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Abstract

Nature, including mankind, loves to optimize and the world is far from being determin-

istic. Thus, stochastic optimization is an important and active area of research in applied

mathematics. Inspired by the social behavior of bird flocking or fish schooling, particle

swarm optimization (PSO) is a population based stochastic optimization method developed

by Eberhart and Kennedy in 1995. It has been used across a wide range of applications.

Uniform random numbers are used to initialize the particles in the PSO algorithm. In lit-

erature, Faure, Halton and Van der Corput sequences have been used for initializing the

swarm in PSO. Quasi-random (or low-discrepancy) sequences such as Faure, Halton, Van

der Corput, etc, are deterministic and suffer from correlations between radical inverse func-

tions with different bases used for different dimensions. These correlations results in poorly

distributed 2D projections. A standard solution to these is to use randomized versions of

the quasi-random sequences. In this dissertation, we investigate the effect of initializing the

swarm with the optimal Halton sequence, which is a randomized quasi-random sequence.

This ensures that we still have the uniformity properties of quasi-random sequences while

preserving the stochastic behavior for particles in the swarm.

The central part of this dissertation is the convergence analysis of PSO. Though there

have been several studies on the convergence of PSO, the convergence proofs in these studies

are either imprecise or based on unrealistic assumptions and, to the best of our knowledge,

incomplete. Here, we present almost surely convergence analysis of PSO, based on the

properties of the objective function.

The last part of this dissertation is about numerical experiments based on quasi Monte

Carlo sampling algorithms. Numerical experiments are conducted with benchmark objective

functions in high dimensions (starting from two dimensions and then in 10, 20, 30, 50, 70
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and 100 dimensions) to verify the convergence and effectiveness of the proposed initialization

of PSO.
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Chapter 1

Introduction

Optimization plays an important role in our everyday life. Managers at a firm are faced

with making short and long-term investment decisions in order to increase profit and/or min-

imize cost, researchers design laboratory experiments to extract the maximum information

about the efficiency of a new drug, aerospace engineers run computer simulations to refine

the design of a missile or aircraft, traffic engineers set the timing strategy for the signals in a

traffic network to minimize the delay incurred by vehicles in the network. Optimization of-

fers a technique for solving problem of this type. Other applications of optimization include

engineering design in mechanical, civil, and chemical engineering, structural optimization,

applications in electronics and electromagnetic, chip design, antenna design, power gener-

ation and power system, design and optimization in communication networks, biological,

medical and pharmaceutical applications, scheduling, combinatorial optimization problems,

neural networks, robotics, security and military applications, finance and economics. The

goal of a global optimization algorithm is to find the absolute maximum or minimum of the

objective function involving unknown variables in which the variables may or may not be

restricted by constraints. A global optimization problem may contain several local optimum

or stationery points.

Global optimization can be classified as either deterministic or stochastic. Many phe-

nomena in the real world involve uncertainty. Due to the difficulties in many real world

problems and the randomness in information, stochastic optimization methods are often

applied to real-life problems.
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According to James Spall [48] the stochastic optimization problems exhibit at least one

of the following two features.

1. There is a random noise in the measurements of objective function.

and/or

2. There is a random choice made in search direction as the algorithm iterates toward a

solution.

In classical deterministic search and optimization, it is assumed that one has perfect infor-

mation about the objective function and its derivatives. This information is then used to

determine the search direction in a deterministic manner. In many practical problems, such

information is not available, indicating that deterministic algorithms are inappropriate. In

such cases, it is beneficial to deliberately introduce randomness into the search process. This

injected randomness causes the problem to fall under the category 2 above. These random

search methods have been shown to have a potential to solve problems efficiently in a way

that is not possible for deterministic algorithms. Another advantage is that they are rela-

tively easy to implement and more efficient to compute complex problems. These random

search methods are widely applied to continuous and discrete global optimization problems.

Because the methods rely only on function evaluations, rather than gradient and hessian

information, they can be coded quickly and applied to broad class of ill structured problems.

