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Abstract 
 
 

Successful vaccination against Chlamydia spp. has remained elusive, largely due 

to a lack of vaccine platforms for the required Th1 immunization.  Modeling of T helper 

cell immunity indicates that Th1 immunity requires antigen concentrations that are orders 

of magnitude lower than those required for Th2 immunity and antibody production.  We 

hypothesized that the C. abortus vaccine candidate proteins that we identified earlier, 

DnaX2, GatA, GatC, Pmp17G, and Pbp3, mediated protection in an A/J mouse model of 

C. abortus lung infection if administered each at low, 1-20 femtoMole doses per mouse.  

This immunization significantly protected the mice from lethal challenge with                       

108 C. abortus organisms.  

Additional experiments proved that particulate delivery of antigens was required 

for optimum immunity.  As a delivery vehicle, we constructed spray-dried microparticles 

of 1-3 µm diameter that were composed of biodegradable poly-lactide-co-glycolide 

polymers and the poloxamer adjuvant Pluronic L121. These microparticles, when 

administered at 10 µg per mouse dose, were effectively phagocytosed by macrophages and 

protected C3H/HeJ mice from lethal challenge with C. abortus, and thus were effective 

immune stimulators (biological response modifiers). 

We further hypothesized that i) 20-mer peptides overlapping by 10 amino acids 

could substitute for whole protein antigens when embedded in a 1-3 µm diameter 

microparticulate vaccine; ii) such phagocytosed biodegradable microparticles would  
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intracellularly release peptides and adjuvant from such microspheres in antigen presenting 

cells and would enable controlled generation of Th1 immunity; and iii) inclusion of Q-VD-

OPh, an inhibitor of apoptosis, could suppress a co-emerging inflammatory Th17 response 

and enhance a protective Th1 response. 

A dose of 2.00 femtoMoles of each peptide per mouse significantly reduced disease 

after lethal C. abortus challenge inoculation, but failed to effectively eliminate chlamydiae.  

In contrast, the inclusion of Q-VD-OPh in the subcutaneously or intranasally administered 

0.20 femtoMoles peptide vaccine resulted in effective elimination of C. abortus and 

completely reversed the disease outcome to a fully protected healthy phenotype.  We 

hypothesized that the 50:50DL-PLG-PEG lactide-co-glycolide polymer, used as rapidly 

degrading vaccine carrier, had released substantial acidity intracellualry in antigen 

presenting cells that induced an immunosuppressive apoptotic signal.  Thus, the enhanced 

apoptosis of antigen presenting cells required release of Q-VD-OPh from vaccine 

microparticles to abolish apoptosis and Th1 immunosuppression.  Therefore, we 

investigated the use of an alternative polymer carrier, the slowly degrading and minimally 

acid-releasing polylactide polymer DL-PL R202S.  This carrier, when used with 0.5-1.25 

femtoMole dosage of C. abortus peptide antigens, induced highly significant protection 

against chlamydial challenge without triggering an unwanted Th1 suppressive or 

inflammatory immune response in the C. abortus respiratory mouse disease model. 

In summary, we have developed a fully synthetic biodegradable microsphere 

vaccine for controlled release of adjuvant and ultralow doses of peptide antigens.  This 

vaccine platform may be commercially useful for discovery and production of vaccines. 

 



iv 
 

Acknowledgments 
 
 

I have completed this dissertation with the direct and indirect contribution of many people, 

whom I would like to thank sincerely. 

Dr. Bernhard Kaltenboeck, my major advisor in the PhD dissertation committee.  I would 

like to express the deepest appreciation to him for his unmeasurable help, guidance, and support 

throughout my doctoral studies.  Dr. Kaltenboeck has the attitude and substance of a genius and is 

able to convey convincing spirit of adventure in regards to scientific research.  My research project 

based on completely novel ideas and I started from a black hole.  Since we had to go through with 

many optimization approaches and conducted many experiments to confirm the findings, it took a 

lot of time to complete the study.  During this time the motivation and support as I received from 

Dr. Kaltenboeck was unutterable.  Dr. Kaltenboeck, thank you so much for your knid support and 

I will always be grateful for having the opportunity to study under you supervision. 

Dr. Stuart B Price, who is an advisor in my graduate committee.  He was also my mentor 

in the Bacterial Pathogenesis course.  I learned a lot from him and I would like to thank him for his 

advice and suggestions throughout my doctoral studies. 

Dr. Zhanjiang Liu is on my graduate committee and was my mentor in the Molecular 

Genetics and Biotechnology course. I highly appreciate his guidance throughout this study.  

Dr. Chengming Wang is also on my graduate committee.  Since I joined Dr. 

Kaltenboeck’s lab as graduate student, I have been learning from Dr. Wang in many ways.  Thank 

you so much Dr. Wang for all of your suggestions and advice.



v 
 

Dr. Frederik van Ginkel, who had been on my graduate committee, has recently passed 

away completely unexpectedly.  He was also my mentor in the Cellular and Molecular Immunology 

course.  I would like to thank him a lot for his guidance in my designing immunological studies. 

Dr. Joseph Giambrone, who is the University Reader of my dissertation and is also one 

of our collaborators in the vaccine research.  I learned a lot from him about chicken disease models. 

I also highly appreciate his time to review this dissertation. 

Drs. Ram Gupta and Courtney Ann Ober from the Auburn University Department of 

Chemical Engineering were extremely helpful in getting us started in spray drying the vaccine 

microparticles.  And Drs. Fernando Osorio and Hiep Vu at the Virology Center of the University 

of Nebraska in Lincoln were outstanding collaborators in conducting the pig PRRSV vaccine trials.  

Mrs. Dongya Gao, Dr. Kh Shamsur Rahman, and Dr. Yen-Chen Juan, who are my 

wonderful current colleagues.  Their immense help and support throughout my doctoral study, 

particularly with the mouse work, was beyond the level of expression.  I especially thank Dongya 

for her help with PCR, Shamsur for his help with ELISAs, and Yen-Chen for her help with the 

immunofluorescence study. 

I would also like to thank to all of my previous lab colleagues - Drs. Anil Poudel, Yihang 

Li, and SudhirAhluwalia for their help and support.  I especially thank Anil for his tremendous 

support in mouse studies. 

Lastly, and most importantly, I want to thank my father – Azhar Chowdhury, my mother 

– Masia Chowdhury, and my brothers – Ekram Chowdhury, Zafar Chowdhury, Samim 

Chowdhury, and Ershad Chowdhury.  They have always been there for me and I am thankful 

for everything they have helped me to achieve.  I especially want to thank to my mother, with her 

tireless efforts, after the death of my father, has allowed me to reach my current position. I want to 

give special thanks to my wife Shamima Chowdhury for her continued love, care, and support to 

make this possible.  I also want give special thanks to my daughter Eshal Chowdhury, her warm 

affection gave me the spirit to complete this study. 



vi 
 

Table of Contents 
 
 
Abstract ............................................................................................................................... ii 

Acknowledgments.............................................................................................................. iv  

List of Tables ................................................................................................................... viii  

List of Figures .................................................................................................................... ix  

List of Abbreviations ......................................................................................................... xi 

Chapter 1   ............................................................................................................................1 

 1.1.  Chlamydia – Background and taxonomy .........................................................1 

 1.2.  Biology and molecular pathogenesis ...............................................................6 

 1.3.  Chlamydial infection and significance...........................................................20 

 1.4.  Host immunity against chlamydial infection .................................................30 

 1.5. Chlamydial vaccine .........................................................................................44 

 1.6.  Research rationale and objective ...................................................................55 

 References ..............................................................................................................59 

Chapter 2   ........................................................................................................................120 

 2.1.  Introduction ..................................................................................................120 

 2.2.  Hypothesis....................................................................................................133 

 2.3.  Objectives ....................................................................................................133 

 2.4.  Results ..........................................................................................................134 

 2.5.  Discussion ....................................................................................................146 

 2.6.  Materials and methods .................................................................................152



vii 
 

References ........................................................................................................................158 

Chapter 3   ........................................................................................................................173 

 3.1.  Introduction ..................................................................................................173 

 3.2.  Hypothesis....................................................................................................197 

 3.3.  Objectives ....................................................................................................198 

 3.4.  Results ..........................................................................................................199 

 3.5.  Discussion ....................................................................................................233 

 3.6.  Materials and methods .................................................................................237 

 References ............................................................................................................246 

Chapter 4   ........................................................................................................................273 

 4.1.  Introduction ..................................................................................................273 

 4.2.  Hypothesis....................................................................................................278 

 4.3.  Objectives ....................................................................................................278 

 4.4.  Results ..........................................................................................................279 

 4.5.  Discussion ....................................................................................................305 

 4.6.  Materials and methods .................................................................................309 

 References ............................................................................................................314 

Chapter 5   ........................................................................................................................321 

 5.1.  Introduction ..................................................................................................321 

 5.2.  Results ..........................................................................................................325 

 5.3.  Discussion ....................................................................................................330 

 5.4.  Materials and methods .................................................................................332 

 References ............................................................................................................335 

 



viii 
 

List of Tables 
 
 

Table 1.1.  ............................................................................................................................5 

Table 2.1.  ........................................................................................................................125 

Table 3.1.  ........................................................................................................................181 

Table 3.2.  ........................................................................................................................218 

Table 3.3.  ........................................................................................................................222 

Table 3.4.  ........................................................................................................................239 

Table 5.1.  ........................................................................................................................329 



ix 
 

List of Figures 
 
 

Figure 1.1. ............................................................................................................................2 

Figure 1.2. ..........................................................................................................................10 

Figure 1.3. ..........................................................................................................................42 

Figure 2.1. ........................................................................................................................130 

Figure 2.2. ........................................................................................................................135 

Figure 2.3. ........................................................................................................................138 

Figure 2.4. ........................................................................................................................140 

Figure 2.5. ........................................................................................................................144 

Figure 2.6. ........................................................................................................................153 

Figure 3.1. ........................................................................................................................200 

Figure 3.2. ........................................................................................................................204 

Figure 3.3. ........................................................................................................................204 

Figure 3.4. ........................................................................................................................206 

Figure 3.5. ........................................................................................................................210 

Figure 3.6. ........................................................................................................................213 

Figure 3.7. ........................................................................................................................215 

Figure 3.8. ........................................................................................................................217 

Figure 3.9. ........................................................................................................................217 

 



x 
 

Figure 3.10. ......................................................................................................................223 

Figure 3.11. ......................................................................................................................226 

Figure 3.12. ......................................................................................................................230 

Figure 3.13. ......................................................................................................................232 

Figure 3.14. ......................................................................................................................240 

Figure 4.1. ........................................................................................................................284 

Figure 4.2. ........................................................................................................................290 

Figure 4.3. ........................................................................................................................291 

Figure 4.4. ........................................................................................................................296 

Figure 4.5. ........................................................................................................................299 

Figure 4.6. ........................................................................................................................304 

Figure 4.7. ........................................................................................................................305 

Figure 5.1. ........................................................................................................................328 

Figure 5.2. ........................................................................................................................329 

 



xi 
 

List of Abbreviations 
 
 

µg  Microgram; one millionth of a gram; 10-6 gram 

µm  Micrometer; one millionth of a meter; 10-6 meter 

APC  Antigen Presenting Cells 

BRM  Biological response modifier 

C.  Chlamydia 

COMC  Chlamydial Outer Membrane Complex 

Cp  Chlamydophila 

CPAF  Chlamydial Protease-like Activity Factor 

DC  Dendritic cell 

DCM  Dichloromethane 

DL-PL  Poly (DL-lactide) 

DL-PLG  Poly (DL-lactide-co-glycolide) 

DL-PLG-PEG Methoxy poly (ethylene glycol) - DL-poly (lactide-co-glycolide) 

Dnax2  DNA polymerase III subunits gamma and tau 

DTH  Delayed Type Hypersensitivity 

EB  Elementary bodies 

fM  femtoMoles 

GatA  Glutamyl-tRNA amidotransferase subunit A 

GatC  Glutamyl-tRNA amidotransferase subunit C 

i.n.  intranasal 

i.p.  intraperitoneal 

IFN  Interferon 

IL  Interleukin



xii 
 

IV  Intrinsic Viscosity 

LPS  Lipopolysaccharides 

MHC  Major Histocompatibility Complex 

mg  milligram 

mL  milliliter 

Mw  Molecular weight 

NF- κB  Nuclear Factor –κB 

ng  nanogram; one billionth of a gram; 10-9 gram 

OmpA  Outer membrane protein A 

PAMP  Pathogen Associated Molecular Pattern 

Pbp  Penicillin-binding protein 

PBS  Phosphate Buffered Saline 

pg  picogram; one-trillionth of a gram; 10-12 gram 

Pmp90A  Polymorphic outer membrane protein 90A 

PRR  Pattern Recognition Receptors 

PRRSV  Porcine Reproductive and Respiratory Syndrome Virus 

qPCR  quantitative Polymerase Chain Reaction 

RB  Reticulate bodies 

s.c.  subcutaneous 

Tg  Glass transition temperature 

Th  T helper cells 

TLR  Toll-like Receptor 

 



1 
 

CHAPTER 1 

REVIEW OF LITERATURE 
 
 
1.1. CHLAMYDIA - BACKGROUND AND TAXONOMY 

The genus Chlamydia of the family Chlamydiaceae, order Chlamydiales, and 

phylum Chlamydiae is comprised of coccoid, gram negative-like obligate intracellular 

bacteria. Chlamydiae are characterized by a specialized biphasic developmental cycle that 

lasts 30–72 hours and is unparalleled among prokaryotes. Due to their such a unique nature, 

chlamydiae were initially not only misclassified as protozoa or viruses, but also received 

various designations such as Miyagawanella, Bedsonia, Ornithosis-, Trachoma inclusion 

conjunctivitis (TRIC)- and psittacosis-lymphogranuloma venereum (LGV) trachoma 

(PLT)- agents, either in honor to the scientists who first described them or referring to the 

type of disease they caused (Nunes and Gomes, 2014). The current term ‘Chlamydia’ has 

its root in the Greek word ‘‘Chlamys/khlamus’’, meaning mantle or the short cloak worn 

by Greek military men draped around their upper shoulders and secured with a brooch on 

the right shoulder (Black, 2013). The term derived from a misconception dating back to 

1907, when Halberstaedter and von Prowazek (1909,1907) thought they had discovered 

‘‘mantled protozoans’’, to designate intracytoplasmic vacuoles containing numerous 

microorganisms clustered around (are ‘draped’ around) the nucleus of the cell (Fig. 1.1) , 

in Giemsa-stained conjunctival scrapings from trachoma cases (reviewed by Nunes and 

Gomes, 2014). 
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Figure 1.1. Photomicrograph of fluorescently stained chlamydial inclusions (green) clustered 

around the nucleus of a host cell given appearance of a chlamys. (From Black, 2013). 

 

The taxonomy of Chlamydiales has been controversial during the past decade. 

There are two recognized types of taxonomy in the classification of chlamydial species, 

the ‘old classification’ and ‘new classification’. The ‘old’ classification is based on distinct 

biochemical characteristics, morphological features, developmental forms, and host range. 

In 1966, immediately after Moulder definitively reported the bacterial nature of chlamydiae 

(Moulder, 1966), the genus Chlamydia was established (Page, 1966) and classified into 

two species: Chlamydia (C.) trachomatis and C. psittaci (Page, 1968). C. pneumoniae 
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(Grayston et al., 1989) and C. pecorum (Fukushi and Hirai, 1992), formerly known as 

strains of C. psittaci, were designated as distinct species, in 1989 and 1992, respectively. 

However, in 1999, a combination of 16S, 23S ribosomal RNA (rRNA), and 

ribosomal intergenic spacer genes were used by one group to propose a new classification 

based exclusively on the phylogeny derived from sequence polymorphisms of these genes 

(Everett et al., 1999). This new molecular knowledge led to a reclassification of the 

Chlamydiales into one order comprised of four families (Parachlamydiaceae, 

Simkaniaceae, Waddliaceae, and Chlamydiaceae), with the Chlamydiaceae family being 

subdivided into two separate genera: Chlamydia and Chlamydophila. The division of the 

Chlamydiaceae was based on sequence polymorphisms as well as the fact that 

Chlamydophila spp. do not produce any detectable glycogen and have only a single 

ribosomal operon. The new classification further split the genetically heterogeneous 

species of C. trachomatis and C. psittaci into three and four species, respectively. Thus, 

this revision resulted in the definition of nine species within Chlamydiaceae, i.e. C. 

trachomatis, C. muridarum and C. suis, as well as Chlamydophila (Cp.) abortus, Cp. 

caviae, Cp. felis, Cp. pecorum, Cp. pneumoniae, and Cp. psittaci. 

However, a majority of researchers in the field opposed the new classification and 

advocated a re-unification of the genus Chlamydia (Bavoil et al., 2013; Greub, 2013; 

Schachter et al., 2001; Stephens et al., 2009). The main issues of concerns are that the 16S 

rRNA sequence identity thresholds do not consistently separate Chlamydia from 

Chlamydophila species, the genomes of all members of the Chlamydiaceae are highly 

similar, and most importantly, clear phenotypic features distinguishing Chlamydia from 

Chlamydophila species are missing (Sachse et al., 2015). 
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Recently a ‘compromise’ taxonomy has been suggested, which puts a single genus 

(Chlamydia) into the family Chlamydiaceae which contains now eleven chlamydial species 

since the addition of C. gallinacea and C. avium (Sachse et al., 2015). This compromise 

taxonomy has already been published in the current edition of Bergey’s Manual of 

Systematic Bacteriology (Kuo et al., 2011), and is the classification that will be adhered to 

throughout this thesis (Bavoil et al., 2013). One more species, C. ibidis, has recently been 

proposed based on the isolation of a single strain from the cloaca of a feral sacred ibis 

(Threskiornis aethiopicus), but this species has not yet been accepted (Vorimore et al., 

2013).  Therefore, the single genus Chlamydia currently comprises 11 species (Table 1.1) 

based on broadened criteria that encompass biological as well as molecular properties. 
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Table 1.1. Current major members of the order Chlamydiales (Reviewed by: *Sachse 

et al., 2015; ¶ Vorimore et al., 2013; ♣ Corsaro and Greub, 2006; ♠Greub, 2009; ♥ Lamoth 

et al., 2015). 
 

Family Genus Species Natural 
Host Other Host Site of Infection 

 

  (i) C. abortus* Sheep, 
goat Cattle, swine Genital, respiratory 

  (ii) C. psittaci* Birds Mammals Respiratory 

  (iii) C. caviae* Guinea 
pig Horse Ocular, genital 

  (iv) C. felis* Cat  Ocular, respiratory 

  (v) C. avium* Pigeon, 
parrots  Respiratory 

  (vi) C. gallinacea* Chicken Other poultry Respiratory 

Chlamydiaceae Chlamydia (viii) C. pecorum* Cattle, 
koala 

Sheep, goat, 
swine 

Gastro-intestinal, 
respiratory, 
urogenital 

  
  (ix) C. pneumoniae* 

Human, 
horse, 
koala 

Amphibians, 
reptiles 

Respiratory, 
cardiovascular 

  (x) C. muridarum* Rodents  Gastro-intestinal 

  (xi) C. suis* Swine Ruminants Gastro-intestinal, 
genital 

  (xii) C. trachomatis* Human  
Ocular (Trachoma), 
urogenital (STD), 
lymph node (LGV) 

Parachlamydiaceae Parachlamydia P. acanthamoebae♣♠ Amoeba Human Respiratory in 
humans 

Simkaniaceae Simkania S. negevensis♣ Amoeba Human Respiratory in 
humans 

Waddliaceae Waddlia W. chondrophila♣♥ Amoeba Ruminants Urogenital in 
ruminants 
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1.2. BIOLOGY AND MOLECULAR PATHOGENESIS 
 
 
Chlamydial structure. Despite profound differences in host range, chlamydiae 

display a remarkable similarity in their genome sequences (Carlson et al., 2005; Read et 

al., 2000 and 2003; Stephens et al., 1998). They also possess a conserved intracellular 

growth cycle with distinct biphasic developmental cycle comprising two morphologically 

and functionally distinct infectious and reproductive forms: the elementary bodies (EBs) 

and the reticulate bodies (RBs) (Bedson and Bland, 1932; Bedson and Gostling, 1954).  

The EBs are characterized by a small size (around 0.3 µm), a rigid cell wall, densely 

packed DNA, with the ability to survive in the harsh extracellular environment 

(AbdelRahman and Belland, 2005; Elwell et al., 2016). Although earlier they were 

considered to be metabolically inert, recent studies conducted in a host-free (axenic) 

system demonstrated that EBs have high metabolic and biosynthetic activities and rely on 

D-glucose-6-phosphate as an energy source (Omsland et al., 2014). Electron microscopic 

examination of EBs revealed the presence of a hexagonally organized surface projections, 

arranged regularly with a center to center spacing of approximately 50 nm, which 

correspond to a Type III secretion system “needle” structure (Nichols et al., 1985; 

Matsumoto, 1982; Fields et al., 2003).  

In contrast to EBs, RBs are comparatively larger (1–2 µm), the cytoplasm appears 

granular with diffuse, fibrillar nucleic acids, and are bounded by an inner and outer-

membrane, resembling other gram-negative eubacteria (AbdelRahman and Belland, 2005). 

They are specialized in nutrient acquisition and replication (Bastidas et al., 2013). They 

also highly express proteins that are required for ATP generation, protein synthesis and 
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nutrient transport (Saka et al., 2011). They probably depend on ATP scavenged from the 

host as a source of energy (Omsland et al., 2014). 

 

Developmental cycle. The development cycle of chlamydiae, as shown in Fig. 1.2, 

is completed in three phases: (i) binding and invasion of the EBs into the host cell, (ii) 

establishing an intracellular niche and reorganization of EBs to RBs, and (iii) transition of 

a large fraction of the reticulate body population into a new generation of elementary bodies 

and their exit from the host cell (Elwell et al., 2016).  

The chlamydial life cycle is initiated when an infectious EB binds to a susceptible 

target cell, promoting entry into a host cell-derived phagocytic vesicle. Binding of EBs 

with the host cells is thought to be a two-step process, involving an initial reversible and 

electrostatic interaction between the EB and the host cell mediated by heparan sulfate 

containing glycosaminoglycans, followed by high-affinity irreversible binding to a 

secondary receptor (Dautry-Varsat et al., 2005; AbdelRahman and Belland, 2005). Both 

chlamydial and host proteins may act synergistically to promote invasion. Immediately 

upon contact, pre-packaged T3SS effectors from EBs are injected to the host cell (Saka et 

al., 2011), and EBs are internalized within a membrane bound inclusion (Bastidas et al., 

2013). The nascent inclusions then quickly dissociate from the endolysosomal pathway, 

are transported along microtubules to the microtubule-organizing center, which facilitates 

interactions with nutrient rich compartments and helps to avoid fusion with lysosomes 

(Richards et al., 2013). 

After 6 to 8 hours post-internalization, EBs develop into RBs and early genes are 

transcribed (Tan, 2012). These early effectors remodel the inclusion membrane, redirect 
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exocytic vesicles to the inclusion membrane and promote host-pathogen interaction 

(Moore and Ouellette, 2014). In mid-cycle (approximately 8 to 16 hours post-

internalization), essential genes are expressed which include effectors that mediate nutrient 

acquisition and maintain the viability of the host cells. During this stage, the RBs replicate 

by binary fission and secrete additional effectors that promote substantial expansion of the 

inclusion. 

At the late stage of the development cycle, ~24 to 72 hours post-internalization of 

the EBs, RBs begin differentiating back to EBs in an asynchronous fashion.  These EBs 

then detach from the inclusion membrane and accumulate in the lumen of the inclusion as 

the remainder of the RBs continue to multiply (Fields, 2012). The genes that are expressed 

at this late stages encode mainly the outer membrane complex and the DNA binding 

histone H1-like and H2-like proteins, Hc1 and Hc2, which condense DNA and switch off 

the transcriptions of many genes (Tan, 2012). Moreover, some of these late cycle effectors 

are packaged in progeny EBs to be discharged in the next cycle of infection (Fields, 2012; 

Saka et al., 2011). Finally, forty-eight to 72 h after completing the development cycle, 

depending primarily on the infecting chlamydial species, infectious EB are released from 

the host cell by two mutually exclusive mechanisms: host cell lysis or the extrusion of the 

inclusion through fusion of the inclusion membrane with the plasma membrane (Hybiske 

and Stephens, 2007; Hackstadt, 1999; Moulder, 1991). 

Under certain conditions, however, such as depletion of essential nutrients (iron, 

tryptophan, essential amino acids), exposure to host cytokines, or antibiotics that target cell 

synthesis, the life cycle of Chlamydia can be reversibly arrested (Byrne and Beatty, 2012). 

In response to these stresses, Chlamydia transitions into metabolically quiescent 
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noninfectious aberrantly enlarged structures termed the “persistent” form (Beatty et al., 

1994; Schoborg, 2011). Due to their reduced or negative ribosomal cell activities, these 

persistent bacteria present no adequate targets for the known Chlamydia-targeting 

antibiotics (Gieffers et al., 2001; Kutlin et al., 1999; Wang et al., 2009). They also represent 

characteristic gene and protein expression profiles with reduced levels of outer membrane 

proteins like the major outer membrane protein OmpA or OmcB, and significantly higher 

levels of Heat shock protein 60 (Hsp 60) (Beatty et al., 1993). chlamydiae may be 

reactivated from persistence by removal of the inducing stimulus. 

 

Virulence Factors. Chlamydiae encode a large number of virulence factors that 

represent ~ 10% of their genome (Elwell et al., 2016). As identified by proteome-analysis 

of Chlamydia spp., proteins of the chlamydial outer membrane complex (COMC), 

chlamydial lipopolysaccharide (cLPS), chlamydial heat-shock-proteins (e.g. 

chsp60/GroEL-1), a type III secretion apparatus (TTS), the “chlamydial protease- or 

proteasome- like activity factor” (CPAF) or peptidoglycans and peptidoglycan-like 

structures are likely candidates as possible virulence factors (Krüll and Suttorp, 2007).  

The chlamydial COMC is a disulfide cross-linked network of three proteins: the 

outer membrane protein A, OmpA (formerly termed as major outer membrane protein or 

MOMP), the large cysteine-rich outer membrane complex B protein (OmcB) and the small 

cysteine-rich outer membrane complex A protein (OmcA) (Hatch, 1999). OmpA, OmcA, 

and OmcB are present in characteristic molar ratio (5:2:1) in the COMC (Everett and 

Hatch, 1991).  
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Figure 1.2.  The life cycle of Chlamydia trachomatis. The binding of elementary bodies to host 

cells is initiated by the formation of a trimolecular bridge between bacterial adhesins, host receptors 

and host heparan sulfate proteoglycans (HSPGs). Next, pre-synthesized type III secretion system 

(T3SS) effectors are injected into the host cell, some of which initiate cytoskeletal rearrangements 

to facilitate internalization and/or initiate mitogenic signaling to establish an anti-apoptotic state. 

The elementary body is endocytosed into a membrane-bound compartment, known as the inclusion, 

which rapidly dissociates from the canonical endolysosomal pathway. Bacterial protein synthesis 

begins, elementary bodies convert to reticulate bodies and newly secreted inclusion membrane 

proteins (Incs) promote nutrient acquisition by redirecting exocytic vesicles that are in transit from 
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the Golgi apparatus to the plasma membrane. The nascent inclusion is transported, probably by an 

Inc. along microtubules to the microtubule-organizing centre (MTOC) or centrosome. During mid-

cycle, the reticulate bodies replicate exponentially and secrete additional effectors that modulate 

processes in the host cell. Under conditions of stress, the reticulate bodies enter a persistent state 

and transition to enlarged aberrant bodies. The bacteria can be reactivated upon the removal of the 

stress. During the late stages of infection, reticulate bodies secrete late-cycle effectors and 

synthesize elementary-body-specific effectors before differentiating back to elementary bodies. 

Elementary bodies exit the host through lysis or extrusion. (From Elwell et al., 2016). 
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The gene ompA encodes OmpA and possesses four highly variable domains (VD1 

to VD4) that contain subspecies- and serovar-specific antigenic determinants (Millman et 

al., 2001).  OmpA is found as highly immunodominant in all chlamydial strains except C. 

pneuomoniae (Christiansen et al., 1997). In the EBs, it is the main component for 

chlamydial protection against environmental stress outside the host, binding to the host 

cell, and defense against the host immune response (Hackstadt, 1999). In contrast to 

OmpA, OmcB, encoded by omcB, is not surface exposed, rather it forms a supramolecular 

lattice in the periplasm, and highly conserved among Chlamydia species (Frikha-Gargouri 

et al., 2008). OmcB has been shown to act as an adhesin for chlamydial invasion into host 

cells (Fadel and Eley, 2007 and 2008). It is also thought to be involved in the RBs to EBs 

transition and contribute to cell wall rigidity and osmotic stability of the EBs (Newhall, 

1987; Mygind et al., 1998). Like OmpA, it is also found as an immunodominant antigen 

with both B-cell and T-cell epitopes (Gervassi et al., 2004; Goodall et al., 2001a; Mygind 

et al., 1998; Sarén et al., 2002; Wang et al., 2010) and has been considered and used as a 

candidate for developing both serodiagnostics (Bas et al., 2001; Frikha-Gargouri et al., 

2008; Rahman et al., 2015) and subunit vaccines (Olsen et al., 2010; Eko et al., 2004; 

Penttilä et al., 2004). OmcA serves as the functional equivalent of peptidoglycan and 

provides the structural integrity of the outer envelope through disulfide cross-links with 

OmcB and OmpA (Everett and Hatch, 1995). 

The 12-, 60-, and 75-kDa heat shock proteins of Chlamydiae are closely related to 

their counterparts in Escherichia coli (GroEL, GroES and DnaK) and also to related human 

mitochondrial proteins (Hsp10, Hsp60, and Hsp70) (Furrows and Ridgway, 2006; 

LaVerda, 1999). They are highly conserved chaperonins involved in protein folding. Hsp60 
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is highly immunogenic and thought to play a major role in pathogenicity. C. trachomatis 

Hsp60 has been shown to stimulate production of pro-inflammatory cytokines in 

endothelial and smooth-muscle cells and macrophages, and it can also promote the 

activation of specific immune cells via a Toll-like receptor (Cappello et al., 2009). In fact, 

elevated anti-Hsp60 IgA antibody-titers are considered biomarkers of chronic chlamydial 

infections, such as, bronchial asthma, chronic obstructive pulmonary disease (COPD), 

arteriosclerosis or pelvic inflammatory disease, pelvic inflammatory disease (PID) 

(Sävykoski et al., 2004; Huittinen, et al., 2001; Kol et al., 1998; Wagar et al., 1990).   

Like other Gram-negative bacteria, Chlamydia have LPS antigen (cLPS). Although 

chlamydial LPS has been considered as genus-specific, a monoclonal antibody that 

recognized the LPS and neutralizes the infectivity of C. pneumoniae strain TW183 

(Peterson et al., 1998), failed to neutralize other strains of C. pneumoniae suggesting the 

presence of more than one genus-specific epitope on cLPS (Krüll and Suttorp, 2007). cLPS 

is similar to the rough LPS of certain salmonellae, however, it differs significantly from 

LPS of other Gram-negative pathogens at least in two different ways: 1) the core 

trisaccharide 3-deoxy-D-manno-octulosonic acid (KDO) structure of chlamydial LPS 

contains a 1-8 linkage, a genus specific epitope as well as a 1–4 linkage similar to that of 

other bacteria (Belunis et al.,1992; Brade et al., 1987), and 2) the chlamydial LPS has low 

endotoxic activity, although it induces some cytokines, such as TNF-α (Ingalls et al., 1995; 

Ivins and Wyrick, 1978). cLPS is synthesized by a single multifunctional KDO transferase 

(Löbau et al., 1995). During the developmental cycle of chlamydiae, cLPS can be released 

from intracellular, intra-inclusion chlamydiae to the inclusion membrane, and diffuse 

through the host cell cytoplasm and surface to cells surrounding the infected cells 
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(Campbell et al., 1994; Karimi et al., 1989; Richmond and Stirling, 1981). Although such 

release might have an impact on the chlamydial pathogenesis and the host’s immune 

disposition of infected cells, studies have demonstrated that cLPS plays only a minor role 

for target cell activation (Netea et al., 2002; Löbau et al., 1995), which may explain the 

prevalence of asymptomatic nature of chlamydial infection. 

Chlamydial protease-like activity factor (CPAF) is encoded on the chlamydial 

genome, produced by the chlamydial RBs, secreted out of the inclusion, and localizes 

predominantly to the cytosol of the infected cell and released into the extracellular milieu 

upon cellular lysis (Zhong et al., 2001). It has been first identified to function in the 

degradation of host cell transcription factors necessary for MHC-I (RFX5) and -II 

(“upstream stimulatory factor 1”, USF-1) antigen presentation which suggested a specific 

immune evasion mechanism of Chlamydia-mediated by CPAF (Zhong et al., 2000; Zhong 

et al., 1999). Recently, CPAF has been found to cleave the pro-apoptotic Bcl2 family 

proteins (Pirbhai et al., 2006), which may contribute to the strong anti-apoptotic effect 

exerted by Chlamydia in the infected host cell (Fan et al., 1998), thereby prolonging 

survival and allowing successful completion of the developmental cycle. Furthermore, 

CPAF has been shown to degrade cytoskeletal elements, including keratin-8 (Dong et al., 

2004), keratin-18, vimentin and β-tubulin (Savijoki et al., 2008), within infected cells and 

is thought to allow the expansion of the inclusion and subsequent release of EBs. 

Collectively, the protease-like activity of CPAF interacts with major host proteins to 

manipulate the host immune response in various ways and thus keep the developing 

inclusion less detectable by immune surveillance. CPAF was also found to be one of the 

seven highly immunodominant proteins in an array of 156 fusion proteins cloned from 
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ORFs in the chlamydial genome (Sharma et al., 2006). It is highly conserved among 

different chlamydial serovars and species (Dong et al., 2005), hence seems to be a potential 

candidate for a pan-serovar anti-chlamydial vaccine. 

Type III secretion systems (T3SSs) are complex structures composed of several 

bacterial proteins that are designed to promote the discharge of effector proteins after 

contact with the host cell (Cornelis et al., 2000). Like most other Gram-negative pathogens, 

Chlamydia encodes a T3SS (cT3SS) which is thought to form projections on the 

chlamydial cell surface as detected with electron microscopy (Gregory et al., 1979; 

Matsumoto, 1982). The genomes of Chlamydiae encode multiple conserved proteins of the 

T3SS injectisome, a molecular ‘nanosyringe’ made of ~20–25 proteins, the translocator 

apparatus and chaperone subclasses, which together are required for the assembly and 

functioning of the T3SS pathway (Ghosh, 2004). With the delivery of pathogen effector 

molecules at the different developmental stages (Mueller et al., 2013), cT3SS appears to 

play multiple roles throughout the chlamydial developmental cycle (Peters et al., 2007; 

Fields, 2007).  Some of the important Chlamydial T3SS effectors include translocated 

actin-recruiting phosphoprotein (Tarp), Ser/Thr protein kinase (Pkn5), negative regulator 

of TTS (CopN), and inclusion membrane proteins IncA-C (Peters et al., 2007). Tarp is 

‘preloaded’ in the T3SS needle of the EB so that it can mediate early cytoskeletal changes, 

by recruiting actin during internalization to the site of EB internalization (Clifton et al., 

2005, 2004; Jewett et al., 2006). Inc proteins have been suggested to subvert host cell 

vesicular and nonvesicular transport (Derre et al., 2011; Rzomp et al., 2006). CopN is 

involved both in downregulation of T3SS and physical shutoff of the injectisome as RBs 

transition into EBs (Peters et al., 2007). The importance of chlamydial T3SS has been 
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proven by the abnormal intracellular chlamydial development as the result of inhibition of 

the T3S or the effectors (Bailey et al., 2007; Muschiol et al., 2006; Wolf et al., 2006).  

 

Detection of and Response to Chlamydial Infection by the Host. Similar to most 

other bacterial infection, pattern recognition receptors (PRRs) of the host recognize 

chlamydial LPS through TLR4 (Heine et al., 2003; Ingalls et al., 1995; Prebeck et al., 

2001, 2003) and Hsp60 via TLR2 and TLR4 (Bulut et al., 2009, 2002; Costa et al., 2002; 

Kol et al., 1999, 2000; Vabulas et al., 2001). TLR2 has been demonstrated as the 

predominant receptor required for an inflammatory response to infection (Darville et al., 

2003; O’Connell et al., 2006; Prebeck et al., 2001). Interestingly, TLR2 and its downstream 

adaptor myeloid differentiation primary response protein 88 (MYD88) have been reported 

to localize on the periphery of the chlamydial inclusion during active infection, suggesting 

that TLR2 may signal intracellularly during infection (Mackern-Oberti et al., 2006; 

O’Connell et al., 2006).  

The intracellular nucleotide sensors cyclic guanosine monophosphate–adenosine 

monophosphate (cyclic GMP-AMP, cGAMP) synthase (cGAS) and stimulator of 

interferon genes (STING) also detect chlamydial infection and induce the expression of 

type I interferons (Zhang et al., 2014). The intracellular peptidoglycan-binding molecule 

nucleotide-binding oligomerization domain-containing 1 (NOD1) is also activated, 

probably by trace amounts of chlamydial peptidoglycans (PGNs) (Bastidas, 2013). Instead 

of abundant PGNs, the cell envelope of EBs is comprised of a highly crosslinked 

latticework of outer membrane proteins (OmpA, OmcA, OmcB, and others) (Hatch, 1996), 
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many of which are highly immunogenic (Wang et al., 2010) and could possibly be 

recognized as PAMPs by cytosolic receptors. 

Certain antimicrobial molecules such as reactive oxygen species (ROS) are 

synthesized in response to infections (Bastidas, 2013), and K+ efflux triggered by 

Chlamydia infection activates ROS production (Abdul-Sater et al., 2009; Boncompain et 

al., 2010; He et al., 2010). ROS production activates caspase 1 through several response 

proteins that are aggregated into an inflammasome composed of Nucleotide-binding 

Oligomerization Domain (NOD) and Leucine-Rich Repeat (LRR) proteins, and all 

associated with the Pyrin domain-3 containing Apoptosis-associated Speck-like protein 

that contains a Caspase activation and recruitment domain (NLRP3-ASC-inflammasome). 

This NLRP3-ASC-inflammasome proteolytically processes the pro-inflammatory 

cytokines IL-1β and IL-18 in Chlamydia infected cells (Abdul-Sater et al., 2009; Entrican 

et al., 1999; He et al., 2010; Gervassi et al., 2004; Lu et al., 2000; Nagarajan, 2012; 

Rothermel et al., 1989). Intriguingly, under certain circumstances activation of the 

inflammasome promotes infection, may be due to an increase in lipid acquisition or 

utilization (Nagarajan, 2012; Itoh et al., 2014). 

At the beginning of chlamydial infection, an acute localized inflammatory response 

largely mediated by the recruitment of polymorphonuclear leukocytes (PMNs) and 

mononuclear leukocytes take place, mainly due to the cytokines and chemokines secreted 

by infected epithelial cells (Huang et al., 1999; Kelly and Rank 1997; Rank et al., 2008, 

2000). Studies conducted in the C. muridarum mouse model of genital tract infections have 

demonstrated that as early as 3 h post-infection, genes encoding chemokines (CCL20, 

CCL3, and CCL24) that recruit immature dendritic cells (DCs) are up-regulated, as well as 
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those encoding for TNF-α and C3 (alternative complement). Therefore, early responses 

prime the site of infection for immature DC infiltration, which is an important step of the 

adaptive response (Rank et al., 2010). By 12 h postinfection, expression of chemokines 

that are chemotactic for natural killer (NK) cells (CXCL9-11, CCL2-4, CCL7, CCL8, and 

CCL12) is significantly induced (Rank et al., 2010; Tseng and Rank, 1998). The pro-

inflammatory cytokines IL- 1α, IL-1β, IL-1F6, and IL-1F8 are also expressed, as are PMN-

recruiting chemokines (CXCL1, CXCL5, and CXCL15) (Rank et al., 2010). The 

recruitment of immune cells that mediate innate and adaptive immune responses to 

Chlamydia infections are, under most circumstances, sufficient for bacterial clearance 

during primary infections, which may explain why most infections are asymptomatic. 

However, inflammatory responses resulting from recurring infections or when bacteria 

access sterile sites (i.e., the upper genital tract for C. trachomatis infection) contribute to 

the detrimental scarring and pathology (Darville and Hiltke, 2010; Stephens, 2003). 

 

Chlamydial Modification of Host Response. Chlamydia has evolved several 

mechanisms so that it can avoid the host defense systems and prolong its survival in the 

host. The organism can limit the recognition of PAMPs by ensuring the stability of the 

inclusion, during the intracellular stage of infections, which is achieved through 

reorganizing actin and intermediate filaments at the periphery of the inclusion (Kumar and 

Valdivia 2008). Chlamydial infection inhibits multiple pro-apoptotic pathways as well as 

potential necrotic cell death to ensure survival within host cells (Fan et al., 1998; Fischer 

et al., 2001; Rajalingam et al., 2001; Yu et al., 2010). One of the prominent mechanisms 

that Chlamydia utilizes to prevent cell death is the CPAF mediated degradation of the pro-
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apoptotic Bcl-2 (B-cell lymphoma 2) Domain 3 Homology (BH3)-only proteins Bik, Bim, 

and Puma which are essential for initiating apoptosis (Bouillet and Strasser, 2002; Dong et 

al., 2005; Fischer et al., 2004; Pirbhai et al., 2006; Ying et al., 2005). Chlamydia is also 

thought to modulate host progression through cell cycle using multiple mechanisms to 

maximize nutrient acquisition at specific stages of development (Kokes and Valdivia, 

2012; Sun et al., 2015). It has also been speculated that by perturbing cell survival and 

regulating the cell cycle, Chlamydia may favor malignant transformation of the host cell 

(Kokes and Valdivia, 2012). 

