
Toward Automatic Translation: From OpenACC to OpenMP 4

by

Nawrin Sultana

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 10, 2016

Keywords: GPUs, OpenACC, OpenMP, Translation

Copyright 2016 by Nawrin Sultana

Approved by

Jeffrey Overbey, Assistant Professor of Computer Science and Software Engineering
Anthony Skjellum, Professor of Computer Science and Software Engineering

James Cross, Professor of Computer Science and Software Engineering

Abstract

For the past few years, OpenACC has been the primary directive-based API for pro-

gramming accelerator devices like GPUs. OpenMP 4.0 is now a competitor in this space,

with support from different vendors. In our work, we analyse the feasibility for automatic

conversion from OpenACC to OpenMP 4. We describe an algorithm to convert OpenACC

device directives to OpenMP 4; we implemented this algorithm in a prototype tool and

evaluated it by translating the EPCC Level 1 OpenACC benchmarks. We discuss some of

the challenges in the conversion process and propose what parts of the process should be

automated, what should be done manually by the programmer, and what future research

and development is necessary in this area.

ii

Acknowledgments

I would like to take this opportunity to acknowledge all who helped me in completing

my research.

Firstly, I would like to thank my supervisor Dr. Jeffrey Overbey for his excellent insights

and constant supervision on my research. His ambition and passion for the subject inspired

my motivation. I highly appreciate his extreme attention to detail and continuous feedback.

This work would not have been possible without his constant support and dedication.

I would also like to thank my other committee members, Dr. Anthony Skjellum and Dr.

James Cross, for their support and time to evaluate my research and helping me to graduate

from the University.

I would like to express my deepest gratitude to Galen Arnold from National Center

for Supercomputing Applications for his significant contribution into this work by providing

useful suggestions and resources.

Finally, I thank my fellow student, Alexander Calvert for working with and beside me

during my research.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Statement and Contributions . 2

1.2.1 Target Hardware . 2

1.3 Thesis Outline . 3

2 Background . 4

2.1 History of OpenACC and OpenMP . 4

2.2 CUDA Execution Model . 4

2.3 OpenMP 4 Directives . 6

2.4 OpenACC Directives . 9

3 Translation Considerations . 13

3.1 A Subset of OpenACC . 13

3.2 Considerations in Translation . 13

3.2.1 Work Distribution for Single Loop . 15

3.2.2 Work Distribution for Loop Nests . 16

3.2.3 Reductions Differ Across Compilers 17

3.3 Data Transfer . 17

4 Translation Algorithm and Tool Implementation 20

4.1 Loop Nest Preparation . 21

4.2 Sequential Private/Reduction Removal . 23

iv

4.3 Directive Translation . 24

4.4 Translation Tool . 24

5 Evaluation . 29

6 Related Work . 32

7 Conclusion . 33

Bibliography . 35

v

List of Figures

2.1 CUDA Execution Model [3] . 5

3.1 OpenACC subset grammar accepted by the translation tool. 14

3.2 Vector addition kernel. 15

3.3 Doubly nested loops. 18

3.4 Reduction in nested loop. 19

4.1 Elimination of private and reduction clauses on a sequential loop. 26

4.2 Translation rules from OpenACC to OpenMP 4. 27

4.3 Refactoring Example . 28

5.1 Näıve matrix multiplication. 30

5.2 Execution times for EPCC Level 1 benchmarks on a Tesla K40 (µs). 30

5.3 Execution times for EPCC Level 1 benchmarks on Cray (µs). 31

vi

Chapter 1

Introduction

Directive-based programming of graphics processing units (GPUs) is an emergent tech-

nique as an alternative to using the canonical APIs such as CUDA and OpenCL for program-

ming accelerator devices. Scientific programmers are increasingly turning to directive-based

APIs as they are more concise and declarative. OpenACC has been the standard directive-

based API for scientific programmers targeting NVIDIA GPUs, since it first appeared in

2011. In 2013, OpenMP 4.0 added directives for accelerators and with much similarity to

OpenACC. Both OpenMP 4 and OpenACC have data directives and clauses, and parallelism

directives.

1.1 Motivation

Support of OpenACC and OpenMP is available in commercial compilers from PGI,

Cray, and GCC. Systems like—x86 plus Intel Xeon Phi (Knights) have OpenMP 4 compiler

support while x86 plus NVIDIA GPU or AMD GPU have OpenACC compiler support.

Programmer want to run a code across both systems need two slightly different programs.

The goal is to be able to make a single source base possible for different accelerators.

And the availability of coherent OpenMP and OpenACC implementations is a problem.

Since nearly every compiler supports OpenMP for multicore parallelism, it is reasonable

to expect that the device directives added in OpenMP 4 will eventually supplant OpenACC.

However, that certainly has not happened yet, and given the strong backing for OpenACC

from PGI/NVIDIA, there may continue to be some rivalry between the two specifications.

But Cray recently announced that their support for OpenACC will be frozen at version 2.0,

and future development will focus on OpenMP 4 device directives.

1

In our work, we develop a source-to-source program conversion tool, from OpenACC to

OpenMP 4. For systems that have OpenMP but do not have OpenACC support yet, this

conversion tool could be very useful.

1.2 Thesis Statement and Contributions

Since OpenACC inspired the device directives added in OpenMP 4.0, the two APIs are

quite similar. In many cases, there is a 1–1 mapping between directives. However, there are

some important differences as well.

