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Abstract 
 

 
 In recent years, the use of resting-state functional Magnetic Resonance Imaging (rs-

fMRI) for examining the brain function in healthy and clinical populations has increased 

drastically. Simultaneous modulations in neural activity between remote brain regions when the 

subject does not perform an explicit task, also called resting state functional connectivity (RSFC) 

are associated with the presence or absence of neurological disorders. However, some challenges 

remain to be addressed for widespread use of RSFC as a tool for disease classification. In this 

thesis, we address two crucial issues associated with RSFC. In the first part of this thesis, we 

examine how in-scanner head motion can cause artifactual changes in RSFC and evaluate the 

utility of an image based prospective motion correction in reducing the head motion artifacts in 

RSFC derived metrics. Our results indicate that the use of prospective motion correction 

combined with commonly used retrospective motion correction methods was able to visibly 

reduce the artifactual changes in RSFC. In the second part of this thesis, we examine the issues 

associated with the use of RSFC for disease diagnosis. Specifically, we evaluate how variations 

in age ranges and the data acquisition site of the sample can affect the performance of machine 

learning classifiers especially in heterogeneous disease populations with small sample sizes. We 

observe that the use of small, homogenous subject samples might give inflated measures of 

accuracy possibly due to overfitting. Finally, we recommend the use of a hold-out test data or a 

replication dataset to reproduce the classification performances to ensure good generalization 

across the disease population. 
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Chapter 1 

Introduction 
 
1.1 Magnetic Resonance Imaging (MRI) 

The human brain is one of the most complex structures known to us, with many of its mysteries 

yet to be revealed. Probably one of the most significant breakthroughs in the examination the 

human body in general and the human brain, in particular, came from Magnetic Resonance 

Imaging. The idea of Nuclear magnetic resonance (NMR) in solids was first discovered by two 

nuclear physicists Edward Purcell [1] and Felix Bloch [2]. The principles of NMR later were 

later extended to imaging by Paul Lauterbur and Peter Mansfield who subsequently won the 

2003 Nobel Prize in medicine [3]. It has since been used extensively in clinical applications for 

disease diagnosis. 

There are three steps in creating a Magnetic Resonance Image. The first step is producing the 

signal by spin excitation of the Hydrogen H1 nucleus (protons) in the human body. The second 

step is to localize the signal to its source. Finally, the third step involves generating image 

contrast to differentiate the various tissues in the body [4]. 

The protons in the human body have a zero net magnetic moment as they are directed arbitrarily 

in the absence of a magnetic field. A large static magnetic field (B0) formed by a huge solenoid 

shaped electromagnet in the MRI scanner forces all protons to align in a direction parallel or 

antiparallel to the field’s direction. This strength of the static magnetic field usually 1.5T, 3T or 

7T, ultimately determines the SNR of the resulting image. Most protons align in the parallel 

direction than antiparallel, about the static magnetic field and precess around their axis like little 

spinning tops at a rate determined by Larmor frequency, which in turn is dependent on the 
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nucleus of the atoms and the static magnetic field strength (B0). This random alignment of 

protons creates a net non-zero magnetic moment in the direction parallel to B0 field. 

A Radio Frequency (RF) magnetic pulse (denoted by B1), is applied in a direction perpendicular 

to the B0 field at the Larmor Frequency of a nucleus, usually hydrogen, due to their abundance 

in the human body. The protons absorb the energy and rotation axis of the protons is flipped to 

an angle called the Flip Angle (FA). Once the RF pulse is turned off, the proton loses its energy 

to its environment and tries to get back to its original state at the rate known as longitudinal (T1) 

relaxation rate R1 (1/T1). Once the proton is tipped over, there is a net magnetic moment in the 

direction perpendicular to the static magnetic field. The proton then interacts with neighboring 

protons (spin-spin interaction) and goes out of phase with respect to its neighbors, at the rate 

given by the transverse (T2) relaxation rate R2 (1/T2) of the nucleus, thus reducing the magnetic 

moment to zero in the transverse direction. The net magnetic moment of the nucleus in the 

transverse direction is detected as a signal by the receiver coil. However, the spin-spin 

interaction is not the only way in which the electron loses its transverse component of the 

magnetic moment. Local magnetic inhomogeneity can cause the spin of the nucleus to decay 

faster, with a decay rate given by R2* (1/T2*).  

The three gradient coils achieve the localization of the signals to specific regions in the human 

body, in the three directions. These gradient coils create small differences in the net magnetic 

field strength in the body across their respective directions so that each location in the 3D space 

experience a unique field strength. This gradation in the magnetic field causes the protons at each 

location to precess at slightly varying speed. By matching the band of frequencies of the RF 

pulse to the frequency of the region, we can obtain the signal from only that particular region in 

the tissue, thereby localizing the source of the signal to a specific region in the body. 
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Continuously change the RF pulse of the transmit coil to the whole gamut of frequencies across 

all the magnetic field gradients in a magnetic field, we can obtain a three-dimensional volume of 

the entire tissue. 

The domain the data is collected in MRI is called k-space. Since the data is obtained as a net 

collection of frequencies across the spectrum, a Fourier Transform can be used to separate the 

different frequency components, each of which represents a signal from every region in the 

tissue. The intensity of the signal obtained depends on Transverse Relaxation rate, longitudinal 

relaxation rate, and the proton density. Since different tissues in the human body have different 

relaxation times and proton densities, this factor can be exploited to create the appropriate 

contrast between various tissues in the human body. Image contrasts help in separating tissues 

from their surroundings, such as detecting cancerous cells from non-cancerous cells, identifying 

gray matter from white matter in the brain, etc.   

1.2 fMRI & BOLD contrast 

FMRI is an indirect measure of neural activity and can be used to infer the function of the brain 

over time [5]. In fMRI, we rapidly collect data from human brain at smaller time intervals using 

a pulse sequence called echo-planar imaging (EPI). EPI requires rapid changes in the gradient 

coils to collect all the data from the brain in a few seconds. The neural activity of the brain is 

inferred from Blood Oxygenation Level Dependent (BOLD) contrast which was developed by 

Seiji Ogawa et al. in 1990 [6]. The BOLD contrast is dependent on the differences in the 

magnetic properties of oxygenated and de-oxygenated blood. Oxygenated blood is diamagnetic, 

so it does not interact with the surrounding magnetic field, whereas de-oxygenated blood is 

paramagnetic which means it distorts the surrounding magnetic field (susceptibility) which 

reduces the T2* relaxation time, thereby reducing the MR signal. Neural activation of a region in 
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the brain increases its metabolic demand, causing a slight dip in the oxygenated blood relative to 

the deoxygenated blood, resulting in a drop the MR signal. This reduction in the oxygenated 

blood prompts a substantial increase in the flow of the blood, rich with oxygen to the region. 

This rush of oxygenated blood causes an increase in the signal which usually peaks at around 5 

seconds following the neural response. The signal then falls, until the relative concentrations of 

the oxygenated and the deoxygenated blood gets back to their previous level. The changes in MR 

signal in response to the neural activity is called Hemodynamic response (HR) and can by 

modeled by a hemodynamic response function (HRF). In fact, the BOLD response can be 

modeled as a convolution of the underlying neuronal activity with the HRF. Due to the slow 

hemodynamic response (HR), sometimes the fMRI time series is deconvolved to identify the 

underlying neural activity [7].  

FMRI captures a snapshot of the brain across time repetition time (TR). Functional MRI 

provides excellent spatial resolution compared to EEG but poor temporal resolution due to the 

hemodynamic response and a long TR [8]. However, larger static field strengths (B0) provide a 

decent compromise between the SNR, spatial resolution, and the temporal resolution. 

1.3 Resting-state fMRI 

Resting-state fMRI (Rs-fMRI) measures the spontaneous fluctuations in the MR signals of the 

brain when the person is not performing an explicit task. Regions of the brain do not work 

independently, they work in coordination with each other and organize to form of networks. 

Hence the field of neuroimaging has moved neuropsychological localization in the early 1990s to 

more connectionist approaches lately [9]. These networks can be identified by connectivity 

models obtained from Resting-state fMRI. The extent to which two brain regions are co-

activated can be determined using the Pearson’s correlation coefficient between their fMRI time-
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series. Several brain networks in low-frequency have been identified so far since the discovery of 

the Sensory-motor Network [10]. The default-mode network, dorsal attention network, sensory-

motor network, visual processing network, auditory-phonological network and self-referential 

network, are some of the Resting state Networks (RSN) [11].  Resting state functional 

connectivity can be used a proxy for identifying the regions in the brain that co-activate with a 

seed region for several tasks tend to be positively correlated with each other at rest. The resting 

state fMRI connectivity have been shown to be sensitive to age and neurological disorders [12, 

13, 14]. Hence the search for imaging-based biomarkers remains the holy grail of resting state 

fMRI connectivity due to its ease of acquiring data and its insensitivity to task performance. 

1.4 Machine Learning  

There are several definitions for machine learning. According to Tom Mitchell, “A machine 

learns with respect to a particular task T, performance metric P, and type of experience E, if the 

system reliably improves its performance P at task T, following experience E [15].” The field of 

machine learning draws inspiration from Artificial Intelligence, Statistics and Pattern 

Recognition. Machine learning can be broadly be divided into three categories Supervised 

Learning, Unsupervised Learning, and Reinforcement Learning. Supervised machine learning 

can expressed as a set of inputs and outputs, where the performance can be evaluated as correctly 

predicting the output for unknown sets of inputs. Supervised learning algorithms are further 

divided into classification when the outputs are discrete and Regression when the outputs are 

continuous. In this thesis, our focus is on supervised classification methods. 

Each observation is described by a set of attributes/predictors/features. Supervised learning can 

be defined as learning or optimizing the model function that maps the relationship 

between the inputs x and outputs y by estimating the parameters w. We can then use the model to 



6 
 

predict the outputs for unseen inputs. The algorithm which is used to learn the model form the 

training data is called a learning algorithm. A machine learning model, can be obtained from 

different learning algorithms which make different assumptions of the nature of the data. The 

data which is used to build the model is called training data. Unfortunately, since in a typical 

learning procedure we try to minimize the cost function on the training data, the function might 

actually learn the noise in the training data as well, hence the performance of model on the 

training obtained might not generalize well to the unseen data. Hence a separate dataset, also 

called a hold-out test data is generally used for obtaining an unbiased estimate of the 

performance of the model.  

Hyperparameters are a set of knobs that determine the model of the algorithm. They are set 

before the learning commences, unlike model parameters whose values will be estimated by the 

learning algorithm. Grid search is the easiest way to estimate the optimal hyperparameters for the 

model. We used cross-validation to measure the generalization accuracy and chose the model 

which has the best performance to determine the optimum set of hyperparameters. 

1.5 Thesis organization 

Two of the most important issues in resting state fMRI connectivity are the artifacts associated 

with head motion and disease diagnosis using resting state fMRI connectivity metrics. Because 

of the growing interests in the applications of resting state fMRI connectivity in recent years and 

the issues limiting its widespread appeal, we decide to tackle these two issues in this thesis. The 

first chapter gives a general introduction of MRI and fMRI, along with defining a few concepts 

in machine learning. We introduce some basic principles of signal generation in MRI and fMRI. 

We also discuss the meaning of a few terms commonly encountered in machine learning. In the 

second chapter, we discuss the effectiveness of prospective motion correction in correcting 
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motion artifacts. We first define the nature of the motion artifacts associated with in-scanner 

head motion in 47 subjects scanned with Prospective Acquisition CorrEction (PACE) sequence. 

Using metrics derived from resting state fMRI connectivity we evaluate in detail the 

effectiveness of the PACE sequence in reducing motion artifacts in the rs-fMRI data. In the third 

chapter, we discuss how age and site variability might affect the classification performance, 

especially in small datasets. Using neuroimaging data from 4 datasets and applying 18 different 

machine learning algorithms, we show how the classifiers might overfit homogeneous data to 

give inflated measures of accuracy. These performance measures, unfortunately, do not 

generalize well to the general population. We summarize our findings in the Conclusion in 

Chapter 5. Finally, we explain the machine learning classifiers we used in the appendix A. 
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Chapter 2 

An evaluation of the effectiveness of Prospective Acquisition CorrEction (PACE) for 
reducing motion-related artifacts in resting state fMRI data 

 
Abstract 

Resting state functional connectivity (RSFC) derived from blood oxygenation level dependent 

(BOLD) functional magnetic resonance imaging (fMRI) has been extensively used due to its 

sensitivity to brain function and its alterations in clinical populations. Head movement in the 

scanner causes spurious signal changes in the BOLD signal, confounding RSFC estimates. We 

examined the effectiveness of Prospective Acquisition Correction (PACE) in reducing motion 

artifacts in BOLD data. Using PACE-corrected RS-fMRI data obtained from 44 subjects and 

subdividing them into low and high motion cohorts, we investigated voxel-wise motion-BOLD 

relationships, the distance-dependent functional connectivity artifact and the correlation between 

head motion and connectivity metrics such as posterior cingulate seed based connectivity and 

degree centrality. Our results indicate that, when PACE is used in combination with standard 

retrospective motion correction strategies, it provides two principal advantages over 

conventional echo-planar imaging (EPI) RS-fMRI data: (i) PACE was effective in eliminating 

significant negative motion-BOLD relationships, shown to be associated with signal dropouts 

caused by head motion, and (ii) Censoring with a lower threshold (frame-wise displacement > 

0.5mm) and a smaller window around the motion corrupted time-point provided qualitatively 

equivalent reductions in the motion artifact with PACE when compared to a more conservative 

threshold of 0.2 mm required with conventional EPI data. This will likely provide substantial 

savings in data which would otherwise be lost to censoring. Given that PACE is available as an 

option in the EPI product sequence provided by Siemens, it has negligible overhead in terms of 

scan time, sequence modifications or additional setup (which are typical of other prospective 
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motion correction methods), and hence presents an attractive option for head motion correction 

in high throughput resting state BOLD imaging. 

2.1 Introduction 

Head motion is one of the major sources of artifacts in functional Magnetic Resonance Imaging 

(fMRI). Head motion is said to cause large spatially varying signal changes across the brain. 

Realignment corrects the changes in brain position, but it does not take into consideration the 

changes in the image intensity associated with motion. Head motion, particularly in the direction 

perpendicular to the slice selection is susceptible to artifacts due to magnetic field inhomogeneity 

and spin-excitation history effects [1].  

Resting state functional connectivity measures the synchronicity of the brain activity in different 

regions of the brain and has become quite popular in the last decade due to its sensitivity to 

development, aging and pathology. However, motion can severely affect the validity of resting 

state fMRI (RS-fMRI) studies, particularly in hyperkinetic populations as the motion induced 

variance changes could potentially drive resting state functional connectivity metrics in the same 

direction as one would expect due to disease or aging. 

Most motion correction approaches are typically classified into prospective motion correction 

and retrospective motion correction. In prospective motion correction, the motion is corrected for 

before or during the acquisition of the volumes, whereas retrospective motion correction 

methods correct for motion after the acquisition of the volumes. Rigid-body realignment, 

nuisance signal regression, modeling the effects of the head motion on the blood oxygenation 

level dependent (BOLD) signal using motion parameters and removing the fitted response, 

temporal band pass filtering, motion censoring or spike regression, group level correction or 
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some combinations of the above approaches are routinely used with varying degrees of success 

in retrospective motion correction [2, 3, 4] 

Realignment is the first step in retrospective motion correction. Though it aims to make each 

voxel correspond to the same region in the brain in the fMRI time series by selecting a suitable 

rigid-body transformation, it does not eliminate the changes in the image intensity associated 

with head motion. In nuisance signal regression, we regress out the mean signal corresponding to 

areas of Cerebrospinal fluid (CSF), White Matter (WM) and the GS (Global Signal) signals from 

the BOLD signal, with the hope that we would remove the variance of non-neural origin 

attributable to head motion, heartbeat, respiration and other sources of scanner noise. WM and 

CSF signals, though commonly used, fail to remove a significant amount of variance in the 

BOLD signal due to head motion [2, 4]. Global signal regression (GSR) has been reported in 

previous studies to remove significant amount of variance associated with head motion from the 

BOLD signal [2, 4, 3]. However, there have been some concerns that GSR introduces an 

artificial negative bias in the correlation coefficients, driving them downward everywhere in the 

brain to the point of introducing spurious anti-correlations [5] and is also said to create artifactual 

group differences in functional connectivity [6]. 

Spin History effects result in the signal intensity of the current acquisition to become a complex 

non-linear function of the current position, as well as previous positions [1]. In order to address 

this, one could model the effects of head movement on the BOLD signal by using a second order 

polynomial containing the current motion parameters and few previous (in time) motion 

parameters and remove the fitted response from the BOLD signal. Either volume based 

parameters or voxel-Specific motion parameters have been used, though no significant benefit in 

using voxel-specific parameters have been reported [3, 2]. 24 parameters (Rt, Rt
2, Rt-1, Rt-1

2) and 
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36 parameters (Rt, Rt
2, Rt-1, Rt-1

2, Rt-2, Rt-2
2) models, where R indicates the 6 realignment 

parameters and t indicates the number of volumes back in time used to correct for motion. The 

justification for using complex models is that it increases the fit compared to models using a 

lower number of parameters [3]. However, going further back in time results in loss of degrees of 

freedom and may sometimes not justify the increase in fit. Also, fewer number of parameters 

might be appropriate for low-motion subjects as increasing the number of parameters causes the 

model to over-fit the data and thereby reduce the sensitivity to the underlying neural activity [3].  

Regressions of nuisance signals derived from WM/CSF and the motion parameters cannot 

effectively model motion induced variance in fMRI time-series [2, 4, 3]. Alternatively, in motion 

censoring or scrubbing, the motion corrupted time points and the adjacent time points that 

exceed a threshold defined by a QC (quality control) metric derived from the data such as 

DVARS (Derivative of root mean squared variance over voxels) or Frame-wise Displacement 

(FD) [7, 4, 8], are marked. Either the data for those time points are removed, or they are 

interpolated from the adjacent time points and removed after preprocessing. Similar to scrubbing, 

spike regression models the motion induced spikes in fMRI data and removes the fitted response, 

effectively eliminating the influence of the corrupted time points in the fMRI time series [3, 9]. 

Scrubbing/Censoring/Spike Regression, especially in high-motion datasets could potentially lead 

to loss of a large quantity of data [10] and in turn result in noisy estimates of the functional 

connectivity [11]. Further, scrubbing could introduce discontinuities in the data which may 

invalidate many analysis methods used thereafter. Even though interpolation has been suggested 

as a way to avoid these discontinuities, interpolation is at best a guess and still amounts to loss of 

original data. Filtering the signal in the frequency band of 0.008/0.01 - 0.08/0.1 Hz eliminates 
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frequencies corrupted by respiration and other artifacts and might improve sensitivity to the 

underlying neuronal fluctuations. 

A more recent approach is retrospective correction at the group level where in the mean subject 

head motion is regressed out by adding it as a nuisance variable in the second-level (group level) 

general linear model (GLM) by removing within-group/between-group variance which can be 

attributed to the differences in head motion of the subjects in the groups. So within-group 

regression can be used to eliminate the assumed linear effects of head motion on functional 

connectivity. However, group level correction by using mean subject motion has its drawbacks. 

The subject’s head motion may co-vary with factors of interest such as age and disease, thereby 

underestimating the relationship between functional connectivity and the factors of interest. A 

summary of currently available retrospective motion correction methods and their effectiveness 

can be found in [12, 8].  

Given the difficulty in properly modeling the motion effects on the BOLD signal, prospective 

motion correction methods have gained increasing prominence. Although prospective motion 

correction has been in vogue for more than a decade, recent research (the flurry of articles that 

have appeared since Power et al. [7]) demonstrating the inadequacy of retrospective methods 

(most glaringly the rigid body realignment approach) suggests that it is imperative to evaluate 

prospective motion correction approaches in the context of motion effects on resting state 

functional connectivity. Most prospective methods estimate the position of the head during 

scanning by using external tracking devices [13, 14, 15, 16, 17]. A review of prospective motion 

correction methods in fMRI can be found in Zaitev et al. [18]. Since these methods use an 

external device to independently record head motion and correct the gradients in near real-time, 

they require elaborate setups, the subjects to wear a “marker” and sequence modification. 



14 
 

Consequently, they are unsuitable for high throughput routine scanning. Alternatively, 

Prospective Acquisition CorrEction (PACE) [19] is an image based online motion detection and 

correction sequence which tracks the subject’s head location to keep the position of the head 

fixed relative to the scanner’ coordinate frame thereby reducing spin history effects associated 

with head motion [19]. Using an image-based motion detection algorithm, the head motion 

parameters are estimated and fed back into the scanner so that the slice positioning and 

orientation are adjusted before the acquisition of the next volume. PACE accounts for motion 

based on the current volume realignment parameters and adjusts the position for the next volume 

acquisition of to the calculated head position by adjusting the magnetic field gradients in the 

gradient coils. Since the position of the previous volume is used to acquire the current volume, 

there is a residual motion that cannot be accounted by PACE. That said, it requires no additional 

setup in terms of external devices, does not require subjects to wear any “targets” and is a 

functionality that is in-built in FDA-approved echo-planar imaging (EPI) sequences on Siemens 

scanners (and hence does not require a sequence modification). For all these reasons, PACE is 

suitable for high throughput routine imaging and therefore is worthy of being evaluated in the 

context of motion-BOLD relationship. 

We had three main goals for this paper. First, we were particularly interested in understanding 

the following effects obtained from RS-fMRI data acquired using an EPI-PACE sequence: (i) the 

spurious motion-BOLD relationships [2], (ii) the motion induced distance dependent functional 

connectivity artifact [20, 3, 7, 4] and (iii) the effect of motion on RS-fMRI connectivity based 

metrics such as Degree Centrality and PCC (posterior cingulate cortex) seed based FC. Second, 

we examined if a combination of prospective and retrospective motion correction methods could 

do a better job of reducing motion artifacts in BOLD data compared to using PACE alone. 
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Finally, we wished to determine neural correlates of head motion by performing hemodynamic 

deconvolution of the BOLD signal (which was corrected for motion using the best possible 

combination of PACE and retrospective correction) to uncover the underlying latent neural 

signals and then correlating it with head motion. Hemodynamic deconvolution was performed to 

remove the delay between head motion and the BOLD response so that their correlation would 

be meaningful. 

2.2 Methods 

2.2.1 Subjects  

A total of 47 healthy adult subjects (20 males/27 females, age 25.1 ± 5 years) with no history of 

any neurological disorders were selected for this study. The subjects were instructed to relax, 

keep their eyes open, not think about anything in specific and keep their head as still as possible 

for the duration of the scans. Appropriate padding was provided to keep the head as still as 

possible in the scanner. All subjects gave informed consent, and the scanning procedure was 

performed in accordance with the guidelines and the approval of the Institutional Review Board 

at Auburn University. 

2.2.2 Data Acquisition 

All subjects were scanned with a 3T MAGNETOM Verio scanner (Siemens Healthcare, 

Erlangen, Germany) using an EPI – PACE sequence with a 32 channel head coil and the 

following acquisition parameters: TR of 1000 ms, TE of 29 ms, Flip Angle of 90° with 16 slices, 

matrix= 64×64, voxel size = 3.5×3.5×5 mm3. The number of time points acquired for each 

subject ranged from 250-1000.  A T1 weighted MPRAGE anatomical image (TE=2 ms, 
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TR=1900 ms, 176 slices with 1x1x1 mm3 voxel size) was also acquired for all the subjects to aid 

in spatial normalization. 

2.2.3 Preprocessing of the RS-fMRI data 

The pre-processing of the RS- fMRI data was performed using Data Processing Assistant for 

Resting-State fMRI (DARPSF) toolbox [21]. The first five time points were removed from the 

time series to allow for T1 equilibration. Slice timing correction was applied to each slice in 

every volume to account for the different acquisition times of the slices. The volumes were then 

realigned using a six-parameter (three translations, three rotations) rigid body transformation to 

account for the head motion by optimizing the minimum squared difference (MSD) cost function 

by a two-pass procedure. After realignment, the T1 weighted anatomical image from each 

subject was registered to the mean functional image. Linear and quadratic detrending were 

performed to remove low-frequency drift. Mean WM and CSF signals were regressed from the 

time series to remove non-BOLD related signal variance. Also, the 24 parameter motion 

regression proposed by Friston (Friston-24) consisting of the six realignment parameters, their 

temporal derivatives and the squares of them, were regressed from the resting state fMRI BOLD 

time series.  

2.2.4 Calculation of DVARS and head motion metrics 

DVARS (Derivative of root mean squared variance over voxels) is the square root of mean 

square value of the temporal derivative of the intensities of the BOLD signal, calculated 

backward from the current time point to the previous time point over a voxel, ROI or the entire 

brain [7, 4]. Traditionally, motion metrics are calculated from the realignment parameters, and 

their accuracy is limited by the accuracy of the estimates of the realignment parameters. 
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Common metrics which capture subject head motion are the Total Displacement (TD) and 

Framewise Displacement (FD). TD is measure of the change in the position of the head from its 

initial postion, while FD is a measure of the change in the position of the head from the previous 

time point to the current time point and is calculated using realignment parameters of both the 

time points. It measures relative displacement rather than the absolute displacement of the head. 

In the case of motion correction by PACE, since the slice positioning is adjusted on the fly for 

every volume, these realignment parameters, and the FD metrics are a measure of the residual 

motion, relative to the scanner that is uncorrected by PACE rather than the actual motion of the 

head. Since all voxels in the brain do not move in a similar direction, it is essential to capture the 

individual movements of the voxel to understand the localized changes in signal intensities. So, 

along with volumetric metrics of the head’s framewise displacement (FDvol) which assigns a 

single value of head motion to the entire brain, we also calculated the voxel-specific framewise 

displacement (FDvox) which uses the 6 realignment parameters to estimate the relative 

displacement of every voxel at each time-point. This enabled the computation of the 

displacement of each voxel with respect to the previous time point. More details on this approach 

are available in Satterthwaite, et al. [3], Yan, et al. [2]. The following motion metrics were 

calculated for each subject for every time point: FDFSL [22], FDPower [7], and FDVanDijk [23], all of 

which are voulume specific metrics. We also estimated the voxel-specific framewise 

displacement (FDvox) [3]. The relationship between the different FD metrics was ascertained by 

plotting the subject mean of meanspFDvox (spatial mean of the framewise displacement across all 

voxels in brain for each volume) on the X-axis and the different volumetric FD metrics (FDFSL, 

FDPower, FDVanDijk) on the Y-axis [2]. We also calculated the meanspTDvox, which is the voxel-

wise mean of the total displacement of the brain in the scanner. 
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2.2.5 Examination of motion -BOLD relationships in PACE data 

As voxel displacement is not spatially constant across the brain due to the combination of head 

rotations and head translations, voxel-wise analysis of the motion-BOLD relationships would be 

more appropriate to study the localized effect of head motion on BOLD signal intensity. 

Therefore, to understand the spatially varying relationships between head motion and the BOLD 

signal, the BOLD signal was pre-processed with several combinations of nuisance signal 

regressors: (i) CSF + WM regression, (ii) CSF + WM + GS regression, (iii) CSF + WM + 

Friston-24 motion regression, (iv) CSF + WM + GS + Friston-24 motion regression, (v) CSF + 

WM + Friston-24 motion regression + motion censoring (FDpower threshold >0.5 mm and 1 back 

and 2 forward volumes regressed from the model), and (vi) CSF + WM + GS + Friston-24 

motion regression + motion censoring. These pipelines were evaluated for each of the 44 

subjects. Three of the subjects were eliminated because they did not have the necessary 3 

minutes of data required for stable estimation of rs-fcMRI (Resting State-functional Connectivity 

MRI) metrics [2] after censoring.  The Pearson’s correlation coefficient was calculated between 

the voxel-specific framewise displacement (FDvox) and the BOLD signal for every voxel (pre-

processed using the six pipelines mentioned above), and for all the volumes in the time series as 

described by Yan et al. [2]. With motion censoring, the same volumes which were removed from 

the BOLD signal were also removed from the FDvox to calculate voxel-wise correlation between 

motion and BOLD. Fischer’s z transformation was performed on the resultant correlation maps 

to improve the normality of the data distribution. The resultant z -maps were then normalized to 

the standard MNI template (3 mm3 cubic voxels) and the resulting volumes were smoothed with 

a 4.5 mm3 Gaussian kernel. A one-sample t-test was performed on the normalized correlation 

maps with a significance level of p<0.05 (FDR corrected) to investigate consistent patterns of 
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motion-BOLD relationships within the group. In order to further investigate the nature of the 

motion-BOLD relationships for different levels of head-motion, we divided our dataset into two 

subsets, a higher motion group (FDFSL = 0.152±0.062 mm) and a lower motion group (FDFSL = 

0.077±0.014 mm) containing 22 subjects each based on their mean [FDFSL] with similar sex and 

age profiles in both the subgroups. We then proceeded to repeat the procedure described above 

for both the data sets separately to compare the motion-BOLD signal relationships in the high-

motion dataset with the low-motion dataset. 

2.2.6 Examining the motion- induced distance dependent artifact in functional connectivity 

Head motion tends to distort functional connectivity metrics by inflating connectivity estimates 

between closer regions and reducing the connectivity between farther regions, as the voxels 

which are far from each other are less likely to experience similar movements, thus giving rise to 

the decaying effect of functional connectivity as a function of the head motion and the distance 

between them [7, 23, 20].  This is called as motion-induced distance dependent artifact in 

functional connectivity throughout the paper. Power et al. reported that online motion correction 

by PACE did not ameliorate the distance dependent changes in functional connectivity induced 

by head motion [7]. However, they did not show the corresponding results and did not elaborate 

it further. Therefore, to understand the effect of online motion correction on functional 

connectivity and to reveal the distance dependence artifact, we followed a procedure used 

previously [3, 20] to characterize the effects of head motion artifacts in PACE data. After 

preprocessing the data, the volumes were normalized to the standard MNI template (3 mm3 cubic 

voxels) and were smoothed with a 4.5 mm3 Gaussian kernel, following which, the time-series 

were filtered with a band pass filter with bandwidth of 0.01-0.1 HZ.  
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160 ROIs, as defined by the Dosenbach 160 atlas [24], were extracted from the brain. Each ROI 

was modeled as a sphere with 10 mm diameter and the mean resting state pre-processed BOLD 

signal was obtained for each ROI. Functional connectivity was calculated as the correlation 

between the time series of every pair of ROIs, resulting in a functional connectivity matrix 

consisting of 12,720 elements ((160 x 160)-160/2) for each of the 44 subjects. These connectivity 

values were then correlated with the mean head motion obtained from each subject, i.e. mean 

(FDFSL). These correlations were plotted on the y-axis of a scatter plot with the Euclidean 

distance between ROIs on the x-axis.  The estimated correlation between FD and RSFC was then 

used to compare the success of PACE with a combination of retrospective motion correction 

methods to correct for spurious changes caused in functional connectivity due to head motion.  

