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Thesis Abstract
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Bearing including Asperity Contact Effects
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(B.E., Government College of Engineering, Pune University, 2002)

123 Typed Pages

Directed by Robert L. Jackson

This thesis presents a theoretical and an experimental investigation of planar gas

squeeze ¯lm bearings. The thickness and pressure pro¯le of thegas squeeze ¯lm are ob-

tained by simultaneously solving the Reynolds equation andthe equation of motion for the

squeeze ¯lm bearing. This work also accounts for the force dueto surface asperity contact

in the equation of motion. When the surfaces are in contact, the model predicts the contact

force as a function of ¯lm thickness. Computational simulations are performed to study

the development of the squeeze ¯lm from its initial state to a pseudo-steady state condition

and to evaluate its load carrying capacity. For certain cases, the simulation results correlate

well with the pre-established analytical results. However,corrections must be made to the

analytical equations when they are used out of their e®ectiverange. In the experimental

study, a squeeze ¯lm is developed due to an applied relative normal motion between two
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parallel circular plates of which one circular plate is e®ectively levitated. Theoretical results

for the squeeze ¯lm thickness match qualitatively with its experimental counterpart.

On successful testing of macro-scale gas squeeze ¯lm bearings, micro-scale bearing

surfaces are fabricated. Experimental investigation of micro-scale bearings suggests that

these bearings have signi¯cant potential for a wide range of applications in Micro-Electro

Mechanical Systems (MEMS).
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Chapter 1

Introduction

Research in the ¯eld of tribology, the science and technology of friction, wear and

lubrication, has been continuously improving the performance of mechanical systems ever

since the industrial revolution. A British government report (the \Jost Report") in 1966

estimated a potential savings of$ 515 million per annum only for the United Kingdom

by better application of tribological principles and pract ices [1]. Application of principles

of tribology led to the development of many di®erent types of bearings used for di®erent

purposes. Thrust bearings, hydrodynamic bearings, hydrostatic bearings, rolling element

bearings, etc. are widely used as means to reduce the frictional losses in mechanical systems

based on the selection criteria. The selection criteria include speed, load, life, maintenance,

space requirements and environmental conditions etc.

The largely underutilized squeeze ¯lm e®ect has a potential for use as a means to

lubricate surfaces by creating squeeze ¯lm bearings. Applications of such squeeze ¯lm

bearings can be used in read/write heads in hard disk drives,manufacturing processes,

vibrating machinery, low-speed applications and hydrodynamic bearing start up and shut

down. In this research, the thin gas squeeze ¯lm bearings are studied extensively. Both

numerical and experimental results con¯rm that squeeze ¯lm bearings can be used as means

for lubrication. Micro-scale bearing surfaces are fabricated to study ultra-thin squeeze ¯lms

for lubrication of miniaturized mechanical systems.
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In Chapter 2 of this thesis, a review of the squeeze ¯lm e®ect with the perspective

of lubrication and damping is presented. The various lubrication regimes are described.

Hydrodynamic lubrication as well as squeeze ¯lm lubrication are de¯ned. Physics and

fundamentals of the squeeze ¯lm e®ect are explained. Incompressible and compressible

squeeze ¯lm bearings, with their governing equations, are reviewed. The latter part of

chapter 2 gives a background of squeeze ¯lm damping. It gives aconcise overview of the

cut-o® frequency, squeeze ¯lm damping and spring forces. Thisis followed by a review of

ultra-thin squeeze ¯lm bearings where gas rarefaction e®ects are signi¯cant.

In Chapter 3, all the research objectives as well as the speci¯c goals pertaining to these

objectives are stated.

Chapter 4 is divided into two sections, namely Thin and Ultra-thin squeeze ¯lm bear-

ings. Each section covers subsections such as formulation of coupled dynamics (the equation

of motion and the Reynolds equation for the bearing), numerical scheme to solve the dy-

namics, followed by the results of the numerical investigation.

Chapter 5 explains all the observations made during the measurements of thin and

ultra-thin squeeze ¯lm bearings. Here, experimental resultsare compared with the simula-

tion results.

Chapter 6 summarizes the thesis. In summary, a thorough study was conducted on the

squeeze ¯lm bearings for their use as a potential means to lubricate surfaces.
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Chapter 2

Background

2.1 Introduction

This chapter discusses in detail the di®erent types of lubrication regimes. The phe-

nomenon of squeeze ¯lm e®ect with the perspective of lubrication is then described. In-

compressible and compressible squeeze ¯lm bearings with their governing equations are

reviewed. Then, the squeeze ¯lm damping phenomenon and its cut-o® frequency are ex-

plained. Lastly, ultra-thin (nano-scale) squeeze ¯lm bearings including e®ects due to molec-

ular dynamics are studied.

2.2 Lubrication

\Lubrication is an application of a lubricant between two su rfaces in relative motion for

the purpose of reducing friction and wear or other forms of surface deterioration" [2]. The

lubricant is usually a °uid, but in some cases it can be a solid such as a powder. Lubrication

is broadly classi¯ed into °uid-¯lm, boundary and mixed regimes ( see Fig. 2.1). In °uid-

¯lm lubrication, bearing surfaces are completely separatedby either a liquid or a gaseous

lubricating ¯lm [3]. If the loads are high or speeds are low then the contact between high

or tall asperities is likely to occur. This is a boundary lubrication regime where a suitable

molecular layer of lubricant covers the high asperities. Hence, metal welding due to adhesion

3



is avoided [3]. The lubrication regime between boundary and°uid-¯lm is categorized as

mixed or partial lubrication. In the mixed lubrication regi me, e®ects due to both, boundary

and °uid-¯lm lubrication are observed [3]. In °uid-¯lm lubricatio n, a thin °uid ¯lm between

Lubrication

Fluid-Film Mixed Boundary

Hydrodynamic Hydrostatic Elastohydrodynamic

Sliding

Squeeze film

Figure 2.1: Classi¯cation of lubrication

bearing surfaces is obtained by either hydrostatic or hydrodynamic action. Hydrostatic

lubrication is a phenomenon of maintaining a lubricating ¯lm by external means; whereas,

hydrodynamic lubrication is self-acting. In hydrodynamic lubrication, positive ¯lm pressure

between conformal surfaces is developed due to relative motion and °uid viscosity [3]. The

topic of interest here is squeeze ¯lm lubrication, which is a type of hydrodynamic lubrication

4



where a lubricating ¯lm is developed due to relative normal motion and °uid viscosity.

Elastohydrodynamic lubrication is a form of hydrodynamic lubrication where lubricating

surfaces are elastically deformable [3].

2.3 Squeeze Film E®ect

The term \squeeze ¯lm" de¯nes a °uid ¯lm contained between two conformal, moving

surfaces with velocities of the surfaces normal to the planes of the containment [4]. If the

bearing surfaces approach each other then the motion is termed as \positive squeeze". Con-

versely, if the bearing surfaces move apart then the motion is termed as \negative squeeze"

[4]. A relative normal motion between two parallel surfacescan produce a squeeze ¯lm

which can completely separate the surfaces and contribute to lubrication. This phenomenon

is known as the \squeeze ¯lm e®ect" [3].

The load-carrying capacity results from the fact that a viscous °ow cannot be squeezed

out of the gap without any delay; therefore, providing a cushioning e®ect and the ¯lm

equilibrium is established through a balance between viscous °ow forces and compressibility

e®ects [5]. Thus, the °ow of °uid at the boundary is approximately reduced to zero due

to high viscous forces resulting from alternate compression and decompression of the °uid

[6]. Alternate compression and decompression produces a steady-state ¯lm pressure which

oscillates about its mean value [6]. The average steady-state ¯lm pressure is greater than

the atmospheric pressure over one cycle (T to T+2¼) and thus provides the squeeze ¯lm lift

and lubrication [6]. Applications of the squeeze ¯lm e®ect areclutch packs in automotive

5



transmission, engine piston pin bearings, human hip and knee joints, damper ¯lms for jet

engine ball bearings and piston rings [7].

The dynamics of squeeze ¯lm is coupled as it includes both the equation of motion for

squeeze ¯lm bearing and the Reynolds equation. Here, the Reynolds equation governs the

generated °uid pressure. The general form of the Reynolds equation is given by [3]
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Here, h is the squeeze ¯lm height and¹ is the viscosity of the °uid. The time dependent

term @(½h)
@t is known as the \squeeze term" as it represents squeezing motion of the °uid.

Here, ux , uy and u0
x , u0

y are surface velocity components of bottom and top surfaces in x

and y direction, respectively.

2.4 Incompressible Squeeze Film Bearings

In incompressible squeeze ¯lm bearings, the lubricant is a liquid and its density is

assumed to be constant in the operating range. As per Hamrock[3], when two surfaces

approach each other, it takes a ¯nite amount of time to squeezeout the °uid, and this

action provides a lubricating e®ect. It is also interesting to note that it takes an in¯nite

amount of time to theoretically squeeze out all the °uid. For an incompressible °uid,

viscosity along with density is assumed to be constant in theReynolds equation [3]. Also, if
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only normal motion is considered and sliding velocities arezero then the Reynolds equation

in rectangular coordinates is given as [3]
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Eq. (2.2) in cylindrical-polar coordinates is expressed as
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The Reynolds equation given in the form of Eqs. (2.2) and (2.3) can be analytically

solved for pressure, ¯lm thickness and ¯nite squeeze time (i.e. the amount of time for the

¯lm to be squeezed out). Hamrock [3] provides analytical expressions for pressure, ¯lm

thickness and ¯nite squeeze time for various geometries suchas parallel-surface bearings

with in¯nite width, journal bearings with no rotation, a para llel circular plate approaching

a plane surface and a long cylinder near plane. As per Hamrock[3], the parallel ¯lm shape

produces the largest normal load-carrying capacity.

2.5 Compressible Squeeze Film Bearings

In contrast, for compressible squeeze ¯lm bearings, the lubricant used is gaseous (such

as ambient air). Langlois [8] was one of the ¯rst to extensively study the isothermal gas
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squeeze ¯lms with the assumption of a thin and continuous gas ¯lm with a constant viscos-

ity. Langlois [8] also assumed that the density of the gas is proportional to the pressure,

which means that the gas squeeze ¯lm obeys the ideal gas law under isothermal condi-

tions. Langlois [8] derived the equation that governs the pressure variation for a thin, °at

isothermal gas squeeze ¯lm
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Here, ¤ is the bearing number and¾is the squeeze number.

The de¯nitions of ¤ and ¾are

¤ = 6 ¹BV =p atm h0
2 (2.5)

¾= 12¹B 2!=p atm h0
2 (2.6)

Here, B is bearing breadth. The reference velocity,V , is used to obtain normalizedUx , U0
x ,

Uy and U0
y (see Nomenclature), where the order of magnitude of these normalized velocities

is unity [8]. Likewise, Eq. (2.4) in cylindrical-polar coordinates is given as
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Later, Langlois [8] dealt with the exact solution to squeezē lm equations (Eqs. (2.4) and
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Figure 2.2: The squeeze ¯lm thickness, h, as a function of normalized time, T,
(h= hm (1+ ²¢cos(! t) and ²= ±h/ hm )
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(2.7)) by assuming the squeeze ¯lm thickness as a function of time (see Fig. 2.2)

h = hm (1 + ²¢cos!t ) (2.8)

Based on the assumption of a ¯lm thickness given by Eq. (2.8), Langlois [8] introduced

a perturbation parameter for pressure of the order of² in the Reynolds equation. Then,

Langlois [8] solved Eq.(2.4) to obtain the squeeze ¯lm force (i.e. the force due to the

di®erence between the pressure of the squeeze ¯lm and the ambient pressure for a given

instant of time). This solution is given for the squeeze ¯lm between two °at long parallel

plates and two parallel disks. Since the present work considers axisymmetric parallel disks

without lateral surface motions, the governing Reynolds equation as per [8] is

@
@R

µ
RH 3P

@P
@R

¶
= R¾

@(PH )
@T

(2.9)

where ¾is as given

¾= 12¹R 0
2!=p atm hm

2 (2.10)

As per [8], if the squeeze number is very large then the gas between bearing surfaces

does not leak, and the squeeze ¯lm can be considered as incompressible. At low squeeze
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numbers, the frequency of squeeze motion is low, and therefore gas leaks out [8]. The

squeeze ¯lm force between parallel disks given by [8] is

F (T) =
³
¼patm R0

2²
´

[¡ g1 (¾) cosT+ g2 (¾) sin T] (2.11)

where,

g1 (¾) =1 ¡

r
2
¾

¢
ber

p
¾(bei1

p
¾¡ ber1

p
¾) ¡ bei

p
¾(ber1

p
¾+ bei1

p
¾)

(ber
p

¾)2 + ( bei
p

¾)2 (2.12)

g2 (¾) =

r
2
¾

¢
ber

p
¾(ber1

p
¾+ bei1

p
¾) + bei

p
¾(bei1

p
¾¡ ber1

p
¾)

(ber
p

¾)2 + ( bei
p

¾)2 (2.13)

Eq.(2.11) gives a good estimate of the squeeze ¯lm force between parallel disks at a

particular instant of time.

