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Abstract

Parallel plate actuators (PPAs) are fundamental devices in micro-electro-mechanical

systems. PPAs’ main drawback is their limited open loop stable traveling range which is

caused by their nonlinear electrostatic force. Thus, feedback control techniques are required

in applications which need large and precision motions. However, controlling and analyzing

PPAs’ behavior could be limited by several factors. The fabrication process of PPAs is

expensive; the miniatured dimension of PPAs makes motion detection and experimental

setup difficult.

This dissertation proposes an alternative approach to prototype analysis, control and

estimation techniques for PPAs by investigating PPAs’ dual systems, which are macro mag-

netic type solenoids. Solenoids have the similar kinematics and their stable traveling range

is affected by the nonlinear magnetic force. As a test component, the advantages of solenoids

include the low cost and macro size which is convenient to package and detection.

An iterative solution method is developed to study the behaviors of the actuators in

circuity environment. First, the expressions of the time-variant capacitor in a PPA, AC

source and their derivatives with respect to time are determined. An approximated solution

combining the initial solution and its iteratively derived higher-order terms is reached. Then,

the time-variant inductor in a solenoid with a restrained condition that the circuit is pow-

ered by DC sources is modeled. The iterative solution using a small signal theorem is also

employed to obtain an approximate closed form solution for the time variant inductor. The

simulation and experimental study further demonstrated that: (i) this iterative solution can

effectively analyze the dynamics of the square law devices with a time-variant capacitor or

inductor; and (ii) computing additional higher-order terms derived from the initial solution

can further improve the solutions accuracy.
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A practical disturbance controller is developed to extend stable range of solenoids, which

could be also extended to PPAs. The inputoutput linearization control method is an effective

technique to extend the stable range. But in practice, however, the time-delay effect from

both measurement and actuation can make the system less damped and therefore more

sensitive to disturbances. This effect was analyzed and a digital proportional and integrator

controller plus extended state observer (ESO) is proposed to enhance the performance of

the electromagnetic actuator. Simulation and experimental tests show that this combined

proportional and integral and ESO technique can extend the stable range of motion to 77.6

% of full stroke with less sensitivity to external disturbances.

The feasibility of transplanting self sensing from solenoids to PPAs is investigated. The

observability improvement of PPA design is investigated. This study proposes an alternative

approach of designing an estimator using the measured voltage across the PPA without ad-

ditional sensing structures and distortions. This novel method can improve the performance

and reduce the device’s footprint with full state (displacement and velocity) feedback infor-

mation, using a series resistor. A system model using this configuration is investigated. The

observability of this self-sensing technique is analyzed using a small signal model. Then,

a singular value decomposition (SVD) is applied to examine how to further improve the

observability by choosing appropriate parameters. Simulation and numerical studies were

performed which validate this method.
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Chapter 1

Introduction

Electrostatic parallel-plate actuators (PPA) are commonly used in MEMS devices, with

applications in RF MEMS devices [35][68], resonators [39], accelerometers [37], variable

capacitors [6], micro mirrors [80] and gyroscopes [57]. PPAs operate by reducing the distance

between the two electrodes in response to an applied voltage. A PPA has an open loop,

voltage controlled stable displacement range, x, of 0 ≤ x < x0/3, where x0 is the rest gap

distance between the two electrodes. Open loop attempts to further increase displacement

result in unstable motion with the two electrodes snapping into contact.

Verifying proposed control techniques has several practical issues. Fabricating MEMS

devices in a micro-fabrication facility is expensive and time consuming. The motion of the

PPA, principally displacement and velocity, is also difficult to acquire, which is required in

most feedback control strategies. Typically, there are three approaches to state measure-

ment: optical detection [66], capacitance measurement [37] and piezoresistive detection [61].

Optical detection requires that the plate area of the PPA be large enough to reflect a laser

beam, and it must possess a suitable motion direction for use with an interferometer. Ca-

pacitance measurement requires that a stationary electrode be added to the MEMS device

in a suitable orientation where capacitance will vary with structure motion. This technique

can suffer from parasitic capacitance affecting the external circuitry. Time varying capaci-

tance measurement requires suitable interface circuitry [21]. Piezoresistive detection requires

that piezoresistive structures be added to flextures, where they will experience mechanical

strain due to structural motion. Although the interface electronics is much simpler than in

capacitive detection, adding piezoresistors can significantly complicate the MEMS fabrica-

tion process. In addition to motion detection, another issue is that PPAs often require high

1



voltages to operate them. The typical PPA bandwidth is often between 100 Hz and 10 KHz

[71], which requires high sampling rates for accurate motion detection.

The nonlinear plunger type solenoids are used as actuators in many industrial appli-

cations [11][18]. This kind of actuator also has a limited open loop stable range, but most

applications utilize the solenoids as on-off components, which can ignore this characteris-

tic. Position control of solenoids has also been proposed, including: nonlinear magnetic

field mapping linearization [13], PWM control [70] and a dual solenoid configuration [78].

Solenoids are alternative actuators for evaluating control techniques for PPAs. Many com-

mercial models are available in the market at relatively low cost. Due to its physically larger

size compared to MEMS PPAs, motion detection is also reliable with optical sensors or strain

gauges.

The main contribution of this dissertation is solving key problems of PPAs by studying

behaviors of solenoids, which are dual systems. The solved problems including:

(1) Developing a practical and reliable position controller to improve the stable traveling

range. This control technique also improves the actuators’ performance under disturbances.

(2) Developing a approximated solution to solving the dynamics of solenoids/PPAs when

they are considered as components in electronics circuits.

(3) Implanting the self sensing technique using state estimation from solenoids to PPAs.

The observability under different system parameters and states is also analyzed.

The remainder of this dissertation is organized as follows. Chapter 2 presents the

background, including modeling of the PPAs and solenoids, and challenges about feedback

control in these systems. Chapter 3 presents an iterative solution to analysis when the

systems are coupled with circuits elements. Chapter 4 presents a high performance control

technique with uncertain time delays which result from variable inductance/capacitance.

Chapter 5 discusses the feasibility of applying state estimator type self sensing technique to

PPAs/solenoids and how to improve the estimators’ performance.
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Chapter 2

Background

2.1 Kinematics of Actuators Possessing a Square Characteristic

2.1.1 Kinematics of PPAs

A illustrative drawing of a PPA is presented in Fig. 2.1.1. The planar electrodes are

arranged in a parallel configuration with an overlapping surface area, A, and a rest distance

between them of x0. The bottom electrode is fixed in space and the top electrode is allowed to

move toward or away from the bottom electrode. The system’s suspension system constrains

the motion of the top electrode and is modeled by the system spring constant, k. Cact is the

capacitance between the two electrodes and is modeled by

Cact =
ε0εrA

x0 − x
; (2.1)

Figure 2.1: An illustration of a parallel plate actuator.
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when the displacement is zero, the capacitance reaches a minimum value Cm:

Cm =
ε0εrA

x0
(2.2)

where x is the motion of the top electrode, ε0 is the permittivity of free space and εr is the

relative permittivity of the gas in between the electrodes. If a voltage, Vact, is applied across

the two electrodes, an electrostatic force,

Fe(x, Vact) =
ε0εrAV

2
act

2(x0 − x)2
, (2.3)

results that pulls the top electrode closer to the bottom electrode until its motion is balanced

by the spring force

Fs = kx (2.4)

from the suspension system. In this simplified PPA model, the suspension system is assumed

to be satisfactorily modeled by a linear spring. Additionally, capacitive fringing field effects

have been ignored. This is a reasonable assumption as long as the electrode overlap area is

much greater than the electrode separation distance squared [32]. Using (2.3), a nonlinear

differential equation that models the PPA system dynamics can be developed:

mẍ = −cẋ− kx+
ε0εrAV

2
act

2(x0 − x)2
. (2.5)

Here, m is the proof mass, typically the movable electrode, and c is the system coefficient of

damping. The system’s natural frequency, ω0, is:

ω0 =

√
k

m
, (2.6)

4



while Q, the mechanical quality factor, is

Q =
ω0m

c
. (2.7)

MEMS devices are generally designed to be highly underdamped [32], with the exception of

MEMS accelerometers, which are usually designed to be critically damped [9].

When the PPA is operated in its open loop stable range of motion, the electrostatic force

and the spring force are in equilibrium. But, since the spring force is linearly proportional

to displacement and the electrostatic force is a nonlinear function of both displacement

and applied voltage, the actuator has a limited open loop stable range of displacement of

0 ≤ x < x0/3. If the applied voltage is further increased in attempt to reach a displacement

of x0/3 or further, the system will no longer be in equilibrium since the electrostatic force will

always be greater than the spring force. This results in the movable electrode accelerating

toward and snapping into contact with the fixed electrode. This event is called snap-in. The

minimum applied voltage that will cause snap-in is referred to as the pull-in voltage [9], Vpi,

where

Vpi =

√
8(x0)3

27ε0εrA
. (2.8)

2.1.2 Kinematics of Solenoids

A typical configuration of a solenoid in a spring-mass-damper system is illustrated in

Fig. 2.1.2. Its mathematical description is:

mẍ+ cẋ+ kx =
µ0µrN

2AI2

2(d+ x0 − x)2
, (2.9)

where x is the displacement of the armature, µ0 is the permeability of free space, A is the

cross-sectional area of the core, N is the number of the turns of the coil, µr is the relative

5



Figure 2.2: (a) is an Illustration of a solenoid with a spring and a damper. (b) is an example
of a commercial solenoid fixed to a metal cantilever as the spring

6



permeability of the dielectric material between the coil and the armature, xo is the initial air

gap between the armature and the back side of the frame and d is the additional initial air

gap related to the solenoid’s geometry which is much smaller than x0 in general. Also, m is

the proof mass of the armature, k is the stiffness of the spring and c is the system damping

coefficient. I(t) is the current through the coil [78][70]. L(x) is the inductance of the coil

that depends on the air gap x [78][70], which is:

L(x) =
µ0µrA

d+ x0 − x(t)
. (2.10)

The plunger is driven by a magnetic force which could be described by:

F (x, I(t)) =
µ0µrN

2AI2

2(d+ x0 − x)2
. (2.11)

At the equilibrium:

kx =
µ0µrN

2AI2

2(d+ x0 − x)2
. (2.12)

Because the magnetic force is also nonlinear, this type of actuator also has the pull-in effect.

The pull-in current is:

Ipi =

√
8(x0)3

27µ0µrN2A
. (2.13)

2.1.3 The Pull-in Effect and Stable Range of PPAs

The stable traveling range of PPAs is 1/3 of x0. A linear approximation by (2.5) can

be formed by Taylor series expansion of Fe(x, V ) [60]. From the Taylor series:

∂Fe(x, V )

∂x
=
ε0εrAV

2
act

(x0 − x)3
, (2.14)
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Let xa be a desired displacement over the stable range and Va be the voltage from (2.3).

Then:

Fe(x, V ) =
ε0εrAV

2
a

2(x0 − x)2
(x− xa)0 +

ε0εrAV
2
a

2(x0 − x)3
(x− xa)1, (2.15)

Define N and KEL as:

N =
ε0εrAV

2
a

2(x0 − x)2
− xa

ε0εrAV
2
a

2(x0 − x)3

KEL =
ε0εrAV

2
a

2(x0 − x)3
.

(2.16)

Then substituting (2.21) for Fe(x, V ) in (2.5) yields the linear approximation:

mẍ+ cẋ+ (k −KEL)x = N. (2.17)

The characteristic equation has root at:

s1,2 =
1

2
(
−c
m

+

√
(
−c
m

)2 − 4(
k −KEL

m
)). (2.18)

This system is only stable by open loop voltage control for 0 ≤ x < x0/3. If the PPA voltage

is increased in attempt to increase the displacement beyond x0/3, the two electrodes will

snap into contact.

2.1.4 The Pull-in Effect and Stable Range of Solenoids

Because solenoids has the same type of driven force, the PPAs’ pull-in principle can also

applied to solenoids and generate the same result. The stable traveling range of solenoids is

also 1/3 of x0. A linear approximation around an operational point of the solenoid can be

8



formed by Taylor series expansion of Fm(x, I). From the Taylor series:

∂Fm(x, I)

∂x
=

µ0µrN
2AI2a

(d+ x0 − x)3
, (2.19)

Let xa be a desired displacement over the stable range and Ia be the voltage from (4.9).

Then:

Fm(x, I) =
µ0µrN

2AI2

2(x0 − x)2
(x− xa)0 +

µ0µrN
2AI2a

2(x0 − x)3
(x− xa)1, (2.20)

Define N and KM as:

N =
µ0µrN

2AI2

2(x0 − x)2
− xa

µ0µrN
2AI2a

2(x0 − x)3

KM =
µ0µrN

2AI2a
2(x0 − x)3

.

(2.21)

Then substituting (2.21) for Fm(x, I) in (2.5) yields the linear approximation:

mẍ+ cẋ+ (k −KM)x = N. (2.22)

The characteristic equation has root at:

s1,2 =
1

2
(
−c
m

+

√
(
−c
m

)2 − 4(
k −KM

m
)). (2.23)

This system is only stable by open loop voltage control for 0 ≤ x < x0/3. If the current is

increased in attempt to increase the displacement beyond x0/3, the armature will contact

the bottom of the frame.
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Figure 2.3: A Thevenin equivalent schematic diagram of a time-variant capacitor with a
series resistor and an AC voltage source.

2.2 Characteristics of Square Law Actuator Systems in Circuits

2.2.1 PPAs with a Series Resistor

PPAs contain variable capacitance which depends on the displacement of the movable

electrode. Consider a time-variant capacitor with a series resistor, R, which is used to protect

the capacitive element and prevent the power source from shorting to ground in case the

MEMS device’s electrodes physically contact each other. The circuit’s schematic is given in

Fig. 2.3. In addition, different configurations can be transformed into this model using the

Thevenin equivalent circuit method.

The circuit’s behavior is described by:

Ic(t) = (Vs(t)− Vc(t))/R = V̇cC(t) + VcĊ(t), (2.24)

where Vs is the power source, Vc is the voltage across the variable capacitor and Ic is the

current through it. Though (3.5) fully characterizes the circuit’s behavior, it is difficult to

solve this nonlinear differential equation in practice and obtain a closed form solution.
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Figure 2.4: Solenoid equivalent circuit

2.2.2 Solenoids with a Series Resistor

A solenoid can be treated as variable inductors when it is in an electronics circuit. Based

on (2.10), L(x) is a variable inductor; the dynamics of the circuit in Fig. 2.4 are modeled as:

L(x)
dI(t)

dt
+
dL(x)

dt
I(t) + I(t)R = V (t). (2.25)

According to (4.9) and (4.10), the electrical and mechanical dynamics are coupled with

each other, which makes solving (4.11) difficult.

2.3 Stabilization methods of PPAs

A number of techniques have been investigated in order to increase the stable displace-

ment range of PPAs using various controller architectures. Examples include the series

capacitor method (SCM) [65], synthetic voltage division [20], charge control [14], negative

capacitance control [64], various electrode configurations [9], voltage driven linear feedback

control [10], nonlinear output feedback stabilization [11], sliding mode control [12], small

signal model design [13] and input-output linearization [14]. Each of these techniques offers

certain benefits and detriments.
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Figure 2.5: The schematic of a PPA with a series capacitor.

2.3.1 Ideal Series Capacitor Method

The SCM is the most classical way to extend the stable range of PPAs. The SCM

uses an additional capacitor in series with the PPA to increase the stable range of electrode

motion. A schematic diagram for the SCM is presented in Fig. 2.5, where Cact is the variable

capacitance of the PPA, and Cs is the series capacitance. Vs is the source voltage which is

provided by an external power source, and Vact is the resulting voltage across the PPA and

equals:

Vact =
1

Cact

Cs
+ 1

Vs. (2.26)
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Figure 2.6: Vact and Vs plots of the example PPA.

By substituting (2.26) into (2.5), the system model could be described as:

mẍ = −cẋ− kx+
ε0εrAV

2
s

2(x0 − x+ ε0εrA
Cs

)2
, (2.27)

If the series capacitor, Cs, is no greater than half of the minimum capacitance of the PPA,

Cm, the stable range of motion for the PPA can be extended to the entire rest gap. This

method, in effect, emulates an increase in the rest gap by a factor of three. When this

resulting virtual rest gap is greater than or equal to 3x0, the actuator will have a stable

range of x0. However, the SCM requires a much higher input voltage to drive the PPA due

to the voltage drop across the series capacitor.

Consider a typical example of a PPA in air having a surface area, A, of 2.91mm by

2.91mm, and a rest gap, x0, of 10µm, a system spring constant, k, of 158.2 N/m, a mechanical

13



quality factor, Q, of 50, and a proof mass, m, of 7.5 ×10−6 kg. Its resulting source voltage

and PPA drive voltage are shown in Fig. 2.6., for a series capacitor value equal to one half

of Cm, where Cm is 7.5pF. It is clear that the input voltage, Vs, is much higher than the

voltage actually across the PPA. The maximum voltage for Vs is approximately 130V, which

is problematic for modern analog electronic devices. Additionally, a value for Cs of 3.75pF

is also problematic to obtain in discrete form.

2.3.2 Series Capacitor Method with Parasitic Capacitance

In practice, the SCM is also limited by parasitic capacitance. Consider an example

of the PPA used in section 2.2 with a capacitance at rest of 7.5pF. Considering that the

PPA must be electrically connected to the rest of the electrical system, the PPA will be

electrically in parallel with stray or parasitic capacitance. To analyze the effects of this

parasitic capacitance, Cp, it is necessary to include it in the system model. The resulting

schematic diagram is presented in Fig. 2.7. Therefore Vact becomes:

Vact =
1

Cact

Cs
+ Cp

Cs
+ 1

Vs. (2.28)

According to (2.5) and (2.28), the systems dynamics equation is:

mẍ = −cẋ− kx+
ε0εrAV

2
s

2((x0 − x)(1 + Cp

Cs
) + ε0εrA

Cs
)2
. (2.29)

At equilibrium:

kx =
ε0εrAV

2
s

2((x0 − x)(1 + Cp

Cs
) + ε0εrA

Cs
)2
. (2.30)
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Figure 2.7: The schematic of a PPA with a series capacitor and a parasitic capacitor.
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The condition of stability is that the electrostatic force grows slower than the spring force,

which means:

∂Fe(x, V )

∂x
≤ ∂kx

∂x
. (2.31)

Combining (2.29), (2.30) and (2.31):

x ≤ x0
3

+
ε0εrA

3(Cs + Cp)
. (2.32)

which indicates that the parasitic capacitance could decrease the stable range. Its effect is

equivalent to increasing the value of Cs, while the SCM is valid only for Cs less than one half

of Cm. Since Cs+Cp is larger than one half of Cm, the system will not have a full range of

stable displacement. The minimum stable range is still 1/3 of x0, if Cs+Cp goes to infinite,

while the term in the right of (2.32) will be canceled.

From a control systems’ point of view, (2.28) can be expanded into a feedback control

diagram having two feedback loops, as shown in Fig. 2.8.

2.4 Self Sensing Techniques

The self sensing technique is defined by estimating the mechanical motions (displace-

ment and velocity) by measuring the electrical values (voltage and current) without external

sensors. This technique does have certain advantages include reducing the costs and foot-

prints for the actuator system.

2.4.1 Self Sensing for Induction Actuators

Self sensing techniques are commonly used in induction actuators [63][41]. In general,

there are two ways to estimate the mechanical motions by measuring the current inside

solenoids:
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Figure 2.8: Control diagram of the series capacitor method with a parasitic capacitor.

(1) Introducing external excitation sources and measuring the corresponding excitation

responses [63].

(2) Using state estimators/observers to trace the motions without external excitation

sources [41]. Fig. 2.9 shows the principle of the first approach. An external excitation source

is added to generate high frequency signals to the actuator, which is much higher than its

natural frequency. Thus, the extra signals will generate small mechanical motions. The

current inside the solenoid can be divided into control part and sensing part in the frequency

domain. The phase delay of the current that is introduced by the high frequency excitation

source in the circuit is dependent on the value of the inductance. Also, according to (2.10),

the value of the inductor is depending on the position of the plunger. So, The mechanical

states can be obtained by processing the sensing part after a high pass filter. This approach’s

resolution is high, but it requires additional hardware and the excitation source that may

introduce ripples into the actuator.
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Figure 2.9: Self sensing diagram for a solenoid using high frequency excitations.

Figure 2.10: Self sensing diagram for a solenoid using an state estimator.
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Figure 2.11: Examples of additional strucutres for a PPA using high frequency excitations
self sensing.

Fig. 2.10 shows the principle of estimating states using a state estimator. The state

estimator does not require additional signal sources. It can estimate the position and velocity

of the solenoid with a known input voltage and the current inside the actuator. This method

will require less hardware than the previous method and will not affect the system’s normal

operation.

2.4.2 Self Sensing for PPAs

Self sensing techniques are also applied in the MEMS area. Using self sensing techniques

in PPAs has certain advantages, including reducing the size of the device without requiring

specific sensing structures. Fig. 2.11 gives examples of PPAs with sensing structures where

(a) is a bottom fixture for a PPA with a central sensing electrode and (b) is a demonstration

of a electrostatic actuator with separate sensing structures.

Fig. 2.12 demonstrates the self sensing method using an external excitation source,

which is similar to solenoids. An external periodical excitation source which frequency is
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Figure 2.12: Self sensing diagram for a PPA using high frequency excitations.

much higher than the natural frequency of a PPA will introduce small amplitude motion

compared to the entire traveling range [42]. The phase delay of the voltage across the device

or the current in the circuit is dependent on the value of the capacitance. Also, according

to (2.1), the value of the capacitor is dependent on the position of the movable electrode.

Then, the information about the position can be determined.

Though this approach is reliable, it requires additional sensing structures and electronic

circuits. Besides, it cannot provide information about the velocity. Fig. 2.13 demonstrates

the idea of self sensing technique for PPAs using a state estimator. It requires a series resistor

with the PPA. If the system parameters are identified, the input voltage is known and the

voltage across the PPA can be measured, the mechanical states (position and velocity) can

be obtained by using state estimators. Chapter 5 will give the details.
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Figure 2.13: Self sensing diagram for a PPA using high frequency excitation.
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Chapter 3

Approximated Iterative Solutions for Solenoids and PPAs

3.1 Problem Statement

3.1.1 Time-variant Capacitors in PPAs

Time-variant capacitors exist in many microelectromechanical systems (MEMS) devices.

