem. A recent survey paper by Bilginer and Erhun (2010) reports

that there is no paper that analyzes capacity constraints for successive generations of innova-

tions. Based on our critical literature analysis (discussed in Section 3.3), the contributions of

this paper can be summarized as follows: (1) it presents a modified multi-generation demand

model that accounts for supply constraints and develops an integrated model that considers

production and inventory costs, demand backlogging, and lost sales; (2) it establishes the

optimal sales plan that maximizes the total profit; (3) it yields more realistic market entry

policies that generalize previously proposed Now or Never and Now or Maturity policies;

and, (4) it provides insights on the optimal combination of production capacity and build-

up inventory for the new product generation. Our case study also has important practical

implications for managers by showing that the model can potentially help companies avoid a
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significant financial loss due to an inappropriate introduction time or production-sales policy

for successive generations of their products.

3.3 Related literature

We present a critical analysis of the strengths and gaps of the two main streams of

research, namely the marketing and operations management literature, to establish the con-

tributions of this paper.

The focus of the marketing research is primarily on demand forecasting. The majority

of the proposed models assume infinite supply and are generally rooted in the Bass model

(Bass 1969) which is perhaps the most commonly used tool for forecasting the demand of

new products in the industry (Bass 2004) and its efficacy has been verified empirically for

hundreds of products (Sultan et al. 1990, Mahajan et al. 1995). Common extensions to the

Bass model include incorporation of negative word-of-mouth, stochasticity in the demand,

and modeling the demand of successive technology generations. For a comprehensive analysis

of these extensions, see Peres et al. (2010) and Mahajan et al. (1991). There are also

simulation studies, especially agent-based simulation models, that investigate the diffusion

of new products under various social network structures, population heterogeneity, and other

micro-level factors that lead to the emergence of macro-level market dynamics (see Negahban

and Yilmaz (2014) for comprehensive analysis of these studies). Among these extensions,

multi-generation demand models are of particular interest for our purpose. In a seminal work,

Norton and Bass (1987) propose a multi-generation model of adoption and substitution that

captures both market expansion and cannibalization. The model is validated empirically for

several products, however no analysis is provided on the optimal entry time for successive

generations. In another seminal work, Wilson and Norton (1989) propose a two-generation

demand model for durable products and develop analytical expressions for the total profit

from both generations. Their analysis leads to the Now or Never market entry policy. This

policy suggests that the second generation should either be introduced simultaneously with
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the first generation or not be introduced at all. Under a slightly different set of assumptions,

Mahajan and Muller (1996) suggest that the optimal entry policy for the new generation

follows a Now or Maturity rule as a generalization of the Now or Never policy suggesting

that the firm should either introduce the new generation as soon as it is available or at the

maturity of the predecessor. For other related studies, see Norton and Bass (1992) and Kim

et al. (2000).

The strength of the marketing stream is primarily in the development of multi-generation

diffusion models and their successful implementation in forecasting the demand for different

product families. These studies also provide valuable insights about the diffusion dynam-

ics, market entry timing, cannibalization and substitution of successive product generations.

However, perhaps the most important deficiency in this stream of research is that the pro-

posed “Now or Never” and “Now or Maturity” policies seem to be not applicable to many

product categories. Different industries, namely fashion, high-technology, and pharmaceu-

tical, report alternative timing strategies. We believe the main reason that the proposed

policies are not consistent with many industry practices lies in the fact that these models

ignore capacity constraints, inventory cost and build-up policies, and lost sales. Moreover,

a clear definition of maturity is missing. This paper contributes to this stream by extend-

ing the Wilson-Norton demand model to account for supply constraints and developing an

integrated mathematical model that considers the above factors. Our analysis yields more

realistic market entry policies that generalize the previously proposed policies and enables

the decision-maker to define different diffusion phases (i.e., early, middle, or maturity).

The second stream of research involves the marketing-operations interface. To account

for supply restrictions for a single generation, a modified Bass model is independently pro-

posed by Kumar and Swaminathan (2003) and Ho et al. (2002). The papers develop virtually

similar models and determine the optimal sales plan and build-up policy in the presence of

lost sales, capacity and inventory costs, and discounting. For similar studies, see Shen et al.

(2011), Bilginer and Erhun (2015), Shen et al. (2014), Cantamessa and Valentini (2000),
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Amini and Li (2011). Several agent-based simulation studies also consider supply-related

aspects of the single-product diffusion (Negahban et al. 2014, Amini et al. 2012, Negahban

2013). While these studies provide a good understanding of the supply-restricted diffusion

and timing decisions, the effect of market extension, substitution, and cannibalization in the

presence of multiple generations are ignored. Very few studies consider the supply side of

successive product generations. Ke et al. (2013) consider the diffusion of two generations

under only one supply replenishment during the entire planning horizon. The first order is

made at the launch of the first generation and satisfies its future demand. The second order

occurs at the launch of the second generation and will satisfy its future demand. While they

consider inventory costs, the diffusion of both generations is unconstrained and thus lost sales

are ignored. Moreover, they ignore time value of money as well as fixed and variable (per

unit) costs associated with replenishments. Although their model yields a continuous range

for the optimal introduction time for the second generation in the single-replenishment case,

for the more realistic and general case of frequent replenishments (i.e., production process),

their model yields Now or Never. In two related studies (Wilhelm and Xu 2002, Wilhelm

et al. 2003), suppliers, production, backorders, inventory, and pricing are considered while

in neither of the studies the demand follows diffusion dynamics – a strong assumption that

was mainly used to make the problem analytically tractable.

Despite their theoretical contributions, the above limitations inhibit any real-world ap-

plications. We relax many of these assumptions in a more realistic model and provide

empirical evidence by successfully applying the model to the case of Sony’s PlayStation R©3

game console in Europe. The results validate the model’s potential in helping companies

choose an appropriate release time and build-up policy for successive generations of their

products.
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Table 3.1: Model parameters and notation
Notation Description
i Index of generation number
ci Production capacity for the ith generation
Hi Cost per unit of capacity for generation i
τ Launch time of the 2nd generation
A1 Cumulative awareness at the launch of the 2nd generation (A(τ))
TB Build-up period for the 2nd generation
hi Unit holding/inventory cost for generation i
li Rate of loss of waiting customers for generation i
αi(t) Profit margin of the ith generation at time t
p Coefficient of innovation
q Coefficient of imitation
N Number of consumers in the market (market size)
m1 Generation 1 adoption rate before generation 2
m2 Generation 1 adoption rate after generation 2
m3 Generation 2 adoption rate
θ Discount factor
a(t), A(t) Instantaneous and cumulative awareness at time t
di(t), Di(t) Demand rate and cumulative demand for generation i at time t
si(t), Si(t) Sales rate and cumulative sales for generation i at time t
Ii(t) Inventory level of the ith generation at time t
Li(t) Cumulative number of lost customers for the ith generation at time t
Wi(t) Waiting customer population for the ith generation at time t
ri(t) Production rate of the ith generation at time t

3.4 Model formulation

In this section, we propose a demand model that accounts for supply restrictions and

establish the optimal sales plan that maximizes the total profit. Table 3.1 summarizes the

notations.

3.4.1 Demand model

Wilson and Norton (1989) model the flow of information about the product among con-

sumers as a Bass process. Adopters stop searching for and processing information. At any

given time t, from the remaining uninformed population, a proportion of p become aware of

the product’s generations independently while the number of individuals informed through
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word-of-mouth is proportional to the number of previous adopters. The instantaneous aware-

ness rate at time t, a(t), is given by

a(t) = p(N − A(t)) + (q/N)(N − A(t))[D1(t) +D2(t)], (3.1)

Let t = 0 be the release time of the first generation (Product 1) and τ the launch

time of the second generation (Product 2). For 0 ≤ t < τ , a fraction of m1 of the informed

population adopt Product 1. After the introduction of the second generation (t ≥ τ), besides

its own new market potential, some of the consumers who would otherwise have adopted

Product 1 will adopt Product 2. Given a choice of both generations, let m2 and m3 be the

fraction of informed population that adopt Product 1 and 2, respectively. The cumulative

demands can be expressed as

D1(t) =


m1A(t) 0 ≤ t < τ,

m1A(τ) +m2(A(t)− A(τ)) t ≥ τ.

(3.2)

D2(t) =


0 0 ≤ t < τ,

m3(A(t)− A(τ)) t ≥ τ.

(3.3)

The underlying assumption of the Wilson-Norton model is an infinite supply (i.e., no

limits on the firm’s ability to meet demand). Capacity constraints can lead to supply short-

ages and unsatisfied demand. As a result, the cumulative sales for generation i up to time t,

Si(t), is not necessarily equal to its cumulative demand, Di(t). Assuming that word-of-mouth

is spread by adopters that actually received the product, supply shortages influence future

demand and sales dynamics. Lost sales and demand backlogging become relevant in the

presence of a “binding” capacity. We propose a modified supply-constrained Wilson-Norton

model by representing the effect of word-of-mouth as being proportional to the cumulative
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(a) Information diffusion rate. (b) Combined demand rate for both genera-
tions.

Figure 3.2: Information acquisition rate and combined demand rate for the two generations
in the original Wilson-Norton model plotted for different values of introduction time of the
second generation (τ). The lower curve (an initial segment of which is common to any
upper curve) represents the rate for Product 1 before the introduction of Product 2. The
parameters are N = 100, 000, p = 0.001, q = 0.1, m1 = 0.3, m2 = 0.1, m3 = 0.7, and τ is
selected such that A(τ) = 0, 20, 000, 40, 000, 60, 000, 80, 000.

sales of the generations rather than the cumulative demand :

a(t) = p(N − A(t)) + (q/N)(N − A(t))[S1(t) + S2(t)]. (3.4)

Our modification to (3.1) uses the same analogy as in Kumar and Swaminathan (2003)

and Ho et al. (2002) that independently propose a supply-constrained Bass model for a single

generation. It is also worth noting that our modified model reduces to the original model

under unlimited supply, where Si(t) = Di(t), and is valid regardless of the rate of loss of

waiting customers (li).

3.4.2 Optimal sales plan

The supply-constrained multi-generation diffusion problem can be formulated as a continuous-

time model within the optimal control framework (Sethi and Thompson 2000). The model

is used to find the optimal sales plan that maximizes the net present value (NPV) of profit

from both generations after the introduction of Product 2 by considering the sales rates

(si(t)) as the control variables. To ensure continuously differentiable functions, the time
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origin is shifted to the launch of the second generation, τ . We consider fixed and separate

production capacities c1 and c2 for the two generations. A fixed capacity is reasonable as

capacity expansions/reductions are generally practically infeasible in short- or medium-term

during the diffusion of a new product due to their excessive cost and long lead time. It is

also reasonable to assume independent sources of capacity when: (1) the two generations are

manufactured by different suppliers; or, (2) the new generation is substantially different and

requires different production processes and equipment. The firm manages the production

rate by producing at maximum capacity until the demand starts to decline and falls below

capacity after which it is set to satisfy the demand (the production management strategy

is explained in more detail in the following section). The resulting optimization model is as

follows

Maximize

{
NPV =

∫ +∞

0

(
2∑
i=1

αi(t)si(t)−
2∑
i=1

hiIi(t)

)
e−θtdt

}
(3.5)

subject to

dA

dt
= a(t) (3.6)

dSi
dt

= si(t) ∀i = 1, 2 (3.7)

d2A

dt2
=

q

N
(N − A(t)) (s1(t) + s2(t))− a(t)

(
p+

q

N
(S1(t) + S2(t))

)
(3.8)

dLi
dt

= liWi(t) ∀i = 1, 2 (3.9)

dWi

dt
= di(t)− si(t)− liWi(t) ∀i = 1, 2 (3.10)

dIi
dt

= ri(t)− si(t) ∀i = 1, 2 (3.11)

Wi(t), Li(t), Ii(t) ≥ 0 ∀i = 1, 2 (3.12)

W1(0) = W 0
1 , I1(0) = I01 , L1(0) = L0

1,W2(0) = I2(0) = L2(0) = 0 (3.13)

A(0) = A1, S1(0) = m1A1, S2(0) = 0, a(0) = p(N − A1) +
q

N
(N − A1)S1(0) (3.14)
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The objective function (3.5) seeks to maximize the discounted profit from both generations

after the launch of the second generation by subtracting inventory costs from sales. Con-

straints (3.6) and (3.7) are self-explanatory. Constraint (3.8) is the time derivative of (3.4).

