Experimental and Analytical Investigation of a Dynamic Gas Squee ze Film

Bearing including Asperity Contact Effects

Except where reference is made to the work of others, the worklescribed in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classi ed information.

Manoj Deepak Mahajan

Certi cate of Approval:

George T. Flowers Robert L. Jackson, Chair
Professor Assistant Professor
Mechanical Engineering Mechanical Engineering
Jay M. Khodadadi Joe F. Pittman
Professor Interim Dean

Mechanical Engineering Graduate School



Experimental and Analytical Investigation of a Dynamic Gas Squee

Bearing including Asperity Contact Effects

Manoj Deepak Mahajan

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Ful' Timent of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
December 15, 2006

ze Film



Experimental and Analytical Investigation of a Dynamic Gas Squee ze Film

Bearing including Asperity Contact Effects

Manoj Deepak Mahajan

Permission is granted to Auburn University to make copies ofthis thesis at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation



Vita

Manoj Mahajan, son of Deepak and Neeta Mahajan was born on Jarary 19, 1981,
in Nasik District in India. He attended Government College of Engineering, Pune and
graduated in November 2002 with the degree of Bachelor of Engeering in Mechanical
Engineering. He joined the Masters program in the departmenhof Mechanical Engineering

at Auburn University in August 2004.



Thesis Abstract
Experimental and Analytical Investigation of a Dynamic Gas Squee ze Film
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Directed by Robert L. Jackson

This thesis presents a theoretical and an experimental invgtigation of planar gas
squeeze Im bearings. The thickness and pressure pro le of thgas squeeze Im are ob-
tained by simultaneously solving the Reynolds equation andhe equation of motion for the
squeeze Im bearing. This work also accounts for the force duto surface asperity contact
in the equation of motion. When the surfaces are in contact, he model predicts the contact
force as a function of Im thickness. Computational simulations are performed to study
the development of the squeeze Im from its initial state to a pseudo-steady state condition
and to evaluate its load carrying capacity. For certain casa, the simulation results correlate
well with the pre-established analytical results. However,corrections must be made to the
analytical equations when they are used out of their e®ectiveange. In the experimental

study, a squeeze Im is developed due to an applied relative manal motion between two



parallel circular plates of which one circular plate is e®edgvely levitated. Theoretical results
for the squeeze Tm thickness match qualitatively with its experimental counterpart.

On successful testing of macro-scale gas squeeze Im bearingsicro-scale bearing
surfaces are fabricated. Experimental investigation of miro-scale bearings suggests that
these bearings have signi cant potential for a wide range of pplications in Micro-Electro

Mechanical Systems (MEMS).
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Chapter 1

Introduction

Research in the eld of tribology, the science and technology Pfriction, wear and
lubrication, has been continuously improving the performance of mechanical systems ever
since the industrial revolution. A British government report (the \Jost Report") in 1966
estimated a potential savings of$ 515 million per annum only for the United Kingdom
by better application of tribological principles and practices [1]. Application of principles
of tribology led to the development of many di®erent types of earings used for di®erent
purposes. Thrust bearings, hydrodynamic bearings, hydrastic bearings, rolling element
bearings, etc. are widely used as means to reduce the frictial losses in mechanical systems
based on the selection criteria. The selection criteria inlude speed, load, life, maintenance,
space requirements and environmental conditions etc.

The largely underutilized squeeze Im e®ect has a potential fouse as a means to
lubricate surfaces by creating squeeze Tm bearings. Appliations of such squeeze Im
bearings can be used in read/write heads in hard disk drivesmanufacturing processes,
vibrating machinery, low-speed applications and hydrodynamic bearing start up and shut
down. In this research, the thin gas squeeze Im bearings aretisdied extensively. Both
numerical and experimental results con rm that squeeze Im bearings can be used as means
for lubrication. Micro-scale bearing surfaces are fabricaéd to study ultra-thin squeeze Ims

for lubrication of miniaturized mechanical systems.



In Chapter 2 of this thesis, a review of the squeeze Tm e®ect wit the perspective
of lubrication and damping is presented. The various lubri@tion regimes are described.
Hydrodynamic lubrication as well as squeeze Tm lubrication are de ned. Physics and
fundamentals of the squeeze Tm e®ect are explained. Incompssible and compressible
squeeze Im bearings, with their governing equations, are rdewed. The latter part of
chapter 2 gives a background of squeeze Im damping. It gives aoncise overview of the
cut-o® frequency, squeeze Im damping and spring forces. This followed by a review of
ultra-thin squeeze Tm bearings where gas rarefaction e®ectsra signi cant.

In Chapter 3, all the research objectives as well as the speci goals pertaining to these
objectives are stated.

Chapter 4 is divided into two sections, namely Thin and Ultra-thin squeeze Tm bear-
ings. Each section covers subsections such as formulatiof coupled dynamics (the equation
of motion and the Reynolds equation for the bearing), numercal scheme to solve the dy-
namics, followed by the results of the numerical investigaion.

Chapter 5 explains all the observations made during the meagements of thin and
ultra-thin squeeze Tm bearings. Here, experimental resultsare compared with the simula-
tion results.

Chapter 6 summarizes the thesis. In summary, a thorough stug was conducted on the

squeeze Im bearings for their use as a potential means to lulicate surfaces.



Chapter 2

Background

2.1 Introduction

This chapter discusses in detail the di®erent types of lubriation regimes. The phe-
nomenon of squeeze Im e®ect with the perspective of lubricatn is then described. In-
compressible and compressible squeeze Im bearings with thegoverning equations are
reviewed. Then, the squeeze Im damping phenomenon and its ¢wo® frequency are ex-
plained. Lastly, ultra-thin (nano-scale) squeeze Im bearing including e®ects due to molec-

ular dynamics are studied.

2.2 Lubrication

\Lubrication is an application of a lubricant between two su rfaces in relative motion for
the purpose of reducing friction and wear or other forms of stface deterioration" [2]. The
lubricant is usually a °uid, but in some cases it can be a solid sch as a powder. Lubrication
is broadly classi ed into °uid- Im, boundary and mixed regimes (see Fig. 2.1). In °uid-
Im lubrication, bearing surfaces are completely separatedby either a liquid or a gaseous
lubricating Im [3]. If the loads are high or speeds are low then the contact between high
or tall asperities is likely to occur. This is a boundary lubrication regime where a suitable

molecular layer of lubricant covers the high asperities. Hace, metal welding due to adhesion



is avoided [3]. The lubrication regime between boundary and’uid- Im is categorized as
mixed or partial lubrication. In the mixed lubrication regi me, e®ects due to both, boundary

and °uid- Im lubrication are observed [3]. In °uid- Im lubricatio n, a thin °uid Tm between

e A
Lubrication
N J
1 1
e ™
Fluid-Film Mixed Boundary
N J
1 1
Hydrodynamic Hydrostatic Elastohydrodynamic
e A
— Sliding
N J
e A
— Squeeze film
N J

Figure 2.1: Classi cation of lubrication

bearing surfaces is obtained by either hydrostatic or hydraynamic action. Hydrostatic
lubrication is a phenomenon of maintaining a lubricating Im by external means; whereas,
hydrodynamic lubrication is self-acting. In hydrodynamic lubrication, positive Tm pressure
between conformal surfaces is developed due to relative mion and °uid viscosity [3]. The

topic of interest here is squeeze Im lubrication, which is a ype of hydrodynamic lubrication

4



where a lubricating Im is developed due to relative normal mdion and °uid viscosity.
Elastohydrodynamic lubrication is a form of hydrodynamic lubrication where lubricating

surfaces are elastically deformable [3].

2.3 Squeeze Film E®ect

The term \squeeze Im" de nes a °uid Im contained between two conformal, moving
surfaces with velocities of the surfaces normal to the plare of the containment [4]. If the
bearing surfaces approach each other then the motion is tered as \positive squeeze". Con-
versely, if the bearing surfaces move apart then the motions termed as \negative squeeze"
[4]. A relative normal motion between two parallel surfacescan produce a squeeze Im
which can completely separate the surfaces and contributed lubrication. This phenomenon
is known as the \squeeze Tm e®ect" [3].

The load-carrying capacity results from the fact that a viscous °ow cannot be squeezed
out of the gap without any delay; therefore, providing a cushoning e®ect and the Tm
equilibrium is established through a balance between visags °ow forces and compressibility
e®ects [5]. Thus, the °ow of °uid at the boundary is approximately reduced to zero due
to high viscous forces resulting from alternate compressio and decompression of the °uid
[6]. Alternate compression and decompression produces aestdy-state Im pressure which
oscillates about its mean value [6]. The average steady-stat Im pressure is greater than
the atmospheric pressure over one cyclel(to T+2%) and thus provides the squeeze Im lift

and lubrication [6]. Applications of the squeeze Tm e®ect areclutch packs in automotive



transmission, engine piston pin bearings, human hip and kne joints, damper Tms for jet
engine ball bearings and piston rings [7].

The dynamics of squeeze Im is coupled as it includes both thequation of motion for
squeeze Im bearing and the Reynolds equation. Here, the Rewids equation governs the

generated °uid pressure. The general form of the Reynolds egttion is given by [3]

A ! A ! M q o ° o, !
@ 1/2h°>@pJr @ 1/zh°’@p_ @" Yah(uy+ u?) +@@%h Uy + Uy A+@1/2l)
t

@x 1z @x '@y 12 @y @x 2 @y 2 a @Y

Here, h is the squeeze Tm height and! is the viscosity of the °uid. The time dependent

term @g? is known as the \squeeze term" as it represents squeezing mon of the °uid.

Here, uy, uy and u?, ug are surface velocity components of bottom and top surfacesix

and y direction, respectively.

2.4 Incompressible Squeeze Film Bearings

In incompressible squeeze Tm bearings, the lubricant is a tjuid and its density is
assumed to be constant in the operating range. As per Hamrock3], when two surfaces
approach each other, it takes a nite amount of time to squeezeout the °uid, and this
action provides a lubricating e®ect. It is also interesting b note that it takes an in nite
amount of time to theoretically squeeze out all the °uid. For an incompressible °uid,

viscosity along with density is assumed to be constant in theReynolds equation [3]. Also, if



only normal motion is considered and sliding velocities arezero then the Reynolds equation

in rectangular coordinates is given as [3]

@" sep, @ ;@p_ , @h
@Xh @X+@yh @y_lz ot (2.2)

Eq. (2.2) in cylindrical-polar coordinates is expressed as

H M
@ .@p 18" @b, @n

@ @ r@u @u @t (2:3)

The Reynolds equation given in the form of Egs. (2.2) and (2.3 can be analytically
solved for pressure, Im thickness and nite squeeze time (i.ethe amount of time for the
‘Im to be squeezed out). Hamrock [3] provides analytical expessions for pressure, Im
thickness and nite squeeze time for various geometries suchs parallel-surface bearings
with in nite width, journal bearings with no rotation, a para llel circular plate approaching
a plane surface and a long cylinder near plane. As per Hamrod®], the parallel Tm shape

produces the largest normal load-carrying capacity.