They could be designed as sensing structures where the variation in capacitance represents

different external physical parameters; examples include humidity sensors [43], vibration

sensors [10], strain sensors [69], pressure sensors [55], gyroscopes [26] and accelerometers

[47]. On the other hand, electrostatic actuators also include time-variant capacitors, which

are key components in many applications such as resonators [79][25], micro mirrors [25],

series switches [29], compliant structures [7] and RF devices [59][46].

Thus, it is important to accurately analyze systems possessing time-variant capacitors.

For a time-variant capacitor, C(t), the current, Ic(t), through it is:

Ic(t) = V̇ (t)C(t) + V (t)Ċ(t). (3.1)

Because (3.4) results in a nonlinear circuit model, it is difficult to obtain a closed form

solution. In some circumstances, this problem can be simplified by considering the variable

capacitance as a constant, especially if it is powered by a DC voltage source or the AC source’s

frequency is much higher than the MEMS device’s bandwidth. Then, linear circuit analysis

can be applied to obtain a reasonably accurate solution. However, the time-variation cannot

be ignored in many applications. For example, consider a MEMS resonator vibrating at a

2 KHz resonant frequency. In order to accomplish the feedback control, a 100 KHz voltage

signal is applied to the device to detect the capacitance to measure the proof mass motion,
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which is a common configuration [36][17]. Typically, the capacitance is treated as time-

invariant in this situation. Since the detection signal and the mechanical vibration should not

affect each other, because the detection signal’s frequency is much greater than the device’s

bandwidth, it is commonly considered that no additional components from the mechanical

motion will be introduced [24]. In reality, however, the time-variant capacitor caused by the

mechanical motion will introduce more harmonics into the detection signal, with a frequency

spacing equal to the frequency of the fundamental component. The spectrum of this example

is given in Fig.3.1 from a MATLAB Simulink simulation of the system. This phenomenon,

though, has been experimentally documented in MEMS devices [19][22]. In this figure, it is

clear that harmonics with 2 KHz intervals are introduced, where each interval is equal to the

vibration frequency. These harmonics can corrupt the measurement readings and introduce

additional noise into the electrical system. Linear circuit analysis does not account for this

very real and observable effect.

Notice that the result contains both harmonics and intermodulation products of the

AC source and the resonant frequency. Linear circuit analysis considers neither of these

components. R.N. Dean et al [21] proposed a nonlinear circuit analysis method for a time-

variant MEMS capacitor system driven with a DC source, but the case with an AC voltage

source was not investigated. To solve this problem, a standard circuit model needs to be

considered.

Consider a time-variant capacitor with a series resistor, R, which is used to protect the

capacitive element and prevent the power source from shorting to ground in case the MEMS

device’s electrodes physically contact each other. The circuit’s schematic is given in Fig. 3.2.

In addition, different configurations can be transformed into this model using the Thevenin

equivalent circuit method.

The circuit’s behavior is described by:

Ic(t) = (Vs(t)− Vc(t))/R = V̇cC(t) + VcĊ(t), (3.2)
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Figure 3.1: Spectral analysis of a MEMS resonator with detection signals. (a) is the overall
spectrum. (b) is the spectrum around the detection signal’s fundamental frequency.
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Figure 3.2: A Thevenin equivalent schematic diagram of a time-variant capacitor with a
series resistor and an AC voltage source.

where Vs is the AC power source, Vc is the voltage across the variable capacitor and Ic is the

current through it. Though (3.2) fully characterizes the circuit’s behavior, it is difficult to

solve this nonlinear differential equation in practice and obtain a closed form solution.

3.1.2 Time-variant Inductors in Solenoids

Time-variant inductors exist in many industrial applications, such as electric motors [38],

magnetic bearings [33], Linear Variable Differential Transformers (LVDT) [74], piezoelectric

actuators [8] and fluidic valves [76]. The changing inductance will make the flux inside a

motor nonuniform, which causes eddy currents to occur. The eddy current loss (induction

loss) is a major loss in addition to Ohmic losses in the copper, hysteresis loss and mechanical

loss [1][52], especially if a motor is running at high speed [34][27]. Many research efforts

have investigated this kind of induction loss issue in order to not only improve the power

efficiency, but to also cancel the steady state ripples resulting from the eddy currents.

On the other hand, many techniques utilize the eddy currents for sensing, such as met-

al dection sensors [77] and non-destructive sensors [28]. Some automatic electrical braking

systems use eddy currents for magnetic breaking [5]. Solving a nonlinear circuit with a

time-variant inductor is difficult. The typical way to solve this problem is considering the

time-variant inductor as time-invariant, which will yield a linear circuit analysis. However,

when the eddy currents are not neglectable, the solutions are incorrect. With modern com-

puter processing systems, numerical methods such as the Runge-Kutta algorithm are used
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to numercially solve these ordinary differential equations. Nevertheless, in many applica-

tions such as model predictive control with high speed motors, it is still not fast enough and

economical [3]. In some circumstances, a system with a variable inductor is driven by a DC

source and the differentiation could be calculated. Here, an alternative fast method can be

applied to obtain a sufficiently precise approximate solution.

This investigation proposes a nonlinear technique for analyzing systems containing time-

variant inductors, such as motors and solenoids, that are driven by or can be approximated

as being driven by a DC source. The method is given in the following steps: (a) Identifying

the circuit model of a motor and transforming it into its Norton equivalent circuit model. (b)

Extracting a time-varying formula for the inductance. (c) Calculating the current through

the motor using a set of iterative equations. The rest of the paper provides the details.

Considering the inductor inside a DC motor to be time-invariant, the voltage,Vl, across it is:

Vl = İlL, (3.3)

where L is the time-invariant inductor and I is the current through the inductor.

The prediction models do not have to perfectly match the actual system, but a better

model can improve the performance. For a time-variant inductor in real practice, L(t), the

voltage, Vl, that across the inductor is:

Vl = İlL(t) + IlL̇(t). (3.4)

The time varying inductor makes the circuit a nonlinear system and linear circuit anal-

ysis techniques can therefore not be used to obtain a closed form solution. Linear circuit

analysis can be applied if considering the inductor as a constant, where its value can be taken

as the averaged value of L(t). It could be an issue if the application requires high precision

when using the approximated linear analysis. Using linear circuit analysis has some disad-

vantages such as superpositioning cannot be used and the output frequency content differs
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Figure 3.3: A variable inductor’s schematic diagram and its equivalent Norton circuit

from the input frequency content. Even though nonlinear differential equations can usually

be solved using numerical techniques, they are time consuming, which require high quality

hardware and are difficult to implement, which can be key problems in predictive control.

Furthermore, applications like predictive control usually require sampling and predicting the

process as fast as it can especially when dealing with a rapid response system, which is a

conflict with the limited calculation speed for this complicated nonlinear system.

So, a simplified analysis can be used considering the case where the inductor circuit

contains only resistors and DC sources, which is a typical configuration in inductive position

sensors [62][74] and the steady state operation of a DC motor. An example circuit is shown

in Fig. 1. Fig. 1(a) is the equivalent circuit of a DC motor, where Vs is the steady state

voltage, R1 is the series resistance inside the motor, Vl is the voltage generated by the rotor

and load, and L(t) is the variable inductor. It could be transformed to a Norton equivalent

circuit for the sake of analysis as shown in Fig. 1(b). In this equivalent model, Isc and Rn

are the short circuit current source and the Norton equivalent resistor related to the original

voltage input Vs and resistor, Ir is the current through the parallel resistor, Rn, and Il is

the current through the inductor L(t). The rest of the discussion is based on the standard

Norton equivalent model.

The characterization of the inductors inside a motor can be done using either analytical

methods [49][67] or finite element analysis (FEA) [2]. The circuit operation is described by:
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Vl = (Isc − Il)Rn = İlL(t) + IlL̇(t), (3.5)

where Vl is the voltage across the variable inductor. Though (3.5) fully characterizes the

circuit’s behavior, it is difficult to solve this nonlinear differential equation in practice and

obtain a closed form solution.

3.2 Iterative Approxiamted Solutions for Time-variant Capacitors/Inductors

Because (??) and (3.5) are difficult to solve, an alternative iterative approach can be

applied to obtain an approximate solution [21].

3.2.1 Iterative Approxiamted Solutions for Time-Variant Capacitor with an AC

Power Source

The first step is deriving an initial approximate solution Vc0(t), which is sufficiently close

to the Vc(t) [44]. To achieve this initial solution, the variable capacitor in a MEMS device

can be modeled as:

C(t) = C0 + C1(t), (3.6)

where C0 is time-invariant, and C1(t) is the time-variant part that must be less than C0 to

ensure that C(t) is always positive. The derivative of (3.6) is:

Ċ(t) = Ċ1(t). (3.7)

Ignoring the time-variant part and considering this circuit as a linear circuit, linear circuit

analysis can be applied to obtain the initial solution Vc0(t). The approximated circuit’s
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transfer function is:

Vc(S)

Vs(S)
=

1

RC0s+ 1
. (3.8)

Then the first step is the analysis of this circuit ignoring the effect of C1(t) and considering

it as a linear circuit. The purpose of this step is to obtain the steady state of Vc(t), denoted

by Vc0(t). Then, Vc1(t) can be calculated by (??) and (3.6). Correspondingly, the Ic1(t) term

is:

Ic1(t) = V̇c0C(t) + Vc0Ċ(t). (3.9)

Thus, using a small signal analysis to obtain Vc1:

Vc1(t) = −Ic1(t)R. (3.10)

Additional terms can be calculated recursively:

Ick+1(t) = V̇ckC(t) + VckĊ(t). (3.11)

The Ilk(t) is then solved using as many terms as required to obtain sufficient accuracy. The

overall equation for Vc(t) is:

Vc(t) = Vc0(t) +
∞∑
k=0

(V̇ck(t)C(t) + Vck(t)Ċ(t))Rk+1. (3.12)

To verify the proposed technique, the following case study is considered. Consider

a MEMS resonator oscillating at ω Hz and a φ Hz frequency signal is used to detect its
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capacitance. The capacitance’s expression is:

C(x) =
ε0εrA

x0 − x
, (3.13)

where x is the displacement of the movable electrode, ε0 is the permittivity of free space,

εr is the relative permittivity of the dielectric material between the two electrodes, A is the

overlapping surface area of the electrodes and xo is the initial gap between the two electrodes.

Assuming that the MEMS device is stimulated by an external mechanical sinusoidal

displacement input:

x = y1sin(ωt), (3.14)

where y1 is of a small magnitude and ω is the stimulating frequency. The capacitance, C(t)

is:

C(t) =
ε0εrA

x0 − y1sin(ωt)
, (3.15)

If x� x0, the capacitance’s expression can be approximated as [22]:

C(t) = y0 + y1sin(ωt), (3.16)

The derivative of C(t) is:

Ċ(t) = y1ωcos(ωt), (3.17)

where y0 is the time-invariant part when x = 0:

y0 =
ε0εrA

x0
. (3.18)
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Let the AC power source, Vs, be equal to:

Vs(t) = Assin(φt). (3.19)

The derivative of Vs(t) with respect to time is:

V̇s(t) = Asφcos(φt). (3.20)

To obtain the initial solution, Vc0, the linear circuit’s steady state solution is used:

Vc0(t) = Assin(ωt). (3.21)

Based on (3.9) and (3.17), Ic1 can be obtained:

Ic1(t) = φAscos(φt)(y0 + y1sin(ωt))

+ Assin(φt)y1ωcos(ωt).

(3.22)

Then, Vc1 can be found using (3.10):

Vc1(t) = −Ic1(t)R

= −R(φAscos(φt)y1sin(ωt) + Assin(φt)y1ωcos(ωt)).

(3.23)

Similarly, Vc2 can be calculated recursively

Vc2(t) = R2As(−y0φ2sin(φt)− y1φ2sin(φt)sin(ωt)

+ y1φωcos(φt)cos(ωt) + y1φωcos(φt)cos(ωt)

− y1ω2sin(φt)sin(ωt))(y0 + y1sin(ωt))

−R2As(φcos(φt)y1sin(ωt) + sin(φt)y1ωcos(ωt))ωy1cos(ωt)

(3.24)
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3.2.2 Iterative Approxiamted Solutions for Time-variant Inductor with a DC

Source

To obtain the approximated solution for time-variant inductor with a DC Source, the

first step is to model the variable inductor as:

L(t) = L0 + L1(t), (3.25)

where L0 is time-invariant, and L1(t) is the time-variant part that must be less than L0 to

ensure that L(t) is always positive. The derivative of (3.25) is:

L̇(t) = L̇1(t). (3.26)

The first step is analysis of this circuit ignoring the effect of L1(t) and considering it as a

linear circuit. The purpose of this step is to obtain the steady state of Il(t), denoted by

Il0(t). Then Vl1(t) can be calculated by (3.5) and (3.25). Correspondingly, the Il1(t) term is:

Il1(t) = −Vl1(t)/Rn. (3.27)

Additional terms can be caculated recursively:

Vlk+1(t) = İlkL(t) + IlkL̇(t). (3.28)

The Ilk(t) shall be solved using as many terms as required to obtain sufficient precision. The

overall equation of Il(t) is:

Il(t) = Il0(t) +
∞∑
k=0

(İlk(t)L(t) + Ilk(t)L̇(t))/Rk+1
n . (3.29)
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Solenoids are electro-magnetic actuators, which have a similar formula to inductance motors.

A solenoid has a variable inductor and can be modelled as:

L(x) =
µ0µ1N

2A

d+ x0 − x
, (3.30)

where x is the displacement of the armature, µ0 is the permeability of free space, µ1 is

the relative permeability of the dielectric material between the coil and armature, A is the

cross-sectional area of the core, N is the number of coils, xo is the initial air gap between

the armature and the backside of the frame, and d is the additional initial air gap related to

the solenoid’s geometry [72].

In the applications of magnetic field measurement [4] and motion control [15], the

solenoid is stimulated by a external mechanical sinusoidal displacement input:

x = y1sin(ωt), (3.31)

where y1 is of a small magnitude and ω is the stimulating frequency. If x� x0, the inductor’s

expression can be approximated as:

L(x) = y0 + y1sin(ωt), (3.32)

where y0 is the time-invariant part when x = 0:

y0 =
µ0µ1N

2A

d+ x0
. (3.33)

The derivative of L(t) is:

L̇(t) = y1ωcos(ωt). (3.34)
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Considering the Norton equivalent circuit model for the solenoid circuit with a constant

current source Isc, then

Il0(t) = Isc. (3.35)

Based on (3.34) and (3.35), apply (3.5) to obtain vl1:

vl1 = Iscy1ωcos(ωt). (3.36)

Then Il1 can be found using (3.28)

Il1(t) = −vl1/R = −Iscy1ωcos(ωt)/Rn. (3.37)

Then Il2, Il3 and Il4 can be calculated recursively

Il2(t) = −Iscy0y1ω2sin(ωt)/R2
n + Iscy

2
1ω

2cos(2ωt)/R2
n, (3.38)

Il3(t) = (Iscy
2
0y1ω

3cos(ωt) + 3Iscy0y
2
1ω

3sin(2ωt)

+Iscy
3
1ω

3(0.5cos(ωt)− 1.5cos(3ωt))/R3
n, (3.39)

Il4(t) = −((y20y1cos(ωt) + 3y0y
2
1sin(2ωt)

− y31(0.5cos(ωt)− 1.5cos(3ωt))(y1cos(ωt))

− (−y20y1sin(ωt) + 6y0y
2
1cos(2ωt)

− y31(−0.5sin(ωt) + 4.5sin(3ωt))

(y0 + y1sin(ωt)))Iscω
4/R4

n.

(3.40)
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3.3 Validation

3.3.1 Simulation Study for Time-variant Capacitor with an AC Power Source

To verify the feasibility of the proposed technique, a MATLAB Simulink model was

built and analyzed. The values of the series resistance and the capacitance is typically less

than 1M Ω and 20 pF, respectively [40][53]. The excitation signal applied to the MEMS

devices tends to about ten times greater than the device’s resonant frequency, where typical

values could be up to 100-200 KHz. Thus, the time-invariant y0 was 20 pF, while y1 was 5

pF, the series resistor, R, was 10 kΩ, the mechanical vibration frequency was 2 KHz, the

AC voltage source’s amplitude was 1 V and its frequency, φ, was 100 KHz in this simulation

study.

Figure 3.4: Simulink model.

The system (3.32) was solved using a numerical method (BOgacki-Shampine) with a

fixed time step of 1 × 10−8 s. The iterative solution with up to two high-order terms was

simultaneously computed for comparison. Fig. 3.4 demonstrates the Simulink model. The

left side is the system (3.32) and the right side calculates the iterative solutions with different

orders.
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Figure 3.5: Simulation results of the Simulink solution and the iterative solution zoomed in
on higher-order terms.
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Figure 3.6: Zoomed in simulation results of the Simulink solution and the iterative solution.
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Figure 3.7: Simulation errors between the Simulink solution and the iterative solution zoomed
in on higher-order terms.
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In Fig. 3.5, Fig. 3.6 and Fig. 3.7 the waveforms with the caption ”Simulink” present

the output of the Simulink model based on (3.5) and (3.32), the waveforms with caption Vc0,

Vc1 and Vc2 indicate the iterative solutions with different higher-order terms. The waveform

Vc0 is the linear circuit solution.

Fig. 3.5 shows the time response of the system and the analytical solutions with up to

two higher-order terms. The results generated by the proposed method match the theoretical

result well in the steady state. For the linear circuit solution, it appears that its amplitude

was more precise than the solution with Vc1, but it has an obvious phase shift which generated

more errors. It is clear that the iterative solution with just one term has more error than

the result with two terms. Fig. 3.6 presents the comparison zoomed in on different higher-

order terms. This figure further demonstrates that adding additional high-order terms can

increase the solution’s accuracy. Fig. 3.7 shows the errors using different high-order terms.

It is shown that the linear circuit analysis yielded the greatest errors with an amplitude that

was more than 0.1 V. The solution with one higher-order term produced less error, wtih

an amplitude that was 0.03 V. In contrast, the error using two higher-order terms was the

smallest, which was less than 0.001 V.

3.3.2 Simulation Study for Time-variant Inductor with an DC Power Source

To verify the feasibility of the proposed technique, a series of simulations was performed.

A commercial solenoid was chosen as the target device. Its resistance was 18.7 Ω and its

inductance varied between 18.6 mH and 64.8 mH depending on the position of its stroke. A

DC power supply was connected with a tuned voltage of 6 V, which indicates that its Norton

equivalent current source Isc was set to 0.32 A. The time-invariant y0 was 43.2 mH while y1

was 1.05 mH and the stimulating frequency was 20 Hz.

At the same time, the differential equation describing the system (3.32) with the above

parameters was built in MATLAB Simulink, and the iterative solution (3.29) with four

different high order terms was obtained for comparison. In Fig. 3.8, the left side is the
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Figure 3.8: The Simulink block diagram for the test.

system (3.32) and the right side is the iterative solutions with different orders. In Fig. 3.9,

Fig. 3.10 and Fig. 3.11 the waveform with the caption ”Simulink” presents the output of

the Simulink model based on (3.5) and (3.32), the waveforms with caption l1, l1-l2, l1-l3 and

l1-l4 indicate the iterative solutions with different higher order terms. Fig. 3.9 shows the

time response of the system and the analytical solutions with up to 4th order terms. The

results generated by the proposed method match the theoretical result well in the steady

state. Fig. 3.10 presents the errors between the different orders configuration’s analytical

solutions and the simulated system. In the worst case, the steady states errors are less than

± 5 mA with one term and error decreases rapidly with more terms. Fig. 3.11 shows the

zoomed in errors in percentage scale. It is shown that the final steady errors are less than

± 3% with one term, and less than ± 0.1% with four terms. All three figures demonstrate

the increase in precision with additional higher order terms.
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Figure 3.9: Simulation output and iterative solutions.
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Figure 3.10: Simulation errors between the Simulink solution and the iterative solution.
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Figure 3.11: Simulation errors between the Simulink solution and the iterative solution by
percentage.

43



3.3.3 Experimental Study for Time-variant Inductor with an DC Power Source

The solenoid was fixed on a LDS800 - 440 large shaker, which could generate the sinu-

soidal input stimulation as shown in Fig. 3.12. The current actually through the solenoid was

measured using a LEM LTS 6 -NP current transducer and sampled using National Instru-

ment’s A/D borad numbered 9223. A low pass filter was applied to decrease the noise level,

because the switching power supply was noisy and the current transducer was imperfect.

Fig. 3.13 shows the time response of the system under test and the analytical solutions

with up to 4th order terms. The experimental results match the theory well. Fig. 3.14

presents the errors between the different orders configuration’s analytical solutions and the

simulated system. In the worst case, the steady states errors are less than ± 4.5 mA with

one term. Fig. 3.15 shows the zoomed in errors in percentage scale. It is shown that the

final steady errors are less than ± 1.5% with one term and less than ± 0.5% with four

terms. Compared to simulation studies, due to measurement uncertainty and noise, the

experimental data is less precises than the results predicted by computer modeling, but

they still match the theory well and prove again that more terms can enhance the precision

effectively. These results demonstrate that the proposed method can be used to predict

the states of a circuit with a time-variant inductor and has the potential to improve the

prediction model in predictive controllers.

3.4 Summary

An iterative analysis technique was proposed to solve a MEMS device’s nonlinear circuit

consisting of a time-variant capacitor and an AC power source connected to the MEMS device

through a resistive network. A simulation study demonstrated that this method provides a

more accurate solution compared to regular linear circuit analysis. The solution’s accuracy

can be increased by adding additional higher-order terms.