This procedure was repeated for all the combinations of nuisance, motion, and spike repressors 

discussed previously, and the results compared for the high-motion and the low-motion 

subgroups. 

2.2.7 Impact of head motion censoring threshold on the removal of motion induced 

artifacts 

Motion censoring is a trade-off between the quality and quantity of data. If PACE does correct 

for the lingering effects of spin history in the BOLD time series after the motion has ended, then 

a modest threshold with a small censoring window around the motion corrupted time-points 

would provide us with a good compromise. Therefore, to understand the impact of motion 

censoring on the reduction of motion artifacts, we considered four cases of motion censoring  

using a milder threshold of 0.5 mm and a stricter threshold of 0.2 mm.: (i) Censoring of volumes 

whose FDpower>0.5 mm and one volume after the motion corrupted volume (denoted as 

FD>0.5mm, 0B+1F, i.e. zero backward and one forward volumes are removed),  (ii) Censoring 
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of volumes whose FDpower>0.5 mm as well as one volume before and two volumes after the 

motion corrupted volume (FD>0.5mm, 1B+2F), (iii) Censoring of volumes whose 

FDpower>0.2mm as well as one volume after the motion corrupted volume (FD>0.2mm, 0B+1F), 

(iv) Censoring of volumes whose FDpower>0.2 mm as well as one volume before and two 

volumes after the motion corrupted volume (FD>0.5mm, 1B+2F). We examined both the 

motion-BOLD relationships and the distance dependent connectivity artifact for each of the four 

cases to make a sound judgment on the appropriate motion threshold that prevents excessive loss 

of data. 

2.2.8 Calculation of RS-fMRI based connectivity metrics 

We calculated two RS-fMRI based metrics: 1) Network Degree Centrality (DC) and 2) PCC 

Seed Based Functional Connectivity (PCC-FC). These were chosen in order to (i) Evaluate the 

spatial relationship between functional connectivity metrics and motion and (ii) Compare the 

effectiveness of the motion correction strategies in High-motion and Low-motion Subgroups. 

Network Degree Centrality (DC) was calculated as the weighted sum of significant positive 

connections for every voxel in the brain [25, 26, 2]. A connection was deemed significant if the 

correlation coefficient exceeded a threshold of 0.25 (p< 0.0001). A subject level z-score was 

calculated by subtracting the mean for all voxels and dividing by the standard deviation. These 

subject level z-maps were registered to the MNI template and smoothed with a 4.5 mm3 Gaussian 

kernel. PCC seed based functional connectivity (PCC-FC) was estimated by extracting the mean 

time series from the posterior cingulate cortex (PCC: 0, -53, 26; diameter=10 mm) and  then 

calculating the Pearson’s correlation coefficient with other voxels in the brain as was done in 

other studies [3, 23, 2]. This was done in the standardized space after preprocessing, filtering, 

normalization and smoothing. These correlation values were transformed to z values using 
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Fischer’s r to z transformation. We calculated the correlation between the DC/PCC-FC maps and 

FDvox for each subject across every voxel to obtain maps indicating the relationships between 

motion and FC metrics. To compare the effectiveness of the motion correction strategy across 

preprocessing pipelines with various nuisance regressors, we performed a t-test for high-motion 

and low-motion subgroups separately. 

2.2.9 Deconvolution of BOLD data to examine the neural correlates of head motion  

Deconvolution has been previously employed in inferring the underlying latent (unmeasured) 

neuronal activity in the resting state BOLD signal [27, 28], especially given that the HRF has 

different properties (such as time-to-peak, FWHM and response height) across different brain 

regions as well as between different subjects [29, 30, 31, 32]. HRF variability can have an 

influence on the values of functional connectivity by artificially elevating the correlations of the 

underlying neural activity or suppressing them. This point is illustrated in Figure 2.1. Since some 

of the low-frequency fluctuations in the BOLD signal could potentially be associated with the 

neural components of head-motion, we investigated if these regions could be identified in PACE 

data. A few studies have previously reported that the positive FD -BOLD relationships or FD-

fcMRI relationships in the motor cortex might have a neurological origin [2, 33]. It is apparent 

that any neural activity reflects in the BOLD signal after a delay due to the hemodynamic 

response function. Therefore, in order to investigate the correspondence between neural activity 

and head motion, we need to take this delay into consideration. This can be achieved by 

deconvolving the HRF from BOLD data to recover the underlying latent neural signals and then 

finding the correlation between head motion and the estimated latent neural signals. HRF 

deconvolution removes the delay between neural activity and head motion and makes temporal 

correlation between them meaningful. According to our knowledge, no study has specifically 
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used the deconvolution procedure to investigate the presence of neural components of head 

motion in motion–BOLD relationships. So we performed a voxel-wise resting-state 

hemodynamic deconvolution as described in Wu et al. [28] using PACE data processed with the 

following retrospective correction strategies: CSF + WM + Friston-24 motion regression and 

CSF + WM + GS + Friston-24 motion regression. Subsequently, the de-convolved time-series, 

i.e. latent neural signals were correlated with voxel-specific framewise displacement (FDvox). 

The BOLD signals were not band pass filtered before deconvolution; otherwise, a similar 

preprocessing strategy was used.  
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Figure 2.1. This figure illustrates how deconvolution of the BOLD timeseries (only 50 time 
points are shown though there were 250 time points in total) could change the functional 
connectivity between two fMRI timeseries. Note that the correlation coefficient for the BOLD 
fMRI timeseries for two voxels is -0.81 whereas for the correlation coefficient between latent 
neuronal signals in those same two voxels is 0.93. 
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2.3 Results 

2.3.1 Examination of BOLD time-series data 

Figure 2.2 shows PACE corrected resting state BOLD time-series extracted from the PCC in a 

representative high-motion subject as well as a low-motion subject and provides an insight into 

the effect of head motion on prospectively motion-corrected BOLD signal. The effect of each of 

the preprocessing steps on the time courses of the BOLD signal (PCC), DVARS (PCC) and 

DVARS (Whole Brain), each of which are obtained from PACE-corrected data, can be 

discerned. Figure 2.2 also displays motion metrics such as mean [TDvox (PCC)] (total 

displacement of PCC), meanspTDvox (total displacement of the brain) , mean [FDvox (PCC)], 

meanspFDvox, FDFSL, FDPower, and the 6 realignment parameters. There is a linear relationship 

between residual motion metrics, and FDPower seems to have the highest of all the FDvol measures 

and that FDFSL and meanspFDvox, closely align with each other. This fact is confirmed when we 

plot subject wise summary motion metrics as shown in Figure 2.3. FDFSL and mean [meansp 

FDvox] were highly correlated at 0.998 and so was FDPower with meansp FDvox at 0.988. This is in 

tune with the previous result published by Yan, et al. [2], comparing motion metrics in non-

PACE BOLD data using larger number of subjects.  
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Figure 2.2. The PACE-corrected time-series extracted from the posterior cingulate cortex (PCC: 
0,-53,26; 10 mm diameter sphere) at every step in the preprocessing pipeline for a representative 
subject in the high-motion (right) and low-motion (left) subgroups. Please note that the range of 
the y-axis for both the groups are the same for BOLD time series and range from -5 to 5. 
However for the motion metrics plots the range on the y-axes are different in the left and right 
panels in order to better visualize the type of motion in low-motion subjects. Large changes in 
the head position are associated with large changes in head motion. Regression of nuisance 
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variables was not successful in eliminating large spikes in head motion in the high-motion 
subject, but they were relatively successful in the low motion subject. The differential impact of 
head motion on the signal changes across the brain is illustrated as well. 

 

 

 

Figure 2.3. The correlation between the different volumetric Framewise Displacement (FDvol) 
metrics with the voxel-wise derived Framewise Displacement (FDvox). As reported in Yan et al, 
(2013), all three volumetric measures of FDvol were highly correlated with mean[meansp(FDvox)] 
and the slope of FDFSL was twice that of FDVan Dijk  but half of FDPower. The circled subjects in 
the figure were removed from the study due to excessive head motion and the lack of sufficient 
time-points required for stable estimation of RS-fMRI metrics after motion censoring. 

 

Looking at the impact of the motion on the PACE-corrected BOLD time series in Figure 2.2, we 

observe that large changes in the head position roughly correspond to the significant changes in 

the PACE-corrected BOLD time series. While this has been shown to be true for non-PACE data 
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[4, 2, 7, 3], we show here that the same is true for PACE-corrected data as well although the 

magnitude of such changes may be different in PACE data. DVARS, which measures the change 

in the BOLD signal, approximately follows the sharp rise and fall in head motion (as captured in 

the framewise displacement). It is also worth noting that some head movements were associated 

with larger signal changes in the PCC compared to the the whole brain signal and in some cases, 

it was other way around. This points to the differential impact of head motion on the PACE-

corrected BOLD signal in different regions of the brain. WM and CSF regression did not seem to 

alleviate the motion artifact, however, GS regression and to some extent motion regression 

appears to have reduced the artifact. In the high motion subject who was relatively still except 

for two large head movements, a ringing effect (rapid changes) in the PACE-corrected BOLD 

signal and associated FD metrics can be observed. One possible reason for this could be that, due 

to the prospective correction by PACE, the scanner seems to be adjusting to the motion, thus 

causing a distinct effect on the BOLD time courses. Of course, these patterns appear to have 

reduced after WM, CSF, and GSR, and motion parameter regression but is still distinctly present 

after nuisance covariate regression, giving merit to the argument that censoring the motion 

corrupted volumes is the best way to eliminate the artifactual effects of residual head motion on 

the PACE-corrected BOLD Signal. Although the data is shown for just two subjects, it 

effectively demonstrates the limitations of nuisance signal regression in preprocessing Rs-fMRI 

data obtained with PACE. To understand how much variance is explained by the Friston-24 

motion parameters and the six realignment parameters, we estimated the average PACE-

corrected BOLD signal variance explained by the 24 motion parameters and six realignment 

parameters for each subject and averaged the results over all subjects as shown in Figure 2.4A 

and Figure 2.4B, respectively. This result is pretty similar to the one reported by Satterthwaite, et 
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al. [3] (Figure 2.4C), who used adjusted R2 maps to illustrate the signal varaince explained by 

using six realignment parameters. The BOLD signal from regions which are farthest from the 

centre of the brain are affected the most by head motion and consequntly more variance in the 

PACE-corrected BOLD signal is explained by the 24 motion parameters. Also, compared to six 

realignment parameters (Figure 2.4B, Figure 2.4C) use of 24 motion parameters (Figure 2.4A) 

explained a lot more variance (as observed by their adjusted R2 values) across the brain. 

 

 

Figure 2.4. The average BOLD signal variance (adjusted R2) explained by the 24 regressors used 
in the Friston-24 motion regression model (A) and the six realignment parameters (B). (C) 
Adjusted R2 maps showing amount of signal variance explained by 6 standard from Satterthwaite 
et al., 2013. Figures A and B are similar, except for that fact that 24 motion regressors (A) 
explain far more variance across the brain compared to using just 6 motion parameters (B). 
These motion regressors explain a modest amount of variance in the brain, with more variance 
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explained in the frontal regions and less variance explained in other (especially posterior) 
regions. This is to be expected given that frontal regions experience more displacement than 
other regions of the brain (Yan et al., 2013). 

 

2.3.2 Voxel-wise relationships between framewise displacement and PACE-corrected 

BOLD signal 

The sensitivity of the BOLD time series to head motion artifacts is spatially varying and this can 

be characterized by the FD-BOLD relationship. Consistent linear relationships (or correlations) 

between FDvox and the BOLD signal across the brain is indicative of the motion artifact and can 

affect the estimation of functional connectivity between brain regions. Figure 2.5 shows the raw 

FDvox-BOLD correlation maps as well as maps thresholded at (T> 4.95, p<0.05, FDR corrected). 

As was observed with the PACE-corrected time-series data, WM, CSF and motion regression did 

not remove significant motion-BOLD relationships. An interesting observation is that negative 

motion-BOLD relationships which are associated with large head movements [2] were absent in 

the thresholded maps obtained from PACE-corrected data. It can be seen from Figure 2.5 that 

none of the voxels exceed the negative threshold, implying no significant negative motion-

BOLD relationships were present. It is noteworthy that results from non PACE-corrected data 

reported before show significant negative motion-BOLD relationships [2]. With the addition of 

GSR, the large positive relationships were reduced across the brain, but negative correlations 

were introduced. However, it should be noted that none of the negative motion-BOLD 

correlations were significant. With relatively modest motion censoring (FD>0.5mm, 1B+2F) and 

without GSR, motion BOLD relationships were not significant (p>0.05), and very few positive 

relationships survived the thresholds. In order to obtain an equivalent result with non-PACE 

data, Yan et al., had to use a much stricter censoring threshold of FDPower>0.2mm coupled with 

GSR [2]. If we used GSR or increased the censoring threshold to those used by Yan et al., all 
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motion-BOLD relationships were eliminated. This indicates that one could use liberal censoring 

(thereby retaining more data) and avoid the confounding effects of GSR and yet eliminate all 

negative, and most positive motion-BOLD relationships using PACE data. 

 

 

Figure 2.5. Illustration of the reduction in the relationship between motion and PACE-corrected 
BOLD data for different nuisance variable regressors. The un-thresholded T maps are shown in 
(A) and the thresholded (p<0.05, FDR corrected) maps are shown in (B). The results indicate that 
motion regression did not remove motion-BOLD relationships visibly. However, GS regression 
did seem to reduce these relationships, with some regions now showing a negative correlation. 
(B) After the nuisance variance regressions, some regions did exhibit significant positive 
relationships with the BOLD signal, though no negative relationships remained. With censoring, 
both positive and negative relationships are almost absent. 
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To better understand the patterns of these relationships between high-motion and low-motion 

subjects, we repeated the analysis separately for high-motion and low-motion subgroups. The 

result is shown in Figure 2.6 and the corresponding thresholded T-maps for high and low motion 

subgroups shown in Figure 2.7. The results show small motion-BOLD correlations for low-

motion subgroup as expected, with significant correlations (p<0.05, FDR corrected) only 

restricted to the visual areas after WM and CSF regression. Further steps of preprocessing 

eliminated even those correlations to below significance. However, the relationships for high-

motion subgroup relationships reduced to below chance levels in most areas only after motion 

censoring. Qualitatively, motion-BOLD correlations obtained from PACE data appear to be 

smaller in magnitude and spatial extent when compared to those obtained from non-PACE data 

(in both low and high motion subjects) reported previously [2]. 
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Figure 2.6. The un-thresholded T maps illustrating the relationship between the PACE-corrected 
BOLD signal and voxel-specific framewise displacement for the high motion and the low motion 
Subgroups. CSF, WM, and motion regression are relatively ineffective in reducing the motion-
BOLD relationships both in high motion and low motion Subjects. Large motion-BOLD 
relationships are comparatively fewer in lowmotion subjects, as expected. GSR significantly 
increased negative motion–BOLD relationships in high motion subgroup, but not by much in the 
low motion subgroup. With motion censoring, GSR has a relatively negligible effect on the 
motion-BOLD relationships in both the subgroups. 
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Figure 2.7. Thresholded correlation maps between the PACE-corrected BOLD signal and head 
motion (FDvox) across the brain. The figure shows the relative absence of significant (p<0.05, 
FDR corrected) motion-BOLD relationships in low motion subjects compared to the high motion 
subjects. The reduction in motion-BOLD relationships after GS and motion regression in high 
motion subjects is stark, although residual correlations in the visual cortex are only eliminated 
after motion censoring. 

 

Given the reported usefulness of including summary motion statistics of the subjects in group-

level analyses to eliminate the group differences in the motion artifact [2, 3, 4], we show the 

variance (adjusted R2) in the residual motion-BOLD relationships as explained by the subject 

summary motion statistic in Figure 2.8A. The correlation between summary motion statistic and 

the motion-BOLD maps is also shown in Figure 2.8B. In Figure 2.8A, the summary statistic 

explained a lot more variance with significant positive and negative correlations across the brain 

regions with only CSF, WM, GS and motion regression. With motion censoring, a lot less 
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variance was explained by the summary motion parameters as expected and a lot less correlation 

with the summary static was observed. This result explains why group level correction in 

unnecessary when motion censoring is performed at the subject level, thus confirming previous 

results that the benefits of group level correction are negated if motion censoring is included 

during preprocessing [2]. 

 

 

Figure 2.8. (A) The variance (R2) in the residual motion-BOLD relationships as explained by the 
subject summary motion statistic after nuisance variable regression. (B) The correlation between 
summary motion statistic and the motion-BOLD relationships. The summary statistic explained a 
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lot more variance with significant positive and negative correlations across the brain regions with 
only CSF, WM, GS and motion regression. With censoring, a lot less variance is explained by 
the summary motion parameters as expected, confirming that group level correction is not 
necessary if motion censoring is included in the preprocessing. 

 

2.3.3 Motion induced distance dependent artifact in resting-state functional connectivity 

When functional connectivity is estimated with motion-corrupted data, connectivity strengths 

between two brain regions can be dependent on the relative location of the regions and the 

similarity in magnitude and the direction of the displacement experienced by head motion. This 

artifact helps us in evaluating the success of a motion correction strategy and the absence of the 

motion artifact in the data. We plot the 12720 connectivity values (obtained from PACE-

corrected BOLD time series) which were correlated with each subject’s summary head motion 

(mean [FDFSL]) as a function of distance.  This was done for all combination of nuisance 

regressors and motion censoring, and we show the results for all the subjects as well as for the 

high-motion and the low-motion subgroups separately in Figure 2.9. Ideally, if head motion was 

not artifactually modulating the connectivity values, we expect the plot to be a flat (zero slope) 

line. But as Figure 2.9 illustrates, the distance dependent artifact was present for all combinations 

of nuisance variable regression including WM, CSF, GS and Friston-24 motion regression. The 

correlation of head movement with the connectivity metrics exhibited positive values for all 

distances and only with the introduction of GSR, were the correlation with motion became 

negative for functional connectivity between farther regions. With motion censoring, this artifact 

did not seem to have been completely eliminated, especially in high-motion subjects, with a 

small slope and a positive intercept when fitted by a linear trend line. There was a positive 

correlation between FC and head motion at all distances in high-motion subjects. The artifact 

almost seems absent in low-motion subjects for all combinations of nuisance variable regression 
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and censoring as the slope is small and the line is relatively flat. In contrast, previous reports 

with non-PACE data indicate that the distance dependent artifact could not be eliminated (unless 

censoring thresholds were more severe than what we have used) even in low motion subjects 

[20]. When all subjects were used, a combined effect was noticed. A few more observations 

include that GSR appears to distort the distance dependent artifact and makes the artifact worse 

by increasing the slope in high-motion subjects and the variance in low-motion subjects. This 

result is in agreement with the observations made by Jo et al., that GSR distorts functional 

connectivity values [34].  However, when GSR was combined with censoring, it did seem to 

eliminate the distance dependent artifact even in subjects with high motion. Since we used a 

relatively modest threshold of 0.5 mm with a censoring window of one previous volume and two 

forward volumes, we wanted to see if a more severe threshold of FDPower>0.2 mm, would have 

any additional benefits at the cost of substantial loss of data. 
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Figure 2.9. The figure shows the FD-RSFC correlations for all the subjects as well as for the high 
and low-motion subgroups. The motion induced distance dependent FC artifact is almost absent 
in the low-motion subgroup for all stages and all combinations of nuisance signal regression.  
The color of the linear fit line indicates significance of the fit with red indicating significance 
(p<0.05, FDR corrected) and yellow indicating nonsignificance (p>0.05). The high motion 
subgroup does show the artifact which is only reduced after motion censoring. GSR distorts the 
FD-RSFC relationships significantly, especially in the high motion subgroup, though after 
motion censoring, the data is relatively free from the artifact in both the subgroups, with and 
without GSR. 

 

2.3.4 Impact of censoring threshold on the existence of motion artifacts 

In order to better understanding the dynamics between the removal of motion artifacts and 

preservation of non-corrupted PACE-corrected BOLD data, we experimented by using two 

different censoring thresholds (0.5 mm and 0.2 mm) and two censoring windows around the 

motion corrupted volumes (0B+1F and 1B+2F). This gave rise to four scenarios of motion 

censoring (i) FDPower> 0.5, 0B+1F, (ii) FDPower> 0.5, 1B+2F, (iii) FDPower> 0.2, 0B+1F, (iv) 

FDPower> 0.2, 1B+2F. Table 2.1 shows the total number of time-points, and the fraction of time-

points censored for each of the above censoring scenarios. As expected there was huge loss in 

data when we used censoring at 0.2 mm compared to 0.5 mm. In fact, the number of subjects, 

who had at least 3 minutes of good data or 180 time points in our case was reduced from 47 to 

24, when the threshold was greater than 0.2 mm and 1 volume before and two volumes after the 

motion were removed. We used the presence of the significant (p<0.05, FDR corrected) motion-

BOLD relationships and the existence of the motion induced distance dependent functional 

connectivity artifact (FD-RSFC correlations) to assess the quality of non-motion corrupted data. 

To be fair in the comparison, we used the same 24 remaining subjects for all the four censoring 

cases. Since most of the subjects left had pretty low-motion, we expected results similar to those 

obtained by the low-motion dataset. It is noteworthy that several subjects were common to both 
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the subsets of data and there was relative absence of motion artifacts in the low-motion subgroup 

even with relatively less preprocessing. The unthresholded T-maps are shown in Figure 2.10A 

and the thresholded T-maps (p<0.05, FDR corrected) are shown in Figure 2.10B. As Figure 

2.10B shows, motion-BOLD relationships were below significance for all voxels in all the four 

scenarios of motion censoring, though the values of few motion-BOLD relationships in the 

visual areas are removed with the more stringent threshold. The motion induced distance 

dependent connectivity artifact appeared to be appeared to be considerably reduced (Figure 

2.10C) in the four cases as the slope was very small. But the slope was not significant (p>0.05) 

for the case with censoring FDPower> 0.5, 0B+1F. The slope was small as well as significant 

(p<0.05) for other censoring scenarios, indicating that motion induced distance dependent 

connectivity artifact is eliminated after censoring the data at FDPower> 0.5, 1B+2F. Increasing the 

censoring window size beyond the motion corrupted volume and a single volume after the 

corrupted volume, did not seem to have any effect on the data even after filtering the time series. 

Our results indicate that censoring volumes at a more stringent threshold of 0.2 mm or increasing 

the censoring window size to include more volumes did not have a detectable improvement in 

the data quality as the artifacts were almost eliminated at 0.5 mm, but it came at the cost of 

substantial loss of data.  
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Subject mean Total Timepoints Remaining % Timepoints Timepoints Remaining % Time points Timepoints Remaining % Time points Timepoints Remaining % Time points 
No. FDFSL (mm) Timepoints Censored  Timepoints Censored Censored  Timepoints Censored Censored  Timepoints Censored Censored  Timepoints Censored

1 0.13 995 102 893 10.3 158 837 15.9 705 290 70.9 842 153 84.6
2 0.06 995 18 977 1.8 36 959 3.6 81 914 8.1 142 853 14.3
3 0.11 995 48 947 4.8 68 927 6.8 561 434 56.4 752 243 75.6
4 0.06 995 2 993 0.2 4 991 0.4 44 951 4.4 70 925 7.0
5 0.05 995 44 951 4.4 54 941 5.4 69 926 6.9 93 902 9.3
6 0.06 995 4 991 0.4 8 987 0.8 42 953 4.2 66 929 6.6
7 0.08 995 6 989 0.6 12 983 1.2 399 596 40.1 562 433 56.5
8 0.05 995 12 983 1.2 20 975 2.0 45 950 4.5 79 916 7.9
9 0.18 995 158 837 15.9 204 791 20.5 925 70 93.0 975 20 98.0

10 0.14 995 18 977 1.8 30 965 3.0 701 294 70.5 847 148 85.1
11 0.41 245 206 39 84.1 219 26 89.4 237 8 96.7 243 2 99.2
12 0.13 245 26 219 10.6 32 213 13.1 130 115 53.1 170 75 69.4
13 0.09 245 0 245 0.0 0 245 0.0 92 153 37.6 132 113 53.9
14 0.10 245 6 239 2.4 10 235 4.1 148 97 60.4 185 60 75.5
15 0.08 245 6 239 2.4 12 233 4.9 81 164 33.1 116 129 47.3
16 0.09 245 13 232 5.3 24 221 9.8 89 156 36.3 127 118 51.8
17 0.07 245 4 241 1.6 8 237 3.3 39 206 15.9 57 188 23.3
18 0.08 245 14 231 5.7 22 223 9.0 90 155 36.7 126 119 51.4
19 0.07 245 8 237 3.3 14 231 5.7 68 177 27.8 104 141 42.4
20 0.09 245 14 231 5.7 24 221 9.8 108 137 44.1 141 104 57.6
21 0.46 245 115 130 46.9 138 107 56.3 206 39 84.1 230 15 93.9
22 0.09 245 6 239 2.4 10 235 4.1 118 127 48.2 156 89 63.7
23 0.14 995 83 912 8.3 125 870 12.6 856 139 86.0 931 64 93.6
24 0.31 995 471 524 47.3 486 509 48.8 644 351 64.7 733 262 73.7
25 0.25 995 333 662 33.5 407 588 40.9 910 85 91.5 973 22 97.8
26 0.52 495 334 161 67.5 355 140 71.7 438 57 88.5 473 22 95.6
27 0.10 495 18 477 3.6 28 467 5.7 227 268 45.9 297 198 60.0
28 0.09 495 36 459 7.3 46 449 9.3 102 393 20.6 149 346 30.1
29 0.07 495 22 473 4.4 34 461 6.9 64 431 12.9 98 397 19.8
30 0.12 495 60 435 12.1 70 425 14.1 155 340 31.3 200 295 40.4
31 0.07 495 27 468 5.5 39 456 7.9 47 448 9.5 65 430 13.1
32 0.09 495 25 470 5.1 29 466 5.9 99 396 20.0 141 354 28.5
33 0.09 495 36 459 7.3 48 447 9.7 138 357 27.9 191 304 38.6
34 0.10 495 6 489 1.2 12 483 2.4 179 316 36.2 253 242 51.1
35 0.09 495 35 460 7.1 60 435 12.1 127 368 25.7 167 328 33.7
36 0.11 495 59 436 11.9 75 420 15.2 114 381 23.0 149 346 30.1
37 0.10 495 70 425 14.1 80 415 16.2 106 389 21.4 132 363 26.7
38 0.07 495 18 477 3.6 33 462 6.7 63 432 12.7 89 406 18.0
39 0.31 495 206 289 41.6 228 267 46.1 414 81 83.6 468 27 94.5
40 0.15 495 119 376 24.0 131 364 26.5 186 309 37.6 227 268 45.9
41 0.17 495 98 397 19.8 149 346 30.1 421 74 85.1 458 37 92.5
42 0.18 495 81 414 16.4 111 384 22.4 359 136 72.5 413 82 83.4
43 0.10 495 14 481 2.8 24 471 4.8 247 248 49.9 335 160 67.7
44 0.09 495 4 491 0.8 8 487 1.6 183 312 37.0 265 230 53.5
45 0.15 495 89 406 18.0 109 386 22.0 303 192 61.2 393 102 79.4
46 0.14 495 69 426 13.9 78 417 15.8 214 281 43.2 299 196 60.4
47 0.12 495 24 471 4.8 40 455 8.1 413 82 83.4 476 19 96.2

FD > 0.5 mm, 0B+1F FD > 0.5 mm, 1B+2F FD > 0.2 mm, 0B+1F FD > 0.2 mm, 1B+2F

 

Table 2.1. Table showing motion statistics and the loss of data using two different censoring 
FDpower thresholds of 0.2 mm and 0.5 mm.  Censoring at a higher threshold of FD power >0.2 mm 
causes significant loss of data (subjects whose data is unusable due to less than 300 time points 
present per subject is highlighted in red) compared to a lower threshold of FD power >0.5 mm. 
With a higher censoring threshold of 0.2 mm, almost half of the subjects would have to be 
eliminated from the study as they do not have the minimum required data of 3 minutes necessary 
for reliable estimation of RSFC metrics. 
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Figure 2.10. The absence of motion artifacts for the four cases of motion censoring. (A) The 
motion-BOLD relationships indicate very small positive motion–BOLD relationships in the 
visual cortex, which are removed by censoring the volumes at a lower (more stringent) threshold. 
(B) Thresholded motion-BOLD relationships for the figures shown in A. It must be noted that 
none of the volumes exhibited significant correlations for all the four scenarios of censoring. (C) 
The FD-RSFC correlations, which can be used to detect the presence of the motion induced 
distance dependent FC artifact, shows that for all the cases of censoring, the artifact was absent.  
The color of the linear fit line indicates significance of the fit with red indicating significance 
(p<0.05, FDR corrected) and yellow indicating nonsignificance (p>0.05). A stricter threshold for 
censoring or a larger censoring window does not seem to have a detectable improvement in data 
quality. 