Our work describes an early effort in automatically translating OpenACC directives into

OpenMP 4 directives for C codes. We make the following contributions:

• We investigate the feasibility of a tool to semi-automatically convert OpenACC code

to use OpenMP 4 device directivess.

• We prototype a tool that automates a large part of the conversion process.

• We evaluate our tool using the EPCC Level 1 benchmarks, along with a few miscella-

neous examples.

• We identify parts of the conversion process where manual intervention is essential.

1.2.1 Target Hardware

We focused on converting OpenACC to OpenMP 4 that targets the same accelerator

device—a Tesla k40 NVIDIA GPU. We used PGI C/C++ 16.1 as our OpenACC compiler,

and we used Clang 3.8 as our OpenMP compiler.

We chose this setup because it allowed us to investigate changes in semantics and per-

formance that result from changing the compiler and API, rather than those that result from

a change in target hardware. However, changing the target hardware in addition to the com-

piler and API introduces additional complexity. Keeping the target hardware fixed allowed

2

us to focus on the differences between OpenACC and OpenMP, rather than differences in

the accelerator devices themselves.

1.3 Thesis Outline

The thesis is outlined as follows:

• Chapter 2 gives a brief history and overview of OpenACC and OpenMP.

• Chapter 3 discusses translation from OpenACC to OpenMP, focusing on complications

that prohibit completely automatic translation.

• Chapter 4 describes our tool and the algorithm it uses to convert OpenACC to OpenMP

device directives.

• Chapter 5 presents empirical data describing the conversion.

• Chapter 6 discusses related work.

• Chapter 7 describes limitations of the current tool and directions for future work.

3

Chapter 2

Background

2.1 History of OpenACC and OpenMP

OpenACC has a short history. It was originally developed by PGI, Cray, and NVIDIA,

with version 1.0 being released in 2011. Version 2.0 was released in 2013, adding support

for procedure calls and nested parallelization (enabled by new CUDA capabilities), among

other features. Version 2.5 was a more minor revision, made in 2015 [1].

OpenMP dates back to the late 1990s, when the OpenMP Architecture Review Board

was formed to develop a specification for directive-based parallelism that could be used com-

monly across multiple vendors’ multiprocessors. The first OpenMP specification was released

for Fortran in 1997 and for C/C++ in 1998. The OpenMP specification has undergone sev-

eral revisions since that time. Notably, version 4.0 added support for accelerators in 2013; an

update to version 4.5 followd in 2015 [2]. The so-called device directives or target directives

added to support this were based on OpenACC. However, as we will see, the two APIs are

not identical.

2.2 CUDA Execution Model

OpenACC and OpenMP device directives are both designed to offload computations

to accelerator devices—massively parallel devices like GPUs and Xeon Phis, designed for

data parallel computations. Each API has its own execution model, which is intentionally

abstract to avoid coupling it to the specifics of any one device.

4

Figure 2.1: CUDA Execution Model [3]

For the purposes of this work, we will only focus on one type of accelerator device:

NVIDIA GPUs. To understand the behavior of OpenACC and OpenMP constructs on these

devices, it is helpful to understand their execution model—the CUDA execution model.

CUDA-capable devices (i.e., NVIDIA GPUs) execute kernels, functions that execute on

the device by running many GPU threads concurrently. Only one kernel executes at a time.

All of the threads in a kernel are collectively called a grid. A grid is comprised of one or

more thread blocks, and each thread block is comprised of one or more threads.

In hardware, each thread block is assigned to one Streaming Multiprocessor (SM). Each

SM consists of several Streaming Processors (SPs); each thread of a thread block is assigned

to one of the SPs within the SM. Thread blocks are divided into 32-thread groups called

warps. Instructions are fetched and executed on a per-warp basis, not on a per-thread basis,

so the 32 threads within each warp execute instructions in single instruction, multiple data

5

(SIMD) fashion. The SM context switches from one warp to another at every instruction

issue (“zero-overhead thread scheduling”), so while threads within a warp execute in lockstep,

threads in different warps may not. Threads within a block can coordinate using barrier

synchronization, whereas threads in different blocks cannot [9].

2.3 OpenMP 4 Directives

OpenMP directives for C/C++ are specified with the #pragma preprocessing directive.

The syntax of an OpenMP directive is informally specified as follows:

#pragma omp directive-name [clause[[,] clause]. . .] new-line

Each directive starts with #pragma omp. The remainder of the directive follows the

conventions of the C and C++ standards for compiler directives. Some OpenMP directives

may be composed of consecutive #pragma preprocessing directives if specified in their syn-

tax. Directives are case-sensitive. An OpenMP executable directive applies to at most one

succeeding statement, which must be a standard block.

The following are the most commonly used OpenMP directives:

Parallel. OpenMP’s fundamental construct is the parallel construct. When a parallel

construct is encountered by a thread, that thread creates a team of new threads, becoming

that team’s master. The threads are assigned numbers, with the master given number 0.

The threads each execute a copy of the parallel region’s code. Once the team is created,

the number of threads in the team remains constant for the duration of that parallel region.

The syntax of parallel construct is as follows:

#pragma omp parallel [clause[[,] clause]. . .] new-line

where clause is one of the following:

if(scalar-expression)

num threads(integer-expression)

default(shared | none)

private(list)

6

firstprivate(list)

shared(list)

copyin(list)

reduction(reduction-identifier : list)

proc bind(master | close | spread)

Loop. Inside a parallel region, a for construct may be specified. A for region is

associated with a for loop, and upon encountering the region, a different thread from the

current team is assigned to each iteration of the for loop. A parallel for region is also defined

as a shorthand for a parallel region containing nothing but a single for region. OpenMP 4.0

adds a similar construct, simd, which divides work of the associated loop up among SIMD

lanes of the current thread.

