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Abstract

In many sonar applications, traditional processing can fail to provide adequate informa-

tion to accomplish the respective goals, because the processed information is either strictly

bandlimited to the transmit band, distorted (matched filtering places higher emphasis on

larger frequency components), or subject to large error due to noise. By using sparse recon-

struction techniques on systems using bandpass chirp transmit signals, we can extrapolate

additional bandwidth beyond the transmit signal bandwidth without directly amplifying the

noise. This approach could help significantly in areas where more than locational infor-

mation is desired, such as in target classification. We approach this problem with a basic

one-dimensional sparse reconstruction algorithm, extend this to blind deconvolution, and

then extend this again by addressing a spatially-varying reconstruction problem.

Matched filtering is used successfully as a way to find targets in sonar applications, but

fails to retain details of the targets. The output of matched filtering is strictly bandlimited,

limited to the transmit band. The frequency response also prioritizes stronger frequency

components, so the output is distorted even in the ideal case. Targets of interest have finite

extent and are therefore not bandlimited. In order to get a more accurate representation

of the target, it is sometimes preferable to use a regularized deconvolution method. This

has a flatter response across the signal bandwidth and has a wider recovery bandwidth,

which can lead to improved resolution. Regularized restoration also suffers from a high

sensitivity to noise, particularly outside of the strong portions of the transmit band. We

propose using a more robust, `1-based deconvolution method that exploits the finite extent

and relative sparsity of targets of interest in order to obtain a more accurate reconstruction.

We demonstrate the effectiveness of this technique both on simulated data and on tank data.
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In many sonar applications, either an analytic description of the transmitted acoustic

signal or a recorded transmit replica is used for processing the return data. Unfortunately,

there are multiple processes that occur from the analytic design until receiving the return that

could severely degrade its performance in processing. We propose a method to simultaneously

estimate the target and the actual in-water transmit signal. The improved estimate on the

target can be used directly, while the improved estimate on the in-water transmit can be

used as an alternative to the analytic description or recorded replica in additional processing

while maintaining a reasonable processing speed for active use.

An acoustic signal changes as it travels through a medium. A simple example of this can

be found in attenuation due to spherical or cylindrical spreading. This causes the received

signal to have less strength than the one transmitted. The observed changes can be much

more complicated, however. The signal degradation can be frequency dependent, such as in

a dispersive medium or in transmission loss from absorption. In general, the degradation

will be more severe as the distance from the source increases, since these effects compound

with each other. Scene estimates obtained from deconvolution-based processing can suffer

greatly due to errors in the transmit signal used in processing. We propose a method to

adaptively estimate any transmit signal at multiple distances from the source using a semi-

blind deconvolution estimation method. This will allow for more accurate processing at

longer distances than would otherwise be possible with a single transmit description.
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Chapter 1

Sonar Background

The typical application of sonar is to determine where things are in the water using an

acoustic waveform. There is also an increasing interest in determining not just where things

are but what they are. In order to extract that kind of additional information from a sonar

return, it is necessary to retain some amount of the structural information of the target in

the return waveform. All transmitted waveforms are inherently bandlimited, however, so the

return signal necessarily loses some of the frequency content of the interrogated scene, limited

to the transmit band. This is because sonar systems are a convolution between a transmit

signal and the interrogated scene. When the transmit signal is bandlimited, then the return

will necessarily be bandlimited as well. This can be particularly problematic when stealth

is desired, as the transmits tend to be narrow in order to minimize the emitted power.

In addition to being bandlimited, sonar is also subject to a variety of noise components

which can alter both the transmit and return signals away from the ideal case. Electrical

component noise, medium inhomogeneities, Doppler frequency shifts, multipath returns,

and resonance effects are just some of the noise components that contribute to inaccurate

estimates of the underlying desired scene information. One way to mitigate this problem is

to increase the bandwidth of the transmit signal. This would partially solve the bandlimited

reconstruction case and give increased resolution in the reconstruction, but it also presents

its own complications. Increasing the bandwidth requires using transducers that can stably

transmit a large range of frequencies. This can be expensive as well as undesirable in some

cases, such as the aforementioned stealth. Rather than changing the hardware used, we seek

to make processing changes to make it possible to extract additional, accurate information

about the interrogated scene.
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Discussing a sonar return can be difficult due to the change in coordinate systems

involved in the acquisition procedure. In the simplest, single monostatic sensor case, an

acoustic waveform is transmitted into three-dimensional space while the recorded return is

collected over a single time dimension. Figure 1.1 shows a diagram of three different paths

that contribute to the return information of the experimental data. Without knowledge of

the setup or additional sensors, we cannot distinguish between a return signal that bounces

off of multiple surfaces and a return that comes from a target that has the same path length

from a different location. The process of a single sonar return having multiple paths on

the sensor recording is known as multipath, and is a source of ongoing study in sonar.

Reconstructing this information accurately in multiple dimensions requires either multiple

sensors or multiple acquisitions over time (assuming the target information is stationary).

Thus, we will refer to the signal in reference to the return information dimension. Thus, a

one-dimensional signal is any which is obtained from a single stationary sensor, since the

data is obtained as a one-dimensional temporal return. We will refer to the signal as two-

dimensional only if the sensor is moved during data acquisition or a sensor array is used to

collect the data, as in the case of synthetic aperture sonar collections. The experimental

data in this document was obtained from a single stationary sensor, and will therefore be

referred to as one-dimensional.

A sonar return is dependent on the geometry of the acquisition and target as well as

the composition of the water and the target(s). The geometry of the acquisition procedure

includes measurements such as height of the transmitter/receiver relative to the surface

of the water, the ground, and the target. This can also include whether the collection is

monostatic (transmitter and receiver are co-located) or bistatic (transmitter and receiver

are not co-located). This information can determine where multipath returns will appear, as

well as where additional features like ground and surface bounces will appear in the return.

The experimental data in this document uses a setup that is bistatic but is set up to be

processed as a monostatic system by placing the transmitter and receiver near eachother.
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Figure 1.1: Diagram of Some Possible Reflection Paths

The composition of the water determines sound speed, possible presence of resonance

effects (bubbles), relaxation and absorption effects, and the possible travel method of the

acoustic waveform. In [1], Urick states that absorption of sound in water is caused by

shear viscosity, volume viscosity, and ionic relaxation of magnesium sulfate in seawater. The

absorption coefficient due to viscosity is directly proportional to the square of the transmitted

frequency, while ionic relaxation of magnesium sulfate is the dominant form of absorption

below 100kHz transmit frequency. The speed of sound in water is dependent on temperature,

salinity, and depth, which are all properties of the medium as well.

The material and geometry of the target determines the target strength and elastic

effects of the return. Classically, processing for sonar was performed to obtain the rough

measure of the reflection coefficient of the material involved. Objects with a high reflectivity

will show up in the processed return and tell you where these objects are. In reality, the

signal interacts with objects much more than a simple reflection accounts for. A typical
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sonar return can include the incident reflection from the object, lamb-like waves that travel

through the front surface of the target and reflect from the back surface, as well as whispering

gallery and Rayleigh waves that can couple onto the surface of the target and travel around

and contribute to the return signal [2]. The geometry and material of the interrogated target

both determine which of these waves can occur as well as where these waves will appear in

the processing. Different materials have different sound speeds associated with them, which

can change the observed path length (processing the signal assumes a constant sound speed).

The strength of these waveforms is also impacted by the type of material and how rigid it

is.

1.1 Experimental Data

The experimental data in this document was obtained from a small-scale test bed

(SSTB) at the Naval Surface Warfare Center in Panama City Beach, Florida, where the

water is assumed to be homogeneous. This facility uses high-frequency transmit signals

along with small targets to simulate realistic conditions that correspond in a scaled manner

to lower-frequency transmits and larger targets. The acquisition geometry is known, so we

can identify the ground and surface bounces separately from the return from the test targets.

We used sample targets of a 1” solid stainless steel spherical target and a 2:1, 1” diameter

solid stainless steel cylinder in freefield. Figures 1.2 and 1.3 show pictures of the setups for

both target types. More information on spherical and cylindrical target scattering effects

can be found in [3, 2, 4, 5, 6]. Since the material and geometries are known in advance,

we have a reasonable idea of how the target should appear in processing. We would expect

to see an initial impulse (or few impulses) from the incident reflection on the front face of

the target, followed by additional impulses from the longitudinal waves, whispering gallery

waves, and Rayleigh waves. Our particular data collection also had an additional source of

waves present due to the source being located nearby the omnidirectional receiver. We noted

an additional spike in the data from the specular backscatter that reflects off of the source
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and is picked up by the receiver. We specify these locations, along with a breakdown of the

visible waves in this data collection in the individual results sections of later chapters.

Figure 1.2: Spherical Target

Figure 1.3: Cylindrical Target

Since we expect the return to be primarily composed of a series of separated impulses

or a connected but spatially limited response, we can use sparse signal processing to greatly

improve the quality of information received from this data. Sparsity means that, under some

basis, we can represent the signal by a small number of nonzero elements. Since the signal is

composed of separated impulses, we can represent it as a sparse collection of elements in its

native basis. Sparse signal processing will allow us to extrapolate bandwidth outside of the
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transmission band. This means that we can attain wider-band estimates from narrowband

transmit signals. This can greatly improve the resolution of the system, as well as the overall

quality of the reconstruction. These features make this application ideally suited for sparse

signal processing.
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Chapter 2

Sparse Reconstruction of One-Dimensional Returns

2.1 Introduction

In many sonar applications, target information is obtained by transmitting a narrowband

chirp in the water. The return signal is then matched-filtered, and locational information

for the major reflectors is obtained. This technique is quick, easy to implement, robust to

noise, and effective for most applications. Unfortunately, significant target information is

lost outside of the transmit band. This is because matched filtering imposes two bandpass

filters on the scene. The first filter occurs when the transmit is convolved with the scene,

then the second when the return signal is processed. Typical targets of interest are of finite

extent and are not bandlimited, since they are spatially finite. Thus, in order to reconstruct

them more accurately, another technique must be used.

Regularized restoration has the benefit of a wider, flatter recovery band. While in-

formation outside of the transmit band is still initially suppressed once during convolution

with the transmit signal, the reconstruction filter attempts to recover a portion of it with

a partial inversion that employs the regularization term. We incorporate information about

the targets to keep the reconstruction restricted to solutions we know to be more accurate

in our selection of the regularization filter. This means that the information we obtain will

retain more recovered content than the matched filtered output. The processing requirement

is also minimal, as it can be computed quickly using fast Fourier transforms (FFTs). Unfor-

tunately, it also has significant sensitivity to noise, since the filter can recover information

in frequency bands with relatively low transmit strength, which also amplifies the noise in

those bands. In addition, the computational complexity is somewhat increased over matched
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filtering, and additional user input is required to choose some parameters involved in the

reconstruction equation.