2.5 Compressible Squeeze Film Bearings

In contrast, for compressible squeeze Im bearings, the lubcant used is gaseous (such

as ambient air). Langlois [8] was one of the rst to extensivey study the isothermal gas



squeeze Ims with the assumption of a thin and continuous gas i with a constant viscos-
ity. Langlois [8] also assumed that the density of the gas is mportional to the pressure,
which means that the gas squeeze Im obeys the ideal gas law ued isothermal condi-
tions. Langlois [8] derived the equation that governs the pessure variation for a thin, °at

isothermal gas squeeze Tm

H [ M J M |
@ 3 @P @ 3 @ @£ 0¢D
—HP +—HP——0—PHU+U
@X @xX @Y ﬁ@Y @X X
@h ~° 0 @PH
+ PH U+ U +¥% 2.4
° ev W "ot @4
Here, @ is the bearing number and¥ais the squeeze number.
The de nitions of @ and Yare
8 = 6 1BV =p am ho? (2.5)
Y= 12B 2!=p m ho? (2.6)

Here, B is bearing breadth. The reference velocityV, is used to obtain normalizedUy, uo
Uy and U)E’ (see Nomenclature), where the order of magnitude of these mmalized velocities

is unity [8]. Likewise, Eqg. (2.4) in cylindrical-polar coordinates is given as



1 ¥
@' ., eP 1e" , e Tet . i oo
— RH3%P=_ + == H3%P = =o — RPH 'Ug+ U2
@R erR 'R@E @ er"
2 4
@E i 000 @pPH)
+o0 — PH Ug + U + RY%——= 2.7
@ o eT @7

Later, Langlois [8] dealt with the exact solution to squeeze Im equations (Eqgs. (2.4) and

h=hm(1+e>sos(4vt))

Figure 2.2: The squeeze Im thickness, h, as a function of normalized time, T,
(h=hp(1+2&os( t) and 2=zHh hy)



(2.7)) by assuming the squeeze Im thickness as a function ofitne (see Fig. 2.2)

h = hm (1+ 2&os!t ) (2.8)

Based on the assumption of a Im thickness given by Eq. (2.8), langlois [8] introduced
a perturbation parameter for pressure of the order of?2 in the Reynolds equation. Then,
Langlois [8] solved Eq.(2.4) to obtain the squeeze Im forcei(e. the force due to the
di®erence between the pressure of the squeeze Im and the ambigressure for a given
instant of time). This solution is given for the squeeze Im baween two °at long parallel
plates and two parallel disks. Since the present work consiets axisymmetric parallel disks

without lateral surface motions, the governing Reynolds egation as per [8] is

U
@" . 3, @P _ . @PH)
where %4is as given
%= 12'R ¢21=p atm hm? (2.10)

As per [8], if the squeeze number is very large then the gas beeen bearing surfaces

does not leak, and the squeeze Im can be considered as inconagsible. At low squeeze

10



numbers, the frequency of squeeze motion is low, and theref® gas leaks out [8]. The

squeeze Im force between parallel disks given by [8] is

3

F(T)= YapmRo® [i g1(¥#cosT+g (¥)sinT] (2.11)

where,

.2 bel’ %bek" % ber” % i bel’ Vuper,” 7 bei” %
n(%=1i ;¢ P—> P—> (2.12)
Z (ber” 3+ (bei %)
R T P P, P, P
2 ber Yi(bery ¥t+beip 3+ bei Yabein ¥4 berp 3
®RH= —¢ Aben L 7 JAben %4 ben %) (2.13)

Z (ber” %)%+ (bei” 3

Eq.(2.11) gives a good estimate of the squeeze Im force beten parallel disks at a
particular instant of time.

For compressible squeeze Tm bearings, Salbu [9] showed thalhe squeeze Tm e®ect
can be used to operate bearings in a highly vibrational envionment, and also provided
analytical equations for bearing load carrying capacity. Slbu [9] assumes that the squeeze
Im thickness is a known sinusoidal function of time. One diskis held stationary and
the other oscillates sinusoidally about a mean Im thicknessin a direction normal to the

surfaces with an amplitude of oscillation, £h, and frequency,! . Salbu [9] uses a simpli ed

11



form of the Reynolds equation (Eq.(2.9)). Then, the boundar conditions for the planar

radial squeeze Tm bearing are assumed as

P(R;T =0)=1 (2.14)
i.e. initial pressure between disks is atmospheric. At the ater periphery,

P(R=1;T)=1 (2.15)

i.e. the pressure is atmospheric at all times. At equilibrium, the mean positive Im force,
is equal to the applied load. When%¥1 , \the mass content rule" can be imposed on
Eqg. (2.9) and the following equation can be derived to approimate the mean load carrying

capacity [9]

F st 2
Wy = = 25 i1 (2.16)
Yaim Ro . 1 2 )

Salbu [9] numerically modeledW,, as a function of ¥for various 2? values and compared
it with the asymptotic values of W, as given by Eq. (2.16). For¥; 10, Salbu [9] observed
little variation between the numerical and analytical W,, predicted from Eq. (2.16) at the

same2, Thus, Eq. (2.16) may be used to predictW, for ¥ 10. For ¥ 10, Eq.(2.16) is

12



used to validate the computational simulation results of the current analysis presented in
this thesis and will be referred to as Salbu's Equation.

Further work on dynamic gas squeeze Im bearing theory was pdormed by Minikes et
al. [10]. In [10], instead of assuming a squeeze Im height asfanction of time, it is deter-
mined by equilibrium of forces. Minikes et al. [10] used a piroelectrically vibrating disk to
levitate another disk for experimental and numerical work. A sinusoidal voltage was applied
on the electrodes which gave rise to harmonic deformation ofhe piezoelectric disk at the
excitation frequency. The piezoelectric disk was also statally and dynamically deforming.
However, in the present work both disks are considered to beigid. A similar approach of
coupled dynamics can also be found in [11], where the °uid "Im lirication forces and seal
dynamics were solved simultaneously for noncontacting gaface seals, although the faces

were annular and not circular.

2.6 Squeeze Film Damping

\Damping is the element, present in all real systems, which dssipates vibrational en-
ergy, usually as heat, and so attenuates the motion" [12]. Agueeze Im can also be modeled
as a spring-damper system (Fig. 2.3).

An early study of squeeze Im by Gritn et al. [13] suggests that sjueeze Im between
two parallel plates provides viscous damping action over a ertain frequency range. As
per Gritn et al. [13], if the displacements to be damped are sm# (sub micrometer)

then squeezing of a thin gas Im between two parallel °at surfa@s can produce substantial

13



Load Load

| |
! 1

Squeeze film _'>| Spring N ;
l amper

Disturbance | | Disturbance | I

Figure 2.3: Analogy of a squeeze Im as a spring-damper system

damping forces at very high frequencies. The damping forcesiproportional to the relative
velocity over certain ranges of operation, and this type of dmper is termed a viscous damper
[13]. Squeeze Tm damping due to relative axial or tilting motion between two closely spaced
plates is analyzed by Grizn et al. [13]. Grixzn et al. [13] provid es a critical frequency below
which the squeeze Tm acts as a damper and above which it acts asspring. At the critical
frequency, both the damping and spring forces are equal. Argtical expressions are also
provided by Grixn et al. [13] for the squeeze Tm force and critical frequency for special
cases of in nitely wide parallel plates, annular parallel phates and parallel disks. The critical

frequency for parallel disks is given by [13]

| = ’hmzpa

l=—m Fa 217
" 2:07R o2 (2.17)

Blech [14] also analyzed squeeze Im cut-o® frequencies for®krent geometries and

divided the squeeze Tm force into damping and spring force cmponents. The spring force
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is greater than the damping force for all frequencies excephe cut-o® frequency, and below
the cut-o® frequency damping is comparable to spring action14]. As per Blech [14], the
maximum damping occurs at the cut-o® frequency when the sprig and damping forces are
equal, and above the cut-o® frequency, the spring force incases while the damping force
decreases with increases in the squeeze numbé,

Blech [14] gives the damping force as a function of the squeenumber, % and excursion

ratio, 2, between parallel circular disks

r __
2 £ i _ p_¢ i _ p_¢o
Fomi 5,0 A ber,” % bei" % +B. ber,” 7 bel" % 2 (2.18)

Similarly, the spring force by [14] is

2 £ _ . p.¢ i _ . p.ta
Fesl+  _ G A "ber,” 7 bei” 7 + B 'ben” 7 bei” 7 2 (2.19)
4

Here,

"o bel 7 . .20
" per’ mpe” 7 '
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and

3/
Be=j 2 pbe'p A (2.21)
ber?” ¥ bef" ¥
The critical frequency for parallel disks is given by [14] as
hmzpa
leme—— 2.22
©T1LO3R (2 (222)

For isothermal conditions, Blech [14] (Eqg. (2.22)) undereimates the cut-o® frequency by
7 % as compared to Gritn et al. [13] (Eq. (2.17)) because Blechl4] assumes one term
approximation to the cut-o® frequency. A sample cut-o® frequecy using Eq. (2.17) [13] and
assumption of isothermal °ow for an experimental result is céculated to be 1377 Hz. For
this case (See Apendix C.2)h, is 13.38! m and the frequency of oscillation is 800 Hz. Thus,
the frequency at which the bearing is operated is less than ta cut-o® frequency where the
spring force is more than the damping force [14]. Similarly,a few more calculations based
on the experimental results suggest that in the present workthe range of operation of the
squeeze Im bearing is either below or above the cut-o® frequew, and for such cases the
spring force is always greater than the damping force [14].
The gas squeeze Im sti®ness and damping torques on a circulars#t oscillating about

its diameter were analyzed by Ausman [15]. In [15], the lineAzed Reynolds equation for
small squeeze Tm motions is solved for pressure between thasiks where one disk oscillates

in a tilting motion about its diameter. This pressure is then integrated over the surface
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area to obtain the total squeeze Im torque. Then Ausman [15] sparates the total squeeze
Im torque into sti®ness and damping components. As per Ausmarjl15], the torque which
opposes the angular de®ection is sti®ness torque; whereas ghorque which opposes angular
rate is damping torque. The gas damping is observed as viscedriction of the gas as it °ows
in and out between the disks, and gas sti®ness is observed asmuressibility of a trapped gas
between the disks [15]. Ausman[15] concludes that at higherequencies, the gas is trapped
and does not leak, resulting in higher compressibility. Ths means that higher frequencies
produce higher sti®ness torque, and at lower frequencies, gdas more than suzcient time
to °ow in and out, resulting in higher damping torque[15].

Etsion [16] analyzed squeeze Im e®ects in liquid lubricatedadial face seals and ob-
tained damping coezcients. Green et al. [17] calculated dyneiic damping and sti®ness
coexcients of the °uid Tms in mechanical face seals, considerig squeeze Tm e®ects along
with hydrostatic and hydrodynamic e®ects. Work speci ¢ to conpressible squeeze Im
damping was done by Blech [18] for annular squeeze- Im platesnirelative motion. Re-
search into the e®ect of squeeze Tm damping is also currentlyrpminent in the design of
micro-electro mechanical systems (MEMS) and microstructues ([19]-[26]). Some of this

work is discussed in detail in the next section.
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2.7 Micro-Scale Squeeze Film Bearings and E®ects Due to Molecular Dy nam-

ics

Micro-Electro-Mechanical Systems (MEMS) are miniature sysems used to combine
electro-mechanical functions with dimensions varying froma micrometer to a millimeter.
Due to the micrometer size, lubrication in MEMS becomes a ctical design parameter
and design and selection of MEMS bearings is a challenge foesearchers. Usage of liquid
lubricant in MEMS leads to a power dissipation problem and sois not a good choice for
lubrication [27]. An alternative to oil-based lubricant, gas lubricated bearings can be used
in MEMS. Gas bearings can support their loads on pressurizedhin gas Ims. As per
Epstein [28], for micromachines such as turbines, gas beags have several advantages over
electromagnetic bearings, such as no temperature limits, igh load carrying capability, and
relatively simple fabrication. \The relative load-bearing capability of a gas bearing improves
as size decreases since the volume-to-surface area ratio (atiuis the inertial load) scales
inversely with size" [28]. An example of a fully functional gas Im bearing is seen in the MIT
Microengine project [29]. Here, a rotor of a micro-gas turbie generator is supported by a
journal air bearing. As per Breuer [30], the gas lubricationsystem in MEMS should be easy
to fabricate with suxcient performance and robustness. In arother example, a self-acting
gas thrust bearing was designed, fabricated and tested on alison microturbine [31]. Wong
et al. [31] compared a hydrodynamic gas thrust bearing to an xisting hydrostatic one,
and observed that a hydrodynamic approach is much simpler tdabricate and the required

source of pressurized gas can be eliminated.
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If the high speed relative normal motion is already availabk in MEMS, then potentially
the squeeze Tm e®ect can be used as a means to lubricate surfadea MEMS, and create
MEMS bearings. In such cases, there is no special geometry eded as two planar surfaces
serve as a bearing, and the system is also maintenance freedaese ambient air serves as
the lubricant. Breuer [30], in a summary on some of the issuesf lubrication in MEMS,
suggests that fundamental issues of °uids and solid physicaush as gas surface interactions,
momentum and energy accommodation phenomenon and surfacemtamination e®ects are
vital parameters for ultra-thin lubrication. For such a smal | scale, continuum assumptions
are not always valid, which can be seen in the following caldations. The RMS roughness,
Rq, of MEMS surfaces seems rather smooth. The range &g is usually varies from 0.07 to
0.25 nm [32]. For a complete surface separation, Im thicknes of 10Rq is a good approx-
imation. Thus, a minimum "Im thickness of 2.5 nm should provide a full 'Im lubrication.
The above calculations show that ultra-thin °uid Tms can be used in MEMS as a means
of lubrication.