The syntax of loop construct is as follows:

#pragma omp for [clause[[,] clause]. . .] new-line

where clause is one of the following:

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier : list)

schedule(kind[, chunk size)

collapse(n)

ordered

nowait

All associated for-loops must have canonical loop form.

Target Data. A target data region may be specified as well. A target data region

creates a data environment for execution. It may specify a device clause, which specifies a

7

device to execute the environment on, and a map clause, which specifies a mapping of data

from the host to the device. The syntax of target data construct is as follows:

#pragma omp target data [clause[[,] clause]. . .] new-line

where clause is one of the following:

device(integer-expression)

map([map-type :] list)

if(scalar-expression)

Target Teams. A target teams construct is equivalent to a target construct containing

a teams construct. The target teams construct creates a data environment and a league of

thread teams to execute it. When a thread encounters a teams construct, a league of thread

teams is created and the master thread of each thread team executes the teams region.

The syntax of teams construct is as follows:

#pragma omp teams [clause[[,] clause]. . .] new-line

where clause is one of the following:

num teams(integer-expression)

thread limit(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

reduction(reduction-identifier : list)

Distribute. A distribute construct creates a league of teams and specifies that con-

tained loops will be executed by those teams. It is associated with a loop nest consisting of

one or more loops that follow the directive.

The syntax of distribute construct is as follows:

8

#pragma omp distribute [clause[[,] clause]. . .] new-line

where clause is one of the following:

private(list)

firstprivate(list)

clooapse(n)

dist schedule(kind[,chunk size])

Distribute Parallel Loop. A distribute parallel for construct combines distribute,

parallel, and for construct to specify that a loop can be executed in parallel by multiple

threads in multiple teams. The effect of any clause that applies to both the distribute and

parallel loop constructs is as if it were applied to both constructs separately. The syntax of

distribute parallel loop construct is as follows:

#pragma omp distribute parallel for [clause[[,] clause]. . .] new-line

where clause can be any of the clauses accepted by distribute or parallel loop directives.

2.4 OpenACC Directives

OpenACC has fewer constructs. This is in part because OpenACC is specifically for use

with massively parallel accelerator hardware, where OpenMP supports accelerators as well

as multicore CPUs. However, many of OpenACC’s construct are analogous to OpenMP ones.

In C/C++, OpenACC directives are specified with the #pragma mechanism. The syntax

of an OpenACC directive is:

#pragma acc directive-name [clause[[,] clause]. . .] new-line

Each directive starts with #pragma acc. The remainder of the directive follows the C

and C++ conventions for pragmas. Directives are case-sensitive. An OpenACC directive

applies to the immediately following statement, structured block or loop.

9

Following are some of the commonly used OpenACC constructs:

Parallel. OpenACC also has a parallel construct. A parallel construct, when encountered,

creates gangs of workers to execute the region on the accelerator.One worker in each gang

begins executing the code in the structured block of the construct. The syntax of OpenACC

parallel directive is:

#pragma acc parallel [clause[[,] clause]. . .] new-line

structured block
where clause is one of the following:

if(condition)

async[(scalar-integer-expression)]

num gangs(scalar-integer-expression)

num workers(scalar-integer-expression)

vector length(scalar-integer-expression)

reduction(operator : list)

copy(list) | copyin(list) | copyout(list) | create(list)

present(list)

present or copy(list)

present or copyin(list)

present or copyout(list)

present or create(list)

deviceptr(list)

private(list)

firstprivate(list)

Kernels. The kernels construct specifies a region that is to be divided into a sequence

of kernels for accelerator execution. The loop and shorthand kernels loop are available for

kernels directives as they are for parallel directives.

The syntax of OpenACC kernels directive is:

10

#pragma acc kernels [clause[[,] clause]. . .] new-line

structured block
where clause can be any of the clauses accepted by parallel construct except num gangs,

num workers, vector length, reduction, private, and firstprivate.

Loop. A loop construct is also available, specifying the type of parallelism for the

associated loop. There is also the parallel loop abbreviation, a shorthand for a loop construct

immediately inside a parallel construct.

The syntax of OpenACC loop directive is:

#pragma acc loop [clause[[,] clause]. . .] new-line for loop

where clause is one of the following:

collapse(n)

gang[(scalar-integer-expression)]

worker[(scalar-integer-expression)]

vector[(scalar-integer-expression)]

seq

reduction(operator : list)

independent

private(list)

In a parallel region, a loop directive with no gang, worker or vector clause allows compiler

to automatically select whether to execute the loop across gangs, workers within a gang, or

as vector operations.

Data. A data directive is also defined. It specifies for a region what data should be

copied into the accelerator upon entry to the region and copied out on exit and defines what

data is to be allocated on the device for the duration of the region.

The syntax of OpenACC data directive is:

#pragma acc data [clause[[,] clause]. . .] new-line structured block

11

where clause is one of the following:

if(condition)

copy(list) | copyin(list) | copyout(list) | create(list)

present(list)

present or copy(list)

present or copyin(list)

present or copyout(list)

present or create(list)

deviceptr(list)

A more complete description of these directives is available in the OpenACC specifica-

tion.

12

Chapter 3

Translation Considerations

Our goal was to create a tool to convert OpenACC code to equivalent OpenMP code,

automating as much of the process as possible. For the purposes of prototyping, we focused

on translating C code (as opposed to C++ or Fortran).