Chlamydia has also evolved with the mechanisms that may potentially subvert the 

host-immune responses, and under come conditions, prevent clearance. Chlamydial 

infection can suppress the production of interferon (IFN) or counteract downstream gene 

products that are involved in cell-autonomous immunity (Chen, et al., 2014; Nagarajan, 

2012; Wolf and Fields, 2013).  The organism also uses a wide range of strategies to evade 

or dampen the transcription of nuclear factor –κB (NF- κB) (Bastidas et al., 2013; 

Hackstadt, 2012), a central regulator of immune responses. It has been shown that C. 

trachomatis T3SSs effector ChlaDub (also known as CT686) deubiquitylates and stabilizes 

NF- κB inhibitor–α (IκBα) in the cytosol (Misaghi et al., 2006), whereas C. pneumoniae 

Inc Cp0236 binds to and sequesters NF- κB activator 1 to the inclusion membrane (Wolf 

et al., 2009), thereby obstructing NF- κB signaling. 
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1.3. CHLAMYDIAL INFECTIONS AND SIGNIFICANCE 
 
 
The bacterial species of the genus Chlamydia cause a broad spectrum of diseases 

in a wide variety of hosts, approximately 32 species of mammals, including humans, have 

been shown to carry chlamydial infections (Longbottom and Coulter, 2003; Schachter, 

1999; Storz, 1988; Vlahović et al., 2006). Therefore, they are clinically and 

epidemiologically important throughout the world, both in human and in veterinary 

medicine.  

 

Infections in Humans. Sexually transmitted C. trachomatis strains infect the 

endocervical epithelia of women and the urethral epithelia in men and cause multiple 

syndromes, including cervicitis, endometritis, salpingitis, and urethritis (Peipert, 2003; 

Miyairi, 2010). However, the infection remains asymptomatic in a large proportion of 

infected individuals (70–90% of women; 30–50% of men) (Peipert, 2003; Gonzales et al., 

2004; Stamm, 1999). If the infection remains untreated, the persistent infection may lead 

to pelvic inflammatory disease (PID) in women with serious consequences of chronic 

pelvic pain, tubal factor infertility, and potentially fatal ectopic pregnancy, and 

epididymitis in men (Ibrahimet al., 1996; Taylor-Robinson and Thomas, 1980; Westrom 

et al., 1992). In pregnant women, untreated chlamydial infection has been associated with 

pre-term delivery as well as ophthalmia neonatorum (conjunctivitis) and pneumonia in the 

newborn (Frommel et al., 1979; Rours et al., 2011; Zar, 2005). Reactive arthritis, also 

called Reiter's syndrome, is also a complication of genital chlamydial infection (Barth and 

Segal, 1999). It has also been reported that genital chlamydial infection may predispose to 
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HIV-related AIDS (Thior et al., 1997; Kilmarx et al., 2001) and human papilloma virus-

associated cervical dysplasia (Zhu et al., 2016).  

Besides genital infection, C. trachomatis also infects eyes and may cause a disease 

known as “trachoma” – meaning “roughness of the conjunctiva” (Schachter, 1999). It is 

the leading cause of preventable infectious blindness globally and endemic to the poorest 

countries of the world where people live in overcrowded conditions with limited access to 

water and health care (Thylefors et al., 1995; World Health Organization (WHO), 2001b). 

The infection transmits easily from person to person and frequently spreads from child to 

child and from child to mother within the family. Active trachoma occurs most frequently 

in children and is clinically characterized by signs of follicles and papillae on the 

conjunctival epithelium of the upper lid due to the inflammatory response following 

infection with C. trachomatis (Thylefors et al., 1987). The disease progresses over years 

as repeated episodes of re-infection may cause in scarring leading to distortion of the 

eyelids and upper lid entropion (in-turning of the eyelids), earning it the name of the “quiet 

disease” (Polack et al., 2005; WHO, 2001a). The eyelashes eventually rub on the eye globe 

and cornea, a condition known as trichiasis, which may lead to corneal opacity and 

eventually blindness (Polack et al., 2005). 

C. pneumoniae is a common pathogen in acute human respiratory infections 

worldwide (Ward, 1995), with more than 60% of most American, European and Asian 

societies being exposed (Igietseme and Black, 2013). While the majority (around 70%) of 

C. pneumoniae infections cause mild to subacute respiratory diseases, such as pharyngitis 

and bronchitis, a minority results in more severe infections such as community acquired 

pneumonia and bronchitis (Hahn et al., 2002; Kumar and Hammerschlag, 2007). The 
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organism has also been suggested to play a role in chronic inflammatory lung diseases, 

such as chronic obstructive pulmonary disease (COPD) and asthma, as well as in 

atherosclerosis or clinical manifestation of coronary heart disease (Choroszy-Król et al., 

2014; Hahn et al., 1991, 2002; Joshi et al, 2013; Kuo and Campbell, 2003). In recent years, 

reports have suggested the association of C. pneumoniae with several neurologic diseases, 

such as multiple sclerosis, Alzheimer’s disease, meningoencephalitis and neurobehavioral 

disorders (Stratton and Sriram, 2003; Contini et al., 2010; Choroszy-Król et al., 2014). 

 

Infections in Animals. C. abortus infects the placenta and cause ovine enzootic 

abortion (OEA) in sheep and goats (Aitken, 2000; Longbottom and Coulter, 2003). It is 

recognized as a major cause of abortion and lamb loss throughout the world, especially in 

the lowland flocks intensively managed at lambing time (Kerr et al., 2005; Longbottom et 

al., 2013; Nietfeld, 2001). As the disease implies, C. abortus shows an enzootic nature by 

virtue of the abortions in primiparous animals that tend to annually re-occur in affected 

herds (Aitken and Longbotttom, 2007). Experimental evidence strongly suggests that the 

annual re-occurrence of C. abortus abortions is due to the ability of the organism to escape 

elimination by the immune response and maintain itself in dormancy in the infected 

ruminant herd. This dormancy already been observed in initial studies on OAE (Wilsmore 

et al., 1984; Papp et al., 1994; Livingstone et al., 2009; Gutierrez et al., 2011; Longbottom 

et al., 2013), and the re-occurrence does not result from the periodic re-introduction of C. 

abortus from a heterologous, e.g. avian, host (Van Loock et al., 2003).  Moreover, the deep 

endometrial location of the chlamydial inclusions in ewes with dormant infection strongly 

suggests that C. abortus exploits the immune-privilege of the uterus for its persistence 
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(Hunt, 2006; Niederkorn, 2006).  The increased number of endometrial immune cells in 

the area of chlamydial inclusions point towards the presence of regulatory T cells (Tregs) 

that play a dominant role in peripheral immune tolerance.  While the uterine immune 

privilege serves to maintain immune tolerance to fetal antigens (Hansen, 2014; Zenclussen, 

2006), C. abortus may exploit this narrow zone of tolerance to establish a permanent 

habitat in a ruminant population.  The existence of Tregs in sheep has been demonstrated 

(Rocchi et al., 2011).  On a side note, the exploitation of immune privilege by C. abortus, 

and therefore the absence of immunoselective pressure, may also explain why C. abortus 

has maintained itself with an essentially identical genome for more than 70 years (Siarkou 

et al., 2015). 

Animals infected prior to pregnancy, in most cases, remain asymptomatic when the 

organism enter into a latent phase. It is not until around day 90-95 of pregnancy that C. 

abortus can be first detected in the placenta (Buxton et al., 1990). The actual, clinically 

observed disease, i.e. abortion or delivery of weak, infected lambs, represents a breakout 

from the primary endometrial habitat of C. abortus late in gestation (last 2-3 weeks of 

gestation), when the immune-privileged modified uterine endometrium (decidua) vastly 

expands due to growth of the fetus.  A possible explanation may be placental dynamics and 

fetal immune response during ovine gestation.  The synepitheliochorial placenta in sheep 

is characterized by the absence of fusion between maternal uterine epithelium and the fetal 

chorionic membrane, with placental structures called placentomes serving as exclusive 

sites of limited infiltration by maternal blood vessels (Wooding and Flint, 1984).  At around 

60 days of gestation, maternal haematomas begin to develop at the maternal-fetal interface 

in the hilus of each placentome.  These haematomas allow direct contact between maternal 
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blood and fetal trophoblast, and thus provide opportunity for placental infiltration by C. 

abortus (Buxton et al., 1990).  However, C. abortus would break out from the permanent 

deep endometrial habitat only in the absence of vigorous systemic immunity of circulating 

anti-C. abortus T effector cells.  This may most frequently occur after systemic and 

endometrial infection via contact with an aborted fetus, or, probably less frequently, after 

venereal transmission.  In experimental inoculations, the earliest placental lesions can be 

observed at 90 days of gestation, in the hilus of the placentome where C. abortus can be 

demonstrated within chorionic epithelial cells (Buxton, 1990; Aitken and Longbottom, 

2007). Simultaneously, antichlamydial maternal inflammatory cytokines such as 

interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) are down regulated at 

the trophoblast junction to avoid rejection of the fetus by the maternal immune system 

(Entrican, 2002).  These factors potentially enhance chlamydial replication and invasion of 

the placenta and fetus during a time when the fetus becomes increasingly 

immunocompetent after approximately 80 days of gestation (Nettleton and Entrican, 1995; 

Buxton et al., 2002) and responds with increased inflammation to C. abortus. 

The organism establishes itself in the trophoblast cells of the fetal chorionic 

epithelium, spreading to the surrounding intercotyledonary membranes, where it gives rise 

to the typical thickened and necrotic placental lesions that are associated with the disease 

(Buxton et al., 2002). Although lesions are mostly confined to the placental membranes 

(Buxton, et al., 1990; McEwen, et al., 1951), they may also occur in the brain and liver of 

foetuses (Buxton et al., 2002). The typical histopathological changes in placental tissues in 

experimentally C. abortus infected ewes consisted of purulent placentitis with highly 
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disrupted chorionic epithelium and associated neutrophil aggregations along with arteritis 

(Longbottom et al., 2013). 

During an extended lambing period, naïve primiparous ewes may acquire the 

infection from other aborting ewes, and abort in the same pregnancy. However, infections 

acquired very late, after around 110 days of gestation (i.e. within the last 5 weeks of 

pregnancy), often fail to induce abortion and remain asymptomatic, although such animals 

may abort in the subsequent lambing (Aitken and Longbottom, 2007). 

C. pecorum is identified as one of the most widely distributed chlamydial species, 

with a diverse host range that includes production animals such as cattle, sheep, goats, and 

pigs, as well as important wildlife species (Giovannini et al., 1988; Francesco et al., 2011; 

Polkinghorne et al., 2013). It is typically associated with polyarthritis and 

keratoconjunctivitis in ruminants (Anderson et al., 1996; Cutlip et al., 1972; Fukushi and 

Hirai, 1992; Meagher et al., 1992; Walker et al., 2015), as well as encephalomyelitis in 

cattle (Kessell et al., 2011; Jelocnik et al., 2014; McNutt, 1940). There are some reports of 

C. pecorum causing pneumonia and respiratory disease (Wheelhouse et al., 2013; Wilson 

and Thomson, 1968), and enteritis in sheep and cattle (Doughri et al., 1974; Reggiardo et 

al., 1989). The organism has also been implicated in abortion, vaginitis, endometritis, and 

mastitis in cattle and sheep (Kaltenboeck et al., 2009; Rønsholt and Basse, 1981; 

Wittenbrink et al., 1988; 1993).  

Until recently, C. psittaci was considered to be the sole pathogenic chlamydial 

species in birds, however, evidence suggests that avian chlamydiosis may also be 

associated with C. gallinacea and C. avium (Sachse et al., 2013; Sachse and Laroucau, 

2014) as well as C. abortus (Pantchev et al., 2009), C. pecorum or C. trachomatis (Sachse 
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et al., 2012). Although most avian chlamydial infections remain asymptomatic (Kaleta and 

Taday, 2003), depending on the chlamydial strain and the avian host, chlamydiae cause 

pericarditis, air sacculitis, pneumonia, lateral nasal adenitis, peritonitis, hepatitis, and 

splenitis (Harkinezhad et al., 2008; Harrison, 1989; Knittler et al., 2014; Vanrompay et al., 

1995). In the case of avian chlamydioses, appropriate control measures during importation 

of birds and uses of antibiotic, especially tetracycline in feed, are the only available tools 

in the fight against this disease (Smith, et al., 2010). However, sick birds may require a 

more rigorous form of treatment such as intramuscular injection with oxytetracycline, 

which may cause severe local tissue damage (Vanrompay et al., 1995), and hence has 

economic implications for the poultry industry. 

Feline chlamydiosis, caused by C. felis, is most frequently associated with rhinitis 

and conjunctivitis in cats (Longbottom and Livingstone, 2006). Antibiotics are routinely 

used to treat the clinical infections. However, such treatment may require the daily use of 

oral antimicrobials for a long period of time, which often results in treatment failure as pet 

owners fail to adhere to such regimes. Moreover, a recent study showed that the organism 

could still be isolated following treatment with azithromycin (Owen et al., 2003). Since 

antibiotic treatments fail to eliminate the disease, and recent studies have shown C. felis 

infection to be common in stray cats (Yan et al., 2000), the possibility of transmission to 

humans is greater than generally thought. 

C. suis is a pathogen that is widespread in pig herds and is often associated with 

several chronic diseases, such as conjunctivitis, keratoconjunctivitis, enteritis, pneumonia 

and genital tract infections (Rogers and Andersen, 1996; Rogers et al., 1996, 1993). 
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Socio-economic Importance of Chlamydial Infections. In humans, C. 

trachomatis accounts for the most common bacterial cause of sexually transmitted diseases 

(STDs) worldwide (Shim, 2011). In 2013 it was estimated that approximately 147 million 

people were infected with sexually transmitted Chlamydia trachomatis worldwide (Global 

Burden of Disease Study 2013 Collaborators), but an average of 131 million new infections 

usually occur annually worldwide as estimated by the World Health Organization (WHO, 

2015). It is the most common notifiable infectious illness in the European Union (European 

Centre for Disease Prevention and Control, 2013; Katz, 2014) and United States (Katz, 

2014). In 2014, 1.4 million C. trachomatis STD cases were reported to the Centers for 

Disease Control and Prevention (CDC) from 50 states and the District of Columbia (CDC, 

2014). However, an estimated 2.86 million new cases occur every year in the US 

(Satterwhite et al., 2013) that cause an estimated tangible costs over USD 2.4 billion 

annually (Johnson et al., 2002). C. trachomatis induced trachoma is responsible for 15 % 

of the world's blindness (WHO, 1997). It is essentially an epidemic in some of the world’s 

poorest countries in Africa, south-east Asia, the Indian subcontinent, the western Pacific 

and some areas of Oceania (Schachter, 1999). An estimated 146 million people are infected 

worldwide with trachoma, of which 6 million are visually impaired or irreversibly blinded 

(Schachter, 1999; WHO 1997). Although, C. pneumonie mostly causes mild acute 

respiratory disease, its association with COPD, asthma, cardiovascular (atherosclerosis, 

coronary heart disease), and neurological diseases (multiple sclerosis, Alzheimer's disease) 

underscores its great impact on public health. 

The significance of animal chlamydioses can be attributed from the economic 

losses due to their effect on production and growth in farming animals as well as their 



28 
 

zoonotic potential. The impact of Chlamydia on animal in some cases is enormous. C. 

abortus is recognized as a primary cause of reproductive loss in sheep and goats worldwide, 

except Australia and New Zealand (Kauffold, 2014; Stuen and Longbottom, 2011). 

Although an initial outbreak of C. abortus infection within a flock that may result only a 

few abortions, over 30% of the ewes abort or give birth to stillborn or weak offspring in 

the following year (Aitken, 2000).  In the United Kingdom, approximately 44% of all 

diagnosed infectious cases of abortions are caused by C. abortus (Stuen and Longbottom, 

2011) which costs an estimated £15 million (25 million Euros) per annum. C. pecorum is 

also an important animal chlamydial species and accounts for notable economic losses in 

the dairy cattle industry. It has been reported that subclinical C. pecorum infection of dairy 

cattle might have a significant impact on herd performance by contributing to reduced body 

weight gain (Reinhold et al., 2008; Poudel et al., 2012), potentially reducing growth rates 

by up to 48% (Poudel et al., 2012). Its presence in the dairy herds has also been associated 

with reduced milk yield (Kemmerling et al., 2009), subclinical low-grade vaginitis 

(DeGraves et al., 2003), increased somatic cell counts (Biesenkamp-Uhe et al., 2007), and 

reduced fertility (Kaltenboeck et al., 2005; Wehrend et al., 2005). In Europe, economic 

losses due to decreased milk production and milk quality, along with abortions and reduced 

fertility rates, were an estimated of 40,000 Euros per annum at an average farm of 60 dairy 

cows and 20 heifers. 

Moreover, most of the animal Chlamydia spp. can cause disease in humans. C. 

psittaci is one of the most common zoonotic agents and the infection in humans is usually 

associated with respiratory disease, although other organs can become infected resulting in 

endocarditis, myocarditis, hepatitis, encephalitis or meningitis (Vanrompay et al., 1995; 
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Williams and Sunder- land, 1989). C. abortus is reported as a zoonotic pathogen and can 

cause severe, life-threatening disease in pregnant women (Longbottom and Coulter, 2003). 

The consequence of C. abortus infection in pregnant women is a spontaneous abortion 

within the first three months of pregnancy, while later infections cause still or premature 

births, which are typically preceded by several days of acute influenza-like illness, as well 

as renal failure, hepatic dysfunction, disseminated intravascular coagulation, and possibly 

death (Buxton, 1986; Hyde and Benirschke, 1997; Jorgensen, 1997). There are some 

reports that identified C. felis infection in humans and such infection is associated with 

follicular conjunctivitis (Ostler et al., 1969), functional disorders of the liver (Griffiths et 

al., 1978), endocarditis and glomerulonephritis (Regan et al., 1979), as well as atypical 

pneumonia (Cotton and Partridge, 1998).  
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1.4. HOST IMMUNITY AGAINST CHLAMYDIAL INFECTION  
 
 
Innate Immunity. The first line of defense from chlamydial infection is the genital, 

respiratory, or ocular mucosal epithelium barrier. However, following of epithelial cell or 

the breach of the mucosal lining and subsequent establishment of a successful infection, 

the innate immune system provides the next stage of defense against the bacteria.  

Epithelial cells. Although epithelial cells are not considered part of the classical 

innate immune system, they are important and early components of the host response to 

chlamydial infection (Quayle, 2002; Rasmussen et al., 1997). An active infection of 

epithelial cells induces the production of pro-inflammatory cytokines such as interleukin 1 

(IL-1), Il-6, and tumor necrosis factor alpha (TNFα), and chemokines such as Il-8 

(Buchholz and Stephens, 2006; Johnson et al., 2004; Rasmussen et al., 1997). These 

inflammatory mediators are most likely responsible for the recruitment of classical innate 

immune cells such as neutrophils, macrophages, natural killer (NK), and dendritic cells 

(DCs) seen during acute infection (Buchholz and Stephens, 2006; Darville 2006). 

Neutrophils and NK cells are the first immune cells that are recruited to the site of 

chlamydial infection. These cells play important role in innate immunity and have been 

implicated in the initial control of chlamydial infections. 

Neutrophils. Neutrophils are the most predominant form of leukocytes with the 

functions of both immune surveillance and in situ elimination of microorganisms (Witko-

Sarsat et al., 2000). Infiltration with neutrophils has been observed in the uterine horns and 

oviducts of guinea pigs shortly after vaginal inoculation of C. psittaci (Rank and Sanders, 

1992). Human neutrophils have also been found to effectively inactivate C. trachomatis in 

vitro (Register et al., 1986; Yong et al., 1982). Moreover, approximately10-fold greater 
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burden of C. muridarum was isolated from the mice depleted of neutrophils than the wild 

type controls. However, both groups of mice in that experiment were able to effectively 

resolve the infection within the same time frame (Barteneva et al., 1996), suggesting that 

neutrophils may be helpful in the early control of chlamydial infection, but are not critical 

for the clearance of chlamydial infection.  In fact, due to their first recruitment in the site 

of infection and short life-span (Kolaczkowska et al., 2013), the primary role of neutrophils 

is more likely to reduce the infection and to limit the spread of chlamydiae.  However, 

recent evidence indicates that chlamydial multiplication may delay the spontaneous 

apoptosis of neutrophils (van Zandbergen et al., 2004). As neutrophils are a major source 

of tissue-damaging cytokines, such as matrix metalloproteinase 9 (MMP9), during an acute 

inflammation (Bradley et al., 2012), their prolonged life span may contribute to tissue 

pathology associated with a chlamydial infection (Darville, 2006; Lee et al., 2010; Huang, 

1999). 

Natural killer cells. NK cells are a type of cytotoxic lymphocytes that play a similar 

role to that of neutrophils (Vivier et al., 2011). They primarily kill viral-infected cells, 

cancer cells, and cells that have lost expression of MHC class I molecules.  They have also 

been shown to be important in the early elimination of intracellular bacteria (Cheng et al., 

2013; Shegarfi et al., 2009).  In a C. muridarum mouse model study, recruitment of 

interferon gamma (IFN-γ) producing NK cell was observed to the site of chlamydial 

infection as early as 12 to 24 hours after challenge (Tseng and Rank, 1988). With the 

production of IFN-γ, NK cells not only plays role in inhibiting the growth of Chlamydia 

(Beatty et al., 1994) but also promote the induction of an adaptive CD4+ T helper 1 (CD4+ 

Th1) immune response. In fact, depletion of NK-cells by anti-NK-cell antibody treatment 
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resulted a significant increase in the Th2-associated antibody IgG1 in mice after C. 

muradarum infection. In contrast, mice that were not treated with an anti-NK-cell antibody 

demonstrated a Th1-associated IgG2a as the dominant antibody (Tseng and Rank, 1998). 

A more recent study indicated that NK cells may influence Th1 immunity by modulating 

DC function. This investigation demonstrated that adoptively transferred of DC from NK 

cell knockout (KO) mice into naive mice failed to induce a Th1- mediated immune 

response after intranasal challenge with C. muridarum (Jiao et al., 2011). Therefore, it is 

more likely that early IFN-γ production by NK cells modulates DC to downregulate the 

Th2 response and thereby promote a strong Th1-mediated immunity, essential for the 

resolution of chlamydial infection. 

Natural killer T cells.  Natural killer T (NKT) cells represent a unique population 

of innate lymphocytes that express the typical NK cell marker (NK1.1 and NKR-P1C) and 

a semivariant T-cell receptor (αβ T-cell receptor; TCR) (Zhao et al., 2011). NK T cells are 

termed as CD1d-restricted due to their ability to recognize lipids and glycolipids presented 

by antigen-presenting cells on CD1d molecules rather than antigens from the classical 

major histocompatibility complex (MHC) (Godfrey et al., 2010). Chlamydial glycolipid 

exo-antigen (GLXA) has been found to act as a specific ligand for NKT-cell activation 

(Peng et al., 2012). NKT cells usually destroy infected and cancerous cells without prior 

sensitization and also secrete cytokines that are important in both innate and adaptive 

immunity (Shekhar et al., 2015). They also play important role in regulating both innate 

and adaptive immune cells (Carnaud et al., 1999; Joyee et al., 2008). NK cells from NK T 

cells depleted mice showed decreased IFN-γ production and proliferation in a C. 

muridarum lung infection model (Zhao et al., 2011). NKT cells have also been shown to 
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modulate the functions of CD8α+ DC (promoting proliferation, CD40 upregulation, and 

production of IL-12) to generate protective Th1 immunity against C. pneumoniae infection 

(Joyee, 2010). Recently it has been demonstrated that alpha-galactosylceramide-stimulated 

NKT cells promote protective Th1 immunity against C. muridarum genital tract infection 

(Wang et al., 2012). 

Macrophages. Macrophages migrate to chlamydial infection sites nearly as rapidly 

as neutrophils, phagocytose bacteria, produce proinflammatory cytokines, and play an 

important role in the resolution of the infection (Bas et al., 2008; Beagley et al., 2009; 

Morrison and Morrison, 2000; Yilma et al., 2012). Studies have shown that through 

autophagy (a process by which cells degrade cytoplasmic proteins and organelles) 

macrophage destroy phagocytosed Chlamydia and also facilitate antigen presentation to T-

cells (Al-Zeer et al., 2013; Crotzer and Blum, 2009; Sun et al., 2012; Yasir et al., 2011). 

Interestingly, macrophages may also have an effect on chlamydial infection by inducing 

TNF-α mediated T cell apoptosis and perpetuating a persistent infection (Jendro et al., 

2004, 2000). 

Dendritic cells. Dendritic cells (DC) are the typical professional antigen presenting 

cells (APC) and play a key role in induction of chlamydial immunity. They have been 

shown to activate T cells through MHC class I/II presentation and secrete Th1 cytokines 

in chlamydial infection both in in vitro and in vivo studies (Jiang et al., 2008; Matyszak et 

al., 2002; Morrison et al., 1995; Ojcius et al., 1998; Su et al., 1998). In an early study it 

has been shown that adoptively transferred bone marrow-derived DC pulsed with heat-

killed C. trachomatis induced a Th1 response and protected the recipient mice following 

the subsequent nasal challenge with live C. trachomatis (Lu and Zhong, 1999). DCs are 
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the critical linker between innate and adaptive immunity, and therefore are important for 

vaccine research.  

 

Adaptive Immunity. It is well established that T cells are critical for clearance of 

chlamydial infections. Almost 30 years ago Rank and his group first demonstrated that 

athymic nude mice developed chronic C. muridarum infection after intravaginal 

inoculation, while their wild-type counterparts were able to eliminate the infection within 

20 days (Rank et al., 1985). Conversely, when polyclonal Chlamydia-specific T cells were 

transferred into Chlamydia-infected T cell-deficient mice, these mice effectively clear the 

infection (Ramsey and Rank, 1991; Thoma- Uszynski et al., 1998). Numerous studies have 

shown that both CD4+ and CD8+ T-cells are present at the site of chlamydial infection 

(Penttila et al., 1998; Rank et al., 2000; Van Voorhis et al., 1996). Both types of T-cells 

have also been found to recognize C. trachomatis antigens, including outer membrane 

protein 2 (OMP2) (Goodall et al., 2001a), polymorphic outer membrane protein D (POMP-

D) (Goodall et al., 2001b), major outer membrane protein (MOMP), heat shock protein 60 

(Hsp60) (Holland et al., 1997; Kim et al., 2000; Ortiz et al., 2000), chlamydial protease 

activating factor (CPAF) (Li et al., 2011), polymorphic membrane protein G (PmpG), 

PmpF, and ribosomal protein L6 (RpIF) (Olive et al., 2011; Johnson et al., 2012). 

Data from mouse models strongly support a dominant role for CD4+ T-helper cells 

in protective immunity against chlamydial infection.  Adoptive transfer of CD4+ T cells of 

immune mice, but not of CD8+ T cells, confers protective immunity to naive mice against 

chlamydial infection in the genital tract (Su and Caldwell, 1995). Moreover, mice deficient 

in major histocompatibility complex (MHC) class II molecules were unable to clear 
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primary C. muridarum genital tract infections, and mice with a disrupted CD4 gene resulted 

in significantly delayed clearance (Morrison et al., 1995). These studies clearly 

demonstrate the necessity of CD4+ T cells to the clearance of chlamydial infection. 

However, the critical issues for understanding protective host immunity are: (1) which CD4 

T cell subset(s) mediate protection and (2) by what mechanisms? 

Protective CD4+ T-helper cells. All T helper lymphocytes start out as Th0 cells, 

which after being activated by APC acquire the effector functions while differentiating into 

either T-helper type 1 (Th1) or Th2 effector cells based on the cytokines profile they secrete 

(Mosmann et al., 1986; Sad and Mosmann, 1994). Th1 cells secrete IFNγ with or without 

IL-2, while Th2 cells produce IL4, IL5, IL13, and IL10 (Purnama et al., 2013; Perrigoue 

et al., 2009; Wilson et al., 2009; Zhu et al., 2010). The polarization of T helper cells also 

reflected antagonistic effects of IFN-γ and IL-4 on naïve T cell differentiation. IFN-γ 

suppresses Th2 development that depends on the transcription factor GATA-3, and IL-4 

blocks Th1 development that requires T- bet expression (Spellberg and Edwards, 2001). In 

broad strokes, Th1 cells are specialized to defend against intracellular microbial pathogens 

by inducing a strong cell mediated immune reaction (Spellberg and Edwards, 2001). The 

Th1-generated cytokine IFN-γ stimulates phagocytosis (Szulc and Piasecki, 1988), 

oxidative burst (Johnston and Kitagawa, 1985), changes in intracellular iron and tryptophan 

methabolism, and intracellular killing of microbes (Dellacasagrande et al., 1999; Maródi 

et al., 2000).  In contrast, Th2 cells are specialized to deal with extracellular pathogens, 

especially parasites, by facilitating B cell expansion, immunoglobin production and 

recruitment of eosinophils (Lai and Mosmann, 1999; Lundgren et al., 1989; Punnonen and 

de Vries, 1994).  
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Consistent with these general principles, protection against chlamydial infection is 

associated with Th1 immunity while Th2 responses are ineffective or exacerbate the 

infection (Gondek et al., 2009).  Investigation of the local cytokine response to chlamydial 

genital tract infection in mice demonstrated a predominant presence of IFN-γ-secreting 

cells and very few cells secreting IL-4. Interestingly, highest levels of IFN-γ secreting cells 

was observed during the first and the third week of infection (Cain and Rank, 1995). The 

initial peak of IFN-γ secreting cells has been correlated with the presence of NK cells 

(Tseng and Rank, 1998) and the later peak with the influx of chlamydial- specific CD4+ 

Th1 cells (Kelly and Rank, 1997; Kelly et al., 2000). Moreover, adoptive transfer of an 

IFN-γ-producing CD4+ Th1 clone, but not an IL-4-producing CD4+ Th2 clone, protected 

nude mice against Chlamydial genital tract infection (Hawkins et al., 2002). Furthermore, 

a recent study demonstrated that chlamydial antigen-pulsed dendritic cells (DCs) derived 

from IL-10 knock-out mice induced a more vigorous Th1 response compared with that 

produced by stimulation with DCs from wild type mice (Igietseme et al., 2000). This study 

also showed that IL-10 knockout mice cleared the genital chlamydial infection more 

rapidly and efficiently than the wild type mice. The findings suggest that a fast and vigorous 

Th1 response after an infection will rapidly arrest chlamydial replication, clear the 

infection, eliminate residual antigens and prevent the establishment of a latent infection. 

However, an inadequate or suboptimal Th1 response delays chlamydia clearance, leading 

to the establishment of a latent or persistent infection, which fuels a low grade chronic 

immune response and tissue damage (Igietseme et al., 2000, 2003).  It is obvious that the 

protective value of a T cell population is strongly dependent on their ability to efficiently 

migrate to infected tissue sites where they would perform their effector function. However, 
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it has been found that although significant numbers of CD4+ Th2 cells are seen in the 

infected organs in IFN-γ KO mice, these cells failed to localize to sites of chlamydial 

infection (Wang et al., 1999). Thus, in addition to their inability to produce IFN-γ, it is 

likely that the failure of Th2 cells to target infected cells is also a reason for their inability 

to control chlamydial infection. 

Subsequent to the pioneering discovery of Th1/Th2 dichotomy, many other helper 

T cell subsets have been identified to include Treg (T regulatory, mucosal and peripheral 

tolerance) (Sakaguchi et al., 1985), Th21 (Thf, follicular T cells) (Schaerli et al., 2000), 

Th3 (mucosal tolerance) (Dicmann et al., 2002), Th17 (neutrophil recruitment) (Infante-

Duarteet al., 2000; Langrish et al., 2005; Park et al., 2005), and Th22 cell (epithelial 

defense activation) (Nograles et al., 2008, 2009). In addition, more recently there is an 

important category of Th1 T cells have been identified which are referred to as 

multifunctional Th1 T cell and capable of secreting IFN-γ, TNF-α and IL-2 (Darrah et al., 

2007). Recently, chlamydial vaccine studies conducted in C. muridarum mouse model 

demonstrated that multi-functional CD4+ T cells that co-secrete IFN-γ and TNF-α were a 

better correlate of immunity against C. muridarum infection than CD4+ T cells that secreted 

IFN-γ alone (Yu et al., 2010, 2011). 

Th17 cells are a distinct class of CD4+ helper T cells that secrete IL-17A, IL-17F, 

IL-21, and IL-22 (Harrington, et al., 2005; Langrish et al., 2005; Park et al., 2005) and 

their differentiation is supported by several cytokines including transforming growth 

factor-β (TGF-β), IL-1β, IL-6, IL-21, and IL-23 in mice and humans (Chung et al., 2009; 

Sutton et al., 2009; Yang et al., 2008).  Th17 cells play an important role in host defense 

against bacterial infections, generally extracellular bacteria, by recruiting and activating 
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neutrophils. However, they also have a major role in immunopathology, most prominently 

demonstrated for inflammatory autoimmune diseases (Waite and Skokos, 2011). A recent 

study conducted in a C. muridarum pulmonary mouse model showed that IL-17RA was 

consistently induced at higher level in the lungs of highly susceptible C3H/HeN mice than 

comparatively resistant C57/BL6 mice following infection suggesting its role in 

chlamydial immunopathology (Zhou et al., 2009). In another study, it was demonstrated 

that IL-17 promotes Th1 induction and neutrophil infiltration in a murine C. muridarum 

genital infection model, however, its depletion did not interfere with resolution of the 

infection (Scurlock et al., 2011).  In contrast, a more recent study has shown that IL-22 

plays an important role in host defense against murine C. muridarum respiratory tract 

infection through enhancing Th17 and Th1 immunity (Peng et al., 2014). A recent study 

also investigated the role of Tregs in chlamydial immunity and found that they directly 

promote the induction of an IL-17/Th17 response during C. muridarum infection and 

thereby facilitate the development of Chlamydia-induced immunopathology (Moore-

Connors et al., 2013). 

CD4+ Th1 effector mechanism of chlamydial clearance. Evidence clearly suggests 

that the Th1 subset of CD4+ T cell is essential for the protection against chlamydial 

infection. Resolution of the chlamydial infection by Th1 cells is mainly mediated by its 

cytokine IFN-γ. Considerable in vitro and in vivo studies have demonstrated that 

production of IFN-γ by C. muridarum-specific Th1 cells is essential for clearance of the 

infection from the genital tract (Morrison et al., 2002). IFN-γ can control chlamydial 

replication through multiple distinct mechanisms (Roan and Starnbach, 2008). It can 

upregulate the phagocytic potential of macrophages, thereby promoting the engulfment and 
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destruction of extracellular EBs (Zhong and de la Maza, 1988). IFN-γ can also directly 

inhibit chlamydial growth within infected cells. It can induce the production of 

indoleamine-2, 3-dioxygenase (IDO) by the Chlamydia-infected cells (Beatty et al., 1994). 

IDO catalyzes the catabolism of tryptophan, one of the essential amino acids that 

Chlamydia scavenges from the host cell, and thereby lead to the death of the organism 

through tryptophan starvation (Brunham and Rey-Ladino, 2005). In addition, IFN-γ 

downregulates the transferrin receptor and thereby restricts chlamydial growth by 

intracellular iron depletion (Byrd and Horwitz, 1993; Freidank et al., 2001). Finally and 

most importantly, IFN-γ has been associated with activation of inducible nitric oxide 

synthase (iNOS) that catalyzes production of various antimicrobial reactive nitrogen 

intermediates which can kill intracellular Chlamydia organisms in infected cell lines (Chen 

et al., 1996; Igietseme et al., 1996). This mechanism has been found to be functional in 

both human and mouse epithelial cells.  

The requirement for multifunctional Th1 in anti-chlamydial protective immunity is 

not well understood yet. It is possible that in combination with IFN-γ, TNF-α (the effector 

cytokine of multifunctional CD4+ T cells) boosts induction of iNOS expression via NFkB 

binding sites in the iNOS promoter and thereby synergizes to mediate killing of the 

pathogen (Drapier et al., 1988). Although, IL-2 has no direct effector function, it strongly 

enhances the expansion of effector T cells. However, it is also probable that the 

multifunctional Th1 T cells possess a more robust degranulation phenotype than the Th1 T 

cells producing only IFN-γ (Yu et al., 2016). Consistent with the requirement for multiple 

cytokines, a recent in vitro study showed that treatment of murine epithelial cells with IFN-

γ alone was not sufficient to effectively terminate C. muridarum replication, but 
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supernatants of activated T cells did so via an iNOS dependent mechanism (Johnson et al., 

2012). 

CD8+ T cells. The role and effector mechanism of Chlamydia-specific CD8+T cells 

are not well established. Multiple studies have demonstrated that MHC class I peptide 

presentation to CD8+T cells is not essential for clearance of infection with Chlamydia spp.: 

β2-microglobulin (a component of MHC class I molecules) knockout mice resolved 

infection as efficiently as wild-type mice (Morrison et al., 1995, 2000), and mice deficient 

in perforin or CD95  (also known as FAS) - which are crucial cytolytic effector molecules 

of CD8+ T cells - also effectively cleared infection with C. muridarum (Perry et al., 1999), 

suggesting that CD8+ T cells are not essential for clearance of chlamydial infection. 

However, in an early study it has been demonstrated that C.muridarum-specific CD8+T 

cells efficiently lysed C .muridarum-infected cells when cells were transfected with the 

intercellular adhesion molecule 1 (ICAM1) ( Beatty and Stephens, 1994). Thus, in some 

situations, CD8+ T cells may be important for the elimination of cells infected with 

Chlamydia spp. Moreover, adoptively transferred C. trachomatis L2 serovar-specific 

CD8+T-cell lines protected mice against C. trachomatis challenge infection through a 

mechanism involving production of IFN-γ (Starnbach et al., 2003). Therefore, it appears 

to be that CD8+T cells might play supporting role in limiting infection with Chlamydia 

spp. 

B-Cells. The significance of B cell and antibody-mediated immunity against 

Chlamydia infection is not fully understood (Li and McSorley, 2015). Although, in vitro, 

C. trachomatis specific antibodies can neutralize infection in tissue culture (Byrne et al., 

1993), high anti-C. trachomatis antibody titers do not correlate with resolution of infection 
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in humans, rather are more strongly correlated with increased severity of disease sequelae, 

such as tubal infertility in women (Punnonen et al., 1979). Moreover, mice that lack B cells 

do not show a markedly altered course of primary genital infection with C. muridarum 

(Ramsey et al., 1988). However, another study demonstrated that although B cell-deficient 

mice were capable of clearing C. muridarium primary infections with normal kinetics of 

bacterial shedding from the genital tract, knockout mice were more susceptible to 

reinfection than wild type control mice (Su et al., 1997). Further studies showed that 

immune wild-type mice depleted of either circulating CD4+ and/or CD8+ T cells by 

parenteral antibody treatment were able to effectively resolve a secondary Chlamydia 

infection (Morrison and Morrison, 2001). Notably, immune B cell-deficient mice (B cell 

knockout mice that had previously resolved a primary infection) were unable to clear 

secondary infection in the absence of CD4+ - but not of CD8+-T cells, suggests that B cells 

and CD4+ Th1 cells may function synergistically in providing immunity against chlamydial 

infection (Morrison et al., 2000). However, adoptive transfer of immune serum into 

immune B cell knockout mice were able to reconstitute their ability to clear secondary 

infection in the absence of CD4+ T cells (Morrison and Morrison, 2005). Surprisingly, 

when immune serum was passively transferred into naïve wild type mice it failed to provide 

protection from primary infection. Thus, although it appears that B cells and antibody have 

a role in the resolution secondary chlamydial infection, direct antibody-dependent 

neutralization or complement-mediated killing is unlikely to account for antibody-

mediated protection since passive transfer of immune serum only protected antigen-

experienced hosts rather than naïve mice. 
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Overall, these data show that Chlamydia-specific CD4+Th1 cells are required for 

control chlamydial infection, and CD8+ T cells and B cells may further support the 

elimination of chlamydiae. An overview of the chlamydial immunity is shown in Fig. 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Host immune response against chlamydial infection. Infection of nonimmune host 

epithelial cells and resident tissue innate immune cells with chlamydiae results in production of 

proinflammatory cytokines and chemokines that lead to recruitment and activation of first innate 

and, later, adaptive immune cells to effect resolution of infection; subsets of these responses induce 

collateral genital tract tissue damage. A) Infection of reproductive tract epithelium results in 

production of interleukin (IL)–1, tumor necrosis factor-α (TNF-α), IL-8, growth-related oncogene 

(GRO)–α, granulocyte-macrophage colony stimulating factor (GM-CSF), and IL-6, which induce 

increased expression of endothelial adhesion molecules that aid in the attraction of immune cells. 

Resident tissue macrophages also contribute to early release of cytokines and chemokines. Infected 

epithelial cells release matrix metalloproteases (MMPs) that contribute to tissue proteolysis and 

remodeling. B) Neutrophils, natural killer (NK) cells, and monocytes are rapidly recruited into the 
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infected tissue site. Neutrophil release of MMPs and elastase contribute to tissue damage. C) NK 

cell production of interferon (IFN)–γ drives CD4 T cells toward the Th1 (IFN- γ –producing) 

phenotype, and a mixture of CD4, CD8, B cells, and plasma cells (PCs) infiltrate the infected tissue. 