Equation (3.9) describes lost sales where a proportion of li of the waiting customers are lost

(i.e., waiting customers for product i abandon the product after 1
li

time periods on average).

The number of waiting customers at any given time is expressed by (3.10). The change in

the inventory level for product i will be a function of its production rate (ri(t)) and sales

(si(t)) as described in (3.11). The non-negativity constraints (3.12) and initial values (3.13

and 3.14) are natural. The following theorem states the optimal control (sales) policy at any

given time t (the proof can be found in Appendix A):

Theorem 3.1 For any profit margin αi(t) > 0, inventory holding cost hi > 0, and launch

time of the new generation τ ≥ 0, the optimal sales rate at any time t for generation i is

given by

s∗i (t) =


ri(t) W ∗

i (t) > 0,

min(ri(t), d
∗
i (t)) W ∗

i (t) = I∗i (t) = 0,

d∗i (t) I∗i (t) > 0,

(3.15)

where W ∗
i , I∗i , and d∗i (t) are the number of waiting customers, inventory level, and demand

rate under optimality. In other words, for both product generations, the optimal sales plan

is to sell as many units as possible. Furthermore, W ∗
i I
∗
i = 0 for all t ≥ 0.

The finding is consistent with the optimal sales plan for a single product as identified by

Ho et al. (2002) and Kumar and Swaminathan (2003) and suggests that although immediate

demand fulfillment may accelerate the diffusion and lead to increased lost sales due to an

earlier and higher peak demand, the benefit from the immediate revenue outweighs the

potential lost sales.
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3.5 Analytical solutions for the case of patient customers

We use the optimal sales plan to derive closed-form expressions for the demand, sales,

and backlogging dynamics as well as the total profit. To make the problem analytically

tractable, we assume unconstrained diffusion for the first generation which results in I1(t) =

W1(t) = L1(t) = 0 for all t. This also allows us to focus on decision-making regarding the

optimal entry-time, capacity, and build-up period for the second generation. Even with this

assumption, the problem is analytically solvable only for the special case of patient customers

with no lost sales (l2 = 0). This section provides the closed-form solutions to this special case

while the general case of partial demand backlogging is investigated numerically in Section

3.6. For any introduction time (τ), capacity (c2), and inventory build-up period (TB) for

Product 2, the objective function of the model becomes

Maximize

{
NPV (τ, c2, TB) =

∫ +∞

0

(
2∑
i=1

αi(t)si(t)− h2I2(t)

)
e−θtdt

}
(3.16)

Depending on the choice of τ , c2, and TB, one of the following three cases can occur

for the diffusion of the new generation: (1) unconstrained diffusion with sufficient supply

(i.e., capacity and/or initial inventory); (2) initially unconstrained diffusion followed by

constrained diffusion and then a second unconstrained phase towards the end of the life-cycle;

or, (3) initially constrained diffusion followed by an unconstrained phase once production

becomes sufficient to satisfy demand.

3.5.1 Case 1: Unconstrained diffusion

Under unconstrained diffusion for both generations, we have S1(t) = D1(t) and S2(t) =

D2(t). By replacing (3.2) and (3.3) in (3.4), the differential equation for the awareness rate

is expressed by

A′(t) = p (N − A(t)) +
q (N − A(t)) (A1 u+mA(t))

N
,A(0) = A1, (3.17)
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where m = m2 +m3, u = m1 −m2 −m3 and A1 is the cumulative awareness at t = 0 when

Product 2 is released. The cumulative awareness during the unconstrained diffusion (UD)

phase is given by

AUD(t) =
N(σ1 − p)− A1 q u

σ1 +mq
, (3.18)

where σ1 = e(ω1+
t
N )χ, ω1 =

ln
(
N p+m1A1q
N−A1

)
χ

, and χ = N (p+mq) + A1 q u.

aUD(t), DUD
1 (t), DUD

2 (t), dUD1 (t), and dUD2 (t) can be obtained from AUD(t). Let t+ be

the last time that the demand for Product 2 becomes equal to its production capacity, i.e.,

t+ = max(t|c2 = d2(t)):

t+ = N

 ln
(
χ(σ2+χ)
2Nc2

−mq
)

χ
− ω1

 , (3.19)

where σ2 =
√
m3 (χ2 − 4Nc2mq).

Given zero build-up periods (TB = 0), the minimum capacity required to maintain

unconstrained diffusion for Product 2, cUD2 , satisfies c2t
+ = D2(t

+). For c2 < cUD2 , the

shortest build-up period required is the solution to c2(TB + t+) = D2(t
+). Therefore, for any

c2 and A1, the new generation follows an unconstrained diffusion if and only if TB exceeds

the critical value TUDB given by

TUDB =


0, c2 ≥ cUD2 ,

(m3 χ+ σ2)(N − A1)− 2N c2
c2 (σ2 + χ)

− t+, c2 < cUD2 .
(3.20)

As shown in Figure 3.3, this expression provides the critical surface TB = TUDB in

the (c2, A1, TB) space that separates the unconstrained space (c2 ≥ cUD2 ∨ TB ≥ TUDB )
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Figure 3.3: Minimum build-up period necessary to maintain unconstrained diffusion for the
new generation (TUDB ) as a function of its production capacity (c2) and awareness level at
its launch (A1). To better illustrate the critical curve of c2 = cUD2 in the (c2, A1) plane,
the region c2 > cUD2 where TUDB = 0 is represented in gray. The parameters are p = 0.001,
q = 0.1, m1 = 0.3, m2 = 0.1, m3 = 0.7, and N = 100, 000.

from the constrained space (c2 < cUD2 ∧ TB < TUDB ), spaces above and below the surface,

respectively. The figure also illustrates the critical curve of c2 = cUD2 in the (c2, A1) plane

that separates the region where a myopic policy will not lead to supply shortages (c2 > cUD2 )

from the region where a build-up policy is required to avoid supply shortages (c2 < cUD2 ).

For any introduction time, TUDB decreases with higher capacity (similar to the findings of

Ho et al. (2002) for a single generation). As an important observation, TUDB peaks for early

introductions of the second generation for any c2. For simultaneous introduction, in early

periods when demand is low, part of production can be used to build inventory requiring less

initial inventory to maintain unconstrained diffusion. For an introduction long after Product

1, fewer build-up periods will suffice as most of the market potential is already exhausted

by the first generation. We also observe that the initial awareness (A1) at which TUDB peaks

decreases with c2. Note that here, for illustrative purposes, we allow the preproduction of

Product 2 to begin before the launch of Product 1. In our analysis of the general case of

impatient customers in Section 3.6, the technology for generation 2 will not become available

before the launch of the first generation.
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3.5.2 Case 2: Initially unconstrained diffusion

When the combination of initial inventory and capacity is insufficient for unrestricted

diffusion of Product 2 (in the constrained space (c2 < cUD2 ∧ TB < TUDB ) below the TB = TUDB

surface in Figure 3.3), there will be an initial phase of unconstrained diffusion (UD1) followed

by a constrained phase (CP) that will switch back to unconstrained diffusion (UD2) once the

demand falls below capacity. Awareness and demand dynamics during the first phase (UD1)

is similar to the Case 1. The ending time of the first unconstrained phase, TUD1, is determined

by c2(TB+TUD1) = D2(TUD1). When the constrained phase begins at t = TUD1, there will be

unsatisfied demand (W2(t) > 0) and the instantaneous sales for Product 2 will be bounded

by its production capacity (s2(t) = c2). During CP, S2(t) = D2(TUD1) + c2(t − TUD1). By

moving the time origin to TUD1 and given ACP = A(TUD1) (cumulative awareness at the

beginning of CP), the information flow during CP is described by

A′(t) = (N − A(t))

(
p+

q (m1A1 +m2 (A(t)− A1) +m3 (ACP − A1) + c2 t)

N

)
, (3.21)

where A(0) = ACP and the cumulative awareness during CP is obtained as

ACP (t) = N +
1

et (p+m2 q)+
t (2A1 q u+2ACP m3 q+c2 q t)

2N

(
σ3 − 1

N−ACP

) , (3.22)

σ3 =

∫ t

0

m2 q

N ex (p+m2 q)+
x (2A1 q u+2ACP m3 q+c2 q x)

2N

dx. (3.23)

The closed-form expression for (3.23) is provided in Appendix B. Given ACP (t), ex-

pressions for aCP (t), DCP
1 (t), DCP

2 (t), dCP1 (t), and dCP2 (t) can be derived. During CP, given

s2(t) = c2 and l2 = 0 (patient customers), the demand backlogging dynamics for Product 2

is described by

W ′
2(t) = d2(t)− c2,W2(0) = 0, (3.24)
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Figure 3.4: Backlogged demand for the new generation (W2(t)) during the constrained phase
(CP) for c2 = 400 and simultaneous release of both generations (A1 = 0). t = 0 marks the
beginning of CP. To better illustrate the length of CP, the second unconstrained diffusion
phase (UD2) is represented in gray. With zero initial inventory (i.e., TB = 0), CP begins at
TUD1 = 39.6 with A(TUD1) = ACP = 22614.6 (the origin of the ACP axis). ACP increases
with TB which delays CP. The figure on the right pertains to TB = 23. Other parameters
are p = 0.001, q = 0.1, m1 = 0.3, m2 = 0.1, m3 = 0.7, and N = 100, 000.

and the number of waiting customers is given by WCP
2 (t) = m3

(
ACP (t)− ACP

)
− c2t. The

constrained phase ends at TCP when WCP
2 (t) becomes zero for the first time after TUD1, i.e.,

TCP = min(t|t > TUD1,W
CP
2 (t) = 0) which can be solved numerically. As shown in Figure

3.4, a longer build-up period for the new generation not only delays the constrained phase

but also reduces its length and the peak number of waiting customers.

Let AUD2 represent the cumulative awareness at the beginning of the second uncon-

strained diffusion phase (UD2), i.e., AUD2 = A(TCP ). During this phase, s2(t) = d2(t) once

again. By moving the time origin to TCP , the information dynamics can be described by

A′(t) = p(N − A(t)) +
q(N − A(t))(A1u+mA(t))

N
,A(0) = AUD2. (3.25)

The cumulative awareness during UD2 is given by

AUD2(t) = −(N p−N σ4 + A1 q u)

(σ4 +mq)
, (3.26)
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σ4 = e

 ln

(
− (N p+AUD2mq+A1 q u)

(AUD2−N)

)
χ

+ t
N

χ

. (3.27)

aUD2(t), DUD2
1 (t), DUD2

2 (t), dUD2
1 (t), and dUD2

2 (t) can be obtained. This concludes Case 2.

3.5.3 Case 3: Initially constrained diffusion

When the initial inventory and capacity for Product 2 is insufficient from the beginning

of its diffusion, i.e., c2TB + c2 < m3a(τ), there will be an initial constrained phase during

which W2(t) > 0 followed by an unconstrained diffusion phase once the number of waiting

customers becomes zero. The awareness, demand, and sales dynamics in this case is similar

to the second and third phases of the initially unconstrained case discussed above (i.e., CP

and UD2) with ACP = A1 and TUD1 = 0.