For compressible squeeze ¯lm bearings, Salbu [9] showed thatthe squeeze ¯lm e®ect

can be used to operate bearings in a highly vibrational environment, and also provided

analytical equations for bearing load carrying capacity. Salbu [9] assumes that the squeeze

¯lm thickness is a known sinusoidal function of time. One disk is held stationary and

the other oscillates sinusoidally about a mean ¯lm thicknessin a direction normal to the

surfaces with an amplitude of oscillation, ±h, and frequency, ! . Salbu [9] uses a simpli¯ed
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form of the Reynolds equation (Eq.(2.9)). Then, the boundary conditions for the planar

radial squeeze ¯lm bearing are assumed as

P (R;T = 0) =1 (2.14)

i.e. initial pressure between disks is atmospheric. At the outer periphery,

P (R = 1 ;T) =1 (2.15)

i.e. the pressure is atmospheric at all times. At equilibrium, the mean positive ¯lm force,

is equal to the applied load. When ¾!1 , \the mass content rule" can be imposed on

Eq. (2.9) and the following equation can be derived to approximate the mean load carrying

capacity [9]

Wn=
Fn

¼patm R0
2 =

8
<

:

"
1 + 3

2²2

1 ¡ ²2

#1=2

¡ 1

9
=

;
(2.16)

Salbu [9] numerically modeledWn as a function of¾for various ² values and compared

it with the asymptotic values of Wn , as given by Eq. (2.16). For¾̧ 10, Salbu [9] observed

little variation between the numerical and analytical Wn predicted from Eq. (2.16) at the

same². Thus, Eq. (2.16) may be used to predictWn for ¾̧ 10. For ¾̧ 10, Eq.(2.16) is
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used to validate the computational simulation results of the current analysis presented in

this thesis and will be referred to as Salbu's Equation.

Further work on dynamic gas squeeze ¯lm bearing theory was performed by Minikes et

al. [10]. In [10], instead of assuming a squeeze ¯lm height as afunction of time, it is deter-

mined by equilibrium of forces. Minikes et al. [10] used a piezoelectrically vibrating disk to

levitate another disk for experimental and numerical work. A sinusoidal voltage was applied

on the electrodes which gave rise to harmonic deformation ofthe piezoelectric disk at the

excitation frequency. The piezoelectric disk was also statically and dynamically deforming.

However, in the present work both disks are considered to be rigid. A similar approach of

coupled dynamics can also be found in [11], where the °uid ¯lm lubrication forces and seal

dynamics were solved simultaneously for noncontacting gasface seals, although the faces

were annular and not circular.

2.6 Squeeze Film Damping

\Damping is the element, present in all real systems, which dissipates vibrational en-

ergy, usually as heat, and so attenuates the motion" [12]. A squeeze ¯lm can also be modeled

as a spring-damper system (Fig. 2.3).

An early study of squeeze ¯lm by Gri±n et al. [13] suggests that squeeze ¯lm between

two parallel plates provides viscous damping action over a certain frequency range. As

per Gri±n et al. [13], if the displacements to be damped are small (sub micrometer)

then squeezing of a thin gas ¯lm between two parallel °at surfaces can produce substantial

13



Figure 2.3: Analogy of a squeeze ¯lm as a spring-damper system

damping forces at very high frequencies. The damping force is proportional to the relative

velocity over certain ranges of operation, and this type of damper is termed a viscous damper

[13]. Squeeze ¯lm damping due to relative axial or tilting motion between two closely spaced

plates is analyzed by Gri±n et al. [13]. Gri±n et al. [13] provid es a critical frequency below

which the squeeze ¯lm acts as a damper and above which it acts asa spring. At the critical

frequency, both the damping and spring forces are equal. Analytical expressions are also

provided by Gri±n et al. [13] for the squeeze ¯lm force and critical frequency for special

cases of in¯nitely wide parallel plates, annular parallel plates and parallel disks. The critical

frequency for parallel disks is given by [13]

! c=
´h m

2pa

2:07¹R 0
2 (2.17)

Blech [14] also analyzed squeeze ¯lm cut-o® frequencies for di®erent geometries and

divided the squeeze ¯lm force into damping and spring force components. The spring force
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is greater than the damping force for all frequencies exceptthe cut-o® frequency, and below

the cut-o® frequency damping is comparable to spring action [14]. As per Blech [14], the

maximum damping occurs at the cut-o® frequency when the spring and damping forces are

equal, and above the cut-o® frequency, the spring force increases while the damping force

decreases with increases in the squeeze number,¾.

Blech [14] gives the damping force as a function of the squeeze number,¾, and excursion

ratio, ², between parallel circular disks

Fd= ¡

r
2
¾

¢
£
Ac

¡
ber1

p
¾¡ bei1

p
¾

¢
+ Bc

¡
ber1

p
¾+ bei1

p
¾

¢¤
² (2.18)

Similarly, the spring force by [14] is

Fs=1+

r
2
¾

¢
£
Ac

¡
ber1

p
¾+ bei1

p
¾

¢
+ Bc

¡
ber1

p
¾¡ bei1

p
¾

¢¤
² (2.19)

Here,

Ac=
bei

p
¾

³
ber2

p
¾+ bei2

p
¾

´ (2.20)
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and

Bc= ¡
ber

p
¾

³
ber2

p
¾+ bei2

p
¾

´ (2.21)

The critical frequency for parallel disks is given by [14] as

! c=
hm

2pa

1:93¹R 0
2 (2.22)

For isothermal conditions, Blech [14] (Eq. (2.22)) underestimates the cut-o® frequency by

7 % as compared to Gri±n et al. [13] (Eq. (2.17)) because Blech [14] assumes one term

approximation to the cut-o® frequency. A sample cut-o® frequency using Eq. (2.17) [13] and

assumption of isothermal °ow for an experimental result is calculated to be 1377 Hz. For

this case (See Apendix C.2),hm is 13.38¹ m and the frequency of oscillation is 800 Hz. Thus,

the frequency at which the bearing is operated is less than the cut-o® frequency where the

spring force is more than the damping force [14]. Similarly,a few more calculations based

on the experimental results suggest that in the present workthe range of operation of the

squeeze ¯lm bearing is either below or above the cut-o® frequency, and for such cases the

spring force is always greater than the damping force [14].

The gas squeeze ¯lm sti®ness and damping torques on a circular disk oscillating about

its diameter were analyzed by Ausman [15]. In [15], the linearized Reynolds equation for

small squeeze ¯lm motions is solved for pressure between the disks where one disk oscillates

in a tilting motion about its diameter. This pressure is then integrated over the surface

16



area to obtain the total squeeze ¯lm torque. Then Ausman [15] separates the total squeeze

¯lm torque into sti®ness and damping components. As per Ausman[15], the torque which

opposes the angular de°ection is sti®ness torque; whereas, the torque which opposes angular

rate is damping torque. The gas damping is observed as viscous friction of the gas as it °ows

in and out between the disks, and gas sti®ness is observed as compressibility of a trapped gas

between the disks [15]. Ausman[15] concludes that at higherfrequencies, the gas is trapped

and does not leak, resulting in higher compressibility. This means that higher frequencies

produce higher sti®ness torque, and at lower frequencies, gas has more than su±cient time

to °ow in and out, resulting in higher damping torque[15].

Etsion [16] analyzed squeeze ¯lm e®ects in liquid lubricated radial face seals and ob-

tained damping coe±cients. Green et al. [17] calculated dynamic damping and sti®ness

coe±cients of the °uid ¯lms in mechanical face seals, considering squeeze ¯lm e®ects along

with hydrostatic and hydrodynamic e®ects. Work speci¯c to compressible squeeze ¯lm

damping was done by Blech [18] for annular squeeze-¯lm plates in relative motion. Re-

search into the e®ect of squeeze ¯lm damping is also currently prominent in the design of

micro-electro mechanical systems (MEMS) and microstructures ([19]-[26]). Some of this

work is discussed in detail in the next section.
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2.7 Micro-Scale Squeeze Film Bearings and E®ects Due to Molecular Dy nam-

ics

Micro-Electro-Mechanical Systems (MEMS) are miniature systems used to combine

electro-mechanical functions with dimensions varying froma micrometer to a millimeter.

Due to the micrometer size, lubrication in MEMS becomes a critical design parameter

and design and selection of MEMS bearings is a challenge for researchers. Usage of liquid

lubricant in MEMS leads to a power dissipation problem and sois not a good choice for

lubrication [27]. An alternative to oil-based lubricant, gas lubricated bearings can be used

in MEMS. Gas bearings can support their loads on pressurizedthin gas ¯lms. As per

Epstein [28], for micromachines such as turbines, gas bearings have several advantages over

electromagnetic bearings, such as no temperature limits, high load carrying capability, and

relatively simple fabrication. \The relative load-bearing capability of a gas bearing improves

as size decreases since the volume-to-surface area ratio (andthus the inertial load) scales

inversely with size" [28]. An example of a fully functional gas ¯lm bearing is seen in the MIT

Microengine project [29]. Here, a rotor of a micro-gas turbine generator is supported by a

journal air bearing. As per Breuer [30], the gas lubricationsystem in MEMS should be easy

to fabricate with su±cient performance and robustness. In another example, a self-acting

gas thrust bearing was designed, fabricated and tested on a silicon microturbine [31]. Wong

et al. [31] compared a hydrodynamic gas thrust bearing to an existing hydrostatic one,

and observed that a hydrodynamic approach is much simpler tofabricate and the required

source of pressurized gas can be eliminated.
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If the high speed relative normal motion is already available in MEMS, then potentially

the squeeze ¯lm e®ect can be used as a means to lubricate surfaces in MEMS, and create

MEMS bearings. In such cases, there is no special geometry needed as two planar surfaces

serve as a bearing, and the system is also maintenance free because ambient air serves as

the lubricant. Breuer [30], in a summary on some of the issuesof lubrication in MEMS,

suggests that fundamental issues of °uids and solid physics such as gas surface interactions,

momentum and energy accommodation phenomenon and surface contamination e®ects are

vital parameters for ultra-thin lubrication. For such a smal l scale, continuum assumptions

are not always valid, which can be seen in the following calculations. The RMS roughness,

Rq, of MEMS surfaces seems rather smooth. The range ofRq is usually varies from 0.07 to

0.25 nm [32]. For a complete surface separation, ¯lm thickness of 10¢Rq is a good approx-

imation. Thus, a minimum ¯lm thickness of 2.5 nm should provide a full ¯lm lubrication.

The above calculations show that ultra-thin °uid ¯lms can be used in MEMS as a means

of lubrication.

The mean free path of a gas is given as [33]

¸ =
16¹
5p

s
GTa

2¼
(2.23)

The mean free path can be estimated for the normal operating conditions (See Table 2.1)

in a squeeze ¯lm bearing. Using Eq. (2.23) and the assumptionsin Table 2.1, the mean free

path, ¸ , is calculated to be 8.7 nm. The mean free path is used to calculate the Knudsen

19



Table 2.1: Assumptions and parameters used to estimate the mean free path
Flow Isothermal
Air Temperature, Ta 293 K
Viscosity of air, ¹ 1.82¢10¡ 5 N¢s/m2

Pressure,p 101325 N/m2

Gas Constant, G 8.3144 J¢mol¡ 1¢K ¡ 1

number to further characterize the type of °uid °ow. The Knudsen number, Kn is de¯ned

as

Kn =
Mean free path (̧ )

¯lm height ( h)
(2.24)

If the mean free path is very small compared to the characteristic length (i.e. length scale

of the problem), then the °uid °ow is considered to be in the continuum range. If the

mean free path is comparable to the characteristic length then continuum theory of °uid

mechanics does not hold well. Typical values of the Knudsen number corresponding to

di®erent types of °ow are tabulated in Table 2.2. Substituting values of ¸ =8.7 nm and

Table 2.2: Types of °ows as per Knudsen number [34]
Range of Knudsen Number Type of Flow

Kn · 10¡ 3 Continuum Flow
10¡ 3 <Kn< 0:1 Slip Flow
0:1 <Kn< 10 Transition Flow
10 · Kn Molecular Flow

h=2.5 nm in Eq. (2.24) gives Kn ¼3.5. Thus, the mean free path is not negligible when

compared to the ¯lm thickness and the °ow between bearing surfaces cannot be considered
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as a continuum any more. ForKn ¼3.5, the °uid °ow falls into the transition °ow regime

(See Table 2.2).

If the ¯lm height is increased to 8 ¹ m then the °uid °ow will at most change to slip

°ow. Hsia et al. [35] experimentally studied gas bearings at ultra low clearances and pointed

out that for ultra-thin ¯lms (below 0.25 microns), slip-°ow theo ry (e®ects due to molecular

dynamics) needs to be considered when modeling the °uid dynamics. There are various

models which provide means to include rarefaction e®ects dueto reduction in the density

of gas (i.e. slip °ow or transition °ow regime) in the Reynolds equation ([24],[33],[36],[38]).

Although most of this work is done for the squeeze ¯lm damping,the governing equa-

tions generally remain the same and can be used for squeeze ¯lmlubrication. Li [36] modeled

an ultra-thin gas squeeze ¯lm using the modi¯ed gas ¯lm lubrication (MMGL) equation in-

cluding coupled roughness and rarefaction e®ects. A rectangular geometry is considered in

this work and a linearized form of MMGL equation [36] is solved.

@
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(2.25)

Here,

®2 =
12¹

´h m
2patm

(2.26)

and ÁX
P and ÁY

P are pressure °ow factors in x and y direction respectively.
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Then, Li [36] transforms the linearized MMGL problem to the continuum gas ¯lm

problem to obtain an analytic solution. Darling et al.[37] provides an analytical equation

for the squeeze ¯lm force in the form of a complex number. The real part of the complex

number is the spring force while the imaginary part is the damping force. In an another work

by Pandey et al. [24], surface roughness and rarefaction e®ects are included in the analysis

of squeeze ¯lm damping in MEMS. This work [24] accounts for nonlinear e®ects rather than

solving the linearized form of the MMGL equation. An explicit ¯nite di®erence solution of

the nonlinear MMGL equation suggests that rarefaction e®ects reduce the spring force and

the damping force below the cut-o® frequency but above the cut-o® frequency the spring

force reduces but the damping force increases when comparedwith the linearized solution

[24]. Rarefaction e®ects increase the value of the cut-o® frequency and so increase the range

of frequency where damping is dominant [24]. Thus, in order to achieve lubrication from

the squeeze ¯lm e®ect, it should be better to operate the squeeze ¯lm bearings above the

cut-o® frequency.