The mean free path of a gas is given as [33]

S
_ 16 GT,

*T Bp 2V,

(2.23)

The mean free path can be estimated for the normal operating enditions (See Table 2.1)
in a squeeze Im bearing. Using Eqg. (2.23) and the assumptionim Table 2.1, the mean free

path, ., is calculated to be 8.7 nm. The mean free path is used to caltate the Knudsen
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Table 2.1: Assumptions and parameters used to estimate the gan free path
Flow Isothermal

Air Temperature, T, | 293 K

Viscosity of air, * 1.82110 ®> N&/m?
Pressure,p 101325 N/nv¥

Gas Constant, G 8.3144 Jmoli 1iKi T

number to further characterize the type of °uid °ow. The Knudsen number, Kn is de ned

as

Mean free path ()

K height ()

(2.24)

If the mean free path is very small compared to the charactestic length (i.e. length scale
of the problem), then the °uid °ow is considered to be in the continuum range. If the
mean free path is comparable to the characteristic length tlen continuum theory of °uid
mechanics does not hold well. Typical values of the Knudsen umber corresponding to

di®erent types of °ow are tabulated in Table 2.2. Substituting values of | =8.7 nm and

Table 2.2: Types of °ows as per Knudsen number [34]

Range of Knudsen Number| Type of Flow
Kn- 103 Continuum Flow
10 3 <Kn< 01 Slip Flow

0:1 <Kn< 10 Transition Flow
10- Kn Molecular Flow

h=2.5 nm in Eq. (2.24) gives Kn¥.3.5. Thus, the mean free path is not negligible when

compared to the Im thickness and the °ow between bearing surfaes cannot be considered
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as a continuum any more. ForKn %3.5, the °uid °ow falls into the transition °ow regime
(See Table 2.2).

If the Tm height is increased to 8 * m then the °uid °ow will at most change to slip
°ow. Hsia et al. [35] experimentally studied gas bearings at lira low clearances and pointed
out that for ultra-thin Tms (below 0.25 microns), slip-°ow theo ry (e®ects due to molecular
dynamics) needs to be considered when modeling the °uid dynaims. There are various
models which provide means to include rarefaction e®ects du® reduction in the density
of gas (i.e. slip °ow or transition °ow regime) in the Reynolds equation ([24],[33],[36],[38]).

Although most of this work is done for the squeeze Tm damping,the governing equa-
tions generally remain the same and can be used for squeeze Tbrication. Li[36] modeled
an ultra-thin gas squeeze Tm using the modi ed gas Im lubrication (MMGL) equation in-
cluding coupled roughness and rarefaction e®ects. A rectanfpr geometry is considered in

this work and a linearized form of MMGL equation [36] is solvel.

TERN TER u
@, ef, @ . ef_," eH ef

ax > oex ey N ey ¥ Tat et (2:29)

Here,

12
&= —— 2.26
h mzpatm ( )

and Ax P and Ay P are pressure °ow factors in x and y direction respectively.
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Then, Li [36] transforms the linearized MMGL problem to the continuum gas Tm
problem to obtain an analytic solution. Darling et al.[37] provides an analytical equation
for the squeeze Tm force in the form of a complex number. The ral part of the complex
number is the spring force while the imaginary part is the danping force. In an another work
by Pandey et al. [24], surface roughness and rarefaction e®sare included in the analysis
of squeeze Im damping in MEMS. This work [24] accounts for nofinear e®ects rather than
solving the linearized form of the MMGL equation. An explicit nite di®erence solution of
the nonlinear MMGL equation suggests that rarefaction e®ect reduce the spring force and
the damping force below the cut-o® frequency but above the cud® frequency the spring
force reduces but the damping force increases when comparedth the linearized solution
[24]. Rarefaction e®ects increase the value of the cut-o® freégncy and so increase the range
of frequency where damping is dominant [24]. Thus, in order @ achieve lubrication from
the squeeze Tm e®ect, it should be better to operate the squeezIm bearings above the
cut-o® frequency.

Nayfeh et al. [23] modeled °exible microstructures under thee®ect of squeeze Tm

damping. The form of Reynolds equation used by [23] is

M H
@ H3PQF;]+@ |_|3|:>(C-3'D|5]=;|_21eff @PH)

ax"Pax ey P ay @t (2.27)
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Here, the e®ective viscosity! ¢ , iS given by Veijola et al. [38] which accounts for the

gas rarefaction e®ects and is given as

1
1 =
1+2Kn +0:2¢Kn %788gi Kn=10

eff (2.28)

Egs. (2.27) and (2.28) can be easily used for modeling the sgaze Tm e®ect for ultra-thin
“Ims and therefore the present work models ultra-thin squeezelm e®ect using Egs. (2.27)

and (2.28) (See Chapter 4).
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Chapter 3

Obijectives

The objective of this research is to experimentally and anajtically study dynamic
compressible squeeze Im bearings. The squeeze Im bearingseahydrodynamic bearings
where °uid pressure is generated due to relative normal motio between the bearing surfaces.
The dynamic motion of gas squeeze Im bearings is governed by id °ow forces, forces due
to motion of both the bearing surfaces and the contact forceslue to surface asperities. The
lubricant used in studied compressible squeeze Im bearings air or gas. Gas lubricated
bearings have certain advantages over the liquid lubricatd bearings such as low frictional
heat and a greater temperature range [39].

In the “rst part of this thesis, macro-scale dynamic gas squeez Im bearings having
thin squeeze Ims will be studied. The coupled dynamics of mam-scale gas squeeze Im
bearings which includes the Reynolds equation for °uid °ow, the equation of motion for the
squeeze Im bearing and the contact force due to initial surfae asperity interaction will
be formulated. Then, coupled equations will be numericallysolved to study the dynamic
behavior of gas squeeze Ims from its initial state to pseudotgady state. Based on numer-
ical investigation, the load carrying capacity to the squeee number, ¥2and the excursion
ratio, 2 will be correlated. A test setup will be built to experimentally generate, control and
measure the gas squeeze Ims between disk shaped surfaces.pBsimental and numerical

results will be compared.
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In the latter part of this thesis, micro-scale dynamic gas sqeeze Im bearings having
ultra-thin squeeze Tms will be studied. The °uid dynamics for micro-scale dynamic gas
squeeze Im bearings (ultra-thin) as it changes from macro-sde dynamic gas squeeze Im
bearings (thin) will be modi ed, and the changes will be incorporated into the coupled
dynamic model. Prototypes of micro-scale squeeze Im bearingwill be fabricated for the

experimental study. Finally, experimental and simulation results will be compared.
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Chapter 4

Numerical Investigation

4.1 Introduction

This chapter describes in detail the numerical scheme to seé the coupled dynamic
system. The results obtained from the numerical investigaton are then discussed. The
chapter is divided into two parts, thin squeeze Im bearings and ultra-thin squeeze Tm

bearings.

4.2 Thin Squeeze Film Bearings

If the squeeze Tm is thin enough to operate in the continuum °ow regime then the
bearing is considered to have a thin squeeze Tm (as opposed #@n ultra-thin squeeze Tm).
This section covers the formulation of the coupled dynamicsthe computational scheme and

the simulation results.

4.2.1 Formulation of Coupled Dynamics

See Fig. 4.1 for a schematic of the dynamic planar gas squeezZien bearing. The
bearing con guration consists of two metal disks. Ideally, these metal disks are subjected
to only one degree of freedom (permitting motion only in the \ertical direction). The
bottom disk is used as an oscillating base and the top disk frely levitates just above the

bottom disk. The oscillating base is achieved by mounting ona vibrating shaker. At rest,
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the upper disk sits on the top surface of the oscillating baseOnce the base is subjected to
adequate oscillatory motion, the air squeeze Im is generate between the oscillating base

and the upper disk.

i A
— % Z
Levitating disk '
—

Air squeeze film ! A 7'y
l h
i v = 4

v %=2Sin(T) A 4

Oscillating base
e

Figure 4.1: Schematic of a planar squeeze Im bearing

Assuming that the squeeze Tm is axisymmetric and isotherma) the normalized Reynolds

equation in polar coordinates for an ideal gas between two pallel circular disks is given as

1 @" . @Pﬂ _ p@PH)
R@R RH P /EW (4.1)
where the squeeze number7, is as given
Y5 = 121R o%!=p am ho? (4.2)
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Eq. (4.1) di®ers from Eqg. (2.9) in the manner in which the squeee Tm height is

normalized. In Eq. (4.1) the squeeze Im height,h, is normalized by the initial Tm height,

ho, whereas in Eq. (2.9) the squeeze Tm heighth, is normalized by the mean Tm height,

hm (see nomenclature). The initial Tm height, hg, is known; whereas the mean Tm height,

hm, is unknown before solving the °uid dynamics. Thus, the °uid dynamics is modeled for

Eq. (4.1). Eg. (4.1) is a nonlinear parabolic partial di®ererial equation. The boundary

conditions of Eq. (4.1) are given by Egs. (2.14) and (2.15). The initial pressure is ambient

and the initial Tm thickness is determined from a contact force model (see Appendix A).

The normalized Reynolds equation (Eqg. 4.1) is solved numedally.

i—1j+1 ‘i,j+1

|f+1,j+1

AR
AT l I
i_]-:.j IDJ f+1:~j
@
i-1,7-1 i j—1 i+l j—1

? ?

+

Figure 4.2: Scheme for discretization of i-spatial variableand j-time variable

The left hand side of Eq. (4.1) is discretized using a centralnite di®erence scheme.

Fig. 4.2 explains the meshing scheme for the squeeze Im beag in space () and time (j).

For (O<R<1),
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. u 1.
1 @ 3@P  H%41® Pitrj+1 i Pij+1
] H”j+13 R .P LlPi;j+1i Pii 1j+1
i TR, 15 L+ ¢ R
where,
Ri+R;
Ri+%: i 2|+1
_ Ri+Rjj 1
Rii L = Tl
_ Pija1 + Pijgja
Piitja = >
_ I:)i;j +1 t I:)i+1;j +1
I3i+%;j+1 - 2

and at the left boundary (R=0), the pressure gradient %; is zero.

Poj = Poj+1

At the right boundary ( R=1), the pressure is always atmospheric.

P(R=1;T)=1
The right hand side of Eq. (4.1) is discretized as

IDi;j +1H nj +1 i Pi;j H rJj
¢cT

s/f@(;“T)%e/f
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In order to investigate the dynamic squeeze Im bearing, it isnecessary to consider the
coupled dynamics of the system, which includes the Reynoldsquation and the equation of

motion using a force balance.

2
md 4
dt?

|

Levitating disk

R

(Pn g:I') path m F

cont

Figure 4.3: Free body diagram of a squeeze Im bearing (one dege of freedom)

A free body diagram of the top levitating disk (Fig. 4.3) shows all the forces acting on

the top disk. Thus, the equation of motion can be written as

d?z
m?zt =(Pni 1)%pam ¢A+ Feont i Fi (4.11)

Here, F; is the weight of the top disk as employed in the simulation i.e

Fi=mg (4.12)

30



Substituting Eqg. (4.12) into Eq. (4.11) gives

d?z
dezt =(Pni 1) Cpam ¢A + Feont i Mg (4.13)

Here, the term Fcont represents the asperity contact force. The contact force mdel is
presented in the Appendix A. In the equation of motion, contact force between bearing
surfaces needs to be considered since the surfaces can beadntact at start-up, shut-down
and if the squeeze Im force is not large enough to achieve comuous separation of the
surfaces. The model detailed in the Appendix A provides an agrage contact force,Fcont,
as a function of surface separation or Im thickness ), rms surface roughnessR), modulus
of elasticity (E), yield strength (Sy) and Poisson's Ratio ¢). Using an exponential t to
the results of Egs. (A1-A7), an analytical expression ofF.ont as a function ofh is obtained.
In the numerical simulation, this relationship is used to predict the contact force between
the bearing surfaces. Initially, at t = 0, the two surfaces are stationary and the contact
force, Fcont, balances the applied loadF;. But during the development of the squeeze Tm,
the two surfaces are pushed out of contact by the reaction fare between bearing surfaces.
Inclusion of F¢ont in the dynamics also predicts the initial (at t = 0) Im thickness hg when
Feont=Mmg, and also indicates when a full Tm of lubrication is achieved (the contact force
reaches zero). As the squeeze Im thicknesd, is also the relative displacement between

the two bearing surfaces (See Fig. 4.1)
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2= 2zp+ h (4.14)

Then taking the time derivative of Eq. (4.14) twice yields

d?z;  d?z, dih

= =+ 4.1
dt2 dtz2 ~ dt2 (4.15)
and since the base is excited by a sine wave
Zp= ZosinT (4.16)
Di®erentiating Eq. (4.16) twice with respect to t yields
d’z :
dTZb =i 12ZesinT (4.17)
Substituting Egs. (4.15) and (4.17) into Eq. (4.13) yields
d’h _ |29 o . .
Moz = ™ ZosiNT +(Pni 1)C¢patm ¢A+ Feont i Mg (4.18)

Eq. (4.18) can be normalized forh and t. Here, h is normalized toH® (h/ hg) and t to

T ('t ). The normalized form of Eq. (4.18) is

d?H " _ 1 H 2 : (Pni 1) ®paim ¢A  Feont | i
ATz T hgrz | ZeenTH m T 19 (4.19)
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Eq. (4.19) is a second-order nonlinear partial di®erential egation and its initial con-

ditions (at t=0) are given as

dH”®
= 4.2
g7 =0 (4.20)
P,=1 (4.22)
Fcont = Mg (4.22)

The fourth-order Runge-Kutta method is used to solve the equaion of motion (Eq.
(4.19)). Eg. (4.19) is also coupled to the °uid dynamics of thesqueeze Im through the
dimensionless mean pressure?,, calculated from the discretized Reynolds equation (Egs.