Antibodies released from PCs inactivate extracellular elementary bodies (EBs), and T cell 

production of IFN- γ inhibits intracellular chlamydial replication. Th17 cell involvement has not 

yet been determined. D) After infection has been resolved, inflammation abates, but chronic 

scarring may be the end result. (From Darville and Hiltke, 2010). 

  



44 
 

1.5. CHLAMYDIAL VACCINE 
 
 

Is a Vaccine Necessary? In human medicine, considering the magnitude and near 

epidemic state of C. trachomatis and C. pneumoniae infections in some populations, the 

continued spread in global communities, and the economic stress on the healthcare system, 

several prevention and control strategies have been proposed and/or executed. These 

control measures include mass screening and treatment, mass antibiotic treatment of at-risk 

populations, health education programs on prevention methods, and the use of an 

efficacious vaccine as an immunoprophylaxis and preventive (Igietseme and Black, 2013). 

However, data from the measures implemented so far have suggested that the vaccine 

option will likely represent the most reliable and cost effective means to achieve the 

greatest impact (Cohen and Brunham, 1999; Mahdi et al., 2001) due to several reasons. 

First, the mass screening and treatment, or mass and targeted population treatment with 

antibiotics have not produced the desired long-term result to eliminate chlamydial ocular 

or genital infections (Brunham and Rekart, 2008; WHO, 2014). Secondly, although 

antibiotic therapy effectively cures chlamydial infection if detected early (Mahdi et al., 

2001), most of the chlamydial infections are asymptomatic and therefore treatment of 

symptomatic individuals alone is unlikely to be successful (Cohen and Brunham, 1999; 

Thein et al., 2002). In addition, antibiotics are less effective when there is an established 

infection and pathology (Stagg, 1998). It has also been reported that a significant 

proportion of treated infections may lead to persistence (Bragina et al., 2001; Byrne, 2001), 

casting doubt on the long-term value of certain chemotherapies. Likewise, most other 

prevention strategies have been found challenging to execute due to economic, 

convenience and acceptance issues. Furthermore, computer simulation modelling has 
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predicted that even the least efficacious chlamydial vaccination program would rapidly 

reduce the prevalence of genital infection (de la Maza and de la Maza, 1995). Thus, with 

epidemiologic data indicating persisting and sometimes increasing incidences of ocular and 

genital C. trachomatis infections in the human population worldwide, the urgency for an 

efficacious vaccine cannot be over emphasized. Unfortunately, until today no acceptable 

human chlamydial vaccine has been developed. 

Antibiotics, mainly tetracyclines, are widely used to treat chlamydial infection in 

animals. However, most of the chlamydial infections are asymptomatic in nature and 

antibiotic treatment does not completely eliminate the disease (Owen et al., 2003) and thus 

the carriers continually shed the organisms and infect others in the herd. Moreover, recently 

tetracycline-resistant C. suis strains have been isolated in both the USA (Lenart et al., 2001) 

and Europe (Di Francesco et al., 2008) which is somewhat alarming since C. suis and C. 

trachomatis are closely related species, and this is the antibiotic of choice for both animal 

and human chlamydial infections. Furthermore, treatment may require the daily use of oral 

antimicrobials for a long period, especially in cats against feline chlamydiosis, which often 

results in treatment failure as pet owners fail to adhere to such regimens (Owen et al., 

2003). Thus, although chlamydial infections could be effectively treated with antibiotics, 

their asymptomatic nature, possible development of antibiotic resistance strains, and the 

fact that antibiotic treatment does not clear the infection, means that infections are best 

managed through a combination of improved methods of detection and treatment, 

prevention, and control with vaccines.  In sum, safe and effective anti-chlamydial vaccines 

are urgently needed in both human and veterinary medicine. 
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Chlamydial Vaccine Development and Challenges. Because of the 

asymptomatic nature of chlamydial infections, their diagnosis, treatment, and prevention 

of sequelae is a challenge. Chlamydial infections do not induce long-lasting immunity in 

the host, and protective immunity usually takes months or years to develop (Schachter and 

Stephens, 2008). Moreover, infection by a single serovar does not adequately protect 

against reinfection with other serovars (Schachter and Stephens, 2008). Furthermore, it is 

hypothesized that aggressive treatment may interfere with natural immunity (Brunham et 

al., 2005). Thus, prevention and control of chlamydial infections rely on a safe and 

effective inactivated vaccine capable of inducing a better immune response than what 

occurs naturally (Taylor and Haggerty, 2011; Schachter and Stephens, 2008). However, 

the pathogenesis of Chlamydia has not yet been fully elucidated, and the role of host 

immunology is mostly unclear. Besides, lacking of a suitable animal model and difficulties 

to manipulate Chlamydia genetically, scientists in the chlamydial field have yet to develop 

a successful vaccine. 

Early attempts to develop an effective vaccine for controlling both human and 

animal chlamydial infections started since 1950s with the use of inactivated or live, 

attenuated whole organism preparations (Longbottom and Livingstone, 2006). The 

common problems associated with these vaccines are the cost and the complexity of 

production, the requirement for cold storage, the presence of antigens which can induce 

autoimmunity or immunopathology, and the limited efficacy in neonates with high levels 

of maternal antibodies (van Drunen Littel-van den Hurk et al., 2000). Therefore, over the 

last couple of decades, vaccine research has seen a gradual shift in philosophy away from 

the classical approach of using whole inactivated or attenuated organisms to subunit 
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vaccines. Subunit vaccines are safer to use as they cannot revert to a virulent form, and 

potential undesirable antigens, which can induce immunopathology or inflammatory 

damage, can be avoided (Olive et al., 2001). In subunit vaccines, vaccine candidate 

antigens, or parts of antigens, may be represented as purified proteins, recombinant proteins 

or as synthetic proteins or peptides (Hess et al., 2000). However, like inactivated vaccines, 

subunit vaccines are poor inducers of cell-mediated immunity (van Drunen Littel-Van Den 

Hurk, 2000), which is very important in the defense against chlamydial infections.  

 

Live attenuated vaccine. The first vaccines that were used against Chlamydiaceae 

in humans were attenuated or modified living chlamydial organisms (Schautteet et al., 

2011). The potential usefulness of a live attenuated vaccine in the case of chlamydial 

infection would be due to the ability of such a vaccine to mimic the complex biphasic life 

cycle, thus ensuring the expression of antigens from both the EB and the RB. However, a 

potential pitfall with the use of such vaccines for protection against chlamydial disease is 

that antigens that could give rise to deleterious autoimmune or immunopathologic 

responses may also be produced (Brunham et al., 2000). In fact, early vaccine trials 

demonstrated that individuals vaccinated with whole cells experienced exacerbated disease 

during subsequent infection (Grayston et al., 1985). Therefore, whole-organism live 

vaccination is unlikely to be attempted in the near future especially in human, because there 

is a risk of immunopathology, the large-scale production of pure chlamydiae is extremely 

difficult (Stagg, 1998) and because of the possible spread of live Chlamydiaceae in the 

environment (Shewen, 1980). 
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A veterinary live attenuated C. abortus vaccine has been developed that is 

commercially available and is used against Chlamydia-induced abortion in sheep 

(Chalmers et al., 1997; Rodolaki et al., 1998). This vaccine was first developed in the early 

1980s at the Institut National de la Recherche Agronomique, Nouzilly, France (Rodolakis 

and Bernard, 1984; Rodolakis and Souriau, 1983). It was produced by chemical 

mutagenesis, and consists of a temperature sensitive mutant strain that can grow at 350C 

but not at 39.50C, the body temperature of sheep, and therefore is diminished in its ability 

to grow in vivo and cause disease (Longbottom and Livingstone, 2006). However, the 

safety of using this vaccine is a matter of great concern, particularly since C. abortus can 

cause abortion and serious disease in pregnant women. Furthermore there is always a risk 

of the attenuated strain reverting to virulence, thus having the potential to cause disease 

and abortion in the vaccinated animal. In fact, using genetic markers, the attenuated C. 

abortus vaccine has been associated with abortions.  In addition, the fact that the vaccine 

cannot be administered during pregnancy, or to animals being treated with antibiotics, 

severely limits its usefulness (Longbottom and Livingstone, 2006). Commercial live 

attenuated vaccines are also available against C. felis but these vaccines have not been 

thoroughly tested to ensure that they prevent infection or shedding of the organism into the 

environment (Masubuchi K et al., 2010; Wills et al., 1987). 

 

Inactivated Vaccine. Due to the safety issues with live vaccines, early human 

chlamydial research had also attempted to use killed or inactivated vaccines. However, 

when such vaccines, derived by formalin inactivation of culture- or chick embryo-grown 

EBs, was delivered intramuscularly in alum or mineral oil adjuvant into children in 
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trachoma-endemic areas of Taiwan, East Africa, northern India and The Gambia in Africa, 

it produced mixed and some alarming results (Igietseme and Black, 2013). Depending on 

the trial, the results included a transient decline in trachoma in some vaccinated groups 

compared to placebo controls and more severe trachoma in some pre-vaccinated children 

compared to controls (Igietseme and Black, 2013). Similar to the outcome of attenuated 

live vaccines, the apparently disappointing outcome of these early vaccine trials was that 

the inactivated chlamydial organism vaccines contain components that induce both 

immunoprotective and immunopathogenic immune responses. Moreover, due to their 

inability to replicate, these inactivated organisms are poor inducers of cell-mediated 

immunity although they can induce an adequate level of humoral immunity (van Drunen 

Littel-Van Den Hurk, 2000). As a strong cell-mediated immunity is essential for clearance 

of chlamydial infections, inactivated or killed organisms seem to be less suitable for 

vaccine development against Chlamydiaceae. 

Along with attenuated live vaccines, commercial inactivated vaccines are also 

available against C. abortus and C. felis (Longbottom and Livingstone, 2006). They are 

usually prepared from infected yolk sacs or cell cultures and incorporate whole organisms 

or fractions of them (Cello, 1967; Jones et al., 1995; Tan et al., 1990). Although using an 

inactivated vaccine in sheep is advantageous as it can be administered in pregnant ewes, 

care must be taken in handling and administering this vaccine, as it is adjuvanted with 

mineral oils, which have the potential to cause tissue necrosis. In cats, although inactivated 

vaccines are successful in reducing acute disease, again, like the live vaccines, they do not 

prevent shedding of the organism or re-infection (Wills et al., 1987). 
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Purified protein vaccine. Since the early 1990s, chlamydial vaccine research has 

been focused largely on the use of the major outer membrane protein (MOMP) as a single 

antigen component. MOMP comprises approximately 60% of the total protein mass of the 

bacterial outer membrane (Brunham and Peeling, 1994). It has four variable domains, 

which are surface exposed and antigenically variable, hence responsible for serological 

differences between chlamydial strains (Stephens et al., 1987). A predominant anti-MOMP 

response was observed from the serological analysis of convalescent sheep sera following 

natural or experimental infection with C. abortus and sera from humans infected with C. 

trachomatis (Anderson et al., 1990; Miettinen et al., 1990; Ward et al., 1986).  However, 

when the MOMP protein, eluted from SDS–PAGE gels, was orally administered to 

cynomolgus monkeys, it failed to induce protection against C. trachomatis-induced 

conjunctivitis (Taylor et al., 1988). In contrast, protection was observed when a detergent-

extracted chlamydial outer membrane complex (COMC) preparation, in which MOMP 

constitutes 90% or more of the protein content, was subcutaneously administered to 

pregnant ewes infected with C. abortus (Tan et al., 1990). Since then, COMC preparations 

have been shown to induce variable levels of protection in guinea pig (Batteiger et al., 

1993) and mouse (Pal et al., 1997) models of genital chlamydial infection, and in a mouse 

toxicity test for C. felis infection (Sandbulte et al., 1996). Protection by native MOMP was 

observed in mice against a C. muridarum serovar after administration via immune 

stimulating complex (ISCOM) and adjuvantation with CpG oligodeoxynucleotide coupled 

to the nontoxic B subunit of cholera toxin (Cheng et al., 2009; Igietseme and Murdin, 

2000). More recently, a purified and refolded MOMP preparation induced protection in 

mice against upper genital tract challenge with C. muridarum (Pal et al., 2001). However, 
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although successful protection has been acquired using refolded, purified MOMP 

preparations, the major disadvantages of these vaccines are that they are very expensive 

and there are problems to grow Chlamydia in bulk, which renders these kinds of vaccines 

commercially infeasible (Longbottom and Livingstone, 2006). 

 

Recombinant protein vaccine. Due to hurdles associated with the purified MOMP 

and COMCs preparation, attention turned to the development of the cheaper and more cost-

effective alternative of recombinant protein vaccines, particularly those based on MOMP 

(Longbottom and Livingstone, 2006). Studies conducted in sheep with C. abortus 

recombinant MOMP, expressed as insoluble inclusion bodies in a bacterial overexpression 

system, demonstrated some protection against infection, but the findings were not 

consistent (Herring et al., 1998). Expression of C. abortus MOMP as overcoat protein on 

the surface of a plant virus was initially found promising in mouse studies, but ultimately 

proved unsuccessful and trials did not progress to sheep (Herring et al., 1998, Longbottom 

and Livingstone, 2006). Different attempts were also made to induce protection against C. 

trachomatis infection by rMOMP vaccination. Mouse protection studies with rMOMP 

incorporated in lipid C induces partial protection of both the respiratory and genital 

mucosae against C. muridarum challenge (Ralli-Jain et al., 2010). Similar studies also 

demonstrated that the degree of protection obtained with rMOMP was not as robust as that 

achieved with a native MOMP preparation (Sun et al., 2009). Thus, the disappointing 

results achieved with recombinant MOMP vaccination could be due to a lack of native 

protein structure and conformationally intact protective epitopes (Longbottom, 2003), or, 

it may be that MOMP alone is insufficient and additional antigens are also required. 
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Moreover, this approach proved difficult as the expression of full-length recombinant 

MOMP (rMOMP) in prokaryotic expression systems is generally toxic (Schautteet et al., 

2011). 

 

Synthetic peptide vaccine. Numerous in silico bioinformatics tools are now 

available to predict antigenic domains or epitopes. Thus, synthetic production of these 

epitopes makes it possible to produce synthetic peptides which correspond with the 

important immunogenic domains on the antigens. Several studies with chlamydial MOMP 

peptides and oligopeptide vaccines demonstrated variable results, with at best partial 

protection. Initial mouse model studies showed that intradermal injection of a peptide from 

a conserved region of the MOMP of C. trachomatis, conferred some protection against the 

development of salpingitis (Knight, et al., 1995). In contrast to these findings, Caldwell’s 

group at the Rocky Mountain Laboratory observed that parenteral immunization of mice 

with an alum-adsorbed synthetic oligopeptide of the C. trachomatis MOMP was ineffective 

in preventing chlamydial genital tract infection although mice produced high levels of 

antichlamydial neutralizing IgG serum antibodies (Su et al., 1995). 

Potential of synthetic peptide vaccine against Chlamydia. Synthetic peptide 

vaccine research in the chlamydial field is in its juvenile stage, and no striking successes 

have been demonstrated yet.  However, considering the complexities and high cost related 

to other subunit vaccine approaches, the development of a peptide vaccine against 

chlamydial infection is very promising. The key advantages of peptide vaccines over 

traditional vaccines based on dead or live attenuated pathogens and recombinant vaccines 

are as follows (Skwarczynski and Toth, 2014): 
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• They are almost exclusively synthetically produced. Peptide antigen can be fully and 

precisely characterized as a chemical entity. This practically removes all the problems 

associated with the biological contamination of the antigens. 

• Some pathogens are difficult to culture (e.g., Chlamydia, sporozoites for malaria 

vaccines), and a subunit-based vaccine (including peptide) might be the best solution 

in such cases. 

• Recent developments in solid phase peptide synthesis using automatic synthesizers and 

application of microwave techniques have made peptide synthesis very simple, easily 

reproducible, fast, and cost-effective. 

• Most of these vaccines are typically water-soluble, stable under storage conditions even 

at room temperature, and can be easily be freeze dried. 

• Peptides can be customized to target very specific objectives. The current availability 

of bioinformatics tools make it possible to predict antigenic domains or epitopes in 

silico and chemically synthesize those peptide epitopes. The immune responses can be 

directed against naturally non-immunodominant epitopes. In addition, a peptide-based 

vaccine can be designed to target several strains, different phases of the life cycle, or 

even different pathogens in a multi-epitope approach. 

• Because of the absence of the redundant proteins, peptide vaccines are less likely to 

induce allergic or autoimmune responses than any other vaccine. 

However, it should be noted that the potential advantages that peptide vaccines have 

to offer are to some extent diminished by their inherent lack of immunogenicity, which so 

far has been reflected by the unimpressive outcome of clinical trial (Celis, 2002). The 

immune system in most species has usually evolved over time to combat life-threatening 
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infectious agents (and probably tumors), therefore vaccines consisting of aseptic, 

endotoxin-free peptides may be be ignored and ineffective at inducing a protective immune 

response. Furthermore, peptides that are injected in aqueous solutions will probably be 

unsuccessful at stimulating T-cell responses, either due to their rapid biodegradation (e.g., 

by proteases) or, worse, because of the induction of T cell tolerance/anergy, which results 

from the antigenic stimulation of T-cells by non- professional APCs (Kyburz et al., 1993; 

Toes et al., 1996). Additionally, they are often not recognized equally by the whole outbred 

population, such as humans (Skwarczynski and Toth, 2014).  
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1.6. RESEARCH RATIONALE AND OBJECTIVE 
 
 

The public health importance of chlamydial infections is evidenced by the vast 

socioeconomic burden of the genital, ocular and respiratory human diseases, as well as the 

economic losses in animal agriculture. With epidemiologic data indicating persisting and 

sometimes increasing incidence of chlamydial infections, the urgency for efficacious 

vaccines cannot be overemphasized. Unfortunately, acceptable chlamydial vaccines to date 

are not available, due to a number of challenges ranging from induction of appropriate 

immune response that would provide protection but not immunopathology, safety 

considerations through insufficient immunogenicity of vaccine candidates, lack of 

effective delivery systems, to the question of how to induce long-term immunity.  

It is well established that IFN-γ producing CD4+ Th1 lymphocytes are indispensible 

for efficient and complete elimination of chlamydial infection (Perry et al., 1997; 

Rottenberg et al., 2000; Vuola et al., 2000). Thus, an effective chlamydial vaccine design 

should consider the factors that trigger a CD4+ Th1 immune response. Among various 

factors, antigen dose is one of the deciding factors in the induction of Th1 vs Th2 immune 

responses. A mathematical model predicted that a low antigen dose would favor Th1-

dominant immune response whereas a high dose would induce a Th2 response (Bergmann 

and van Hemmen, 2001). This model is based on the differential sensitivity of these two 

T-helper cell types to activation-induced cell death (AICD).  In this process, neighboring 

activated T cells undergo apoptosis after repeated ligation of the CD3/TCR complex that 

is mediated by mutual Fas-Fas-ligand (FasL) binding. Interestingly, FasL is mainly 

expressed on activated Th1 cells, thus making them very susceptible to AICD. Therefore, 

if the initial antigen concentration is very high, the continual antigen stimulation causes the 
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default Th1 cells to undergo AICD.  In contrast, Th2 cells that randomly emerge a low 

frequency in the stimulated T cell population do not express FasL and are completely 

refractory to Fas-FasL mediated apoptosis.  Therefore, Th2 cell will survive high antigen 

concentrations and overtake Th1 cells that will be eliminated by AICD. 

Secondly, a vaccine should be safe and cost-effective. As mentioned earlier, 

chlamydial whole organism-based live and inactivated vaccines were not successful since 

they induced autoimmunity or immunopathology, excluding them from real-life 

application.  Safe and cost-effective purified or recombinant protein subunit vaccines did 

not show promising results due to complexities in their development. Peptide vaccines 

would avoid these problems, but their effectiveness has been marginal. If the problem of 

ineffective vaccine response can be overcome, peptide vaccines should be very safe, can 

be directed to induce specific immunity, would be very easy to produce, and would be more 

cost-effective than any other vaccine. 

In a peptide vaccine approach, multiple overlapping synthetic peptides (OSP) 

comprising whole proteins would be advantageous as compared to single peptides because 

1) OSP vaccines would contain multiple epitopes that can bind to different MHC alleles, 

and hence the vaccine will generate antigen-specific immunity in vaccine recipients with 

different MHC backgrounds; 2) OSP vaccines could be designed rapidly against emerging 

strains of a pathogen or new pathogens because new sequences would serve as OSP 

templates, and neither epitopes nor vaccine MHC alleles need to be matched; 3) several 

vaccine candidate proteins of different chlamydial species have been identified, creating 

promising potential for human and animal OSP vaccines against chlamydial infection. 
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Finally, the selection of an appropriate adjuvant and delivery vehicle is essential 

for a subunit vaccine or an OSP peptide vaccine. Thus, in terms of chlamydial vaccine 

design one should select an adjuvant that triggers a Th1 response. Similarly, a delivery 

vehicle should be considered that will present the antigen and adjuvant simultaneously to 

the APCs and has controlled release properties.  Biodegradable polymer microparticles, 

most commonly microspheres with microencapsulated peptide or protein antigens, have 

been studied for more than 20 years after early reports of the possibility to control the 

release of protein antigens over extended time periods for the purpose to eliminate booster 

vaccine doses. Primarily because of their safety, including everyday use in healthy people 

(including children) as resorbable sutures, and their use in several commercial controlled-

release drug products, co-polymers of lactide and glycolide (PLG) have become the most 

widely studied polymer to help meet this goal. Moreover, PLG microspheres have several 

additional advantages, such as the ability to elicit cytotoxic T cell (CTL) responses, the 

potential for mucosal immunization, and DNA delivery in DNA vaccines. 

We hypothesized that 20-mer overlapping synthetic peptide antigens derived from 

known vaccine candidate proteins of C. abortus should induce protection against C. 

abortus challenge when used (i) at very low dose of the peptide antigens and (ii) in a 

microparticulate delivery system.  To this end, the overall purpose of this study was to 

develop a vaccine platform that can be utilized to design a safe and effective vaccine 

against different chlamydial species and other intracellular bacteria where a Th1 immune 

response is essential for clearance of infection. 
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The specific goals of this investigation were: 

1. Synthesize 20-mer overlapping peptides from the best C. abortus vaccine 

candidate proteins; 

2. Test whether low antigen (protein or peptide) can induce protection in a mouse 

model of respiratory C. abortus infection; 

3. Identify the optimal adjuvant; 

4. Identify and optimize a suitable delivery vehicle for this vaccine. 
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CHAPTER 2 

LOW-DOSE ANTIGEN VACCINATION 
 
 
2.1. INTRODUCTION 

Principle of peptide vaccines. The vertebrate immune system is seperated into 

innate and adaptive components, which cooperate to protect the host against microbial 

infection. The principal distinguishing factors between the two are the response time and 

the level of specificity. The innate response is initiated almost immediately and causes the 

migration of phagocytic cells, mainly leukocytes, macrophages and dendritic cells (DCs) 

to the site of infection (Murphy and Weaver, 2016; Akira, 2011). Upon encountering 

pathogens, theses antigen presenting cells (APCs), particularly DCs, ingests a microbe or 

other antigens, and undergo directed activation and maturation. As the name APC implies, 

these cells present antigens by processing endogenous intracellular cytosolic antigens 

through proteasome-mediated degradation and exogenously derived antigens through the 

lysosomal degradation pathway.  They present highly specific peptides (epitopes) produced 

by these proteolytic pathways on their surface, in combination with major 

histocompatibility complex (MHC) proteins. Endogenous peptides are presented in the 

antigen-binding cleft of MHC class I, and exogenous peptides on MHC class II.  Cognate 

T cell receptors (TCR) can bind these peptide antigens only in the MHC context (MHC-

restricted) because they need to simultaneously bind to non-antigen presenting regions of 

the MHC molecules. The combined TCR-MHC interaction provides the intracellular signal 
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that induces T cell maturation, specificity and subsequent clonal expansion (Leleux and 

Roy, 2013; Murphy and Weaver, 2016; Neefjes et al., 2011). Thus the final product that 

an APC presents to a T-cell is a short peptide. Moreover, T cells that identify peptide–

MHC complexes derived from a parent protein after intracellular processing can also 

usually recognize the same peptides if they are directly loaded onto MHC molecules after 

being delivered exogenously to the cell (Mohan and Unanue, 2012). Thus, for antigen 

presentation it is well established that a given T cell will recognize cognate peptide–MHC 

complexes regardless of whether the peptide is generated internally from protein 

processing or delivered exogenously. These principles of antigen presentation generated 

the idea that peptides could substitute for whole proteins as antigens, and thus stimulated 

efforts for peptide vaccine development.  

 

Peptide length in a peptide vaccine. Upon activation, maturation, and subsequent 

antigen presentation to T-cells, DCs initiate a cascade of events that are collectively known 

as the adaptive immune response (Cella et al., 1997). It is important to note that the specific 

combination of peptide-loaded MHC complexes and costimulatory molecules expressed 

on the surface of an APC directs activation and functionalization of T lymphocytes. In 

general, MHC class I molecules bind CD8+ naïve T-cells and trigger the differentiation of 

naïve T lymphocytes towards CD8+ cytotoxic T lymphocytes (CTL).  In contrast, MHC 

class II molecule bind naive CD4+ T-helper (Th) cells and induce their differentiation into 

one of several lineages of Th cells, including Th1, Th2, and Th17, as defined by their 

pattern of cytokine production and function (Zhu et al., 2010).  CTLs function to eliminate 

pathogen-infected cells and are being studied as a potential mechanism for cancer 
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eradication (von Andrian and Mackay, 2000).  T helper cells are the master regulators of 

adaptive immunity by providing a wide range of direct and cytokine-mediated signals to 

immune and non-immune cells in their microenvironment. They have a wide variety of 

functions including facilitating B cell activation, which induces the humoral immune 

response, as well as initiating T-helper mediated cellular immune responses. 

Therefore, targeting the appropriate MHC molecule is essential in design of a 

peptide vaccine, and the length of peptides or epitopes is an important consideration in this 

regard. In general, MHC class I molecules bind short peptides since they have a closed 

binding groove in which the N- and C-terminal ends of a peptide antigen are anchored into 

the pockets located at the ends of the peptide binding groove (Meydan, et al., 2013; 

Natarajan et al., 1999). While the majority of these peptides are about 9 residues in length, 

longer peptides can be accommodated through bulging of their central portion (Guo et al., 

1992; Speir et al., 2001), resulting in binding peptides of length 8 to 15 amino acids 

(Schumacher et al., 1991). In contrast, MHC class II molecules have an open binding 

groove, which allows greater flexibility in the length of bound peptides (Nelson and 

Fremont, 1999; Yassai et al., 2002), which can vary from 8 to 30 amino acids in length 

(Liu and Gao, 2011; Rammensee, 1995). 

 

Adjuvants. Although the innate immune response is specific in nature and does not 

retain any memory of a previous infection or antigenic stimulus, there are mechanisms at 

the APC level that can provide the initial direction of the adaptive immune response. The 

role of innate immune cells to drive the polarization of the adaptive immune response was 

first shown in mice: certain inbred mouse strains have a Th1 bias (like C57BL/6) and others 
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have a Th2 bias (like Balb/c). Studies demonstrated that the underlying reason for this bias 

is not in the T cell compartment, but rather in the innate immune system (Mills et al., 2000). 

This was shown by using immunodeficient mice that do not possess an adaptive immune 

system, but still preserve the Th1/Th2 bias. The molecules that guide production of specific 

cytokine by APCs as well as promotes activation of APC and expression of surface proteins 

are termed pattern recognition receptors (PRRs). PRRs recognize various conserved 

constituents of microbial pathogens called pathogen associated molecular patterns 

(PAMPs) and, in turn, induce a specific array of inflammatory or non-inflammatory 

cytokines and thereby cause innate effector functions as well as initiate the development 

of acquired immunity to infecting pathogens.  However, many injectable subunit vaccines 

do not possess PAMPs, or have PAMPs but not in a form that triggers PRRs to recruit 

innate immunity, and are therefore not effective in inducing protective immunity.  For that 

reason such vaccines require adjuvants that substitute for pathogen-derived PAMPS and 

stimulate PRRs.  Since synthetic peptide vaccines antigens are based on short sequences of 

amino acids that do not stimulate PRRs, adding an appropriate adjuvant is essential to elicit 

an effective and long-term immune response. 

Adjuvants have been traditionally used to reinforce the magnitude of an adaptive 

response to a vaccine, measured by an antibody titer or by the ability to prevent infection.  

However, a second role for adjuvants has become increasingly important: guiding the type 

of adaptive response – cellular vs humoral - to produce the most effective forms of 

immunity for each specific pathogen (Coffman et al., 2010). For polarization of helper T 

cells, there are striking differences in the type of response preferentially stimulated by 

different adjuvants (Table 2.1). Adjuvants such as MF59 and ISCOMs, as well as ligands 
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for Toll-like receptor 2 (TLR2) and TLR5, enhance T cell and antibody responses without 

altering the Th1/Th2 cell balance of the response to specific antigens (Coffman et al., 

2010). In contrast, more polarized Th1 cell responses are generated by adjuvants that 

incorporate agonists of TLR3, TLR4, TLR7-TLR8, and TLR9 ligands. Overall, selection 

of an appropriate adjuvant is influenced by the type of CD4+ T cell response essential for 

protection.
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Table 2.1. Triggering of the Innate and Adaptive Components of the Immune System by Major Adjuvants. 

Adjuvant Major Immunostimulatory 
Component(s) 

Immune Stimulatory Mechanism Principal Immune 
Responses 
Stimulated 

Reviewed 
by 

Alum Aluminum salts NLRP3 inflammasome (?) 
↑Local cytokines and chemokines 
↑Cell recruitment (eosinophils, 
monocytes, macrophages) 
↑Ag presentation 

Ab, Th2 
Poor Th1 response 

Awate et 
al., 2013; 
Coffman et 
al., 2010 

MF59® 5% squalene emulsified in-water 
with 1% poly-
oxyethylenesorbitan monooleate 
and sorbitan trioleate 

Tissue inflammation (no receptors defined) Ab, Th1 + Th2 Awate et 
al., 2013; 
Coffman et 
al., 2010  

Quil A, Quillaja saponaria 21 
(QS-21) 

Saponin (Quil A derived from 
the tree - Quillaja saponaria. 
QS-21 is purified product of Quil 
A) 

↑ Cytokine (mainly IL-2 and INF-γ)  
↑Ag presentation through MHC-I pathway 

Th1, CD8+ T cells, 
Ab  

de Paula 
Barbosa, 
2014; 
Rajput et 
al., 2007 

Adjuvant System 03 (AS03) Squalene-in-water emulsions Spatio-temporal co-localization with Ag 
Transient ↑ cytokines locally and in lymph 
nodes draining the site of inoculation (dLNs) 
↑Cell recruitment (granulocytes and 
monocytes) 
↑Ag-loaded monocytes in dLNs 

Ab, Immune 
memory 

Awate et 
al., 2013; 
Coffman et 
al., 2010  

Montanide ISA 71 VG Water-in-oil (W/O) emulsion Depot effect : produce ≤1µm droplet and thus 
↑Ag presentation  

Th1, Ab SEPPIC, 
 2008  

Incomplete Freund’s adjuvant 
(IFA) (typically with 
Montanide formulations) 

mineral or paraffin oil + 
surfactant 

Mechanism undefined Ab, Th1 + Th2 Coffman et 
al., 2010 

Complete Freund's Adjuvant 
(CFA) 

IFA + peptidoglycan, trehalose 
dimycolate 

NLR, inflammasome, Mincle, TLR? Ab, Th1, Th17 Coffman et 
al., 2010 

Adjuvant System 04 (AS04) Monophosphoryl lipid A (MPL) 
plus alum 
 

TLR4 and inflammasome (?) 
↑Local cytokines and chemokines 
↑Cell recruitment (DCs and 
monocytes) 
↑Ag-loaded DCs and monocytes in dLNs 

Ab, Th1 Awate et 
al., 2013; 
Coffman et 
al., 2010 
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Table 2.1. Continued. 

 

Adjuvant Major Immunostimulatory 
Component(s) 

Immune Stimulatory Mechanism Principal Immune 
Responses 
Stimulated 

Reviewed 
by 

MPL and formulations 
(AS01, AS02) 

MPL and purified Quil A saponin 
QS-21 

TLR4 Ab, Th1 Coffman et 
al., 2010 

Polyinosinic-
polycytidylic acid (poly- 
IC) 

Synthetic derivatives of dsRNA TLR3, MDA5 Ab, Th1, CD8+ T 
cells 

Coffman et 
al., 2010 

Flagellin, flagellin-Ag 
fusion proteins 

Flagellin from S. typhimurium TLR5 Ab, Th1 + Th2 Coffman et 
al., 2010 

Imiquimods, 
Resiquimod,  

Imidazoquinoline derivatives  TLR7, TLR8 or both Ab, Th1, CD8+ T  
cells  

Coffman et 
al., 2010 

CpG 
oligodeoxynuceotides 
and formulations (IC31, 
QB10) 

Synthetic phophorothioate-linked 
DNA oligonucleotides with 
optimized CpG motifs 

TLR9 Ab, Th1, CD8+ T  
cells (when 
conjugated) 

Coffman et 
al., 2010 

Juvimmune CpG-containing plasmid packaged 
in cationic liposome 

TLR9 Ab, Th1, CD8+ T  
cells 

Coffman et 
al., 2010 

JVRS-100 CpG-containing non-coding 
plasmid packaged in cationic 
liposome-DNA complexes (CLDC) 

TLR9; the CLDC are virus-sized particulates, 
with a mean diameter of ~120 nm, which 
facilitates trafficking to APC in dLNs. 

Ab, Th1, CD8+ T 
cell  

Chang et al., 
2009;  

Trehalose-6,6'-
dibehenate 
(TDB) 

Synthetic analog of mycobacterial 
cord factor  trehalose -6, 6-
dimycolate (TDM) 
 

TDB binds Mincle (macrophage inducible C-
type lectin). Upon TDB recognition, Mincle 
interacts with FcR-γ, resulting in CARD9-
dependent NF-κB activation. 

Th1, Th17 Althaus, 
2009 

Block copolymers 
(Poloxamers): 
Polygen, Pluronic L121 

Hydrophilic poly(ethylene oxide) 
(PEO) and hydrophobic 
poly(propylene oxide) (PPO) 
blocks arranged in A-B-A tri-block 
structure 

In aqueous solutions self-assemble into 
micelles (10 nm to 100 nm in diameter). Thus 
they act as delivery vehicle and stabilize the 
native conformation of an antigen. 
The hydrophobic PPO interacts with PRR. 

Ab, Th1, CD8+ T 
cells 

Adams et al., 
2015; 
Batrakova & 
Kabanov, 
2008 
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Factors defining T-helper cell polarization – cytokine milieu and transcription 

factors. After being activated by an APC in the periphery, a naive CD4+ T cell 

differentiates into one of several major T helper (Th) cell subtypes to become a Th1, Th2, 

Th17, T follicular helper (Tfh), or peripherally derived induced regulatory T (iTreg) cell. 

The decision-making process is thought to be mainly directed by the available cytokines 

milieu during the activation process. Moreover, each Th subset is distinguished by 

specialized gene expression pattern, which is under the control of a lineage-defining 

transcription factor. The lineage-defining transcription factors are T-bet for Th1, GATA-

binding protein 3 (GATA3) for the Th2, retinoic acid receptor-related orphan receptor-γt 

(RORγt) for the Th17, B cell lymphoma-6 (BCL-6) for T fh cells, and forkhead box P3 

(FOXP3) for Treg cells (Oestreich and Weinmann, 2012). CD4+ Th cell subsets are 

characterized by the signature cytokines that they secrete, their distinct homing properties, 

and their specialized effector functions, which make them best equipped to target a 

particular class of pathogens. 

Th1 cells. The development of Th1-cell begins with the secretion of cytokines IL-

12 and type 1 interferons (IFN-α and IFN-β) by macrophages and DCs upon activation by 

intracellular pathogens (Farrar et al., 2002). IL-12 triggers the secretion of IFN-γ by these 

same cells and from natural killer (NK) cells. IFN-γ acts in an autocrine manner to generate 

a positive feedback loop, producing further IL-12, and also acts as an inhibitor of the Th2 

pathway by preventing Th2 cell proliferation (Kaiko et al., 2007; Lafaille, 1998; Murphy 

et al., 2000). Bindings of IFN-γ to naïve Th cells leads to the Janus Kinase 1 and 2 (JAK1 

and JAK2; tyrosine kinase proteins)-mediated activation of the transcription factor signal 

transducer and activator of transcription 1 (STAT1), which then induces the expression of 
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T-bet (a member of the TATAAA box family of transcription factors). T-bet is the master 

regulator of Th1 cell differentiation and its selective expression initiates the remodeling of 

the IFN-γ gene locus, the production of IFN-γ, expression of the IL-12 receptor and 

stabilization of its own expression through the autocrine activity of IFN-γ (Lazarevic et al., 

2013; Mullen et al., 2001). Once the IL-12 receptor is expressed, the IL-12 cytokine can 

bind its receptor and further augment the differentiation of Th1 cells. IL-12 signaling 

activates the STAT3, STAT4 and nuclear factor-κB transcription factors, and thus 

promotse the synthesis of cytokines associated with the Th1 phenotype (Afkarian et al., 

2002; Kaiko et al., 2007). T-bet also prevents the differentiation of the Th2 lineage by 

sequestration of GATA3 (GATA binding protein 3) away from Th2 cell‑specific genes 

(primarily the Il4–Il5–Il13 locus) and by binding a T-bet- Runt-related transcription factor 

3 (T-bet-RUNX3) complex to the Il4 silencer. T-bet therefore suppresses the expression of 

Th2 cell-specific cytokine genes in developing Th1 cells (Hwang et al., 2005; Djuretic et 

al., 2007; Kanhere, et al., 2012). 

Th2 cells. The development of Th2 effector cells primarily involves the action of 

IL-4, IL-6, IL-10 and IL-11 (Kaiko et al., 2007). IL-4 induces the STAT6 production in 

naive T cells, which in turn leads to expression of the zinc finger transcription factor 

GATA-3 (Kaplan et al., 1996; Ouyang et al., 1998). GATA-3 enhances promoter activity 

and reverses chromatin structure-based suppression of regions associated with controlling 

Th2 cytokine gene expression and thus directs in the release of cytokines characteristic of 

the Th2 phenotype (IL-4, -5, -9, -10 and -13), and also inhibits the expression of the IL-12 

receptor and therefore Th1 development (Farrar et al., 2002). IL-6 is released during the 

early stages of a Th2 immune response and induces the Th2 phenotype through the up-
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regulation of IL-4 and inhibition of STAT1 phosphorylation, thereby preventing IFN-γ 

gene expression (Detournay et al., 2005; Dodge et al., 2003). IL-10 appears to inhibit IL-

12 synthesis, and thus the Th1 pathway (Koch et al., 1996). 

Th17 cells. Th17 cells produce IL-17, IL-17F, IL-22 and TNF-α, which, in turn, act 

on fibroblasts, endothelial and epithelial cells, and macrophages, and trigger the release of 

inflammatory mediators and chemokines (Kaiko et al., 2007). The resultant environment 

recruits neutrophils and creates a general state of tissue inflammation (Nakae et al., 2003; 

Iwakura and Ishigam, 2006; Romagnani, 2006). The development of Th17 depends on the 

action of TGF-β, IL-6, and IL-21 (Korn et al., 2009). IL-6 acts on naïve T cells and induces 

the downstream expression of IL-21, which causes an autocrine loop that results in self-

induced expression. The regulatory cytokine TGF-β then acts in synergy with IL-21 to 

induce the expression of RORγt through a STAT3-dependent mechanism (Korn et al., 

2007; Zhou et al., 2007). The expression of RORγt induces transcription of IL-17 and IL-

17F encoding genes (Ivanov et al., 2006). 

 

Influence of antigen dose on T-helper cell polarization. Besides the cytokine 

milieu, many other factors influence the selective differentiation of CD4+ T cells, including 

the specificity and avidity of antigen recognition by the T cell receptor, the expression of 

the costimulatory molecules, and the dose of the antigen applied to stimulate T 

lymphocytes (Constant and Bottomly, 1997; Cho et al., 2000; Xu et al., 2010). Although 

there is disagreement on whether Th1- or Th2-type responses are elicited by high versus 

low doses of antigen, ample evidence suggest that low antigen doses favor a Th1 immune 

response, and higher doses favor antibody production (Constant and Bottomly, 1997; 
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Power et al., 1998) . In fact, Salvin in the 1950s, examined how the dose of antigen 

(purified diphtheria toxoid or ovalbumin) administered affected the class of immunity 

expressed at different times following immunization. When guinea pigs were intradermally 

administered with different doses of diphtheria toxoid,  low doses generate an exclusive 

cell-mediated, DTH response; medium doses more rapidly generated a cell-mediated 

response that evolves, with time, into a humoral mode; the administration of even larger 

doses results in more rapid responses, sometimes resulting in a barely detectable cell-

mediated phase (Bretscher, 2014; Salvin, 1958). Similar findings were observed for diverse 

routes of antigen administration, for diverse antigens such as xenogeneic red blood cells 

(Lagrange et al., 1974), the protozoan parasite Leishmania major (Menon and Bretscher, 

1998), for mycobacteria given to adult (Power et al., 1998) or neonatal mice (Kiros et al., 

2010), and in different species of immunized animals (Buddle et al., 1995). 