Nayfeh et al. [23] modeled °exible microstructures under thee®ect of squeeze ¯lm

damping. The form of Reynolds equation used by [23] is

@
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µ
H 3P

@P
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¶
+
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@P
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¶
=12¹ ef f

@(PH )
@t

(2.27)
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Here, the e®ective viscosity,¹ ef f , is given by Veijola et al. [38] which accounts for the

gas rarefaction e®ects and is given as

¹ ef f =
¹

1 + 2Kn + 0 :2 ¢Kn 0:788e¡ Kn= 10
(2.28)

Eqs. (2.27) and (2.28) can be easily used for modeling the squeeze ¯lm e®ect for ultra-thin

¯lms and therefore the present work models ultra-thin squeezēlm e®ect using Eqs. (2.27)

and (2.28) (See Chapter 4).
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Chapter 3

Objectives

The objective of this research is to experimentally and analytically study dynamic

compressible squeeze ¯lm bearings. The squeeze ¯lm bearings are hydrodynamic bearings

where °uid pressure is generated due to relative normal motion between the bearing surfaces.

The dynamic motion of gas squeeze ¯lm bearings is governed by °uid °ow forces, forces due

to motion of both the bearing surfaces and the contact forcesdue to surface asperities. The

lubricant used in studied compressible squeeze ¯lm bearingsis air or gas. Gas lubricated

bearings have certain advantages over the liquid lubricated bearings such as low frictional

heat and a greater temperature range [39].

In the ¯rst part of this thesis, macro-scale dynamic gas squeeze ¯lm bearings having

thin squeeze ¯lms will be studied. The coupled dynamics of macro-scale gas squeeze ¯lm

bearings which includes the Reynolds equation for °uid °ow, the equation of motion for the

squeeze ¯lm bearing and the contact force due to initial surface asperity interaction will

be formulated. Then, coupled equations will be numericallysolved to study the dynamic

behavior of gas squeeze ¯lms from its initial state to pseudo-steady state. Based on numer-

ical investigation, the load carrying capacity to the squeeze number, ¾ and the excursion

ratio, ² will be correlated. A test setup will be built to experimenta lly generate, control and

measure the gas squeeze ¯lms between disk shaped surfaces. Experimental and numerical

results will be compared.

24



In the latter part of this thesis, micro-scale dynamic gas squeeze ¯lm bearings having

ultra-thin squeeze ¯lms will be studied. The °uid dynamics for micro-scale dynamic gas

squeeze ¯lm bearings (ultra-thin) as it changes from macro-scale dynamic gas squeeze ¯lm

bearings (thin) will be modi¯ed, and the changes will be incorporated into the coupled

dynamic model. Prototypes of micro-scale squeeze ¯lm bearingswill be fabricated for the

experimental study. Finally, experimental and simulation results will be compared.
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Chapter 4

Numerical Investigation

4.1 Introduction

This chapter describes in detail the numerical scheme to solve the coupled dynamic

system. The results obtained from the numerical investigation are then discussed. The

chapter is divided into two parts, thin squeeze ¯lm bearings and ultra-thin squeeze ¯lm

bearings.

4.2 Thin Squeeze Film Bearings

If the squeeze ¯lm is thin enough to operate in the continuum °ow regime then the

bearing is considered to have a thin squeeze ¯lm (as opposed toan ultra-thin squeeze ¯lm).

This section covers the formulation of the coupled dynamics, the computational scheme and

the simulation results.

4.2.1 Formulation of Coupled Dynamics

See Fig. 4.1 for a schematic of the dynamic planar gas squeeze¯lm bearing. The

bearing con¯guration consists of two metal disks. Ideally, these metal disks are subjected

to only one degree of freedom (permitting motion only in the vertical direction). The

bottom disk is used as an oscillating base and the top disk freely levitates just above the

bottom disk. The oscillating base is achieved by mounting ona vibrating shaker. At rest,
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the upper disk sits on the top surface of the oscillating base. Once the base is subjected to

adequate oscillatory motion, the air squeeze ¯lm is generated between the oscillating base

and the upper disk.

Levitating disk 

Air squeeze film

Oscillating base

z

zt

zb=Z0sin(T)

h

2

R

Figure 4.1: Schematic of a planar squeeze ¯lm bearing

Assuming that the squeeze ¯lm is axisymmetric and isothermal, the normalized Reynolds

equation in polar coordinates for an ideal gas between two parallel circular disks is given as

1
R

@
@R

µ
RH ¤3P

@P
@R

¶
= ¾¤ @(PH ¤)

@T
(4.1)

where the squeeze number,¾¤, is as given

¾¤ = 12¹R 0
2!=p atm h0

2 (4.2)
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Eq. (4.1) di®ers from Eq. (2.9) in the manner in which the squeeze ¯lm height is

normalized. In Eq. (4.1) the squeeze ¯lm height,h, is normalized by the initial ¯lm height,

h0, whereas in Eq. (2.9) the squeeze ¯lm height,h, is normalized by the mean ¯lm height,

hm (see nomenclature). The initial ¯lm height, h0, is known; whereas the mean ¯lm height,

hm , is unknown before solving the °uid dynamics. Thus, the °uid dynamics is modeled for

Eq. (4.1). Eq. (4.1) is a nonlinear parabolic partial di®erential equation. The boundary

conditions of Eq. (4.1) are given by Eqs. (2.14) and (2.15). The initial pressure is ambient

and the initial ¯lm thickness is determined from a contact for ce model (see Appendix A).

The normalized Reynolds equation (Eq. 4.1) is solved numerically.

Figure 4.2: Scheme for discretization of i-spatial variableand j-time variable

The left hand side of Eq. (4.1) is discretized using a central-¯nite di®erence scheme.

Fig. 4.2 explains the meshing scheme for the squeeze ¯lm bearing in space (i ) and time ( j ).

For (0< R< 1),
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and at the left boundary (R=0), the pressure gradient @P
@R is zero.

P0;j = P0;j +1 (4.8)

At the right boundary ( R=1), the pressure is always atmospheric.

P(R = 1 ; T) = 1 (4.9)

The right hand side of Eq. (4.1) is discretized as

¾¤ @(PH ¤)
@T

¼ ¾¤ Pi;j +1 H ¤
j +1 ¡ Pi;j H ¤

j

¢ T
(4.10)
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In order to investigate the dynamic squeeze ¯lm bearing, it isnecessary to consider the

coupled dynamics of the system, which includes the Reynoldsequation and the equation of

motion using a force balance.

2

2

dt
zd

m t

mg( ) ApP atmn 1Š
contF

Levitating disk

Figure 4.3: Free body diagram of a squeeze ¯lm bearing (one degree of freedom)

A free body diagram of the top levitating disk (Fig. 4.3) shows all the forces acting on

the top disk. Thus, the equation of motion can be written as

m
d2zt

dt2 = ( Pn ¡ 1) ¢patm ¢A + Fcont ¡ Fi (4.11)

Here, Fi is the weight of the top disk as employed in the simulation i.e.

Fi = mg (4.12)
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Substituting Eq. (4.12) into Eq. (4.11) gives

m
d2zt

dt2 = ( Pn ¡ 1) ¢patm ¢A + Fcont ¡ mg (4.13)

Here, the term Fcont represents the asperity contact force. The contact force model is

presented in the Appendix A. In the equation of motion, contact force between bearing

surfaces needs to be considered since the surfaces can be in contact at start-up, shut-down

and if the squeeze ¯lm force is not large enough to achieve continuous separation of the

surfaces. The model detailed in the Appendix A provides an average contact force,Fcont ,

as a function of surface separation or ¯lm thickness (h), rms surface roughness (Rq), modulus

of elasticity (E ), yield strength ( Sy) and Poisson's Ratio (º ). Using an exponential ¯t to

the results of Eqs. (A1-A7), an analytical expression ofFcont as a function ofh is obtained.

In the numerical simulation, this relationship is used to predict the contact force between

the bearing surfaces. Initially, at t = 0, the two surfaces are stationary and the contact

force, Fcont , balances the applied load,Fi . But during the development of the squeeze ¯lm,

the two surfaces are pushed out of contact by the reaction force between bearing surfaces.

Inclusion of Fcont in the dynamics also predicts the initial (at t = 0) ¯lm thickness h0 when

Fcont = mg, and also indicates when a full ¯lm of lubrication is achieved(the contact force

reaches zero). As the squeeze ¯lm thickness,h, is also the relative displacement between

the two bearing surfaces (See Fig. 4.1)
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zt = zb + h (4.14)

Then taking the time derivative of Eq. (4.14) twice yields

d2zt

dt2 =
d2zb

dt2 +
d2h
dt2 (4.15)

and since the base is excited by a sine wave

zb = Z0sinT (4.16)

Di®erentiating Eq. (4.16) twice with respect to t yields

d2zb

dt2 = ¡ ! 2Z0sinT (4.17)

Substituting Eqs. (4.15) and (4.17) into Eq. (4.13) yields

m
d2h
dt2 = m! 2Z0sinT + ( Pn ¡ 1) ¢patm ¢A + Fcont ¡ mg (4.18)

Eq. (4.18) can be normalized forh and t. Here, h is normalized to H ¤ (h/ h0) and t to

T (!t ). The normalized form of Eq. (4.18) is

d2H ¤

dT2 =
1

h0! 2

µ
! 2Z0sinT +

(Pn ¡ 1) ¢patm ¢A
m

+
Fcont

m
¡ g

¶
(4.19)
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Eq. (4.19) is a second-order nonlinear partial di®erential equation and its initial con-

ditions (at t=0) are given as

dH ¤

dT
= 0 (4.20)

Pn = 1 (4.21)

Fcont = mg (4.22)

The fourth-order Runge-Kutta method is used to solve the equation of motion (Eq.

(4.19)). Eq. (4.19) is also coupled to the °uid dynamics of thesqueeze ¯lm through the

dimensionless mean pressure,Pn , calculated from the discretized Reynolds equation (Eqs.

(4.3) and (4.10)).

4.2.2 Computational Scheme

The coupled dynamics (the Reynolds equation and the equation of motion) is solved

simultaneously. Since the Reynolds equation is parabolic it must be solved at each individual

step of the Runge-Kutta method. Fig. 4.4 illustrates the steps of an algorithm to solve the

coupled dynamics. First, all constants, initial and boundary conditions are de¯ned. Then

the fourth-order Runge-Kutta method is implemented to solve the equation of motion.

For each step of the Runge-Kutta method, the discretized Reynolds equation is solved to
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Define constants, initial conditions and boundary conditions

Step k of 4th order Runge-Kutta method to solve equation of motion for H

Solve discretized Reynolds equation for P
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Yes

Stop
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If k<4

k=k+1

Increment T

Update P and H

Runge-Kutta Method

Figure 4.4: Algorithm for computational simulation
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determine change in pressure due to change in the ¯lm height. This change in pressure is

used in the next step of the Runge-Kutta method to account for change in the ¯lm height.

Pressure and ¯lm thickness are updated at the last step. This process is continued until a

pseudo-steady state is achieved. The simulation code is programmed in C (see Appendix

B).

In order to con¯rm that the mesh density is adequate in space, only the discretized

Reynolds equation is solved with an assumption that¾= 1000 and the squeeze ¯lm height

is known as a function of time, i.e. H =1-0.5¢sin(T). P as a function of T is plotted for 16

(Fig. 4.5) and 160 nodes (Fig. 4.6). From the plots (Figs. 4.5and 4.6), it can be seen that

the 16-node grid is as accurate as the 160-node grid. The deviation of pressure for grid size

of 16 to that of 160 is only 0.75 %. Thus, the 16-node grid is usedin numerical simulations

in order to reduce computational e®ort.
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�Œ 2�Œ 3�Œ 4�Œ
(rad)

0

Figure 4.5: DimensionlessP as a function of normalizedT at R=0.5, ¾=1000 and H =1-
0.5¢sin(T) (16 nodes)

�Œ 2�Œ 3�Œ 4�Œ
(rad)

0

Figure 4.6: DimensionlessP as a function of normalizedT at R=0.5, ¾=1000 and H =1-
0.5¢sin(T) (160 nodes)
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After de¯ning the grid size, the value of the time-step ¢ t is re¯ned by simultaneously

solving the coupled dynamics. Fig. 4.7 shows that ¢t=¢ T=! =10 ¡ 7 s is small enough

(deviation with step size, ¢ t of 10¡ 8 s is 0.2214 %) and thus used to characterize squeeze

¯lm dynamics, but some error (deviation with step size, ¢ t of 10¡ 8 s is 2.3868 %) occurs

for ¢ t=¢ T=! =10 ¡ 6 s.
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Figure 4.7: Variation in ¯lm height for di®erent time steps

37



4.2.3 Results

The numerical simulation is performed from t=0 to the time when the squeeze ¯lm

thickness achieves a pseudo-steady state (see Fig. 4.8). Thesimulation input parameters

used aref =5000 Hz, Y=5 ¹ m, R0=0.0325 m and Fi =1.57 N. At t=0, ¯lm thickness is

calculated solely from the contact force model and is used asan initial ¯lm thickness in the

simulation. The base oscillation is initiated and the simulation is run to a pseudo-steady

state.