 

2.3.5 The impact of motion on functional connectivity estimates of degree centrality and 

PCC-FC 

As seen earlier, motion does affect functional connectivity and other measures derived from it 

even with EPI-PACE acquisition. In order to understand the residual relationships between 



43 
 

functional connectivity metrics and motion, we calculated the Pearson’s correlation coefficient 

between head motion, i.e. mean [FDvox], and Degree Centrality (DC) (Figure 2.11) and between 

mean[FDvox] and PCC seed based functional connectivity (Figure 2.12), for all the subjects as 

well as separately in the high-motion and the low-motion subgroups. As shown in Figure 2.11, 

degree centrality was relatively robust to the influence of motion artifact due to Z- 

standardization [2]. This implies that nuisance variable regression and censoring did not have 

much impact on the FD-DC correlations. However, we found large positive correlations in the 

sensorimotor cortex, and the correlations seemed to increase as motion artifacts were removed 

from the data via motion regression and censoring as shown in Figure 2.11. A more detailed 

image of motion-DC correlation in sensorimotor cortex is shown in Figure 2.13. This effect was 

observed both in the high-motion and the low-motion subgroups. A similar result was reported 

by Pujol et al., indicating that there is a component of motion related connectivity changes that 

may have a neural basis and may not be just a consequence of the motion artifact [33].  The FD-

PCC functional connectivity correlation map (shown in Figure 2.12) identifies the regions whose 

correlation with PCC varies as a function of subject head motion. We observed significant 

(p<0.05, FDR corrected) negative correlations between residual motion and PCC-FC in the 

frontal regions in the low-motion subgroup and a significant reduction in the positive 

correlations especially in subjects with high motion as GS, motion regression, and censoring 

were performed. This highlights their relative effectiveness in reducing motion artifacts, 

particularly in subjects with high head motion. 
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Figure 2.11. Unthresholded spatial map of the Pearson’s correlation coefficient between the 
degree centrality (DC) obtained from PACE-corrected BOLD data and residual head motion as 
captured by mean [FDvox] across subjects, shown for all subjects (left), in the high motion 
(middle) and low motion (right) groups separately. Large positive correlations were observed in 
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the sensorimotor cortex in the low-motion subgroup as well as in the high motion subgroup with 
nuisance variable regression and censoring. This illustrates that some changes in functional 
connectivity might have a neural origin and it could be confounded with changes due to motion 
artifact as even motion artifact causes changes in functional connectivity. 

 

 

Figure 2.12. Correlation between seed based functional connectivity of PCC (PCC-FC) and head 
motion (as captured by mean [FDvox] across subjects) shown for all subjects (left), in the high 
motion (middle) and low motion (right) groups separately. Large correlations were observed 
across the brain in both low-and high-motion subgroups. With motion censoring and GSR, the 
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correlations in the high motion group were reduced. This illustrates their relative effectiveness in 
reducing motion artifacts particularly in subjects with high head motion. 

 

 

Figure 2.13. Figure showing the thresholded (p<0.05) correlation (R) map of degree centrality 
(DC) with head motion of the brain after nuisance variable regression including CSF, WM, 
Friston-24 motion regression and motion censoring in all the subjects. Significant positive 
correlations can been observed between residual head motion in PACE-corrected data and DC in 
the sensorimotor cortex. This shows that DC in the sensorimotor could possibly be attributed to 
neural processes responsible for head motion. 

 

A two-tailed t-test was performed across subjects in the high and low motion subgroups 

separately by using individual subject DC maps as the sample to find consistent patterns across 

the motion subgroups. For both sub-groups, a similar trend is observed across all the different 

nuisance regressors used (Figure 2.14). This further demonstrates that degree centrality is robust 

to various motion correction strategies, and similar results can be obtained with different motion 

populations. In Figure 2.15, we show a similar result with PCC seed based functional 
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connectivity. The regions commonly associated with the the Default Mode Network (DMN) 

were observed in the PCC seed based FC map including regions such as the medial prefrontal 

cortex (mPFC), inferior parietal lobe (IPL), and lateral temporal cortex (LTC), without the GSR 

[35, 36, 37]. But with GSR, anti-correlated and task-positive networks such as the dorsal 

attention system and the hippocampal-cortical memory system were observed as expected [38]. 

However, it is important to note that in the high-motion subjects with GSR, the mPFC which is 

an integral part of DMN, was absent, whereas it was present in the low-motion subjects even 

after GSR. This illustrates that GSR is also likely removing neural components along with 

motion induced artifacts. Other than mPFC, other significant regions were commonly found in 

both the low-motion and the high-motion subgroups. Therefore, care must be taken when GSR is 

used in the preprocessing pipeline in the context of PACE-corrected BOLD data as well. 
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Figure 2.14. A comparison of cortical hubs (p<0.05, FDR corrected) as revealed by Degree 
Centrality (DC). This figure is shown for both high motion and low motion subjects across 
motion correction strategies. Similar regions as cortical hubs were observed in the high motion 
and low motion subgroups, with significant regions in the frontal areas, precuneus, cuneus, the 
mid-brain, sub-lobular regions and the limbic lobe. This shows that degree centrality is robust to 
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various motion correction strategies and similar results can be obtained with different motion 
populations. 

  

 

Figure 2.15.  A comparison of regions with significant correlations (p<0.05, FDR corrected) with 
posterior cingulate cortex (PCC: 0,-53,26; 10 mm diameter sphere) as the seed region (PCC-FC).  
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This figure is shown for both high motion and low motion subjects across motion correction 
strategies. With the addition of GSR, anticorrelated networks were observed. In high-motion 
subjects with GSR, the correlation between medial prefrontal Cortex (mPFC) and PCC was 
reduced to chance levels, while it was still present in the low-motion subjects. This illustrates 
that GSR is also likely removing neural components along with motion induced noise signal. 

 

2.3.6 Motion-BOLD relationships in deconvolved BOLD data 

BOLD data used in the deconvolution model was corrected using PACE as well as retrospective 

techniques such as nuisance variable regression. However, the motion induced distance 

dependent functional connectivity artifact was present in deconvolved data estimated from raw 

BOLD data processed without GSR (Figure 2.16A) as well as with GSR (Figure 2.16B), mainly 

in the high-motion subgroup which is not surprising. However, the low-motion sub-group was 

relatively free from motion artifacts, as observed from the corresponding motion-BOLD 

correlations (Figure 2.17 as none of the motion-BOLD relationships achieved significance) as 

well as the distance dependent artifact (slope of the plot was very small) (Figure 2.16B). Since 

there are changes in the BOLD signal due to motion, it could potentially affect not just static 

functional connectivity (SFC) measures, but also other measures such as dynamic functional 

connectivity estimates (DFC), effective connectivity (EC) and multivariate pattern analyses 

(MVPA) results. A thorough investigation is required as to how the changes in signal intensity 

propagate into higher analyses to cause specific and structured artifacts. 
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Figure 2.16. Unthresholded Motion-BOLD correlations and FD-RSFC correlations obtained 
from deconvolved BOLD data, i.e. from latent neural signals. Blind deconvolution was applied 
to PACE-corrected BOLD data subjected to the following pre-processing steps: realignment, 
detrending, CSF, WM and motion regression without GSR (A) and with GSR (B). The motion 
artifacts are still present in the data after deconvolution, mainly in subjects with high motion. 
GSR seems to distort the FD-RSFC correlations in subjects with high motion, though motion 
artifacts were absent in the low motion subgroup.  

 

 

Figure 2.17. Thresholded Motion-BOLD correlations (p<0.05, FDR corrected) obtained from 
deconvolved BOLD data, i.e. from latent neural signals. Blind deconvolution was applied to 



52 
 

PACE-corrected BOLD data subjected to the following pre-processing steps: realignment, 
detrending, CSF, WM and motion regression without GSR (A) and with GSR (B). 

 

2.3.7 Neural correlates of head motion 

In order to identify neural correlates of head motion, we utilized latent neural signals obtained 

from hemodynamic deconvolution only in the low-motion subject sample, as the data for these 

subjects were relatively free from motion artifacts as seen in Figure 2.16 and Figure 2.17. In 

these subjects, we estimated the correlation coefficient between the deconvolved BOLD signal, 

i.e. latent neural signals, and FDvox. A few significant voxels exceed the threshold (p<0.001, 

uncorrected) without GS regression in the cerebellum. But with GS, many regions which could 

potentially be associated with neural processes underlying head movements [39], were identified. 

These included areas in cerebellum, lateral globus pallidus, insula, thalamus, medial frontal 

gyrus, ventral anterior cingulate and parahippocampal gyrus as shown in Figure 2.18. Although it 

is possible that these correlations could be artifactual, it is unlikely given the relative absence of 

motion artifacts in the low-motion sub-group.  
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Figure 2.18 Thresholded T maps in the brain that represent significant correlation (p<0.001) 
between the deconvolved BOLD signal (i.e. latent neural signals) and head motion as measured 
by FDvox across subjects in the low motion subgroup. Some areas such as Thalamus, 
Cerebellum, Insula, Globus Pallidus might play a role in controlling head movements and might 
indicate neural effects rather than motion artifacts 
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2.4 Discussion 

This section is organized as follows. First, we discuss the principal advantages of using PACE 

for controlling head motion artifacts in resting state fMRI data. Next, we discuss the 

effectiveness of various retrospective motion correction strategies when used in combination 

with PACE. Subsequently, we discuss identifying and separating neural correlates of head 

motion from motion artifacts using deconvolved PACE-corrected BOLD data. This is followed 

by a discussion of other potential retrospective motion correction strategies which might benefit 

when used in combination with PACE, but which we have not been investigated here. Finally, 

we discuss some limitations of the current study which need to be kept in mind while interpreting 

our data. 

2.4.1 The principal advantages of prospective motion correction (PACE)  

In this study, we examined the effectiveness of PACE in reducing motion artifacts in resting state 

fMRI data. In combination with the retrospective motion correction methods, using PACE-

corrected EPI sequence eliminated most of the motion artifacts. Specifically, we found that 

PACE provides two primary advantages over conventional EPI sequences. First, PACE was 

effective in eliminating significant negative motion-BOLD relationships. Significant voxel-wise 

negative motion-BOLD relationships are typically associated with large signal dropouts caused 

by relatively large head motion [2, 3] when scanned with a typical EPI sequence. Given the 

general difficulty in reducing these negative motion-BOLD replationships, PACE may provide a 

solution to this issue. Second, previous reports have suggested a stringent censoring threshold 

(FDPower>0.5mm) for satisfactorily controlling the level of motion artifacts in resting state fMRI 

data [2, 3, 4]. However, with PACE, we found that censoring with a lower threshold 

(FDPower>0.5mm) and a smaller window around the motion corrupted time-point, provided 
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qualitatively equivalent reductions in the motion artifact. In fact, with this liberal censoring 

strategy, we were able to reduce motion artifacts to almost chance levels even in subjects with 

relatively large motion. This will likely provide significant savings in data which would 

otherwise be lost to censoring. Practically speaking, the amount of data (in terms of total scan 

time for resting state fMRI) usually acquired from clinical populations is small given their 

difficulties in enduring longer scans and also given the fact that resting state scans are tagged 

onto to other studies which consume a bulk of the allotted imaging time. Given this scenario, 

acquiring data with PACE-EPI might result in larger amount of usable data and hence more 

robust analyses. 

2.4.2 Effectiveness of retrospective motion correction methods when used in combination 

with PACE 

Since PACE is a prospective motion correction sequence, the best advances in retrospective 

motion correction can still be used with equal or greater effectiveness when they are combined 

with PACE. The motion parameters captured are residual motion parameters after motion 

correction by PACE, not the actual subject motion. The ability of CSF and WM regression in 

removing the motion induced signal variance in resting state fMRI data is limited as reported by 

previous studies [2, 3], a fact confirmed by our results. We used motion regression by the 

Friston-24 model, which was shown to be the best performing model previously [3, 2] and our 

results confirm the same. Obviously, higher-order motion models might explain larger amount of 

variance for high-motion datasets across the brain, but it comes at the cost of significant loss of 

degrees of freedom and result in a drop in the BOLD sensitivity [40]. 

Though several previous studies recommend the use of GSR for reducing motion artifacts [4, 2, 

33, 8], the effectiveness of GSR in reducing motion artifacts in the BOLD signal as well as 
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lowering FD-RSFC correlations is mixed. Our results (Figure 2.5) are in agreement with the 

previous studies indicating that GSR effectively reduces the positive motion-BOLD relationships 

but increases the negative motion-BOLD relationships [2]. GSR also distorted the FD-RSFC 

correlations (Figure 2.8) considerably [34]. GSR reduced the functional connectivity of medial 

prefrontal cortex (mPFC) with the PCC seed (Figure 2.15), a key component of the default mode 

network, in the high-motion subgroup. Other issues with GSR include the fact that it distorts the 

distribution of correlation values [5] and could alter inter-individual differences at the group 

Level [6, 41]. Given that PACE provides an additional strategy for motion correction, it could be 

used without GSR to achieve better quality data compared to conventional EPI coupled with no 

GSR. On the otherhand, for the proponents of GSR, PACE’s tendency to remove negative 

motion-BOLD relationships may at least partially cancel out the negative motion-BOLD 

relationships introduced by GSR.   

We found censoring high-motion time-points from the data to be the most effective retrospective 

motion correction. With censoring, spurious motion-BOLD relationships (Figure 2.7) and 

distance dependent functional connectivity artifacts (Figure 2.9) were almost eliminated in high-

motion subjects. An extremely important issue, when performing censoring is to determine how 

much resting state data is sufficient for stable and reliable estimation of resting-state functional 

connectivity (RSFC) metrics. Some have suggested at least 4 minutes [3] and others believe that 

3 minutes of RS-fMRI data to be sufficient [2]. While comparing usable data available after 

censoring with PACE and traditional EPI (Table 2.1), we have assumed that one has to have at 

least 3 minutes of data. In addition to scan time, the sampling period (TR) is also an important 

consideration. The value of the FD, used for identifying motion corrupted time-points is 

paramount while censoring as it is heavily dependent on TR.  Sampling the brain at a smaller TR 



57 
 

tends to divide larger motion into smaller components, hence might have different effects on the 

presence of motion artifacts and motion correction. Also, censoring alters the temporal structure 

of the data even if the censored time points are interpolated. This affects frequency based 

analyses, moving window-based dynamic functional connectivity, and effective connectivity 

calculations. So all analyses which require an intact temporal structure of the data might want to 

avoid censoring. In such cases, PACE offers a way of obtaining relatively cleaner data without 

censoring, although motion artifacts cannot be completely eliminated without at least liberal 

censoring even when using PACE. 

The effectiveness of group-level motion correction by including individual motion estimates in 

group-level analyses has been reported before [2, 4]. Group level regression with individual 

motion estimates effectively removes potential motion related artifacts, but may also remove 

changes related to neural activity [33]. Many pathological conditions are associated with changes 

in regional functional connectivity. These changes in connectivity might be biased by the group 

effects of the subject head motion especially in hyperkinetic populations. So it might be difficult 

to separate motion artifacts from disease effects, especially since the effect of interest is 

correlated with head motion. Unfortunately, in these cases group level motion correction cannot 

be performed, so motion correction has to be limited to subject-level motion correction methods. 

As recommended by several previous papers, we think that there are merits to having different 

preprocessing pipelines for groups with different motion profiles as well as when performing 

different analyses, as no single preprocessing procedure is ideal for all cases. Some factors which 

need to be considered  for the acquisition and processing of RS-fMRI data include the repetition 

time TR, use of slice time correction, the imaging sequence to capture the BOLD signal, head 

motion criteria to include a subject fMRI data in the study, the motion profile of the sample and 
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the population to be studied, the model complexity for modeling head motion, the use of global 

signal regression, the threshold used to decide motion corrupted volumes, the number of time-

points left after motion censoring required for the stable estimation of RSFC metrics, the use of 

subject-level motion correction vs. group-level motion correction, and the use of group-level 

motion correction, if the variable of interest is correlated with head motion. The second 

important factor to consider is the objective and analysis of the study. As we have discussed 

earlier, motion censoring effectively precludes many types of analyses such as the ones that use 

hemodynamic deconvolution. Though interpolation has been suggested to reconstruct the 

removed timepoints, the fit could be unreliable as the neighboring points of a motion corrupted 

time point may also be corrupted by motion since multiple timepoints are affected by head 

motion. Another examples relates to the use of group-level motion correction in analyses 

involving clinical populations, especially in hyperkinetic populations where disease status is 

associated with head motion. Group level correction of head motion might remove some of the 

disease related variance. Therefore, a proper choice of the processing pipeline based on the 

motion profile and the planned analyses can reduce motion artifacts while still achieving study 

objectives. 

2.4.3 Identifying and separating neural effects from motion artifacts 

It is expected that in RS-fMRI experiments, some low-frequency BOLD fluctuations could 

potentially correlate with head motion because of the latter’s neural origin [8]. In our results 

(Figure 2.11, Figure 2.13), we did observe correlations between head motion and degree 

centrality in the motor cortex, which is unlikely to be solely due to motion artifacts. Not just at 

the connectivity level but even at the BOLD signal level, we observed (Figure 2.18) that the 

deconvolved BOLD signal (i.e. latent neural signals which are devoid of hemodynamic delay 
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due to head motion) correlated with FDvox in several regions in the brain that play an important 

role in the neural control/execution of head movements. The use of motion derived regressors in 

preprocessing, might reduce the signal variance associated with neural correlates of head motion. 

This could impact our ability to identify neural effects of head motion. The relationship between 

head motion and brain connectivity is bi-directional relationship, i.e. differences in brain 

connectivity  could be associated with head motion in the scanner [10], just as head motion could 

cause artifactual changes in connectivity. Some have hypothesized that this might suggest that 

reduced connectivity in regions corresponding to the default mode network might predict how 

still the person can stay in the scanner [10]. These neural correlates of motion can cause 

functional connectivity changes that represent genuine variations of neural activity in certain 

regions, which can be mistaken for a motion artifact. Other areas such as the regions in the visual 

cortex have also been speculated to be a neural correlate of head motion [33]. Different clinical 

populations exhibit characteristic spatio-temporal motion patterns that can be associated with 

distinct motion artifacts for various pathological conditions [33], thus really complicating the 

distinction between disease changes in connectivity and motion artifacts and limiting the use of 

functional connectivity as effective disease biomarkers  [42]. Given this scenario, it is all the 

more advantageous to prospectively correct for motion so that the resulting data undergoes as 

little retrospective correction as possible, so that the component of motion-related changes that 

may represent system-specific neural activity are preserved. 

The observed BOLD signal is a convolution of the latent neural fluctuations with the 

Hemodynamic Response Function (HRF). Resting state BOLD data could be deconvolved [28] 

to remove the spatial heterogeneity in the latency of the HRF. The fidelity of deconvolution can 

be affected not only by motion censoring (scrubbing), but also when motion artifacts are present 
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in the data. Therefore, sufficient subject level motion correction must be performed at the 

individual level, and it should be ensured that the data is free from motion artifacts before 

deconvolution is performed to infer the latent neuronal activity. In subjects with low-head 

motion, PACE in combination with nuisance signal regression was successful in elimination of 

motion effects as spurious motion-BOLD relationships were eliminated (Figure 2.17)  and the 

slope of the plot illustrating motion induced distance dependent connectivity artifact is very 

small (Figure 2.16). Since there are changes in the BOLD signal due to motion, it could 

potentially affect not just static functional connectivity (SFC) measures, but also other measures 

such as dynamic functional connectivity estimates (DFC), effective connectivity (EC) and 

multivariate pattern analyses (MVPA) results. A thorough investigation is required as to how the 

changes in signal intensity propagate into higher analyses to cause specific and structured 

artifacts. 

2.4.4 Other motion correction methods  

Many advances in retrospective motion correction methods, which involve slight modifications 

in the traditional preprocessing pipeline, have been reported to be beneficial in ameliorating 

motion artifacts. These methods can be used in combination with PACE for more effective 

reduction of motion artifacts. They include the usage of time series based or wavelet-based 

despiking [43], using aCompCor (anatomical ComCor) [44] for nuisance signal regression 

instead of mean CSF and WM signals, using edge voxel information rather than traditional 

motion parameters [45], ANATICOR, which uses local white matter regressors coupled with 

despiking [34] and ensures uniform smoothing in the entire data to further reduce the effects of 

inter-individual differences in head motion [46]. The voxel-wise estimates of head motion are 

derived from volume–based realignment parameters and their accuracy is limited by the accuracy 
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of the estimation of the volumetric realignment parameters. Therefore, slice wise parameter 

measures might give a better estimate of the actual voxel-wise motion for every voxel in the 

brain. As rapid head movements between TRs can have a differential effect on different slices in 

a single volume and cannot be adequately modeled by volume based realignment parameters, use 

of these slice-wise estimates may aid in the calculation of voxel-wise displacements and 

correction of motion induced signal changes [40]. While comparing motion-prone clinical 

populations with healthy controls at the group level, the use of Regional Displacement 

Interaction (RDI), which would encapsulate motion information in the voxel-wise metrics rather 

than use a summary motion statistic could further correct for motion artifacts and preserving 

neuronal effects [42]. 

2.5 Limitations 

The number of subjects we have used for this study (N=47) is reasonable for typical fMRI 

studies, but small compared to other reports which have evaluated restrospective strategies using 

large databases (N>100). Due to the nature and effect sizes of motion artifacts, sample size can 

have a bearing on the results. Therefore, our results should be confirmed with a larger sample. 

Also, phenotypic factors such as age can have a bearing on motion artifacts. Our sample was 

homogeneous in this respect (20 male/27 females, age 25.1 ± 5 years) and hence did not sample 

the entire spectrum observed in the general population. Since we did not use external motion 

tracking devices to quantify head motion, the accuracy and reliability of image-based motion 

metrics used for prospective and retrospective correction of head motion could not be 

independently validated. Since PACE is a prospective motion correction method, we might not 

know the actual head movement of the subject, but only the residual motion of the subject on the 
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scanner coordinates. Therefore, it is impossible to directly compare data with and without PACE 

correction in a time-locked manner. 
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Chapter 3 

Supervised Machine Learning for Neuroimaging-based Diagnostic 
Classification 

 
Abstract 
With recent advances in neuroimaging, machine learning and the availability of large datasets, 

the field of neuroimaging has moved from identifying group differences of univariate measures 

to single subject predictions using multivariate analyses. With high classification accuracies 

reported using single-site data acquisitions and relatively lower classification accuracies with 

multisite acquisitions, there are growing concerns about the generalizability of machine learning 

classifiers across different demographic/phenotypic variables including acquisition sites and age 

groups. To evaluate the generalizability of machine learning classifiers across heterogeneous 

populations, we investigated four neurological diseases: Autism Spectrum Disorder (ASD), 

Attention Deficit Hyperactivity Disorder (ADHD), Post-traumatic Stress Disorder (PTSD) and 

Alzheimer’s Disease (AD). We applied 18 different types of machine learning classifiers based 

on diverse principles to datasets where the training/validation and the hold-out test data belonged 

to samples with the same diagnosis but differing in either the age range or the acquisition site. 

Our results indicate that overfitting can be a huge problem in homogeneous datasets, especially 

with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the 

general disease population. Further, different classifiers tend to perform well on different 

datasets. In order to address this, we propose a consensus classifier by combining the predictive 

power of all 18 classifiers. The consensus classifier was less sensitive to unmatched 

training/validation and hold-out test data. Finally, we combined feature importance scores 

obtained from all classifiers to infer the discriminative ability of connectivity features. The 

functional connectivities thus identified were robust to classification algorithm used, age and 
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acquisition site differences, had diagnostic predictive ability in addition to statistical separation 

between the groups. The connectivities thus identified could provide robust inferences about the 

neural basis of underlying disorders. 

3.1 Introduction 

Currently, the identification of many neurological disorders are based on subjective diagnostic 

criteria. The development of objective diagnostic tools is a work in progress in the field of 

neuroimaging with many promising leads. Univariate between-group differences in 

neuroimaging between healthy controls and clinical populations are not yet sufficiently 

predictive of disease states at the individual level. For automated disease diagnosis, a machine 

learning classifier is trained to model the relationship between features extracted from brain 

imaging data and the disease labels of individuals in the training dataset (the disease labels are 

typically determined via clinical assessment by a licensed physician) and the model is then used 

to predict the diagnostic label of a new and unseen subject drawn from a test dataset.  However, 

many challenges to this paradigm being employed in practice remain. A few of them are: (i) 

Lack of availability of large clinical imaging datasets, (ii) Challenges in generalizing results 

across study populations, (iii) Difficulty in identifying reliable image-based biomarkers which 

are robust to progress and maturation of the disease, and (iv) Variability in classifier 

performance. Many of these issues are interrelated. In fact the ultimate goal of machine learning 

based diagnostic classification is not just to achieve high classification accuracy but also good 

generalizability to unseen data with varying characteristics [1]. To be useful in clinical settings, 

machine learning classifiers should be generalizable to the wider population and this can be 

achieved by including data from several imaging sites [2].  
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The main reason for the failure of identification of precise neuroimaging based disease 

biomarkers, despite high accuracies reported in many neuroimaging studies is that many of these 

studies use small, biologically homogenous samples and generalizing their results to larger 

heterogeneous disease populations is difficult. Single study analyses in which the training and 

the test data are from the same acquisition site gives higher classification accuracies than in the 

cases when they are from distinct imaging sites [3]. A classifier that works well on a particular 

dataset might fail to classify with good accuracy on a different dataset [2]. These prior findings 

indicate that a classifier may achieve high accuracy in a given data set even with cross-

validation, but the accuracy may drop significantly when the classifier is used on a more general 

population which was not used in cross-validation as was observed with Autism [4]. 

Generalizability of the classifiers cannot be assessed using very few samples from a single site 

but can be shown by including data from various imaging sites. Classifiers which perform well 

on small training sets generalize poorly, and hidden correlations in the training and validation 

sets might lead to overoptimistic performance of the classifier [5]. This is also borne out by the 

observation that overall performance accuracy decreases with sample size [6]. Hence we should 

be extremely cautious in interpreting over-optimistic classification performance results from 

small datasets. 

Classification across heterogeneous populations with considerable variation in demographic and 

phenotypic profiles, although desirable for generalizability, is extremely challenging, particularly 

when neuroimaging data is pooled from multiple acquisition sites [7]. Variance introduced in the 

data due to scanner hardware, imaging protocols, operator characteristics, demographics of the 

regions and other factors that are acquisition site specific, can affect the classification 

performance. The image-based biomarkers thus identified must be reliable and consistent across 
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imaging sites and age ranges to be useful clinically. The added difficulty with the plasticity, and 

the dynamic adaptability of the brain further complicates the use of brain-derived biomarkers for 

classification as the connectivity trajectories might diverge with disease maturation. This further 

increases the difficulty in determining imaging based biomarkers with certainty and reliability 

across populations [8].  

Given the difficulties in disease classification with multisite studies, appropriate choice of 

features which are reliable and sensitive to underlying disease is the primary motivating factor in 

our choice of resting-state functional connectivity (RSFC) as features. RSFC measures the 

spontaneous low-frequency fluctuations between remote regions in the brain in baseline 

functional magnetic resonance imaging (fMRI) data and is typically estimated using the 

Pearson’s correlation coefficient. It has been extensively used to characterize the functional 

architecture of the brain both in healthy and clinical populations. Consistency and reliability of 

RSFC measures across subjects and scanning sites are of prime importance for its use in disease 

classification. RSFC has been shown to have moderate to high reliability and reproducibility 

across healthy [9, 10, 11, 12, 13, 14, 15, 16, 17], clinical [18, 19], pediatric [19] and elderly [20, 

21] populations. It has also been shown to have long-term test-retest reliability [22, 23, 24]. 

Resting-state functional connectivity is altered in clinical populations such as Attention Deficit 

Hyperactivity Disorder (ADHD), Depression, Autism, Schizophrenia, Post-traumatic Stress 

Disorder (PTSD) and Alzheimer’s disease (AD). Hence there is growing optimism in the field 

that modulations in RSFC can help us understand the pathogenesis behind several neurological 

and psychiatric disorders due to its sensitivity to changes in development, aging and disease 

progression. These factors, combined with the ability to standardize protocols, have paved the 

way for data aggregation across multiple sites leading to increased statistical power and the 
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generalizability of the findings, and have catapulted RSFC into increasing prominence for 

diagnostic classification. Given the relatively lower prevalence of certain disorders and given the 

costs and time associated with aggregating large datasets, easier pooling of data from multiple 

sites is critical. RSFC protocols are simple to run with little overheads and hence it has been 

typically added into different imaging protocols employing various clinical populations. Also, 

the lack of necessity to comply with task instructions particularly in uncooperative clinical 

populations, there is a considerable rise in interest in the use of resting-state fMRI (Rs-fMRI) in 

patients with brain disorders [8].  

With the advent of big data initiatives such as Autism Brain Imaging Database (ABIDE), where 

a large amount of data is collected from multiple sites, there is renewed optimism for accurate 

and reliable disease classification [2]. Generalizability of classifier performance can be 

increased, simulataneously avoiding overfitting, when we have large training data sizes. Another 

consequence of such big data initiatives and exploratory data analyses is that reliable and 

repeatable studies for testing novel hypotheses about the identification of relevant clinical 

biomarkers has taken ground. In this study we used RSFC measures to examine their efficacy in 

diagnostic classification using 18 different classifiers in 4 disease populations: (i) Autism Brain 

Imaging Data Exchange (ABIDE) for Autism Spectrum Disorder (ASD), (ii) ADHD-200 dataset 

for Attention Deficit Hyperactivity Disorder (ADHD),  (iii) PTSD data which were acquired at 

the Auburn MRI Research Center for Post-Concussion Syndrome (PCS) and Post-traumatic 

Stress Disorder (PTSD) and, (iv) Alzheimer’s Disease Neuroimaging Initiative (ADNI) for Mild 

Cognitive Impairment (MCI) and Alzheimer’s disease (AD). ABIDE and ADHD-200 datasets 

have more than 500 subjects whereas ADNI and PTSD data have around 100 subjects. This way, 

we were able to test the generalizability of classifiers under various conditions: (a) Using various 
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disorders whose origins are likely different, (b) Using both smaller and larger size of datasets, (c) 

Using data obtained from both multiple sites as well as single-site, and finally, (d) Using both 

homogeneous and heterogeneous samples from the population. 