The question of why low doses of antigens trigger Th1 differentiation is difficult to 

resolve, although a potential explanation is provided by the differential susceptibility of 

Th1 and Th2 cells to activation induced cell death (AICD) at high doses of antigen 

(Constant and Bottomly, 1997). AICD is the process by which cells undergo apoptosis in 

a controlled manner through the interaction of a death factor and its receptor, the Fas 

(CD95)-Fas ligand (FasL/CD95L) interaction (Maher et al., 2002). It is considered the 

primary mechanism for deleting mature CD4+ T cells in the periphery and it plays a crucial 

role during adaptive immune responses by ensuring that a defined number of specialized T 

cells remain in the organism (Baumann et al., 2002; Krammer et al., 2007). However, it 

has been demonstrate that Th1 cells express high levels of FasL, whereas its expression in 

Th2 cells is very low level (Ramsdell et al., 1994). Therefore, Th1 clones are more 
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susceptible than Th2 clones to AICD triggered by high doses of antigens, and, in fact, it 

has been found that stimulation of recently derived CD4+ T cells induces apoptosis more 

readily and more quickly in the Th1 than the Th2 subset (Constant and Bottomly, 1997). 

In 2001, Bergmann et al. published an interesting approach modeling T helper cell 

immunity with a regulatory feedback loop on the basis of the differential sensitivity of T 

helper cells to Fas-Fas ligand-mediated AICD.  Their model suggests that if antigen levels 

are high or the default Th1 response to a pathogen is not successful in eliminating the 

pathogen, the sustained antigenic stimulus would drive Th1 cells into activation-induced 

apoptosis and Th2 cells would overtake the population of activated pathogen-specific T 

cells (Fig. 2.1). 

Thus, the only way to maintain a default Th1 immune response is either by very 

low antigen concentration to begin with, or by rapid antigen removal with a successful Th1 

response against a pathogen such as Chlamydia. 

 

 

 

 

 

 

 

Figure 2.1. Time plots showing antigen (Ag) dose dependence. (a) The Th1 bias promotes Th1 but 

high antigen doses (initial antigen dose = 50) induce a rapid shift to Th2 dominance. (b) At low 

initial antigen levels (initial antigen dose = 0.1) Th1 eliminates the antigen and the initial Th1 bias 

is maintained.  Reproduced from Bergmann et al., 2001. 
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Similar to other intracellular pathogens, T-lymphocytes play a key role in a 

protective host response to Chlamydia infection (Morrison et al., 1995; Rank, 2006). In 

particular, IFN-γ producing Th1 helper lymphocytes are indispensable for efficient and 

complete elimination of chlamydial infection (Perry et al., 1997; Rottenberg et al., 2000; 

Vuola et al., 2000), and ablation of Th1 cells or effector functions results in increased 

chlamydial disease and failure to eliminate chlamydiae (Cotter et al., 1997; Lu et al., 2000; 

Morrison et al., 1995; Wang et al., 1999).  Th1 cells restrict chlamydial replication via 

Th1-type effector cytokines, most prominently IFN-γ, contributing to a delayed type 

hypersensitivity (DTH) response (Perry et al., 1997; Rottenberg et al., 2000; Wang et al., 

2008).  Such protective DTH responses are characterized by tissue infiltration of CD4+ T 

cells and macrophages and release of proinflammatory Th1 cytokines such as IL-1, IL-2, 

IL-12, IFN-γ, and TNF-α. Therefore, factors favoring a Th1-dominant immune response, 

such as Th1-promoting adjuvant and low antigen dose, should be considered while 

developing a vaccine against chlamydial infection. 
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2.2. HYPOTHESIS 
 
 

We hypothesize that low dosage of potential protective protein or peptide antigens 

of Chlamydia spp. will induce a protective Th1 response against Chlamydia challenge, if 

delivered with a safe and efficient adjuvant. 

 

 

 

2.3. OBJECTIVES 
 
 

The aim of this experiment was to examine in a murine model of C. abortus 

respiratory disease the effect of 

1) varying high to low dose vaccine antigen administration on the protection efficacy 

against chlamydial challenge, and  

2) to identify a suitable adjuvant for an effective Th1 vaccine formulation. 
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2.4. RESULTS 
 
 

A/J mouse model of chlamydial respiratory disease. In this experiment, we first 

examined the A/J mouse strain as chlamydial lung challenge model by contrasting the 

disease outcome between naïve and previously infected mice 10 days after challenge 

inoculation. As shown in Fig. 2.2A, one group of mice received a low dose of C. abortus 

inoculation four weeks before the high dose challenge. This low dose mimics natural 

subclinical chlamydial infection and induces a protective immune response that lasts 

approximately 10 weeks. Therefore, this low dose is comparable to an attenuated live-

vaccine and hence is termed the live-vaccine group. The disease outcome was determined 

by analyzing the following parameters: i) the changes in body weight; ii) severity of lung 

inflammation as determined by lung weight; and iii) the chlamydial burden in the lungs as 

detected by real-time PCR. 

As expected, naïve mice had a significantly lower body weight 10 days after 

challenge inoculation than live-vaccine group (Fig. 2.2 B, p=0.005). In fact, the live-

vaccine group gained 2.09% body weight during the challenge infection, whereas the naïve 

group heavily lost 14.72% weight.   Similarly, naïve mice had highly inflamed lungs with 

a mean lung weight increase of 136.18% over healthy adult female A/J mice. Conversely, 

the live-vaccine group had a highly significantly lower local inflammatory response than 

naïve mice (p=0.002) with a mean lung weight increase of 42.77%. Finally, significantly 

greater numbers of 79,433 chlamydial genomes were detected per 100 mg lung of naïve 

mice than the 468 genomes of the live-vaccine group (p=0.001). Overall, there was a sharp 

contrast between naïve and live vaccine mice: live-vaccine mice remain completely healthy 

following C. abortus challenge whereas naïve mice become very sick.  
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Figure 2.2.  Chlamydial respiratory disease in A/J mice. Disease severity (body weight loss and 

lung weight increase) and chlamydial lung load after intranasal inoculation of mice with 108 

genomes of C. abortus elementary bodies. (A) Schematic presentation of experimental protocol. 

Each mouse in the live vaccine group received 107 C. abortus EBs intranasally (i.n.) in 20 µl SPG 

buffer on day 0, and four weeks later every mouse in both naïve and live-vaccine groups was 

challenged i.n. with 108 C. abortus. Ten days after challenge, all mice were euthanized, body weight 

and lung weight were measured, and C. abortus burdens in lungs were determined by qPCR. (B) 

Percentage of mean body weight change in naïve and live-vaccine mice after 10 days of challenge. 

Whereas live vaccine group gained body weight (positive mean body weight change), the naïve 

group significantly lost weight (negative mean body weight change). (C) Percentage of lung weight 

increase over the average lung weight of healthy adult female A/J mice 10 days after challenge, 

indicative of lung inflammation. The naïve mice had significantly higher lung weights than the live 

vaccine group. (D) Lung chlamydial burden in naïve and live-vaccine mice 10 days after challenge. 

Naïve lungs were heavily loaded with chlamydiae, whereas the live vaccine had significantly lower 

levels. Data were analyzed by Student’s t-test (n=15 mice / group). 
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Twenty femtoMole-dosed C. abortus vaccine candidate recombinant proteins 

or their equivalent-dosed synthetic peptide antigens induce immune protection. In an 

initial approach towards development of a subunit C. abortus vaccine, we examined if, and 

what dose, vaccine antigen doses lower than those customarily used in vaccines are able to 

induce immune protection from chlamydial infection. For testing in an A/J mouse model 

of C. abortus respiratory disease (Fig. 2.2), we vaccinated the mice two time in a four-

week interval (Fig. 2.3A). As the vaccine protein antigens, the mice received 20 

femtoMoles (~1 ng) of each of three recombinant C. abortus vaccine candidate proteins - 

DnaX2, GatA, and GatC.  Alternatively, they received 10 femtoMoles of each of 20-mer 

peptides overlapping by 10 amino acids and comprising each protein.  Since these peptides 

were overlapping by 10 amino acids, every sequence of 10 or less amino acids of these 

proteins was available for antigen presentation by the T cell receptor.  The 10 fM dosage 

of each peptide was matched to the 20 fM protein dosage because these overlapping 

peptides represented each protein molecule twice.  We used 1 ng of vaccine antigen 

assuming that this dose would be at least 1,000-fold lower than the lowest dose (1µg) 

researchers usually use in mice for chlamydial vaccine research. As a vaccine adjuvant, 

Polygen, a Th1 promoting immune stimulator (Andrianarivo et al., 1999), was included in 

the vaccine formulation. 

As shown in Fig 2.3B, 10 days after challenge inoculation both the protein and 

peptide vaccine mice had a similar body-weight gains of 6.77% and 6.00%; respectively 

(Fig. 2.2B), and there was no significant difference between these vaccines (p=0.475), but 

significantly higher weight gains than the protected live-vaccine control in the A/J model 

(p=0.00005 and p=0.0007; Fig. 2.2B). Similarly, protein-vaccinated mice showed a lung 
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weight increase of 19.00%, and peptide-vaccinated mice showed 22.47% (Fig 2.3C), 

without significant differences between the two groups (p=0.676). Importantly, these lung 

weight increases of the protein vaccine group were significantly lower than the 42.77% of 

the protected live-vaccine control in the A/J model (p=0.03; Fig. 2.2C) and barely failed to 

reach significance for the peptide vaccine group (p=0.08). 

While body weight change and lung weight increase data indicated complete 

protection, mice in both vaccine groups showed intermediate chlamydial lung burdens, 

ranging midway between live-vaccine and naïve control mice in the A/J model.  Protein-

vaccinated mice had 9,885 C. abortus genomes per 100 mg lung, and peptide-vaccinated 

ones 15,136 (p = 0.743, Fig. 2.3D). These chlamydial burdens were lower, but not 

significantly different, than the 79,433 genomes per 100 mg lung of naïve mice (p = 0.231 

and p = 0.359; Fig. 2.2D), but significantly higher than the 468 genomes of live-vaccine 

mice (p = 0.004, p = 0.011 Fig. 2.2D). 

Overall, these data clearly indicate that the low vaccine antigen dose can induce a 

substantial protective immune response against chlamydial challenge infection. It is also 

evident that the overlapping synthetic peptide antigens are as protective as recombinant 

proteins in this vaccination approach. However, considering the relatively high chlamydial 

loads in vaccine groups, we assume that there is still potential to improve the low antigen 

dose immunization approach. Therefore, we hypothesize that further lowering the antigen 

dose should induce more potent Th1 responses that will clear chlamydiae more efficiently. 

Thus we performed a dose titration analysis in our subsequent experiment, using only 

synthetic peptide antigens with the aim to develop a synthetic peptide vaccine. 
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Figure 2.3.  Comparison between low dose proteins and peptides vaccine antigens for 

protection against C. abortus in A/J mice. (A) Schematic representation of the experimental 

protocol. Two groups of mice were vaccinated twice at four weeks intervals with vaccines 

containing protein or peptide antigens. The protein antigens were comprised of C. abortus DnaX2, 

GatA, and GatC recombinant proteins, and the peptides antigens were composed of 102 synthetic 

peptides which were 20 amino acids long and overlapped each other by 10 amino acids, 

representing the entire sequence of each of the three proteins. Mice received 200 µl of vaccine 

subcutaneously containing 20 femtoMoles (~1ng) of each protein or 10 femtoMoles of each 20-

mer peptide mixed with 2% Polygen in PBS. Four weeks after the 2nd vaccination, all mice were 

challenged intranasally with 108 C. abortus organisms. Ten days after challenge, all mice were 

euthanized, body weight and lung weight were measured, and C. abortus burdens in lungs were 

determined by qPCR. (B) Percentage of body weight change 10 days after challenge. Mice in both 

of groups had similar and positive body weight changes (gained weight). (C) Lung weight increase, 

indicative of lung inflammation. Mice in both protein and peptides groups had minimal lung weight 

increases. (D) Lung chlamydial burdens 10 days after challenge. Lung chlamydial loads did not 

differ significantly between protein and peptide antigen vacines. Data were analyzed by Student’s 

t-test (n=10 mice/group).  
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Dose titration of peptide antigens. In this dose titration experiment we examined 

whether lowering the peptide antigen dose per mouse from 10 femtoMoles to 1.25 

femtoMoles would promote better chlamydial clearance. Similar to the previous 

experiment, the A/J mice were vaccinated twice 4 weeks apart with either 10-, 5-, 2.5-, or 

1.25-femtoMoles per vaccine dose of each peptide antigen along with 2% Polygen 

adjuvant. 

As shown in Fig. 2.4A, mice in all four vaccine groups gained weight during 

challenge infection at similar levels, with mean positive body weight changes of 5.11%, 

4.10%, 5.08%, and 5.99%, for the 1.25-, 2.5-, 5-, and 10-femtoMoles group, respectively. 

Linear regression analysis showed no correlation in the body weight change pattern among 

the groups (r=0.1812, p=0.2632; Fig. 2.4A). Similarly, the mean lung weight increases 

were also very low in all four groups (30.27%, 30.13%, 17.12%, and 22.47%), and was not 

correlated with peptide dose (r=-0.1327, p=0.4145; Fig. 2.4B). Interestingly, the mean 

chlamydial burden was progressively lower in the mice as the peptide dose was reduced: 

15,136 genomes per 100 mg lung for 10 fM, 8,318 for 5 fM, 2,239 for 2.5 fM, and 1,202 

for 1.25 fM of peptides. Linear regression model analysis of the data clearly revealed a 

positive correlation for the chlamydial burden with peptide dose (r=0.3221 and p=0.0426; 

Fig. 2.4C), with the corollary that chlamydial elimination is significantly better at 1.25 fM 

than at 10 fM each peptide per mouse vaccine dose. These findings clearly established that 

ultralow doses of vaccine antigens, 1.25 f fM or even lower peptide doses, are essential to 

induce a robust and protective immune response against chlamydial infection. 

Although a significant level of chlamydial clearance was found in mice that 

received 1.25 fM peptides per vaccine dose, a clear bimodal response was also observed in 
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regard to chlamydial burden (Fig. 2.4C). Whereas four mice had marginal numbers of 

chlamydial lung genomes (≤100 organisms/100 mg lung), five mice clustered at 

substantially higher chlamydial burdens (>10,000  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Dose titration of synthetic peptides vaccine antigens to induce protection against 

C. abortus in A/J mice. The A/J mice were vaccinated with either 1.25, 2.5, 5, or 10 femtoMoles 

of peptides along with 2% Polygen adjuvant (Fig. A-C) or with only 1.25 femtoMoles of peptides 

along with Montanide ISA 71 VG adjuvant (D), in a dual immunization approach as depicted in 

Fig. 2.3A. (A) Percentage of body weight change in vaccinated mice after 10 days of challenge. 

Mice in all four vaccine groups had similar and positive body weight changes (gained weight) and 

there was no dependence on peptide dose. (B) Percentage of lung weight increase over the average 
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lung weight of healthy adult female A/J mice 10 days after challenge. Most of the mice in all groups 

showed minimal or no lung weight increase and no dependence on peptide dose. (C) Lung 

chlamydial burdens 10 days after challenge. Chlamydial burdens were significantly lower as the 

peptide antigen doses decreased. (D) Lung chlamydial burden in mice that received 1.25 fM peptide 

vaccines with either Polygen or Montanide ISA 71 VG adjuvants. Low dose vaccination with the 

Polygen adjuvant cleared chlamydiae highly significant better than vaccination with w/o emulsion 

adjuvant Montanide ISA 71 VG. The horizontal lines in D indicates mean.  
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genomes/100 mg lung; Fig. 2.4D).  We attributed this to unequal vaccine antigen exposure 

due to the difficulty to target such low amounts of dissolved peptides to antigen presenting 

cells. The block-copolymer adjuvant Polygen entraps the antigen in micelle in aqueous 

solution and thus also acts as a delivery vehicle (Table 2.1).  But it cannot fully function as 

an adjuvant with particulate depot formation properties that slowly releases the antigen.  

We assumed that an adjuvant with such depot formation and hence particulate delivery 

properties would deliver and release antigens to APCs more consistently, and would 

stimulate immunity more uniformly, resulting in robust protection.  Therefore, we included 

in this experiment also a group of mice that received 1.25 fM peptides with Montanide ISA 

71 VG, a water in oil (W/O) emulsion Th1 adjuvant that produces ≤1 µm droplets of PBS-

dissolved peptide antigens and a mineral oil delivery vehicle.  The A/J mice were 

vaccinated twice at 4 weeks interval with this vaccine.  As shown in Fig. 2.4D, delivering 

the 1.25 femtoMoles peptides with Montanide ISA 71 VG yielded very uniform chlamydial 

loads in 8 out of 10 mice. However, all of the mice had a very high chlamydial loads of 

6,165,950 C. abortus genomes per 100 mg lung, highly significantly higher than those that 

received the same amount of antigen with the Polygen adjuvant (p=0.00001; Fig. 2.4D).  

This result suggest that a particulate delivery vehicle is essential to induce a uniform 

immune response, but that Montanide ISA 71 VG is not an appropriate adjuvant for this 

immunization approach. 

 

Selection of an Optimal Adjuvant. With the Polygen adjuvant we achieved 

significant protection against chlamydial infection by the low dose peptide immunization 

approach.  However, we sought more robust and reproducible protection that resulted in 
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homogeneous immune protection of all vaccinated animals without bimodal response 

distribution.  Therefore we also examined various other known Th1 adjuvants.  To this end, 

we evaluated the immunostimulatory effect of three different Th1 adjuvants with low-dose 

immunization. 

 

Th1 adjuvants - Polygen, Poly (I:C), and JVRS-100™ showed similar and 

protective response in low dose vaccination against C. abortus. In this experiment, we 

tested two known Th1 promoting adjuvant – JVRS and Poly (I:C) along with Polygen in 

the dual immunization approach with 1.25 fM peptide antigens.  We included JVRS 

because this adjuvant has particulate delivery properties by way of virus-like enclosure of 

antigen in liposomes and a TLR9-stimulanting non-coding plasmid with CpG sequences 

(Table 2.1), and has been reported to induce strong cellular immune responses (Chang et 

al., 2009).  Poly (I:C) resembles double-stranded RNA and consists of chains of hundreds 

of inosinic acids molecules complementary, but also mismatched, to chains of cytidylic 

acid molecules.  It is not known to from specific particulate aggregates when mixed with 

antigens, but does promote a strong Th1 response via the TLR3 and MDA-5 (Melanoma 

Differentiation-Associated protein-5 (MDA5) signaling pathways (Martins et al., 2015). 

Thus, this experiment allowed us to compare whether a micelle delivery like that of 

Polygen, or a virus-like particulate delivery like that of JVRS-100, or a strong Th1-

promoting adjuvant with unknown delivery mechanism like poly(I:C) would make a 

difference in protection in this low-dose peptide immunization approach. 

As shown in Fig. 2.5, 10 days after C. abortus challenge inoculation the mice in all 

three adjuvant groups had similar body weight increases as well as similar, low lung weight 



144 
 

increases, both indicative of protection with no significant differences among the three 

different adjuvant groups. In fact, mice in all groups gained body weights 5.58%, 5.11%, 

and 4.38% for JVRS, Polygen, and Poly (I:C), respectively (Fig. 2.5A). Similarly, the lung 

weight increase was minimal in all groups with 15%, 30% and 19%, respectively (Fig. 

2.5B). Furthermore, very low and similar levels of chlamydial lung burden was observed 

in all three adjuvant groups. Although, JVRS-vaccinated mice had relatively higher 

chlamydial loads (5,381 genomes/100 mg lung) than the Polygen (1202 genomes) and Poly 

(I:C) (407 genomes) adjuvants groups, there was no significant difference between the 

groups (Fig. 2.5C). 

 

 

 

 

 

 

 

 

 

Figure 2.5.  Comparison of Th1-promoting adjuvants in 1.25 fM low-dose C. abortus peptide 

vaccinations. The A/J mice were vaccinated with twice with1.25 fM peptides along with either 

JVRS-100, Polygen, or Poly (I:C) adjuvant (Fig. 2.3A). (A) Percentage of mean body weight 

change 10 days after C. abortus challenge. Mice in all vaccine groups had similar and positive body 

weight changes (gained weight) which was comparable to that observed in live-vaccine protected 

control mice (Fig 2.2B). (C) Percentage of lung weight increases over the average lung weight of 

healthy adult female A/J mice 10 days after challenge, indicative of lung inflammation. Mice in all 

vaccine groups had similarly minimal lung weight increase. (D) Lung chlamydial burdens. All 
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vaccine mice had similarly low chlamydial lung burdens. Data were analyzed by one way ANOVA, 

and the p value is determined by Tukey HSD test (n=10 mice/group).  
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2.5. DISCUSSION 
 
 

Studies in different animal species with a variety of antigens have demonstrated 

that the dose of vaccine antigen is pivotal in determining the type of immunity induced.  

These studies indicate that low antigen doses initiate a cell-mediated response, and higher 

doses trigger antibody production (Hernandez-Pando et al., 1997; Howard, 1986; Lagrange 

et al., 1974; Parish, 1972; Power et al., 1998; Salvin, 1958; Wortis et al., 1966).  We show 

here that vaccination of A/J mice with femtomole doses of C. abortus vaccine candidate 

recombinant proteins – DnaX2, GatA, and GatC, as well as their derived overlapping 

synthetic peptide antigens mediate significant protection following a respiratory 

chlamydial challenge, as determined by changes in body weight, lung weight and number 

of Chlamydia genomes determined in their lungs.  To our knowledge, this is the first time 

that a vaccine formulated with such a low dose of vaccine antigens has been shown to be 

protective against a chlamydial infection. 

To determine the protective efficacy of our low dose vaccine formulations, we 

chose the well-established murine model of chlamydial respiratory disease (Finco et al., 

2011; Huang et al., 1999; Sun et al., 2009; Williams et al., 1981; Yu et al., 2009).  We 

used A/J mice because these mice allow maximum readout amplitude between disease 

protection versus susceptibility in the chlamydial lung disease model.  Our challenge model 

study has clearly demonstrated that naïve A/J mice develop severe lung disease when 

intranasally challenged with a high C. abortus inoculum.  However, if the mice have been 

previously infected with a lower dose, they develop protective immunity and show a high 

level of protection when challenged with a high dose of chlamydial EBs.  This is in contrast 

to high inflammatory responder mouse strains (e.g., C57BL/6J, C3H/HeJ) that develop 
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enhanced disease after secondary challenge (Huang et al., 2002; Min-Oo, 2008).  The 

results of the three parameters that we used to determine protection, body and lung weights 

and number of chlamydiae in the lungs, showed good correlation in our model analysis 

experiment. When the mice developed disease (naïve mice) they lost body weight, the lung 

were inflamed and heavier, and high chlamydial burdens were detected in the lungs. 

Conversely, the protected mice (live-vaccine) gain body weight, showed minimal lung 

inflammation with little lung weight increase, and only small numbers of chlamydiae were 

detected in the lung. 

In our initial vaccine experiment we first examined whether protein or peptide 

antigens make a difference in this low dose vaccination approach. The findings clearly 

demonstrated that vaccination with both protein or overlapping synthetic peptide antigens 

at 1 ng of per vaccine dose equally and substantially protect mice against chlamydial 

challenge.  To our knowledge, this is an antigen dose that is orders of magnitude lower 

than those typically used for immunization. In fact, usual antigen dose that are used in 

chlamydial MOMP protein based vaccine development research in mice are10 to 100 µg 

per vaccine dose (Badamchi-Zadeh et al., 2016; Farris et al., 2010; Tifrea et al., 2014; 

Tifrea et al., 2013; O’Meara et al., 2013; Tu et al., 2014; Zhang et al., 2008) with few 

instances 3 or 7 µg (Tifrea et al., 2014).  However, in a recent influenza vaccine study, 40 

ng of H1N1 influenza viral antigen was used in a direct deep pulmonary bronchoscope 

immunization approach in sheep and demonstrated the induction of a detectable serum 

antibody response (Wee et al., 2008).  Since a mouse of 20 g body weight weighs 1,500 

times less than a young sheep of 30 kg, it requires a 240 times lower antigen dose when 

calculated by allometric scaling of the ratio of body weights by the power of 0.75 (West et 
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al., 2002).  Thus, the extremely low antigen dose in sheep suggests that a comparable 

mouse dose could actually be lower than the 1 ng dose that we used.  

In our experiments, animals both in protein and peptide vaccine groups gained 

weight and showed minimal lung inflammation similar to the protected live vaccine groups.  

Also, chlamydial lung burdens were approximately 10-fold lower than those of naïve mice, 

but these differences were not significant.  However, we observed improved chlamydial 

elimination at further lowered antigen dose in our subsequent dose titration experiment 

with C. abortus peptide antigens in the murine model (Fig. 2.4).  Besides the importance 

of low antigen dose, the findings of this experiment also clearly demonstrated that we can 

use overlapping peptides as an alternative to whole recombinant proteins in a subunit 

vaccine.  These finding has potential clinical implications since a fully protective 

chlamydial vaccine is not yet available, and a peptide vaccine will be highly preferable 

over a recombinant protein vaccine because of simpler and cheaper manufacturing. 

Our most striking finding is the dose titration analysis of the peptide antigens.  We 

performed an experiment with a log2 peptide dilution series from 10 to 1.25 fM of each C. 

abortus peptide antigen per vaccine dose in a dual immunization approach.  Although the 

complete peptide dose range resulted in protection from disease, interestingly the reduction 

of peptide dose per vaccine progressively associated with enhanced chlamydial 

elimination. While the vaccine containing 10 fM peptides failed to significantly clear the 

chlamydiae as compared to the naïve control, the 1.25 fM peptides vaccine did so highly 

significantly.  Thus, maximal protection can be achieved by an ultralow dose of peptide 

antigens.  Our 10-, 5-, 2.5-, and 1.25-fM of per vaccine peptide dose is equivalent to 1, 0.5, 

0.25, and 0.125 ng of each 20-mer vaccine peptide. 
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Since protection against Chlamydia is only possible with a Th1 response, these 

findings clearly indicate that such a low dose of vaccine antigen is essential to induce a 

protective anti-chlamydial Th1 response.  In fact, in the 1950s Salvin (Salvin, 1958) 

performed a similar dose titration experiment by immunization in guinea pigs.  He used 30 

ng diphtheria toxoid antigen as the lowest dose and observed only a DTH response with 

this dose, but antibody and immediate hypersensitivity responses at higher doses.  

Subsequently, Parish and Liew (1972) conducted a similar dose-dependent experiment in 

rats with bacterial flagellin and demonstrated that daily antigen administration as low as 

10 fg/rat for 28 days induced a significant DTH, whereas only the larger doses of antigen 

(100 ng – 100 µg/rat for 28 days) produced detectible antibody. Studies with intracellular 

pathogens such as Leishmania major parasites (Menon et al., 1998) and mycobacteria 

(Kiros et al., 2010; Power et al., 1988) showed that infection with low numbers elicited a 

potent and exclusive Th1 responses, without the production of detectable antibody, 

whereas infection with higher numbers generated a mixed response still dominated by Th1 

cells, but containing also IL-4-producing CD4 Th2 cells, and production of IgG2a 

antibodies. These early experimental findings strongly suggest that the anti-chlamydial 

protection in our ultralow antigen dose immunization approach is mediated by a Th1-

dominated DTH response. 

Finally, we have demonstrated that low dose immunization approach is possible 

with different Th1 biased adjuvant such as Polygen, JVRS-100, Poly (I:C), and possibly 

many others. However, the findings also indicated that an appropriate adjuvant is 

mandatory to elicit a correct immune response. Therefore, we observed a fully unprotective 
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immune respons when we used Montanide ISA 71 VG as adjuvant with lowest antigen 

dose that induced significant protection with adjuvants that aforementioned. 

In conclusion, this study indicates that 1) overlapping synthetic peptides of the 

protective vaccine candidate proteins mediate protection as efficiently as the corresponding 

whole proteins; 2) further reduced doses of the peptides as compared to the 1 ng protein 

dose mediate better immunoprotection by enhancing chlamydial elimination; and 3) 

different adjuvants mediate the induction of protective immunity against C. abortus in low 

antigen-dose vaccination. 

 

Consequences for clinical vaccine development: The present data clearly 

demonstrate that overlapping 20-mer peptide antigens at amounts as low as 1fM in total 

combined with an appropriate Th1 biased adjuvant mediate essentially 100% protection as 

compared to live-vaccine controls.  However, one of the challenges of such ultralow 

antigen dose immunization is to produce consistent and uniform protection.  In fact, we 

observed a strong bimodal response, particularly for chlamydial elimination, even with the 

lowest antigen dose that showed a significant reduction of mean chlamydial burden as 

compared to the naïve control.  This suggests that in some animals the Th1 immune 

response was not potent enough to effectively eliminate the infection.  We assume, this 

might be due to suboptimal antigen targeting and presentation in this solution-based 

immunization approach.  It is highly probable that most of the low-concentrated peptide 

antigens are further diluted such that they never associate with the MHC-II of antigen 

presenting cells and hence cannot induce an immune response.  It is obvious that such a 

bimodal response is not desirable in developing a potent vaccine for clinical use.  We 
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assume that particulate delivery of antigens can overcome this difficulty.  In fact, we 

observed uniform, albeit increased, chlamydial burdens when we used Montanide ISA 72 

VG, an adjuvant with microparticulate delivery properties (Fig. 2.4D).  This finding 

suggests that a uniform and robust immune response is possible using an appropriate 

delivery vehicle.  Micro- and nano-particle delivery and controlled release by antigen 

encapsulation in biodegradable poly-lactide-co-glycolide (PLG) polymers is now widely 

used in vaccine research.  Such delivery systems not only potentiate the immune response 

of subunit vaccines but also reduce the number of immunization required.  Therefore, in 

our subsequent vaccine studies we will attempt to combine the low antigen-dose 

immunization approach with a biodegradable polymer-based microparticulate delivery 

system. 
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2.6. MATERIALS METHODS 
 
 

Proteins and Peptides. DNA polymerase III subunits gamma and tau (DnaX2), 

aspartyl/glutamyl-tRNA amidotransferase subunit A (GatA), and aspartyl/glutamyl-tRNA 

amidotransferase subunit C (GatC) of Chlamydia spp., which had been identified 

previously by Expression Library Immunization technique as the best vaccine candidate 

proteins, were used as protein antigens in this experiment (Stemke-Hale et al., 2005).  

Large-scale protein production as recombinant antigen followed the protocol described by 

Li et al. (2010).  Briefly, sequence-confirmed DnaX2, GatA, GatC genes were cloned into 

pEXP5-NT (Invitrogen, Carlsbad, CA), and expressed in E.coli strain BL21(λ)DE3.  IPTG-

induced cells were harvested after 3–4 h by centrifugation and the resulting cell pellet lysed 

by resuspension in PBS containing 1% Triton X-100, 1 mM phenyl-

methylsulfonylfluoride, and protease inhibitors (Roche Applied Sciences, Indianapolis, 

IN).  Cell walls were permeabilized with 10 mg of lysozyme and 3 freeze/thaw cycles.  The 

viscous lysate was cleared by incubation with DNase I and MgCl2, followed by 

centrifugation at 27,000×g for 10 min at 4°C, and the supernatant containing the soluble 

material was transferred to a fresh tube.  The insoluble material, remaining in the pellet of 

the cleared lysate, was washed 4 times in PBS containing 1% Triton X-100 and 0.5 M 

guanidine followed by 3 washes with PBS.  Cells were collected between washes by 

centrifugation at 3000×g for 5 min at room temperature.  After the final PBS wash, the 

inclusion bodies were re-suspended in PBS.  To solubilize the inclusion bodies, the pellets 

were re-suspended in PBS containing 8 M urea and 10% glycerol.  Insoluble material was 

removed by centrifugation at 14,000×g for 5 min at room temperature, and the soluble 
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protein was collected in the supernatant and dialyzed against PBS, and quantified by 

NanoOrange protein quantification fluorescent assay (Molecular Probes, Eugene, OR). 

Twenty amino acid long peptide antigens of C. abortus vaccine candidate proteins 

were commercially synthesized by Thinkpeptides®, Inc., Bradenton, FL.  C. abortus 

DnaX2 (CAB0327) comprised 44 peptides, C. abortus GatA (CAB0286) 49 peptides, and 

C. abortus GatC (CAB0285) 9 peptides. Each of the peptides were 20 amino acids (aa) in 

length, with 10 aa overlaps between sequential peptides and spanning the entire consensus 

sequences of the 3 C. abortus proteins.  For example DnaX2 has a molecular weight of 

49,183 Daltons and is composed of 443 amino acids.  DnaX2 was broken up into 44 

peptides according to the approach described above and schematically shown in Fig. 2.6.  

To prevent potential in vitro polymerization, all peptides were synthesized with N-terminal 

and C-terminal amide and used as crude preparation with >70% purity. 

 

 

 

 

Figure 2.6.  Graphic illustration of first 3 peptides (20-mers, overlapping by 10 amino acids).  

Shown is the partial sequence of DNA polymerase III subunit gamma/tau (DnaX2) [Chlamydia 

abortus S26/3]. 
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Adjuvants.  The adjuvants used in this experiment were: Polygen (MVP 

Laboratories, INC., Omaha, NE, USA), poly(I:C) (Sigma Chem. Co., St. Louis, MO, 

USA), JVRS-100 (Juvaris, Burlingame, CA) and Montanide™ ISA 71 VG (Seppic Inc., 

Fairfield, NJ, USA). 

 

Chlamydia abortus. C. abortus strain B577 (ATCC V-656) was grown in Buffalo 

Green Monkey Kidney monolayer cell cultures, purified by differential centrifugation, and 

quantified as previously published (Li et al., 2005).  Purified infectious EBs were 

suspended in sucrose-phosphate-glutamate (SPG) buffer, stored in aliquots at −80°C, and 

their infectivity was confirmed in female A/J mice. 

 

Preparation of Protein Vaccines.  The recombinant C. abortus proteins DnaX2, 

GatA, and GatC were dissolved in PBS at a concentration of 670 µg/ml, 668 µg/ml, and 

495 µg/ml, respectively and stored at -80°C.  Required volumes of proteins were collected, 

combined and further diluted in HBSS and mixed together with 2% Polygen to obtain 20 

femtoMoles of each protein per 200 µl mouse vaccine dose.  This dose corresponded to ~1 

ng of DNAX2and GatA, and ~0.25 ng of GatC. 

 

Peptide Vaccines. The peptides were collected in a deep-well 96-well 

polypropylene plate, and each peptide was dissolved in ~400 µl of dimethyl-sulfoxide 

(DMSO; Amresco, OH, USA) to create a 10-6 M solution of each peptide, calculated from 

MW and mg yield of each peptide.  For preparation of the 10-8 M vaccine stock of each 

protein, 5 µl of each peptide of a protein were pooled and the solution filled up to 500 µl 
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with DMSO.  The plates were stored at -80°C. Required volumes of combined peptides for 

each protein were further diluted in HBSS and mixed together with either 2% (v/v) 

Polygen, or 50 µg poly (I:C), or 8 µg JVRS-100, or Montanide ISA 71 VG (at 30% aqueous 

peptide solution) to obtain 10 fM, 5fM, 2.5 fM, or 1.25 fM of each of combined peptide of 

each protein in 200 µl of per mouse vaccine dose.  Since the average molecular weight of 

a 20-mer peptide is 2,200 Daltons, the average amount of the 10 femtoMoles of each 

peptide corresponds to 22 picograms (pg). 

 

Animal and Immunization. Inbred female A/J mice were sourced from the 

Jackson Laboratory (Bar Harbor, ME) at 5 weeks of age.  Udel “shoebox” type cages with 

spun fiber filter tops were maintained in static air or ventilated cage racks.  Five to ten 

animals were housed per cage in a temperature-controlled room on a 12-hour light/dark 

cycle, with ad libitum access to water and standard rodent chow.  All animal experiments 

were approved by the Auburn University Institutional Animal Care and Use Committee 

(IACUC).  Each group was consisted of either 15 (controls) or 10 mice.  Mice received the 

vaccines twice under light isoflurane inhalation anesthesia by subcutaneous injection of 

200 µl protein or peptide vaccine between the shoulder blades in a 4-week interval at 6 

weeks and 10 weeks of age.  

 

Positive and Negative Controls. Naïve, mock-vaccinated mice served as controls 

for a complete lack of protective immunity against C. abortus.  These mice developed 

maximum disease and eliminated chlamydiae less efficiently than immunoprotected mice.  

Mice that received a low intranasal dose of 106 C. abortus bacteria (genomes) 4 weeks 
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before the high-dose challenge infection served a controls for protective immunity (live-

vaccine controls). 

 

Intranasal C. abortus Challenge and Monitoring. Mouse intranasal inoculation 

was performed as previously described (Huang et al., 1999), and optimal doses for live 

immunization and challenge inocula were determined in preliminary experiments.  All 

mice were challenged 4 weeks after the second vaccination under light isoflurane 

anesthesia intranasally with 108 C. abortus elementary bodies suspended in 20 µl sucrose-

phosphate-glutamate buffer. All animals were weighed during challenge infection and 

every second subsequent day until euthanasia on day 10 post challenge.  Mice were 

monitored every day and death, if any, was recorded.  Ten days after challenge, mice were 

sacrificed by CO2 inhalation and weighed.  Lungs were collected, weighed, snap frozen in 

liquid nitrogen, and stored at -80°C until further processing.  Percent lung weight increase 

was based on naïve lung weights of 138.4 mg for adult female A/J mice.  For mice that 

died before sacrificing on day 10, body weight losses, lung weight increases and 

chlamydial lung loads of the mouse in any group were taken as the highest of each of these 

parameters prior to death for the day 10 values. 

 

Mouse Lung Nucleic Acid Extraction. Mouse lungs were homogenized in 

guanidinium isothiocyanate Triton X-100-based RNA/DNA stabilization reagent by 

shaking with a BeadRaptor device to create a 10% (wt/vol) tissue suspension. This 

suspension was used for total nucleic acid extraction by the High Pure® PCR template 
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preparation kit (Roche Applied Science, Indianapolis, IN) (DeGraves et al., 2003; Wang 

et al., 2004). 

 

Analysis of C. abortus Lung Loads by Quantitative PCR (qPCR).  The PCR 

primers and probes were custom synthesized by Operon, Alameda, CA.  The C. abortus 

genomes copy number per lung was determined by Chlamydia genus-specific 23S rRNA 

FRET (fluorescence resonance energy transfer) qPCR (DeGraves et al., 2003). 

 

Data Analysis. All analyses were performed with the Statistica 7.1 software 

package (StatSoft, Tulsa, OK). Data of C. abortus genome copies were logarithmically 

transformed. Results were analyzed by Student’s t-test, linear regression, and one-way 

ANOVA with Tukey’s honest significant differences test for correction of the p value in 

multiple comparisons.  P values ≤ 0.05 were considered significant. 
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CHAPTER 3 

MICROPARTICULATE DELIVERY FOR THE LOW DOSE ANTIGEN 
VACCINE PLATFORM 

 
 
3.1. INTRODUCTION 
 
 

What is Particulate Delivery? Antigen presenting cells (APC) have evolved to 

engulf microorganisms. It is therefore possible that particles with dimensions that are 

similar to pathogens, ranging from viruses (20 – 100 nm) to bacteria and even cells (0.5 – 

10 µm) act as adjuvant by direct targeting of the antigen to these cells (Bachmann and 

Jennings, 2010).  The term ‘particulate delivery system’ denotes any strategy addressed to 

endow an antigen with dimensions of a microbe (Espuelas et al., 2005). 

 

Advantages of Particulate Delivery of Antigens.  There are three important steps 

of immune mechanisms that are essential for a vaccine to be efficacious: targeting, 

activation and transfection/antigen presentation. A particulate delivery system facilitates 

the immune system to perform these mechanisms more efficiently than soluble antigens, 

and hence facilitates induction of a robust and stable immune response. 

Before an antigen is up taken by an APC, it is subject to extensive dilution and 

vulnerable to its surrounding environment containing numerous enzymes that can easily 

degrade the antigen such that it completely loses its immunomodulating abilities. 

Therefore, the first benefit of particulate antigen delivery is the protection it provides the 
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Ag from dilution and premature degradation in biological environments (O’Hagan, 1989; 

Slütter, 2010). Once the antigen is is present and stable within a host, it is very important 

that it is found and taken up by an APC.  Herein lies another advantage of particle delivery, 

the tight control of active and passive targeting to APCs, and the enhanced uptake of the 

antigens by APCs (Tacken et al., 2011).  Regardless of the route of delivery, soluble 

antigens and adjuvants rarely reach the appropriate APCs; hence the resulting immune 

response is not potent enough to provide long term protection.  Particles mimic the size 

and structure of a pathogen with charged, hydrophobic or receptor-interacting properties.  

Therefore, in contrast to small protein or peptide antigens in solution, particles are more 

efficiently taken up by APCs and induce robust and long lasting immune responses (Ahsan 

et al., 2002; Bachmann and Jennings, 2010).  Studies have suggested that macrophages 

present the antigens 100- to 1000-fold more efficiently to the MHC class I and II pathways 

when antigens are incorporated into degradable particles than when antigens are free in 

solution (Raychaudhuri and Rock, 1998). Additionally, particle-based antigen carriers may 

serve as a depot for controlled release of antigen and other molecules, thereby prolonging 

the availability of antigens to APCs.  It has been reported that release of antigens over a 

long period may enhance the level as well as the quality of immune responses (Rice-Ficht 

et al., 2010; Thomasin et al., 1996).  Furthermore, particles also facilitate the endosomal 

release of antigens after uptake, which is essential for antigen presentation and cross-

presentation (Mui et al., 2001; Hubbell et al., 2009).  Finally, particulate delivery system 

allow the co-delivery of antigen and adjuvants to the same cell.  This enhances the 

probability that the desired response will be observed due to the discrete heightened 
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response on an individual cell basis (Leleux and Roy, 2012; Mallapragada and Narasimhan, 

2008). 