(4.3) and (4.10)).

4.2.2 Computational Scheme

The coupled dynamics (the Reynolds equation and the equatio of motion) is solved
simultaneously. Since the Reynolds equation is parabolid must be solved at each individual
step of the Runge-Kutta method. Fig. 4.4 illustrates the steps of an algorithm to solve the
coupled dynamics. First, all constants, initial and boundary conditions are de ned. Then
the fourth-order Runge-Kutta method is implemented to solve the equation of motion.

For each step of the Runge-Kutta method, the discretized Reyolds equation is solved to
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Define constants, initial conditions and boundary conditions

Runge-Kutta Method

Step k of 4t order Runge-Kutta method to solve equation of motion for H

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
[ Increment T L '
1 1
1 “ 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Solve discretized Reynolds equation for P

Update P and H

No

Is pseudo-steady state achieved?

Figure 4.4: Algorithm for computational simulation
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determine change in pressure due to change in the 'Tm height. Tis change in pressure is
used in the next step of the Runge-Kutta method to account for dqiange in the Im height.
Pressure and Im thickness are updated at the last step. This pocess is continued until a
pseudo-steady state is achieved. The simulation code is progmmed in C (see Appendix
B).

In order to con rm that the mesh density is adequate in space, aly the discretized
Reynolds equation is solved with an assumption that¥= 1000 and the squeeze Im height
is known as a function of time, i.e. H=1-0.5&in(T). P as a function of T is plotted for 16
(Fig. 4.5) and 160 nodes (Fig. 4.6). From the plots (Figs. 4.5and 4.6), it can be seen that
the 16-node grid is as accurate as the 160-node grid. The deviah of pressure for grid size
of 16 to that of 160 is only 0.75 %. Thus, the 16-node grid is usedh numerical simulations

in order to reduce computational e®ort.
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Figure 4.5: DimensionlessP as a function of normalized T at R=0.5, ¥=1000 and H=1-
0.56in(T) (16 nodes)
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Figure 4.6: DimensionlessP as a function of normalizedT at R=0.5, ¥=1000 and H =1-
0.56&in(T) (160 nodes)
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After de ning the grid size, the value of the time-step ¢t is re ned by simultaneously
solving the coupled dynamics. Fig. 4.7 shows that ¢=¢ T=!=10i 7 s is small enough
(deviation with step size, ¢t of 10 & s is 0.2214 %) and thus used to characterize squeeze
Tm dynamics, but some error (deviation with step size, ¢t of 10 8 s is 2.3868 %) occurs

for ¢ t=¢ T=!=10i 6 s,

90 ‘
—=— Di=DTAWw=10° s
—O— Dt=DTWw=10" s

88" —— Dt=DTw=10% s| |

h (mm)

| | | |
2.5 2.5001 2.5002 2.5003 2.5004 2.5005

Figure 4.7: Variation in 'Im height for di®erent time steps
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4.2.3 Results

The numerical simulation is performed from t=0 to the time when the squeeze Tm
thickness achieves a pseudo-steady state (see Fig. 4.8). Tlsanulation input parameters
used aref =5000 Hz, Y=5 1m, Ro=0.0325 m and F;j=1.57 N. At t=0, Tm thickness is
calculated solely from the contact force model and is used aan initial Tm thickness in the
simulation. The base oscillation is initiated and the simulation is run to a pseudo-steady

state.

Dynamic behavior of the squeeze Tm

From Fig. 4.8, it can be observed that between time 0 to 0.01 swnds the surfaces come
in and out of contact and the contact force is dominant in this region. After 0.01 seconds,
a full Tm is developed and the Im height continues to increase until approximately 0.8
seconds. After approximately 0.8 seconds, the squeeze Im hieves a pseudo-steady state
where it oscillates at a mean squeeze Im height (see Fig. 4.8&@arged view). Simulation

output parameters at pseudo-steady state areh,,=81.52 1 m, 2=0.063 and ¥#10.7.

Comparison with the pre-established models

Simulation results are used to verify the predictions of thesqueeze Im force model
derived by Langlois [8]. The excursion ration,?, and the squeeze number¥; are substituted
into Eq. (2.11) [8] and the squeeze Tm force,F(T), is obtained. The squeeze Im force,

F(T), from simulation result is [(P j 1) ¢pam ¢A]. Fig. 4.9 shows that Langlois [8] and
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Figure 4.8: Dynamic behavior of the squeeze Tm height for gien input conditions as a
function of time
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Figure 4.9: Comparison of the dimensionless squeeze Tm foecF (T)/( ¥Y4Ro%®am ), as a
function of normalized time, T, from the numerical simulation and from Langlois squeeze

Im force model [8]
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present model compare moderately well and so [8] approximaty predicts the periodic
squeeze Im force. SinceF (T) given by [8] is a function of sine and cosine (Eq. (2.11)),
the net squeeze Im force over one period is zero. This does ndiold true because the
numerical analysis and Salbu [9] predict a net load carryingforce is formed. Thus, F(T)

by [8] is a good estimation but is not entirely accurate. As pe the present model, the net
squeeze Im force over one period equals to the weight of the Véating disk.

The excursion ratio, 2, and the squeeze number¥; calculated from the current simu-
lation results (See Fig. 4.8) can also be used to verify and crelate with the predictions
of Salbu's Eq. Substituting valuesRy=0.0325, f =5000 Hz and h,=81.5 1 m (See Fig. 4.8)
into Eq. (2.10) gives squeeze number¥=10:7. As %is greater than the limiting minimum
value of 10 de ned by Salbu [9], Salbu's Eq. can be used to caltate the load carrying
capacity. A comparison of the applied load,F; and predicted load, F, by Salbu's Eq. is
shown in Table 4.1.

Table 4.1: Comparison of load carrying capacity betweerF; in numerical simulation and
Fn by Salbu's Eq.

Fi 157 N
Fn by Salbu's Eq. | 1.67 N
for 2=0.063

Percentage error 6.4
betweenF; and Fj

As the percentage error betweerF; and F, by Salbu's Eqg. is only 6.4; it appears that
the coupled model is in agreement with the pre-established mael [9] and can be used to
study the dynamic behavior of squeeze Tm bearings. More extesive comparisons of the

simulation results to Salbu's predictions are presented irnthe next section.
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Development of Semi-analytical Equation

Simulations are performed by changing the simulation paraneters such asf, Rqg, Zg
and F;. Thus a wide range of values for¥4(0:4<%<14:6) are obtained. Also the percentage
error between F; and F, by Salbu's Eq. is calculated for these simulations. For¥>10,
it is observed that the percentage error betweenF; and F, by Salbu's Eq. is fairly low
(less than 7). However, for3<10, the percentage error increases and over-predicts the Ida
carrying capacity (Fig. 4.10). Thus, Salbu's Eq. can be usedas a basis to calculate load
carrying capacity if ¥is greater than 10, but if it is less than 10, the percentage eor
increases signi cantly and a modi ed form of Salbu's Eqg. is neded. In order to obtain
a semi-analytical equation to extend the range of Salbu's Eq.it is modi ed by the curve
“tting technique using the percentage error betweenF; and F,, as predicted by Salbu's Eq.
Here, the level of certainty of the tis 95 % and value of R-squae is 0.9985. An exponential
equation f (%) is t to the percentage error of the data as a function of % (see Fig. 4.10)

and is given by

f (39 =460 ¢exp(j 45¢%) +19 Cexp(j 0:15¢3) (4.23)
8 9
M < 3,271=2 2
Wy=— - 1 1+ 3 i1 (4.24)
" VpmRe?  1+f(® ¢ 122 5 '

A comparison betweenF; and F, using Eq. (4.24) for a large number of points within

0:4<%,<10 is performed. It is observed that the average percentager®r between F; and
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Figure 4.10: Change in percentage error betweehR; from the numerical simulation and Fp,
as predicted by Salbu's Eq. as a function of the squeeze numhe¥a
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Fn from Eq. (4.24) for 0:4<%2<10 is only 1.04. Thus Eq. (4.24) con rms its usefulness for

lower %avalues in this range.

Parametric Study

A parametric study using the analytical simulation is performed to study the behavior
of the mean squeeze Tm height as a function oF; (Fig. 4.11). As shown, hy, decreases with
increases inF;, for a given set of simulation parameters. It can also be obseed from Fig.
4.11, that if the frequency is doubled and other parameters &pt constant, the mean squeeze
‘Im height, hn,, changes but relatively less than when load is varied. The vaation of hp
with F; is similar in nature for both the frequencies. Numerical simulations are performed
to study the behavior of the mean squeeze Im height as a functn of the amplitude of
vibration, Zy. An experimental investigation is also performed to study the behavior of the
mean squeeze Im height as a function oZy. Both numerical and experimental results are
compared, and so the results are presented in the next chapten the experimental work.

The behavior of the mean squeeze Im heighth,,, as a function of frequency,! , is
also studied by keeping all other simulation parameters (n1=6.97 gm, Rp=9 mm and Zg=
51m) constant. It can be observed from Fig. 4.12, that if the frequency,! increases, the
mean Im height also increases. For lower frequencies, the gbe of the graph is higher
which indicates more increase in the mean squeeze Im heightith increase in frequency.
For higher frequencies, the slope of the graph is lower whiclndicates less increase in the

mean squeeze Im height with increase in frequency.
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4.3 Ultra-Thin Squeeze Film Bearings

From the background (Section 2.7), if the squeeze Im bearingperates in the slip, tran-
sition or molecular °ow regime then the bearing is consideredas an ultra-thin squeeze Tm
bearing. This section covers the formulation of the coupleddynamics and computational

scheme as it di®ers from the thin squeeze Tm bearings.

4.3.1 Formulation of Coupled Dynamics

The dynamics of the ultra-thin squeeze Tm bearings is generdy the same as the thin
squeeze Im bearings except in the ultra-thin squeeze Im bearigs, a modi ed form of the

Reynolds equation is used.

¥ o
1 @"_ . @P @PH")
2 F RHEPp T — g o 1) 4.2
R @R @R Vet — T (4.25)
where ¥7¢¢; is as given
Yaert = 121 ¢t Ro?!=P atm ho? (4.26)

The e®ective viscosity?! ¢ , is given by Eq.(2.28) [38] which accounts for the gas rarefaion
e®ects. The discretization scheme for the left hand side of Eq(4.25) and the boundary

conditions are the same as that used for the thin squeeze Im kerings (See Egs (4.3)-(4.9)).
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The right hand side of Eq. (4.25) is discretized as

@PH")
@T

aPij+1H%41 i P HY

Yerr e T

(4.27)

The equation of motion, Eq.(4.19), is the same for both thin and ultra-thin squeeze Tm

bearings. The initial conditions are given by Eqgs. (4.20)-(422).

4.3.2 Solution Methodology

The algorithm (Fig. 4.13) to solve the coupled dynamics (themodi ed Reynolds equa-
tion Eq. (4.25) and the equation of motion Eq. (4.19)) for the ultra-thin squeeze Tm
bearing is same as the thin squeeze Im bearings (Egs. (4.1) a@n(4.19)) except for one
change. Here, the modi ed squeeze numbeBZqs is calculated each time before solving

the discretized Reynolds equation.

4.3.3 Results

A computer program (see Appendix E) as per the algorithm detdled in Fig. 4.13 is
written to solve the discretized Reynolds equation (Egs. 422 and 4.24). Here, the squeeze
Im thickness is assumed as a known function of time and only tle modi ed Reynolds
equation (Eqgs. 4.22 and 4.24) is solved. Simulation and expi&nental results are compared

and the results are presented in the next chapter (see Sectin5.2.3).
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Figure 4.13: Algorithm for computational simulation of the ultra-thin squeeze Tm bearing
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Chapter 5

Experimental Investigation

5.1 Thin Squeeze Film Bearings

This section covers in detail the e®ort taken towards reachig the goal of generation,
control and measurement of the squeeze Im between two bearinsurfaces. The di®erent

techniques for the measurement of the squeeze Im height areescribed here followed by a

discussion of the results.

5.1.1 Experimental Setup

A test rig (See Fig. 5.1) has been built in order to generate agueeze Im and measure
the squeeze Im thickness. The experimental setup is used togrform a parametric inves-

tigation with the variation of frequency, amplitude of vibr ation and mass of the levitating

disk. Each subsystem of the experimental setup is describeth detail.