Instead of choosing an `2 regularization term, we can instead reconstruct based on spar-

sity information of the target. Sparse reconstruction techniques have been used successfully

in a variety of applications in recent years. Overviews of some of these methods can be found

for image processing [7], radar [8], and a general overview in [9]. Some specific radar applica-

tions include through-the-wall radar imaging [10], multi-target detection [11], and synthetic

aperture radar imaging [12]. Sonar applications have also used some sparse reconstruction

techniques, such as in 3D sonar imaging [13], and synthetic aperture imaging applications

[14, 15, 16]. We seek to apply sparse reconstruction techniques to one-dimensional sonar re-

turns collected from high-frequency bandpass chirp transmit signals. Typical sonar targets

have finite extent, and the majority of most scanning areas are primarily empty water. This

makes it ideally suited for a sparse basis reconstruction. We can take a similar approach

as the `2-based regularized restoration method- but now restrict our solutions to those that

are sparse in our chosen basis. While this is similar in concept, the sparsity constraint is a

powerful restriction that can significantly improve the noise sensitivity and spatial resolu-

tion of our results. This method induces a correlation among surrounding frequency values

in the reconstruction, allowing us to reduce the noise variance in each estimated frequency

component [17]. This allows us to extrapolate frequency information not contained in the

transmit band, which can translate into increased resolution and more accurate target rep-

resentations. To implement this method, we use a least absolute shrinkage and selection

operator (LASSO). This operator has been studied extensively for applications with sparse

representations such as in [18, 19]. Unfortunately, the computational complexity of this

method increases significantly, and we can no longer solve this in closed-form. Instead, we

use an iterative approximation method to find the solution.

This sparse reconstruction algorithm is similar to those used in compressed sensing,

which has seen significant research in recent years. While the mathematics involved may be
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the same, the goal is different. In compressed sensing, the objective is to improve acquisition

speed while maintaining reconstruction quality by exploiting the sparsity of the signal. This

is shown in [20, 21, 22], where they develop alternate sampling methods to reduce sampling

times using a compressed sensing framework. While this technique has many potential

benefits associated with it, it requires a change in hardware and/or acquisition procedure

in order to satisfy incoherence between the sensing and sparse matrices. We seek to use

the sparsity of the target to improve reconstruction quality without changing hardware or

acquisition procedures, which comes at the expense of additional processing time. Although

compressed sensing techniques have typically been applied to synthetic aperture data, they

serve to further validate the use of sparse modeling in sonar processing.

Another approach to increase target information is to simply widen the bandwidth.

This would allow both matched filtering and regularized restoration techniques to increase

the recovered bandwidth and obtain more relevant target information. This is frequently

restricted by hardware, however, and comes with some additional problems. A wider band-

width requires transducers capable of outputting accurately over the entirety of the desired

transmit bandwidth. This requires either replacing existing transducers with new ones that

are able to transmit over the entire band effectively, or figuring out methods to effectively

process the data while transmitting with a transducer outside of its optimal operating fre-

quencies. In addition, transmitting a wideband signal also increases the amount of power

put into the water. This can be problematic if stealth is important. Wideband signals can

also make it more difficult to keep nearby vehicles from overlapping their transmissions, since

band separation will be more difficult to implement.

2.2 Reconstruction Algorithm

We assume a high-frequency, discretely sampled sonar model

r = Xs+ n (2.1)
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where X is the operator representing linear convolution with the transmit signal x, s is the

interrogated scene, n is noise, and r is the recorded return. We seek to recover s from r.

To do this, we define the reconstruction as follows:

ŝ = arg min
s∈Rn

{||Xs− r||22 + α||As||1} (2.2)

This approach can be viewed as the computationally tractable convex relaxation of the

underlying sparsifying `0-norm problem. The use of the `1 norm prevents us from finding

a closed-form solution. Instead, we use a process of majorization as outlined in [23]. This

process uses a quadratic of the same curvature at each iteration, which allows for an efficient

computation of the minimum.

2.2.1 Majorization

Using majorizing functions, we reduce the problem to a sequence of quadratic problems.

We use the method proposed in [23] to choose our majorizers such that the quadratic problem

has a closed-form solution at each iteration. To do this, we first choose to use a modified

Huber function to replace the `1 term in (3.2)

ρT (s) =


s2

2T
+ T

2
, |s| ≤ T

|s|, |s| > T

(2.3)

When s is inside of our defined region T , ρT (s) is quadratic. This function is differen-

tiable everywhere and approaches |s| as T approaches 0. As long as the majorized function

touches the original function at the current estimate and is greater than or equal to the

original function everywhere, convergence to the original minimizer is guaranteed [24]. We

define this function as

ρMT (s; sk) =
1

2T
s2 − d(sk;T )s+

1

2T
(sk)2 (2.4)
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where

d(s;T ) =



s
T

+ 1, s < −T

0, −T ≤ s ≤ T

s
T
− 1, s > T

(2.5)

−T T

T s

ρT (s)

Figure 2.1: Majorized criterion for various operating points

The original function and various majorizing functions are plotted in Figure 2.1. This

choice of majorizing function leads to the possibility of a very efficient iterative algorithm.

To see this, consider the majorized criterion:

eM1 (s; sk) = ‖r −Xs‖2 + αR(s; sk) (2.6)

where

R(s; sk) =
∑
i

[
1

2T
(As)2i − d(Ask;T )(As)i + Ci

]
(2.7)

The constants Ci can be neglected, since they have no effect on the minimum.

Taking a derivative,

d

ds
eM1 (s; sk) = −2XH(r −Xs) +

α

T
AHAs− αd(Ask;T ) = 0 (2.8)

ŝ = (XHX +
α

2T
AHA)−1[XHr +

α

2
AHd(Ask;T )] (2.9)
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If we treat this solution as one step of an iterative algorithm, we obtain:

sk+1 = (XHX +
α

2T
AHA)−1[XHr +

α

2
AHd(Ask;T )] (2.10)

Note that the matrix to be inverted in each iteration is invariant to the current estimate.

X represents convolution with the transmit signal. If we also assume that A represents a

convolution operator, then we can diagonalize both matrices using the unitary DFT matrix

F . So X = FHΣXF , and A = FHΣAF . Then

(XHX +
α

2T
AHA)−1 = FH(ΣH

XΣX +
α

2T
ΣH
AΣA)−1F (2.11)

This matrix can be applied to a vector through fast transforms and pointwise scalings. This

approach allows us to easily change both the parameters α and T without recalculating

inverse matrices.

2.2.2 Method Summary

1. Find an initial estimate for the scene using the known transmit and return data. A

quick scene estimate can be obtained by using the deconvolution formula given in (3.6).

An initial scene estimate is not required, but using one can speed up the convergence

of the algorithm.

2. Choose the sparsifying basis A for s. In our simulation and experimental data we use

A = I, so the scene itself is assumed to be sparse.

3. Choose parameter α, which controls the trade-off between sparsity of the scene, and

data consistency. We used α = 0.1 for the experimental data.

4. Choose parameter T from (2.3). This controls the level of quadratic approximation to

the `1 problem. Smaller T values are better approximations, but will take longer to

run. We use T = 10−4 with the experimental data.
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5. Run the algorithm, which iteratively estimates the minimum of (3.2) using the ma-

jorizing functions defined in (2.4).

6. Obtain a new scene estimate as the output to the algorithm.

2.3 Results

2.3.1 Simulation Results

The simulations were generated using a 10-20kHz LFM chirp transmit sampled at 60kHz.

We begin by examining the impulse responses for matched filtering, regularized restoration,

and our sparse reconstruction algorithm in an ideal, noiseless case. We then examine the

results of each technique after adding Gaussian noise to the return at SNR levels of 15 dB

and 5 dB.

In the following examples, we use a regularized restoration model for deconvolution

given by

min
s∈Rn
{||Xs− r||22 + γ||Bs||22} (2.12)

where B is a regularization filter. Note that this is very similar to (3.2), but we replace the

`1 norm with an `2 norm. We can solve this directly with Fourier transforms, which gives

the following result:

ŝ`2 = F−1
{ X(ω)R(ω)

|X(ω)|2 + γ|B(ω)|2
}

(2.13)

where capital letters denote the Fourier transforms of the lowercase counterparts. Observe

that when γ = 0 this is an inverse filter. When B = I and γ is large, this is equivalent to

matched filtering with a constant scale factor. We use A = I from (3.2) and B = I from

(3.5) in the following examples. The parameter values α and γ were chosen to be 10. They

were selected from observation to give reasonable results for all the tested noise levels. Better

results could be achieved for each noise level by tuning these parameters for each example.
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Figure 2.2: Matched Filtered Output (Left), Regularized Restoration (Center), Sparse Re-
construction (Right) of Impulse with No Noise

Since each of these techniques is an attempted recovery of the original signal, they should

each resemble a centered impulse with height of 1. The matched-filtered result in Figure 2.2

no longer resembles an impulse because the filter is strictly bandlimited and recovers some

frequency components more heavily than others. This leads to a significant spreading of

the energy content, which decreases the resolution. Both the regularized restoration and

sparse reconstruction methods perform fairly well at reconstructing the original impulse.

The sparse reconstruction method is more successful both in concentrating the energy at the

single impulse location (resolution) and in the accuracy of the recovered magnitude of the

impulse. Note that both the regularized restoration and sparse reconstruction techniques

can achieve perfect reconstruction in the noiseless case by setting α = 0 and β = 0, but

these values aren’t practical selections for realistic applications. We show a comparison of

resolution in Figure 2.3. This shows the percentage of energy contained within an interval

relative to the total energy in the reconstruction as the interval size increases from the center

of the impulse for each technique. A perfectly reconstructed impulse would spike up to 1

at the first value, since all of the signal energy is contained at that single value. The faster

each technique reaches high values, the better the resolution. This graph shows that the
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Figure 2.3: Measure of Energy Concentration in Increasing Intervals from the Center, Noise-
less Case

sparse reconstruction method is the most impulse-like in its energy concentration, with an

initially large value, followed by a single significant jump as the interval size increases. The

regularized restoration method is the next best reconstruction for concentrating the energy

into a small region, followed by the matched filtered reconstruction.