A nonlinear analysis technique was proposed for obtaining an approximate closed form

model for time-variant inductor based systems consisting of the inductor, DC sources and
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Figure 3.12: The test setup: (a) A solenoid to be tested mounted on a fixture. (b) The
solenoid and fixture mounted on the vibration test system.
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Figure 3.13: Experimental output and iterative solutions.
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Figure 3.14: Errors between the experimental data and the iterative solutions.
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Figure 3.15: Errors between the experimental data and the iterative solutions by percentage.
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resistors. First, the Norton equivalent circuit model is obtained. Then the approximate

closed form solution for the current through the inductor is obtained using an iterative anal-

ysis approach. A case study with simulation and experimental verification demonstrated the

technique‘s effectiveness in modelling the system. The results using the proposed technique

compared to the numerical differential equation solution resulted in an error of less than 0.1%

in simulation and 0.5% in experiments with a four term solution. Including additional higher

order terms will further enhance the accuracy. This method is practical and straight forward

to implement, and can improve the applications which contain time-variant inductors.
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Chapter 4

Disturbance Rejection Control Techniques

4.1 Problem Statement

The open loop stable range of motion for a PPA is x, where 0 ≤ x < x0/3 and x0

is the distance between the two electrodes when the applied voltage is 0V. Attempting to

further increase the electrode displacement by increasing the applied voltage will result in

an unstable condition where the two electrodes snap into contact. Thus, feedback control

techniques are desired to extend the PPAs’ stable range.

Solenoids are also affected by the same snap-in problem, which was discussed in chapter

2. Though applications like valves [23] that use solenoids as on-off switch components are

focused on whether they have enough power to drive the system, other applications like

positioners [12] are concerned with position control. One potential drawback to this type

of actuator is its limited stable travel range, which is less than 1/3 of the full range of

motion. In many harsh environments, external disturbances, such as mechanical vibration,

also adversely affect the performance of these actuator systems.

Many techniques have been investigated to extend the stable range of motion of these

types of actuators, including: nonlinear magnetic field mapping [45], a dual solenoid con-

figuration [78], pulse-width modulation (PWM) control [70], sliding mode control [58] and

adaptive control [56]. However, these proposed solutions have certain limitations: (a) they

require prior electrical potential field or magnetic field distribution knowledge, (b) they suffer

from time delay in feedback signals, (c) they result in additional hardware costs, (d) they

require complex implementation, and (e) they are sensitive to external disturbances.
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In this chapter, an input-output linearization control technique with a velocity estimator

and a PI controller are proposed to extend the stable range and to reject external distur-

bances. The proposed method requires knowledge of the initial air gap of the PPA/solenoid,

which is easier to measure compared to the electrical potential field or magnetic field. The

effect of time delay is analyzed and the performance is improved under the time delay and

external disturbances. The controller is implemented using an inexpensive microcontroller.

The velocity estimator’s structure is straightforward to implement in a microcontroller.

4.2 System Modeling

4.2.1 Uncertain Time Delay in PPAs

Consider a PPA with a series resistor, which is a typical configuration. The system’s

dynamics can be described by:

mẋ2 = −cx2 − kx1 +
ε0εrAV

2
c

2(x0 − x1)2

V̇c =
1

c(x1)
(−Vc

R
− Vcε0εrA

2(x0 − x1)2
x2 +

Vs
R

).

(4.1)

The planar electrodes are arranged in a parallel configuration with an overlapping surface

area, A, and a rest distance between them which is defined as x0. The bottom electrode

is fixed in space and the top electrode is allowed to move toward or away from the bottom

electrode. x1 is the displacement of the device; x2 is the velocity; m is the mass of the movable

electrode. The system’s suspension system constrains the motion of the top electrode and is

modeled by the system spring constant, k; c is the damping ratio. ε0 is the permittivity of

vacuum and εr is the permittivity of the dielectric material between the two electrodes; R is

a series resistor to prevent shorting the power supply if the two electrodes come into contact,

which is a typical configuration for PPAs; Vs is the power source and Vc is the voltage across
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the PPA; c(x) is the actuator’s variable capacitance which is modeled as:

c(x1) = ε0εrA/(x0 − x1). (4.2)

Since c(x1) is a variable capacitor, the dynamics of the circuit in Fig. 2 are modeled as:

VS(t)− Vc(t) = (V̇c(t)C(x1) + V (t)cĊ(x1))R. (4.3)

According to (4.1) and (4.2), the electrical and mechanical dynamics are coupled with

each other, which makes solving (4.3) difficult. To evaluate the behavior between the input

voltage and actual current in the circuit, a linear circuit analysis is applied first. It assumes

that the variable inductor C(x1) has a constant value

C1 = C(x∗) (4.4)

around an equilibrium point x∗. Thus, (4.3) can be simplified as:

VS(t)− Vc(t) = V̇c(t)C(x1)R. (4.5)

Its transfer function can be described by:

Vc(s)

Vs(s)
=

1

RCs+ 1
. (4.6)

The transfer function indicates that there is always a time delay between the voltage source

Vs and the voltage VC that is actually applied on the PPA. According to linear system theory,

the settling time ts of this first order system (4.6) is:

ts = 4RC1. (4.7)
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However, this settling time approximation is only valid when the mechanical motion is

sufficiently small around the equilibrium point x∗. Otherwise, the settling time is uncertain.

Substituting the control voltage into (4.1), considering the uncertain time delay effect, the

system model can be simplified as:

m
d

dx
(
dx

dt
) + c

dx

dt
+ kx(t) =

ε0εrAVs(t− τ)2

2(x0 − x1)2
(4.8)

4.2.2 Uncertain Time Delay in Solenoids

Consider a solenoid in a spring-mass-damper system, which mathematical description

is:

m
d

dt
(
dx

dt
) + c

dx

dt
+ kx(t) =

µ0µrN
2AI(t)2

2(d+ x0 − x(t))2
, (4.9)

where x(t) is the displacement of the armature, µ0 is the permeability of free space, A is the

cross-sectional area of the core, N is the number of the turns of the coil, µr is the relative

permeability of the magnetic material between the coil and the armature, xo is the initial air

gap between the armature and the back side of the frame and d is the additional initial air

gap related to the solenoid’s geometry which is much smaller than x0 in general. Also, m is

the proof mass of the armature, k is the stiffness of the spring and c is the system damping

coefficient. I(t) is the current through the coil [78][70]. In practice, the input to a solenoid is

typically a voltage rather than a current. Given a voltage source, V (t), driving the solenoid,

the equivalent circuit model for the solenoid is shown in Fig. 4.1. R is the series resistance

of the solenoid coil, I(t) is the current through the solenoid, L(x) is the inductance of the

coil that depends on the air gap x [78][70], which is:

L(x) =
µ0µrA

d+ x0 − x(t)
. (4.10)
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Figure 4.1: Solenoid equivalent circuit

The current determines the magnetic force. Cheung et al. have studied the current

dynamics of solenoids driven by a voltage source [13]. Since L(x) is a variable inductor, the

dynamics of the circuit in Fig. 4.1 are modeled as:

L(x)
dI(t)

dt
+
dL(x)

dt
I(t) + I(t)R = V (t). (4.11)

According to (4.9) and (4.10), the electrical and mechanical dynamics are coupled with

each other, which makes solving (4.11) difficult. To evaluate the behavior between the input

voltage and actual current in the circuit, a linear circuit analysis is applied first. It assumes

that the variable inductor L(x) has a constant value

L1 = L(x∗) (4.12)

around an equilibrium point x∗. Thus, (4.11) can be simplified as:

L1
dI

dt
+ I(t)R = V (t). (4.13)

Its transfer function can be described by:

I(s)

V (s)
=

1

L1s+R

=
1/R

(L1/R)s+ 1
. (4.14)
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The transfer function indicates that there is always a time delay between the voltage

source and the current. According to linear system theory, the settling time ts of this first

order system (4.14) is:

ts = 4((L1/R). (4.15)

However, this settling time approximation is only valid when the mechanical motion is

sufficiently small around the equilibrium point x∗. Otherwise, the settling time is uncertain.

Substituting the control voltage into (1), considering the uncertain time delay effect and

ignoring the parameter d, the system model can be considered as:

m
d

dx
(
dx

dt
) + c

dx

dt
+ kx(t) =

βV (t− τ)2

2(x0 − x(t))2
, (4.16)

where β is the time-invariant coefficient of the solenoid:

β =
µ0µrN

2A

2R2
, (4.17)

and τ is the uncertainty time delay coefficient which depends on the solenoid’s parameters

R and L(x).

4.3 Controller Design and Analysis for Solenoids

4.3.1 Ideal input-output linearization

To extend the stable range and performance of the solenoid system, closed-loop control

techniques are necessary. An input-output linearization control method and a low voltage

controller were demonstrated in [16][20] for a Micro-ElectroMechanical System (MEMS)

electrostatic actuator, which possesses dynamics very similar to that of solenoids. Both

types of actuators are approximately square law devices. Adopting this method based on

the model (1) and using a current source, an input-output linearization law can be introduced
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to approximately cancel the nonlinearity:

I(t) = (x0 − x(t))
√
kcIc(t), (4.18)

where kc is a positive gain on the input and Ic(t) is the new control input, where Ic(t) > 0.

Therefore the system becomes:

m
d

dt
(
dx

dt
) = −cdx

dt
− kx(t) +

kcµ0µrAN
2

2
Ic(t), (4.19)

which mathematically cancels out the square law dependence on current.

4.3.2 Input-output Linearization Technique with Time delay

However, the system could easily be adversely affected by measurement time delay or

controller time delay. Therefore the control law based on (4.18) using a voltage source

becomes:

V (t) = (x0 − x(t))
√
kcVc(t), (4.20)

where Vc(t) is the new control input and Vc(t) > 0. In this situation, the system dynamics

become:

m
d

dt
(
dx

dt
) = −cdx

dt
− kx(t) +

kcβ(x0 − x(t− τ))2Vc(t)

(x0 − x(t))2
. (4.21)

Solenoids are macro actuators, which usually have response times slower than electronic

circuits. Thus, the time delay is relatively small compared to the mechanical system. Then,

using Taylor Series to expand the time delay term, where

x(t− τ) ≈ x(t)− τ dx
dt
, (4.22)

56



and neglecting the higher order terms, the system model becomes:

m
d

dt
(
dx

dt
) = −cdx

dt
− kx(t) + kcβVc(t)

+
2kcβτ

x0 − x(t)

dx

dt
Vc(t) +

kcβτ

(x0 − x(t))2
(
dx

dt
)2Vc(t).

(4.23)

Notice that there is a nonlinear damping effect:

m
d

dt
(
dx

dt
) = −g(x(t),

dx

dt
, Vc(t))− kx(t) + kcβVc(t). (4.24)

It’s necessary to evaluate the influence of the nonlinear function, g, to the ideal system

(4.19). A state variable model and its small signal analysis will be applied. At first, select a

group of state variables:

x1(t)
x2(t)

 =

x(t)

dx
dt

 . (4.25)

In practice, only the displacement variable x1(t) is available. Considering this constraint and

adding an observation equation that detects the displacement, (4.24) can be rewritten as:

dx1
dt

= x2(t)

m
dx2
dt

= −g(x1(t), x2(t), Vc(t))− kx1(t) + kcβVc(t)

y(t) =

[
1 0

]x1(t)
x2(t)

 .
(4.26)

At an equilibrium point, the displacement x1e, x2e and the control input Vce satisfy:

kx1e = kcβVce

x2e = 0
. (4.27)
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According to (4.27), a group of new state variables around a certain equilibrium point

is selected as: 
δx1(t)

δx2(t)

δVe(t)

 =


x1(t)− x1e

x2(t)− x2e

Vc(t)− Vce(t)

 . (4.28)

The linearized small signal model is:

δ dx1dt
δ dx2
dt

 =

 0 1

− k
m
− c
m

+ 2kcβτ
m(x0−x1e)


δx1(t)
δx2(t)


+

 0

kcβ

 δVce(t)
δy(t) =

[
1 0

]δx1(t)
δx2(t)

 .
(4.29)

For evaluating its influence, it is convenient to examine the transfer function of (4.29):

G1(s) =
X1(s)

V (s)
=

kcβ/k
m
k
s2 + m

k
(c− 2βτ

x0−x1e )s+ 1
, (4.30)

which can be compared to the ideal model:

G2(s) =
X1(s)

V (s)
=

kcβ/k
m
k
s2 + m

k
cs+ 1

. (4.31)

The actual damping is less than that predicted by the ideal model. As a result, higher

inputs could lead the system to oscillate or become unstable. So extra damping needs to be

introduced to the system to ensure acceptable performance.
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4.3.3 Linearization with Extended State Observer

Damping can be increased by measuring or estimating proof mass velocity and feeding

back this term. Directly differentiating the displacement is inaccurate due to measurement

noise. Therefore, velocity observers are necessary to obtain a better estimate for feedback.

However, considering the system uncertainty, regular observers are difficult to construct.

The active disturbance rejection control (ADRC) technique is an alternative approach that

can be applied to this kind of problem. It has been demonstrated that extended state

observers (ESO) can estimate system states without certain system models [30][75][48]. The

key idea of this technique is to consider the nonlinear parts of the system as the external

state. Considering that a nonlinear second order system has the form of:

dx∗1
dt

= x∗2(t)

dx∗2
dt

= f ∗(x∗1(t), x
∗
2(t), w(t)) + bu(t),

(4.32)

where x∗1(t), x
∗
2(t) are the state variables, w(t) are the external disturbances, f ∗(x∗1(t), x

∗
2(t), w(t))

is a nonlinear function with the variables and the disturbance, b is the input coefficient and

u(t) is the control input. J. Han [30] proposed a solution that can eliminate this issue using

the measurement combined with a series of nonlinear functions. However, this method’s

parameters lack guidelines for adjustment. A linear approach was illustrated with tuning

methods provided for ADRC and ESO [75][48]. Based on the linear approach, the system is
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augmented as:


dz1
dt

dz2
dt

dz3
dt

 =


0 1 0

0 0 1

0 0 0



z1(t)

z2(t)

z3(t)

+


0

1

0

u(t) +


0

0

1

w(t)

y(t) =

[
1 0 0

]
z1(t)

z2(t)

z3(t)

 .
(4.33)

Therefore the estimator’s structure becomes:

dẑ1
dt

= ẑ2(t) + L1(y(t)− ẑ1(t))

dẑ2
dt

= ẑ3(t) + L2(y(t)− ẑ1(t)) + bu(t)

dẑ3
dt

= L3(y(t)− ẑ1(t)).

(4.34)

where ẑ1(t), ẑ2(t) and ẑ3(t) are the estimated value of z1(t), z2(t) and z3(t). In this case,

let the displacement, x1(t), be z1(t), the velocity, x2(t), be z2(t), the external disturbances

be z3(t) and y(t) be the input u(t). L1, L2 and L3 are observer parameters to be chosen

which will decide the bandwidth of the estimator. Using this estimated velocity, ẑ2(t) and

the external disturbance, ẑ3(t), extra damping and disturbance rejection are introduced to

the control law:

V (t) = (x0 − x(t))
√
kcVc(t)− η1ẑ2(t)− η2ẑ3(t), (4.35)

60



where η1 and η2 are positive numbers. Hence, the damping is enhanced and external distur-

bances can be reduced:

m
d

dt
(
dx

dt
) = −g(x(t),

dx

dt
, Vc(t))− kx(t) + kcβVc(t)

− η1βẑ2(t)− η2βẑ3(t).
(4.36)

Because there is a time delay between the controller’s command and settling the actual

current signal, the control effort with the ESO will also have the time delay effect. η1 and η2

can be tuned by starting from small values, then increasing their values until the performance

becomes satisfactory.

Based on (4.29), ẑ2(t) with time delay will mathematically decrease the mass of the

armature, which will not affect dynamic performance.

4.3.4 Linearization with PI and ESO

For the sake of the system’s response time and position tracking, a proportional and

integral (PI) controller can be placed ahead of the control law given in (4.35). The overall

system diagram with proportional and integral and extended state observer (PIESO) is shown

in Fig. 4.2. In this control diagram, r is the reference input, e1(t) is the error between the

displacement and input, e2(t) is the estimation error between the estimator and measured

displacement and u(t) is the actual voltage across the solenoid. The PI controller with

respect to Vc(t) is:

Vc(t) = Kpe1(t) +Ki

∫
e1(t)dt. (4.37)

Thus, (4.35) and (4.37) can be combined together to enchance the system’s performance.
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Figure 4.2: Block diagram of the controller with Input-Output Linearization and PIESO

4.3.5 Digital Implementation

Digital controllers have certain advantages: (a) complicated control algorithms can

be implemented, (b) state observers are available, (c) they are less sensitive to the harsh

environment in which the system must operate and (d) they can be easily updated. The

implementation of the control law though a microcontroller requires discrete form. Given

the sample rate T , (4.37) becomes:

Vc(k) = Vc(k − 1) +Kp(e1(k)− e1(k − 1)) +
KI

T
e1(k), (4.38)

and (4.35) can be approximated as:

V (k) = (x0 − x(k))
√
kcVc(k)− η1ẑ2(k)− η2ẑ3(k). (4.39)
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Since (4.39) requires the estimated value of velocity, ẑ2(k), and external disturbance,

ẑ3(k), the discrete form of the ESO is:

ẑ1(k) = ẑ1(k − 1) + T (ẑ2(k − 1) + Ld1(y(k − 1)

− ẑ1(k − 1)))

ẑ2(k) = ẑ2(k − 1) + T (ẑ3(k − 1) + Ld2(y(k − 1)

− ẑ1(k − 1)) + bu(k))

ẑ3(k) = ẑ3(k − 1) + T (Ld3(y(k − 1)

− ẑ1(k − 1))).

(4.40)

where Ld1, Ld2 and Ld3 are parameters to be chosen to adjust the bandwidth of the estimator.

The tuning method is introduced by [75]. Equations (4.38), (4.35) and (4.40) are difference

equations that are easy to program in microcontrollers.

4.4 System Configuration

The experimental validation system included a solenoid system, a laser vibrometer,

a microcontroller, a power supply and an amplifier, which is illustrated as Fig. 4.3. A

commercial solenoid, Pontic F421, was configured for the test. Its coil resistance was 22.5 Ω

with a maximum voltage input of 15 V. The solenoid was attached to a metal fixture to hold

it, and a thin metal cantilever was used as the spring for the actuator system. Mechanical

testing of the spring indicated that the spring stiffness was 302.98 N/m, and the damping

coefficient was 42.03 kg/s. Considering the detection range of the displacement sensor and

the initial force of the solenoid, the total displacement was configured to be 6.96 mm. The

natural frequency of the solenoid system was 16.4 Hz, which indicated its bandwidth. At

the initial position, the inductance was 45.5 mH, so based on (4.15), in the worst case the

time delay was approximately 8 ms.
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Figure 4.3: System Configuration.

A STM32F407 microcontroller was used for this experiment, which had a 168 MHz

core and was assembled with a 12 bit analog-to-digital / digital-to-analog converter. Thus,

the solenoid required a 12 V at 0.5 A power supply. A support electronics circuit board

with a push-pull amplifier was used to support the microcontroller board and the solenoid

system. Proof mass displacement detection was accomplished using a Poly-tech OFV353

laser vibrometer. The vibrometer output was an analog signal with a data rate of 40 kHz

and a resolution of 0.1 mm. The control interval T was chosen as 5 ms. First of all, the

spring stiffness was examined as shown in Fig. 4.4. Using least squares estimation, the spring

constant was determined to be 302.89 N/m. The mass of the plunger was determined to be

22.7 g using a weighing scale. As shown in Fig. 4.5, the transmissibility between the plunger

and the fixture was also measured. The natural frequency was 16.7 Hz and the mechanical
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Figure 4.4: The stiffness of the cantilever.
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Figure 4.5: The stiffness of the cantilever.
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quality factor was 2.45. After system identification, the final model was:

22.7× 10−3
dx

d
(
dx

dt
) + 42.03

dx

dt
+ 302.89x(t) =

2.107× 10−4I(t)2

(6.65× 10−3 − x(t))2
.

(4.41)

Considering the natural frequency, the desired bandwidth was chosen as Fc = 16 Hz. Based

on the tuning method given in [48][54], the gains of the ESO were:

Ld1 = 0.3758, Ld2 = 12.0641, Ld3 = 122.8657. (4.42)

4.5 System Simulation

Prior to experimental validation, a system simulation was performed using MATLAB

SIMULINK. The target actuator is the configured one above. First, the time delay effect on

the input-output linearization was verified. The original system had a maximum stable range

of 2.3 mm in theory, so a set point of 2 mm was chosen to evaluate the system. Then the

PIESO controller was simulated to extend its stable range and to follow the settling point.

After that, the PIESO controller’s performance under external disturbances was evaluated

using sinusoidal signals to model the disturbances. The results are given and discussed in

the experimental validation section.

4.6 Experimental Validation

A series of experiments were performed using the hardware in section 4. Considering the

bandwidth and numerical resolution, the control rate was chosen to be 200 Hz. Test plans

were the same as in the simulation, which included the time delay effect and the PIESO

controller with and without disturbances. The sinusoidal disturbances were vibrational and

were generated by a LDS-850 large shaker, which is shown in Fig. 4.6.
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4.6.1 Time Delay Effect

Fig. 4.7 demonstrates the time delay effect of the damping. In this figure, the curves

are the step responses which occur at time 0 s. Simulation results indicate that the original

system is overdamped, there is no overshoot and it reaches steady state in less than 0.1

s. By contrast, the IOL applied with time delay reduces the damping coefficient so that

its overshoot can be larger than 75% of the steady state. When ESO introduces the extra

damping, the system converges rapidly within 0.1 s and only one overshoot peak is smaller

than 40% of the set point. Results from simulation and experiments support the point of

view that time delay can decrease the damping with IOL. The original damping led to a

fast convergence time and small overshoots and IOL decreased it, which took more than

0.6 s to reach the final state. The PIESO increased the damping so that the number of

overshoot peaks was much less than IOL and it converges within 0.15 s. Besides the time

delay effect, the measured initial gap is not perfectly known, which cannot totally cancel the

driven force’s nonlinearity that also affects the feedback controller’s performances.

4.6.2 PIESO Without Disturbances

This test verified the effectiveness of PIESO to extend the solenoid’s travel range and

to follow the reference input. In practice, a maximum stable position of 5 mm was achieved,

which reached 77.6% of the total range. Also considering that the maximum stable range

of the open loop system was 2.2 mm, the set points were 2.2 mm, 4 mm and 5 mm, respec-

tively. The step responses occurring at 0.5 s are illustrated in Fig. 4.8. Results from both

simulations and experiments show that the system can achieve the desired point without

error. In the simulation, responses had overshoots and took more time (around 0.3 to 0.4 s)

to converge. The experimental results ran faster (around 0.2 to 0.3 s), but suffered from in-

accurate measurement, which led to chattering around the desired position. The trace of the

reference input equaling 2 mm in the experiment is an example. A further set point failed,

which was primarily due to the solenoid having a permanent magnet in the bottom, which
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Figure 4.6: System mounted on the LDS-850 large shaker
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Figure 4.7: Comparison of step responses of open loop (dotted red), IOL (dashed blue) and
IOL with ESO (solid green). (a) is the simulation part and (b) is the experimental part.
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Figure 4.8: Comparison of PIESO controller’s step responses with set points of 2mm, 4mm
and 5mm. (a) is the simulation, (b) is the experiment.

is designed to provide more sealed force, which significantly changes the system’s behavior

from the developed model as displacement approaches this point. The results prove that

PIESO can extend the solenoid’s stable travel range and eliminate the displacement error.

