
Revisiting the Intersection Problem for Maximum Packings of K6n+5 with
Triples

by

Amber B. Holmes

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 07, 2017

Keywords: maximum packing, intersection number

Copyright 2017 by Amber B. Holmes

Approved by

Charles C. Lindner, Advisor, University Distinguished Professor
Dean G. Hoffman, Professor

Chris A. Rodger, Professor, Don Logan Endowed Chair in Mathematics
George Flowers, Dean of Graduate School



Abstract

In 1989, Gaetano Quattrocchi gave a complete solution of the intersection problem

for maximum packings of K6n+5 with triples when the leave (a 4–cycle) is the same in each

maximum packing. Quattrocchi showed that I[2] = 2 and I[n] = {0, 1, 2, . . . ,
((n

2)−4)
3

=

x}\{x − 1, x − 2, x − 3, x − 5} for all n ≡ 5 (mod 6) ≥ 11. We extend this result by

removing the exceptions {x−1, x−2, x−3, x−5} when the leaves are not necessarily the

same. In particular, we show that I[n] = {0, 1, 2, . . . ,
((n

2)−4)
3
} for all n ≡ 5 (mod 6).
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Chapter 1

Maximum Packings on Kn, n ≡ 5 (mod 6)

1. Introduction

A Steiner Triple System of order n, STS(n), is a pair (S, T ), where T is a set of

edge-disjoint triangles (or triples) which partitions the edge set of Kn (the complete

undirected graph on n vertices) with vertex set S. It is well known that the spectrum for

Steiner triple systems is precisely the set of all n ≡ 1 or 3 (mod 6), and that if (S, T ) is

a triple system of order n then |T | = n(n−1)
6

. Define I(n) and J(n) as follows:
I(n) = {0, 1, 2, . . . , x = n(n−1)

6
}\{x− 1, x− 2, x− 3, x− 5}, and

J(n) = {k | there exists a pair of triple systems of order n having exactly k triples

in common}.

A natural question to ask is the following: for which k ∈ {0, 1, 2, . . . , n(n−1)
6
} does there

exist a triple system of order n having k triples in common? The following theorem gives

a complete solution of the intersection problem for triple systems.

Theorem 1.1 (C.C. Lindner, A. Rosa[3]). Let n ≡ 1 or 3 (mod 6). Then J(n) = I(n),

if n 6= 9 and J(9) = I(9)/{5, 8}. �

Now when n ≡ 1 or 3 (mod 6) there does not exist a triple system and so the

intersection problem for maximum packings of Kn with triples is immediate. A packing

of Kn with triples in a pair (S, P ) where P in a collection of edge disjoint triples of Kn

with vertex set S. If P is as large as possible, then (S, P ) is said to be a maximum packing

of Kn with triples.

The set of unused edges is called the leave. The following easy to read table gives the

leave for a maximum packing of Kn with triples for each n ≡ 0, 1, 2, 3, 4, 5 (mod 6).
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n ≡ (mod 6) leave

0

1-factor

1 Steiner Triple System

2

1-factor

3 Steiner Triple System

4

tripole

5

4-cycle
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Theorem 1.1 gives a complete solution for Steiner Triple Systems (n ≡ 1 or 3 (mod 6)).

The intersection problem for maximum packings of Kn with triples has been completely

solved for n ≡ 0, 2, 4, 5 when the leave is the SAME in the following two papers (best

described with a table).

n ≡ (mod 6) Intersection spectrum

D. Hoffman and C. C. Lindner [2]

0 or 2 I(6) = {0, 4}, I(8) = {0, 2, 8} and for all n ≡ 0 or 2 ≥ 12,

I(n) = {0, 1, 2, . . . , n(n−2)
6

= x}\{x− 1, x− 2, x− 3, x− 5}

G. Quattrocchi [4]

4 I(4) = {1} and for all n ≡ 4 (mod 6) ≥ 10,

I(n) = {0, 1, 2, . . . ,
((n

2)−
(n+2)

2 )
3

= x}\{x− 1, x− 2, x− 3, x− 5}

G. Quattrocchi [4]

5 I(5) = 2 and for all n ≡ (mod 6) ≥ 11,

I(n) = {0, 1, 2, . . . ,
((n

2)−4)
3

= x}\{x− 1, x− 2, x− 3, x− 5}

As mentioned, the leaves in the above table are always the same. The object of this thesis

in the extension of the intersection problem for maximum packings of K6n+5 with triples

when the leaves (= 4 − cycles) are not necessarily the same. In particular we remove

all of the exceptions for K6n+5 by showing that I(n) = {0, 1, 2, . . . ,
((

n
2

)
− 4
)
/3} for all

n ≡ 5 (mod 6).