Dynamic behavior of the squeeze ¯lm

From Fig. 4.8, it can be observed that between time 0 to 0.01 seconds the surfaces come

in and out of contact and the contact force is dominant in this region. After 0.01 seconds,

a full ¯lm is developed and the ¯lm height continues to increase until approximately 0.8

seconds. After approximately 0.8 seconds, the squeeze ¯lm achieves a pseudo-steady state

where it oscillates at a mean squeeze ¯lm height (see Fig. 4.8 enlarged view). Simulation

output parameters at pseudo-steady state arehm =81.52 ¹ m, ²=0.063 and ¾=10.7.

Comparison with the pre-established models

Simulation results are used to verify the predictions of thesqueeze ¯lm force model

derived by Langlois [8]. The excursion ration,², and the squeeze number,¾, are substituted

into Eq. (2.11) [8] and the squeeze ¯lm force,F (T), is obtained. The squeeze ¯lm force,

F (T), from simulation result is [( P ¡ 1) ¢patm ¢A]. Fig. 4.9 shows that Langlois [8] and
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present model compare moderately well and so [8] approximately predicts the periodic

squeeze ¯lm force. SinceF (T) given by [8] is a function of sine and cosine (Eq. (2.11)),

the net squeeze ¯lm force over one period is zero. This does nothold true because the

numerical analysis and Salbu [9] predict a net load carryingforce is formed. Thus,F (T)

by [8] is a good estimation but is not entirely accurate. As per the present model, the net

squeeze ¯lm force over one period equals to the weight of the levitating disk.

The excursion ratio, ², and the squeeze number,¾, calculated from the current simu-

lation results (See Fig. 4.8) can also be used to verify and correlate with the predictions

of Salbu's Eq. Substituting valuesR0=0.0325, f =5000 Hz and hm =81.5 ¹ m (See Fig. 4.8)

into Eq. (2.10) gives squeeze number,¾=10:7. As ¾is greater than the limiting minimum

value of 10 de¯ned by Salbu [9], Salbu's Eq. can be used to calculate the load carrying

capacity. A comparison of the applied load,Fi and predicted load, Fn by Salbu's Eq. is

shown in Table 4.1.

Table 4.1: Comparison of load carrying capacity betweenFi in numerical simulation and
Fn by Salbu's Eq.

Fi 1.57 N
Fn by Salbu's Eq. 1.67 N
for ²=0.063
Percentage error 6.4
betweenFi and Fn

As the percentage error betweenFi and Fn by Salbu's Eq. is only 6.4; it appears that

the coupled model is in agreement with the pre-established model [9] and can be used to

study the dynamic behavior of squeeze ¯lm bearings. More extensive comparisons of the

simulation results to Salbu's predictions are presented inthe next section.
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Development of Semi-analytical Equation

Simulations are performed by changing the simulation parameters such asf , R0, Z0

and Fi . Thus a wide range of values for¾(0:4<¾<14:6) are obtained. Also the percentage

error between Fi and Fn by Salbu's Eq. is calculated for these simulations. For¾>10,

it is observed that the percentage error betweenFi and Fn by Salbu's Eq. is fairly low

(less than 7). However, for¾<10, the percentage error increases and over-predicts the load

carrying capacity (Fig. 4.10). Thus, Salbu's Eq. can be usedas a basis to calculate load

carrying capacity if ¾ is greater than 10, but if it is less than 10, the percentage error

increases signi¯cantly and a modi¯ed form of Salbu's Eq. is needed. In order to obtain

a semi-analytical equation to extend the range of Salbu's Eq., it is modi¯ed by the curve

¯tting technique using the percentage error betweenFi and Fn as predicted by Salbu's Eq.

Here, the level of certainty of the ¯t is 95 % and value of R-square is 0.9985. An exponential

equation f (¾) is ¯t to the percentage error of the data as a function of ¾ (see Fig. 4.10)

and is given by

f (¾) = 460 ¢exp(¡ 4:5 ¢¾) + 19 ¢exp(¡ 0:15¢¾) (4.23)

Wn=
Fn

¼patm R0
2 =

µ
1

1 + f (¾)

¶
8
<

:

"
1 + 3

2²2

1 ¡ ²2

#1=2

¡ 1

9
=

;
(4.24)

A comparison betweenFi and Fn using Eq. (4.24) for a large number of points within

0:4<¾<10 is performed. It is observed that the average percentage error between Fi and
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Fn from Eq. (4.24) for 0:4<¾<10 is only 1.04. Thus Eq. (4.24) con¯rms its usefulness for

lower ¾values in this range.

Parametric Study

A parametric study using the analytical simulation is performed to study the behavior

of the mean squeeze ¯lm height as a function ofFi (Fig. 4.11). As shown,hm decreases with

increases inFi , for a given set of simulation parameters. It can also be observed from Fig.

4.11, that if the frequency is doubled and other parameters kept constant, the mean squeeze

¯lm height, hm , changes but relatively less than when load is varied. The variation of hm

with Fi is similar in nature for both the frequencies. Numerical simulations are performed

to study the behavior of the mean squeeze ¯lm height as a function of the amplitude of

vibration, Z0. An experimental investigation is also performed to study the behavior of the

mean squeeze ¯lm height as a function ofZ0. Both numerical and experimental results are

compared, and so the results are presented in the next chapter on the experimental work.

The behavior of the mean squeeze ¯lm height,hm , as a function of frequency,! , is

also studied by keeping all other simulation parameters (m=6.97 gm, R0=9 mm and Z0=

5 ¹ m) constant. It can be observed from Fig. 4.12, that if the frequency, ! increases, the

mean ¯lm height also increases. For lower frequencies, the slope of the graph is higher

which indicates more increase in the mean squeeze ¯lm height with increase in frequency.

For higher frequencies, the slope of the graph is lower whichindicates less increase in the

mean squeeze ¯lm height with increase in frequency.
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Figure 4.11: The results of numerical parametric study for hm as a function of Fi at a
constant frequency
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4.3 Ultra-Thin Squeeze Film Bearings

From the background (Section 2.7), if the squeeze ¯lm bearingoperates in the slip, tran-

sition or molecular °ow regime then the bearing is consideredas an ultra-thin squeeze ¯lm

bearing. This section covers the formulation of the coupleddynamics and computational

scheme as it di®ers from the thin squeeze ¯lm bearings.

4.3.1 Formulation of Coupled Dynamics

The dynamics of the ultra-thin squeeze ¯lm bearings is generally the same as the thin

squeeze ¯lm bearings except in the ultra-thin squeeze ¯lm bearings, a modi¯ed form of the

Reynolds equation is used.

1
R

@
@R

µ
RH ¤3P

@P
@R

¶
= ¾¤

ef f
@(PH ¤)

@T
(4.25)

where ¾¤
ef f is as given

¾¤
ef f = 12¹ ef f R0

2!=p atm h0
2 (4.26)

The e®ective viscosity,¹ ef f , is given by Eq.(2.28) [38] which accounts for the gas rarefaction

e®ects. The discretization scheme for the left hand side of Eq. (4.25) and the boundary

conditions are the same as that used for the thin squeeze ¯lm bearings (See Eqs (4.3)-(4.9)).
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The right hand side of Eq. (4.25) is discretized as

¾ef f
¤ @(PH ¤)

@T
¼ ¾ef f

¤ Pi;j +1 H ¤
j +1 ¡ Pi;j H ¤

j

¢ T
(4.27)

The equation of motion, Eq.(4.19), is the same for both thin and ultra-thin squeeze ¯lm

bearings. The initial conditions are given by Eqs. (4.20)-(4.22).

4.3.2 Solution Methodology

The algorithm (Fig. 4.13) to solve the coupled dynamics (themodi¯ed Reynolds equa-

tion Eq. (4.25) and the equation of motion Eq. (4.19)) for the ultra-thin squeeze ¯lm

bearing is same as the thin squeeze ¯lm bearings (Eqs. (4.1) and (4.19)) except for one

change. Here, the modi¯ed squeeze number,¾¤
ef f is calculated each time before solving

the discretized Reynolds equation.

4.3.3 Results

A computer program (see Appendix E) as per the algorithm detailed in Fig. 4.13 is

written to solve the discretized Reynolds equation (Eqs. 4.22 and 4.24). Here, the squeeze

¯lm thickness is assumed as a known function of time and only the modi¯ed Reynolds

equation (Eqs. 4.22 and 4.24) is solved. Simulation and experimental results are compared

and the results are presented in the next chapter (see Section 5.2.3).
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Figure 4.13: Algorithm for computational simulation of the ultra-thin squeeze ¯lm bearing
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Chapter 5

Experimental Investigation

5.1 Thin Squeeze Film Bearings

This section covers in detail the e®ort taken towards reaching the goal of generation,

control and measurement of the squeeze ¯lm between two bearing surfaces. The di®erent

techniques for the measurement of the squeeze ¯lm height are described here followed by a

discussion of the results.

5.1.1 Experimental Setup

A test rig (See Fig. 5.1) has been built in order to generate a squeeze ¯lm and measure

the squeeze ¯lm thickness. The experimental setup is used to perform a parametric inves-

tigation with the variation of frequency, amplitude of vibr ation and mass of the levitating

disk. Each subsystem of the experimental setup is describedin detail.

Figure 5.1: Schematic explaining the experimental setup
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Test Stand

strip of tape

base surface

top disk

electrodynamic shaker

Figure 5.2: Test stand used for experimental investigation

A rectangular bracket holding the lower bearing surface is used as an oscillating base

(See Fig. 5.2). On the top of the lower bearing surface a disk is placed. The top disk is

tethered to the rectangular bracket using four small stripsof tape. This attachment is done

in such a way that the top disk can only °oat with one degree of freedom i.e permitting the

motion only in vertical direction. This setup may result in a dditional load being placed on

the bearing. Di®erent disk sizes used for levitation can be seen in the Fig. 5.3 and their

speci¯cations are tabulated in Table 5.1.

Table 5.1: Bearing con¯gurations used for the experimental purpose
Con¯guration Radius (mm) Mass (g)

1 32.5 160
2 7.5 2.62
3 9 6.97
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Config. 2

Config. 3

Config. 1

Figure 5.3: Disks used for levitation

Electrodynamic shaker

The test stand is fastened to an electrodynamic shaker (LDS Model V408) ( See Fig.

5.4 and 5.6). The electrodynamic shaker provides sinusoidal oscillations to the lower bearing

surface.

Gain Control and Dynamic Signal Analyzer

A gain control (LDS PA 500L ampli¯er) and a dynamic signal analyzer (HP 3566 5A)

are used together for vibration control (Fig. 5.4 and 5.6). The source from the dynamic

signal analyzer is set as a sine wave. The frequency of the source is set to a ¯xed value

and the level of the source is changed to vary the amplitude ofthe vibration. The output

from this source is given to the gain control mechanism whichsends the signal to the

electrodynamic shaker.
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A dynamic signal analyzer is also used to read the amplitude of vibration of the oscillat-

ing base as given by a laser beam displacement measurement system (LBDMS). It records

the analog voltage from the LBDMS. The amplitude of this analog voltage is then converted

into the amplitude of oscillation of the bearing surfaces inmicrons(¹ m) by multiplying the

scale set on the LBDMS. The LBDMS is discussed in greater detail later.

Capacitance sensor

Signal analyzer

Optical sensor head

Gain control

Shaker

Test stand

Vibrometer

Data acquisition board

Signal generator

Capacitance sensor

Figure 5.4: Photograph illustrates the experimental setupwith the capacitance sensor

If there is a gas squeeze ¯lm between two parallel plates then the plates form a parallel

plate capacitor with air as the dielectric. The capacitancebetween two parallel plates is
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theoretically given as

C =
A² 0k

d
(5.1)

Thus, a capacitance sensor (Fig. 5.4) is built in order to measure the capacitance between

the base and the levitating disk and then calibrated (Appendix D) to provide the squeeze

¯lm height in microns. First, electrical connections are made to both the bearing surfaces.

The electrical circuit in Fig. 5.5 [46] is built to measure the capacitance due to an air-gap

between these surfaces.Vin is the input voltage to the electrical circuit which is provi ded

Figure 5.5: Electrical circuit for capacitance measurement

by the signal generator. The frequency of AC input voltage isset to 2000 Hz and RMSVin

is set to 7.07 V.Rst is a standard resistor with a value of 33 k­. Cairgap is the parallel plate

capacitor formed by the two bearing surfaces across whichVo=p, output voltage is measured

by a data acquisition system, NI BNC 2140. The voltage ratio (RMS output voltage/RMS

input voltage) is needed to calculate the capacitance (see Appendix D). This capacitance
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between the parallel plates is then calibrated using thin ¯lm shims to provide squeeze ¯lm

height. Thus, using this experimental set-up, the squeeze ¯lmlift and height generated

between the plates can be measured.