Figure 2.4: Matched Filtered Output (Left), Regularized Restoration (Center), Sparse Re-
construction (Right) of Impulse at 15 dB SNR
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Figure 2.5: Matched Filtered Output (Left), Regularized Restoration (Center), Sparse Re-
construction (Right) of Impulse at 5 dB SNR

As the noise increases, these results become more pronounced, as shown in Figures

2.4 and 2.5. The matched-filtered reconstruction remains similar for both noise levels. The

regularized restoration method shows significant errors in the reconstruction as the noise level

increases. This is consistent with the technique, as reconstruction is attempted in frequency

bands that can contain more noise than signal. The sparse reconstruction technique is shown

to be fairly robust to noise for this parameter value. While additional reconstruction errors

are created, they are much less significant than those created by regularized restoration. The

resolution comparison curves in Figures 2.6 and 2.7 show similar results to the noiseless case

for both sparse reconstruction and matched filtering. The regularized restoration method

begins to suffer significantly as the noise increases. In the 15 dB SNR case, the energy is

still initially more concentrated than the matched-filtered reconstruction, but the noise is

consistently higher across the regularized restoration, so the matched-filtered output becomes

more concentrated once the interval length reaches 7 pixels. In the 5 dB SNR case, the

regularized restoration (at this parameter selection) performs worse than matched filtering

at concentrating the total energy over any selected interval beyond the single central point.
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Figure 2.6: Measure of Energy Concentration in Increasing Intervals from the Center at 15
dB SNR

Figures 2.8 and 2.9 show MAE and RMSE values, respectively, for each technique at

three different noise levels. The matched-filtered reconstruction was normalized for compar-

ison, since the values are on a much different scale. One hundred trials were performed at

both 15 dB SNR and 5 dB SNR with the same parameter selections, and the error calcula-

tions were averaged over all trials for each technique. The sparse reconstruction significantly

outperforms the regularized restoration and the matched-filtered output at every noise level

in both metrics. It is also much more robust to noise than the regularized restoration re-

construction, which performs significantly worse as the SNR decreases. The regularized

restoration output outperforms the matched-filtered output at low noise levels for this pa-

rameter selection, but matched filtering stays more stable once the noise increases. Although

matched filtering is robust to noise, the reconstruction error is relatively high for all tested

noise levels. Note that the matched filtered result vastly differs in magnitude scaling from

the original before normalizing, whereas regularized restoration and sparse reconstruction

techniques recover values close to the original impulse.
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Figure 2.7: Measure of Energy Concentration in Increasing Intervals from the Center at 5
dB SNR

2.3.2 Experimental Results

The following plots were generated from data collected using an LFM chirp at various

transmit bandwidths centered at 700kHz from the data collection at the SSTB at the Naval

Surface Warfare Center in Panama City Beach, Florida. There was no significant move-

ment during the data collection, so Doppler was not considered in the processing. Since

the scene should resemble clusters of point reflectors for both target types, the regularized

restorations and sparse reconstructions were performed using A = I and B = I in (3.2) and

(3.5), respectively. By using a high-frequency transmit, the scene should appear as point

reflectors from the specular return, followed by separated additional returns from acoustic

waves travelling around and through the target, with multipath returns farther out. More

specifically, we expect to see reflections from the surface of the water near 15”, the ini-

tial specular reflection near 22.2”, an unknown structural wave (whispering gallery or glory

wave) near 22.7”, the first Rayleigh wave near 22.9”, a reflection of the specular return off

of the source near 23.2”, an unknown structural wave near 23.5”, the second Rayleigh wave

near 23.6”, an unknown structural wave near 23.9”, and a multipath reflection near 30”.

These distances were found by analyzing the known quantities of the target physics and
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Figure 2.8: Average MAE values for Reconstructions

geometry of the tank setup, as well as by examining the visible returns in the wideband

matched filter. Since this is experimental data, we no longer have an example of a perfect

reconstruction, so much of the information is extrapolated from the expected physics as well

as the behavior of the wideband matched-filtered reconstruction. Matched filtering is a com-

mon reconstruction technique that has been used and studied for years, and we consider the

results from the wideband case, along with analysis of the target physics, to give the most

trustworthy baseline available. We expect that all methods will become more similar as the

bandwidth increases, because much less frequency content is allowed to move freely with the

reconstruction algorithms. At narrow bandwidths, changing any frequency content of the

scene outside of the transmit bandwidth will change the data consistency term very little

(convolution with the transmit will suppress all but extreme values outside of the transmit

band). All processing in this section used the transmit replicas shown in 2.10 as the given

transmit description. These are recordings of the transmit signals recorded on a direct path

from the source (without reflections) in the water. Using the replicas rather than analytic

descriptions should increase the accuracy of all the techniques.
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Figure 2.9: Average RMSE values for Reconstructions

Figure 2.11 shows a semilog plot of reconstruction frequencies for each of the three

reconstruction techniques using the 600-800kHz LFM transmit replica. The matched filtered

output is essentially bandlimited to the transmit band, with an additional DC component.

The regularized restoration output has some significant frequency content outside of the

transmit band, based on frequency content in the transmit replica outside of the desired

transmit band. The sparse reconstruction output extrapolates bandwidth and can therefore

have significant frequency content across the entire band.

Figure 2.12 diagrams the dominant paths visible in this data. Figures 2.13-2.18 show

comparisons for the three techniques using different transmit bandwidths for a spherical tar-

get. Figures 2.13-2.15 show the entire reconstructed scene for different transmit bandwidths.

The scaling for the regularized restoration and sparse reconstruction outputs are the same

for both the standard and wideband cases, as both of these techniques attempt to recover the

actual reflection coefficient values. The scaling was adjusted for the regularized restoration

output in Figure 2.14 for visibility, as the reconstructed signal was barely visible above the

noise content for this signal type. If we look at these reconstructions combined with the

path information from Figure 2.12, we conclude that the information from Path 1, which is
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Figure 2.10: Comparison of Transmit Replica Frequency Magnitudes

a reflection off of the surface of the water containing no target information, occurs near 15”

in the reconstructions. Path 2 contains the direct path target backscatter, and is present

from approximately 21”-25” in the reconstructions. This includes the majority of the target

information, including the specular reflection, unknown structural waves, the first and sec-

ond Rayleigh waves, and a reflection of the specular return off of the source. Information

from Path 3 is found near 30” in the reconstructions. This is a multipath reflection, which

contains information from the target. We will focus on analysis of the information from Path

2, containing the direct backscatter. To assist in this, we include Figures 2.16-2.18, which are

zoomed in on the content from 21”-25” from the same reconstructions. The scaling for the

regularized restoration and sparse reconstruction outputs are once again the same for both

the standard and wideband cases. The scaling was adjusted for the regularized restoration

output in Figure 2.17 for visibility. The regularized restoration method gives an increase in

resolution over matched filtering but also amplifies the noise using all three transmit signals.

All scenes from the sparse reconstruction algorithm using all three transmit signals saw a

significant reduction in noise and improved resolution. This was accomplished without losing

most of the structural information defined above. Unfortunately, this parameter selection did
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Figure 2.11: Semilog Plot of Frequency for 600-800kHz Transmit, Spherical Target, Matched
Filter (Left), Regularized Restoration (Middle), Sparse Reconstruction (Right)

cause a loss of information near 23.5” and 23.6”, but some additional fine-tuning should fix

that problem. These structural waves were initially identified using the wideband matched-

filtered reconstruction, so we still consider it a direct improvement in the 660-740kHz case,

where these structural waves are not identifiable in any of the reconstructions. Because we

have significantly more bandwidth in the reconstruction, we also see a substantial increase in

spatial resolution. This could allow us to better resolve closely placed targets, as well as to

detect more detail in the geometry of interrogated targets. This is particularly evident when

identifying the return from the unknown structural wave near 22.7” in the spherical tar-

get. Some separation between the whispering gallery wave near 22.7” and the first Rayleigh

wave near 22.9” is visible in the wideband reconstructions (Figure 2.18), but they overlap

significantly in the narrowband matched filtered and regularized restoration reconstructions

(Figure 2.17). This makes it incredibly difficult to identify the presence of this wave, and

can potentially alter the perceived location of the first Rayleigh wave. In the case of an

unknown target, this type of error could change the perceived target material or geometry.
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Figure 2.12: Diagram of Reflection Paths

The sparse reconstruction shows a clear separation between these reflectors for all of the

transmit bandwidths used in the experiment.

Figures 2.19-2.21 compare regularized restoration and sparse reconstruction results di-

rectly, without adjusting the scale in the narrowband case. This shows a considerable im-

provement for the sparse reconstruction technique, as both an increase in reconstructed

signal magnitude and a decrease in noise magnitudes are clearly visible for all transmit

bandwidths. The results are most dramatic in the narrowband transmit results but are still

significant when using a wideband transmit signal. We show a comparison of resolution in

the 600-800kHz transmit case in Figure 2.22. This graph shows a much more rapid increase

in the sparse reconstruction towards the maximum energy on the interval than either of the

other techniques. This example is consistent with what we expect for this target type at this

frequency range over the interval, as we expect it to resemble an impulse (or few impulses)

from reflection on the front face of the sphere. Thus the energy should spike at locations
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Figure 2.13: 600-800kHz Transmit, Spherical Target

of impulses. Regularized restoration shows an initial increase in the concentration of energy

over matched filtering, but the large amount of noise at this parameter selection impacts the

concentration of energy as the interval size increases towards the maximum.

Results for a cylindrical target in Figures 2.23-2.31 are similar to the results discussed

for the spherical target. In this case, there is a surface reflection near 15” (Path 1), direct

target scattering in 23”-27” (Path 2), and multipath returns (Path 3) after that. The axes for

Figures 2.24 and 2.27 are adjusted for greater visibility of the regularized restoration. As the

bandwidth increases, the three outputs become more similar, as more frequency information

is contained within the data, so less needs to be recovered or extrapolated.

Although the sparse reconstruction results have a noticeable increase in the quality of

the reconstruction, they also take considerably longer to process. Matched filtering and

regularized restoration both took approximately 0.001s to process this experimental data on

an Intel Core i5 processor. The sparse reconstruction algorithm took approximately 18.5s

to process with the given parameter settings. These values can vary based on the size of

the data and optimization of the code, but the sparse reconstruction will always take much

longer to complete. The increase in processing time can be somewhat mitigated by relaxing
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Figure 2.14: 660-740kHz Transmit, Spherical Target (Axes adjusted for Regularized Restora-
tion)

some of the parameter selections (particularly the interval T in the majorization code (2.3)),

but this can also lead to a decrease in algorithm performance as it moves the solution away

from the `1 solution.