Particulate delivery systems also possess other desirable properties: they are 

typically safe, stable, and therefore the induced effects are highly reproducible.  Besides, 

they can be administered by several routes which offer the possibility of developing both 

mucosal and systemic immune responses.  Moreover, it has become increasingly evident 

that in order to elicit a Th1-dominant immune response, the antigen should be delivered to 

DC in a particulate form (Gamvrellis et al., 2004; Waeckrle-Men and Groettrup, 2005; 

Couvreur and Vauthier, 2006).  Collectively, these data re-emphasize the critical 

importance of particle vaccine delivery for a peptide-based subunit vaccine against 

chlamydial infection.  They also clarify that a number of critical chi-oices in the selection 

of vaccine carrier, adjuvant, and production methodology must be made to achieve optimal 

results. 

 

Different Types of Particulate Delivery Vehicles. Based on their lipidic or 

polymeric composition, particulate delivery vehicles can be classified in two major groups 

(Singh and O’Hagan, 2002):  lipid-based particles, such as liposomes, ISCOMs, and 

virosomes; and non-lipidic particles, e.g. emulsions, microparticles, and nanoparticles. 

Liposomes are small (30 nm - 10 μm) artificial spherical vesicles that can be created from 

cholesterol and natural nontoxic phospholipids (Akbarzadeh et al., 2013; Espuelas, 2005; 

Kersten and Crommelin, 2003).  They are composed of one or more phospholipid bilayers 

enclosing an aqueous phase, where the polar head groups are oriented in the pathway of 

the interior and exterior aqueous phases. (Akbarzadeh et al., 2013; Kersten and Crommelin, 
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2003).  They are extensively used as carriers for numerous molecules in cosmetic and 

pharmaceutical industries. 

Virosomes (50 nm - 10 μm) are virus-like particles, composed of reconstituted viral 

envelopes including membrane lipids and viral spike glycoproteins, but devoid of viral 

genetic material (Akbarzadeh et al., 2013; Huckriede et al., 2005).  They are generated 

from virus by a detergent solubilization and reconstitution procedure (Stegmann et al., 

1987; Bron et al., 1993). Since they possess viral envelope glycoproteins, which stimulate 

humoral responses in their native conformation, they are highly effective as vaccine 

antigens and adjuvants (Huckriede et al., 2005). Virosomes were first prepared by Almeida 

et al. (1975) by inserting purified influenza spike proteins into preformed liposomes.  

Subsequently a range of viral envelopes have been reconstituted, including those of Sendai 

virus (Bagai et al., 1993; Uchida et al., 1979), Semliki Forest virus (Helenius et al., 1977 

and 1981), vesicular stomatitis virus (Metsikkö et al., 1986; Petri et al., 1979) and Sindbis 

virus (Scheule, 1986).  

Immunostimulating complexes (ISCOMs) are micellar assemblies that are formed 

by cholesterol, lipid, immunogen, and Quil A saponins from the bark of the tree Quillaia 

saponaria Molina (Pearse and Drane, 2005; Sjölander et al., 1998).  Iscom Matrix (also 

called ISCOMATRIX™) is an empty carrier, similar to ISCOM but without immunogen 

or protein (Sjölander et al., 1998).  Typically, both ISCOMs and Iscom Matrix exist as 

spherical, hollow, rigid, cage-like particles of about 40 nm in diameter with a strong 

negative charge (Sjölander et al., 1998).  However, they can also form rings and aggregates 

with properties essentially identical to the 40 nm particle. 
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Emulsions are fine dispersions of one liquid in another one (water-in-oil or oil-in-

water) stabilized with emulsifiers.  Some of the commonly used adjuvants, such as, Syntex 

adjuvant formulation (SAF), Freund’s adjuvants, MF59, belong to this category (Espuelas, 

2005).  Initially they included adjuvants derived from mycobacterial muramyl dipeptide 

(MDP) or MDP analogues.  However, their toxicity was unacceptable for human or 

veterinary use.  MF59 is a squalene-in-water emulsion with nonionic surfactants – 

polysorbate 80 and sorbitan trioleate 85 – as emulsifiers, and is produced by a 

microfluidization technique that yields droplets of around 160 nm (Shah et al., 2014; Podda 

et al., 2006).  It was originally developed as a vehicle for an MDP derivative – lapidated 

muramyl tripeptide (MPT-PE) (Wintsch et al., 1991).  However, studies demonstrated that 

MF59 emulsion alone was well tolerated and had immunogenicity comparable to the 

formulation containing MTP-PE, when administered with a recombinant envelop antigen 

from human immunodeficiency virus (Kahn et al., 1994; Keffer et al., 1996).  After testing 

in several human clinical trials, it was successfully introduced onto the market in Europe 

in conjunction with an influenza vaccine. 

In recent decades, polymers have been extensively used as biomaterials due to their 

favorable properties such as good biocompatibility, easy design and preparation, structural 

diversity and interesting bio-mimetic character (Bennet and Sanghyo Kim, 2014). 

Particularly in the field of drug delivery, polymers have played a significant role as they 

can deliver therapeutic agents directly into the intended site of action, with superior 

efficacy and release properties.  There are various biological applications have been 

reported for nano-scale (10 to 1000 nm) to micro-scale (1 to 1000 μm) sized polymeric 

particles, such as site-targeted, controlled, and enhanced bioavailability of hydrophobic 
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drugs (Bennet and Sanghyo Kim, 2014; Kreuter, 1996; Panyam,et al., 2003; Soppimath et 

al., 2001).  Moreover, polymeric particles proved their effectiveness in stabilizing and 

protecting the drug molecules such as proteins, peptides, or DNA molecules from various 

environmental degradation hazards (Kawashima, 2001; Kreuter, 1996; Panyam, et al., 

2003; Soppimath et al., 2001; Cui et al, 2002; Cohen et al., 200).  The potential of 

polymeric particles as vaccine delivery systems has also been widely recognized (Akagi, 

2012; Rice-Ficht, et al., 2010; Lin et al., 2015; Yue and Ma, 2015).  

 

Potential of Synthetic Biodegradable Polymer-based Particles as Vaccine 

Delivery Vehicles. In preparation of polymeric vaccine microparticles, biodegradable 

polymers are considered superior to non-degradable polymers as the latter may require 

additional removal procedures.  They are natural or synthetic in origin and are degraded in 

vivo, either enzymatically or non-enzymatically, or both, to yield biocompatible, 

toxicologically safe by-products which are further eliminated from the body by normal 

metabolic pathways (Tian et al., 2012). One of the most important features of 

biodegradable polymers is their unique degradation kinetics for which they are gaining 

exponential interest in the field of controlled delivery of active pharmaceutical ingredients 

(API: drugs, vaccine antigens, adjuvant, etc.).  Such controlled API delivery is achieved by 

incorporating the API into the biodegradable polymeric particle, which allows the 

continual release of the agent as the polymer degrades (Edlund and Albertsson, 2002; 

Engineer et al., 2011).  The release kinetics of API from controlled delivery systems is 

governed by diffusion and/or erosion mechanisms (Ramtoola et al., 1992; Parikh et al., 

1993).  In non-erodible polymers, diffusion of the API results in elution kinetics that causes 
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an initial burst release of surface-embedded API followed by diffusion from the interior.  

In contrast, for biodegradable polymers both phenomena - diffusion and degradation - 

contribute to the API elution response. Therefore, release kinetics of API can be tailored 

precisely using biodegradable polymers (Engineer et al., 2011).  Because of reliability and 

reproducibility, synthetic biodegradable polymers (Table 3.1) are the best choice for 

antigen encapsulation in single-dose vaccine development (Lin et al., 2015; Mao et al., 

2012).  

Poly (glycolic acid) (PGA), poly (lactic acid) (PLA), and their copolymers are the 

most widely used synthetic biodegradable polymers in medicine.  Among the co-polyesters 

investigated, extensive research has been performed in synthesizing a full range of poly 

(lactide-co-glycolide) (PLG) polymers.  Different ratios of PLGs have been commercially 

developed and are being investigated for a wide range of biomedical applications (Azimi 

et al., 2014; Nair and Laurencin, 2007).  The major popularity of these biocompatible 

copolymers can be attributed in part due to their approval by the United States Food and 

Drug Administration (FDA) and the European Medicine Agency (EMA) in various drug 

delivery system in humans, resulting in their generally recognized as safe status (GRAS) 

(Chevalier et al., 2015; Danhier et al., 2012; Pillai and Sharma, 2001).  They possess also 

good process ability which enables fabrication of a variety of structures and forms, their 

controllable degradation rates, and possibilities for sustained drug delivery (Azimi et al., 

2014; Makadia and Siegel, 2011). In the body, the PLG polymers undergo hydrolysis of 

their ester linkages in the presence of water to break down into the original monomers - 

lactic and glycolic acids (Gadad et al., 2012).  Lactic acid enters the tricarboxylic acid 

(TCA) cycle and is metabolized and subsequently eliminated from the body as carbon 
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dioxide and water. Glycolic acid is either excreted unchanged in the kidney or it enters the 

TCA cycle and is eventually eliminated as carbon dioxide and water (Gadad et al., 2012; 

Makadia and Siegel, 2011). The potential of PL, PG, and PLG as vaccine delivery has been 

successfully tested with multiple antigens for generating both humoral as well as cellular 

responses (Johansen et al., 2000; O’Hagan and Singh, 2003). 
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Table 3.1. List of biodegradable polymers commonly used in drug delivery. 

  

Name of the Polymer Chemical Structure 

 
Poly(lactide) (PL) 
 

 
 

 
Poly(glycolide) (PG) 
 

 
 

 
Poly(D,L-lactide-co-glycolide) (PLG) 
 

 

Methoxypoly(ethylene glycol)-block-
PLG (mPEG-PLG) 
 

 

 
Polycarbonate 
 

 
 

 
Polyanhydrides 
 

 

 
Poly(caprolactone) (PCL) 
 

 

 
Poly(ortho esters) IV 
 

 

 
Poly(phosphoesters) (PPE) 
 

 

 
Polyhydroxybutyrate 
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Size of the Polymeric Particles. Based on the size, polymeric particulate delivery 

can be classified into nano- and micro-particles. However, the dividing line between 

nanoparticles and microparticles is not well defined and many investigators have used the 

terms ‘nanoparticles’ and ‘microparticles’ interchangeably in the literature to describe 

various particles that have been used as vaccine adjuvants (Jung et al., 2001; Sharp et al., 

2008; Tabata et al., 1996).  Although, the United States patent office has the class definition 

for nanotechnology using the scale 1–100 nm or slightly larger, some sources considering 

1000 nm particles to be nanoparticles (Quintanar-Guerrero et al., 1998; Wendorf et al., 

2008).  Thus, theoretically, nanoparticles are solid particles ranging in size from 1 to 1000 

nm while microparticles are particles in the size range of 1 to 1000 μm (Kreuter, 1996; 

Oyewumi et al., 2010). 

Nanoparticle versus microparticle effect on the immune response. Available data 

from studies evaluating the effect of particle size on the immune response offer conflicting 

outcomes, depending on the specific system evaluated.  After mucosal administration there 

are findings that show higher antibody responses for nanoparticles compared to 

microparticles (Jung et al., 2001; Nagamoto et al, 2004), however, the reverse has also 

been demonstrated (Gutierro et al., 2002), and yet in another study nanoparticles and 

microparticles were comparable (Vila et al., 2004).  The studies with systemic 

administration also have inconsistent findings.  It has been demonstrated that nanoparticles 

and microparticles are comparable (Katare et al., 2003; Nagamoto et al, 2004; Wendorf et 

al., 2008), that microparticles are preferable to nanoparticles (Gutierro et al., 2002; Katare 

et al., 2005; Katare et al., 2006), and that nanoparticles are preferable to microparticles 

(Nixon et al., 1996; Fifis et al., 2004).  The type of immune response with nanoparticles 
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compared to microparticles may also be different, in one study it was shown that PLG 

microparticles favored Th1 type responses, while nanoparticles triggered more Th2 type 

cells (Conway et al., 2001).  However, the numerous differences in other parameters related 

to microparticles, such as polymer type, uniformity in size, antigen encapsulation 

efficiency, preparation techniques, etc., may also account for the lack of consistency in the 

literature. In our low dose immunization approach we were interested to use an optimal 

sized synthetic polymeric microparticulate delivery system to induce Th1 response against 

Chlamydia. 

Optimal size of microparticles for vaccine delivery. Size is considered to be one of 

the crucial parameter affecting the immunogenicity of microparticles, since smaller 

particles (<10 µm) has been found significantly more immunogenic than larger ones 

(Eldridge et al., 1991; O’Hagan et al., 1993).  When PLG particles of 1–10 µm diameter 

(mean of 3.5 µm) were compared to 10–110 µm particles (mean of 54.5 µm) with 

encapsulated staphylococcal enterotoxin B, the generation of serum IgG antitoxin response 

was more rapid and substantially more vigorous with the smaller particles (Eldridge et al., 

1991).  Similarly, with ovalbumin (OVA) entrapped in PL particles, an increased serum 

anti-OVA antibody titer was observed with particles <5 µm compared to particles with 

mean sizes larger than 5 µm (Nakaoka et al., 1996).  The effect of particle size on 

immunogenicity is likely to be a consequence of enhanced uptake of smaller-sized particles 

into lymphatics and greater uptake into APC.  An earlier study demonstrated that only 

microspheres <5 µm were transported to the spleen after oral administration in mice 

(Tabata et al., 1996).  Recently, it has been demonstrated that macrophages effectively 

engulf microparticles, especially in the 2 – 3 μm range, the curvature of which corresponds 
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with that of the macrophage’s membrane ruffles (Champion et al., 2008; Pacheco et al., 

2013).  Thus, microparticles with a mean size of less than 5 microns is essential for an 

optimal immune response. 

 

Synthesis of Polymeric Microparticles – Factors to be considered.  A 

complicated array of factors including type of polymers and preparation technique directly 

influence the morphology of microparticles, and subsequently their in vivo degradation 

kinetics, antigen release, and immune response that they elicit.  Therefore, a detailed 

understanding of these parameters is essential while developing such a microparticulate 

vaccine delivery vehicle. 

Physio-chemical properties of polymers.  The release of antigens from the 

microparticulate biodegradable delivery vehicle depends primarily on the degradation and 

erosion kinetics of the polymers used in preparation of the particles, but also on the intrinsic 

diffusion of the API in and from the polymer.  All parameters driving release, i.e. 

degradation, erosion of, and diffusion from, the polymers rely mostly on their inherent 

physiochemical properties such as molecular weight, crystallinity, glass transition, and 

copolymer composition (Kamaly et al., 2016; Kim and Pack, 2006).  Therefore, selection 

of appropriate polymer is critical for the production of a targeted microparticulate vaccine 

delivery system. 

Polymer degradation and erosion mechanism. All biodegradable polymers possess 

hydrolysable bonds that make them prone to degradation by chemical-mediated or enzyme-

catalyzed hydrolysis.  Enzymatic degradation is not known to occur in polymers of 

lactide/glycolide family (Pitt et al., 1981; Therin et al., 1992).  The hydrolytic bond 
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cleavage generates acidic degradation products that can dissolve in an aqueous 

environment (Griffith, 2000; Merkli et al., 1998).  Thus, whereas degradation is a chemical 

event, erosion encompasses physical phenomena, such as dissolution and diffusion 

(Engineer et al., 2011). However, polymer erosion is a more complex phenomenon than 

degradation, since it depends on many other processes, such as degradation, swelling, 

dissolution and diffusion of oligomers and monomers, and morphological changes 

(Engineer et al., 2011). 

Based on the erosion mechanism, polymers can be broadly classified into two types: 

bulk eroding and surface eroding (Burkersroda et al., 2002; Kumar et al., 2002; Tamada 

and Langer, 1993).  Bulk-eroding polymers, such as PLG, PG, PL, PCL, allow permeation 

of water into the polymer matrix and degrade throughout the particle’s matrix.  Particles 

consisting of bulk-eroding polymer are often characterized by four stages of the polymer 

erosion process (Engineer et al., 201; O’Donnell and McGinity, 1997 ): the first stage of 

water diffusion is followed by the second stage, in which oligomers with acidic end-groups 

autocatalyze the hydrolysis reaction.  At the beginning of the third stage, when a critical 

reduced molecular weight is reached, oligomers start to diffuse out from the polymer.  

Consequently, water molecules diffuse into the void created by the removal of the 

oligomers, which in turn accelerates oligomer diffusion.  Marked decrease in polymer mass 

and a sharp increase in the API release rate occur during the third stage as the API diffuses 

from the porous regions.  In the fourth stage, the polymeric matrix become highly porous, 

and degradation proceeds homogeneously and more slowly until the complete breakdown 

of the biodegradable particle (Proikakis and Mamouzelos, 2006; Agrawal et al., 1992). 
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The release of the API is in turn driven by the polymer erosion kinetics.  Initially, a “burst” 

diffusion of the surface-embedded active pharmaceutical ingredient (API) occurs.  As 

much as 50% of the total API load (O’Donnell and McGinity, 1997) is released within the 

first few hours after suspension of biodegradable microparticles in aqueous medium.  This 

is followed by a slow continuous release that is controlled by the enhanced diffusion 

enabled by polymer matrix erosion.  Finally, sometimes in a third phase the remaining API 

is quickly released as a result of severe degradation and complete breakdown of the 

polymer matrix into soluble oligomers (Kim and Pack, 2006). 

In contrast, surface-eroding polymers, such as poly (ortho) esters and 

polyanhydrides, are composed of relatively hydrophobic monomers linked by labile bonds.  

Thus they can resist water penetration into the polymer bulk, while degrading quickly into 

oligomers and monomers at the polymer/water interface via hydrolysis (Saltzman, 2001).  

For polymeric particles comprised of surface-eroding polymers, embedded APIs are 

released primarily at the surface as the polymer breaks down around it.  Erosion of such 

polymers usually proceeds at a constant velocity (Göpferich and Langer, 1993).  If the drug 

of interest is homogeneously dispersed throughout a microsphere, the largest rate of release 

will occur at the beginning.  As time proceeds, the surface area of the sphere and the release 

rate decrease asymptotically. 

Polymer molecular weight. The physical properties of polymers, such as viscosity 

in solution, solubility, crystallinity, mechanical strength, and degradation rate, are 

associated with its molecular weight (MW) (Kamaly et al., 2016).  Therefore, the MW of 

degradable polymers has a notable impact on the antigen release profile from polymeric 

nano or micro particles and can influence the biological properties of polymeric vaccine 
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delivery systems, such as elimination, phagocytosis, and other biological activities (Knopp 

et al., 2015; Valencia et al., 2013; Kim and Fassihi, 2000).  Usually, low-MW polymers 

degrade more rapidly and therefore release APIs more quickly, while high-MW polymers 

have slower degradation and antigen release rates (Kamaly et al., 2016; Kim and Fassihi, 

1997; Green et al., 2009).  Moreover, high-MW polymers have a low elastic modulus, 

generating a relatively non-deformable matrix that limits the amount of pore-forming 

channels.  In contrast, low-MW polymers have a high elastic modulus, and the matrix is 

more deformable that results in expansion of pores due to osmotic pressure (Kamaly et al., 

2016). For example, it has been demonstrated that low-MW 50:50 hydrophilic PLG (MW 

8.6 kD; Resomer® RG502H) encapsulating leuprolide acetate resulted in porous 

microspheres that burst-released ~50% of the peptide within 3 days, followed by 

continuous slow release of the remaining peptide over the next 30 days (Ravivarapu  et al., 

2000).  In contrast, the higher-molecular-weight formulation (MW 28.3 kD; Resomer® 

RG503H) resulted in dense microspheres and produced only ~5% burst release followed 

by gradually accelerating erosion/degradation release of the remaining peptide over 50 

days. 

It should be noted that commercially available polymers are usually characterized 

in terms of intrinsic viscosity (IV), a measure of a polymer’s ability to increase the viscosity 

of a solvent, which is directly related to their molecular weight (M) (Burn, 2001; Lu et al., 

2013; Makadia and Siegel, 2011).  In short, IV is a widely used, simple viscometric method 

for measuring a polymer’s molecular weight M, and based on the flow time of a polymer 

solution through a narrow capillary relative to the flow time of the pure solvent through 
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the capillary, and is expressed in deciliters per gram (dL/g) (Burn, 2001; Charlier et al., 

2014). 

Polymer crystallinity. The terms crystalline and amorphous are used to indicate the 

ordered and unordered polymer regions, respectively (Odian, 1991).  Polymer crystallinity 

refers to the degree of crystalline regions within a polymer sample in relation to amorphous 

regions and is an important concept in drug or vaccine antigen delivery, since only 

amorphous regions are permeable and therefore accessible to water molecules (Kamaly et 

al., 2016; Ordian, 1991).  The mechanical strength, swelling, hydrolytic, and 

biodegradation rates of polymers depend on the degree of crystallinity, which in turn is 

governed by the nature of the monomers. A high degree of crystallinity leads to relatively 

slower antigen release states, particularly for low MW polymers with high porosity 

(Kamaly et al., 2016). For effective design of degradable polymers in vaccine delivery 

applications, a balance between amorphous and crystalline states is necessary.  Therefore, 

polymeric particles are usually synthesized from copolymers that possesses both 

hydrophobic and hydrophilic segments, which make physical properties such as antigen-

release rates more predictable (Kaushal et al., 2004). 

Due to the asymmetric α-carbon, poly lactide (PL) can be described as possessing 

D- or L- stereochemical centers, giving rise to two enantiomeric forms PDL and PLL, with 

PLG being generally described as poly(D,L-lactic-co-glycolde) with an equal distribution 

D- and L-lactic acid.  PLL is highly crystalline and PDL is fully amorphous owing to 

disordered polymer chains.  In contrast, PG is highly crystalline as it lacks asymmetric 

methyl groups on the side chain (Kamaly et al., 2016). In the case of PLG 

(copolymerization of PL and PG), the degree of crystallinity and amorphousness depends 
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on the ratio of the monomers; e.g., a 50:50 ratio of lactide to glycolide results in an 

amorphous polymer, with increases in the lactic acid content leading to a more crystalline 

polymer (Müller et al., 2014).  Studies have shown that the rate of drug release is higher in 

polyesters with a low degree of crystallinity because of higher macromolecular chain 

mobility (Karavelidis et al., 2011; Zilberman, 2005). 

Polymer glass transition. Another important factor that influences polymer 

physicochemical properties and is related to crystallinity is the glass transition temperature 

(Tg).  The type of polymer and temperature dictate whether the amorphous region is in a 

“glasslike” or “rubberlike” state, and this depends on the polymer’s Tg.  In short, Tg is the 

temperature range where a thermosetting polymer changes from a hard, rigid or “glassy” 

state to a more pliable, compliant or “rubbery” state.  Tg can be determined by differential 

scanning calorimetry (Allcock and Lampe, 1981).  Below the Tg, the polymer exists in a 

glassy state and thus it has limited mobility and low diffusion rates.  In contrast, above the 

Tg, the polymer exists in a rubbery state, which enables higher mass transfer rates of water 

and antigens or drug molecules throughout the matrix (Kamaly et al., 2016; Liechty et al., 

2010).  The Tg of the PLG copolymers are reported to be above the physiological 

temperature of 37°C and therefore are glassy in nature (Makadia and Siegel, 2011).  It has 

been also reported that the Tg of PLG polymers decreases with a reduction of lactide 

content and with a lower molecular weight (Passerini and Craig, 2001). 

Co-monomer ratio. The ratios of co-monomer in many copolymers can also affect 

release rates.  Most often, increasing the content of the more rapidly degrading or more 

soluble monomer enhance the release rate (Kim and Pack, 2006; Lin et al., 2000; 

Spenlehaue et al., 1989).  For example, increasing the glycolic acid portion of PLG, which 
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makes the polymer more hydrophilic, can lead to faster degradation rates, and thus to faster 

release of API (Lu et al., 2000; Park, 1995).  This also suggest that solubility of the 

monomer is a critical factor in the rate of antigen or drug release from polymeric particles. 

 

Technologies to Synthesize Microparticles.  Microencapsulation of vaccine 

antigens in synthetic biodegradable polymers is commonly achieved by several 

approaches: i) emulsion-solvent evaporation which includes a water-in-oil-in-water 

(w/o/w) double emulsion method, and a single o/w emulsion method (Chang and Gupta, 

1996; Jiang and Schwendeman, 2008); ii) phase separation or coacervation (Johansen et 

al., 1999 and 2000); and iii) spray drying (Johansen et al., 1999; Makadia and Siegel, 2011; 

Murillo et al., 2002).  Problems encountered with emulsion-solvent evaporation and 

coacervation formulation processes include the use of high shearing forces, risk of 

significant degradation of vaccine antigens due to the long exposure to the interfaces 

existing between the water and oil phases, and the necessity of lyophilization to obtain a 

stable powder (Baras et al., 2000; Desai et al., 2013; Giteau et al., 2008; Zhu et al., 2000).  

During the last decades a number of efforts have been made to overcome these problems, 

such as co-incorporation of stabilizing excipients with the biopharmaceuticals in the inner 

water phase to minimize the interfacial effects (Jiang and Schwendeman , 2008; Katare et 

al., 2006). However, these traditional techniques are still facing a number of challenges, 

particularly associated with industrial large-scale production (Desai et al., 2013). 

Compared with those conventional laboratory-scale techniques, emulsion-solvent 

evaporation and coacervation, spray drying is a well-established industrial processing 

technology and is a fast, single step process with a potential for operation in a continuous 
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mode.  It is a widely used technical method to produce fine particles, coarse powders, 

agglomerates or granulates in various industries, including the pharmaceutical industry 

(Yiang, 2011; Vehring, 2008).  It has been commonly used to manufacture sophisticated 

and functionalized microparticles for delivery of API (Tsapis et al., 2002; Wan et al., 2013; 

White et al., 2005).  All spray-dryers include a nozzle for spraying by compressed gas that 

atomizes the feed fluid, the desiccation chamber (spraying cylinder), a fan and heater for 

the drying gas (air, nitrogen), the cyclone (for the separation between the product and the 

drying gas flow), and a final vessel which collects the spray-dried product (Baras et al., 

2000; Okuyama et al., 2006; Patel et al., 2009).  This technique is attractive for the 

preparation of vaccine microparticles and it appears to come close to the properties desired: 

simple, reproducible, rapid and easy to scale-up (Bodmeier and Chen, 1988).  Another 

advantage of the spray drying technique is its ability to control the particle size and the 

morphology of the dried powder by varying the process parameters and the formulation 

factors (Haggag and Faheem, 2015). 

Spray drying procedure. Spray drying consists of spraying an emulsion of polymer 

and API through the nozzle of a spray dryer apparatus.  The mechanism of spray-drying 

involves five fundamental sequential stages: 1) Feedstock suspension/solution; 2) 

atomization of the feedstock by a spray nozzle; 3) spray – heated drying gas (air) contact; 

4) drying of the sprayed droplets; 5) collection of the solid product (spray-dried 

microparticles) (Baras et al., 2000; Broadhead et al., 1992;  Patel et al., 2009).  Generally, 

the API is dissolved or dispersed in the polymer solution, for which volatile solvents (e.g., 

dichloromethane and acetone) are usually preferred.  In order to generate droplets, the feed 

solution or suspension can be atomized by rotary disks, two-fluid nozzles, or ultrasonic 
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nebulizers, depending on the droplet size required (Okuyama et al., 2006). The droplets are 

sprayed into a drying chamber into which gas heated to a temperature above the 

vaporization temperature of the solvent streams; the solvent evaporates very quickly upon 

contact with the drying gas, leaving solid microparticles behind (Baras et al., 2000).  The 

powder of microparticles can be collected using a cyclone, filter bag or electric field 

precipitator (Okuyama et al., 2006).  The size of the atomized droplets depends on the 

viscosity and surface tension of the liquid, the pressure drop across the nozzle, and the 

spray velocity (Zuidam and Shimoni, 2010).  The morphological features of spray-dried 

microparticles, like size and shape, are controlled by both spray the drying process and 

formulation parameters such as inlet and outlet temperatures, spray rate of feedstock, 

spraying gas concentration, nature of organic solvent, and API-polymer ratio of the 

polymeric feed solution (Baras et al., 2000; Giunchedi and Conte, 1995; Patel et al., 2011). 

Therefore, optimization of these parameters is essential to produce vaccine microparticles 

with the desired physical characteristics. 

Stability of polymer and API in spray drying. Although there is always a concern 

for stability of peptide and protein molecules in spray drying, many reports have shown 

that thermal denaturation of peptides and proteins is usually not observed during the spray 

drying process (Maltesen et al., 2008; White et al., 2005; Yang et al., 2007), and the 

atomization shear stress does not appear to influence stability (Maa and Hsu, 1996; Maa 

and Prestrelski, 2000).  During the process, the spray temperature is usually not very high 

and, more importantly, the residence time of the droplet/particles is very short, and thus 

after spraying the inherent properties of the particles do not change appreciably.  For 

example, when water is used as the dispersing medium, around 150oC of an operating 
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temperature is sufficient for completely drying of the droplets within a few seconds 

(Okuyama et al., 2006).  Moreover, although the air temperature for drying gas can be 

relatively high, the actual temperature of the evaporating droplets is significantly lower, 

owing to the cooling effect of the evaporating solvent (Haggag and Faheem, 2015; 

Okuyama et al., 2006).  During spraying, the evaporated moisture forms a skin around the 

droplets, which absorbs most of the heat. Therefore, the mean temperature of the droplet 

remains 15–20oC lower than the temperature of the surrounding environment (Broadhead 

et al., 1995). To date, there is no vaccine produced by spray drying available in the market.  

However, numerous studies have shown that spray drying is a promising method for 

stabilizing vaccines. 

 

Co-delivery of an Immune Potentiator by Polymeric Microparticle Delivery: 

The particulate delivery system (e.g. polymeric micro/nano particle) mainly functions as 

an adjuvant by delivering antigen into APC and improve / regulate antigen presentation by 

APC (Foged, 2011). Although mcroparticles by themselves show excellent adjuvant 

activity (Moretti and Blander, 2014), sometimes such a delivery system alone is not 

sufficient enough to induce a desired immune response, which is particularly true for 

subunit vaccines (Zhang et al., 2015).  However, another type of adjuvant, termed 

immunopotentiator, activates innate immunity directly (e.g. cytokines) or through 

stimulation of pattern recognition receptors (PRRs) (bacterial components such as 

peptidoglycan, LPS) (Coffman et al., 2010; Foged, 2011; Kornbluth et al., 2006; Mohan 

et al., 2013; Sahdev et al., 2014).  To achieve better efficacy in accelerating development 

of a vaccine-induced immune response in a subunit vaccine, an immunopotentiator is 
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usually incorporated into polymeric microparticles.  Such incorporation can not only 

overcome the drawbacks associated with the use of a free immunopotentiator, such as high 

dose requirements and unwanted side effects, but also enhance its efficacy by co-targeting 

antigen and adjuvant to the same APC (Bramwell and Perrie, 2006).  Therefore, the 

combination of an antigen, a delivery system and an immunopotentiator constitutes a 

paradigm for the development of subunit vaccines (Guy, 2007).  In the present study, we 

investigated the immune-stimulating ability of a polymeric particulate vehicle 

encapsulating different adjuvants, without antigen, as biological response modifiers 

(BRM) that tested the reversal of the susceptibility of C3H/HeJ mice to Chlamydia abortus 

respiratory challenge. 

 

What is Biological Response Modifier? Biotherapy, often termed as biological 

therapy or immunotherapy, aims at supporting and helping in the treatment of diseases 

without chemical drugs and invasive therapies, by restoring the body’s natural immune 

system (Bodey, 2002).  It is also used to minimize certain side-effects that may be caused 

by some treatments against cancer, autoimmune diseases, or other diseases.  The substances 

that are used in biotherapies are called biological response modifiers (BRMs).  Thus, 

BRMs, a term first coined in 1982, are referred to as biologics, which connotes an agent 

and treatment approach whose perceived action involves the modification of an 

individual’s own biological response (Boyle, 2010; Oldham, 1983; Rusthoven, 1993).  

They modulate the immune system by stimulating or replacing the function of one or more 

of the system’s components, and hence the term BRM is often used synonymously with 

the terms immunomodulator and immunostimulant (Ritts, 1990).  BRMs used in 
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biotherapy are usually classified into two groups (Kuroki et al., 2012; Smit, 2009).  The 

first group includes specific BRMs, such as vaccines and monoclonal antibodies that 

provide an antigen-specific immune response, and may exhibit a direct antitumor effect.  

The second group consists of non-specific BRMs, such as cytokines and adjuvants, which 

augment or stimulate the immune system without antigenic specificity.  Some examples of 

non-specific BRMs are recombinant form of interferons, interleukins, colony stimulating 

factors, or traditional Chinese medicine (Rusthoven, 1993).  BRM are extensively used in 

the treatment of cancer and also against certain other diseases, e.g., rheumatoid arthritis 

and Crohn’s disease (Kuroki et al., 2012).  Since entrapping a molecular adjuvant in 

particulate delivery has the potential to enhance the immunomodulating effect of a 

particulate vaccine matrix, we sought to identify the adjuvant that would modulate the 

response to chlamydial infection towards enhanced protection.  By identifying a potential 

vaccine adjuvant this way, we assumed that such innate adjuvant/matrix protection would 

also induce appropriate immunity against specific antigens later incorporated into this 

vaccine carrier platform. 

 

Why C3H/HeJ Mice?  C3H/HeJ mice possess a missense mutation in the TLR4 

gene which results a single amino acid change in the cytoplasmic portion of TLR4, 

hindering signal transduction and leading to a phenotype similar to that of TLR4 knockout 

mice (Hoshino et al., 1999; Poltorak et al., 1998; Qureshi et al., 1999).  TLR4 is activated 

by gram-negative bacterial lipopolysaccharide (LPS), and its ligation is essential in 

activating DCs toward the initiation of Th1-type or Th17 responses (Wynn, 2005).  

Conversely, absence of TLR4 stimulation during antigen presentation causes 
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disproportionate expansion of regulatory T lymphocytes (Treg) and subsequent 

suppression of immunity (Pasare and Medzhitov, 2003 and 2004).  Therefore, C3H/HeJ 

mice are highly susceptible to Gram-negative bacterial infections including Escherichia 

coli and Salmonella spp. for which LPS is the principal trigger of the innate immune 

response (Nowicki et al., 1999; O’Brien et al., 1980).  Similarly, C3H/HeJ mice are also 

highly susceptible to C. trachomatis infection (Morrison et al., 2010).  
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3.2. HYPOTHESIS 
 
 

We hypothesize that 

(i) Chlamydia abortus respiratory challenge inoculation of naïve C3H/HeJ mice 

will result in severe, potentially lethal disease, making such inoculation an 

appropriate model for evaluating protective biological response modifier 

effects; 

(ii) microparticles composed of biodegradable poly-lactide-co-glycolide (PLG) 

polymers and an adjuvant can be synthesized by spray drying technology; and 

(iii) microparticles with PLG polymer/adjuvant combination that results in 

optimally protective BRM effects can be identified which then can serve as a 

carrier platform for a low-dose peptide vaccine against C. abortus. 
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3.3. OBJECTIVES 
 
 

The aim of this investigation was to synthesize by spray drying a PLG-based 

microparticle delivery platform that incorporated an adjuvant, and to examine its 

immunopotentiating effect against the C. abortus respiratory infection in C3H/HeJ mice.  

The specific objectives were as follows: 

1. Establish a C3H/HeJ/C. abortus challenge model for testing of BRM effects of 

the particulate vaccine carrier. 

2. Optimize spray drying parameters and synthesis of microparticles based on a 

suitable PLG polymer. 

3. Identify an optimal dose ratio of polymer versus adjuvant for optimal BRM 

microparticles. 

4. Analyze suitable microparticles compositions for morphology, degradation and 

adjuvant release kinetics, and in vivo uptake by APC. 

5. Examine the BRM effect of optimized microparticles in the C3H/HeJ/C. abortus 

challenge model. 

The optimal BRM microparticle formulation would then be used as delivery platform 

for the low-dose peptide antigen immunization approach. 
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3.4 RESULTS 
 
 

C3H/HeJ mice as the BRM model of C. abortus respiratory disease. In this 

experiment, we examined the outcome of the C. abortus lung challenge model in the 

C3H/HeJ mouse strain in comparison to the A/J mouse model with the lung disease readout 

on day 10 post inoculation.  In first experiment, the naïve C3H/HeJ mice were intranasally 

challenged with 1×108 of C abortus elementary bodies, and the mice were observed for 

disease (body weight) and mortality until 10 days after challenge inoculation when the 

surviving mice were euthanized (Fig. 3.1A).  As shown in Fig. 3.1B, four days after 

challenge inoculation six out of 10 mice had lost substantial body weight, and these mice 

died by day 9 of challenge inoculation (Fig. 3.1B and 3C-left panel).  Moreover, among 

the four mice that survived until day 10 post challenge, two mice were very sick with an 

approximately 30% of body weight loss on day 10 of challenge inoculation (orange and 

blue circles, Fig. 3.1B, left panel) and very high lung weight (505 and 566 mg, respectively, 

Fig. 3.1B right panel) indicative of highly inflamed lungs. The pattern of body weight loss 

and high lung weights, which were similar to those of dead mice, indicated that these two 

mice would have succumbed to the chlamydial infection within one or two days.  The 

remaining two surviving mice showed little signs of body weight loss or lung disease, as 

indicated by lung weight less than 300 mg.  These findings also indicated that the C. 

abortus challenge inoculation was highly lethal to C3H/HeJ mice, and the bi-modal 

outcome prompted us to convert the experimental readout into survival rates.  In a separate 

experiment, using the same C. abortus challenge dose, we monitored the mice for three 

weeks, and 90% of the mice died by 15 days after challenge, starting on day 8 (Fig. 3.1C- 

right panel).  Therefore, unlike A/J mice, C3H/HeJ mice are highly susceptible to challenge 
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inoculation with 1×108 C. abortus organisms.  When tested with a 10-fold lower intranasal  

challenge dose  of  1×107  C. abortus  organisms,   typically used for A/J live-vaccine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Chlamydial respiratory disease in C3H/HeJ mice. Disease severity (body weight 

loss and lung weight increase) and mortality after intranasal inoculation of mice with 108 C. abortus 

elementary bodies.  (A) Schematic representation of the experimental protocol.  Six week-old 

female naïve C3H/HeJ mice were challenged i.n. with 108 C. abortus.  Mice were observed daily 

after challenge inoculation, and body weight and mortality, or mortality only was recorded in two 

separate experiments of 10 or 21 day duration.  (B) Left Panel - Body weight change of each mouse 

over the course of the challenge infection. Red crosses indicate the death of the mouse. Right panel 

– Lung weight of the mice that survived until day 10.  (C) Survival analysis. Left panel – The 

survival curve corresponds to the dead mice as shown in the left side of panel B. Right panel – 

Survival curve of mice in the 21-day experiment.  Data were analyzed by repeated measure Anova 

(body weight), scatter plot (Lung weight), and Kaplan-Meier survival analysis (n=10 mice/group).  
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controls, CH3/HeJ mice showed the same 10% survival rate, but the time of death was 

delayed by 3-5 days (data not show).  This observation established that immune protection 

by the low-dose live vaccine approach was impossible to achieve with this mouse strain.  

Overall, these observations indicated that a BRM effect of microparticles in C3H/HeJ mice 

could only be analyzed by observing whether microparticle treatment can reduce the 

mortality in a three weeks’ time frame after challenge inoculation. 

 

Production of microparticles by spray drying. Typically, for spray drying 

multiple parameters must be quantitatively determined to achieve consistent production of 

microparticles of the desired properties.  Key parameters that are determined by the 

material to be spray dried are the use of the appropriate solvent, inlet temperature of drying 

gas as well as outlet temperature of the spray-dried particles.  Dichloromethane (DCM) is 

the ideal solvent for spray drying of poly-lactide-co-glycolide polymers because of its high 

solvation capacity for DL-PL and DL-PLG biopolymers (Youan, 2004) and the low boiling 

point of 40°C.  It is also considered one of the least toxic of the halogenated solvents 

(Blanco et al., 2005).  Optimal temperatures of 55-60°C for inlet and 35-38°C for outlet 

are defined by boiling point of the DCM solvent and glass transition and melting 

temperatures of DL-PL and DL-PLG (Arpagaus and Schafroth, 2007). 

We used DCM as solvent, and 55-60°C inlet- and 35-38°C outlet temperature.  

Under these restrictions, the key parameters that determine microparticle size are (i) solids 

concentration in spray drying feed solution, (ii) flow rate of the feed solution (spray flow), 

(iii) flow rate of nitrogen gas used for atomization of the feed solution by the spray dryer 

nozzle, and (iv) flow rate of the drying gas (air).  In preceding experiments, and following 

standard procedures, we determined that a 600 L/hr nitrogen atomizing gas flow and 
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maximum drying air (aspirator) flow rates (~45 m3/hr) were optimal. For effective 

phagocytosis by APC, a diameter of the microparticles of less than 5 microns, optimally 1-

3 µm, is essential (Champion et al., 2008; Pacheco et al., 2013).  For that reason we aimed 

to develop spray drying conditions that produced particles of this size, which is at the lower 

size limit that can be achieved with two-fluid nozzle spray drying (Arpagaus and Schafroth, 

2007). 