3.1 A Subset of OpenACC

For the purposes of prototyping, we designed our tool to accept the subset of Ope-

nACC 1.0 directives described by the grammar in Figure 3.1. This includes all of the di-

rectives and clauses used by the example programs in our test suite (notably, the EPCC

Level 1 benchmarks). While it omits some important features—asynchronous execution,

unstructured data lifetimes, etc.—it does correspond to a useful, commonly-used subset of

OpenACC.

3.2 Considerations in Translation

In theory, the goals of our work are modest: We are interested in translating directives

in OpenACC 1.0 specification [11] (Figure 3.1) to OpenMP 4, targeting the same acceler-

ator devices (NVIDIA GPUs). In theory, the two APIs are very closely aligned, and the

translation should be straightforward.

In practice, the situation is not so simple. The OpenACC and OpenMP specifications

define an abstract execution model. They do not dictate how that model is mapped to specific

hardware devices. This is left to the compiler. Our OpenACC programs were compiled using

PGCC 16.1, the standard commercial compiler for OpenACC. We compiled OpenMP 4 using

a custom build of Clang 3.8 [12] (since PGCC does not yet support OpenMP 4). Again

13

acc-directive → #pragma acc data data-clauses
| #pragma acc parallel par-clauses
| #pragma acc loop type loop-clauses
| #pragma acc update update-clauses

type → gang vector

| gang

| vector

| seq

data-clause → copyin(vars)
| copyout(vars)
| copy(vars)
| create(vars)
| if(condition)
| present(vars)
| present or copy(vars)
| present or copyin(vars)
| present or copyout(vars)
| present or create(vars)

par-clause → num gangs(n)
| vector length(n)
| private(vars)
| firstprivate(vars)
| reduction(reductions)
| data-clause

loop-clause → independent

| private(vars)
| reduction(reductions)
| collapse(n)

update-clause → host(vars)
| device(vars)
| if(condition)

Figure 3.1: OpenACC subset grammar accepted by the translation tool.

14

#pragma acc data copyin(A[0:N], B[0:N]), copyout(C[0:N])

#pragma omp target data map(to:A[0:N], B[0:N]), map(from:C[0:N])

{
#pragma acc parallel loop

#pragma omp target teams distribute parallel for

for (int i = 0; i < N; ++i) {
C[i] = A[i] + B[i];

}
}

Figure 3.2: Vector addition kernel.

Cray’s compilers support both OpenACC and OpenMP. We compiled our test programs

against Cray’s compilers. As we will show, directives that appear similar may be translated

quite differently by the two compilers.

3.2.1 Work Distribution for Single Loop

Perhaps the simplest example of directive-based accelerator code is the vector addition

kernel shown in Figure 3.2. It adds two vectors A and B on an accelerator device, storing the

sum in C. While the directives direct the compiler to parallelize the loop on the accelerator,

the compiler can decide (in this case) how to divide the loop iterations among threads and

thread blocks on the CUDA device. When N = 10000:

• PGCC generates a grid of 79 thread blocks with 128 threads per block; kernel execution

time is about 3 µs on a Tesla K40.

• Clang generates a grid of 15 thread blocks with 1024 threads per block; kernel execution

time is about 30 µs on a Tesla K40. Adding num teams(79) thread limit(128) to

the OpenMP code (to match the grid and block dimensions of the OpenACC code)

actually increases the kernel execution time to about 80 µs.

It is also worth noting that PGCC generates code where all threads are active in all

thread blocks except the last (presumably to minimize control divergence). Clang generates

15

code that assigns an approximately equal number of threads to each thread block, so inactive

threads may be present in several blocks.

3.2.2 Work Distribution for Loop Nests

More important is the handling of loop nests, such as the simple doubly nested loops in

Figure 3.3(a).

In OpenACC, the compiler has some freedom to decide how to parallelize the loop nest.

PGCC will typically run the outermost loop as a gang loop and the innermost loop as a

vector loop. Given the OpenACC code in Figure 3.3(a), the compiler does exactly this: the

iterations of the i-loop are divided among the thread blocks, and the iterations of the j-loop

are divided among the threads within each block. The OpenACC code in Figure 3.3(b) is

functionally equivalent but makes this distribution explicit.

In OpenMP, work distribution is not so automatic. Consider these “obvious” but incor-

rect translations: The #pragma acc parallel loop directive could be replaced by:

• #pragma omp target teams. In this case, the entire loop nest would be run redun-

dantly by all thread blocks.

• #pragma omp target teams distribute. In this case, the iterations of the i-loop

would be divided among thread blocks, but only one thread would be active within

each block.

• #pragma omp target teams distribute parallel for. Here, the iterations of the

i-loop are distributed among threads and thread blocks.

In all three cases, the inner j-loop runs sequentially, because the parallelization directive is

applied to only one loop. OpenMP requires the programmer to explicitly specify how to run

each loop in the nest.

The translation most similar to the OpenACC code is shown in Figure 3.3(c). The

iterations of the i-loop are divided among thread blocks using the distribute directive,

and the iterations of the j-loop are divided among threads in the block using the parallel

16

for directive. OpenACC’s gang clause is roughly equivalent to OpenMP’s distribute:

effectively, it distributes work among thread blocks. Likewise, OpenACC’s vector clause is

roughly equivalent to OpenMP’s parallel for inside a teams region: it distributes work

among threads within a block.