Laser Beam Displacement Measurement System

Data acquisition board

Optical sensor head

Signal analyzer

Gain control

Test stand

Shaker

Vibrometer

Figure 5.6: Photograph illustrates the experimental setupwith the laser displacement mea-
surement system

The LBDMS used comprises of an optical sensor head (Polytec OFV 2610) and a laser

vibrometer (Polytec OFV 2610)(See Fig. 5.6). The laser beamis incident on the top

levitating disk by an optical sensor head. An analog voltagesignal proportional to the

displacement of the top disk is then available at the output of the laser vibrometer. The

scale on the laser vibrometer is set to the ¯nest value of 20¹ m/V and the resolution at this

scale is 0.08¹ m. This analog voltage is given as an input to the data acquisition system
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(NI BNC 2140). National Instrument's LabView is used to record the DC estimate of the

input analog signal at a given scan rate in a text ¯le. This text ¯le is later imported and

plotted by MATLAB (Fig. 5.7) for further analysis. The chang e in DC voltage from the

initial to ¯nal state multiplied by 20 ¹ m/V gives the squeeze ¯lm height in microns. For

instance, the average measured ¯lm thickness of the experimental results shown in Fig 5.7

is 17.15¹ m.
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Figure 5.7: Plot of DC voltage from the laser beam displacement measurement system
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5.1.2 Experimental Results

Con¯guration 1

A comparison between the experimental and the numerical results is ¯rst made using

the capacitance measurement system on con¯guration 1 (See Appendix C, Section C1). Re-

sults are plotted for the mean squeeze ¯lm height as a functionof the amplitude of vibration

for several frequencies (See Fig. 5.8). These numerical results show that, for an increase

in the amplitude of vibration, Z0, there is a corresponding increase in the mean squeeze

¯lm height, hm , if all other parameters remain unchanged. The experimental results for

con¯guration 1 agree qualitatively but the o®set between the experimental and the numer-

ical results is large. hm for con¯guration 1 is measured using the capacitance sensor.It

is observed that small metal particles or dust between two surfaces can signi¯cantly a®ect

the capacitance measurements, which requires that the surfaces must be frequently cleaned

between tests. It should also be noted that the surfaces of this con¯guration have signi¯cant

imperfections (i.e. roughness and waviness). Even after cleaning the surfaces, during the

start-up of the test, initial contact may create small wear particles and the absolute clean-

liness of surfaces cannot be guaranteed. This makes the capacitance measurements di±cult

and also not repeatable, LBDMS is used to record the ¯lm thicknesses for con¯gurations 2

and 3 which are also smoother.
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Figure 5.8: Experimental and simulation results for the squeeze ¯lm height against the
amplitude of vibration for bearing con¯guration 1 (Capacita nce measurement system)
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Con¯guration 2

The plot in Fig. 5.9 shows the squeeze ¯lm thickness plotted asa function of the

amplitude of vibration for the base. The measurements are made using LBDMS. Each test

is run ten times in order to assure the repeatability of the setup. The average standard

deviation of the test data (See Appendix C, Section C2) is found out to be 0.31 ¹ m, and

thus it can be said that experiments show good repeatability. It can be seen from Fig. 5.9

that if the frequency is small then it takes a higher amplitude to generate the squeeze ¯lm

height. Conversely, if the frequency is increased then the amplitude of vibration is lower.

These qualitative trends are also agreed by the theoreticalresults as discussed earlier. For

con¯guration 2, both simulation and experimental results match qualitatively but the o®set

between them is very high. Also, there is a convergence problem for con¯guration 1 (Fig.

5.9) for lower frequencies and amplitudes. For such cases, the solution did not converge to

a pseudo-steady state even after running simulations for a longer duration.

Con¯guration 3

Measurements are also carried out for con¯guration 3 (See Appendix C, Section C3)

using LBDMS and the average standard deviation for con¯guration 3 is found to be 0.18

¹ m which suggests that experiments are repeatable. Observations for con¯guration 2 (Fig.

5.9) and con¯guration 3 (Fig. 5.10) are similar in nature. The average deviation between

numerical and experimental data is calculated to be 44¹ m (¼ 73 %) from the results of

con¯gurations 2 and 3. For a similar type of comparison with the results of [10], the average
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Figure 5.9: Experimental and simulation results for the squeeze ¯lm height against the
amplitude of vibration for bearing con¯guration 2 (Laser displacement measurement system)
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deviation is 38 ¹ m (¼ 51 %). From this comparison, it should be noted that both Minikes

and Bucher [10] and a current numerical simulations overestimate the ¯lm thickness by

similar magnitudes. This is because the assumptions made inthe numerical model cannot

be perfectly implemented while conducting experiments. The numerical model assumes that

the disks are °at and rigid, and that the system has a single degree of freedom (motion only

in the vertical direction). However, during the experimental tests, it is observed that there

is a component of motion acting in the horizontal plane. The surfaces are not perfectly °at

due to surface roughness and waviness and consequently are not perfectly leveled. Thus,

the assumption of a planar squeeze ¯lm cannot be experimentally achieved. It is possible to

include the e®ects due to tilting of the squeeze ¯lm in the theoretical work to achieve a better

comparison but it will lead to a much more complex theoretical model. The other possible

reasons for di®erences between the analytical and experimental results can be attributed

to dust or small wear particles present in between the plates, misalignment between the

surfaces, and the sensitive nature of the laser setup to external vibrations. However, the

experimental results do con¯rm that the squeeze ¯lm e®ect can beused in real applications

to generate gas squeeze ¯lm bearings.
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Figure 5.10: Experimental and simulation results for the squeeze ¯lm height against the
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5.2 Ultra-thin Squeeze Film Bearings

This section covers in detail the design and fabrication of micro-scale squeeze bearing

surfaces which is later used for the testing of ultra-thin squeeze ¯lm bearings. LASICAD

software is used for the design of micro-scale bearing surfaces and the fabrication is carried

out in the Alabama Microelectronics Science and TechnologyCenter.

5.2.1 Design of Micro-Scale Bearing Surfaces

See Fig. 5.11 for an enlarged view of examples of the LASICAD drawing for each

surface. Here, the relative scale between di®erent geometries is preserved. Three circular

geometries (Diameter 10, 50, 100¹ m) and one square geometry (50¹ m X 50 ¹ m) are

drawn using LASICAD. Each sample micro bearing surface represents a grid of a particular

geometry on a 3 cm X 3 cm square. For example, a sample bearing surface (Fig. 5.11

top left) is a grid of 50 ¹ m diameter circular areas where the centers of two consecutive

areas are separated 100¹ m apart. Other samples are also seen in Fig. 5.11 where top right

represents a grid of 50¹ m X 50 ¹ m squares, bottom left represents a grid of 10¹ m diameter

circles and bottom right represents a grid of 100¹ m diameter circles. As per the LASICAD

drawing, a TLD (Transportable LASI Drawing) ¯le is utilized t o externally fabricate the

photomask. The photomask is a square glass plate having the drawing encapsulated on a

chromium layer.
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Figure 5.11: LASICAD drawing of micro bearing surfaces (notto scale and only portions
of the textured sections are shown in this enlarged view)
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5.2.2 Fabrication of Micro-Scale Bearing Surfaces

The process °ow of fabrication of micro bearing surfaces is diagrammed in Fig. 5.12.

The steps involved in this fabrication are described as below.

Cleaning of the wafer

Hard bake

Hexamethyldisalizane (HMDS)

Soft bake

Photoresist application

Mask Alignment and Developing

Etching

Dicing

3X3 cm4X4 cm

Photoresist removal

Figure 5.12: Fabrication procedure for micro-scale bearingsurfaces

Cleaning of the wafer

A new silicon wafer ofp-type and surface orientation < 100> is cleaned as per the B,

C, and D silicon wafer cleaning procedure (See Table 5.2 [42]).
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Table 5.2: Silicon Wafer Cleaning Procedure [42]
B Removal of Residual Organic/Ionic Contamination

1 Hold a wafer in a (5:1:1) solution of H2O ¡ NH 4OH ¡ H2O2 for 10
min at a temperature of 75-800C

2 Quench the solution under running deionized (DI) water for 1 min
3 Clean a wafer in DI water for 5 min

C Hydrous Oxide Removal
1 Immerse a wafer in a (1:50) solution ofHF ¡ H2O for 15 sec
2 Clean a wafer under running DI water for 30 sec

D Heavy Metal Clean
1 Hold a wafer in a (6:1:1) solution of H20 ¡ HCl ¡ H2O2 for

10 min at a temperature of 75-800C
2 Quench the solution under running deionized (DI) water for 1 min
3 Clean a wafer in running DI water for 20 min

Hard bake

Hard baking of the wafer is done by an Imperial IV microprocessor oven. The wafer is

kept inside the oven for 20 minutes at 1200C. The hard bake process removes any moisture

content from the wafer.

Hexamethyl disalizane (HMDS)

After the hard bake, the wafer is kept in a HMDS chamber for 20 minutes. Here, the

wafer surface is primed with HMDS to promote better adhesionto the photoresist.

Photoresist application

Photoresist is a light-sensitive material to which patterns are ¯rst transferred from

the photomask. A liquid photoresist (AZ 5214) is applied in a liquid form onto the wafer
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surface. Then the wafer held on a vacuum chuck undergoes rotation at a speed of 3000 rpm

for 40 sec. This process provides a layer of photoresist of even thickness.

Soft baking

The photoresist-coated wafer is then transferred to a hot plate for soft baking or pre-

baking. Soft baking is performed on a hot plate at 1050C for 1 minute. It improves the

adhesion of the photoresist to the wafer and also drives o® solvent from the photoresist

before the wafer is introduced into the exposure system.

Mask Alignment and Exposure

In this step, the photo mask is aligned with the surface of thewafer. The wafer is held

on a vacuum chuck, and moved into position below the photo mask. The spacing between

the photo mask and wafer surface is in the range of 25 to 125¹ m. Following alignment, the

photoresist is exposed for 10 seconds with high-intensity ultraviolet light. After this step,

the wafer is developed in the AZ 514 developer.

Etching

Etching is performed to remove material between the circular and square areas so that

micro-scale bearing areas are formed on the wafer (in the formof posts). These micro-scale

bearing areas can be observed as posts protruding out from the base silicon. Deep reactive

ion etching is used to etch out the wafer. The machine used forthis process is Surface

Technology System's (STS) advanced silicon etcher. An etchdepth of approximately 80
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Figure 5.13: Schematics of single unit cell (not to scale)

68



¹ m is achieved from 120 cycles of Morgan SOS 1 process. The process took 40 minutes to

complete 120 cycles. The depth of the etch is checked using a microscope.

Photoresist removal

Photoresist is stripped o® from a wafer using a Matrix machine.

Dicing

Dicing is used to cut the wafer and separate out the four di®erent samples(Fig. 5.12).

The wafer is attached to a plastic ¯lm before starting the dicing operation. The plastic ¯lm

is then supported on a steel rim. Micro Automation's dicing saw is used. After dicing, four

samples of micro bearing surfaces with di®erent sizes and geometries are collected in a petri

dish. A schematic of the resulting unit cell can be seen in Fig. 5.13.

5.2.3 Results

Measurements of micro-scale bearing samples using LBDMS encountered many prob-

lems. In the ¯rst approach, the bearing sample was tethered tothe rectangular bracket

using four small strips of tape. This approach produced the squeeze ¯lm lift upon start of

the base oscillation. However, after stopping the base oscillation the squeeze ¯lm lift did

not always return to zero as the weight of the micro-scale bearing sample was supported by

the attached four strips. Another method of testing was tried to test the sample. Here, the

sample was constrained to translate in horizontal plane. This was achieved by placing small

circular posts of tape at the midpoints of each side of the sample so that the circular post
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and sample have in total four point contacts. This test method also did not work as the

friction between the circular posts and the bearing sample was far more and the squeeze ¯lm

could not generate. In the last test method, the micro bearing sample was not constrained
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Figure 5.14: Experimental results of micro-scale bearing

by any means. The starting and stopping of base oscillation was performed in approxi-

mately 2 seconds. Most of the tests using this method failed because the sample tended

to translate in horizontal direction hampering the readings from LBDMS. One good result

(See Fig. 5.14) was observed for the bearing con¯gurationd (Fig. 5.13) having diameter of
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100 ¹ m and height of 80 ¹ m. Here, once the base oscillation was started, the squeeze ¯lm

achieved a steady state, and after stopping the base oscillation, it returned to the initial

state (Fig. 5.14). For this test case, the frequency of the base oscillation, f , was 2000 Hz
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Figure 5.15: Dimensionless mean pressure,Pn , as a function of normalized time,T, for the
ultra-thin squeeze ¯lm bearing

and the amplitude, Z0, was 0.63¹ m. The mean squeeze ¯lm thickness,hm , obtained was

2 ¹ m. As the weight of the sample is 0.01079 N, the load on one postof bearing surface is
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47.955¹ N. If the amplitude of oscillation of the squeeze ¯lm height is assumed to be 0.63

¹ m, then the excursion ratio is 0.63/2 (i.e. 0.315). In order to compare the analytical and

experimental results, the squeeze ¯lm height is assumed as a known function of time (Eq.

(5.2)) in analytical work.

h = hm ¢(1 ¡ ²¢sin (T)) (5.2)

The Reynolds equation (Eq. (4.22)) is solved for pressure with the assumptions as made in

Eq. (5.2) (See Appendix E). The pressure trace obtained is shown in Fig. 5.15. The pressure

trace for every cycle is the same. However, the pressure pro¯le is not sinusoidal because

of the nonlinear pressure-squeeze ¯lm thickness relationship [6] as seen in the governing

Reynolds equation (Eq. (4.25)). The mean pressure over one cycle results into a load

carrying capacity of 40.16¹ N. The % deviation of the theoretical result (from the pressure

trace) and the actual load (from weighing the sample) is 16.25. This comparison shows

that the experimental results and theoretical results for these micro-scale bearing samples

are in good agreement with each other. In future, more comparisons of experimental and

simulation results are needed to validate the numerical model.
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Chapter 6

Summary

The tribology of macro-scale systems such as power plants, automobiles, air-craft en-

gines etc has been greatly studied in the last century. As theminiaturization of mechanical

systems is a need of future technology, it is important to address the issues related to

friction, wear and lubrication for such micro-scale mechanical systems. The research under-

taken starts with the experimental and analytical study of macro-scale squeeze ¯lm bearings

which is later extended to study micro-scale squeeze ¯lm bearings.

