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Abstract 

 

 

Functional magnetic resonance imaging (fMRI) has been increasingly used for understanding 

cognitive processes in both healthy and clinical populations. In this work, we employed various 

computational approaches in studying brain alterations in U.S. Army soldiers with posttraumatic 

stress disorder (PTSD) and mild-traumatic brain injury (mTBI). PTSD and mTBI share largely 

similar symptoms, and have high comorbidity in military populations, with 7% of war veterans 

acquiring both disorders. Despite such high prevalence, the neural underpinnings of PTSD as well 

as comorbid PTSD and mTBI remain poorly understood. We employ multiple approaches, 

including functional connectivity (FC) modeling, effective connectivity (EC) modeling and 

complex network analysis, to investigate brain disruptions in these disorders. Notably, we used 

dynamic connectivity in all our analyses for characterizing variability of connectivity over time, 

in addition to traditionally used static connectivity measures. 

Using resting-state fMRI, we first employed static and time-varying FC to identify significantly 

altered co-activation patterns which exhibit temporally “frozen” hyper-connected profile in the 

disorders. Using whole-brain connectivity in a data-driven manner without the imposition of any 

priors or assumptions, we identified only the hippocampus-striatum path to be significantly altered 

in the disorders, which likely represents habit-like response associated with traumatic memories. 

This path also had high behavioral relevance. Using machine learning classification, we showed 

that this path is a potential imaging biomarker of PTSD and mTBI.  
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Next, we performed EC analysis using Granger causality for identifying sources of network 

disturbances in PTSD and mTBI. Causality, or directional connectivity quantified using EC, is 

characteristically different from co-activation or FC. While EC gives connections between regions, 

the source of disruption should be a region, not connection. We thus employed a probabilistic 

framework to identify the source region(s) of disruption using a novel framework. We found that 

the middle frontal gyrus is the source of disruptions, whose dysregulation causes overdrive in 

subcortical regions, leading to heightened emotional response to traumatic memories. The 

identified paths also had high behavioral relevance and diagnostic ability.  

Though the results obtained from EC analyses were informative, we recognized that 

connectivity modeling of individual paths does not capture alterations in network architecture 

which are critical for producing complex behaviors. We thus employed complex network analysis 

to study network-level alterations in the disorders using EC networks. We studied specialized 

processing (segregation) and efficient communication (integration), as well as their variability 

using time-varying network dynamics technique developed by us. We identified network-level 

markers which help in distinguishing between PTSD and comorbid conditions, a vexed problem 

whose solution has been elusive in current literature. We found alterations of network architecture 

in two sub-networks, fronto-visual and fronto-subcortical, with disruption primarily originating in 

prefrontal areas of cognitive control. Taken together, FC and EC analyses provided novel insights 

into the underlying network structure, the flow of information and the foci of disruption in these 

disorders, which might help in developing objective diagnosis and treatments for these disorders.  

Next, using fMRI during an emotion regulation task, we studied the network of cognitive 

emotion regulation in healthy adults and its dysregulation in comorbid PTSD and mTBI. This was 

important since emotion dysregulation is seen as the major cause of symptoms observed in 
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disorders like these. We identified activated regions using GLM analysis. We performed EC 

analysis using the timeseries obtained from the identified regions, which provided the network of 

emotion regulation and dysregulation while actively engaged in an emotion regulation task as 

opposed to resting-state. 

With all the aforementioned analyses, one aspect which needs mentioning is that fMRI is not a 

direct measure of neural activity. It measures blood oxygenation which is an indirect measure, 

hence susceptible to sources of variability which are non-neural in origin. The transfer function 

between neural activity and fMRI, called the hemodynamic response function (HRF), is known to 

vary across the brain in the same subject, and across subjects. We obtained the HRF at every voxel 

using blind deconvolution. We hypothesized that there are group-wise differences in HRF and that 

they may drive connectivity differences if HRF variability is not removed from the data. We found 

significant HRF differences between the groups mainly in posterior cingulate, precuneus and 

secondary visual areas. We performed seed-based connectivity using them, and found that ignoring 

HRF variability during connectivity analysis leads to possible false positive and false negative 

connectivities. 

In summary, we propose and test a comprehensive mechanistic model of brain alterations in 

soldiers with PTSD and mTBI, and illustrate the precautions to be followed during fMRI analysis 

to reliably characterize brain functioning in these disorders. We hope that this work contributes 

towards the development of effective diagnoses and treatments for PTSD and mTBI. Finally, the 

tenets of the proposed analyses framework is agnostic and generally applicable for characterizing 

brain alterations underlying various mental disorders and cognitive domains using neuroimaging. 
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CHAPTER 1 

 

Introduction 

 

1.1. Motivation 

Military service members put their lives at risk to protect their country. Unfortunately, a large 

percentage of those who return from wars develop brain-related complications, since they are 

constantly exposed to life-threatening circumstances and explosions. They often develop 

posttraumatic stress disorder (PTSD), a consequence of psychological trauma, and mild-traumatic 

brain injury (mTBI), a consequence of physical trauma to the head. In the U.S. alone, more than 

2.7 million soldiers served in Iraq and Afghanistan, with about 20% acquiring PTSD, 19% 

acquiring mTBI and 7% acquiring both [1]. As of today, a thorough mechanistic understanding of 

their underlying brain mechanisms has not emerged, amid considerable efforts in that direction 

over the years. We attempt to advance human knowledge in this direction. 

PTSD is characterized by high anxiety, re-experiencing traumatic memories, hypervigilance 

and hyperarousal. In combat veterans, PTSD has high co-morbidity with mTBI [2, 3] due to the 

risk of being exposed to improvised-explosive-devices (IEDs) and non-blast events. Significant 

percentage of those who sustain mTBI suffer chronic symptoms or post-concussion syndrome 

(PCS) [4]. With current diagnostic procedures and treatments centering on subjective assessments, 

a thorough understanding of the mechanistic basis for PTSD and PCS is essential for accurate 

diagnosis, targeted treatment and for making return-to-duty decisions. Due to largely overlapping 

symptomatology between PTSD and PCS [5], it is necessary to identify and validate objective 
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markers of the respective neurologic and neuropsychiatric conditions to improve clinical 

evaluation and, ultimately, treatment outcomes. In this work, we take a step in that direction. 

There are several possible choices of modalities in studying brain functioning. Positron 

emission tomography (PET), functional magnetic resonance imaging (fMRI), functional near 

infrared spectroscopy (FNIRS), electroencephalogram (EEG) and magnetoencephalogram (MEG) 

are the most predominant modalities used to obtain brain signals. Among them, we use fMRI 

which provides the optimal tradeoff between spatial and temporal resolution with minimal risk to 

the subjects. 

There are several ways in which fMRI can be used to infer brain functioning. In the design of 

the experiments itself, data can be obtained with subjects being in “resting-state”, wherein they are 

asked to keep their eyes open, let their thoughts wander and lie still in the scanner. It is now 

established that the resting state of the brain acts as a baseline state, which influences the 

performance and outcome when the individual engages in tasks [6]. The pattern of brain activity 

during rest largely resembles the pattern of activity when the individual performs tasks. For this 

reason, resting-state fMRI (RS-fMRI) has gained enormous momentum in the past decade. RS-

fMRI is not task dependent, hence free of variability in task performance across subjects. 

Additionally, RS-fMRI findings are not stereotypical to any particular task, hence they have better 

generalizability. An alternate approach is to have the subjects perform certain tasks inside the MRI 

scanner, which are carefully designed controlled experiments aimed at capturing certain specific 

mental processes. Task fMRI (T-fMRI) thus provides information on brain functioning when the 

particular task of interest is being performed, and hence is highly informative as well as highly 

stereotypical to the task under consideration. In this work, we employ RS-fMRI to discover 
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baseline alterations in soldiers with PTSD and mTBI, as well as T-fMRI to discover specific 

alterations during an emotion regulation task. 

Two approaches are popular in fMRI data processing: activation analysis and connectivity 

analysis. Activation analysis aims at identifying brain regions which are “activated” or utilized 

while a particular task is performed, as compared to a baseline condition. It provides information 

on specific brain regions required for specific processes associated with the task under 

consideration. However, brain’s functioning relies on communication between regions and not the 

isolated activation of the regions themselves. Its power lies in its interconnectedness. Connectivity 

analysis aims to model interrelationship between brain regions. In this work, we employed various 

connectivity techniques in understanding brain networks associated with PTSD and mTBI. 

Interrelationship between brain regions is thought to be of two types: co-activation and 

causality. Co-activation refers to simultaneous activity of two brain regions, which indicates that 

both the regions under consideration are acting together to enable certain cognitive process. Co-

activation is modeled using functional connectivity (FC) [6]. Causality, on the other hand, refers 

to “cause-effect” relationship between two regions, with one region being the source/cause and the 

other being the destination/effect. It indicates that brain activity changes in one regions is, in effect, 

causing altered activity in another region. It is modeled using effective connectivity (EC) [7]. FC 

and EC provide fundamentally different information on interrelationships in the brain. In this work 

we employ both FC and EC to understand brain network alterations in PTSD and mTBI. 

While connectivity provides valuable information not available through activation analysis, 

connectivity findings are harder to interpret since our understanding of brain functioning is based 

on brain regions, and not connections. Hence it would be useful to identify altered regions in the 

disorders using connectivity data. Moreover, we recognize that most abnormalities in natural 



4 

 

 

 

systems are characterized by certain source(s), and that identifying and rectifying such source(s) 

could automatically rectify rest of the abnormal effects. Hence we sought to identify the source(s) 

of the disorders from EC networks. We employed a novel probabilistic framework to identify such 

disease foci. 

As noted earlier, FC and EC model the interrelationship between two brain regions. This 

formulation is in itself imperfect, because brain operates through simultaneous interrelationship 

between all the regions, not just pairs of them. So, finding pairwise connectivity, as done in FC 

and EC, leads to an inadequate and incomplete representation of the ground-truth, wherein the 

importance of a particular connection in relation to the rest of the connections is ignored. It is thus 

imperative to study the brain as an ensemble of connections, instead of bivariate connections 

assessed separately. Similarly it is important to study an ensemble of nodes/regions, instead of 

studying aggregate connectivity profile of each node/region in isolation. To this effect, we employ 

complex network analysis using graph-theoretic techniques [8] to study network-level directional 

connectivity alterations in PTSD and mTBI. At the network-level (meaning ensemble of 

connections), functional segregation is a property which quantifies the ability for specialized local 

processing to occur in densely connected sub-networks, while functional integration quantifies the 

ability for efficient communication between such segregated sub-networks. It is now established 

that an optimal balance between segregation and integration is a characteristic of the healthy brain 

[8]. We study alterations in network segregation and integration in PTSD and mTBI. 

Traditionally, FC and EC analysis implicitly refers to static measures of connectivity, wherein 

one single connectivity value is computed for the entire lengths of the timeseries. However, such 

a formulation seems intuitively incomplete, because the state of the brain is changing every 

moment, the subjects are changing every moment, and so are the mental processes. It seems 
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impossible that the brain remains in the same state for the entire duration of the scan, which 

typically lasts for several minutes. Dynamic connectivity (DC) captures the time-varying nature 

of connectivity. In DC, connectivity is continuously evaluated over time, thus giving a series of 

connectivity values over time. Temporal variability of connectivity can be derived from DC. 

Surprisingly, DC is yet to be extensively used in fMRI. There have been no works on PTSD or 

mTBI which have employed DC. In this work, we employed both static and dynamic FC and EC 

in novel frameworks, which provides unique characterizations not seen before in literature. 

Having identified baseline alterations in PTSD and mTBI using FC and EC, it would be 

beneficial to model brain network alterations while a specific task is being performed. Given that 

emotion dysregulation is seen as one of the prime causes of several symptoms in PTSD and mTBI 

[9], we studied the brain network of altered emotion regulation in healthy adults and its 

dysregulation in comorbid PTSD and mTBI using effective connectivity. 

A key aspect which cannot be ignored in all these analyses is that fMRI is not a direct measure 

of neural activity. When there is neural activity in a particular locality, the increased metabolism 

causes demand for oxygen, which results in increased local blood flow in the capillaries, which is 

captured by fMRI. Hence, all processes which happen between the firing neurons and the 

hemoglobin in the blood could cause changes in the fMRI signal which do not correspond to neural 

activity. This transfer function is called the hemodynamic response function (HRF). The HRF is 

known to vary across different brain regions in the same subject, and also vary across subjects 

[10]. Thus, HRF variability could cause connectivity differences between subjects, as well as 

between groups. One way to overcome the issue, at least in part, is to perform deconvolution on 

fMRI data to obtain latent neural signals. Deconvolution typically involves estimating the 

underlying HRF and then performing using it to obtain the neural signal. In this work, we 
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performed deconvolution to remove HRF variability, thus minimizing its impact on the data. 

Lastly, we sought to identify brain regions which showed HRF differences between the disorder 

groups and healthy controls. The motivation was to identify the regions showing altered HRF in 

the disorders, so that fMRI studies could exercise caution while interpreting their results if HRF 

variability is not removed. Additionally we found that such HRF alterations lead to possible false 

positives and false negatives in connectivity findings if HRF variability is not removed from the 

data. 

In summary, we study alterations in co-activation and causality networks in the brains of 

soldiers with PTSD and mTBI, which might provide novel characterizations that could enhance 

clinical diagnosis and treatment. Ultimately, it could improve the lives of those who give their 

lives for their country. 

 

1.2. This Work in Relation to Prior Literature 

There has been considerable progress towards understanding the brain mechanisms of PTSD 

and mTBI. Several activation studies and subsequent meta-analyses have identified key cortical 

and subcortical areas as being involved in these disorders [11, 12, 13], which largely overlapped 

with the regions identified in this work. Several connectivity studies have also inconsistently 

identified certain connections to be affected in the disorders [14, 15, 16]. However, a 

comprehensive understanding of the underlying network structure, their causal relationships and 

information flow has not emerged from the studies. The findings have been inconsistent to some 

extent, and a mechanistic understanding of the underlying disruption leading to the symptoms has 

not emerged. We attempt to fill that gap in this work. 
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Additionally none of the prior studies have utilized dynamic connectivity information in 

characterizing these disorders. Dynamic connectivity has been shown to carry behaviorally more 

relevant information than static connectivity, and is also shown to have better predictive ability 

than static connectivity [17]. That being the case, we feel that our analysis has a distinct novelty 

over prior works. 

It is also surprising that there have not been any studies which have utilized effective 

connectivity (EC) modeling to understand PTSD or mTBI. Given that these disorders are primarily 

seen as frontal dysregulation disorders, EC is ideally suited to characterize the underlying causal 

relationships arising in the prefrontal cortex and targeted towards subcortical and parietal regions, 

causing dysregulation. With the combination of EC and dynamic connectivity in novel 

frameworks, we believe that our work provides unique insights into the brain alterations in PTSD 

and mTBI not available till now in literature. 

While the brain regions involved in cognitive emotion regulation have been studied [18], the 

interrelationship between them and their network structure has not been identified. Emotion 

regulation is key to several cognitive control processes, and emotion dysregulation is thus common 

to several important disorders. Prior works have speculated on the network of emotion regulation 

and proposed hypothetical networks [18], but none of them have been proved with evidence. We 

intend to identify the network of cognitive emotion regulation and dysregulation, and contribute 

to the field in that direction. 

While progress has been made towards understanding HRF variability in fMRI and its impact 

on data analysis [10], there have been no prior works which have studied group differences in HRF 

variability and its impact on connectivity modeling. Additionally, HRF variability in PTSD or 

mTBI have not been studied. We attempt to contribute in this direction. In summary, we contribute 
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along multiple dimensions towards both computational modeling approaches and in the 

understanding of PTSD and mTBI in this work. 

 

1.3. Organization of the Dissertation 

The dissertation is organized as follows. Chapter 2 describes certain general methods which are 

common to the rest of the chapters, including data acquisition and pre-processing. Chapters 3 to 7 

present work on each of the distinct topics. Each chapter begins with an introduction which 

described the motivation for that work and the hypotheses, followed by methods specific to that 

chapter, results and discussion. Chapter 3 presents functional connectivity analysis, Chapter 4 

presents the identification of disease foci from effective connectivity, Chapter 5 presents complex 

network analysis using effective connectivity networks and Chapter 6 presents HRF variability 

and its impact on connectivity modeling. Chapters 3-6 deal with connectivity modeling of resting-

state data. We found that networks involved in emotion regulation were impaired. Therefore, in 

Chapter 7, we specifically investigate effective connectivity changes in the emotion regulation 

network when it is engaged in an emotion regulation task. Chapter 8 provides concluding remarks 

on this work and Chapter 9 lists peer-reviewed publications emerging from this work.  
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CHAPTER 2 

 

General Methods 

 

This chapter describes certain general methods including data acquisition and pre-processing, 

which are common to the rest of the chapters. 

 

2.1. The PTSD Dataset 

Recruitment 

Active-duty soldiers between the ages of 18 and 50 years were recruited from Fort Rucker, AL, 

USA and Fort Benning, GA, USA to voluntarily participate in the current study. Recruitment 

utilized posters and flyers distributed and posted at local facilities including the TBI Clinic and 

Behavioral Health Clinics. Soldiers being treated for PCS and were referred to the study by 

clinicians if believed to meet eligibility criteria. Soldiers that were interested in participating called 

the provided phone number whereupon they were pre-screened and sent the consent form via post 

or email to be signed and returned. Upon receipt of the returned consent, potentially eligible 

participants were called to schedule their testing session at Auburn University’s MRI Research 

Center. 

The study was carried out in accordance with the latest version of the Declaration of Helsinki 

and the protocol and procedures were approved by Auburn University Institutional Review Board 

(IRB) and the Headquarters U.S. Army Medical Research and Materiel Command, IRB (HQ 

USAMRMC IRB). 
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Participants 

Resting-state fMRI data: Eighty-seven male, active-duty soldiers, 17 with PTSD, 42 with both 

PCS and PTSD (PCS+PTSD), and 28 controls (with all three groups matched in age, race and 

education), all having combat experience in Iraq (Operation Iraqi Freedom, OIF) and/or 

Afghanistan (Operation Enduring Freedom, OEF), were enrolled in the study. 

Task fMRI data: Fifty-nine male, active-duty soldiers, 36 with both PCS and PTSD 

(PCS+PTSD) and 23 combat controls (both groups matched in age, race and education), all having 

combat experience in Iraq (Operation Iraqi Freedom [OIF]) and/or Afghanistan (Operation 

Enduring Freedom [OEF]), were enrolled in the study. 

With both resting-state and task fMRI data, subjects were grouped based on PTSD symptom 

severity using the PTSD Checklist-5 (PCL5) score, clinician referral, post-concussive symptoms 

using the Neurobehavioral Symptom Inventory (NSI) and medical history. i) Subjects with no 

history of mTBI in the last five years, a total score ≥ 38 on the PCL5 were grouped as posttraumatic 

stress group (PTSD group). ii) Subjects with a history of medically documented mTBI, post-

concussive symptoms, and scores ≥ 38 on the PCL5 were grouped as the comorbid PCS+PTSD 

group. iii) Subjects with a score < 38 on the PCL5, no DSM-IV-TR or DSM-V diagnosis of a 

psychotic disorder (e.g. schizophrenia), no mTBI within the last 5 years, and no history of a 

moderate-to-severe TBI were grouped as combat controls. All subjects were screened for MRI 

contraindications. All participants reported having deployed to a combat environment. With 

resting-state fMRI data, the PCL5 scores were significantly different (F(1, 172) = 20.6443, p = 

3.64 × 10-44) between the control group and the PTSD and PCS+PTSD groups combined; also, 

post-concussive symptom (NSI) scores were significantly different (F(1, 172) = 32.6878, p = 1.32 

× 10-29) between the PCS+PTSD group and the PTSD and control groups combined. With task 
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fMRI data, PCL5 scores were significantly different (F(1, 57) = 9.28, p = 4.31 × 10-24) between 

the two groups, as also the NSI scores (F(1, 57) = 14.37, p = 7.92 × 10-17). 

Measures 

PTSD Checklist-5 (PCL5, [19]). The PCL5 is a 20-item self-report measure that assesses DSM-

5 symptoms of PTSD. The PCL5 has a variety of purposes, including screening individuals for 

PTSD, making PTSD diagnoses, and monitoring symptom change during and after treatment. 

Items are rated using a 5-point Likert scale; 1 = "Not at all" to 5 = "Extremely." A total symptom 

severity score (range: 20-100) can be obtained by summing the scores for each of the 20 items 

with a cut score of 38 for a precursory diagnosis of PTSD [20]. 

Neurobehavioral Symptom Inventory (NSI, [21]). This 22-item self-report questionnaire is 

designed to assess post-concussive symptoms in individuals who have sustained a TBI. 

Participants rate the severity of each symptom within the past month on a 5-point Likert scale 

ranging from 0 (none) to 4 (very severe). A total symptom severity score (range: 0-88) can be 

obtained by summing the scores of the 22 items. 

CNS-Vital Signs® (CNS-VS, [22]). CNS-VS is a computerized neurocognitive assessment 

battery. The present study used five CNS-VS sub-tests (verbal memory, symbol digit coding, 

Stroop test, continuous performance test, and shifting attention test). The following CNS-VS 

domain scores were calculated: verbal memory (VM), complex attention (CA), reaction time (RT), 

processing speed (PS), cognitive flexibility (CF), and executive functioning (EF). Domain scores 

have a mean of 100 and standard deviation of 15. Domain scores were averaged to form a single 

score or neurocognitive composite index (NCI) [22]. 
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Procedures 

When participants arrived at Auburn University’s MRI Research Center for their scheduled 

testing appointment, they were re-screened for eligibility, thoroughly screened for MRI 

contraindications, and re-consented to ensure full comprehension of the study’s procedures, 

benefits, and their rights. The participants underwent resting-state fMRI, emotion regulation task 

fMRI and DTI scans along with a standard anatomical scan. 

Resting-state fMRI: Participants were scanned in a 3T MAGNETOM Verio scanner (Siemens 

Healthcare, Erlangen, Germany) using T2* weighted multiband echo-planar imaging (EPI) 

sequence in resting state (the participants were asked to keep their eyes open and fixated on a white 

cross displayed with dark background on the screen using an Avotec projection system and not 

think of anything specific), with TR=600ms, TE=30ms, FA=55˚, multiband factor=2, voxel size= 

3×3×5 mm3 and 1000 volumes. Brain coverage was limited to the cerebral cortex, subcortical 

structures, midbrain and pons (the cerebellum was excluded). For each subject, two separate scans 

were performed, thus providing us 174 sessions of resting state fMRI data for the 87 subjects. 

Mathematically, this boosted the statistical power for our analysis beyond that would have been 

available from single scans from 87 subjects. 

Task fMRI: FMRI data was acquired in a 3T MAGNETOM Verio scanner (Siemens Healthcare, 

Erlangen, Germany) using T2* weighted multiband EPI sequence, with TR=600ms, TE=30ms, 

FA=55˚, multiband-factor=2, voxel size= 3.5×3.5×5 mm3, 680 volumes per run and 4 runs per 

subject. A 32-channel head coil was used. 
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DTI: Participants were scanned in the same 3T MAGNETOM Verio scanner (Siemens 

Healthcare, Erlangen, Germany) using diffusion weighted multiband EPI sequence, with 

TR=3600ms, TE=95ms, FA=90˚, voxel size= 1.8×1.8×3 mm3, b=0, 1000, 25 slices acquired 

parallel to the AC-PC plane, matrix=128×128, field of view (FOV) = 230 mm and number of 

diffusion directions=20. Participants with partial brain coverage or excessive motion were 

excluded from analyses. 

Emotion regulation task: We adopted the task design employed by Urry et al. [23] (please see 

Fig.2.1), which uses a block design. After a 1s fixation cross, the subjects were shown either a 

negative image or a neutral image (jittered 3 to 7 seconds) under the “view” condition. The 

negative images were supposed to arouse a negative emotion in the subjects while the neutral 

images were supposed to not alter the emotional state of the subject. Unlike prior studies which 

used the international affective picture system (IAPS), we used the military affective picture 

system (MAPS) developed by our group [24], which represents images for military populations 

relevant to experiences of operations in Iraq and Afghanistan. Next, the subjects were asked to 

either “enhance”, or “maintain” or “suppress” their emotion (jittered 5 to 8 seconds). During 

“enhance” condition, the subjects were required to increase the intensity of negative emotion 

towards the image by either imagining that they or their loved one was experiencing the situation, 

or imagining a more extreme outcome than the one depicted. During “suppress” condition, the 

subjects were required to reduce the intensity of negative emotion towards the picture by either 

viewing the situation as fake or unreal, or by imagining that the situation has a better outcome than 

the one being depicted. This ‘suppress’ act requires conscious cognitive emotion regulation, so we 

also choose to call it the ‘regulation’ condition. During “maintain” condition the subjects would 

just maintain attention on the picture without changing their negative feelings. The subjects would 
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then report the success of regulation using a button press (within 5 seconds) from the following 

options: no emotion, not successful, somewhat successful, very successful. Each such trial lasted 

about 17 seconds. A total of 96 trials were performed in 4 blocks of 24 trials each. Four 

counterbalanced instruction conditions were employed: (i) neutral image, maintain emotion, (ii) 

negative image, maintain emotion, (iii) negative image, enhance emotion, and (iv) negative image, 

suppress emotion. 

 

 

Fig.2.1. The emotion regulation task, showing the sections relevant for this work. During ‘view’, 

the subjects would see an image arousing negative emotion. Then they would either ‘maintain’ the 

emotion (no change of emotional state), or ‘suppress’ the emotion (attempt to reduce negative 

emotion, that is, perform cognitive emotion regulation) 
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2.2. FMRI Data Pre-processing 

Resting-state fMRI Data Pre-processing 

Standard pre-processing of resting state fMRI data was performed including realignment, 

normalization to MNI space, detrending and regressing out nuisance covariates such six head 

motion parameters, white matter (WM) signal, and cerebrospinal fluid (CSF) signal. An additional 

pre-processing pipeline was executed which was identical to the one described above, but with the 

added step of global mean signal regression (GSR) in order to examine its effects given conflicting 

reports about its utility [25, 26]. Pre-processing was performed using Data Processing Assistant 

for Resting-State fMRI (DPARSF v1.7) [27], which is based on Statistical Parametric Mapping 

(SPM8) [28] and Resting-State fMRI Data Analysis Toolkit [29].  

The data were normalized, rendering each timeseries with zero mean and unit variance. These 

were then input to a blind deconvolution algorithm [30] in order to remove non-neural variability 

of the hemodynamic response function (HRF) and estimate latent neuronal timeseries. The 

deconvolution is blind since both the HRF and the underlying latent neural timeseries are estimated 

only from the observed fMRI data. Specifically, we used the method demonstrated by Wu et al. 

[30], which has gained wide acceptance and usability owing to its interpretability, robustness, 

simplicity, validity and an increasing awareness in the community on the necessity for 

deconvolution. Many recent papers have employed it (see for example [31, 32, 33]). Briefly, the 

approach relies on modeling resting state fMRI data as event-related data with randomly occurring 

events using point processes and then estimating voxel-specific HRFs using Weiner 

deconvolution. 

Prior works show that physiologically meaningful information is contained in higher 

frequencies (above 0.25 Hz) in BOLD fMRI data, and that the default-mode network, for example, 
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can be reliably obtained using high frequencies alone [34]. It is notable that band-pass filtering 

was not performed during pre-processing, since deconvolution makes use of this information-

carrying higher frequency components, in addition to standard lower frequencies, for reliable 

estimation of HRF, while discarding high-frequency noise [30]. 

Deconvolution was performed because confounds emerging due to inter-subject and spatial 

variability of the HRF [10] could give rise to a scenario wherein two fMRI timeseries have high 

directional connectivity while the underlying neural variables do not and vice versa (refer to 

Fig.2.2 for an illustration). Further, causal connections could readily switch directions if the 

underlying HRFs have different time-to-peak. To this effect, it has been shown that deconvolution 

produces improved estimation of effective connectivity [35, 36].  

Given the high dimensionality of whole-brain fMRI data, mean deconvolved fMRI timeseries 

were obtained from 125 functionally homogeneous brain regions determined using spectral 

clustering (known as the cc200 template [37]). Further connectivity analysis (performed on 

Matlab® platform) utilized these 125 timeseries from each subject. 
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Fig.2.2. Illustration of the importance of performing hemodynamic deconvolution, using two 

timeseries from real fMRI data. The latent neural signals are convolved with HRF to give BOLD 

fMRI timeseries. HRF variability could potentially give rise to a scenario wherein (a) the undying 

neural variables have true high directional connectivity (measured using Granger causality [GC] 

from blue to red signal) and true low correlation (R), while the BOLD fMRI timeseries show low 

GC and high R, and (b) the latent neural signals have true low GC and high R, while the BOLD 

fMRI timeseries show high GC and low R. GC and R need not necessarily have a negative 

relationship, though it is true in this example. 

 

Emotion Regulation Task fMRI Data Pre-processing 

All MRI data analysis was performed on Matlab® platform. Standard pre-processing of fMRI 

data was carried out including de-spiking, realignment, normalization to MNI space and smoothing 

using an 8mm Gaussian kernel. The data was resliced to 2mm isotropic voxels. Pre-processing 

was performed using Statistical Parametric Mapping (SPM8) [28].  
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CHAPTER 3 

 

Functional Connectivity Analysis 

 

3.1. Introduction 

About 20% of military service members develop posttraumatic stress disorder (PTSD) [38]. 

PTSD is characterized by high anxiety, re-experiencing traumatic memories, hypervigilance and 

hyperarousal. In combat veterans, PTSD has high co-morbidity with mild-traumatic brain injury 

(mTBI) [2, 3] due to the risk of being exposed to improvised-explosive-devices (IEDs) and non-

blast events. Significant percentage of those who sustain mTBI suffer chronic symptoms or post-

concussion syndrome (PCS) [4]. With current diagnostic procedures and treatments centering on 

subjective assessments, a thorough understanding of the mechanistic basis for PTSD and PCS is 

essential for accurate diagnosis, targeted treatment and for making return-to-duty decisions. Due 

to largely overlapping symptomatology between PTSD and PCS [5], it is necessary to identify and 

validate objective biomarkers of the respective neurologic and neuropsychiatric conditions to 

improve clinical evaluation and, ultimately, treatment outcomes. 

We employed resting-state functional MRI (rs-fMRI), which avoids task dependency and 

subsequent performance differences. We performed connectivity-analysis on rs-fMRI data, 

without a priori assumptions concerning regions of interest (ROIs). Functional connectivity (FC) 

refers to measures of instantaneous correlation between fMRI signals obtained from different brain 

regions. There have been several recent fMRI FC studies with PTSD [38, 39, 40] and PCS [2, 5, 

41]. However, very little work has been done on comorbid PTSD and PCS, even though 
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comorbidity is the norm rather than the exception in military populations [40]. Their findings have 

been mixed [39]. 

Hyper-connectivity is seen as a response to neurological disruption [42] and is observed in 

individuals with PTSD [38, 39, 43]. Most studies employ only static-FC (SFC) and ignore dynamic 

variation of connectivity over time or dynamic-FC (DFC). Several studies show that DFC 

signatures in subjects with mental disorders are different from that in healthy subjects [44, 45, 46, 

47]. DFC is also related to real-world cognitive behaviors [48], which may make it a good tool for 

studying disorders like PTSD and PCS where cognitive functioning is compromised. SFC and 

DFC provide different type of information regarding connectivity between two brain regions [49]. 