4.6.3 PIESO With Disturbances

Finally, Fig. 4.9 to Fig. 4.11 illustrate the step responses of IOL and PIESO under

disturbances. Based on the displacement sensor’s capability and the system’s natural fre-

quency, disturbances were chosen as sinusoidal disturbances with an amplitude of 1 mm and

frequencies of 10 Hz, 16 Hz and 20 Hz, which is below, at and above its natural frequency,

respectively. The amplitude of the disturbances are all 1 mm. For clarity, the set points are

2.4 mm, 4 mm, 5 mm, respectively. When the disturbance frequency is 10 Hz, the output is
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a sinusoidal signal that has the same frequency and amplitude as the input, in theory. The

IOL response matches this point in simulation. Though the average final value is 2 mm,

it ripples around it. The higher set point failed both in simulation and experiments. The

system will snap in together or oscillate with a very large amplitude. The PIESO can extend

its stable range to 5 mm (77.6% of total range) at this situation. However, it also oscillates

around the desired position. At this frequency, the oscillation has an amplitude of about

0.1 mm. In practice, the external disturbance does not appear until the reference input

command is given. It is caused by the complicated solenoid fixture. The static friction force

holds the stroke when the external disturbances have insufficient energy. The IOL oscillates

with a large amplitude (larger than 4 mm) and does not converge within 1 s. The PIESO

can also obtain a stable range of 77.6% with a rise time around 0.2 s with little oscillation.

The responses with a disturbance of 16 Hz in simulation are similar to the results with

10 Hz, but the PIESO’s performances are worse. The settling times are longer than 0.5 s

and oscillation amplitudes are around 0.4 mm. The IOL response in the experimental test

shows a higher excited oscillation and the PIESO’s results show that it can reach the desired

point without oscillation within 0.2 s.

The results with the disturbances even above the natural frequency demonstrate that

the external disturbances can influence the system’s performance. The simulation and exper-

imental IOL responses demonstrate that the output amplitude is amplified at this frequency

(3 mm in the simulation and 3.5 mm in the experiment). The displacements after a step

input using IOL also vibrated with large amplitudes and will not converge. In simulation,

the PIESO’s responses also oscillated at all three set points, but the amplitudes are 70%

less than the IOL. In contrast, the PIESO performs well at set points of 4 mm and 5 mm

in practice, but oscillates at 2.4 mm. At the set point of 2.4 mm, the PIESO vibrates with

an amplitude about 0.5 mm, while there are no oscillations at the set points of 4 mm and 5

mm. The settling times of PIESO are all less than 0.3 s in the experiments. The PIESO can

cancel the disturbances, maintain the set position and extend the stable range. Typically, a
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Figure 4.9: Comparison of IOL and PIESO controller’s responses via a set point of 2.4mm
with a 10Hz, 1mm amplitude sinusoidal disturbance: IOL (dotted red), PIESO (solid green).
IOL with a set point higher than 2.4mm failed. (a) is the simulation, (b) is the experiment.
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Figure 4.10: Comparison of IOL and PIESO controller’s responses via a set point of 2.4mm
with a 16Hz, 1mm amplitude sinusoidal disturbance: IOL (dotted red), PIESO (solid green).
IOL with a set point higher than 2.4mm failed. (a) is the simulation, (b) is the experiment.
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Figure 4.11: Comparison of IOL and PIESO controller’s responses via a set point of 2.4mm
with a 20Hz, 1mm amplitude sinusoidal disturbance: IOL (dotted red), PIESO (solid green).
IOL with a set point higher than 2.4mm failed. (a) is the simulation, (b) is the experiment.
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higher set point can cancel the disturbances better because the spring force is stronger, while

the magnetic force can only be applied in one direction. The output response’s amplitude at

a frequency that is above its resonant frequency is higher than a amplitude which is below

the resonant frequency, because the control method changes the damping coefficient and

equivalent mass. The experimental results were better than the simulation results for two

reasons: (1) the simulations did not consider the effect of the static and dynamic frictions,

but instead used a constant damping coefficient, and (2) to avoid the unstable numerical

solutions caused by an algebrical loop, there was a memory unit in the simulation feedback

loop, which could introduce more time delay to the system.

4.7 Summary

Reviewing the simulation and experimental results, it is clear that the time delay has

the effect of decreasing the damping. Even if the original mechanical system is not slightly

damped, time delay caused by measurement and actuation can influence the input-output

linearization technique’s performance. In reality, the existence of friction may enhance the

performance under the time delay problem, but it is not reliable. The PIESO can effec-

tively extend the stable range and maintain the position without perfect knowledge of the

system characteristics. This requires accurate feedback and adjusting the ESO’s parameters

depending on the designer’s experiences.

76



Chapter 5

Self Sensing Analysis and Observability Improvement

5.1 Problem Statement

The operational mechanism of PPAs is the generation of an electrostatic force between

a fixed electrode and a movable electrode when a voltage is applied across them. The detec-

tion of the actuators’ mechanical motion is desired when they are combined with feedback

control techniques, especially when the application requires high performance or is affected

by disturbances. The required signals can be captured by a variety of sensing techniques,

including capacitive, piezoresistive and optical.

Additionally, electrostatic actuators can be modeled as a type of variable capacitor,

which depends on the gap between two electrodes. Thus, the displacement of the actuator

can be obtained by measuring the capacitance [51]. This capacitive measurement approach

has certain advantages: (1) its interface circuits can be packaged with the MEMS unit and

(2) it is minimally sensitive to changes in temperature.

However, this practical method often requires high frequency excitation signal sources

or additional sensing structures [73]. The excitation power source not only affects the per-

formance in the actuator’s steady state, but it may also generate harmonics that distort

the measurement signals [19]. In addition, information about velocity may not be obtained

without specific sensing structures. The additional structures occupy more space in each

die, which could increase the cost and size, or decrease the performance.

In this chapter, a self-sensing technique is proposed to avoid these problems. It utilizes

an estimator with a series resistor configuration. The estimator can estimate the displace-

ment and velocity by measuring the voltage of the power supply and the voltage across the

actuator itself. The remainder of this chapter presents the details.
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5.2 Modeling and Observability Analysis

Figure 5.1: An illustration of a parallel plate actuator. (a) is the mechanical structure and
(b) is the equivalent circuit model.

To verify the feasibility of the proposed method, it is necessary to prove that the dis-

placement and velocity of the movable electrode can be derived by measuring the voltage,

or in other words, the system must be observable under this configuration. The first step is

discussing the mathematical model of PPAs. An illustrative drawing of a PPA is presented

in Fig. 1, where (a) describes the mechanical part and (b) shows the equivalent circuit. The
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overall system’s dynamics can be described by:

mẋ2 = −cx2 − kx1 +
ε0εrAV

2
c

2(x0 − x1)2

V̇c =
1

c(x1)
(−Vc

R
− Vcε0εrA

2(x0 − x1)2
x2 +

Vs
R

).

(5.1)

The planar electrodes are arranged in a parallel configuration with an overlapping surface

area, A, and a rest distance between them of x0. The bottom electrode is fixed in space and

the top electrode is allowed to move toward or away from the bottom electrode. x1 is the

displacement of the device; x2 is the velocity; m is the mass of the movable electrode. The

system’s suspension system constrains the motion of the top electrode and is modeled by

the system spring constant, k; c is the damping coefficient. ε is permittivity of the dielectric

material between the two electrodes; R is the series resistor to prevent shorting the power

supply if the two electrodes come into contact, which is a typical configuration for PPAs;

Vs is the power source and Vc is the voltage across the PPA; c(x) is the actuator’s variable

capacitance which could be modeled as:

c(x1) =
ε0εrD

x0 − x1
. (5.2)

Assuming that the voltage across the device can be measured, the observation function is:

y = Cx =

[
0 0 1

]
x1

x2

Vc

 , (5.3)

where y is the measured signal and C is the observation matrix.
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To explore the observability by measuring Vc, a linear system analysis is performed

where the system is linearized around an equilibrium point (x1e, 0, Vce) and Vce = Vs :

δẋ =


0 1 0

−k/m+ ε0εrDV 2
ce

m(x0−x1e)3 −c/m ε0εrDVce
m(x0−x1e)2

0 − 1
2(x0−x1e)Vce − x0−x1e

Rε0εrD

 δx. (5.4)

For the sake of clarity, (5.4) can be rewritten using the followed notation:

δẋ =


0 1 0

a21 a22 a23

0 a32 a33

 δx = Aδx, (5.5)

where A is the system matrix of this linearized system.

The dynamics of the linear estimator can be described by:

˙̂x = Ax̂+ L(y − Cx̂), (5.6)

where x̂ is the estimated state and L is the gain vector of the predicted errors. Using the

observability criterion, the system is observable if and only if the observability matrix:

Qo =

[
C CA CA2

]T
(5.7)

has full rank. Based on (5.3), (5.4) and (5.5), Qo can be calculated as:

Qo =


0 0 1

0 a32 a33

a21a32 a22a32 + a32a33 a233 + a23a32

 . (5.8)
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To determine the rank of Qo, it is convenient to compute its determinant, which equals:

|G| = a21a
2
32. (5.9)

The determinant indicates that a21 and a32 must be nonzero to ensure that the system is

observable. Thus, if the system is supplied with a power source and the overall spring force

is larger than the electrostatic force, its mechanical states x1 and x2 can be derived.

5.3 Device Design Optimization

Although the observability has been proved, it is important to further explore the de-

vice’s characteristics in order to design a PPA with good observability. Thus the estimator

is optimized if the measurement has balanced information about all three states. To address

this, a singular value decomposition (SVD) is applied to study the singularity of (5.8):

Qo = UΣV T , (5.10)

where Σ = diag(σ1, σ2, σ3) is a diagonal matrix, σ1 ≥ σ2 ≥ σ3 are the singular values of

Qo; U and V are orthogonal matrices. Based on principal component analysis theory, the

singular values represent the magnitude of the states [50]. To weight the singularity of Qo,

using the O2 observability index in order to compare the difference between the biggest and

smallest amplitude:

O2 =
σ1
σ3
. (5.11)

In actual practice, it is useful to decrease the value of O2. Since solving for the singular

values using numerical algorithms directly is difficult, a simpler criterion is introduced based
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on the properties of SVD. The uppper bound of O2 is:

‖G‖3F
|G|

≥ σ1
σ3
, (5.12)

where ‖G‖F is the Frobenius norm of G:

‖G‖F = (
3∑
i=1

3∑
j=1

|aij|2)1/2. (5.13)

Because the determinant of Qo is already given in (5.9), it would be useful to find its linkage

with the singular values:

|G| = σ1σ2σ3. (5.14)

Thus, if |G| = a21a
2
32 is increasing and ‖G‖F is decreasing, the observability O2 will decrease,

which means the actuator’s observability is improved (less sensitive to noise and finite word

length).

The observability can be improved if an element in G changes which satisfies:

∂ ‖G‖3F
∂aij

≤ ∂ |G|
∂aij

. (5.15)

which means the changing of this parameter contributes more to the determinant compared

to the cubic of its norm. According to (5.15), the selection of the parameters during the

design process can be optimized. Though the impacts of some parameters on observability are

not monotonic, a few immediate observations can be made: larger series resistance, smaller

initial gap and smaller spring constant will improve the observability. A lower damping ratio

may also increase the observability, but MEMS devices tend to be lightly damped, so there

is usually little margin to decrease it.
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5.4 Validation

Using MATLAB Simulink, simulation studies were performed to verify the concept. An

estimator using voltage feedback was designed for a PPA. The parameters of the actuator

were shown in Table 5.1. The step responses of the system dynamic model and estimator are

Table 5.1: Paramters of the device
Symbol Description value unit
k spring constant 100 N/m
c damping coefficient 7.5 ×10−4 N · s/m
m proof mass 7.5 µg
A overlap area of the electrodes 2.9 × 2.9 mm
R series resistance 300 M Ω
x0 initial gap distance 50 µm
ε0 permittivity of free space 8.854×10−12 F/m
εr permittivity of air 1.0006 N/A

shown in Fig. 5.2. Both the estimated displacement and velocity achieve steady state within

approximately 3 ms. The steady state errors are less than 1 µm and 0.1 mm/s, respectively.

The results demonstrated the feasibility of this type of estimator.

Results regarding the relationship between parameters and the observability index are

shown in Fig. 5.3. This data supports the arguments which were presented in the previous

section. Increasing the spring constant can adversely affect the observability while a larger

initial gap will enhance it.
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Figure 5.2: Simulation results: (a) is the displacement and (b) is the velocity.
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Figure 5.3: The observability indices with changing of (a) the spring contant and (b) initial
gap.
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5.5 An Exploration of Nonlinear Observability Analysis for PPAs

Though the observability analysis for the PPA around an equilibrium point was ob-

tained, it was limited to a small range of states (around equilibrium points). Thus, nonlinear

observability analysis which can cover more states is explored in this chapter. The nonlinear

observability is based on differential geometry [31]. Consider a nonlinear system:

ẋ = f(x, u)

y = h(x).

(5.16)

The lie derivative is define by [31]:

Lfh =
n∑
i=1

∂h

∂xi
fi. (5.17)

(5.17) can be rewritten as:

L1
fh =

n∑
i=1

∂h

∂xi
fi (5.18)

and the zero order of lie derivative is:

L0
fh = h. (5.19)

The second order lie derivative can also be obtained:

L2
fh = Lf (L1

fh) (5.20)

Then, the higher order lie derivative can be defined recursively:

Lnfh = Lf (Ln−1f h) (5.21)
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To identify the local observability of a state of an n by n system, a new matrix l(x) is

defined by:

l(x) =



L0
fh

L1
fh

L2
fh

...

Ln−1f h.


(5.22)

The Jacobian around a state xa of (5.22) is:

On = ∂l(x)
∂x

∣∣∣∣
x=xa

. (5.23)

The system is locally observable if the matrix On has full rank. Recall the PPAs’ dynamic

equation:

ẋ1 = x2

mẋ2 = −cx2 − kx1 +
ε0εrAV

2
c

2(x0 − x1)2

V̇c =
1

c(x1)
(−Vc

R
− Vcε0εrA

2(x0 − x1)2
x2 +

Vs
R

).

(5.24)

For simplification, the equation of Vc can be rewritten as:

V̇c = −Vc(x0 − x1)
Rε0εrA

− Vc
2(x0 − x1)

x2 +
Vs(x0 − x1)
Rε0εrA

. (5.25)

To explore the observability of the PPA, l(x) should be obtained at first. According to the

observation function:

L1
fh = y = h = Vc. (5.26)
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The higher order terms can be calculated accordingly:

L1
fh = ẏ = ḣ = L1

fh

= −Vc(x0 − x1)
Rε0εrA

− Vc
2(x0 − x1)

x2 +
Vs(x0 − x1)
Rε0εrA

(5.27)

L2
fh = ÿ = ḧ = L2

fh

= (
Vc − Vs
Rε0εrA

− Vc
2(x0 − x1)2

x2)x2

− Vc
2(x0 − x1)

(− c

m
x2 −

k

m
x1 +

ε0εrAV
2
c

2m(x0 − x1)2
)

+ (−(x0 − x1)
Rε0εrA

− 1

2(x0 − x1)
x2)(−

Vc(x0 − x1)
Rε0εrA

− Vc
2(x0 − x1)

x2 +
Vs(x0 − x1)
Rε0εrA

).

(5.28)

Then, the Jacobian can be determined:

On = ∂l(x)
∂x

∣∣∣∣
x=xa

=


0 0 1

On21 On22 On23

On31 On32 On33

 . (5.29)

The elements in (5.29) are:

On21 =
Vc − Vs
Rε0εrA

− Vc
2(x0 − x1)2

x2 (5.30)

On22 = − Vc
2(x0 − x1)

(5.31)
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On23 = −(x0 − x1)
Rε0εrA

− 1

2(x0 − x1)
x2 (5.32)

On31 =
−3A3(ε0εr)

3R2V 3
c − 8m(Vc − Vs)(x0 − x1)5

4A2(ε0εr)2mR2(x0 − x1)4

+
(2A2(ε0εr)

2R2Vcx0 − x1)(kx0(x0 − x1)− x2(c(−x0 + x1) +mx2)

4A2(ε0εr)2mR2(x0 − x1)4

(5.33)

On32 =
m(4Vc − 3Vs)(x0 − x1)2

2Aε0εrmR(x0 − x1)2

+
Aε0εrRVc(c(x0 − x1)−mx2)

2Aε0εrmR(x0 − x1)2

(5.34)

On33 =
1

4A2(ε0εr)2mR2(x0 − x1)3
(−3A3(ε0εr)

3R2V 2
c

+ 4m(x0 − x1)5 + 8Aε0εrmR(x0 − x1)3x2

+ A2(ε0εr)
2R2(x0 − x1)(2k(x0 − x1)x1 − x2(−2cx0 + 2cx1 +mx2)))

(5.35)

The PPA is observable around a state xa if (5.29) has full rank. The rank of (5.29) can

be determined by calculating its determinant which is:

|On| = O21On32 −On22On31, (5.36)

which could be determined numerically.
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5.6 Summary

The self-sensing technique to estimate the mechanical states of a class of MEMS elec-

trostatic actuators is feasible when a reasonably soft spring exists and the displacement

is nonzero. The variation of the actuators’ parameters will also affect the observability.

This technique is optimized with a lower natural frequency and a smaller initial gap. The

nonlinear observability analysis was also discussed.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, three key problems for PPAs were investigated by studying their dual

systems (solenoids), which include modeling, disturbance control techniques and estimation

using self sensing techniques. In the modeling part, the dynamics circuit model which con-

tains a variable capacitor/inductor was analyzed, where variable capacitors/inductors are key

components that exist in PPAs/solenoids. An approximated solution technique for variable

inductor with a DC power source was derived and validated by simulation and experiments.

An approximated solution for a variable capacitor with an AC power source was derived and

validated by experiments.

A practical control technique for PPAs/solenoids contains input-output linearization and

a disturbance rejection controller were designed. The difficulties of the original input-output

linearization method were analyzed, which could be improved by using the cascade distur-

bance controller using the extended state observer. Simulation and experimental validation

were explored for solenoids.

The feasibility of the self-sensing technique for PPAs was analyzed. Their observability

using linear system theory around an equilibrium point was proved. The observability can

be improved using a SVD analysis. The nonlinear observability was also discussed.

6.2 Future Works

PPAs are high bandwidth systems with low damping ratios, which is challenging to ex-

tend their stable operating range with acceptable costs. It would be worthwhile to implement
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the proposed input-output linearization with disturbance rejection controller for PPAs. The

feedback posi-cast controller could be another competitive approach to solve the PPAs’ low

damping ratio problem. Model based multi-rate digital controllers would also be interesting.

To further address the potential of self-sensing techniques for PPAs, a control technique

combined with a self-sensing estimator is also desired.
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Microelectromechanical systems (MEMS) utilise time-variant capacitors as transducers in many applications. However, this kind of
component can introduce harmonics and disturbances into the circuit with an AC power source, which is difficult to evaluate through
closed-form solutions. This Letter proposes an iterative solution to analyse the dynamics of MEMS devices which contain a time-variant
capacitor and an AC source. First, the expressions of the time-variant capacitor, AC source and their derivatives with respect to time are
determined. Then, an initial solution that is sufficiently close to the actual solution is determined using linear circuit analysis. On the basis
of the previous steps and the principles of the iterative method, an approximated solution combining the initial solution and its iteratively-
derived higher-order terms is reached. Adding additional higher-order terms can improve the accuracy of the solution. A case study
considering a MEMS device which has an AC power source and sinusoidal motion was performed using MATLAB Simulink. The
simulation study further demonstrated that: (i) this iterative solution can effectively analyse the dynamics of MEMS devices with a time-
variant capacitor and an AC power source; and (ii) computing additional higher-order terms derived from the initial solution can further
improve the solution’s accuracy.

1. Introduction: Time-variant capacitors exist in many
microelectromechanical systems (MEMS) devices. They could be
designed as sensing structures where the variation in capacitance
represents different external physical parameters; examples
include humidity sensors [1], vibration sensors [2], strain sensors
[3], pressure sensors [4], gyroscopes [5] and accelerometers [6].
On the other hand, electrostatic actuators also include
time-variant capacitors, which are the key components in many
applications such as resonators [7, 8], micro mirrors [8], series
switches [9], compliant structures [10] and RF devices [11, 12].
Thus, it is important to accurately analyse systems possessing

time-variant capacitors. For a time-variant capacitor, C(t), the
current, Ic(t), through it is

Ic(t) = V̇ (t)C(t)+ V (t)Ċ(t). (1)

Since (1) results in a nonlinear circuit model, it is difficult to obtain
a closed-form solution. In some circumstances, this problem can be
simplified by considering the variable capacitance as a constant, es-
pecially if it is powered by a DC voltage source or the AC source’s
frequency is much higher than the MEMS device’s bandwidth.
Then, linear circuit analysis can be applied to obtain a reasonably
accurate solution. However, the time variation cannot be ignored
in many applications. For example, consider an MEMS resonator
vibrating at 2 kHz resonant frequency. In order to accomplish the
feedback control, a 100 kHz voltage signal is applied to the
device to detect the capacitance to measure the proof mass
motion, which is a common configuration [13, 14]. Typically, the
capacitance is treated as time invariant in this situation. Since the
detection signal and the mechanical vibration should not affect
each other, because the detection signal’s frequency is much
greater than the device’s bandwidth, it is commonly considered
that no additional components from the mechanical motion will
be introduced [15]. In reality, however, the time-variant capacitor
caused by the mechanical motion will introduce more harmonics
into the detection signal, with frequency spacing equal to the fre-
quency of the fundamental component. The spectrum of this
example is given in Fig. 1 from a MATLAB SIMULINK simulation
of the system. This phenomenon, though, has been experimentally

documented in MEMS devices [16, 17]. In this figure, it is clear that
harmonics with 2 kHz intervals are introduced, where each interval
is equal to the vibration frequency. These harmonics can corrupt the
measurement readings and introduce additional noise into the elec-
trical system. Linear circuit analysis does not account for this very
real and observable effect.