2.4 Conclusions

We developed and tested a sparse reconstruction algorithm on one-dimensional sonar

data using high-frequency chirp transmit signals. Using simulation data, we showed how this

method can recover bandwidth that can be lost with other reconstruction techniques without

amplifying the noise. We then tested the algorithm on tank data and showed significant noise

reduction and improved resolution over both matched filtering and regularized regularization

results. This was accomplished with no specifications in the algorithm for a desired target

type. Specific knowledge of desired target types could improve the results even further within

the same framework. The time required to process the sparse algorithm is much longer than

matched filtering or regularized restoration, so it is not a replacement for matched filtering

or regularized restoration when rapid detection is the priority. It is well suited for extracting
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Figure 2.15: 400-1000kHz Transmit, Spherical Target

additional information from previously collected data sets, as well as in improving results

in situations where minimizing the number of active transmits or using narrow transmit

bandwidths is prioritized over speed.
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Figure 2.16: 600-800kHz Transmit, Spherical Target, Zoomed on Target

Figure 2.17: 660-740kHz Transmit, Spherical Target, Zoomed on Target (Axes adjusted for
Regularized Restoration)
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Figure 2.18: 400-1000kHz Transmit, Spherical Target, Zoomed on Target

Figure 2.19: 600-800kHz Transmit, Spherical Target, Zoomed on Target, Same Axes

28



Figure 2.20: 660-740kHz Transmit, Spherical Target, Zoomed on Target, Same Axes

Figure 2.21: 400-1000kHz Transmit, Spherical Target, Zoomed on Target, Same Axes
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Figure 2.22: Resolution Comparison, 600-800kHz Transmit, Spherical Target

Figure 2.23: 600-800kHz Transmit, Cylindrical Target
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Figure 2.24: 660-740kHz Transmit, Cylindrical Target, (Axes adjusted for Regularized
Restoration)

Figure 2.25: 400-1000kHz Transmit, Cylindrical Target
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Figure 2.26: 600-800kHz Transmit, Cylindrical Target, Zoomed on Target

Figure 2.27: 660-740kHz Transmit, Cylindrical Target, Zoomed on Target, (Axes adjusted
for Regularized Restoration)
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Figure 2.28: 400-1000kHz Transmit, Cylindrical Target, Zoomed on Target

Figure 2.29: 600-800kHz Transmit, Cylindrical Target, Zoomed on Target, Same Axes
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Figure 2.30: 660-740kHz Transmit, Cylindrical Target, Zoomed on Target, Same Axes

Figure 2.31: 400-1000kHz Transmit, Cylindrical Target, Zoomed on Target, Same Axes
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Figure 2.32: Resolution Comparison, 600-800kHz Transmit, Cylindrical Target
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Chapter 3

Blind Deconvolution of One-Dimensional Returns

3.1 Introduction

In many sonar applications, the transmit signal is unreliable for accurate processing

when using deconvolution-based processing. An unreliable transmit can result from a lack

of recorded replica, inaccurately recorded replica, or additional signal degradation before

transmission or through the water. When using a matched filter to process, the lack of

an accurate replica can be relatively unimportant (in the case of additive Gaussian noise).

Matched filtering is robust to this noise in both the transmit and recorded returns, so the

lack of accuracy creates very little error in the output. When using regularized restoration,

however, inaccuracies in the transmit description can create significant errors in the output.

Inconsistencies with the phase can create problems for both reconstructions.

Instead, we seek to use the recorded data to simultaneously estimate the in-water trans-

mit and interrogated scene information. We begin by assuming a sparse representation of

the interrogated scene. Sparse reconstruction techniques have gained popularity in recent

years for a large range of applications. An overview of some of these methods for image

processing and radar can be found in [7] and [8], respectively. The applications are varied,

but include through-the-wall radar imaging [10], synthetic aperture radar imaging [12], 3D

sonar imaging [13], and synthetic aperture imaging applications [14, 15, 16]. In addition to

the sparsity assumption, we will also require either an analytic transmit description or a

recorded replica. This will create an additional term in the reconstruction equation corre-

sponding to transmit consistency. This is justified because the in-water signal should bear

some resemblance to the given description (either analytic or recorded replica), or none of the

processing would be successful. This makes it a problem of semi-blind deconvolution. Blind
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deconvolution is the process of simultaneously estimating two unknown, convolved signals.

This case is semi-blind because we have a description of one of the signals, which bounds

the range of credible solutions for that signal. By using this technique we can obtain a more

accurate representation of the interrogated scene, since the transmit is allowed to change to

a more accurate description during the processing. We also obtain a final representation of

the in-water signal that can then be used in place of a replica for future processing. One

can then modify the processing by either continuing to use the semi-blind deconvolution

formula with a better initial estimate or by using faster processing methods with the new,

more accurate transmit description. This approach allows for a great degree of control over

the required processing time and level of accuracy.

Blind deconvolution techniques have been researched primarily in the context of image

processing such as in [25, 26, 27, 28, 29]. They have also seen some use in acoustic systems,

such as in [30]. Our approach is semi-bind deconvolution because we begin with a description

of one of the signals- but believe it to be corrupted from the signal that is transmitted.

Other semi-blind deconvolution applications include archaeological magnetic prospecting

[31], Glottal flow estimation [32], and magnetic resonance force microscopy [33]. This setup

gives us more information to work with than traditional blind deconvolution algorithms,

which will restrict the solutions to realistic estimates.

Note that the simplest solution to this problem would be to record accurate replicas

with each data collection. However, this can be problematic, as it may require a change in

hardware and possibly the data acquisition process. This is also not a perfect solution, as

noise in the recording, hydrophone inaccuracies, and environmental changes can still create

errors in the replica which are then compounded in deconvolution-based processing.
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3.2 Reconstruction Algorithm

We assume a high-frequency, discretely sampled sonar model with a modified transmit

signal

r = T (x+ n1) ∗ s+ n2 (3.1)

where x is the analytic transmit signal, T is some transformation on x (such as from a

nonideal transducer frequency response, platform movement/Doppler) ∗ represents linear

convolution, s is the interrogated scene, n1 and n2 are noise processes, and r is the recorded

return. Even in the simple case of r = x ∗ s, this problem is ill-posed when assuming both x

and s are unknown. In the frequency domain, this is equivalent to solving X(k)S(k) = R(k)

for 1 < k ≤M , when only R is known. This yields M equations, each with an infinite number

of solution pairs. We restrict our solutions by assuming that s has a sparse representation in

some basis, and that the transmit signal x is a degraded form of a given transmit description

x0.

We begin with a basic sparse reconstruction equation to promote a sparse scene output

with a known transmit signal.

ŝ = arg min
s∈Rn

{||Xs− r||22 + α||As||1} (3.2)

This equation can be viewed as the computationally tractable convex relaxation of the un-

derlying sparsifying `0-norm deconvolution problem. We maintain this underlying sparsity

model in the scene so that we can continue to reconstruct s under the same sparsity assump-

tion but add a term to maintain consistency with the given transmit description x0. This

gives the equation

(x̂, ŝ) = arg min
x∈Rm,s∈Rn

{||x ∗ s− r||22 + α||As||1 + β||x− x0||22} (3.3)
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The scene estimate will maintain consistency with the convolution model and also promote

sparsity in the A basis based on parameter selection α. The transmit estimate x̂ will also

maintain consistency with the convolution model and retain similarities with x0 based on

parameter selection β. The use of the `2 norm for transmit consistency with x0 is primarily

for speed of computation. With specific knowledge of the way that the transmit signal has

degraded, a better predictor model could conceivably be implemented instead of `2-norm

consistency with a given description.

We use a gradient method to find the minimizers (x̂, ŝ) of (3.3). The gradient in s is

the same as that of (3.2), since the transmit consistency term does not depend on s. There

are a variety of ways to approximate the solution to this sparse model. We find ŝ by using

a majorization approximation method outlined in [23]. This problem is then reduced to a

sequence of quadratic problems with a closed-form solution at each iteration. This method

allows us to compute ŝ quickly, which is particularly important since it needs to be computed

many times while updating x̂.

To find x̂, we need to take the gradient in x. The `1 sparsity term for s is eliminated

and the problem is greatly simplified. The estimate x̂ can be computed directly with Fourier

transforms and is defined as

x̂ = F−1
{S(ω)R(ω) + βX0(ω)

|S(ω)|2 + β

}
(3.4)

where capital letters denote Fourier transforms of their lowercase counterparts.

The algorithm begins with initial estimates for x and s, then alternately updates each

estimate with every iteration until the minimum is achieved. We can exploit the speed of

calculating the gradient in x to significantly speed up the computation of the entire method.

By running relatively few iterations in the s majorization algorithm, then finding the direct

minimum in x, and alternating between these, we can more rapidly approach the global
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minimum without adding significant processing time that would be required by a large

number of iterations on s.

We also use regularized restoration both as a comparison with the semi-blind scene

estimate and to show the improvements possible with using the updated transmit signal for

additional processing. This is given by

min
s∈Rn
{||Xs− r||22 + γ||Bs||22} (3.5)

where B is a regularization filter. Note that this is very similar to (3.2), but we replace the

`1 norm with an `2 norm. We can solve this directly with Fourier transforms, which gives

the following result:

ŝ`2 = F−1
{ X(ω)R(ω)

|X(ω)|2 + γ|B(ω)|2
}

(3.6)

where capital letters denote the Fourier transforms of the lowercase counterparts. Observe

that when γ = 0 this is an inverse filter. When B = I and γ is large, this is equivalent to

matched filtering with a constant scale factor.

3.2.1 Method Summary

1. Find initial estimates for both the scene and transmit. We can use either a transmit

replica or analytic transmit description as the initial transmit estimate. We can find an

initial scene estimate using (3.6) with the known return and initial transmit estimate.

2. Choose the sparsifying basis A for s. We chose a sparse identity for our examples

since spherical and cylindrical targets at high frequencies resemble clusters of point

reflectors.

3. Choose parameters α and β, which control the trade-offs between data consistency,

sparsity of As, and transmit consistency with x0. We used α = 10−1 and β = 10−3 for

the experimental data.
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4. Alternately minimize with respect to each variable. The minimum in x is a single

calculation, while the minimum in s requires an iterative process.

5. Obtain a new transmit estimate x̂ and a new scene estimate ŝ as outputs of the algo-

rithm.