3.2.3 Reductions Differ Across Compilers

In a nested loop, reduction may behave differently in different compiler. Consider the

triply nested loop in Figure 3.4. When input array “data” is initialized to {1, 10, 100, 1000,

10000}:

• PGCC and Cray compilers produce {1, 11, 111, 1111, 11111} which is similar to the

serial output.

• Clang produces {1, 12, 123, 1234, 12345} as output.

We see that in Clang compiler, because of the reduction on tmp in the inner-most loop the

variable tmp never gets initialized to 0. But according to OpenMP specification, a private

copy should be created and initialized with the initializer value of the reduction-identifier in

each implicit task or SIMD lane.

3.3 Data Transfer

In both OpenACC and OpenMP, if data/target data directives are omitted, the com-

piler will automatically determine what data needs to be transferred between the host and

the accelerator. This is another case where compilers may differ. In the vector addition

example (Figure 3.2), consider what happens when A, B, and C are pointers allocated just

before the kernel (in the same function) using malloc. With PGCC, the #pragma acc data

directive can be omitted; it can determine statically that 10,000 elements of A, B, and C

are accessed and thus need to be copied. With Clang, if the #pragma omp target data

directive is omitted, the kernel crashes at runtime (device illegal address).

17

OpenACC (Original):
#pragma acc parallel loop

for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {

...

}
}

(a)

OpenACC (Equivalent):
#pragma acc parallel loop gang

for (int i = 0; i < 10; i++) {
#pragma acc parallel loop vector

for (int j = 0; j < 10; j++) {
...

}
}

(b)

OpenMP 4:
#pragma omp target teams distribute

for (int i = 0; i < 10; i++) {
#pragma omp parallel for

for (int j = 0; j < 10; j++) {
...

}
}

(c)

Figure 3.3: Doubly nested loops.

18

#pragma acc parallel loop gang copyout(result) copyin(data)

#pragma omp target teams distribute map(from:result) map(to:data)

for (int i = 0; i < 1; i++) {
for (int j = 0; i < 5; j++) {

int tmp = 0;

#pragma acc loop vector reduction(+:tmp)

#pragma omp parallel for reduction(+:tmp)

for (int k = 0; k <= j; k++) {
tmp += data[k];

}
result[j] = tmp;

}
}

Figure 3.4: Reduction in nested loop.

19

Chapter 4

Translation Algorithm and

Tool Implementation

In the previous chapter, we showed that OpenACC and OpenMP 4 device directives

handle work distribution differently, and that differences in compilers can have significant

effects on the performance (and correctness) of code. This means that porting from Ope-

nACC to OpenMP 4 will almost certainly involve some manual effort. Nevertheless, much

of the translation is straightforward and tedious, which makes it worth automating.

Therefore, we designed our translation tool—and its underlying algorithm—with the

following objectives:

• The translation should be straightfoward and consistent. Each OpenACC directive

should translate to the same OpenMP directive(s) every time, and the translation

should mirror the structure of the OpenACC code, to the extent possible.

• Automated translation and manual editing should be complementary. The tool should

not try to automate too much. It should not perform loop nest optimizations; it should

not infer implicit data transfers; it should not make any invasive code changes. The tool

should automate the tedious, most obvious parts of the translation, in a completely

predictable way. More sophisticated changes—like performance tuning—should be

under the control of the programmer.

The translation algorithm is as follows. The input is a C source file containing OpenACC

directives. The output is the same file with OpenMP directives substituted.

1. If any of the following occur, warn the user; these structures will not be automatically

converted:

20

• The header file openacc.h is included.

• The macro OPENACC is used.

• Functions in the OpenACC runtime library are called or referenced.

• The kernels directive is used.

2. Prepare parallel loop nests using the algorithm described in §4.1 below.

3. Apply the translation rules described below in §4.3 to convert OpenACC directives to

OpenMP directives.

The #pragma acc kernels directive is effectively a request for automatic paralleliza-

tion; the compiler must decide what loops to parallelize and how. There is no direct equiv-

alent in OpenMP. Thus, our algorithm does not support the kernels directive. Instead,

the programmer should modify the code to explicitly parallelize loops using the parallel

directive.

4.1 Loop Nest Preparation

As noted in §3.2.2 above, OpenACC-to-OpenMP translation is complicated by the fact

that work distribution is explicit in OpenMP, while it may be left to the compiler in Ope-

nACC. We noted that the code in Figure 3.3(a) is equivalent to that in Figure 3.3(b), expect

the latter makes the work distribution explicit.

Before our translation tool attempts to translate any OpenACC directives, it “prepares”

each parallel loop nest as follows.

• If the loop nest contains explicit gang and vector clauses, there must be exactly one

gang loop and exactly one vector loop in the nest. The same loop may be both the

gang and vector loop.

• If the loop nest does not contain an explicit gang loop, the outermost non-sequential

loop is chosen as the gang loop.

21

• If the loop nest does not contain an explicit vector loop, the innermost non-sequential

loop is chosen as the vector loop.

• All loops in the loop nest other than the gang and vector loop are run sequentially.

• If a loop will be run sequentially, and it contains a private clause, all private variables

must not be live at the top of the loop.

• If the loop nest does not have the form above (e.g., if it contains two gang loops, or if a

vector loop appears outside a gang loop), the translation to OpenMP cannot proceed.

The last rule is necessary because OpenACC is surprisingly lax about where the nesting

of gang and vector loops. For example, a gang loop may be nested inside a vector loop;

there is no direct equivalent of this in OpenMP. Moreover, PGCC may ignore the gang and

vector directives altogether, e.g., when a gang loop appears inside another gang loop, or a

vector loop appears outside another vector loop.

