Revisiting the Intersection Problem for Maximum Packings of $K_{6 n+5}$ with Triples

by
Amber B. Holmes
A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science
Auburn, Alabama
May 07, 2017

Keywords: maximum packing, intersection number

Copyright 2017 by Amber B. Holmes

Approved by

Charles C. Lindner, Advisor, University Distinguished Professor
Dean G. Hoffman, Professor
Chris A. Rodger, Professor, Don Logan Endowed Chair in Mathematics George Flowers, Dean of Graduate School

Abstract

In 1989, Gaetano Quattrocchi gave a complete solution of the intersection problem for maximum packings of $K_{6 n+5}$ with triples when the leave (a 4-cycle) is the same in each maximum packing. Quattrocchi showed that $I[2]=2$ and $I[n]=\left\{0,1,2, \ldots, \frac{\binom{n}{2}-4}{3}=\right.$ $x\} \backslash\{x-1, x-2, x-3, x-5\}$ for all $n \equiv 5(\bmod 6) \geq 11$. We extend this result by removing the exceptions $\{x-1, x-2, x-3, x-5\}$ when the leaves are not necessarily the same. In particular, we show that $I[n]=\left\{0,1,2, \ldots, \frac{\binom{n}{2}-4}{3}\right\}$ for all $n \equiv 5(\bmod 6)$.

Table of Contents

Abstract ii
1 Maximum Packings on $K_{n}, n \equiv 5(\bmod 6)$ 1
References 10

Chapter 1

Maximum Packings on $K_{n}, n \equiv 5(\bmod 6)$

1. Introduction

A Steiner Triple System of order $n, \operatorname{STS}(n)$, is a pair (S, \mathcal{T}), where \mathcal{T} is a set of edge-disjoint triangles (or triples) which partitions the edge set of K_{n} (the complete undirected graph on n vertices) with vertex set S. It is well known that the spectrum for Steiner triple systems is precisely the set of all $n \equiv 1$ or $3(\bmod 6)$, and that if (S, \mathcal{T}) is a triple system of order n then $|\mathcal{T}|=\frac{n(n-1)}{6}$. Define $I(n)$ and $J(n)$ as follows:

$$
\left\{\begin{aligned}
I(n) & =\left\{0,1,2, \ldots, x=\frac{n(n-1)}{6}\right\} \backslash\{x-1, x-2, x-3, x-5\}, \text { and } \\
J(n) & =\{k \mid \text { there exists a pair of triple systems of order } n \text { having exactly } k \text { triples } \\
& \text { in common }\} .
\end{aligned}\right.
$$

A natural question to ask is the following: for which $k \in\left\{0,1,2, \ldots, \frac{n(n-1)}{6}\right\}$ does there exist a triple system of order n having k triples in common? The following theorem gives a complete solution of the intersection problem for triple systems.

Theorem 1.1 (C.C. Lindner, A. Rosa[3]). Let $n \equiv 1$ or $3(\bmod 6)$. Then $J(n)=I(n)$, if $n \neq 9$ and $J(9)=I(9) /\{5,8\}$.

Now when $n \equiv 1$ or $3(\bmod 6)$ there does not exist a triple system and so the intersection problem for maximum packings of K_{n} with triples is immediate. A packing of K_{n} with triples in a pair (S, P) where P in a collection of edge disjoint triples of K_{n} with vertex set S. If P is as large as possible, then (S, P) is said to be a maximum packing of K_{n} with triples.

The set of unused edges is called the leave. The following easy to read table gives the leave for a maximum packing of K_{n} with triples for each $n \equiv 0,1,2,3,4,5(\bmod 6)$.

| $n \equiv \bmod 6)$ | |
| :---: | :---: | :---: | :---: | :---: |

Theorem 1.1 gives a complete solution for Steiner Triple Systems $(n \equiv 1$ or $3(\bmod 6))$. The intersection problem for maximum packings of K_{n} with triples has been completely solved for $n \equiv 0,2,4,5$ when the leave is the SAME in the following two papers (best described with a table).