Reduced temporal variance in DFC is associated with psychiatric disorders as well as 

compromised behavioral performance in healthy individuals [50, 51]. This reduction is associated 

with compromised ability to dynamically adjust (e.g. behavior, thoughts, etc.) to changing 

conditions. This phenomenon is well recognized in other biological systems such as reduced heart-

rate-variability being a risk factor of cardiovascular disease [52]. Since external influences and 

internal body states are continually changing, a healthy biological system varies its activity in real-

time to accommodate these changes. In these terms, “frozen” connectivity reflects compromised 

brain health. The current study uses these principles to identify functional connections in the brains 

of soldiers with PTSD and PCS which are in a “frozen” hyper-connected state compared to healthy 

soldiers. 

Active-duty, U.S. Army soldiers screened positive for PTSD, both PCS and PTSD 

(PCS+PTSD), and healthy combat controls were recruited. We tested an overarching hypothesis 

that PTSD with and without PCS is associated with higher connectivity-strength (SFC) but lower 

connectivity-variance (variance of DFC [vDFC] calculated over time, Fig.3.2) as compared to 
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healthy controls (Fig.3.1a). Further, we hypothesized that connectivities would be more extreme 

(i.e. higher SFC and lower vDFC) in PCS+PTSD-subjects compared to PTSD-subjects, indicative 

of greater symptom severity. We notably tested the hypothesis on whole-brain connectivity data 

without imposition of any priors or assumptions. 

In addition to the primary hypothesis, there were multiple corollary hypotheses addressed in 

this study. First, if the connectivities were indeed more extreme (i.e. higher SFC and lower vDFC) 

in PCS+PTSD-subjects compared to PTSD-subjects, it raises the question as to whether the 

PCS+PTSD group’s condition is being driven by PTSD. Alternatively, is this comorbid group’s 

state unique, potentially due to the addition of mTBI sequelae? We attempt to address this question 

by investigating structural alterations of white-matter tracts in all three groups with the hypothesis 

that changes in axonal integrity must be exclusive to the PCS+PTSD-group, likely attributed to 

the mTBI suffered by these subjects. MRI diffusion-tensor-imaging (DTI) tractography provides 

meaningful information concerning diffusion of water molecules in white-matter as a measure of 

tract trajectory, integrity and directionality. White-matter neuropathology can result in increased 

diffusivity, for example, with inflammation from demyelination [53, 54]. In a recent study 

involving veterans from Iraq and Afghanistan wars who were diagnosed with PCS [55], DTI 

showed differences in white-matter diffusivity associated with regions that also had abnormal 

functional connectivity. In line with this finding, we predicted that there would be congruently 

greater diffusivity in the tracts connecting regions with altered functional connectivity; therefore, 

supporting the argument that PCS+PTSD-group is etiologically different from PTSD-group. 

Second, if we are successful in finding functional connections in the brain which satisfy our 

overarching hypothesis, it will be important to determine their relevance to behavior and clinical 

diagnostics. Our subjects are traditionally assigned diagnostic groups based on clinical observation 
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and symptom reporting. While self-report symptom scores provide quantifiable subjective 

assessments of severity of the disorders (i.e. psychopathology), neuroimaging data provides better 

characterization of underlying pathophysiology. Hence, we postulated that grouping of subjects 

based on significant connectivity values would be superior (in terms of how the groups map to 

behavioral clusters) than the traditional diagnostic grouping. Specifically, connectivities from 

significant paths which fit our overarching hypothesis were used to regroup the subjects, giving 

two distinct groups (pure-control and pure-PCS+PTSD) and an intermediate group. Indeed, this 

approach has been actively promoted by the National Institute of Mental Health (NIMH) in the 

United States by publication of “Research Domain Criteria” (RDoC, http://www.nimh.nih.gov/research-

priorities/rdoc/nimh-research-domain-criteria-rdoc.shtml). RDoC is agnostic about current disorder 

categories, and the intent is to generate classifications in a data-driven way. The “core unit of 

analysis” advanced by RDoC is the “measurements of particular circuits as studied by 

neuroimaging techniques”. In line with this ideology, a recent report demonstrates how data-driven 

definition of groups in psychiatric spectrum disorders can identify new groups which map better 

onto behavioral clusters [56]. Our regrouping strategy is inspired by these recent developments. 

In order to address this secondary hypothesis, behavioral measures obtained from a 

neurocognitive battery were separately grouped using both conventional and proposed grouping, 

and their statistical separation between groups were compared for both cases. This comparison 

was done to test the hypothesis that the new grouping based on underlying neurobiology (as 

inferred from connectivity) will map better onto neurobehavior than conventional grouping based 

on symptom-severity scores. 

Third, both our primary hypothesis and corollary hypotheses are based on an analysis 

framework which relies on statistical separation between groups. However, statistical separation 
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of between-group connectivities does not necessarily imply that they have predictive diagnostic 

ability [57]; that is, they may not be able to predict group membership at an individual level with 

reasonable accuracy. Consequently, those connectivities which are statistically significant as well 

as possess the discriminative power to classify subjects with high accuracy are more powerful. 

Several studies report that machine-learning classifiers can be successfully used on fMRI data for 

diagnostic prediction, including, but not limited to, major-depressive-disorder [58], Parkinson's 

disease [59], PTSD [60], dementia [61], autism [62] and prenatal-cocaine-exposure syndrome [57]. 

However, to the best of our knowledge, there are no studies which have used connectivity markers 

in the classification of both PTSD and PCS subjects. For neuropsychiatric disorders like PTSD 

and PCS, which are currently diagnosed solely through clinical observation, classification using 

neuroimaging signatures could be applied to obtain more accurate diagnoses in these highly 

comorbid conditions. Therefore, using whole-brain connectivity data we identified, in a data driven 

way, those features which predict the diagnostic membership of a novel subject with high 

accuracy. We specifically investigated whether there was an overlap between connectivity paths 

satisfying the overarching hypothesis and those identified as having high predictive ability. We 

hypothesize that these paths (i) will better predict the diagnostic membership of a novel subject 

than non-imaging measures, and (ii) will predict the group membership of a novel subject with 

significantly better accuracy for the proposed connectivity-based grouping (as elucidated in 

previous paragraph), as compared to conventional grouping. 

Fig.3.1b illustrates the complete analysis pipeline with a hierarchical flowchart (outcomes are 

discussed in results section). 
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Fig.3.1 (a) Illustration of our primary hypothesis: increasing font size of SFC implies increasing 

connectivity strength from controls to PTSD to PCS+PTSD. Decreasing font size of DFC implies 

decreasing variance of connectivity from controls to PTSD to PCS+PTSD; (b) Flowchart 

illustrating the analysis pipeline employed in this work 
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3.2. Methods 

3.2.1. Static and Dynamic Functional Connectivity 

Most studies investigate functional connectivity (FC), a metric of synchronicity of activity in 

disparate brain regions, assuming connectivity to be temporally stationary. Dynamic fluctuations 

of connectivity are not captured when using static connectivity. It has been shown that dynamic 

changes in FC are relevant to neuropathology [63] as well as behavioral performance in different 

domains (alertness, cognition, emotion, and personality traits) in healthy individuals [17]. For a 

comprehensive overview of DFC of resting state fMRI see Hutchison et al. [64]. 

Previous PTSD and mTBI studies have not enumerated the utility of dynamic information in 

connectivity fluctuations, over and above the information obtained from conventional static 

connectivity, in clinical applications. In this study, we have used static as well as dynamic 

functional connectivity measures. SFC and DFC values were obtained between all pairs of 125 

brain regions. For SFC, Pearson’s correlation calculated from the entire time series was used. For 

DFC, we employed sliding windowed Pearson’s correlation with variable window length which 

was determined adaptively by assessing time series stationarity through the augmented Dickey-

Fuller test (ADF test), as in our recent study [17]. This procedure searches for the optimal window 

length within a specified range using stationarity of the signal as the criteria for optimization. We 

have used a liberal range of 20 to 140 data points. The justification for using this range for resting 

state fMRI data is provided in Jia et al. [17]. Fig. 3.2 illustrates the concept underlying SFC and 

DFC. 
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Fig. 3.2 Illustration of the evaluation of static and dynamic functional connectivities 

 

SFC and DFC were obtained between all pairs of 125 regions, thus obtaining a 125×125 SFC 

matrix and a 125×125×1000 DFC matrix per subject (1000 being the number of time points). 

Variance of DFC (vDFC) values over time was evaluated to obtain a 125×125 DFC variance 

matrix per subject. Significant group differences in SFC (and vDFC) were obtained for all pairs of 

connectivity paths (p<0.01 FDR corrected). Multivariate N-way ANOVA (MANCOVAN) 

statistical test was used. Significant group differences were controlled for age, gender, race, 

education and head motion (using mean frame-wise displacement obtained across all brain voxels 

for each subject as defined by Power et al. [65]). As mentioned before, we investigated the 

existence of significant connectivity paths which had higher SFC but lower vDFC in disease 

compared to controls, with connectivities being more extreme in PCS+PTSD compared to PTSD. 

For the paths which fit our hypothesis, their connectivity values were also correlated with 

neurocognitive scores (NCI and subtests) and symptom severity in PTSD (PCL5 score) and in PCS 

(NSI score). 
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3.2.2. Regrouping subjects based on connectivities 

In line with our hypothesis, we postulated the following: (i) new diagnostic groups created 

based on the separation of significant connectivity values would better map onto behavior, as 

compared to commonly used symptom severity scores (PCL5 and NSI) and (ii) PTSD and PCS 

are spectrum disorders wherein individuals are likely to lie on a continuum ranging from healthy 

controls to comorbid PCS+PTSD, rather than form distinct clusters; hence forming pure healthy 

and co-morbid groups (with diagnostic confidence being very high in the pure groups) and an 

intermediate group (low diagnostic confidence) may be clinically useful. All the control subjects 

also had combat experience, and hence a percentage might possess borderline neural and 

behavioral alterations associated with PTSD and PCS, or both. Furthermore, subjects that fall 

within the PCS+PTSD group might exhibit anywhere from mild-to-moderate neurocognitive 

decrements, making it indistinguishable from the PTSD group. With all these factors in place, it 

may be desirable to develop objective clinical classifications using imaging rather than symptom 

reporting. Hence, we propose a practical approach wherein the subjects are grouped into two 

extreme pure groups and an intermediate group based on imaging measures such as SFC and 

vDFC. This paradigm is still compatible with the fact that the groups may have significantly 

different means, but a large standard deviation so that they overlap. Therefore, we devised a 

method wherein the subjects are regrouped into the following three groups: 1) pure control, 2) 

intermediate group, and 3) pure PCS+PTSD. A hypothetical example is shown in Fig.3.3. Plotting 

the connectivity values in the two-dimensional space of SFC (x-axis) and vDFC (y-axis), we can 

expect to find connectivities of control subjects and PCS+PTSD subjects at opposite ends. 

Furthermore, we expect to see an intermediate region between these two extremes where there will 

be a combination of subjects that are borderline healthy, those with PTSD symptoms, and 
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comorbid post-concussive and PTSD symptoms. In contrast, pure controls and pure PCS+PTSD 

groups can be defined as subsets of subjects who fall outside this intermediate group on either side, 

respectively. The objective of regrouping is to maximize the heterogeneity of the intermediate 

group while simultaneously minimizing the heterogeneity of the pure groups. 

Due to computational feasibility, a grid search was used to achieve subject grouping. Assuming 

that N paths satisfy our overarching hypothesis (i.e. significantly stronger SFC with lower vDFC 

in disease compared to healthy), the connectivity values of all the subjects were embedded in the 

2N-dimensional connectivity space (each path is associated with SFC and vDFC values, hence 

2N). In order to explain this procedure intuitively, we consider the two-dimensional example 

shown in Fig.3.3. Subjects in the control group were tagged as ‘1’, PTSD group as ‘2’ and 

PCS+PTSD group as ‘3’. We used the variance of tagged group values as a measure of 

heterogeneity. For example, pure control group would ideally have only control subjects (tag=1), 

hence the variance of the tags for the group would be zero. The intermediate group would have a 

mixture of all three groups (1, 2 and 3), hence it would have higher non-zero variance. 
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Fig.3.3. Hypothetical example illustrating the proposed regrouping procedure using simulated data 

 

Two separation hyper-planes of dimension 2N-1 (lines in the two-dimensional example being 

considered) which were parallel to each other were arbitrarily initiated. As regards to our specific 

2D example, the equation of a line in two dimensions is given by y=mx+c, where y and x are the 

variables on the y-axis and x-axis, respectively, m is the slope and c is the intercept. For a given 

range of x and y values, the position of the line is determined by its angle (m) and shift (c). Within 

the given range of SFC and vDFC values, we generated all possible pairs of parallel lines using all 

possible values of angle, shift, and separation between the lines. The feature space between the 

two separation lines was identified as the intermediate group, and the feature space outside them 

as the two pure groups. We evaluated the heterogeneity of each of the three groups (using variance 

as explained above) for all possible separation lines generated. We then searched for that pair of 

nearest separation hyper-planes (or lines in our 2D example), which resulted in highest variance 

in the intermediate group and least variance (ideally, zero) in the two pure groups. These two were 
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chosen as the final separation hyper-planes (or lines in 2D case), which were used to create the 

new groups based on connectivity: pure controls, intermediate, and pure PCS+PTSD. 

In order to find the diversity of the intermediate group, percentage of controls in the 

intermediate group (say, pc) along with the percentage of PCS+PTSD subjects (say ppp) and PTSD 

subjects (say pp) were obtained. If Nc is the number of control subjects in the intermediate group, 

Np is the number of PTSD subjects in the intermediate group, Npp is the number of PCS+PTSD 

subjects in the intermediate group, Tc is the total number of control subjects, Tp is the total number 

of PTSD subjects, and Tpp is the total number of PCS+PTSD subjects, then,  

 

𝑝𝑐 = 𝑁𝑐 𝑇𝑐⁄ ;  𝑝𝑝 = 𝑁𝑝 𝑇𝑝⁄ ;  𝑝𝑝𝑝 = 𝑁𝑝𝑝 𝑇𝑝𝑝⁄                                                                                     (3.1) 

 

For example, if there were 14 controls in the intermediate group (out of 56 control subjects 

overall) then 25% of controls (=pc) would be in the intermediate group (remaining 75% would be 

in the pure controls group). It was important that we took the percentage mixture to calculate 

diversity rather than absolute numbers since the number of subjects in each group was different. 

We then generated a vector of ones, twos and threes in the same proportion in which we obtained 

the group percentages (say Xdata), and obtained its variance (say Vdata). Likewise, maximum 

possible variance was obtained with ones, twos and threes being present in equal numbers (say 

Xmax, with variance Vmax). 

 

𝑋𝑑𝑎𝑡𝑎 = [1,1, … 𝑁𝑐  𝑡𝑒𝑟𝑚𝑠 2,2, … 𝑁𝑝 𝑡𝑒𝑟𝑚𝑠 3,3, … 𝑁𝑝𝑝 𝑡𝑒𝑟𝑚𝑠];  𝑉𝑑𝑎𝑡𝑎 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋𝑑𝑎𝑡𝑎) 
(3.2) 

𝑋𝑚𝑎𝑥 = [1,1, … 𝑁𝑚 𝑡𝑒𝑟𝑚𝑠 2,2, … 𝑁𝑚 𝑡𝑒𝑟𝑚𝑠 3,3, … 𝑁𝑚 𝑡𝑒𝑟𝑚𝑠];  𝑉𝑚𝑎𝑥 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋𝑚𝑎𝑥) 
(3.3) 
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Where Nm is the average number of subjects, which is the total number of subjects divided by 

3 (=29 in the current study). The percentage of the ratio of variance obtained from group 

percentages to the maximum variance (=Vdata/Vmax) was used to compute the percentage diversity 

of the intermediate group. Obviously with this definition, the two pure groups would have 0% 

diversity. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =
𝑉𝑑𝑎𝑡𝑎

𝑉𝑚𝑎𝑥
× 100                                                                                              (3.4) 

 

If the new grouping maps better onto behavior than the conventional grouping (which was based 

on symptom screening and clinician referral), it can be postulated that the new grouping can predict 

PTSD and PCS sequelae better than conventional methods. In order to test this, we statistically 

compared subjects grouped using both the conventional grouping as well as the new grouping 

obtained by the proposed procedure on neurobehavioral measures (i.e., neurocognitive 

functioning). Corresponding mean and standard deviation (SD) values of individual groups were 

obtained along with the statistical significance of the differences between the groups. 

 

3.2.3. Classification using support vector machine 

Statistical separation between neural signatures (e.g. t-test) does not necessarily guarantee 

generalizability or predictive capacity of those signatures for diagnosis. A statistically significant 

connectivity path need not have high predictive ability and vice versa. Consequently those 

connectivity paths which are both statistically significant (according to our hypothesis) and top 

classifiers (high predictive ability) assume more power and, therefore, relevance. Hence, we have 

used machine learning methods to identify those connectivity paths (or features) which can 

accurately classify individuals between PTSD, PCS+PTSD, and controls. A Recursive Cluster 
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Elimination based Support Vector Machine (RCE-SVM) classifier [66] was used to classify the 

subjects based on significant SFC and vDFC values. First, significant group differences were found 

for all the three comparisons (control vs. PTSD, control vs. PCS+PTSD, and PTSD vs. 

PCS+PTSD), using a threshold of p<0.05 (controlled for age, race, education and head motion), 

for both SFC and vDFC. We used an uncorrected p<0.05 threshold since we wanted to be liberal 

about which features are input to the classifier and let the classifier choose the most predictive 

features. Next, we found overlapping paths between the three comparisons. The overlapping paths 

for SFC and vDFC were combined to provide the input features to the classifier. This initial 

filtering enhances the quality of classification [67], and ensures that non-discriminatory features 

are not fed into the classifier.  

Our choice of support vector machine (SVM) [68] for classification was motivated by its wide 

acceptance and applicability for classification in several fields, including neuroimaging [69]. 

Previous studies have shown that using discriminatory features enhances classification 

performance of SVMs [66, 67]. Therefore, we employed recursive cluster elimination (RCE), a 

wrapper method which iteratively eliminates features to minimize the prediction error, where 

feature selection and classification steps are embedded together. The main steps involve the 

clustering step, the SVM scoring step and the RCE step. The features that were initially input into 

the classifier were divided into training and testing data sets. The classifier was trained using the 

training data set, while the testing data set is totally kept blinded to the classifier. Once training is 

complete, the testing data is input into the classifier and classification accuracy is obtained. This 

ensures generalizability of the results. 

In the clustering step, k-means algorithm was used to cluster the training data into ‘n’ clusters. 

The number of clusters was initially set to the number of features, and then was iteratively 
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decreased by one until no empty clusters were left. The ‘n’ obtained by this iteration served as the 

initial ‘n’ for the RCE-SVM loop. In the SVM-scoring step, each cluster was scored based on its 

capacity to differentiate between the two groups by using linear SVM. In order to assess the 

performance of the clusters, the training data was randomly partitioned into 6 non-overlapping 

subsets of equal sizes (6 folds). Using 5 subsets, the SVM was trained and performance (accuracy) 

was computed using the remaining subset. All possible partitions were generated by repeating the 

clustering and cross-validation procedures 100 times. For each of these 100 repetitions, the 

classification accuracy was obtained using the testing data. 

Using the outcome of 100 repetitions and 6 folds for each repetition, the average value of the 

accuracies was assigned as the cluster’s score. The bottom 20% of low scoring clusters were 

eliminated in the RCE step. Remaining features were merged and the value of ‘n’ was reduced by 

20%. This ensures that only certain top classifying features qualify for the next iteration. The 

clustering step, the SVM-scoring step and the RCE step were repeated again iteratively. After each 

iteration, performance of the classifier was obtained using the reduced number of features 

compared to the earlier iterations. Once the number of clusters reached two, the procedure was 

stopped. Fig.3.4 illustrates the RCE-SVM procedure using a flowchart. Complete separation of 

testing and training data sets in this procedure eliminates bias in the computation of classification 

accuracy [70]. Further, the features in the final two clusters are those with highest discriminative 

ability and hence carry predictive value for diagnosis. Complete details about the RCE-SVM 

algorithm can be obtained from previous reports [66, 71]. 
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Fig.3.4 Flowchart illustrating the RCE-SVM classification procedure 

 

Classification was performed separately for all the three comparisons in the conventional as 

well as the proposed new groupings (i.e. control vs PTSD, control vs PCS+PTSD and PTSD vs 

PCS+PTSD in the conventional grouping; and pure control vs intermediate, pure control vs pure 

PCS+PTSD and intermediate vs pure PCS+PTSD in the new grouping). For both groupings, 

outcome measures such as accuracy and final set of discriminative features were obtained by 

intersecting the results obtained by each of three individual classifiers. In order to be conservative, 

we obtained the worst-case classification accuracy by considering the minimum accuracy value 
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obtained from the test data set among all 600 iterations (100 repetitions × 6 folds). The statistical 

significance of accuracies was obtained by estimating the p-values using a binomial null 

distribution B(η,ρ), ρ being the probability of accurate classification and η being the number of 

participants, as in previous studies [72]. Only those accuracies whose p-values were less than 0.05 

(Bonferroni corrected) were considered as statistically significant for further processing. 

We repeated the above procedure and performed classification using 32 non-imaging measures 

as input features instead of SFC and vDFC connectivities. The 32 measures were: (i) behavioral 

measures: all CNS-VS measures including the NCI score; (ii) psychological health measures: 

Perceived Stress Scale, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Zung Anxiety 

Scale, and Zung Depression Scale; (iii) exposure/injury descriptives: Combat Exposure Scale, 

lifetime concussions, and Life Events Checklist. Worst-case classification accuracies and top 

classifying features were obtained, as before, and these results were compared with the results 

obtained using connectivity values. 

 

3.2.4. DTI Data Processing 

One of the ways to find out whether increased severity in the PCS+PTSD group is due to an 

mTBI (structural damage) or due to the compounding effect of two disorders (PTSD and PCS) 

combined, is to look at structural changes using DTI. Probabilistic diffusion tractography was 

carried out using FSL’s Diffusion Toolbox (FDT) [73, 74]. Regions of interest (ROI) which were 

connected by functional paths satisfying our overarching hypothesis (i.e. significantly stronger 

SFC and lower vDFC in disease compared to healthy) were identified as seed and target regions. 

Briefly, a probability density function was created at each voxel on the principal fiber direction. 

Connectivity probabilities were estimated between the seed and target ROIs by repeatedly 
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sampling connected pathways through the probability distribution function. Samples were drawn 

from the connectivity distribution, and the proportion of those samples that passed through both 

ROIs was defined as the probability of the connection between the seed and the target. For each 

analysis, we thresholded and binarized individual subject’s results to include only those voxels 

with a connection probability >10%. These images were then combined to create group maps, 

which would help us find out whether there is any structural basis for increased severity in 

PCS+PTSD subjects. White matter tracts were subsequently identified using the JHU ICBM DTI 

81 White Matter Label Atlas (http://www.loni.usc.edu/ICBM/Downloads/Downloads_DTI-

81.shtml). 

 

3.3. Demographics and Phenotypic Information 

Demographics 

The demographics for the three groups are presented in Table.3.1. There were no significant 

differences between the groups in age, p = .699, or education, p = .152. The results indicated that 

there was a difference in the frequency of reported psychotropic use between the groups, τb = .24, 

p = .011, with the comorbid group having the highest percentage of medicated subjects. There was 

a significant difference between the groups in the number of reported lifetime mTBIs, F(2) = 5.81, 

p = .004, specifically between control group and the PCS+PTSD group, but not the PTSD and 

PCS+PTSD groups or control and PTSD groups, p > .05. 
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Table.3.1. Basic Demographics 

Variable Controls PTSD PCS+PTSD 

Age,  

years 

Mean 32.6 32.2 33.7 

Median 31 32 33 

SD 6.7 7.6 6.8 

Range 24 24 30 

Education, 

years 

Mean 15.1 14.5 14.1 

Median 16 14 14 

SD 1.9 2.2 1.9 

Range 8 9 8 

Race 

White 18(66.7%) 11(64.7%) 26(66.7%) 

Black 2(7.4%) 3(17.6%) 9(22.0%) 

Hispanic 3(11.1%) 3(17.6%) 2(4.9%) 

Asian 2(7.4%) 0 1(2.4%) 

Other 0 0 1(2.4%) 

Medication   2(7.4%) 4(23.5%) 13(31.7%)* 

Lifetime 

mTBIs 

Mean 

(Range) 
0.3(2) 1.1(6) 2.5(15)* 

 

Psychological Health and Neurocognitive Function 

The results revealed significant differences between the three groups in posttraumatic 

symptoms (PCL5), F(2, 81) = 101.65, p < .001, post-concussive symptoms (NSI), F(2, 78) = 49.79, 

p < .001, and combat exposure (CES), F(2, 79) = 40.69, p < .001. All p-values remained significant 

after corrections for multiple comparisons. As observed in Table.3.2, the PCS+PTSD group had 

the highest scores out of the three groups on these respective measures. 

The results indicated that after corrections for multiple comparisons, the control group had 

significantly higher scores than the PCS+PTSD group on all neurocognitive measures, p < .05, 

with the exception of Reaction Time and Verbal Memory, p > .05. The PCS+PTSD group also had 

significantly lower scores in Cognitive Flexibility, Executive Functioning, and the NCI compared 
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to the PTSD group, p < .05. The findings suggest that both the PTSD and PCS+PTSD groups have 

lower scores than controls, but also, the comorbid group has greater impairments than the PTSD 

group (see Table.3.2). 

 

Table.3.2 Mean, median, and standard deviation on PCL5, NSI, CES, and CNS-VS 

neurocognitive measures for each of the groups 

  Controls PTSD PCS+PTSD 

PSYCHOLOGICAL        

Traumatic Stressa 

Mean 23.5 56.6 70.9 

Median 21.5 48.5 70.5 

SD 4.2 17.8 15.2 

Post-concussive  

symptomsa 

Mean 6.6 25.9 43.4 

Median 5 17.5 41.5 

SD 4.8 19.2 16.1 

Combat Exposurea 

Mean 7.2 16.7 28.6 

Median 2.5 15 29 

SD 9.8 11.2 8.6 

  

NEUROCOGNITIVE   

Neurocognitive  

Composite Indext,z 

Mean 101.2 94.3 81.7 

Median 100.7 94.6 82.2 

SD 12.9 12.5 20.7 

Reaction Time 

Mean 97.4 95.3 84 

Median 101 92 91 

SD 23 11.9 32.8 

Complex Attentiont 

Mean 94.2 78.1 70 

Median 99.5 92 80 

SD 23.3 30.9 31.3 

Cognitive 

Flexibilityt,z 

Mean 103.6 97.1 80.5 

Median 103 93 86 

SD 16.3 15.2 26.7 

Processing Speedt 

Mean 104.8 100.1 89.9 

Median 104 98 92 

SD 20.9 11 20.1 
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Executive 

Functioningt,z 

Mean 106 101 84.1 

Median 104.5 104 90 

SD 13.3 13.2 24.8 

Verbal Memory 

Mean 99.6 92.1 83.6 

Median 106.5 103 83 

SD 12.5 9.5 13.9 
a  denotes p<.05, all three groups 
t  denotes p<.05, Controls vs. PCS+PTSD 
z  denotes p<.05, PTSD vs. PCS+PTSD 

Note: Traumatic Stress = PCL5; Postconcussive Symptoms = NSI; Combat Exposure = CES. 

 

3.4. Connectivity Results 

3.4.1. RS-fMRI Functional Connectivity Results 

In accordance with our hypothesis, the connectivity path between left striatum and right 

hippocampal-formation (Fig.3.5a) showed higher connectivity strength and lower connectivity 

variance in PCS+PTSD and PTSD groups compared to controls. This was the only path in whole-

brain connectivity data to conform to our hypothesis. Striatum region mainly contained caudate 

head (MNI-centroid: -11.3,12.2,3.5) and hippocampal-formation contained entorhinal and 

perirhinal cortices, and anterior hippocampus and parahippocampal gyrus (MNI-centroid: 19.4,-

12.4,-25.5). 

This result was obtained with deconvolved data, pre-processed with global-mean-signal-

regression (GSR). No paths were obtained in data without deconvolution, and excluding GSR did 

not change the current result. Figs 3.5b and 3.5c show the hippocampus-striatum path-weights 

being significantly different between the three groups, with decreasing vDFC and increasing SFC 

as we move from control to PTSD to PCS+PTSD. 
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Fig.3.5 (a) Sagittal view of brain showing the hippocampus-striatum path, (b) Variance of 

dynamicFC and (c) staticFC values for the three groups, (d) White-matter connectivity between 

striatum and hippocampal-formation: fibers connecting the two ROIs are more diffuse in 

PCS+PTSD-group compared to PTSD or controls. 

 

The aforementioned result was obtained using deconvolved data used a threshold of p<0.01 

(FDR corrected) for testing statistical significance. Testing our hypothesis with a liberal threshold 

of p<0.05 (FDR corrected), we found two paths to be significant. In addition to the left striatum – 

right hippocampal formation path mentioned before, the path between left striatum and left 

hippocampal formation was the additional path to be found significant. 

It is notable that we have used deconvolved data in our analysis. Deconvolution [30] removes 

HRF variability [75] in the BOLD fMRI signal and provides the latent neuronal time series. Results 

obtained using non-deconvolved data could potentially be influenced by HRF variability. 

However, we tested our hypothesis on temporally band-pass filtered (0.01-0.1Hz), preprocessed 

fMRI data without hemodynamic deconvolution as used in conventional resting state connectivity 

analyses. Notably, we did not find any significant path supporting our hypothesis, indicating the 

value of removing HRF variability and smoothing from fMRI time series even for functional 

connectivity analyses. 

Though lower connectivity variance (DFC) is most likely associated with ill-health, both lower 

and higher connectivity strength (SFC) has been previously associated with ill-health. Specifically, 

previous literature has shown both stronger and weaker connectivity (SFC) in PTSD as compared 

to controls [76, 13, 77]. Hence, we also investigated whether paths which had significantly lower 

connectivity strength (SFC) and lower connectivity variance (vDFC) existed in PTSD and 
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PCS+PTSD groups compared to controls. However, none of the paths could fit this hypothesis 

using either deconvolved data or conventional non-deconvolved data. 

Results were obtained with data which had undergone global mean signal regression while 

preprocessing the data. There has been debate in the scientific community about whether or not 

global mean signal should be removed [25, 26]. In fact, Power et al note that “the objections raised 

to global signal regression are mainly based on results from low-dimensional simulations [25], and 

that further work that determines the applicability of these arguments to empirical data would 

usefully inform decisions about using global signal regression as part of denoising strategies. In 

order to account for this, we also performed the same analysis on preprocessed data without global 

mean signal regression. We replicated the results showing that the left striatum – right hippocampal 

formation path was the only significant path in accordance with our hypothesis, but with reduced 

statistical significance (p < 0.05, FDR corrected). This suggests that performing global mean signal 

regression can improve the statistical significance of the results by removing unwanted variance 

from the data. Importantly, the hippocampus-striatum path remained significant despite concerns 

about confounds that global mean signal (or its regression) may introduce. Additionally without 

GSR, none of the paths fit our hypothesis with conventional non-deconvolved data. Also, no paths 

were found when we searched for lower SFC and lower vDFC values in PTSD and PCS+PTSD 

groups compared to controls, with either deconvolved data or conventional non-deconvolved data. 