The next-to-last rule ensures that, if a loop is run sequentially, the private clause can

be removed without changing the behavior of the loop. Although the rule is stated in terms

of a live variables analysis [4], the concept is straightforward. If a variable a is declared as

private, but each iteration assigns a value to a before reading its value, then the private

clause can be eliminated if the loop is run sequentially. It cannot be removed if each iteration

of the loop depends on the value of a prior to the loop (e.g., if the first instruction in the

loop was a++).

The second and third rules implement a heuristic typical of parallelizing compilers (one

that PGCC appears to use, in fact): the iterations of the outermost parallelizable loop are

partitioned among thread blocks, and the iterations of the innermost parallelizable loop are

partitioned among the CUDA threads within that block.

To determine if a loop is parallelizable (for the second and third rules), our tool uses a

combination of syntactic checks and dependence analysis [15, 4]:

1. If the loop contains a seq clause, it is not parallelizable.

22

2. If the loop contains a gang or vector clause, it is parallelizable.

3. Otherwise, we perform a dependence analysis on the loop. If the loop does not carry a

dependence, it is parallelizable [4]; if it does, we determine it to be non-parallelizable.

4.2 Sequential Private/Reduction Removal

After a loop nest has been prepared, there will be a gang loop, a vector loop (possibly

the same loop), and zero or more sequential loops. OpenACC has a directive for sequential

loops (acc loop seq), which permits private and reduction clauses. However, OpenMP

does not have a sequential loop directive. This means that these directives—and more

importantly, private and reduction clauses—must be removed from sequential loops in a

way that will preserve the semantics of the private and reduction clauses. To remove a

private clause, we can simply re-declare the privatized variable in the loop body, as shown

in Figure 4.1(a) (noting that this features requires C99 support, which is available in all

modern C compilers). This declaration shadows the declaration in the outer scope, which

gives the intended semantics of the private clause. To illustrate removing a reduction clause,

consider as a concrete example reduction(+:x). There are two cases. Case 1. This is

perhaps the most commonly occurring use of the reduction clause: If the only accesses to x

in the loop body are in statements of the form x++ or x += expression (where x does not

occur in expression), then the reduction clause can be removed with no change in semantics.

This is the case in Figure 4.1(a), for example. Case 2. When the above condition does not

hold, it is still possible to remove a reduction clause. However, preserving the semantics

of the reduction clause requires a more complex source code transformation, illustrated in

Figure 4.1(b). (1) A “fresh” variable (sum) is declared to accumulate the result. (2) Since x

is the reduction variable, a local variable x is declared in the loop body with the same type

as the shadowed variable x, and it is initialized to the initializer value for a sum reduction

(0). (3) At the end of the loop body, the local x is added to the result (sum). (4) After the

loop, the accumulated result is added to the original x.

23

4.3 Directive Translation

The loop nest preparation algorithm in the previous section identifies a single gang loop

and a single vector loop in each parallel loop nest, and it guarantees that the vector loop is

nested under (or is the same as) the gang loop. After gang, vector, and sequential loops have

been identified, it is possible to proceed with translating OpenACC directives to OpenMP

directives.

Our tool implements the translation rules in Figure 4.2. The majority of the transla-

tion is straightforward: Each phrase in OpenACC is mapped to a corresponding phrase in

OpenMP.

It is important to note that, according to the translation rules in Figure 4.2, each data

directive is translated as-is. No attempt is made to infer implicit data transfers or array

lengths.

Also, these rules assume that each loop in a parallel loop nest has been explicitly labeled

with a gang, vector, or seq clause (or both gang and vector). Of course, this is not

necessary. In fact, our tool runs the loop nest preparation algorithm implicitly; it identifies

a gang and vector loop in each parallel loop nest, but it does not literally insert OpenACC

gang, vector, and seq clauses into the source code (although it retains them if they are

already present in the code).

4.4 Translation Tool

We prototyped our OpenACC-to-OpenMP translation algorithm by extending the Eclipse

C/C++ Development Tools. In addition to our translation algorithm, we added support for

various data flow analyses and dependence analysis, along with a parser for OpenACC direc-

tives. Our translation can be performed from within the Eclipse user interface, but we also

added a command line interface (CLI), so one can run the translation from the command

24

line, without installing Eclipse. Figure 4.3 presents a screenshot from our tool with source

file and the corresponding refactored file.

25

int p, x = 100;

#pragma acc loop seq private(p) reduction(+:x)

for (int i = 0; i < 5; i++) {
p = 100;

x += p;

}
⇓

int p, x = 100;

for (int i = 0; i < 5; i++) {
int p;

p = 100;

x += p;

}
(a)

int x = 100;

#pragma acc loop seq reduction(+:x)

for (int i = 0; i < 5; i++)

x = 1;
⇓

int x = 100;

int sum = 0; // (1)

for (int i = 0; i < 5; i++) {
int x = 0; // (2)

x = 1;

sum += x; // (3)

}
x += sum; // (4)

(b)

Figure 4.1: Elimination of private and reduction clauses on a sequential loop.