$n \equiv(\bmod 6)$	Intersection spectrum
0 or 2	D. Hoffman and C. C. Lindner[2] $\begin{gathered} I(6)=\{0,4\}, I(8)=\{0,2,8\} \text { and for all } n \equiv 0 \text { or } 2 \geq 12, \\ I(n)=\left\{0,1,2, \ldots, \frac{n(n-2)}{6}=x\right\} \backslash\{x-1, x-2, x-3, x-5\} \end{gathered}$
4	G. Quattrocchi[4] $\begin{gathered} I(4)=\{1\} \text { and for all } n \equiv 4(\bmod 6) \geq 10, \\ I(n)=\left\{0,1,2, \ldots, \frac{\left.\binom{n}{2}-\frac{(n+2)}{2}\right)}{3}=x\right\} \backslash\{x-1, x-2, x-3, x-5\} \end{gathered}$
5	G. Quattrocchi[4] $I(5)=2$ and for all $n \equiv(\bmod 6) \geq 11$, $I(n)=\left\{0,1,2, \ldots, \frac{\binom{n}{2}-4}{3}=x\right\} \backslash\{x-1, x-2, x-3, x-5\}$

As mentioned, the leaves in the above table are always the same. The object of this thesis in the extension of the intersection problem for maximum packings of $K_{6 n+5}$ with triples when the leaves (=4-cycles) are not necessarily the same. In particular we remove all of the exceptions for $K_{6 n+5}$ by showing that $I(n)=\left\{0,1,2, \ldots,\left(\binom{n}{2}-4\right) / 3\right\}$ for all $n \equiv 5(\bmod 6)$.

2. Three Examples

In everything that follows $\left.J^{*}(n)=\left\{0,1,2, \ldots,\binom{n}{2}-4\right) / 3\right\}$. We will need examples for $n=5,11$, and 17. In each case we will show that $I(n)=J^{*}(n)$, thereby removing the exceptions in Quatrocchi's constructions for $n \equiv 5(\bmod 6)$.

Example $2.1(n=5)$ Define three maximum packings of order $5\left(X, P_{1}\right),\left(X, P_{2}\right)$, and $\left(X, P_{3}\right)$ as follows:
$\left\{\begin{array}{l}\text { 1. } X=\{1,2,3,4,5\}, P_{1}=\{\{1,2,3\},\{1,4,5\}\} \text { with leave }(2,4,3,5) ; \\ \text { 2. } X=\{1,2,3,4,5\}, P_{2}=\{\{1,4,5\},\{2,3,4\}\} \text { with leave }(1,2,5,3) ; \\ \text { 3. } X=\{1,2,3,4,5\}, P_{3}=\{\{1,2,4\},\{1,5,3\}\} \text { with leave }(2,3,4,5) .\end{array}\right.$

Then $\left|P_{1} \cap P_{3}\right|=0,\left|P_{1} \cap P_{2}\right|=1$, and $\left|P_{1} \cap P_{1}\right|=2$. It follows that $I(5)=J^{*}(5)=$ $\{0,1,2\}$.

Example $2.2(n=11)$ Let (X, F) be a 1-factorization of K_{6} with vertex set X and (Y, P_{1}) and $\left(Y, P_{2}\right)$ any two maximum packings of K_{5} with triples in Example 2.1. Define a pair of maximum packings C_{1} and C_{2} of K_{11} with triples with vertex set $X \cup Y$ as follows:

$F=$| F_{0} | F_{1} | F_{4} | F_{2} | F_{3} |
| :---: | :---: | :---: | :---: | :---: |
| | 8,9 | 9,10 | 7,10 | 8,10 |
| 7,8 | | | | |
| | 7,10 | 6,8 | 6,9 | 6,7 |
| 5,6 | 5,7 | 5,8 | 5,9 | 5,10 |

$\mathrm{F}=$	F_{0}	F_{1}	F_{4}	F_{2}	F_{3}
	8,9	9, 10	7,10	8,10	7, 8
	7,10	6, 8	6,9	6,7	6,9
	5,6	5,7	5,8	5,9	5,10

$\left\{\begin{array}{l}\text { 1. }\{i, x, y\} \in C_{1} \text { and } C_{2} \text { for each } i \in\{0,1,2,3,4\} \text { and }\{x, y\} \in F_{i}, \\ \text { 2. } P_{1} \subseteq C_{1} \text { and } P_{2} \subseteq C_{2} \text {. The leave in each case are the leaves in } P_{1} \text { and } P_{2} .\end{array}\right.$