Note that the result contains both harmonics and intermodulation
products of the AC source and the resonant frequency. Linear
circuit analysis considers neither of these components. Dean and
Wilson [18] proposed a nonlinear circuit analysis method for a
time-variant MEMS capacitor system driven with a DC source,
but the case with an AC voltage source was not investigated. To
solve this problem, a standard circuit model needs to be considered.

Consider a time-variant capacitor with a series resistor, R, which
is used to protect the capacitive element and prevent the power
source from shorting to ground in case the MEMS device’s electro-
des physically contact each other. The circuit’s schematic is given
in Fig. 2. In addition, different configurations can be transformed
into this model using the Thevenin equivalent circuit method.

The circuit’s behaviour is described by

Ic(t) = (Vs(t)− Vc(t))/R = V̇ cC(t)+ VcĊ(t), (2)

where Vs is the AC power source, Vc is the voltage across the vari-
able capacitor and Ic is the current through it. Although (2) fully
characterises the circuit’s behaviour, it is difficult to solve this non-
linear differential equation in practice and obtain a closed-form
solution.

2. Analysis approach: Since (2) is difficult to solve, an alternative
iterative approach can be applied to obtain an approximate solution
[18]. The first step is deriving an initial approximate solution Vc0(t),
which is sufficiently close to the Vc(t) [19]. To achieve this initial
solution, the variable capacitor in an MEMS device can be
modelled as

C(t) = C0 + C1(t), (3)

where C0 is time invariant, and C1(t) is the time-variant part that
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must be less than C0 to ensure that C(t) is always positive. The
derivative of (3) is

Ċ(t) = Ċ1(t). (4)

Ignoring the time-variant part and considering this circuit as a linear
circuit, linear circuit analysis can be applied to obtain the initial
solution Vc0(t). The approximated circuit’s transfer function is

Vc(S)

Vs(S)
= 1

RC0s+ 1
. (5)

Then the first step is the analysis of this circuit ignoring the effect of
C1(t) and considering it as a linear circuit. The purpose of this step
is to obtain the steady state of Vc(t), denoted by Vc0(t). Then, Vc1(t)
can be calculated by (2) and (3). Correspondingly, the Ic1(t) term is

Ic1(t) = V̇ c0C(t)+ Vc0Ċ(t). (6)

Thus, using a small signal analysis to obtain Vc1

Vc1(t) = −Ic1(t)R. (7)

Additional terms can be calculated recursively

Ick+1(t) = V̇ ckC(t)+ Vck Ċ(t). (8)

The Ilk(t) is then solved using as many terms as required to obtain
sufficient accuracy. The overall equation for Vc(t) is

Vc(t) = Vc0(t)+
∑1

k=0

(V̇ ck (t)C(t)+ Vck (t)Ċ(t))R
k+1. (9)

3. Case study
3.1. System modelling and analysis: To verify the proposed
technique, the following case study is considered. Consider an
MEMS resonator oscillating at ω Hz and a φ Hz frequency signal
is used to detect its capacitance. The capacitance’s expression is

C(x) = 101rA

x0 − x
, (10)

where x is the displacement of the movable electrode, ɛ0 is
the permittivity of free space, ɛr is the relative permittivity of the
dielectric material between the two electrodes, A is the
overlapping surface area of the electrodes and xo is the initial gap
between the two electrodes.

Assuming that the MEMS device is stimulated by an external
mechanical sinusoidal displacement input

x = y1 sin (vt), (11)

where y1 is a small magnitude and ω is the stimulating frequency.
The capacitance C(t) is

C(t) = 101rA

x0 − y1 sin (vt)
, (12)

If x≪ x0, the capacitance’s expression can be approximated as [17]

C(t) = y0 + y1 sin (vt). (13)

The derivative of C(t) is

Ċ(t) = y1v cos (vt), (14)

where y0 is the time-invariant part when x = 0

y0 =
101rA

x0
. (15)

Let the AC power source, Vs, be equal to

Vs(t) = As sin (ft). (16)

Fig. 2 Thevenin equivalent schematic diagram of a time-variant capacitor
with a series resistor and an AC voltage source

Fig. 1 Spectral analysis of a MEMS resonator with detection signals is the
a Overall spectrum
b Spectrum around the detection signal’s fundamental frequency

638
& The Institution of Engineering and Technology 2015

Micro & Nano Letters, 2015, Vol. 10, Iss. 11, pp. 637–640
doi: 10.1049/mnl.2015.0276

103



The derivative of Vs(t) with respect to time is

V̇ s(t) = Asf cos (ft). (17)

To obtain the initial solution, Vc0, the linear circuit’s steady-state
solution is used

Vc0(t) = As sin (vt). (18)

On the basis of (6) and (14), Ic1 can be obtained

Ic1(t) = fAs cos (ft)(y0 + y1 sin (vt))

+ As sin (ft)y1v cos (vt).
(19)

Then, Vc1 can be found using (7)

Vc1(t) = −Ic1(t)R

= −R(fAs cos (ft)y1 sin (vt)

+ As sin (ft)y1v cos (vt)). (20)

Similiarly, Vc2 can be calculated recursively

Vc2(t) = R2As(−y0f
2 sin (ft)− y1f

2 sin (ft) sin (vt)

+ y1fv cos (ft) cos (vt)+ y1fv cos (ft) cos (vt)

− y1v
2 sin (ft) sin (vt))(y0 + y1 sin (vt))

− R2As(f cos (ft)y1 sin (vt)

+ sin(ft)y1v cos (vt))vy1 cos (vt) (21)

3.2. Simulation study: To verify the feasibility of the proposed
technique, a MATLAB SIMULINK model was built and analysed.
The values of the series resistance and the capacitance are
typically <1 MΩ and 20 pF, respectively [20, 21]. The excitation
signal applied to the MEMS devices tends to be about ten times
greater than the device’s resonant frequency, where typical values
could be up to 100–200 kHz. Thus, the time invariant y0 was 20
pF, while y1 was 5 pF, the series resistor, R, was 10 kΩ, the
mechanical vibration frequency was 2 kHz, the AC voltage
source’s amplitude was 1 V and its frequency, φ, was 100 kHz in
this simulation study.
The system (13) was solved using a numerical method (Bogacki–

Shampine) with a fixed time step of 1 × 10−8 s. The iterative solu-
tion with up to two high-order terms was simultaneously computed
for comparison. Fig. 3 demonstrates the SIMULINK model. The left
side is the system (13) and the right side calculates the iterative
solutions with different orders.
In Figs. 4–6 the waveforms with the caption ‘Simulink’ present

the output of the Simulink model based on (2) and (13), the wave-
forms with caption Vc0, Vc1 and Vc2 indicate the iterative solutions

Fig. 3 Simulink model

Fig. 4 Simulation results of the Simulink solution and the iterative solution
zoomed in on higher-order terms

Fig. 5 Zoomed in simulation results of the Simulink solution and the itera-
tive solution

Fig. 6 Simulation errors between the Simulink solution and the iterative so-
lution zoomed in on higher-order terms
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with different higher-order terms. The waveform Vc0 is the linear
circuit solution.

Fig. 4 shows the time response of the system and the analytical
solutions with up to two higher-order terms. The results generated
by the proposed method match the theoretical result well in the
steady state. For the linear circuit solution, it appears that its amp-
litude was more precise than the solution with Vc1, but it has an
obvious phase shift which generated more errors. It is clear that
the iterative solution with just one term has more error than the
result with two terms. Fig. 5 presents the comparison zoomed in
on different higher-order terms. This figure further demonstrates
that adding additional high-order terms can increase the solution’s
accuracy. Fig. 6 shows the errors using different high-order terms. It
is shown that the linear circuit analysis yielded the greatest errors,
with an amplitude that was more than 0.1 V. The solution with
one higher-order term produced less error, with an amplitude that
was 0.03 V. In contrast, the error using two higher-order terms
was the smallest, which was <0.001 V.

4. Conclusions: An iterative analysis technique was proposed to
solve an MEMS device’s nonlinear circuit consisting of a
time-variant capacitor and an AC power source connected to the
MEMS device through a resistive network. A simulation study
demonstrated that this method provides a more accurate solution
compared with regular linear circuit analysis. The solution’s
accuracy can be increased by adding additional higher-order terms.
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Enhanced-Performance Control of an Electromagnetic
Solenoid System Using a Digital Controller
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Abstract— Solenoids can be used as linear or incremental
motion actuators, most often by coupling the solenoid armature to
a linear spring. In this configuration, its limited open-loop stable
range (less than one-third of the full range) affects performance
and limits applications. The input–output linearization control
method is an effective technique to extend the stable range. But in
practice, however, the time-delay effect from both measurement
and actuation can make the system less damped and therefore
more sensitive to disturbances. This effect was analyzed and a
digital proportional and integrator controller plus extended state
observer (ESO) is proposed to enhance the performance of the
electromagnetic actuator. Simulation and experimental tests show
that this combined proportional and integral and ESO technique
can extend the stable range of motion to 77.6% of full stroke
with less sensitivity to external disturbances.

Index Terms— Active Disturbance Rejection Control, Extended
State Observer, Magnetic Actuators, Nonlinear Control,
Solenoids.

I. INTRODUCTION

SOLENOIDS, which are driven by nonlinear magnetic
forces, are widely used in many applications, such as posi-

tioners [1], digital actuator arrays [2], valves [3]–[5], antilock
braking systems [6], aircraft actuation systems [7], [8],
vehicle vibration control systems [9], and robotic manipu-
lators [10]. Applications like valves [4] that use solenoids
as ON–OFF switch components are focused on whether they
have enough power to drive the system, but other applications
like positioners [1] are concerned with position control. One
potential drawback to this type of actuator is its limited stable
travel range, which is less than one-third of the full range of
motion. In many harsh environments, external disturbances,
such as mechanical vibration, also adversely affect the perfor-
mance of these actuator systems. Many techniques have been
investigated to extend the stable range of motion of these types
of actuators, including nonlinear magnetic field mapping [11],
a dual solenoid configuration [12], pulsewidth modulation
control [13], sliding mode control [14], and adaptive
control [15]. However, these proposed solutions have certain
limitations.
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Fig. 1. (a) Illustration of a solenoid with a spring and a damper. (b) Example
of a commercial solenoid fixed to a metal cantilever as the spring.

1) They require prior magnetic field distribution
knowledge.

2) They suffer from time delay in feedback signals.
3) They result in additional hardware costs.
4) They require complex implementation.
5) They are sensitive to external disturbances.
In this investigation, an input–output linearization (IOL)

control technique with a velocity estimator and a Proportional
and integral (PI) controller is proposed to extend the stable
range and to reject external disturbances. The proposed method
requires knowledge of the initial air gap of the solenoid,
which is easier to measure compared with the magnetic field.
The effect of time delay is analyzed and the performance
is improved under the time delay and external disturbances.
The controller is implemented using an inexpensive microcon-
troller. The velocity estimator’s structure is straightforward to
implement in the microcontroller.

II. SYSTEM MODELING

A typical configuration of a solenoid in a spring-mass-
damper system is illustrated in Fig. 1. Its mathematical
description is

m
d

dt

(
dx

dt

)
+ c

dx

dt
+ kx(t) = μ0μr N2 AI (t)2

2(d + x0 − x(t))2 (1)

where x(t) is the displacement of the armature, μ0 is the
permeability of free space, A is the cross-sectional area of
the core, N is the number of the turns of the coil, μr is
the relative permeability of the dielectric material between
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Fig. 2. Solenoid equivalent circuit.

the coil and the armature, xo is the initial air gap between
the armature and the back side of the frame, and d is the
additional initial air gap related to the solenoid’s geometry,
which is much smaller than x0 in general. Also, m is the proof
mass of the armature, k is the stiffness of the spring, and c is
the system damping coefficient. I (t) is the current through the
coil [12], [13]. In practice, the input to a solenoid is typically
a voltage rather than a current. Given a voltage source V (t)
driving the solenoid, the equivalent circuit model for the
solenoid is shown in Fig. 2. R is the series resistance of the
solenoid coil, I (t) is the current through the solenoid, and
L(x) is the inductance of the coil that depends on the air
gap x [12], [13], which is

L(x) = μ0μr A

d + x0 − x(t)
. (2)

The current determines the magnetic force.
Cheung et al. [16] have studied the current dynamics
of solenoids driven by a voltage source. Since L(x) is a
variable inductor, the dynamics of the circuit in Fig. 2 are
modeled as

L(x)
d I (t)

dt
+ d L(x)

dt
I (t) + I (t)R = V (t). (3)

According to (1) and (2), the electrical and mechanical
dynamics are coupled with each other, which makes
solving (3) difficult. To evaluate the behavior between the
input voltage and the actual current in the circuit, a linear
circuit analysis is applied first. It assumes that the variable
inductor L(x) has a constant value

L1 = L(x∗) (4)

around an equilibrium point x∗. Thus, (3) can be simplified as

L1
d I

dt
+ I (t)R = V (t). (5)

Its transfer function can be described by

I (s)

V (s)
= 1

L1s + R

= 1/R

(L1/R)s + 1
. (6)

The transfer function indicates that there is always a time
delay between the voltage source and the current source.
According to linear system theory, the settling time ts of this
first order system (6) is

ts = 4(L1/R). (7)

However, this settling time approximation is valid only
when the mechanical motion is sufficiently small around the
equilibrium point x∗. Otherwise, the settling time is uncer-
tain. Substituting the control voltage into (1), considering the
uncertain time-delay effect and ignoring the parameter d , the
system model can be considered as

m
d

dx

(
dx

dt

)
+ c

dx

dt
+ kx(t) = βV (t − τ )2

2(x0 − x(t))2 (8)

where β is the time-invariant coefficient of the solenoid

β = μ0μr N2 A

2R2 (9)

where τ is the uncertainty time-delay coefficient, which
depends on the solenoid’s parameters R and L(x).

III. CONTROLLER DESIGN AND ANALYSIS

A. Ideal Input–Output Linearization

To extend the stable range and performance of the
solenoid system, closed-loop control techniques are necessary.
An IOL control method and a low-voltage controller were
demonstrated in [17] and [18] for a microelectromechani-
cal system (MEMS) electrostatic actuator, which possesses
dynamics very similar to that of solenoids. Both types of
actuators are approximately square law devices. Adopting this
method based on model (1) and using a current source, an IOL
law can be introduced to approximately cancel the nonlinearity

I (t) = (x0 − x(t))
√

kc Ic(t) (10)

where kc is a positive gain on the input and Ic(t) is the new
control input, where Ic(t) > 0. Therefore, the system becomes

m
d

dt

(
dx

dt

)
= −c

dx

dt
− kx(t) + kcμ0μr AN2

2
Ic(t) (11)

which mathematically cancels out the square law dependence
on current.

B. Input–Output Linearization Technique With Time Delay

However, the system could easily be adversely affected by
measurement time delay or controller time delay. Therefore,
the control law based on (10) using a voltage source becomes

V (t) = (x0 − x(t))
√

kcVc(t) (12)

where Vc(t) is the new control input and Vc(t) > 0. In this
situation, the system dynamics become

m
d

dt

(
dx

dt

)
= −c

dx

dt
− kx(t) + kcβ(x0 − x(t − τ ))2Vc(t)

(x0 − x(t))2 .

(13)

Solenoids are macroactuators, which have response times
slower than electronic circuits. Thus, the time delay is rel-
atively small compared with the mechanical system. Then,
using Taylor series to expand the time-delay term, where

x(t − τ ) ≈ x(t) − τ
dx

dt
(14)
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and neglecting the higher order terms, the system model
becomes

m
d

dt

(
dx

dt

)
= −c

dx

dt
−kx(t) +kcβVc(t)+ 2kcβτ

x0−x(t)

dx

dt
Vc(t)

+ kcβτ

(x0 − x(t))2

(
dx

dt

)2

Vc(t). (15)

Note that there is a nonlinear damping effect

m
d

dt

(
dx

dt

)
= −g

(
x(t),

dx

dt
, Vc(t)

)
− kx(t) + kcβVc(t).

(16)

It is necessary to evaluate the influence of the nonlinear
function g to the ideal system (11). A state variable model
and its small signal analysis will be applied. At first, select a
group of state variables

[
x1(t)
x2(t)

]
=

⎡
⎣x(t)

dx

dt

⎤
⎦. (17)

In practice, only the displacement variable x1(t) is available.
Considering this constraint and adding an observation equation
that detects the displacement, (16) can be rewritten as

dx1

dt
= x2(t)

m
dx2

dt
= −g(x1(t), x2(t), Vc(t)) − kx1(t) + kcβVc(t)

y(t) = [1 0]
[

x1(t)
x2(t)

]
. (18)

At an equilibrium point, the displacements x1e, x2e and the
control input Vce satisfy{

kx1e = kcβVce

x2e = 0.
(19)

According to (16), a group of new state variables around a
certain equilibrium point is selected as⎡

⎣δx1(t)
δx2(t)
δVe(t)

⎤
⎦ =

⎡
⎣ x1(t) − x1e

x2(t) − x2e

Vc(t) − Vce(t)

⎤
⎦. (20)

The linearized small signal model is⎡
⎢⎢⎣

δ
dx1

dt

δ
dx2

dt

⎤
⎥⎥⎦ =

⎡
⎣ 0 1

− k

m
− c

m
+ 2kcβτ

m(x0 − x1e)

⎤
⎦[

δx1(t)
δx2(t)

]

+
[

0
kcβ

]
δVce(t)

δy(t) = [1 0]
[
δx1(t)
δx2(t)

]
. (21)

For evaluating its influence, it is convenient to examine the
transfer function of (21)

G1(s) = X1(s)

V (s)
= kcβ/k

m
k s2 + m

k

(
c − 2βτ

x0−x1e

)
s + 1

(22)

which can be compared with the ideal model

G2(s) = X1(s)

V (s)
= kcβ/k

m
k s2 + m

k cs + 1
. (23)

The actual damping is less than that predicted by the
ideal model. As a result, higher inputs could lead the system
to oscillate or become unstable. Therefore, extra damping
needs to be introduced to the system to ensure acceptable
performance.

C. Linearization With Extended State Observer

Damping can be increased by measuring or estimating proof
mass velocity and feeding back this term. Directly differ-
entiating the displacement is inaccurate due to measurement
noise. Therefore, velocity observers are necessary to obtain a
better estimate for feedback. However, considering the system
uncertainty, regular observers are difficult to construct. Active
disturbance rejection control (ADRC) technique is an alterna-
tive approach that can solve this kind of problem. It has been
demonstrated that extended state observers (ESOs) can esti-
mate system states without certain system models [19]–[21].
The key idea of this technique is to consider the nonlinear
parts of the system as the external state. Considering that a
nonlinear second-order system has the form of

dx∗
1

dt
= x∗

2 (t)

dx∗
2

dt
= f ∗(x∗

1 (t), x∗
2 (t),w(t)

) + bu(t) (24)

where x∗
1 (t) and x∗

2 (t) are the state variables, w(t) are the
external disturbances, f ∗(x∗

1 (t), x∗
2 (t),w(t)) is a nonlinear

function with the variables and the disturbance, b is the input
coefficient, and u(t) is the control input. Han [19] proposed a
solution that can eliminate this issue using the measurement
combined with a series of nonlinear functions. However, this
method’s parameters lack guidelines for adjustment. A linear
approach was illustrated with tuning methods provided for
ADRC and ESO [20], [21]. Based on the linear approach,
the system is augmented as⎡

⎢⎢⎢⎢⎢⎢⎣

dz1

dt
dz2

dt
dz3

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦

⎡
⎣z1(t)

z2(t)
z3(t)

⎤
⎦ +

⎡
⎣0

1
0

⎤
⎦ u(t) +

⎡
⎣0

0
1

⎤
⎦w(t)

y(t) = [1 0 0]
⎡
⎣z1(t)

z2(t)
z3(t)

⎤
⎦. (25)

Therefore, the estimator’s structure becomes

dẑ1

dt
= ẑ2(t) + L1(y(t) − ẑ1(t))

dẑ2

dt
= ẑ3(t) + L2(y(t) − ẑ1(t)) + bu(t)

dẑ3

dt
= L3(y(t) − ẑ1(t)) (26)
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Fig. 3. Block diagram of the controller with IOL and PIESO.

where ẑ1(t), ẑ2(t), and ẑ3(t) are the estimated value of z1(t),
z2(t), and z3(t), respectively. In this case, let the displacement
x1(t) be z1(t), the velocity x2(t) be z2(t), the external distur-
bances be z3(t), and y(t) be the input u(t). L1, L2, and L3 are
observer parameters to be chosen, which will decide the band-
width of the estimator. Using this estimated velocity ẑ2(t) and
the external disturbance ẑ3(t), extra damping and disturbance
rejection are introduced to the control law

V (t) = (x0 − x(t))
√

kcVc(t) − η1ẑ2(t) − η2 ẑ3(t) (27)

where η1 and η2 are positive numbers. Hence, the damping is
enhanced and external disturbances can be reduced

m
d

dt

(
dx

dt

)
= −g

(
x(t),

dx

dt
, Vc(t)

)
− kx(t) + kcβVc(t)

−η1β ẑ2(t) − η2β ẑ3(t). (28)

Because there is a time delay between the controller’s
command and settling the actual current signal, the control
effort with the ESO will also have the time-delay effect.
η1 and η2 can be tuned by starting from small values, and
then increasing their values until the performance becomes
satisfactory.

Based on (8), ẑ2(t) with time delay will mathematically
decrease the mass of the armature, which will not affect
dynamic performances.

D. Linearization With PIESO

For the sake of the system’s response time and position
tracking, a proportional and integral (PI) controller can be
placed ahead of the control law given in (27). The overall sys-
tem diagram with proportional and integral and ESO (PIESO)
is shown in Fig. 3. In this control diagram, r is the reference
input, e1(t) is the error between the displacement and the
input, e2(t) is the estimation error between the estimator and
the measured displacement, and u(t) is the actual voltage
across the solenoid. The PI controller with respect to Vc(t) is

Vc(t) = K pe1(t) + Ki

∫
e1(t)dt . (29)

Thus, (27) and (29) can be combined together to enhance the
system’s performance.