Stochastic approximation (Robbins-Monro algorithm 1951) [42], simulated annealing

(1979) [24, 25], tabu search (1986) [14, 15, 16], genetic algorithms (GAs) , evolutionary

programming (1966) [12], ant colony optimization (ACO) (1992) [32, 8], particle swarm

optimization (1995) [9], nested partitioning method (2000) [45] are some of the random
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search methods and these methods are applied widely to global optimization problems [57],

[58]. Stochastic optimization can be further classified as population-based optimization

algorithms. They differ from other optimization methods, in the fact that they maintain a

population of potential solutions to a problem, and not just one solution. In population-based

algorithms first a population of individuals is randomly initialized. Here each individual

represents a potential solution to the problem. The current population is used to generate

candidate points for a new population, by using some mechanisms such as mutation, crossover

or reproduction. The current and new points are then evaluated and compared to update

the population. The quality of each solution is evaluated using the objective function. This

procedure is repeated until a certain criteria is met. The motivation behind population-based

algorithms is to parallel the process of biological evolution. Examples for population-based

algorithms are genetic algorithms (GAs), evolutionary programming, ant colony optimization

(ACO), particle swarm optimization (PSO), differential evolution [49] and fire fly algorithm

(2008) [55].

Among these methods we focus on particle swarm optimization due to several reasons.

Firstly, researchers conclude that PSO was generally found to perform better than other

algorithms in terms of success rate, solution quality, convergence speed, computational effi-

ciency, and quality of the results while being second best (after ACO) in terms of processing

time [10] , [19]. Secondly, it is one of the simplest algorithms in terms of complexity of

equations and thirdly, it is relatively new emerging computational methodology compared

to other techniques and thus less research is focused on it when compared to other methods.

Inspired by the social behavior of bird flocking or fish schooling, PSO [9] was developed

by Eberhart and Kennedy in 1995. Since then, PSO has been used across a wide range of

applications. Areas where PSO have shown particular promise include black-box functions,

multimodal problems and problems for which there is no specialized method available or all

specialized methods give unsatisfactory results [40], [28], [29], [23].
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Particle swarm optimization (PSO) is a computational method that optimizes a problem

by iteratively trying to improve a candidate position with regard to a given measure of

quality. It solves a problem by having a population of candidate solutions, also called

as particles, and moving these particles around in the search-space according to simple

mathematical formulae that specify the particle's position and velocity. Each particle's

movement is influenced by its local best known position, but is also guided toward the best

known positions in the search-space, which are updated as better positions are found by other

particles. This is expected to move the swarm toward the best solutions it has achieved so

far. More about PSO method and it's algorithm is discussed in chapter 2.

Original version of PSO was unable to solve discontinuous problems. Thus, it was

hybridized in literature to have a better performance. Over the past two decades researches

of PSO have been attentive on several aspects of PSO algorithm such as initialization of

particles [38], [37], parameter selection [46], [50], [22], convergence analysis [36], [7], [56],

modification or hybridized versions [1], [30], [54], [43], [21], [20], [41] and applications of

PSO. [39] contains a list of applications within each different application area.

Initialization of particles plays an important role in population based optimization tech-

niques. If the initial population does not cover the search area efficiently, it may not be able

to locate the global optimum and may converge to a local optimum point. In population

based algorithms, pseudo-random numbers (monte carlo sequences) are used to produce the

initial population. Because pseudo-random numbers generate uniformly distributed samples

and thus covers promising regions of the search space.

Since the population size is limited, the chance for a population to cover the promising

regions of the search space decreases as the dimension increases. Quasi-random sequences

which is also called as quasi-monte carlo sequences or low-discrepancy sequences are more

evenly distributed over the D dimensional unit cube, thus it improves the accuracy of the es-

timation and provides better estimation in population search algorithms rather than monte
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carlo sequences. Researchers in population based algorithms has used quasi-random se-

quences like Van der Corput, Halton, Faure and Sobel sequences to initialize the population

[3], [26], [38], [37], [34] and using numerical experiments they showed that these initial-

izations improves the performance when compared to monte carlo sequences. Kimura and

Matsumara [26], performed GA using Halton sequence and discovered that performance of

GA using Halton sequence is superior to the same GA using psedo-ramdom number gener-

ator. More about quasi-random sequences are discussed in chapter 3.