3.5.4 Total profit from both product generations

We now turn to the characterization of the net present value of total profit from both

generations at time zero (launch of the first generation). Given a production capacity c2,

length of the build-up period TB, and release time of the second generation τ , the life-cycle

profit after the introduction of the second product described in (3.16) is given by the sum of

the discounted profit during UD1, CP, and UD2 phases (note that not all three phases may

exist depending on which of the above three cases occurs). Given t1 = t−τ , t2 = t−τ−TUD1,

and t3 = t− τ − TUD1 − TCP , we have

NPV τ+(τ, c2, TB) =

∫ τ+TUD1

τ

(
2∑
i=1

αi(t1)d
UD1
i (t1)−

2∑
i=1

h2(c2(TB + t1)−DUD1
2 (t1))

)
e−θtdt

+

∫ τ+TUD1+TCP

τ+TUD1

(
2∑
i=1

(α1(t2)d
CP
1 (t2) + α2(t2)c2)

)
e−θtdt

+

∫ +∞

τ+TUD1+TCP

(
2∑
i=1

αi(t3)d
UD2
i (t3)

)
e−θtdt.

(3.28)
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The NPV of prelaunch inventory cost during the build-up period can be expressed as

NPVB(τ, c2, TB) =

∫ τ

τ−TB
h2 c2 t4 e

−θtdt =
h2 c2

(
eθTB − θTB − 1

)
θ2 eθτ

, (3.29)

where t4 = t − τ + TB. Next, we calculate the NPV of profit from generation 1 before the

launch of Product 2, NPV τ−(τ). The following differential equation describes the informa-

tion diffusion dynamics before the introduction of the second generation

A′(t) = p (N − A(t)) +
m1 q A(t) (N − A(t))

N
,A(0) = 0. (3.30)

The cumulative awareness and instantaneous awareness rate before Product 2 are given

by

Aτ
−

(t) =
N (σ5 − p)
σ5 +m1 q

, (3.31)

aτ
−

(t) =
N σ5 (p+m1 q)

σ5 +m1 q
+
N σ5 (p+m1 q) (p− σ5)

(σ5 +m1 q)
2 , (3.32)

where σ5 = e
N (p+m1 q)

(
t
N
+

ln(p)
N (p+m1 q)

)
.

Given dτ
−

1 (t) = m1a
τ−(t), the NPV of profit generated by Product 1 before Product 2

will be

NPV τ−

1 (τ) =

∫ τ

0

α1(t)d
τ−

1 (t)e−θtdt. (3.33)

Let Hi be the cost of unit of capacity for product i, the NPV of total capacity investment

is

NPV c(τ, c2, TB) = H1c1 +H2c2(1 + β)−(τ−TB), (3.34)

62



where c1 = maxt≥0(d1(t)) and β = eθ − 1. The total profit from both generations will be

NPV Total(τ, c2, TB) = NPV τ+(τ, c2, TB)−NPVB(τ, c2, TB) +NPV τ−

1 (τ)−NPV c(τ, c2, TB).

(3.35)

Given the above, we can now formalize the hierarchy of decisions that the firm needs

to make. For a given introduction time τ and capacity c2 for the second generation, the

optimal build-up period T ∗B can be determined through a one-dimensional search as follows

Profit∗τ+(τ, c2) = max
0≤TB≤τ

(
NPV τ+(τ, c2, TB)−NPVB(τ, c2, TB)

)
, (3.36)

where 0 ≤ TB ≤ τ will ensure the availability of the technology for generation 2 after the

launch of generation 1. Next, the optimal capacity is determined by a one-dimensional search

as follows

c∗2 = max
c2

= (Profit∗τ+(τ, c2)−NPV c(τ, c2, T
∗
B)) . (3.37)

Finally, the optimal entry time for the new generation of the product may be found by

τ ∗ = max
τ

= NPV Total(τ, c∗2, T
∗
B). (3.38)

Steps (3.28)-(3.38) also apply to the case of impatient customers. However, the closed-

form solution to the differential equation in (3.10) is not available when l2 6= 0. Therefore,

we leave the analysis of the optimal decisions to the next section where the general case of

the problem is solved numerically.

3.6 The general case of impatient customers: A numerical study

In this section, we numerically solve a discrete-time version of the model and outline

the most important findings for the general case of impatient consumers.
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3.6.1 Experimental design

The experimental design is summarized in Table 3.2. The values/ranges for the param-

eters are selected based on numerical studies by Wilson and Norton (1989) and Kumar and

Swaminathan (2003) to provide a common ground for comparison. We consider equal costs

of production capacity (H1 = H2 = H) and fixed profit margins (i.e., αi(t) = αi). We use

the proportion of informed consumers at the launch of the second generation (ψ(τ)) instead

of the introduction time (τ) in our analysis to reduce the sensitivity of the results to the ab-

solute market size N making them generalizable to different market sizes. Similar to Wilson

and Norton (1989), we consider a market space (M) frequently found in high-technology,

publishing, and pharmaceutical industries as follows

M = {(α1, α2,m1,m3,m2)|α1 ≥ α2, 0 < m1 ≤ 1, 0 ≤ m2 ≤ m1,m1 ≤ m2 +m3 ≤ 1}. (3.39)

Similar to Wilson and Norton (1989), we use the ratio of the adoption rate of Product

1 after and before Product 2 (m2

m1
) as a measure of cannibalization of generation 1 by the

new generation with m2

m1
= 1 suggesting no cannibalization and m2

m1
= 0 full cannibalization.

Also, α2m3

α1m1
is used to measure relative profitability of the two product generations. In this

marketplace, the first generation makes a higher unit contribution to profit but has a smaller

market penetration while the second generation has a higher market potential and a lower

profit margin. The resulting trade-off is between making high-margin sales slowly (through

the first generation only) or cannibalize part of the sales from Product 1 to make low-margin

sales more rapidly by introducing the new generation. The experimental design results in

more than 15.2 million different parameter configurations.

3.6.2 Optimal entry time

Figure 3.5 provides the optimal introduction time under various market settings. In the

plot for each combination of production capacity for the second generation (c2) and cost per
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Table 3.2: Parameter choices for numerical experiments
Parameter Description Value/Range
p Coefficient of innovation 0.001, 0.002, 0.003, 0.004, 0.005
q Coefficient of imitation 0.1, 0.02, 0.3, 0.4, 0.5
N Market size 100,000
c2 Production capacity for Generation 2 50, 100, 150, 200, 300, 400, 500, 600
H Cost per unit of capacity 0-40 in increments of 10
ψ(τ) proportion of informed consumers at τ 0-1 in increments of 0.05
TB Build-up period for Generation 2 0-τ
l Rate of loss of waiting customers 0, 0.01, 0.05, 0.1, 0.5, 1
θ Discount factor 0.003
m2

m1
Cannibalization level 0-1 in increments of 0.1

α2m3

α1m1
Relative profitability 0-1 in increments of 0.1

h2 Unit holding cost for Generation 2 0.01α2

unit of capacity (H), the x-axis represents the relative profitability of the two generations

(α2m3

α1m1
) and the y-axis is the cannibalization level (m2

m1
). For each plot, the plane is divided

into an 11 × 11 lattice and the optimal entry time ψ(τ) is represented by the darkness of

each lattice point with darker shades indicating a later release. Therefore, the white color

suggests the optimality of simultaneous release of both generations (Now policy) and black

suggests it is optimal not to introduce the second generation at all (Never policy).

Perhaps the most important finding is that the optimal introduction time can vary

continuously from now to never which generalizes the previously proposed Now or Never and

Now or Maturity rules. We never introduce the second generation when the cannibalization

effect is high and it has low profitability compared to the first generation. Under high

cannibalization, we introduce the second generation if it is sufficiently profitable to outweigh

the reduction in the high-margin sales of the first generation. When the relative profitability

is small, we introduce the new generation only if it does not cannibalize first generation too

much. Therefore, for most of the grid points below the diagonal, the never rule is optimal.

When capacity is cheap, consider H = 0 or 10, the size of the now region increases with

capacity c2. For H = 30 or 40, we observe a general reduction in the size of the now region as

capacity increases (we see a mixed effect for intermediate capacity levels, e.g., H = 20). For

65



Figure 3.5: Optimal entry time for the case of impatient consumers (l = 0.1) broken down
by production capacity for Product 2 c2 and the cost per unit of capacity H.

any c2, there is a general increase in the size of the never region and decrease in size of the

now region with H. Similar patterns are observed for other levels of lost sales (i.e., l). These

findings can be explained by the trade-off between capacity investment, delayed sales of the

new generation, and lost sales. When capacity is expensive, it is beneficial to delay capacity

investment even though it would also delay revenue collection from the sales of Product 2.

When capacity is cheap, earlier sales of the second generation justifies an earlier investment

in capacity. On the other hand, an early launch accelerates the information and demand

dynamics and potentially leads to higher lost sales. A high capacity level is expected to

reduce lost sales making an early introduction more preferable only if capacity is cheap. As

capacity becomes more expensive, a later introduction is beneficial.

Figure 3.6 presents a set of representative market entry policies. In each plot, we

systematically change the rate of loss (l) and observe the resulting NPV of total profit as

a function of the proportion of informed consumers at the release of the second generation
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(ψ(τ)). We use the following conditions to define introduction policies. The optimal policy

is Now if ψ(τ ∗) = 0, Early if 0 < ψ(τ ∗) ≤ 0.3, Middle if 0.3 < ψ(τ ∗) ≤ 0.6, Maturity if

0.6 < ψ(τ ∗) < 1, and Never if ψ(τ ∗) = 1 (i.e., the market potential is fully exhausted by the

first generation). The choice of the above boundaries is somewhat arbitrary and different

ranges can be used depending on the specific product under consideration. However, it is

important to note that using ψ(τ) allows the decision-maker to define these regions regardless

of the duration of the diffusion for the two product generations (unlike Mahajan and Muller

(1996) that fail to clearly characterize the Now or Maturity policy as their analysis focuses on

τ). An important observation is the formation of a local maximum in the middle, maturity,

or never regions as l increases which can be explained by the trade-off between lost sales

and the delay in capacity investment and sales of the new generation as discussed above.

3.6.3 Optimal build-up policy and capacity

As depicted in Figure 3.7, for any unit capacity cost (H), the optimal build-up period

(T ∗B) becomes shorter with more capacity c2. Since the technology for Product 2 is not

available before the launch of Product 1, t = 0 is the earliest time that inventory build-up

may begin (i.e., 0 ≤ T ∗B ≤ τ). For small capacity levels, T ∗B increases with ψ(τ) as longer

build-up periods become permissible. When capacity is free, T ∗B peaks for introduction in the

early region which results in a fast growth and high peak demand. Moreover, the company

would not have as much time to build inventory after the product’s launch compared to

the case of simultaneous introduction. T ∗B starts to decline for later introductions as a

larger proportion of the market would be already exhausted by Product 1 reducing the peak

demand for Product 2. As H increases, an interesting pattern is observed in the early region

where T ∗B decreases mainly because additional sales through higher preproduction does not

justify earlier capacity investment and delaying preproduction becomes beneficial. This

effect is augmented for higher c2 and H. The general decrease in T ∗B as capacity becomes
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(a) Early-Maturity-Never policy. (b) Now-Early-Maturity policy.

(c) Maturity policy. (d) Early-Maturity policy.

(e) Now-Middle policy. (f) Early-Middle policy.

(g) Middle-Maturity policy. (h) Middle-Never policy.

Figure 3.6: Selected market entry policies (α2m3

α1m1
= 0.7, m2

m1
= 0.7)
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Figure 3.7: Optimal build-up policy for the second generation for different proportions of
informed consumers at its launch (ψ(τ)) broken down by its capacity (c2) and unit capacity
cost (H). The other parameters are l = 0.05, α2m3

α1m1
= 0.7, and m2

m1
= 0.7.

more expensive is due to the same reason. Similar patterns are observed for other market

configurations.