3.3 Results

3.3.1 Simulation Results

We begin by showing reconstruction errors incurred by using incorrect transmit signals

with noisy data. Independent, identically distributed (i.i.d.) Gaussian noise was added to

both the transmit signal, a 10-20kHz LFM chirp, and the return signal. We use a centered

impulse target as an example throughout this section. Reconstructions were performed using

the ideal signal description using matched filtering and regularized restoration techniques.

We compare matched filtering and regularized restoration at 15 dB total SNR and 5 dB total

SNR.

Figure 3.1: Matched Filter mismatch, 15 dB SNR
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Figure 3.2: Matched Filter mismatch, 5 dB SNR

Figures 3.1 and 3.2 show matched filtered reconstructions using both the actual, noisy

transmit and the ideal transmit description that did not include the noise. There is little

difference between the reconstructions at both 15 dB SNR and 5 dB SNR. Figures 3.3 and

3.4 show the same experiment, but using regularized restoration instead of matched filtering.

There is a much more pronounced difference between using the actual transmit and using

the noiseless initial transmit description. There is a significant performance improvement

when the correct transmit signal is known in its entirety. This observation motivates our

use of semi-blind deconvolution to allow the transmit signal to change to a more accurate

representation.

In Figures 3.5-3.9, we took the same noisy simulation data and ran our semi-blind

deconvolution algorithm using only the return r and the noiseless transmit description x0 as

inputs. We used A = I, α = 10, and β = .01 for (3.3).

Figure 3.5 shows the semi-blind deconvolution scene output, regularized restoration

with the analytic (noiseless) transmit description, regularized restoration with the actual

(noisy) transmit description, and regularized restoration with the semi-blind deconvolution

transmit output at 15 dB SNR. The semi-blind deconvolution scene output does the best
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Figure 3.3: Regularized Restoration Mismatch, 15 dB SNR

at reconstructing the original impulse target. Regularized restoration with the analytic

transmit has a noticeable decrease in magnitude of the impulse, along with some spreading

of the energy and some noticeable noise. Regularized restoration with the actual transmit

and the estimated transmit both do very well at reconstructing the impulse with some minor

visible noise throughout.

Figure 3.6 compares the frequency magnitudes of the transmit signals. The leftmost

plot (analytic transmit) is the input to the semi-blind deconvolution algorithm, while the

middle plot (estimated transmit) is the transmit output of the algorithm. The transmit

estimate fills out the frequency content that was added to the analytic transmit. This makes

it much more accurate when used in additional processing. Figures 3.7 and 3.8 show the

same comparisons at 5 dB SNR. Regularized restoration with the analytic transmit suffers

even more at this point, while the other methods maintain stable results. The estimated

transmit fills out the frequency content to more closely match the actual transmit, as in the

15 dB SNR case.

Figure 3.9 shows another example at 5 dB SNR, but this example was done using a lower

regularization parameter in the regularized restoration algorithm. In this case, regularized
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Figure 3.4: Regularized Restoration Mismatch, 5 dB SNR

restoration with the analytic transmit description is unrecognizable as an impulse, while

regularized restoration with the actual and estimated transmits are largely unchanged from

Figure 3.7. Using the semi-blind deconvolution technique has added stability to regularized

restoration processing, since it has filled out the frequency information. Much of the recon-

struction error caused by using the analytic transmit for the regularized restoration is due to

dividing by very low frequency magnitude values in the transmit, which causes the noise in

the return to get amplified. Since the transmit estimate fills in much more of that frequency

content, it no longer amplifies the noise in the return as much as in the analytic signal.

This is particularly important if the return signal has significant frequency content outside

of the analytic transmit band (such as from Doppler, resonance, transducer response, etc.),

as these unplanned frequencies can get amplified greatly if the regularization parameter is

not carefully tuned to suppress them.

Error comparisons are shown in Figures 3.10 and 3.11 for SNR values of 15 dB, 10 dB,

and 5 dB, averaged over 1000 trials. These show a consistent pattern of error behavior for

each method. The semi-blind deconvolution scene estimate tends to do the best, followed by
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Figure 3.5: Semi-Blind Deconvolution, 15 dB SNR

regularized restoration with the estimated transmit, then the actual transmit, then the ana-

lytic transmit. Regularized restoration with the estimated transmit outperforms regularized

restoration with the actual transmit because regularized restoration with the actual trans-

mit does not attempt to resolve the additional noise added to the return except through the

regularization parameter (which is the same for all the regularized restorations). The sparse

modeling involved in finding the estimated transmit encourages the estimated transmit out-

put to have a sparser result, which is more accurate to the scene. It is worth noting that the

majority of the error in the scene estimates as the SNR decreases comes from overestimating

the magnitude of the impulse. The additional content from the noise causes the algorithm

to raise the magnitude of the reconstructed impulse, yielding higher error values. It still

succeeds in heavily suppressing values outside of the central impulse.

Figures 3.12 and 3.13 show comparisons of the average resolution of each reconstruc-

tion method. Since the scene is an impulse, all of the energy should be contained in the

single central point, meaning that the graph should reach 1 immediately. The bigger the

interval required to reach a given energy percentage, the worse the resolution of the method.

The semi-blind deconvolution scene estimate and regularized restoration with the transmit
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Figure 3.6: Transmit Comparison, 15 dB SNR

estimate have a clear resolution advantage over regularized restoration with the actual and

analytic transmits. Regularized restoration with the estimated transmit has a better reso-

lution than regularized restoration with the actual transmitin this example. We expect to

see an imperfect reconstruction when using the actual transmit because noise was added to

the scene as well as the transmit. This means that some energy should be spread across the

reconstructed scene. The estimated transmit is not designed to distinguish between the noise

on the signal and the noise on the scene and incorporates both in the estimated transmit in

order to promote a sparse scene estimate.

3.3.2 Experimental Results

The following data was collected at the SSTB at the Naval Surface Warfare Center in

Panama City Beach, Florida. We compare the blind deconvolution scene output s, regu-

larized restoration with the transmit estimate x̂, regularized restoration with an in-water

replica, and regularized restoration with the analytic transmit description. The algorithm

used only the transmit replica and return as inputs in the following examples. Results are

similar when using the ideal description as an input, but the recorded replica is closer to the
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Figure 3.7: Semi-Blind Deconvolution, 5 dB SNR

actual in-water transmit and should thus create fewer errors in the reconstruction. The data

is the same as the previous chapter, so the expected target locations are identical. Thus, we

expect to see reflections from the surface of the water near 15”, the initial specular reflection

near 22.2”, an unknown structural wave (whispering gallery or glory wave) near 22.7”, the

first Rayleigh wave near 22.9”, a reflection of the specular return off of the source near 23.2”,

an unknown structural wave near 23.5”, the second Rayleigh wave near 23.6”, an unknown

structural wave near 23.9”, and a multipath reflection near 30”. Like the previous chapter,

we expect the results to become more similar as the bandwidth increases.

We begin with comparison of analytic, estimated, and replica transmit signals in Figures

3.14-3.16. The leftmost images in these figures are the frequency magnitudes of the analytic

signals, the center images are the frequency magnitudes of the estimated transmit signals, and

the rightmost images are the frequency magnitudes of the recorded replicas of the transmit

signals. Our algorithm maintained consistency with the replicas, which is clear in the figures,

as much of the content remains unchanged in the transmit bands. All of the estimated

transmits have a much higher DC component and larger magnitudes on the higher frequency

content contained in the replicas. This is consistent with results which are discussed more

47



Figure 3.8: Transmit Comparison, 5 dB SNR

in-depth in Chapter 4, for what happened to this transmit replica over a larger distance.

The DC component and higher frequency content grows in magnitude relative to the in-

band content. So while it is difficult to claim that these estimated transmit are definitively

more accurate, the changes that occur are consistent with what what occurs to the transmit

replicas over a larger distance.

Figures 3.17-3.19 give the full range reconstructions from the semi-blind scene estimates,

regularized restoration with the analytic transmits, regularized restoration with the transmit

replicas, and regularized restoration with the semi-blind estimated transmit. Path informa-

tion from 2.12 is the same as the previous chapter, where information resulting from waves

following Path 1 is contained near 15” in range. Information from waves following Path 2 is

contained in the 21”-25” in range, and information from Path 3 is located near 30” in range.

We focus on the direct target information in Path 2 by focusing on the 21”-25” region in

Figures 3.20-3.22. These images show similar improvements in the scene estimate to those

generated in Chapter 2. In addition to this, we also generate regularized restoration results

using an estimated transmit signal. In order to give a fair comparison of this method, we

include Figures 3.23-3.25. These are direct comparisons of all three regularized restorations
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Figure 3.9: Semi-Blind Deconvolution, 5 dB SNR

at all three transmit bandwidths. In each of these examples, the reconstructed reflections

are strongest when using the estimated transmit signal in the regularized restoration. This

increase comes without a noticeable increase in noise over the replica reconstruction (this

only considers the general noise floor present throughout, as we cannot accurately measure

inaccuracies in the reconstructed signal arising from this technique). Regularized restora-

tion with the estimated transmit maintains much more structural information and a larger

increase in magnitude in the narrowband case. We can see a visible separation between the

unknown structural wave near 22.7” and the first Rayleigh wave near 22.9”. This separation

is much more difficult to spot in both of the other regularized restoration reconstructions

when using the narrow bandwidth transmits. Overall, this makes regularized restoration

with the estimated transmit more desirable for classification purposes, as target features are

more easily identifiable.

Figure 3.26 gives a resolution comparison using the spread of energy as the interval size

increases from a central point. This comparison is more difficult to analyze than previous

versions because the first point does not contain the majority of the energy. The blue line

represents the semi-blind deconvolution scene estimate. While it appears to have lower values

49



Figure 3.10: Average MAE Values of Reconstructions

initially, we actually look for large jumps to represent impulse-like behavior. Thus, while

the energy content at the initial point isn’t particularly high relative to the total energy,

it has only a few impulse-like jumps towards the maximum. We see some similar behavior

from regularized restoration with the estimated and replica transmits. They tend to follow

the semi-blind curve, but in a smoother fashion. Regularized restoration with the analytic

transmit has higher energy concentration than all techniques near the start, but the steadily

sloping behavior indicates a gradual accumulation of energy as the interval increases.