26

T [[#pragma acc data data-clauses]] = #pragma omp target data T [[data-clauses]]

T [[if(condition)]] = if(condition)

T [[copyin(vars)]] = map(to:vars)

T [[present or copyin(vars)]] = map(to:vars)

T [[copyout(vars)]] = map(from:vars)

T [[present or copyout(vars)]] = map(from:vars)

T [[copy(vars)| present or copy(vars)]] = map(tofrom:vars)

T [[present(vars)]] = map(tofrom:vars)

T [[create(vars)]] = map(alloc:vars)

T [[present or create(vars)]] = map(alloc:vars)

T [[#pragma acc parallel par-clauses]] = #pragma omp target teams T [[par-clauses]]

T [[num gangs(n)]] = num teams(n)

T [[vector length(n)]] = thread limit(n)

T [[private(vars)]] = private(vars)

T [[firstprivate(vars)]] = firstprivate(vars)

T [[reduction(vars)]] = reduction(reductions)

T [[independent]] = ε

T [[#pragma acc update update-clauses]] = #pragma omp target update T [[update-clauses]]

T [[host(vars)]] = from(vars)

T [[device(vars)]] = to(vars)

T [[if(condition)]] = if(condition)

T [[#pragma acc loop type loop-clauses]] =

#pragma omp distribute parallel for T [[loop-clauses]]

if type = gang vector

#pragma omp distribute T [[loop-clauses]]

if type = gang

#pragma omp parallel for T [[loop-clauses]]

if type = vector

ε if type = seq

Figure 4.2: Translation rules from OpenACC to OpenMP 4.
The symbol ε denotes the empty string.

27

Figure 4.3: Refactoring Example

28

Chapter 5

Evaluation

To evaluate the correctness of our tool, we used it to translate the EPCC Level 1 Ope-

nACC benchmarks [5], which are ports of the PolyBench and PolyBench/GPU kernels [6].

We also translated several miscellaneous test programs, including näıve and tiled matrix

multiplication kernels. We compiled the original OpenACC code using PGCC 16.1 and the

resulting OpenMP code using Clang 3.8. We also compiled and measure performance of

original OpenACC and refactored OpenMP code using Cray compilers. Performance mea-

surements were taken on a Tesla K40.

The EPCC Level 1 benchmarks contain a total of 70 OpenACC directives, three of

which are kernels directives that our tool would not translate directly. Of the remaining

67 directives, 13 were data directives, 23 were parallel loop directives, and 31 were loop

directives nested under other parallel directives. There was only one OpenACC API call: a

call to acc init, used to initialize the GPU and the OpenACC runtime.

This suggests that a tool like ours could be quite valuable. Only two changes needed

to be made by the programmer: removing acc init and converting the three kernels re-

gions. The remaining 67 directives could all be converted automatically, without manual

intervention.

Interestingly, while both OpenACC and Clang were targeting the same GPU device, the

GPU kernels generated by Clang were almost always slower than those generated by PGCC.

The naive matrix multiplication kernel in Figure 5.1 can serve as a small, concrete example.

With 2048× 2048 matrices, the OpenACC kernel ran for about 250 ms; the OpenMP kernel

ran for about 925 ms. Since the OpenACC and OpenMP codes were nearly identical, and

they were running on the same hardware, we did not expect such massive differences in

29

#pragma omp target teams distribute

#pragma acc parallel loop gang

for (int j = 0; j < N; j++) {
#pragma omp parallel for

#pragma acc loop vector

for (int i = 0; i < N; i++) {
double t = 0.0;

#pragma acc loop seq

for (int k = 0; k < N; k++) {
t += m[k][i] * n[j][k];

}
p[j][i] = t;

}
}

Figure 5.1: Näıve matrix multiplication.

Kernel OpenACC OpenMP Speedup
(PGI) (Clang)

3MM 17241 50073 0.34
ATAX 24539 28308 0.87
BICG 25178 29561 0.85
MVT 24021 27928 0.86
SYRK 72562 213693 0.34
COV 28120 19905 1.41
COR 28640 187218 0.15
SYR2K 15231 66935 0.23
GESUMMV 37998 52765 0.72

Median: 0.72

Figure 5.2: Execution times for EPCC Level 1 benchmarks on a Tesla K40 (µs).

performance. Execution times for the EPCC Level 1 benchmarks on a Tesla K40 are shown

in Table 5.2. We ran the same benchmarks on Cray compilers where we have both OpenACC

and OpenMP support. In Cray, we got comparable execution times between OpenACC and

OpenMP using same code. Execution times for Cray are shown in Figure 5.3. In both cases

the benchmarks were run with a data size of 1024 and 5 repetitions. Clearly, details of the

compiler-generated code can have a substantial impact on performance.

30

Kernel OpenACC OpenMP Speedup
(Cray) (Cray)

3MM 16038 13277 1.21
ATAX 55326 55101 1.00
BICG 55319 55042 1.01
MVT 55374 55153 1.00
SYRK 552284 68408 8.07
COV 11458 14042 0.82
COR 11602 14173 0.82
SYR2K 14391 15402 0.93
GESUMMV 102011 102018 0.99

Median: 1.00

Figure 5.3: Execution times for EPCC Level 1 benchmarks on Cray (µs).

31

Chapter 6

Related Work

Most related to our work is a talk by Hernandez et al. at OpenMPCon 2015 [7], [8]. This

talk describes the salient differences between OpenACC 2.0 and OpenMP 4.0 and suggests a

(manual) procedure for porting code from OpenACC to OpenMP. Their procedure consists

of five steps: removing constructs with no OpenMP counterparts (like kernels), translating

data regions, translating data updates, translating accelerator parallel regions, and adjusting

function attribute specifiers.

Lee and Vetter [10] evaluate existing directive-based models and show that directive-

based models can achieve reasonable performance compared to hand-written GPU codes.