Given T ∗B, the optimal production capacity is determined through a one-dimensional

search as in (3.37). According to Figure 3.8, when capacity is free (H = 0), the total profit

is an increasing function of c2 as more capacity would reduce the cost of carrying build-up

inventory. As H increases, large capacity levels become less preferable while the optimal

capacity will depend on the remaining market potential. When capacity is too expensive, a

small capacity will become preferable regardless of the introduction time although it leads

to longer build-up periods and higher inventory costs.

3.7 Empirical evidence: PlayStation R©3 game console

Until this date, Sony has launched four generations of its popular game console. The

original PlayStation (PS), launched in 1994, was a huge success with sales exceeding 40

million units worldwide in just two years. PS2, launched in 2000, became the fastest game

console to reach 100 million shipments worldwide in 5 years and 9 months. The most recent
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Figure 3.8: NPV of total profit for different capacity levels (c2) broken down by unit capacity
cost (H) and awareness at the launch of the second generation (ψ(τ)). Other parameters
are l = 0.05, α2m3

α1m1
= 0.7, and m2

m1
= 0.7.

generation, PS4, became the fastest selling PlayStation with sales exceeding 4.2 million

worldwide in 3 months. However, the case of PS3 is of particular interest as it was not as

successful as the other three generations.

In March 2006, Sony announced the first delay in the launch of PS3, originally scheduled

for Spring 2006, until November saying that the console would be released simultaneously

in Japan, America, and Europe for the first time (both PS1 and PS2 were first released in

the Japan and America with Europe coming a belated third). The head of Sony Computer

Entertainment Europe (SCEE) said at the time: “This is an exciting first for Europe, and

is a huge endorsement and vote of confidence in the strength of the European market and

its importance globally.” However, the company postponed the launch in Europe again from

November 2006 to March 2007. Both delays were due to problems with the production of the

console’s Blu-ray disc drive (BBC News, September 6, 2006). Besides the long delays, Sony

was selling the console at a strategic price much lower than its production cost during the

introductory period of the platform (a negative margin of about $200 per console) hoping

to recover the loss from the revenue from games/software. However, the console’s high price
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($599 compared to $399 for Microsoft’s Xbox 360 and $249 for Nintendo Wii) was a barrier

to its widespread penetration. There was a significant drop in the sales of the console (82%)

and popular games (almost 60%) in Europe on the second week after the launch leading to

additional loss due to unsold inventory. We did not find any evidence about significant supply

challenges for PS3 after its launch in Europe which can be another sign of overproduction.

Sony reported a loss of $1.8B within the Game segment for the fiscal year ended March 31,

2007. In April 2007, Ken Kutaragi, President of Sony Computer Entertainment and the lead

architect for PlayStation, announced his retirement saying that he had been planning his

retirement for six months while many news agengies attributed this to poor sales (The Wall

Street Journal, April 26, 2007 and Times Online, April 27, 2007). Despite the significant

reduction in PS3 production cost from $800 to $450 in 2008, the company still reported a

$1.2B and $0.6B loss in its Game division for the fiscal years ended March 31, 2008 and

2009, respectively, mainly due to slow sales for PS3.

Motivated by the above, we explore the optimal entry time and build-up policy for

PS3 in Europe. Our discussion highlights two issues that had a negative impact on PS3’s

performance: (1) late market entry; and, (2) demand overestimation leading to excessive

inventory. Our goal is not to provide an exact replication of the real case, but rather show

that the proposed model is capable of providing insights about the optimal introduction time

and build-up policy for PS3 that could potentially help Sony make more informed decisions

and avoid/reduce the incurred financial loss.

The underlying assumption of our model is that product generations are introduced

in a monopolistic market while in many real-world markets (including the case of PS3),

the optimal timing may also be function of competition (e.g., the launch of Xbox 360 or

Nintendo Wii). We justify this assumption by the fact that PlayStation is historically strong

in Europe. In fact, Sony dominated the market (in most European countries) during the

years included in our analysis. In the UK, for instance, one in four households owned a PS

at the launch of PS2 (Reuters, November 27, 2000) and PS2 gained 80% of the market share.
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PS2, the best selling game console of all history, gave Sony 70% of the market share (The

Economist, November 16, 2006). Even PS3, despite entering the market more than a year

after Microsoft’s Xbox 360, had a record-breaking launch and outsold its closest competitor

in Europe starting from October 2007 (EuroGamer.net, May 6, 2008) and was the best-

selling console in Europe in 2012. It is worth noting that PS4 (although not considered in

our analysis) has also maintained the market leadership with a 70% to 90% market share

in every country in Europe (EuroGamer.net, July 1, 2015). As in our numerical study, we

also assume unconstrained diffusion for PS and PS2 to be able to focus on supply-related

decisions for PS3.

3.7.1 Model parameters

Parameter choices for the case study are provided in Table 3.3. The market potential

was estimated to be the 216 million households in Europe (Eurostat 2015). Sales (units) are

obtained from Sony’s financial statements. The initial inventory and the length of prepro-

duction were obtained from news releases from which the production capacity was estimated.

We ran the model with PS3’s actual release time and build-up period and used the nonlinear

regression procedure of the SAS statistical package to estimate the diffusion and cannibal-

ization parameters. We performed this analysis multiple times with different number of

historical data points. The model’s predictions are better when based on 12 years of data

yielding an R2 = 0.85 and, more importantly, accurate predictions of the demand peaks and

general pattern (Figure 3.9). The model did not perform well when fitted to the demand

for all four generations. We believe this is mainly due to the underlying assumption of the

Wilson-Norton model that the market potential is constant. As the number of generations

and/or the planning horizon increases, the accuracy of the model tends to decrease as the

market size may change.

The discount factor is estimated from Sony’s annual reports (the average value between

1999 and 2015 was used). The profit margin includes the profit from games. The average
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Table 3.3: Parameter estimates for the empirical study
Parameter Description Estimated value/range
N Market size 216 million
p Coefficient of innovation 0.019
q Coefficient of imitation 0.88
m11 Fraction that purchase PS before PS2 0.59
m12 Fraction that purchase PS after PS2 0.02
m21 Fraction that purchase PS2 before PS3 0.35
m22 Fraction that purchase PS2 after PS3 0.24
m31 Fraction that purchase PS3 before PS4 0.26
c3 Production capacity for PS3 318,000 units per month
β Discount factor 5.6%
α2 Profit margin per PS2 console $300
α3 Profit margin per PS3 console $163
C R&D and capacity costs $0.4-$1.0 billion in 0.1 increments
h Holding cost per console per year $10, $20, $30, $40, $50
l Rate of loss of waiting customers 0, 0.05, 0.1, 0.15, 0.2, 0.5, 1
τ3 Introduction time of PS3 (fiscal year) 2003, 2004, 2005, 2006
TB Build-up period for PS3 0-24 months

number of games sold per console is 9.23, 10.54, and 10.71 for PS, PS2, and PS3, respectively.

We consider a console owner fee of 11.5%, that is $6.9 profit on a $60 game (Forbes, December

19, 2006). We used the average unit production cost as it changed over the years. For

instance, the production cost of a PS3 console was around $800 at launch and was reduced

to $450 after two years and dropped to $240 five years later. The average production cost

per PS3 console was estimated by the weighted average. Similarly, we calculated the average

Figure 3.9: Model predictions vs the actual sales of PlayStation console generations
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price of each console over their life-cycle. The average profit margin per console was then

estimated from the above. We estimated the possible range for the investment in Research

and Development (R&D) and production capacity from Sony’s annual reports. However, we

were not able to find any information about the inventory cost per console and the rate of

loss of waiting customers and thus analyzed different levels of these parameters. We then

varied the introduction time of PS3 from 2003 to 2006 (the actual launch time) and the

build-up period from 0 to 24 months to find their optimal value.

3.7.2 PS3: Analysis of build-up period and introduction time decisions

Figure 3.10(a) suggests that the optimal introduction time varies between 2003 and

2005 fiscal years indicating the late introduction of PS3 in Europe as supported by the

empirical evidence (i.e, long delays). While a later launch would be preferable for higher

initial investment and/or rate of loss of waiting customers, a 2006 launch is found to be

late even for the highest levels of these parameters in our analysis. Figure 3.10(b) shows

that for the 2006 fiscal year (actual release time), the optimal build-up period is either 0 or

1 month. Sony built one million consoles for PS3’s launch in Europe suggesting 3 months

of preproduction (Financial Times, March 28, 2007). Therefore, our model was able to

capture both identified problems. The results suggest that Sony would need longer build-up

periods with earlier launch which results in a faster growth and higher peak demand requiring

more supply to avoid lost sales. In general, as the cost of R&D and capacity increases,

additional sales through higher preproduction does not justify an earlier investment and the

company would benefit from shorter build-up periods. Moreover, as consumers become more

impatient, supply-shortages become more costly and thus a longer preproduction would be

preferable.
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(a) Optimal launch time. (b) Optimal build-up period.

Figure 3.10: Optimal build-up period (months) and introduction time (fiscal year) for PS3
broken down by initial investment (C), unit inventory cost (h), and rate of loss of waiting
customers (l).

3.8 Discussion and conclusions

We investigate the optimal market entry and production-sales policy for successive gen-

erations of innovations. We modify a classical diffusion model and propose a supply-restricted

model while retaining a parsimonious analytical representation. A mathematical model is

then developed with the objective to maximize the total discounted profit that accounts for

the simultaneous effects of inventory and production costs and lost sales. We establish the

optimal sales plan and derive the closed-form expressions for demand, sales, and backlogging

dynamics for the special case of patient customers. A numerical study is carried out for the

general case of impatient customers. The model supports the hierarchy of inter-dependent

decisions that a firm needs to make when introducing a new generation by answering the

three research questions posed in Section 3.2:

1. Optimal market entry policy: We generalize the previously proposed now or never

and now or maturity policies by showing that the optimal launch time for the second

generation varies continuously from now to never depending on the cannibalization

level and the generations’ relative profitability. The consideration of supply constraints,
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capacity and inventory costs, and lost sales adds realism to the analysis and yields

policies that are more consistent with industry practices.

2. Optimal production capacity and build-up policy: The build-up inventory can be used

as a substitute for production capacity and vice versa. We show that the optimal

combination of the two is determined by the trade-off between the capacity investment

and inventory cost, and is also affected by cannibalization, the generations’ relative

profitability, lost sales, and market entry time.

3. Optimal sales plan: We show that the total life-cycle profit after the launch of the

second generation is maximized if the firm sells as many units as possible even though

this might accelerate the demand growth rate and lead to higher lost sales.

Our empirical study suggests that Sony introduced PS3 too late and overestimated the

demand which resulted in unsold inventory as supported by empirical evidence. However, our

model ignores competition by assuming a monopolistic market. We believe this limitation

does not undermine our analysis as the pressure from competitors makes an earlier intro-

duction even more favorable strengthening our finding about the late introduction of PS3.

The marketing literature strongly supports that market-share rewards to pioneers. Shap-

ing consumers preferences and establishing consumer loyalty, avoiding consumer switching

cost compensations, performance advantages from early sales, establishing and maintaining

standards, and preempting preferred patents and suppliers are among other advantages for

pioneers (Hauser et al. 2006). Therefore, we can conclude that a late market entry as a mo-

nopolist will also be late in an oligopolistic market. Another important assumption of our

application is that the demand is distributed uniformly throughout the year (i.e., constant

daily/monthly demand rate). For most game consoles, sales are much higher over the first

few days after launch and before the holiday season (e.g., PS3 sold 600,000 units in Europe

in just 2 days after its launch). While the optimal build-up period suggested by our model
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ignores this seasonality, it still provides helpful insights for managers under high seasonal

demand variations.