Results for a cylindrical target in Figures 3.27-3.39 are similar to the results discussed

for the spherical target. The estimated transmits were altered somewhat more than their

spherical counterparts in Figures 3.14-3.16. This is because the blind deconvolution has a

dependence on the given return information for the output. The majority of the changes are

consistent with the spherical examples, which are justified for the same reasons as above,

but there is some error inherent in using a single target for this technique. This indicates

that the best method for attaining an accurate in-water estimate would likely come from

averaging the estimated transmit signals over several data collections. The reconstructions in

Figures 3.30-3.38 have similar results to the spherical counterparts. The estimated transmit
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Figure 3.11: Average RMSE Values of Reconstructions

yields higher reflection magnitudes relative to the noise. As the bandwidth increases, the

three outputs become more similar. Figure 3.39 is more straightforward than the spherical

resolution comparison. The semi-blind scene output has a clear concentration of energy in

the first .1”, while the other three techniques are all pretty similar using the cylindrical

target.

3.4 Conclusions

We developed and tested a semi-blind deconvolution algorithm on one-dimensional sonar

data using high-frequency chirp transmit signals. We showed how this method can recover

bandwidth with the scene estimate as well as generate a transmit estimate that is more

accurate for deconvolution-based processing. We tested this algorithm on tank data and

showed resolution improvement over regularized restoration with the analytic description

as well as the recorded replica. One of the weaknesses of this method is in the time of

computation. Its implementation requires an iterative process nested in another iterative

process. This makes it ill-suited for situations where time is the priority. This has some

flexibility, however, as it can be run once (or averaged over several times) in advance to find
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Figure 3.12: Average Energy Concentration in Increasing Intervals from the Center, 15 dB
SNR

an accurate estimate of the transmit description. This transmit estimate can then be used

in place of a recorded replica or analytic signal in later processing without sacrificing any

additional time after the initial processing. This model is also limited in the type of signal

degradation it can correct for. Using the ||x − x0||2 term in the reconstruction equation

is computationally efficient, but it will severely penalize large deviations from the transmit

description. In particular, this will make it difficult for the new transmit estimate to add

or remove significant frequency content outside of the given description. This makes this

method poorly suited for dealing with Doppler shifts, resonances, or aliasing effects that add

or remove frequencies from the in-water transmit. With specific knowledge of the transmit

signal degradation in the system, a more specific model could be designed and implemented

in a similar framework to improve the results.
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Figure 3.13: Average Energy Concentration in Increasing Intervals from the Center, 5 dB
SNR

Figure 3.14: 600-800kHz Transmit, Estimate using Spherical Target
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Figure 3.15: 660-740kHz Transmit, Estimate using Spherical Target

Figure 3.16: 400-1000kHz Transmit, Estimate using Spherical Target
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Figure 3.17: 600-800kHz Transmit, Spherical Target

Figure 3.18: 660-740kHz Transmit, Spherical Target
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Figure 3.19: 400-1000kHz Transmit, Spherical Target

Figure 3.20: 600-800kHz Transmit, Spherical Target, Zoomed on Target
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Figure 3.21: 660-740kHz Transmit, Spherical Target, Zoomed on Target

Figure 3.22: 400-1000kHz Transmit, Spherical Target, Zoomed on Target
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Figure 3.23: 600-800kHz Transmit, Spherical Target, Zoomed on Target, Regularized
Restoration Comparison

Figure 3.24: 660-740kHz Transmit, Spherical Target, Zoomed on Target, Regularized
Restoration Comparison
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Figure 3.25: 400-1000kHz Transmit, Spherical Target, Zoomed on Target, Regularized
Restoration Comparison

Figure 3.26: Resolution Comparison, 600-800kHz Transmit, Spherical Target
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Figure 3.27: 600-800kHz Transmit, Estimate using Cylindrical Target

Figure 3.28: 660-740kHz Transmit, Estimate using Cylindrical Target
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Figure 3.29: 400-1000kHz Transmit, Estimate using Cylindrical Target

Figure 3.30: 600-800kHz Transmit, Cylindrical Target
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Figure 3.31: 660-740kHz Transmit, Cylindrical Target

Figure 3.32: 400-1000kHz Transmit, Cylindrical Target
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Figure 3.33: 600-800kHz Transmit, Cylindrical Target, Zoomed on Target

Figure 3.34: 660-740kHz Transmit, Cylindrical Target, Zoomed on Target
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Figure 3.35: 400-1000kHz Transmit, Cylindrical Target, Zoomed on Target

Figure 3.36: 600-800kHz Transmit, Cylindrical Target, Zoomed on Target, Regularized
Restoration Comparison
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Figure 3.37: 660-740kHz Transmit, Cylindrical Target, Zoomed on Target, Regularized
Restoration Comparison

Figure 3.38: 400-1000kHz Transmit, Cylindrical Target, Zoomed on Target, Regularized
Restoration Comparison
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Figure 3.39: Resolution Comparison, 600-800kHz Transmit, Cylindrical Target
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Chapter 4

Distance-Based Reconstruction

4.1 Introduction

In any sonar application where information is desired over a range of distances, a single

replica will be insufficient to properly process using deconvolution techniques. If the primary

processing is matched filtering, then this is likely not a problem. This is because matched

filtering can be represented by a single multiplication in frequency. Thus, in the simple case

of spreading attenuation, a scale factor on the transmit signal just yields a scale factor on

the scene reconstruction. A simple scaling on the reconstructed scene can then compensate

for the attenuation over distance of the transmit signal. Even when the degradation is

more severe, matched filtering is a very robust method that is only slightly altered by many

of the more severe changes that can occur. Matched filtering is inherently limited in the

quality of reconstruction, however, as it is strictly bandlimited and distorts the reconstructed

frequency content. More information can potentially be obtained by using a deconvolution-

based technique, which attempts to restore the frequency content more accurately. While

still bandlimited, the effective bandwidth of the filter is wider than that of matched filtering,

so more information is retained. The increased bandwidth comes at the cost of increased

noise sensitivity, as reconstruction is attempted on lower strength frequency content. These

frequency bands can have signal strength much closer to the level of noise in the return

signal, which affects the quality of reconstruction.

We will consider the specific method of deconvolution known as regularized restora-

tion. This technique has a term for deconvolution as well as a regularization term which

can reduce reconstruction in very low strength frequency bands. In this case, even a simple

change in scaling due to spreading can have a larger impact on the reconstructed scene. A
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scale factor on the transmit is equivalent to both a scale factor on the output as well as

a change in the regularization parameter. This means that even a very basic inaccuracy

in the transmit signal can have a significant impact in the reconstructed frequencies of the

scene. Frequency-dependent degradation can have an even greater impact on the reconstruc-

tion, as the transmit description more directly impacts the reconstructed frequencies of the

scene. Changing the transmitted frequencies (such as in the case of Doppler, resonance, etc.)

can greatly alter the reconstruction. Having an accurate transmit description can greatly

decrease the level of error in the reconstruction using this method.

We chose a method to adaptively estimate the transmit signal at multiple distances

using a semi-blind deconvolution method. We begin with a description of the transmit at or

near the source. This can either be the analytic description used to generate the transmit

or a recorded replica. We then use that description, along with a portion of the return

data nearest the source, to generate estimates on both the scene and transmit description

in this region. We then move along to a farther distance and repeat the process using the

updated transmit estimate from the previous step. This allows us to obtain estimates of

the transmit signal at a variety of distances based on the return data. We can then use the

transmit signals to rebuild the scene at a variety of distances and combine the results for a

more accurate total reconstruction. As an added benefit, this method also outputs sparse

representations of the scene at the same distances.

In many sonar applications, the transmit signal is unreliable for accurate processing

when using deconvolution-based processing. An unreliable transmit can result from a lack

of recorded replica, inaccurately recorded replica, or additional signal degradation before

transmission or through the water. When using a matched filter to process, the lack of an

accurate replica is relatively unimportant. Matched filtering is robust to noise in both the

transmit and recorded returns, so the lack of accuracy creates very little error in the output.

When using regularized restoration, however, inaccuracies in the transmit description can

create significant errors in the output.
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Instead, we seek to use the recorded data to simultaneously estimate the in-water trans-

mit and interrogated scene information. We begin by assuming a sparse representation of

the interrogated scene. Sparse reconstruction techniques have gained popularity in recent

years for a large range of applications. An overview of some of these methods for image

processing and radar can be found in [7] and [8], respectively. The applications are varied,

but include through-the-wall radar imaging [10], synthetic aperture radar imaging [12], 3D

sonar imaging [13], and synthetic aperture imaging applications [14, 15, 16]. In addition to

the sparsity assumption, we will also require either an analytic transmit description or a

recorded replica. This will create an additional term in the reconstruction equation corre-

sponding to transmit consistency. This is justified because the in-water signal should bear

some resemblance to the given description (either analytic or recorded replica), or none of the

processing would be successful. This makes it a problem of semi-blind deconvolution. Blind

deconvolution is the process of simultaneously estimating two unknown, convolved signals.

This case is semi-blind because we have a description of one of the signals, which bounds

the range of credible solutions for that signal. By using this technique we can obtain a more

accurate representation of the interrogated scene, since the transmit is allowed to change to

a more accurate description during the processing. We also obtain a final representation of

the in-water signal that can then be used in place of a replica for future processing. This can

modify the processing by either continuing to use the semi-blind deconvolution formula with

a better initial estimate, or by using faster processing methods with the new, more accurate

transmit description. This allows for a great degree of control over the required processing

time and level of accuracy.

Blind deconvolution techniques have been researched primarily in the contexts of image

processing [26, 27, 28, 29] and communications [34, 35, 36]. They have also seen some use in

sonar applications, primarily in passively detecting unknown signals collected from an un-

known scene. Our approach is semi-bind deconvolution because we begin with a description
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of one of the signals but believe it to be distorted in some way from the signal that is trans-

mitted. This gives us more information to work with than traditional blind deconvolution

algorithms, so our approach restricts the solutions to realistic estimates.

Note that the simplest approach to solve this problem could be to record accurate

replicas with each data collection. This can be problematic, as it may require a change in

hardware and possibly the data acquisition process. This is also not a perfect solution, as

noise in the recording, hydrophone inaccuracies, and environmental changes can still create

errors in the replica which can be reflected in deconvolution-based processing. In addition,

these changes can vary with distance traveled as the transmitted signal propagates out to

the scene and then is reflected back to the receiver.

4.2 Reconstruction Algorithm

We assume a high-frequency, discretely sampled sonar model with a modified transmit

signal

r = T (x+ n1) ∗ s+ n2 (4.1)

where x is the analytic transmit signal, T is some distance-dependent transformation on x

(such as Doppler, dispersive medium, absorption effects, etc.), ∗ represents linear convolu-

tion, s is the interrogated scene, n1 and n2 are noise processes, and r is the recorded return.