Although quasi-random sequences have advantages over monte carlo sequences, they

have some limitations. The drawback here is, that these sequences suffers from correlation

effect between radical inverse functions with different bases used for different dimensions

[33], [4]. Also quasi-random sequences provides deterministic behavior as opposed to the

stochastic behavior. To address these drawbacks of quasi-Monte Carlo methods, researchers

introduced randomized versions of quasi-Monte Carlo sequences either by random shifting,

random permutation of digits or linear scrambling [17]. This guarantees the uniformity

properties of the quasi-random sequences and random shifting, permutation or scrambling

provides stochastic behavior. It is important to have stochastic initialization, since PSO is a

stochastic optimization method. In this dissertation, we initialize the particles using optimal

Halton sequence [4], which belongs to the family of randomized quasi-random sequences.

More about these sequences are discussed in chapter 3. Numerical experiments are performed

to check the convergence and it can be seen that particles converge to the optimum value

when particles are initialized using randomized quasi-random sequence. These numerical

results are performed in section 5.2 under chapter 5.

Further, the theoretical analysis of the PSO is lacking in the literature. According to

Poli and et al. [40], this is due to several reasons.

1. The PSO is made up of a large number of interacting elements (the particles).

Although the nature of the elements and of the interactions is simple, understanding

the dynamics of the whole is nontrivial.
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2. The particles are provided with memory and the ability to decide when to update the

memory.

3. Forces are stochastic. This prevents the use of standard mathematical tools used in

the analysis of dynamical systems.

4. The behavior of the PSO depends crucially on the structure of the fitness function.

However, there are infinitely many fitness functions, and so it is extremely difficult

to derive useful results that apply to all, even when complete information about the

fitness function is available.

Because of these difficulties researchers have been used simplifying assumptions in or-

der to obtain models that could be studied mathematically. These include: assuming that

there is only one particle in the swarm (isolated single individuals), assuming that parti-

cle's personal best value and global best values are constant at each iteration, assuming

that no improved solutions are found (search stagnation), and assuming that the model is

deterministic (absence of randomness) [11].

Although these assumptions allow a researcher to observe a particular aspect of the

particle's dynamics, their effect on the system's behavior may be severe. For example, the

problem in the assumption of one particle is, when there is one particle in the swarm the

particle's personal best value and global best values coincide. This is not true in general.

The assumption that particle's personal best value and global best values are constant is not

practical as well because these values keep updating at each iteration. So, the conclusions

drawn from the resulting mathematical models tend to be approximate and need to be

verified empirically.

Ozcan and Mohan (1998) [36] theoretically analyzed the model assuming one particle,

in isolation, in one dimension, during stagnation, in the absence of stochasticity and in 1999

the work was extended to multiple multi dimensional particles. Clerc and Kennedy (2002) [7]

assumed one particle, one dimension, deterministic behaviour and stagnation. They predict
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that the particles will converge to the equilibrium if the magnitude of the eigen values of the

position and velocity transition matrix is less than 1. They derived relationships between the

parameters that would guarantee convergence. This now has become almost the standard

PSO algorithm. van den Bergh (2001) [51] assumed one particle, with no stochasticity, during

stagnation and showed that the particles are attracted towards a fixed point corresponding

to a weighted sum of particle's global best value and personal best value. The work also

suggested the possibility that particles may converge to a point which is not an global

optimum. Chuan and Quanyuan (2007) [5] studied convergence analysis of PSO assuming

the model is deterministic. There has been conspicuously lacking in stochastic convergence

analysis of PSO. Jiang and et al [22] analysed convergence stochastically assuming one

particle and particle's global best value is constant.