Laser beam displacement
measurement system

Levitating disk

Biyueeze film

Signal

Analyzer }] Oseillating hase

Function Generator

Vibrating shalcer

=

Electrical circuit for
capacitance measurement

PC and Data Acquisition

Figure 5.1: Schematic explaining the experimental setup
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Test Stand

strip of tape
top disk

base surface

electrodynamic shaker

Figure 5.2: Test stand used for experimental investigation

A rectangular bracket holding the lower bearing surface is s8ed as an oscillating base
(See Fig. 5.2). On the top of the lower bearing surface a disksi placed. The top disk is
tethered to the rectangular bracket using four small stripsof tape. This attachment is done
in such a way that the top disk can only °oat with one degree of feedom i.e permitting the
motion only in vertical direction. This setup may result in a dditional load being placed on
the bearing. Di®erent disk sizes used for levitation can be sa in the Fig. 5.3 and their

speci cations are tabulated in Table 5.1.

Table 5.1: Bearing con gurations used for the experimental prpose

Con guration Radius (mm) Mass (Q)
1 32.5 160
2 7.5 2.62
3 9 6.97
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Figure 5.3: Disks used for levitation

Electrodynamic shaker

The test stand is fastened to an electrodynamic shaker (LDS Mdel V408) ( See Fig.
5.4 and 5.6). The electrodynamic shaker provides sinusoid@scillations to the lower bearing

surface.

Gain Control and Dynamic Signal Analyzer

A gain control (LDS PA 500L ampli er) and a dynamic signal analyzer (HP 3566 5A)
are used together for vibration control (Fig. 5.4 and 5.6). The source from the dynamic
signal analyzer is set as a sine wave. The frequency of the soe is set to a xed value
and the level of the source is changed to vary the amplitude ofhe vibration. The output
from this source is given to the gain control mechanism whichsends the signal to the

electrodynamic shaker.
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A dynamic signal analyzer is also used to read the amplitude fovibration of the oscillat-
ing base as given by a laser beam displacement measuremenisgm (LBDMS). It records
the analog voltage from the LBDMS. The amplitude of this analog voltage is then converted
into the amplitude of oscillation of the bearing surfaces inmicrons(* m) by multiplying the

scale set on the LBDMS. The LBDMS is discussed in greater dethlater.

Capacitance sensor

Optical sensor heal®

Gain control
Capacitance sensor

Signal analyzer Signal generator

Data acquisition board

Vibrometer

Test stand

Shaker

Figure 5.4: Photograph illustrates the experimental setupwith the capacitance sensor

If there is a gas squeeze Im between two parallel plates thenhe plates form a parallel

plate capacitor with air as the dielectric. The capacitance between two parallel plates is
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theoretically given as

C= (5.1)

Thus, a capacitance sensor (Fig. 5.4) is built in order to meaure the capacitance between
the base and the levitating disk and then calibrated (Appendx D) to provide the squeeze
“Im height in microns. First, electrical connections are made to both the bearing surfaces.
The electrical circuit in Fig. 5.5 [46] is built to measure the capacitance due to an air-gap

between these surfacesV, is the input voltage to the electrical circuit which is provi ded

Catgap

Jr" '+

kY
=

Wi @ Bst Voip

Figure 5.5: Electrical circuit for capacitance measuremen

by the signal generator. The frequency of AC input voltage isset to 2000 Hz and RMSV,
is set to 7.07 V.Rst is a standard resistor with a value of 33 k-. Cgjrgap is the parallel plate
capacitor formed by the two bearing surfaces across whick,-,, output voltage is measured
by a data acquisition system, NI BNC 2140. The voltage ratio RMS output voltage/RMS

input voltage) is needed to calculate the capacitance (see ppendix D). This capacitance
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between the parallel plates is then calibrated using thin Im shims to provide squeeze Im
height. Thus, using this experimental set-up, the squeeze Imlift and height generated

between the plates can be measured.

Laser Beam Displacement Measurement System

Optical sensor head

Gain control j -

Signal analyzer |/
Data acquisition boar

Vibrometer

Test stand

Shaker

Figure 5.6: Photograph illustrates the experimental setupwith the laser displacement mea-
surement system

The LBDMS used comprises of an optical sensor head (Polytec B/ 2610) and a laser
vibrometer (Polytec OFV 2610)(See Fig. 5.6). The laser beamis incident on the top
levitating disk by an optical sensor head. An analog voltagesignal proportional to the
displacement of the top disk is then available at the output d the laser vibrometer. The
scale on the laser vibrometer is set to the nest value of 20 m/V and the resolution at this

scale is 0.08' m. This analog voltage is given as an input to the data acquidion system
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(NI BNC 2140). National Instrument's LabView is used to record the DC estimate of the
input analog signal at a given scan rate in a text le. This text le is later imported and
plotted by MATLAB (Fig. 5.7) for further analysis. The chang e in DC voltage from the
initial to nal state multiplied by 20 1 m/V gives the squeeze Im height in microns. For
instance, the average measured Im thickness of the experinmtal results shown in Fig 5.7

is 17.15t m.

T T T T T
Final state Base oscillation stopped
|

v

0.9

0.8~

0.7

0.6~

0.5~
Change in DC voltage

0.4
0.3

0.2~ -
Initial state

|

-0.2 —

0.1

DC estimate of analog voltage (V)

-0.1-
Base oscillation started

-0.3 -

0.4k -

05 1 1 1 1 1 1 1
0

Figure 5.7: Plot of DC voltage from the laser beam displacemat measurement system
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5.1.2 Experimental Results

Con guration 1

A comparison between the experimental and the numerical radts is rst made using
the capacitance measurement system on con guration 1 (See Agendix C, Section C1). Re-
sults are plotted for the mean squeeze Tm height as a functiorof the amplitude of vibration
for several frequencies (See Fig. 5.8). These numerical dts show that, for an increase
in the amplitude of vibration, Zg, there is a corresponding increase in the mean squeeze
‘Im height, hp,, if all other parameters remain unchanged. The experimenthresults for
con guration 1 agree qualitatively but the o®set between the &perimental and the numer-
ical results is large. hy, for con guration 1 is measured using the capacitance sensorlt
is observed that small metal particles or dust between two stfaces can signi cantly a®ect
the capacitance measurements, which requires that the suates must be frequently cleaned
between tests. It should also be noted that the surfaces of ls con guration have signi cant
imperfections (i.e. roughness and waviness). Even after ehning the surfaces, during the
start-up of the test, initial contact may create small wear particles and the absolute clean-
liness of surfaces cannot be guaranteed. This makes the captnce measurements ditcult
and also not repeatable, LBDMS is used to record the Tm thicknesses for con gurations 2

and 3 which are also smoother.
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Figure 5.8: Experimental and simulation results for the squeeze Im height against the
amplitude of vibration for bearing con guration 1 (Capacita nce measurement system)
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Con guration 2

The plot in Fig. 5.9 shows the squeeze Tm thickness plotted asa function of the
amplitude of vibration for the base. The measurements are mde using LBDMS. Each test
is run ten times in order to assure the repeatability of the séup. The average standard
deviation of the test data (See Appendix C, Section C2) is fond out to be 0.31*m, and
thus it can be said that experiments show good repeatability It can be seen from Fig. 5.9
that if the frequency is small then it takes a higher amplitude to generate the squeeze Tm
height. Conversely, if the frequency is increased then the raplitude of vibration is lower.
These qualitative trends are also agreed by the theoreticatesults as discussed earlier. For
con guration 2, both simulation and experimental results match qualitatively but the o®set
between them is very high. Also, there is a convergence probin for con guration 1 (Fig.
5.9) for lower frequencies and amplitudes. For such caseshé solution did not converge to

a pseudo-steady state even after running simulations for a loger duration.

Con guration 3

Measurements are also carried out for con guration 3 (See Apendix C, Section C3)
using LBDMS and the average standard deviation for con guraion 3 is found to be 0.18
1 m which suggests that experiments are repeatable. Observams for con guration 2 (Fig.
5.9) and con guration 3 (Fig. 5.10) are similar in nature. The average deviation between
numerical and experimental data is calculated to be 44t m (¥ 73 %) from the results of

con gurations 2 and 3. For a similar type of comparison with the results of [10], the average
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Figure 5.9: Experimental and simulation results for the squeeze Im height against the
amplitude of vibration for bearing con guration 2 (Laser dis placement measurement system)
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deviation is 381 m (¥4 51 %). From this comparison, it should be noted that both Minikes
and Bucher [10] and a current numerical simulations overesinate the Im thickness by
similar magnitudes. This is because the assumptions made ithe numerical model cannot
be perfectly implemented while conducting experiments. Tk numerical model assumes that
the disks are °at and rigid, and that the system has a single degee of freedom (motion only
in the vertical direction). However, during the experimental tests, it is observed that there
is a component of motion acting in the horizontal plane. The sirfaces are not perfectly °at
due to surface roughness and waviness and consequently aretrperfectly leveled. Thus,
the assumption of a planar squeeze Im cannot be experimentt achieved. It is possible to
include the e®ects due to tilting of the squeeze Tm in the theoetical work to achieve a better
comparison but it will lead to a much more complex theoreticd model. The other possible
reasons for di®erences between the analytical and experimah results can be attributed
to dust or small wear particles present in between the plates misalignment between the
surfaces, and the sensitive nature of the laser setup to exteal vibrations. However, the
experimental results do con rm that the squeeze Im e®ect can beised in real applications

to generate gas squeeze Im bearings.
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Figure 5.10: Experimental and simulation results for the sqieeze Im height against the
amplitude of vibration for bearing con guration 3 (Laser dis placement measurement system)
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5.2 Ultra-thin Squeeze Film Bearings

This section covers in detail the design and fabrication of nicro-scale squeeze bearing
surfaces which is later used for the testing of ultra-thin sqeeze Im bearings. LASICAD
software is used for the design of micro-scale bearing surfas and the fabrication is carried

out in the Alabama Microelectronics Science and TechnologyCenter.

5.2.1 Design of Micro-Scale Bearing Surfaces

See Fig. 5.11 for an enlarged view of examples of the LASICAD rdwing for each
surface. Here, the relative scale between di®erent geomeds is preserved. Three circular
geometries (Diameter 10, 50, 100 m) and one square geometry (50t m X 50 1m) are
drawn using LASICAD. Each sample micro bearing surface repesents a grid of a particular
geometry on a 3 cm X 3 cm square. For example, a sample bearingirface (Fig. 5.11
top left) is a grid of 50 1 m diameter circular areas where the centers of two consecw
areas are separated 100m apart. Other samples are also seen in Fig. 5.11 where top i
represents a grid of 50 m X 50 1 m squares, bottom left represents a grid of 10 m diameter
circles and bottom right represents a grid of 1000 m diameter circles. As per the LASICAD
drawing, a TLD (Transportable LASI Drawing) e is utilized t o externally fabricate the
photomask. The photomask is a square glass plate having therdwing encapsulated on a

chromium layer.
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Figure 5.11: LASICAD drawing of micro bearing surfaces (notto scale and only portions
of the textured sections are shown in this enlarged view)
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5.2.2 Fabrication of Micro-Scale Bearing Surfaces

The process °ow of fabrication of micro bearing surfaces is dgrammed in Fig. 5.12.

The steps involved in this fabrication are described as belw.

=

|:> Cleaning of the wafe

'
Hard bake
'
Hexamethyldisalizane (HMDS)
!
Photoresist application
|
Soft bake
l 4X4 cm 3X3cm
Mask Alignment and Developing
|
Etching
¥
Photoresist removal
'

Dicing ::>

Figure 5.12: Fabrication procedure for micro-scale bearingurfaces

Cleaning of the wafer

A new silicon wafer of p-type and surface orientation< 100> is cleaned as per the B,

C, and D silicon wafer cleaning procedure (See Table 5.2 [42]
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Table 5.2: Silicon Wafer Cleaning Procedure [42]
B | Removal of Residual Organic/lonic Contamination
1 | Hold a wafer in a (5:1:1) solution of H,O j NH4OH | H»0; for 10
min at a temperature of 75-80°C
2 | Quench the solution under running deionized (DI) water for 1 min
3 | Clean a wafer in DI water for 5 min
C | Hydrous Oxide Removal
1 | Immerse a wafer in a (1:50) solution ofHF | H,O for 15 sec
2 | Clean a wafer under running DI water for 30 sec
D | Heavy Metal Clean
1 | Hold a wafer in a (6:1:1) solution of H,0j HCI j H20, for
10 min at a temperature of 75-80°C
Quench the solution under running deionized (DI) water for 1 min
3 | Clean a wafer in running DI water for 20 min

N

Hard bake

Hard baking of the wafer is done by an Imperial IV microprocesor oven. The wafer is
kept inside the oven for 20 minutes at 120°C. The hard bake process removes any moisture
content from the wafer.
Hexamethyl disalizane (HMDS)

After the hard bake, the wafer is kept in a HMDS chamber for 20 mnutes. Here, the
wafer surface is primed with HMDS to promote better adhesionto the photoresist.
Photoresist application

Photoresist is a light-sensitive material to which patterns are rst transferred from

the photomask. A liquid photoresist (AZ 5214) is applied in aliquid form onto the wafer
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surface. Then the wafer held on a vacuum chuck undergoes rotain at a speed of 3000 rpm

for 40 sec. This process provides a layer of photoresist of en thickness.