In real-world applications, the profit margin can be obtained internally while historical

data (either from the first generation or similar products in the past) can help estimate the

coefficients of innovation and imitation, market size, and rate of loss. An analysis of the

technological enhancements in the new generation and their impact on consumer buying

motives would be necessary to estimate the market expansion and cannibalization. Finally,

due to demand and supply uncertainties, we suggest sensitivity analysis on different model

parameters and developing expectations for possible outcomes including the best and worst

cases to select a robust policy. We believe these considerations in the application of the

model would help companies make more informed decisions.
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Chapter 4

A joint analysis of production and seeding strategies for new products:

An agent-based simulation approach

4.1 Abstract

When introducing a new product, firms often face the dilemma of how to support a

fast and substantial take-off by targeting the right population of potential consumers for

seeding and how to avoid supply shortages and lost sales by building sufficient inventory

before the product’s launch. The goal of this paper is to provide a joint analysis of seeding

and inventory build-up policies for new products. We propose and experiment with an

agent-based simulation model to evaluate different seeding criteria (used for prioritizing

individuals for seeding), fraction of the market to seed, and inventory build-up policies

under various social network structures, demand backlogging levels, and product categories.

In contrast to previous findings (that are mainly based on the assumption of unlimited

supply), we show that the seeding strategy that maximizes the adoption rate is not necessarily

optimal in the presence of supply constraints. More importantly, we show that determining

seeding and build-up policies sequentially may lead to suboptimal decisions and that the

optimal combination of seeding and build-up policy varies for different product categories.

We perform systematic experimentation with different small-world and scale-free networks

and illustrate how the distribution of long-range connections and influential nodes would

affect the adoption, demand backlogging, and lost sales dynamics as well as the overall

profit. The important implications of the findings for diffusion research as well as marketing

and operations management practice are also discussed.

keywords: innovation diffusion, viral marketing, myopic and build-up policies, social

network, agent-based modeling and simulation
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4.2 Introduction

The initial phase of market penetration is critical to the success of new products. Com-

panies generally rely on promotional activities to support a fast and substantial take-off to

increase the chance of a successful launch and diffusion. A common approach to encourage

adoption and positive word-of-mouth during this initial phase is by distributing reduced-price

products to a set of target consumers in the hope that they will initiate a word-of-mouth

grapevine. This approach is generally referred to as viral marketing or seeding. Given an

arbitrary social network, individuals with high influence (for instance, consumers with a

high number of ties) can potentially encourage more adoptions faster. Also, seeding a larger

proportion of the population would increase the chance of faster diffusion and adoption.

However, giving away more reduced-price products would decrease total revenue. A faster

adoption rate would also increase the risk of supply shortages and lost sales (i.e., loss of

potential profit). Therefore, targeting and level of seeding affect the overall profit and ap-

propriate decisions regarding the two are crucial for a successful launch and diffusion. More

importantly, these decisions are not independent of the supply level.

When introducing a new product/technology, firms also need to determine an appropri-

ate supply level to satisfy future demand. Starting sales without building an initial inventory

(the myopic policy) can lead to supply shortages and lost sales when demand exceeds produc-

tion capacity. With the increased rate of introduction of new products and shorter product

life-cycles, common capacity management strategies would fail to respond to changes in the

demand levels due to the high cost and long lead time of capacity expansions. A common

strategy to avoid this problem is to build inventory prior to starting sales as a supply cushion

replacing the need for capacity expansions (the build-up policy). While the build-up policy

would reduce the chance of excessive lost sales, it incurs higher inventory costs and delays

revenue collection from sales. Therefore, an appropriate build-up policy is critical to the

overall sales and profit from the new product. More importantly, the required initial inven-

tory at launch depends on the diffusion speed (the faster the demand dynamics, the more
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build-up inventory is needed) and thus ignoring the effect of seeding on the future demand

could lead to incorrect decisions on the appropriate build-up policy.

The trade-offs between seeding and build-up policies can be summarized as follows.

Seeding requires giving away reduced-price products to accelerate demand dynamics and

revenue collection from sales necessitating higher initial inventory levels to reduce the risk of

supply shortages and lost sales while longer inventory build-up periods delay sales and incur

higher inventory costs. Moreover, whom to seed depends on the social network structure

and the distribution of influential nodes. Therefore, a joint analysis of seeding and build-up

policies that accounts for the effect of the social network structure is crucial for effective

decision-making. As will be discussed in Section 4.3, while the two problems are addressed

separately, ignoring the above trade-offs is identified as one of the major gaps in the existing

literature. This paper aims at taking the first step towards a joint analysis of marketing and

production strategies for new products by exploring the following research questions that

the current literature leaves unanswered:

• Does making decisions sequentially on the seeding and build-up policies lead to sub-

optimal decisions?

• How does the optimal combination of production and seeding strategies vary for dif-

ferent product categories?

• Is the seeding strategy that maximizes the adoption rate optimal in the presence of

binding supply constraints?

• What is the effect of the social network structure on the optimal seeding fraction,

seeding criterion, build-up policy, and the resulting diffusion dynamics?

We develop an agent-based diffusion model to address the above questions. Agent-based

modeling and simulation (ABMS) is capable of capturing the effect of individuals’ decision-

making behavior and their interactions in the context of a social network (i.e., micro-level
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factors) on the emergence of diffusion dynamics (i.e., macro-level market behavior). ABMS

is considered as a powerful analysis tool for studying innovation diffusion and is extensively

used to investigate different marketing or production strategies, positive and negative word-

of-mouth, and theoretical and empirical social network structures (for a comprehensive list

of these studies and critical analysis of the literature, see the survey papers by Negahban and

Yilmaz (2014), Garcia (2005), Kiesling et al. (2011), Zenobia et al. (2009), and Jager (2007)).

Through extensive experimentation with the model, we evaluate the performance of seeding

and build-up polices in terms of the net present value (NPV) of profit under various network

structures, product categories, and demand backlogging behavior. Moreover, we analyze the

resulting diffusion process (low-level results) for different small-world and scale-free networks

by systematically changing the parameters of the two network types and comparing the

adoption, demand backlogging, and lost sales dynamics.

The remainder of the paper is organized as follows. A critical analysis of the literature

is presented in Section 4.3. Section 4.4 provides a detailed description of the simulation logic

and different components of the agent-based model including the consumer decision-making

behavior, social network structure, seeding strategy, and build-up policy. Experimental

design and important findings are discussed in Section 4.5. Finally, Section 4.6 presents the

conclusions, managerial implications, limitations, and future research opportunities.

4.3 Literature review

There is a long history of research on new product diffusion with early studies going back

to the 1960’s with the introduction of several demand models including the Bass model (Bass

1969), which is empirically tested and validated for hundreds of product categories (see Sultan

et al. (1990) for a meta-analysis of 213 applications of the Bass model). Many extensions of

these models have been proposed to enhance demand forecasting for new products, namely

diffusion of successive technology generations (Norton and Bass 1987), effect of negative

word-of-mouth (Mahajan et al. 1984), stochastic Bass models (Kanniainen et al. 2011), and
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diffusion of short-life cycle technologies (Aytac and Wu 2010). For critical analyses of the

innovation diffusion literature, see the review papers by Hauser et al. (2006) and Peres

et al. (2010). The Bass model and its extensions are also used extensively to analyze the

performance of different marketing and production strategies. However, perhaps the most

important deficiency in the literature is the lack of a joint analysis of these decisions. Here,

we provide a critical review of two streams of research on seeding and production policies to

illustrate research strengths and gaps and characterize the main contributions of this work

to each of the two streams.

As a relatively recent stream of research, the literature on the interface of marketing and

operations management investigates the inter-dependency between the demand and supply

for new products using both analytical and simulation approaches. In the context of analyt-

ical models, Kumar and Swaminathan (2003) and Ho et al. (2002) independently propose a

modified supply-restricted Bass model and develop mathematical models to determine the

optimal production-sales policy (i.e., number of build-up periods, production capacity, and

launch time) for a single generation of a new product. Similar analytical models are devel-

oped to study the optimal production-sales policy under different supply chain topologies

(Amini and Li 2011), dynamic pricing (Shen et al. 2014, Swami and Khairnar 2006), multi-

stage ordering and diffusion (Bilginer and Erhun 2015), learning phenomenon (Cantamessa

and Valentini 2000), and multi-generation innovation diffusion (Negahban and Smith 2016b).

In the context of simulation approaches, Amini et al. (2012) develop an agent-based model to

evaluate the performance of myopic and build-up policies under both positive and negative

word-of-mouth and various network structures. Negahban et al. (2014) evaluate different

production management strategies and lengths of the planning horizon using an agent-based

model where the manufacturing firm periodically updates its forecast of the future demand

by using the Bass model and adjusts its production level accordingly. In two related studies

(Negahban and Smith 2016a, 2014), Monte Carlo simulation and statistical approaches are

used to illustrate that ignoring demand and supply uncertainties could lead to potentially
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incorrect decisions on the optimal build-up policy. The papers also show that the optimal de-

cision could be different if risk measures are used as the primary performance metric instead

of the expected value (mean) of profit.

The studies under the marketing-operations management interface category provide

valuable insights about supply-constrained innovation diffusion by showing how supply short-

ages and lost sales affect the future demand dynamics, as well as the optimal production

capacity, build-up policy, introduction time, and sales plan for new products. However, the

effect of marketing strategies on the new product’s demand, and consequently on the optimal

production-sales policy is generally ignored. This paper contributes to this stream of research

by providing a joint analysis of production and viral marketing strategies and shows that

the optimal build-up policy varies under different seeding criteria and levels, social network

structures, and consumers’ backlogging behavior.

There is a rich stream of research on the effect of viral marketing and social network

structure in both marketing and social sciences literature. Leskovec et al. (2007) analyze the

propagation of person-to-person recommendations in a real network consisting of four million

people to identify populations, product, and pricing categories for which viral marketing

would be effective. Through agent-based simulation, Delre et al. (2007) study the efficacy

of various promotional strategies and find that the absence, inappropriate timing and/or

targeting of promotional efforts may lead to diffusion failure. Goldenberg et al. (2009)

identify two types of hubs (individuals with exceptionally large number of ties), namely

innovative and follower hubs, and find that innovative hubs have a greater impact on the

diffusion speed while follower hubs have a greater impact on market share. In another

study, Delre et al. (2010) use ABMS to test the effect of highly connected agents (VIPs) and

network topology on the success and failure of innovation diffusion and conclude that the

persuasive power of VIPs is not as important as their capacity to inform many consumers.

Through ABMS, Libai et al. (2005) compare the uniform, support-the-strong, and support-

the-weak strategies to find conditions under which each strategy would be more effective.
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In another ABMS study, Haenlein and Libai (2013) compare targeting of revenue leaders

(customers with high lifetime value) versus opinion leaders (individuals with disproportional

effect on others) and show that the seeding fraction and distribution of revenue leaders in

the population determine which seeding strategy is preferable. For a list of related studies,

see Goldenberg et al. (2010), van Eck et al. (2011), Iyengar et al. (2011), Negahban (2013),

and Yenipazarli (2014).

The strength of this stream of research is in the development and assessment of viral

marketing strategies and enhancing our understanding of the role of influentials in the success

and failure of new product diffusion under different social network structures. Exploring

promotional activities using empirical data and network structures has provided valuable

insights not only for researchers but also marketing practitioners on the effectiveness of viral

marketing. However, perhaps the most important gap in these studies is an almost complete

neglect of production constraints by assuming unlimited supply and thus ignoring the effect

of supply shortages on the future demand dynamics. While these studies generally define

the optimal marketing strategy so as to maximize the diffusion speed, in the presence of

limited supply, this would lead to high lost sales and decreased profit. Moreover, some

of the findings seem somewhat unrealistic and counterintuitive as a result of ignoring the

supply side of new product diffusion. For instance, Stonedahl et al. (2010) find that there is

virtually no difference between the performance trends for different seeding strategies under

high and low virality (internal influence). The current paper contributes to this stream of

research by considering seeding in conjunction with the build-up policy and shows that the

optimal seeding fraction and criterion depends on the decisions made on the supply level.