Effect of pump rate of the feed solution. For determination of an optimal set of spray 

drying parameters, we first performed a preliminary determination of the flow rate for a 

1% feed solution of PLG-PEG in DCM.  At an inlet temperature of 58°C, outlet 

temperature 36°C, aspirator rate 100%, and gas spray flow 600 L/hr, approximately 1 to 3 

µm spherical microparticles were produced at a spray flow rate of 3.2 ml/min (Fig. 3.2A).  

However, when the spray-rate of feed was increased to 8 ml/min, the same feed solution 

produced irregular small deformed particles with mostly open surfaces (Fig. 3.2B).  

Therefore, we considered a 3.2 ml/min feed solution pump rate for a 1% polymer solution, 

under constant remaining parameters, as standard for our experiments. 

Microparticle size and distribution. The size of the microparticles is an important 

criterion since it directly influences the rate of phagocytosis of the particles by APCs, and 

an optimal diameter in the range of 1-3 µm is essential.  We measured the size of the spray 

dried particles by analyzing the SEM image of the particles by the ImageJ software version 

1.51 (http://imagej.nih.gov/ij/; provided in the public domain by the National Institutes of 

Health, Bethesda, MD, USA). ImageJ is widely used to determine the micro- and nano-

particle’s size (Larson, et al., 2013; Liu et al., 2010; Xie and Smith, 2010; McCall and 

Sirianni, 2013; Baldelli et. al., 2016; Carver and Yang, 2016; Sameni et al., 2008). 
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In case of non-aggregrating individually isolated particles, one can analyze the 

particle size using automated tools of the ImageJ software.  However, the SEM images of 

our spray dried microparticles demonstrated extensive aggregation of the particles (Fig. 

3.2A).  Therefore, we manually marked individual particles in the SEM image, and the 

ImageJ software then automatically determined the diameter, and aggregated and analyzed 

these data.  As shown in Fig. 3.3A, the size of the spray dried DL-PLG-PEG microparticles, 

synthesized with a 1% feed solution containing only the polymer, was measured with 

ImageJ.  The statistical analysis of the data derived from ImageJ, revealed that the mean 

diameter of these DL-PLG-PEG microparticles is 2.28 µm, ranging from 0.5 to 4 µm (Fig. 

3.3B).  It is also evident that 80% of the particles are between 1.5 to 3 µm, the optimal 

range as we expected.  It also important to note that the mean (2.28), median (2.25), and 

mode (2.26) of the data are essentially equal, indicating a symmetrical distribution of the 

particle size (Fig. 3.3B). 
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Figure 3.2. Scanning electron micrographs of spray-dried microparticles synthesized at 

different spray-rates. 50:50 DL-PLG-PEG (Table 3.4) microparticles produced from 1% feed 

solution sprayed at (A) 3.2 ml/min, (B) at 8 ml/min. 

 

 

 

 

 

 

 

 

Figure 3.3. Size determination of spray dried microparticles. (A) Randomly distributed DL-

PLG-PEG particles in the SEM micrograph were manually marked, and the ImageJ software then 

automatically determined the particle diameter.  (B) Statistical analysis of the diameter of randomly 

marked particles (N=207).  
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Evaluation of Adjuvanted Microparticles as Biological Response Modifiers.  

After defining spray-drying parameters for synthesis of the desired 1.5-3 µm 

microparticles, we investigated the immunomodulating effect of such microparticles when 

an appropriate adjuvant was incorporated into these particles.  Among the previously 

successfully used adjuvants, JVRS-100 represented a separate liposome platform that 

cannot be adapted to spray-drying, and Poly (I:C) is insoluble in DCM.  Only the active 

ingredient of the Polygen adjuvant, a poloxamer co-polymer, was soluble in DCM and 

therefore amenable to incorporation in spray-dried DL-PLG microbeads.  For these 

reasons, we selected Pluronic L121, a highly hydrophobic poloxamer with proven potent 

adjuvant properties (Adams et al., 2015; Andrianarivo et al., 1999; Hunter and Bennett, 

1984 and 1986; Hunter et al., 1981 and 1990; Kabanov, 2008; Zigterman et al., 1987), for 

inclusion in the microbeads.  We designed two experiments asking two questions – (i) 

when and how frequently would the BRM microparticles have to be administered to 

achieve maximum immunopotentiating effect; (ii) what would be the ideal doses of 

polymer and adjuvant that would induce the best protective response. 

Optimal time and frequency of BRM administration. Initially, we prepared 

microparticles using DL-PLG-PEG (Table 3.3) and Pluronic L121 at 2:1 ratio, dissolved in 

DCM at the concentration of 1% total solids.  As an initial approach, we used 5 µg of total 

polymer and adjuvant (3.3 µg DL-PLG-PEG and 1.7 µg of Pluronic L121 per BRM dose 

per animal).  The microparticles were synthesized utilizing the optimal spray drying 

parameters as aforementioned. 
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Figure 3.4.  Determination of optimal time and frequency of BRM microparticle 

administration in C3H/HeJ mice. (A) Schematic representation of the experimental protocol.  Six 

week-old female naïve C3H/HeJ mice received i.p. injections of 5 µg BRM microparticles 

comprised of DL-PLG-PEG and Pluronic L121 at a 2:1 ratio at one or multiple time points before 

or after challenge inoculation.  Mice were challenged i.n. with 108 C. abortus and observed daily 

until termination on day 21 day after challenge.  (B) Survival analysis of mice after 4 different 

BRM microparticle administration regimens. Data were analyzed by Kaplan-Meier survival 

analysis, p value was determined by Cox’s F test (n = 10 mice/group). 
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To evaluate the immunopotenting effect, the C3H/HeJ mice were intraperitoneally 

injected with the amount of microparticles containg 5 µg of total polymer and adjuvant 

concentration first mixed with 25 µg Lactose Microfine excipient, and then dissolved in 

200 µL PBS containing 0.1% Kolliphor HS 15. These injections were administered on four 

different time points relative to the challenge inoculation (Fig. 3.4A):  i) a single injection 

3 days before challenge; ii) one injection 3 days before and two injections 6 and 13 days 

after challenge; iii) three injections 13, 8, and 3 days before and two injections 6 and 13 

days after challenge; and iv) three injections 13, 8, and 3 days before challenge.  All mice 

were challenged intranasally with 1×108 C. abortus organisms and monitored for three 

weeks, and mortality was recorded.  As shown in Figure 3.3B, the single treatment 3 days 

before challenge inoculation significantly reduced the mortality of C3H/HeJ mice and 

resulted in 60% survival (Fig. 3.4B).  In contrast, neither three treatments nor five 

treatments showed any protection.  The three treatments at 3 days before- and 6 and 13 

days after challenge inoculation resulted in 30% survival, and at 13, 8, and 3 days before 

challenge inoculation reduced survival to 20% (Fig. 3.4B).  Similarly, five treatments at 

13, 8, and 3 days before- and 6 and 13 days after challenge inoculation resulted in 10% 

survival (Fig. 3.4B).  Survival after single treatment was significantly higher than after five 

treatments (p=0.025; Cox’s F test) and after three treatments (p=0.166 and 0.069, 

respectively).  Comparison of the 60% survival after single treatment to the 20% survival 

of the pooled multiple treatments almost reached significance at p=0.05 (p=0.072).  

Moreover, the single treatment also resulted in higher survival than the 10% survival of the 

naïve control (p=0.057; Fig. 3.1C).  Thus, the findings indicate that Pluronic L121-

containing PLG-PEG microparticles modulate the innate immune response in tlr4-/- 
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C3H/HeJ mice and protected against lethal C abortus challenge.  However, the findings 

also demonstrate that overstimulation of the innate immune system was counterproductive 

and most likely induced an uncontrolled excessive inflammatory response.  This resulted 

in death rates similar to that of naïve challenged mice that succumb to excessive chlamydial 

replication due to a non-responsive innate immune system.  Therefore, a discrete optimum 

exists for the BRM use of DL-PLG-PEG-Pluronic L121 microbeads, and a single treatment 

three days before challenge inoculation induces a protective response in C3H/HeJ mice. 

Optimal BRM dose. After determining the optimal time and frequency of treatment 

required to induce a maximal BRM effect, we investigated the BRM microparticle dose 

requirements that evoked maximum protection.  Following the composition evaluated for 

timing of administration, we used a 2:1 ratio of DL-PLG polymer to Pluronic L121 

adjuvant.  However, to maximize phagocytosis while potentially extending adjuvant 

release, we substituted 50:50 DL-PLG (RG502H) as carrier for the more hydrophilic DL-

PLG-PEG.  We performed a dose titration experiment with a two-fold logarithmic dilution 

series of total BRM solids (RG502H plus Pluronic L121) per mouse, from 40 µg to 1.25 

µg.  The spray dried microparticles were prepared with the standard procedures as 

mentioned earlier. 

To evaluate the immunopotenting effect, the C3H/HeJ mice were intraperitoneally injected 

3 days before challenge inoculation with spray dried microparticles containg either 40, 20, 

10, 5, 2.5, or 1.25 µg of total polymer and adjuvant (2:1 ratio).  The BRM microparticles 

were first mixed with the 5-fold amount of Lactose Microfine excipient, and then 

suspended in 200 µL PBS containing 0.1% Kolliphor HS 15 (Fig. 3.5A).  All mice were 

challenged with 1×108 C. abortus organisms and monitored for three weeks.  As shown in 
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Fig. 3.5B, neither of the high doses of 40 and 20 µg nor the low doses of 2.5 and 1.25µg 

total of polymer and adjuvant was able to reduce mortality, with only ~20% survival.  In 

contrast, both intermediate doses of 10 and 5 µg resulted in 50% survival (Fig. 3.5B).  

Comparison of the protective 50% survival of the pooled intermediate doses (5 and 10 µg) 

to that of the non-protective 20% survival in the pooled high (40 and 20 µg) and low (2.5 

and 1.25 µg) doses revealed significant differences of combined (p=0.014; Fig. 3.5C) or of 

separate pooled high and low doses (p=0.057 and p=0.021, respectively). These findings 

clearly demonstrated that similar to the multiple treatments with low doses of 

microparticles (Fig. 3.4B), a single treatment with high doses of BRM microparticles 

(RG502H + Pluronic L121) is counterproductive due to the overstimulation of the innate 

immune response.  Conversely, very low doses of BRM microparticles most likely are not 

sufficient to trigger an optimal stimulation to the innate immune response and therefore 

cannot elicit a protective response in naïve C3H/HeJ mice.  Therefore, for optimal 

protection a narrow dose range exists at which the amount of BRM micobeads is sufficient 

for reproducible protection yet does not overstimulate pathological inflammation.  
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Figure 3.5.  Dose-dependent immunopotentiating effect of BRM microparticles in C3H/HeJ 

mice. (A) Schematic representation of the experimental protocol.  Six week-old female naïve 

C3H/HeJ mice received via i.p. injection different doses of RG502H:Pluronic L121 = 2:1  

microparticles.  After three days mice were challenged i.n. with 108 C. abortus and then observed 

daily until 21 days post challenge.  (B) Survival analysis of mice after receiving 1.25 – 40 µg of 

BRM microparticles.  (C) Survival analysis of mice pooled by 5 & 10 µg doses versus mice pooled 

by 40, 20, 2.5, and 1.25 µg doses.  Data were analyzed by Kaplan-Meier survival analysis [n= 9 

(40 and 20 µg) or 10 (10 – 1.25 µg) mice/group]. 
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Given the identical survival rate at 5 and 10 g BRM dose, albeit at different survival 

kinetics, we decided on the future use of 10 µg doses of BRM as carrier for vaccine trials.  

We reasoned that at the 10 µg dose innate stimulation was sufficiently strong to cause rapid 

death in mice susceptible to overstimulation, while fully protecting the lower inflammatory 

responders.  In contrast, at 5µg, mice succumbed more slowly, but at the same final survival 

rate.  Thus we reasoned that the 5 µg dosage presented a higher risk for understimulation 

than the 10 µg dose for overstimulation. 

 

Synthesis of optimal microparticles. After defining initial spray-drying 

conditions for production of suitable BRM microparticles that mediated significant 

protection, we re-analyzed spray drying production parameters in order to fine-tune robust 

synthesis conditions of optimally sized BRM, and future vaccine, microparticles.  For ease 

of calculation, we changed the polymer to adjuvant ratio to 6.5× polymer and 3.5× 

adjuvant.  In the subsequent experiment, we studied the morphological features and 

functional properties of microparticles in depth by in vitro and in vivo experiments. 

 Effect of the concentration of feed solution on size and shape of microparticles. In 

our previous experiments, we found that the feed solution containing 1% of total solid 

resulted in the synthesis of 2.28 µm spherical microparticles by spray drying.  However, 

the surface of these microspheres was rough and irregular (Fig. 3.2A), which is undesirable 

for ideal BRM/vaccine microparticles.  A low surface roughness is essential for extended 

release of API.  Irregularities will result in an increase in surface area, creating an 

accelerated diffusive release of API (Dawes et al., 2009).  Previously, we had observed 

that the concentration of feed solution had the greatest influence on size and shape of the 
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microparticles.  Therefore, we performed a concentration titration experiment with a two-

fold logarithmic dilution series from 1.2% to 4.8% of total solids comprising DL-PLG-

PEG and Pluronic L121 at 6.5:3.5 ratio in the feed solution. 

Spray drying of all feed solutions containing either 1.2%, 2.4%, or 4.8% of DL-

PLG-PEG and Pluronic L121 resulted in spherical microparticles with smooth surfaces as 

observed in their SEM micrographs (Fig. 3.6A-C).  The SEM micrographs also 

demonstrated that microparticles became sequentially larger as the feed concentration of 

solids increased (Fig. 3.6A-C).  Quadratic polynomial regression analysis revealed a 

positive correlation for the diameter of the particles with the concentration of solids in the 

feed solution (r=0794; p<0.0001; Fig. 3.6D), with the mean diameter of 2.36, 2.79, and 

14.07 µm for the 1.2, 2.4, and 4.8% feed solutions, respectively (Fig. 3.6E).  It is apparent 

from the data that a 1.2% feed solution is the lowest concentration that should be used to 

synthesize spray-dried DL-PLG-PEG-Pluronic L121 microparticles with optimal size and 

shape.  Although, 2.4% feed solution produced DL-PLG-PEG microparticles with 2.79 µm 

in diameter – which is at the upper limit for an optimal size (1 to 3 µm), and hence risks 

the production of substantial numbers of particle with more than 3 µm.  Analysis of the 

particle mean diameter provides a theoretical mean diameter of 2.5 µm for a 2% feed 

solution (Fig. 3.6E). Therefore, a feed solution with the concentration in between 1.2 to 

2% would be the best choice to synthesize microparticles with optimal size and shape while 

using PLG-PEG as polymer and with Buchi 190 mini spray dryer.  
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Figure 3.6. SEM images and size analysis of spray-dried DL-PLG-PEG-Pluronic L121 

microparticles.  DL-PLG-PEG and Pluronic L121 were dissolved in DCM at a 6.5:3.5 ratio at a 

final w/v solid concentration of 1.2% (A), 2.4% (B), or 4.8% (C).  (D) Polynomial quadratic 

regression between the diameter of the particles, as determined by ImageJ software from SEM 

images, and the percentage of total solids used in the feed solution.  Each triangle represents one 

particle (n = 100 of randomly marked microparticles in the SEM micrograph of each of 1.2, 2.4, 

and 4.8% concentration) (E) Linear regression analysis with polynomial fit of the mean diameter 

of the microparticles at 1.2, 2.4, and 4.8% feed solution concentration as shown in D. 
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Effects of polymers type and molecular weight on microparticles size and shape. 

As mentioned earlier, the type of polymer and its molecular weight significantly affect the 

degradation kinetics of the spray dried microparticles (Kamaly et al., 2016) and therefore 

the release of vaccine antigen and subsequent immune response. For this reason, we tested 

spray drying to optimal particle size of six different PLG polymers that later would be 

analyzed for kinetics of degradation and antigen release, and mechanisms of antigen 

release. 

In our previous experiment, we used PLG-PEG of 80.2 kDa molecular weight as 

polymer which is comprised of 50:50 DLG and contains 5 wt% poly-ethylene-glycol 

(PEG) of 5 kDa MW.  In our next experiment, we examined whether different DL-Poly-

lactide (DL-PL) or DL-Poly-lactide-co-glycolide (DL-PLG) polymers of different 

molecular weight and composition could produce equally sized microparticles.  In an initial 

attempt we used DL-PL (R202S) with 16.74 kDa molecular weight and synthesized 

microparticles with 1.2% feed solution.  As shown in Fig. 3.7, at the 1.2% feed solution, 

R202S with five-fold lower molecular weight than DL-PLG-PEG produced small 

microparticles (1.21 µm mean diameter) that were not fully spherical (Fig. 3.7).  We 

anticipated that a higher concentrated 2% feed solution would produce larger and optimally 

shaped microparticles.  Therefore, as next step we determined the shape and size of 

microparticles produced from six different PLG and PL polymers (Tables 3.2 and 3.4) by 

use of a 2% feed solution. 
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Figure 3.7.  SEM micrograph of the spray-dried DL-PL (R202S) and Pluronic L121 

microparticles synthesized by use of a 1.2% DCM feed solution.  DL-poly-lactide of 16.74 MW 

and Pluronic L121 at 6.5:3.5 weight ratio were spray dried under standard conditions.  The mean 

diameter of the microparticles is 1.21 µm, and the shape and surface are irregular. 
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As shown in Fig. 3.8, the 2% feed concentration yielded spherical microparticles 

with smooth surfaces for all polymers (Fig. 3.8 A-L).  Particles size analysis revealed that 

the microparticle diameter was within the optimal range (1.5 to 2.6) for all polymers.  The 

results also clearly demonstrated that the molecular weight of the polymers is significantly 

positively correlated to the diameter of the particles (Fig. 3.9; Table 3.2).  Importantly, only 

molecular weight, but not composition of the polymers (PL versus PLG), influenced the 

microparticle diameter (Table 3.2). 

In sum, this particle size optimization experiment clearly demonstrates that the 

concentration of total solids in feed solution and the molecular weight of the polymers have 

a significant impact on the size of 6.5:3.5 polymer:Pluronic L121 microparticles, but not 

the type of the polymer.  However, a feed solution with 2% total solids containing any DL-

PL or DL-PLG at different co-polymer ratios with a molecular weight range of 10 to 100 

kDa will produce microparticles within the optimal size range (1 to 3 µm) and shape 

(spherical and smooth) for phagocytosis, if the microparticles are synthesized in a Büchi 

B-190 spray-dryer with standard setting for the remaining parameters. 
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Figure 3.8. Scanning electron micrographs of spray-dried microparticles synthesized from 

2% (w/v) feed solutions using different polymers.  The microparticles were composed of either 

one of six different polymers and Pluronic L121.  Polymer and Pluronic L121 (6.5:3.5 ratio) were 

dissolved in DCM at 2% final solid concentration.  Each produced particle is shown at low (upper 

row) and high (lower row) magnification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  Mean diameter of spray-dried microparticles synthesized from 2% (w/v) feed 

solutions.  The diameter of random particles (n = 100) of each type as shown in Fig. 3.8 was 

determined by ImageJ analysis.  Error bars indicate 95% CI.  
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Table. 3.2. Differences in mean diameters of the spray-dried microparticles synthesized from 2% feed solutions analyzed by one-

way ANOVA. 

 

 

Polymer Mw (kDa) 
Mean 

Diameter 
(µm) 

P value (Tukey HSD test) 

50:50 DL-PLG, IV 0.39 16.05 1.45  0.368 <0.001 <0.001 <0.001 <0.001 

100:0 DL-PL (R202S), IV 0.20 16.74 1.69 0.368  0.159 0.002 <0.001 <0.001 

100:0 DL-PL (R203S), IV 0.32 33.47 1.98 <0.001 0.159  0.692 <0.001 <0.001 

50:50 DL-PLG, IV 0.59 36.33 2.16 <0.001 0.002 0.692  0.001 0.0229 

50:50 DL-PLG-PEG, IV 0.79 80.20 2.66 <0.001 <0.001 <0.001 0.001  0.960 

75:25 DL-PLG, IV 0.69 105.80 2.55 <0.001 <0.001 <0.001 0.023 0.960  
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Degradation Kinetics of Microparticles Composed of Different Polymer 

Carriers.  As the next step, we sought to evaluate adjuvant/antigen release potential of 

microparticles produced with different PLG polymer.  To this end, we studied the 

degradation kinetics of polymer:Pluronic L121 (6.5:3.5) microparticles of the six polymers 

as aforementioned (Fig 3.8, Table 3.2).  Repeated measurement of the pH of suspensions 

of the microparticles served as an indicator of polymer degradation and reduction in 

molecular weight by determining the release of lactic and glycolic acid during breakdown 

of the polymers. 

The erosion of PLG polymers starts with degradation, i.e., the process of polymer 

chain scission.  For biodegradable polymers, chain scission occurs by hydrolysis of the 

functional groups in an aqueous environment.  Then, degradation products such as 

oligomers and monomers are released from the polymer matrix into the surrounding 

medium leading to the characteristic mass loss during the erosion process.  Hydrolysis 

starts with the penetration of water into the polymer matrix.  As polymer, PLG and PL are 

neutral (i.e. have no influence on hydronium ion concentration in an aqueous solution).  

However, with the hydrolytic uptake of water, an acid molecule is released per broken 

bond.  This release of acidic hydrolysis products leads to a reduction of the pH of the 

aqueous medium (Boimvaser et al., 2016).  The pH of mixtures of lactic acid/glycolic acid 

monomers is dependent to the concentration of these acids (Fig. 3.10A).  Therefore, using 

the pH of aqueous suspensions of PLG or PL polymers, the concentration of free acids in 

aqueous suspensions of these polymers, and therefore the polymer degradation, can be 

determined.  Here, we investigated the degradation kinetics of six different microparticles 
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as shown in Fig. 3.10 by determining the pH of a suspension of these microparticles in 

suspension buffer over a time period of 112 days. 

As shown in Fig. 3.10B, suspensions of all 50:50DL-PLG polymers, but most 

strongly of 50:50DL-PLG-PEG, showed a sharp decline in pH within the first week by 0.5-

1.4 pH units from the starting pH of 4.5-5.3, followed by a more gradual decline to below 

pH 3.0 by day 35-42.  The intermediate 75:25DL-PLG showed a less dramatic pH decline 

from 4.3 to 4.0 in the first week, but then reached pH 3.0 only at 91 days in suspension.  

These data are in contrast to those of the polylactide polymers, which declined only slowly 

and continuously until day 112 from starting a pH of ~6.0 to 5.2 (Dl-PL R203S) and 3.8 

(Dl-PL R202S). 

These pH changes correlated with a breakdown of the polymers and translated in 

precipitous reduction in molecular weights within the first week for the 50:50DL polymers, 

and initial rapid decline followed by gradual reduction for the 75:25DL-PLG 

microparticles (Fig. 3.10C).  In contrast, the polylactide polymer microparticles did not 

show an initial rapid decline in molecular weight, but only a gradually reduced molecular 

weight.  The threshold for solubility of PLG/PL oligomers is at a molecular weight of 

approximately 1 kDa.  Thus, when a polymer has degraded to a MW of 10 kDa or lower, a 

sizeable fraction of the normally-distributed polymer molecules will be at or below the 

solubility limit, and will diffuse away from the microparticle, initiating the physical 

breakdown of the microparticle.  As a measure of the start of physical breakdown, we used 

the calculated MW of 10 kDa, since calculation accuracy from pH for lower molecular 

weight declines precipitously at low pH.  The 50:50DL-PEG polymers reach the 10 kDa 

MW threshold within 3-21 days, in dependence of starting molecular weight.  Complete 
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dissolution of these microparticles follows within 10-20 days, as observable by the 

clarification of the microparticle suspension.  The intermediate the 75:25DL-PLG polymer 

with the very high 105.08 kDa MW reached the 10 kDa MW threshold by day 91, and by 

termination of the pH measurements on day 112, only little of the microparticles were left 

in suspension, while most of the material had become soluble. 

The MW trends of the polylactide polymers differed from the mixed lactide-

glycolide polymers by showing minimal, but continuous reduction.  The lower MW DL-

PL R202S polymer reached the 10kDa threshold, from the 16.74 kDa starting point, after 

63 days in suspension.  But even at that point it degraded more gradually than the mixed 

polymers, and residual microspheres were still present in suspension 7 weeks later on day 

112.  The higher MW DL-PL R203S polymer never reached the 10kDa threshold, and 

consequently much material was still present on day 112. 

As an initial gauge of the release of embedded API molecules, we incorporated a 

hydrophilic Alexa Fluor 488-labeled C. abortus DnaX peptide in PLG-Pluronic L121 

microparticles and measured fluorescence released into solution.  Surprisingly, with a 

range of 95.27-97.80%, almost all of the fluorescence was released with the first hour after 

suspension of the microparticles (Table 3.3, Fig. 3.10D).  Most of the remaining 

fluorescence, 2.02-3.99%, was released within the next 24 hours.  The remaining 

approximately 0.3% were released from most microparticles within the next 3 days.  The 

exception was DL-PL R202S, which released 0.71% during that time and maintained a 

measurable release of fluorescence up to day 10. 

This surprisingly rapid release from the microparticles may be explained by the 

short diffusion path for water into the particles, the very high hydrophilicity of the peptide 
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and fluorescence label, and by partial separation of peptide molecules from hydrophobic 

microparticle solids during spray drying (low incorporation efficiency).  Therefore, to 

obtain a clear picture of the release of a variety of API, more hydrophobic molecules must 

be tested as well.  However, it is clear that most an embedded API or antigenic peptides 

may be released into solution even before phagocytosis of administered microparticle 

suspensions, and that only a fraction of them will be released intracellularly.  In addition, 

polylactide-based microparticles may be better suited for retention and protracted released 

of API than mixed lactide-glycolide polymers.  In these polylactide polymer 

microparticles, diffusion is the exclusive release mechanism because polymer degradation 

occurs much later.  In contrast, release from lactide-glycolide co-polymers will be dictated 

by both diffusion and matrix degradation, since these polymers start to degrade 

immediately upon contact with water, losing molecular weight and cohesion precipitously. 

 

Table. 3.3. Percent fluorescence of total fluorescence released from microparticles early after 

suspension. 

Polymer Percent fluorescence released after suspension 
Day 0 (0-1 hr) Day 1 (1-24 hr) Day 4 (25-96 hr) 

50:50 DL-PLG 16.05 kDa 97.80 2.02 0.08 
50:50 DL-PLG 36.33 kDa 96.57 3.08 0.12 
50:50 DL-PLG-PEG 80.20 kDa 96.98 2.81 0.15 
75:25 DL-PLG 105.08 kDa 95.89 3.97 0.04 
DL-PL R202S 16.74 kDa 95.27 3.70 0.71 
DL-PL R203S 33.47 kDa 95.62 3.99 0.19 
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Figure 3.10.  Kinetics of degradation and release of fluorescently-labeled peptide of different 

polymeric microparticles.  Microparticles were composed of polymer and Pluronic L121 adjuvant 

at a 6.5:3.5 ratio in 2% total solids in the DCM spray drying feed solution.  For determination of 

peptide release an Alexa Fluor 488-labeled 20-mer C. abortus peptide was added (1 nM/mg solids).  

(A) Determination of the concentration of free lactic/glycolic acids (±50% CI) in dependence of 

the pH of 50 mL of the unbuffered suspension solution.  (B) Microparticles were suspended in 50 

mL suspension buffer under continuous agitation, and the pH was determined 1 hour after 

suspension (day 0), then on days 1, 3, 5, 7 and weekly thereafter for additional 15 weeks.  (C) 

Molecular weight deduced over time from pH-dependent polymer degradation and scission of 

polymer molecules, based on the pH data of the suspension solution as shown in panel B.  (D) 
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Release of fluorescently labeled peptide for each time point (1 hr = day 0, 24 hr = day 1, 3 day1-

day4 = day 4).  Percent release is based on total release from day 0-46. 
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In vivo Uptake of Microparticles by Macrophages.  After characterization of the 

DL-PL and DL-PG spray-dried microparticles, we investigated the uptake of these particles 

by macrophages in an in vivo mouse model.  The spray dried DL-PLG-PEG:Pluronic L121 

microparticles incorporating fluorescently labeled peptide were intranasally inoculated into 

mice.  Twenty four hours later, the lungs were collected, zink-formalin fixed, sucrose-

dehydrated, cryosectioned, immunostained, and observed under a confocal fluorescence 

microscope.  As shown in Figure 3.11, lung macrophages efficiently engulfed the majority 

microparticles as evident by the presence of green fluorescence (Alexa-Fluor 488-

conjugated peptide) inside macrophages with high surface expression of the F4/80 

macrophage marker (Fig. 3.11 D-F).  
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Figure 3.11. Confocal microscopic image showing in vivo macrophage uptake of spray dried 

PLG-PEG-Pluronic L121 microparticles incorporating a peptide labeled with Alexa-Fluor 

488. (A) Merged triple-color image of mouse lung after intranasal instillation of microbeads 

containing a peptide labeled with Alexa Fluor 488.  The blue color is derived from DAPI 

fluorescence from DNA staining of cellular nuclei, the green color corresponds to microparticles 
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labeled with green-fluorescent peptide, and the red color indicates fluorescence associated with 

binding of Alexa Fluor 594-labeled antibodies against F4/80, a macrophage cell membrane marker 

protein.  The empty spaces between aggregated cells indicate lung alveolar cavities.  (B) Isolated 

green fluorescence indicating the location of microbeads and cytosolic peptide that diffused out of 

microbeads.  (C) Merged green and red fluorescence indicating the co-localization of the majority 

of microbeads with macrophages.  This demonstrates that the majority of microbeads are 

phagocytosed by macrophages within 24 hours.  (D-F) Corresponding photomicrographs of a 

control specimen from a mouse that received unlabeled microbeads. 
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Immunopotentiating Effect of Optimal PLG-PEG:Pluronic L121 

Microparticles when Used in Different Routes of Administration.  After the extensive 

optimization of spray drying procedures and subsequent analyses of in vitro degradation 

kinetics and in vivo phagocytosis of the 1 to 3 µm microparticles, we evaluated the 

immunostimulating effect of such BRM microparticles when administered by different 

routes.  C3H/HeJ mice received 10 µg of DL-PLG-PEG-Pluronic L121 microparticles 

either via subcutaneous (s.c.), intraperitoneal (i.p.), or intranasal route (i.n.).  Two days 

(s.c.) or one day (i.p. and i.n.) after treatment, the mice were i.n. challenged with a lethal 

dose of 1×108 C. abortus EBs and monitored for three weeks (Fig. 3.12A). The naïve 

control received i.n. PBS one day before challenge. 

The mortality kinetics and survival rate were highly significantly different between 

naïve control mice and the mice in all three different treatment groups (Coxs’ F test p= 

0.006, 0.009, and 0.002 for the difference between naïve and mice with i.n., s.c., or i.p., 

BRM administration, respectively; Fig. 3.12B).  The naïve control showed rapid mortality 

- starting from seven days after challenge inoculation.  Eighty percent of the mice were 

dead on day 8 post challenge, and the remaining mice died by day 11 after challenge 

inoculation (Fig. 3.12B).  In contrast, mice of all treatment groups tended to die later.  In 

the intranasal group, mice died between days 7 and 13, and the remaining 30% mice 

survived (Fig. 3.12B).  Similarly, 30% of the mice in the subcutaneous group survived, the 

dead mice, however, succumbed to the challenge infection later than in the intranasal 

group.  The best protected group were the mice that received the BRM microparticles 

intraperitoneally, although not statistically significant different from the other 

administration routes, with mortality only between days 8-11, and 40% surviving.  The 
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findings clearly demonstrated that the PLG-PEG-Pluronic L121 microparticles had an 

immunostimulating effect irrespective of the route of administration. 
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Figure 3.12. BRM effect of DL-PLG-PEG microparticles via different routes of 

administration. (A) Schematic representation of the BRM experimental protocol.  C3H/HeJ mice 

received 10 µg of PLG-PEG-Pluronic L121 BRM microparticles suspended in PBS/0.1% Kolliphor 

HS 15 via i.n., s.c., or i.p. administration.  Two days (s.c.) or one day (i.n. and i.p.) after treatment 

all mice were i.n. challenged with 1×108 C. abortus organisms.  The naïve control group received 

i.n. only PBS/0.1% Kolliphor HS 15 one day before challenge.  (B) Survival analysis (Kaplan-

Meier survival estimate; Cox’s F test; n=10 mice / group).  
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Immunopotentiating Effect of BRM Microparticles Containing Different Th1 

Adjuvants.  AS a final step, we evaluated different Th1 adjuvants in an intranasal 

immunopotentiator experiment with DL-PLG BRM microparticles.  C3H/HeJ mice were 

i.n. inoculated with 10 µg of either only RG502H microparticles (carrier control), or 

RG502H microparticles containing one of three Th1 adjuvants – Pluronic L121, Trehalose-

di-behenate (TDB), and Resiquimod (Table 2.1).  Three days after treatment, the mice were 

i.n. challenged with a lethal dose of 3×108 C. abortus EBs and monitored for three weeks 

(Fig. 3.13A). 

Starting from four days after challenge inoculation, the mice carrier control group (received 

only RG502H microparticles) lost body weight, became progressively sicker, lost 

approximately 28% of their weight, and 90% of the mice died within 21 days after 

challenge infection (Fig. 3.13B).  The mice that received the TDB adjuvanted microparticle 

also followed a similar trend and lost approximately 30% body weight, and 90% of the 

mice died within 3 weeks after challenge (Fig. 3.13B).  In contrast, mice that received 

either Pluronic L121- or Resiquimod adjuvanted microparticles were comparatively 

healthier.  Starting from day 8 they experienced a minor body weight loss until day day12 

of approximately 8% in Pluronic L121 group and 10% in the Resiquimod group.  However, 

beginning day 14 after challenge inoculation, surviving mice in both groups of this group 

stabilized and steadily gained weight again.  Importantly, mice in both groups showed 

significantly lower mortality by day 21 than the carrier control and TDB groups – 30% 

mortality for Pluronic L121 (p= 0.002 vs carrier control) and 40% mortality for 

Resiquimod (p=0.019 vs carrier control). 
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Figure 3.13.  Immune modulation by BRM microparticles with Th1 adjuvants Pluronic L121, 

TDB, and Resiquimod. (A) Schematic presentation of BRM experimental protocol. Three days 

before i.n. challenge inoculation with 3×108 C. abortus, C3H/HeJ mice were i.n. inoculated with 

10 µg spray-dried RG502H microparticles (carrier control) suspended in 20 µl PBS/0.1% Kolliphor 

HS 15, or with RG502H microparticles containing either one of the three Th1 adjuvants – TDB, 

Resiquimod, or Pluronic L121.  After challenge mice were monitored daily, and the surviving mice 

were euthanized on day 21.  (B) Survival analysis of mice in different groups (Kaplan-Meier 

survival estimate; Cox’s F test (n=10 mice / group). 
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2.4. DISCUSSION 
 
 

Limitations of current vaccines, particularly against intracellular pathogens and 

cancer, have encouraged the application of various vaccine delivery systems in attempts 

to improve vaccine efficacy.  Among proposed vaccine delivery systems, synthetic 

biodegradable polymeric microparticles have been gaining more attention, specifically 

regarding their advantages as an antigen/adjuvant delivery vehicle.  These advantages 

include: their inherent features that can be tuned according to the desired antigen release 

profile, the ease of charge or hydrophobicity modification, and the ability to target uptake 

by APCs.  However, the physicochemical properties of these particulates depend on a 

number of factors such as: preparation technique, polymer composition, hydrophobicity, 

molecular weight, and particle size (Allahyari and Mohit, 2015; Lima and Junior, 1999; 

Tracy, et al., 1999).  In this study, through a series of optimization approaches we 

developed optimal PLG microparticles, entrapped the Th1 adjuvant Pluronic L121 by 

spray dry technology, and investigated their immunopotentiation effect in an 

immunosuppressed C3H/HeJ mouse model.  The optimization of microparticles and the 

in vivo mouse model studies were performed in simultaneous and stepwise approaches to 

develop a microparticulate delivery platform that can be utilized in low dose vaccine 

delivery against Chlamydia abortus.  

To synthesize microparticles, we used industrially scalable spray drying technology 

and demonstrated that it is a perfectly suited technique to synthesize suitable 

microparticles for vaccine delivery.  However, as previously described, microparticles 

characteristics are dependent on different process parameters such as inlet and outlet 

temperatures, spray-rate of feed, polymer concentration in the organic solvent (Conte et 
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al., 1994), and the nature of the organic solvent (Gander et al., 1995).  Through a series 

of optimization approaches we standardized different spray dry parameters (feed spray 

rate at 3.2 mL/min, inlet temperature 58±2°C; outlet temperature 38±2°C; spray gas flow 

6 bar; atomization air flow rate 500 l/h; and aspirator setting 20) to synthesize our desired 

microparticles with the Büchi-190 spray dryer. 

We then performed an in-depth investigation on the size of the microparticles as it 

is a criterion of overriding importance for phagocytotic uptake of microparticles by APCs. 

In an early study conducted in the phagocytosis of polystyrene microspheres (0.5–4.6 μm) 

by mouse peritoneal macrophages, it was reported that maximal phagocytosis occurred for 

an intermediate particle size of 1.7 μm (Tabata and Ikada, 1988).  A recent study by 

Champion et al. (2008) demonstrated that 2-3 µm polystyrene particles were optimally 

phagocytosed by rat peritoneal macrophages  Therefore in this study we were interested to 

synthesize 1 to 3 µm PLG microparticles that would be easily phagocytosed by APCs. We 

found that the concentration of total solid in the feed solution as well as molecular weight 

of the polymer greatly influence the size of particles.  We performed a concentration 

titration experiment of solids in feed solution and determined that a 2% concentration is 

ideal to synthesize optimal microparticles of 1 to 3 µm diameter with a wide range of DL-

PL or DL-PLG polymers. In a subsequent in vivo mouse model experiment we found that 

DL-PLG-PEG microparticles with 2.66 µm diameter were efficiently engulfed by 

macrophages in the lung. 

The ultimate goal of our approach was to utilize the microparticles as vaccine 

delivery vehicle in our low antigen dose vaccine platform against Chlamydia abortus.  

Therefore in this study we investigated their potential as immunostimulant while 
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delivering a Th1 adjuvant.  To evaluate the immunopotentiating effect we used C3H/HeJ 

mice in the C. abortus respiratory disease model.  As this mouse has a truncated Tlr4 

protein, they fail to respond to LPS, including chlamydial LPS.  This results in a lack of a 

protective innate immune response against chlamydial challenge inoculation, and 

subsequent disease with high mortality within 2 to 3 weeks.  We found that administration 

of DL-PLG-PEG or DL-PLG (RG502H) microparticles containing the Th1 adjuvant 

Pluronic L121, one or three days before challenge inoculation of lethal C. abortus, 

significantly reduces the mortality of these mice.  Therefore these microbeads at least 

partially substituted for the absent LPS response in these mice.  We also demonstrated 

that the immunopotentiang effect can be obtained by administration either by the 

subcutaneous, intraperitoneal, or intranasal route.  However, the effect is highly dose 

dependent, with an optimal dose range of 5 to 10 µg per mouse, and lower as well as 

higher doses were actually counterproductive.  Similarly, only one treatment, one or three 

days before challenge inoculation was sufficient, while multiple dosages failed to induce 

protection, and even exacerbated disease, most like due to an aberrant inflammatory 

response derived from overstimulation.  Finally, we also demonstrated that the particulate 

delivery is effective with resiquimod, a different Th1 adjuvant. 

In conclusion, microparticles based on synthetic biodegradable polymers are an 

extensive area of research for effective delivery of vaccine antigens and pharmaceutical 

drugs in human and veterinary medicine.  In the current study we focused on the synthesis 

of DL-PL and DL-PLG microparticles using spray drying technology.  The optimization 

of spray drying parameters and in vitro and in vivo characterization of microparticles that 
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have been performed in this study will significantly benefit in immune studies of 

polymeric microparticles synthesize by an industrially scalable spray dry technology. 
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3.5. MATERIALS AND METHODS 
 
 

Preparation of Microparticles with or without an Adjuvant. 

Chemicals and reagents. The following chemicals were obtained from commercial 

suppliers and used as received: dichloromethane (Sigma Aldrich, St. Louis, MO, USA), 

Kolliphor® HS 15 [synonym: Macrogol (15)-hydroxystearate, Polyethylene glycol (15)-

hydroxystearate, Polyoxyethylated 12-hydroxystearic acid, Solutol® HS 15] (BASF Corp., 

Germany), Lactopress® Anhydrous Microfine (DFE Pharma, Germany), Benzalkonium 

chloride (Sigma Aldrich, St. Louis, MO, USA). 

Adjuvants.  The adjuvants used in this experiment were: Poly(ethylene glycol)-

block-poly(propylene glycol)-block-poly(ethylene glycol) (Synonym- PEG-PPG-PEG, 

Pluronic L121) (a product of BASF Corp., Germany, obtained from Sigma Aldrich, St. 

Louis, MO, USA), Trehalose Dibehenate (TDB) (Avanti Polar Lipid, Inc., Alabaster, AL 

35007); and Resiquimod (R848) (Invivogen, San Diego, CA, USA). 

Polymers. A list of synthetic biodegradable polymers used in this study is shown in 

Table 3.4, with their physiochemical properties as indicated by the manufacturers. 