Soft baking

The photoresist-coated wafer is then transferred to a hot plae for soft baking or pre-
baking. Soft baking is performed on a hot plate at 105°C for 1 minute. It improves the
adhesion of the photoresist to the wafer and also drives o® k@nt from the photoresist

before the wafer is introduced into the exposure system.

Mask Alignment and Exposure

In this step, the photo mask is aligned with the surface of thewafer. The wafer is held
on a vacuum chuck, and moved into position below the photo mas. The spacing between
the photo mask and wafer surface is in the range of 25 to 125m. Following alignment, the
photoresist is exposed for 10 seconds with high-intensity tlaviolet light. After this step,

the wafer is developed in the AZ 514 developer.

Etching

Etching is performed to remove material between the circula and square areas so that
micro-scale bearing areas are formed on the wafer (in the forrof posts). These micro-scale
bearing areas can be observed as posts protruding out from thbase silicon. Deep reactive
ion etching is used to etch out the wafer. The machine used fothis process is Surface

Technology System's (STS) advanced silicon etcher. An etchldepth of approximately 80
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Figure 5.13: Schematics of single unit cell (not to scale)
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I m is achieved from 120 cycles of Morgan SOS 1 process. The pess took 40 minutes to

complete 120 cycles. The depth of the etch is checked using aitnoscope.

Photoresist removal

Photoresist is stripped o® from a wafer using a Matrix machire.

Dicing

Dicing is used to cut the wafer and separate out the four di®ena samples(Fig. 5.12).
The wafer is attached to a plastic Im before starting the dicing operation. The plastic Tm
is then supported on a steel rim. Micro Automation's dicing saw is used. After dicing, four

samples of micro bearing surfaces with di®erent sizes and gaetries are collected in a petri

dish. A schematic of the resulting unit cell can be seen in Fig5.13.

5.2.3 Results

Measurements of micro-scale bearing samples using LBDMS emuntered many prob-
lems. In the rst approach, the bearing sample was tethered tothe rectangular bracket
using four small strips of tape. This approach produced the gueeze Im lift upon start of
the base oscillation. However, after stopping the base odttion the squeeze Tm lift did
not always return to zero as the weight of the micro-scale bedng sample was supported by
the attached four strips. Another method of testing was tried to test the sample. Here, the
sample was constrained to translate in horizontal plane. Tlis was achieved by placing small

circular posts of tape at the midpoints of each side of the samle so that the circular post
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and sample have in total four point contacts. This test method also did not work as the
friction between the circular posts and the bearing sample s far more and the squeeze Im

could not generate. In the last test method, the micro bearirg sample was not constrained

Base oscillation stopped

/

h gm)

Base oscillation started

Figure 5.14: Experimental results of micro-scale bearing

by any means. The starting and stopping of base oscillation ws performed in approxi-
mately 2 seconds. Most of the tests using this method failed &écause the sample tended
to translate in horizontal direction hampering the readings from LBDMS. One good result

(See Fig. 5.14) was observed for the bearing con gurationl (Fig. 5.13) having diameter of
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1001 m and height of 801 m. Here, once the base oscillation was started, the squeezeml
achieved a steady state, and after stopping the base oscilian, it returned to the initial

state (Fig. 5.14). For this test case, the frequency of the bae oscillation, f , was 2000 Hz

0.995
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0.985

0.98
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0 2 4 6 8 10 12 14 16 18 20
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097 | | | |

Figure 5.15: Dimensionless mean pressur®,,, as a function of normalized time, T, for the
ultra-thin squeeze Tm bearing

and the amplitude, Zo, was 0.63' m. The mean squeeze Im thicknesshy,, obtained was

21 m. As the weight of the sample is 0.01079 N, the load on one posif bearing surface is
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47.9551 N. If the amplitude of oscillation of the squeeze Tm height is assumed to be 0.63
' m, then the excursion ratio is 0.63/2 (i.e. 0.315). In order b compare the analytical and
experimental results, the squeeze Tm height is assumed as ankwn function of time (Eq.

(5.2)) in analytical work.

h=hn&lj 2&in(T)) (5.2)

The Reynolds equation (Eq. (4.22)) is solved for pressure il the assumptions as made in
Eq. (5.2) (See Appendix E). The pressure trace obtained is sbwn in Fig. 5.15. The pressure
trace for every cycle is the same. However, the pressure praelis not sinusoidal because
of the nonlinear pressure-squeeze Im thickness relationshi[6] as seen in the governing
Reynolds equation (Eq. (4.25)). The mean pressure over oneycle results into a load
carrying capacity of 40.16* N. The % deviation of the theoretical result (from the pressue
trace) and the actual load (from weighing the sample) is 16.25 This comparison shows
that the experimental results and theoretical results for these micro-scale bearing samples
are in good agreement with each other. In future, more compasons of experimental and

simulation results are needed to validate the numerical modl.
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Chapter 6

Summary

The tribology of macro-scale systems such as power plants, &amobiles, air-craft en-
gines etc has been greatly studied in the last century. As theminiaturization of mechanical
systems is a need of future technology, it is important to addess the issues related to
friction, wear and lubrication for such micro-scale mechantal systems. The research under-
taken starts with the experimental and analytical study of macro-scale squeeze "Im bearings
which is later extended to study micro-scale squeeze Im beanigs.

The “rst part of this research is to extensively study the squeeze Tm bearings where
the squeeze Ims are characterized as thin Tms (the Im thickness is in the range of 9
to 231 m). A coupled dynamic model with asperity contact e®ects is deeloped to study
compressible dynamic squeeze Ims between disk shaped sués, in which, one disk is
excited by a sinusoidal displacement. The model presentedsigeneral and can be used to
investigate dynamic squeeze Ims with input parameters, fregguency (f) and amplitude of
vibration ( Zg), mass (m), area of contact (A) and the surface properties. From the results
of the numerical simulations, a comparison with F; and F, from Salbu's Eq. is made.
Based on these comparisons a new semi-analytical equationdgveloped to predict the load
carrying capacity for 0.4- ¥ 10 using an exponential curve to t the simulation results.

Experimental results disagree quantitatively because of lhe inability to perfectly model the
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experimental system. Qualitatively, the experimental reallts are in fairly good agreement
with the numerical results.

The second part of this research is to study the micro-scale sgeze Im bearings, where
the squeeze Ims are characterized as ultra-thin (using Knuden number, the Tm thickness
should be less than 8 m). A sample of 3 cm X 3 cm patterned with an array of micro
bearing areas having 100 m diameter is used for an experimental purpose. A single unit
cell of this pattern is shown in Fig 5.13. A squeeze Im thickness of approximately 21 m
is measured experimentally when the micro bearing was opetad at a frequency of 2000
Hz and an amplitude of 0.63* m. To compare with experimental results, the squeeze Tm
thickness is assumed as a known function of time and the disetized Reynolds equation is
solved. The deviation of load carrying capacity from the sinulation to the actual load is
found to be 16 %. These results are in good agreement with eaabther, although more
extensive work is needed to con rm the results.

In conclusion, numerical simulations and experiments havédoeen performed to investi-
gate the compressible squeeze Tm bearings. Both experimeaitand analytical results have
shown that the squeeze Im bearings have a good potential forubrication in macro and
micro-scale mechanical systems. These results are importain an age where considerable
e®ort has been made to develop gas bearings for MEMS in reseladaboratories around the

world.
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Appendix A

Contact Force

By tting equations to nite element results, Jackson and Green [40] and [41] provide
the following equations to predict the elastic perfectly-plastic contact of a sphere and a rigid

o]

°at. P°¢ is a ratio of contact load to critical contact load, P.. For 0- | - 1 %

P = (1 %)% (A.1)

where,! * is the ratio of penetration or indentation depth between spterical asperities
(1) to the critical interference (! ¢) and ! ° is the value that de nes the e®ective transition

from elastic to plastic behavior of ! . For Jackson and Green [40]! ® is 1.9.

For!%.1°
: M 1. : M 1.
a 1 oi5=12 a3z, 4He 1 o5=0 o
P = P (0 | 732, 76 P | %) GAE A2
F= exp 14( ) () cs, exp 125( ) (e (A.2)
where
! 2 A A 73
M, ofB=2" 07
H v,.Ceb M|
Ho _ 58441 exp 082 9P s - 5 (A.3)
Sy 2 L

In Eq. (A.3), Hg is the limiting average contact pressure,Sy is yield strength and ey is

uniaxial yield strain (ratio of yield strength to equivalent elastic modulus).
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The critical interference to cause initial yielding, ! ¢, is derived independently of the

hardness, to be

My o
= /m(losy
2E

R (A.4)

where, R is the radius of the hemispherical asperity ancE’ is the equivalent elastic modulus.

B and C are functions of the material properties given as

B =0:14¢exp(23¢y) (A.5)

C =1:295¢exp(0:736) (A.6)

This model then assumes that the individual asperity conta¢ between rough surfaces
can be approximated by hemispherical contact with a rigid °at. Then, statistical relation-
ships from Greenwood and Williamson [43] are used to model aentire surface of asperities
with a range of heights described by a Gaussian distribution G(z). These statistical equa-
tions are given as

Z
Feont = A n1 dPF (zi d)G(z)dz (A7)
where, the average asperity radius of curvatureR, and the asperity surface density,”, are

needed to model asperity contact and are obtained from a pro dmeter produced surface

pro le using the methods outlined in McCool [44]. The distane between the surfaces can
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be described in two ways: (1) the distance between the mean dahe surface heights,h, and
(2) the distance between the mean of the surface asperitiesr peaks, d. These values ofh

and d are related by

h=d+ yg (A.8)
The value of ys is derived by Front [45] and given as

_ 0:045944

Ys R (A.9)

where, " is the area density of the asperities. Eq. (A.7) is then numeically integrated to
predict Fcont as a function of h. The surface pro le of one of the rough bearing surfaces is
used in the work shown in Fig. A.1. Dimensionless contact lod for the surface is plotted
against dimensionless mean separation (See Fig. A.2). An penential t to the data in Fig.
A.2 is obtained. The resulting t, Eq. (A.10) is then included in the numerical simulation

to predict the contact force.

H H h‘IT M hﬂﬂ .
Feont = i 9:98¢Cexp 3:621¢§ +9:824¢exp j 3:595¢37 CAE (A.10)
4 4

Here, the goodness of tis
Sum of squares due to error, SSE= 7.586e-008

The ratio of the sum of squares of the regression, R-square= 9988
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Figure A.1: Surface pro le of a rough bearing surface
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Adjusted R-square= 0.9988

Root mean squared error, RMSE= 1.967e-005
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Appendix B

C-program to solve the coupled dynamics for thin squeeze films

include < stdio.h>
include < process.t»
include < conio.h>
include < dos.h>
include <math.h>
de ne MPI 3.1415926535897932385E0
FILE *f1;
FILE *f2;
FILE *f3;
FILE *f4;
double p[17][2]; /] 2-D array for pressure
double meanpressure(double hl,double sigma, double p[J[@ouble R[],double Rst,double
tst,double hl[]);
main()
in *kkkk * * * ** A” Va”able Declaration*****-k* **********-k********/
double t; // time
double f; // frquency in Hz
double w; // frequency in radians
double Rst; // Step-size for R
double h[2];
double hdot[2]; // Derivative of Height
double Mult=0; /Dummy variable
double tst; // Time step
double Ro=0; // Radius of circular area (i.e. Area of contact)
double visc; // Vissinity of the oil at T=293
double R[17]; //1-D array for Radius
double Rinv[17];
double pmean=0; //Mean pressure
double pa=0; //atmospheric pressure
double g=9.81; //accn due to gravity
double E=0;
double F=0; //[Dummy Variable
double AmI=2.0*pow(10,-6); // Amlitude of the Shaker
double m=7*pow(10,-3);; // Mass of the levitating plate
double Ar; /| Area of Contact
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double sig=0.17*pow(10,-6);
double CntFr=0;
double sigma=0;
double YM=0;
double Dum1=0;
double Dum2=0;
double Dum3=0;
double Dum4=0;
double tstDum2=0;
[rexxxeik\fariables Used for Runge-Kuttar***xx+*/
double K11=0;
double K12=0;
double K21=0;
double K22=0;
double K31=0;
double K32=0;
double K41=0;
double K42=0;
[rexxxeek\fariables Used for Runge-Kuttar**xx+*/
double K1=0;
double K2=0;
double K=0;
double D1=1;
double D2=0;
double D3=0;
double ho=0;
double h1=0;
double hdt=0;
double htst;
double qtst;
double C1=0;
double C2=0;
double C3=0;
double C4=0;
double C5=0;
double x=0;
/****************Assig n ment of Val ues****************
f=1500;
w=2*MPI|*f;
visc=1.76/100000;
ho=30*5.554*sig;
R0=9.0*pow(10,-3);
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pa=101325;
sigma=(12*visc*w*Ro*Ro)/(pa*ho*ho);
Ar=MPI*Ro*Ro;
YM:5767*p0W(10,9), /************Dummy Val’lables *kkkk ***************/
Duml1=YM*Ar,
Dum2=1/(w*w*ho);
Dum3=w*w*Aml;
Dum4=(pa/m)*Ar;
/**********Step SIZGS *************/
Rst=1/16.0;
tst=0.005;
tstDum2=tst*Dum?2;
htst=tst/2;
qtst:tst/4, /*-k**-k**-k**-k* |n|t|a| COI’]dItIOHS *kkkkkkkkk *-k**-k**/
t=0;
h[0]=1;
hdot[0]=0;
pmean=1;
int k=0;
int j=0;
[rrexrxeikrek Assignment of Valuesof R @ di®erent node point  s*x***x*/
R[0]=0;
for(k=0;k <16;k++)
/***************Mean Pressure kkkkkkkkkkkkkkkkkkkkkkk /
f
R[k+1]=R[Kk]+Rst;
g