There are three primary goals of this paper. The first goal is to understand the generalizability of 

machine learning classifiers in the presence of disease and population heterogeneity, variability 

in disease across age, and variations in data caused by multisite acquisitions. We report a biased 

estimation of cross-validation accuracy and an unbiased estimate of performance on a completely 

independent and blind hold-out test dataset. The entire datasets were split into training/validation 

and hold-out test data (with both splits containing both controls and clinical populations) and the 

cross-validation accuracy was estimated using the training/validation data by splitting it further 

into training data and validation data. The hold-out test datasets were constructed under three 

different scenarios: (i) subjects with different, non-overlapping age range compared to 

training/validation data, (ii) subjects drawn from different imaging sites compared to 

training/validation data and, (iii) training/validation and hold-out test data matched on all 

demographics including age as well as acquisition site. We hypothesized that testing our 

classifiers on homogenous populations could give us optimistic estimates of classifier 

performance, which might not generalize well to the real world classification scenarios 

encountered in the clinic. Therefore, by comparing a holdout test data with the same disease 

diagnosis and matched in age and acquisition site as well as unmatched to the training/validation 

data, would give us a better idea of generalizability and robustness of the classifiers.  

The second goal is to understand how overfitting can occur in the context of machine learning 

applied to neuroimaging-based diagnostic classification, whether in feature selection or 

performance estimation. We demonstrate how smaller datasets might give unreliable estimates of 
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classifier performance which could lead to improper model selection further leading to poor 

generalization across the larger population. The final goal of this study is to understand how 

specific functional connectivity patterns encode disease states and might possess predictive 

ability (as opposed to conventionally reported statistical separation) to distinguish between 

health and disease in novel individual subjects. We set out to identify these connectivity patterns 

which were not only statistically separated, but also were important for classification irrespective 

of age mismatch, acquisition site mismatch or the type of classifier used. These connectivity 

patterns must therefore be relatively robust to the age and acquisition site variations and their 

predictive ability must not be limited to a single classifier or a particular group of classifiers. In 

order to accomplish this, we propose feature ranking from multiple classifiers and data splits to 

construct a single score for the predictive ability of the connectivity features which can 

potentially be useful in clinical settings.  

To achieve our goals, we applied 18 machine learning classifiers based on different principles 

including probabilistic/Bayesian classifiers, tree-based methods, kernel based methods, a few 

architectures of neural networks and nearest neighbor classifiers to RSFC metrics derived from 

ABIDE, ADNI, ADHD-200 and PCS/PTSD datasets described above.  7 of the 18 classifiers 

were implemented in a feature reduction framework called Recursive Cluster Elimination (RCE). 

We also built a consensus classifier which leverages the classifying power of all these classifiers 

to give reliable and robust predictions on the hold-out test dataset. 

3.2 Materials and Methods 

3.2.1 Data  

Simulated Data 
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We first used simulated data to validate the classifiers using a known ground truth. We simulated 

1500 normally distributed features for three classes, each feature with means of 0.2, 0.5 and 0.8 

for each of the three classes. The standard deviation (SD) for each feature was incremented from 

0.1 to 0.8 in steps of 0.1 to test the classifiers’ robustness to noise. Since many classifiers model 

the data as multivariate Gaussians, we expect to get good performance from most classifiers at 

lower standard deviations. 

Autism Spectrum Disorder (ASD) 

ASD in a heterogeneous neurodevelopmental disorder in children characterized by impaired 

social communication, repeated behaviors and restricted interests. With a relatively high 

prevalence of 1 in 68 children, it is one of the most common developmental disorders in children 

[25]. According to DSM-V, ASD encompasses several disorders previously considered distinct 

including Autism and Asperger’s Syndrome [26]. Asperger’s Syndrome is considered to be a 

milder form of ASD, with patients in the higher functioning end of the spectrum. Autism is 

associated with large scale network disruptions of brain networks [27, 28, 29], thus making it an 

excellent candidate for disease classification using RSFC.  

Resting state fMRI data from 988 individuals from the Autism Brain Imaging Data Exchange 

(ABIDE) database [29] was used for this study. The imaging data were acquired from 15 

different acquisition sites including California Institute of Technology (CALTECH), Carnegie 

Mellon University (CMU), NYU Langone Medical Center (NYU), Kennedy Krieger Institute 

(KKI), University of Ludwig Maximilians University Munich (MAX-MUN), Pittsburgh School 

of Medicine (PITT), San Diego State University (SDSU), Olin Institute of Living at Hartford 

Hospital (OLIN), University of California, Los Angeles (UCLA), University of Leuven 

(LEUVEN), Trinity Centre for Health Sciences (TRINITY), University of Utah School of 
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Medicine (USM), Yale Child Study Center (YALE), University of Michigan (UM) and Social 

Brain Lab (SBL). The data consists of 556 healthy controls, 339 subjects diagnosed with Autism 

and 93 with Asperger’s Syndrome. The distribution of the data used in this study with the 

acquisition site can be found in Table 3.1. Each subject’s information was fully anonymized and 

was approved by the local Institutional Review Boards of the respective data acquisition sites. 

More details about the data including scanning parameters can be obtained from 

http://fcon_1000.projects.nitrc.org/indi/abide/index.html. 

 

 

Table 3.1. The site distribution for the ABIDE data set used in our study. We used a total of 988 
subjects with 556 controls, 93 subjects with Asperger’s syndrome and 339 with Autism. 

 

http://fcon_1000.projects.nitrc.org/indi/abide/index.html
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Attention Deficit Hyperactivity Disorder (ADHD) 

ADHD is one of the most common neurodevelopmental disorders in children with a childhood 

prevalence ratio as high as 11%, with significant increases in diagnoses every year [30]. ADHD 

diagnoses can be categorized into three subtypes based on the symptoms exhibited, including 

ADHD-I (Inattention) for persistent inattention, ADHD-H (Hyperactivity) for hyperactivity-

impulsivity and ADHD–C (Combined) for a combination of both symptoms. There has been a 

massive increase in research efforts for automated detection of ADHD due to the ADHD-200 

competition in 2011 [31].  

930 subjects were selected from the ADHD-200 dataset, which was used for the ADHD-200 

challenge [31]. The sample consists of 573 healthy controls, 208 subjects with ADHD-C 

(Combined), 13 subjects with subtype ADHD-H (Hyperactivity), and 136 subjects with ADHD-I 

(Inattentive). Imaging data for a few subjects were not included, as they did not pass the quality 

control (QC) thresholds. The subjects were scanned at seven different acquisition sites as shown 

in the Table 3.2. The acquisition parameters and other information about the scans be obtained 

from http://fcon_1000.projects.nitrc.org/indi/adhd200/. 

 

 

http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Table 3.2. The site distribution for the ADHD-200 data across the seven imaging sites used in 
our study. We did not include the data from Brown University in our study since their diagnostic 
labels were not released. 

 

Post-Traumatic Stress Disorder (PTSD) & Post-Concussion Syndrome (PCS) 

PTSD is a debilitating condition which develops in individuals exposed to a traumatic or a life 

threatening situation. The estimated lifetime prevalence of PTSD among adult Americans is 

6.8% [32]. Post-Concussion syndrome (PCS) consists of a set of symptoms that occur after a 

concussion, due to an injury to the head. PTSD can also be triggered by a traumatic brain injury, 

which is especially common in combat veterans. Such subjects display symptoms of both PCS 

and PTSD. Head injuries and traumatic experiences in the battlefield could be the main reasons 

for an unusually high prevalence rate of PTSD in combat veterans with a current prevalence of 

12.1% in Gulf War Veteran population [33] and 13.8% in military veterans deployed in 

Afghanistan and Iraq during Operation Enduring Freedom and Operation Iraqi Freedom [34], 

respectively. Unfortunately, despite the serious nature of the problem, the current methods for 

diagnosis of the disease rely on subjective assessments of symptoms and psychological 

evaluations. An objective assessment of these disorders using image based biomarkers would 

facilitate reliable detection and diagnosis of PTSD and PCS.  

While the three other datasets used in this study are publicly available, PTSD/PCS dataset was 

acquired in-house. 87 active duty male US Army soldiers were recruited to participate in this 

study from Fort Benning, GA and Fort Rucker, AL, USA. In the recruited subjects. 28 were 

combat controls, 17 were diagnosed with only PTSD, while 42 were diagnosed with both PCS 

and PTSD. All subject groups were matched for age, race, education and deployment history. 

The subjects were diagnosed as having PTSD if they had no history of mild Traumatic Brain 

Injury (mTBI), or symptoms of PCS in the past five years, with scores>38 on Checlist-5 (PCL5), 
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and <26 on Neurobehavioral Symptom Inventory (NSI).  Subjects with medically documented 

mTBI, post-concussive symptoms, and scores ≥38 on PCL5 and ≥26 on NSI were grouped as 

PCS+PTSD. The procedure and the protocols in this study were approved by the Auburn 

University Institutional Review Board (IRB) and the Headquarters U.S. Army Medical Research 

and Material Command, IRB (HQ USAMRMC IRB). 

The participants were scanned in a Siemens 3T MAGNETOM Verio Scanner (Siemens 

Erlangen, Germany) with a 32 channel head coil at Auburn University. The participants were 

instructed to keep their eyes open and fixated on a small white cross on a screen with a dark 

background.  A T2* weighted multiband echo-planar imaging (EPI) sequence was used to 

acquire two runs of resting state data in each subject with the following sequence parameters: 

TR=600ms, TE=30ms, FA=55˚, multiband factor=2, Voxel size= 3×3×5 mm3 and 1000 time 

points. Brain coverage was limited to the cerebral cortex, subcortical structures, midbrain and 

pons with the cerebellum excluded. 

Mild Cognitive Impairment (MCI) & Alzheimer’s disease (AD) 

Mild Cognitive Impairment (MCI) can be defined as greater than the normal cognitive decline 

for a given age, but it does not significantly affect the activities of daily life [35]. It has a 

prevalence ranging from 3% to 19 % in adults older than 65 years. Alzheimer’s disease (AD), on 

the other hand, does significantly affect daily activities of the person. It is the most common 

neurodegenerative disorder in adults aged 65 and older. It is characterized by cognitive decline, 

intellectual deficits, memory impairment and difficulty in social interactions. A large percentage 

of MCI patients slowly progress to Alzheimer’s disease, yet the boundaries separating healthy 

aging from early/late MCI and AD is not very precise leading to diagnostic uncertainty in the 
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disease state [36]. Therefore, classifying MCI from AD and healthy older controls is extremely 

crucial and is particularly challenging. 

Resting state functional brain imaging data of 132 subjects were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database. The sample consists of subjects in various 

stages of cognitive impairment and dementia, including 34 subjects with early mild cognitive 

impairment (EMCI), 34 with late mild cognitive impairment (LMCI), 29 with Alzheimer’s 

disease (AD) and finally 35 matched healthy controls. More information about the data used for 

this study along with the image acquisition parameters can be obtained from 

http://adni.loni.usc.edu/. 

3.2.2 Processing of the Rs-fMRI data 

Standard preprocessing pipeline for Rs-fMRI data was implemented using Data Processing 

Assistant for Resting-State fMRI Toolbox (DPARSF) [37]. The preprocessing pipeline consisted 

of removal of first five volumes, slice timing correction, volume realignment to account for head 

motion, co-registration of the T1-weighed anatomical image to the mean functional image, 

nuisance variable regression which included linear detrending, mean global signal, white matter 

and cerebrospinal fluid signals and 6 motion parameters. After nuisance variable regression, the 

data were normalized to the MNI template. The Blood Oxygen Level Dependent (BOLD) time 

series from every voxel in the brain was deconvolved by estimating the voxel-specific 

Hemodynamic Response Function (HRF) using a blind deconvolution procedure to obtain the 

latent neural signals [38]. The data were then temporally filtered with a band pass filter of 

bandwidth 0.01-0.1 Hz. Mean time series were extracted from 200 functionally homogeneous 

brain regions as defined by the CC200 template [39]. After extracting the timeseries, functional 

connectivity (FC) between the 200 regions was calculated as the Pearson’s correlation coefficient 

http://adni.loni.usc.edu/
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between all region pairs giving us a total of 19,900 FC values. These were then used as features 

for the classification procedure. For ADHD and PTSD datasets, we did not have whole brain 

coverage. Therefore, we obtained time series from just 190 regions and 125 regions, 

respectively. The number of FC paths were accordingly lower for these datasets. 

3.2.3 Data splits for training/validation and hold-out test data 

In order to test the generalizability of the classifier models, we split all imaging data into two 

components. Approximately, 80% of the data was used for training/validation, and the remaining 

20% was used as a hold-out test data set. The training/validation datasets were split even further 

for cross-validation in order to estimate the classifier models as we explain later. However, the 

hold-out test datasets were not used in cross-validation; instead, they were used only once with 

the classifier models obtained from cross-validation in order to obtain truly unbiased test 

accuracy on completely unseen data. In a few splits, the training/validation and test data came 

from homogeneous populations, i.e. they were matched for age and acquisition site. In some 

other splits, the training/validation and hold-out test data were not matched, i.e. they had 

different age range or acquisition site. With matched data, it is important to note that 

training/validation and the hold-out test data were matched in age, race, education and gender. In 

the unmatched splits, age/acquisition site was unmatched, while race, gender, education and 

acquisition site/age, respectively, were matched. All these splits on the four datasets are 

summarized in Figure 3.1 and will be elaborated below. 
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Figure 3.1. The age and imaging site split for the training/validation and the test data both for 
binary and multiclass classification scenarios. A) For the ABIDE dataset, we had age- and site-
matched splits as well as unmatched splits for both 2-way and 4-way classifications. In the first 
split, subjects from an age range of 23-37 years were used in training/validation data and the 
subjects from the age range 38-53 years formed the hold-out test data. Second, we performed an 
imaging site split wherein the data from the 12 imaging sites (PITT, OLIN, SDSU, TRINITY, 
UM, USM, CMU, LEUVEN, NYU, MAXMUN, CALTECH, SBL) were used for the 
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training/validation data while the rest of the 3 imaging sites (Yale, KKI, UCLA) were used as a 
hold-out test dataset.  In the third split, training/validation and hold-out test data were matched 
for age and acquisition site. B)  For ADHD we directly used the training/validation and hold-out 
test data provided by the ADHD-200 Consortium for binary and multiclass classification. C) For 
binary and 3-way classification of the PTSD dataset, we followed an age split in which the 
training/validation data contained subjects from an age range of 23-37 years while the hold-out 
test data contained subjects from the age range 38-53 years. This was then compared with a 
matched training/validation data and hold-out test data with subjects in the age range of 23-53 
years. D) For both 2-way and 4-way classification of ADNI dataset, we split the entire data by 
age wherein the training/validation data contained subjects from an age range of 56-76 years 
while the hold-out test data contained subjects from the age range 77-88 years. This scenario was 
compared with a matched training/validation data and hold-out test data with subjects in the age 
range of 56-88 years.   

 

 

Table 3.3. The data distributions for training/validation and hold-out test data for the age and 
imaging site splits for (A) ABIDE dataset (B) ADHD-200 dataset (C) PTSD dataset (D) ADNI 
dataset. 
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ABIDE: We split the ABIDE data into two heterogeneous sets for training/validation and 

testing, with differences in age group and imagining site: (i) The first heterogeneous split had the 

training/validation data from age range 23 -32 years while the holdout test data had both ASD 

and healthy controls in the age range 33-47 years. (ii) For the second split, the training validation 

data came from 12 imagining sites which participated in the study. The hold-out test data was 

drawn from the remaining three institutions. (iii) We also had a matched split with data for 

training/validation and testing drawn from the same age range and institutions. Since the ABIDE 

data has healthy controls and two subgroups of ASD in Autism and Asperger’s syndrome, we 

performed both binary and multiclass classification with each of the three splits, giving us a total 

of six splits. The distribution of the subjects in each split is shown in Table 3.3A. 

ADHD-200: The ADHD-200 global competition was structured in a way that training/validation 

data with diagnostic labels were first provided to the public and many groups around the world 

submitted their predictions on unlabeled hold-out test data dataset. The organizers of the 

competetion assessed the performance of the classification tools on the hold-out test data set 

based on the predicted diagnositc labels submitted by the groups. Following the completion of 

the competition, the labels for hold out test dataset was also publicly released. Therefore, we 

used the training/validation and hold-out test datasets originally provided by the organizers of the 

competition and no further splits were performed on the data by age or by acquisition site, as was 

done for other datasets used in this study. This also helps us stay true to the spirit of the ADHD-

200 Global Competition. We performed binary classification between Controls and ADHD (data 

from all 3 ADHD subgroups were combined) as well as a three-way classification between 

controls, ADHD-C, and ADHD-I. ADHD-H was left out in multiclass classification because 
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only 11 subjects with ADHD-H were present in the data. The data distributions for the 

training/validation and hold-out test data is shown in Table 3.3B. 

PTSD: Since the imaging data for PTSD was collected solely from our research site, we could 

not test the effects of the performance accuracy due to site variability. We performed binary 

(Controls vs. PTSD) as well as 3-way classification with Controls vs. PTSD vs. PCS+PTSD. 

Subjects in the age range from 23-35 years were used in training/validate data and ages 35-47 

years were used in the hold-out test data for the heterogeneous split. Age matched 

training/validation and test data were also used. These two splits were used for each of the two 

classification scenarios (binary and 3-way), giving us a total of four splits. It is noteworthy that 

we had two runs from each of the 87 subjects in this dataset and we considered each run as a 

separate subject. Therefore, effectively, we had 174 subjects in this dataset. The data 

distributions of splits are shown in Table 3.3C. 

ADNI: ADNI data contains subjects at various stages of cognitive impairment. Therefore, we 

tested a 4-way classification between healthy adults, EMCI, LMCI, and AD. We also performed 

binary classification using just healthy adults and AD subjects at the extreme ends of the 

spectrum. We tested the effect of age heterogeneity on the classification performance with 

subjects from the age range 34-67 years chosen for training/validation data and 45-78 years 

selected for hold-out test data. We also had a homogeneous split with training /validation and 

hold-out test data chosen randomly from the entire dataset with the age range of 56-88 years.  

The data distributions of each of the classes in these splits are shown in Table 3.3D. 

We made no effort to balance the classes with unbalanced sample sizes in the four data sets 

because: (i) we wanted to identify classifiers which are robust to differences in class occurrences 

in the training data and, (ii) the number of healthy subjects are usually far greater than the 



85 
 

number of subjects with disorders in neuroimaging databases which are assembled 

retrospectively. While concerted efforts to acquire large and homogenized balanced datasets are 

currently underway [40], it will be many years before they become publicly available. 

3.2.4 Classification procedure 

The number of features obtained by resting state functional connectivity metrics are usually 

orders of magnitude larger than the number of subjects/samples available. Due to the “curse of 

dimensionality”, when using high dimensional data, overfitting is a huge concern because the 

underlying distribution may be under-sampled [41, 7, 42]. Having an excess number of features 

compared to the number of data samples might lead to overfitting and give us poor 

generalization on the test data [43, 41]. The most useful strategies to deal with this issue include 

collecting more data, adding domain knowledge about the problem to the model or reduce the 

number of features, with ideally preserving class-discriminative information. Therefore, feature 

selection is a necessary step either before classification or as a part of the classification 

procedure, given the sample size of current neuroimaging databases. Most existing feature 

selection methods can be grouped into filter and wrapper methods. Filter methods are 

independent of the classification strategy. A simple univariate score such as a T-score can be 

used to rank the features and the top ranked features can be utilized for classification [44]. 

Although computationally quick, this univariate approach does not take into consideration the 

relationships between different features and the classifier performance when retaining features. A 

wrapper method selects subsets of features which give good classification performance and 

contain class-discriminative information. Hence the classifier is embedded with feature selection 

in the wrapper method framework. A combination of wrapper and filter methods have been 

shown to perform well with minimum resources [45, 46, 47]. Therefore, we have adopted this 
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strategy in the current study. As our filter method, we used a two-sample T-test/ANOVA and 

selected the features whose means were significantly different between the groups (p<0.05, FDR 

corrected), after controlling for confounding factors such race, gender and education for the age 

unmatched splits. However for the age-matched splits, age was also controlled for along with 

race, gender and education. When selecting significant features in the age-unmatched splits, age 

was not included because including it in the model would have removed age-related variance 

from the data. 

The Rs-fMRI data was divided into training/validation data and hold-out testing data with 

approximately 80% of the data used for training and cross-validation, and the remaining 20% of 

the data was used as a separate hold-out test dataset as was mentioned in the previous section on 

the data splits. In many cases, the training/validation data and hold-out test data differed in a few 

factors as mentioned previously such as age and acquisition site. As mentioned above, an initial 

“feature-filtering” was performed wherein only the connectivity paths that were significantly 

different between the groups (p<0.05, FDR corrected) in the training/validation data were 

retained (after controlling for head motion, age, race and education) thereby reducing the number 

of features from 19,100 to around 1000.  No statistical tests were performed on the independent 

test data to avoid introducing any bias. Therefore, the features with p<0.05 (FDR corrected) in 

the training/validation dataset were also removed from the hold-out test dataset. Please note that 

the hold-out test dataset was not used in feature or model selection and thus can be expected to 

give an unbiased estimate of the generalization accuracy. This is contrary to the cross-validation 

accuracy estimate because using t-test filtering in reducing features on the entire 

training/validation data will lead to optimistic accuracy estimates given that the training data and 

the validation data are not completely separated. Even if t-test was not performed on the 
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validation data during cross-validation, cross-validation accuracy, by definition, is the average 

accuracy obtained from different splits. Therefore, it does not provide a conservative estimate of 

the classifier’s performance. To further reduce the number of features while retaining 

discriminative information, some of the classifiers were embedded in the recursive cluster 

elimination (RCE) framework [45] for feature section (Figure 3.2). As we describe later, some of 

the classifiers had some form of feature selection embedded within them and hence such 

methods were implemented without the RCE framework (Figure 3.3).   
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Figure 3.2. A schematic of the classifiers implemented within the RCE framework. RCE selects 
features in the inner cross-validation loop while the outer cross-validation loop estimates the 
performance of the classifier. 
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Figure 3.3. A schematic of the classifiers implemented outside the RCE framework. We used a 
two-level cross-validation for parameter optimization and performance estimation for the 
training/validation data. 

 

Recursive Cluster Elimination (RCE) framework 
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Recursive Cluster Elimination (RCE) is a heuristic method for identifying a subset of features 

that have class-discriminative information. Recursive Cluster Elimination is a wrapper method 

that combines K-means feature clustering with a machine learning classifier to score the 

discriminative ability of clusters of features and helps retain only features with good 

discriminative power and remove the ones without any discriminative power [45, 48]. RCE 

exploits the fact that features (functional connectivities in our case) are often correlated with 

each other and hence their discriminative abilities can be ascertained together by clustering the 

feature space. This provides an order of magnitude increase in speed compared to eliminating 

each feature individually [48]. We implemented classifiers in a nested cross-validation 

procedure, with the inner cross-validation loop performing feature selection via RCE and the 

outer cross-validation loop was used for performance estimation (Figure 3.2). We first started 

with all features after t-test filtering and clustered these features using the K-means algorithm. 

The correlation coefficient was used as the distance metric while clustering. Each cluster of 

features was then used to train a machine learning classifier and a score was assigned to the 

cluster based on the performance of the cluster on the validation data. The clusters were ranked 

according to their classification performance, and the clusters with lowest scores were 

eliminated, and the features in the remaining clusters were merged. This process was iteratively 

repeated until any further removal of clusters decreased the classification accuracy. This ensured 

that the best set of feature clusters were identified. This optimal set of feature clusters for each k-

fold and partitioning of data of the cross-validation loop, and the final decision surface (or hyper-

plane in higher dimension) which gave the best cross-validation performance were saved and 

used for calculating the accuracy from hold-out test data.  For each repetition, a different model, 

with distinct hyperparameters and features were selected. These models were then used to assess 
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the cross-validation accuracy in the outer k-fold. This ensures that separation is maintained 

between feature selection by RCE and performance estimation.  

Using FC features from training/validation data, classification accuracy was calculated using 

repeated 6-fold cross-validation. The classifier models obtained from the differences in the 

partitioning of the training data (repeats × folds) were saved. Test accuracy was calculated on the 

independent hold-out test data using the saved classifier models by a voting procedure. Each 

classifier would vote towards a decision on test subjects (accuracy was the percentage of correct 

votes). This is the voting test accuracy reported. The w/o voting accuracy refers to the mean 

accuracy and standard deviation for the test data obtained by each of the individual 600 classifier 

models obtained in each iteration during the cross-validation. The classification procedure was 

identical for simulated and experimental imaging data.  

Classifier models 

We used a number of classifier models to address the issues in performance estimation and 

generalizability so that our results are not specific to any particular classifier or type of 

classifiers. The classifiers we implemented can be broadly divided into the following categories 

(i) Probabilistic/Bayesian methods:  Gaussian Naïve Bayes (GNB), Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA),  Sparse Logistic Regression (SLR), Ridge 

Logistic Regression (RLR), (ii) Kernel methods: Linear and Radial Basis Function (RBF) kernel 

Support Vector Machines (SVM), Relevance Vector Machines (RVM), (iii) Artificial Neural 

Networks: MLP-Net (Multilayer Perceptron Neural Net), FC-Net (Fully Connected Neural Net), 

ELM (Extreme Learning Machines), LVQNET (Linear Vector Quantization Net), (iv) Instance-

based learning: K-Nearest Neighbors (KNN), (v) Decision Tree based Ensemble Methods: 

Bagged trees, Boosted Trees, Boosted Stumps, Random Forest, Rotation Forest. We now provide 
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a brief introduction to the machine learning classifiers used in this paper. This is by no means a 

comprehensive description of the classifiers and the readers are referred to sources cited in these 

descriptions for more detailed information. For classifiers with hyper-parameters in them that 

needed to be optimized, we performed a grid search to estimate an optimum value. Therefore, it 

may be possible to further optimize these parameters using more advanced methods. However, a 

concern with fine-tuning the parameters and testing a large number of models in cases with 

limited data is that it might lead to overfitting [49]. All the classifiers were implemented in 

MATLAB environment (Natick, MA). Also note that in this paper, the terms parameters and 

weights are used interchangeably. Further details about the algorithms implemented in this study 

can be found in Appendix A. 

We implemented Linear- & RBF-kernel SVM, GNB, LDA, QDA, KNN and ELM in the RCE 

framework. Many other classifiers we used, such as SLR, RLR, RVM, FC-NN and MLP-NN 

have built in regularization to control model complexity. Ensemble methods such as Bagged 

Trees, Random Forests, Boosted Stumps, Boosted Trees and Rotation Forests are not as sensitive 

to classification problems with a large number of features. Therefore we did not implement 

classifiers with built-in regularization as well as ensemble methods in the RCE-framework. KNN 

was implemented both within and outside the RCE-framework. 

3.2.5 Classification performance metrics 

Since many of the datasets which are used in this study are unbalanced in class labels (i.e. each 

class contains an unequal number of instances), it is important to investigate individual class 

accuracies. In such cases where one class has more observations in the dataset than the other 

class, the classifier reports a high accuracy even if the classifier just assigns the majority class 

label to all instances in the test dataset [7]. In these cases, the overall/unbalanced accuracy is not 
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indicative of the actual performance of the classifier. Therefore, in addition to presenting the 

overall/unbalanced accuracy, we also report individual class accuracies as well as the balanced 

accuracy. The individual class accuracies report the ratio of correctly classified instances of a 

particular class to the total number of instances of the class in the data. The mean of individual 

class accuracies obtained from both the training/validation data and the hold-out test dataset 

represents the balanced cross-validation accuracy and the balanced hold-out test accuracy, 

respectively. 

For all the classification problems we considered, we report: (i) The unbalanced cross-validation 

(CV) accuracy and its standard deviation (in parenthesis), (ii) CV class accuracies of the 

individual groups (iii) The balanced CV accuracy obtained by the mean of individual CV class 

accuracies, (iv) Hold-out test accuracy by voting (unbalanced hold-out test accuracy), (v) Mean 

hold-out test accuracy, which is obtained by using mean of the test accuracies calculated from 

individual classifier models and its standard deviation (in parenthesis), (vi) Individual class 

accuracies of the groups obtainted from the hold-out test data, and (vii) The balanced hold-out 

test accuracy as an average of individual class hold-out test accuracies. A schematic illustrating 

the derivation of the classification performance metrics from the confusion matrix is shown in 

Figure 3.4. 
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Figure 3.4. A schematic showing the derivation of the classification performance metrics from 
the confusion matrix. We report balanced accuracy, unbalanced accuracy and individual class 
accuracies. 

 

The evaluation of the classification performance and the diagnostic utility of the classifier must 

be made taking into consideration all the above performance metrics as well as the classification 

scenario.  It should be noted that in datasets in which some classes have very few instances, 

classifiers can find it extremely difficult to learn those patterns.  The balanced accuracy might 

also suffer because some diseases such as Asperger’s have a tiny number of samples compared 

to other groups in their dataset, thereby making any reliable classification extremely difficult and 

giving a low balanced accuracy. The holdout accuracy is a pessimistic estimator of the 

generalization accuracy because only a portion of the data was given to the classifier for training 

and the holdout test dataset in our study was chosen to be from a slightly different population 

than training data.  As we demonstrate in this study, the high accuracies commonly reported for 

Leave-one-out cross-validation (LOOCV) and k-fold CV in neuroimaging studies [50, 46] are 

misleading, especially when there is significant heterogeneity in the population. Therefore, one 
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has to evaluate the performance of a classifier using multiple metrics presented above, in order to 

assess its performance under both optimistic and pessimistic scenarios. 