By permuting the columns of F and using the examples in 2.1 independently we obtain the intersection numbers $0,1,2, \ldots, 9,10,11,15,16,17$. So it remains to obtain the
intersection numbers $12,13,14$. Let \mathcal{Z}_{1} and \mathcal{Z}_{2} be the following two mutually balanced configurations consisting of a 4 -cycle and 3 -triples.

$$
Z_{1}=\left\{\begin{array}{cccc}
(1, & 2, & 3, & 4
\end{array}\right) \quad\left\{\begin{array}{cccc}
(1, & 4, & 8, & 2) \\
& \{2, & 8, & 10\} \\
& \{3, & 5, & 10\} \\
& \{4, & 5, & 8\}
\end{array} \quad Z_{2}=\left\{\begin{array}{ccc}
\{2, & 3, & 10\} \\
& \{5, & 8, \\
\hline
\end{array}\right.\right.
$$

None of the triples in \mathcal{Z}_{1} and \mathcal{Z}_{2} belong to P_{1} or P_{2}. So removing \mathcal{Z}_{1} from C_{1} and replacing it with Z_{2} reducing the number of type (1) triples by 3 . Taking P_{1} and P_{2} to have 0,1 , or 2 triples in common gives intersection numbers 12,13 , and 14 .

Example $2.3(n=17)$ Let $\mathcal{Q}=\{1,2,3,4,5\}$ and let $\left(\mathcal{Q}, \circ_{1}\right)$ and $\left(\mathcal{Q}, \circ_{2}\right)$ be two quasigroups such that $1 \circ_{1} 1=1 \circ_{2} 1=1$. Set $\mathcal{S}=\left\{\infty_{1}, \infty_{2}\right\} \cup(\{1,2,3,4,5\} \times\{1,2,3\})$ and define $\operatorname{PBDs}\left(\mathcal{S}, B_{1}\right)$ and $\left(\mathcal{S}, B_{2}\right)$ of order 17 as follows:

O_{1}	1	2	3	4	5
1	1				
2					
3				2	
4					
5					

O_{2}	1	2	3	4	5
1	1				
2					
3					
4		3			
5					

1. $f_{1}=f_{2}=\left\{\infty_{1}, \infty_{2}, 11,12,13\right\} \in B_{1} \cap B_{2}$. We can define copies of Example 2.1 independently on f_{1} and f_{2} so that $\left|f_{1} \cap f_{2}\right| \in\{0,1,2\}$.
2. For each $i, j \in\{1,2,3,4,5\}$, let $\left\{i 1, j 2,\left(i \circ_{1} j, 3\right)\right\} \in B_{1}$ and $\left\{i 2, j 2,\left(i \circ_{2} j, 3\right)\right\} \in$ B_{2}. (Note that $\{11,12,13\} \in B_{1} \cap B_{2}$.) Since the intersection numbers for quasigroups of order 5 are $\{0,1,2, \ldots, 25\} \backslash\{24,23,22,20\}[1]$ and since in each of the quasigroups $\left(\mathcal{Q}, \circ_{1}\right)$ and $\left(\mathcal{Q}, \circ_{2}\right) 1 \circ_{1} 1=1 \circ_{2} 1=1$ and the triple $\{11,21,31\} \in$ $f_{1} \cap f_{2}$ the type (2) intersection numbers are $\{0,1,2, \ldots, 17,18,20,24\}$.
3. For each $i \in\{1,2,3\}$ set $X(i)=\left\{\infty_{1}, \infty_{2}\right\} \cup\{\{1,2,3,4,5\} \times\{i\}\}$ and define a triple system $(X(i), T(i))$ where $\left\{\infty_{1}, \infty_{2}, 1 i\right\} \in T(i)$. Since the intersection numbers for triple systems of order 7 are $0,1,3,7$; the intersection numbers for $T(i) \backslash\left\{\infty_{1}, \infty_{2}, 1 i\right\}, T(j) \backslash\left\{\infty_{1}, \infty_{2}, 1 j\right\}$ for each i and j are 0,2 , and 6 .