The ¯rst part of this research is to extensively study the squeeze ¯lm bearings where

the squeeze ¯lms are characterized as thin ¯lms (the ¯lm thickness is in the range of 9

to 23 ¹ m). A coupled dynamic model with asperity contact e®ects is developed to study

compressible dynamic squeeze ¯lms between disk shaped surfaces, in which, one disk is

excited by a sinusoidal displacement. The model presented is general and can be used to

investigate dynamic squeeze ¯lms with input parameters, frequency (f ) and amplitude of

vibration ( Z0), mass (m), area of contact (A) and the surface properties. From the results

of the numerical simulations, a comparison with Fi and Fn from Salbu's Eq. is made.

Based on these comparisons a new semi-analytical equation isdeveloped to predict the load

carrying capacity for 0.4· ¾· 10 using an exponential curve to ¯t the simulation results.

Experimental results disagree quantitatively because of the inability to perfectly model the
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experimental system. Qualitatively, the experimental results are in fairly good agreement

with the numerical results.

The second part of this research is to study the micro-scale squeeze ¯lm bearings, where

the squeeze ¯lms are characterized as ultra-thin (using Knudsen number, the ¯lm thickness

should be less than 8¹ m). A sample of 3 cm X 3 cm patterned with an array of micro

bearing areas having 100¹ m diameter is used for an experimental purpose. A single unit

cell of this pattern is shown in Fig 5.13. A squeeze ¯lm thickness of approximately 2 ¹ m

is measured experimentally when the micro bearing was operated at a frequency of 2000

Hz and an amplitude of 0.63¹ m. To compare with experimental results, the squeeze ¯lm

thickness is assumed as a known function of time and the discretized Reynolds equation is

solved. The deviation of load carrying capacity from the simulation to the actual load is

found to be 16 %. These results are in good agreement with eachother, although more

extensive work is needed to con¯rm the results.

In conclusion, numerical simulations and experiments havebeen performed to investi-

gate the compressible squeeze ¯lm bearings. Both experimental and analytical results have

shown that the squeeze ¯lm bearings have a good potential for lubrication in macro and

micro-scale mechanical systems. These results are important in an age where considerable

e®ort has been made to develop gas bearings for MEMS in research laboratories around the

world.

74



Bibliography

[1] Jost, H.P. (2006), Tribology: How a word was coined 40 years ago, in Tribology and
Lubrication Technology. pp 24-28.

[2] Kajdas, C., Harvey, S.S.K., and Wilusz, E. (1990), Encyclopedia of Tribology, Elsevier
Science Publishing Company Inc., Amsterdam, pp 478.

[3] Hamrock, B.J. (1991), \Fundamentals of Fluid Film Lubri cation," NASA O±ce of
Management, Scienti¯c and Technical Information Program: [Supt. of Docs., U.S.
G.P.O.,distributor], Washington, D.C., pp 2-9.

[4] Parkins, D.W. and Stanley, W.T. (1982) \Characteristic s of an Oil Squeeze Film," J
LUBR TECHNOL TRANS ASME, V 104, 4,pp 497-503.

[5] Minikes, A. and Bucher, I. (2003), \Noncontacting lateral transportation using gas
squeeze ¯lm generated by °exural traveling waves - Numerical analysis" J of the Acous-
tical Society of America, v 113, 5,pp 2464-2473.

[6] Wiesendanger, M. (2001), \Squeeze ¯lm air bearings usingpiezoelectric bending ele-
ments," Ecole Polytechnique Fdrale de Lausanne, Lausanne:EPFL.

[7] Khonsari, M.M. and Booser, E.R. (2001) \Applied tribolo gy : bearing design and
lubrication ," John Wiley,New York, pp 258.

[8] Langlois, W.E. (1962), \Isothermal Squeeze Films," Quarterly of Applied Mathematics,
20,2, pp 131-150.

[9] Salbu, E.O.J. (1964), \Compressible squeeze ¯lms and squeeze bearings," ASME J.
Basic Eng., 86, pp 355-366.

[10] Minikes, A. and Bucher, I. (2003), \Coupled dynamics ofa squeeze-¯lm levitated mass
and a vibrating piezoelectric disc: Numerical analysis andexperimental study," J.
Sound Vib., 263, 2, pp 241-268.

[11] Miller, B.A. and Green, I. (2001), \Numerical Formulat ion for the Dynamic Analysis
of Spiral-Grooved Gas Face Seals," ASME J. Tribol., 123, 2, pp395-403.

[12] Pretlove, A.J. (1985), BASIC mechanical vibrations, Butterworth and Co. (Publishers)
Ltd., Kent, England, pp 118.

[13] Gri±n, W.S., Richardson, H.H., and Yamanami S. (1966), \A study of Fluid Squeeze-
Film Damping," ASME J. Basic Eng., 88, pp 451-456.

75



[14] Blech, J.J. (1983), \On Isothermal Squeeze Films," J. Lubr. Technol. Trans. ASME,
105, pp 615-620.

[15] Ausman, J.S. (1967) \Gas Squeeze Film Sti®ness and Damping Torques on a Circular
Disk Oscillating About Its Diameter," J Lubr Technol Trans A SME, 89, pp 219-221.

[16] Etsion, I. (1980), \Squeeze E®ects in Radial Face Seals," J Lubr Technol Trans ASME,
102, 2, pp 145-152.

[17] Green, I. and Etsion, I. (1983), \Fluid Film Dynamic Coe±cients in Mechanical Face
Seals," ASME J. Lubr. Technol., 105, 2, pp 297-302.

[18] Blech, J.J. (1985), \Annular Compressible Squeeze Films," ASME J. Tribol., 107, 4,
pp 544-547.

[19] Starr, J.B. (1990), \Squeeze-¯lm damping in solid-state accelerometers," Techn. Digest,
Solid State Sensor and Actuator Workshop Hilton Head Island, pp 44-47.

[20] Pan, F., Kubby, J., Peeters, E., Tran, A.T., and Mukherj ee, S. (1998), \Squeeze ¯lm
damping e®ect on the dynamic response of a MEMS torsion mirror," J. Micromech.
Microeng, 8, 3, pp 20-208.

[21] Bao, M., Yang, H., Yin, H., and Sun, Y. (2002), \Energy tr ansfer model for squeeze-¯lm
air damping in low vacuum," J. Micromech. Microeng., 12, 3, pp 341-346.

[22] Bao, M., Yang, H., Sun, Y., and French, P.J. (2003), \Modi¯ed Reynolds equation and
analytical analysis of squeeze-¯lm air damping of perforatedstructures," J. Micromech.
Microeng., 13, 6, pp 795-800.

[23] Nayfeh, A.H. and Younis, M.I. (2004), \A new approach to the modelling and simula-
tion of °exible microstructures under the e®ect of squeeze ¯lm damping," J. Micromech.
Microeng, 14, 2, pp 170-181.

[24] Pandey, A.K. and Pratap, R. (2004), \Coupled nonlinear e®ects of surface roughness
and rarefaction on squeeze ¯lm damping in MEMS structures," J. Micromech. Micro-
eng, 14, 10, pp 1430-1437.

[25] Same, H. and Wenjing, Y. (2004), \On the squeeze-¯lm damping of micro-resonators
in the free-molecule regime," J. Micromech. Microeng., 14, 12, pp 1726-1733.

[26] Zhang, C., Xu, G., and Jiang, Q. (2004), \Characterization of the squeeze ¯lm damping
e®ect on the quality factor of a microbeam resonator," J. Micromech. Microeng., 14,
10, pp 1302-1306.

[27] Strawhecker, K., Asay, D. B., McKinney, J., Kim, S. H. (2005), \Reduction of adhesion
and friction of silicon oxide surface in the presence of n-propanol vapor in the gas
phase," Tribology Letters, 19, 1, pp 17-21.

76



[28] Epstein, A.H. (2004), \Millimeter-scale, MEMS gas turbine engines," J. Eng. Gas
Turbines Power, 126, 2, pp 205-226.

[29] Epstein, A.H., et al. (1997), "Micro-Heat Engines, Gas Turbines, And Rocket En-
gines -The MIT MICROENGINE PROJECT," American Institute of A eronautics and
Astronautics, pp 1-12.

[30] Breuer, K. (2001), Lubrication in MEMS, Ed. M. Gad el Hak, CRC Press, pp 1-49.

[31] Wong, C.W., Zhang, X., Jacobson, S.A., and Epstein, A.H. (2004), \A Self-Acting
Gas Thrust Bearing for High-Speed Microrotors," J Microelectromech Syst, 13, 2, pp
158-164.

[32] Borionettia, G., Bazzali, A., and Orizio, R. (2004), \A tomic force microscopy: a pow-
erful tool for surface defect and morphology inspection in semiconductor industry,"
Eur. Phys. J. Appl. Phys., 27, pp 101-106.

[33] Sun, Y., Chan, W.K., and Liu, N. (2003), \A slip model wit h molecular dynamics," J
Micromech Microengineering, 12, 3, pp 316-322.

[34] Bird, G.A. (1994), Molecular Gas Dynamics and the Direct Simulation of Gas Flows,
Oxford: Clarendon.

[35] Hsia, Y.T. and Domoto, G.A. (1983), \An Experimental In vestigation of Molecular
Rarefaction E®ects in Gas Lubricated Bearings at Ultra Low Clearances," J Lubr
Technol Trans ASME, 105, 1, pp 120-130.

[36] Li, W.L. (1999), \Analytical modelling of ultra-thin ga s squeeze ¯lm," Nanotechnology,
10, pp 440-446.

[37] Darling, R.B., C., H., and J., X. (1997), \Compact analy tical modeling of squeeze ¯lm
damping with arbitrary venting conditions using a Green's function approach," Sens
Actuators A Phys, 70, 1-2, pp 32-41.

[38] Veijola, T. and Turowski, M. (2001), \Compact damping m odels for laterally moving
microstructures with gas-rarefaction e®ects," J Microelectromech Syst, 10, 2, pp 263-
273.

[39] Constantinescu, V.N. (1969), Gas Lubrication, The American Society of Mechanical
Engineers, New York, USA, pp 621.

[40] Jackson, R.L. and Green, I. (2005), \A Finite Element Study Of Elasto-Plastic Hemis-
perical Contact Against a Rigid Flat," ASME J. Tribol., 127, 2, pp 343-354.

[41] Jackson, R.L. and Green, I. (2006), \A statistical model of elasto-plastic asperity con-
tact between rough surfaces," Trib. Intl., 39, pp 906-914.

77



[42] Jaeger, R.C. (1998), Introduction to Microelectronic Fabrication, Prentice Hall, Inc.,
pp 316.

[43] Greenwood, J.A. and Williamson, J.B.P. (1966), \Contact of Nominally Flat Surfaces,"
Proc. R. Soc. London, 295, pp 300-319.

[44] McCool, J.I. (1987), \Relating Pro¯le Instrument Measu rements to the Functional
Performance of Rough Surfaces," ASME J. Tribol., 109, 2, pp 264-270.

[45] Front, I. (1990), \The E®ects of Closing Force and Surface Roughness on Leakage in
Radial Face Seals," MS Thesis,Technion, Israel Institute of Technology, Israel.

[46] Horton, B.D. (2004), \Magnetic Head Flyability on Patt erned Media," MS Thesis, The
George W. Woodru® School of Mechanical Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA.

78



Appendices

79



Appendix A

Contact Force

By ¯tting equations to ¯nite element results, Jackson and Green [40] and [41] provide

the following equations to predict the elastic perfectly-plastic contact of a sphere and a rigid

°at. P¤
F is a ratio of contact load to critical contact load, Pc. For 0· ! ¤· ! ¤

t

P¤
F = ( ! ¤)3=2 (A.1)

where, ! ¤ is the ratio of penetration or indentation depth between spherical asperities

(! ) to the critical interference ( ! c) and ! ¤
t is the value that de¯nes the e®ective transition

from elastic to plastic behavior of ! ¤. For Jackson and Green [40],! ¤ is 1.9.

For ! ¤
t · ! ¤

P¤
F =

·
exp

µ
¡

1
4

(! ¤)5=12
¶¸

(! ¤)3=2 +
4HG

CSy

·
exp

µ
¡

1
25

(! ¤)5=9
¶¸

(! ¤) ¢AE (A.2)

where,

HG

Sy
= 2 :84

2

41 ¡ exp

Ã

¡ 0:82

Ã
¼Cey

2

p
! ¤

µ
! ¤

! ¤
t

¶ B=2
!! 0:7

3

5 (A.3)

In Eq. (A.3), HG is the limiting average contact pressure,Sy is yield strength and ey is

uniaxial yield strain (ratio of yield strength to equivalen t elastic modulus).
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The critical interference to cause initial yielding, ! c, is derived independently of the

hardness, to be

! c =
µ

¼¢C¢Sy

2E 0

¶ 2

R (A.4)

where,R is the radius of the hemispherical asperity andE
0
is the equivalent elastic modulus.