3.2.6 Calculation of Feature Importance 

Recursive Cluster Elimination (RCE) procedure provides us with a feature ranking that indicates 

the importance of a particular feature in discriminating between the classes. For every step of the 

RCE loop, we kept the count of the features retained and used the count to assign higher feature 

importance scores (FIS) to features that were retained by the classification procedure while 

assigning lower scores to features eliminated early in the feature elimination process. We 

repeated this for every partitioning of data in the outer k-fold, thereby obtaining the FIS for every 

classifier implemented in the RCE-framework. We combined the feature importance score of all 

the classifiers implemented in the RCE-Framework, weighted by their balanced cross-validation 

accuracy, to obtain a combined score of feature importance (CFIS) for the classification problem. 

Multiple splits of the entire data into training/validation and hold-out test data gave a slightly 

different ranking to most classifiers across different splits. We plotted the CFIS of the features 

commonly found in all the data splits as a scatter plot. We repeated this procedure separately for 

multiclass and binary classification problems for every dataset. To obtain features which are 

generalizable across age groups and data acquisition sites, we identified a subset of features in 

each split, which have high feature importance scores (top 100), implying that they play a 

significant role in class discriminative ability as well as have significantly different means 

between the groups (p<0.05, corrected for multiple comparisons using permutation test [51] by 

modeling the null distribution of maximum t-scores of features by permuting the class labels of 

the data). The features or connectivity paths thus identified were then visualized in BrainNet 

Viewer [52]. Similarly, we also ranked brain regions based on the sum of the CFIS of 
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connectivity paths associated with them. A list of the top 20 brain regions was obtained for every 

neurological disorder considered in this study.  

3.2.7 Consensus classifier 

We have employed 18 different classifiers in this study. Many of them are based on entirely 

different principles, yet they all attempt to achieve the same result of determining the decision 

boundary which separates the groups. When multiple classifiers are used in neuroimaging, it is 

customary to report and emphasize on the one which gave highest classification accuracy [53, 

54]. This might give an optimistic estimate of the accuracy and the result might not be repeatable 

even for data from the same population. Alternatively, we developed a simple consensus based 

approach wherein the performance of all 18 classifiers were combined to provide a consensus 

estimate.  

For every classifier, during cross-validation, we resampled the data 600 times (6-fold x 100 

repetitions), to get 600 different classifier models for each resampling. We used these 600 

models for each classifier to predict the class of the observations in the validation data, giving us 

a total of 600 predictions for every observation in the hold-out test data. We then calculated 

individual class probabilities for the hold-out test data by estimating the relative frequency of the 

600 target class predictions for the hold-out test data. In this way, the relative frequency of the 

target class was estimated for each test observation. Then the final class probabilities of the 

consensus classifiers were calculated by weighing the predicted class frequencies of each 

classifier with its balanced cross validation accuracy. The test observation was assigned to the 

class with highest probability. This way multiple classifiers can be combined to provide a 

consensus classifier which greatly improves the reliability and robustness of inferences made 
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from them. A schematic depicting the predictions of the consensus classifier on the hold-out test 

data is shown in Figure 3.5. 

 

Figure 3.5. A schematic illustrating the consensus classifier used to combine predictions from 
multiple classifiers on the hold-out test dataset. The consensus classifier combines the balanced 
cross-validation accuracy of each classifier with the predictions of its 600 decision models 
obtained by cross-validation, to predict the class label for the hold-out test data. 

 

3.3 Results 

3.3.1 Simulation results 

The simulation results indicate that most classifiers performed well at lower standard deviations 

and their performance became worse as the standard deviation increased (Figure 3.6). This is to 

be expected given that higher standard deviations of simulated features reduces the separation 

between the groups. The hold out test accuracy with voting was significantly better than the 

average test accuracy of the individual cases. Classifiers such as SLR and RLR did not perform 
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well probably because the features selected at the cross-validation stage were not representative 

of the actual feature importance. This is because the features were generated randomly and they 

have not had an actual discriminative value across the subject groups. The feature weights which 

are learned by these two classifiers are thus not generalizable. This issue is exacerbated in 

classifiers such as SLR and RLR which have in-built feature selection. But the simulation results 

do indicate that most classifiers were successful in separating the classes when each feature was 

represented by univariate Gaussian distributions. The results for classifiers implemented within 

RCE framework are not included in Figure 3.6 because all classifiers gave 100% accuracy at all 

the standard deviations tested. 
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Figure 3.619. Performance estimates from various classifiers obtained with the simulated dataset 
for the (A) training/cross-validation (B) hold-out test data without voting (C) hold-out test data 
with voting. Most classifiers performed well with the simulated data for both the cross-validation 
accuracy as well as the accuracy of the hold-out test data.  As expected voting on the test data by 
using multiple classifier models obtained by multiple partitionings of the data did boost the 
accuracies of the classifiers. Classifiers with inbuilt feature selection such as RLR and SLR 
performed terribly, probably because the features were generated randomly and were not 
indicative of the predictive power of the classifier. It is noteworthy that the results for classifiers 
implemented within RCE framework are not included here because all of them gave 100% 
accuracy at all the standard deviations tested. 

 

3.3.2 ABIDE 

Classification results: The classification results for the binary classification scenario between 

healthy controls and subjects with ASD for the age split, site split as well as for the matched data 

are shown in Figure 3.7, Figure 3.8, and Figure 3.9 respectively. The corresponding tables 

showing the detailed individual class accuracies are shown in Table 3.4, Table 3.5, and Table 3.6 

respectively. The corresponding results for the multiclass classification scenario are presented in 

Figure 3.10, Figure 3.11 and Figure 3.12 with detailed accuracy performance presented in Table 

3.7, Table 3.8, and Table 3.9, respectively. The results indicate that there is considerable 

difference in accuracy between the biased cross-validation accuracy and the hold-out test 

accuracy across all the classifiers, with the former being consistently greater than the latter. The 

performance was above the accuracy that could be obtained for a majority classifier (50% for 

balanced, 54% to 58.5% for unbalanced depending on the splits) for binary as well as multiclass 

class (33% for balanced, 54% to 58.5% for unbalanced depending on the splits) scenarios for all 

classifiers. The majority classifier is a primitive classifier which assigns the most frequently 

occurring class label to all the instances in the test data. Even in multiclass classification 

scenarios, no classifier was able to reliably classify Asperger’s syndrome, which was the reason 

for lower balanced accuracy for all three multiclass scenarios. 
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Figure 3.7. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are from different age groups for the binary classification between healthy 
controls and subjects with ASD. The training/validation data is from an age range of 7-21 years 
while the data from the age range of 22-58 years was used as a hold-out test data. The balanced 
accuracy was obtained by averaging the individual class accuracies. The orange bars indicate the 
cross-validation (CV) accuracy while the blue bars indicate the accuracy for the hold-out test 
data obtained by the voting procedure. The dotted line indicates the accuracy obtained when the 
classifier assigns the majority class to all subjects in the test data. For unbalanced accuracy, this 
happens to be 58.5% since healthy controls formed 58.5% of the total size of the hold-out test 
data. For balanced accuracy, this is exactly 50%. We chose the majority classifier as the 
benchmark since the accuracy obtained must be greater than that if it learns anything from the 
training data. The discrepancy between the biased estimates of the cross-validation accuracy and 
the unbiased estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy 
was 66.8% obtained by LVQNET while the best balanced hold-out test accuracy was 64.9% 
obtained for KNN implemented outside the RCE framework. 
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Figure 3.8. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are from different acquisition sites for the binary classification between 
healthy controls and subjects with ASD. The training/validation data are from 12 institutions 
while the data for the remaining three institutions was used as a hold-out test data. The balanced 
accuracy was obtained by averaging the individual class accuracies. The orange bars indicate the 
cross-validation (CV) accuracy while the blue bars indicate the accuracy for the hold-out test 
data obtained by the voting procedure. The dotted line indicates the accuracy obtained when the 
classifier assigns the majority class to all subjects in the test data. For unbalanced accuracy, this 
happens to be 54% since healthy controls formed 54% of the total size of the hold-out test data. 
For balanced accuracy, this is exactly 50%. We chose the majority classifier as the benchmark 
since the accuracy obtained must be greater than that if it learns anything from the training data. 
The discrepancy between the biased estimates of the cross-validation accuracy and the unbiased 
estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy was 66% 
obtained for Bagged trees while the best balanced hold-out test accuracy was 66.8% obtained for 
Linear SVM implemented within the RCE framework.  
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Figure 3.9. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are matched in imaging sites as well as age group for the binary 
classification problem between healthy controls and subjects with ASD. The training/validation 
and the hold-out test data are from all 15 imaging sites and age range of 7-58 years. The 
balanced accuracy was obtained by averaging the individual class accuracies. The orange bars 
indicate the cross-validation (CV) accuracy while the blue bars indicate the accuracy for the 
hold-out test data obtained by the voting procedure. The dotted line indicates the accuracy 
obtained when the classifier assigns the majority class to all subjects in the test data. For 
unbalanced accuracy, this happens to be 56% since healthy controls formed 56% of the total size 
of the hold-out test data. For balanced accuracy, this is exactly 50%. We chose the majority 
classifier as the benchmark since the accuracy obtained must be greater than that if it learns 
anything from the training data. Some of the discrepancies between the biased estimates of the 
cross-validation accuracy and the unbiased estimates of the hold-out accuracy is noteworthy. The 
best hold-out test accuracy was 70.7% obtained by RBF-SVM within the RCE framework while 
the best balanced hold-out test accuracy was 69.2% obtained for Linear SVM implemented 
within the RCE framework. 
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Table 3.4. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training/validation and the hold-out test data 
are from different age groups for the binary classification problem between healthy controls and 
subjects with ASD. The training/validation data is from an age range of 7-21 years while the data 
from the age range of 22-58 years was used as a hold-out test data. The values in the parenthesis 
indicate the standard deviation for the accuracy metrics. The test accuracy with voting indicates 
the accuracy obtained when all classifier models obtained by the different partitionings during 
cross-validation, vote on the observations in the hold-out test data. The test accuracy without 
voting indicates mean accuracy when individual classifier models are used to classify the test 
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observations. The top 3 classifiers both within and outside the RCE framework which had the 
highest hold-out test accuracies are highlighted. The best hold-out test accuracy was 66.8% 
obtained for LVQNET while the best balanced hold-out test accuracy was 64.9% obtained for 
KNN implemented outside the RCE framework.  

 

 
Table 3.5. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training /validation and the hold-out test data 
are from different imaging sites for the binary classification problem between healthy controls 
and subjects with ASD. The training/validation data are from 12 institutions while the data for 
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the remaining three institutions was used as a hold-out test data. The values in the parenthesis 
indicate the standard deviation for the accuracy metrics. The test accuracy with voting indicates 
the accuracy obtained when all classifier models obtained by the different partitionings during 
cross-validation, vote on the observations in the hold-out test data. The test accuracy without 
voting indicates mean accuracy when individual classifier models are used to classify the test 
observations. The top 3 classifiers both within and outside the RCE framework which had the 
highest hold-out test accuracies are highlighted. The best hold-out test accuracy was 66% 
obtained by Bagged trees while the best balanced hold-out test accuracy was 66.8% obtained for 
Linear SVM implemented within the RCE framework.  
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Table 3.6. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training/validation and the hold-out test data 
are matched in imaging sites as well as age group for the binary classification problem between 
healthy controls and subjects with ASD. The training/validation and the hold-out test data are 
from all 15 imaging sites and age range of 7-58 years. The values in the parenthesis indicate the 
standard deviation for the accuracy metrics. The test accuracy with voting indicates the accuracy 
obtained when all classifier models obtained by the different partitionings during cross-
validation, vote on the observations in the hold-out test data. The test accuracy without voting 
indicates mean accuracy when individual classifier models are used to classify the test 
observations. The top 3 classifiers both within and outside the RCE framework which had the 
highest hold-out test accuracies are highlighted. The best hold-out test accuracy was 70.7% 
obtained by RBF-SVM within the RCE framework while the best balanced hold-out test 
accuracy was 69.2% obtained for Linear SVM implemented within the RCE framework. 

 

 
Figure 3.10. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are from different age groups for the multiclass classification between 
healthy controls, subject with Asperger’s syndrome and Autism. The training/validation data is 
from an age range of 7-21 years while the data from the age range of 22-58 years was used as a 
hold-out test data. The balanced accuracy was obtained by averaging the individual class 
accuracies. The orange bars indicate the cross-validation (CV) accuracy while the blue bars 
indicate the accuracy for the hold-out test data. The dotted line indicates the accuracy obtained 
when the classifier assigns the majority class to all subjects in the test data. For unbalanced 
accuracy, this happens to be 58.5% since healthy controls formed 58.5% of the total size of the 
hold-out test data. For balanced accuracy, this is 33.3%. We chose the majority classifier as the 
benchmark since the accuracy obtained must be greater than that if it learns anything from the 
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training data. The considerable difference between the unbalanced and the balanced accuracies 
can be attributed to the fact that all classifiers were unsuccessful in classifying subjects with 
Asperger’s Syndrome due to their relative lower number of observations in the dataset. The 
discrepancy between the biased estimates of the cross-validation accuracy and the unbiased 
estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy was 66.8% 
obtained by LVQNET while the best balanced hold-out test accuracy was 64.9% obtained for 
KNN implemented outside the RCE framework. 

 

 
Figure 3.11. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are from different imaging sites for the multiclass classification between 
healthy controls, subject with Asperger’s syndrome and Autism. The training/validation data are 
from 12 institutions while the data for the remaining three institutions was used as a hold-out test 
data. The balanced accuracy was obtained by averaging the individual class accuracies. The 
orange bars indicate the cross-validation (CV) accuracy while the blue bars indicate the accuracy 
for the hold-out test data obtained by the voting procedure. The dotted line indicates the accuracy 
obtained when the classifier assigns the majority class to all subjects in the test data. For 
unbalanced accuracy, this happens to be 54% since healthy controls formed 54% of the total size 
of the hold-out test data. For balanced accuracy, this is 33.3%. We chose the majority classifier 
as the benchmark since the accuracy obtained must be greater than that if it learns anything from 
the training data. The considerable difference between the unbalanced and the balanced 
accuracies can be attributed to the fact that all classifiers were unsuccessful in classifying 
subjects with Asperger’s Syndrome due to their relative lower number of observations in the 
dataset. The discrepancy between the biased estimates of the cross-validation accuracy and the 
unbiased estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy was 
66% obtained for Regularized Logistic Regression (RLR) while the best balanced hold-out test 
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accuracy was 66.8% obtained for Extreme Learning Machines (ELM) implemented within the 
RCE framework. 

 

 
Figure 3.12. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ABIDE data when the training/validation data and 
the hold-out test data are matched in imaging sites as well as age group for the multiclass 
classification problem between healthy controls and subjects with Asperger’s syndrome and 
Autism. The training/validation data are from 12 institutions while the data for the remaining 
three institutions was used as a hold-out test data. The balanced accuracy was obtained by 
averaging the individual class accuracies. The orange bars indicate the cross-validation (CV) 
accuracy while the blue bars indicate the accuracy for the hold-out test data obtained by the 
voting procedure. The dotted line indicates the accuracy obtained when the classifier assigns the 
majority class to all subjects in the test data. For unbalanced accuracy, this happens to be 56% 
since healthy controls formed 56% of the total size of the hold-out test data. For balanced 
accuracy, this is 33.3%. We chose the majority classifier as the benchmark since the accuracy 
obtained must be greater than that if it learns anything from the training data. The considerable 
difference between the unbalanced and the balanced accuracies can be attributed to the fact that 
all classifiers were unsuccessful in classifying subjects with Asperger’s Syndrome due to their 
relative lower number of observations in the dataset. Some of the discrepancies between the 
biased estimates of the cross-validation accuracy and the unbiased estimates of the hold-out 
accuracy is noteworthy. The best hold-out test accuracy was 70.7% obtained by Boosted Trees 
while the best balanced hold-out test accuracy was 47.3% obtained for LVQNET. 
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Table 3.7. The table shows the cross-validation and the hold out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training/validation and the hold-out test data 
are from different age groups for the multiclass classification between healthy controls, subjects 
with Asperger’s syndrome and Autism. The training/validation data is from an age range of 7-21 
years while the data from the age range of 22-58 years was used as a hold-out test data. The 
values in the parenthesis indicate the standard deviation for the accuracy metrics. The test 
accuracy with voting indicates the accuracy obtained when all classifier models obtained by the 
different partitionings during cross-validation, vote on the observations in the hold-out test data. 
The test accuracy without voting indicates mean accuracy when individual classifier models are 
used to classify the test observations. The top 3 classifiers both within and outside the RCE 
framework which had the highest hold-out test accuracies are highlighted. The best hold-out test 
accuracy was 61.3% while the best balanced hold-out test accuracy obtained was 46.5%, both for 
LVQNET. 



111 
 

 
Table 3.8. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training/validation and the hold-out test data 
are from different imaging sites for the multiclass classification problem between healthy 
controls and subjects with Asperger’s syndrome and Autism. The training/validation data are 
from 12 institutions while the data for the remaining three institutions was used as a hold-out test 
data. The values in the parenthesis indicate the standard deviation for the accuracy metrics. The 
test accuracy with voting indicates the accuracy obtained when all classifier models obtained by 
the different partitionings during cross-validation, vote on the observations in the hold-out test 
data. The test accuracy without voting indicates mean accuracy when individual classifier 
models are used to classify the test observations. The top 3 classifiers both within and outside the 
RCE framework which had the highest hold-out test accuracies are highlighted. The best hold-
out test accuracy was 60.2% obtained for Regularized Logistic Regression (RLR) while the best 
balanced hold-out test accuracy was 47.4% obtained for Extreme Learning Machines (ELM) 
implemented within the RCE framework.  
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Table 3.9. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ABIDE data when the training/validation and the hold-out test data 
are matched in imaging sites as well as age group for the multiclass classification problem 
between healthy controls and subjects with Asperger’s syndrome and Autism. The 
training/validation data and the hold-out test data are from all 15 imaging sites and age range of 
7-58 years. The values in the parenthesis indicate the standard deviation for the accuracy metrics. 
The test accuracy with voting indicates the accuracy obtained when all classifier models obtained 
by the different partitionings during cross-validation, vote on the observations in the hold-out test 
data. The test accuracy without voting indicates mean accuracy when individual classifier 
models are used to classify the test observations. The top 3 classifiers both within and outside the 
RCE framework which had the highest hold-out test accuracies are highlighted. The best hold-
out test accuracy was 70.7% obtained by Boosted Trees within the RCE framework while the 
best balanced hold-out test accuracy was 47.3% obtained for LVQNET. 
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In the binary classification scenario for the split in which the training/validation and the hold-out 

test data belong to different age ranges, the best hold-out test accuracy was 66.8% obtained by 

LVQNET while the best-balanced hold-out test accuracy was 64.9% obtained from KNN 

implemented outside the RCE framework. In the multiclass classification for the same split, the 

best hold-out test accuracy was 66.8% obtained by LVQNET while the best-balanced hold-out 

test accuracy was 64.9% obtained for KNN implemented outside the RCE framework. When the 

training/validation data is from 12 imaging sites, and the hold-out test data is from the remaining 

three imaging sites, the best accuracy on the hold-out test data was 66% obtained for Bagged 

trees while the best-balanced hold-out test accuracy was 66.8% obtained for Linear SVM 

implemented within the RCE framework. In the multiclass scenario between healthy controls, 

subjects with Asperger’s syndrome and Autism, the best hold-out test accuracy was 66% 

obtained for RLR while the best-balanced hold-out test accuracy was 66.8% obtained for ELM 

implemented within the RCE framework. Finally in the third split wherein the training/validation 

and the holdout test data are matched for age and imaging site, the binary classification results 

were higher compared to the unmatched cases with the best hold-out test accuracy at 70.7% 

obtained by RBF-SVM within the RCE framework while the best-balanced hold-out test 

accuracy was 69.2% obtained for Linear SVM implemented within the RCE framework.  For the 

3-way classification, the best hold-out test accuracy was 70.7% achieved by Boosted Trees while 

the best-balanced hold-out test accuracy was 47.3% obtained for LVQNET. 

Feature importance: The combined feature importance scores (CFIS) were calculated for all 

classifiers implemented within the RCE framework. These combined feature importance scores 

for various splits are plotted in a scatter plot as shown in Figure 3.13. The figure indicates that, 

though there is significant (p<10-10) agreement in the feature importance scores across the splits, 
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age range, and scanner variability do contribute to the increase variance in these score estimates. 

Using the feature importance scores, we identified the top connectivity paths whose means were 

significantly different between the groups (p<0.05, FDR corrected) as well as have high feature 

importance scores. These paths are visualized in Figure 3.14. Along with these connectivity 

paths, we also identified the top 20 regions associated with altered and discriminative 

connectivity paths as shown in the Table 3.10. 

 

 
Figure 3.13. Scatter plots of combined feature importance scores (CFIS) for the three splits 
performed on the ABIDE data. We selected the common features obtained in all three splits and 
plotted them as scatter plots with two splits at a time for both binary and multiclass classification 
scenarios. The plot illustrates that there is significant agreement in the CFIS across splits. 
However a lot of variability is present as well and this can be attributed to age and site variability 
of the training/validation data obtained from the three splits. 
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Figure 3.14. The figure illustrates the connectivity paths which have significantly different 
means between the groups (p<0.05, corrected for multiple comparisons using permutation test) 
as well as are among the top hundred most discriminative paths in ABIDE dataset for (A) binary 
classification between controls and ASD. (B) 3-way classification between healthy controls, 
Asperger’s syndrome and Autism. The size of the nodes indicates the relative importance of the 
region (Table 3.10). Common nodes between binary and multiclass classification are indicated in 
yellow while other nodes are indicated in green. The sign of the paths indicates over-connectivity 
(positive) or under-connectivity (negative) in healthy controls compared to clinical populations. 
Consequently, red represents a higher connectivity between controls compared to the diseased 
populations and blue represents a lower connectivity. The numerical values in the color bar 
denote the combined feature importance score of the path (CFIS) obtained from classification. A 
higher absolute number indicates more discriminative ability for the functional connectivity path. 
The table below the figure tabulates the brain regions involved in the paths visualized above 
along with the abbreviations of the two regions and the CFIS (combined feature importance 
score) for the connectivity paths. 
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Table 3.10. This table illustrates the top 20 regions for ASD as identified by (A) Binary 
classification between Healthy Controls and ASD (B) Multiclass classification between Controls, 
Asperger’s syndrome and Autism, using ABIDE data. 

 

3.3.3 ADHD-200 

Classification results: For the ADHD-200 dataset, the classification results for the binary 

classification scenario between healthy controls and subjects with ADHD are shown in Figure 

3.15. Table 3.11 provides corresponding detailed individual class accuracies. Results for the 3-

way classification scenario between healthy controls and subjects with ADHD-I and ADHD-C 

are provided in Figure 3.16 with detailed accuracy performance presented in Table 3.12. The 

results indicate the apparent difficulty in classifying controls from ADHD as reported by several 

papers which used the same data with reported performances similar to our own results [31]. For 

binary classification, the best hold-out test accuracy was 61.4% while the best balanced hold-out 

test accuracy obtained was 59.6% using Boosted Stumps. Similarly, for the multiclass 

classification, the best hold-out test accuracy was 58% using Boosted Trees while the best 

balanced hold-out test accuracy obtained was 38.7% using RBF-SVM implemented within RCE 
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framework. These results indicate the difficulty of multiclass classification with ADHD-200 data 

compared to a binary classification.  

 

 
Figure 3.1520. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for the ADHD-200 data between healthy controls and 
subjects with ADHD. The training/validation data and the hold-out test data are from 7 imaging 
sites as released by ADHD-200 consortium. The balanced accuracy was obtained by averaging 
the individual class accuracies. The orange bars indicate the cross-validation (CV) accuracy 
while the blue bars indicate the accuracy for the hold-out test data obtained by the voting 
procedure. The dotted line indicates the accuracy obtained when the classifier assigns the 
majority class to all subjects in the test data. For unbalanced accuracy, this happens to be 55% 
since healthy controls formed 55% of the total size of the hold-out test data. For balanced 
accuracy, this is exactly 50%. We chose the majority classifier as the benchmark since the 
accuracy obtained must be greater than that if it learns anything from the training data. The best 
hold-out test accuracy was 61.4% while the best balanced hold- out test accuracy obtained was 
59.6% obtained for Boosted Stumps. 

 



118 
 

 
Table 3.11. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ADHD-200 data for the binary classification problem between 
healthy controls and subjects with ASD. The training/validation and the hold-out test data are 
from 7 imaging sites. The values in the parenthesis indicate the standard deviation for the 
accuracy metrics. The test accuracy with voting indicates the accuracy obtained when all 
classifier models obtained by the different partitionings during cross-validation, vote on the 
observations in the hold-out test data. The test accuracy without voting indicates mean accuracy 
when individual classifier models are used to classify the test observations. The top 3 classifiers 
both within and outside the RCE framework which had the highest hold-out test accuracies are 
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highlighted. The best hold-out test accuracy was 61.4% while the best balanced hold- out test 
accuracy obtained was 59.6% for Boosted Stumps. 

 

 
Figure 3.16. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for the 3-way classification scenario for the ADHD-200 
data between healthy controls and subjects with ADHD-I and ADHD-C. The training/validation 
data and the hold-out test data are from 7 imaging sites as released by the ADHD-200 
consortium. The balanced accuracy was obtained by averaging the individual class accuracies. 
The orange bars indicate the cross-validation (CV) accuracy while the blue bars indicate the 
accuracy for the hold-out test data obtained by the voting procedure. The dotted line indicates the 
accuracy obtained when the classifier assigns the majority class to all subjects in the test data. 
For unbalanced accuracy, this happens to be 55.6% since healthy controls formed 55.6% of the 
total size of the hold-out test data. For balanced accuracy, this is 33.3%. We chose the majority 
classifier as the benchmark since the accuracy obtained must be greater than that if it learns 
anything from the training data. The best hold-out test accuracy was 58% for Boosted Trees 
while the best balanced hold- out test accuracy obtained was 38.7% obtained for RBF-SVM 
implemented within RCE framework. 
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Table 3.12. The table shows the cross-validation and the hold-out test accuracy as well the 
individual class accuracies for the classifiers implemented (A) within the RCE and (B) outside 
the RCE framework for the ADHD-200 data for the three-way classification problem between 
healthy controls, ADHD-I and ADHD-C. The training/validation and the hold-out test data are 
from 7 imaging sites. The values in the parenthesis indicate the standard deviation for the 
accuracy metrics. The test accuracy with voting indicates the accuracy obtained when all 
classifier models obtained by the different partitionings during cross-validation, vote on the 
observations in the hold-out test data. The test accuracy without voting indicates mean accuracy 
when individual classifier models are used to classify the test observations. The top 3 classifiers 
both within and outside the RCE framework which had the highest hold-out test accuracies are 
highlighted. The best hold-out test accuracy was 58% for Boosted Trees while the best balanced 
hold- out test accuracy obtained was 38.7% for RBF-SVM implemented within RCE framework. 
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Feature importance: Since we did not perform multiple splits on the ADHD-200 dataset, we 

did not plot the feature importance scores for the splits as a scatter plot, as was done with other 

datasets in this study. After calculating the combined feature importance scores (CFIS) for all 

classifiers implemented within the RCE framework, we used the combined feature importance 

scores to identify the top connectivity paths whose means were significantly different between 

the groups (p<0.05, corrected) as well as have high CFIS. These paths are shown in Figure 3.17 

and the top 20 regions in the brain whose connectivity paths were altered in the disease are 

shown in Table 3.13. 

 

 

Figure 3.17. The figure illustrates the connectivity paths which have significantly different 
means between the groups (p<0.05, corrected for multiple comparisons using permutation test) 
as well as are among the top hundred most discriminative paths in ADHD for (A) binary 
classification between controls and ADHD. (B) 3-way classification between healthy controls, 
ADHD-I and ADHD-C. The size of the nodes indicates the relative importance of the region 
(Table 3.13). Common nodes between binary and multiclass classification are indicated by 
yellow while other nodes are indicated by green. The sign of the paths indicates over-
connectivity (positive) or under-connectivity (negative) in healthy controls compared to clinical 
populations. So, red represents a higher connectivity between controls compared to the diseased 



122 
 

populations and blue represents a lower connectivity. The numerical values in the color bar 
denote the combined feature importance score of the path (CFIS) obtained from classification. A 
higher absolute number indicates more discriminative ability for the functional connectivity path. 
The table below the figure tabulates the brain regions involved in the paths visualized above 
along with the abbreviations of the two regions and the CFIS (combined feature importance 
score) for the connectivity paths. 

 

 
Table 3.13. This table lists the top 20 regions for ADHD as identified by (A) Binary 
classification between Healthy Controls and ADHD (B) Multiclass classification between 
Controls, ADHD-I, and ADHD-C using ADHD-200 data. 

 

3.3.4 PTSD 

Classification results: The classification results for the binary classification scenario between 

healthy Soldiers and Soldiers diagnosed with PTSD, for the age split as well as the age-matched 

data are shown in Figure 3.18 and Figure 3.19, respectively. The corresponding tables listing the 

detailed individual class accuracies are shown in Table 3.14 and Table 3.15, respectively. For the 

multiclass classification scenario between healthy Soldiers, Soldiers diagnosed with just PTSD 

and those with both PCS and PTSD, the results are shown in Figure 3.20 and Figure 3.21 with 

detailed accuracy performance presented in Table 3.16 and Table 3.17, respectively. The results 
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indicate a large difference in accuracy between the biased cross-validation accuracy and the 

hold-out test accuracy across all the classifiers.  As with ABIDE dataset, some of this difference 

can be attributed to age variability due to t-test filtering performed on just the training/validation 

data. Most classifiers are extremely unreliable in the case where the training/validation and the 

hold-out test data were from different age groups. This indicates that the classifiers were 

overfitting the data in the training/validation dataset and were not learning the connectivity 

modulations effected by PTSD. The classification performance on the training/validation data 

did not translate to good performance on the hold-out test data for a majority of the classifiers 

(although a couple of them did perform well with hold-out test data), a problem that might 

plague single site classification studies with subjects belonging to narrow age ranges. 