[rrexxrrrsikakics Agsignment of Valuesof R @ Ends Here **x+** Fkkkk|
[Fxxxx Assignment for pressure at time t=0 at all the radius  is 1¥***x**/
for(k=0;k <=16;k++)

f

p[K][0]=1;

g [Frexxeekk Agsignment for pressure for initial guess ***x*  Fkxkkkkokk/
for(k=0;k <=16;k++)

f

pIK][1]=1;

g

/*******************Assignment of Boundary COHdItIOﬂS * **********/
p[16][1]=1;

/[ i is for radius //

/l and j is for time //
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x=(h[0]*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
printf("
f1 = fopen ("Height.txt", "wt"); [****3*rxx]
f2 = fopen ("Hdot", "wt"); [****3***x]
f3 = fopen ("MeanPr", "wt"); [x*¥**3x*¥kx]
f4 = fopen ("Time", "wt"); [****3***x]

for (int j=0;j <200000000;j++)

f

/******************* R Kl *************************/
if(h[0]< 2)
f

x=(h[0]*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
g

else

f CntFr=0;

g

K11l=tst*hdot[O];
K12=tstDum2*(Dum3*sin(t)-0.1*Duma3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4-9.810007193613373);
/******************* RKl *************************/
/**************H and HDOT After RKl*********************
h1=h[0]+0.5*K11;

hdt=hdot[0]+0.5*K12;

Contact Force

if(h1<2)

f

x=(h1*ho)/sig;
CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;
else

f

CntFr=0;

g

/****************** M ean P ressure kkkkkkkkkkkkhkkkkkkkk

pmean=meanpressure(hl,sigma,p,R,Rst,htst,h);
/*******************R K2****************************
t=t+htst;

K21=tst*(hdot[0]+0.5*K12);
K22=tstDum2*(Dum3*sin(t)-0.1*Duma3*sin(7*t)+
(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);
h1=h[0]+0.5*K21,
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hdt=hdot[0]+0.5*K22;

if(h1<2)

f

x=(h1*ho)/sig;

CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;

g

else

f

CntFr=0;

g

pmean=meanpressure(hl,sigma,p,R,Rst,htst,h);

/*******************R K3*************************/

K31=tst*(hdot[0]+0.5*K22);

K32=tstDum2*(Dum3*sin(t)-0.1*Dum3*sin(7*t)+

(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);

/*******************R K3*******************-k*****/

h1=h[0]+K31,;

hdt=hdot[0]+K32;

if(h1< 2)

f

x=(h1*ho)/sig;

CntFr=(-9.98*exp(-3.621*x)+9.824*exp(-3.595*x))*Dum1;

g

else

f

CntFr=0;

g

pmean=meanpressure(hl,sigma,p,R,Rst,tst,h);

/************R K4~k*****~k***********/

t=t+htst;

K41=tst*(hdot[0]+K32);

K42=tstDum2*(Dum3*sin(t)-0.1*Duma3*sin(7*t)+

(CntFr/m)+(pmean-1)*Dum4- 9.810007193613373);

h[1]=h[0]+0.16666667*(K11+2*K21+2*K31+K41);

hdot[1]=hdot[0]+0.16666667*(K12+2*K22+2*K32+K42);

/**************Mean Pressure -k**-k*********-k**-k**/

h1=h[1];

pmean=meanpressure(hl,sigma,p,R,Rst,tst,h);
h[0]=h[1];

hdot[0]=hdot[1];

for(int i=0;i <16;i++)

f
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P[i[0]=p[i[1];
g

if(j

f

fprintf(f1,"
fprintf(f2,"
fprintf(f3,"
fprintf(f4,"

g

g
fclose(fl);

fclose(f2);
fclose(f3);
fclose(f4);
g
fprintf (f1, "
double meanpressure(double h1,double sigma, double p[J[@ouble R[],double Rst,double
tst,double h[])
f
double h3sig,A,B,C,D,R1,R2,P1,P2 pMean;
double error[17];
double M[17];
double err=0;
int s;
h3sig=(pow(h1,3))/(sigma);
B=h1/tst;
for(s=0;s<=16;s++)
f
M[s]=p[s][1];
g
/****************Assignment of Dummy Val’lab|e *kkkkkkkk *********/
do
f
for(s=15;s>0;s{)
f R1=(R[s+1]+R[s])/2;
R2=(R[s-1]+R[s])/2;
A=(h3sig*(R1+R2))/(2*Rst*R][s]);
C=((-p[s][0]*h[0])/tst)-((h3sig)/(2*Rst*R[s]))*
(R1*pow(p[s+1][1],2)+R2*pow(p[s-1][1],2));
p[s][1]=(-B+sqrt(B*B-4*A*C))/(2*A);
if (s==1)
f
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p[O][1]=p[1][1];

g
g
for(s=15;s>0;s{)
f
D=p[s][1];

p[s][1]=1.1*p[s][1]-0.1*M[s];
error[s]=fabs((p[s][1]-M[s])/p[s][1]);
M[s]=D;

g

pP[O][1]=p[1][1];

err=0;

for(s=15;s>0;s{)

f

err=err+error[s];

g

err=err/(15); /// Average error
g

while(err > 0.000001);
P1=0;

P2=0;
for(s=1;s<=15;s=s+2)

f

P1=P1+p[s][1];

g

for(s=2;s<=14;s=s+2)

f

P2=P2+p[s][1];

g

pMean=(p[0][1]+4*P1+2*P2+p[16][1])/48;

return pMean;
g
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Appendix C

Tables of Experimental and Simulation Results

C.1 Con guration 1

Frequency | Amplitude | Simulation hy, | Experimental hp,
(Hz) (*m) (tm) (*m)
800 6.1792 143.2729 0.9447
800 6.669 147.0127 1.2371
800 8.9486 162.775 2.5657
1050 2.4304 6.0489 3.1891
1050 3.617 106.1366 12.0375
1050 4.936 123.2343 21.4303
1050 5.9116 134.5224 23.4826
1300 2.6374 76.4061 6.5227
1300 2.9202 81.0329 7.6587
1300 4.598 107.2562 16.8267
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C.2 Con guration 2

Frequency 800 Hz
Amplitude (* m) 7.4 7.6 7.8 8.0 8.2
Test1| 13.4707| 14.269| 15.6517| 16.274| 16.1508
Test 2 | 13.0979| 14.6449| 15.0356| 15.8266| 16.0957
Test 3| 13.2905| 13.9359| 15.6428| 15.3388| 16.1507
Test4 | 13.0951| 13.6214| 15.0053| 15.6878| 16.0518
Test5 | 13.5354| 14.617 14.988| 15.7182| 16.0818
Test 6 | 13.9357| 15.3383| 15.6701| 15.6848| 16.3287
Test 7 13.445 14.469| 15.4086| 15.6693| 16.0388
Test 8 | 13.1422| 14.3621| 15.6795| 15.7049| 16.5886
Test 9| 13.4914| 14.8486| 15.1449| 15.4356| 15.8794
Test 10 | 13.3572| 14.8437| 15.2333| 15.5237| 15.508
Average (* m) | 13.38611| 14.49499| 15.34598| 15.68637| 16.08743
Simulation (* m) DNC!? DNC DNC | 57.3054| 60.1417
Frequency 900 Hz
Amplitude (' m) 5.8 6 6.2 6.4 6.6
Test 1 11.336| 11.7322| 12.2815| 13.0025| 13.9145
Test 2 | 10.6783| 11.7956| 11.8943| 12.5222| 13.2427
Test 3 11.01| 12.0665 12.23| 12.8047| 13.263
Test4 | 10.8241| 11.8172| 11.999| 12.7467| 13.1827
Test5| 11.3899| 11.2529| 11.8836| 13.0562| 13.414
Test 6 | 11.1745| 11.6384| 12.3865| 12.9316| 13.8134
Test 7 | 11.1602| 11.7326| 12.3004| 12.8417| 13.5801
Test 8 | 10.6472| 11.1909| 12.4745| 12.6746| 13.4392
Test 9| 11.1084| 11.1556| 12.2482| 12.6892| 13.2696
Test 10 10.99| 11.2763| 12.5702| 12.896| 13.8474
Average (* m) | 11.03186| 11.56582| 12.22682| 12.81654| 13.49666
Simulation (* m) DNC | 55.5434| 58.0158| 60.4626| 62.4467

1 DNC -Did Not Converge
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Frequency 1000 Hz

Amplitude (* m) 4.6 4.8 5.0 5.2 5.4
Test1| 11.0867| 11.262| 11.9811| 12.5825| 12.6396

Test2 | 11.1729| 11.1629| 12.1185 12.72| 12.6326

Test 3 11.264| 12.0024| 12.2013| 12.4823| 13.5024

Test 4 10.945| 11.9393| 12.2688| 12.1882| 13.1681

Test 5| 11.0825| 11.485| 12.1646| 13.0589| 12.8527

Test 6 10.958| 11.7505| 11.9228| 12.9179| 12.8413

Test 7 | 10.6522| 12.3604| 12.3521| 12.4905, 14.1083

Test 8| 10.7868| 11.7528| 11.8116| 12.1864| 12.8677

Test 9| 11.2518| 11.6818| 11.8853| 12.2711| 12.6816

Test 10 | 10.9668| 11.3539| 12.1838| 11.9896| 13.3451
Average (* m) | 11.01667| 11.6751| 12.08899| 12.48874| 13.06394
Simulation (* m) DNC | 56.4912| 59.1097| 61.2036| 62.9875

Frequency 1500 Hz

Amplitude (* m) 1.8 2.0 2.2 2.4 2.6
Test1| 9.9339| 10.9988| 11.0939| 11.6938| 12.9752

Test 2 | 10.0439| 10.1946| 10.8504| 12.5324| 12.111

Test 3| 8.9149| 10.3972| 10.8781| 11.6999| 12.7567

Test 4 | 8.8607| 10.5234| 10.7668| 11.1444| 12.5647

Test 5| 8.9149| 10.9258| 11.3802| 11.6934| 13.2707

Test 6 | 10.2578| 10.9915| 11.0566| 11.328| 12.8714

Test 7 | 9.9627| 10.8179| 11.1325| 11.9491| 12.9994

Test 8 | 10.0065| 10.7677| 11.1432| 11.8122| 12.9973

Test 9 | 10.0962| 10.6744| 11.2106| 11.8719| 11.9577

Test 10 | 9.9072| 10.7097| 11.0775| 11.5196| 12.8166
Average (* m) | 9.68987| 10.7001| 11.05898| 11.72447| 12.73207
Simulation (* m) | 53.5354| 56.0012| 58.1313| 60.0423| 61.7946
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C.3 Con guration 3