E. Digital Implementation

Digital controllers have certain advantages.

1) Complicated control algorithms can be implemented.
2) State observers are available.

Fig. 4. System configuration.

3) They are less sensitive to the harsh environment in which
the system must operate.

The implementation of the control law though a micro-
controller requires discrete form. Given the sample rate T,
(29) becomes

Vc(k) = Vc(k − 1) + K p(e1(k) − e1(k − 1)) + KI

T
e1(k)

(30)

and (27) can be approximated as

V (k) = (x0 − x(k))
√

kcVc(k) − η1 ẑ2(k) − η2 ẑ3(k). (31)

Since (31) requires the estimated value of velocity ẑ2(k) and
external disturbance ẑ3(k), the discrete form of the ESO is

ẑ1(k) = ẑ1(k−1) + T (ẑ2(k−1) + Ld1(y(k−1) − ẑ1(k−1)))

ẑ2(k) = ẑ2(k−1) + T (ẑ3(k−1) + Ld2(y(k−1)

− ẑ1(k − 1)) + bu(k))

ẑ3(k) = ẑ3(k − 1) + T (Ld3(y(k − 1) − ẑ1(k − 1))) (32)

where Ld1, Ld2, and Ld3 are parameters to be chosen to adjust
the bandwidth of the estimator. The tuning method is intro-
duced by [20]. Equations (27), (30), and (32) are difference
equations that are easy to program in microcontrollers.

IV. SYSTEM CONFIGURATION

The experimental validation system included a solenoid
system, a laser vibrometer, a microcontroller, a power supply,
and an amplifier, which is illustrated in Fig. 4. A commercial
solenoid, Pontic F421, was configured for the test. Its coil
resistance was 22.5 � with a maximum voltage input of 15 V.
The solenoid was attached to a metal fixture to hold it,
and a thin metal cantilever was used as the spring for the
actuator system. Mechanical testing of the spring indicated
that the spring stiffness was 302.98 N/m, and the damping
coefficient was 42.03 kg/s. Considering the detection range of
the displacement sensor and the initial force of the solenoid,
the total displacement was configured to be 6.96 mm. The
natural frequency of the solenoid system was 16.4 Hz, which
indicated its bandwidth. At the initial position, the inductance
was 45.5 mH, so based on (7), in the worst case, the time
delay was approximately 8 ms.
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An STM32F407 microcontroller was used for this
experiment, which had a 168-MHz core and was assembled
with a 12-b analog-to-digital/digital-to-analog converter. Thus,
the solenoid required a 12 V at 0.5-A power supply. A support
electronics circuit board with a push–pull amplifier was used
to support the microcontroller board and the solenoid system.
Proof mass displacement detection was accomplished using a
Poly-tech OFV353 laser vibrometer. The vibrometer output
was an analog signal with a data rate of 40 kHz and a
resolution of 0.1 mm. The control interval T was chosen
as 5 ms.

After system identification, the final model was

22.7 × 10−3 dx

d

(
dx

dt

)
+ 42.03

dx

dt
+ 302.89x(t)

= 2.107 × 10−4 I (t)2

(6.65 × 10−3 − x(t))2 . (33)

Considering the natural frequency, the desired bandwidth
was chosen as Fc = 16 Hz. Based on the tuning method given
in [5] and [21], the gains of the ESO were

Ld1 = 0.3758, Ld2 = 12.0641, Ld3 = 122.8657. (34)

V. SYSTEM SIMULATION

Prior to experimental validation, a system simulation was
performed using MATLAB SIMULINK. The target actuator
is the configured one above. First, the time-delay effect on
the IOL was verified. The original system had a maximum
stable range of 2.3 mm in theory, so a set point of 2 mm was
chosen to evaluate the problem. Then the PIESO controller was
simulated to extend its stable range and to follow the settling
point. After that, the PIESO controller’s performance under
external disturbances was evaluated using sinusoidal signals
to model the disturbances. The results are given and discussed
in Section VI.

VI. EXPERIMENTAL VALIDATION

A series of experiments was performed using the hardware
in Section IV. Considering the bandwidth and numerical
resolution, the control rate was chosen to be 200 Hz. Test
plans were the same as in the simulation, which included the
time-delay effect and the PIESO controller with and without
disturbances. The sinusoidal disturbances were vibrational and
were generated by an ling dynamic systems (LDS)-850 large
shaker, which is shown in Fig. 5.

A. Time-Delay Effect

Fig. 6 demonstrates the time-delay effect of the damping.
In Fig. 6, the curves are the step responses which occur at
time 0 s. The simulation results indicate that the original
system is overdamped, there is no overshoot and it reaches
steady state in less than 0.1 s. By contrast, the IOL applied
with time delay reduces the damping coefficient so that its
overshoot can be larger than 75% of the steady state. When
ESO introduces the extra damping, the system converges
rapidly within 0.1 s and only one overshoot peak is smaller
than 40% of the set point. The results from simulation and

Fig. 5. System mounted on the LDS-850 large shaker.

Fig. 6. Comparison of step responses of open loop (red dotted line),
IOL (blue dashed line), and IOL with ESO (green solid line). (a) Simulation
part. (b) Experimental part.

experiments support the point of view that time delay can
decrease the damping with IOL. The original damping led to a
fast convergence time and small overshoots and IOL decreased
it, which took more than 0.6 s to reach the final state. The
PIESO increased the damping so that the number of overshoot
peaks was much less than IOL and it converges within 0.15 s.
Besides the time-delay effect, the measured initial gap is
not perfectly known, which cannot totally cancel the driven
force’s nonlinearity that also affects the feedback controller’s
performances.

B. PIESO Without Disturbances

This test verified the effectiveness of PIESO to extend
the solenoid’s travel range and to follow the reference input.
In practice, a maximum stable position of 5 mm was achieved,
which reached 77.6% of the total range. Also considering
that the maximum stable range of the open-loop system was
2.2 mm, the set points were 2.2, 4, and 5 mm, respectively.
The step responses occurring at 0.5 s are illustrated in Fig. 7.
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Fig. 7. Comparison of PIESO controller’s step responses with set points
of 2, 4, and 5 mm. (a) Simulation. (b) Experiment.

Fig. 8. Comparison of IOL and PIESO controller’s responses via a set
point of 2.4 mm with a 10-Hz 1-mm amplitude sinusoidal disturbance:
IOL (red dotted line) and PIESO (green solid line). IOL with a set point
higher than 2.4 mm failed. (a) Simulation. (b) Experiment.

The results from both simulations and experiments show
that the system can achieve the desired point without error.
In the simulation, responses had overshoots and took more
time (around 0.3–0.4 s) to converge. The experimental results
ran faster (around 0.2–0.3 s), but suffered from inaccurate
measurement, which led to chattering around the desired
position. The trace of the reference input equaling 2 mm in the
experiment is an example. A further set point failed, which was
primarily due to the solenoid having a permanent magnet in
the bottom, which is designed to provide more sealed force,
which significantly changes the system’s behavior from the
developed model as displacement approaches this point. The
results prove that PIESO can extend the solenoid’s stable travel
range and eliminate the displacement error.

C. PIESO With Disturbances

Finally, Figs. 8–10 illustrate the step responses of IOL and
PIESO under disturbances. Based on the displacement sensor’s
capability and the system’s natural frequency, disturbances
were chosen as sinusoidal disturbances with an amplitude of
1 mm and frequencies of 10, 16, and 20 Hz, which is below, at,
and above its natural frequency, respectively. The amplitudes
of the disturbances are all 1 mm. For clarity, the set points

Fig. 9. Comparison of IOL and PIESO controller’s responses via a set
point of 2.4 mm with a 16-Hz 1-mm amplitude sinusoidal disturbance:
IOL (red dotted line) and PIESO (green solid line). IOL with a set point
higher than 2.4 mm failed. (a) Simulation. (b) Experiment.

Fig. 10. Comparison of IOL and PIESO controller’s responses via a set
point of 2.4 mm with a 20-Hz 1-mm amplitude sinusoidal disturbance:
IOL (red dotted line) and PIESO (green solid line). IOL with a set point
higher than 2.4 mm failed. (a) Simulation. (b) Experiment.

are 2.4, 4, and 5 mm, respectively. When the disturbance
frequency is 10 Hz, the output is a sinusoidal signal that has
the same frequency and amplitude as the input, in theory. The
IOL response matches this point in the simulation. Though the
average final value is 2 mm, it ripples around it. The higher
set point failed both in simulation and in experiments. The
system will snap in together or oscillate with a very large
amplitude. The PIESO can extend its stable range to 5 mm
(77.6% of total range) at this situation. However, it also
oscillates around the desired position. At this frequency, the
oscillation has an amplitude of about 0.1 mm. In practice,
the external disturbance does not appear until the reference
input command is given. It is caused by the complicated
solenoid fixture. The static friction force holds the stroke
when the external disturbances have insufficient energy. The
IOL oscillates with a large amplitude (larger than 4 mm) and
does not converge within 1 s. The PIESO can also obtain a
stable range of 77.6% with a rise time around 0.2 s with little
oscillation.

The responses with a disturbance of 16 Hz in simulation
are similar to the results with 10 Hz, but the PIESO’s perfor-
mances are worse. The settling times are longer than 0.5 s and
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oscillation amplitudes are around 0.4 mm. The IOL response
in the experimental test shows a higher excited oscillation and
the PIESO’s results show that it can reach the desired point
without oscillation within 0.2 s.

The results with the disturbances even above the natural
frequency demonstrate that the external disturbances can influ-
ence the system’s performance. The simulation and experi-
mental IOL responses demonstrate that the output amplitude
is amplified at this frequency (3 mm in the simulation and
3.5 mm in the experiment). The displacements after a step
input using IOL also vibrated with large amplitudes and will
not converge. In simulation, the PIESO’s responses also oscil-
lated at all three set points, but the amplitudes are 70% less
than the IOL. In contrast, the PIESO performs well at set
points of 4 and 5 mm in practice, but oscillates at 2.4 mm.
At the set point of 2.4 mm, the PIESO vibrates with an
amplitude of about 0.5 mm, while there are no oscillations
at the set points of 4 and 5 mm. The settling times of PIESO
are all less than 0.3 s in the experiments. The PIESO can
cancel the disturbances, maintain the set position and extend
the stable range. Typically, a higher set point can cancel the
disturbances better because the spring force is stronger, while
the magnetic force can only be applied in one direction. The
output response’s amplitude at a frequency that is above its
resonant frequency is higher than an amplitude that is below
the resonant frequency, because the control method changes
the damping coefficient and equivalent mass. The experimental
results were better than the simulation results for two reasons.

1) The simulations did not consider the effect of the sta-
tic and dynamic frictions, but instead used a constant
damping coefficient.

2) To avoid the unstable numerical solutions caused by
an algebrical loop, there was a memory unit in the
simulation feedback loop, which could introduce more
time delay to the system.

VII. CONCLUSION

Reviewing the simulation and experimental results, it is
clear that the time delay has the effect of decreasing the
damping. Even if the original mechanical system is not slightly
damped, time delay caused by measurement and actuation
can influence the IOL technique’s performance. In reality, the
existence of friction may enhance the performance under the
time-delay problem, but it is not reliable. The PIESO can
effectively extend the stable range and maintain the position
without perfect knowledge of the system characteristics. This
requires accurate feedback and adjusting the ESO’s parameters
depending on the designer’s experiences.
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Abstract 

MEMS  parallel  plate  actuators  on  elastic  suspensions  are 

open loop stable over one third of their rest gap distance. To 

increase  the  range  of  stable motion,  a  nonlinear  feedback 

controller  is proposed  in  this paper. Verification  and  error 

analysis are performed using MATLAB Simulink. 

Keywords 

 MEMS; Parallel Plate Actuator; Nonlinear Control 

Introduction 

Electrostatic parallel‐plate actuators (PPA) are used in 

many types of MEMS devices, such as accelerometers, 

variable  capacitors,  RF  devices,  and  micromirrors. 

PPAs  operate  by  reducing  the  distance  between  the 

electrodes  in  response  to  an  applied  voltage. A PPA 

has  an  open  loop  voltage  controlled  stable 

displacement  range, x, of 0  ≤ x < xo/3, where xo  is  the 

rest  gap  distance  between  the  two  electrodes. Open 

loop  attempts  to  further  increase displacement  result 

in unstable motion with  the  two  electrodes  snapping 

into  contact.  A  number  of  techniques  have  been 

investigated  for  increasing  the  stable  displacement 

range using various controller architectures. Examples 

include  the series capacitor method, synthetic voltage 

division, charge control, negative capacitance control, 

various electrode configurations, voltage driven linear 

feedback  control,  nonlinear  output  feedback 

stabilization, and nonlinear input transformation. Each 

of  these  techniques  offers  certain  benefits  and 

detriments. 

A  PPA  is  a  nonlinear  square  law  device, where  the 

force  is  proportional  to  drive  voltage  squared  and 

inversely proportional to electrode separation distance 

squared.  If  the characteristics of  the actuator are well 

known and the movable electrode displacement can be 

accurately  and  quickly  measured,  then  a  nonlinear 

gain term can be utilized to linearize and stabilize the 

operation  of  the  PPA  system.  The  remainder  of  this 

manuscript introduces this technique. 

 
FIG. 1 AN ILLUSTRATION OF A PPA 

Background 

Actuator Model 

Consider the PPA in Fig. 1 when it is integrated into a 

second order spring‐mass‐damper mechanical system: 

2

2

)(2
),(

xx

AV
Vxfkxxcxm

o 



             (1) 

where x is the displacement of the movable electrode, 

ε  is  the  permittivity  of  free  space multiplied  by  the 

relative permittivity of the dielectric material between 

the two electrodes, A is the overlapping surface area of 

the electrodes and x0 is  the  rest gap distance between 

the electrodes. V is the drive voltage between the two 

electrodes. 

At equilibrium:  

 
A

xxx
V o



22 
                              (2) 

Stability Analysis 

A linear approximation by (1) can be formed by Taylor 
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series expansion of f(x, V). From the Taylor series:  
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Let xa be a desired displacement over the stable range 

and Va be the voltage from (2). Then: 
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N and KEL are defined as: 
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                       (5) 

Then substituting  (5)  for  f(x,V)  in  (1) yields  the  linear 

approximation: 

Nxkkxcxm EL  )(                    (6) 

The characteristic equation has root at: 
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This system is only stable by open loop voltage control 

for  0  ≤  x  ≤  xo/3.  If  the  PPA  voltage  is  increased  in 

attempt  to  increase  the displacement beyond xo/3,  the 

two electrodes will snap into contact.   

 

FIG. 2 IMPLEMENTATION OF A PPA NONLINEAR FEEDBACK 

CONTROL LAW WITH A INTEGRATOR CONTROLLER. 

Nonlinear Feedback Control 

Ideal Feedback Linearization Control 

Consider the following nonlinear mapping function K: 

0( , ) ( )c c dK V x V x x V                         (8) 

Vd  is  the actual voltage across  the PPA, and Vc  is  the 

control voltage before the nonlinear mapping function. 

Substituting  (8)  for  V  in  model  (1),  the  resulting 

electrostatic force equation becomes: 
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cAV
f x v


                                        (9) 

which  is  a  linear  function  of  the  control  voltage, Vc. 

The  PPA  with  nonlinear  input  map  (9)  becomes  a 

linear system.   A similar idea was proposed in,but no 

implementation  was  discussed.  In  this  paper,  the 

authors suggested a  integrator closed  loop controller, 

as illustrated in Fig. 2, that can then be used to adjust 

the displacement over the entire range of actuator with 

the nonlinear gain, K. 

However,  if  the system  is not perfectly  implemented, 

the  controller  does  not  perform  as  designed.  The 

primary  sources  of  error  are  measurement  error  in 

displacement and error  in  the model  for  the  rest gap 

displacement. Evaluating each error source independ‐

ently allows for analysis of each error source. 

Stable Range Analysis with Displacement Error 

Error  in measurement  x  can  be modeled  as  a  sensor 

scaling.  The measured  displacement  x’  is  a  positive 

constant. If there is no scaling error, α=1. 

xx                                        (10) 

The PPA with the mapping can be modeled as: 
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The new equilibrium condition is: 
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Stability analysis about the condition for all poles to be 

in the left half s‐plane is: 
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Therefore,  the measurement  error  could decrease  the 

stable traveling range of a PPA.  

Stable Range Analysis with Initial Gap Error 

Consider the effect of error in the model for the initial 

gap distance. The  initial gap  is scaled by β. If there  is 

no manufacturing imperfection, then β=1. 

oxx 0                      (14) 

The PPA with the mapping can be modeled as: 
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In this case, the equilibrium condition is: 
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The condition of stability satisfies:  

1
)(

2

)(

2





 xx

x

xx

x

oo 
                     (17) 

This also indicates that the error of initial gap distance 
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will decrease the stable traveling range.  

Simulation Verification 

A  simulation  via MATLAB  Simulink was  performed 

to verify the analysis. The PPA in this simulation has a 

spring  constant  k=158.2  N/m,  a  damping  coefficient 

c=7×10‐4  kg/s,  a  mass  m=7.5×10‐6  kg,  an  initial  gap 

x0=10μm, and a surface area A = 8.41×10‐6 m2.   

FIG. 3 shows that the result with the nonlinear term is 

perfectly  canceled.  The  relationship  between  control 

voltage  and  displacement  is  linear.  The  simulation 

results agree with the mathematical analysis. 

 
FIG. 3 DESIRED POSITION AND CONTROL VOLTAGE 

FIG. 4 and FIG. 5  show  that both measurement error 

and  initial gap error could  influence  the stable range; 

as well, it is inferred that if the error coefficients equal 

1,  the  PPA  would  have  a  full  stable  range,  which 

matches the ideally situation. The differences between 

analysis and simulation results are due  to  the  limited 

number of  terms used  in  the Taylor’s series  lineariza‐

tion. 

 
FIG. 4 STABLE RANGE WITH DISPLACEMENT MEASURE 

ERRORS 

 
FIG. 5 STABLE RANGE WITH INITIAL GAP ERRORS 

Conclusions 

Although  PPAs  are  useful  in  many  MEMS 

applications, they suffer from a limited stable range of 

motion. This range can be extended using a nonlinear 

feedback  controller  to  linearize  the  system.  This 

technique was analysed and verified using MATLAB 

Simulink.  
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Appendix B

Mathemtica Scripts and Outputs for PPAs’ Nonlinear Observability

In[76]:= f1 = x2
f2 = (-c * x2 / m) - (k * x1 / m) + e * A * vc * vc / (2 * m * (x0 - x1)^2)
f3 = (-vc (x0 - x1) / (R * e * A) - vc * x2 / (2 * (x0 - x1)) + vs * (x0 - x1) / (R * e * A))
"Lfh1"
t11 = D[f3, x1] * f1
t21 = D[f3, x2] * f2
t31 = D[f3, vc] * f3
"Auto PD of x1"
lx311 = D[t11 + t21 + t31, x1]
"Auto PD of x2"
lx321 = D[t11 + t21 + t31, x2]
"Auto PD of vc"
lx331 = D[t11 + t21 + t31, vc]

"manual"
t1 = ((vc - vs) / (R * e * A) - vc * x2 / (2 * (x0 - x1)^2)) * x2
t2 = -(vc / (2 * (x0 - x1))) *

((-c * x2 / m) - (k * x1 / m) + e * A * vc * vc / (2 * m * (x0 - x1)^2))
t3 = (-(x0 - x1) / (R * e * A) - x2 / (2 * (x0 - x1))) *

(-vc (x0 - x1) / (R * e * A) - vc * x2 / (2 * (x0 - x1)) + vs * (x0 - x1) / (R * e * A))
(*D[t1,x1]
D[t1+t2,x1]*)

"PD of x1"
lx31 = D[t1 + t2 + t3, x1]
"PD of x2"
lx32 = D[t1 + t2 + t3, x2]
"PD of vc"
lx33 = D[t1 + t2 + t3, vc]
"Auto Simplified PD of x1"
Simplify[lx311]
"Auto Simplified PD of x2"
Simplify[lx321]
"Auto Simplified PD of vc"
Simplify[lx331]

"Simplified PD of x1"
Simplify[lx31]
"Simplified PD of x2"
Simplify[lx32]
"Simplified PD of vc"
Simplify[lx33]

"determinant"
t11 * lx32 - t21 * lx31
"Simplified determinant"
Simplify[t11 * lx32 - t21 * lx31]
x2 = 0
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t11 * lx32 - t21 * lx31

Out[76]= x2

Out[77]=

A e vc2

2 m (x0 - x1)2
-
k x1

m
-
c x2

m

Out[78]= -
vc (x0 - x1)

A e R
+
vs (x0 - x1)

A e R
-

vc x2

2 (x0 - x1)

Out[79]= Lfh1

Out[80]= x2
vc

A e R
-

vs

A e R
-

vc x2

2 (x0 - x1)2

Out[81]= -

vc 
A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m



2 (x0 - x1)

Out[82]= -
x0 - x1

A e R
-

x2

2 (x0 - x1)
-
vc (x0 - x1)

A e R
+
vs (x0 - x1)

A e R
-

vc x2

2 (x0 - x1)

Out[83]= Auto PD of x1

Out[84]= -

vc -
k
m
+

A e vc2

m (x0-x1)3


2 (x0 - x1)
-

vc x22

(x0 - x1)3
-

vc 
A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m



2 (x0 - x1)2
+
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A e R
-

vs

A e R
-

vc x2

2 (x0 - x1)2
-
x0 - x1

A e R
-

x2

2 (x0 - x1)
+

1

A e R
-

x2

2 (x0 - x1)2
-
vc (x0 - x1)

A e R
+
vs (x0 - x1)

A e R
-

vc x2

2 (x0 - x1)

Out[85]= Auto PD of x2

Out[86]=

vc

A e R
-

vs

A e R
+

c vc

2 m (x0 - x1)
-

vc x2

(x0 - x1)2
-

vc -
x0-x1
A e R

-
x2

2 (x0-x1)


2 (x0 - x1)
-

-
vc (x0-x1)

A e R
+

vs (x0-x1)
A e R

-
vc x2

2 (x0-x1)

2 (x0 - x1)