 

 
Figure 3.18. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for PTSD data when the training/validation data and the 
hold-out test data are from different age groups in the range for the multiclass classification 
between healthy controls and subjects with PTSD. The training/validation data is from an age 
range of 23-37 years while the data from the age range of 38-53 years was used as a hold-out test 
data. The balanced accuracy was obtained by averaging the individual class accuracies. The 
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orange bars indicate the cross-validation (CV) accuracy while the blue bars indicate the accuracy 
for the hold-out test data obtained by the voting procedure. The dotted line indicates the accuracy 
obtained when the classifier assigns the majority class to all subjects in the test data. For 
unbalanced accuracy, this happens to be 72.2% since subjects with PTSD formed 72.2% of the 
total size of the hold-out test data. For balanced accuracy, this is exactly 50%. We chose the 
majority classifier as the benchmark since the accuracy obtained must be greater than that if it 
learns anything from the training data. The discrepancy between the biased estimates of the 
cross-validation accuracy and the unbiased estimates of the hold-out accuracy is noteworthy. The 
best hold-out test accuracy was 83.3% while the best balanced hold-out test accuracy obtained 
was 76.2% for Sparse Logistic Regression. 

 

 
Figure 3.19. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for PTSD data when the training/validation data and the 
hold-out test data are from same age groups in the range for the multiclass classification between 
healthy controls and subjects with PTSD. The training/validation data and the hold-out test data 
are matched in age with subjects from age range of 23-53 years. The balanced accuracy was 
obtained by averaging the individual class accuracies. The orange bars indicate the cross-
validation (CV) accuracy while the blue bars indicate the accuracy for the hold-out test data 
obtained by the voting procedure. The dotted line indicates the accuracy obtained when the 
classifier assigns the majority class to all subjects in the test data. For unbalanced accuracy, this 
happens to be 68.6% since subjects with PTSD formed 68.6% of the total size of the hold-out 
test data. For balanced accuracy, this is exactly 50%. We chose the majority classifier as the 
benchmark since the accuracy obtained must be greater than that if it learns anything from the 
training data. The best hold-out test accuracy was 97.1%, whereas the best balanced hold-out test 
accuracy obtained was 95.5%, obtained for Boosted Stumps, MLP-NN and LDA implemented 
within the RCE framework. 
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Table 3.14. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the PTSD data we collected, for the binary classification problem between healthy 
controls and subjects with PTSD. The training/validation data is from an age range of 23-37 
years while the data from the age range of 38-53 years was used as a hold-out test data. The 
values in the parenthesis indicate the standard deviation for the accuracy metrics. The test 
accuracy with voting indicates the accuracy obtained when all classifier models obtained by the 
different partitionings during cross-validation, vote on the observations in the hold-out test data. 
The test accuracy without voting indicates mean accuracy when individual classifier models are 
used to classify the test observations. The top 3 classifiers both within and outside the RCE 
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framework which had the highest hold-out test accuracies are highlighted. The best hold-out test 
accuracy was 83.3% while the best balanced hold-out test accuracy obtained was 76.2% for 
Sparse Logistic Regression. 

 

 
Table 3.15. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the PTSD data we collected, for the binary classification problem between healthy 
controls and subjects with PTSD. The training/validation data and the hold-out test data are 
matched in age with subjects from age range of 23-53 years. The values in the parenthesis 
indicate the standard deviation for the accuracy metrics. The test accuracy with voting indicates 
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the accuracy obtained when all classifier models obtained by the different partitionings during 
cross-validation, vote on the observations in the hold-out test data. The test accuracy without 
voting indicates mean accuracy when individual classifier models are used to classify the test 
observations. The top 3 classifiers both within and outside the RCE framework which had the 
highest hold-out test accuracies are highlighted. The best hold-out test accuracy was 97.1%, 
whereas the best balanced hold-out test accuracy obtained was 95.5%, obtained for Boosted 
Stumps, MLP-NN and LDA implemented within the RCE framework. 

 

  
Figure 3.20. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for PTSD data when the training/validation data and the 
hold-out test data are from different age groups in the range for the multiclass classification 
between healthy controls and subjects with just PTSD and those with both PCS and PTSD. The 
training/validation data is from an age range of 23-37 years while the data from the age range of 
38-53 years was used as a hold-out test data. The balanced accuracy was obtained by averaging 
the individual class accuracies. The orange bars indicate the cross-validation (CV) accuracy 
while the blue bars indicate the accuracy for the hold-out test data obtained by the voting 
procedure. The dotted line indicates the accuracy obtained when the classifier assigns the 
majority class to all subjects in the test data. For unbalanced accuracy, this happens to be 50% 
since subjects with PCS+PTSD formed 50% of the total size of the hold-out test data. For 
balanced accuracy, this is 33.3%. We chose the majority classifier as the benchmark since the 
accuracy obtained must be greater than that if it learns anything from the training data. The 
discrepancy between the biased estimates of the cross-validation accuracy and the unbiased 
estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy was 80.6% 
while the best balanced hold-out test accuracy obtained was 73.3% for Boosted Stumps. 
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Figure 3.21. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for PTSD data when the training/validation data and the 
hold-out test data are from same age groups in the range for the multiclass classification between 
healthy controls and subjects with just PTSD and those with both PCS and PTSD. The 
training/validation data and the hold-out test data are matched in age with subjects from age 
ranges of 23-53 years. The balanced accuracy was obtained by averaging the individual class 
accuracies. The orange bars indicate the cross-validation (CV) accuracy while the blue bars 
indicate the accuracy for the hold-out test data obtained by the voting procedure. The dotted line 
indicates the accuracy obtained when the classifier assigns the majority class to all subjects in the 
test data. For unbalanced accuracy, this happens to be 48.6% since subjects with PCS+PTSD 
formed 48.6% of the total size of the hold-out test data. For balanced accuracy, this is 33.3%. We 
chose the majority classifier as the benchmark since the accuracy obtained must be greater than 
that if it learns anything from the training data. The best hold-out test accuracy was 94.3% for 
Boosted Stumps, and LDA implemented within RCE framework, while the best balanced hold-
out test accuracy obtained was 93.3% for LDA implemented within RCE framework. 
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Table 3.16. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the PTSD data we collected, for the 3-way classification problem between healthy 
controls and subjects with PTSD and subjects who experienced both PCS and diagnosed with 
PTSD. The training/validation data is from an age range of 23-37 years while the data from the 
age range of 38-53 years was used as a hold-out test data. The values in the parenthesis indicate 
the standard deviation for the accuracy metrics. The test accuracy with voting indicates the 
accuracy obtained when all classifier models obtained by the different partitionings during cross-
validation, vote on the observations in the hold-out test data. The test accuracy without voting 
indicates mean accuracy when individual classifier models are used to classify the test 
observations. The top 3 classifiers both within and outside the RCE framework which had the 
highest hold-out test accuracies are highlighted. The best hold-out test accuracy was 80.6% while 
the best balanced hold-out test accuracy obtained was 73.3% for Boosted Stumps. 
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Table 3.17. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the PTSD data we collected, for the 3-way classification problem between healthy 
controls and subjects with PTSD and subjects who experienced both PCS and diagnosed with 
PTSD. The training/validation data and the hold-out test data are matched in age with subjects 
from age range of 23-53 years. The values in the parenthesis indicate the standard deviation for 
the accuracy metrics. The test accuracy with voting indicates the accuracy obtained when all 
classifier models obtained by the different partitionings during cross-validation, vote on the 
observations in the hold-out test data. The test accuracy without voting indicates mean accuracy 
when individual classifier models are used to classify the test observations. The top 3 classifiers 
both within and outside the RCE framework which had the highest hold-out test accuracies are 
highlighted. The best holdout test accuracy was 94.3% for Boosted Stumps, and LDA 
implemented within RCE framework, while the best-balanced hold-out test accuracy obtained 
was 93.3% for LDA implemented within RCE framework. 
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In the binary classification scenario for the split in which the training/validation and the hold-out 

test data belonged to different age ranges, the best hold-out test accuracy was 83.3% while the 

best balanced hold-out test accuracy obtained was 76.2% for Sparse Logistic Regression. In fact, 

SLR along with Boosted Trees were the only two classifiers which gave good performances 

followed by FCC-NN and MLP-NN. In the multiclass classification for the same split, the best 

hold-out test accuracy was 80.6% while the best balanced hold-out test accuracy obtained was 

73.3% for Boosted Stumps. In the split wherein the training/validation and the hold-out test data 

were matched for age, the binary classification results were higher compared to the unmatched 

case with accuracies close to 90% on the hold-out test data. The best hold-out test accuracy for 

the binary case was 97.1%, whereas the best balanced hold-out test accuracy obtained was 

95.5%, using Boosted Stumps, MLP-NN and LDA implemented within the RCE framework. For 

the 3-way classification, the best hold-out test accuracy was 94.3% for Boosted Stumps, and 

LDA implemented within RCE framework, while the best balanced hold-out test accuracy 

obtained was 93.3% for LDA implemented within RCE framework. 

Feature importance: The combined feature importance scores (CFIS) for the two splits were 

plotted in a scatter plot as shown in Figure 3.22 for the binary and multiclass scenarios. The plot 

illustrates variability and the negative slope particularly in the multiclass classification case 

which can be attributed to the age ranges in each split.  This means that the CFIS for multiclass 

classification which are higher in one split were lower in the other. So age has a significant 

impact in altering the feature importance. For binary classification, however, the slope was still 

positive. Using the CFIS we identified the top connectivity paths (shown in Figure 3.23) whose 

means were significantly different between the groups (p<0.05, corrected) as well as have high 
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combined feature importance scores. The top 20 regions in the brain whose connectivity paths 

were altered in the disease are listed in the Table 3.18. 

 

 
Figure 3.22. Scatter plots of combined feature importance scores (CFIS) for the two splits 
performed on the PTSD data. We selected the common features in obtained and plotted them as 
scatter plots for both binary and multiclass classification scenarios. The plot illustrates a lot of 
variability in the CFIS, particularly in the binary classification scenario which can be attributed 
to the age ranges of the training/validation data in each split.  There is however significant 
agreement in the CFIS across the age split for the multiclass classification scenario. 
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Figure 3.23. The figure illustrates the connectivity paths which have significantly different 
means between the groups (p<0.05, corrected for multiple comparisons using permutation test) 
as well as are among the top hundred most discriminative paths for PCS and PTSD for (A) 
binary classification between combat controls and PTSD. (B) 3-way classification between 
healthy combat controls, PTSD and PCS+PTSD. The size of the nodes indicates the relative 
importance of the region (Table 3.18). Common nodes between binary and multiclass 
classification are indicated by yellow while other nodes are indicated by green. The sign of the 
paths indicates over-connectivity (positive) or under-connectivity (negative) in healthy controls 
compared to clinical populations. So, red represents a higher connectivity between controls 
compared to the diseased populations and blue represents a lower connectivity. The numerical 
values in the color bar denote the combined feature importance score of the path (CFIS) obtained 
from classification. A higher absolute number indicates more discriminative ability for the 
functional connectivity path. The table below the figure tabulates the brain regions involved in 
the paths visualized above along with the abbreviations of the two regions and the CFIS 
(combined feature importance score) for the connectivity paths. 

 

 
Table 3.18. This table illustrates the top 20 regions for PCS and PTSD as identified by (A) 
Binary classification between Healthy Controls and PTSD (B) Multiclass classification between 
Controls, PCS, and PTSD, using PSTD data. 

 

3.3.5 ADNI 

Classification results: The classification performance for the binary classification scenario 

between healthy adults and adults diagnosed with Alzheimer’s disease for the age split as well as 
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for the age-matched data are shown in Figure 3.24 and Figure 3.25, respectively. The tables 

corresponding to the above results with detailed individual class accuracies are shown in Table 

3.19 and Table 3.20, respectively. Results for the multiclass classification scenario (Controls, 

EMCI, LMCI and AD) are shown in Figure 3.26 and Figure 3.27 with detailed accuracy 

performance presented in Table 3.21 and Table 3.22. The biased cross-validation accuracy was 

very high with most classifiers, but it did not translate to high hold-out test accuracy. In fact, for 

many classifiers especially in the multiclass scenario, hold-out test accuracy was better than 

using a majority classifier, though not by much. All classifiers were generally unreliable in the 

cases where the training/validation and the test data were from different age group, clearly 

indicating a case of overfitting. 

 

 
Figure 3.24. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ADNI data when the training/validation data and the 
hold-out test data are from different age groups in the range for the binary classification between 
healthy controls and subjects with Alzheimer’s disease (AD). The training/validation data is 
from an age range of 56-76 years while the data from the age range of 77-88 years was used as a 
hold-out test data. The balanced accuracy was obtained by averaging the individual class 
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accuracies. The orange bars indicate the cross-validation (CV) accuracy while the blue bars 
indicate the accuracy for the hold-out test data obtained by the voting procedure. The dotted line 
indicates the accuracy obtained when the classifier assigns the majority class to all subjects in the 
test data. For unbalanced accuracy, this happens to be 63.2% since healthy controls formed 
63.2% of the total size of the hold-out test data. For balanced accuracy, this is exactly 50%. We 
chose the majority classifier as the benchmark since the accuracy obtained must be greater than 
that if it learns anything from the training data. The discrepancy between the biased estimates of 
the cross-validation accuracy and the unbiased estimates of the hold-out accuracy is noteworthy. 
The best hold-out test accuracy was 83.3% while the best balanced hold-out test accuracy 
obtained was 76.2% for Sparse Logistic Regression. 

 
 

 
Figure 3.25. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ADNI data when the training/validation data and the 
hold-out test data are from the same age groups in the range for the binary classification between 
healthy controls and subjects with Alzheimer’s disease. The training/validation data and the 
hold-out test data are matched in age with subjects from age range of 56-88 years. The balanced 
accuracy was obtained by averaging the individual class accuracies. The orange bars indicate the 
cross-validation (CV) accuracy while the blue bars indicate the accuracy for the hold-out test 
data obtained by the voting procedure. The dotted line indicates the accuracy obtained when the 
classifier assigns the majority class to all subjects in the test data. For unbalanced accuracy, this 
happens to be 53.8% since healthy controls formed 53.8% of the total size of the hold-out test 
data. For balanced accuracy, this is exactly 50%. We chose the majority classifier as the 
benchmark since the accuracy obtained must be greater than that if it learns anything from the 
training data. The discrepancy between the biased estimates of the cross-validation accuracy and 
the unbiased estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy 
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was 84.6% while the best balanced hold-out test accuracy obtained was 85.7% for Boosted Trees 
and Stumps. 

 

 
Table 3.19. The table shows cross-validation and the test accuracy as well the individual class 
accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the ADNI data we collected, for the binary classification problem between 
healthy controls and subjects with Alzheimer’s disease. The training/validation data is from an 
age range of 56-76 years while the data from the age range of 77-88 years was used as a hold-out 
test data. The values in the parenthesis indicate the standard deviation for the accuracy metrics. 
The test accuracy with voting indicates the accuracy obtained when all classifier models obtained 
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by the different partitionings during cross-validation, vote on the observations in the hold-out test 
data. The test accuracy without voting indicates mean accuracy when individual classifier 
models are used to classify the test observations. The top 3 classifiers both within and outside the 
RCE framework which had the highest hold-out test accuracies are highlighted. The best hold-
out test accuracy was 73.7% obtained for Random Forest, and QDA implemented within RCE 
framework while the best balanced hold-out test accuracy obtained was 70.2% for QDA 
implemented within RCE framework. 

 

 
Table 3.20. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
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framework for the ADNI data we collected, for the binary classification problem between 
healthy controls and subjects with Alzheimer’s disease. The training/validation data and the 
hold-out test data are matched in age with subjects from age range of 56-88 years. The values in 
the parenthesis indicate the standard deviation for the accuracy metrics. The test accuracy with 
voting indicates the accuracy obtained when all classifier models obtained by the different 
partitionings during cross-validation, vote on the observations in the hold-out test data. The test 
accuracy without voting indicates mean accuracy when individual classifier models are used to 
classify the test observations. The top 3 classifiers both within and outside the RCE framework 
which had the highest hold-out test accuracies are highlighted. The best hold-out test accuracy 
was 84.6% while the best balanced hold-out test accuracy obtained was 85.7% for Boosted Trees 
and Stumps. 

 

 
Figure 3.26. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ADNI data when the training/validation data and the 
hold-out test data are from different age groups in the range for the multiclass classification 
between healthy controls and subjects with early and late mild cognitive impairment and 
Alzheimer’s disease at the end of spectrum. The training/validation data is from an age range of 
56-76 years while the data from the age range of 77-88 years was used as a hold-out test data. 
The balanced accuracy was obtained by averaging the individual class accuracies. The orange 
bars indicate the cross-validation (CV) accuracy while the blue bars indicate the accuracy for the 
hold-out test data obtained by the voting procedure. The dotted line indicates the accuracy 
obtained when the classifier assigns the majority class to all subjects in the test data. For 
unbalanced accuracy, this happens to be 37.5% since healthy controls formed 37.5% of the total 
size of the hold-out test data. For balanced accuracy, this is exactly 25%. We chose the majority 
classifier as the benchmark since the accuracy obtained must be greater than that if it learns 
anything from the training data. The discrepancy between the biased estimates of the cross-
validation accuracy and the unbiased estimates of the hold-out accuracy is noteworthy. The best 
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hold-out test accuracy was 46.9% while the best balanced hold-out test accuracy was 47.9% both 
obtained for Boosted Trees. 

 

 
Figure 3.27. Unbalanced and balanced accuracy estimates for various classifiers (A) with RCE 
framework (B) outside RCE framework for ADNI data when the training/validation data and the 
hold-out test data are from different age groups in the range for the multiclass classification 
between healthy controls and subjects with early and late mild cognitive impairment and 
Alzheimer’s disease at the end of spectrum. The training/validation data and the hold-out test 
data are matched in age with subjects from age range of 56-88 years. The balanced accuracy was 
obtained by averaging the individual class accuracies. The orange bars indicate the cross-
validation (CV) accuracy while the blue bars indicate the accuracy for the hold-out test data 
obtained by the voting procedure. The dotted line indicates the accuracy obtained when the 
classifier assigns the majority class to all subjects in the test data. For unbalanced accuracy, this 
happens to be 25.9% since healthy controls formed 25.9% of the total size of the hold-out test 
data. For balanced accuracy, this is exactly 25%. We chose the majority classifier as the 
benchmark since the accuracy obtained must be greater than that if it learns anything from the 
training data. The discrepancy between the biased estimates of the cross-validation accuracy and 
the unbiased estimates of the hold-out accuracy is noteworthy. The best hold-out test accuracy 
was 51.8% while the best balanced hold-out test accuracy was 47.9% both obtained for 
Regularized Logistic Regression (RLR). 
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Table 3.21. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the ADNI data we collected, for the multiclass classification between healthy 
controls and subjects with early and late mild cognitive impairment and Alzheimer’s disease at 
the end of spectrum. The training/validation data is from an age range of 56-76 years while the 
data from the age range of 77-88 years was used as a hold-out test data. The values in the 
parenthesis indicate the standard deviation for the accuracy metrics. The test accuracy with 
voting indicates the accuracy obtained when all classifier models obtained by the different 
partitionings during cross-validation, vote on the observations in the hold-out test data. The test 
accuracy without voting indicates mean accuracy when individual classifier models are used to 
classify the test observations. The top 3 classifiers both within and outside the RCE framework 
which had the highest hold-out test accuracies are highlighted. The best hold-out test accuracy 
was 46.9% while the best balanced hold-out test accuracy was 47.9% both obtained for Boosted 
Trees. 
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Table 3.22. The table shows the cross-validation and the test accuracy as well the individual 
class accuracies for the classifiers implemented (A) within the RCE and (B) outside the RCE 
framework for the ADNI data we collected, for the multiclass classification between healthy 
controls and subjects with early and late mild cognitive impairment and Alzheimer’s disease at 
the end of spectrum. The training/validation data and the hold-out test data are matched in age 
with subjects from age range of 56-88 years. The values in the parenthesis indicate the standard 
deviation for the accuracy metrics. The test accuracy with voting indicates the accuracy obtained 
when all classifier models obtained by the different partitionings during cross-validation, vote on 
the observations in the hold-out test data. The test accuracy without voting indicates mean 
accuracy when individual classifier models are used to classify the test observations. The top 3 
classifiers both within and outside the RCE framework which had the highest hold-out test 
accuracies are highlighted. The best hold-out test accuracy was 51.8% while the best balanced 
hold-out test accuracy was 47.9% both obtained for Regularized Logistic Regression (RLR). 
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The accuracies were much better when the extreme ends of the spectrum were considered 

between healthy adults and adults diagnosed with Alzheimer’s disease. In the binary 

classification scenario between Controls and AD, for the split in which the training/validation 

and the hold-out test data belonged to different age ranges, the best hold-out test accuracy was 

83.3% while the best balanced hold-out test accuracy obtained was 76.2% for Sparse Logistic 

Regression. In the multiclass classification for the same split, the best hold-out test accuracy was 

46.9% while the best balanced hold-out test accuracy was 47.9% both obtained for Boosted 

Trees. In the split wherein the training/validation and the hold-out test data were matched for 

age, accuracies were higher compared to the unmatched case. The best hold-out test accuracy 

was 84.6% while the best balanced hold-out test accuracy obtained was 85.7% for Boosted Trees 

and Stumps. For the 4-way classification across the spectrum, the best hold-out test accuracy was 

51.8% while the best balanced hold-out test accuracy was 47.9% both obtained for Regularized 

Logistic Regression (RLR).  

Feature importance: The combined feature importance scores (CFIS) for the two splits were 

plotted in a scatter plot as shown in Figure 3.28 for the binary and multiclass cases. The CFIS 

have higher variability and a smaller slope in binary compared to the multiclass classification 

scenario. The top connectivity paths whose means were significantly different between the 

groups (p<0.05, corrected) as well as have high combined feature importance scores are shown 

in Figure 3.29, while the top 20 regions in the brain whose connectivity paths were altered in the 

disease are shown in the Table 3.23. 
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Figure 3.28. Scatter plots of combined feature importance scores (CFIS) for the two splits 
performed on the ADNI data. We selected the common features in obtained and plotted them as 
scatter plots for both binary and multiclass classification scenarios. The plot illustrates that there 
is significant agreement in the CFIS across splits. However, a lot of variability is present as well 
and this can be attributed to age ranges of the training/validation data obtained from the two 
splits. 

 

 
Figure 3.29. The figure illustrates the connectivity paths which have significantly different 
means between the groups (p<0.05, corrected for multiple comparisons using permutation test) 
as well as are among the top hundred most discriminative paths in ADNI data for (A) binary 
classification between controls and Alzheimer’s disease (AD). (B) 4-way classification between 
healthy controls, Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment 
(LMCI), and AD. The size of the nodes indicates the relative importance of the region (Table 
3.23). Common nodes between binary and multiclass classification are indicated by yellow while 
other nodes are indicated by green. The sign of the paths indicates over-connectivity (positive) or 
under-connectivity (negative) in healthy controls compared to clinical populations. So, red 
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represents a higher connectivity between controls compared to the diseased populations and blue 
represents a lower connectivity. The numerical values in the color bar denote the combined 
feature importance score of the path (CFIS) obtained from classification. A higher absolute 
number indicates more discriminative ability for the functional connectivity path. The table 
below the figure tabulates the brain regions involved in the paths visualized above along with the 
abbreviations of the two regions and the CFIS (combined feature importance score) for the 
connectivity paths. 

 

 
Table 3.23. This table illustrates the top 20 regions for MCI and AD as identified by (A) Binary 
classification between Healthy Controls and AD (B) Multiclass classification between Controls, 
MCI, and AD, using ADNI data. 

 

3.3.6 Performance metrics from the consensus classifier  

The hold-out test accuracies obtained from the consensus classifier (when all the classifiers are 

combined) for each of the four datasets are shown in Table 3.24. We list voting hold-out test 

accuracy, balanced hold-out test accuracy and individual class accuracies obtained by the 

consensus classifier. It is clear from the results of the various splits that the classifier which has 

the best hold-out test accuracy in one split may not perform as well on the other splits. Similarly, 

the classifiers which have high cross-validation accuracy does not always have a high hold-out 

test accuracy. Though the performance from the consensus classifier is less than the performance 



145 
 

of the best classifier for the split, it consistently gives excellent performance across all splits by 

leveraging the predictive power of individual classifiers. 

 

 
Table 3.24. Accuracy obtained by the consensus classifier for the various splits (A) ABIDE 
dataset (B) ADHD-200 dataset (C) PTSD dataset (D) ADNI dataset. 

 

3.3.7 Effect of age and site variability 

To understand the effects of age and site variability on the accuracy obtained from the hold-out 

test data, we used the consensus classifier to compare and contrast. This way we can draw 

generalized inferences about the predictive capability of the classifiers without reference to any 

specific classifier. We compared the overall accuracies as well as the individual class accuracies 

when the training/validation data and the hold-out test data were matched as well as a case in 

which there was age or site differences between the two. The corresponding consensus 

accuracies for ABIDE, PSTD and ADNI datasets are shown in Figures 3.30-3.32, respectively. 

As expected, the accuracy with matched data was higher than in unmatched case. The difference 

in consensus accuracies due to age was particularly sharp in small datasets such as PTSD and 
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ADNI. These figures illustrate that smaller datasets with high homogeneity overestimate the 

actual predictive capability of the classifiers and could give optimistic accuracy results that do 

not generalize well to the larger population.  

 

 
Figure 3.30. The figure shows the differences in overall accuracy as well as individual class 
accuracies in the ABIDE dataset which can be attributed to age and site variability. These 
consensus accuracies were obtained by combining the predictions of all the 19 classifiers in a 
probabilistic way to vote on the hold-out test dataset. As expected, the split wherein the training 
and hold-out test data were matched for age and acquisition site had the best performance, 
though it was more pronounced in the multiclass classification scenario. In fact, a three-way 
classification between healthy controls, subjects with Asperger’s syndrome and Autism reduced 
the overall accuracy due to the relatively fewer subjects with Asperger’s syndrome in the dataset. 
Overall the classifiers were reasonably successful in classifying the test observations. 
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Figure 3.31. The figure shows the differences in overall accuracy as well as individual class 
accuracies in the PTSD dataset which can be attributed to age range differences in 
training/validation and hold-out test data. These consensus accuracies were obtained by 
combining the predictions of all the 19 classifiers in a probabilistic way to vote on the hold-out 
test dataset. As expected, the split wherein the training and hold-out test data were matched for 
age had the best performance. The accuracy in the split where the age range was different for 
training/validation and hold-out test data was terrible with all observations being classified as 
PTSD in the binary classification scenario. This shows that smaller datasets with homogeneity 
overestimate the actual predictive capability of the classifiers and do not generalize well to the 
overall population. 
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Figure 3.32. The figure shows the differences in overall accuracy as well as individual class 
accuracies in the ADNI dataset which can be attributed to age range differences in 
training/validation and hold-out test data. These consensus accuracies were obtained by 
combining the predictions of all the 19 classifiers in a probabilistic way to vote on the hold-out 
test dataset. Similar to the other two datasets, the split where the training and hold-out test data 
were matched on age had the best performance, though it was more pronounced in the binary 
classification scenario. The binary classification performed way better than multiclass 
classification as expected due to the difficulty in modeling the four classes with relatively small 
sample size. Similar to PSTD, smaller datasets with homogeneity overestimate the actual 
predictive capability of the classifiers and do not generalize well to the overall population. 

 

3.3.8 Reliability of feature selection and parameter optimization 

To investigate the wide discrepancies between cross-validation and hold-out test accuracies in 

smaller datasets, we compared the average accuracy per cluster plots as a function of features for 

every recursive cluster elimination step. This was done for both ADNI and ABIDE datasets. The 

figure for the Linear SVM classifier comparing both the datasets is shown in Figure 3.33. As 

non-discriminative features are eliminated in the RCE-framework, training accuracy increases. 
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For the ADNI dataset, unlike with the ABIDE dataset, removal of features did not translate to 

improvement in accuracy in the validation dataset. Similarly, model selection via parameter 

optimization for Support Vector machine within the RCE-framework does not particularly seem 

to improve the accuracy significantly for the ADNI dataset beyond that obtained by using a 

default value for the tuning parameter C equal to 0.1 as shown in Figure 3.34. In fact the 

accuracy was significantly less by using model selection than just using the default parameter. 

Whereas, for ABIDE dataset, hyperparameter optimization by grid search improved the accuracy 

compared to using the default parameter. The significance in the differences in accuracy with 

and without parameter optimization in ABIDE data becomes more appreciable as recursive 

cluster elimination progresses. The reason for the unreliability in feature selection and parameter 

optimization can be attributed to the lack of enough data to choose the optimal models, a 

problem, unfortunately, more pronounced in high dimensional datasets with smaller sample 

sizes. 

 

 
Figure 3.33. Changes in classification accuracy with feature elimination during training 
compared to validation. Results are shown in smaller datasets such as ADNI (A) as well as in 
larger datasets such as ABIDE (B). The RCE framework seemed to improve the accuracy as 
unnecessary features were eliminated in the training data. In ADNI dataset, unlike with the 
ABIDE dataset, removal of features did not translate to improvement in accuracy in the 
validation dataset. This demonstrates the unreliability of feature selection in smaller datasets.  
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Figure 3.34. Changes in classification accuracy with feature elimination, both with and without 
model selection/hyperparameter optimization. Results are shown in smaller datasets such as 
ADNI (A) as well as with large datasets such as ABIDE (B). For the ADNI dataset, parameter 
optimization did not lead to an increase in the accuracy than the default parameters. In fact, it is 
less than what is observed without parameter optimization. Whereas, for the ABIDE dataset 
hyperparameter optimization by grid search improved the accuracy compared to using the default 
parameters as identifying the optimum hyperparameters is more reliable. This figure raise 
important questions about the unreliability of model selection/hyperparameter optimization in 
smaller datasets. 