Spray dryer. The microencapsulating experiments were carried out by use of a 

bench-top Büchi mini spray dryer model B-190 (Büchi Labortechnik AG, Flawil, 

Switzerland).  The main components of the system are the feed system of the of the 

microencapsulating formulation, constituted by a peristaltic pump, a two fluid atomizer 

(nozzle diameter of 0.7 mm) and an air compressor; the feed system of the drying gas, 

constituted by a blower, an air filter and a temperature control system.  The dried product 

was collected in a Büchi high performance glass cyclone.  Fig. 3.14 shows the schematic 

representation of process diagram of the spray dryer used. 
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Microparticle production. Stock solutions of polymers and adjuvant were prepared 

separately with DCM at 50 mg/ML. Feedstock solutions of adjuvants and / or polymers 

were prepared in DCM by adding the desired volume of the stock solution at the 

concentration of either 1%, 1.2%, 2.4%, or 4.8% of total solids, as required for different 

experiments.  The ratio of the polymers and adjuvants were either 2:1 or 6.5:3.5, as needed. 

Microparticles were obtained by spraying the prepared feedstock solution through 

the nozzle of the spray dryer.  The spray rate of feed was constant at 3.2 ml/min except for 

one optimization experiment when 8 ml/min was used. Identical drying conditions (inlet 

temperature 58±2oC; outlet temperature 38±2oC; spray flow 6 bar; atomization air flow 

rate 500 l/h; and maximum aspirator setting 20) were used for all samples.  The spray-dried 

microparticles obtained were collected in glass vials sealed with Parafilm and stored in a 

desiccator at room temperature until further characterization. 
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Table 3.4. Lactic / glycolic acid polymer samples used in this study 

Chemical Name Abbreviation Source Synonym IV(dL/g) Mw (Da) 
(average) 

50:50 Poly(DL-lactide-co-
glycolide) 50:50 DL-PLG Durect Corp. Lactel® 

B6010-1 0.39 16.050 

50:50 Poly(DL-lactide-co-
glycolide) 50:50 DL-PLG Durect Corp. Lactel® 

B6010-2 0.59 36,330 

Methoxy poly(ethylene glycol)-
50:50 DL-poly(lactide-co-glycolide) 50:50 DL-PLG-PEG Evonik -- 0.79 64,760 

75:25 Poly(DL-lactide-co-
glycolide) 75:25 DL-PLG Durect Corp. Lactel® 

B6007-1 0.69 105,080 

Poly(D,Llactide) 50:50 DL-PL Evonik Resomer® 
R202S 0.20 16,740 

Poly(D,Llactide) 0:50 DL-PL Evonik Resomer® 
R203S 0.32 33,470 

50:50 Poly(D,Llactideco-glycolide) 50:50 DL-PLG Evonik Resomer® 
RG502H 0.20 12,000 

IV-Intrinsic viscosity; Mw- Molecular weight; -- not found  
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Figure 3.14.  Process diagram of the Mini Spray Dryer B-190 model with process parameters. 

(Reproduced from Arpagaus et al., 2010) 
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Microparticle Characterization. 

Morphology. The surface morphology and shape of the spray-dried microparticles 

was visually assessed by the Zeiss EVO 50 scanning electron microscope (Carl Zeiss, 

Germany).  Briefly, spray-dried microparticles were placed on adhesive carbon tapes 

mounted on aluminum stubs followed by sputter coating with a thin layer (5 nm) of gold 

particles for 2 minutes with an EMS 550x auto sputter coater (Electron Microscopy 

Sciences, Hatfield, PA) under an Argon gas purge.  The specimens were then imaged at an 

accelerating voltage of 20 kV energy with magnification of 3000, 5000 and 10000 times. 

Particulate size analysis. To quantify the size of the microparticles, the image 

analysis software, ImageJ, was used to measure the Feret’s diameter (area-based diameter 

of non-sperical particles) of at least 100 randomly distributed microparticles per sample.  

Due to high agglomeration of the particles, as observed in scanning electron microscope 

(SEM) image, the Feret’s diameter of each particle was manually measured in the ImageJ 

software instead of using automatic measurement procedures. 

In vitro degradation kinetics. Microparticles were synthesized from the feed 

solution containing 2% of total solid comprised of either 50:50 DL-PLG or 50:50 DL-PLG 

or 50:50 DL-PLG-PEG or 75:25 DL-PLG or 50:50 DL-PL (R202S) or 50:50 DL-PL 

(R203S) and Pluronic L121 at 6.5:35, respectively, in DCM.  Fifty to 100 mg of each of 

six different polymeric microparticles were suspended in unbuffered suspension solution 

(0.001% benzalkonium chloride and 0.5% Kolliphor HS-15 in dH2O) in a 50 mL glass vial, 

sonicated for 10 minutes, and incubated at 37oC on the shaking incubator at 50 rpm.  The 

pH of the medium of each preparation was measured after 1 hour incubation (day 0), then 

24 later, then on days 3, 5, and 7, and after this first week once every week by a digital pH 
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meter.  The pH of lactic acid/glycolic acid is correlated to the concentration of these acids 

(Fig 3.10A).  Therefore, using the pH of poly-lactic-co-glycolic acid polymers, the 

concentration of free acids in aqueous suspensions of these polymers can be determined.  

Using the total amount of polymer added to 50 mL suspension buffer, the pH measurement 

over time, after correction for residual free acid in the polymer, can be used to determine 

the fraction of degraded polymer (free acid) in total polymer (bound acid).  Further 

correlation to the initial molecular weight of the polymer using the formulas below allows 

determination of the reduction in molecular weight of the polymer over time by 

degradation. 

End MWpolymer =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝑀𝑀𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1+𝑙𝑙𝑙𝑙𝑙𝑙2� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �

 

 starting molecules =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑔𝑔) × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜′𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒𝑟𝑟

 

fraction degraded =  10
𝐿𝐿𝐿𝐿𝐿𝐿_𝑚𝑚𝑚𝑚_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑚𝑚𝑚𝑚)
 

broken bonds =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑔𝑔) × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜′𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

In vitro API release kinetics. Microparticles were synthesized from the DCM feed 

solution containing 2% of total solid comprised of either 50:50 DL-PLG or 50:50 DL-PLG 

or 50:50 DL-PLG-PEG or 75:25 DL-PLG or 50:50 DL-PL (R202S) or 50:50 DL-PL 

(R203S) and Pluronic L121 at 6.5:35 ratio, respectively, along with Alexa Fluor 488 

conjugated to a 20-mer C. abortus peptide to (50 nM of peptide 

QQQEPSKPSIQPEKAF488HYQDQS added to 50 mg microparticle solids).  Twenty mg of 

each of the six spray-dried microparticles were suspended in 5 mL suspension buffer 

(0.001% benzalkonium chloride and 0.5% Kolliphor HS-15 in PBS) and incubated at 37oC 

on a rotating mixer.  After 1 hour (day 0), 24 hours (day 1), and then every 3 days for a 
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total of 46 days, the beads were sedimented at 2,600×g for 15 min, and the complete 

supernatant was removed, a 1.5 mL aliquot was stored at -80°C, and the beads were re-

suspended in new suspension buffer.  The 521 nm fluorescence of the supernatant was 

measured in a spectrophotometer.  Peptide released at each sampling time point was 

calculated as the fraction of the total release over 46 days. 

In vivo macrophage uptake. Mice received intranasally PLG-PEG-Pluronic L121 

microparticles with entrapped C. abortus peptide conjugated with Alexa Fluor 488.  One 

day later, mice was anesthetized by intraperitoneal injection of ketamine and xylazine, and 

the lung was perfused with PBS and fixed with Z-Fix.  The fixed lung was treated under 

vacuum with successive sucrose gradient solutions (10%, 20%, and 30%) for dehydration 

and cryoprotection.  The sucrose infiltrated lung was embedded with 2 ml Neg-50 

(Richard-Allan Scientific) in a cryomold boat and the prepared lung cryomold was stored 

at -80oC.  Using a cryostat (HM 550 Series, Richard-Allan Scientific), lung sections were 

cut to 8 µm, mounted onto Superfrost/Plus microscope slides (Fisher Scientific), air dried 

in the dark (to avoid photobleaching of fluorescent beads), and blocked with antibody 

dilution buffer (5% BSA and 10 % donkey serum in PBS).  Sections were stained with 

F4/80 rat IgG2b monoclonal antibody (1:500 overnight; Fisher), followed by donkey anti 

rat IgG Alexa Fluor 594 (1:500 for 1 h; Fisher).  Nuclei were counterstained with DAPI (4, 

6-diamidino-2-phenylindole) in mounting medium (Invitrogen).  Immunofluorescence was 

examined and digital micrographs were taken using a Nikon Eclipse TE2000-E confocal 

microscope and analyzed using NIS-Elements software (Nikon). 
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Immunopotentiating Effect of BRM Microparticles. 

Preparation of BRM microparticles suspension. One mg of the BRM 

microparticles were mixed with 3 mg of lactose anhydrous microfine ((DFE Pharma, 

Germany) in a glass vial, then dissolved in 1 mL of suspension buffer (0.001% 

benzalkonium chloride and 0.5% Kolliphor HS-15 in PBS), and sonicated for 15 minutes 

in cold water.  From this initial suspension, the final BRM suspension was prepared at 

appropriate dilutions in suspebsion buffer, as required for different dosage for different 

experiments. 

Chlamydia abortus. C. abortus strain B577 (ATCC V-656) was grown in Buffalo 

Green Monkey Kidney monolayer cell cultures, purified by differential centrifugation, and 

quantified as previously published (Li et al., 2005).  Purified infectious EBs were 

suspended in sucrose-phosphate-glutamate (SPG) buffer, stored in aliquots at −80°C, and 

their infectivity was confirmed in female A/J mice. 

Animal and BRM microparticles administration.  Inbred female C3H/Hej mice 

were sourced from the Jackson Laboratory (Bar Harbor, ME) at 5 weeks of age.  Udel 

“shoebox” type cages with spun fiber filter tops were maintained in static air or ventilated 

cage racks.  Five to ten animals were housed per cage in a temperature-controlled room on 

a 12-hour light/dark cycle, with ad libitum access to water and standard rodent chow.  All 

animal experiments were approved by the Auburn University Institutional Animal Care 

and Use Committee (IACUC).  Each group was consisted of 10 mice.  Mice received the 

BRM preparation under light isoflurane inhalation anesthesia by intranasal administration 

of 20 µl or subcutaneous (between the shoulder blades) or intraperitoneal injection of 200 
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µl of BRM microparticles dissolved in suspension buffer at 6 weeks of age at different time 

and dosage as required for different experiment set up. 

Control animals. Mice that received either only PBS (naïve) or microparticles 

without adjuvant (carrier control) served as controls. 

Intranasal C. abortus Challenge and Monitoring. All mice were challenged with 

1×108 or 3×108 C. abortus elementary bodies suspended in 20 µl sucrose-phosphate-

glutamate buffer.  In the first experiment for model analysis, all animals were weighed 

during challenge infection and every second subsequent day until euthanasia on day 10 

post challenge.  Mice were monitored every day and death, if any, was recorded.  Ten days 

after challenge, mice were sacrificed by CO2 inhalation and weighed.  Lungs were 

collected, weighed, snap frozen in liquid nitrogen, and stored at -80°C until further 

processing.  Percent lung weight increase was based on naïve lung weights of 134 mg for 

adult female C3H/HeJ mice. Subsequently, in all experiments mice were monitored daily 

after challenge, mortality was recorded, and surviving mice were euthanized 21 days after 

challenge inoculation. 

 

Data Analysis. All analyses were performed with the Statistica 7.1 software 

package (StatSoft, Tulsa, OK). Results were analyzed by survival analysis and Cox F test, 

Student’s t-test, linear regression, and one-way and repeated measures ANOVA with 

Tukey’s honest significant differences test for correction of the p value in multiple 

comparisons.  P values ≤ 0.05 were considered significant. 
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CHAPTER 4 

BIODEGRADABLE MICROPARTICLE LOW-DOSE PEPTIDE  
VACCINE AGAINST C. abortus 

 
4.1 INTRODUCTION 
 
 

Chlamydia abortus and Infection. Chlamydia abortus, formerly known as C. 

psittaci serotype I, is a non-motile, coccoid, obligate intracellular, Gram-negative 

bacterium that belongs to the family Chlamydiaceae (Everett et al., 1999; Sachse et al., 

2015).  It is considered a very homogeneous species with low genetic heterogeneity (Sait 

et al., 2011;  Laroucau et al., 2009) with a genome size of 1,144,377-base pairs that 

contains 961 predicted coding sequences (Thomson et al., 2005). 

The organism can efficiently colonize the placental trophoblasts and is one of the 

major causative agents of abortion and fetal loss in sheep, goats, and cattle in many 

countries (Borel et al., 2004; Campos-Hern´andez et al., 2014; Kalender et al., 2013).  In 

1936, Greig first described chlamydial abortion in sheep in Scottland and named it enzootic 

abortion in ewes (EAE) (Greig, 1936).  The infection of susceptible pregnant ewes may 

cause abortion, still births, or weak lambs (Aitken, 1990).  Usually, immunologically naïve 

flocks receive the infection from a latently infected animal with the agent being 

subsequently transmitted from aborting ewes via shedding of large amounts of infectious 

Chlamydia in the foetal membranes and in vaginal discharges (Aitken, 1993).  In newly 

infected flocks, up to 30% of ewes may abort in the last trimester of gestation or give birth 
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to weak or dead lambs.  After abortion, ewes in these flocks may develop a 

protectiveimmunity, with the incidence remaining at 5-10% in further lambing seasons,  

with essentially all aborting ewes being primiparous animals (Rodolakis et al., 1998; 

Aitken, 2007). C. abortus also been associated with cases of abortion in pigs, horses, 

rabbits, guinea pigs, and mice (Everett et al., 1999).  Its association with bovine infertility 

(De Graves et al., 2004) and mastitis (Corner et al., 1968; Rønsholt and Basse, 1981) has 

also been reported.  Finally, the pathogen represents a threat to human health because it 

can cause zoonotic infections; pregnant women who are exposed to infected animals are 

also at risk of abortion and life-threatening illness (Longbottom and Coulter 2003; 

Pospischil et al., 2002; Walder et al., 2003 and 2005). 

C. abortus in the United States. In the United States chlamydial abortion was first 

reported in 1958 in Montana sheep and the organism was first isolated from the outbreak 

in 1960 (Young et al., 1958; Parker et al., 1960).  Subsequently, the prevalence and 

distribution of the disease was reported in sheep flocks in Idaho (Frank et al., 1962), 

California, and Oregon (McKercher et al., 1964).  During that time, a similar chlamydial 

agent was also isolated from abortion in cattle (Storz et al., 1960) and in goats (McCauley 

et al., 1968) in California.  Currently, it is the most common cause of abortion in goats in 

the USA (Merck Veterinary Manual). 

 

Economic Significance. C. abortus is endemic in ruminants throughout the world 

and is considered as one of the economically most important animal pathogens of 

domesticated animals (Gokce et al., 2007).  It is recognized as a major cause of abortion 

and lamb loss throughout the world, except for in Australia and New Zealand (Kerr et al., 
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2005; Longbottom et al., 2013; Nietfeld, 2001).  In the United Kingdom, it is estimated to 

cost the sheep industry more than £20 million a year (Aitken et al., 1990). 

In the United States, there are 5.32 million head of sheep (USDA, NASS, Sheep and Goats, 

Jan. 29, 2016).  According to the American Sheep Industry Association, in 2010 the United 

States produced approximately 163 million pounds of lamb and mutton, and 30.6 million 

pounds of greasy wool are produced.  There were 2,621,514 goats in the United States as 

of 2012 (USDA, NASS, Sheep and Goats, 2012).  Thus, considering the severity of 

economic losses by EAE in the sheep industry, its importance in the USA cannot be 

underestimated.  Furthermore, its zoonotic importance also demands strict measures to 

control and prevention of this disease. 

 

Treatment and Control of C. abortus Infection. When signs of EAE are first 

observed or if there is perceived threat of EAE, tetracycline is usually used in pregnant 

sheep flocks to reduce the incidence of abortion and lamb losses (Aitken et al., 2007).  

However, this combined therapeutic/prophylactic approach does not guarantee to prevent 

abortion or to prevent the shedding of Chlamydiae from infected ewes at parturition 

(Longbottom and Coulter, 2003).  Moreover, employing a prophylactic strategy always 

risks the development of antibiotic resistance.  While there is no report of tetracycline 

resistance in C. abortus, it has been found in Chlamydia suis strains isolated from pigs 

(Lenart et al., 2001; Dugan et al., 2004).  However, although antibiotic resistance in 

Chlamydiae remains a relatively rare clinical occurrence in vivo, the potential to evolve 

resistance through the accumulation of point mutations under selective antibiotic pressure 

has been shown to occur in vitro (Sandoz and Rockey, 2010).  Furthermore, tetracycline 
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resistance can be transferred horizontally, suggesting that maintained antibiotic pressure 

could drive the spread of resistance (Suchland et al., 2009).  In addition, the prolonged use 

of antibiotics in livestock is also a consumer issue due to public concerns over residues in 

the food chain.  In general the use of antibiotic is not an effective way to manage EAE, it 

being more desirable to control infection by management and vaccination. 

 

Vaccination against C. abortus. It has been mentioned earlier (Chapter I) that live-

attenuated vaccines are commercially available against C. abortus and extensively used in 

the sheep industry.  However, failure of this vaccine has been reported in two recent studies 

and DNA sequencing linked the live-attenuated vaccine strain of C. abortus with cases of 

EAE (Wheelhouse et al., 2010; Laroucau et al., 2009).  In their studies, both groups used 

polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to 

identify single nucleotide polymorphisms (SNPs) associated with the 1B vaccine strain of 

C. abortus.  These SNPs were found to be unique to the vaccine strain when compared to 

its parent strain AB7 and thus used to develop PCR-RFLP markers for discriminating the 

vaccine strain from wild-type C. abortus (Burall et al., 2009; Wheelhouse et al., 2010).  

Subsequent analyses of placental clinical samples derived from sheep that had experienced 

OEA revealed the presence of sequences that matched the vaccine strain. 

Moreover, since it is a live attenuated vaccine, there are a number of 

recommendations and restrictions on its use.  Neither its administration in pregnant ewes 

is allowed, in case it reaches the placenta, nor should pregnant women handle the vaccine 

or handle sheep that have been recently vaccinated to avoid possible zoonotic transmission.  

In addition, with the current serodiagnostic tests it is not possible to discriminate infected 
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from vaccinated animals (DIVA), which could be achieved only with a sub-unit vaccine as 

opposed to the live-attenuated strain. Therefore, development of a safe and efficacious 

subunit vaccine against C. abortus is urgently needed. 

In our previous study we found that, using femtoMoles doses of synthetic 

overlapping 20-mer peptides from three vaccine candidate proteins of C. abortus provides 

significant protection against C. abortus challenge.  In a subsequent study we also 

developed a biodegradable polymer based microparticle delivery platform which showed 

significant immunopotentiating effect when tested against C. abortus with the Th1 

adjuvant, Pluronic L121.  In this study we examined whether a delivery of femtoMole-

dosed of peptide of vaccine candidate antigens via this microparticulate delivery platform 

would induce complete and consistent protection against C. abortus. 
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4.2. HYPOTHESIS 
 
 

We hypothesize that low dosage of protective peptide antigens of Chlamydia 

abortus will induce a protective Th1 response against C. abortus challenge, if delivered 

with a safe and efficient adjuvant in a biodegradable synthetic polymeric particulate 

delivery vehicle. 

 

4.3. OBJECTIVES 
 
 

The aim of this investigation was to examine in a murine model of C. abortus 

respiratory disease the effect of 

1) varying the dosage of vaccine antigen by subcutaneous and intranasal 

administration via the spray-dried biodegradable microparticulate delivery vehicle 

on the protection efficacy against Chlamydia abortus challenge, and  

2) to develop a biodegradable microparticulate vaccine that induces protective Th1 

immune response against C. abortus. 
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4.4. RESULTS 
 
 

129S6 mouse model of chlamydial respiratory disease.  In the initial low-

antigen-dose vaccine platform experiments (Chapter 2) we used A/J mice as a model for 

chlamydial respiratory disease.  However, in later experiments the phenotype of these A/J 

mice had changed, and naïve mice showed strong resistance to a lethal dose of C. abortus 

inoculation, essentially equal to C. abortus live-vaccine immunized mice.  We attributed 

this consistent change to genetic drift due to random point mutations in the genome of 

founder mice, a phenomenon that is frequently observed in inbred mouse strains.  This 

genetic drift can eventually affect the whole mouse colony and result in a shift or even 

complete reversal of the phenotype of this inbred mouse strain for specific disease models 

(Casellas, 2011).  Due to the lack of a differential C. abortus disease response of naïve 

versus immunized A/J mice we sought to identify another suitable inbred mouse strain.  

We attempted to find a strain with a deficiency in the innate immune response that is 

essential for a disease phenotype of naïve mice, and therefore would demarcate unprotected 

naïve mice from mice with vaccine-induced protection. 

In the BRM experiments (chapter 3) we used C3H/HeJ mice which were highly 

susceptible and frequently succumbed to C. abortus challenge due to their deficiency in 

Tlr4 (LPS ligand)-mediated innate immune recognition.  However, the complete lack of an 

early innate response also compromises any adaptive response during challenge infection.  

Therefore minimal or no protection of these mice by adaptive immunity is achievable, even 

after low-dose C. abortus infection (live-vaccination), followed by sustained antibiotic 

suppression of chlamydial replication after one week that prevents a lethal outcome of the 

low-dose infection.  Therefore, these mice are not a suitable model for a vaccine study. 
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Another inbred mouse strain with a known functional deficiency of the innate 

immune response is the 129 mouse strain.  These mice have a defect in the effector arm of 

the innate immune system with aberrant DAP12 signaling in NK cells that prevents 

interferon-γ secretion by these cells (McVicar et al., 2002).  We anticipated that due to the 

ineffective NK cell functionality the naïve mice would not be able to effectively control 

chlamydial multiplication with the innate immune response.  A corollary of high 

chlamydial loads would be that these mice may be prone to develop non protective Th2 

immunity and would therefore may not be able to successfully clear the bacteria after high-

dose challenge inoculation. 

Because of ready availability, we decided to examine the 129S6 mouse strain 

provided by Taconic Labs as potential model for chlamydial respiratory disease.  We 

performed an experiment similar to that of the chlamydial respiratory disease in the A/J 

mouse model (Chapter 2).  We first examined the 129/S6 mouse strain as chlamydial lung 

challenge model by contrasting the disease outcome 10 days after challenge inoculation 

between the negative controls – naïve mice which received only PBS and carrier control 

mice that received microparticles containing adjuvant but no vaccine antigens.  As a 

potential positive control we also examined mice that had been previously infected (live-

vaccinated) with a low-dose of the C. abortus challenge strain.  All mice were euthanized 

after 10 days of challenge inoculation.  As readouts of disease outcome, changes in the 

post-challenge body and lung weights, and the lung burden of C. abortus as determined by 

qPCR, were evaluated. 

As shown in Fig. 4.1A, following C. abortus challenge inoculation, mice in the 

naïve and carrier control groups progressively lost body weight which was in average 5% 
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and 9%, respectively, after 10 days of challenge inoculation.  In contrast live-vaccine mice 

showed an initial body weight loss of 2% on day 2 post challenge, however, subsequently 

they gained weight, up to 3% on day 10 post challenge.  Analysis of individual mouse body 

weight loss data revealed a strong bimodal response in both naïve and carrier control mice.  

In the naïve group, two mice became highly diseased, sharply lost body weight following 

challenge inoculation and lost >30% of weight and finally died on day 10 days after 

challenge.  Among the remaining 10 mice, five mice had an average 5% body weight loss 

whereas the others maintained body weight with an overall median body weight loss of 

2.02 % (Fig. 4.1B).  Although no mice died in carrier control group, 60% of the mice lost 

5 to 10% body weight, with a median body weight loss of 9.05% after 10 days of challenge 

(Fig. 4.1B).  In contrast, none of the live vaccine mice showed any sign of disease and 

steadily gained body weight after challenge inoculation as indicated by negative median 

value of 1.81% for the body weight loss after 10 days of challenge (Fig. 4.1B).  Due to 

such bimodal responses, the data did not follow a normal distribution and required non-

parametric statistical analyses.  Therefore, we analyzed the data with the non-parametric 

Kruskal-Wallis (K-W) test which is based on rank-transformed data and is analogous to 

one-way ANOVA.  The initial data are transformed to their normally-distributed ranks and 

then analyzed by ANOVA.  Although, K-W analysis showed no significant differences 

(p=0.441; Fig 4,1B) among the groups, the mean rank of 17.5, 18.4, and 13.4 for the naïve, 

carrier control, and live vaccine group, respectively (Fig. 4.1E), indicated that the naïve 

and carrier control groups were relatively more sick than the live-vaccine control. 

Analysis of 10 days post challenge lung weight data also revealed a strong bimodal 

response for naïve and carrier controls (Fig. 4.1C).  Ten days after challenge inoculation, 
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40% of the naïve mice had lung weights of more than 300 mg.  However, the remaining 

60% mice had lung weights similar to unchallenged control mice (~140 mg) that resulted 

in the overall median value of 138 mg (Fig. 4.1 C).  In the carrier control group, 60% of 

the mice had lung weights of more than 350 mg with a median of 415 mg after 10 days of 

challenge (Fig. 4.1C).  None of the live vaccine mice showed any lung inflammation and 

all had consistently similar and slightly elevated lung weights with a median of 169.5 mg 

(Fig. 4.1C).  The K-W analysis showed significant differences among the groups (p=0.032; 

Fig. 4.1C) with mean rank of 12.58, 22.28, and 14.9, respectively, (Fig. 4.1E). 

All groups showed bimodal chlamydial lung burdens (Fig. 4.1D).  The naïve mice 

had median chlamydial loads of 7,943 genomes/100mg lung, whereas the live vaccine 

control mice had a median chlamydial load of 1,047 genomes/100mg lung (Fig. 4.1D).  

Although, the live-vaccine mice cleared the bacteria relatively better than the naïve mice, 

they did not differ significantly (pDunnett=0.478), as indicated by the K-W mean rank score 

of 15.16 and 11.4, respectively (Fig. 4.1E).  However, the carrier control group mice had a 

very high chlamydial burden with a median of 9,332,543 genomes/100mg lung and the 

mean K-W rank score of 23.20 which was highly significantly higher than the live-vaccine 

control (pDunnett= 0.007; Fig. 4.1E). 

To assess the overall disease status, we combined the individual rank score of body 

weight loss, lung weight increase, and chlamydial loads and defined it as disease status 

score.  As shown in Fig. 4.1F, the carrier control group mice were significantly more sick 

than the live-vaccine control with the mean rank score of 21.47 and 13.23, respectively, 

(pDunnett= 0.051; Fig. 4.1F).  However, the naïve mice showed a rank score of 15.08 which 

was similar to that of live-vaccine control. 
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In sum, the naïve 129S6 mice show bi-modal susceptibility against C. abortus, and 

therefore do not represent a sharp contrast to the live-vaccine protective control.  However, 

administration of adjuvanted microparticles without vaccine antigen aggravated the disease 

outcome after challenge inoculation, due to innate immune stimulation by the carrier 

control microparticles.  Since the innate immune system of the 129S6 mice has the NK cell 

defect in its effector function, the resultant inflammation is ineffective at clearing the 

chlamydial infection, but exacerbates disease.  Due to this pronounced contrast of the 

carrier control mice to vaccine-protected mice, the carrier controls allow maximum readout 

amplitude between presence and absence of protection in the chlamydial lung disease 

model. 
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Figure 4.1.  C. abortus respiratory disease in 129S6 mice. (A) Percentage of daily body weight 

loss from day 2-10 after intranasal challenge with 3×108 C. abortus elementary bodies. (B-D) 

Distribution of individual mouse data for body weight loss, lung weight, and C. abortus, 

respectively, 10 days after challenge.  (E) Rank scores (mean ± 95% CI) as obtained following rank 
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transformation of the data, starting at 1 for the lowest rank, as shown in B-D.  (F)  Mean combined 

scores for body weight loss, lung weight, and chlamydial lung burden as shown in E.  The 

differences of the live-vaccine control to naïve and carrier controls was determined by post-hoc 

Dunnett test. n = 12 (naïve) or 10 (live-vaccine and carrier control). 
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Rationale Dosage of Peptides in Vaccine Microparticles.  As demonstrated in 

Chapter 3, that polymer and the Pluronic L121 adjuvant as a ratio of 6.5:3.5 produced 

optimal microparticles, and 10 µg of total spray dried microparticles per mouse dose 

elicited a substantial immunopotentiating response.  A mixture of 6.5 parts any PLG 

polymer and 3.5 parts Pluronic L121 has a specific weight of 1.22 g/cm3 (equals 1.22 

µg/106 µm3).  Therefore, a mouse dose of 10 µg of PLG:Pluronic L121 (6.5:3.5) has a 

volume of  8.2×106 µm3.  As shown in Chapter 3, optimal spray dry parameters resulted in 

1.5 to 2.6 µm spherical DL-PL and DL-PLG particles, normally distributed within the 

range from 1 to 4 µm (Fig. 3.3B).  The volume of a bead with diameter of 2 µm is 4.19 

µm3 (volume of sphere = 4 πr3/3).  Thus, a mouse dose of 10 µg of PLG:Pluronic L121 

(6.5:3.5) beads of 2 µm diameter contains (8.2/4.19)×106 µm3 = 1.96×106 microparticles. 

As vaccine antigens, we used 20-mer overlapping peptide antigens derived from 

five vaccine candidate proteins of C. abortus.  One femtoMol (10-15 Mol) of an average 

20-mer peptide has a molecular weight of ~2,200 Dalton, and hence contains ~6×108 

molecules.  For assured antigenic stimulation, each microsphere should contain a minimum 

number of peptide molecules.  Given a Poisson distribution of the peptides in 

microparticles and the normal distribution of microparticle diameter around 2 µm, at least 

6 peptide molecules per microparticle should be present to assure with more than 95% 

probability the presence of a peptide in a microparticle.  An amount of 0.02 femtoMoles 

(fM) of a 20-mer peptide contains 12×106 peptide molecules.  Thus, when 0.02 fM of each 

peptide is added to a 10 µg mouse dose of a microparticle vaccine containing 1.96×106 of 

2 µm diameter microparticles, each microparticle will contain on average 6.122 molecules 

of this peptide.  Therefore, the 0.02 fM 20-mer peptide antigen dose is the minimum 
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required for consistent peptide antigen delivery in a 10 µg mouse dose of a low antigen-

dose vaccine with microparticles of an average 2 µm diameter. 

 

Inclusion of Peptides in Microparticles Reduces Disease.  As an initial approach 

for microparticle peptide vaccine development, we examined whether inclusion of 

femtoMoles of C. abortus vaccine candidate 20-mer overlapping peptide antigens 

influenced the disease outcome in the 129S6 mouse strain.   The mice received 

subcutaneously three different dosages of peptide antigens in 10-fold increasing dilution - 

starting from the possible lowest dose of 0.02fM to 2.00 fM in 10 µg PLG-PEG:Pluronic 

L121 (6.5:3.5) microparticles, or microparticles without peptide antigens as carrier 

controls.  Six weeks after a single vaccination, the mice were intranasally challenged with 

3×108 C. abortus organisms, and euthanized 10 days later. 

As shown in Fig. 4.2, microparticles containing peptide antigens reduced the 

disease as indicated by lowered body weight loss, lowered lung weight, and lowered 

chlamydial lung loads in all three peptide vaccine mice.  Ten days after C. abortus 

challenge, the carrier control mice had a median body weight loss of 9.05%, whereas the 

mice which received microparticles with 0.02 fM and 2.00 peptides gained body weight 

with the negative median of 3.87% and 2.34%, respectively (Fig. 4.2A).  The 0.2 fM 

peptide dose mice had a marginal body weight loss of 0.20% (Fig. 4.2A).  Linear regression 

analysis showed a trend towards negative correlation of body weight loss with peptide 

dose, although the correlation failed to reach significance (r=0.226 and p=0.160; Fig. 

4.2A).  The K-W analysis of the data revealed no significant difference among the groups, 

due to the strong bimodal disease outcome. 
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Similarly, carrier control mice showed highly inflamed lungs as indicated by high 

lung weight after 10 days of challenge with a median of 415 mg.  Conversely, the median 

lung weights of the 0.02, 0.20, and 2.0 fM peptide mice were 208, 188, and 152 mg, 

respectively.  Importantly, linear regression revealed a significant negative correlation for 

the lung weight with peptide dose (r=0.353 and p=0.026; Fig. 4.2B). 

The three peptide groups also had substantially lowered levels of C. abortus in the 

lungs as compared to the carrier control.  The lungs of the carrier control mice were heavily 

loaded with C. abortus with a median of 9,332,543 genomes/100mg lung (Fig. 4.2C).  In 

contrast, the median lung chlamydial burdens in the 0.02, 0.20, and 2.0 fM peptide mice 

were 8,128 genomes, 7,413 genomes, and 6,606 genomes per 100 mg of lung, respectively.  

However, due to the strong bimodal response, the lung chlamydial burden did not differ 

signficantly among the groups (pKW-H = 0.246).  The linear regression model analysis 

demonstrated a trend towards negative correlation for the lung chlamydial burden with 

peptide dose that marginally failed to reach significance (r=0.297 and p=0.063; Fig. 4.2C). 

The linear regression analysis of overall disease status scores – the composite rank scores 

of body weight loss, lung weight, and chlamydial burden in lung – clearly demonstrated a 

negative correlation for the disease outcome with the peptide dose which marginally failed 

to reach at significance (r=0.299 and p=0.061; Fig. 4.2D). 

Overall, this experiment clearly demonstrated that vaccination with PLG-PEG 

microparticles containing femtoMoles of peptide antigen reduced C. abortus disease as 

compared to the PLG-PEG-PluronicL121 carrier without peptide antigens.  All three 

peptide dosages - 0.02, 0.2, and 2.0 fM each peptide per vaccine, resulted similar responses, 
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however, the 2.0 fM peptides yielded the best response as indicated by lowest disease score 

(Fig. 4.2D). 

Analysis of the rank scores for body weight loss, lung weight, and chlamydial 

burden in the lung revealed that the best protected 2fM peptide group was even more 

protective than the live-vaccine control in terms of body weight loss and post challenge 

lung weight, with the mean rank scores of 24.7 and 22.75, respectively (Fig. 4.3).  In 

contrast, the mean rank scores for the live-vaccine control were 29.8 and 27.7, respectively 

(Fig. 4.3).  However, the mean rank score for chlamydial burden was substantially higher 

in the 2.0 fM peptide group (mean= 30.1) than the live vaccine control (mean=25.6).  The 

disease status scores of 25.85 and 25.66 were similar for both 2 fM vaccine and live-

vaccine, respectively.  Thus, vaccination with microparticles containing low peptide 

antigen doses effectively reduced disease by reducing inflammation, but did not effectively 

eliminate the C. abortus bacteria. 
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Figure 4.2. Inclusion of peptides in microparticles correlates negatively with the disease 

outcomes.  Data are presented as scatter plots with least-square distance distribution fitting (n=10 

mice).  Slope of linear regression fit, and significance of correlation and Kruskal-Wallis-H statistics 

for the complete dataset are indicated. 
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Figure 4.3. Disease outcome comparisons between peptide microparticle vaccines with the 

carrier controls.  Rank scores were obtained after rank transformation of the 10 days post 

challenge data from body weight losses, lung weights, and C. abortus burdens in lung.  The disease 

status score is the mean of these three rank scores.  Naïve and live-vaccine mouse data serve as 

reference points, but statistical comparisons by post-hoc Dunnett test was performed only between 

carrier controls and the 2 fM peptide vaccine group. 
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Inclusion of an Inhibitor of Apoptosis Enhances Chlamydial Elimination and 

Induces Full Protection Against C. abortus.  It was evident from the previous experiment 

that the inclusion of femtoMoles of vaccine candidate peptides in the PLG-PEG-Pluronic 

L121 microparticulate delivery vehicle substantially reduced Chlamydia-induced 

inflammation, but did not effectively eliminate the chlamydial burden.  We assume that the 

vaccine microparticles induced a protective Th1 response against chlamydial challenge that 

was not strong enough to fully eliminate the bacteria. 

Based on the release data of fluorescently labeled peptide from PLG-PEG-Pluronic 

L121 microparticles, it is clear that more than 99.5% of the peptide is released from these 

microparticles within 24 hours after administration, with the remaining 0.5% released over 

the subsequent 10 days.  Peptide molecules that bind to the MHC-II complex of APC with 

ingested microparticles will remain bound and able to stimulate cognate T-cells for 

approximately one week.  The PLG-PEG microparticles also degrade rapidly and release 

substantial amounts of lactic and glycolic acid within the APC during the first few days 

after ingestion (Chapter 3, Fig. 3.10).  This acid stress may induce apoptotic death of such 

APC, thus reducing the time of antigen presentation and potentially resulting in under-

stimulation of the T-cell response. 

In addition, it has recently been reported that antigen presentation in the context of 

infected apoptotic cells leads to the synthesis of TGF-β and IL-6 and favors Th17 cell 

differentiation (Torchinsky et al., 2009).  Although it is not microbe induced apoptosis, the 

vaccine microparticles have been designed to release intracellular PLG-PEG oligomers and 

Pluronic L121 adjuvant that act as danger signals to mimic chlamydial PAMPs.  Thus, 

PLG-PEG microparticle-induced apoptosis of APC may also promote Th17 cell 
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development, thus induce an inflammatory T-cell immune response that is inefficient at 

eliminating chlamydiae.  Yet another possibility is the induction of immunosuppressive T 

regulatory cells (Treg) in the presence of apoptotic cells, but an incomplete PAMP response 

to the vaccine microparticles (Wan and Flavell, 2007).  A third possibility would be a 

combined induction of ineffective Th17 and Treg cells by these mechanisms.  Therefore, 

PLG-PEG microparticles-induced APC apoptosis may partially suppress the Th1 cell 

activation and trigger ineffective and/or inflammmatory T-cell responses. We hypothesized 

that delaying the acid induced apoptotic death of APCs by an apoptotic inhibitor would 

suppress Th17 induction and would trigger strong Th1 response that would effective 

eliminate C. abortus. 

To prevent apoptosis of antigen presenting cells, we incorporated an apoptosis 

inhibitor -Q-VD-OPh, the amino acids valine and aspartate with N-terminal quinolyl and a 

C-terminal di-fluorophenoxy methylketone group- in the PLG-PEG-PluronicL121-peptide 

microparticles.  Q-VD-OPh is a broad spectrum pan-caspase inhibitor that irreversibly 

binds to activated caspases to block apoptosis.  It is highly permeable and non-toxic in vitro 

and in vivo, even at extremely high concentrations (Caserta et al., 2003). 

To evaluate our hypothesis, we designed an experiment where we used only the 0.2 

fM peptide loading dose at which the microsphere vaccine induced an immune response 

that did not effectively eliminate C. abortus.  As shown in Fig. 4.3, inclusion of 0.2 µg Q-

VD-OPh per mouse dose in the peptide vaccine microparticles completely reversed the 

disease outcome into a fully protective phenotype against chlamydial challenge in the 

129S6 mouse strain. 
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Analysis of the body weight data on day 10 after chlamydial challenge 

demonstrated that mice that received 10 µg vaccine microparticles containing 0.20 fM 

peptides and 0.2 µg Q-VD-OPh consistently gained body weight, with a negative median 

4.58% body weight loss (Fig. 4.3A).  In contrast, mice that received the carrier control or 

0.20 fM peptide-loaded microparticles without Q-VD-OPh had a median body weight loss 

of 9.05% and 0.580%, respectively.  K-W statistics revealed significant differences among 

the three groups (p=0.032).  Most importantly, the body weight gain in the Q-VD-OPH-

treated group was highly uniform, and none of the mice showed any sign of disease.  In 

contrast, the carrier control as well as Q-VD-OPh-untreated vaccine mice showed a strong 

bimodal response with healthy as well as severely diseased mice.  The Q-VD-OPh vaccine 

mice also showed healthy normal lungs with a 156 mg median lung weight that differed 

significantly from the carrier control group (pKW-H = 0.023; Fig. 4.4B). 

The most striking finding of this experiment is the effective elimination of C. 

abortus by the Q-VD-Ph vaccine.  As shown in Fig. 4.4C, the median C. abortus lung load 

per 100 mg was only 97.7 genomes in the Q-VD-OPh-positive mice, whereas it was 

9,332,543 and 7,413 in the carrier control and Q-VD-OPh-negative vaccine mice, 

respectively.  Chlamydial elimination was significantly lower in the Q-VD-OPh group as 

indicated by pKW-H = 0.023 (Fig. 4.4C).  It should be noted again that this chlamydial 

elimination was highly uniform, and in fact five out of 10 mice were completely negative 

and three had minimal C. abortus numbers (<2 copies per 100 mg lung) as determined by 

qPCR. 

The mean rank score for body weight loss, lung weight, and C. abortus lung burden 

in the Q-VD-OPh-positive vaccine group was 9.6, 17.36, and 9.28, respectively (Fig. 
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4.4D).  These scores were even lower than those of the live vaccine group, and significantly 

differed from the carrier control (pDunnett =0.010, 0.028, and <0.001, respectively, Fig. 4. 