All these results unequivocally support that the left striatum – right hippocampus path fits our 

hypothesis irrespective of several pre-processing choices debated lately in the scientific 

community. 
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3.4.2. DTI results 

DTI results revealed greater diversity in structural connectivity between hippocampus and 

striatum, with white-matter fibers connecting these two ROIs being more diffuse (implying less 

integrity) in PCS+PTSD-group compared to PTSD and control groups (see Fig.3.5d). The profile 

was similar in controls and PTSD. From this we infer that compromised structural integrity, greater 

symptom severity and neurobehavioral impairments in individuals with PCS+PTSD could be 

associated with their documented mTBI, and that they are less likely just an extreme subset of 

PTSD. 

All three groups demonstrated structural connectivity between these two regions via the 

following tracts: genu of the corpus callosum, bilateral cerebral peduncles, corticospinal tracts and 

anterior limbs of the internal capsules. It should be noted that even though these tracts were shared 

between groups, the comorbid group demonstrated significantly more breadth (perhaps implying 

less efficiency, and more diffusivity). Additionally, the PCS+PTSD group demonstrated structural 

connection via the pontine crossing tract (part of the middle cerebral peduncle), the right superior 

and anterior corona radiata, and the right superior fronto-occipital fasciculus. Both the control and 

comorbid group demonstrated shared structural connectivity in the fornix, the left posterior limb 

of the internal capsule, and the left external capsule. 

 

3.4.3. Correlation between fMRI connectivities and non-imaging measures 

Connectivity values of hippocampus-striatum path correlated significantly (see Fig.3.6) with 

neurocognitive functioning (neurocognitive-composite-index [NCI] and subtests) and PTSD 

symptoms (PCL5-score) and PCS severity (NSI-score), thus highlighting their relevance to 

underlying neuropathology. It was notable that correlations followed the expected trend: increase 

in severity and decrease in behavioral performance corresponded to higher SFC and lower vDFC. 
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Fig.3.6 Correlation between SFC values and (a) verbal-memory, (c) neurocognitive composite 

index (NCI), (e) PTSD symptom severity (PCL5) and (g) PCS symptom severity (NSI); correlation 
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between variance of DFC values and (b) verbal-memory, (d) NCI, (f) PCL5 and (h) NSI. All 

correlations were statistically significant (numerical statistics in SI-3.3) 

 

Here we present the correlation coefficient (R) between connectivity values and these measures, 

along with the p-value of correlation. We also present the mean (M), standard deviation (SD) and 

effect size (Cohen’s d or Cd) for group-wise comparison of these measures, along with their p-

values of separation. Behaviorally, the PCS+PTSD group (M = 47.26, SD = 7.88) had significantly 

lower scores in verbal memory compared to the PTSD group (M = 52.00, SD = 5.39; Cd = 0.65; 

p = 1.76 × 10-3); and the PTSD group (M = 52.00, SD = 5.39) had significantly lower scores in 

verbal memory compared to controls (M = 56.25, SD = 7.06; Cd = 0.66; p = 3.17 × 10-3). The 

PCS+PTSD group (M = 81.71, SD = 19.82) also had significantly lower scores in NCI score 

compared to PTSD (M = 94.33, SD = 11.50; Cd = 0.71; p = 7.16 × 10-4); and the PTSD group (M 

= 94.33, SD = 11.499) had significantly lower scores in NCI score compared to controls (M = 

100.80, SD = 12.42; Cd = 0.54; p = .016). 

These behavioral differences among the three groups are in accord with the pattern of neural 

differences in connectivity. This has significant implications that suggest a strong relationship 

between the clinical presentation and neurological functioning among groups (controls < PTSD < 

PCS+PTSD). 

The PTSD and PCS+PTSD groups, when combined, showed significantly higher PCL5 scores 

(M = 66.31, SD = 17.10) compared to controls (M = 23.39, SD = 4.2; Cd = 3.09; p = 3.64 × 10-

44). The PCS+PTSD group showed significantly higher scores in the NSI score (M = 43.41, SD = 

15.24) compared to the PTSD and control groups combined (M = 13.11, SD = 13.7; Cd = 2.09; p 

= 1.32 ×10-29). 
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As mentioned before, the NCI score is an average of six behavioral measures. Table.3.3 

summarizes the correlation of each of its six components with the connectivity values. We can see 

that the connectivities are significantly correlated with all of them. 

The SFC values of hippocampus-striatum path across all subjects had significantly high 

negative correlations with several neurocognitive phenotypic measures, most notably with verbal 

memory score and NCI score. Additionally they had significantly high positive correlations with 

PCL5 and NSI scores. Similarly, the vDFC values had significantly high positive correlations with 

verbal memory and NCI scores, as well as significantly high negative correlations with PCL5 and 

NSI scores. Table.3.4 shows the correlation values and corresponding p-values of correlation 

between behavioral scores/symptom severity and connectivity values. 

 

Table.3.3 Correlation value (R) and corresponding p-value for the correlation of each of the six 

components of NCI score with SFC and variance of DFC 

Behavioral Measure 

SFC Variance of DFC 

R p-value R p-value 

Reaction time -0.2462 1.11 × 10-03 0.1527 4.43 × 10-02 

Verbal memory -0.4239 5.57 × 10-09 0.5482 4.89 × 10-15 

Complex attention -0.4415 1.07 × 10-09 0.4017 3.93 × 10-08 

Cognitive flexibility -0.5067 9.74 × 10-13 0.4356 1.89 × 10-09 

Executive functioning -0.5185 2.34 × 10-13 0.4486 5.35 × 10-10 

Processing speed -0.4801 2.04 × 10-11 0.4252 4.97 × 10-09 
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Table.3.4 Correlation value (R) and corresponding p-value for the correlation of behavioral 

measures and symptom severity with SFC and variance of DFC 

Behavioral 

Measure 

SFC Variance of DFC 

R p-value R p-value 

Verbal memory -0.4239 5.57 × 10-09 0.5482 4.89 × 10-15 

NCI score -0.5588 1.11 × 10-15 0.4713 5.25 × 10-11 

Symptom 

Severity 
  

PCL5 score 0.5884 1.37 × 10-17 -0.5112 5.71 × 10-13 

NSI score 0.5671 3.43 × 10-16 -0.4909 6.15 × 10-12 

  

3.4.4. Regrouping subjects based on connectivities 

In line with our hypothesis, we postulated the following: (i) new diagnostic groups created 

based on separation of hippocampus-striatum path-weights would map better onto behavior (i.e. 

neurocognitive performance) as compared to original groups based on conventional diagnostic 

grouping and (ii) PTSD and PCS are spectrum disorders wherein symptom severity is likely to lie 

on a continuum, rather than forming distinct clusters; hence forming high diagnostic confidence 

groups (pure healthy and comorbid groups) and a low diagnostic confidence group (called 

intermediate group) has potential to be clinically useful. Hence, we devised a practical approach 

to regroup subjects into new diagnostic groups with the objective of maximizing heterogeneity of 

the intermediate group while simultaneously minimizing heterogeneity of pure-controls and pure-

PCS+PTSD groups. This novel approach deviates from traditional ways of grouping subjects 

based on symptom reporting and clinical judgment. 

The SFC and vDFC values of the hippocampus-striatum path showed strong statistically 

significant differences among the groups. In order to visualize the connectivity feature space, we 
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fitted a Gaussian bell-shaped surface for each group (see Fig.3.7). Connectivity values of 

individual subjects are embedded on the surface. It can be seen that there is a large overlap between 

the groups, albeit with a statistically significant mean difference between the groups. Therefore, 

the 2D example of the generic embedding procedure described in the methods section is directly 

relevant to this context, making the case for our proposed novel re-grouping procedure. 

 

 

Fig.3.7 Visualization of connectivity differences between the groups: Each group was fitted with 

a Gaussian bell-shaped surface using group mean and standard deviation of SFC and variance of 

DFC for the hippocampus-striatum path. Connectivity values of individual subjects are embedded 

on the surface. 

 

We regrouped the subjects using SFC and vDFC values of hippocampus-striatum path (see 

Fig.3.8a). Clearly there is a relatively narrow intermediate band where all PTSD-subjects are 

sandwiched along with borderline-controls and mild-PCS+PTSD subjects. Outside this band, we 
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find regions of the two pure groups. We observe a continuum with pure-controls merging with the 

narrow intermediate band, which later leads to the space of pure-PCS+PTSD. 

In order to verify whether the imaging tools used for new grouping (viz. SFC and vDFC values) 

are a better classifier of PTSD and PCS than symptom-scores, and to assess the quality of new 

grouping, we compared statistical differences in the neurocognitive measures using new grouping 

against statistical differences obtained with conventional grouping (see Fig.3.8b). We observed 

that the p-values for all behavioral measures for all group-wise comparisons were consistently 

smaller with the new grouping. Additionally, controls (and PCS+PTSD) showed significant 

differences between pure group and transition group in several behavioral measures, which further 

supports our results. It is notable that the new grouping is based on underlying biology while 

conventional grouping is based on screening instruments. These findings demonstrate that the new 

grouping maps better onto neurobehavior than conventional grouping, indicating that SFC and 

vDFC values of hippocampus-striatum path may be a clinically significant marker of PTSD and 

PCS. 

Upon regrouping the subjects based on connectivity values, we obtained a diversity of 70.1% 

in the intermediate group and 0% in the other two groups. PTSD subjects formed the majority in 

the intermediate group at 53%. Table.3.5 gives the distribution of subjects in the conventional 

grouping based on symptom severity scores, and the new grouping based on connectivity, along 

with percentage diversity for the new groups. 
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Table.3.5 Distribution of subjects in the conventional grouping based on symptom severity scores 

and the new grouping based on connectivity: Columns 2-4 correspond to new grouping and rows 

2-4 correspond to the conventional grouping. Row-5 gives the percentage diversity in the new 

groups. 

  
Pure 

Controls 
Intermediate 

Pure 

PCS+PTSD 

Controls 18 10 0 

PTSD 0 17 0 

PCS+PTSD 0 23 19 

% diversity 0% 70.1 % 0% 
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Fig.3.8 (a) SFC and vDFC values of hippocampus-striatum path with new regrouping. The three 

new groups are shown in gray bands. Based on old grouping: red circles are controls, blue 

diamonds are PTSD and green stars are PCS+PTSD subjects, (b) Statistical significance (p-value) 
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of behavioral measures with both conventional old-grouping and proposed new-grouping. 

Logarithmic scale is used for the y-axis of p-values. We observe that all behavioral measures 

consistently exhibit smaller p-value for all comparisons with the new grouping. 

 

Mathematically defined regions for the new groups are as follows: 

Pure Controls: vDFC > 0.3122 × SFC + 0.0268 

Intermediate: 0.3122 × SFC + 0.0268 > vDFC > 0.3122 × SFC  0.0223 

Pure PCS+PTSD: vDFC < 0.3122 × SFC  0.0223 

 

Fig.3.9 shows the mean and SD values of the NCI score and its components for both the 

conventional and the proposed groupings. This figure reiterates the findings of Fig.3.8b and shows 

that the new grouping resulted in important behavioral measures being separated farther apart 

between the groups with lesser variance. 

It is also notable that control subjects in pure control and transition groups showed significant 

differences in several behavioral measures (see Table.3.6). A similar trend was observed between 

PCS+PTSD subjects in pure-PCS+PTSD and transition groups (Table.3.6). This shows that certain 

control subjects have behavioral and neurocognitive impairments, which puts them into the 

transition group, but the PCL5 symptom severity score does not diagnose them with PTSD. It is 

possible that the PCL5 score is not capturing those impairments in these subjects, or it is also 

possible that these subjects develop some other compensatory mechanism which renders them 

healthy, thus failing to get diagnosed with PTSD through the PCL5 score (similar logic goes with 

PCS+PTSD subjects). 
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Fig.3.9 Depiction of statistical separation of CNS-VS subtests and NCI scores for both old 

(conventional) grouping and new (proposed) grouping using mean and SD values 
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Table.3.6 Comparison of behavioral measures between subjects of pure group and transition 

group (for controls and PCS+PTSD subjects). Table provides the p-values (p<0.05) of statistical 

separation. 

Comparison Non-imaging measure p-value Mean #1 Mean #2 

Pure 

Controls (#1) 

vs. 

Transition 

Controls (#2) 

Verbal memory 1.08 × 10-2 101.67 85.70 

Complex attention 4.96 × 10-2 98.06 86.00 

Cognitive flexibility 2.93 × 10-2 106.28 96.60 

Epworth sleepiness scale 1.84 × 10-3 7.06 10.10 

Zung anxiety scale 3.27 × 10-2 27.89 31.10 

Combat exposure scale 3.32 × 10-2 10.50 4.30 

Pure 

PCS+PTSD 

(#1) 

vs. 

Transition 

PCS+PTSD 

(#2) 

NSI score 7.15 × 10-3 39.39 48.26 

NCI score 3.07 × 10-5 89.56 72.21 

Reaction time 5.23 × 10-4 94.57 71.37 

Verbal memory 3.68 × 10-4 92.02 73.08 

Complex attention 1.51 × 10-2 77.13 61.32 

Cognitive flexibility 1.07 × 10-3 88.61 70.74 

Executive functioning 6.93 × 10-5 93.13 73.21 

Processing speed 1.42 × 10-2 94.57 84.32 

 

3.4.5. Classification using support vector machine 

Statistically significant neural signatures need not necessarily have generalizability or 

predictive ability, implying that statistically-significant (fitting our hypothesis) cum top-predictive 

connectivities assume higher importance. We thus used recursive cluster elimination based support 

vector machine (RCE-SVM) classifier [57] to identify the top-predictors. 

Classification was performed for four different paradigms: classification using 32 non-imaging 

measures (NIMs) with i) conventional grouping, and ii) proposed grouping; classification using 
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whole-brain connectivities with iii) conventional grouping, and iv) proposed grouping. Table.3.7 

summarizes worst-case classification accuracies along with top-predictive features. See Fig.3.10 

for worst-case accuracies in every iteration. The corresponding results obtained by using average 

(instead of worst-case) classification accuracy are shown in Fig.3.11, which are obviously much 

better than the worst-case. However, in order to be conservative, we have emphasized worst-case 

results in this work. 

 

Table.3.7 Worst-case classification accuracies along with top-predictive features 

  Conventional Grouping Proposed Grouping 
p-values for column-

wise comparison 

Non-imaging 

Measures 

70.79% 74.03% 
5.42 × 10-11 

Sleepiness and depression NCI and verbal-memory 

Connectivity 

Values 

79.78% 83.59% 
1.11 × 10-13 

SFC and vDFC values of hippocampus-striatum path 

p-values for row-

wise comparison 
7.12 × 10-26 2.68 × 10-28   

 

We observed that classification using connectivities provided significantly higher accuracy 

(about 9% more, p<0.05 Bonferroni-corrected) than classification using NIMs. This finding 

indicates that SFC and vDFC have better predictive ability in identifying subjects with PTSD and 

PCS compared to NIMs. With both NIMs and connectivities, classification with connectivity-

based grouping provided higher accuracy (about 4% more, p<0.05 Bonferroni-corrected) than 

classification using conventional grouping. This implies that new groups derived using 

hippocampus-striatum path-weights not only map onto behavior better than PCL5 and NSI scores 
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(as shown in Fig 3.8), but also have increased predictive power to determine diagnosis of subjects 

irrespective of whether the features are based on connectivity or neurocognitive function. 

Along with classification accuracies, the top-predictors which resulted in highest classification 

accuracy are also of considerable interest. The top NIMs with new grouping were the NCI-score 

and verbal-memory-score, which also resulted in 4% more accuracy. This further supports the 

notion that the connectivity-based grouping maps better onto neurobehavior and also attributes the 

two most important neurobehavioral measures (NCI and verbal-memory) with highest predictive 

ability. For classification using connectivities, SFC and vDFC values of hippocampus-striatum 

path were the top-predictive features. Prior to these findings, this path was attributed only with 

statistical significance between groups. Statistical significance does not necessarily guarantee 

predictive ability of connectivity features [78]. These results show that, in addition to statistical 

separation, this path also has the highest predictive ability, all obtained in a data-driven way from 

whole-brain connectivity data. For pictorial description of the entire pipeline and corresponding 

results, see Fig.3.1b. 

 

 
        (a)                     (b) 
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Fig.3.10 Worst-case classification accuracies obtained using recursively reducing number of 

discriminative features, with both old grouping (green) and new connectivity-based grouping 

(blue) using (a) non-imaging measures and (b) connectivity values 

 

 
        (a)                     (b) 

Fig.3.11 Average classification accuracies obtained using recursively reducing number of 

discriminative features, with both old grouping (green) and new connectivity-based grouping 

(blue) using (a) non-imaging measures and (b) connectivity values 

 

We also performed classification by combining non-imaging measures and connectivities and 

using all of them as input features in the classifier. However results showed that they did not 

perform significantly better than classification using connectivities alone, and also the final 

accuracy was unchanged since the connectivities of hippocampus-striatum path remained the top 

classifying features (see Fig.3.12). 
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        (a)                     (b) 

Fig.3.12 Worst-case classification accuracies obtained using recursively reducing number of 

discriminative features using non-imaging measures and connectivity values combined (blue), 

compared with that using connectivity values alone (green), with both (a) old grouping and (b) 

new connectivity-based grouping 

 

3.5. Discussion 

3.5.1. Evidence in favor of our hypotheses: 

Our findings indicate perturbations in functional connectivity of hippocampal-striatal neural 

network associated with PTSD with/without PCS, indicative of an increased, yet less-variable 

drive between the regions, which supports our overarching hypothesis (Fig.3.1a). SFC and vDFC 

values also correlated significantly with neurocognitive measures and symptom severity. 

Furthermore, our results revealed directional concurrence in the differences in symptom severity, 

cognitive disruption, compromised connectivity, and diffusivity of related white-matter tracts 

between the groups, with PCS+PTSD being the most compromised, followed by PTSD then 

combat controls. 
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We also found support for three corollary hypotheses stated in the introduction. First, 

complementary to connectivity findings, DTI results confirmed greater diversity (hence, less 

integrity) of white-matter tracts between hippocampus-striatum in PCS+PTSD-group compared to 

both control and PTSD groups, suggesting a structural basis for PCS. Prior work shows affected 

white-matter integrity with left-striatum in subjects sustaining an mTBI [79]. This structural 

specificity implies that it is unlikely that the PCS+PTSD-group is an extreme subset of PTSD. 

Second, we regrouped the subjects based on SFC and vDFC of hippocampus-striatum path. We 

found that the p-values of separation among the three new groups were smaller for all behavioral 

measures for all group-wise comparisons compared to conventional grouping. Third, classification 

using new grouping provided significantly higher accuracy (~4% more) than conventional 

grouping. Further, the accuracies obtained by imaging measures were significantly higher (~9% 

more) than non-imaging measures for both conventional and new groupings. SFC and vDFC of 

hippocampus-striatum path were also the top-predictive features, in addition to being statistically 

significant. 

 

3.5.2. Implications for advancing our mechanistic understanding of PTSD and PCS 

Our results are interesting given that individuals with PTSD and PCS have cognitive 

impairments [38, 5] that reflect habit learning or procedural memory, which when impaired, is 

associated with perseverative thinking. While striatum is involved in this, the hippocampus is 

implicated in declarative memory. Both activation and connectivity studies have previously dealt 

with this aspect. Goodman et.al. [80] showed that traumatic memories relatively increase 

activation of striatum while decreasing activation of hippocampus, leading to a shift from 

declarative to habit formation. Moreover, Packard et.al. [81] showed that this impairing effect of 
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hippocampus-dependent memory effectively produces enhanced habit learning by reducing 

competitive interference between cognitive and habit memory systems; and this predominant use 

of habit memory is induced by stressful emotional states. In line with this finding, perseverative 

thoughts are also elicited by emotional states associated with stress in individuals with PTSD. 

Schwabe et.al. [82] showed that striatum-based procedural-memory is stress-promoted, meaning 

that stress induces shift from hippocampal to striatal memory. Taken together, these studies 

suggest that PTSD subjects perseverate on traumatic memories, more frequently and intensely than 

memories of other events, which leads to a habit-like response. Indeed, Spielberg et.al. [40] have 

shown that striatum is involved in re-experiencing issues seen in traumatized subjects. These 

observations could explain the involvement and interplay between striatum and hippocampus in 

PTSD-subjects. Both hippocampus and striatum have been implicated in mTBI and PTSD across 

several studies (see reviews [38, 5, 39, 83]). We postulate that there exists a fine balance between 

hippocampal and striatal activation implicated in the retrieval of memory, which determines 

relative emphasis placed on these memories. An imbalance in this mechanism might likely 

increase perseveration of intrusive memories associated with stress-related conditions [84]. 

Next, both structural and functional connectivity studies have investigated the memory network 

in PTSD and PCS. Memories of stressful negative life events, necessary for PTSD, alters the 

structural connectivity between striatum and hippocampus [85], which reiterates the structural 

basis for our findings. In support of our findings, Cisler et.al. [43] showed that there is increased 

SFC between hippocampus and striatum in PTSD-subjects during a 'repeated-exposure-to-

traumatic-memory' task. However, one of our critical contributions is in showing that the 

hippocampus-striatum path has significantly low variability of connectivity over time in PTSD 

and PCS+PTSD groups. This indicates that there may be a lack of adaptability and regulation 
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between these regions, suggesting that PTSD is associated with a hyper-connectivity state, 

therefore, making it difficult to disengage from unwanted thoughts and feelings; a phenomenon 

which is often observed with habit formation. This mechanistic insight may be a valid explanation 

for clinical/behavioral manifestations in co-occurring PTSD and PCS. 

In this study, we found correlations between connectivities and neurocognitive scores, as well 

as significant group differences in neurocognitive functioning. Looking with more statistical 

granularity, the greatest differences were found in Executive-Functioning (EF) and Cognitive-

Flexibility (CF) indices. The EF measures performance in rapid decision management, recognizing 

rules and categories; and CF measures performance in adaptation to rapidly changing rules and 

information manipulation. As such, our results appear to be in accord with findings from Mattfeld 

and Stark [86, 87] which suggest functional contributions and interactions between hippocampus 

and striatum on tasks requiring learning of new arbitrary associations. 

We have used this mechanistic understanding of altered neural circuitry to inform us about 

subject groupings which seem neurobiologically valid. Our regrouping strategy using 

connectivities has interesting implications for clinical settings wherein one could potentially obtain 

fMRI connectivity-values from a new subject and assign a diagnostic membership to the subject 

based on position of the subject’s connectivities in our neurobiologically-informed-feature-space 

(NIFS) (see SI-3.4 for exact boundary equations). If the connectivities (SFC and vDFC of 

hippocampus-striatum path) are within the bounds of pure-control group in the NIFS, then the 

subject can be diagnosed as a control with high confidence (similar logic for pure-PCS+PTSD). If 

the connectivities are, however, within the intermediate group, then the subject’s symptoms are 

likely due to PTSD. Yet further investigation is needed to validate this method. Such a 

classification could improve diagnostic accuracy above and beyond traditional classification. 
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Future studies should focus on generalizing these results by replicating it in a large sample, so that 

they could be used clinically as biomarkers. 

Interestingly, SFC and vDFC of hippocampus-striatum path resulted in highest classification 

accuracy. They were also identified as the top-diagnostic features, which was determined in a data-

driven way from whole-brain connectivity data. This demonstrates that they could be a better 

marker of neural and behavioral characteristics of PTSD and PCS than just PCL5 and NSI scores, 

and have potential as imaging biomarkers for these disorders. Our "potential biomarker" satisfies 

three of the four conditions described by Woo et.al. [88] to be satisfied by a good biomarker 

(diagnosticity, interpretability and deployability). As regards the fourth condition 

(generalizability), based on suggestion in Woo et.al., we issue an open call for researchers having 

similar data to share with us so that the classifier can be tested on them. 

 

3.5.3. Limitations and Future Work 

We note a number of limitations and caveats which must be kept in mind while interpreting the 

results presented here, and simultaneously suggest how future studies may address those issues: 

(1) In accordance with our hypothesis, we observed that connectivity values were more extreme 

in the case of PCS+PTSD compared to PTSD alone, and that they also correlated significantly 

with all the behavioral/symptom severity scores. This shows that subjects who had the added 

burden of PCS along with PTSD had higher symptom severity than subjects with only PTSD, and 

also showed higher SFC and lower DFC values as compared to PTSD. Additionally, our DTI 

results clearly show that mTBI may lead to more severe symptomatology due to structural changes, 

which might explain why the PCS+PTSD group is more extreme than the PTSD group. Although 
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there is limited literature on comorbid imaging studies of PCS and PTSD, we speculate that: (i) 

the burden of a prior mTBI exacerbates PTSD-related brain alterations which were potentially 

already prevalent in these subjects before developing PCS or, (ii) subjects who sustain mTBI and 

concomitantly or subsequently had a traumatic experience will end up with greater functional 

neural alterations which correspond to higher symptom severity than subjects who experienced 

psychological trauma alone. Future experimental designs must aim to untangle the underlying 

causal mechanisms in comorbid PTSD and PCS in order to confirm either of the two scenarios. 

(2) The structural specificity for PCS in subjects who had sustained an mTBI implies that the 

comorbid group being an extreme subset of PTSD is unlikely. However, future studies must verify 

this finding in subjects with mTBI/PCS, but without PTSD. (3) Our findings were based on results 

obtained from military subjects with combat exposure. Having a control population with combat 

exposure is a unique contribution since it provides a more representative control group. Indeed, a 

recent study revealed differences in resting state fMRI connectivity patterns between civilian and 

combat controls [89] “potentially due to military training, deployment, and/or trauma exposure.” 

Therefore, further work needs to be done to verify whether these results are applicable to non-

combat-related (or civilian) PTSD and PCS. (4) Only male veterans were studied, thus our findings 

cannot be generalized to female soldiers. In order to ascertain diagnostic utility of the connectivity 

values of hippocampus-striatum path and apply these methods in clinical settings in the future, the 

results need to be replicated on a much larger sample size, which is more representative of the 

target population in terms of gender, ethnicity, etc. (5) Future studies with the targeted populations 

could specifically address the habit systems and declarative systems separately, with behavioral 

measures involving probabilistic classification (e.g., the weather prediction task) which are 

sensitive to such shifts [90, 91]. (6) Time since concussion for PCS subjects was not available. It 
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is possible that it might correlate with SFC and vDFC values. Also, the data was acquired from 

the subjects only on one instance. Longitudinal studies could focus on the behavior of the 

connectivities of hippocampus-striatum path over the advancement, recovery and rehabilitation 

phases of subjects with PTSD with and without PCS. This will be an appropriate test for validating 

striatum-hippocampus SFC and vDFC as a candidate imaging biomarker for PTSD and 

PCS+PTSD.  
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CHAPTER 4 

 

Identifying Disease Foci from Effective Connectivity 

 

4.1. Introduction 

Brain imaging provides insight into the functional neuroarchitecture associated with 

neurological conditions such as mild traumatic brain injury (mTBI) and posttraumatic stress 

disorder (PTSD) [12], both prevalent in military service members. However, much of our 

understanding of the brain is organized around properties of neural regions, whereas our 

knowledge of the complex connections between the various regions is not as mature. Given that 

connectivity contains mechanistically pertinent information not available through functional 

Magnetic Resonance Imaging (fMRI) activation studies, attaining region-specific information 

from connectivity data could advance our understanding of the neural circuitry and associated 

brain processes. Additionally, large effects in natural systems are often caused by a few isolated 

sources; identifying these source(s) of disruption could greatly mitigate the distributed network 

abnormalities. Hence, we have developed a novel framework to identify affected pathological foci 

from directional brain networks, which likely represent the source(s) of dysfunction in a given 

disorder. We illustrate the approach with data obtained from soldiers with PTSD and post-

concussion syndrome (PCS, a chronic outcome of mTBI). 

Exposure to blasts and subsequent concussions result in mTBI, which has a high comorbidity 

with PTSD [15, 92]. As of September 2014, over 2.7 million Americans have served in Iraq and 

Afghanistan, of whom about 20% developed PTSD, 19% acquired TBI, and 7% acquired both [1]. 

With current diagnostic procedures and treatments centering on subjective assessments, a thorough 



65 

 

 

 

understanding of the mechanistic basis for both PTSD and PCS symptom presentation is essential 

for accurate diagnosis, targeted treatments, and return-to-duty decision making. Due to largely 

overlapping symptomatology between PCS and PTSD [11], it is imperative that objective 

connectivity markers of the respective neuropsychiatric and neurologic conditions are identified 

and validated in order to improve clinical evaluation and treatment outcomes. In this work, we 

study group-level differences between PTSD, PCS+PTSD (comorbid group having both PCS and 

PTSD) and healthy combat controls. 

Several studies have identified [93] certain key frontal and subcortical areas, among others, and 

associated connections which are impaired in both PTSD and mTBI. However, a mechanistic 

explanation of the affected network architecture in PTSD with and without mTBI is still under 

development. Specifically, given that network disruption often arises from alterations in a few 

focal areas, segregation of such sources of network disruption from the connectivity changes which 

happen as a consequence of them, has been elusive. Since such foci are part of the affected 

network, the disruption is propagated to other regions connected with the foci. Therefore, we 

investigate the foci of network disruption, in addition to characterizing connectivity alterations 

associated with them. 

While functional connectivity (FC) is popularly used to study brain networks, there is a need to 

identify networks with causal relationships rather than co-activation. Underlying network 

interactions could be causal in nature in addition to (or rather than) being synchronous, which are 

shown to exist even in fMRI timescales [94]. As such, it is important to discover causal networks 

in addition to co-activation networks for a more complete characterization. PTSD and mTBI are 

generally seen as frontal dysregulation disorders [93], in which directional (or causal) influences 
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originating from frontal areas are impaired. This further motivated us to employ directional 

connectivity based on causality. 

Effective connectivity (EC) refers to directional influences among brain regions [94]. Granger 

causality (GC) is an exploratory technique used to quantify EC between brain regions [95]. It is 

the most widely used approach to quantify causal influences in natural systems [96] including, but 

not limited to, epidemiology, molecular biology, econometrics, evolutionary biology, climate 

science, computer networks, linguistics and brain science [97]. GC has the advantage that it is a 

data driven approach and there are no requirements for specifying connectivity priors like in 

dynamic causal modeling (DCM) [94, 98, 99, 100]. It would be practically impossible to build a 

DCM model with priors for whole-brain connectivity as it would be computationally not feasible 

[101]. Both recent simulations [102, 103] and experimental results [104, 35, 105] indicate that GC 

applied after deconvolving the HRF from fMRI data (as we have done), is reliable for making 

inferences about directional influences between brain regions. This method has also been 

employed in several recent fMRI studies [106, 107, 108, 109, 110, 111, 112, 113, 114]. 