2. Three Examples

In everything that follows J∗(n) = {0, 1, 2, . . . ,
((

n
2

)
− 4
)
/3}. We will need ex-

amples for n = 5, 11, and 17. In each case we will show that I(n) = J∗(n), thereby

removing the exceptions in Quatrocchi’s constructions for n ≡ 5 (mod 6).
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Example 2.1 (n = 5) Define three maximum packings of order 5 (X, P1), (X, P2), and

(X, P3) as follows:

1. X = {1, 2, 3, 4, 5}, P1 = {{1, 2, 3}, {1, 4, 5}} with leave (2, 4, 3, 5);

2. X = {1, 2, 3, 4, 5}, P2 = {{1, 4, 5}, {2, 3, 4}} with leave (1, 2, 5, 3);

3. X = {1, 2, 3, 4, 5}, P3 = {{1, 2, 4}, {1, 5, 3}} with leave (2, 3, 4, 5).


Then |P1 ∩ P3| = 0, |P1 ∩ P2| = 1, and |P1 ∩ P1| = 2. It follows that I(5) = J∗(5) =

{0, 1, 2}.

Example 2.2 (n = 11) Let (X,F ) be a 1-factorization of K6 with vertex set X and

(Y, P1) and (Y, P2) any two maximum packings of K5 with triples in Example 2.1. Define

a pair of maximum packings C1 and C2 of K11 with triples with vertex set X ∪ Y as

follows:

1. {i, x, y} ∈ C1 and C2 for each i ∈ {0, 1, 2, 3, 4} and {x, y} ∈ Fi,

2. P1 ⊆ C1 and P2 ⊆ C2. The leave in each case are the leaves in P1 and P2.



By permuting the columns of F and using the examples in 2.1 independently we obtain

the intersection numbers 0, 1, 2, . . . , 9, 10, 11, 15, 16, 17. So it remains to obtain the
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intersection numbers 12, 13, 14. Let Z1 and Z2 be the following two mutually balanced

configurations consisting of a 4–cycle and 3–triples.

Z1 =


(1, 2, 3, 4)

{2, 8, 10}
{3, 5, 10}
{4, 5, 8}

Z2 =


(1, 4, 8, 2)

{3, 4, 5}
{2, 3, 10}
{5, 8, 10}

None of the triples in Z1 and Z2 belong to P1 or P2. So removing Z1 from C1 and

replacing it with Z2 reducing the number of type (1) triples by 3. Taking P1 and P2 to

have 0, 1, or 2 triples in common gives intersection numbers 12, 13, and 14.

Example 2.3 (n = 17) Let Q = {1, 2, 3, 4, 5} and let (Q, ◦1) and (Q, ◦2) be two

quasigroups such that 1◦1 1 = 1◦2 1 = 1. Set S = {∞1, ∞2}∪({1, 2, 3, 4, 5}×{1, 2, 3})

and define PBDs (S, B1) and (S, B2) of order 17 as follows:
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1. f1 = f2 = {∞1, ∞2, 11, 12, 13} ∈ B1 ∩ B2. We can define copies of Example 2.1

independently on f1 and f2 so that | f1 ∩ f2 | ∈ {0, 1, 2}.

2. For each i, j ∈ {1, 2, 3, 4, 5}, let {i1, j2, (i◦1j, 3)} ∈ B1 and {i2, j2, (i◦2j, 3)} ∈

B2. (Note that {11, 12, 13} ∈ B1 ∩B2.) Since the intersection numbers for quasi-

groups of order 5 are {0, 1, 2, . . . , 25}\{24, 23, 22, 20}[1] and since in each of the

quasigroups (Q, ◦1) and (Q, ◦2) 1 ◦1 1 = 1 ◦2 1 = 1 and the triple {11, 21, 31} ∈

f1 ∩ f2 the type (2) intersection numbers are {0, 1, 2, . . . , 17, 18, 20, 24}.