B and C are functions of the material properties given as

B = 0 :14¢exp(23ey) (A.5)

C = 1 :295¢exp(0:736º ) (A.6)

This model then assumes that the individual asperity contact between rough surfaces

can be approximated by hemispherical contact with a rigid °at. Then, statistical relation-

ships from Greenwood and Williamson [43] are used to model anentire surface of asperities

with a range of heights described by a Gaussian distribution, G(z). These statistical equa-

tions are given as

Fcont = ´A n
1

Z

d
PF (z ¡ d)G(z)dz (A.7)

where, the average asperity radius of curvature,R, and the asperity surface density,´ , are

needed to model asperity contact and are obtained from a pro¯lometer produced surface

pro¯le using the methods outlined in McCool [44]. The distance between the surfaces can
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be described in two ways: (1) the distance between the mean ofthe surface heights,h, and

(2) the distance between the mean of the surface asperities or peaks, d. These values ofh

and d are related by

h = d + ys (A.8)

The value of ys is derived by Front [45] and given as

ys =
0:045944

´R
(A.9)

where, ´ is the area density of the asperities. Eq. (A.7) is then numerically integrated to

predict Fcont as a function of h. The surface pro¯le of one of the rough bearing surfaces is

used in the work shown in Fig. A.1. Dimensionless contact load for the surface is plotted

against dimensionless mean separation (See Fig. A.2). An exponential ¯t to the data in Fig.

A.2 is obtained. The resulting ¯t, Eq. (A.10) is then included in the numerical simulation

to predict the contact force.

Fcont =
µ

¡ 9:98¢exp
µ

¡ 3:621¢
h
¾

¶
+ 9 :824¢exp

µ
¡ 3:595¢

h
¾

¶¶
¢AE

0
(A.10)

Here, the goodness of ¯t is

Sum of squares due to error, SSE= 7.586e-008

The ratio of the sum of squares of the regression, R-square= 0.9988
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Figure A.1: Surface pro¯le of a rough bearing surface
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Adjusted R-square= 0.9988

Root mean squared error, RMSE= 1.967e-005
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Appendix B

C-program to solve the coupled dynamics for thin squeeze films

include < stdio.h>
include < process.h>
include < conio.h>
include < dos.h>
include < math.h>
de¯ne MPI 3.1415926535897932385E0
FILE *f1;
FILE *f2;
FILE *f3;
FILE *f4;
double p[17][2]; // 2-D array for pressure
double meanpressure(double h1,double sigma, double p[][2],double R[],double Rst,double
tst,double h[]);
main()

/*********************All Variable Declaration******* *******************/
double t; // time
double f; // frquency in Hz
double w; // frequency in radians
double Rst; // Step-size for R
double h[2];
double hdot[2]; // Derivative of Height
double Mult=0; //Dummy variable
double tst; // Time step
double Ro=0; // Radius of circular area (i.e. Area of contact )
double visc; // Vissinity of the oil at T=293
double R[17]; //1-D array for Radius
double Rinv[17];
double pmean=0; //Mean pressure
double pa=0; //atmospheric pressure
double g=9.81; //accn due to gravity
double E=0;
double F=0; //Dummy Variable
double Aml=2.0*pow(10,-6); // Amlitude of the Shaker
double m=7*pow(10,-3);; // Mass of the levitating plate
double Ar; // Area of Contact
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double sig=0.17*pow(10,-6);
double CntFr=0;
double sigma=0;
double YM=0;
double Dum1=0;
double Dum2=0;
double Dum3=0;
double Dum4=0;
double tstDum2=0;

/********Variables Used for Runge-Kutta********/
double K11=0;
double K12=0;
double K21=0;
double K22=0;
double K31=0;
double K32=0;
double K41=0;
double K42=0;

/********Variables Used for Runge-Kutta********/
double K1=0;
double K2=0;
double K=0;
double D1=1;
double D2=0;
double D3=0;
double ho=0;
double h1=0;
double hdt=0;
double htst;
double qtst;
double C1=0;
double C2=0;
double C3=0;
double C4=0;
double C5=0;
double x=0;
/****************Assignment of Values**************** ****/
f=1500;
w=2*MPI*f;
visc=1.76/100000;
ho=30*5.554*sig;
Ro=9.0*pow(10,-3);
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pa=101325;
sigma=(12*visc*w*Ro*Ro)/(pa*ho*ho);
Ar=MPI*Ro*Ro;
YM=57.67*pow(10,9); /************Dummy Variables ***** ***************/
Dum1=YM*Ar;
Dum2=1/(w*w*ho);
Dum3=w*w*Aml;
Dum4=(pa/m)*Ar;

/**********Step Sizes *************/
Rst=1/16.0;

tst=0.005;
tstDum2=tst*Dum2;
htst=tst/2;
qtst=tst/4; /************ Initial Conditions ********** *******/
t=0;
h[0]=1;
hdot[0]=0;
pmean=1;
int k=0;
int j=0;
/************ Assignment of Valuesof R @ di®erent node point s*******/
R[0]=0;
for(k=0;k < 16;k++)
/***************Mean Pressure *********************** /
f
R[k+1]=R[k]+Rst;
g

/***************Assignment of Valuesof R @ Ends Here ****** *****/
/******Assignment for pressure at time t=0 at all the radius is 1*******/
for(k=0;k < =16;k++)
f
p[k][0]=1;
g /*********Assignment for pressure for initial guess ***** *********/
for(k=0;k < =16;k++)
f
p[k][1]=1;
g
/*******************Assignment of Boundary Conditions * **********/
p[16][1]=1;
// i is for radius //
// and j is for time //
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x=(h[0]*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
printf("
f1 = fopen ("Height.txt", "wt"); /****3****/
f2 = fopen ("Hdot", "wt"); /****3****/
f3 = fopen ("MeanPr", "wt"); /****3****/
f4 = fopen ("Time", "wt"); /****3****/

for (int j=0;j < 200000000;j++)
f

/******************* RK1 *************************/
if(h[0]< 2)
f
x=(h[0]*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
g
else
f CntFr=0;
g
K11=tst*hdot[0];
K12=tstDum2*(Dum3*sin(t)-0.1*Dum3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4-9.810007193613373);
/******************* RK1 *************************/
/**************H and HDOT After RK1********************* */
h1=h[0]+0.5*K11;
hdt=hdot[0]+0.5*K12;
Contact Force
if(h1< 2)
f
x=(h1*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1; g
else
f
CntFr=0;
g
/******************Mean Pressure ******************** ***/
pmean=meanpressure(h1,sigma,p,R,Rst,htst,h);
/*******************RK2**************************** *****/
t=t+htst;
K21=tst*(hdot[0]+0.5*K12);
K22=tstDum2*(Dum3*sin(t)-0.1*Dum3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);
h1=h[0]+0.5*K21;
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hdt=hdot[0]+0.5*K22;
if(h1< 2)
f
x=(h1*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
g
else
f
CntFr=0;
g
pmean=meanpressure(h1,sigma,p,R,Rst,htst,h);
/*******************RK3*************************/
K31=tst*(hdot[0]+0.5*K22);
K32=tstDum2*(Dum3*sin(t)-0.1*Dum3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);
/*******************RK3*************************/
h1=h[0]+K31;
hdt=hdot[0]+K32;
if(h1< 2)
f
x=(h1*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
g
else
f
CntFr=0;
g
pmean=meanpressure(h1,sigma,p,R,Rst,tst,h);
/************RK4******************/
t=t+htst;
K41=tst*(hdot[0]+K32);
K42=tstDum2*(Dum3*sin(t)-0.1*Dum3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);
h[1]=h[0]+0.16666667*(K11+2*K21+2*K31+K41);
hdot[1]=hdot[0]+0.16666667*(K12+2*K22+2*K32+K42);
/**************Mean Pressure *******************/
h1=h[1];
pmean=meanpressure(h1,sigma,p,R,Rst,tst,h);

h[0]=h[1];
hdot[0]=hdot[1];
for(int i=0;i < 16;i++)
f
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p[i][0]=p[i][1];
g
if(j
f
fprintf(f1,"
fprintf(f2,"
fprintf(f3,"
fprintf(f4,"
g
g

fclose(f1);
fclose(f2);
fclose(f3);
fclose(f4);
g

fprintf (f1, "
double meanpressure(double h1,double sigma, double p[][2],double R[],double Rst,double

tst,double h[])
f
double h3sig,A,B,C,D,R1,R2,P1,P2,pMean;
double error[17];
double M[17];
double err=0;
int s;
h3sig=(pow(h1,3))/(sigma);
B=h1/tst;

for(s=0;s< =16;s++)
f
M[s]=p[s][1];
g
/****************Assignment of Dummy Variable ********* *********/
do
f

for(s=15;s> 0;s{)
f R1=(R[s+1]+R[s])/2;
R2=(R[s-1]+R[s])/2;
A=(h3sig*(R1+R2))/(2*Rst*R[s]);
C=((-p[s][0]*h[0])/tst)-((h3sig)/(2*Rst*R[s]))*
(R1*pow(p[s+1][1],2)+R2*pow(p[s-1][1],2));
p[s][1]=(-B+sqrt(B*B-4*A*C))/(2*A);
if (s==1)
f
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p[0][1]=p[1][1];
g
g

for(s=15;s> 0;s{)
f
D=p[s][1];
p[s][1]=1.1*p[s][1]-0.1*M[s];
error[s]=fabs((p[s][1]-M[s])/p[s][1]);
M[s]=D;
g
p[0][1]=p[1][1];
err=0;
for(s=15;s> 0;s{)
f
err=err+error[s];
g
err=err/(15); /// Average error
g
while(err > 0.000001);
P1=0;
P2=0;
for(s=1;s< =15;s=s+2)
f
P1=P1+p[s][1];
g
for(s=2;s< =14;s=s+2)
f
P2=P2+p[s][1];
g
pMean=(p[0][1]+4*P1+2*P2+p[16][1])/48;
return pMean;
g
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Appendix C

Tables of Experimental and Simulation Results

C.1 Con¯guration 1

Frequency Amplitude Simulation hm Experimental hm

(Hz) (¹ m) (¹ m) (¹ m)
800 6.1792 143.2729 0.9447
800 6.669 147.0127 1.2371
800 8.9486 162.775 2.5657
1050 2.4304 6.0489 3.1891
1050 3.617 106.1366 12.0375
1050 4.936 123.2343 21.4303
1050 5.9116 134.5224 23.4826
1300 2.6374 76.4061 6.5227
1300 2.9202 81.0329 7.6587
1300 4.598 107.2562 16.8267
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C.2 Con¯guration 2

Frequency 800 Hz
Amplitude ( ¹ m) 7.4 7.6 7.8 8.0 8.2

Test 1 13.4707 14.269 15.6517 16.274 16.1508
Test 2 13.0979 14.6449 15.0356 15.8266 16.0957
Test 3 13.2905 13.9359 15.6428 15.3388 16.1507
Test 4 13.0951 13.6214 15.0053 15.6878 16.0518
Test 5 13.5354 14.617 14.988 15.7182 16.0818
Test 6 13.9357 15.3383 15.6701 15.6848 16.3287
Test 7 13.445 14.469 15.4086 15.6693 16.0388
Test 8 13.1422 14.3621 15.6795 15.7049 16.5886
Test 9 13.4914 14.8486 15.1449 15.4356 15.8794

Test 10 13.3572 14.8437 15.2333 15.5237 15.508
Average (¹ m) 13.38611 14.49499 15.34598 15.68637 16.08743

Simulation (¹ m) DNC1 DNC DNC 57.3054 60.1417

Frequency 900 Hz
Amplitude ( ¹ m) 5.8 6 6.2 6.4 6.6

Test 1 11.336 11.7322 12.2815 13.0025 13.9145
Test 2 10.6783 11.7956 11.8943 12.5222 13.2427
Test 3 11.01 12.0665 12.23 12.8047 13.263
Test 4 10.8241 11.8172 11.999 12.7467 13.1827
Test 5 11.3899 11.2529 11.8836 13.0562 13.414
Test 6 11.1745 11.6384 12.3865 12.9316 13.8134
Test 7 11.1602 11.7326 12.3004 12.8417 13.5801
Test 8 10.6472 11.1909 12.4745 12.6746 13.4392
Test 9 11.1084 11.1556 12.2482 12.6892 13.2696

Test 10 10.99 11.2763 12.5702 12.896 13.8474
Average (¹ m) 11.03186 11.56582 12.22682 12.81654 13.49666

Simulation (¹ m) DNC 55.5434 58.0158 60.4626 62.4467
1 DNC -Did Not Converge
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Frequency 1000 Hz
Amplitude ( ¹ m) 4.6 4.8 5.0 5.2 5.4

Test 1 11.0867 11.262 11.9811 12.5825 12.6396
Test 2 11.1729 11.1629 12.1185 12.72 12.6326
Test 3 11.264 12.0024 12.2013 12.4823 13.5024
Test 4 10.945 11.9393 12.2688 12.1882 13.1681
Test 5 11.0825 11.485 12.1646 13.0589 12.8527
Test 6 10.958 11.7505 11.9228 12.9179 12.8413
Test 7 10.6522 12.3604 12.3521 12.4905 14.1083
Test 8 10.7868 11.7528 11.8116 12.1864 12.8677
Test 9 11.2518 11.6818 11.8853 12.2711 12.6816

Test 10 10.9668 11.3539 12.1838 11.9896 13.3451
Average (¹ m) 11.01667 11.6751 12.08899 12.48874 13.06394

Simulation (¹ m) DNC 56.4912 59.1097 61.2036 62.9875

Frequency 1500 Hz
Amplitude ( ¹ m) 1.8 2.0 2.2 2.4 2.6

Test 1 9.9339 10.9988 11.0939 11.6938 12.9752
Test 2 10.0439 10.1946 10.8504 12.5324 12.111
Test 3 8.9149 10.3972 10.8781 11.6999 12.7567
Test 4 8.8607 10.5234 10.7668 11.1444 12.5647
Test 5 8.9149 10.9258 11.3802 11.6934 13.2707
Test 6 10.2578 10.9915 11.0566 11.328 12.8714
Test 7 9.9627 10.8179 11.1325 11.9491 12.9994
Test 8 10.0065 10.7677 11.1432 11.8122 12.9973
Test 9 10.0962 10.6744 11.2106 11.8719 11.9577