Frequency 800 Hz
Amplitude (* m) 6.4 6.6 6.8 7.0 7.2
Test 1 | 21.4024| 21.4089| 22.1387| 22.7954| 22.7595
Test 2 | 20.9746| 21.5593| 21.8336| 22.7572| 23.0541
Test 3 | 21.2554| 21.6139| 21.7966| 22.5867| 22.9858
Test4 | 20.9251| 21.739| 21.7729| 22.6405| 23.2238
Test5 | 20.8396| 21.7471| 22.0179| 22.6409| 23.1163
Test 6 | 21.0984| 21.4937| 21.9323| 22.8155| 22.9272
Test 7 | 21.0307| 21.4902| 21.8789| 22.5575| 23.0514
Test 8 | 20.8029| 21.438 22.096| 22.4713| 23.0452
Test 9 | 20.8746| 21.4432| 21.7509| 22.4318| 23.0638
Test 10 | 20.8737| 21.5169| 22.0775| 22.5943| 23.1871
Average (* m) | 21.00774| 21.54502| 21.92953| 22.62911| 23.04142
Simulation (* m) 65.592| 66.6991| 67.7418| 68.7306| 69.6732
Frequency 900 Hz
Amplitude (* m) 5.2 5.4 5.6 5.8 6.0
Test 1| 18.7737| 20.1916| 20.8962| 20.8628| 21.7042
Test 2 | 18.8144| 20.0742| 21.0646| 20.8695| 21.5064
Test 3| 19.0361| 19.9377| 20.9214 21.19| 21.1382
Test4 | 19.1751| 19.528| 20.9238| 21.3347| 21.2448
Test 5| 19.0633| 20.0621| 20.9489| 21.0129| 21.7445
Test 6 | 18.9867| 20.0116| 20.8519| 21.1412| 21.3917
Test 7 | 19.1702| 19.5744| 20.4802| 21.506 21.196
Test 8 | 19.0511| 19.1967| 21.1435| 21.0589 21.05
Test9 | 19.3148| 19.4528| 20.7809| 20.8976| 21.1931
Test 10 | 19.2281| 19.8355| 20.9035| 21.222| 21.3466
Average (* m) | 19.06135| 19.78646| 20.89149| 21.10956| 21.35155
Simulation (*m) | 65.4042| 66.5021| 67.5448| 68.5408| 69.4961
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Frequency 1000 Hz

Amplitude (* m) 4 4.2 4.4 4.6 4.8
Test 1| 20.8198| 22.0756| 22.7689| 23.0927| 23.2616

Test 2 | 20.1229| 22.0891| 22.4801| 22.8036| 23.2182

Test 3| 20.3533| 21.9974| 22.4754| 22.8771| 23.4326

Test 4 | 20.5557| 22.0531| 22.5285| 22.5587| 22.9707

Test 5 20.887| 21.7522| 22.322| 22.7171| 23.0604

Test 6 | 20.6034| 22.1179| 22.0915| 23.1343| 23.7415

Test 7 | 20.6502| 22.0388| 22.6978| 22.7592| 23.4185

Test 8 20.498| 21.9899| 22.8898| 22.4465| 23.3308

Test 9| 20.6819| 22.1545| 22.6626| 22.5107| 23.8755

Test 10 | 20.8721| 21.6264| 22.6115| 22.9328| 23.7882
Average (t m) | 20.60443| 21.98949| 22.55281| 22.78327| 23.4098
Simulation (*m) | 62.8183| 64.0531| 65.2203| 66.331| 67.3937

Frequency 1500 Hz

Amplitude (* m) 1.8 2.0 2.2 2.4 2.6
Test1| 16.2606| 16.4348| 16.944| 17.1475| 17.508

Test 2 | 16.4536| 16.7723| 16.9895| 17.1686| 17.2069

Test 3| 16.2021| 16.406| 16.9542| 17.2596| 17.7354

Test4 | 16.3595| 16.9441| 17.0921| 17.2073| 17.3995

Test5| 16.4152| 16.5749| 16.9935| 17.4292| 17.4173

Test 6 16.145 16.484| 16.9261| 17.1501| 17.5845

Test 7 16.301| 16.3783| 16.9782| 17.3174| 17.7091

Test 8 | 16.2998| 16.3724| 16.9907 17.02| 17.7404

Test 9 16.114| 16.678| 17.0715| 17.2938| 17.7186

Test 10 | 16.1834| 16.5505| 16.9701| 17.2764| 17.7282
Average (* m) | 16.27342| 16.55953| 16.99099| 17.22699| 17.57479
Simulation (*m) | 54.5747| 56.4424| 58.2134| 59.8992| 61.5094
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Appendix D

Calibration of Capacitance Sensor

Equation for calibrating physical capacitance, C to the mean squeeze Im thickness,

hn intmis

_ A €2, ¢k
M ™ 1:853¢CL706 + 0:0784

(D.1)
where, physical capacitance, C in F is given by

C=1Rg O 1+

1
D.2
2:511¢(V Rexp)? + 6:011¢(V Rexp)3 | 472 ¢(V Rexp)2 + 2:29 ¢(V Rexp) i o1a1? (P2

and

V Rexp= experimental voltage ratio as recorded from LabView
I = frequency of AC voltage, Vi, (2¢/42000 rad)

Rgt= resistor used in the electric circuit (33 k-)

A= area of contact (m?)

24= permittivity of free space (8.85E-6 F¢m i 1)

k= dielectric constant of air (1)
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Calibration Procedure

1. Read the experimental voltage,V,-, using LabView.

2. Calculate the experimental voltage ratio.

(D.3)

3. Experimental voltage ratio is calibrated in terms of the physical voltage ratio. Stan-
dard capacitors are utilized for this calibration. For each standard capacitor, the
experimental voltage ratio is calculated. Then, using theg standard capacitor values

and Eq. (D.5), physical voltage ratios are calculated.

As,
R
R+ ¢
Thus,
| 2C2R2
V Rphys? = (D.5)

1+ 12C2R2+2IRC

Using a curve tting technique, a poly t is obtained for V Rpnys in terms of V Reyp

and is given by Eq. (D.6). Thus, the experimental voltage ratio is converted to the
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physical voltage ratio using the 4" order polynomial (Eq.(D.6)).

V Rohys = 2:5116¢(V Rexp)® + 6:011¢(V Rexp)® i 4:72¢(V Rexp)® +

2:29¢(V Reyp) | 0:1417 (D.6)

4. Capacitance due to parallel plate can be calculated usinghe physical voltage ratio.

A guadratic equation in terms of C is written as

"A ! #

1
1i o= !?Rg? C?+[2IR]C+1=0 (D.7)

Here,

I =2%42000 rad

Rst=33 k-

and V Rpnys is calculated as per step 3. Solving Eq. (D.7) and taking posive root,

C is calculated as

1

C=1R&¢i 1+
R

) (D.8)

5. Mylar shims of thickness 38.1'm are used to calibrate the squeeze Im thickness to
the capacitance. The two bearing surfaces are separated ugj mylar shims so that
99.7 percent volume between the two plates is air and 0.3 peent volume is mylar.

Thus, two surfaces form two capacitors in parallel, one due @ air and the other due
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to mylar. Capacitance due to each dielectric medium is calclated using

A2k

© 4

(D.9)

Here, k for air =1 and k for mylar = 3.2. The total capacitance is the sum of
capacitance due to air and mylar. This theoretical capacitance is then calibrated in
terms of experimental capacitance (Eq. D.8). This results h a power function which

represents the above calibration.
Cca = 1:853¢C17% +0:0784 (D.10)

Here, the goodness of tis
Variance Reduction= 99.99
S/(N - P) : 0.00002754

RMS (Y - Ycalc) : 0.00262

6. The mean squeeze Im height is calculated using Eq. (D.11)s

A2k

hm = D.11
m Ccal ( )

101



Appendix E

Computer program to solve the dynamics for ultra-thin squeeze fi

import java.io.*;
import java.math.*;
class Reynoldsequation
f
public static void main(String args[])

f

/*************A” Varla.ble DeCIaration*************** */
double Rst; //Step-size for R

double[][] p=new double[17][2]; // 2-D array for pressure
double[] h=new double[2];

double tst; // Time step

double[] R=new double[17]; //1-D array for Radius
double[] M=new double[17];

double[] Rinv=new double[17];

double[] error=new double[17];

double err=0; //Mean pressure

double A=0; //Dummy Variable

double B=0; //Dummy Variable

double C=0; //Dummy Variable

double D=0;

double P1=0; //Dummy Variable

double P2=0; //Dummy Variable

double pmean=1;

double sig=0;

double sig1=0;

double R1=0;

double R2=0;

double K1=0;

double K2=0;

double h3sig;

double visc=1.8*Math.pow(10,-5);

double visc1=0;

double t;
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double N=0;

double Exc=0.315;

int n=0;

double KN=0;

double hm=2*Math.pow(10,-6);
double ME=1.1467*Math.pow(10,-3);

/*************Assi g nme nt of Val u es******************* **/
h[0]=1;
sig=929.68;

/********'k* Ste p S | zes *************/

tst=0.0001;

/*****-k****** In|t|a| COI’]dItIOI’]S -k***-k**-k**-k**-k***/

t=0;

err=1;

[rexrxeikeck Asgignment of Valuesof R @ di®erent node poi  ntgrr*xrekix]
R[0]=0;

N=16;

n=16;

Rst=1/N;

for(int k=0;k < N;k++)
f

R[k+1]=R[K]+Rst;

g

[rexrxeikreis Asgignment of Valuesof R @ Ends Here *****xx xkxk]

[rexrxeek Agsignment for pressure at time t=0 at all the radiu s is 1*****xkkx]
for(int k=0;k <=N;k++)

f

p[K][0]=1;

g
[rexrxeiix Aggignment for pressure for initial guess *****  rxkkkkkkk|

for(int k=0;k <=N;k++)

f

p[KI[1]=1;

g

[rrxrrpikceseek Assignment of Boundary Conditions * Frkkkkkkk |

p[n[1]=1;
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/[ i is for radius //
/l and j is for time //
[Fexxxek Einite Di®erence Algorithm Starts Herg**xx*iekx *x/

try
f

Bu®eredWriter outé = new Bu®eredWriter (new FileWriter ("Rad ial.txt"));
Bu®eredWriter out7 = new Bu®eredWriter (new FileWriter ("Err or.txt"));
Bu®eredWriter outl = new Bu®eredWriter (new FileWriter ("sig mal000R01.txt"));
Bu®eredWriter out2 = new Bu®eredWriter (new FileWriter ("sig mal000R051.txt"));
Bu®eredWriter out3 = new Bu®eredWriter (new FileWriter ("sig mal000R781.txt"));
Bu®eredWriter out4 = new Bu®eredWriter (new FileWriter ("sig malO000R15161.txt"));
Bu®eredWriter out5 = new Bu®eredWriter (new FileWriter ("Pre ssure.txt"));

for (int j=0;j <1600000;j++)

f

/******************* RKl *************************/

t=t+tst;

h[1]=1-Exc*Math.sin(t);

KN=ME/(h[1]*hm*pmean*101325);
viscl=visc/(1+2*KN+0.2*(Math.pow(KN,0.780))*Math.ex p(-KN/10));
sigl=viscl*sig;

h3sig=(Math.pow(h[1],3))/(sigl);

B=h[1]/tst;

/*************Assignment of Dummy Val’lable kkkkkkkkkkkk ****/
for(int i=0;i <n;i++)

f

M[i]=p[i][O];

g

p[nl[1]=1;

/**************Assignment Of Dummy Variable*********** ******/
do

f

for(int i=15;i > 0;if)

f

R1=(R[i+1]+R[i])/2;

R2=(R[i-1]+R[i])/2;

A=(h3sig*(R1+R2))/(2*Rst*R[i]);
C=((-p[i][0]*h[0])/tst)-((h3sig)/(2*Rst*R(i]))*
(R1*Math.pow(p[i+1][1],2)+R2*Math.pow(p[i-1][1],2));
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plil[1]=(-B+Math.sqrt(B*B-4*A*C))/(2*A);

if (i==1)
f
p[O][1]=p[1][1];
9
g

for(int i=15;i >0;{)

f

D=p[i][1];
P[i][1]=1.1*p[i][1]-0.1*MI[i];
error[il=Math.abs((p[i][1]-M[i])/p[i][1]);
M[i]=D;

g

p[O][1]=p[1][1];

err=0;

for(int i=15;i >0;{)

f

err=err+errorfi];

g
err=err/(n-1); /// Average error

g
while(err > 0.0000001);

for(int i=0;i <N;i++)

IfO[i][0]=p[i][1];

%@%200000::0)

;or(int i=0;i <=N;i++)
];utG.write(DoubIe.toString(p[i][l]));
out6.newLine();

g
g

P1=0;

P2=0;

for(int i=1;i <=15;i=i+2)
f
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P1=P1+p][i][1];

?or(int iI=2;i <=14;i=i+2)

]|;2=P2+p[i][1];
gmeanz(p[O][1]+4*P1+2*P2+p[16][1])/48;
icf(j%52::0)

out5.write(Double.toString(pmean));

out5.newLine();

g

h[0]=h[1];

g

[F*++xx|ntegration of Pressure using Simpson's Rule Ends Here *****xxxx/
outl.close();

out2.close();

out3.close();

out4.close();

outb.close();

out6.close();

out7.close();

g

catch(lIOException E2)gg

[k Einite Di®erence Algorithm Ends Here*****xkkxx */

gg
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