3. For each i ∈ {1, 2, 3} set X(i) = {∞1, ∞2} ∪ {{1, 2, 3, 4, 5} × {i}} and define

a triple system (X(i), T (i)) where {∞1, ∞2, 1i} ∈ T (i). Since the intersection

numbers for triple systems of order 7 are 0, 1, 3, 7; the intersection numbers for

T (i)\{∞1, ∞2, 1i}, T (j)\{∞1, ∞2, 1j} for each i and j are 0, 2, and 6.

The intersection numbers in (1), (2), and (3) are independent of each other and so the

intersection numbers for (S, B1) and (S, B2) consists of x+ y + z, where x =| f1 ∩ f2 |∈

{0, 1, 2}, y ∈ {0, 1, 2, . . . , 17, 18, 20, 24}, and z ∈ {0, 2, 6} + {0, 2, 6} + {0, 2, 6}. A
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straightforward computation shows that x + y + z ∈ {0, 1, 2, . . . , 44}\{41}. So all that

remains is to show that 41 ∈ J∗(17) = {0, 1, 2, . . . , 44} (no exceptions). Take (S, B1)

and (S, B2) to be the same. Define T (1) in B1 to be

T (1) =



∞1 ∞2 11

11 21 31

11 41 51

∞1 21 51

∞1 31 41

∞2 21 41

∞2 31 51

We can assume in f1 that the leave is the 4 – cycle (∞1, ∞2, 11, 12). Then the configu-

ration

Z1 =



(∞1, ∞2, 11, 12)

{ 21, 31, 11 }

{ 31, 41, ∞1 }

{ 21, 41, ∞2 }

belongs to B1. If we replace Z1 in B1 with

Z2 =



(∞1, 12, 11, 31)

{ ∞1, ∞2, 41 }

{ ∞2, 11, 21 }

{ 21, 31, 41 }

we reduce the intersection number between B1 and B2 from 44 to 41. This completes

Example 2.3.
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3. The 6n + 5 Construction

With the three examples in Section 2 in hand we can proceed to the main construc-

tion showing that I(6n + 5) = J∗(6n + 5) = {0, 1, 2, . . . ,
((n

2)−4)
3
} for all n.

The 6n + 5 Construction: Let 6n + 5 ≥ 23 and let (X, G, B) be a GDD(2n, 2, 3)

or GDD(2n, {2, 4∗}, 3), where {2, 4∗} means there is exactly one group of size 4 and

the rest have size 2. Set S = {∞1, ∞2, ∞3, ∞4, ∞5} ∪ (X × {1, 2, 3}) and define a

maximum packing, P of K6n+5 as follows:

1. Place an example of order 11 or 17 on {∞1, ∞2, ∞3, ∞4, ∞5} ∪ (g × {1, 2, 3})

where g is a block of size 2 if all blocks have size 2; or 4 if g in the unique block of

size 4.

2. For all other blocks (which necessarily have size 2) place a copy of Example 2.2 or 2.3

on {∞1, ∞2, ∞3, ∞4, ∞5}∪(g×{1, 2, 3}) minus the block {∞1, ∞2, ∞3, ∞4, ∞5}

of size 5.

3. For each triple {a, b, c} ∈ B decompose K3,3,3 into 9 triples with parts a×{1, 2, 3},

b× {1, 2, 3} and c× {1, 2, 3}.
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Then (S, P ) is a maximum packing of K6n+5 with triples with leave a 4–cycle. Now take

two copies of (S, P ). We need construct only the intersection numbers x−1, x−2, x−3,

and x− 5 since Quattrocchi has taken care of everything else. But this is easily done by

defining a pair of maximum packings of order 11 or 17 on {∞1, ∞2, ∞3, ∞4, ∞5}∪ (g ×

{1, 2, 3}) intersecting in x− 1, x− 2, x− 3, or x− 5 triples, where x = 17 or 44 as the

case may be. This completes the proof. We have the following theorem:

Theorem 3.1. I(6n + 5) = J∗(6n + 5) for all 6n + 5. �
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