We also show that under supply constraints, viral marketing strategies may indeed perform

differently in terms of their impact on diffusion speed and overall profit. We also show

how the preferences change under different social network structures. To the best of our

knowledge, this work is the first to address the above issues.
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4.4 The agent-based model

The proposed agent-based model consists of a Firm agent that produces and markets a

new product and Consumer agents that reside in a social network. Consumers interact with

each other through positive and negative word-of-mouth (WOM) and make decisions regard-

ing the adoption of the new product. Initially, all consumers are undecided meaning that

they have not made a decision on whether to adopt or reject the new product. At every time

tick, some of the remaining undecided consumers may decide to adopt the product in which

case they become adopters. Depending on supply availability, some of the adopters may

receive the product (i.e., adopters with met demand) in which case they will either become

satisfied or dissatisfied with the product. Those adopters that do not receive the product

due to supply shortages will either decide to wait for another period (waiting adopters) or

completely withdraw (lost customers). Rejecters, dissatisfied, and lost customers communi-

cate negative WOM, satisfied consumers communicate positive WOM, and undecided and

waiting consumers engage in neither positive or negative WOM. The above categorization

of the adoption status of consumers and operation of word-of-mouth is based on existing

agent-based diffusion models (Goldenberg et al. 2007, Negahban et al. 2014, Amini et al.

2012) and is summarized in Figure 4.1.

The general logic of the simulation process is summarized in Figure 4.2 while different

components of the model are described in detail in the following subsections. The simulation

starts by generating a population of potential consumers and connecting them based on the

choice of the social network structure (Section 4.4.2). The product is not launched until the

end of the build-up period. Therefore, during the build-up period, the firm produces at the

maximum production level and sales will be zero. Seeding is performed one period before

the product is released into the market while the seeded individuals are selected based on the

choice of the seeding strategy (Section 4.4.3). The seeded consumers will be either satisfied

or dissatisfied with the product. At every time period after the product’s launch, undecided

consumers will evaluate positive and negative feedback from their peers and make their
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Figure 4.1: Adoption status and the word-of-mouth operation in the proposed agent-based
model

adoption decision according to their behavioral rules (Section 4.4.1). Once an undecided

consumer adopts the product, she will receive the product if there is supply and become

either satisfied or dissatisfied with the product; otherwise, she will either decide to wait or

withdraw.

The supply at each time period is used to satisfy the demand of waiting customers

as well as new adopters and is determined by the current production level and inventory

carried over from the previous period. While the firm continues to produce at maximum

capacity after the product’s launch, to avoid excessive production and inventory towards

the end of the diffusion, once the demand starts to decline and drops below the maximum

capacity, the production level will be set to the demand in the previous period – a strategy

known as lagging demand (Olhager et al. 2001) that is commonly used in related studies (Ho

et al. 2002, Kumar and Swaminathan 2003, Negahban and Smith 2016a). The simulation

ends when the market is exhausted (i.e., all individuals have made their adoption/rejection

decision). At the end of the simulation run, the net present value of profit is calculated based

on the choice of the discount factor where the profit for each time period is calculated by

subtracting the cost of production, inventory, and backlogged demand from sales.
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Figure 4.2: The Unified Modeling Language (UML) sequence diagram of the simulation
logic. For more information about UML diagrams, see Rumbaugh et al. (2004).
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4.4.1 Consumer decision-making behavior

Several approaches have been proposed to model the consumer decision making behav-

ior in the context of agent-based simulation of virtual markets (see the review paper by

Negahban and Yilmaz (2014) for a comprehensive list of these approaches). Here, we adopt

a commonly used model from the literature (Goldenberg et al. 2007, Negahban et al. 2014,

Amini et al. 2012) that considers the effect of both external (e.g., promotions and mass media

advertising) and internal (i.e., positive and negative word-of-mouth) influences. The model

is also consistent with the assumptions of the Bass model (Bass 1969) where the magnitude

of the effect of external and internal influences is captured by the coefficient of innovation,

p, and the coefficient of imitation, q, respectively. As suggested by Goldenberg et al. (2007),

p is the same for both the individual and aggregate levels while the population-level q is

adjusted for each individual i by dividing it by the number of its direct social ties to obtain

qi. Therefore, at any period t, the probability that an individual i is influenced by positive

feedback (P+
i,t) or negative WOM (P−i,t) is given by

p+i,t = 1− (1− p)
∏
j

(1− qj), where j ∈ L(i)+, (4.1)

p−i,t = 1−
∏
j

(1−M × qj), where j ∈ L(i)−, (4.2)

where (1 − p) is the probability of not receiving external influences and L(i)+ is the

set of direct social ties that communicate positive WOM. Therefore, the probability of not

receiving positive feedback from each j ∈ L(i)+ is (1−qj). Subtracting the product of the two

terms from 1 gives the probability of positive influence about the new product. Similarly, let

L(i)− be the set of social ties that communicate negative WOM. Then, (1−M ∗ qj) denotes

the probability of not receiving any negative feedback from neighbor j ∈ L(i)− where the

impact of negative WOM is M times greater than positive WOM.
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At time t, the probability that consumer i receives only positive WOM is (1− p−i,t)p+i,t.

Similarly, (1−p+i,t)p−i,t is the probability of receiving only negative WOM, and p+i,tp
−
i,t the prob-

ability of receiving both positive and negative feedback. For the last group, the individual

adopts the product with a probability of αi,t = p+i,t/(p
+
i,t + p−i,t) and rejects with a probability

of 1− αi,t which leads to the final state transition probabilities:

padopti,t = (1− p−i,t)p+i,t + αi,t p
+
i,t p

−
i,t, (4.3)

prejecti,t = (1− p+i,t)p−i,t + (1− αi,t)p+i,t p−i,t, (4.4)

pundecidedi,t = (1− p+i,t)(1− p−i,t), (4.5)

where Equations (4.3)-(4.5) are the adoption, rejection, and remaining undecided prob-

abilities, respectively, and will sum to 1. If there is supply, the adopter will receive the

product and become dissatisfied with a probability d and satisfied with a probability 1− d.

If there is no supply, the adopter will either wait for another period with a probability of

backlogging β or withdraw with a probability 1− β.

4.4.2 Social network structure

We model a market consisting of N = 3000 socially networked consumers. Previous

studies have shown that this is sufficiently large to effectively capture the diffusion dynamics

and provide statistically valid results (Cowan and Jonard 2004). Other studies also confirm

that there is no significant statistical difference between the simulation results for networks

of size 3000 and above (Goldenberg et al. 2007, Amini et al. 2012). We consider the following

four network structures:

• Regular lattice: In a lattice, every node has the exact same number of ties. In this

paper, we consider a lattice where each node has exactly 26 neighbors in order to
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provide a common ground for comparison with previous studies (Stonedahl et al. 2010,

Negahban et al. 2014, Amini et al. 2012). An average of 26 ties is also consistent with

the findings of an empirical study on the number of ties by Goldenberg et al. (2007).

• Random: In a random network of size N , any two nodes will be connected with a

probability of φ resulting in a network with φ × N as the expected number of edges

for each node. Based on the above, in our implementation of the random network, φ

is set to 26/3000 which leads to an average of 26 edges per node.

• Small-world: Introduced by Watts and Strogatz (1998), a small-world network lies

between a lattice and a random network (two extremes). Many real-world systems are

found to be highly clustered (like regular lattices) while having short path lengths (like

random networks) and thus can be modeled with an appropriate small-world network

(for example, see the paper by Vieira et al. (2009) that studies the dynamics of HIV

infection). A small-world network is generated by starting with a lattice where nodes

are connected to their nearest neighbors and then some edges are rewired randomly

with a probability of Prewiring. This would result in long-range connections between

nodes leading to a small-world phenomenon often referred to as six degrees of separation

(Milgram 1967, Guare 1990). In our implementation of the small-world network, we

start with a lattice with a degree of 26 and systematically experiment with different

rewiring probabilities (Prewiring) from 0 (lattice) to 1.0 (random network).

• Scale-free: The scale-free network, introduced by Barabási and Albert (1999), strives to

incorporate two generic aspects of many real networks, namely growth and preferential

attachment. In the above models, we start with a fixed number of nodes (N) while

many existing real-world networks in fact grew over their lifetime. Secondly, highly

connected nodes are particularly absent in the above networks while they can be found

in many real networks where the distribution of the nodes’ connectivity decays as a

power law. To incorporate the growth mechanism, a scale-free network is generated by
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starting with a small number of nodes (m0) and then new nodes are sequentially added

to the network. To incorporate preferential attachment, the probability π that a new

node will be connected to an existing node i is related to the connectivity of node i,

ki, so that π(ki) = (ki/
∑

j kj)
γpower . In this paper, we start with m0 = 10 initial nodes

and experiment with different values for the exponent γpower.

4.4.3 Production and seeding strategies

We consider both myopic and build-up policies for the firm agent. In the myopic policy

with zero build-up periods (TBuild−up = 0), the firm starts the production and releases the

product at the same time while for the build-up policy (TBuild−up > 0), during the periods of

inventory build-up, consumer agents will remain inactive and thus the diffusion does not start

until after the build-up period is over. Just before the product is launched, a fraction fseed of

the population will be targeted for seeding. In this model, seeded consumers receive reduced-

price products at the production cost (i.e., the company does not make any profit from the

seeded products). We consider the following five seeding criteria to prioritize consumers and

decide who should be targeted for seeding (in all cases, ties are broken randomly):

• Degree: The nodes with more neighbors (i.e., higher degree) can directly encourage

more adoption. Consumer agents are prioritized based on their degree so that high-

degree nodes will be seeded first.

• Two-step: In the two-step strategy, a node that has a higher number of nodes reachable

within two steps (i.e., two edges) will have a higher priority for seeding – an extension

to the degree strategy.

• Average path length: This measure corresponds to the average number of links between

the target node and any other node in the network. A small average path length is

preferable as it suggests faster connection to the entire network leading to potentially

more adoptions faster. It is worth noting that this method can be computationally
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intensive, especially for large networks, as it requires finding the shortest path between

every pair of nodes in the network.

• Clustering coefficient: This measure determines how close a node and its neighbors are

to being a clique (complete graph). Let ki denote the number of neighbors for node i.

The clustering coefficient for node i, cci, is calculated by the number edges between the

neighbors of node i, eneighborsi , divided by the total number of edges possible between

its neighbors, i.e., cci = eneighborsi /C2,ki , where C2,ki is the combination of ki choose 2.

A node with a lower clustering coefficient is given a higher priority for seeding as there

is less overlap among its neighbors encouraging a wider adoption more quickly.

• Random: In this method, nodes are randomly selected for seeding by assigning a

random priority u ∼ Uniform[0, 1] to each node.

4.5 Model implementation and results

The simulation model is implemented in Repast Symphony (North et al. 2006), a Java-

based ABMS platform. Before performing the simulation experiments, verification and val-

idation (V&V) are performed according to the guidelines by Rand and Rust (2011), Balci

(1994), and Sargent (2005) to gain confidence about the correct implementation of the model.

For the sake of conciseness, a brief description of the V&V steps is provided here.