4D).  It should be noted that the chlamydial load rank score of the Q-VD-OPh vaccine 

group was also significantly lower than that of the naïve controls (p=0.053).  The overall 

disease status demonstrated a highly significantly lowered disease in Q-VD-OPh vaccine 

group (mean = 18.67) as compared to the carrier control (mean = 43.86, p<0.001) as well 

as the Q-VD-OPh-negative vaccine group (mean=36.78, p=0.018; Fig 4.5).  In sum, the 

inclusion of Q-VD-OPh in the 0.20 fM peptide vaccine group completely reversed the 

disease outcome into a fully protective healthy phenotype against C. abortus challenge 

inoculation in 129S6 mice.  
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Figure 4.4. Reversal of disease outcome by inhibition of apoptosis.  129S6 mice received 

vaccines without peptides (carrier control), with 0.2 fM C. abortus vaccine candidate peptides, or 

with 0.2 fM C. abortus peptides plus 0.2 µg of the apoptosis inhibitor Q-VD-OPh.  Day10 post 

challenge data from body weight losses (A), lung weights (B), and C. abortus burdens in lungs (C), 

as well as ranks scores for these parameters and the combined disease status score (D) are shown.  

Naïve and live-vaccine mouse data serve as reference points, but statistical comparisons by post-

hoc Dunnett test were performed only between carrier controls and the 0.2 fM peptide vaccine 

groups.  
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Intranasal Administration Q-VD-OPh-0.2fM Peptide Microparticle Vaccine 

Provided Protection. In the previous experiments, mice were vaccinated via the 

subcutaneous route.  In this experiment, we examined whether mucosal administration of 

the microparticle vaccine also provided protection, and compared the effect of vaccine 

microparticles directly as contrast experiment. 

As shown in Fig. 4.6, intranasal administration of 0.20 fM peptide loaded PLG-

PEG-PluronicL121 microparticles without Q-VD-OPh failed to induce protection as 

evident by high body weight loss with a median of 15.10% 10 days after C. abortus 

challenge (Fig. 4.6A).  Similarly, these mice had 400.5 mg median lung weights (Fig. 4.6B) 

and a median 6,025,595 C. abortus burden per 100 mg lung (Fig. 4.6C) 10 days after 

challenge.  In contrast, inclusion of Q-VD-OPh in this vaccine highly significantly reduces 

the disease and effectively eliminated the bacteria.  The Q-VD-OPh vaccine group had an 

overall body weight gain as indicated by a 4.58% negative median (Fig. 4.6A) which barely 

failed to reach significance in the Mann-Whitney U test (pMW-U = 0.058; Fig. 4.6C).  These 

mice had also significantly lower lung weight (median=167.5 mg) than the Q-VD-OPh 

negative vaccine mice (pMW-U=0.025), and a highly significantly lower bacterial load 

(median = 3,630 C. abortus genomes/100 mg lung; pMW-U=0.005; Fig. 4.6C). 

The disease rank scores analysis demonstrated, particularly in reference to carrier 

control, naive, and live-vaccine mice, that the Q-VD-OPh-negative vaccine group actually 

showed exacerbated disease, as indicated by high rank scores with the means of 35.30, 

38.95, and 38.40, for body weight loss, post challenge lung weight, and chlamydial lung 

burden, respectively.  In contrast, the Q-VD-OPh vaccine group had the mean scores of 

19.20, 21.35, and 22.10, respectively, that were significantly lower than those of the Q-
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VD-OPh negative group (pDunnett=0.067, 0.005, and 0.009, respectively; Fig. 4.7).  The 

overall disease status scores were also significantly reduced in Q-VD-OPh-positive vaccine 

group (mean=20.88) as compared to the Q-VD-OPh-negative group (mean=37.55, 

pDunnett=0.011; Fig. 4.7). 

Thus, intranasal administration of the 0.2fM peptide loaded PLG-PEG-

PluronicL121 microparticle vaccine with 0.2 µg Q-VD-OPh also significantly reduced 

disease.  In sum, the 0.20 fM C. abortus peptide vaccine with the apoptotic inhibitor Q-

VD-OPh incorporated into PLG-PEG-PluronicL121 microparticles has a great potential to 

be used as vaccine against C. abortus infection.  
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Figure 4.5. Protection by intranasal administration a Q-VD-OPh-0.2fM peptide 

microparticle vaccine.  Microparticle vaccines with 0.2 fM C. abortus vaccine candidate peptides 

and with 0.2 fM C. abortus peptides plus 0.2 µg of the apoptosis inhibitor Q-VD-OPh were directly 

compared.  Naïve, live-vaccine, and carrier control mouse data serve as reference points, but 

statistical comparisons by post-hoc Dunnett test were performed only between the 0.2 fM peptide 

vaccine groups. 
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Microparticulate Vaccines with the R202S (DL-PL) Carrier Protect against C. 

abortus in Jax 129X1/SvJ mice.  In the previous experiments, we used 50:50DL-PLG-

PEG, one of the most rapidly degrading polymers (degradation timeframe ~4 weeks), as 

carrier for the vaccine microparticles.  Upon encountering lack of protection or even 

disease exacerbation in certain groups, we hypothesized that such rapid degradation and 

intracellular release of lactic/glycolic acids may induce apoptotic death of APCs.  This in 

turn may drive a Th17 and/or TReg response, and suppress the vaccine-induced Th1 

response.  In fact, subsequent experiments clearly demonstrated that the inclusion of an 

inhibitor of apoptosis (Q-VD-OPh) in the 50:50DL-PLG-PEG-PluronicL121-0.2fM 

microparticles resulted in full protection against C. abortus challenge.  Therefore, in the 

next experiment we investigated the use of an alternative polymer carrier, the low-

molecular weight, but slowly degrading polylactide polymer DL-PL R202S with a 

degradation timeframe of ~80 days.  This carrier would release essentially no acid for the 

first 3 weeks after phagocytosis, thus lie inert in APC, and releases incorporated peptides 

within 10 days after uptake exclusively by diffusion (Fig. 3.10).  Therefore, we anticipated 

minimal or an absent apoptotic stimulus from these vaccine microparticles after uptake by 

APCs. 

Due to ready availability, we performed this experiment with the 129 mouse strain 

from the Jackson Laboratories – 129X1/SvJ.  As an initial approach to develop a live-

vaccine control group, we inoculated naïve 129X1/SvJ with low dose of 3×107 C. abortus 

elementary bodies.  Interestingly, this Jackson 129 mouse strain showed a much higher 

susceptibility to C. abortus than the Taconic 129S6 mouse.  After inoculation with the low 

dose C. abortus inoculum, the mice did not exhibit any disease symptoms for the first week, 
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then became progressively sick, and started to die from 12 days of post inculation.  As an 

attempt to stop the death, we introduced the antibiotic enrofloxacin in water on day 13 after 

C. abortus inoculation.  However, even the antibiotic treatment could not prevent the 

mortality, and 80% of the mice died within 4 weeks after the low dose C. abortus 

inoculation (Fig. 4.6).  Due to this extreme susceptibility of 129X1/SvJ mice to C. abortus, 

protection was not possible by inoculation of live bacteria, and we could not develop a live-

vaccine control.  Furthermore, there was no need to include a carrier control in the vaccine 

experiment, since the naïve mice developed severe disease, and therefore any protection 

would be a contrast to the severe disease of naïve mice. 

In the subsequent vaccine experiment, the 129X1/SvJ mice received 

subcutaneously three different dosages of peptide antigens in 2.5-fold increasing 

concentration - starting from 0.2 fM to 1.25 fM in 10 µg DL-PL R202S:Pluronic L121 

(6.5:3.5) microparticles.  Six weeks after a single vaccination, the mice were intranasally 

challenged with 3×108 C. abortus organisms, and euthanized 10 days later. 

As shown in Fig. 4.7, the R202S based vaccine microparticles at the dosage of 0.5 

and 1.25 fM peptide antigens significantly reduced the disease, but not with the 0.20 fM 

peptides.  In fact, in the 0.2 fM peptides followed the same trend as naïve mice, whereas 

the 0.5 and 1.26 fM peptide vaccine mice differed significantly from the naïve mice. 

After C. abortus challenge, the naive control mice became very sick and showed a 

median body weight loss of 31.21% after 10 days of challenge.  The 0.20 fM peptide mice 

were also very sick with a median body weight loss of 24.95%.  In contrast, the mice that 

received microparticles with 0.05 fM and 1.25 fM peptides showed no visible sign of 

sickness and had marginal median body weight loss of 3.59 and 3.78%, respectively, after 
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10 days of challenge, a difference that barely failed to reach significance in comparison 

with naïve and 0.20 fM peptide groups (pKW-H=0.069; Fig. 4.7A). 

Similar to the profound body weight loss, the naïve control mice had very high lung 

weight with the median of 535.5 mg after 10 days of challenge (Fig. 4.7B).  The 0.2 fM 

peptide dose mice also had a similar lung weight with a median of 456 mg.  Conversely, 

the 0.50 and 1.26 fM peptide mice had median lung weights of 232 and 190 mg, which 

were significantly lower than the naïve control (pKW-H=0.035; Fig. 4.7B). 

Analysis of the C. abortus loads in the lungs demonstrated that the naïve and 0.20 

fM peptide group had uniformly higher chlamydial loads with medians of 11,906,935 and 

23,307,731 genomes/100 mg lung, respectively.  In contrast, although both the 0.50 and 

1.26 fM peptide mice showed a pronounced bimodal response, they had significantly lower 

chlamydial loads (median = 56,053 and 86,556, respectively) than the naïve and 0.20 fM 

peptide mice (pKW-H<0.001).  It is important to note that one mouse in the 0.50 fM peptide 

group and 2 mice in the 1.25 fM peptide group were negative for lung chlamydiae as 

determined by qPCR, but had very high lung weights (490, 633 and 325 mg) and substantial 

body weight losses (23.37%, 36.63 and 30.13 %).  This indicates that the vaccine induced 

Th1 response fully eliminated C abortus.  However, due to extreme susceptibility of this 

mouse strain to C. abortus challenge, they had strong inflammatory response, similar to 

antibiotic-treated mice that continued to die even 10 days after initiation of antibiotic 

administration. 

Analysis of the rank scores for body weight loss, lung weight, and chlamydial 

burden in the lung revealed significantly lower scores for the 0.50 and 1.25 fM peptide 

groups than for the naïve controls (Fig. 4.7).  The overall disease status scores demonstrated 
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that the 0.50 fM and 1.26 fM peptide groups were highly significantly healthier than the 

mortally diseased naïve controls (mean = 13.85, 14.65, and 26.50, respectively; 

pDunnett=0.007 for both; Fig. 4.7).  Interestingly, the 0.2 fM peptide vaccine co-segregated 

in all parameters with the naïve mice.  This indicates a failure of the 0.2 fM peptide dosage 

to induce protective immunity.  A likely explanation for this lack of protection may be the 

delayed antigen release from the DL-PL R202S carrier as compared to the 505:50DL-PLG-

PEG carrier. 

In sum, a microparticle vaccine comprising slow degrading DL-PL R202S as 

carrier, Pluronic L121 as adjuvant, and 0.5-1.25 femtoMole dosage of C. abortus peptide 

antigens, induces highly significant protection against chlamydial challenge without 

triggering an unwanted Th1 suppressive or inflammatory immune response in the C. 

abortus respiratory mouse disease model. 
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Figure 4.6.  Jax 129X1/SvJ mice show strong susceptibility to the low dose inoculum of 3×107 

C. abortus organisms. Survival analysis (Kaplan-Meier survival estimate; n=30 mice). 
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Figure 4.7. Microparticle vaccines with the R202S DL-PL carrier mediate protection against 

lethal C. abortus challenge.  Microparticle vaccines composed of the DL-PL R202S polylactide 

polymer and Pluronic L121 were loaded with 0.2, 0.5, or 1.25 fM C. abortus vaccine candidate 

peptides and compared to naïve mice.  Statistical comparisons of the vaccine groups with naïve 

mice were performed by post-hoc Dunnett test. 
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4.5.  DISCUSSION  
 
 

Currently, one of the main problems associated with chlamydial vaccine 

development is the necessity for the induction of strong Th1 immune responses, as well as 

delivery of the vaccine candidate.  In our previous study, we demonstrated that femtoMole 

dosage of 20-mer synthetic peptides derived from three vaccine candidates of C. abortus 

induced significant protection in chlamydial respiratory disease model.  In this present 

study, we developed vaccine microparticles comprising a biodegradable polymer as carrier, 

Pluronic L121 as Th1 adjuvant, and femtoMole dosage of C. abortus peptides as antigen, 

and tested its efficacy in a murine C. abortus respiratory disease model.  Our results 

demonstrate that the protection is achieved by microparticulate delivery of femtoMole 

peptide per vaccine dose, however complete protection is greatly influenced by type of 

polymeric carrier used. 

We performed our studied in the 129 mouse strain which has a defect in its NK-cell 

effector arm and hence is incompetent to generate a successful innate immune response.  

In our initial studies we used 129S6 mice from Taconic.  Although, high dose of chlamydial 

challenge could not induce severe disease in these mice, inoculation of PLG-PEG 

microparticles with Pluronic L121, but no antigen, resulted in severe disease.  Thus, we 

compared the vaccine induced protection with the carrier control. 

In an initial approach we have shown that inclusion of femtoMoles of peptides in 

PLG-PEG-Pluronic L121 microparticles provided substantial protection as compared to 

carrier control without peptides.  Peptide dosage in 10-fold increments from the possible 

lowest dose of 0.02 fM to 2.0 fM showed a trend of better protection as the dosage of 

peptides increased.  However, there was no significant differences among the three peptide 
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groups and none of them could significantly reduce the chlamydial loads as compared to 

the carrier control.  We anticipated that such ineffective chlamydial elimination might be 

due to an insufficient Th1 immune response.  We thought that acids released by the rapidly 

degrading PLG-PEG might induce apoptosis of the APCs and therefore favor a Treg and 

or Th17 environment, hence the vaccine suppressed a strong Th1 response required for 

protection against C. abortus. 

To inhibit potential PLG-PEG-induced apoptosis of APCs, we incorporated per 10 

µg vaccine dose 0.2 µg of the pan-caspase inhibitor, Q-VD-OP-h, in the microparticles 

along with Pluronic L121 and 0.2 fM peptides.  We used 0.20 fM peptides in this 

experiment, because this dose resulted in relatively more disease than the 0.02 and 2 fM 

peptide in the previous experiment.  Interestingly, inclusion of Q-VD-OPh not only 

significantly reduced disease in after chlamydial challenge, but also highly significantly 

enhanced clearance of the bacteria as compared to the carrier control.  While this protection 

was received by subcutaneous immunization of vaccine microparticles, strong protection 

was also observed when same vaccine microparticles were mucosally administered by 

intranasal instillation into the nostrils. 

Next, we hypothesized that the apoptotic death of APCs could be avoided by using 

a slowly degrading polymer instead of the rapidly degrading PLG-PEG polymer.  We 

examined whether the slow degrading polylactide polymer DL-PL R202S can induce 

significant protection, but without inclusion of Q-VD-OPh.  We performed this experiment 

with 12X1/SvJ mice from The Jackson Laboratory which were highly susceptible to C. 

abortus.  With the anticipation that a 0.20 fM peptide dose may be too low to induce 

substantial stimulation with this low degrading polymer, we tested three different dosages 
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of peptides in 2.5-fold increments from 0.20 to 1.25 fM per vaccine dose.  Our fidings, 

clearly demonstrated that subcutaneous vaccination of 129X1/SvJ mice with microparticle 

vaccine comprising R202S-Pluronic L121, with either the 0.50 or 1.25 fM peptides highly 

significantly reduced disease as compared to highly diseased naïve controls.  We also 

observed that the 0.20 fM peptide dose did not provide protection and showed similar 

disease as the naïve control.  Thus, degradation kinetics of the vaccine carrier polymer 

greatly influence the protective response.  While vaccine microparticles composed of the 

rapidly degrading PLG-PEG polymer require the addition of the apoptotic inhibitor Q-VD-

Oph to induce complete protection, the slowly degrading polylactide R202S polymer 

induces protection without the inhibitor of apoptosis. 

In sum, in the present study we developed a fully synthetic biodegradable polymer-

based, femtoMoles-dosed peptide microparticle vaccine that induced protection in a single 

vaccination against C. abortus.  This vaccine can be used by both subcutaneous and 

mucosal routes, and its formulation can be optimized based on the polymeric particles used 

as carrier. 
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4.6.  MATERIALS AND METHODS 
 
 

Peptides. Twenty amino acid long peptide antigens of C. abortus vaccine candidate 

proteins were commercially synthesized by Thinkpeptides®, Inc., Bradenton, FL. C. 

abortus DnaX2 comprised 44 peptides, C. abortus GatA 49 peptides, C. abortus GatC 9 

peptides, C. abortus OmpA (PompB) 83 peptides, and C. abortus Pbp3 64 peptides.  Each 

of the peptides were 20 amino acids (aa) in length, with 10 aa overlaps between sequential 

peptides and spanning the entire consensus sequences of the 3 C. abortus proteins (Fig. 

4.5). To prevent potential in vitro polymerization, all peptides were synthesized with N-

terminal and C-terminal amide and used as crude preparation with >70% purity. 

The peptides were collected in a deep-well 96-well polypropylene plate, and each 

peptide was dissolved in ~400 µl of dimethyl-sulfoxide (DMSO; Amresco, OH, USA) to 

create a 10-6 M solution of each peptide, calculated from MW and mg yield of each peptide.  

For preparation of the 10-8 M vaccine stock of all peptides of each protein, 5 µl of each 

peptide of a protein were pooled and the solution filled up to 500 µl with DMSO.  The 

plates were stored at -80°C. Required volumes of combined peptides for each protein were 

further diluted in DCM for spray drying to obtain 0.02 fM, 0.20 fM, 0.50 fM, 1.25 fM, or 

2.0 fM of each of combined peptide of each protein in 200 µl of per mouse vaccine dose.  

Since the average molecular weight of a 20-mer peptide is 2,200 Daltons, the average 

amount of the 0.02 femtoMoles of each peptide corresponds to 0.044 picograms (pg). 

 

Adjuvants.  The adjuvant used in this experiment was Pluronic L121 (Sigma 

Chem. Co., St. Louis, MO, USA). 
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Q-VD-OPh. The caspase inhibitor Q-VD-OPh (Quinolyl-valyl-O-methylaspartyl-

[2,6-difluoro- phenoxy]-methyl ketone) was obtained from SMB Biochemical, Santa Ana, 

CA, and a stock solution was made by dissolving 10 mg of Q-VD-OPh in 1 mL of DCM 

and stored at -80oC.  Appropriate volumes of this stock solution were used in the feed stock 

solution for spray drying so that a 10 µg final vaccine dose contains 0.2 µg of Q-VD-OPh. 

 

Chlamydia abortus. C. abortus strain B577 (ATCC V-656) was grown in Buffalo 

Green Monkey Kidney monolayer cell cultures, purified by differential centrifugation, and 

quantified as previously published (Li et al., 2005).  Purified infectious EBs were 

suspended in sucrose-phosphate-glutamate (SPG) buffer, stored in aliquots at −80°C. 

 

Vaccine Microparticle Synthesis.  Microparticles were synthesized with the 

optimized spray dry procedure as described in Chapter 3. In brief, 2% feedstock solutions 

composed of polymer (50:50 PLG-PEG or DL-PL R202S), Pluronic L121, peptides, with 

or without Q-VD-OpH were prepared in DCM by adding the desired volume of the 

previously prepared stock solution, as required for different experiments.  The ratio of the 

polymers and adjuvants was 6.5:3.5.  Microparticles were obtained by spraying the 

prepared feedstock solution in Büchi mini spray dryer model B-190 (Büchi Labortechnik 

AG, Flawil, Switzerland).   

 

Preparation of Microparticles Vaccine Suspension. One mg of the vaccine 

microparticles were mixed with 3 mg of lactose anhydrous microfine (DFE Pharma, 

Germany) in a glass vial , then dissolved in 1 mL of suspension buffer (0.001% 
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benzalkonium chloride and 0.5% Kolliphor HS-15 in PBS), and sonicated for 15 minutes 

in cold water.  Finally, 1:20 fold (subcutaneous vaccine) or 1:1 fold (intranasal vaccine) of 

this initial suspension was prepared in suspension buffer solution to obtain a 10 µg of 

vaccine microparticle per mouse dose of 200 µl (S.C.) or 20 µl (i.n.) suspension. 

 

Animal and Immunization. Inbred female 129S6 mice were sourced from the 

Taconic Bioscience (One Hudson City Centre, Hudson, NY) and 129X1/SvJ mice from the 

Jackson Laboratory (Bar Harbor, ME) at 5 weeks of age.  Udel “shoebox” type cages with 

spun fiber filter tops were maintained in static air or ventilated cage racks.  Five to ten 

animals were housed per cage in a temperature-controlled room on a 12-hour light/dark 

cycle, with ad libitum access to water and standard rodent chow.  All animal experiments 

were approved by the Auburn University Institutional Animal Care and Use Committee 

(IACUC).  Each group was consisted of 10 mice.  Mice received the single vaccine under 

light isoflurane inhalation anesthesia by subcutaneous injection of 200 µl vaccine 

microparticles between the shoulder blades or intranasal inoculation of 20 µl vaccine 

microparticles at 6 weeks of age.  

 

Positive and Negative Controls.  Naïve, mock-vaccinated mice served as controls 

for a complete lack of protective immunity against C. abortus.  During vaccination, the 

mice that received the microparticles without peptide antigens also served as negative 

control and termed as carrier control. Mice that received a low intranasal dose of 3×107 C. 

abortus bacteria (genomes) 4 weeks before the high-dose challenge infection served a 

controls for protective immunity (live-vaccine controls). 
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Intranasal C. abortus Challenge and Monitoring. Mouse intranasal inoculation 

was performed as previously described (Huang et al., 1999), and optimal doses for live 

immunization and challenge inocula were determined in preliminary experiments.  All 

mice were challenged 4 weeks after the second vaccination under light isoflurane 

anesthesia intranasally with 3×108 C. abortus elementary bodies suspended in 20 µl 

sucrose-phosphate-glutamate buffer. All animals were weighed during challenge infection 

and every second subsequent day until euthanasia on day 10 post challenge.  Mice were 

monitored every day and death, if any, was recorded.  Ten days after challenge, mice were 

sacrificed by CO2 inhalation and weighed.  Lungs were collected, weighed, snap frozen in 

liquid nitrogen, and stored at -80°C until further processing.  For mice that died before 

sacrificing on day 10, body weight losses, lung weight increases and chlamydial lung loads 

of the mouse in any group were taken as the highest of each of these parameters prior to 

death for the day 10 values. 

 

Mouse Lung Nucleic Acid Extraction. Mouse lungs were homogenized in 

guanidinium isothiocyanate Triton X-100-based RNA/DNA stabilization reagent by 

shaking with a BeadRaptor device to create a 10% (wt/vol) tissue suspension. This 

suspension was used for total nucleic acid extraction by the High Pure® PCR template 

preparation kit (Roche Applied Science, Indianapolis, IN) (DeGraves et al., 2004; Wang 

et al., 2004). 

 

Analysis of C. abortus Lung Loads by Quantitative PCR (qPCR).  The PCR 

primers and probes were custom synthesized by Operon, Alameda, CA.  The C. abortus 



313 
 

genomes copy number per lung was determined by Chlamydia genus-specific 23S rRNA 

FRET (fluorescence resonance energy transfer) qPCR. 

 

Data Analysis. All analyses were performed with the Statistica 7.1 software 

package (StatSoft, Tulsa, OK).  Data of C. abortus genome copies were logarithmically 

transformed.  Results were analyzed by non-parametric Mann-Whitney U and Kruskal-

Wallis H tests, linear regression, Kaplan-Meier survival curve, and one-way ANOVA with 

Dunnett’s test for correction of the p value in multiple comparisons.  P values ≤ 0.05 were 

considered significant. 
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CHAPTER 5 

OUTLOOK 
 
 

5.1. INTRODUCTION 
 
 

What we have achieved so far.  The experiments described in Chapters 2-4 have 

been explicitly designed to create a Th1 vaccine platform that can be directly moved from 

the mouse model to production animals of agricultural importance, i.e. chickens, swine, 

and ruminants (cattle, sheep, goats).  It is also for this reason that completely synthetic 

components for the vaccine were selected, the cost-effective synthesis of which can be 

tightly controlled.  Furthermore, carrier and adjuvant are composed exclusively of carbon, 

oxygen, and hydrogen, thus have virtually no potential for creation of toxic residues.  They 

are also completely, but non-enzymatically, hydrolytically degradable, and thus have leave 

minimal, if any, degradation products in animal tissue.  And they have standing approval 

by the Food and Drug Administration (FDA) for medical use.  Spray drying was chosen as 

production method because of its continuous rather than batch manufacturing process, and 

the easy control of production parameters and scalability to industrial quantities, resulting 

in highly cost-efficient production. 

We can also formulate this vaccine to modulate the immune response to achieve 

complete protection by adjusting the vaccine carrier polymer, antigen loading, and addition 

of an inhibitor of apoptosis.  The achievable protection is better than previous vaccination 

with live C. abortus, but the vaccine can also be formulated to cause severe, near lethal 
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disease.  So we can use this platform not only to develop real-life vaccines, but also as a 

tool to model and understand chlamydial immuno-pathogenesis by manipulating the 

vaccine immune response. 

 

What next?  The next logical step is the experimental use of this vaccine platform 

against an appropriate disease in a production animal species.  The obvious choice would 

be immunization against C. abortus-induced abortion in ruminants.  However, the 

production animal models for this disease are cumbersome, time-consuming, and 

unreliable.  Therefore, testing in an epidemiological study of prevention of naturally 

occurring C. abortus abortion is preferable, once the scaling of the vaccine platform has 

been demonstrated. 

An approach more amenable to scaling for production animals is the use in pigs 

against porcine reproductive and respiratory syndrome, a debilitating herd disease.  It is 

caused by PRRS virus (PRRSV), a 15 kb single-stranded enveloped RNA Arterivirus, and 

is the most prevalent disease of swine in the world, resulting in US annual losses to the 

swine industry of $600 million, more than any other disease in swine (Dokland, 2010).  

The advantage of testing our vaccine platform against a disease caused by a virus with a 

small genome is that discovery of vaccine candidate proteins is not required since the 

proteome is so small that all peptides comprising the proteome can be economically 

incorporated into the vaccine.  The PRRSV proteome consists of 6 structural and 8 non-

structural proteins that comprise a total of 5,151 amino acids.  Therefore, complete 

antigenic coverage of the PRRSV proteome with 20-mer peptides with 10 amino acid 

overlap requires 511 such peptides. 
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How to scale-up the vaccine dose for production animals.  An essential question 

is the amount of vaccine required for animals with larger body weights than laboratory 

mice.  Given that the “vaccine quantum unit” of a single microparticle presumably will act 

similarly or identically on the cellular level, irrespective of the vaccinee species, only the 

amount of vaccine administered, but not its composition, must be adjusted for different 

species, and age groups among them.  A good rule of thumb for relating different body 

weights of animals is the “power of three quarters” rule of allometric scaling, found first 

by Kleiber for metabolic rates (West et al., 2002).  For instance, the amount of vaccine for 

a calf with 50 kg body weight would have to be scaled up by the ratio of calf/mouse body 

weight to the power of ¾.  Since laboratory mice weigh on average 20 g at pathogen 

challenge at 10 weeks of age, this factor would be (50,000/20)0.75 = 354.  Thus, instead of 

a linearly 2,500× scaled-up dose from 10 µg to 25 mg, only 3.5 mg of the microsphere 

vaccine would be required for a calf with 50 kg body weight, and an approximately 27 mg 

vaccine dose for a cow with 750 kg body weight.  These vaccine dosages are consistent 

with the dose ranges of currently used vaccines, and can easily be suspended in customary 

volumes of 0.5-2 ml vaccine per vaccinee. 

 

PRRSV Vaccine Trial.  Using the rationale and approach laid out above, we 

therefore initiated a trial of experimental PRRSV microparticle vaccine preparations in 

pigs with collaborators Drs. Fernando Osorio and Hiep Vu at the University of Nebraska-

Lincoln.  Freshly weaned female pigs of 3-4 weeks of age received a single subcutaneous 

vaccine dose, were intranasally challenged with the virulent PPRSV strain FL12 56 later, 

and euthanized on day 70.  Scaling up the vaccine dose for an assumed weight of 40 kg at 
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the time of challenge, the pigs received a 3 mg vaccine microparticle dose by subcutaneous 

injection in 1 ml volume.  Vaccine preparations used were on the basis of the rapidly 

degrading 50:50DL-PLG-PEG poly-lactide-co-glycolide and slowly degrading polylactide 

DL-PL R202S polymers and used 511 overlapping 20-mer peptides covering the complete 

proteome of the FL12 challenge virus. 

The rationale of this trial was to obtain a gauge on vaccine dosage, its non-specific 

immunostimulatory effect (BRM), and its antigen-specific T cell protective immune 

response against PRRSV.  We considered achieving full sterilizing protection against the 

rapidly multiplying PRRSV difficult without neutralizing antibodies.  Nevertheless, we 

intended to observe in this trial the sum total of all vaccine effects with particular 

consideration of overall growth and feed conversion of the experimental pigs, pre- and post 

PRRSV challenge.  In real life use of a vaccine in production animals, the most important 

effect is not maximum protection by strictly immunological parameters, but most effective 

achievement of the economical production goal, in essence maximum growth with 

minimum use of feed (maximum feed conversion).  Intriguing initial results of these 

ongoing experiments are presented below. 

  



325 
 

5.2. RESULTS 
 
 

The Microparticle Carrier and PRRSV Vaccine Protect Against PRRSV 

Infection and Disease.  In the initial experiment we used as carrier control the slowly 

degrading polylactide carrier DL-PL R202S, but as vaccine the rapidly degrading 

50:50DL-PLG-PEG carrier for combination with the PRRSV peptide antigens.  The 

rationale was that by challenge on day 56 after vaccination, microparticles of the carrier 

control would still be present in pigs and thus exert any non-specific BRM effect for which 

the microparticles had been designed.  In contrast, the vaccine carrier would be degraded 

by day 56, and therefore observed effects would be due to vaccine-evoked immunity, but 

not due to direct BRM effects of microparticles.  Observations during vaccination (data not 

shown) did not reveal any detrimental side effects of the vaccine such as inappetence of 

vaccinees, or local inflammation and swelling at the injection site. 

Data in Figure 5.1 and Table 5.1 show a significant reduction of PRRSV loads 

throughout the course of the challenge infection in both carrier control and vaccine pigs as 

compared to the suspension buffer controls.  While the 75% and 69.3% virus suppression 

mediated by carrier control and vaccine, respectively, would not be considered sufficient 

in strict immunological terms, it is nevertheless sufficiently potent to eliminate disease, as 

evident by the marginal body temperature increases during challenge as compared to the 

suspension buffer controls (Table 5.1).  The negative PRRSV pre-challenge antibody levels 

confirm that any vaccine response against PRRSV challenge was mediated cellular, but not 

by antibody immunity.  Consistent with lower virus exposure due to virus suppression by 

cellular immunity is also the significantly reduced PRRSV antibody responses evoked by 
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the challenge infection in both carrier control and vaccine pigs as compared to the 

suspension buffer controls (Table 5.1). 

 

Carrier and Vaccine Microparticles Exert Strong Immunostimulatory and 

Growth-Promoting Effects.  The most important finding with respect to real-life 

beneficial use of our synthetic vaccine platform is, however, the fact that it highly 

significantly enhanced the growth of the vaccinated pigs (Table 5.1, Fig. 5.2).  This growth 

enhancing effect is most significantly evident in the first two weeks after vaccination, when 

the pigs are under considerable stress due to transport, re-grouping with socially unknown 

cohorts, and the exchange of commensal and pathogenic infectious agents between these 

cohorts.  Both carrier control and vaccine pigs show highly significantly higher body 

weight gains during this critical initial 2-week period than the suspension buffer controls.  

While the profoundly enhanced growth is not sustainable at this level once the experimental 

cohorts have reached social and infection equilibrium, the growth promoting effect 

nevertheless persists until challenge inoculation on day 56 (Table 5.1).  Then again during 

PRRSV challenge, both carrier and vaccine groups show enhanced growth due to disease 

protection by BRM effect of carrier and cellular immunity of vaccine pigs.  In total from 

day 0 through day 70, weight gains are significantly higher by 14.6% in PRRSV vaccine 

pigs as compared to suspension buffer controls, and marginally fail to reach significance 

at 10.4% in carrier control pigs (Table 5.1). 

In a follow-up experiment, we further tested the growth promoting effect in more 

depth by doubling the groups size to 12 pigs and by also measuring feed consumption.  

This allowed us to determine feed conversion rates, aside from animal loss rates the 
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ultimate measure of economic benefit of any management procedure in production animal 

agriculture.  We used in this experiment a single vaccine based on the slowly degrading 

polylactide DL-PL R202S carrier, and loaded with a 5-fold higher antigen load of 300 fM 

PRRSV peptides per 3 mg pig vaccine dose.  This vaccine did not mediate protection 

against PRRSV and elicited higher body temperature during challenge than the suspension 

buffer control vaccine (data not shown).  This was most likely due to an inflammatory 

immune response because of antigen overdosing, similar to observations in the mouse C. 

abortus vaccine experiments.  Nevertheless, this vaccine also elicited a profound, even 

stronger, growth promoting effect in the first two weeks after vaccination (Fig. 5.2A), and 

enhanced growth by 47.7% over the suspension buffer control pigs (90.4% vs. 61.2% 

weight gains).  Most importantly, this enhanced growth was achieved by even lower feed 

consumption than that of suspension buffer controls (Fig. 5.2), as indicated by 50.6% 

increased feed conversion (1.16 vs. 0.77 g weight gain/g feed).  Again, this profoundly 

increased growth did not persist once the groups had equilibrated, but the trends for weight 

gains remained similar to the first vaccine experiment. 
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Figure 5.1.  Serum loads of PRRSV after PRRSV challenge.  Data of are shown controls that 

received on day 0 suspension buffer only (buffer control), or 3 mg microparticles composed of 

slowly degrading polylactide DL-PL R202S and Pluronic L121 adjuvant (DL-PL R202S carrier 

control), or 3 mg microparticles composed of rapidly degrading 50:50DL-PLG-PEG carrier, 

Pluronic L121, and 60 fM of PRRSV peptides (50:50DL-PLG-PEG 60 fM peptide vaccine).  Pigs 

were intranasally challenged on day 56 with at a dose of 105.0 TCID50 of highly virulent PRRSV 

strain FL12, and euthanized on day 70.  Comparisons of trends and means of log-transformed 

PRRSV serum loads were performed by repeated measures ANOVA and Tukey’s HSD post-hoc 

test (n = 6). 
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Table 5.1. Results of PRRSV microparticle vaccine challenge experiment. 

a n = 6; b pre-challenge antibody levels were 0 arbitrary units 
c comparison to suspension buffer control:  red p ≤ 0.05; red p ≤ 0.001. 

 

 

 

 

 

 

 

 

Figure 5.2.  Growth and feed conversion in the first two weeks after PRRSV microparticle 

vaccination.  In a repeat of the preceding trial with increased group size of 12 pigs, buffer control 

pigs and vaccine pigs are shown that received 3 mg microparticles composed of slowly degrading 

polylactide DL-PL R202S, Pluronic L121 adjuvant, and 300 fM of PRRSV peptides (DL-PL R202S 

300 fM peptide vaccine).  Group comparisons were performed by Student’s t-test (n = 12). 

  

 
Suspension 

Buffer 
Controla 

DL-PL R202S 
Carrier Controla 

50:50DL-PLG-
PEG 60 fM 

PRRSV Peptide 
Vaccinea 

% weight gain day 0-14 41.76 56.63 61.58 

 day 0-56 314.48 323.92 351.39 

 day 57-70 17.74 25.13 20.64 

 day 0-70 387.71 428.15 444.16 

Anti-PRRSV antibodies day 70b 2.07 1.66 1.81 

°F body temperature increase d57-70  1.16 0.56 0.32 

Area under Log PRRSV RNA curve 85.26 77.79 77.65 
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5.4. DISCUSSION 
 
 

The PRRSV vaccine challenge trials have confirmed that our microparticle 

vaccines elicit without negative side effects cellular, but no antibody, immunity in the 

agriculturally relevant porcine production animal species.  Implicit in this finding is also 

that the dose and mode of vaccine administration have been successfully scaled up from 

the mouse model to the pig.  While the use of the long-acting and stable polylactide DL-

PL R202S vaccine carrier is highly preferable, reduced antigen dosing will need to be 

optimized for maximal achievable protection and absence of an inflammatory response. 

Economically most important is the profound growth promoting effect of the 

microparticle immune stimulator and vaccine platform, enhancing both growth and feed 

conversion during periods of stress.  In contrast to other vaccines, in particular to attenuated 

live vaccines, the microparticle vaccines enhance, rather than suppress, growth.  In 

experiments, the growth-promoting effect manifests itself mainly when the treatment 

cohorts are initially cohabitated, but recedes after the cohorts have reached social and 

infection equilibrium.  Under industrial animal agriculture conditions with large cohorts, 

however, a social and, in particular, an infection equilibrium typically is never reached, 

because of the increasing frequency of “supershedder” animals in such large cohorts.  

Therefore, a long-term sustained growth promoting effect of the microparticle immune 

stimulator and vaccine platform can be anticipated. 

In summary, we have developed a fully synthetic, biodegradable T cell vaccine 

platform technology that also strongly enhances growth and feed conversion in agricultural 

production animals.  Industrial spray drying on a mid-size production facility can produce 

≥4 million chicken or ≥400,000 pig or ≥40,000 cow doses per hour.  This technology also 
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enables the rapid discovery, development, and production of new vaccines.  Moreover, 

polylactide carrier vaccines produced by this method are substantially cheaper than current 

vaccines, and do not require a cold storage chain.  We anticipate commercialization of this 

vaccine platform technology in the near future. 
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5.4. MATERIALS AND METHODS 
 
 

Animal Experiments.  The study was conducted by collaborators Drs. Fernando 

Osorio and Hiep Vu at the University of Nebraska-Lincoln.  Groups of 6-12 female weaned 

PRRSV-free pigs (3 weeks of age) were purchased from the UNL research farm. The pigs 

were accommodated in the BL-2 facility at UNL for one week and a serum sample 

collected to assure lack of viremia and sero-negativity for PRRSV.  Subsequently, pigs 

were subcutaneously vaccinated with 3 mg of the microparticle vaccine suspended in 1 ml 

of suspension buffer (Chapter 3). 

 

Vaccine Microparticle Synthesis and Composition.  Microparticles were 

synthesized with the optimized spray dry procedure as described in Chapter 3. In brief, 2% 

feedstock solutions composed of vaccine were prepared in DCM by adding the desired 

volume of previously prepared stock solutions.  Microparticles were obtained by spraying 

the prepared feedstock solution in the Büchi mini spray dryer model B-190 (Büchi 

Labortechnik AG, Flawil, Switzerland). 

The following compositions of microsphere vaccines were used: 

1) DL-PL R202S and Pluronic L121 (6.5:3.5) as vaccine carrier control; 

2) 50:50DL-PLG-PEG and Pluronic L121 (6.5:3.5), and 60 fM pooled 511 FL12 

challenge strain PRRSV peptides per 3 mg vaccine dose as experimental vaccine 

#1 (equivalent to 0.2 fM peptides per 10 µg mouse vaccine dose); 

3) DL-PL R202S and Pluronic L121 (6.5:3.5), and 300 fM pooled 511 FL12 challenge 

strain PRRSV peptides per 3 mg vaccine dose as experimental vaccine #2 

(equivalent to 1.0 fM peptides per 10 µg mouse vaccine dose); 
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Per 20 pig vaccine doses, 60 mg of the vaccine microparticles were mixed with 300 

mg lactose anhydrous microfine (DFE Pharma, Germany) in a glass vial.  Prior to 

administration, they were homogeneously suspended in 20 mL of suspension buffer 

(0.001% benzalkonium chloride and 0.5% Kolliphor HS-15 in PBS) by push/pulling 5× 

through a 20-gauge needle. 

 

PRRSV Challenge Infection.  At 56 day post-vaccination, pigs were challenged 

by intranasal spray-infection with wild-type, highly virulent PRRSV strain FL12 at a dose 

of 105.0 TCID50 per pig.  At 70 day post-vaccination (14 days after challenge infection, 

dpc), the pigs were euthanized and necropsied.  Body temperature was measured daily from 

-3 to 14 dpc by using micro-transponders that were implanted to pigs at the beginning of 

the experiment.  Body weight was determined in bi-weekly intervals from the day of 

vaccination (day 0) through the termination of the experiment at day 70.  Feed consumption 

per group was determined by weighing of feed before adding to the feeder. Every two 

weeks, feed remaining in the feeder was weighed and subtracted from the starting feed 

weight.  Serum samples were collected at 0, 56, 57, 59, 61, 65, 70 days (-56, 0, 1, 3, 5, 9, 

14 dpc) and stored at -80°C.  At 14 dpc, pigs were be euthanized and necropsied, and 

samples of tonsil and Inguinal lymph node were collected and stored at -80°C. 

 

PRRSV Sample Analyses.  PRRSV specific antibodies were determined in serum 

collected at day 0, and on days 56 and 70 by the commercial PRRSV IDEXX ELISA.  

PRRSV viral loads were determined in total nucleic acids extracted from 100 µl serum by 

a PRRSV 3’UTR single-step, quantitative, reverse-transcriptase real-time fluorescence 
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resonance energy transfer PCR following the design and protocol of C. abortus PCR 

methodology developed in the Kaltenboeck laboratory. 

 

Data Analysis. All analyses were performed with the Statistica 7.1 software 

package (StatSoft, Tulsa, OK). Results were analyzed by Student’s t-test and one-way and 

repeated measures ANOVA with Tukey’s honest significant differences test for correction 

of the p value in multiple comparisons.  P values ≤ 0.05 were considered significant. 
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