There is no analysis based on the characteristics of objective function. Properties of

objective function plays a main role in any optimization problem and the behavior of the PSO

depends crucially on the structure of objective function [40]. Thus properties of the objective

function needs to be considered. Further, the convergence analysis proofs in the literature

do not guarantee the convergence to the optimizer. i.e those studies do not imply that the

equilibrium is the optimizer. Thus, we argue that the theoretical studies in the literature

and the convergence proofs in these studies are either imprecise or based on unrealistic

assumptions. In this dissertation, we present stochastic convergence analysis i.e almost sure

convergence analysis of PSO algorithm to the optimizer based on following assumptions.

These assumptions are on the objective function and there is another one on the algorithm

of PSO. The assumptions on objective function are,

1. The objective function is bounded.

2. The objective function is continuous.

3. There is a unique optimum value.
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Figure 1.1: Example for a discontinuous function

These assumptions are reasonable. Because if the function is not bounded, the optimum

point will be either∞ or −∞ and in real world problems we don't get these values. We have

the second assumption as we avoid including situations where the minimum of the function

occurs at which the function is singularly discontinuous. For example consider figure 1.1,

for the function on figure 1.1 there is no guarantee of obtaining the global optimum without

prior knowledge of existence of such a point. According to [48], no typical algorithm would

be able to locate this point and in that case true minimum will never be discovered. The

third assumption is due to the fact that PSO algorithm cannot detect the number of global

optimal points and it will provide one of the optimal points. Thus here we restrict our proof

to the case where there is only one global optimum value.

We have one assumption on algorithm of PSO. We assume that the two random numbers

in the velocity equation are not 0 simultaneously. If both random numbers are zero we assign

two other random numbers.
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Using these assumptions first we prove that particle's personal and global best values

converge to the optimum value almost surely. This proof is inspired by the convergence proof

for sequential random search algorithms by Solis and Wets [47] and proof of convergence

analysis of simulated annealing by Bélisle [2]. Then using the fact that particle's personal

and global best values converge to the optimum value almost surely, we prove the almost

sure convergence of the swarm particles to the optimizer of the objective function. This is

one of the main results of this dissertation.

The outline of this work is as follows. In Chapter 2, we give a brief overview of the

particle swarm optimization algorithm that will be used throughout the rest of the chapters.

In Chapter 3, we present the importance of initialization of particles and describe the Halton

sequence and optimal Halton sequence (scrambled Halton sequence). Also, we present our

proposed initialization of PSO. In Chapter 4, almost sure convergence of PSO is proved.

In Chapter 5, numerical experiments are carried out to demonstrate the performance and

efficiency of the proposed initialization. Finally conclusion and future work are presented in

Chapter 6.
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Chapter 2

Particle Swarm Optimization

2.1 Introduction to Optimization

In this chapter we first introduce some basic concepts relating to optimization, followed

by an introduction of particle swarm optimization.

In mathematical terms, optimization is the minimization or maximization of a function

(called objective function or fitness function) subject to constraints on its variables.

Without loss of generality, consider a minimization problem in the D dimensional space,

where f : <D → <.

Minimize : f(~a)

Subject to :

gk(~a) ≤ 0 k = 1, 2, ...p

hm(~a) = 0 m = 1, 2, ...q

ajmin ≤ aj ≤ ajmax j = 1, 2, ...D

(2.1)

where ~a = (a1, a2, ..., aD) is the vector of variables, also known as unknowns or parameters;

f is the objective function with variables ~a to be optimized and p, q are number of inequality

and equality constraints respectively.

Hereafter all the optimization problems are assumed to find minima; a maximal problem

could be transformed to minimal form by conveniently multiplying the objective function

by −1. The solution to the above system may be a unique point, a countable collection

of points, or a set containing an uncountable number of points. To solve the optimization

problem, there are optimization algorithms inspired by different techniques. But they all

share some common characteristics. They are iterative, i.e they all begin with an initial

10



guess of the optimal values of the variables and generate a sequence of improved estimates

until they converge to a solution. The strategy used to move from one potential solution to

the next is what distinguishes one algorithm from another. For instance, some of them use

gradient based information and other similar methods (e.g. the first and second derivatives

of these functions) to lead the search toward more promising areas of the design domain,

whereas others use problem specific heuristics (e.g. accumulated information gathered at

previous iterations).