Test 10 9.9072 10.7097 11.0775 11.5196 12.8166
Average (¹ m) 9.68987 10.7001 11.05898 11.72447 12.73207

Simulation (¹ m) 53.5354 56.0012 58.1313 60.0423 61.7946
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C.3 Con¯guration 3

Frequency 800 Hz
Amplitude ( ¹ m) 6.4 6.6 6.8 7.0 7.2

Test 1 21.4024 21.4089 22.1387 22.7954 22.7595
Test 2 20.9746 21.5593 21.8336 22.7572 23.0541
Test 3 21.2554 21.6139 21.7966 22.5867 22.9858
Test 4 20.9251 21.739 21.7729 22.6405 23.2238
Test 5 20.8396 21.7471 22.0179 22.6409 23.1163
Test 6 21.0984 21.4937 21.9323 22.8155 22.9272
Test 7 21.0307 21.4902 21.8789 22.5575 23.0514
Test 8 20.8029 21.438 22.096 22.4713 23.0452
Test 9 20.8746 21.4432 21.7509 22.4318 23.0638

Test 10 20.8737 21.5169 22.0775 22.5943 23.1871
Average (¹ m) 21.00774 21.54502 21.92953 22.62911 23.04142

Simulation (¹ m) 65.592 66.6991 67.7418 68.7306 69.6732

Frequency 900 Hz
Amplitude ( ¹ m) 5.2 5.4 5.6 5.8 6.0

Test 1 18.7737 20.1916 20.8962 20.8628 21.7042
Test 2 18.8144 20.0742 21.0646 20.8695 21.5064
Test 3 19.0361 19.9377 20.9214 21.19 21.1382
Test 4 19.1751 19.528 20.9238 21.3347 21.2448
Test 5 19.0633 20.0621 20.9489 21.0129 21.7445
Test 6 18.9867 20.0116 20.8519 21.1412 21.3917
Test 7 19.1702 19.5744 20.4802 21.506 21.196
Test 8 19.0511 19.1967 21.1435 21.0589 21.05
Test 9 19.3148 19.4528 20.7809 20.8976 21.1931

Test 10 19.2281 19.8355 20.9035 21.222 21.3466
Average (¹ m) 19.06135 19.78646 20.89149 21.10956 21.35155

Simulation (¹ m) 65.4042 66.5021 67.5448 68.5408 69.4961
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Frequency 1000 Hz
Amplitude ( ¹ m) 4 4.2 4.4 4.6 4.8

Test 1 20.8198 22.0756 22.7689 23.0927 23.2616
Test 2 20.1229 22.0891 22.4801 22.8036 23.2182
Test 3 20.3533 21.9974 22.4754 22.8771 23.4326
Test 4 20.5557 22.0531 22.5285 22.5587 22.9707
Test 5 20.887 21.7522 22.322 22.7171 23.0604
Test 6 20.6034 22.1179 22.0915 23.1343 23.7415
Test 7 20.6502 22.0388 22.6978 22.7592 23.4185
Test 8 20.498 21.9899 22.8898 22.4465 23.3308
Test 9 20.6819 22.1545 22.6626 22.5107 23.8755

Test 10 20.8721 21.6264 22.6115 22.9328 23.7882
Average (¹ m) 20.60443 21.98949 22.55281 22.78327 23.4098

Simulation (¹ m) 62.8183 64.0531 65.2203 66.331 67.3937

Frequency 1500 Hz
Amplitude ( ¹ m) 1.8 2.0 2.2 2.4 2.6

Test 1 16.2606 16.4348 16.944 17.1475 17.508
Test 2 16.4536 16.7723 16.9895 17.1686 17.2069
Test 3 16.2021 16.406 16.9542 17.2596 17.7354
Test 4 16.3595 16.9441 17.0921 17.2073 17.3995
Test 5 16.4152 16.5749 16.9935 17.4292 17.4173
Test 6 16.145 16.484 16.9261 17.1501 17.5845
Test 7 16.301 16.3783 16.9782 17.3174 17.7091
Test 8 16.2998 16.3724 16.9907 17.02 17.7404
Test 9 16.114 16.678 17.0715 17.2938 17.7186

Test 10 16.1834 16.5505 16.9701 17.2764 17.7282
Average (¹ m) 16.27342 16.55953 16.99099 17.22699 17.57479

Simulation (¹ m) 54.5747 56.4424 58.2134 59.8992 61.5094
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Appendix D

Calibration of Capacitance Sensor

Equation for calibrating physical capacitance, C to the mean squeeze ¯lm thickness,

hm in ¹ m is

hm =
A ¢²0 ¢k

1:853¢C1:706 + 0 :0784
(D.1)

where, physical capacitance, C in F is given by

C = !R st ¢(¡ 1 +

1
2:511¢(V Rexp)4 + 6 :011¢(V Rexp)3 ¡ 4:72¢(V Rexp)2 + 2 :29¢(V Rexp) ¡ 0:1417

) (D.2)

and

V Rexp= experimental voltage ratio as recorded from LabView

! = frequency of AC voltage, Vin (2¢¼¢2000 rad)

Rst= resistor used in the electric circuit (33 k­)

A= area of contact (m2)

²0= permittivity of free space (8.85E-6 F¢¹m ¡ 1)

k= dielectric constant of air (1)
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Calibration Procedure

1. Read the experimental voltage,Vo=p using LabView.

2. Calculate the experimental voltage ratio.

V Rexp =
Rms Vo=p

Rms Vin
(D.3)

3. Experimental voltage ratio is calibrated in terms of the physical voltage ratio. Stan-

dard capacitors are utilized for this calibration. For each standard capacitor, the

experimental voltage ratio is calculated. Then, using these standard capacitor values

and Eq. (D.5), physical voltage ratios are calculated.

As,

V Rphys =
R

R + 1
j!C

(D.4)

Thus,

V Rphys
2 =

! 2C2R2

1 + ! 2C2R2 + 2 !RC
(D.5)

Using a curve ¯tting technique, a poly¯t is obtained for V Rphys in terms of V Rexp

and is given by Eq. (D.6). Thus, the experimental voltage ratio is converted to the
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physical voltage ratio using the 4th order polynomial (Eq.(D.6)).

V Rphys = 2 :511¢(V Rexp)4 + 6 :011¢(V Rexp)3 ¡ 4:72¢(V Rexp)2 +

2:29¢(V Rexp) ¡ 0:1417 (D.6)

4. Capacitance due to parallel plate can be calculated usingthe physical voltage ratio.

A quadratic equation in terms of C is written as

"Ã

1 ¡
1

V Rphys
2

!

! 2Rst
2

#

C2 + [2 !R st ] C + 1 = 0 (D.7)

Here,

! =2¼¢2000 rad

Rst=33 k­

and V Rphys is calculated as per step 3. Solving Eq. (D.7) and taking positive root,

C is calculated as

C = !R st ¢(¡ 1 +
1

V Rphys
) (D.8)

5. Mylar shims of thickness 38.1¹m are used to calibrate the squeeze ¯lm thickness to

the capacitance. The two bearing surfaces are separated using mylar shims so that

99.7 percent volume between the two plates is air and 0.3 percent volume is mylar.

Thus, two surfaces form two capacitors in parallel, one due to air and the other due

100



to mylar. Capacitance due to each dielectric medium is calculated using

C =
A² 0k

d
(D.9)

Here, k for air =1 and k for mylar = 3.2. The total capacitance is the sum of

capacitance due to air and mylar. This theoretical capacitance is then calibrated in

terms of experimental capacitance (Eq. D.8). This results in a power function which

represents the above calibration.

Ccal = 1 :853¢C1:706 + 0 :0784 (D.10)

Here, the goodness of ¯t is

Variance Reduction= 99.99

S/(N - P) : 0.00002754

RMS (Y - Ycalc) : 0.00262

6. The mean squeeze ¯lm height is calculated using Eq. (D.11) as

hm =
A² 0k
Ccal

(D.11)
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Appendix E

Computer program to solve the dynamics for ultra-thin squeeze fi lms

import java.io.*;
import java.math.*;
class Reynoldsequation
f
public static void main(String args[])

f

/*************All Variable Declaration*************** */
double Rst; //Step-size for R
double[][] p=new double[17][2]; // 2-D array for pressure
double[] h=new double[2];
double tst; // Time step
double[] R=new double[17]; //1-D array for Radius
double[] M=new double[17];
double[] Rinv=new double[17];
double[] error=new double[17];
double err=0; //Mean pressure
double A=0; //Dummy Variable
double B=0; //Dummy Variable
double C=0; //Dummy Variable
double D=0;
double P1=0; //Dummy Variable
double P2=0; //Dummy Variable
double pmean=1;
double sig=0;
double sig1=0;
double R1=0;
double R2=0;
double K1=0;
double K2=0;
double h3sig;
double visc=1.8*Math.pow(10,-5);
double visc1=0;
double t;
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double N=0;
double Exc=0.315;
int n=0;
double KN=0;
double hm=2*Math.pow(10,-6);
double ME=1.1467*Math.pow(10,-3);

/*************Assignment of Values******************* **/
h[0]=1;
sig=929.68;
/**********Step Sizes *************/
tst=0.0001;
/************ Initial Conditions *****************/
t=0;
err=1;
/**************Assignment of Valuesof R @ di®erent node poi nts*********/
R[0]=0;
N=16;
n=16;
Rst=1/N;

for(int k=0;k < N;k++)
f
R[k+1]=R[k]+Rst;
g

/**************Assignment of Valuesof R @ Ends Here ******* ****/

/*******Assignment for pressure at time t=0 at all the radiu s is 1*********/
for(int k=0;k < =N;k++)
f
p[k][0]=1;

g
/*********Assignment for pressure for initial guess ***** *********/
for(int k=0;k < =N;k++)
f
p[k][1]=1;
g
/*******************Assignment of Boundary Conditions * *********/
p[n][1]=1;
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// i is for radius //
// and j is for time //
/******* Finite Di®erence Algorithm Starts Here********** **/
try
f

Bu®eredWriter out6 = new Bu®eredWriter (new FileWriter ("Rad ial.txt"));
Bu®eredWriter out7 = new Bu®eredWriter (new FileWriter ("Err or.txt"));
Bu®eredWriter out1 = new Bu®eredWriter (new FileWriter ("sig ma1000R01.txt"));
Bu®eredWriter out2 = new Bu®eredWriter (new FileWriter ("sig ma1000R051.txt"));
Bu®eredWriter out3 = new Bu®eredWriter (new FileWriter ("sig ma1000R781.txt"));
Bu®eredWriter out4 = new Bu®eredWriter (new FileWriter ("sig ma1000R15161.txt"));
Bu®eredWriter out5 = new Bu®eredWriter (new FileWriter ("Pre ssure.txt"));

for (int j=0;j < 1600000;j++)
f
/******************* RK1 *************************/
t=t+tst;
h[1]=1-Exc*Math.sin(t);
KN=ME/(h[1]*hm*pmean*101325);
visc1=visc/(1+2*KN+0.2*(Math.pow(KN,0.780))*Math.ex p(-KN/10));
sig1=visc1*sig;
h3sig=(Math.pow(h[1],3))/(sig1);
B=h[1]/tst;

/*************Assignment of Dummy Variable ************ ****/
for(int i=0;i < n;i++)
f
M[i]=p[i][0];
g
p[n][1]=1;

/**************Assignment of Dummy Variable*********** ******/
do
f
for(int i=15;i > 0;i{)
f
R1=(R[i+1]+R[i])/2;
R2=(R[i-1]+R[i])/2;
A=(h3sig*(R1+R2))/(2*Rst*R[i]);
C=((-p[i][0]*h[0])/tst)-((h3sig)/(2*Rst*R[i]))*
(R1*Math.pow(p[i+1][1],2)+R2*Math.pow(p[i-1][1],2));
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p[i][1]=(-B+Math.sqrt(B*B-4*A*C))/(2*A);
if (i==1)
f
p[0][1]=p[1][1];
g
g

for(int i=15;i > 0;i{)
f
D=p[i][1];
p[i][1]=1.1*p[i][1]-0.1*M[i];
error[i]=Math.abs((p[i][1]-M[i])/p[i][1]);
M[i]=D;
g
p[0][1]=p[1][1];
err=0;
for(int i=15;i > 0;i{)
f
err=err+error[i];

g
err=err/(n-1); /// Average error

g
while(err > 0.0000001);
for(int i=0;i < N;i++)
f
p[i][0]=p[i][1];
g
if(j%200000==0)
f
for(int i=0;i < =N;i++)
f
out6.write(Double.toString(p[i][1]));
out6.newLine();
g
g

P1=0;
P2=0;
for(int i=1;i < =15;i=i+2)
f
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P1=P1+p[i][1];
g
for(int i=2;i < =14;i=i+2)
f
P2=P2+p[i][1];
g
pmean=(p[0][1]+4*P1+2*P2+p[16][1])/48;
if(j%52==0)
f

out5.write(Double.toString(pmean));
out5.newLine();
g
h[0]=h[1];
g
/*******Integration of Pressure using Simpson's Rule Ends Here *********/
out1.close();
out2.close();
out3.close();
out4.close();
out5.close();
out6.close();
out7.close();
g
catch(IOException E2)gg
/******** Finite Di®erence Algorithm Ends Here*********** */
g g
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