Most studies investigate EC or directional brain connectivity by assuming connectivity to be 

temporally stationary. Dynamic fluctuations of connectivity are not captured when using static 

connectivity. Given that mental processes happen within a few milliseconds to seconds’ time, 

while an fMRI scan lasts for several minutes, it is natural that connectivity fluctuates over time, 

and that such variations carry biologically relevant information [115], which is distinct from that 

represented by static connectivity [116]. Previous studies in PTSD and mTBI have not utilized 

dynamic connectivity information in a manner that extends our understanding based on the 

information obtained from conventional static connectivity. In this study, we used static EC (SEC) 

as well as dynamic EC (DEC) measures [106]. 
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Upon obtaining these whole-brain connectivities, we used a probabilistic framework to identify 

affected foci, i.e. regions which could possibly be the primary sources of disruption which is then 

transmitted to other areas via the underlying directional network. We adopted a technique 

developed recently for FC data [117], and made specific modifications to the model formulation 

to make it suitable for both EC and dynamic connectivity data. The modifications were necessary 

because the probability distributions of EC and FC metrics are different, in addition to the fact 

that, unlike FC, EC is directional in nature. The method is based on the concept that affected foci 

are associated with a large number of affected connections. It identifies dysfunctional foci and also 

provides associated dysfunctional connections. 

We constructed separate brain networks using strength (SEC) and temporal variability (variance 

of DEC [vDEC]) of directional connectivity, and then used them to identify diseased foci 

separately. The obtained foci for SEC and vDEC were then overlapped (intersection) to obtain 

final foci which had both altered SEC and vDEC. The dysfunctional connections associated with 

the foci were obtained and overlapped in a similar manner, but with certain restrictions as described 

next. 

It has been shown that lower temporal variability of connectivity is associated with both 

neurologic and psychiatric conditions [116, 118, 119, 120] often presenting as a lack of cognitive 

flexibility. Reduced temporal variance in DFC is associated with psychiatric disorders as well as 

compromised behavioral performance in healthy individuals [63, 116]. This reduction is associated 

with compromised ability to dynamically adjust (e.g. behavior, thoughts, etc.) to changing 

conditions. This phenomenon is well recognized in other biological systems such as reduced heart 

rate variability being a marker of cardiovascular disease [121]. Since external influences and 

internal body states are continually changing, a healthy biological system varies its activity in real-
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time to accommodate these changes. In these terms, “frozen” connectivity reflects compromised 

brain health. Such connectivity characterization has been employed in recent works, with higher 

connectomic flexibility being associated with favorable/better task performance in healthy adults 

[116] and psychiatric disorders [122]. In this work, we identified connections with altered SEC 

and lower vDEC in the disorders compared to controls. 

Additionally, PCS+PTSD was a more severe group compared to the PTSD group, owing to the 

added burden of mTBI. It is noteworthy that mTBI is a result of pressure waves arising from a 

blast and PCS is a behavioral syndrome which is a consequence of that. Therefore, unlike TBI 

wherein the spatial location of injury can be different in different subjects, the common behavioral 

manifestations among subjects with PCS and mTBI suggests that it is likely to have common 

sources of neural network disruption in their brains. Also, evidence shows that mTBI increases the 

severity of PTSD [123]. Hence we looked for paths associated with the affected foci, which had 

reducing vDEC and altered (either monotonically reducing or monotonically increasing) SEC as 

we moved from Control to PTSD to PCS+PTSD. We hypothesized that PTSD with and without 

mTBI is characterized by certain affected regional foci, and those foci are associated with 

connections having altered strength and lower variability of directional brain connectivity (see 

Fig.4.1 for an illustration of our hypothesis). The foci were identified using whole-brain 

connectivity data, while the affected paths conforming to our hypothesis were restricted to those 

connections which were associated with the foci. Notably, we tested the hypothesis in a data-driven 

manner using resting-state fMRI which is not task dependent.  
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Fig.4.1. Illustration of our hypothesis showing monotonically reducing variability of vDEC, and 

either increasing or decreasing SEC as we move from Control to PTSD to PCS+PTSD. Font sizes 

are symbolic of the increasing/decreasing trend. 

 

For the paths which fit our hypothesis, we sought to assess their behavioral relevance, hence 

their connectivity values were correlated with neurocognitive scores and symptom severity in 

PTSD and PCS. 

Our hypothesis is based on an analysis framework, which relies on statistical separation 

between groups. However, statistical separation of between-group connectomics does not 

necessarily imply that they have predictive diagnostic ability [57]; that is, they may not be able to 

predict group membership at an individual level with reasonable accuracy. Consequently, those 

connections which are both statistically significant and possess the discriminative power to classify 

subjects with high accuracy are more powerful. Several studies report that machine-learning 

classifiers can be successfully used on fMRI data for diagnostic prediction, including, but not 

limited to, major-depressive-disorder [58], Parkinson's disease [59], PTSD [60], dementia [61], 

autism [62] and prenatal-cocaine-exposure syndrome [57]. However, to the best of our knowledge, 

there are no studies which have used connectivity markers in the classification of both PTSD and 

mTBI subjects. For neurological disorders like PTSD and PCS, classification using neuroimaging 

signatures could be applied to obtain more accurate diagnoses by assisting the clinician with 

additional information. Therefore, using whole-brain connectivity data we identified, in a data 
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driven way, those features which predict the diagnostic membership of a novel subject with high 

accuracy. We specifically investigated whether there was an overlap between connectivity paths 

satisfying the primary hypothesis (Fig.4.1) and those identified as having high predictive ability. 

We hypothesized that (secondary hypothesis) these paths will better predict the diagnostic 

membership of a novel subject than non-imaging measures (behavioral, neurocognitive and self-

report measures), thus highlighting their relevance to the neuropathology of PTSD and mTBI. We 

lay emphasis on dysfunctional foci and their associated connections which have high statistical 

separation as well as high predictive ability in addition to having behavioral relevance. 

 

4.2. Effective Connectivity Analysis 

4.2.1. Granger Causality 

Whole-brain SEC was obtained using Granger causality (GC) [95]. GC is an exploratory 

technique used to quantify directional influences between brain regions. The underlying concept 

is that, if past values of a timeseries “T1” can, in a mathematical sense, predict the future values 

of another timeseries “T2”, then a causal influence from timeseries T1 to timeseries T2 is inferred 

[124]. GC employs a multivariate vector autoregressive (MVAR) model to quantitatively predict 

one timeseries using the other, which is briefly described next. 

Given a system defined by k different timeseries X(t) = [x1(t), x2(t), … xk(t)], with k being 125 

ROIs in this study, the MVAR model of order p is given by: 

 

𝑋(𝑡) = 𝐴(1)𝑋(𝑡 − 1) + 𝐴(2)𝑋(𝑡 − 2) + ⋯ + 𝐴(𝑝)𝑋(𝑡 − 𝑝) + 𝐸(𝑡)                                         (4.1)
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Where E(t) is the model error and A(1) … A(p) are the model coefficients. The coefficients were 

estimated through multivariate least squares estimation, which calculates the optimal set of 

coefficients that minimizes the model error in the least squares sense. Model order p must be 

chosen either by employing a mathematical principle such as the Bayesian Information Criterion 

(BIC) [100] or based on the requirements of the application under consideration. In neuroimaging, 

the interest is in causal relationships within neural delays of a TR [107], thus we chose a first order 

model. Since fMRI’s temporal resolution is low, a first order model is shown to capture the most 

relevant causal information [94]. 

Coefficient A(p) indicates the degree to which the past X(t-p) can predict the present X(t). Then, 

the sum of coefficients of all delays would represent the degree to which all the past values together 

can predict the present. This formulation is used to evaluate GC by predicting the present value of 

timeseries-2 (T2) using the past values of timeseries-1 (T1). If, for example, the sum of resulting 

model coefficients is large, then it implies that T1 can predict T2 very well. If T1’s past can predict 

T2’s present then that implies a causal relationship from T1 to T2. As in previous studies [125], 

GC was derived formally, based on the model coefficients, as: 

 

𝐺𝐶𝑖𝑗 = ∑ 𝑎𝑖𝑗

𝑝

𝑛=1

(𝑛)                                                                                                                                     (4.2) 

 

Where GCij is the SEC value from ROI i to ROI j and aij are the elements of matrix A. It is 

notable that a single coefficient matrix is obtained for the entire duration of data, and the 

coefficients do not vary over time. This traditional formulation of GC was slightly modified, as in 

earlier studies [95], to remove the effect of zero-lag cross-correlation between timeseries. For this, 

we included the zero-lag term in Eq.1 as shown below. 
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𝑋(𝑡) = 𝐴′(0)𝑋(𝑡) + 𝐴′(1)𝑋(𝑡 − 1) + 𝐴′(2)𝑋(𝑡 − 2) + ⋯ + 𝐴′(𝑝)𝑋(𝑡 − 𝑝) + 𝐸(𝑡)             (4.3)

  

The diagonal elements of A(0) are set to zero, such that only the instantaneous cross correlation, 

and not auto correlation, between the timeseries are modeled. The model coefficients obtained 

from Eq.3 would not be equal to those obtained from Eq.1, since the inclusion of zero-lag term 

affects other coefficients by removing cross-correlation effects from them. The zero-lag term is 

thus not used in the evaluation of GC. GC thus obtained would be free from zero-lag correlation 

effects and is defined as correlation-purged GC (CPGC), which has been widely used in recent 

times (for example, see [126, 127]). A 125×125 SEC matrix was obtained for every subject by 

employing CPGC. 

Next, DEC was obtained using time-varying dynamic Granger causality (DGC), evaluated in a 

Kalman filter framework. We employed a dynamic multivariate vector autoregressive (dMVAR) 

model for estimating DEC [106, 109]. The model is ‘dynamic’ because, unlike CPGC formulation, 

its model coefficients vary as a function of time. Here, DEC is the time-varying physiological 

process, which is quantified through the DGC measure, which employs the dMVAR model solved 

in the Kalman filter framework. In DGC, coefficients A'(p) are allowed to vary over time, thus 

giving coefficients A'(p,t) in the dMVAR model as: 

 

𝑋(𝑡) = 𝐴′(0, 𝑡)𝑋(𝑡) + 𝐴′(1, 𝑡)𝑋(𝑡 − 1) + ⋯ + 𝐴′(𝑝, 𝑡)𝑋(𝑡 − 𝑝) + 𝐸(𝑡)                                  (4.4) 

 

The dynamic model coefficients are estimated in a Kalman filter framework using variable 

parameter regression [128]. DGC is then computed as: 

 

𝐷𝐺𝐶𝑖𝑗(𝑡) = ∑ 𝑎′
𝑖𝑗

𝑝

𝑛=1

(𝑛, 𝑡)                                                                                                                       (4.5) 
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Where DGCij(t) is the DEC value from ROI i to ROI j at a given timepoint t, and a'ij are the 

elements of matrix A'. We compensated for zero-lag cross-correlation effects here also, like in 

CPGC. Given that our data had 1000 timepoints, we obtained a 125×125×1000 DEC matrix for 

every subject by employing DGC. 

Recent simulations [102, 103] as well as experimental results [104, 35, 105] suggest that GC 

applied after deconvolving the HRF from fMRI data (as we have done), is reliable for making 

inferences about directional influences between brain regions. This method for obtaining SEC and 

DEC has also been employed in several recent fMRI studies [106, 107, 108, 109, 110, 111, 112, 

113, 114]. Variance of DEC (vDEC) was taken as the measure of variability in directional 

connectivity over time (125×125 matrix per subject), which, along with SEC, was used further in 

identifying disease foci. To comprehend the idea of SEC and DEC from a neuroimaging 

standpoint, we provide an illustration using a simple example of a pair of real fMRI timeseries 

(please see Fig.4.2). 
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Fig.4.2. Illustration of SEC and DEC from a neuroimaging standpoint using two real fMRI 

timeseries. In (a), the red timeseries consistently seems to follow after the blue timeseries, 

indicating that red’s associated brain region activates (and deactivates) as soon as blue’s region 

activates (and deactivates), hence a causal influence and a high SEC value (note that correlation 

is low). DEC provides further insight, which shows that steady causality is maintained mainly in 

the middle phase and that causality is lost on three brief instances (where it dips due to observable 

loss of causality between the timeseries’ of those sections [please follow the arrows]). This 

variability is quantified in vDEC. In (b), the two timeseries are nearly overlapping hence highly 

correlated. But the variations in red timeseries do not occur after (or before) the variations in blue 

timeseries (and vice versa). This lack of causal relationship gives low SEC value. 

Correspondingly, DEC values linger around the zero-mark since causal relationship does not 

seem to emerge at any point in time. 

 

4.2.2. Identifying Disease Foci 

As noted earlier, connectivity modeling identifies interrelationships through connections, while 

our insights on the brain center on functions of regions. Hence we sought to identify disrupted 

regional foci in PTSD and mTBI using EC data. 

We used a Bayesian probabilistic model to identify disorder foci from connectivity data [117], 

which assumes that disrupted regions are associated with large number of abnormal connections. 

The efficacy of this method has been demonstrated earlier with simulations as well as real fMRI 

data, in particular using static functional connectivity (FC) [117]. However, their model made 

certain assumptions on the priors, which were suited for FC data’s probability distribution. Here 

we extend this method to identify disease foci using both static and dynamic EC, albeit with certain 
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modifications in the model formulation given that EC matrices are not symmetric, unlike FC, and 

that the distributions of FC and EC data are dissimilar, and static and dynamic connectivity data 

have dissimilar distributions. We explain the method briefly before addressing these issues. For a 

detailed account of the method, please refer to Venkataraman et al. [117]. 

The model was developed for FC. FC is seen as a latent phenomenon with three distinct states: 

positive connection (+1), negative connection (-1) and no connection (0). FC obtained from fMRI 

is seen as a noisy measurement of the unknown latent FC. The model makes the following three 

assumptions: (i) a connection between two disease foci is abnormal with probability 1, (ii) a 

connection between two non-affected regions is normal with probability 1, and (iii) a connection 

between a disease focus and a non-affected region is abnormal with probability p. Upon initiating 

the model with standard priors, variational expectation maximization (EM) algorithm is employed 

to solve for the model parameters. The model produces posterior probabilities for every region and 

every connection, using which diseased foci and connections can be identified. 

SEC’s probability distribution resembled a Gaussian, similar to correlation. While correlation 

usually has a distribution with mean±SD of 0±0.25, SEC’s distribution had mean±SD of 0±0.19, 

which is acceptable. But it is not a bounded measure, unlike correlation which is bounded by [-

1,1]. The model assumes a tri-state distribution, with default states set to [-1,0,1]. In our entire 

data, we found a very small number of SEC values which were greater than 1 or smaller than -1 

(0.0026%). We wanted to avoid its negative impact on model evaluation, as well as ensure reliable 

results. Hence, we replaced each such value (which corresponds to one connectivity path in one 

subject) by the group-average SEC value for that connectivity path. Similarly, in vDEC, we 

replaced any values not within range by the corresponding group average (0.0053% of values). 

With both SEC and vDEC, the connectivity matrix is asymmetric, unlike FC which is directionless. 
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Hence the entire matrix was fed into the model, unlike with FC where only the lower or upper 

triangular part would be used. Put together, these modifications allowed the model to be applied 

to effective connectivity as well as dynamic connectivity data. 

The model was evaluated for one thousand runs and statistical significance of foci were 

determined based on a non-parametric permutation test. We took the entire dataset and randomly 

assigned groups. We then fit the model using the standard approach and extracted the posterior 

probabilities of each region being diseased with random group assignment. This was repeated 

(randomly assigning labels, fitting model, extracting posterior) for 10000 iterations to obtain the 

posterior null distribution for each region. The p-value for each region was then the proportion of 

the thousand runs for which the null posterior (i.e. random assignment) was greater than what foci 

posterior we had observed when we fit the model with the true labels. We thus obtained 

significantly affected disease foci in the disorders (p<0.05, Bonferroni corrected). 

 The method also provided affected connectivities associated with the disease foci, which would 

help in interpreting affected networks from the point of view of the dysfunctional foci. Among 

such connectivities, we retained only those connections which crossed our statistical significance 

threshold for effective connectivity values outside of the foci method, in accordance with our 

primary hypothesis (p<0.05, whole-brain FDR-corrected). Differences were controlled for age, 

race, education and head-motion (using mean frame-wise displacement obtained across all brain 

voxels for each subject as defined by Power et al. [65]). This was done to ensure that, irrespective 

of the model used by us, the significant connections which emerge in this work would have crossed 

whole-brain multiple comparisons corrected statistical threshold like in most studies, in addition 

to the fact that the model quantitatively selected these paths using the posteriors. This ensured that 
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our results conformed to multiple layers of verification and statistical standards, in addition to 

providing novel insights through the foci method. 

This model is applicable only for comparison between two groups. Since we were comparing 

three groups, we overlapped the foci and connections obtained in the three pairwise comparisons 

to extract only the common foci and connections (intersection). In statistical sense, this was the 

most conservative approach possible. In accordance with our hypothesis, we identified those paths 

associated with the dysfunctional foci which exhibited altered SEC (either reducing only or 

increasing only) and lower vDEC as we moved from Controls to PTSD to PCS+PTSD. Such a 

network would disentangle the effects of PTSD as well as comorbid PTSD and mTBI, providing 

novel insights through directional and dynamic connectivity. 

 

4.2.3. Behavioral Relevance of Connectivity Values 

In order to assess the behavioral relevance of connectivity values, we first correlated SEC and 

vDEC values of each of the identified paths with symptom severity in PTSD (PCL5 score) and 

PCS (NSI score), and neurocognitive functioning (NCI score and subtests). Neurocognitive 

functioning (e.g. cognitive flexibility, executive functioning) is affected in psychiatric disorders 

such as PTSD and PCS, hence identifying behaviorally relevant connections carries importance. 

We report significant correlations, thus associating such connections with altered behaviors. 

We observed that majority of the identified connections correlated well with behavior. In order 

to get further insight into how the ensemble of identified connections mapped onto the ensemble 

of behaviors, we performed partial least squares regression (PLSR) analysis [129]. Using PLSR, 

we tried to predict symptom severity (PCL5, NSI) and neurocognitive functioning (NCI and 

subtests) from SEC and vDEC connectivity values of the connections identified from prior 
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analysis. We report the percentage of variance in behaviors explained by the connectivities. Fig.4.3 

summarizes the processing pipeline of all methods used. 

 

 

Fig.4.3. Schematic of the entire processing pipeline 

 

4.3. Results 

4.3.1. FMRI Connectivity Results 

We evaluated SEC and vDEC and used that in a novel framework to identify disrupted regional 

foci and their associated connections in the disorders in accordance with our hypothesis. We 

identified three foci: (i) left middle frontal gyrus [MFG], which mainly included parts of BA9 and 

BA10, (ii) left anterior insula, and (iii) right hippocampal formation (included anterior parts of 
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hippocampus, parahippocampal gyrus, entorhinal and perirhinal cortices). These affected foci were 

connected to/from other brain regions which were part of the disrupted network (see Fig.4.4 for 

affected ROIs and Table 4.1 for affected connections with MNI coordinates). 

 

 

Fig.4.4. Brain regions (with exact region boundaries) involved in the affected network. Regions in 

red are the affected foci and those in blue are the regions connected to/from the affected foci. 

MFG= middle frontal gyrus, OFC= orbito-frontal cortex, TPJ-temporo-parietal junction, 

DLPFC=dorsolateral prefrontal cortex. 
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Table.4.1. The 12 paths whose effective connectivity values were significantly different between 

the three groups: table provides the MNI coordinates for these paths. MFG=middle frontal gyrus, 

OFC=orbito-frontal cortex, TPJ=temporo-parietal junction, DLPFC=dorsolateral prefrontal 

cortex. 

Path 

no. 
Path 

MNI coordinates of centroid (x, y, z) 

Source Destination 

1 L_MFG → L_Insula -31.4, 39.1, 28.3 -32.9, 20.5, 1.9 

2 L_Insula → L_Amygdala -32.9, 20.5, 1.9 -23.1, -2.6, -20.5 

3 L_Amyg → R_Hippocampus -23.1, -2.6, -20.5 19.4, -12.4, -25.5 

4 L_MFG → L_OFC -31.4, 39.1, 28.3 -8.1, 40.3, -28.9 

5 L_OFC → L_Insula -8.1, 40.3, -28.9 -32.9, 20.5, 1.9 

6 L_MFG → R_Ant_Cingulate -31.4, 39.1, 28.3 10.3, 44.2, 6.5 

7 R_Ant_Cingulate → L_Insula 10.3, 44.2, 6.5 -32.9, 20.5, 1.9 

8 R_Hippocampus → L_Insula 19.4, -12.4, -25.5 -32.9, 20.5, 1.9 

9 R_Hippocampus → L_Precuneus 19.4, -12.4, -25.5 1.23, -57.1, 44.6 

10 R_Hippocampus → L_Striatum 19.4, -12.4, -25.5 -11.3, 12.2, 3.5 

11 L_MFG → R_TPJ -31.4, 39.1, 28.3 46.3, -53.4, 16.9 

12 L_MFG → R_DLPFC -31.4, 39.1, 28.3 47.1, 26.6, 37.1 

 

Fig.4.5 shows the networks associated with each focus. It shows widespread dysregulation 

originating from MFG, followed by information integration from frontal and hippocampal regions 

relayed to the amygdala by the insula, followed by overdrive of memory retrieval regions caused 

by hippocampus. Further clarity was obtained by reorganizing them into three functionally 

separable networks (Fig.4.6): (i) frontal top-down dysregulation network steered by MFG, causing 

direct and indirect (through OFC and ACC) dysregulation of insula as well as parietal memory 

retrieval region, (ii) insula → amygdala → hippocampal loop which appears to go into a positive-
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feedback loop representing unrestrained subcortical overdrive, caused due to frontal disinhibition 

mediated by the insula, and (iii) hippocampal memory-retrieval network which likely translates 

and mediates subcortical overdrive into heightened memory-retrieval through overdrive of 

association areas involving memory processing/retrieval. This likely leads to trauma re-

experiencing, hyperarousal, flashbacks and other symptoms observed in PTSD and mTBI. 

 

 

Fig.4.5. Networks associated with the following three foci (in red): (a) left middle frontal gyrus 

(MFG), showing widespread dysregulation originating from this region, (b) left anterior insula, 

which integrates information from frontal and hippocampal regions, and relays it to the amygdala, 

and (c) right hippocampal formation, which relays subcortical overdrive to regions of the memory 

network. Gray lines correspond to connections with lower SEC (dysregulation); brown lines 

correspond to connections with higher SEC (overdrive). All paths followed this trend with vDEC: 

PCS+PTSD<PTSD<Controls. 
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Fig.4.6. Networks associated with different functions: (a) frontal top-down dysregulation network, 

steered by MFG, causing direct and indirect influence on insula and parietal regions, (b) insula 

→  amygdala →  hippocampal loop, which is likely a positive-feedback loop representing 

unrestrained subcortical overdrive, and (c) hippocampal memory-retrieval network, which likely 

mediates and translates subcortical overdrive into memory retrieval, leading to trauma re-

experiencing, hyperarousal, flashbacks and other symptoms associated with PTSD. Gray lines 

correspond to connections with lower SEC (dysregulation); brown lines correspond to 

connections with higher SEC (overdrive). Foci are in red, non-foci are in blue. 

 

Taken collectively, we identified the MFG to be the pivotal source of disruption in soldiers with 

PTSD and comorbid PTSD and mTBI (Fig.4.7), which was further affecting other emotion and 

memory related processes, potentially exacerbating symptoms. This network provides a 

mechanistic explanation of emotion dysregulation and subsequent reoccurrence of traumatic 

memories associated with PTSD. 
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Fig.4.7. The disrupted foci and their connections as a possible mechanistic model of neural 

alterations in PTSD and mTBI: The pre-frontal regions anchored by the left MFG are unable to 

regulate the left insula which disinhibits the subcortical regions into an overdrive. This overdrive 

results in heightened emotional and memory processing, culminating in overdriven parietal 

memory-retrieval, which causes the heightened behaviors often observed in soldiers with PTSD 

and mTBI. Gray lines correspond to connections with lower SEC (dysregulation); brown lines 

correspond to connections with higher SEC (overdrive); and all paths had lower vDEC (lower 

flexibility) in the disorders compared to controls (with the trend PCS+PTSD<PTSD<Controls). 

Foci are in red, non-foci are in blue. 
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4.3.2. Behavioral Relevance of Connectivity Values 

Connectivity values of three paths (paths 1-3 in Table 4.1) correlated significantly with 

neurocognitive functioning (neurocognitive-composite-index [NCI] and subtests) and PTSD 

symptoms (PCL5-score) and PCS severity (NSI-score) (see Table 4.2), thus highlighting their 

relevance to underlying neuropathology. Other paths also correlated with these behaviors but not 

as well as paths 1-3, hence not crossing the p-value threshold of 10-20 (Bonferroni corrected). It 

was notable that correlations followed the expected trend: increase in severity and decrease in 

behavioral performance corresponded to higher SEC in overdrive paths (L_Insula → L_Amygdala 

and L_Amyg → R_Hippocampus), lower SEC in dysregulation paths (L_MFG → L_Insula), and 

lower vDEC in all paths. 

 

Table.4.2. Correlation (R-value) of SEC and vDEC values of three pivotal connectivity paths with 

the NCI score and symptom severity in PTSD (PCL5 score) and PCS (NSI score). These 

correlations were significant with Bonferroni-corrected p-values smaller than 10-20. 

Path 

Symptom Severity Score Behavioral Measure 

PCL5 score 

(PTSD) 

NSI score 

(PCS) 

Neurocognitive 

Composite Index (NCI) 

SEC   

L_MFG → L_Insula -0.6852 -0.6780 0.6229 

L_Insula → L_Amygdala 0.6650 0.6816 -0.5945 

L_Amyg → R_Hippocampus 0.7203 0.7022 -0.6642 
  

vDEC   

L_MFG → L_Insula -0.6462 -0.6544 0.6507 

L_Insula → L_Amygdala -0.6728 -0.6805 0.6462 

L_Amyg → R_Hippocampus -0.6896 -0.6981 0.6534 
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A majority of the 12 connections correlated significantly with a majority of behaviors (75.5% 

of the correlations were significant with p<0.05 Bonferroni corrected). Thereby we performed 

partial least squares regression (PLSR) to find the combined ability of the 12 connections to predict 

the set of 9 behaviors (PCL5 and NSI scores, NCI and its 6 subtests). We found that SEC values 

could explain 47.25% variance in the behaviors, while vDEC could explain 48.29% variance. 

When combined SEC and vDEC values were taken, they could explain 57.08% variance in the 

behaviors. A high correlation between connectivities and behavior (R=0.75, p=9.3×10-33) was 

found in the latent space (see Fig.4.8 for linear fit). This reiterates the fact that the 12 connectivity 

paths identified in this work are behaviorally relevant. 

 

 
Fig.4.8. Linear fit between SEC as well as vDEC connectivity values with behaviors in the latent 

space (obtained through partial least squares regression) 
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4.3.3. Machine Learning Classification Results 

Machine learning classification was performed as described in section 3.2.3 of this document. 

Statistically significant neural signatures need not necessarily have generalizability or predictive 

ability, implying that connections which are statistically significant, fitting our hypothesis and at 

the same time are also top predictors of diagnostic label, assume higher importance. We thus used 

recursive cluster elimination based support vector machine (RCE-SVM) classifier [57] to identify 

the top predictors. 

Classification was performed for two different paradigms: (i) classification using 32 non-

imaging measures (NIMs), and (ii) classification using connectivities from the entire brain (whole 

data, nothing left behind). We found that classification using connectivities provided significantly 

higher accuracy (about 8% more, p<0.05 Bonferroni-corrected) than classification using NIMs 

(see Fig.4.9). This finding indicates that SEC and vDEC have better predictive ability in 

identifying subjects with PTSD and PCS compared to NIMs. 
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Fig.4.9. Worst-case classification accuracies obtained using recursively reducing number of 

discriminative features, with both whole-brain effective connectivities and non-imaging measures 

(NIMs). We observe that connectivities consistently outperform NIMs, with 8% better performance 

using top-predictive connectivity features. 

 

Table 4.3 summarizes worst-case classification accuracies along with top-predictive features 

(see Fig.4.10 for average accuracy). Along with classification accuracies, the top-predictors which 

resulted in highest classification accuracy are also of considerable interest. For classification using 

connectivities, SEC and vDEC values of four paths were the top-predictive features (L_MFG→

L_Insula, L_Insula→L_Amygdala, L_Amygdala→R_Hippocampus and R_Ant_Cingulate→

R_Inferior_Frontal). The first three paths were among the twelve paths to have emerged in this 

study (paths 1-3 in Table.4.1), and they also correlated significantly with symptom severity and 

neurocognitive functioning. Prior to these findings, these paths were attributed only with statistical 

significance between groups and behavioral relevance. Statistical significance does not necessarily 

guarantee predictive ability of connectivity features [74]. These results show that, in addition to 

statistical separation and behavioral relevance, these paths also have the highest predictive ability, 

all obtained in a data-driven way from whole-brain connectivity data. Fig.4.3 summarizes the 

processing pipeline of our entire work, along with corresponding results. 
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Table.4.3. Worst-case classification accuracies along with top-predictive features 

  Worst-case accuracy Top-predictive features 

Non-imaging 

measures 
70.79% 

Epworth sleepiness scale and  

Zung depression scale 

Connectivity values 78.98% 
SEC and vDEC of paths 1-3 (see Table.4.1) 

and R_Ant_Cingulate -> R_Inf_Frontal 

p-value for row-wise 

comparison 
4.48 × 10-24   

 

 

Fig.4.10. Average classification accuracies obtained using recursively reducing number of 

discriminative features, with both whole-brain effective connectivities and non-imaging measures 

(NIMs). We observe that connectivities consistently outperform NIMs, with 8% better performance 

using top-predictive connectivity features. The trend is highly similar to what was observed with 

worst-case accuracies. 
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4.4. Discussion 

In the current study, we sought to identify sources of abnormality from effective connectivity 

networks in soldiers with PTSD and mTBI. We hypothesized that these disorders are associated 

with dysfunctional foci which are in turn associated with affected connections that have altered 

SEC and lower vDEC in the disorders. We found evidence in favor of our hypothesis. We 

identified three dysfunctional foci (L_MFG, L_Insula and R_Hippocampus) which were 

significantly different between all three groups. We also identified a network of altered 

connections in accordance with our hypothesis. Our results showed widespread dysregulation 

originating from MFG. We found that the pre-frontal regions steered by MFG had reduced 

influence on the insula which was mediated by OFC and ACC. This resulted in insular 

disinhibition of amygdala and hippocampus causing an overdrive of these sub-cortical regions. 

This overdrive manifested through disinhibited parietal (TPJ, precuneus) and other subcortical 

(striatum) regions, which could be the cause for the heightened behaviors often observed in these 

disorders. The network was obtained from resting-state data, hence represents the differences in 

baseline state between the groups. Based on prior knowledge [9], we propose that this network 

represents prefrontal dysregulation of emotion leading to inadequate control over emotionally-

intensive traumatic memories, which gives rise to trauma re-experiencing, hyperarousal, 

flashbacks and other symptoms in soldiers with PTSD with and without mTBI. 