PSO is an iterative algorithm that engages a number of particles flying iteratively over

the search space of the given objective function. Each particle determines its movement

through the search space by combining information about its current fitness, its best fitness

from previous locations (individual perspective) and best fitness locations with regards to

one or more members of the swarm (social perspective), with some random perturbations.

2.2 Classical Particle Swarm Optimization

The Classical PSO algorithm maintains a population of M particles, and places them in

the search space of the objective function. PSO defines each particle's position as a potential

solution to the function to be optimized, and then searches for the optima by updating its

position in every iterative step. Each particle is associated with a velocity which directs the

flying of the particle toward a new, presumably better, position/solution. The particles fly

through the problem space by following the current optimum particles.

In every iteration, each particle's velocity is updated by following two best values. The

first one is current best solution it has achieved so far. This value is called pbest. Another

best value that is tracked by the particle swarm optimizer is the best value, obtained so far

by any particle in the population. This best value is a global best and called gbest.

After finding the two best values, the particle updates its velocity and positions with

following equations.

11



~vt+1 = w~vt + c1r1,t+1( ~pbestt − ~at) + c2r2,t+1( ~gbestt − ~at). (2.2)

~at+1 = ~at + ~vt+1. (2.3)

Let D be the dimension of the search space, and let ak,jt denote the kth particle's

jth component at time t. Then ~akt = (ak,1t , ak,2t , ..., ak,Dt ) is the kth particle's position

at time t, ~vkt = (vk,1t , vk,2t , ..., vk,Dt ) is the kth particle's velocity at time t. ~pbestkt =

(pbestk,1t , pbestk,2t , ..., pbestk,Dt ) and ~gbestt = (gbest1t , gbest
2
t , ..., gbest

D
t ) are the vectors of cur-

rent best values and global best values, respectively. r1,t+1 and r2,t+1 are uniformly dis-

tributed random numbers between 0 and 1. There are three factors w, c1 and c2 in equation

2.2. w factor is called the inertia weight and is simply a positive constant less than 1. c1

and c2 are the cognitive(or personal or local) weight and social or global weight respectively

which are positive constants.

2.3 Algorithm of PSO Simulation

Algorithm of Standard PSO

1. Initialize a population array of M particles with random positions and velocities on D

dimensions, in the search space.

Loop

2. For each particle evaluate the objective function in D variables.

3. Compare each particle's objective function value with its ~pbestkt−1 value. If current

value is better than ~pbestkt−1, then set ~pbestkt equal to the current value. i.e

12



~pbestkt =


~akt, if f( ~akt) < f( ~pbestkt−1).

~pbestkt−1, if f( ~akt) ≥ f( ~pbestkt−1).

for k = 1, 2, ...,M.

(2.4)

4. Identify the particle in the swarm with the best success so far and assign its position

to the variable ~gbestt.

Choose ~apt s.t.f(~apt) ≤ f( ~akt) for all k = 1, 2, ...,M

~gbestt =


~apt, if f(~apt) < f( ~gbestt−1).

~gbestt−1, if f(~apt) ≥ f( ~gbestt−1).

(2.5)

5. Update each particle's jth dimension of velocity according to the following equation,

for k = 1, 2, ...,M and j = 1, 2, ..., D

vk,jt+1 = wvk,jt + c1r1,t+1(pbestk,jt − at) + c2r2,t+1(gbestjt − at). (2.6)

To ensure that each component of ~vkt+1 is kept within the search space, make the

following modification

vk,jt+1 =


vjmin, if vk,jt+1 < vjmin.

vk,jt+1, if vjmin ≤ vk,jt+1 ≤ vjmax

vjmax if vjmax < vk,jt+1.

(2.7)

where vjmin and vjmax are determined from constraints of the objective function or by

setting vjmin = ajmin and vjmax = ajmax [46].