Through structured walk-through and tracing, different processes including agents ac-

tivation and scheduling of methods at each time step, random number generation and prob-

abilistic decisions, synchronous updating of consumers’ adoption status, identification of

agent’s personal social network, and calculation of seeding criteria are extensively debugged

and verified to ensure that the model is error-free and properly implemented. Operational

graphics of the firm’s production level and number of undecided consumers, rejectors, and

adopters (including satisfied, dissatisfied, waiting, and lost) are developed to observe the

emergence of diffusion dynamics over time and verify the model’s behavior. Degenerate
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Table 4.1: Parameter choices for the agent-based simulation model
Parameter Value/Range
The Firm agent
Build-up period (TBuild−up) 0-20
Seeding fraction (fseed) 0-0.07 in 0.005 increments
Seeding Strategy Degree, Two-step, Average path length,

Clustering coefficient, Random
Discount factor (θ) 0.005, 0.01, 0.02
Initial production level 40
Unit selling price 1.2
Unit production cost 1
Unit inventory holding cost 0.001
Cost per waiting customer 0.001
The Consumer agent
Population size (N) 3000
Coefficient of innovation (p) 0.001, 0.005, 0.01
Coefficient of imitation (q) 0.3, 0.5, 0.7
Influence of negative to positive WOM (M) 2
Dissatisfaction probability (d) 5%
Probability of waiting (β) 0, 0.8
The social network
Network type Random, Lattice, Small-world, Scale-free
Random network connection probability (φ) 26/3000
Regular lattice degree 26
Small-world degree 26
Small-world rewiring probability (Prewiring) 0, 0.001, 0.005, 0.01, 0.05, 0.1, 1.0
Scale-free initial number of nodes (m0) 10
Scale-free exponent (γpower) 1.05, 1.1, 1.15, 1.2, 1.5, 2.0

tests are performed to verify the behavior of the model in extreme conditions, including

100% dissatisfaction probability, coefficient of innovation of 0 and 1 as well as fully con-

nected and disconneted networks. We also perform sensitivity analysis on a number of

predictable scenarios to ensure that results match the expected behavior. For instance, we

systematically increased the dissatisfaction probability from 0 to 1 and observed an increase

in the number rejecters. We also observed increased rejections as we systematically decreased

the probability of waiting/backlogging. This is the expected behavior as both cases would

lead to a higher number of individuals that communicate negative WOM. A similar behavior

is observed as we increase M (the relative power of negative WOM to positive WOM).
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4.5.1 Experimentation

Extensive experimentation was conducted using the agent-based simulation model with

more than 10.2 million parameter configurations (the experimental design is summarized in

Table 4.1). In order to provide a common ground for comparison, most of the parameter

choices are adopted from related studies (Negahban et al. 2014, Amini et al. 2012, Stonedahl

et al. 2010, Goldenberg et al. 2007). For each scenario, we collect simulation outputs on

the number of undecided consumers, rejectors, and adopters (including satisfied, dissatis-

fied, waiting, and lost) at each time tick as well as the realized net present value of profit.

Based on a preliminary analysis of the confidence interval half-widths from a set of pilot

runs, the number of replications is set to 50 to provide statistically accurate results on the

above metrics. Therefore, more than 510 million replications are run in total which required

approximately 25,000 hours (1040 days) of computational time (less than a month in real

time as the experiments were distributed across a computing cluster).

4.5.2 Optimal production and seeding strategies

In general, as shown in Figrue 4.3(a), a higher seeding fraction becomes preferable with

longer build-up periods as more supply increases the ability of the firm to handle a fast

growth in the demand for the new product. Seeding essentially accelerates the diffusion

process resulting in a higher demand more quickly and, given supply availability, the firm

would enjoy faster revenue collection from sales. With high discounting, accelerated sales

would yield a higher NPV of profit that outweighs the loss in potential profit that would

otherwise have been gained from the seeded individuals if they had adopted the product. As

a result, given any build-up period, the optimal seeding fraction is an increasing function of

the discount factor. On the other hand, as shown in Figure 4.3(b), more periods of inventory

build-up are necessary to handle the increase in the diffusion speed as a result of a higher

seeding level. However, longer periods of build-up would delay launch and revenue collection
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(a) Optimal seeding fraction for different build-up periods (p = 0.01, q = 0.7,
and impatient customers with β = 0)

(b) Optimal build-up period for different seeding fractions (p = 0.005, q = 0.5,
and impatient customers with β = 0)

Figure 4.3: Optimal seeding fraction and build-up period (aggregate results over all network
structures and seeding strategies based on 50 replications)

from sales. Therefore, for any seeding fraction, the optimal number of build-up periods

decreases with higher discounting.

In Figure 4.4, we analyze the combination of production and seeding policies for different

levels of coefficients of innovation (p) and imitation (q). In this plot, the blocks correspond

to different combinations of p and q (i.e., different product categories). In each block, the x-

axis represents the build-up period, the y-axis is the seeding fraction, and the NPV of profit

is color-coded with the darkest shade of green corresponding to a high-profit region and the

darkest shade of red a high-loss region. These results have important managerial implications
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as the size of the high-profit region can be thought of as a measure of difficulty in making a

near-optimal decision regarding the combination of production and seeding strategies (a small

region indicates a difficult decision as only a few policies would yield relatively high profit

levels). For products with smaller innovation factors, it becomes critically important which

and how many individuals to seed as there are fewer innovators in the population to kick off

the diffusion process. With higher innovativeness levels, absolutely right targeting and level

of seeding promotions become less critical as there are more innovators in the population

that would adopt the product independently and help accelerate the demand for the new

product. As a result, we observe a general increase in the size of the high-profit region with

higher levels of innovation. On the other hand, a high coefficient of imitation essentially

leads to high adoption pressure from peer-based word-of-mouth and thus consumers are

likely to make their adoption/rejection decision more quickly. Therefore, it becomes critical

to target the right individuals as the diffusion process will be increasingly sensitive to this

initial population of adopters. As a result, the size of the high-profit region shrinks as the

imitation factor increases.

We also observe that for high levels of innovation and imitation, the likelihood of a

negative profit (i.e., loss region) diminishes as the demand is relatively higher than the

production rate making even large initial inventory levels profitable. However, for products

with a low p and q, long build-up periods would lead to excessive production and inventory

costs due to a slow demand growth rate. Further analysis of the results indicates that

the global optimal build-up period and seeding fraction depend on the seeding criterion

(Table 4.2). The table also confirms our previous finding on the effect of discounting that

in general, short build-up periods are preferable for high discounting levels. With a low

discount factor, longer build-up periods and higher seeding fractions will be more profitable.

However, similar patterns are observed in terms of the size of the high-profit and loss regions

for different seeding criteria. The above results indicate the importance of a joint analysis
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Figure 4.4: Optimal combination of seeding fraction and build-up period under different
levels of innovation and imitation factors (Degree seeding strategy, small-world network
with Prewiring = 0.05, θ = 0.02, and partial backlogging with β = 0.8)

on the build-up and seeding policies by showing that the firm would potentially make a

suboptimal decision if these decisions are made sequentially.

Table 4.2: Optimal combination of build-up period and seeding fraction (T ∗Build−up, f
∗
seed) per

seeding criteria for different discounting levels θ (other parameters are p = 0.005, q = 0.5,
β = 0.8, and small-world network with Prewiring = 0.05)

Seeding criteria
Discount factor

θ = 0.005 θ = 0.01 θ = 0.02
Degree (15, .035) (7, .030) (0, .010)
Two-step (15, .040) (8, .045) (0, .010)
Average path length (15, .040) (7, .030) (0, .010)
Clustering coefficient (15, .035) (7, .030) (0, .005)
Random (15, .045) (9, .045) (0, .010)

4.5.3 The effect of social network structure

In order to provide insights about the diffusion of innovations in the context of social

networks, we systematically experiment with different rewiring probability (Prewiring) and

offset exponent (γpower) values for the small-world and scale-free network structures and
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analyze the diffusion dynamics at a lower level. By looking at the rows in Figure 4.5(a),

for any Prewiring, a higher seeding fraction accelerates the diffusion process and encourages

more adoption (the difference between the cumulative adoptions (green) and rejections (red)

facilitates identification of the patterns discussed in this section). In the case of a scale-

free network, we observe a similar behavior for any γpower except that the effect of seeding

fraction on the adoption dynamics is significantly stronger than in the small-world network.

This is mainly due to the presence of high-degree nodes (i.e., influentials) who, if seeded,

would immediately influence a large number of potential consumers resulting in a much

faster take-off for the product, more backlogged demand (waiting customers), and shorter

diffusion time. By looking at columns under fseed = (0.005, 0.01, 0.05) in Figure 4.5(b), we

observe that this effect is augmented with a higher γpower as it essentially leads to increased

preferential attachment by decreasing the probability of connection to low-degree nodes as

new nodes are added during the network generation. Therefore, there will be a large number

of nodes with very few connections. As a result, with no seeding (fseed = 0) the diffusion

process slows down with higher γpower as innovators (early adopters) may not necessarily be

among the high-degree individuals. Finally, we observe that as Prewiring increases (columns

in Figrue 4.5(a)), the cumulative adoptions decreases. A high Prewiring would increase the

number of long-range connections in the initial lattice encouraging a wider adoption, while

at the same time, it essentially decreases the magnitude of word-of-mouth and adoption

pressure from peers on the nearest neighbors delaying their adoption decision which would

result in a slower adoption curve.

Figure 4.6 illustrates the adoption and waiting dynamics under the two network struc-

tures for different seeding criteria. As expected, regardless of prioritization or the network

structure, seeding accelerates the adoption process leading to earlier and higher demand

backlogging (i.e., supply shortage). While different seeding criteria perform similarly in a

small-world network (Figure 4.6(a)), we observe a significant difference between their perfor-

mance under a scale-free network (Figure 4.6(b)). Interestingly, we observe that the adoption
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(a) Small-world network and the effect of Prewiring

(b) Scale-free network and the effect of γpower

Figure 4.5: Backlogged demand and cumulative adoption, rejection, and lost customers.
The difference between the cumulative adoptions (green) and rejections (red) facilitates
identification of the patterns (average values are based on 50 replications, TBuild−up = 15,
Avg. path length seeding strategy, p = 0.005, q = 0.5, and partial backlogging with β = 0.8).

101



curve for the clustering coefficient criterion is only marginally faster than random seeding

in a scale free network, which can be explained by the presence of a large number of very

low-degree nodes (with only a few neighbors), which simply have a clustering coefficient of

0 (i.e., high seeding priority) but are ineffective seeding choices. On the other hand, the

adoption curve for the two-step method is found to be slower than the degree or average

path length strategies. This is because of the low-degree nodes that are direct neighbors of

high-degree nodes and thus have a high number of two-step neighbors giving them a high

seeding priority. However, if one of these nodes is seeded, it takes two time periods for the

information to reach the large number of two-hop neighbors. This short lag makes such

nodes not as effective as the actual high-degree nodes in creating a fast take-off.

Figure 4.7 compares the NPV of profit for different seeding strategies for small-world

and scale-free networks. Of course, fast-growing demand is preferable under the assumption

of unlimited capacity. However, in the presence of supply constraints, it would lead to lost

sales and decreased NPV of profit which is why in a scale-free network, the three seeding

strategies with fastest adoption rates (i.e., average path length, degree, and two-step) yield

lower profits than random and clustering coefficient criteria that, in turn, perform better

than no seeding. Therefore, our results challenge the findings of previous studies that ignore

supply restrictions (for example, see Stonedahl et al. (2010)) by showing that clustering

coefficient and random seeding strategies may actually be optimal under a scale-free network

despite the fact that they do not accelerate the demand dynamics as much as the other three

seeding strategies. Finally, as expected based on Figure 4.6(a), no significant difference is

observed between different seeding criteria in a small-world network.

4.6 Discussion and conclusions

We conducted simulation experiments using an agent-based diffusion model to provide

insights on the optimal seeding and inventory build-up policies for new products. Our

findings have important managerial implications. The results indicate the importance of

102



(a) Small-world network with Prewiring = 0.1

(b) Scale-free network with γpower = 1.1

Figure 4.6: Cumulative adoption and backlogged demand (50 replications, TBuild−up = 10,
fseed = 0.05, p = 0.005, q = 0.5, and partial backlogging with β = 0.8)
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Figure 4.7: Net present value of profit (50 replications, TBuild−up = 10, θ = 0.01, p = 0.005,
q = 0.5, and partial backlogging with β = 0.8)

a joint analysis of viral marketing and production policies by showing that these decisions

are inter-dependent and that a sequential decision-making process would lead to suboptimal

decisions and reduced profit. While previous studies assume unlimited supply and focus

on finding the seeding strategy that maximizes the adoption rate and diffusion speed, our

results indicate that under supply constraints, such strategies may actually perform poorly

causing excessive supply shortages and lost sales. These findings are especially important for

short life-cycle products where capacity expansions are not feasible due to long lead times

and high costs. The results provide valuable insights about decision-making for different

product categories and show that for products with high innovation and imitation factors,

there is a smaller set of policies that would yield high profit values requiring a much more

careful assessment of seeding and build-up policies before launching the new product.