 

3.4 Discussion 

We demonstrate that cross validation accuracy could provide overoptimistic estimates of 

classifier performances in homogeneous datasets and show how the hold-out test performance 

could actually be much lower than the cross-validation performance. This is an important 

conclusion given that cross-validation is a generally accepted standard in neuroimaging based 

classification, and yet is something that is completely unacceptable in other fields including 

industry. A simple example is Kaggle competitions (https://www.kaggle.com/competitions), 

which hosts several machine learning problems. In Kaggle competitions, data science enthusiasts 

submit their predictions on a hold-out test data and their performance is evaluated in real-time. 

This ensures that different researchers use the same hold-out test data which gives an objective 

estimation of performance and allows for comparison of performance across classifiers, which is 

especially critical for clinical diagnosis. Cross-validation is incapable of an objective estimation 

of performance given the differences in data samples used by individual researchers which can 

https://www.kaggle.com/competitions
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affect the classification performance. Another pertinent example is the CALO (Cognitive 

Assistant that Learns and Organizes) project (https://en.wikipedia.org/wiki/CALO) which gave 

rise to many software products including the voice recognition feature “SIRI” in Apple’s 

iPhones. While cross-validation was used to build models, they were typically not used as a 

performance metric while developing products such as SIRI within the CALO project.  Our 

results suggest that neuroimaging must adopt industry-standards while employing machine 

learning for diagnostic classification, wherein the classification performance is always assessed 

using a completely independent hold-out test data. 

Second, we sought to understand how overfitting can occur in the context of machine learning 

applied to neuroimaging-based diagnostic classification. We implemented 18 classifiers covering 

a spectrum of popular machine learning classifiers based on diverse principles. Our results show 

that during both feature selection and performance estimation, smaller datasets might give 

unreliable estimates of classifier performance which could lead to improper model selection 

leading to poor generalization across the larger population. To address issues with classifier 

variance and improve predictive ability, we also propose a consensus classifier. The consensus 

classifier exploits the predictive abilities of individual classifiers to build a single classifier so 

that inferences drawn are not driven by overfitting by any individual classifier.  

Finally, we wanted to identify functional connectivity features that are insensitive to different 

sources of variability identified above as well as have good statistical separation between groups 

along with good predictive ability. In fact, the proposed combined feature importance scores we 

assigned to connectivity features were aggregated from multiple classifiers implemented in the 

RCE framework. Connectivity features thus identified are likely to be robust and genuine 

markers of underlying brain network disruptions caused by the disorders rather than an artifact of 

https://en.wikipedia.org/wiki/CALO
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other extraneous factors. We make our code publicly available for replication of our results and 

to encourage better practices in research. To the best of our knowledge, this is the most 

comprehensive exploration of state-of-the-art machine learning algorithms for neuroimaging 

based diagnostic classification. 

The discussion section is organized as follows. We start with a discussion of the methodological 

aspects associated with our study which is then followed by a discussion of specific insights we 

obtained using each of the four clinical datasets. We first discuss the strengths of our study with 

regard to the use of a data driven feature selection strategy. We then examine in detail the issues 

encountered during classification. Specifically, we discuss how data heterogeneity in age and 

acquisition site can affect the classifier performance. As our results indicate, data heterogeneity 

can reduce classification accuracy and the effect is much more pronounced in relatively smaller 

datasets such as PTSD and ADNI. We also expand on how model selection and performance 

estimation can be unreliable in these small datasets. We then discuss some issues in the 

acquisition and processing of data that can effect classification accuracy and speculate on how 

multimodal imaging might improve classification performance. We end this section by 

discussing the classification results, connectivity paths and the regions associated with the 4 

disorders we examined – ASD, ADHD, PCS & PTSD and MCI & AD, in order – with special 

emphasis on disrupted functional networks identified by us.  

3.4.1 Use of a data driven approach for feature selection 

We used a data-driven model in this study where we made no prior assumptions about the brain 

regions or connectivity paths involved in the underlying disorders. Prior assumptions about the 

effects of the disease on the brain regions have be used before to reduce the number of features 

to a more reasonable number [55, 56, 57]. However, in this paper, we used a data-driven 
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approach to reduce the number of features and improve the classification accuracy of the 

classifiers for three reasons: (i) The feature selection methods we used can potentially provide 

insights into the neurophysiological aspects of the disease and help validate current hypotheses 

about the underlying connectivity disruptions in these disorders [58], (ii) There is a growing 

body of evidence that neurological diseases target large-scale distributed brain networks. Hence 

by limiting ourselves to a few regions in the brain, we might not even consider features with 

potentially useful information and limit our understanding of the underlying neuropathology of 

the disease, (iii) Lack of specificity of brain networks in disease identification. For example, 

DMN dysregulation is implicated in several disorders. Therefore, using a data driven feature 

selection algorithm can help us identify networks which are likely to be specific to the disorders.  

3.4.2 Issues with performance estimation and feature selection for small datasets 

Cross-validation accuracy is an unreliable estimate of the true generalization accuracy in small 

datasets with few hundreds of samples [59, 49]. When we use cross-validation to select a large 

number of models, we risk overfitting and choosing the less optimal model. In machine learning 

literature, it is widely accepted that cross-validation performance is an ineffective measure of the 

true generalization performance due to the large variance associated with its estimates [60], 

although this fact is not widely appreciated in the neuroimaging community [58]. Also in smaller 

datasets, the hyperparameter values selected by minimizing the validation error might be tailored 

to the sample used for training and validation. This leads to overfitting in model selection and 

hence provides a biased estimate of classification performance in such small samples [60]. As we 

have shown in Figure 3.34 model selection by parameter optimization does not improve the 

performance in ADNI data in contrast to ABIDE data. In fact, model selection by parameter 

optimization in ADNI data performs significantly worse compared to the case without parameter 
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optimization. In ABIDE data, the optimal model can be selected based on cross-validation, as the 

cross-validation estimate is more reliable due to the size of the dataset. Not just for performance 

estimation, this fact also rings true in wrapper methods for feature selection or model selection 

when we use cross-validation with small datasets with higher dimensional features as is the case 

for typical neuroimaging datasets. It is noteworthy that datasets with hundreds of subjects are 

considered large in neuroimaging (which may be true for detecting activation and even for 

characterizing resting state networks). However, they are small given the dimensionality of the 

data and what we are trying to achieve with machine-learning based supervised diagnostic 

classification. 

Given the problems associated with the “curse of dimensionality”, reducing the number of 

features is important [41, 61]. Though useful for reducing features to more manageable numbers, 

t-test filtering might not be the best initial feature selection method as T-scores of features can, in 

principle, vary drastically across different folds of training data and consequently have poor 

predictive power [62, 6]. In t-test filtering, we are using statistical separation as a proxy for 

discriminative power and this may be true in some instances and may not be so in other 

instances, especially if groups of features, when combined, may provide discriminative ability in 

comparison to when used alone. Therefore, a filtering strategy by univariate tests might remove 

features with discriminative ability since those features are not selected based on a metric which 

directly asseses their discriminative power [62]. Our results do indicate such dangers posed by 

the use of filter methods such as t-test filtering, as observed in substantial variance in the selected 

feature importance scores, and possibly overfitting in small datasets such as PSTD (Figure 3.23) 

and ADNI (Figure 3.28). Therefore, instead of feature selection by t-test filtering, quick and 
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reliable methods such as GINI index might be useful as they may provide a better estimate of 

feature importance [62]. 

In our study, many classifiers implemented within the Recursive Cluster Elimination (RCE) 

framework gave better performance compared to the classifiers not implemented within RCE. 

The performance of the classifiers became better as the sample size increased. However, wrapper 

methods such as recursive cluster elimination are not perfect either. Specifically, the inner cross-

validation we use in RCE for model selection does not reliably select the true model of the 

mapping between inputs and outputs in smaller datasets such as ADNI (Figure 3.33). This results 

in no significant change in accuracy per cluster in the validation data when such features are 

removed from the training data. In fact, models are prone to overfitting when a large number of 

models are tested against small samples of data [49], which holds true when RCE and/or 

parameter optimization is used in small datasets. Along with its feature reduction capabilities, 

RCE framework (and wrapper methods in general) has significant downsides as well, such as the 

difficulty in optimizing its tunable parameters. For obtaining the best results from RCE 

framework, we have to consider the dimensionality of each cluster, the computation time, 

number of clusters/models that we choose from and the number of features which needed to be 

eliminated at each step of the algorithm. 

In our study, many features which had significant group differences were not useful in 

classification while some features with good classification scores did not necessarily show 

significant group differences. Therefore, we investigated features which were significantly 

different between the groups as well as had high discriminative/predictive ability (high FIS 

scores). Since different classifiers are sensitive to different patterns of features [61], the FIS 

scores obtained for the same features from different classifiers can, in principle be, different. 
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Therefore, we combined the FIS scores obtained from multiple classifiers for a given feature to 

provide a single combined feature importance score (CFIS). CFIS is our novel contribution and 

has not been done in previous studies to the best of our knowledge.  

Finally, it is important that features are not selected using the entire dataset as it could lead to 

overoptimistic results which could generalize poorly to unseen data. Unfortunately, this practise 

is quite common in neuroimaging and it could lead to the leakage of information from training 

data to test data. This is sometimes referred to as “double dipping” [63] and could result in 

extremely optimistic accuracies in smaller datasets with large number of features [5]. In our 

results, some of the difference in CV accuracy and the test accuracy, even in the case where the 

training/validation data and the hold-out test data are matched for age and imaging site can be 

attributed to the t-test filtering performed on just the training/validation data. It should also be 

noted that if the features selected by the t-test indeed do have predictive power and are 

reproducible, then feature selection by t-test filtering should have a minimal impact on the 

classification accuracy. Compared to other classifiers, the difference between cross-validation 

and the hold-out test accuracy was the smallest for Boosted trees across all classifiers, indicating 

that it may not be overfitting the data compared to other classifiers. This may be because 

boosting is generally considered relatively robust to overfitting [64, 65]. However, dividing the 

data into training/validation and hold-out test data and performing feature selection only using 

the training/validation data may not be feasible in smaller datasets which are typical in 

neuroimaging. Probably the use of classifiers with built-in feature selection such as SLR or 

feature ranking such as Random Forest might be the way forward with feature reduction in noisy 

and relatively small datasets. It is also important to remember that the hold-out test accuracy is a 

conservative estimate of the actual predictive performance and hence is a better indicator of the 
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performance on unseen data especially in disorders with high heterogeneity and/or features 

which are not highly reproducible.  

3.4.3 Effect of the data heterogeneity on the classification performance 

Our results, taken together with previous reports, indicate that generalizing a classifier across 

different age groups and acquisition sites is difficult. We observed differences in accuracies 

when the model trained on data acquired at particular sites or age ranges were tested on data 

from a different age range or acquisition site (Table 3.24, Figures 3.30-3.32). In many studies, 

matching for age, sex, motion, scanning protocol, acquisition site, and IQ may not be feasible 

between the training/validation and the hold-out test data as well as between the Controls and the 

diseased group. This is truer for datasets which are pooled from many acquisition sites 

prospectively given the prohibitive costs involved in acquiring such large data homogeneously 

and retrospectively (although large retrospective studies have gotten underway recently. E.g. UK 

biobank study [40]. It is also possible that disease populations in a particular age range might 

exhibit over-connectivity compared to age-matched Controls while subjects with the same 

disease diagnosis from a different age range exhibit under-connectivity compared to age-

matched Controls, as in ASD. 

Data from different scanning sites are associated with variability in scanning equipment, 

scanning parameters, demographic, genetic or other experimental factors [7]. Datasets we 

encounter might not sample the entire population distribution. Cross-validation (CV) accuracy in 

our results suffer due to two primary factors. The first factor affecting the CV accuracy is the 

difficulty in generalizing the classifier to variations in the disease populations. The second factor 

affecting the CV accuracy is the bias introduced by feature selection on the cross-validation data. 

Because of this bias, choosing the optimum model from a large number of models with limited 
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validation data is difficult, as the data samples we collect might not adequately sample the 

population distribution space. With low disease prevalence and the high heterogeneity in disease 

populations, identifying reliable biomarkers with high sensitivity to the disease as well as good 

generalization in the population can only be achieved with the help of large collaborative 

multisite neuroimaging efforts even if they are put together retrospectively [58, 6]. Examples of 

such efforts include ADNI for Alzheimer’s [66], ABIDE  for Autism [29], ADHD-200 for 

ADHD [31], 1000 functional connectomes project for healthy subjects [67]  and International 

Neuroimaging Data-sharing Initiative (INDI) [68]. The classification performances tested on 

such large datasets help in reproducabilty and generalizability of classification results. Three of 

the four datasets we used – ADNI, ABIDE and ADHD-200 – are from collaborative multisite 

acquisitons. Hence even if our accuracy appear to be lower compared to that reported by single-

site studies with relatively smaller sample sizes, we expect our classification accuracy and 

consequently the disease encoding neuroimaging features to generalize well to the general 

population. Another factor limiting the utility of automated diagnostic tools is low disease 

prevalence in the general population. For developing diagnostic classification tools for the 

general population, low disease prevalence could lead to large false positives despite high 

specificity, thereby limiting its usefulness. 

The diagnostic label associated with spectrum disorders such as Autism spectrum disorder might 

not be entirely informative given that these diseases correspond to multiple etiologies under the 

same term and thus finding biomarkers and getting good and reliable classification performance 

in classifying them are tough [6]. Many disorders are highly heterogeneous, and categorization 

of subgroups within many disorders is yet to be thoroughly established. Also, some of them are 

characterized by behavioral disabilities that form continuous or nearly continuous spectrum 
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spanning from relatively mild symptoms to very pronounced behavioral difficulties as can be the 

case with cognitive impairment and Alzheimer’s disease. Another huge issue which is gaining 

attention is the misdiagnosis or over-diagnosis of subjects especially in children which make it 

difficult to know the actual disease state of the subject and make predictive learning models 

extremely difficult to optimize.  

The above factors can make classification of sub-classes within spectrum disorders extremely 

difficult. All classifiers we tested struggled with the multiclass classification for almost all 

datasets compared to binary classification when using the hold-out test dataset. In a three-way 

classification between Controls, Asperger’s syndrome and Autism, most classifiers failed to 

classify even a single subject with Asperger’s syndrome accurately in the hold-out test data 

(Tables 3.7-3.9). The 3-way classification between Controls, ADHD-I, and ADHD-C, (Table 

3.11) resulted in decreased accuracy compared to binary classification between Controls and 

ADHD (Table 3.12). As discussed previously, over-diagnosis or misdiagnosis hinders supervised 

classification. One way to overcome this issue will be to use unsupervised classification to drive 

subject labeling [69, 70]. In the case of ADNI dataset (Figures 3.24-3.27), the high accuracy 

obtained from the four-way classification using cross-validation did not generalize well to the 

holdout test dataset. Several factors could contribute to these results. Primarily, the lack of large 

training data available for disease subtypes, which is particularly the case for the ADNI dataset 

and the Asperger’s sample in the ABIDE dataset.  

3.4.4 Issues with the use of machine learning classifiers 

The choice of the classifier and the features extracted are extremely crucial in providing insights 

about the neurobiological origins of the disease. There is no universally best learning algorithm 

that gives excellent performance for all datasets and features. So it is extremely difficult to know 
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beforehand which classifier might give the best performance. High prediction accuracy and 

interpretability of the classifier model are somewhat conflicting goals in neuroimaging [1].  In 

using complex classifiers using RBF kernels or neural networks might give excellent 

performance, but utility in translating the models to understanding the disrupted neural circuits in 

neurological disease is limited given the “black box” nature of such classifiers. Also, non-linear 

methods might not give optimal performance compared to linear methods when available 

training data is limited to model the complex relationships between the features and the disease 

status of the subject. In fact, the relative success of linear classifiers in neuroimaging is not due 

to the absence of complex relationships between features and subjects’ diagnostic status, but 

rather due to the unavailability of large datasets required to model such relationships [43]. In our 

study we get the best of both the worlds in our use of machine learning classifiers as we achieve 

high prediction accuracy as well as interpretability for our results. Due to the use of multiple 

classifiers within the RCE framework, we were able to leverage the strengths of multiple types of 

machine learning classifiers not only to improve the classification performance, but also to 

provide us with combined feature importance scores (CFIS). CFIS scores were then used to 

identify the connectivity paths and regions encoding the disease states for the various discords 

studied. This greatly aids in interpretability of our results and provides us valuable information 

about connectivity dysregulation in the clinical populations. 

Another observation from our results pertains to models with built-in regularization. Models with 

regularization to control model complexity performed well consistently across all datasets. In 

fact, sparse models such as RVM, SLR, RLR, and regularized neural networks gave consistently 

good performance across most datasets and the multiple splits we performed on each dataset. 
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Therefore, we believe that quality and the quantity of the data available must guide the best 

feature extraction methods and the choice of the classifier for each particular study. 

In some cases, classifiers which performed best on the cross-validation dataset did not perform 

as well on the hold-out test data. It is possible that by reporting only the results of the classifier 

having the best performance, we are prone to using optimistic estimates of classification 

performance which might not even generalize well to subjects from the same population [53]. It 

is one of the reasons as to why we combined predictions from multiple classifiers to build a 

consensus classifier rather than reporting and emphasizing accuracy obtained by the best 

classifier. Also, combining multiple predictions from different classifiers can usually improve 

the overall classification performance as different types of classifiers rarely make the same kinds 

of mistakes on unseen data. 

3.4.5 Issues with disease classification using RSFC metrics 

Some issues we have not considered in this study might influence reported classification 

performance. The confounding effects of head motion and the correction strategies applied to 

ameliorate head motion artifacts, inclusion/exclusion of global signal regression (GSR) in the 

preprocessing pipeline, spatial variation in the Hemodynamic Response Function (HRF) across 

brain regions and subjects, as well as the duration of the scans can affect the reliability and 

reproducibility of RSFC metrics, which might ultimately affects classification performance.  

There is no general consensus in neuroimaging community on how to address these issues.  

Scan duration is of particular importance in clinical populations when motion corrupted volumes 

are removed from the data (censoring), and it is crucial to have the necessary amount of data to 

reliably estimate RSFC metrics. Also, proper motion correction might improve the accuracy in 

classifying Controls from clinical subjects [71]. Probably the easiest way to increase the 
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accuracy of classification is to have longer scans times to make the features derived from RSFC 

more reliable [14, 15]. 

3.4.6 Multimodal Imaging 

Resting state functional connectivity measures may not necessarily contain discriminative 

information for all mental disorders. With the rise of multimodal imaging, using multiple 

imaging metrics as features can capture different aspects of neuropathology. Structural 

connectivity measures obtained from DTI, morphological features from anatomical images, 

network theoretic measures derived from graph theory such as local connectivity, global 

efficiency, clustering coefficient, network modularity, characteristic path length etc., RSFC 

derived measures such as Amplitude of low-frequency fluctuations (ALFF)/ and fraction of 

amplitude of low-frequency fluctuations (fALFF), Regional Homogeneity (ReHo), Degree 

Centrality (DC), seed-based connectivity, causal directional relationships between brain regions 

(effective connectivity) [72] or use dynamic measures of synchronization between brain regions 

(Dynamic Functional and Effective Connectivity) [73], task-based activation, as well as 

measures derived from magnetic resonance spectroscopy could potentially be used as features to 

train classifiers. Multimodal measures have been used for classification in Autism with good 

results [74, 75].  In fact, to build a better model, along with multimodal imaging we can move 

beyond imaging metrics and incorporate prior information about the disease prevalence and its 

distribution in the population based on demographic and phenotype data into the classification 

algorithm. If the results reported by several research groups that participated in the ADHD-200 

global competition is an indication [31], then much better accuracies can be achieved by 

combining neuroimaging data with the phenotypic data than by using neuroimaging based data 

alone. 
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3.4.7 ASD 

In the binary classification of controls from ASD, we achieved accuracy as high as 67.2% 

(balanced accuracy of 66%) on the separate hold-out test dataset (Table 3.24). However, when 

the training/validation and the hold-out datasets are from different age ranges, the accuracy was 

reduced to 66.2% (balanced accuracy of 60.1%). In fact, the impact of age on the classification 

performance in the ABIDE data has been previously documented by Vigneshwaran et al. (2015). 

They report higher accuracies on the hold-out test dataset when adult males and adolescent males 

(age<18) were considered separately in classification, than when all male subjects were 

considered [76]. This study also reports higher hold-out test accuracy for adult males compared 

to adolescents, indicating the difficulty in classifying ASD in adolescents compared to young 

adults using RSFC metrics. The results of this study contradict an earlier study which obtained 

better classification performance for adolescents (89% with LOOCV, 91% with replication 

dataset) compared to young adults (79% with LOOCV, 71% with replication dataset) with 80 

subjects for training/validation and 21 subjects in the replication dataset [50]. Age dependence is 

to be expected since ASD is a developmental disorder with atypical developmental trajectories 

including compensatory mechanisms in adulthood [77, 27]. Previous studies have reported 

increased resting state functional connectivity in ASD subjects under the age of 12 years, while 

studies involving adolescents and adults have reported reduced functional connectivity compared 

to healthy controls [78]. Also, behavioral measures have been shown to outperform fMRI-based 

measures for supervised classification of Autism [79].  Previous studies report accuracies in the 

mid to high 70s for single site studies with 40-80 subjects [50, 55].   The classification accuracy 

drops as the size of the dataset increases,  with 79% LOOCV accuracy reported with 240 

subjects [80] and dropping to as low as 60% LOOCV accuracy with 964 subjects [3] in multisite 
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studies using the ABIDE dataset. Motion does seem to play a signficant role in reducing 

classification performance as several studies using low-motion subjects achived much higher 

accuracies. Using 252 low-motion, age and motion matched cohorts from ABIDE, Chen et al 

(2013) achieved accuracies an of 91% (1- out of bag error (OOB)) with Random Forests [4] and 

using 640 subjects with age<20, Iidaka (2015) achieved cross-validation accuracy of 90% with 

probabilistic neural network (PNN) [81]. It is noteworthy that these high accuracies have been 

obtained using cross-validation. Differences between the training/validation and the hold-out test 

data in several factors such as imaging site, head motion, age, sex, IQ, and imaging protocol can 

cause an overestimation of classification accuracy in cross-validation. In fact, compared to 91% 

accuracy reported by using OOB error for Random Forests, considerably lower accuracies of 

62% was obtained from hold-out test data in the same study [4]. 

ASD involves disruptions of interacting large-scale brain networks distributed across the brain 

[28]. We observed both under-connectivity and over-connectivity in subjects with ASD 

compared to the controls (Figure 3.9) as reported in previous studies [55, 27]. In fact several of 

the regions (Table 3.10) and connectivity paths (Figure 3.14) obtained in this study were also 

shown to be implicated in Autism [82]. Many regions associated with the default mode network 

such as posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex, angular gyrus 

were found to be disrupted in subjects with ASD as several previous studies have indicated [83, 

29, 84, 85]. Medial prefrontal cortex (MPFC) and anterior cingulate are involved in social 

processing [86] and hence are likely to be altered in subjects with ASD. Using ABIDE dataset, 

Iidaka found that the superior frontal gyrus (SFG), anterior and posterior cingulate (ACC & 

PCC) as well as the thalamus were most disrupted in Autism [81]. Connectivity between 

fusiform gyrus (FG) and middle occipital gyrus (MOG) [29] was reported to be lower in children 
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with Autism compared to controls and this might explain the difficulty in facial information 

processing for subjects with Autism. Other regions involved in Autism include caudate and 

thalamus. Middle temporal gyrus (MTG) is implicated in speech processing, theory of mind and 

memory encoding and has also been shown to be affected in ASD [82, 87]. The features we 

identified not only had predictive power, but also had significant group differences across all the 

3 splits accounting for variations in age and acquisition site. Therefore, it is likely that these 

features are robust to age changes and variations in acquisition sites. This factor is especially 

crucial given the atypical developmental trajectories in ASD. Therefore, unlike results reported 

by other studies which may have considered narrow age ranges, the connectivity paths we 

identified are reliable across age variations, though further study is necessary to confirm our 

findings about the age invariance of disease encoding paths and regions involved in ASD. 

3.4.8 ADHD 

For ADHD, we report accuracies of 57.2% and 54.1% for binary and multiclass classification, 

respectively (Table 3.24). Although we did not perform the classification strictly according to the 

ADHD-200 competition guidelines [31], it is still crucial to examine the results obtained from 

the competition because it elicited a response from several research institutions to work on a 

common dataset. The winning team for the competition from Johns Hopkins University reported 

classification results on the hold-out test dataset release by the competition with a specificity of 

94% and a sensitivity of 21% using a weighted combination of several algorithms [88]. Most 

teams reported hold-out test accuracies in the range of 37.4-60.5%, which are similar to those 

obtained by us. In fact using just phenotypic data allowed a team from University of Alberta to 

achieve a higher accuracy (62.5%) than using neuroimaging based metrics [53]. Combining 

phenotypic data with imaging data helped several groups to achieve higher accuracies than using 
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imaging data alone [89, 90]. Using ADHD-200 data, Colby et al. reported using site-specific 

classifiers and suggested that the top features varied across sites, and classifiers trained with data 

across imaging sites performed worse than classifiers trained using data from the same imaging 

site [90]. Similar to our results, none of their classifiers performed well for the 3-way 

classification between Controls, ADHD-I, and ADHD-C. Though these accuracies were above 

chance levels, they still highlight the challenges encountered in neuroimaging based metrics 

from multisite acquisitions [31]. By combining structural, functional and demographic 

information, an accuracy of 55% with 33% sensitivity and 80% specificity was achieved [90]. 

Many studies reported higher accuracies classifying the disease subtypes ADHD i.e. ADHD-I 

from ADHD-C than the between Controls and ADHD [46, 90, 88]. This result is surprising given 

that we expect children with ADHD subtypes to be more similar to each other than with healthy 

controls. It is not clear at this stage whether it is due to overdiagnosis of ADHD, or if it has some 

neurological basis, or if it is just an artifact of the peculiarities of the ADHD-200 data. Some 

studies achieved higher performance of 80-85% using LOOCV and Regional Homogeneity 

(ReHo) features in a relatively small sample (20-46 subjects) of age-matched populations [91, 

92]. Using the entire dataset and Artificial Neural Networks (ANN) based on deep learning 

architectures, LOOCV accuracies of 80% have been reported in classifying Controls from 

ADHD-I and Controls from ADHD-C, and 95% in classifying the ADHD subtypes [46, 90]. 

Since the ADHD-200 competition closely resembles real world classification scenarios, the 

challenges in classification encountered in this dataset, will apply to future studies utilizing 

multisite acquisitions.  

From our results as well as from those reported previously, it is apparent that ADHD is 

characterized by large-scale disruptions in connectivity in the frontal and the temporal lobes. We 



167 
 

did not find a lot of overlap between the connectivity paths for the two-way and the multiclass 

classification though roughly the same brain regions appear to be involved in both classification 

schemes (Figure 3.20, Table 3.13).  In fact, one of the top regions associated with changes in 

functional connectivity is the dorsal region of the anterior cingulate cortex (d-ACC). It is one of 

the most critical nodes involved in ADHD, playing a key role in attention [93, 94]. Anterior 

cingulate cortex (ACC) and insula are part of the salience network and have been previously 

implicated in ADHD [95]. This result is not surprising as these regions are involved in attention 

and control [96]. Dorsolateral prefrontal cortex (DLPFC), anterior prefrontal cortex (aPFC) and 

caudate are part of the executive control network and these regions along with the supplementary 

motor area (SMA) are involved in attentional control [97, 98].  Along with these networks, DMN 

also plays a crucial role in ADHD [99, 100, 98, 101, 102]. Several studies have demonstrated the 

role of the frontal cortex, caudate, basal ganglia, insula, and cingulate gyrus in ADHD [103, 104, 

105, 106, 107, 108, 109]. The connections between the nodes in the frontal cortex and basal 

ganglia form a part of the frontal–striatal network which is involved in response inhibition [110, 

111, 112] with inferior frontal gyrus (IFG) playing an especially important role in salience 

processing and initiation of the response inhibition signal. Though several networks such as 

salience network, executive control network and default mode network are implicated in ADHD, 

only  a subset of connections between the regions seemed to have predictive power as well as 

statistical separation as our results indicate (Figure 3.17). In accordance with our results 

connectivity between IFG, ACC, superior frontal gyrus (SFG), and temporal regions have been 

reported to be altered in ADHD [113].  There is also growing evidence of temporal lobe as a key 

area for ADHD [114, 115, 116], though further studies might be needed to support our findings. 

Our results are in general conformity with prior results discussed above. 
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3.4.9 PCS & PTSD 

We achieved excellent performance in classifying subjects with PTSD from Controls in age-

matched training/validation and hold-out test data than in the unmatched scenario (Figures 3.18-

3.21, Table 3.24). This result underscores the issues with overfitting the data. Unfortunately, 

there are not many studies which used RSFC or RSFC- derived metrics for classification of 

PTSD. However, the few studies which looked at classification of PTSD using RSFC indicate 

that by integrating multiple features, higher accuracies can be achieved. Using features derived 

from both RSFC and Amplitude of Low-Frequency Fluctuations (ALFF), Liu et al obtained 

cross-validation accuracies of 92.5%, an increase of 17.5% in the cross-validation accuracy 

compared to using just ALFF in a sample containing 40 subjects [117]. Using gray matter 

volume from structural MRI, as well as ALFF and regional homogeneity from Rs-fMRI, a 

LOOCV accuracy of 90% was obtained in classifying controls from PTSD using a multi-kernel 

SVM classifier in a sample containing 37 trauma exposed subjects [118].  

Some of the most important regions associated with PTSD classification which we obtained 

(shown in Figure 3.23, Table 3.18), such as right superior frontal gyrus, cingulate gyrus, right 

middle temporal gyrus, calcarine fissure and lingual gyrus, have been reported to have alterations 

in PTSD before [119, 118, 117].  Several of our top classification paths involved regions such as 

middle occipital gyrus (MOG), angular gyrus, cuneus, middle temporal gyrus (MTG), [120] 

cingulate gyrus (CG), calcarine fissure, and occipital cortex [117].  Many functional connectivity 

paths in the visual areas were observed in our study, and is in agreement with previous reports of 

such alterations in PTSD [121, 122, 123, 117, 124]. These alterations may be associated with 

visual imagery in PTSD [125]. Increased activity in the superior frontal gyrus and middle 

temporal gyrus might be linked to anxiety and have been shown to be affected in PTSD [126]. 
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Regions identified in our study such as middle cingulate cortex, thalamus are some of the regions 

reported to be affected by PTSD along with some other regions not identied as important such as 

hippocampus, putamen, amygdala, insula, orbitofrontal cortex (OFC) and anterior cingulate 

cortex (ACC) [127, 128, 129, 121, 130, 131, 132]. Our results are in general conformity with 

prior results discussed above. 