13



6. Update each particle's jth dimension of position according to the following equation,

for k = 1, 2, ...,M and j = 1, 2, ..., D

ak,jt+1 = ak,jt + vk,jt+1. (2.8)

To ensure that each component of ~akt+1 is kept within the search space, make the

following modification

ak,jt+1 =


ajmin, if ak,jt+1 < ajmin.

ak,jt+1, if ajmin ≤ ak,jt+1 ≤ ajmax.

ajmax if ajmax < ak,jt+1.

(2.9)

End of the Loop

7. If a criterion is met (after a certain number of iterations or until particle position

converge to a certain value) exit loop.

Note: Here we define our stopping criteria as maximum number of iterations. If we set

the stopping criteria with error bounds, for example if | ~akt+1 − ~akt |< ε for some ε > 0,

then the particles trap in local optimum points. Thus we always set the stopping criteria as

maximum number of iterations.

Figure 2.1 shows flow chart of the PSO algorithm.
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Figure 2.1: Flow chart for PSO algorithm
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Chapter 3

Initialization of Particles

Initialization of particles plays an important role in population based optimization tech-

niques. Initialization consists of choosing swarm size, choosing particle positions randomly in

the search space and choosing random velocities. If the swarm population does not cover the

search area efficiently, it may not be able to locate the global optima and/or may converge

to a local optimum point.

In the classical PSO method particles are randomly initialized using pseudo-random

numbers (monte carlo sequences). A problem with pseudo-random sequences is that values

may clutter in one region, and other regions would be left out with a lower density of

points. Hence, pseudo-random sequences cannot achieve optimal performance. Because

of this reason, quasi-random sequences (also called as quasi-Monte carlo or low discrepancy

sequences) have been proposed in the literature and later have been used in population-based

methods to initialize particles. More details about quasirandom sequences are discussed in

Section 3.1

3.1 Quasi-Monte Carlo / Quasi-random sequences

Quasi-Monte Carlo methods are often described as the deterministic version of Monte

Carlo method. Quasi-Monte carlo methods, use sequences of numbers, called low discrep-

ancy sequences, which are designed to be more evenly distributed over the D-dimensional

unit cube. Thus they improve the accuracy of the estimation. Moreover, quasi-random

initialization often leads to a faster convergence rate than normal Monte Carlo initialization.

Examples for quasi-random sequences are Van der Corput sequence, Halton sequence,

Faure sequence, Sobol sequence. These sequences have been used to initialize population
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Figure 3.1: Comparison of uniform random sequence (top) and Halton sequence (bottom)
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[3], [26], [38], [37], [34] and numerical results show that these initialization provides better

estimation in population search algorithms rather than random (Monte Carlo) sequences.

Omran et al (2013) [35] has used Halton and Sobol sequences to initialize the particles in

two population based algorithms (PSO and Differential evolution) and compare the results.

They claim that the results has no evidence of significant difference.

Figure 3.1 shows 256 points from a uniform pseudo-random number sequence (top)

compared with the first 256 points from the 2,3 Halton sequence (bottom). We can see that

Halton sequence covers the space more evenly than the uniform pseudo-random number

sequence.

The Van der Corput sequence illustrates the main idea of construction of low discrepancy

sequences.

3.1.1 Van der Corput Sequence

A Van der Corput sequence is an example of the simplest one-dimensional low-discrepancy

sequence over the unit interval; it was first described in 1935 by the Dutch mathematician

J. G. Van der Corput [52]. It is constructed by reversing the base-n representation of the

sequence of natural numbers.

For any natural number n, let n = b0 + b1p + ... + bmp
m be the p−adic expansion with

bj ∈ {0, 1, ..., p − 1} and T = blogp nc, then nth term in the Van der Corput sequence is

defined as,

φp(n) ≡ b0

p
+
b1

p2
+ ...+

bm
pm+1

(3.1)

For example, Van der Corput sequence with base 2 is,

1
2
, 1

4
, 3

4
, 1

8
, 5

8
, 3

8
, 7

8
, 1

16
, 9

16
, 5

16
, 13

16
, 3

16
, 11

16
, 7

16
, 15

16
, ...