Even in the simple case of r = x ∗ s, this problem is ill-posed when assuming both x and s

are unknown. In the frequency domain, this is equivalent to solving X(k) ∗ S(k) = R(k) for

1 < k ≤ M , when only R is known. This yields M equations, each with an infinite number

of solution pairs. We restrict our solutions by assuming that s has a sparse representation in

some basis and that the transmit signal x is a degraded form of a given transmit description

x0.

We then divide up the return and scene information into m pieces such that

ri = Ti(x+ n1,i) ∗ si + n2,i (4.2)

70



We do this because we are assuming that a portion of the transformation T is dependent

on distance. We seek to estimate the transformed transmit at each successive distance, thus

improving the reconstruction as the signal degrades further.

We begin with a basic sparse reconstruction equation to promote a sparse scene output

with a known transmit signal.

ŝ1 = arg min
s1∈Rn

{||Xs1 − r1||22 + α||As1||1} (4.3)

This equation can be viewed as the computationally tractable convex relaxation of the un-

derlying sparsifying `0-norm deconvolution problem. We maintain this underlying sparsity

model in the scene so that we can continue to reconstruct si under the same sparsity as-

sumption, but add a term to maintain consistency with the given transmit description x0.

This gives the equation

(x̂i, ŝi) = arg min
xi∈Rm,si∈Rn

{||xi ∗ si − ri||22 + α||Asi||1 + β||xi − xi−1||22} (4.4)

Thus, the first iteration begins at i = 1, and uses the given transmit description x0 as the

transmit consistency term. Ideally, this should either be defined as a replica recorded within

the distance range defined by r1 or the analytic transmit description. The scene estimate will

maintain consistency with the convolution model and also promote sparsity in the A basis

based on parameter selection α. The transmit estimate x̂i will also maintain consistency

with the convolution model and retain similarities with xi−1 based on parameter selection

β. We change the transmit consistency with distance because we assume that the transmit

is degrading further with distance. Thus, if we find an estimate for the transmit at one

distance, it will be closer to the estimate at the next distance than the original transmit

description. The use of the `2 norm for transmit consistency with xi−1 is primarily for speed

of computation. With specific knowledge of the way that the transmit signal has degraded,
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a better predictor model could be implemented instead of `2-norm consistency with a given

description.

We use a gradient method to find the minimizers (x̂i, ŝi) to (4.4). The gradient in si

is the same as that of (4.3), since the transmit consistency term does not depend on si.

There are a variety of ways to approximate the solution to this sparse model. We find ŝi by

using a majorization approximation method outlined in [23]. This reduces the problem to a

sequence of quadratic problems with a closed-form solution at each iteration. This allows us

to compute ŝi quickly, which is particularly important since it needs to be computed many

times while updating x̂i.

To find x̂i, we need to take the gradient in xi. The `1 sparsity term for si is eliminated

and the problem is greatly simplified. The estimate x̂i can be computed directly with Fourier

transforms and is defined as

x̂i = F−1
{Si(ω)Ri(ω) + βXi−1(ω)

|Si(ω)|2 + β

}
(4.5)

where capital letters denote Fourier transforms of their lowercase counterparts.

The algorithm begins with initial estimates for xi and si, then alternately updates each

estimate with every iteration until the minimum is achieved. We can exploit the speed of

calculating the gradient in xi to significantly speed up the computation of the entire method.

By running relatively few iterations in the si majorization algorithm, then finding the direct

minimum in xi, and alternating between these, we can more rapidly approach the global

minimum without adding significant processing time required of a large amount of iterations

in si.

We complete this process sequentially for all values of i in order to obtain scene and

transmit estimates at each desired distance.

We also use regularized restoration as a way to find an initial scene estimate, to compare

with the semi-blind scene estimate, and to show the improvements possible with using the
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updated transmit signal for additional processing. This is given by

min
si∈Rn
{||Xisi − ri||22 + γ||Bsi||22} (4.6)

where B is a regularization filter. Note that this is very similar to (3.2), but we replace the

`1 norm with an `2 norm. We can solve this directly with Fourier transforms, which gives

the following result:

ŝi`2 = F−1
{ Xi(ω)Ri(ω)

|Xi(ω)|2 + γ|B(ω)|2
}

(4.7)

where capital letters denote the Fourier transforms of the lowercase counterparts. Observe

that when γ = 0 this is an inverse filter. When B = I and γ is large, this is equivalent to

matched filtering with a constant scale factor.

4.2.1 Regularized Restoration Amplitude Correction

At the most basic level, this algorithm should compensate for amplitude changes (such

as from attenuation) from the source. While the impact on matched filtering would simply

be a scale factor, this change can have more pronounced effects on the results of regularized

restoration processing. We begin with a simplified form of (4.2), where the transformation

is simply a constant scale factor. We consider correcting for the scaling in the regularized

restoration by scaling X by a constant α inside the regularized restoration formula.

ŝ(t) = F−1
{αX∗(ω)R(ω)

|αX(ω)|2 + γ

}
= F−1

{α2|X(ω)|2S(ω)

α2|X(ω)|2 + γ

}
+ F−1

{ αX∗(ω)N(ω)

α2|X(ω)|2 + γ

}
= F−1

{ |X(ω)|2S(ω)

|X(ω)|2 + γ
α2

}
+

1

α
F−1

{ X∗(ω)N(ω)

|X(ω)|2 + γ
α2

} (4.8)

The first term in (4.8) corresponds to the reconstruction of the scene. It is nearly

identical to a regularized restoration without any constant scaling but now has an effective
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regularization parameter of γ
α2 instead of γ. Since we assume that 0 < α < 1, this represents

an increase in the regularization parameter. This means that at large distances (since an

attenuation/absorption factor will decrease with distance), the regularization parameter will

increase and the reconstruction will prioritize the frequency content that is strong in the

transmit band, while more heavily regularizing outside of this band. The second term corre-

sponds to how the noise is handled in the reconstruction. We can compare this term with the

noise term of a regularized restoration reconstruction that is compensated for attenuation

after the restoration:

r(t) = F−1{αX(ω)S(ω) +N(ω)}

s′(t) = F−1
{X∗(ω)R(ω)

|X(ω)|2 + γ

}
= αF−1

{ |X(ω)|2S(ω)

|X(ω)|2 + γ

}
+ F−1

{X∗(ω)N(ω)

|X(ω)|2 + γ

}
s(t) = F−1

{ |X(ω)|2S(ω)

|X(ω)|2 + γ

}
+

1

α
F−1

{X∗(ω)N(ω)

|X(ω)|2 + γ

}
(4.9)

Thus, the noise contribution is lowered if the attenuation factor is done in the processing

instead of compensating afterwards. So while preemptively correcting for distance effectively

changes the regularization parameter, it also decreases the noise contribution in all cases

over correcting in the reconstruction. We can make these processes identical by changing

the regularization parameter in the preemptively corrected version to γ′ = α2γ. By not

changing this regularization parameter, however, we allow the regularization to increase as

a function of distance in the distance-based reconstruction. This means that we decrease

the noise contribution and more heavily emphasize the strongest transmit frequencies as the

SNR decreases, assuming that the noise is full spectrum and the strength is independent of

the signal strength.
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4.2.2 Method Summary

1. Find initial estimates for both the scene and transmit at the initial distance. We can

use either a transmit replica or analytic transmit description as the initial transmit

estimate. We can find an initial scene estimate at the first distance using (3.6) with

the known return over the the same distance r1 and initial transmit estimate x0.

2. Choose the sparsifying basis A for s. We chose a sparse identity for our examples,

since spherical and cylindrical targets at high frequencies resemble clusters of point

reflectors.

3. Choose parameters α and β, which control the trade-offs between data consistency,

sparsity of Asi, and transmit consistency with xi−1. We used α = 10−1 and β = 10−3

for the experimental data.

4. Alternately minimize with respect to each variable for i = 1. The minimum in xi is a

single calculation, while the minimum in si requires an iterative process.

5. Repeat Step 4 for i = 2 : M , using new initial values xi = x̂i−1, and compute the initial

estimate for si using (3.6) with ri and x̂i−1.

6. Obtain transmit estimates x̂i and scene estimates ŝi for all i as outputs of the algorithm.

The individual estimates ŝi can be combined to form an overall scene estimate s.

4.3 Results

4.3.1 Signal Change over Distance

The following results use data that was collected at the small-scale test bed (SSTB)

at the Naval Surface Warfare Center in Panama City Beach, Florida. This facility uses

high-frequency transmit signals along with small targets to simulate realistic conditions that

correspond in a scaled manner to lower-frequency transmits and larger targets. Transmit

replicas were collected using a moving linear rail at a range of distances from the receiver.
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Figure 4.1: 600-800kHz Transmit, Near Recording (Left) and Far Recording (Right)

Figures 4.1-4.3 show comparisons of the recorded replicas at each frequency band at

the nearest recording distance and farthest recording distance. The most noticeable dif-

ference between them is the attenuation/absorption effects that have significantly reduced

the magnitudes of the original values. In order to compare them in a fair manner, Figures

4.4-4.9 use normalized versions of the transmit signal to mitigate the effects of attenuation

on the reconstruction. These figures show semilog plots of the frequency values contained

in the regularized restoration reconstructions using the near transmit and far transmit on

the same return data. It can be difficult to accurately see the differences in these images, so

Figures 4.7-4.9 show the differences between values in 4.4-4.6. From these figures, it becomes

apparent that while the in-band frequencies are largely unchanged (once attenuation is com-

pensated for), there are higher frequencies that gain in strength as the signal propagates out

from the source. This could be because the far field calculations for this setup were based

on the desired frequency band. If there were higher frequencies present in the transmit,

the far field would be farther than initially calculated. These are represented by a contin-

uous string of primarily negative values in the difference plots. If we examine the relative

magnitude changes of both in-band frequencies and these higher frequencies, we can see in
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Figure 4.2: 660-740kHz Transmit, Near Recording (Left) and Far Recording (Right)

Figures 4.10-4.12 that the higher frequencies appear to grow for a distance before decaying

at roughly the same rate as the in-band frequencies. Note that the higher frequencies are

much lower in magnitude, and thus much more strongly impacted by the noise, which makes

the values jump around significantly more than the in-band frequencies in the graphs. This

behavior is a strong justification for processing signals differently at different distances. The

reconstructions can be improved by making use of the additional frequency content that is

in the signal at farther distances, but is largely unrecorded nearer to the source.