The MFG is known to play a key role in cognitive control [130], of which emotion regulation 

is a part. Although the amygdala is key to emotion generation and medial prefrontal regions are 

key to mediating subconscious emotion regulation such as fear conditioning [9], lateral prefrontal 

regions such as MFG are responsible for the initiation of conscious and cognitive emotion 

regulation [9]. Several studies have guessed that the MFG might be the likely source of dysfunction 
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in PTSD [131, 89], including a recent meta-analysis [93], although direct evidence for this 

hypothesis has not been provided. We provide, what we believe, to be one of the first such 

evidences for their hypotheses in this work. In fact, a recent meta-analysis discussed evidences 

from several papers that repetitive transcranial magnetic stimulation (rTMS) applied to MFG could 

be used as a treatment for PTSD [132]. While they do not explain the underlying mechanism, we 

provide the network of disturbance caused by MFG dysfunction, with MFG as the source of the 

disruptions. Put together, MFG’s role is likely the initiation of cognitive control including emotion 

regulation, whose disruption could thus lead to a chain reaction of impaired cognitive control. 

We observed prefrontal top-down dysregulation of the insula by MFG (both direct and indirect 

via OFC and ACC). OFC is considered important for social emotional processing as well as 

emotion regulation execution [9]. ACC plays the key role of executive functioning in cognitive 

control [9]. Together, OFC and ACC could be seen as the executive arm of cognitive control, 

which, when insufficiently driven by MFG, could dysregulate other regions such as insula. 

Anterior insula is largely involved in mediating between the prefrontal cortex and subcortical 

regions, and is shown to be involved in emotion dysregulation [9, 133]. It is heavily connected to 

the amygdala through white-matter tracts [134], and plays a major role in subjective emotional 

experience (feelings). It integrates emotionally relevant information from multiple sources and 

likely represents them as of one of the several complex emotions. Dysregulation of insula from 

prefrontal regions likely leads to elevated amygdala activity, which then causes increased 

hippocampal activity. Overdrive in hippocampus, a key region for declarative memories, could 

indicate elevated retrieval of explicit traumatic memories. The critical role of amygdala and 

hippocampus in PTSD and mTBI have been well documented [93, 12]. The uniqueness of 
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traumatic memories is the intensity of certain negative emotions associated with them, hence 

emotion and memory are deeply interconnected in PTSD.  

The striatum’s role in generating a habit-like response to traumatic memories in PTSD has been 

well documented [77], and increased, but less variable drive from the hippocampus may underlie 

the habit-like response. The precuneus is largely responsible for generating the experience of 

visual memories, while the TPJ is largely responsible for higher-level audio-visual information 

processing and verbalization [9]. Both regions had reduced strength and variance of influence from 

MFG. Thus the hippocampal memory-retrieval network involving precuneus, TPJ and striatum 

likely translates the subcortical overdrive into heightened memory-retrieval for traumatic 

memories. This likely leads to trauma re-experiencing, hyperarousal, flashbacks and other 

symptoms observed in soldiers with PTSD and mTBI. 

Taken collectively, we identified the MFG to be the pivotal source of disruption in soldiers with 

PTSD and mTBI (as all the connections could be traced back to this source), which was further 

affecting other emotion and memory processes, potentially exacerbating symptoms. The other two 

foci also play a key role in mediating disruption with the insula involved in subjective cognitive-

emotional processing, and hippocampus involved in declarative memories. In concert, this network 

provides a mechanistic explanation of impaired cognitive control with emotion dysregulation and 

subsequent lack of control over traumatic memories, contributing to several symptoms observed 

in soldiers with PTSD and mTBI. Fig.4.11 summarizes the findings with a flowchart. 
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Fig.4.11. Flowchart illustrating the effective connectivity network and affected foci obtained in 

this work. Paths with thin gray lines correspond to lower strength of connectivity (SEC) and lower 

variation in connectivity (vDEC) in patients compared to healthy controls, indicative of breakdown 

in top-down modulation. Paths with thick brown lines correspond to higher SEC and lower vDEC, 

indicative of overdrive in subcortical limbic and parietal memory-retrieval regions. Foci are in 

red, non-foci are in blue. 

 

Although progress in PTSD research seems to have arrived at some consensus on the pivotal 

role of MFG, our understanding of PTSD with comorbid mTBI do not seem to have progressed so 

far. It remains largely unclear as to what are the markers which distinguish between the two 

disorders [93], and what are the subtle differences which characterize the similar disorders that 

have dissimilar origins. But it is known that the added burden of mTBI in comorbid PCS+PTSD 
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causes increased symptom severity [123]. We provide a mechanistic basis for these behavioral 

observations, and explain network disturbance that distinguishes PTSD from comorbid 

PCS+PTSD. 

Earlier studies have repeatedly identified these and other regions [93, 76, 11] to be involved in 

both PTSD and mTBI, but a precise understanding of the sources of disruption, their subsequent 

causal relationships and the underlying network structure has not emerged from them. Employing 

a novel framework involving foci identification and static/dynamic EC networks, we identified the 

regional foci associated with the disorders and elucidated their causal relationships. Our 

characterization fits well with behavioral manifestations of PTSD and PCS+PTSD, thus 

illustrating the utility and fidelity of our approach. 

Additionally, three of the paths correlated significantly with symptom severity and 

neurocognitive performance (MFG→insula, insula→amygdala, amygdala→hippocampus), thus 

highlighting the behavioral relevance of these paths. The ensemble of connectivities could also 

explain about 57% variance in the behaviors in the PLS regression model. Upon performing 

machine learning classification, we found that the accuracies obtained using connectivities were 

significantly higher (~8% more) than non-imaging measures. Interestingly, we found that SEC and 

vDEC of these three paths (along with another path not part of the network) resulted in highest 

classification accuracy. They were also identified as the top predictive features of diagnostic status, 

in addition to being statistically significant, which was determined in a data-driven way from 

whole-brain connectivity data. This demonstrates that they could be a better marker of neural and 

behavioral characteristics of PTSD and PCS than just PCL5 and NSI scores, and have potential as 

imaging biomarkers for these disorders. Our connectivity features satisfy three of the four 

conditions described by Woo et.al. [88] to be satisfied by a good biomarker (diagnosticity, 
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interpretability and deployability). In regard to the fourth condition (generalizability), based on 

suggestion in Woo et.al., we issue an open call for researchers having similar data to share with us 

so that the classifier can be tested on them. 

Our novel framework used in this work is applicable to the study of any psychiatric illness or 

cognitive domain. We urge researchers to take advantage of this approach in identifying sources 

of disruption/alteration in various psychiatric illnesses and cognitive domains. 
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CHAPTER 5 

 

Complex Network Analysis using Effective Connectivity 

 

5.1. Introduction 

The human brain’s abilities are attributable to its highly interconnected architecture. Functional 

Magnetic Resonance Imaging (fMRI) connectivity modeling is popularly employed to study 

interrelationships between brain regions at the systems-level. However, fMRI connectivity is 

limited in that it can characterize only pair-wise relationships, i.e. it is bivariate. Our understanding 

of brain functioning suggests that mental processes are encoded through a carefully orchestrated 

timed pattern of connection ensembles. Hence, to characterize connection ensembles, not just 

connection pairs, strategies beyond traditional connectivity modeling are deemed necessary. 

Complex network modeling [8], using graph-theoretic measures, which can inform us on the 

properties of ensembles of connections, is a step in that direction. It makes use of individual 

connectivity weights as well as the pattern in which these connections coexist to make various 

inferences on the network structure.  

Graph-theoretic measures are widely used in studying computer networks and internet, social 

networks, linguistics, biochemistry, condensed-matter physics, brain networks, among others 

[135]. It has been used even for pre-surgical planning [136]. Complex network modeling arises 

from theoretical concepts in graph theory developed originally by mathematicians and computer 

scientists [135]. A graph comprises of a set of nodes which are interconnected by edges. In brain 

networks, individual brain regions are the nodes and the connectivity weights between them 

represents the edges. 
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Rubinov and Sporns [8] illustrate the applicability and interpretation of several network 

measures in brain imaging. Among such network properties, functional segregation informs about 

dense-connectedness within separate subnetworks. It provides a measure of how well a given node 

is connected to its neighbors. It essentially quantifies whether the regions connected to a given 

node are connected among themselves, thus forming sub-networks wherein majority of the nodes 

are connected to every other node. High segregation is necessary for optimal specialized 

processing within densely-connected subnetworks. For example, during altered consciousness, 

segregation is reduced especially in the thalamus [137], given that certain specialized processing 

necessary for consciousness are impaired. In this work we used transitivity (global whole-brain-

level measure), clustering coefficient and local efficiency (both local node-level measures) to 

quantify segregation [8]. 

On the other hand, functional integration captures the ease of interaction between segregated 

regions [8]. It is often seen as a measure of connectedness of different sub-networks, necessary for 

amalgamation of multiple specialized information into generalized information. For example, 

there is higher segregation in frontal and cerebellar subnetworks in attention-deficit hyperactivity 

disorder (ADHD), but lower integration between these subnetworks [138], indicative of typical 

timing deficits seen in ADHD. In this work we used global efficiency (global measure), shortest 

path length and edge betweenness (both local measures at connection-level) to quantify integration 

[8]. While traditional connectivity identifies standalone important connections altered between 

groups, these measures of integration identify those connections which are not only important by 

themselves but are also important for the rest of the connections in the network. The measures of 

segregation and integration used by us have high interpretability [8]. 
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In general, it has been extensively demonstrated that segregation and integration are altered in 

psychiatric disorders (for example, see [139, 140]). Most such works report a fine balance between 

segregation and integration in the healthy population (called as metastability) [141], which is 

altered in disorders. Using resting-state fMRI, we investigated network-level alterations in the 

brains of soldiers diagnosed with posttraumatic stress disorder (PTSD) and post-concussion 

syndrome (PCS, which is an outcome of persistent symptoms after mild-traumatic brain injury 

[mTBI]). While we illustrate our techniques to advance our understanding of PTSD and mTBI, 

they are equally applicable for the study of any other cognitive domain or psychiatric disorder. 

PTSD, an outcome of psychological trauma, is marked by hyper-anxiety, hyperarousal and 

hypervigilance. Exposure to detonating explosives often results in mTBI, which has considerable 

comorbidity with PTSD [15, 92]. Of the 2.7 million Americans who served in Afghanistan and 

Iraq until Sept’2014, 20% developed PTSD, 19% developed TBI and 7% developed both [1]. With 

prevailing clinical approach focusing on subjective judgments, a thorough comprehension of the 

mechanistic basis for PTSD and PCS is imperative for improved diagnosis and treatment, and for 

making return-to-duty decisions. Owing to substantially overlapping symptoms between PTSD 

and PCS [5], it is important to identify objective network-level markers to enhance clinical 

evaluation and treatment outcomes. Three groups were compared in this work: PTSD, PCS+PTSD 

(comorbid group sustaining both PTSD and PCS) and healthy combat controls. 

For the sake of disambiguation, we call complex network modeling as ‘network-level’, while 

connectivity modeling would be called ‘connectivity-level’ and activation analysis would be called 

‘region-level’. While several studies have identified specific key prefrontal and subcortical areas, 

among others, along with their related connections to be altered in mTBI and PTSD [39], a 

thorough understanding of the alterations of directional influences and associated changes in 
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network structure have not emerged from them. We address these gaps by identifying network-

level alterations associated PTSD only, as well as comorbid PTSD and mTBI with the hope of 

developing a mechanistic explanation for underlying neural alterations as well as behavioral 

impairments. 

Brain networks are constructed using pair-wise connectivities. While functional connectivity 

(FC) is the popular choice, we sought directional networks with causal relationships instead of co-

activation (a non-directional entity). This is because the underlying causal influence of one region 

over the other has not been adequately explored even though it is an equally important mechanism 

for network level interactions in addition to synchronization which is captured via FC. Causal 

influences between brain regions have been discovered even in fMRI timescales [94, 126, 100, 35, 

105, 142]; signifying that identifying causal networks besides co-activation networks is important 

for more exhaustive characterization. Moreover, PTSD and mTBI are typically seen as prefrontal 

dysregulation disorders [39], meaning that causal influences emanating from prefrontal areas are 

defective, which motivated us further to investigate directional connectivity. 

Effective connectivity (EC) deals with directional relationships among brain regions [94]. 

Granger causality (GC), an exploratory technique, was employed to quantify EC between brain 

regions [95]. It is the most prevalent technique for deriving causal relationships in natural systems 

[96] including, but not restricted to, molecular biology, epidemiology, econometrics, climate 

science, evolutionary biology, computer networks, linguistics and brain science [97]. Being a data-

driven approach, GC has no requirement for the specification of connectivity priors as in dynamic 

causal modeling (DCM) [94, 98, 99, 100]. For whole-brain connectivity, it would be practically 

impossible to build a DCM model with priors since it would result in computational intractability. 

Recent simulations [102, 103] as well as experimental results [104, 35, 105] demonstrate that GC 



99 

 

 

 

used after deconvolving the hemodynamic response function (HRF) from fMRI data (as done by 

us), is reliable for drawing inferences regarding directional relationships between brain regions. 

Several recent fMRI works have also employed this method [106, 107, 108, 109, 110, 111, 112, 

113, 114]. 

Most studies investigating EC assume connectivity to be stationary over time. Static 

connectivity does not capture dynamic variations of connectivity. While an fMRI scan endures for 

several minutes, mental processes occur within a few milliseconds to a few seconds’ time. It is 

thus natural to note that connectivity varies over the timescales of fMRI scans, and that those 

variations contain biologically relevant information [115], which are different from that contained 

in static connectivity [116]. Therefore, we have used static EC (SEC) as well as dynamic EC (DEC) 

in this work. 

Brain networks were constructed from strength (SEC) and temporal variability (DEC) of 

directional connectivity. SEC network was then used to obtain static segregation and integration 

measures. With DEC, we constructed a network at each timepoint and then evaluated segregation 

and integration measures at each timepoint to obtain timeseries of network-measure values. We 

then took the variance of those values, which indicated the variability of network properties over 

time. Such a characterization of dynamic network properties is one of the important novel 

contributions of this work. 

A recent study reported complex network characterization in PTSD and mTBI [16]. However, 

they neither considered directed networks nor dynamic variations in network properties, meaning 

that our work is looking at a fundamentally different characterization, providing novel insights 

which cannot be obtained through static and non-directional connectivity. Consequently, their 

work also did not present a coherent and comprehensive network structure that explains PTSD and 
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mTBI symptoms, possibly because they used only global measures of integration which do not 

give connection-level characterization, and they did not use directional connectivity. Rather they 

identified certain nodes with reduced static non-directional segregation, which correlated with 

certain behaviors, whose usefulness and applications are different from that aimed in this work. 

Lower variability of connectivity over time is associated with both psychiatric and neurologic 

conditions [116, 120, 119, 118], often corresponding to a lack of cognitive flexibility. 

Compromised behavioral performance in psychiatric disorders as well as in healthy adults is linked 

to reduced temporal variance of DFC [63, 116]. Such reduction is linked to impaired ability in 

dynamically adjusting to changing conditions (e.g. thoughts, behavior, etc.). Other biological 

systems exhibit such a phenomenon, for example, with reduced heart rate variability being 

indicative of cardiovascular disease [121]. A healthy biological system modifies its action in real-

time because internal and external conditions with respect to the body are changing continuously. 

In those terms, “frozen” connectivity and/or complex network measures such as segregation and 

integration points to compromised brain health. Such a characterization has been done in recent 

works [116] wherein the authors showed that greater connectomic flexibility was associated with 

better/favorable task performance in healthy adults. In this work, we extend these concepts to the 

reduced temporal variability or rigidity in network properties instead of individual connection 

strengths. We hypothesized that PTSD and mTBI are characterized by altered strength and lower 

temporal variability of segregation and integration in directional brain networks. We sought to 

identify such networks properties which were (i) affected by PTSD but not mTBI (we call this 

hypothesis-1, see Fig.5.1a), and (ii) affected by PTSD as well as comorbid PTSD and mTBI (we 

call this hypothesis-2, see Fig.5.1b). Such dichotomy would enable us to identify both common 

and distinguishing network features between PTSD and mTBI, given the high comorbidity and 
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overlapping symptomatology between them. This would enhance our understanding of PTSD 

alone, as well as comorbid PTSD and mTBI. Notably, we tested the hypothesis on whole-brain 

data in a data-driven manner without imposition of any priors, using resting-state fMRI which is 

not task dependent. 

 

 

(a) 
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(b) 

Fig.5.1. Illustration of our hypothesis showing reducing temporal variability (i.e. rigidity) of 

segregation/integration, and either increasing or decreasing segregation/integration as we move 

from Control to PTSD to PCS+PTSD. Font and circle sizes are symbolic of the 

increasing/decreasing trend. (a) Some network properties would be altered only in PTSD 

(significant for Control vs PTSD and Control vs PCS+PTSD comparisons, but not PTSD vs 

PCS+PTSD comparison) (hypothesis-1). (b) Some network properties would be altered between 

all three groups (hypothesis-2). Note that inflation and deflation generally corresponds to 

elevation or suppression of network properties, respectively, and not just connection strengths of 

individual paths. However in the special case when local network properties of paths are 

considered, inflation and deflation referred to network properties as well as connection strengths 

of the paths under consideration 
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Statistical separation between the groups is the analysis framework on which our hypothesis 

rests. However, statistical separation in network properties does not automatically attribute them 

with diagnostic predictive ability [57]; which means, they may not possess acceptable ability to 

predict group affiliation at the individual-subject level. As a result, those network properties are 

more powerful which possess statistical significance as well as discriminative ability to classify 

the subjects with high accuracy. Machine-learning classifiers have been successfully utilized on 

fMRI data for such diagnostic prediction in disorders like major-depressive-disorder [58], PTSD 

[60], Parkinson's disease [59], dementia [61], ADHD [143], prenatal-cocaine-exposure syndrome 

[57], autism [62] and many others. However, there have been no works which, to the best of our 

knowledge, have utilized complex network properties in the classification of PTSD and/or mTBI 

subjects. Given the unique high-level information contained in network properties, we expected 

them to possess predictive abilities. Neuropsychiatric conditions such as PCS and PTSD are 

currently diagnosed entirely through clinical observation, hence classification using 

neuroimaging-based network signatures can be useful in obtaining more accurate diagnoses in 

these highly comorbid conditions. Hence, by utilizing network measures derived from entire brain 

effective connectivity data, we found those features that predicted a novel subject’s diagnostic 

membership with high accuracy. Specifically we sought to find an overlap between connections 

with network properties satisfying our primary hypotheses (Fig.5.1) and connections with network 

properties possessing high predictive ability. We hypothesized that (secondary hypothesis) such 

network properties would predict the diagnostic membership of a new subject better than non-

imaging measures (neurocognitive, behavioral and self-report measures), thus underscoring their 

relevance to the underlying neuropathology of mTBI and PTSD. We place special emphasis on 

network properties having all the desirable qualities: high statistical separation, behavioral 
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relevance (assessed through correlation between network properties and behavioral variables) and 

high predictive ability. 

 

5.2. Methods 

5.2.1. Complex Network Analysis 

Effective connectivity analysis using Granger causality was first performed, as described in 

detail in section 4.2.1 of this document. Static (SEC) and dynamic (DEC) effective connectivity 

matrices were then used in further complex network analysis. 

We first describe the network measures of segregation and integration, and then explain how 

they were used in the context of this work. As noted earlier, we dealt with weighted directed 

networks in this work. Weighted because we did not binarize our connectivity matrices, since 

binarizing requires choosing an arbitrary threshold value that might bias the results in faulty ways. 

There are approaches to binarize reliably [8], which essentially involves using a range of arbitrary 

thresholds and choosing one of them based on a mathematical criteria. But given the complexity 

of our hypothesis, we chose to use weighted networks instead, which is equally acceptable [8]. 

Functional segregation was obtained using transitivity (global measure, one value for whole 

brain per subject), clustering coefficient and local efficiency (both local measures, one value per 

node/region per subject). Functional integration was obtained using global efficiency (global 

measure), shortest path and edge betweenness (both local measures, one value per connection per 

subject). We obtained source codes for these measures from the Brain Connectivity Toolbox (April 

2014 release) [8], and implemented the entire pipeline in Matlab® platform through custom code. 

We explain each of these measures in brief here (for weighted directed networks only), while a 

detailed account can be found at [8]. 
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Fig.5.2. Simplified example network used to numerically explain several complex network 

measures. The node numbers are marked within the node. The connectivity weight for each 

direction are marked next to the path. This network contains two sub-networks or modules (nodes 

1,2,3 and nodes 4,5,6,7) which are connected through pivotal connections between node-3 and 

node-4. 

 

We first define certain basic network entities. All measures are numerically explained using a 

simplified example (see Fig.5.2). Degree of a node is the sum of all connectivity weights associated 

with a node. Given the set of all nodes (regions) N and connectivity weights (EC value) 𝑤𝑖𝑗 for 

path (i,j), degree of a node is defined as, 

 

𝑂𝑢𝑡 𝑑𝑒𝑔𝑟𝑒𝑒: 𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗; 

𝑗∈𝑁
 𝐼𝑛 𝑑𝑒𝑔𝑟𝑒𝑒: 𝑘𝑖

𝑖𝑛 = ∑ 𝑤𝑗𝑖
𝑗∈𝑁

                                                   (5.1) 

 

In the example (Fig.5.2), the degrees for node-4 are 𝑘4
𝑖𝑛 = 2.6, 𝑘4

𝑜𝑢𝑡 = 1.5, while that for node-

2 are 𝑘2
𝑖𝑛 = 0.5, 𝑘2

𝑜𝑢𝑡 = 1.0. This shows that node-4 is a strong node which is predominantly 

driven by other nodes while node-2 is a weak node which predominantly drives other nodes. The 
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weight of a “no connection” is taken as zero. The number of triangles around a node is the basis 

for measuring segregation, which informs about how well the neighbors of a node are neighbors 

themselves. This characterizes how well-connected a sub-network is. It is defined as the geometric 

mean of the triangles around node i as, 

 

𝑡𝑖 =
1

2
∑ [(𝑤𝑖𝑗 + 𝑤𝑗𝑖)(𝑤𝑖ℎ + 𝑤ℎ𝑖)(𝑤𝑗ℎ + 𝑤ℎ𝑗)]

1
3⁄

𝑗,ℎ∈𝑁
                                                                (5.2) 

 

In the example (subscripts indicate node number), 𝑡3 = 0.4, 𝑡6 = 1.3 . If the connection 

between nodes 4 and 5 is removed and inserted as the connection between nodes 4 and 1, we get 

𝑡3 = 1.6, 𝑡6 = 0.5. We see a reversal in this case. 

The shortest path length (SPL) is a basis for measuring integration, which indicates the smallest 

sum of inverse path-weights from node i to j. It is a measure of how easy it is to reach node j from 

node i. The shortest path 𝑔𝑖→𝑗 is usually determined using Dijkstra’s algorithm. The shortest path 

length is then determined as, 

 

𝑑𝑖𝑗 = ∑ 1
𝑤𝑢𝑣

⁄
𝑤𝑢𝑣∈𝑔𝑖→𝑗

                                                                                                                         (5.3) 

 

In the example (Fig.5.2), 𝑑1→7 = 5.2, 𝑑7→1 = 6.5 , indicating that it is shorter (easier) to 

communicate from node 1 to 7 than from node 7 to 1. The SPL is very important, and is analogous 

to meta-connectivity, because it represents indirect connections between regions which are 

originally not connected (or weakly connected). For example nodes 1 and 7 are not directly 
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connected, but SPL makes it possible to quantify indirect influences between them through other 

regions. 

Measures of segregation 

Transitivity is a global measure indicating the average percentage of triangles (clusters) in the 

nodes compared to the total strength of all connections. It is a global measure of overall efficiency 

of local processing in the brain, which is defined as, 

 

𝑇 =
∑ 𝑡𝑖𝑖∈𝑁

∑ [(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]𝑖∈𝑁

                                                          (5.4) 

 

In the example, simple computation yields T=0.22. If nodes 4 to 7 were to be removed, we get 

T=0.39 since nodes 1-3 form neat triangles. If nodes 1 to 3 were to be removed, we get T=0.28; 

lower since nodes 5 and 7 are not connected. The entire network has a smaller value since the 

connection from nodes 3 to 4 is not part of any triangle/cluster. 

Clustering coefficient (CC, a local measure) gives a transitivity-type characterization for every 

node. It is the ratio of all triangles around a node to the total sum of all paths associated with the 

node. 

 

𝐶𝐶𝑖 =
𝑡𝑖

[(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]
                                                                (5.5) 

 

In the example, 𝐶𝐶3 = 0.13, 𝐶𝐶5 = 0.45, because 33% of node-3’s connections do not form a 

triangle at all, while all of node-5’s connections form triangles and with high strengths. Clearly 

node-5 is associated with specialized processing. 
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Local efficiency (EffLoc, a local measure) is closely related to CC. Essentially, if a given node 

has powerful neighbors which are involved in several shortest paths then the node has high EffLoc, 

indicating that the node is important in the sub-network for specialized processing. 

 

𝐸𝑓𝑓𝐿𝑜𝑐𝑖 =
∑ [(𝑤𝑖𝑗 + 𝑤𝑗𝑖)(𝑤𝑖ℎ + 𝑤ℎ𝑖)([𝑑𝑗ℎ(𝑁𝑖)]−1 + [𝑑ℎ𝑗(𝑁𝑖)]−1)]𝑗,ℎ∈𝑁,𝑗≠𝑖

[(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]
                          (5.6) 

 

Where 𝑑𝑗ℎ(𝑁𝑖) is the shortest path length between j and h which contains only the neighbors of 

node i. In the example, 𝐸𝑓𝑓𝐿𝑜𝑐3 = 0.15, 𝐸𝑓𝑓𝐿𝑜𝑐5 = 0.45. While CC and EffLoc usually give 

similar (but not same) results, their interpretations are different. In this work, along with transitivity 

as the global measure, we employed both CC and EffLoc as local measures, which are the two 

popularly used local measures of segregation. We took an overlap (intersection) of the final 

significant group differences for the two measures, so that affected nodes had differences in both 

measures, thus providing conservative results. 

Measures of integration 

Global efficiency (EffGlob) is a global measure indicating the aggregate ease of communication 

in the entire network. It is defined as the average inverse shortest path length of the complete 

network. That means, if the shortest paths in the network are shorter (easier to communicate) on 

average then we get larger global efficiency. 

 

𝐸𝑓𝑓𝐺𝑙𝑜𝑏 =
1

𝑛
∑

∑ (𝑑𝑖𝑗)
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1𝑖∈𝑁
                                                                                                  (5.7) 
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Where n is the total number of nodes in the network. In the example shown in Fig.5.2, 

EffGlob=0.32. Now if we removed the connections between nodes 1 and 2, we get EffGlob=0.32 

(unchanged), because it is a local connection that does not have much role in information 

integration. However if we remove the connections between nodes 3 and 4, which is the key link 

between the two sub-networks, we get EffGlob=0.18. 

Edge betweenness (EB) is a local measure obtained for each path. For a given path, it measures 

the fraction of all shortest paths in the entire network that contain the given path. That means, if 

the path is an important link in the network, then a large portion of shortest paths would go through 

it, giving a high value of EB. It is evaluated through a variant of Dijkshra’s algorithm. In our 

example, 𝐸𝐵1→2 = 0, 𝐸𝐵4→6 = 4, 𝐸𝐵6→4 = 6, 𝐸𝐵3→4 = 12 . These values are intuitive since 

path 1→2 has little role in rest of the network, while the paths between nodes 4 and 6 have a role 

restricted within the sub-network (with 6→4 being stronger than 4→6). The path between nodes 

3 and 4, however, is pivotal to the efficient communication between the sub-networks and 

integration of information, which is why we get highest EB for that path. 

Like shortest path length, EB is a very important measure because it characterizes the 

importance of a connectivity path not only through its connectivity value but also through the 

significance of the path for other connectivity paths present in the network. If a path matters a lot 

for other paths, i.e. for communication between various other nodes, then the given path would 

have high integration ability (i.e. SPL and EB). Such a characterization can be obtained only 

through complex network modeling since traditional connectivity informs us about the strength of 

interaction only between two regions. 

In this work we employed both EffGlob as the global measure and SPL and EB as local measures 

of integration. As with segregation, we took an overlap (intersection) of the final significant group 



110 

 

 

 

differences in the two local measures, so that affected paths had differences in both measures, thus 

providing conservative, but potentially more reliable, results. 

Next, we describe how these six network measures were used in the context of this work. SEC 

and DEC connectivities were used separately to construct static and time-varying networks with 

brain regions as nodes and connectivity strengths between them as the weighted directed edges of 

the network graphs. With SEC, a single network was constructed for the entire duration of data, 

giving a “connectivity strength” network, which was used to obtain each one of the six complex 

network measures for every run of every subject. With DEC, we considered every timepoint as a 

network snapshot, and computed network measures by treating each timepoint like a SEC matrix. 

Accordingly, we obtained network measures at each timepoint, which, when computed at every 

timepoint successively, resulted in a timeseries of network properties that captures network 

dynamics. Then, for each network measure, we computed the variance of the network measure 

timeseries to obtain a single value for entire duration of the experiment, thus giving a “connectivity 

variation” network for every measure for every run of every subject, similar to SEC.  

Statistically significant differences in these strength and variation networks were obtained, in 

accordance with our hypothesis (p<0.05, FDR corrected). Differences were controlled for age, 

race, education and head-motion (using mean frame-wise displacement obtained across all brain 

voxels for each subject as defined by Power et al. [65]). That is, we found significant group 

differences with both SEC and DEC network measures separately for these three pairwise 

comparisons (thus giving a total of six comparisons per network measure): Control vs PTSD, 

Control vs PCS+PTSD, PTSD vs PCS+PTSD. We then identified the common network measures 

among four of these comparisons (hypothesis-1) which excluded PTSD vs PCS+PTSD 

comparison, and we also identified common network measures among all the six comparisons 
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(intersection, hypothesis-2), all of which also fit our hypothesis, that is, conformed to the 

increasing/decreasing trend as we moved from Control to PTSD to PCS+PTSD. 

It is notable that we have taken a conservative approach in this work. We opted to look for 

common differences in pair-wise statistical comparisons, rather than performing a single 3-way 

statistical comparison which is less conservative. We obtained common differences in static as 

well as dynamic network measures, and we also constrained the differences to conform to a trend 

as per our hypothesis. Additionally, we computed two local measures in segregation as well as 

integration, and considered only common differences in them, which added another level of 

constraints to our results. In addition to these, we notably discarded any paths which had significant 

network-level differences in local measures of integration (i.e. SPL and EB), but not significant 

pair-wise connectivity differences themselves. That is, we included only those paths which had 

significantly different SEC and variance of DEC in accordance with the trend set out in our 

hypothesis (p<0.05, FDR corrected, controlled for age, race, education and head-motion), in 

addition to having significantly different local measures of integration (i.e. SPL and EB). This was 

done to ensure that, irrespective of network-level disturbance, the significant connections which 

emerged in this work would have cleared whole-brain multiple-comparisons-corrected statistical 

threshold like in most other studies. This reassured that our results conformed to multiple layers 

of validation, verification and statistical standards, and that evidence of network disruption were 

obtained via multiple analysis approaches, in addition to providing novel insights through network 

characterization. 
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5.2.2. Behavioral Relevance of Network Properties 

In an effort to assess the behavioral relevance of complex network measures, we first correlated 

the strength and variability of complex network measures (only those which fit our hypothesis) 

with symptom severity in PCS (NSI score) and PTSD (PCL5 score), as well as neurocognitive 

functioning (NCI score and subtests). Neurocognitive functioning (e.g. executive functioning, 

cognitive flexibility) is impaired in psychiatric disorders such as PTSD and PCS, hence identifying 

such behaviorally relevant network properties is important. We report significant correlations, and 

associate corresponding complex network properties with altered behaviors. 