Note that Van der Corput sequence in any base is dense in [0, 1). That is, for any real

number in [0, 1) there exists a subsequence of the Van der Corput sequence that converges

to that number.
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In [37], [38] M. Pant et al used a Van der Corput sequence to initialize the particles in

the swarm of PSO.

3.1.2 Halton Sequence

A classical family of low-discrepancy sequences are the Halton sequences [18], which are

bases on the radical inverse function defined as follows:

φp(n) ≡ b0

p
+
b1

p2
+ ...+

bm
pm+1

(3.2)

where p is a prime number and the expansion of n in base p is given as n = b0 + b1p+

...+ bmp
m, with integers 0 ≤ bj < p.

The Halton sequence Xn in [0, 1)s is defined as

Xn = (φp1(n), φp2(n), . . . , φps(n)) (3.3)

where p1, p2, ..., ps are pairwise co-primes. In practice, we always use the first s primes

as the bases.

Simply, the Halton sequence generalizes the one dimensional Van der Corput sequence

and uses prime numbers as its base.

For example, Halton Sequence with base 2 is,

1
2
, 1

4
, 3

4
, 1

8
, 5

8
, 3

8
, 7

8
, 1

16
, 9

16
, 5

16
, 13

16
, 3

16
, 11

16
, 7

16
, 15

16
, ...

and Halton Sequence with base 3 is,

1
3
, 2

3
, 1

9
, 4

9
, 7

9
, 2

9
, 5

9
, 8

9
, 1

27
, 10

27
,19
27

, 4
27

, 13
27

, 22
27

, 7
27

,...

In dimension n, we create n-tuples of such sequences. For example, a two dimensional

Halton sequence with base 2 and 3 is,

(1
2
, 1

3
), (1

4
, 2

3
), (3

4
, 1

9
), (1

8
, 4

9
), (5

8
, 7

9
), (3

8
, 2

9
), (7

8
, 5

9
), ( 1

16
, 8

9
), ( 9

16
, 1

27
),...
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Figure 3.2: 512 points of Halton sequence for dimension 13th and 14th

Compared to other low-discrepancy sequences, Halton sequences are easier to implement

due to the ease of implementation of the radical inverse function. However, a problem

with Halton sequence comes from the correlations between the radical inverse functions for

different dimensions [4], [33]. The correlations cause the Halton sequence to have poor 2−D

projection for some pairs of dimensions. For example, the two dimensional projections of

the 13th and 14th (Figure 3.2), 28th and 29th (Figure 3.3) and 39th and 40th (Figure 3.4)

dimensions are not evenly distributed.

Another drawback of quasi-random sequences is that they are deterministic, hence we get

a single estimate of the results as having many estimates of the unknown quantity and we can

find mean and variance. In other words, it does not allow multiple starts of the algorithm. To

address these drawbacks of quasi-Monte Carlo methods, researchers introduced randomized

versions of quasi-Monte Carlo methods, that still have the good uniformity properties of low

discrepancy sequences.

Therefore, in this dissertation we use optimal Halton sequence, which belongs to the

family of randomized quasi-Monte Carlo methods to initialize the particles
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Figure 3.3: 4096 points of Halton sequence for dimension 28th and 29th
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21



3.2 Randomized Quasi-Random Sequences

To address the drawbacks of quasi-random sequences, researchers have introduced Ran-

domized quasi-random sequences. They are obtained either by, random shifting, permutation

of the digits or by linear scrambling. Unlike pseudo-random numbers, there are only a few

common choices for quasi-random number generation. However, by scrambling a quasi-

random sequence, one can produce a family of related quasi-random sequences.