Out[87]= Auto PD of vc

Out[88]= -
A e vc2

2 m (x0 - x1)3
-

A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m

2 (x0 - x1)
+ x2

1

A e R
-

x2

2 (x0 - x1)2
+ -

x0 - x1

A e R
-

x2

2 (x0 - x1)

2

Out[89]= manual

Out[90]= x2
vc - vs

A e R
-

vc x2

2 (x0 - x1)2

2     PPA_nonlinear_observability.nb
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Out[91]= -

vc 
A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m



2 (x0 - x1)

Out[92]=

-x0 + x1
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-
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A e R
+
vs (x0 - x1)

A e R
-

vc x2

2 (x0 - x1)

Out[93]= PD of x1

Out[94]= -
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k
m
+
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
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-

vc x22
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A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m



2 (x0 - x1)2
+
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A e R
-

vs

A e R
-

vc x2

2 (x0 - x1)2

-x0 + x1
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1
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2 (x0 - x1)2
-
vc (x0 - x1)
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+
vs (x0 - x1)
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-

vc x2

2 (x0 - x1)

Out[95]= PD of x2

Out[96]=

vc - vs

A e R
+

c vc

2 m (x0 - x1)
-

vc x2

(x0 - x1)2
-

vc 
-x0+x1
A e R

-
x2

2 (x0-x1)


2 (x0 - x1)
-

-
vc (x0-x1)

A e R
+

vs (x0-x1)
A e R

-
vc x2

2 (x0-x1)

2 (x0 - x1)

Out[97]= PD of vc

Out[98]= -
A e vc2

2 m (x0 - x1)3
-

A e vc2

2 m (x0-x1)2
-

k x1
m

-
c x2
m

2 (x0 - x1)
+

x2
1

A e R
-

x2

2 (x0 - x1)2
+ -

x0 - x1

A e R
-

x2

2 (x0 - x1)

-x0 + x1

A e R
-

x2

2 (x0 - x1)

Out[99]= Auto Simplified PD of x1

Out[100]= -3 A3 e3 R2 vc3 - 8 m (vc - vs) (x0 - x1)5 +

2 A2 e2 R2 vc (x0 - x1) (k x0 (x0 - x1) - x2 (c (-x0 + x1) + m x2))  4 A2 e2 m R2 (x0 - x1)4

Out[101]= Auto Simplified PD of x2

Out[102]=

m (4 vc - 3 vs) (x0 - x1)2 + A e R vc (c (x0 - x1) - m x2)

2 A e m R (x0 - x1)2

Out[103]= Auto Simplified PD of vc

Out[104]= -3 A3 e3 R2 vc2 + 4 m (x0 - x1)5 + 8 A e m R (x0 - x1)3 x2 +

A2 e2 R2 (x0 - x1) (2 k (x0 - x1) x1 - x2 (-2 c x0 + 2 c x1 + m x2))  4 A2 e2 m R2 (x0 - x1)3

Out[105]= Simplified PD of x1

Out[106]= -3 A3 e3 R2 vc3 - 8 m (vc - vs) (x0 - x1)5 +

2 A2 e2 R2 vc (x0 - x1) (k x0 (x0 - x1) - x2 (c (-x0 + x1) + m x2))  4 A2 e2 m R2 (x0 - x1)4

Out[107]= Simplified PD of x2

PPA_nonlinear_observability.nb    3
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Out[108]=

m (4 vc - 3 vs) (x0 - x1)2 + A e R vc (c (x0 - x1) - m x2)

2 A e m R (x0 - x1)2

Out[109]= Simplified PD of vc

Out[110]= -3 A3 e3 R2 vc2 + 4 m (x0 - x1)5 + 8 A e m R (x0 - x1)3 x2 +

A2 e2 R2 (x0 - x1) (2 k (x0 - x1) x1 - x2 (-2 c x0 + 2 c x1 + m x2))  4 A2 e2 m R2 (x0 - x1)3

Out[111]= determinant
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Out[113]= Simplified determinant

Out[114]=

1

16 A2 e2 m2 R2 (x0 - x1)7
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Appendix C

Source Codes in The Micro Controller for Solenoid Control

main.c 

#include <stm32f4xx.h> 

#include "stdio.h" 

#include "stm32f4_discovery.h" 

#include "StateMachine.h" 

 

 

int AD1_AVERG=0; 

int AD1_REF=2106; 

int AD1_RANGE=941; 

 

int USB_REF_INPUT=0; 

 

int CONTROLLER_NUMBER=-1; 

void RCC_Config(void); 

 

int main(void) 

{ 

 RCC_Config(); 

     

 

    while (1) 

    { 

        MainStateMachine(); 

         

        /* 

        if(DAC1Buffer!=0) 

        {  

            DAC1Buffer--; 
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  } 

        else 

        { 

            DAC1Buffer=0xfff; 

        } 

         

        if(DAC2Buffer!=0) 

        {  

            DAC2Buffer--; 

        } 

        else 

        { 

            DAC2Buffer=0xfff; 

        } 

  */ 

  } 

} 

 

 

 

void RCC_Config(void) 

{ 

 RCC_DeInit();              // 

 RCC_HSEConfig(RCC_HSE_ON);  // 

 if (RCC_WaitForHSEStartUp() == SUCCESS) // 

  { 

  RCC_PLLCmd(DISABLE);                    // 

  RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // 

  RCC_HCLKConfig(RCC_SYSCLK_Div1);     // 
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  RCC_PCLK1Config(RCC_HCLK_Div4);     // 

  RCC_PCLK2Config(RCC_HCLK_Div2);     // 

  RCC_PLLConfig(RCC_PLLSource_HSE, 8, 336, 2, 7); 

//system_stm43f4xx.c?Line149 

  RCC_PLLCmd(ENABLE);        // 

  while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } // 

 } 

     #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) 

    SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2));  

  #endif 

} 

#ifdef  USE_FULL_ASSERT 

 

/** 

  * @brief  Reports the name of the source file and the source line number 

  *         where the assert_param error has occurred. 

  * @param  file: pointer to the source file name 

  * @param  line: assert_param error line source number 

  * @retval None 

  */ 

void assert_failed(uint8_t* file, uint32_t line) 

{  

  /* User can add his own implementation to report the file name and line number, 

     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ 

 

  /* Infinite loop */ 

  while (1) 

  { 

  } 
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} 

#endif 

AdConfig.c 

#include <stm32f4xx.h> 

#define ADC3_DR_ADDRESS     ((uint32_t)0x4001224C) 

 

uint16_t ADC3ConvertedValue[20]; 

 

//__IO uint32_t ADC3ConvertedVoltage = 0; 

void ADCInit(void); 

void ADCInit() 

{ 

 ADC_InitTypeDef       ADC_InitStructure; 

  ADC_CommonInitTypeDef ADC_CommonInitStructure; 

  DMA_InitTypeDef       DMA_InitStructure; 

  GPIO_InitTypeDef      GPIO_InitStructure; 

 

  /* Enable ADC3, DMA2 and GPIO clocks ****************************************/ 

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOC, ENABLE); 

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE); 

 

  /* DMA2 Stream0 channel0 configuration **************************************/ 

  DMA_InitStructure.DMA_Channel = DMA_Channel_2;   

  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC3_DR_ADDRESS; 

  DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADC3ConvertedValue[0]; 

  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; 

  DMA_InitStructure.DMA_BufferSize = 20; 

  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 
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  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; 

  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; 

  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

  DMA_InitStructure.DMA_Priority = DMA_Priority_High; 

  DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;          

  DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; 

  DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; 

  DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; 

  DMA_Init(DMA2_Stream0, &DMA_InitStructure); 

  DMA_Cmd(DMA2_Stream0, ENABLE); 

 

  /* Configure ADC3 Channel12 pin as analog input ******************************/ 

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; 

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 

  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; 

  GPIO_Init(GPIOC, &GPIO_InitStructure); 

 

  /* ADC Common Init **********************************************************/ 

  ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; 

  ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; 

  ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; 

  ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; 

  ADC_CommonInit(&ADC_CommonInitStructure); 

 

  /* ADC3 Init ****************************************************************/ 

  ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; 

  ADC_InitStructure.ADC_ScanConvMode = ENABLE; 

  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; 

  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; 
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  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; 

  ADC_InitStructure.ADC_NbrOfConversion = 2; 

  ADC_Init(ADC3, &ADC_InitStructure); 

 

  /* ADC3 regular channel12 configuration *************************************/ 

  ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_3Cycles);//pc2 

 ADC_RegularChannelConfig(ADC3, ADC_Channel_13, 2, 

ADC_SampleTime_3Cycles);//pc3 

 

 /* Enable DMA request after last transfer (Single-ADC mode) */ 

  ADC_DMARequestAfterLastTransferCmd(ADC3, ENABLE); 

 

  /* Enable ADC3 DMA */ 

  ADC_DMACmd(ADC3, ENABLE); 

 

  /* Enable ADC3 */ 

  ADC_Cmd(ADC3, ENABLE); 

 ADC_SoftwareStartConv(ADC3); 

} 

DAConfig.c 

 

#include "stm32f4_discovery.h" 

 

/** @addtogroup STM32F4_Discovery_Peripheral_Examples 

  * @{ 

  */ 

 

/** @addtogroup DAC_SignalsGeneration 

  * @{ 
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  */  

 

/* Private typedef -----------------------------------------------------------*/ 

/* Private define ------------------------------------------------------------*/ 

#define DAC_DHR12R2_ADDRESS    0x40007414 

#define DAC_DHR8R1_ADDRESS     0x40007408 

 

/* Private macro -------------------------------------------------------------*/ 

/* Private variables ---------------------------------------------------------*/ 

DAC_InitTypeDef  DAC_InitStructure; 

 

uint16_t DAC1Buffer = 0; 

uint16_t DAC2Buffer = 0; 

 

 

 

/* Private function prototypes -----------------------------------------------*/ 

void TIM6_Config(void); 

 

void DAC2Config(void); 

void DAC1Config(void); 

 

/* Private functions ---------------------------------------------------------*/ 

 

/** 

  * @brief   Main program 

  * @param  None 

  * @retval None 

  */ 

127



void DAConfig(void) 

{ 

  /*!< At this stage the microcontroller clock setting is already configured,  

       this is done through SystemInit() function which is called from startup 

       file (startup_stm32f4xx.s) before to branch to application main. 

       To reconfigure the default setting of SystemInit() function, refer to 

       system_stm32f4xx.c file 

     */     

 

  /* Preconfiguration before using DAC----------------------------------------*/ 

  GPIO_InitTypeDef GPIO_InitStructure; 

 

  /* DMA1 clock and GPIOA clock enable (to be used with DAC) */ 

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE); 

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 

  /* DAC Periph clock enable */ 

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); 

 

  /* DAC channel 1 & 2 (DAC_OUT1 = PA.4)(DAC_OUT2 = PA.5) configuration */ 

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5; 

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 

  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; 

  GPIO_Init(GPIOA, &GPIO_InitStructure); 

 

  /* TIM6 Configuration ------------------------------------------------------*/ 

  TIM6_Config();   

  DAC1Config(); 

  DAC2Config(); 
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} 

 

/** 

  * @brief  TIM6 Configuration 

  * @note   TIM6 configuration is based on CPU @168MHz and APB1 @42MHz 

  * @note   TIM6 Update event occurs each 37.5MHz/256 = 16.406 KHz     

  * @param  None 

  * @retval None 

  */ 

void TIM6_Config(void) 

{ 

  TIM_TimeBaseInitTypeDef    TIM_TimeBaseStructure; 

  /* TIM6 Periph clock enable */ 

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE); 

 

  /* Time base configuration */ 

  TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); 

  TIM_TimeBaseStructure.TIM_Period = 0xFF; 

  TIM_TimeBaseStructure.TIM_Prescaler = 0; 

  TIM_TimeBaseStructure.TIM_ClockDivision = 0; 

  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  

  TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure); 

 

  /* TIM6 TRGO selection */ 

  TIM_SelectOutputTrigger(TIM6, TIM_TRGOSource_Update); 

   

  /* TIM6 enable counter */ 
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  TIM_Cmd(TIM6, ENABLE); 

} 

 

/** 

  * @brief  DAC  Channel2 SineWave Configuration 

  * @param  None 

  * @retval None 

  */ 

void DAC2Config(void) 

{ 

  DMA_InitTypeDef DMA_InitStructure; 

   

  /* DAC channel2 Configuration */ 

  DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_TRGO; 

  DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; 

  DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; 

  DAC_Init(DAC_Channel_2, &DAC_InitStructure); 

 

  /* DMA1_Stream6 channel7 configuration **************************************/ 

  DMA_DeInit(DMA1_Stream6); 

  DMA_InitStructure.DMA_Channel = DMA_Channel_7;   

  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)DAC_DHR12R2_ADDRESS; 

  DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&DAC2Buffer; 

  DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; 

  DMA_InitStructure.DMA_BufferSize = 1; 

  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 

  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; 

  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; 
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  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

  DMA_InitStructure.DMA_Priority = DMA_Priority_High; 

  DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; 

  DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; 

  DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; 

  DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; 

  DMA_Init(DMA1_Stream6, &DMA_InitStructure); 

 

  /* Enable DMA1_Stream6 */ 

  DMA_Cmd(DMA1_Stream6, ENABLE); 

 

  /* Enable DAC Channel2 */ 

  DAC_Cmd(DAC_Channel_2, ENABLE); 

 

  /* Enable DMA for DAC Channel2 */ 

  DAC_DMACmd(DAC_Channel_2, ENABLE); 

} 

 

void DAC1Config(void) 

{ 

  DMA_InitTypeDef DMA_InitStructure; 

 

  /* DAC channel1 Configuration */ 

  DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_TRGO; 

  DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; 

  DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; 

  DAC_Init(DAC_Channel_1, &DAC_InitStructure); 

 

  /* DMA1_Stream5 channel7 configuration **************************************/   
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  DMA_DeInit(DMA1_Stream5); 

  DMA_InitStructure.DMA_Channel = DMA_Channel_7;   

  DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR8R1_ADDRESS; 

  DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&DAC1Buffer; 

  DMA_InitStructure.DMA_BufferSize = 1; 

  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; 

  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; 

  DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; 

  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; 

  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; 

  DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; 

  DMA_InitStructure.DMA_Priority = DMA_Priority_High; 

  DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;          

  DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; 

  DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; 

  DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; 

  DMA_Init(DMA1_Stream5, &DMA_InitStructure);     

 

  /* Enable DMA1_Stream5 */ 

  DMA_Cmd(DMA1_Stream5, ENABLE); 

   

  /* Enable DAC Channel1 */ 

  DAC_Cmd(DAC_Channel_1, ENABLE); 

 

  /* Enable DMA for DAC Channel1 */ 

  DAC_DMACmd(DAC_Channel_1, ENABLE); 

} 
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#ifdef  USE_FULL_ASSERT 

 

/** 

  * @brief  Reports the name of the source file and the source line number 

  *         where the assert_param error has occurred. 

  * @param  file: pointer to the source file name 

  * @param  line: assert_param error line source number 

  * @retval None 

  */ 

void assert_failed(uint8_t* file, uint32_t line) 

{  

  /* User can add his own implementation to report the file name and line number, 

     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ 

 

  /* Infinite loop */ 

  while (1) 

  { 

  } 

} 

#endif 

 

StateMachine.c 

#include <stm32f4xx.h> 

#include "StateMachine.h" 

#include "ADConfig.h" 

#include "DA_config.h" 

#include "TimerConfig.h" 

#include "usbd_cdc_vcp.h" 

#include "stm32f4_discovery.h" 
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extern uint16_t VCP_DataTx   (uint8_t* Buf, uint32_t Len); 

extern int USBInit(void); 

static short int state=STATE_INIT; 

 

int SetValue=0; 

 

void MainStateMachine() 

{ 

    switch(state) 

    { 

        case STATE_INIT: 

             

            USBInit(); 

            DAConfig(); 

            TimerInit(); 

            ADCInit(); 

             

            state=STATE_RUN; 

            //VCP_DataTx ("System initializtion complete",29); 

        break; 

         

        case STATE_RUN: 

            //DAC1Buffer=ADC3ConvertedValue[0]; 

            //DAC2Buffer=ADC3ConvertedValue[1]; 

         

        default: 

            ; 

    } 
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} 

 

void ChangeState(short int newValue) 

{ 

    state=newValue; 

} 

 

short int GetState(void) 

{ 

    return state; 

} 

ADRC.c 

#include <math.h> 

#include "stm32f4_discovery.h" 

 

 

extern double TOTAL_DIST; 

 

extern double TOTAL_DIST_CORRECTION; 

 

extern double AD_DIF_RANGE; 

 

extern int SHAPED_INPUT; 

extern double GLB_DUAL_DIS; 

extern unsigned char SendBuffer1[4]; 

extern unsigned char SendBuffer2[4]; 

 

 

extern double tempDistX; 
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extern int USB_REF_INPUT; 

 

extern uint16_t DAC1Buffer; 

 

 

extern void FillSendBuffer1(double input); 

extern void FillSendBuffer2(double input); 

extern void FillSendBuffer3(double input); 

extern void FillSendBuffer4(double input); 

 

void LinearESO(double e, double u); 

void LinearESOTemp(double e, double u); 

void ESO(double e, double u); 

 

double fal(double e,double a,double delta); 

int sign(double input); 

void ADRC(); 

double z1=0; 

double z2=0; 

double z3=0; 

 

double z1t=0; 

double z2t=0; 

double z3t=0; 

void ADRC() 

{ 

    double distX=0; 

    double tragetDist=0; 

     

136



    double errorSum=0; 

    double adrcInput=0; 

    double controlEffort=0; 

     

    static double PIDEffort=0; 

    double PIDerror=0; 

    static double oldError=0; 

    tragetDist=(double)(USB_REF_INPUT)/10000; 

 

     

    TOTAL_DIST+=TOTAL_DIST_CORRECTION; 

    distX=GLB_DUAL_DIS; 

 

    if(distX<0) 

    { 

        distX=0; 

    } 

    LinearESO(GLB_DUAL_DIS-z1,DAC1Buffer); 

    LinearESOTemp(GLB_DUAL_DIS-z1t,DAC1Buffer); 

    //ESO(distX-tragetDist,DAC1Buffer/10); 

    errorSum=-(distX-tragetDist)-z2; 

    PIDerror=tragetDist-distX; 

    //errorSum=-z1-z2; 

 

    if(errorSum<0) 

    { 

        //adrcInput=-errorSum; 

        adrcInput=pow(-errorSum,0.9)-z3; 

    } 
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    PIDEffort+=1000*(PIDerror-oldError)+PIDerror*500; 

    if(PIDEffort<0) 

    { 

        PIDEffort=0; 

    } 

    if(PIDEffort>120) 

    { 

        PIDEffort=120; 

    } 

    controlEffort=sqrt((double)(PIDEffort))*(TOTAL_DIST-distX+5.3e-3*0.6667); 

     

    controlEffort*=50000; 

    controlEffort+=(-z2)*1600; 

    if(controlEffort>4095) 

    { 

        controlEffort=4095; 

    } 

    if(controlEffort<0) 

    { 

        controlEffort=0; 

    }     

    //FillSendBuffer2(z1); 

    //FillSendBuffer3(z2); 

    //FillSendBuffer4(z3); 

     

    FillSendBuffer2(z2/100); 

    FillSendBuffer3(z2t/100); 

    FillSendBuffer4(z3); 

    DAC1Buffer=controlEffort; 
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} 

void GainSchedulingController() 

{ 

    double distX=0; 

    double controlEffort=0; 

 

    TOTAL_DIST+=TOTAL_DIST_CORRECTION; 

    distX=GLB_DUAL_DIS; 

 

    if(distX<0) 

    { 

        distX=0; 

    } 

    LinearESO(GLB_DUAL_DIS-z1,DAC1Buffer); 

 

    //errorSum=-z1-z2; 

 

    controlEffort=sqrt((double)(USB_REF_INPUT))*(TOTAL_DIST-distX+5.3e-3*0.6667); 

     

    controlEffort*=50000; 

    ////controlEffort+=(-z2)*800; 

    if(controlEffort>4095) 

    { 

        controlEffort=4095; 

    } 

    if(controlEffort<0) 

    { 

        controlEffort=0; 
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    }     

    //FillSendBuffer2(z1); 

    //FillSendBuffer3(z2); 

    //FillSendBuffer4(z3); 

     

    FillSendBuffer2(z2/100); 

    FillSendBuffer3(z2t/100); 

    FillSendBuffer4(z3); 

    DAC1Buffer=controlEffort; 

} 

void GainSchedulingController_ESO() 

{ 

    double distX=0; 

    double controlEffort=0; 

 

    TOTAL_DIST+=TOTAL_DIST_CORRECTION; 

    distX=GLB_DUAL_DIS; 

 

    if(distX<0) 

    { 

        distX=0; 

    } 

    LinearESO(GLB_DUAL_DIS-z1,DAC1Buffer); 

 

    //errorSum=-z1-z2; 

 

    controlEffort=sqrt((double)(USB_REF_INPUT))*(TOTAL_DIST-distX+5.3e-3*0.6667); 

     

    controlEffort*=50000; 
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    controlEffort+=(-z2)*800; 

    if(controlEffort>4095) 

    { 

        controlEffort=4095; 

    } 

    if(controlEffort<0) 

    { 

        controlEffort=0; 

    }     

    //FillSendBuffer2(z1); 

    //FillSendBuffer3(z2); 

    //FillSendBuffer4(z3); 

     

    FillSendBuffer2(z2/100); 

    FillSendBuffer3(z2t/100); 

    FillSendBuffer4(z3); 

    DAC1Buffer=controlEffort; 

} 

void GainSchedulingPIDController() 

{ 

    double distX=0; 

    double tragetDist=0; 

     

    double errorSum=0; 

    double adrcInput=0; 

    double controlEffort=0; 

     

    static double PIDEffort=0; 

    double PIDerror=0; 
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    static double oldError=0; 

    tragetDist=(double)(USB_REF_INPUT)/10000; 

 

     

    TOTAL_DIST+=TOTAL_DIST_CORRECTION; 

    distX=GLB_DUAL_DIS; 

 

    if(distX<0) 

    { 

        distX=0; 

    } 

    LinearESO(GLB_DUAL_DIS-z1,DAC1Buffer); 

    LinearESOTemp(GLB_DUAL_DIS,DAC1Buffer); 