We observed that several complex network properties had considerable correlations with 

behavior. In an effort to obtain better insight into how network properties of the ensemble of 

identified connections mapped on to the ensemble of behaviors, we performed partial least squares 

regression (PLSR) analysis [129], which we employed to predict neurocognitive functioning (NCI 

and subtests) and symptom severity (PCL5, NSI) from strength and variability of network 

measures obtained from our prior analysis. We present the percentage variance in behaviors 

explained by the complex network measures. Fig.5.3 summarizes the processing pipeline of all the 

methods. 
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Fig.5.3. Schematic of the complete processing pipeline 

 

5.3. Results 

5.3.1. Complex Network Analysis Results 

We used SEC and DEC connectivities to compute six complex network measures (two global 

and four local measures). With global measures (see Table 5.1), we found significantly reduced 

strength and variability of both segregation and integration in PTSD and PCS+PTSD compared to 

controls.  Our finding indicates that both specialized processing and efficient communication are 

affected in the disorders at the whole brain level. However, no significant differences were found 

between PTSD and PCS+PTSD groups, indicating that PTSD might contribute to global 

alterations whereas the effect of mTBI might be more localized. 
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Table 5.1. Significance of group differences for the two global measures obtained from both SEC 

and vDEC. We observe that whole-brain differences are driven by PTSD while mTBI likely causes 

local changes 

Measure 
Connectivity 

metric 

p-value of comparison 

Controls vs. 

PTSD 

Controls vs. 

PCSPTSD 

PTSD vs. 

PCSPTSD 

Transitivity 

(segregation) 

SEC 0.0088 0.0154 0.4974 

vDEC 0.0076 0.0041 0.5891 

Global Efficiency 

(integration) 

SEC 0.0104 0.0236 0.4291 

vDEC 0.0081 0.0047 0.5827 

 

Further granularity was obtained with local measures. Altered segregation was mainly observed 

in frontal and occipital regions (Figs 5.4 and 5.5). All occipital regions were not different between 

PTSD and PCS+PTSD, while most of the remaining regions were different. While these results 

were obtained using a strict statistical threshold, we noticed that when a liberal threshold (not 

shown here) was used, more frontal nodes were affected compared to parietal/occipital, and they 

were all characterized by lower segregation. This might explain why we observed lower 

transitivity (global segregation) in PTSD and PCS+PTSD compared to controls. 
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Fig.5.4. ROIs associated with significantly altered functional segregation 
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Fig.5.5. Nodes which had altered functional segregation and lower variation of segregation over 

time in the disorders compared to controls. Red nodes were statistically significant only for control 

vs PTSD and Control vs PCS+PTSD comparisons (but not PTSD vs PCS+PTSD comparison). 

Yellow nodes were significantly different between all three groups. Additionally, all occipital 

regions plus insula and hippocampus showed higher segregation, while all frontal regions showed 

lower segregation (this observation is not color-coded). 

 

We wish to clarify the meaning of terms ‘inflation’ and ‘deflation’ which we have used in our 

hypotheses (Fig.5.1) as well as in the description of results and discussions in the following 

sections. Generally they correspond to elevation (increased value) or suppression (decreased 
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value) of static network properties, respectively, and not just connection strengths of individual 

paths. Similarly, ‘rigidity’ generally corresponds to lower temporal variability of dynamic network 

properties. However in the special case when local network properties of paths (i.e. integration) 

were considered, these terms referred to network properties as well as connection strengths of the 

paths under consideration. 

Next, altered local measures of integration were found along two distinct pathways (see Fig.5.6 

for the affected ROIs), which we present as two subnetworks for clarity: (i) fronto-visual 

subnetwork (Fig.5.7), and (ii) parietal-inflation subnetwork (Fig.5.8). The fronto-visual 

subnetwork showed frontal deflation of secondary visual areas and lingual gyrus, i.e. lower 

strength/variance of network properties (SPL and EB) of paths connecting frontal areas to visual 

areas. This subnetwork was, however, not different between PTSD and PCS+PTSD, indicating 

that it might not be affected by mTBI (since one difference between these groups is history of 

significant prior mTBI(s) in the PCS+PTSD group). Notably, all paths here had lower SEC/vDEC 

connectivity values in addition to lower strength and variability of integration. 
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Fig.5.6. ROIs associated with significantly altered functional integration 
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Fig.5.7. The fronto-visual sub-network which had lower functional integration and lower temporal 

variation of integration, which was significant for control vs PTSD and control vs PCS+PTSD 

comparisons (but not PTSD vs PCS+PTSD comparison). The yellow node had altered segregation 

between all three groups, while the red nodes were altered except for the PTSD vs PCS+PTSD 

comparison. This sub-network likely represents reduced frontal inhibition of visual memory 

processing and retrieval. 

 

The parietal-inflation subnetwork (see Fig.5.8) showed that the visual areas affected in the 

fronto-visual subnetwork were driving two key parietal regions (precuneus, temporo-parietal-

junction [TPJ]). Additionally there was fronto-subcortical disinhibition resulting in inflation 
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(increased strength but lower variance of network properties SPL and EB) of key subcortical areas 

(amygdala, hippocampus) and anterior insula, which then resulted in inflation of the same key 

parietal regions. Interestingly, this fronto-subcortical-parietal subnetwork was significantly altered 

between all groups, indicating that both PTSD and mTBI affect this subnetwork, while the 

occipital part was not altered between PTSD and PCS+PTSD (see Fig.5.9). 

 

 

Fig.5.8. Parietal inflation sub-network which had altered integration and lower temporal 

variation of integration. Yellow paths were significantly different for all group-wise comparisons. 

Green paths were altered except for the PTSD vs PCS+PTSD comparison. The yellow nodes had 

altered segregation between all three groups, while the red nodes were altered except for the PTSD 

vs PCS+PTSD comparison. This sub-network showed parietal-inflation caused by subcortical and 

visual network disruptions, which were in-turn caused by left MFG 
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Fig.5.9. The entire network showing nodes/paths in gray which were on a deflated regime (lower 

strength and temporal variability of integration, as well as lower SEC and vDEC), and nodes/paths 

in brown, which were on an inflation regime (higher strength of integration and lower variation 

of integration over time, as well as higher SEC and lower vDEC). All prefrontal nodes and 

originating paths exhibit a deflated regime, while the rest exhibit an inflated regime. It is clearly 

observable that the deflation originates in the pre-frontal cortex, which further results in inflation 

of parietal regions through two routes, subcortical and visual. 

 

Schematic of the entire network (Fig.5.10) shows that the left middle frontal gyrus (MFG), also 

known as dorsolateral prefrontal cortex (DLPFC), is the likely source of the network-level 

disruption, whose deflation (suppressed network properties) results in inflation (elevated network 

properties) of downstream subcortical and visual pathways, culminating in a parietal inflation. 
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Fig.5.10. Schematic of the entire network: Yellow nodes/paths were significantly altered for all 

three comparisons. Green paths (and red nodes) were altered except for PTSD vs PCS+PTSD 

comparison. Thick lines correspond to connections between major sub-networks while thin lines 

correspond to connections within sub-networks. The frontal sub-network consisted of MFG and 

medial frontal, the parietal sub-network consisted of TPJ and Precuneus, the visual sub-network 

consisted of lingual and primary visual areas while the emotion-memory sub-network consisted of 

sub-cortical regions such as Amygdala and hippocampus and cortical regions such as Insula. 

Disrupted Left-MFG causes deflation of emotion-memory regions and visual memory-retrieval 

regions, culminating in parietal-inflation causing heightened symptoms. 
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5.3.2. Behavioral Relevance of Network Properties 

Strength and temporal variability of functional integration values of four paths which were 

altered among all three groups (the yellow connections in Fig.5.10), as well as the strength and 

temporal variability of functional segregation of MFG and Insula (Fig.5.5) correlated significantly 

(p<0.05 Bonferroni corrected) with neurocognitive functioning (neurocognitive-composite-index 

[NCI]) and symptom severity in PTSD (PCL5-score) and PCS (NSI-score), thus highlighting their 

relevance to underlying neuropathology (see Table 5.2). Notably the correlations followed the 

expected trend: increase in severity and decrease in behavioral performance corresponded to 

higher static functional integration in inflated paths and lower in deflated paths, and lower 

variability (i.e. rigidity) in dynamic functional integration in all paths (similarly with segregation). 

However those connections which were not different between PTSD and PCS+PTSD (green paths 

in Fig.5.10), as well as other nodes in Fig.5.5 and global complex network measures had no 

significant correlations with behavior. 

 

Table 5.2. Correlation (R-value) of strength and variability of complex network measures with the 

NCI score and symptom severity in PTSD (PCL5 score) and PCS (NSI score). These correlations 

were significant with p<0.05 Bonferroni corrected. 

Complex 

Network 

Measure 

Path (Integration) 

or 

Node (Segregation) 

Symptom Severity 

Score 
Behavioral Measure 

PCL5 score 

(PTSD) 

NSI score 

(PCS) 
Neurocognitive 

Composite Index (NCI) 

Static Functional Integration Measures   

Shortest 

Path Length 

L_MFG → L_Insula -0.6902 -0.6756 0.6589 

L_Insula → L_Amygdala 0.6822 0.6759 -0.6298 

L_Amyg → R_Hippocampus 0.6535 0.6930 -0.6389 
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R_Hippocampus → L_Precuneus 0.6990 0.6580 -0.3545 

Edge 

Betweenness 

L_MFG → L_Insula -0.6704 -0.6853 0.5871 

L_Insula → L_Amygdala 0.7370 0.6868 -0.5303 

L_Amyg → R_Hippocampus 0.7080 0.6372 -0.3956 

R_Hippocampus → L_Precuneus 0.7156 0.6669 -0.4193 

  

Variance of Dynamic Functional Integration   

Shortest 

Path Length 

L_MFG → L_Insula -0.7532 -0.7327 0.6704 

L_Insula → L_Amygdala -0.7579 -0.7382 0.6748 

L_Amyg → R_Hippocampus -0.7541 -0.7358 0.6709 

R_Hippocampus → L_Precuneus -0.8520 -0.7737 0.4579 

Edge 

Betweenness 

L_MFG → L_Insula -0.7330 -0.7287 0.6672 

L_Insula → L_Amygdala -0.7358 -0.7260 0.6586 

L_Amyg → R_Hippocampus -0.7326 -0.7264 0.6590 

R_Hippocampus → L_Precuneus -0.8513 -0.7776 0.4619 

Static Functional Segregation Measures   

Clustering 

Coefficient 
L_MFG -0.6859 -0.6685 0.6245 

Local 

Efficiency 

L_MFG -0.7013 -0.6990 0.6826 

L_Insula 0.6527 0.6550 -0.6290 

Dynamic Functional Segregation Measures   

Clustering 

Coefficient 

L_MFG -0.7478 -0.7271 0.6538 

L_Insula -0.7412 -0.7204 0.6533 

Local 

Efficiency 
L_MFG -0.7524 -0.7324 0.6692 

 

 

Since multitude of network paths and nodes had relevant correlations with multitude of 

behaviors, it would be interesting to see how much variance in behaviors could be collectively 

explained by those network measures. We thus performed partial least squares regression (PLSR) 

[129] to find the combined ability of the strength and variability of functional integration of the 4 
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connections and functional segregation of 2 nodes to predict the set of 9 behaviors (PCL5 and NSI 

scores, NCI and its 6 subtests). We found that the strength of network measures could explain 

48.95% variance in the behaviors, while the temporal variability of network measures could 

explain 57.17% variance. When both were combined, they could explain 61.74% variance in the 

behaviors. A high correlation between these network measures and behavior (R=0.746, p=3.5×10-

32) was found in the latent space (see Fig.5.11 for linear fit). This reiterates that the strength and 

variability of functional integration of the four paths and that of segregation of the two nodes 

identified in this work are behaviorally relevant. 

 

 
Fig.5.11. Linear fit between strength and temporal variability of functional integration of the 4 

connections (MFG→Insula, Insula→Amygdala, Amygdala→Hippocampus, 

Hippocampus→Precuneus) and functional segregation of 2 nodes (MFG, Insula), and behaviors 

in latent space 
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5.3.3. Machine Learning Classification Results 

Machine learning classification was performed as described in section 3.2.3 of this document. 

Statistically significant differences between groups for a specific neural signature may not 

necessarily imply that it is generalizable to a larger population and/or can predict the clinical 

diagnosis of an unseen subject.  That means, statistically significant (conforming to our hypothesis) 

cum top-predictive features assume higher importance. Thus, to identify the top-predictors, we 

used recursive cluster elimination based support vector machine (RCE-SVM) classifier [57]. 

Classification was done with two different paradigms: (i) classification using the 32 non-

imaging measures (NIMs), and (ii) classification using strength and temporal variability of 

network measures taken from the entire brain (all data, nothing left out). Results showed that 

classification using network measures provided significantly better accuracy (approximately 10% 

more, p<0.05 Bonferroni-corrected) than classification using NIMs (Fig.5.12). This result 

indicates that network measures have superior predictive ability in identifying individuals with 

PCS and PTSD as compared to NIMs. 
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Fig.5.12. Worst-case classification accuracies obtained using recursively reducing number of 

discriminative features, with both complex network measures obtained from the entire brain and 

non-imaging measures (NIMs). We observe that network measures outperforms NIMs, with 

approximately 10% superior performance using top-predictive features of network measures. 

 

Table 5.3 shows the worst-case accuracies and top predictive features (for average accuracy, 

please see Fig.5.13). Also of considerable interest are the top-predictors that resulted in highest 

classification accuracy. For classification using network measures, strength and temporal 

variability of functional integration of the following four paths were the top predictive features: 

L_MFG→L_Insula, L_Insula→L_Amygdala, L_Amygdala→R_Hippocampus and 

R_Hippocampus→L_Precuneus). Coincidentally all these four paths also showed statistically 

significant differences in network properties (the yellow paths in Fig.5.10, which were 

significantly different between all three groups). Also coincidentally, these were the same four 

paths whose network measures had significant correlations with neurocognitive functioning and 
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symptom severity. Statistical significance does not necessarily guarantee predictive ability of 

network measures [78]. Our findings elucidate that, in addition to behavioral relevance and 

statistical separation, these paths also possess the highest predictive ability, all obtained in a data-

driven fashion from whole-brain complex-network data. Fig.5.3 summarizes the processing 

pipeline of our entire work, along with corresponding results. 

 

Table 5.3. Worst-case classification accuracies along with top-predictive features 

 

 

 

Worst-case accuracy Top-predictive features

Non-imaging

measures
70.79%

Epworth sleepiness scale and 

Zung depression scale

Complex network 

measures of integration
81.37%

Strength and variability of functional integration 

of the 4 yellow paths in Fig.12

p-value for row-wise 

comparison
7.81 × 10

-28
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Fig.5.13. Average classification accuracies obtained using recursively reducing number of 

discriminative features, with both whole-brain network measures and non-imaging measures. The 

trend is highly similar to what was observed with worst-case accuracies. 

 

5.4. Discussion 

We employed complex network modeling in this work, in an effort to understand network-level 

characteristics of directional brain networks and associated impaired network architectures in 

PTSD with and without mTBI. With the evidence that the healthy brain is characterized by a 

balance between functional segregation and integration, we sought to identify alterations in 

segregation and integration in these disorders. We hypothesized that PTSD and mTBI are 

characterized by altered strength (either inflated or deflated network properties) and lower 

temporal variability (i.e. rigidity) of segregation and integration in directional brain networks. We 

sought to identify such networks which were affected by PTSD but not mTBI (hypothesis-1), as 

well as those affected by both PTSD and PCS+PTSD (hypothesis-2). We found evidence for our 

hypotheses, in that we identified certain nodes/paths which had altered segregation/integrations as 

discussed below. 

First with global measures, we found that segregation and integration were significantly altered 

for control vs PTSD and control vs PCS+PTSD comparisons only, implying that the disorder 

groups have whole-brain-level alterations compared to controls but the PTSD and comorbid 

groups do not exhibit any whole-brain-level differences between themselves, suggesting rather 

more localized differences in them. To get further insight, we studied local measures of segregation 

and integration 
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With local segregation measures, we observed a clear dichotomy between prefrontal and 

occipital regions, with all identified prefrontal nodes having lower segregation and all identified 

occipital and subcortical nodes having higher segregation. This indicates disrupted local 

processing in the prefrontal cortex, especially in the MFG and medial prefrontal regions. This 

disruption seems to have a negative relationship with the occipital and subcortical nodes which 

showed increased local processing. Also, all alterations in occipital nodes were not different 

between PTSD and PCS+PTSD implying that those regions might not have a role to play in 

differentiating between PTSD and PCS+PTSD. 

With local integration measures, we found a clear dichotomy along two distinct pathways. The 

fronto-visual-parietal pathway (Fig.10) was not altered between PTSD and PCS+PTSD groups, 

indicating that an mTBI likely does not have an impact on this part of the network. Since none of 

these paths or the associated occipital regions (either connectivities or network measures) had any 

significant correlation with symptom severity (PCL5, NSI), we inferred that this part of the 

network does not play a significant role in symptom generation, but might act as a supportive 

backend for other processes generating the symptoms. The other pathway (fronto-subcortical-

parietal, Fig.5.7) was significantly altered between all three groups, and network properties of the 

paths also correlated significantly with symptom severity and neurocognitive functioning. We thus 

inferred that this part of the network plays a considerable role in symptom generation, and thus 

highly important for PTSD and mTBI pathology. This dichotomy provides novel insights into our 

understanding of both common and distinguishing network characteristics in PTSD and mTBI, 

which has largely plagued the field, given the high comorbidity and overlapping symptomatology 

between them [13]. 
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Another clear dichotomy arises in the strength of network properties across groups. All 

prefrontal nodes and the paths associated with them had lower segregation/integration in PTSD 

and PCS+PTSD compared to controls, vividly indicative of the strong effect of disruption arising 

from the prefrontal cortex. All the subcortical, parietal and occipital nodes had higher segregation, 

and all paths associated with them not involving prefrontal regions had higher integration in PTSD 

and PCS+PTSD compared to controls, clearly indicative of inflation in these regions. Notably 

these trends exhibited by network measures were also exactly replicated in the raw effective 

connectivity values. Such unambiguous dichotomy clearly delineates the distinct functionality 

between the prefrontal cortex and the rest of the brain, and its relevance to PTSD and mTBI. 

However such a dichotomy did not exist in variance of network properties, with all nodes/paths 

having lower variance, indicative of a pathological “frozen” state (in accordance with our 

hypothesis). That is, paths with lower strength of network properties (deflation) tended to remain 

in that state over the duration of the scan, indicating that they could not get out of the deflated state 

most of the time. Similarly paths with higher strength of network properties (inflation) tended to 

remain inflated, indicating that they were stuck in that state most of the time. In total, we identified 

15 nodes (segregation) and 16 paths (integration) which were altered in the Control vs PTSD and 

Control vs PCS+PTSD comparisons, while only 4 nodes and 5 paths were altered across all three 

groups. It is noteworthy that, except amygdala and parietal regions, all other nodes involved in 

affected connections with functional integration also had altered segregation, implying that such 

regions exhibited a clear segregation-integration imbalance. 

The networks were obtained with resting-state data, hence signifies the baseline state difference 

between groups. We propose, based on prior knowledge [9], that this network corresponds to lack 

of prefrontal control over the emotion-generation system, leading to an insufficient control over 
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emotionally-intensive traumatic memories, which leads to trauma re-experiencing, flashbacks, 

hyperarousal and other symptoms in soldiers with PTSD and PCS+PTSD. 

Functions of the individual nodes/regions identified with alterations of complex network 

properties provides interesting insights into the neuropathology underlying PTSD and mTBI. The 

MFG is a known key player in cognitive control [130], which includes emotion regulation. It has 

a pivotal role in the initiation of conscious cognitive emotion regulation [9]. On the other hand, 

amygdala is necessary for emotion generation, and medial prefrontal regions mediate subconscious 

emotion regulation like fear conditioning [9]. All of the network-level alterations in our results 

could be traced back to the MFG, leading us to conclude that MFG is the origin of dysfunction in 

these disorders. Many earlier works have speculated about MFG to be the likely origin of 

dysfunction in PTSD [131, 89], including in a recent meta-analysis [93], while direct evidence for 

such a hypothesis has not been found. We provide one of the first evidence in that direction. In 

fact, a recent ALE meta-analysis work presented evidences from numerous findings that repetitive 

transcranial magnetic stimulation (rTMS) applied to the MFG could potentially be employed for 

the treatment of PTSD [132], though they do not elucidate the underlying mechanisms. We 

discovered the network of disturbance possibly caused by dysfunctionality of MFG, wherein MFG 

is the source of disruptions. Taken together, MFG likely plays a key role in the initiation of 

cognitive control which includes emotion regulation, whose disruption likely leads to a chain-

reaction of impaired cognitive control. 

We noticed prefrontal top-down deflation of functional integration driven by MFG, resulting in 

the inflation of functional integration in sub-cortical structures via insula as well as parietal 

memory-retrieval and sensory association regions. Anterior insula plays a major role in mediating 

prefrontal control over subcortical areas, and is thus found to be involved in emotion regulation 
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and dysregulation [9, 133]. It is structurally well connected with amygdala through white-matter 

tracts [134], and also plays a key role in subjective emotional experiences (feelings), integrating 

emotionally relevant information through multiple sources, and possibly representing them as one 

of the many complex emotions. We found that prefrontal deflation of insula causes inflated 

functional integration in amygdala, which then results in inflated local functional integration in 

hippocampus. Inflation of hippocampus, a prime region involved in declarative memories, might 

imply elevated explicit traumatic memory retrieval. It is well documented that hippocampus and 

amygdala play a vital role in mTBI and PTSD [93, 12]. Traumatic memories are unique in the 

intensity of associated negative emotions, so emotion and memory share deep interconnection in 

PTSD. 

Precuneus plays a key role in the generation of the experience of visual memories, whereas TPJ 

is critical for higher-level audio-visual verbalization and information processing [9]. The path from 

MFG leading to these regions was characterized by reduced strength and variance of functional 

integration. Thus the memory-retrieval and sensory association network comprising the precuneus 

and TPJ seems to translate the subcortical inflation and lack of frontal control into elevated 

retrieval of traumatic memories. This likely leads to trauma re-experiencing, flashbacks, 

hyperarousal and such symptoms observed in soldiers with mTBI and PTSD. 

There is a large presence of occipital regions in our results. While majority of nodes and paths 

were associated with it, none of them were different between PTSD and PCS+PTSD groups, and 

none of them had behavioral relevance (through correlations with symptom severity and 

neurocognitive performance). Hence we inferred that this part of the network does not play a 

significant role in symptom generation, but might act as a supportive backend for the other fronto-

subcortical-parietal processes which generate the symptoms. This inference is justifiable since 
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visual imagery aspect of traumatic memories dominates the experience of flashbacks, re-

experiencing and other symptoms in these disorders. It is known that secondary visual areas 

including lingual gyrus largely enable visual imagery [144]. Also the degree of activation in visual 

areas during imagery is directly proportional to the visual intensity of the object being imagined 

[145]. Hence, it is possible that the visual intensity of the traumatic memories (vividness or 

strength of the visual content) is not different between PTSD and PCS+PTSD groups, but is 

different in these disorder groups compared to controls (because PTSD and PCS+PTSD groups 

suffered posttraumatic stress due to trauma, while controls did not). This could provide 

substantiation for our inference that the occipital part of the network might be a backend process 

providing ‘imagery’ support. The severity of symptoms could thus be directly proportional to the 

inflation in subcortical regions and their origins in MFG, which is substantiated by the fact that 

their network properties correlated significantly with neurocognitive performance and symptom 

severity.  

Our understanding of comorbid PTSD and mTBI does not appear to have progressed far in the 

past. However it remains to be known that the additional burden of an mTBI in comorbid 

PCS+PTSD results in increased symptom severity [123]. We provide a mechanistic explanation 

for these behavioral observations, and also explain the network of disturbance that distinguishes 

between PTSD and comorbid PTSD/mTBI. 

Collectively taken, we identified the MFG to be pivotal to disruption in soldiers with mTBI and 

PTSD (since all network-level disturbances could be traced back to this region), which further 

affected other emotion and memory processes, potentially exacerbating symptoms. This network 

provides a mechanistic explanation of impaired cognitive control with emotion dysregulation, and 
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subsequent inability to control traumatic memories, contributing to many symptoms observed in 

soldiers with mTBI and PTSD. Fig.5.14 summarizes our findings with a flowchart. 

 

 

Fig.5.14. Flowchart illustrating an integrated model of connectivity and network level alterations 

in PTSD and mTBI. Paths with thin gray lines correspond to lower strength of network properties 

and connectivity (SEC) and lower temporal variability of network properties (i.e. rigidity) and 

connectivity (vDEC) in patients compared to healthy controls, indicative of breakdown in frontal 

top-down modulation. Paths with thick brown lines correspond to higher strength and lower 

temporal variability (i.e. rigidity) of network properties and connectivity, indicative of inflation in 

subcortical limbic and parietal memory-retrieval regions. Yellow paths were significantly different 

between all three groups, while the green paths were different for all comparisons except the PTSD 

vs PCS+PTSD comparison. 



136 

 

 

 

Our results are significant given that regions affected here have been implicated (inconsistently) 

in earlier studies [93, 76, 11] to be involved in both PTSD and mTBI, but a precise understanding 

of the underlying mechanisms, network structure and their subsequent causal relationships has not 

emerged from them. With the help of a novel framework involving complex network modeling 

with static and dynamic EC networks, we identified the nodes and network paths associated with 

the disorders, and detailed their directional relationships. We also highlighted the commonalities 

and differences in PTSD and PCS+PTSD networks. Our characterization corroborates with 

behavioral manifestations of PTSD and PCS+PTSD, thus substantiating the utility and fidelity of 

our approach. 

Additionally, functional integration of four paths had significant correlations with 

neurocognitive performance and symptom severity (MFG→insula, insula→amygdala, 

amygdala→hippocampus, hippocampus→precuneus), as also did functional segregation of two 

nodes (MFG and insula), highlighting their behavioral relevance. These paths and nodes were also 

those which were significantly altered between all three groups. In the PLS regression model, the 

aforementioned network measures taken together could also explain about 62% variance in the 

behaviors.  

Upon performing machine learning classification, it was found that accuracies obtained using 

network measures were significantly higher (~10% more) than non-imaging measures. 

Interestingly, we found that it were the network measures of the same four aforementioned paths 

that resulted in the highest classification accuracy. They were thus identified to be the top 

predictive features of diagnostic ability, along with being statistically significant and behaviorally 

relevant, which were all determined in a data-driven fashion from network properties of the entire 

brain. This demonstrates that these network-level markers could be high-quality indicators of 
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neural and behavioral characteristics of PTSD and PCS, and have potential as imaging biomarkers 

for these disorders. Our network-level features satisfy three out of four conditions enumerated by 

Woo et.al. [88] to be fulfilled by a good biomarker (diagnosticity, deployability and 

interpretability). With regard to the fourth condition (generalizability), based on suggestions by 

Woo et.al., we issue an open call for researchers possessing similar data to share them with us, in 

order for our classifier be tested on them. 

Our novel framework is relevant to the study of any psychiatric condition or cognitive domain. 

We urge researchers to employ this framework for better understanding other disorders and 

cognitive domains. 
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CHAPTER 6 

 

Hemodynamic Variability and its Impact on Connectivity 

Modeling 

 

6.1. Introduction 

Functional MRI (fMRI) is used extensively for studying neural correlates of brain functioning. 

FMRI is an indirect measure of neural activity as it measures changes in blood oxygenation level. 

Blood oxygenation is impacted by neural activity, the neurochemical signals which couple neural 

activity with blood flow, the properties of blood flow and the biochemistry of blood’s response to 

oxygen demand from the neurons. The non-neural components of the hemodynamic response vary 

across brain regions, which are in turn variable across individuals [10, 146]. With neural activity 

being the subject of interest in fMRI studies, interpretation of results are often less reliable due to 

the aforementioned non-neural sources of variability in fMRI. 

The mathematical transfer function between local neural activity and corresponding blood 

oxygenation level dependent (BOLD) fMRI signal is called the hemodynamic response function 

(HRF). Most fMRI studies assume a standard canonical HRF (usually made up of two gamma 

functions) during analysis. However, prior works show variability in HRF for different brain 

regions across subjects [10, 146]. This challenges the interpretation of fMRI results since it is 

unclear if observed changes are due to neural activity or HRF variability. There are three main 

dimensions of variability in HRF: (i) intra-subject spatial variability (the HRF being different in 

different brain regions of the same individual), (ii) inter-subject intra-group variability (for a given 

location in the brain, the HRF being different across different healthy individuals), and (iii) inter-
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group variability (for a given location in the brain, the HRF being different between a healthy 

group and a pathological group, arising in part from neurochemical disturbances due to pathology). 

Each of these dimensions can lead to misleading results during fMRI data analysis.  

Intra-subject variability, for example, could lead to detection of false activations or mistaken 

strong connectivities, as well as missed true activations or mistaken weak connectivities. Inter-

subject variability can lead to noisy variations in variables of interest, thus reducing the statistical 

significance of true effects, while attributing higher significance to false effects. Inter-group 

variability causes detection of wrong group differences in activations or connectivities, as well as 

missed detection of true effects. The effect of HRF variability on activation analysis can be 

alleviated, in part, by using time and dispersion derivatives in the general linear model [147]. Much 

attention has also been received on the effect of HRF variability on lag-based connectivity models 

[148]. However, its effects on zero-lag connectivity models based on Pearson’s correlation have 

not been explored. In this work, we address this issue by investigating the effect of inter-group 

HRF variability on zero-lag functional connectivity differences between the groups. In order to do 

so, we considered the case of soldiers with posttraumatic stress disorder (PTSD) and post-

concussion syndrome (PCS) [4], a chronic outcome associated with mild traumatic brain injury 

[mTBI]).  

PTSD and mTBI arising from combat exposure are highly relevant to the society, with large 

percentage of soldiers acquiring them during warfare. In the U.S. alone, more than 2.7 million 

soldiers served in Iraq and Afghanistan, with about 20% acquiring PTSD, 19% acquiring mTBI 

and 7% acquiring both [1]. PTSD has high comorbidity with mTBI [2], added to the fact that they 

have similar symptomatology [5]. Recent evidences using Doppler ultrasound and infrared 

spectroscopy suggested alterations in cerebrovascular reactivity in mTBI [149]. Neurochemical 
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alterations in PTSD are well established [150], though it is important to explore if these changes 

affect cerebrovascular reactivity. We hypothesized that the HRF, which depends on 

cerebrovascular reactivity and neurovascular coupling, may be altered in PTSD and mTBI. We 

then tested this primary hypothesis by obtaining significant group differences in voxel-specific 

HRF parameters which were estimated by performing blind hemodynamic deconvolution of 

resting-state fMRI data obtained from these populations. As a corollary, we also tested the 

hypothesis (=secondary hypothesis) that functional connectivity differences between groups are at 

least partially driven by HRF differences, if HRF variability is not removed through deconvolution. 