3.4.10 MCI and AD 

In previous classification studies of MCI and AD, integration of imaging modalities such as 

Diffusion Tensor Imaging (DTI) and Rs-fMRI achieved a much higher cross-validation accuracy 

of 96.3% than Rs-fMRI alone, which achieved only 70.37% in cross-validation accuracy in a 

dataset of 27 subjects [133]. Even when classifying healthy controls from patients with AD, a 

relatively lower cross-validation accuracy of 74% for Rs-fMRI was achieved using a dataset 

containing 43 subjects [134]. Employing the same dataset by integrating multiple imaging 

modalities such as DTI, Rs-fMRI and Gray Matter (GM) volume, a much higher cross-validation 

accuracy of 85% was reported [134]. This result is similar to our results in the age-matched split 

in which we achieved a hold-out test accuracy of 76.9% and a balanced hold-out test accuracy of 

78.6% (Table 3.24). In an age-matched sample of 40 subjects, using graph theory-based metrics 

derived from Rs-fMRI data, Khazaee et al. achieved a LOOCV accuracy of 100% in classifying 

patients with Alzheimer’s disease using Linear-SVM [135]. In a sample containing 27 subjects 

with AD, 50 with MCI and 30 controls, using Bayesian Gaussian process logistic regression 

(GP-LR) model, Challis et al. achieved an accuracy of 75% in separating healthy controls from 

MCI and 97% in separating MCI from AD on a hold-out test data [136]. Using  network-based 

measures several studies obtained a LOOCV accuracy in the range of 86%  to 92%  in separating 

in controls from MCI [137, 138, 139] on a dataset with 12 subjects with MCI and 25 healthy 
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controls . Similar to our results, a study using structural MRI, Positron Emission tomography 

(PET) and cerebrospinal fluid (CSF) data from ADNI does indicate the relative ease in 

separating healthy controls from Alzheimer’s than from MCI and healthy controls [140]. 

Our results (Figure 3.29) indicate that the connectivity paths between fusiform gyrus and insula, 

cuneus and inferior frontal gyrus seem to be most important in binary and multiclass 

classification of early and late MCI and Alzheimer’s disease. Since the data size was small for 

this dataset, very few paths crossed significance for both age-unmatched and the age-matched 

split. Since the features we observe are a subset of features which satisfy 3 criteria: (i) Robust to 

effects of age (ii) High predictive ability (iii) Significant group difference, very few features are 

reported for this dataset. So fusiform gyrus is associated with visual cognition and plays a key 

role in MCI and AD [141]. Insula, on the other hand, is associated with perception, cognition, 

emotion and self-awareness [142, 143, 144] and has been implicated in Alzheimer’s disease as 

well [145, 146, 147]. We found several brain regions in the temporal lobe (Table 3.23) to be 

affected in Alzheimer’s disease, including the hippocampus, temporal pole, parahippocampal 

gyrus. These regions are involved in memory related processes [147] and have been implicated 

in AD before [148, 149, 150, 151, 152]. Along with regions in the temporal gyrus, other regions 

with discriminative ability in MCI as reported in other studies include, insula, precuneus and 

inferior frontal gyrus (IFG) [153, 154, 133]. Given that the regions involved in functional 

connectivity paths are in general conformity with the existing results, it is likely that the few 

connectivity paths we identified might have large discriminative ability and is robust to 

variations in age. 
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 Chapter 4 

Conclusion 
 

 
In this thesis, two current topics in resting state fMRI were studied. In the first part of this thesis after 

recognizing the confounding effects of head motion artifacts on resting state fMRI, we examined the 

advantages of prospective motion correction. We observed that using PACE-corrected EPI sequence 

in combination with retrospective motion correction methods was able to eliminate head motion 

artifacts, in particular, significant negative motion-BOLD relationships. It has been reported that 

these significant voxel-wise negative motion-BOLD relationships are typically associated with large 

signal dropouts, caused by relatively large head movements in the scanner. This finding was 

important because previous studies which used traditional EPI sequences were only able to eliminate 

significant voxel-wise negative motion-BOLD relationships after motion censoring. Another 

significant advantage of PACE as we observed is that PACE-corrected EPI sequence offers a good 

compromise between data quality and quantity. Even with a liberal censoring strategy and the loss of 

small amount of data, head motion artifacts were almost eliminated in high motion subjects. Finally, 

we identify the difficulty in separating neuronal changes in connectivity with head motion artifacts 

and caution against the use of deconvolution in high motion samples. 

In the second part of our thesis, we investigated the effect of data heterogeneity on classification 

performance in four neuroimaging datasets. We specifically looked at how age and site acquisition 

variability impact classification accuracy. Our results indicate a significant drop in accuracy when we 

training a classifier with subjects from an age group/acquisition sites and tested our model against 

subjects from other age groups/acquisition sites. This drop was dramatic in smaller datasets, probably 

due to the unreliability of cross-validation for feature selection and performance estimation in the 

smaller datasets. We implemented a consensus classifier which combines the 18 different classifiers 

we implemented in a probabilistic manner. This consensus classifier improves the reliability and 
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robustness of the diagnostic inferences drawn from it. We also identified several connectivity paths 

and regions associated with the four neurological disease we studied: Autism Spectrum Disorder 

(ASD), Attention Deficit Hyperactivity Disorder (ADHD), Post-Concussion Syndrome (PCS) & Post  

Traumatic Stress Disorder (PTSD) and Mild Cognitive Impairment (MCI) & Alzheimer’s Disease 

(AD). The connectivity paths and regions we identified are insensitive not only to age and acquisition 

site but also exhibit significant group differences and excellent discriminability. Finally, we caution 

against the use of cross-validation especially in smaller datasets and encourage the use of a hold-out 

dataset or a replication dataset for assessing the diagnostic utility of machine learning classifiers. 
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Appendix A 
 

A.1 Probabilistic/Bayesian Methods 

Probabilistic models introduced in this section are designed to find the Bayes optimal solution. 

Bayesian classification provides a framework wherein we can calculate a maximum a posteriori 

estimate (MAP) of the parameters by incorporating prior beliefs about the parameters. The MAP 

estimate is obtained by the product of the prior belief and the likelihood divided by evidence. In 

some probabilistic classifiers, by assuming uniform prior distribution, the MAP estimate can be 

reduced to just computing the maximum likelihood estimate (MLE). In the probabilistic learning 

framework, by computing the maximum likelihood estimate (MLE), we select parameters of the 

model which maximizes the probability of the observed data given the parameter.   

All classifier models can be divided into two categories: generative and discriminative. 

Generative classifiers model the joint probability distribution  of the input data X and the 

output class labels Y and predictions are made via Bayes rule. Discriminative classifier on the 

other hand, directly learn the mapping between inputs X and outputs Y, and hence the 

distribution  [1]. Naïve Bayes, Linear and Quadratic Discriminant Analysis are examples 

of generative models. Logistic Regression is an example of a discriminative model. 

Gaussian Naïve Bayes (GNB): In a naïve Bayes (NB) classifier, the class conditional 

independence of the features is assumed [2]. This implies that given the class, the features are 

independent of each other. When the features of each class are modeled as univariate Gaussians, 

we get a GNB classifier. Using the chain rule, the class-conditional features are modeled as a 

univariate Gaussian function as follows 

                                                    (1) 



190 
 

where  indicates the mean and  indicates the standard deviation of the feature distribution . 

The parameters of the model (the location and standard deviations of the class conditional 

Gaussians) are calculated with relative ease from the data. This results in a linear decision 

boundary which contains points that have an equal likelihood of belong to either class. The final 

class assignments during prediction are done by calculating the posterior class probabilities, 

combining the prior class probabilities with class conditional likelihoods, using the Bayes rule. 

Linear Discriminant Analysis (LDA): LDA relaxes the class conditional independence of the 

Naïve Bayes classifiers and models data from each class as a multivariate Gaussian distribution 

with a covariance matrix that is shared across all the classes (homoscedasticity) [2]. So the input 

feature distributions X of the classes is written as  

                                 (2) 

where µ indicates the vector containing the feature means and  indicates the feature covariance 

matrix. The parameters of the model are estimated by maximizing the log conditional likelihood. 

LDA defines a hyperplane that maximizes the ratio of the variance between the classes to the 

variance present within the classes. 

Quadratic Discriminant Analysis (QDA): QDA expands on LDA by further relaxing the 

assumptions of homoscedasticity and models features belonging to each class with its own 

covariance matrix ). Unlike LDA which produces a linear decision boundary, QDA outputs a 

quadratic decision boundary [2]. Due to the bias-variance tradeoff, fitting complex models with 

more parameters require more data to estimate the parameters effectively. Therefore, the 

performance of methods such as GNB, LDA, QDA depends on the assumptions of normality and 

the ability to estimate the true mean and covariance of the feature distributions from the training 

data. When the assumptions of the model hold, Naïve Bayes, and LDA give good performances, 
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but when they are do not hold, a complex model with more parameters such as QDA would give 

better performance given enough data. In LDA and QDA, the number of parameters for the 

covariance matrix to be estimated is quadratic to the number of features. So in cases with large 

number of features and fewer observations, an invertible and stable estimate of the empirical 

covariance matrix is obtained by regularization.  The empirical covariance matrix is obtained by 

the sum of the actual covariance matrix and the product of the scalar matrix with a shrinkage 

parameter denoted by . A case where corresponds to unregularized LDA and   

corresponds to a spherical covariance matrix, in which the off-diagonal values are zero [3]. 

Sparse Logistic Regression (SLR): Unlike the generative models discussed previously, Logistic 

Regression models the class distribution  directly rather than using  and  [4]. 

By relaxing the assumptions of conditional independence,  is directly modeled using 

the logistic curve as 

 

where W= [w0,  w1, w2, …. ,wd] indicate the parameters/weights of the model. The 

parameters/weights of the model W are estimated by maximizing the log-likelihood function of 

the observed data. Logistic Regression can be extended to multiclass classification by using the 

softmax function and modeling the class probability distributions as 

 

where W denotes the parameters/weights matrix of the model. We used the one-of-K target 

encoding [5, 6]; therefore the target vector Y for every instance becomes Y = [y1, y2, ... yK] 

where K is the number of classes and if X belongs to class c and otherwise, with 

each class having its own weights. Logistic Regression cannot be used when the number of 
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features is less than the number of data samples because it results in inversion of an ill 

conditioned matrix [6].  

However, weights for the features are controlled by placing a prior such as a Gaussian or a 

Laplacian distribution over the weights to avoid overfitting as it restricts the values the weights 

can take. The choice of the weight priors determines the nature of the classifier model. A 

Gaussian prior on the weights, equivalent to an L2 norm, leads to smoother models by 

controlling the weights of the model. This procedure is called regularization, and it helps in 

generalization. However, the Gaussian priors on the model make the weights smaller but do not 

drive them to zero. Driving the weights of either the features (in SLR) or kernels (in RVM) to 

zero helps in feature selection and better optimization as it promotes sparsity. Sparsity is 

promoted by either a Laplacian prior on the model weights which results in L1 penalty, like in 

LASSO or by incorporating a Gamma hyperprior on the variance of the existing Gaussian weight 

prior (called an Automatic Relevance Determination prior) with a zero mean and a diagonal 

covariance matrix. Combining, the Logistic Regression with the Automatic Relevance 

Determination (ARD) prior on the weights, resultis in an Sparse Logistic Regression (SLR) 

model. The priors on the weights are written as  

  for all features d                                                                                                                                         

   for all features d                                                                                          

Here , called a relevance parameter, determines the range of weight parameter. As training 

progresses, is driven to infinity for many weight vectors, thereby forcing the weight vectors to 

follow a Gaussian distribution with a zero mean and zero standard deviation, essentially driving 

their value to zeros. By using the nested priors, this model promotes sparsity as the true 

probability of the weight distribution is a Student t-distribution with a sharper peak at zero and 
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flatter tails [5]. These hyperparameters ( , regulate the weights with a single parameter 

controlling the variance of each of the weight distributions [7, 8]. This hierarchical prior, called 

an Automatic Relevance Determination (ARD) prior automatically drives the weights for many 

features to zero resulting in a compact classifier with inbuilt feature selection. For binary 

classification, we assume a Bernoulli distribution of the target class. For multiple classes, the 

likelihood can be written as 

 

Where C denotes the number of classes and N denotes the number of observations.  denotes 

the weights for the kth class and tnk denotes the target for the kth class for the nth observation. 

Training the SLR model requires us to maximize the log likelihood of the observed data. 

However, a true Bayesian model can be intractable. Using a variational Bayesian approximation 

to the true posterior over the weights and hyperparameters, the optimum relevance parameters 

and their corresponding weight vectors can be obtained by iteratively optimizing the marginal 

likelihood of the parameters and hyperparameters [6]. This is done by solving the weight 

parameters while the hyperparameters are fixed and updating the hyper-parameters while the 

weight parameters are fixed. This procedure is repeated until convergence, to get the final model 

[6].  

Regularized Logistic Regression (RLR): Regularized Logistic Regression (RLR) model uses 

the L2 norm to control model complexity. Instead of several hyperparameters to control the 

variance of the Gaussian, in RLR, there is just a single hyperparameter (α) for the Gaussian 

spread that is shared across the features. So the weight priors can be written as 
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where  denotes an identity matrix. A optimization procedure similar to that employed with 

SLR is followed for obtaining the optimum values of weights and the hyperparameter α. Due to 

the large computation time and resources associated with Sparse Multinomial Logistic 

Regression/Regularized Multinomial Logistic Regression, we implemented one-vs-all (ova) 

Sparse Logistic Regression/Regularized Logistic Regression as it gave similar results in much 

quicker time. We used the code provided by Yamashita et al. [6] for implementing both SLR and 

RLR in MATLAB. 

A.2 Kernel Methods 

Kernel methods use a similarity function called a kernel function, which allows them to operate 

in a high dimensional space without explicit computational costs of operating in the higher 

dimensional space. Support Vector Machine (SVM) is the most commonly used kernel method. 

Support Vector Machine (SVM): SVM is considered to be one of the best out-of-box 

classifiers and is widely utilized by the neuroimaging community. SVM constructs a separating 

hyperplane between two classes that attempts to balance the dual objectives of minimizing the 

training error while maximizing the margin between the classes. The margin, in this case, can be 

defined as the smallest distance from the observations to the separating hyperplane. This ensures 

that the hyperplane is robust to individual observations and gives a better generalization. Only 

the observations that lie on the margin or the wrong side of the decision boundary (classified 

incorrectly) contribute to the construction of the hyperplane and are called support vectors. 

Support Vector Machines have built-in regularization as they tend to choose decision boundaries 

which have the largest margin. A margin can be formulated as an inverse of the weight 

norm . However, when the classes are not linearly separable, we can modify the 

optimization problem to include a slack variable to deal with incorrectly classified instances, 
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which can be realized using a hinge loss function [2]. A tuning parameter C controls the 

contribution of the margin and the loss function. When the tuning parameter C is large, the 

margin is wide but a lot of training observations are misclassified, whereas with smaller C, the 

opposite is true. Since SVM requires just a product of data vectors, we can map the input vectors 

in a higher dimensional space by a suitable transformation when the classes are not linearly 

separable. Consequently, instead of the transforming the feature vectors in the higher 

dimensional space and calculating a dot product of the transformed data vectors, we can use a 

kernel to replace the product of transformed data vectors without explicitly calculating the 

feature mapping. This is known as the “kernel trick” [2]. A kernel can be written as 

 

where K is the kernel,  and  are the input vectors and  denotes the feature transformation.  

Besides the linear kernel, quadratic, and RBF kernels are extremely popular. The RBF kernel is 

denoted by  

 

where  and  are the input vectors and  is the width of the radial kernel which determines the 

extent of the influence of the training observations on the test observations. Since SVM is an 

inherently binary classifier, it can be extended to multiclass classification by building several 

binary classifiers with either a one-vs-one or a one-vs-all strategy. In the one vs one strategy an 

SVM classifier is built for every pair of classes, i.e. a total of  classifiers for K classes. The 

test observation is then assigned to the class which was most frequently assigned in the pair-wise 

classifications. In one-vs all strategy, K classifiers are built by comparing observations from one 

class with those of the rest K-1 classes. A test observation is then assigned to a class which is 

farthest to the decision surface in the K classifiers. The difference between SVM, LDA and 
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logistic regression is that while SVM completely ignores the observations which are not close to 

the decision surface, LDA considers all observations, whereas logistic regression has lower 

sensitivity to observations farther from the decision surface [2]. In fact, SVM can be formulated 

as a regularized logistic regression with a hinge loss function. In this study, we used a linear and 

a radial kernel support vector machine with the hyperparameter C (in both cases) and the 

parameter  (in the RBF kernel SVM) determined by cross-validation. We used LIBSVM 

software package [9] for the implementation of support vector machines in MATLAB. 

Relevance Vector Machine (RVM): Relevance vector machine is similar in its formulation to 

the support vector machine in its use of the kernel functions centered on the training samples [10, 

5].  However, the weights associated with the kernels are solved in a procedure similar to SLR, 

with weights associated with several kernel functions being driven to zero.  

RVMs have a few distinct advantages over SVMs. The primary advantage is that RVMs, being 

probabilistic Bayesian models, give a probability distribution of the weights of the models as 

well as target variables rather than point estimates. Secondly, RVM provides us with a much 

sparser solution with fewer non-zero input kernels than SVM with similar or better accuracy [5]. 

Finally, the kernels in RVM do not have to satisfy the mercer conditions like in SVM, and it does 

not have tunable parameters such as C [5]. However, the implementation of RVM is extremely 

slow compared to SVM. The speed of the RVM algorithm is improved significantly with a 

bottom-up approach, by adding kernel functions one by one, updating their weights or removing 

them from the model [11]. This binary classification can easily be extended to multi-class 

classification by utilizing the multinomial function and one-of-K target encoding, unlike SVM. 

However RVM, unlike SLR, does not have automatic feature selection due to its use of the 

weighted kernels in the model formulation rather than weighted combination of features [12]. A 
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major benefit of full Bayesian formulations such as RVM is that it also takes into consideration 

the uncertainty in the weight estimations in the final model and the subsequent predictions. 

Finally, the most significant advantage of probabilistic classifiers in general is that they give 

posterior class probability distributions as Gaussians with means and variances estimated from 

the data, which is beneficial in that we can combine the posterior class probabilities with prior 

class probabilities and also combine multiple predictions from different sources in a probabilistic 

framework to make a prediction on a test observation [10]. 

In RVM, the most probable values of hyperparameters  (variance associated with the weights of 

the model) and  (variance associated with the target distribution ) are found by maximizing 

the marginal likelihood (also called Type -II likelihood) of the target distribution , denoted by 

 using suitable approximations. Using the most probable values of hyperparameters, 

the probability distribution of the weight parameters is estimated.  In a true Bayesian model, 

nuisance variables are marginalized. But given the intractability of the above computations, a 

variational approximation or Type -II maximum likelihood is used to approximate the marginal 

likelihood [13]. As mentioned previously, the computation time for RVM is significantly 

reduced by adopting a bottom-up greedy optimization approach. In this procedure, we started 

with an initial basis function and performed incremental optimization of the marginal likelihood 

where only one basis function is added, deleted or updated [11].Therefore, at every step, a basis 

function which gives the maximum reduction in the negative log marginal likelihood is added to 

the model, and its hyperparameters as well as the weights of the model are updated.  This 

procedure speeds up the computations as it overcomes the difficulty in inverting a matrix for the 

calculation of the covariance matrix of the weights , but at the cost of slower convergence 



198 
 

and with a near optimal set of hyperparameters. For MATLAB implementation, we used the 

code provided with Thayanathan et al. [14]. 

A.3 Artificial Neural Networks 

Artificial neural networks are computational approaches inspired from functioning of neurons in 

the human brain. The neural networks consist of computational units called neurons organized in 

multiple layers. A perceptron is a single artificial neuron which forms the building block for 

artificial neural networks. 

Fully Connected Neural Net (FC-NN) and Multilayer Perceptron Neural Net (MLP-NN): 

Since a perceptron can classify only linearly separable classes, we need to use multiple layers of 

perceptrons to model complex relationships between the features and the target classes, so that 

each layer can progressively learn complex representations of the input data. Learning in neural 

networks is accomplished by changing the weights from the inputs to the hidden layer and from 

the hidden layers to the outputs, so that the mapping from the inputs to the outputs is learned. 

Conventionally, neural networks are trained by gradient descent using backpropagation. The 

training procedure by backpropagation consists of a forward pass in which errors are calculated 

and a backward pass in which the gradients required to change the weights are calculated. But 

backpropagation is extremely slow as it is a first order method and could take many 

iterations/epochs to reach the minimum in the error surface. For training the neural networks, we 

used Bayesian regularization backpropagation, which uses Levenberg-Marquard (LM) 

optimization to update the weights. The advantage of LM is that it is comparably fast as it is a 

second-order method which uses a Jacobian matrix to calculate an approximation of the Hessian, 

and hence converges pretty quickly to a local minimum. Since it uses Bayesian regularization, it 

controls the model complexity and avoids overfitting [15, 16]. With enough neurons, neural 
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networks can act as universal function approximators [17, 18]. However, we limit the number of 

hidden layer neurons and use priors on the weights between the connections to avoid overfitting 

as our data has far more features than the number of observations, which is ill-suited for training 

neural networks. Deep networks with more hidden layers can learn more complex functions. 

Therefore, we implemented a Fully Connected Neural Network (FC-NN) with Bayesian 

regularization as well. In this architecture, each layer has a single neuron and is connected to the 

inputs and every previous layer [19]. This architecture has more expressive power and can learn 

any function that could be learned by the same number of neurons in a single hidden layer, but 

the reverse is not true [20]. We limited the complexity of our model to just three hidden layers in 

FC-NN and three neurons in the hidden layer in the MLP-NN. The MLP-NN we used is 

essentially a Single Hidden layer Feedforward Neural Nets (SLNF). Finally, two significant 

issues with neural networks is that: (i) optimizing error function can get struck in local minima 

and the (ii) vanishing gradient problem, when the error gradient required to train the weights 

decreases exponentially, slowing the training process. More information on neural network 

architectures can be found in [21, 22]. 

Extreme learning machine (ELM): ELM is a class of learning algorithms for training single 

hidden layer feedforward neural networks (SLNF), where the hidden nodes are randomly 

initiated, and only the connections between the hidden layer to the output layer are tuned, 

resulting in extremely fast learning times and good generalization performance when the output 

weights are regularized [23, 24]. Unlike traditional feed forward learning procedures, in ELM, 

hidden nodes need not be tuned and the parameters are randomly generated, independent of the 

training data and each other. This unconventional approach gives extreme learning machines 

their speed. The hidden units may be sigmoid, like in traditional neurons or can be linear, 
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polynomial or RBF kernels. We used RBF/Gaussian kernels of the form 

 for generating the random feature mappings from the input data 

into an ELM feature space by randomly initializing the parameters for all the hidden layer 

neurons and optimizing the width of the RBF kernel functions by cross-validation.  We then 

calculated the weights of the output mappings from the ELM feature space to the output feature 

space by minimizing a cost function. This cost function simultaneously minimizes the sum of the 

L2 norm of the weights and the squared training error, using a hyper parameter C, which 

regulates the training error and the complexity of the weights. 

Learning Vector Quantization Neural Network (LVQNET): LVQNET is a supervised 

classification algorithm introduced by Kohonen [25, 26]. It is a two-layer neural network with a 

competitive first layer and a linear second layer. The competitive layer learns a codebook of 

vectors in the input space that divides the input space into subclasses. The linear layer then 

combines the subclasses to the target classes. The number of neurons in the competitive layer is 

equal to the number of prototype vectors in the input space and is determined by cross-

validation. The number of neurons in the output layer equals the number target classes. Training 

the neural network is accomplished by calculating the Euclidean distance between a training 

observation and input weight vectors. The winning neuron/prototype vector in the hidden layer 

which has the smallest distance as determined by its weight vector, will output a one and all 

other neurons output a zero in a winner takes all decision. Using the weights between the hidden 

and the output layer, the class of the training observations is computed. If it matches with the 

actual class, then the weights of the winning neuron/prototype are adjusted to move closer to the 

input vector, if not, the weights of the winning neuron are moved away from the input vector. By 

repeating this process for several epochs with all the training observations, the feature space is 
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divided into subclasses based on the target class. The linear layer then assigns the target class to 

the subclasses. This learning rule is improved by updating the weights of two closest weight 

vectors between the input and the hidden layers if one belongs to the correct class and the other 

belongs to the wrong class [25, 26]. 

A.4 Instance based learning 

In instance based learning, no explicit model is learned during training. Rather, predictions on 

the test observation are made based on its similarity to the training points. The simplest and the 

most popular model in this category is K- Nearest Neighbors classifier. 

K-Nearest Neighbors (KNN): KNN is a non-parametric lazy learning algorithm which gives 

excellent performance for irregular decision boundaries. To classify an unlabeled test data point, 

the distance of the test data point with instances in the training data are compared. The K closest 

points are determined, and the class of a test observation is assigned to the majority class of the 

neighbors. The hyperparameter K which determines the number of neighbors is determined by 

using cross-validation. We used the Euclidean distance measure, to measure the similarity 

between two data points, though it may become less discriminative if the number of features 

increases and only a few of them are informative [27]. 

A.5 Decision Tree-based ensemble methods 

Multiple classifiers can give much better results than a single classifier. However, the improved 

performance comes at a significant cost of training multiple classifiers. Use of methods which 

employ multiple classifiers to solve a problem is called ensemble learning.  Decision Tree is a 

popular choice of the base classifier in ensemble methods [28]. A decision tree tries to divide the 

observations space into rectangular homogeneous regions. Using a measure of purity as the 

splitting criteria, a greedy top-down splitting is performed to build the tree. However, individual 
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trees suffer from high variance and give subpar performances on many classification and 

regression problems [2]. So by combing multiple classifiers in an ensemble, the performance of 

the decision trees is improved. 

Bagged Tree & Random Forest: Bagging is one of the two most common ways of training 

ensemble classifiers using a decision tree as the base classifier. In tree bagging, multiple 

classifiers are trained with randomly selected bootstrapped samples of data from the training set 

and the test observation is assigned to the class obtained by majority voting of all the individual 

classifiers, resulting in reduced variance. Bagging constructs trees that are pretty similar and 

hence produce correlated outputs. Further reduction in variance is possible by promoting 

diversity in the ensemble by de-correlating the trees. Instead of considering all 

features/predictors for each split, we used a subset of features (usually square root of the 

features).  This ensemble method is called Random Forest [29]. One advantage with random 

forests is that it has very few user-dependent parameters and the algorithm is insensitive to even 

the few parameters that the users need to choose [29]. 

Boosted Stumps & Trees: Another class of learning algorithms which can be used to improve 

the performance of weak classifiers is Boosting. Boosting is a process for converting weak 

learners which perform slightly better than chance into strong learners. AdaBoost (Adaptive 

Boosting) is a boosting algorithm proposed by Yoav Freund and Robert Schapire [30, 31].  It is 

adaptive since it automatically adapts to the training data and constructs a single composite 

classifier from individual weak classifiers. AdaBoost works by sequentially building an 

ensemble of classifiers that iteratively down-weigh observations that are correctly classified and 

up-weigh observations that are incorrectly classified. This ensures that subsequent classifiers 

focus more on the misclassified samples. An adaptive parameter alpha which is dependent on the 
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classification accuracy is used to reweight the samples and is used as the weight of the current 

classifier. The final model is then derived by the weighted sum of individual learners, whose 

weights are based on the learner’s performance. Any classifier which can use weighted data 

points for calculating performance can be boosted by AdaBoost, though the use of decision trees 

as a base classifier is very popular. Because of boosting’s tendency to overfit in a few cases 

when full grown trees are used, decision stumps are sometimes preferred as a base classifier. A 

decision stump is a very shallow decision tree with just one split. We used AdaBoost.M1 for 

binary classification and AdaBoost.M2 for multiclass classification using decision stumps [32]. 

Along with AdaBoost, we also used Linear Programming Boosting (LPBoost) [33] for learning 

full grown decision trees as it gave us much better performance than AdaBoost on imbalanced 

datasets. 

Rotation Forests: Rotation forests get their name because they rotate the original coordinate 

space by Principal Component Analysis (PCA) and use decision trees as the base classifier [34]. 

Promoting diversity without compromising the accuracy of the base classifiers is the goal of 

ensemble learning. In random forests, diversity is introduced through bootstrapping and splitting 

on a subset of features. In contrast, in rotation forests, diversity in the base classifiers is 

introduced by transforming subsets of features by PCA and using the transformed features to 

build trees. Rotation forests construct classifiers by splitting the features into K subsets, and PCA 

is applied for every feature subset with a subset of classes removed from the data to promote 

diversity. The coefficients obtained are then arranged appropriately in a transformation matrix 

called a rotation matrix, which is then used to transform the original features.  A decision tree is 

constructed by using the transformed features.  When classifying a test observation, features are 

multiplied with the rotation matrix and the mean confidence of the observation belonging to each 
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class is estimated. The class with the largest confidence is assigned to this test observation.  

Diversity in rotation forests comes from random differences in possible feature subsets and the 

random subset of training data and classes selected for learning each classifier. Rotation forests 

create classifiers that are less diverse and more accurate than random forests and boosted trees 

[35]. Though rotation forests give comparable or better accuracies compared to random forests, it 

suffers from a few limitations. It has an extra parameter to control the size of the feature subsets, 

and unlike random forest, rotation forests do not provide us with information about feature 

importance. 
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