    //ESO(distX-tragetDist,DAC1Buffer/10); 

    errorSum=-(distX-tragetDist)-z2; 

    PIDerror=tragetDist-distX; 

    //errorSum=-z1-z2; 

 

    if(errorSum<0) 

    { 

        //adrcInput=-errorSum; 

        adrcInput=pow(-errorSum,0.9)-z3; 

    } 

    PIDEffort+=1000*(PIDerror-oldError)+PIDerror*500; 

    if(PIDEffort<0) 

    { 

        PIDEffort=0; 

    } 

    if(PIDEffort>120) 
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    { 

        PIDEffort=120; 

    } 

    controlEffort=sqrt((double)(PIDEffort))*(TOTAL_DIST-distX+5.3e-3*0.6667); 

     

    controlEffort*=50000; 

    //controlEffort+=(-z2)*800; 

    if(controlEffort>4095) 

    { 

        controlEffort=4095; 

    } 

    if(controlEffort<0) 

    { 

        controlEffort=0; 

    }     

    //FillSendBuffer2(z1); 

    //FillSendBuffer3(z2); 

    //FillSendBuffer4(z3); 

     

    FillSendBuffer2(z2/100); 

    FillSendBuffer3(z2t/100); 

    FillSendBuffer4(z3); 

    DAC1Buffer=controlEffort; 

} 

void LinearESO(double e, double u) 

{ 

        /*const double h=5e-3; 

    const double b01=0.7786; 

    const double b02=81.3185; 

143



    const double b03=2.4666e+003; 

    const double b=1e-5; 

*/ 

 

 const double h=5e-3; 

    const double b01=3; 

    const double b02=600; 

    const double b03=40000; 

    const double b=1e-7; 

    double scale=0; 

     

    scale=6.96e-3/AD_DIF_RANGE; 

    e=((int)(e/scale))*scale; 

    z1=z1+h*z2+b01*e; 

    if(z1>7e-3) 

    { 

        z1=7e-3; 

    } 

    if(z1<-3e-3) 

    { 

        z1=-3e-3; 

    } 

    z2=z2+h*z3+b02*e+b*u; 

    if(z2>1) 

    { 

        z2=1; 

    } 

    if(z2<-1) 

    { 
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        z1=-1; 

    } 

    z3=z3+b03*e; 

 

} 

 

void LinearESOTemp(double e, double u) 

{ 

    const double h=5e-3; 

    const double b01=3; 

    const double b02=600; 

    const double b03=40000; 

    const double b=1e-7; 

    double scale=0; 

     

    //scale=6.96e-3/AD_DIF_RANGE; 

    //e=((int)(e/scale))*scale; 

    z1t=z1t+h*z2t+b01*e; 

    if(z1t>7e-3) 

    { 

        z1t=7e-3; 

    } 

    if(z1t<-3e-3) 

    { 

        z1t=-3e-3; 

    } 

    z2t=z2t+h*z3t+b02*e+b*u; 

    if(z2t>1) 

    { 

145



        z2t=1; 

    } 

    if(z2t<-1) 

    { 

        z1t=-1; 

    } 

    z3t=z3t+b03*e; 

 

} 

void ESO(double e, double u) 

{   

    const double h=5e-3; 

    const double b01=1; 

    const double b02=1/(2*pow(h,0.5)); 

    const double b03=2/(25*pow(h,1.2)); 

     

    double fe=0; 

    double fe1=0; 

     

    fe=fal(e,0.5,1); 

    fe1=fal(e,0.25,1); 

     

    z1=z1+h*z2-b01*e; 

    z2=z2+h*(z3+u)-b02*fe; 

    z3=z3-b03*fe1; 

} 

double fal(double e,double a,double delta) 

{ 

    double funResult=0; 
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    //if(abs(e)<=delta) 

    if(e<=delta && e>=(-delta)) 

    { 

        funResult=e/(pow(delta,1-a)); 

    } 

    else 

    { 

        funResult=pow(abs(e),a)*sign(e); 

    } 

    return funResult; 

} 

 

int sign(double input) 

{ 

    if(input<-1e-5) 

    { 

        return -1; 

    } 

    else if(input>=-1e-5&&input<=1e-5) 

    { 

        return 0; 

    } 

    else 

    { 

        return 1; 

    } 

} 
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Appendix D

Source Codes in The Personal Computer for Solenoid Control

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Text; 

using System.Windows.Forms; 

using System.IO; 

using System.IO.Ports; 

using System.Threading; 

using System.Drawing.Imaging; 

 

namespace SolenoidControl 

{ 

    public partial class Form1 : Form 

    { 

        private SerialPort scom; 

        private bool uartOpen = false; 

        private string toShow = ""; 

 

        private Graphics mapGraphics; 

        private Bitmap bufMap; 

         

        private Color backColor = Color.White; 

        private Color broderColor = Color.DeepSkyBlue; 

 

        private Color nowColor = Color.Red; 

        private Color targetColor = Color.DarkSeaGreen; 
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        private Color nowColor1 = Color.Blue; 

        private Color targetColor1 = Color.CadetBlue; 

 

        private Color nowColor2 = Color.DarkOrange; 

        private Color targetColor2 = Color.DeepPink; 

 

        private Color nowColor3 = Color.MediumPurple; 

        private Color targetColor3 = Color.Black; 

 

 

 

        private int[] sampleData; 

        private int sampleDataLen=0; 

 

        private int[] sampleData1; 

        private int sampleDataLen1 = 0; 

 

        private int[] sampleData2; 

        private int sampleDataLen2 = 0; 

 

        private int[] sampleData3; 

        private int sampleDataLen3 = 0; 

 

        private const UInt32 maxLen = 1000; 

        private const int stepLen = 1; 

 

 

        private int initialPos = 2080; 

        private int totalADDisplacement = 960; 
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        private double totalDisplacement = 6.96e-3; 

        public Form1() 

        { 

            InitializeComponent(); 

            bufMap = new Bitmap(1000, 500); 

            mapGraphics = Graphics.FromImage(bufMap);//初始化 

            ResetMap(); 

            sampleData = new int[maxLen]; 

            sampleData1 = new int[maxLen]; 

            sampleData2 = new int[maxLen]; 

            sampleData3 = new int[maxLen]; 

        } 

 

         ~Form1()  

        { 

            if ((uartOpen = true) && (scom != null)) 

            { 

                try 

                { 

                    scom.Close(); 

                } 

                catch (Exception ee) 

                { 

                    MessageBox.Show(ee.Message.ToString()); 

                } 

            } 

        } 

        private void Form1_Load(object sender, EventArgs e) 

        { 
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            string[] uartNames = getUARTNames(); 

            uartComboBox.Items.Clear(); 

            uartComboBox.Items.Add("Select a port"); 

            uartComboBox.SelectedIndex = 0; 

 

            controllerComboBox.SelectedIndex = 0; 

            if (uartNames.Length > 0) 

            { 

                for (int i = 0; i < uartNames.Length; i++) 

                { 

                    uartComboBox.Items.Add(uartNames[i]); 

                } 

            } 

            else  

            { 

                MessageBox.Show("No serial port found in this computer"); 

            } 

        } 

 

        private string[] getUARTNames() 

        { 

            string[] names = null; 

            try 

            { 

                names = SerialPort.GetPortNames(); 

            } 

            catch (Exception ex) 

            { 
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                MessageBox.Show("Serial Ports can not acquired. Detailed information:" + 

ex.Message.ToString()); 

 

            } 

            return names; 

        } 

 

        private void uartComboBox_SelectedIndexChanged(object sender, EventArgs e) 

        { 

            if(uartComboBox.SelectedIndex!=0) 

            { 

                try 

                { 

                    scom = new SerialPort(uartComboBox.Text.ToString(), //port name  

                                                                  9600, //buad rate 

                                                           Parity.None, //no check point 

                                                                     8, //8 data bits 

                                                          StopBits.One);//1 stop bit 

                    scom.RtsEnable = false; 

                    scom.ReadTimeout = 3; 

                    if (!scom.IsOpen) 

                    { 

                        scom.Open(); 

                        uartOpen = true; 

                        //scom.DataReceived+=new SerialDataReceivedEventHandler(scomDataReceived); 

                        scom.DataReceived += new SerialDataReceivedEventHandler(scom_DataReceived); 

                        MessageBox.Show(uartComboBox.Text.ToString() + "open successfully"); 

                    } 

                } 
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                catch (Exception ex) 

                { 

                    uartOpen = false; 

                    MessageBox.Show("serial port error:" + ex.Message.ToString()); 

                } 

            } 

        } 

 

        private void scom_DataReceived(object sender, SerialDataReceivedEventArgs e) 

        { 

            //throw new Exception("The method or operation is not implemented."); 

 

            //int bufLength = scom.BytesToRead; 

 

            Thread.Sleep(50); 

            byte[] scomBuf = new byte[scom.BytesToRead]; 

            scom.Read(scomBuf, 0, scomBuf.Length); 

            //string bufstring = scom.ReadLine(); 

            //MessageBox.Show(Convert.ToString(bufLength)+" received"); 

             

            toShow=""; 

            //receving and analyzing the tranmitted data 

            if(scomBuf.Length%4==0 && uartOpen==true) 

            { 

                for (int i = 0; i < scomBuf.Length;) 

                { 

                    toShow += scomBuf[i].ToString(); 

 

                    if (scomBuf[i]=='A') 
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                    { 

                        if ((scomBuf[i + 1] & 0x80 )== 0x00) 

                        { 

                            sampleData[sampleDataLen] = scomBuf[i + 1] * 100 + scomBuf[i + 2] * 10 + 

scomBuf[i + 2]; 

                        } 

                        else  

                        { 

                            sampleData[sampleDataLen] = ( scomBuf[i + 1] & 0x7f)* 100 + scomBuf[i + 2] * 

10 + scomBuf[i + 2]; 

                            sampleData[sampleDataLen] *= -1; 

                        } 

                        if (sampleDataLen < maxLen - 1) 

                        { 

                            sampleDataLen++; 

                        } 

                        else 

                        { 

                            sampleDataLen = 0; 

                        } 

                    } 

                    else if (scomBuf[i] == 'B') 

                    { 

                        if ((scomBuf[i + 1] & 0x80) == 0x00) 

                        { 

                            sampleData1[sampleDataLen1] = scomBuf[i + 1] * 100 + scomBuf[i + 2] * 10 + 

scomBuf[i + 2]; 

                        } 

                        else 

                        { 
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                            sampleData1[sampleDataLen1] = (scomBuf[i + 1] & 0x7f) * 100 + scomBuf[i + 2] 

* 10 + scomBuf[i + 2]; 

                            sampleData1[sampleDataLen1] *= -1; 

                        } 

                        if (sampleDataLen1 < maxLen - 1) 

                        { 

                            sampleDataLen1++; 

                        } 

                        else 

                        { 

                            sampleDataLen1 = 0; 

                        } 

                    } 

                    else if (scomBuf[i] == 'C') 

                    { 

                        if ((scomBuf[i + 1] & 0x80) == 0x00) 

                        { 

                            sampleData2[sampleDataLen2] = scomBuf[i + 1] * 100 + scomBuf[i + 2] * 10 + 

scomBuf[i + 2]; 

                        } 

                        else 

                        { 

                            sampleData2[sampleDataLen2] = (scomBuf[i + 1] & 0x7f) * 100 + scomBuf[i + 2] 

* 10 + scomBuf[i + 2]; 

                            sampleData2[sampleDataLen2] *= -1; 

                        } 

                        if (sampleDataLen2 < maxLen - 1) 

                        { 

                            sampleDataLen2++; 

                        } 
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                        else 

                        { 

                            sampleDataLen2 = 0; 

                        } 

                    } 

                    else if (scomBuf[i] == 'D') 

                    { 

                        if ((scomBuf[i + 1] & 0x80) == 0x00) 

                        { 

                            sampleData3[sampleDataLen3] = scomBuf[i + 1] * 100 + scomBuf[i + 2] * 10 + 

scomBuf[i + 2]; 

                        } 

                        else 

                        { 

                            sampleData3[sampleDataLen3] = (scomBuf[i + 1] & 0x7f) * 100 + scomBuf[i + 2] 

* 10 + scomBuf[i + 2]; 

                            sampleData3[sampleDataLen3] *= -1; 

                        } 

                        if (sampleDataLen3 < maxLen - 1) 

                        { 

                            sampleDataLen3++; 

                        } 

                        else 

                        { 

                            sampleDataLen3 = 0; 

                        } 

                    } 
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                    i += 4; 

 

                } 

            } 

             

            //toShow = scomBuf.ToString(); 

             

            this.Invoke(new EventHandler(updateTxt)); 

            this.Invoke(new EventHandler(UpdateMap)); 

             

        } 

        private void updateTxt(object sender, EventArgs e)  

        { 

            double disMM = 0; 

            if (textBox1.Text.Length > 500) 

            { 

                textBox1.Text = ""; 

            } 

            textBox1.Text += toShow + "\r\n"; 

            //disMM = 1000 * totalDisplacement * ((double)(initialPos - 40*sampleData[(0 * stepLen 

+ sampleDataLen)]) / totalADDisplacement); 

            disMM = ((double)sampleData[(0 * stepLen + sampleDataLen)]) / 100; 

            distLabel.Text = "Displacement:" +disMM.ToString("0.0000") +"mm"; 

        } 

        private void button1_Click(object sender, EventArgs e) 

        { 

            string setPointString = setPointTextBox.Text.ToString(); 

            Boolean legalText = false; 

            try 
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            { 

                double.Parse(setPointString); 

                legalText = true; 

            } 

            catch (Exception ee)  

            { 

                MessageBox.Show("error :"+ee.Message.ToString()); 

            } 

 

            if (legalText = true && scom != null)  

            { 

                try 

                { 

                    scom.WriteLine("set=" + setPointString + "end"); 

                } 

                catch (Exception ee) 

                { 

                    MessageBox.Show("error :" + ee.Message.ToString()); 

                } 

            } 

        } 

 

        private void Form1_FormClosed(object sender, FormClosedEventArgs e) 

        { 

             

        } 

 

        public void ResetMap() 

        { 
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            int i = 0; 

            mapGraphics.DrawRectangle(new Pen(broderColor), 0, 0, 999, 499);//外部边框设为海蓝

色 

            mapGraphics.FillRectangle(new SolidBrush(backColor), 1, 1, 998, 498);//内部填充颜色设

为白色 

 

            while (i < 1000) 

            { 

                mapGraphics.DrawLine(new Pen(broderColor), i, 124, i + 3, 124); 

                mapGraphics.DrawLine(new Pen(broderColor), i, 249, i + 3, 249); 

                mapGraphics.DrawLine(new Pen(broderColor), i, 249+125, i + 3, 249+125); 

                //mapGraphics.DrawLine(new Pen(broderColor), 249, i, 249, i + 3); 

                i += 10; 

            } 

            i = 0; 

            while (i < 500) 

            { 

                //mapGraphics.DrawLine(new Pen(broderColor), i, 249, i + 3, 249); 

                mapGraphics.DrawLine(new Pen(broderColor), 249, i, 249, i + 3); 

                mapGraphics.DrawLine(new Pen(broderColor), 499, i, 499, i + 3); 

                mapGraphics.DrawLine(new Pen(broderColor), 749, i, 749, i + 3); 

                i += 10; 

            } 

            //oldX = 0; 

            //oldY = 0; 

            //nowX = 0; 

            //nowY = 0; 

            pictureBoxMap.Image = bufMap; 

        } 
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        public void UpdateMap(object sender, EventArgs e) 

        { 

            ResetMap(); 

            //oldX = 0; 

            //oldY = 0; 

            if (checkBoxA.Checked == true) 

            { 

                mapGraphics.FillEllipse(new SolidBrush(nowColor), 0, 250 - (float)0.3 * sampleData[(0 * 

stepLen + sampleDataLen) % maxLen], 3, 3); 

                for (int i = 1; i < 1000; i++) 

                { 

                    //mapGraphics.FillEllipse(new SolidBrush(nowColor), (i+sampleDataLen)%1000, 250 - 

(float)sampleData[i], 3, 3); 

                    mapGraphics.FillEllipse(new SolidBrush(nowColor), i, 250 - (float)0.3 * sampleData[(i 

* stepLen + sampleDataLen) % maxLen], 3, 3); 

 

                    mapGraphics.DrawLine(new Pen(targetColor), i, 250 - (float)0.3 * sampleData[(i * 

stepLen + sampleDataLen) % maxLen], i - 1, 250 - (float)0.3 * sampleData[(i * stepLen + 

sampleDataLen - 1) % maxLen]); 

 

                } 

            } 

            if (checkBoxB.Checked == true) 

            { 

                mapGraphics.FillEllipse(new SolidBrush(nowColor1), 0, 375 - (float)0.3 * 

sampleData1[(0 * stepLen + sampleDataLen1) % maxLen], 3, 3); 

                for (int i = 1; i < 1000; i++) 

                { 

                    //mapGraphics.FillEllipse(new SolidBrush(nowColor), (i+sampleDataLen)%1000, 375 - 

(float)sampleData[i], 3, 3); 

                    mapGraphics.FillEllipse(new SolidBrush(nowColor1), i, 375 - (float)0.3 * 

sampleData1[(i * stepLen + sampleDataLen1) % maxLen], 3, 3); 
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                    mapGraphics.DrawLine(new Pen(targetColor1), i, 375 - (float)0.3 * sampleData1[(i * 

stepLen + sampleDataLen1) % maxLen], i - 1, 375 - (float)0.3 * sampleData1[(i * stepLen + 

sampleDataLen1 - 1) % maxLen]); 

 

                } 

            } 

            if (checkBoxC.Checked == true) 

            { 

                mapGraphics.FillEllipse(new SolidBrush(nowColor2), 0, 375 - (float)0.3 * 

sampleData2[(0 * stepLen + sampleDataLen2) % maxLen], 3, 3); 

                for (int i = 1; i < 1000; i++) 

                { 

                    //mapGraphics.FillEllipse(new SolidBrush(nowColor), (i+sampleDataLen)%1000, 375 - 

(float)sampleData[i], 3, 3); 

                    mapGraphics.FillEllipse(new SolidBrush(nowColor2), i, 375 - (float)0.3 * 

sampleData2[(i * stepLen + sampleDataLen2) % maxLen], 3, 3); 

 

                    mapGraphics.DrawLine(new Pen(targetColor2), i, 375 - (float)0.3 * sampleData2[(i * 

stepLen + sampleDataLen2) % maxLen], i - 1, 375 - (float)0.3 * sampleData2[(i * stepLen + 

sampleDataLen2 - 1) % maxLen]); 

 

                } 

            } 

            if (checkBoxD.Checked == true) 

            { 

                mapGraphics.FillEllipse(new SolidBrush(nowColor3), 0, 375 - (float)0.3 * 

sampleData3[(0 * stepLen + sampleDataLen3) % maxLen], 3, 3); 

                for (int i = 1; i < 1000; i++) 

                { 

                    //mapGraphics.FillEllipse(new SolidBrush(nowColor), (i+sampleDataLen)%1000, 375 - 

(float)sampleData[i], 3, 3); 
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                    mapGraphics.FillEllipse(new SolidBrush(nowColor3), i, 375 - (float)0.02 * 

sampleData3[(i * stepLen + sampleDataLen3) % maxLen], 3, 3); 

 

                    mapGraphics.DrawLine(new Pen(targetColor3), i, 375 - (float)0.02 * sampleData3[(i * 

stepLen + sampleDataLen3) % maxLen], i - 1, 375 - (float)0.02 * sampleData3[(i * stepLen + 

sampleDataLen3 - 1) % maxLen]); 

 

                } 

            } 

                pictureBoxMap.Image = bufMap; 

 

        } 

 

        private void DrawTestButton_Click(object sender, EventArgs e) 

        { 

            scom.WriteLine("zero"); 

            initialPos=sampleData[(0 * stepLen + sampleDataLen)]*40; 

        } 

 

        private void button2_Click(object sender, EventArgs e) 

        { 

            scom.WriteLine("max"); 

            totalADDisplacement =initialPos - sampleData[(0 * stepLen + sampleDataLen)] * 40; 

        } 

 

        private void controllerComboBox_SelectedIndexChanged(object sender, EventArgs e) 

        { 

            int tempIndex = controllerComboBox.SelectedIndex - 1; 

            if (scom != null) 

            { 
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                scom.WriteLine("ctr=" + tempIndex.ToString()); 

            } 

        } 

 

        private void buttonSaveData_Click(object sender, EventArgs e) 

        { 

            FileStream fs = new FileStream("QuickSave.txt",FileMode.Create); 

            StreamWriter sw = new StreamWriter(fs); 

/* 

            for (int loop = 0; loop < maxLen; loop++ )  

            { 

                sampleData[loop] = loop*2; 

                sampleData1[loop] = loop * 3; 

                sampleData2[loop] = loop * 4; 

                sampleData3[loop] = loop * 5; 

            } 

*/ 

                for (int loop = 0; loop < maxLen; loop++) 

                { 

                    string tempStr = ""; 

                    string tempStrData = ""; 

                    string tempStrData1 = ""; 

                    string tempStrData2 = ""; 

                    string tempStrData3 = ""; 

 

                    tempStr += loop.ToString("D3"); 

 

                    tempStrData = sampleData[(loop + sampleDataLen) % maxLen].ToString("D4"); 

                    tempStrData1 = sampleData1[(loop + sampleDataLen1) % maxLen].ToString("D4"); 
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                    tempStrData2 = sampleData2[(loop + sampleDataLen2) % maxLen].ToString("D4"); 

                    tempStrData3 = sampleData3[(loop + sampleDataLen3) % maxLen].ToString("D4"); 

 

                    sw.WriteLine(tempStr + " " + tempStrData + " " + tempStrData1 + " " + tempStrData2 

+ " " + tempStrData3); 

 

 

                } 

            MessageBox.Show("File quick saved as QuickSave.txt"); 

            sw.Flush(); 

            sw.Close(); 

            fs.Close(); 

        } 

 

        private void buttonSuspend_Click(object sender, EventArgs e) 

        { 

            if (uartOpen == true) 

            { 

                uartOpen = false; 

                buttonSuspend.Text = "Resume"; 

            } 

            else  

            { 

                uartOpen = true; 

                buttonSuspend.Text = "Suspend"; 

            } 

        } 

    } 
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