4.3.2 Experimental Results

The following data was also collected at the small-scale test bed (SSTB) at the Naval

Surface Warfare Center in Panama City Beach, Florida. The reconstructions were performed

using the distance-based semi-blind deconvolution algorithm using five divisions of the re-

turn signal. This in turn generated five different transmit estimates over different distances

and five portions of a sparse scene estimate. The sparse scene estimates and regularized

restoration portions were combined to form a single image of the entire interrogated range.
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Figure 4.3: 400-1000kHz Transmit, Near Recording (Left) and Far Recording (Right)

There was no significant movement during the data collection, so Doppler was not consid-

ered in the processing. By using a high-frequency transmit, the scene should appear as point

reflectors from the specular return, followed by separated additional returns from acoustic

waves travelling around and through the target, with multipath returns farther out. We use

a penalty that promotes a sparse identity basis since the scene should resemble clusters of

point reflectors for both target types.

Figures 4.13-4.15 show the reconstructed transmits at the five different distances for

each of the three transmit bands. While much of the content is similar, the DC and higher

frequency content grows as the distance increases. Figures 4.16-4.36 show the full scene recon-

structions (pieced together from five smaller scene reconstructions) for the full distance, while

figures 4.19-4.21 show comparisons of normalized reconstructions of regularized restoration

with the analytic transmit and regularized restoration with the distance estimated transmits

(pieced together to make a single image over the full range). The comparison results were

normalized in order to compensate for the change in magnitude of the reconstruction due

to changing the scaling on the transmit estimate. The full scene includes information from
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Figure 4.4: 600-800kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Comparison of Near Recording (Left) and Far Recording (Right)

a surface bounce, direct reflections from the target and elastic effects, and multipath reflec-

tions. Figures 4.22-4.27 show the same sparse and regularized restoration reconstructions

but are focused on the target characteristics only ( 21”-25”).

Figures 4.28-4.30 show resolution comparisons for reconstructions from each transmit

band. The sparse scene generated from the distance reconstruction has much better resolu-

tion than regularized restoration techniques at 600-800kHz and 660-740kHz transmit bands.

It has a more sparse representation than the other two in the wideband case, but the largest

component is located at a slightly different location, causing it to appear to have more en-

ergy spread. Regularized restoration with the estimated transmits has improved resolution

over regularized restoration at 600-800kHz and 660-740kHz and is roughly the same in the

400-1000kHz example.

Figures 4.31-4.48 are similar to the previous figures but are generated using the cylin-

drical target data. The results in the cylindrical case are similar to those in the spherical

case.
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Figure 4.5: 660-740kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Comparison of Near Recording (Left) and Far Recording (Right)

4.4 Conclusions

We designed and implemented a distance-varying semi-blind deconvolution technique to

simultaneously estimate the scene and transmit signals at various distances. We showed ex-

perimental data of replicas at various distances that supports the need for distance-dependent

processing. We then tested this technique on experimental tank data and showed improve-

ments in the resolution of the images obtained using distance-varying transmit estimates as

well as an increase in the strength of the reconstructed target features relative to the noise.

The algorithm is much slower than matched filtering or traditional regularized restoration,

so it is more suited to post-processing or for extracting information outside of the effective

range of other techniques.
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Figure 4.6: 400-1000kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Comparison of Near Recording (Left) and Far Recording (Right)

Figure 4.7: 600-800kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Difference of Near and Far Recordings
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Figure 4.8: 660-740kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Difference of Near and Far Recordings

Figure 4.9: 400-1000kHz Transmit, Normalized Regularized Restoration Semilog Frequency
Difference of Near and Far Recordings
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Figure 4.10: 600-800kHz Transmit, Attenuation Comparison

Figure 4.11: 660-740kHz Transmit, Attenuation Comparison
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Figure 4.12: 400-1000kHz Transmit, Attenuation Comparison

Figure 4.13: 600-800kHz Transmit, Spherical Target, Transmit Estimates Frequencies
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Figure 4.14: 660-740kHz Transmit, Spherical Target, Transmit Estimates Frequencies

Figure 4.15: 400-1000kHz Transmit, Spherical Target, Transmit Estimates Frequencies
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Figure 4.16: 600-800kHz Transmit, Spherical Target, Sparse Distance Reconstruction

Figure 4.17: 660-740kHz Transmit, Spherical Target, Sparse Distance Reconstruction
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Figure 4.18: 400-1000kHz Transmit, Spherical Target, Sparse Distance Reconstruction

Figure 4.19: 600-800kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison
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Figure 4.20: 660-740kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison

Figure 4.21: 400-1000kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison
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Figure 4.22: 600-800kHz Transmit, Spherical Target, Sparse Distance Reconstruction,
Zoomed on Target Features

Figure 4.23: 660-740kHz Transmit, Spherical Target, Sparse Distance Reconstruction,
Zoomed on Target Features
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Figure 4.24: 400-1000kHz Transmit, Spherical Target, Sparse Distance Reconstruction,
Zoomed on Target Features

Figure 4.25: 600-800kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features
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Figure 4.26: 660-740kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features

Figure 4.27: 400-1000kHz Transmit, Spherical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features
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Figure 4.28: 600-800kHz Transmit, Resolution Comparison for Spherical Target Reconstruc-
tions

Figure 4.29: 660-740kHz Transmit, Resolution Comparison for Spherical Target Reconstruc-
tions
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Figure 4.30: 400-1000kHz Transmit, Resolution Comparison for Spherical Target Recon-
structions

Figure 4.31: 600-800kHz Transmit, Cylindrical Target, Transmit Estimates Frequencies
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Figure 4.32: 660-740kHz Transmit, Cylindrical Target, Transmit Estimates Frequencies

Figure 4.33: 400-1000kHz Transmit, Cylindrical Target, Transmit Estimates Frequencies
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Figure 4.34: 600-800kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction

Figure 4.35: 660-740kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction
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Figure 4.36: 400-1000kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction

Figure 4.37: 600-800kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison
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Figure 4.38: 660-740kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison

Figure 4.39: 400-1000kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison
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Figure 4.40: 600-800kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction,
Zoomed on Target Features

Figure 4.41: 660-740kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction,
Zoomed on Target Features
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Figure 4.42: 400-1000kHz Transmit, Cylindrical Target, Sparse Distance Reconstruction,
Zoomed on Target Features

Figure 4.43: 600-800kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features
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Figure 4.44: 660-740kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features

Figure 4.45: 400-1000kHz Transmit, Cylindrical Target, Normalized Regularized Restoration
Comparison, Zoomed on Target Features
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Figure 4.46: 600-800kHz Transmit, Resolution Comparison for Cylindrical Target Recon-
structions

Figure 4.47: 660-740kHz Transmit, Resolution Comparison for Cylindrical Target Recon-
structions
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Figure 4.48: 400-1000kHz Transmit, Resolution Comparison for Cylindrical Target Recon-
structions
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Chapter 5

Conclusion

5.1 Summary of Work

We designed and implemented a variety of sparsity-based reconstruction techniques to

one-dimensional sonar systems. We began with a sparse reconstruction algorithm for one-

dimensional signals using a LASSO operator that we minimized with a majorization process.

We applied the algorithm to simulated impulses at various noise levels and compared errors

in the reconstructions with traditional sonar processing. We then applied the algorithm to

experimental data obtained from a small-scale test bed (SSTB) and compared the results of

our algorithm to expected results based on wideband matched-filtered data and the known

target physics. The results were generally favorable for our algorithm in terms of resolution

and the ease of identifying notable target features. Unfortunately, our algorithm also sup-

pressed some weaker target features and also took significantly longer to run than traditional

processing.

Once this was successfully implemented, we extended the concept to a case of an unre-

liable transmit description in one-dimensional sonar returns. This led to an algorithm that

incorporated the previous work but also allowed for simultaneous modification of the trans-

mit description using a process of semi-blind deconvolution. We showed a justification for

some errors that can occur when using deconvolution-based processing on a signal generated

using a noisy transmit. We then tested this technique on the same experimental data from

the SSTB with positive results. This algorithm also generated a sparse scene reconstruction

that was comparable to the sparse reconstruction in the previous section, but it also gener-

ated an estimated transmit description available for faster processing speeds. We compared

the sparse reconstruction and regularized restoration with the analytic transmit description,
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recorded replica of the transmit, and estimated transmit description. Regularized restora-

tion with the estimated transmit description gave slightly better results than regularized

restoration with the analytic transmit description and the recorded transmit replica, making

it a promising technique for cases where the transmit is known to be unreliable.

Finally, we extended the semi-blind deconvolution concept to a spatially-varying trans-

mit description. We provided evidence using recorded replicas from the SSTB that the

transmit description can vary significantly from the initial design and that these variations

can vary over distance. We then implemented a spatially-dependent semi-blind deconvolu-

tion algorithm that updated the transmit description based on consistency with the previous

transmit estimate. We tested this on experimental data from the SSTB with positive results.

We showed that this technique can be more effective than regular processing at identifying

key target features in the data.

5.2 Future Research Applications

Much of the current research in sonar target identification focuses on the elastic re-

sponses of the materials. These algorithms were tuned for a sparse representation of the

overall scene, and therefore suppressed some of the elastic effects in the output. A close

analysis and re-tuning of any of the above techniques in regards to improving the identifica-

tion of the elastic target response could be very promising.

In addition, these techniques largely relied on simulations that only incorporated addi-

tive noise. Realistic conditions are more complicated and these techniques (particularly the

semi-blind deconvolutions) could prove effective in countering more complicated phase-type

distortions such as Doppler. Some initial testing with the basic semi-blind deconvolution

algorithm showed promise in mitigating errors created from an unknown Doppler effect in

the return signal.

The semi-blind reconstruction has an underlying assumption of transmit signal distor-

tion, but the current algorithm makes no assumptions on the type of distortion occurring.
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Realistic estimates on known transmit distortions could greatly improve the accuracy of this

reconstruction method. It also uses an `2 penalty on this term for the sake of speed, while a

different penalty might be more appropriate for the situation (such as an `1 penalty). This

could also be extended to the distance-dependent reconstruction if more is known about

what can occur over various distances.

We could potentially improve on all of the reconstructions by optimizing the regulariza-

tion parameters for a specific reconstruction goal. This work did not attempt to find optimal

values for the parameters in the regularized restorations or the sparse reconstruction algo-

rithms. This could be particularly important in the spatially-varying transmit estimation

problem, as we show that the parameter effectively changes at each distance.
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