The HRF is characterized by three main parameters [10, 146] (see Fig.6.1): (i) response height 

(RH), (ii) time-to-peak (TTP), and (iii) full-width at half-max (FWHM). Recent works have shown 

that reduced TTP and FWHM as well as increased RH are attributable to disruption in metabolism 

and microvasculature associated with brain pathology [151]. Additionally aging causes reduction 

in TTP/FWHM and increase in RH [152]. Taken together, this profile of HRF alterations could be 

indicative of degraded neurochemical metabolism in the brain. With our primary hypothesis, we 

predicted that the HRF in PTSD and mTBI would be taller (RH), quicker (TTP) and narrower 

(FWHM) as compared to healthy combat controls in certain affected regions. 
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Fig.6.1. Typical HRF with its three characteristic parameters. FWHM = full-width at half max. 

 

Upon identifying HRF differences between the groups, it would be necessary to elucidate its 

impact on fMRI data analysis and subsequent inferences. This would impact fMRI analysis at 

large, as well as studies on PTSD and mTBI. In this work, we consider the impact of HRF 

variability on functional connectivity (FC) analysis. Specifically, we investigate the negative 

effects of HRF variability on group-wise connectivity differences.  

We elucidate two possible negative effects using example time series from experimental resting 

state fMRI data (please refer to Fig.2.2 in Chapter 2): (i) there exists no correlation between latent 

neural signals, but BOLD fMRI time series show high correlation, and (ii) there is true high 

correlation between latent neural signals, but BOLD fMRI time series show no correlation. The 

former leads to possible false positives while the latter leads to possible false negatives in 

traditional fMRI FC analysis that does not remove HRF variability. Since the ground-truth HRF is 

not known, and the HRF is being estimated from a blind deconvolution approach, we do not take 
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the leap of calling them false positives or negatives. Instead they are likely false positives and false 

negatives, or what we term as pseudo-positives and pseudo-negatives respectively. 

In this work, we identified the cluster(s) which showed significant differences in HRF between 

the groups (our primary hypothesis), and performed seed-based connectivity using the cluster(s) 

as seed(s). Similar to the example, we hoped to identify pseudo-positives and pseudo-negatives 

arising from traditional connectivity analysis, which ignores HRF variability, given the fact that 

those seeds have different HRF profiles across the groups. Significant group differences in 

connectivity were obtained. This procedure was performed for two separate pipelines: (i) data pre-

processed without hemodynamic deconvolution, (ii) data pre-processed with hemodynamic 

deconvolution. Deconvolution minimizes HRF variability from BOLD fMRI, giving latent neural 

variables. We then compared the group differences in connectivity for the two pipelines. We 

hypothesized that (=secondary hypothesis), owing to HRF variability, data without deconvolution 

would show misleading connectivity differences (both pseudo-positives and pseudo-negatives) as 

compared to the data with deconvolution. 

 

6.2. Methods 

6.2.1. HRF Analysis 

HRF analysis began with the preprocessed (and deconvolved) resting-state fMRI data, along 

with the HRF parameters obtained as a by-product of deconvolution. Deconvolution provided the 

estimated HRF at each voxel in each subject, which was characterized by three parameters – 

response height (RH), time-to-peak (TTP), and full-width at half-wax (FWHM), as illustrated 

earlier. Tests for statistical significance were performed separately on each of the three parameters 

to obtain group-wise voxel-specific differences in HRF parameters (p<0.05, cluster-level 
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thresholded, controlled for age, race, education and head-motion). This was done separately for 

the three pairwise comparisons between groups, that is, Control vs PTSD, Control vs PCS+PTSD 

and PTSD vs PCS+PTSD. We thus obtained nine maps: three comparisons with three parameters 

each.  

These maps were then used to obtain the following final overlapped (intersection) maps of 

interest. (i) O-1: Overlap between Control vs PTSD and Control vs PCS+PTSD maps (we call this 

control vs disease comparison), for each of the three HRF parameters separately. This would 

elucidate HRF differences in disease compared to healthy controls, which would directly validate 

or invalidate our primary hypothesis. (ii) O-2: Overlap between all the three HRF parameters’ 

maps obtained from both Control vs PTSD and Control vs PCS+PTSD comparisons (i.e. control 

vs disease). These differences would obviously be a subset of the first case, but would identify 

those regions with alteration of all HRF parameters in PTSD and mTBI. (iii) O-3: Overlap between 

all three group-wise comparisons for each of the three HRF parameters separately. This would 

illustrate those HRF differences which were altered in all the groups. These differences would 

naturally be a subset of the first case. These differences represent important information regarding 

PTSD and mTBI since identifying commonalities and differences between them are of deep 

interest, given that the two disorders have high comorbidity and similar symptomatology [5]. In 

all cases, the overlapped maps were obtained by finding the common regions in the maps being 

considered (i.e. intersection), which had a cluster size of at least 50mm3 in the overlapped map (to 

eliminate false positives). 
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6.2.2. Seed-Based Functional Connectivity Analysis 

The overlapped maps obtained from the second and third cases mentioned above were used in 

further seed-based functional connectivity (FC) analysis, with the identified cluster(s) being 

chosen as the regions of interest (ROIs). The time series from all the voxels in each ROI were 

averaged to obtain a single time series per ROI. Seed-based connectivity was performed by 

evaluating Pearson’s correlation coefficient between mean time series from the seed ROI and rest 

of the voxels in the brain. Significant group differences in FC were obtained between all groups 

(p<0.05, FDR corrected, controlled for age, race, education and mean head-motion). This pipeline 

was implemented separately for two cases: (i) NDC: data pre-processed without deconvolution, 

and (ii) DC: data pre-processed with deconvolution. The NDC case, which is the traditional 

approach in most studies, contains data contaminated by HRF variability. As hypothesized by us 

(secondary hypothesis), we expected to see pseudo-positives and pseudo-negatives in the 

connectivity map obtained from NDC data as compared to the DC data. The pseudo-positives were 

obtained from final NDC and DC maps as “NDC > DC”. Similarly pseudo-negatives were obtained 

as “NDC < DC”. We tested our secondary hypothesis through these two maps. 

 

6.3. Results 

6.3.1. Inter-Group HRF Differences 

As mentioned earlier, pair-wise group differences in voxel-wise values of each of the three HRF 

parameters were obtained, and three categories of overlapped maps were derived from them. In all 

the regions with altered HRF, we found that RH increased in the disorders compared to controls, 

while TTP and FWHM decreased in the disorders. We first elucidate the differences for Control 

vs Disease comparison, which refers to an overlap of Control vs PTSD and Control vs PCS+PTSD 
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comparisons (overlap O-1 mentioned earlier). Differences in RH were found in (see Fig.6.2) 

thalamus, midbrain, precuneus, posterior cingulate cortex (PCC), secondary visual areas and parts 

of insula (anterior and posterior). Further, alterations in TTP (Fig.6.3) and FWHM (Fig.6.4) were 

largely similar, with key default-mode network (DMN) regions being disrupted (PCC and 

precuneus) along with secondary visual areas. 

 

 

Fig.6.2. Regions with significantly altered response height (RH) in hemodynamic response 

function, HRF. They were significant for PTSD > Control and PCS+PTSD > Control 
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comparisons. Thalamus, midbrain, insula, visual and default-mode network regions were altered. 

PCC = posterior-cingulate cortex. Please refer to Appendix A, Table A1 for further details. 

 

 

 

 

Fig.6.3. Regions with significantly altered time-to-peak in HRF. They were significant for Control 

> PTSD and Control > PCS+PTSD comparisons. Visual and default-mode network regions were 

altered. PCC = Posterior-cingulate cortex. Please refer to Appendix A, Table A2 for further 

details. 
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Fig.6.4. Regions with significantly altered FWHM in HRF. They were significant for Control > 

PTSD and Control > PCS+PTSD comparisons. Visual and default-mode network regions were 

altered. PCC = Posterior-cingulate cortex; IPL = inferior parietal lobule (angular gyrus). Please 

refer to Appendix A, Table A3 for further details. 

 

Next, we present the results for overlap between RH, TTP and FWHM for Control vs Disease 

(overlap O-2 mentioned earlier). We found the common regions to be left PCC and right precuneus 

(see Fig.6.5). Then, identifying those differences which were significantly different between all 

three groups (overlap O-3), we found FWHM to be significantly different between all three groups 

in left PCC and right precuneus again (see Fig.6.6, note: RH and TTP did not show differences). 
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Fig.6.5. Regions which had significant alterations in all three HRF parameters. They were 

significant for Control > PTSD and Control > PCS+PTSD comparisons. Posterior-cingulate 

cortex (PCC) and precuneus were identified. Please refer to Appendix A, Table A4 for further 

details. 

 

 

Fig.6.6. Regions which were significantly different between all three groups, implying that both 

PTSD and mTBI caused alterations in them. This difference was observed only with FWHM. 
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Posterior-cingulate cortex (PCC) and precuneus were identified. Please refer to Appendix A, 

Table A5 for further details. 

 

6.3.2. Seed-Based Functional Connectivity Analysis 

In accordance with our secondary hypothesis, we performed seed-based FC analysis using left 

PCC (as well as right precuneus, independently) as the seeds, thus obtaining two separate set of 

connectivity maps, one for each seed. Group differences in FC were then obtained for each seed. 

We performed this procedure for two separate pipelines: (i) NDC: data pre-processed without 

deconvolution, and (ii) DC: data pre-processed with deconvolution. Results from the two pipelines 

were then compared, with the hope of identifying pseudo-positives (connectivities which are not 

significantly different [or considerably less statistically significant] after removal of HRF 

variability, but are significantly different in NDC case), and pseudo-negatives (connectivities 

significantly different in DC case but not (or less) in NDC case). Pseudo-positives were obtained 

as: NDC map > DC map, and pseudo-negatives as: NDC map < DC map. Here we present the 

results for the PCC ROI, while results for the precuneus ROI can be found in Appendix A, since 

the latter also leads to the same conclusion as the former (Figs A1 through A4 and Tables A10 

through A13). 

Group differences for the NDC (Fig.6.7) and DC (Fig.6.8) pipelines clearly show that the 

identified significant alterations in PTSD and mTBI differ appreciably between the two pipelines. 

This translates to providing us the evidence that HRF variability drives a sizeable portion of group 

differences reported in fMRI studies ignoring such HRF variability. We also notice that there are 

more number of pseudo-positives (Fig.6.9) than pseudo-negatives (Fig.6.10), which is especially 
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undesirable since false activations are more detrimental than missed detections. These 

observations are formally presented in Table 6.1. 

 

 

 

Fig.6.7. Brain regions whose functional connectivity with the left posterior cingulate (L_PCC) 

seed ROI (marked blue region) was significantly different between the groups for data without 

hemodynamic deconvolution. Please refer to Appendix A, Table A6 for further details. 
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Fig.6.8. Brain regions whose functional connectivity with the left posterior cingulate (L_PCC) 

seed ROI (marked blue region) was significantly different between the groups for data with 

hemodynamic deconvolution.. Please refer to Appendix A, Table A7 for further details. 
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Fig.6.9. Pseudo-positives, that is, functional connectivity group differences which were greater 

(higher T-value) in data without deconvolution as compared to that with deconvolution performed 

(for the left posterior cingulate [L_PCC] seed ROI). Please refer to Appendix A, Table A8 for 

further details. 
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Fig.6.10. Pseudo-negatives, that is, functional connectivity group differences which were smaller 

(lower T-value) in data without deconvolution as compared to that with deconvolution performed 

(for the left posterior cingulate [L_PCC] seed ROI). Please refer to Appendix A, Table A9 for 

further details. 
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Table 6.1. Number of non-zero voxels in the thresholded T-maps and its derivatives (please refer 

to Figs 6.7 through 6.10 for L_PCC ROI and Figs A1 through A4 for R_Prec ROI). There are 

notable differences in the significance maps (as seen in figures) as well as corresponding notable 

differences in the number of voxels between non-deconvolved and deconvolved data, and their 

comparisons. Further details are available in Appendix A, Tables A6 through A13. 

Seed 

ROI 

No. of significant voxels No. of voxels 

Data Without 

Deconvolution 

Data With 

Deconvolution 

Without Deconv > 

With Deconv 

With Deconv > 

Without Deconv 

L_PCC 11599 5141 9968 2526 

R_Prec 6407 5828 4753 3814 

 

6.4. Discussion 

In this work, we tested two hypotheses. First, we hypothesized that the HRF, which depends on 

cerebrovascular reactivity and neurovascular coupling, may be altered in PTSD and mTBI. We 

then tested this primary hypothesis by obtaining significant group differences in voxel-specific 

HRF parameters which were estimated by performing blind hemodynamic deconvolution of 

resting-state fMRI data obtained from these populations. Second, we also tested the hypothesis 

that functional connectivity differences between groups are at least partially driven by HRF 

differences, if HRF variability is not removed through deconvolution. 

We found substantial evidence to support our hypotheses. First, we found altered HRF 

parameters in disease groups combined compared to controls in subcortical and DMN regions. We 

also found a subset of these alterations to be significantly different between all three groups, which 

characterized HRF differences between PTSD and mTBI. In all the regions with altered HRF, we 

found that RH increased in the disorders compared to controls, while TTP and FWHM decreased 
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in the disorders. Throughout, control vs disorder refers to an overlap of control vs PTSD and 

control vs PCS+PTSD comparisons. This finding conforms to our prediction made earlier that 

HRF in PTSD and mTBI would be taller, quicker and narrower compared to controls. This profile 

of HRF alteration has been attributed to disrupted metabolism and microvasculature associated 

with brain disorders, for example in mTBI [151]. Additionally, Thompson et al. [153] showed that 

there is a negative relationship between RH and TTP/FWHM, that is, whenever the height of HRF 

increases, it is highly likely that the ascent and descent are quicker. We observed the same in our 

results also. 

For Control vs Disease comparison, we found RH differences mainly in thalamus, midbrain, 

default-mode regions (PCC, precuneus) and secondary visual areas. Alterations in TTP and 

FWHM, which were largely similar, were found in default-mode regions (PCC, precuneus) and 

secondary visual areas. Prior work showed abnormal GABAergic and glutamatergic 

neurotransmitter systems related to anxiety disorders such as PTSD [154]. Neuromodulators 

released by glutamatergic and GABAergic interneurons are known to directly modulate local 

cerebral blood flow [155], and thus the HRF [156]. Glutamate acts on N-methyl-D-aspartate 

(NMDA) receptors, which causes dilation of blood vessels associated with activated brain regions 

[157], thus impacting the HRF. Importantly, lower gamma-Amino butyric acid (GABA) 

concentration is shown to result in taller, quicker and narrower HRFs [158], as observed by us in 

PTSD and mTBI. Thus, at least part of the HRF alterations observed by us could be attributed to 

lower GABA concentration (as also suggested in [158]). GABA being an inhibitory 

neurotransmitter, lower GABA levels indicate lack of inhibition in affected brain regions found to 

have HRF alterations. This provides a potential neurochemical basis for HRF alterations observed 

by us. 
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The thalamus, identified with altered RH,  is necessary for the production of anxiety, in addition 

to the fact that it is anatomically well situated, mediating pre-frontal activity with subcortical and 

midbrain structures, to produce the experience of anxiety [159]. Additionally, serotonin (5-

hydroxytryptamine) in the midbrain is known to play a key role in anxiety disorders [160]. 

Serotonin is a vasoconstrictor, providing blood-brain barrier permeability, which modulates 

neurovascular coupling, and thus the HRF, via the neuronal-astrocytic-vascular tripartite 

functional unit [161]. 

Earlier studies have reported neurochemical alterations in key areas of the DMN and in insula 

in PTSD. Using PET imaging, Ramage et al. [162] found heightened glucose metabolism in 

precuneus in PTSD compared to combat controls, which correlated with PTSD symptom severity 

(PCL-S score). Using magnetic resonance spectroscopy, Rosso et al. [163] found decreased GABA 

in the insula in PTSD, which correlated with anxiety levels. Taken together, these findings provide 

substantiation for neurochemical and vascular alterations, and thus HRF differences, in brain 

regions found to be significantly different between healthy controls and disease groups in this 

work. 

Interestingly, findings of higher brain activation [5] as well as hyper-connectivity [13, 77, 122] 

in PTSD and mTBI, owing to reduced inhibition, also corroborates with the regions identified with 

altered HRF in this work. We thus noticed from prior literature discussed above that reduced 

GABA likely causes both reduced neural inhibition and altered HRF; and the HRF alterations 

identified in this work largely overlapped with neural alterations identified in prior works (PCC, 

precuneus, secondary visual and thalamus). This observation conforms to prior studies that 

attribute part of HRF variability to neural activity differences [10], which might be an indirect 

relationship mediated by neurotransmitters like GABA [158], as noted earlier. These findings raise 



157 

 

 

 

important considerations. If group-differences in HRF parameters and neural activity are indeed 

largely similar, owing to underlying neurochemistry, then interpretation of findings from fMRI 

studies which ignore HRF variability would not be straightforward.  

Next, for the overlap between RH, TTP and FWHM for Control vs Disease (overlap O-2 

mentioned earlier), we identified the common regions to be left PCC and right precuneus. 

Additionally, significant differences between all the three groups (overlap O-3) were also found 

in left PCC and right precuneus (with FWHM). This shows that the hemodynamic response in 

PCC and precuneus were possibly affected by both PTSD and mTBI. These regions were naturally 

a subset of the regions identified in overlap O-1. Previous studies have reported neurochemical 

alterations in these key areas in soldiers affected by trauma [162, 163]. These regions have also 

been largely implicated in PTSD [13] and mTBI [5] studies. This is a substantial finding given that 

neural underpinnings of comorbid PTSD and mTBI are poorly understood [13]. PCC and 

precuneus showed altered HRF between all three groups with all the three HRF parameters. 

We also found strong evidence in support of our secondary hypothesis. Seed-based functional 

connectivity analysis with the PCC and precuneus ROIs revealed perceptible distinction in group 

differences obtained from data without deconvolution as compared to data with deconvolution. 

This implies that part of the functional connectivity group differences reported in fMRI studies 

(which do not perform deconvolution) could potentially be attributable to non-neural HRF 

variability. Several previous works have speculated on this aspect [10, 146, 148], since BOLD 

fMRI is not a direct measure of neural activity. We provide quantitative formal evidence for the 

impact of hemodynamic variability on group differences in fMRI-derived measures like functional 

connectivity. In view of this, we urge the community to employ deconvolution in their pre-

processing pipeline to remove/reduce HRF variability. Researchers must exercise caution in 
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interpreting their results when the effect of HRF variability has not been accounted for in their 

resting state functional connectivity analysis, more so when dealing with PTSD and mTBI 

populations. Future studies could also investigate the effect of HRF variability on functional 

connectivity measures in other clinical populations. 

In summary, we showed that PTSD and mTBI cause overlapping and distinct HRF alterations in 

subcortical structures and the DMN. Our findings also corroborate with prior findings, in addition 

to providing new insights and directions. Given these findings, future studies on PTSD and mTBI, 

and fMRI studies in general, must practice prudence in reporting and interpreting results obtained 

from resting-state functional connectivity analysis of non-deconvolved BOLD fMRI data, 

especially if they assume a fixed canonical HRF. Though only a handful to regions showed HRF 

alterations in this work, it does not imply that HRF variability between groups does not exist 

elsewhere, because we used a conservative statistical threshold which might have ignored smaller 

effects. We encourage researchers to employ hemodynamic deconvolution during data pre-

processing to mitigate the issue. 
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CHAPTER 7 

 

Brain Network of Emotion Regulation and Dysregulation 

 

7.1. Introduction 

Emotions play an important role in the overall functioning of the human organism. Emotions 

arise when the brain judges a situation from the point of view of its goals. Obviously several 

situations are not favorable to the goals, which leads to negative emotions. The brain has natural 

mechanisms for manipulating such emotions, which is termed as emotion regulation. 

Emotion Regulation can be achieved through several strategies. Gross [9] illustrates the 

“Process Model” wherein emotion regulation can be achieved through situation selection, situation 

modification, attention deployment, cognitive re-appraisal or response suppression. Like most 

studies, we concentrate here on antecedent-focused conscious cognitive emotion regulation, which 

is achieved through cognitive re-appraisal of the imminent situation. That is, the subject 

consciously reinterprets the meaning of the situation, leading to a modified emotional response 

and thus emotion regulation. 

Several functional Magnetic Resonance Imaging (fMRI) works have studied brain activation 

during emotion regulation [18], which primarily identify the following regions activated during 

cognitive emotion regulation: middle frontal gyrus (MFG) also referred to as dorsolateral 

prefrontal cortex (DLPFC), insula, anterior cingulate cortex (ACC), supplementary motor area 

(SMA), angular gyrus (AG), superior temporal gyrus (STG) and amygdala. However, activation 

studies cannot explain the interrelationship between brain regions involved in emotion regulation. 

Connectivity modeling is thus popularly used to assess co-activation and causality between brain 



160 

 

 

 

regions, which can provide a mechanistic insight into the underlying neural networks. Such a brain 

network of emotion regulation has been elusive. In this work, we obtained the network of emotion 

regulation in healthy adults from fMRI data obtained during an emotion regulation task, all 

obtained in a data-driven fashion. 

Kohn et al. [18], in their meta-analysis on emotion regulation, identify several brain regions to 

be involved in emotion regulation, as mentioned earlier. They suggest a heuristically hypothesized 

network of emotion regulation involving these regions. We compared our emotion regulation 

network with their hypothetical network (see Fig.7.1). 

 

 

Fig.7.1. Reproduced from Kohn et al. [18] (With permission), the figure shows their heuristically 

hypothesized emotion regulation model. We test their hypothesis in this work. This model relates 

to the modal model of emotion [9]. Here, DLPFC performs emotion regulation, and its feedforward 

signal to angular gyrus, STG, SMA, basal ganglia and amygdala result in a regulated emotional 

state. 
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Emotion regulation is the successful modification of the generated emotion. However several 

psychiatric disorders are characterized by symptoms which reflect an inability to effectively 

manage one’s negative emotions. In such cases, emotion dysregulation is said to have occurred. 

Posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI) are such disorders 

with high comorbidity [164], characterized by symptoms like flashbacks, hyperarousal and trauma 

re-experiencing, which are a consequence of emotion dysregulation. In this work, we identify the 

underlying brain networks responsible for impaired emotion regulation in soldiers with comorbid 

PTSD and post-concussion syndrome (PCS, a chronic aftermath of mTBI). 

U.S. Army soldiers with comorbid PCS and PTSD (PCS+PTSD) and matched healthy combat 

controls performed an emotion regulation task. We first performed activation analysis to identify 

significantly activated regions during the emotion regulation condition compared to a control 

condition. These activations were almost identical to the findings from the meta-analysis by Kohn 

et al. [18]. Given that the emotion regulation model proposed by Kohn et al. is comprised of 

causal/directional relationships between brain regions, and that emotion regulation is itself a top-

down process, we employed effective connectivity (EC) modeling to assess directional causal 

relationships between identified regions. We employed the widely used Granger causality (GC) 

[95] to quantify EC. Recent GC investigations with experimental applications [104] as well as 

simulations [102] have shown its advantages and validity for assessing EC, especially after 

performing hemodynamic deconvolution [165, 105]. Several recent works have also employed this 

approach [106, 107, 108, 109, 110, 111, 112, 113, 114]. We performed EC analysis to obtain 

subject-wise directional connectivities between the regions, which were then used to obtain the 

network of emotion regulation in healthy brains and its impairment in PCS+PTSD. For the first 
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time, we provide evidence for the brain networks of cognitive emotion regulation and 

dysregulation. 

 

7.2. Methods 

7.2.1. GLM Analysis 

Pre-processed data was used to perform activation analysis in SPM8 in the general linear model 

(GLM) framework [28]. SPM’s canonical double-gamma HRF was used to model the BOLD fMRI 

timeseries. Two contrasts were used in first-level modeling: (i) negative image, suppress emotion, 

and (ii) negative image, maintain emotion, both against fixation. Six head motion parameters, 

white matter (WM) signal and cerebrospinal fluid (CSF) signal were used as regressors of no 

interest. The second level maps were obtained for the two conditions, by collapsing all the subjects 

of both groups into one group and comparing the following conditions against fixation: (i) negative 

maintain, (ii) negative suppress. Age, race and education were used as regressors of no interest. 

The final second-level contrast which captured emotion regulation was derived as thus: negative 

suppress > negative maintain (assuming that emotion suppression requires cognitive emotion 

regulation). Between group activation contrasts were not performed because we did not want to 

bias the selected ROIs with between-group differences. 

We thresholded this emotion regulation map at p<0.05 (FDR corrected). For extracting fMRI 

timeseries representing each ROI for connectivity modeling, we wanted to ensure that the selected 

voxels were within the ROIs obtained from a meta-analysis of emotion regulation as reported by 

Kohn et al. [18], were significantly activated at the group level using GLM analysis on our 

experimental data, as well as activated in each of the individual subjects at an uncorrected threshold 

of p<0.05 (please see Fig.7.2). Upon obtaining voxels satisfying these criteria, we determined the 
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centroid of every cluster and drew spheres of radius ‘R’ at each centroid such that the sphere 

encompasses only activated voxels satisfying our criteria. We chose this strategy as opposed to the 

alternative strategy of averaging the timeseries from the entire clusters since this would have 

resulted in spheres of varying radii, which would have resulted in different signal-to-noise ratios 

in the resulting timeseries across different clusters. This might have resulted in false connectivity 

differences driven by SNR differences. Hence we chose the final sphere radius as the smallest 

radius among all clusters, thus having the same sphere volume for every cluster. Averaged 

timeseries were then extracted from each of the distinct regions of interest (ROIs), which were 

then used in effective connectivity analysis. 

 

 

Fig.7.2. Schematic explaining the ROI extraction procedure employed in this work. The second 

level map representing activations during emotion regulation (suppress>maintain in all subjects 

taken together, p<0.05 FDR corrected) was overlapped with (i.e. intersection) first level maps of 

each of the subjects (‘suppress’ condition, p<0.05 uncorrected), which was then overlapped with 

the activation likelihood estimate (ALE) map obtained from an earlier meta-analysis work [18]. 
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These overlapped voxels have the property that they were activated in each individual subject as 

well as at the group level, as also corroborated with meta-analysis findings. Spheres were drawn 

around the centroids of each of the identified ROIs. The smallest sphere among all ROI spheres 

was taken as the final ROI size for all the ROIs. 

 

7.2.2. Effective Connectivity Analysis 

The averaged ROI timeseries obtained from GLM analysis were normalized separately for each 

of the four runs and each participant by making it have zero mean and unit variance. These were 

then deconvolved to obtain latent neuronal variables using a popular method [166]. This blind 

deconvolution algorithm based on the Cubature Kalman filter and Smoother (CKF-S) [108, 106] 

jointly estimates latent neuronal timeseries as well as ROI-specific hemodynamic response 

function (HRF). Such hemodynamic deconvolution minimizes the smoothing effect of HRF, as 

also its inter-regional and inter-subject variability [10], resulting in improved effective 

connectivity estimation [165, 36], and avoiding potential confounds arising from HRF variability 

across the brain within and between individuals (whether pathologic or normal). Further, the CKF-

S algorithm has been shown to recover underlying latent neural variables with high fidelity. Since 

the model is formulated in continuous time, the latent neural time series can be evaluated at time 

steps of TR/10, thereby improving the temporal fidelity of the estimated latent neural time series. 

Recently, it was also shown that the CKF-S deconvolution model does not overfit, even though it 

is highly parameterized [167]. The estimated latent neural time series from each ROI were then 

used for the evaluation of Dynamic Effective Connectivity (DEC). 

DEC was obtained for all pairs of connections between the ROIs for all the subjects, as 

described in section 4.2.1 of Chapter 4. From the DEC timeseries of each connection, the time 
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points associated with those trials in the ‘regulate’ condition (‘suppress’ emotion) were identified 

and the EC values corresponding to those periods were extracted from the DEC timeseries (for 

each path) and pooled into ‘regulate’ connectivity samples for all subjects. It is notable that the 

length of DEC is same as the number of time points in the fMRI data. EC values for the ‘maintain’ 

condition (no regulation) were similarly extracted for all subjects. 

The network of emotion regulation in healthy adults was obtained by comparing EC between 

regulate (i.e. ‘suppress’) and ‘maintain’ conditions in the control group. We drew similarities and 

differences of this network with the hypothetical network proposed by Kohn et al. [18]. Similarity 

between our network and Kohn et al.’s hypothetical network was quantified as the ratio of total 

number of overlapping connections to the total number of connections. Formally, 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 =
2𝑆

𝑁1 + 𝑁2
                                                            (7.1) 

 

Where S is the number of connections common between the two connectivity matrices, N1 and 

N2 are the total number of connections in each of the networks respectively. We present similarity 

values in percentage by multiplying this number by 100. When there is complete overlap between 

the networks, similarity is equal to 100% and it is 0% in case of no overlapping paths between the 

two networks. The network of emotion dysregulation in PCS+PTSD was obtained by comparing 

EC between PCS+PTSD and control groups for the regulate (i.e. ‘suppress’) condition, which 

would possibly highlight parts of the emotion regulation network whose dysfunction causes the 

dysregulation. Like before, similarity between the regulation and dysregulation networks was 

quantified. For both cases, significant differences in EC values were obtained (p<0.001, 

Bonferroni corrected), with differences being controlled for age, race, education and head-motion 

(mean frame-wise displacement [65]). Fig.7.3 illustrates our methodology 
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Fig.7.3. Schematic illustrating the effective connectivity analysis performed to obtain the networks 

of emotion regulation and dysregulation using our emotion regulation task. EC matrices were 

obtained for every time point in the fMRI data. For a given connection, EC values corresponding 

to a task of interest were extracted from the respective TRs, and subsequent statistical tests were 

done for appropriate comparisons to obtain the networks of emotion regulation and dysregulation 
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7.3. Results 

7.3.1. Activation Results 

Upon performing GLM analysis and evaluating the common regions between the group-level 

map and individual-subject-level maps (obtained from all subjects in both groups), we found nine 

regions to be significantly activated and satisfying our criteria listed in the previous section (see 

Table 7.1 and Fig.7.4). The minimum radius ‘R’ of the sphere which encompassed activated voxels 

in all the ROI clusters was found to be 5mm. We found that these final regions were within the 

boundary of activated voxels reported in the meta-analysis on emotion regulation [18]. This was 

important because, in this work, we were testing their heuristically hypothesized model of emotion 

regulation. 