The intersection numbers in (1), (2), and (3) are independent of each other and so the intersection numbers for $\left(S, B_{1}\right)$ and $\left(S, B_{2}\right)$ consists of $x+y+z$, where $x=\left|f_{1} \cap f_{2}\right| \in$ $\{0,1,2\}, y \in\{0,1,2, \ldots, 17,18,20,24\}$, and $z \in\{0,2,6\}+\{0,2,6\}+\{0,2,6\}$. A
straightforward computation shows that $x+y+z \in\{0,1,2, \ldots, 44\} \backslash\{41\}$. So all that remains is to show that $41 \in J^{*}(17)=\{0,1,2, \ldots, 44\}$ (no exceptions). Take (S, B_{1}) and $\left(S, B_{2}\right)$ to be the same. Define $T(1)$ in B_{1} to be

$$
T(1)=\left\{\begin{array}{ccc}
\infty_{1} & \infty_{2} & 11 \\
11 & 21 & 31 \\
11 & 41 & 51 \\
\infty_{1} & 21 & 51 \\
\infty_{1} & 31 & 41 \\
\infty_{2} & 21 & 41 \\
\infty_{2} & 31 & 51
\end{array}\right.
$$

We can assume in f_{1} that the leave is the 4 - cycle $\left(\infty_{1}, \infty_{2}, 11,12\right)$. Then the configuration

$$
Z_{1}=\left\{\begin{array}{llll}
\left(\infty_{1},\right. & \infty_{2}, & 11, & 12
\end{array}\right)\left\{\begin{array}{lll}
& \{21, & 31, \\
& 11
\end{array}\right\}
$$

belongs to B_{1}. If we replace Z_{1} in B_{1} with

$$
Z_{2}=\left\{\begin{array}{cccc}
\left(\infty_{1},\right. & 12, & 11, & 31
\end{array}\right)
$$

we reduce the intersection number between B_{1} and B_{2} from 44 to 41 . This completes Example 2.3.

3. The $6 n+5$ Construction

With the three examples in Section 2 in hand we can proceed to the main construction showing that $I(6 n+5)=J^{*}(6 n+5)=\left\{0,1,2, \ldots, \frac{\left(\binom{n}{2}-4\right.}{3}\right\}$ for all n.

The $6 n+5$ Construction: Let $6 n+5 \geq 23$ and let (X, G, B) be a $G D D(2 n, 2,3)$ or $G D D\left(2 n,\left\{2,4^{*}\right\}, 3\right)$, where $\left\{2,4^{*}\right\}$ means there is exactly one group of size 4 and the rest have size 2. Set $S=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(X \times\{1,2,3\})$ and define a maximum packing, P of $K_{6 n+5}$ as follows:

1. Place an example of order 11 or 17 on $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(g \times\{1,2,3\})$ where g is a block of size 2 if all blocks have size 2 ; or 4 if g in the unique block of size 4.
2. For all other blocks (which necessarily have size 2) place a copy of Example 2.2 or 2.3 on $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(g \times\{1,2,3\})$ minus the block $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\}$ of size 5 .

3. For each triple $\{a, b, c\} \in B$ decompose $K_{3,3,3}$ into 9 triples with parts $a \times\{1,2,3\}$, $b \times\{1,2,3\}$ and $c \times\{1,2,3\}$.

Then (S, P) is a maximum packing of $K_{6 n+5}$ with triples with leave a 4-cycle. Now take two copies of (S, P). We need construct only the intersection numbers $x-1, x-2, x-3$, and $x-5$ since Quattrocchi has taken care of everything else. But this is easily done by defining a pair of maximum packings of order 11 or 17 on $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup(g \times$ $\{1,2,3\}$) intersecting in $x-1, x-2, x-3$, or $x-5$ triples, where $x=17$ or 44 as the case may be. This completes the proof. We have the following theorem:

Theorem 3.1. $I(6 n+5)=J^{*}(6 n+5)$ for all $6 n+5$.

References

[1] Fu, Hung-Lin. "Construction of Certain Types of Latin Squares Having Prescribed Intersections," Dissertation Abstracts International Part B: Science and Engineering, 41(1981), 1981.
[2] Hoffman, D.G. and Lindner, C.C.. "The flower intersection problem for Steiner triple systems," North-Holland Mathematics Studies, 149(1987), 243-248.
[3] Lindner, C.C. and Rosa, Alexander. "Steiner triple systems having a prescribed number of triples in common," Canad. J. Math, 27(1975), 1166-1175.
[4] Quattrocchi, G.. "Intersections among maximum partial triple systems," J. Combin. Inform. System Sci, 14(1989), 192-201.