The results also indicate the importance of the social network structure on the optimal

combination of seeding and build-up policies. We study the effect of long-range connections
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in small-world networks and distribution of hubs (high-degree nodes) in scale-free networks

on the resulting diffusion process (including the adoption, waiting, and lost sales dynamics)

as well as the product’s life-cycle profit. We show that random seeding can in fact be a good

strategy for a scale-free network as it would result in a slower diffusion process and thus

reduce supply shortages and lost sales as opposed to other strategies that suggest seeding

the high-degree nodes which would result in a significantly faster demand growth. Finally,

we show that the company’s discount rate can have a significant impact on the choice of

the seeding and build-up policies and should be explicitly considered in the decision-making

process.

There are several important things to note. The above results are generalizable and

do not depend on a particular network structure or market configuration. Since many real

networks show characteristics of a small-world or scale-free network, we believe our experi-

mental design covers a wide range of real-world networks. Our approach is also applicable

to any empirical network developed based on real data. In many cases, data regarding the

global network structure may not be available. Even in the case of social networking web-

sites (e.g., Facebook, Twitter, or LinkedIn), only some of the data may be available due to

privacy considerations. In such cases, we suggest a heuristic approach where an appropriate

small-world or scale-free network is fitted to the data and then the proposed ABMS approach

is used to determine the optimal seeding and build-up policies. Sensitivity analysis on the

estimated parameters of the fitted theoretical network could also be performed to assess risk.

With regard to the other parameters of the model, production and inventory costs can be ob-

tained internally while analysis of purchasing motives as well as historical data from similar

products in the past can help estimate coefficients of innovation and imitation, market size,

and rate of loss of waiting customers. Surveys and feedback from the individuals that test

the product prior to its release would provide some insight about the satisfaction probability.

Finally, we also suggest sensitivity analysis on these parameters to develop expectations for
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different possible outcomes including the best and worst cases to help select a robust policy

and reduce the risk of overproduction and/or ineffective seeding.

To the best of our knowledge, this is the first study to consider simultaneous optimization

of the seeding and build-up policies. Our model involves several assumptions since our goal

in this first step was to understand the basic underlying dynamics of the problem. We only

use network-related characteristics as the primary seeding criteria and do not consider the

persuasive power of individuals. We believe this assumption would not undermine the main

findings of the current paper for two reasons. First, existing studies show that the importance

of influential nodes is in their capacity to inform many consumers and not in a stronger

persuasive power (Delre et al. 2010). Secondly, we argue that, in most real-world situations,

individuals with many connections generally have stronger persuasive power due to their

political or social position that caused them to have many connections in the first place –

as of March 2016, the 100 most followed Twitter accounts belong to celebrities, politicians,

major news or government organizations, and innovative corporations (Twitter, Inc. 2016).

However, it is easy to modify the proposed model to incorporate individuals’ persuasiveness

level and investigate the performance of alternative seeding criteria. Moreover, we focus

on a single seeding criterion at a time while different combinations of these strategies are

possible through weighting functions (i.e., linear or non-linear combinations of criteria that

assign weights to different criteria to prioritize nodes for seeding). The use of multi-product

consumer decision-making models to investigate the problem under an oligopolistic market

would be another interesting area for future research. Finally, a number of parameters were

fixed for the purpose of our study. Future research could investigate the effect of these

parameters, namely the selling price, unit inventory cost, cost per waiting customer, relative

influence of negative to positive word-of-mouth, and probability of dissatisfaction with the

product. We believe the findings of this work and its future extensions along the above lines

would help companies make more informed decisions regarding production and marketing

strategies for their new products.
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Chapter 5

Concluding remarks

Motivated by real-world problems, this dissertation explores the set of inter-dependent

decisions that firms face when introducing a new product into the market, namely capacity

sizing, time to market or starting sales, initial inventory at launch, production management

in response to changes in demand, and targeting and level of seeding and promotional activ-

ities. A diverse set of analysis tools, namely agent-based modeling and simulation, Monte

Carlo simulation, continuous-time mathematical models, and parametric and nonparametric

statistical approaches, are used to address the research questions posed in Chapter 1.

We show that, regardless of the primary performance measure, the optimal build-up

policy from a deterministic analysis may not necessarily be optimal under stochastic supply

and demand. We demonstrate the importance of considering risk when making such decisions

by showing that the mean (expected) profit (the most commonly used metric by previous

studies) can be flawed and misleading. We generalize previous findings on the optimal launch

time for successive generations of innovations and show that the optimal market entry policy

for the product’s second generation varies continuously from simultaneous introduction with

the predecessor (the Now policy) to not introducing at all (the Never policy). We also provide

insight on the optimal combination of production capacity and build-up inventory for the

new generation. The efficacy of the supply-constrained multi-generation model is empirically

validated through its application to the case of Sony’s PlayStation R©3 game console. To the

best of our knowledge, this is the first analysis of the supply-constrained multi-generation

diffusion problem. Finally, we demonstrate the importance of a joint analysis of marketing

and production strategies for new products by showing that determining seeding and build-

up policies sequentially may lead to suboptimal decisions. The results also indicate the
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importance of the social network structure on the optimal combination of seeding and build-

up policies by investigating the effect of long-range connections in small-world networks and

distribution of hubs (high-degree nodes) in scale-free networks on the emergence of word-of-

mouth and demand dynamics.

The stream of research performed in this dissertation aims at laying the foundation

for more realistic decision-making tools that provide holistic and practical solutions for

real-world problems faced by innovative companies. While we relax many of limiting and

unrealistic assumptions of the previous studies (e.g., unlimited supply, exogenous demand,

deterministic supply and demand, etc.), our models certainly do not capture every dimension

of this complex problem. Important extensions to the proposed models include:

• Forecasting error: Our assumption is that accurate estimates of the actual diffusion

parameters (i.e., innovation and imitation coefficients and market potential) are avail-

able to the decision maker. In the real world, this may not always be the case and a

robust production-sales policy needs to be selected through sensitivity analysis on a

range of possible parameter values to account for forecasting errors.

• Competition: Our models ignore competition by assuming a monopolistic market.

While we discussed that this assumption does not undermine the main findings of this

dissertation, the pressure from competitors may affect these decisions. Extending the

proposed models to support an oligopolistic market would further enhance decision-

making in real-world situations.

• Social network structure: While our experimental design covers a wide range of real-

world networks, the question of how to estimate the social network structure still

remains unanswered. While social networking websites provide some information about

the individuals’ connections, they do not represent all connections in the real-world.

Therefore, there is a need for alternative approaches to calibrate this component of

diffusion models.
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We believe the findings of the work presented in this dissertation and its future exten-

sions along the above lines would help companies increase the chance of a successful launch

for their new products through appropriate and informed decisions about their supply and

marketing strategies.
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Appendix A

Proof of Theorem 3.1

We use the Pontryagin’s maximum principle to prove the optimality of selling at max-

imum possible rate for both product generations at any given time t. In order to make the

proof easier to read, we omit t when representing functions of time (e.g., f(t) is represented

by f). The Hamiltonian of the optimal control model is given by

H(A,S1, S2, a, L1, L2,W1,W2, I1, I2, s1, s2, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, t) =

(α1s1 + α2s2 − h1I1 − h2I2)e−θt + λ1a+ λ2s1 + λ3s2 + λ4(
q

N
(s1 + s2)(N − A)

− a(p+
q

N
)(S1 + S2)) + λ5lW1 + λ6lW2 + λ7(d1 − s1 − lW1) + λ8(d2 − s2 − lW2)

+ λ9(r1 − s1) + λ10(r2 − s2),

(A.1)

and the following are the system of equations for the adjoint variables λ1, ..., λ10:

dλ1
dt

=
q

N
(s1 + s2)λ4 (A.2)

dλ2
dt

=
dλ3
dt

=
q

N
aλ4 (A.3)

dλ4
dt

= −λ1 + λ4(p+
q

N
(S1 + S2)) (A.4)

dλ5
dt

=
dλ6
dt

= 0 (A.5)

dλ7
dt

= l1(λ7 − λ5) (A.6)

dλ8
dt

= l2(λ8 − λ6) (A.7)
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dλ9
dt

= h1e
−θt (A.8)

dλ10
dt

= h2e
−θt (A.9)

λ1(∞) = λ2(∞) = ... = λ10(∞) (A.10)

From (A.6) and (A.7) we immediately get λ7(t) = λ8(t) = 0. From (A.8) and (A.9) we

have λ9 = −h1
θ
e−θt and λ10 = −h2

θ
e−θt. By differentiating (A.4) and replacing (A.2) into the

resulting equation and using the final condition λ4
dt

(∞) = 0, we have λ4(t) = 0. By replacing

λ4(t) = 0 into (A.2) and (A.3) and using the final conditions λ1(∞) = λ2(∞) = λ3(∞) = 0,

we get λ1(t) = λ2(t) = λ3(t) = 0. Hence, the Hamiltonian becomes

H = (α1s1 + α2s2 − h1I1 − h2I2 −
h1
θ

(r1 − s1)−
h2
θ

(r2 − s2))e−θt. (A.11)

We know the optimal controls s∗1(t) and s∗2(t) maximize the Hamiltonian. Since s∗1(t) and

s∗2(t) enter linearly into the Hamiltonian, the optimal policy follows a generalized bang-bang

control. Let x and λ denote the state vector (α1, α2, h1, h2, I1, I2, r1, r2) and the vector of

adjoint variables (λ1, λ2, ..., λ10), respectively. Then

H(x∗, s∗1, s
∗
2, λ
∗, t) ≥ H(x∗, s1, s

∗
2, λ
∗, t), ∀t ∈ [0,∞],

H(x∗, s∗1, s
∗
2, λ
∗, t) ≥ H(x∗, s∗1, s2, λ

∗, t), ∀t ∈ [0,∞].

Given positive coefficients for the two control variables, at any given time t, an extremal

choice will be optimal for both controls, i.e., s∗1(t) ≥ s1(t) and s∗2(t) ≥ s2(t). By selling as

much as possible, it is guaranteed that I∗i (t)W ∗
i (t) = 0 for all t. For product i, consider the

following cases to determine the bound for s∗i (t). When I∗i (t) > 0 (i.e., supply surplus during

the first unconstrained diffusion phase), then the maximum sales is is equal to the demand

rate d∗i (t). When W ∗
i (t) > 0 (i.e, supply shortage during the constrained diffusion phase),

s∗i (t) is bounded by the maximum production rate. Finally, in the case where I∗i (t) =
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W ∗
i (t) = 0 (i.e., during the second unconstrained diffusion phase), s∗i (t) is bounded by

min(r∗i (t), d
∗
i (t)).
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Appendix B

Closed-form expression for σ3

σ3 =

√
πm2 q

ω2

(ω4 − ω5) e
(p+m2 q)(A1m1 +ACP m3)+N m2 p

c2

e
A2
1 q (m

2
1+m

2
2+m

2
3)+A

2
CP m2

3 q+2A1m3 q (A1m2+ACP m1)

2N c2 e
N (p2+m2

2 q
2)

2 c2 q , (B.1)

where ω2 = ω3 e
A1m (p+m2 q)

c2 e
A1mq (A1m1+ACP m3)

N c2 , ω3 =
√

2N c2 q, ω4 = erf

(
ω6

ω3

)
, ω5 =

erf

(
ω6 + c2 q t

ω3

)
, and ω6 = N (p+m2 q) + A1 q u+ ACP m3 q.

Also, erf(x) is twice the integral of the Gaussian distribution with mean 0 and variance

of 0.5 as given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt
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