 

Table.7.1. Regions which were significantly activated at the group level as well as in individual 

subjects (obtained from all subjects in both groups), with a sphere of 5mm radius drawn around 

the below mentioned centroids. MFG = middle frontal gyrus, ACC = anterior cingulate cortex, 

SMA = supplementary motor area, AG = angular gyrus, STG = superior temporal gyrus 

Region 

MNI coordinates of 

centroid Max 
T-value 

X y z 

MFG_L -42 16 38 4.5281 

Insula_L -38 20 -6 6.6924 

Insula_R 44 22 -8 6.0205 

ACC_L -2 22 33 4.1216 

SMA_L -2 14 51 5.4965 

Amygdala_L -22 -4 -20 5.4417 

Amygdala_R 24 -2 -20 5.7578 

AG_L -44 -57 40 4.1826 

STG_L -58 -38 14 5.1881 
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Fig.7.4. Regions significantly activated at group level as well as in individual subjects (obtained 

from all subjects in both groups). Further, these voxels also belonged to ROIs identified as being 

involved in emotion regulation using a previously published meta-analysis [18]. A 5mm-radius 

sphere was drawn at the centroid of each of these regions and mean timeseries were extracted 

from each of them. These were deconvolved and the resulting latent neural signals were used in 

effective connectivity analysis. Please refer to Table 7.1 for expanded abbreviations of region 

names. 
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7.3.2. Effective Connectivity Results 

We performed effective connectivity analysis using the fMRI timeseries obtained from the 9 

identified regions responsible for emotion regulation (please refer to Table 7.1 and Fig.7.4 for the 

identified regions). Using directional connectivity derived for all pairwise connections between 

the 9 regions, we obtained the networks of emotion regulation in healthy controls and 

dysregulation in soldiers with trauma. The regulation network was also compared with the 

hypothetical emotion regulation model proposed by Kohn et al. [18], simultaneously providing 

first evidence for the network of emotion regulation and dysregulation. The regulation network 

was obtained in healthy controls by comparing connectivity in ‘regulation’ condition as compared 

to ‘maintain’ condition (no regulation). The dysregulation network was obtained by comparing 

connectivity in only the regulation condition in PCS+PTSD group compared to healthy controls. 

Table 7.2 provides the T-values of the comparison for the emotion regulation network 

(regulate>maintain in controls), and Table 7.3 provides the same for the emotion dysregulation 

network (regulate PCS+PTSD>controls). Fig.7.5 provides the expected connectivity pattern as 

hypothesized by Kohn et al. [18] (also refer to Fig.7.1). Fig.7.6 provides the emotion regulation 

connectivity pattern comprising T-values (plotted using Table 7.2); Fig.7.7 provides the same for 

emotion dysregulation (plotted using Table 7.3). 
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Table 7.2. T-values of comparison for the emotion regulation network (regulate>maintain in 

controls). Values in bold font correspond to significant connections. Rows represent connections 

emanating ‘from’ the corresponding region, while columns represent connections terminating 

‘into’ the corresponding region (this is indicated by the red arrow). 

 

 

Table 7.3. T-values of comparison for the emotion dysregulation network (regulate 

PCS+PTSD>controls). Values in bold font correspond to significant connections. Rows represent 

connections emanating ‘from’ the corresponding region, while columns represent connections 

terminating ‘into’ the corresponding region.  

 

MFG_L Insula_L Insula_R ACC_L SMA_L Amyg_L Amyg_R AG_L STG_L

MFG_L 0 17.62 -2.45 18.94 17.25 19.05 19.88 14.88 -3.98

Insula_L 2.95 0 1.98 1.79 3.08 10.89 13.68 19.92 8.82

Insula_R 2.14 16.20 0 2.04 11.84 12.33 0.29 17.08 10.87

ACC_L -3.49 15.49 -3.96 0 -3.76 17.31 -2.77 13.86 0.20

SMA_L -0.91 13.14 -1.99 14.89 0 -2.01 -3.06 -0.28 -1.85

Amyg_L -0.97 -3.24 -1.10 -2.21 0.53 0 -0.19 10.44 8.02

Amyg_R 1.59 2.44 0.09 10.02 3.21 -1.92 0 0.25 2.45

AG_L 0.49 9.65 12.01 0.85 -0.14 -2.55 0.56 0 1.14

STG_L 0.61 2.81 1.55 1.84 0.21 11.19 0.93 2.63 0

MFG_L Insula_L Insula_R ACC_L SMA_L Amyg_L Amyg_R AG_L STG_L

MFG_L 0 -6.71 -1.33 -2.07 -5.09 -7.00 -6.11 -1.31 -2.41

Insula_L 2.29 0 2.58 1.96 2.91 7.74 7.11 8.05 4.83

Insula_R 1.97 6.74 0 1.44 5.64 -0.30 0.21 7.17 5.81

ACC_L -1.02 0.62 -2.72 0 -1.56 -2.25 -1.05 -5.02 0.93

SMA_L -0.31 -0.56 -0.93 -5.32 0 -0.78 -1.36 -0.08 -0.88

Amyg_L 0.08 -1.24 0.31 -0.82 0.98 0 0.73 5.15 4.45

Amyg_R 1.45 1.87 0.17 4.88 2.44 -0.60 0 1.42 2.41

AG_L 1.32 4.60 6.66 1.28 1.03 -0.61 1.46 0 1.04

STG_L 0.66 2.71 2.07 1.64 0.40 6.07 1.33 2.49 0
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Fig.7.5. Image showing the expected network structure for the hypothetical network of emotion 

regulation proposed by Kohn et al. [18]. 
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Fig.7.6. Image showing T-values of comparison for the emotion regulation network 

(regulate>maintain in controls). Rows represent connections emanating ‘from’ the corresponding 

region, while columns represent connections terminating ‘into’ the corresponding region. Non-

significant connections are shown as zero. A similarity of 50.1% was obtained between our data-

driven result and Kohn et al.’s hypothetical network. 
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Fig.7.7. Image showing T-values of comparison for the emotion dysregulation network (regulate 

PCS+PTSD>controls). Rows represent connections emanating ‘from’ the corresponding region, 

while columns represent connections terminating ‘into’ the corresponding region. Non-significant 

connections are shown as zero. A similarity of 88.5% was obtained between the regulation and 

dysregulation networks. 

 

Several observations can be made from Figs 7.5, 7.6 and 7.7. The regulation network obtained 

from imaging data by us is not identical to the network hypothesized by Kohn et al, (50.1% 

similarity), though the differences are not major in principle. While a 50% similarity may seem 

low, it is not unexpected given that their network was hypothetical. 

The dysregulation network is a complete subset of the regulation network, all obtained in a 

data-driven manner (88.5% similarity). This is an impressive result which shows that dysregulation 
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arises entirely from an imbalance in the native regulation network (since the former is a complete 

subset of the latter), and that any other cognitive process not involved in regulation (i.e. not part 

of regulation network) does not take part during the dysregulation phenomenon. 

While the regulation network weights (Fig.7.6) show the strength of directional connections 

during the process of cognitive emotion regulation, the dysregulation network weights (Fig.7.7) 

do not correspond to absolute strength of directional connections. Rather, they refer to the strength 

of imbalance caused in dysregulation as compared to regulation. It quantifies the degree by which 

a given connection deviates from the expected normal connectivity value for regulation. In these 

terms, connections from left MFG and connections to left insula seem to be maximally altered in 

dysregulation. 

Comparing the T-values of significance, we notice that the regulation network has T-values 

about twice that of the dysregulation network, implying that the change in connectivity strengths 

owing to dysregulation is only a fraction of the absolute connectivity strengths during regulation 

(average connectivity strength in dysregulation across all significant paths was just about 42.8% 

of that in regulation), signifying a modest disturbance of the native regulation network, nonetheless 

with severe consequences. 

We attempt to provide lucidity by presenting network schematics for emotion regulation 

(Fig.7.8) and dysregulation (Fig.7.9). The network of emotion regulation can be broken down into 

three distinct parts: there is a direct influence from MFG on amygdala and angular gyrus (Fig.7.8a), 

then there is the network originating from MFG causing a hierarchical downward influence 

through ACC, SMA and insula onto amygdala and angular gyrus (Fig.7.8b), and finally there is 

the secondary influence from insula onto STG (Fig.7.8c). 
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The network of emotion dysregulation clearly shows connections from prefrontal regions being 

weaker during dysregulation, while the rest being stronger. It resembles the regulation network, 

and can be broken down into three distinct parts: there is impaired direct influence from MFG on 

amygdala (Fig.7.9a), then we observe the impaired top-down network of MFG wherein the direct 

pathway to left insula is impaired, which leads to disinhibition of amygdala and subsequently 

lateral parietal regions (Fig.7.9b), and finally elevated secondary influence is observed from insula 

to STG (Fig.7.9c). 

In summary, the regulation network exhibits a typical top-down architecture driven by MFG 

which influences amygdala and parietal memory retrieval and association-related regions, 

mediated by insula and medial prefrontal regions. The dysregulation network exhibits reduced 

influence from prefrontal regions leading to disinhibition of subcortical and lateral parietal regions. 
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Fig.7.8. Network schematic of emotion regulation derived from Fig.7.6. Prefrontal regions are in 

green boxes while the rest are in orange ones. Red connections signify higher connectivity during 

‘regulation’ compared to ‘maintain’ condition. The network is broken down into three distinct 

parts: (a) direct influence of MFG on amygdala and angular gyrus, (b) top-down network of direct 

and indirect influence from MFG through ACC, SMA and insula, (c) secondary influence from 

insula to STG. Double arrows imply two-way relationship. 

 

Fig.7.9. Network schematic of emotion dysregulation derived from Fig.7.7. Prefrontal regions 

are in green boxes while the rest are in orange ones. Red connections signify higher connectivity 

and blue ones signify lower connectivity in PCS+PTSD compared to controls. Clearly, 

connections from prefrontal regions go weaker during dysregulation, while the rest go stronger. 

The network is broken down into three distinct parts: (a) impaired direct influence of MFG on 

amygdala, (b) impaired top-down network of MFG: direct pathway to left insula is impaired, 

which causes disinhibition of amygdala and thus lateral parietal regions, (c) elevated secondary 

influence from insula to STG. Double arrows imply two-way relationship. 

 

7.4. Discussion 

In this work, we investigated brain networks of emotion regulation in healthy adults and their 

dysregulation in comorbid PTSD and mTBI. We identified regions activated during an emotion 

regulation task, and defined ROIs around the centroid of each of the nine identified clusters. 

Effective connectivity was estimated between all pairs of nine connections during ‘regulate’ 

(suppress) and ‘maintain’ conditions. Network of emotion regulation consisted of paths which 

were stronger during ‘regulate’ as compared to ‘maintain’ in healthy controls, while that of 
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dysregulation was the difference between PCS+PTSD and controls during the ‘regulate’ condition. 

We then identified the regulation network as having a top-down architecture with the MFG driving 

the rest of the network (insula, medial prefrontal regions, amygdala and lateral parietal regions). 

During dysregulation this network was imbalanced with reduction in prefrontal connectivity and 

elevation of subcortical and lateral parietal connectivity. 

Our network of emotion regulation fits well with findings from prior studies [9, 18, 168], which 

have identified the pivotal role of MFG in the initiation of emotion regulation, and also identify 

the subsequent role of medial prefrontal regions, insula, amygdala and lateral parietal regions. 

MFG plays an important role in cognitive control [130], which includes emotion regulation. While 

amygdala is involved in emotion generation, and medial prefrontal regions enable subconscious 

emotion regulation like fear conditioning [9], the MFG initiates conscious cognitive emotion 

regulation (also referred to as cognitive reappraisal) [9]. All the directional connections are 

traceable to the MFG in our network, thus concluding that MFG is the source of emotion 

regulation, which corroborates with prior findings.  

With dysregulation, MFG emerged as the key source of dysfunction as well. All connections 

emerging from MFG exhibited reduced connectivity during dysregulation, which seemed to have 

a ripple-effect with reduced connectivity from medial prefrontal regions and enhanced 

connectivity (disinhibition) from insula and amygdala. Several prior works have speculated that 

MFG could be the cause of dysfunction in PTSD [131, 89], including in a recent meta-analysis 

[93], while direct evidence has not been found for such a hypothesis (to the best of our knowledge). 

We provide one of the first evidences in that direction. A recent ALE meta-analysis paper showed 

evidences from several findings that repetitive transcranial magnetic stimulation (rTMS) applied 

on MFG could be employed for a potential treatment of PTSD [132], though they did not explain 
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the underlying mechanisms. In summary, MFG plays a pivotal role in the initiation of cognitive 

emotion regulation, whose disruption likely leads to a ripple-effect of impaired emotion regulation, 

which fits well with behavioral manifestations arising from emotion dysregulation. 

We noticed strong connectivity to insula, amygdala and lateral parietal regions from MFG in 

regulation, and its impairment in dysregulation. Anterior insula, a key player in a large number of 

psychiatric disorders [169], is known to mediate prefrontal control over subcortical regions, and is 

thus known to be involved in emotion regulation as well as dysregulation [9, 133]. It has good 

white-matter connectivity with amygdala [134], and is important for subjective emotional 

experiences or feelings, integrating emotionally relevant information from multiple sources and 

representing them as one of the many complex emotions. We found that prefrontal regulation of 

insula drives the amygdala, a region critical for emotion generation. Larger downward connectivity 

from prefrontal regions to amygdala signifies the enforcement of regulation on amygdala, seen as 

an effort to minimize the intensity of emotion generated by it [12]. Consequently in dysregulation, 

such an effect from prefrontal regions is minimized, shifting the balance and causing a disinhibited 

amygdala, which in effect leads to several symptoms of uncontrolled emotions in conditions like 

comorbid PTSD and mTBI [93]. 

In the regulation network, prefrontal regulation of amygdala was followed by an increased 

connectivity of amygdala with angular gyrus (AG) and superior temporal gyrus (STG). Along with 

this indirect pathway from MFG to these regions, there were direct pathways of increased 

connectivity from MFG and insula to both AG and STG. AG and STG are crucial for higher-level 

audio-visual processing [9], which means they facilitate audio-visual memory retrieval, imagery 

and perception, which enables the final audio-visual “experience” of an external sensory input or 

past memory.  STG is also involved in processing emotions [170]. AG and STG connectivity thus 
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seem to suggest manipulation of the intensity and content of audio-visual perception and memory 

retrieval following influence from amygdala, which is necessary for emotion regulation. 

Consequently during dysregulation, amygdala disinhibition and prefrontal dysregulation of AG 

and STG translates into enhanced retrieval of undesirable audio-visual memories, which, in 

disorders like PTSD and mTBI, leads to symptoms such as flashbacks, trauma re-experiencing, 

hyperarousal and such other symptoms. This explanation fits well with behavioral manifestations 

of these conditions [164]. 

Next, the network of regulation obtained by us was not identical to the network hypothesized 

by Kohn et al. [18] (50.1% similarity). This was not unexpected since their network was 

hypothetical and not backed by imaging data. However certain key aspects of their network were 

found to be true with our network also, like the pivotal role of MFG, control over amygdala and 

its projection onto AG and STG, but their hypothetical network primarily seems to underplay the 

projections into left insula and overstate the projections from AG. 

Our dysregulation network was a complete subset of the regulation network (with a high 

similarity of 88.5% between them), that is, all dysregulation paths existed in the regulation network 

also, but some regulation paths did not exist in the dysregulation network. This implied that 

dysregulation arose entirely from disruption in majority of the regulation network paths, and that 

other paths not involved in regulation did not play a role in dysregulation. 

One strange observation was that, in the regulation network, statistical significance was highest, 

on average, with connections emanating from prefrontal regions, while significance seemed to 

reduce with caudal/ventral parts of the network involving amygdala, AG and STG. Even in the 

dysregulation network, prefrontal regions and insula seemed to be maximally involved. One 

possible explanation, though hypothetical, is that prefrontal regions and associated connections are 
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the core ‘workhorse’ of the networks, while alterations in subcortical and lateral parietal regions 

are merely a consequence or ripple-effect of that. Often ripple-effects are lower in magnitude than 

the primary effects themselves. There is preliminary evidence to support such a hypothesis [171].  

While the regulation network weights (Fig.7.6) provide the strength of directional connections 

during the process of emotion regulation, the dysregulation network weights (Fig.7.7) do not 

correspond to absolute strength of directional connections. Instead they refer to the strength of 

imbalance caused during dysregulation in comparison with regulation. It quantifies the magnitude 

by which a given connection deviates from the expected normal connectivity value for regulation. 

In these terms, connections from left MFG and connections to left insula seemed to be maximally 

altered in dysregulation. This highlights an important aspect that emotion regulation requires a 

network of regions to work together in a particular fashion compared to baseline involving no 

regulation, while dysregulation results due to an imbalance in such a network. As such, the 

connectivity pattern we observed in regulation had a particular pattern of connection strengths, 

while in dysregulation the connection pattern did not change drastically (88.5% similarity), but the 

connection weights and thus the balance was altered, leading to dysregulation.  

One of the limitations of this work is that our control group comprised of healthy soldiers and 

not healthy civilians. Though this enhances the credibility of our dysregulation network (where we 

compare combat controls and PCS+PTSD), it restricts the interpretability of our regulation 

network to combat controls. Future works could replicate our analysis on a population of healthy 

civilian adults, which could not only bring out the regulation network in civilians but also provide 

a comparison between healthy civilians and healthy veterans in their ability to perform emotion 

regulation. 
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In summary, we identified the MFG to be pivotal for emotion regulation in healthy adults and 

also for dysregulation in soldiers with comorbid PTSD and mTBI (since all connections could be 

traced back to this region), which further modulated amygdala and lateral parietal memory 

retrieval and sensory association regions through the insula and medial prefrontal regions. This 

network provides a mechanistic explanation of emotion regulation in healthy individuals and its 

impairment in comorbid PTSD and mTBI, causing an inability to control traumatic memories, 

contributing to several symptoms. Our results are significant given that the regions affected here 

are implicated in prior activation studies [93, 76, 11, 18], but a precise understanding of the 

underlying network structure and their causal relationships had not emerged so far. 
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CHAPTER 8 

 

Conclusions 

 

The purpose of this work was to identify brain network alterations in soldiers with posttraumatic 

stress disorder (PTSD) and mild-traumatic brain injury (mTBI). We employed multiple approaches 

to successfully achieve this end.  

Here we summarize the contributions of this work: 

1. Using static and time-varying functional connectivity modeling, we identified the 

hippocampus-striatum path to be significantly altered in the disorders, all obtained in a data-

driven manner from whole-brain connectivity data without assumptions. We showed that the 

connectivities of this path had high behavioral relevance, and that they have better diagnostic 

ability than conventional clinical measures. We demonstrated that they are a potential imaging 

biomarker of PTSD and mTBI. 

2. Using static and time-varying effective connectivity modeling, we identified dysfunctional 

regional foci and their associated dysfunctional connections in the disorders. We identified the 

middle frontal gyrus (MFG) to be the source of dysfunction in these disorders. Prior works 

have largely speculated that MFG might be the source of dysfunctional cognitive control in 

these disorders. In addition to providing evidence for those speculations, we elucidated the 

entire dysfunctional network and explained how the dysfunctional MFG causes cascading 

effects leading to heightened emotional response for traumatic memories, giving rise to several 

symptoms observed in PTSD and mTBI. For the first time in this field, a lucid mechanistic 

explanation of the underlying causal relationships and information flow has emerged. 
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3. Recognizing the fact that connectivity modeling is bivariate and that it does not capture the 

interrelationship among connections, we employed complex network analysis to study 

network-level alterations in PTSD and mTBI. We found altered segregation and integration 

along two distinct pathways. We showed that these pathways explained the commonalities and 

differences in PTSD and comorbid PTSD/mTBI. We also showed how widespread deflation 

in prefrontal regions leads to inflation of subcortical, visual and parietal regions. Neither 

effective connectivity nor complex network modeling have been used in prior works to study 

PTSD or mTBI. We demonstrated the utility of these approaches and provided novel insights 

into network alterations in PTSD and mTBI. 

4. In all these works, we employed dynamic connectivity in addition to conventional static 

connectivity, and demonstrated its utility. Dynamic connectivity has not been used before to 

study PTSD or mTBI, despite the fact that it has high behavioral relevance, predictive ability 

and unique information not available through static connectivity. 

5. Despite overlapping symptomatology and high comorbidity between PTSD and mTBI, a clear 

understanding of the similarities and differences in their associated brain networks has not 

emerged in the literature. Using effective connectivity modeling, we discovered brain 

alterations common to PTSD and PCS+PTSD, as well as those which distinguish the two, thus 

contributing tremendously towards advancement of knowledge in the field. 

6. Given that fMRI is an indirect measure of neural activity, it was imperative that we identified 

the impact of hemodynamic (HRF) variability on connectivity modeling. We found significant 

differences in the HRF among the groups in key areas like precuneus and posterior cingulate. 

Seed-based whole-brain functional connectivity associated with these regions was found to be 

corrupted by HRF variability if the analysis ignored HRF differences among groups, thus 
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showing that all fMRI studies, not just specific to PTSD or mTBI, need to consider the impact 

of HRF variability while interpreting their connectivity results. 

7. We performed effective connectivity analysis on emotion regulation task fMRI and identified, 

for the first time in literature, the brain network of emotion regulation in healthy adults and its 

dysregulation in comorbid PTSD and mTBI. While brain regions involved in emotion 

regulation and dysregulation are well identified, their interactions and causal relationships have 

remained elusive. Prior works developed hypothetical networks of emotion regulation, but we 

provided evidence for the networks of emotion regulation and dysregulation, which is 

important for the understanding of several psychiatric disorders including PTSD and mTBI. 

8. Though our focus was on the understanding of PTSD and mTBI, this work was intensive on 

computational modeling. We developed several new frameworks, approaches and techniques. 

We devised a novel approach to combine static and dynamic connectivities to characterize 

strength and variability of connectivity simultaneously. We developed a novel regrouping 

procedure to form new diagnostic groups using connectivities, which map better onto behavior 

than conventional grouping. We developed a modified probabilistic framework to identify 

disease foci from effective connectivity as well as dynamic connectivity data. We developed a 

technique for obtaining variability in complex network properties using dynamic connectivity 

data. All these methodological innovations emerged for the first time, including the study of 

inter-group differences in HRF. Put together, our work has made significant contributions 

towards the advancement of computational modeling and analysis methodology in fMRI. We 

thus feel that the outcome of this work goes beyond the boundaries of PTSD and mTBI, as we 

urge researchers to take advantage of the various methodological innovations of this work in 

understanding other psychiatric disorders and cognitive domains. 
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APPENDIX A 

 

A1. Inter-Group HRF Differences 

We presented the group differences in HRF parameters in the Chapter 6 (Figs 6.2 through 6.6). 

Here we provide further details on those results (Tables A1 through A5). 

 

Table A1. Significantly altered response height (RH) in hemodynamic response function, HRF, 

which were significant for PTSD > Control and PCS+PTSD > Control comparisons. Thalamus, 

midbrain, insula, visual and default-mode network regions were altered. Table corresponds to 

Fig.6.2 in Chapter 6. 

 

 

 

Table A2. Significantly altered time-to-peak in HRF. They were significant for Control > PTSD 

and Control > PCS+PTSD comparisons. Visual and default-mode network regions were altered. 

Table corresponds to Fig.6.3 in Chapter 6. 

Cluster no. No. of Voxels AAL Region Name T-statistic

1 405 -6 -8 14 Thalamus_L 5.70

2 373 -4 -32 -12 Midbrain 5.91

3 129 4 -60 12 Calcarine_R 5.53

4 158 -40 -12 -12 Temporal_Sup_L 4.32

5 113 -2 -52 28 Cingulum_Post_L 5.29

6 96 40 20 -12 Insula_R 4.21

7 84 2 -68 22 Precuneus_R 5.33

Peak MNI Coordinates
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Table A3. Significantly altered full-width at half-max (FWHM) in HRF, which were significant 

for Control > PTSD and Control > PCS+PTSD comparisons. Visual and default-mode network 

regions were altered. Table corresponds to Fig.6.4 in Chapter 6. 

 

 

Table A4. Significant alterations in all three HRF parameters, which were significant for Control 

> PTSD and Control > PCS+PTSD comparisons. Table corresponds to Fig.6.5 in Chapter 6. 

 

 

Table A5. Significant differences between all three groups, which represent alterations caused in 

both PTSD and mTBI. This difference was observed only with FWHM. Table corresponds to 

Fig.6.6 in Chapter 6. 

Cluster no. No. of Voxels AAL Region Name T-statistic

1 180 2 -60 22 Precuneus_R 6.03

2 124 -10 -74 10 Calcarine_L 5.55

3 113 -2 -62 18 PCC_L 6.09

4 51 18 -70 12 Calcarine_R 3.26

5 34 -2 56 26 Frontal_Sup_Medial_R 3.38

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 180 -4 -60 20 PCC_L 5.94

2 174 -10 -74 10 Calcarine_L 4.71

3 118 2 -60 22 Precuneus_R 5.88

4 90 16 -76 12 Calcarine_R 3.33

5 39 56 -60 20 Temporal_Mid_R 3.80

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name

1 34 -2 -64 26 PCC_L

2 34 2 -66 30 Precuneus_R

Peak MNI Coordinates
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A2. Seed-Based Functional Connectivity Analysis 

We presented the functional connectivity maps obtained with the L_PCC seed in the Chapter 6 

(Figs 6.7 through 6.10). Here we provide further details on those results (Tables A6 through A9). 

 

Table A6. Brain regions whose functional connectivity with the left posterior cingulate (L_PCC) 

seed ROI was significantly different between the groups for data without hemodynamic 

deconvolution. Table corresponds to Fig.6.7 in Chapter 6. 

 

 

Table A7. Brain regions whose functional connectivity with the left posterior cingulate (L_PCC) 

seed ROI was significantly different between the groups for data with hemodynamic 

deconvolution. Table corresponds to Fig.6.8 in Chapter 6. 

Cluster no. No. of Voxels AAL Region Name

1 34 -2 -62 26 PCC_L

2 34 2 -65 30 Precuneus_R

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 4831 30 -72 -42 Cerebelum_Crus2_R 6.79

2 4798 12 -64 36 Precuneus_R 6.98

3 1209 -40 -48 -24 Fusiform_L 5.97

4 760 -26 48 -4 Frontal_Mid_L 5.45

Peak MNI Coordinates
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Table A8. Functional connectivity group differences which were greater (i.e. higher T-value) in 

data without deconvolution as compared to that with deconvolution performed (pseudo-positives) 

(for the left posterior cingulate [L_PCC] seed ROI). Table corresponds to Fig.6.9 in Chapter 6. 

 

 

Table A9. Functional connectivity group differences which were smaller (i.e. lower T-value) in 

data without deconvolution as compared to that with deconvolution performed (pseudo-negatives) 

(for the left posterior cingulate [L_PCC] seed ROI). Table corresponds to Fig.6.10 in Chapter 6. 

 

 

 

Cluster no. No. of Voxels AAL Region Name T-statistic

1 1347 4 -62 34 Precuneus_R 4.78

2 790 -12 22 -10 Caudate_L 4.87

3 671 -14 72 -4 Frontal_Sup_L 5.87

4 637 -46 -54 -24 Temporal_Inf_L 4.41

5 586 -32 -54 48 Parietal_Inf_L 4.71

6 582 44 46 28 Frontal_Mid_R 6.31

7 526 -16 -14 -26 Parahippocampal_L 4.82

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 4456 30 -72 -42 Cerebelum_Crus2_R 6.52

2 3886 -14 -54 20 Precuneus_L 6.33

3 939 -44 -46 -30 Fusiform_L 4.39

4 399 -24 48 -4 Frontal_Mid_L 3.20

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 666 -12 22 -10 Caudate_L 4.29

2 582 44 46 28 Frontal_Mid_R 6.31

3 183 -14 72 -4 Frontal_Sup_L 5.52

4 163 -14 -8 -26 Parahippocampal_L 4.46

5 124 -32 46 -6 Frontal_Mid_Orb_L 3.67

Peak MNI Coordinates
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Results for the PCC ROI were presented in the Chapter 6. Here we present results for the right 

precuneus ROI (Figs A1 through A4 and Tables A10 through A13). As with the PCC ROI, we 

observe that significant alterations in PTSD and mTBI differ appreciably between the two analysis 

pipelines. Also we noticed more number of pseudo-positives than pseudo-negatives, as in the PCC 

ROI case. These results lead to the same conclusion reached with the PCC ROI. 

 

 

Fig.A1. Brain regions whose functional connectivity with the right Precuneus (R_Prec) seed ROI 

(marked blue region) was significantly different between the groups for data without 

hemodynamic deconvolution.  
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Fig.A2. Brain regions whose functional connectivity with the right Precuneus (R_Prec) seed ROI 

(marked blue region) was significantly different between the groups for data with hemodynamic 

deconvolution. 
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Fig.A3. Pseudo-positives, that is, functional connectivity group differences which were greater 

(higher T-value) in data without deconvolution as compared to that with deconvolution performed 

(for the right precuneus [R_Prec] seed ROI) 
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Fig.A4. Pseudo-negatives, that is, functional connectivity group differences which were smaller 

(lower T-value) in data without deconvolution as compared to that with deconvolution performed 

(for the right precuneus [R_Prec] seed ROI) 

 

 

Table A10. Brain regions whose functional connectivity with the right precuneus (R_Prec) seed 

ROI was significantly different between the groups for data without hemodynamic deconvolution. 

Table corresponds to Fig.A1. 
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Table A11. Brain regions whose functional connectivity with the right precuneus (R_Prec) seed 

ROI was significantly different between the groups for data with hemodynamic deconvolution. 

Table corresponds to Fig.A2. 

 

 

Table A12. Functional connectivity group differences which were greater (i.e. higher T-value) in 

data without deconvolution as compared to that with deconvolution performed (pseudo-positives) 

(for the right precuneus [R_Prec] seed ROI). Table corresponds to Fig.A3. 

 

 

Cluster no. No. of Voxels AAL Region Name T-statistic

1 3236 -12 -44 -10 Lingual_L 5.55

2 1015 40 -56 -48 Cerebelum_7b_R 5.66

3 849 22 34 16 Frontal_Mid_R 5.93

4 711 -46 -50 -26 Temporal_Inf_L 4.80

5 595 -36 -54 58 Parietal_Sup_L 4.78

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 1813 34 44 2 Frontal_Mid_R 5.70

2 1364 8 -40 42 Cingulum_Mid_R 5.02

3 890 -16 -14 -26 Parahippocampal_L 5.05

4 599 26 -78 -40 Cerebelum_Crus2_R 5.47

5 583 -42 -48 -26 Fusiform_L 4.79

6 576 -58 -62 -16 Temporal_Inf_L 4.63

Peak MNI Coordinates

Cluster no. No. of Voxels AAL Region Name T-statistic

1 2415 -10 -44 -10 Lingual_L 5.18

2 785 42 -56 -50 Cerebelum_7b_R 4.31

3 595 -36 -54 58 Parietal_Sup_L 4.78

4 350 22 36 16 Frontal_Mid_R 4.52

5 300 -46 -48 -30 Temporal_Inf_L 4.26

Peak MNI Coordinates
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Table A13. Functional connectivity group differences which were smaller (i.e. lower T-value) in 

data without deconvolution as compared to that with deconvolution performed (pseudo-negatives) 

(for the right precuneus [R_Prec] seed ROI). Table corresponds to Fig.A4. 

 

 

 

 

Cluster no. No. of Voxels AAL Region Name T-statistic

1 267 36 56 20 Frontal_Mid_R 3.84

2 827 -12 24 -6 Caudate_L 4.85

3 890 -16 -14 -26 Parahippocampal_L 4.47

4 103 26 -78 -40 Cerebelum_Crus2_R 4.52

5 348 -50 -20 -22 Fusiform_L 4.29

6 175 -58 -62 -16 Temporal_Inf_L 3.81

7 215 -8 -52 74 Precuneus_L 4.73

Peak MNI Coordinates