For accelerator programming, the two most promising options are OpenACC and OpenMP.

Wienke et al. [14] compare both models with respect to their programmability to assist

developers in deciding which approach to take.

Xu and colleagues [16] demonstrate the effectiveness of a hybrid model combined with

OpenACC and OpenMP as a plausible solution to port scientific applications in heteroge-

neous architectures.

32

Chapter 7

Conclusion

Our tool is a prototype, and our translation algorithm supports only the most com-

monly used OpenACC directives. Some areas for improvement are obvious. The algorithm

needs to be expanded to include the entire OpenACC specification, including asynchronous

kernel launches, unstructured data lifetimes, and OpenACC API calls. Our tool works only

on C, while OpenACC and OpenMP both support C++ and Fortran. While the EPCC

benchmarks were useful for evaluating our prototype, we need to test its effectiveness on

larger code bases (i.e., application codes).

While automating a tedious 1–1 translation is helpful, it is not the end of the conversion

process. A common use case will likely be converting OpenACC code to take advantage of

the forthcoming second-generation Intel Xeon Phis. Our translation algorithm (and tool)

could certainly be specialized for this process.

After the initial OpenMP code has been created, some restructuring will almost certainly

be necessary. For example, we have performed some preliminary experiments with Intel’s

compilers on first-generation Phis; in one case, we needed to convert global variables to local

variables to ensure that the OpenMP target data directive would guarantee a copy of the

arrays to the Phi. Cataloging (and perhaps automating) such transformations would be

beneficial.

Perhaps more importantly, performance portability is not guaranteed. A direct transla-

tion of OpenACC code optimized for an NVIDIA GPU will not necessary perform at its peak

on a Xeon Phi. As noted above, we did not even obtain comparable performance targeting

the same hardware.

33

We have described an algorithm (§4) and a prototype tool that converts a subset of Ope-

nACC (Figure 3.1) to OpenMP 4 [13]. The translation algorithm was designed to be simple

and predicatble, since it will necessarily be used in conjunction with manual restructuring

and performance tuning. We evaluated our tool by converting the EPCC Level 1 OpenACC

benchmarks from OpenACC compiled by PGI C/C++ to OpenMP 4 compiled by Clang.

Both targeted an NVIDIA GPU (Tesla K40). To keep the translation process transparent,

the programmer was required to manually convert OpenACC kernels loops, although the

tool was able to automatically translate the remaining 67 of 70 directives.

34

Bibliography

[1] The OpenACC application programming interface, version 2.5. http://www.openacc.
org/sites/default/files/OpenACC_2pt5.pdf. Accessed June 15, 2016.

[2] OpenMP application programming interface, version 4.5. http://www.openmp.org/

mp-documents/openmp-4.5.pdf. Accessed June 15, 2016.

[3] Optimizing CUDA. http://gpgpu.org/wp/wp-content/uploads/2009/06/

04-OptimizingCUDA.pdf.

[4] J. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, San Francisco, CA, 2002.

[5] EPCC OpenACC benchmark suite. https://www.epcc.ed.ac.uk/

research/computing/performance-characterisation-and-benchmarking/

epcc-openacc-benchmark-suite. Accessed April 29, 2016.

[6] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-tuning a
high-level language targeted to GPU codes. In Innovative Parallel Computing (InPar),
2012, pages 1–10, May 2012.

[7] O. Hernandez, W. Ding, W. Joubert, D. Bernholdt, M. Eisenbach,
and C. Kartsaklis. Porting OpenACC 2.0 to OpenMP 4.0: Key sim-
ilarities and differences. http://openmpcon.org/wp-content/uploads/

openmpcon2015-oscar-hernandez-portingacc.pdf. Accessed April 29, 2016.

[8] O. Hernandez, W. Ding, W. Joubert, D. Bernholdt, M. Eisenbach, and C. Kartsaklis.
YouTube: Porting OpenACC 2.0 to OpenMP 4.0: Key similarities and differences.
https://www.youtube.com/watch?v=CHMrcMUXuuY. Accessed April 29, 2016.

[9] D. B. Kirk and W.-m. Hwu. Programming massively parallel processors: a hands-on
approach. Morgan-Kaufmann, 2012.

[10] S. Lee and J. S. Vetter. Early evaluation of directive-based GPU programming models
for productive exascale computing. In Proc. SC12, page 23. IEEE Computer Society
Press, 2012.

[11] C. NVIDIA and C. PGI. The OpenACC specification, version 1.0, 3 november 2011.
Cited on, page 28.

[12] OpenMP 4.0 on NVIDIA CUDA GPUs. https://parallel-computing.pro/index.

php/9-cuda/43-openmp-4-0-on-nvidia-cuda-gpus. Accessed April 29, 2016.

35

[13] N. Sultana, A. Calvert, J. L. Overbey, and G. Arnold. From OpenACC to OpenMP 4 :
Toward automatic translation. In Proceedings of the XSEDE16 Conference on Diversity,
Big Data, and Science at Scale, page 44. ACM, 2016.

[14] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Müller. A pattern-based compari-
son of OpenACC and OpenMP for accelerator computing. In Euro-Par 2014 Parallel
Processing, pages 812–823. Springer, 2014.

[15] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Boston, MA, 1995.

[16] R. Xu, S. Chandrasekaran, and B. Chapman. Exploring programming multi-GPUs
using OpenMP and OpenACC-based hybrid model. In IPDPSW ’13, pages 1169–1176.
IEEE, 2013.

36