Finding one or a group of optimal quasi-random sequences within this family is an in-

teresting problem, as such optimal quasi-random sequences can be quite useful for enhancing

the performance of ordinary quasi-Monte Carlo sequences. The process of finding such op-

timal quasi-random sequences is called the derandomization of a randomized (scrambled)

family of quasi-random sequences. In addition to providing more quasi-random sequences

for quasi-Monte Carlo applications, derandomization can help us improve the accuracy of

error estimation provided by randomized quasi-Monte Carlo. This is due to the fact that

one can find a set of optimal sequences within a family of scrambled sequences, and use

sequences within this set for error estimation. In next section, we give a detailed description

for derivation of optimal Halton sequences.

3.2.1 Optimal Halton Sequence

In order to improve the quality of Halton sequence, the optimal Halton sequence is

introduced by Chi and et al [4]. It can break the correlation among dimensions. Optimal

Halton sequences can help us obtain good quality of Halton sequence. The linear scrambling

method is defined as follows.

φπp(n) ≡ πp(b0)

p
+
πp(b1)

p2
+ ...+

πp(bm)

pm+1
(3.4)

where linear congruential operator, φπp(bj) = wbj(mod p) with 1 ≤ w ≤ p − 1 and

0 ≤ j ≤ m. p refers to the base of the Halton sequence and w refers to the best choice for
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the linear scrambling. According to Chi et al [4] optimal w values for linear scrambling are

shown in table 3.1.

s p w s p w s p w s p w

1 2 1 11 31 12 21 73 47 31 127 56
2 3 2 12 37 13 22 79 30 32 131 50
3 5 3 13 41 17 23 83 47 33 137 52
4 7 3 14 43 18 24 89 65 34 139 61
5 11 8 15 47 29 25 97 71 35 149 108
6 13 11 16 53 14 26 101 28 36 151 56
7 17 12 17 59 18 27 103 40 37 157 66
8 19 14 18 61 43 28 107 60 38 163 63
9 23 7 19 67 41 29 109 79 39 167 60
10 29 18 20 71 44 30 113 89 40 173 66

Table 3.1: Optimal values for w for the first 40 dimensions of the optimal Halton sequence

By analyzing the inner property of points in each coordinate, they find that correlations

are related to the most significant bit. They permute the most significant bits of each

Halton point according to the coordinate. The period of points in each coordinate is the

base. Permutation of the most significant bit of each point is the same as a permutation

in {φp(1), φp(2), . . . , φp(b)}, {φp(b + 1), φp(b + 2), . . . , φp(2b)}, . . . . The advantage of this

procedure is that we have the same code as the original Halton sequence. The only thing we

need to do is to permute the points according to each coordinate, and output the scrambled

Halton sequence. This permutation of the Halton sequence does not change its uniformity

in one dimension. It just changes the position of one point [4].

Figure 3.5 shows 256 points from optimal Halton sequence in 13th and 14th dimension.

Figure 3.6 shows 4096 points from optimal Halton sequence in 28th and 29th dimension

followed by figure 3.7 which shows the 2000 points of optimal Halton sequence for dimension

39th and 40th. Comparison of figure 3.2 with 3.5, figure 3.3 with 3.6 and figure 3.4 with 3.7

, we can see that the performance of optimal Halton sequence is exceptional.

In this practice, we followed the recommendation from an early implementation[13],

to skip a certain number of n instead n = 1, we dropped first 5000 points and start with
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Figure 3.5: 512 points of optimal Halton sequence for dimension 13th and 14th
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Figure 3.6: 4096 points of optimal Halton sequence for dimension 28th and 29th
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n = 5001. This has no effect on asymptotic performance, but it dramatically improves

practical performance when the dimension is high. It is always safe to skip a couple thousand

points when we are using quasi-random sequences.

25



Chapter 4

Convergence Analysis

In this chapter we first give some definitions in measure theory and mathematical for-

mulas of general probability theory. Then we introduce our theorem followed by the proof

of the theorem with two lemmas.

4.1 Mathematical Preliminaries

Definition 1 (σ− algebra) Given a set Ω , a collection A of subsets of Ω is a σ− algebra

iff,

1. Ø ∈ A

2. A ∈ A ⇒ Ac ∈ A

3. A1, A2, ... ∈ A ⇒
⋃∞
i=1Ai ∈ A

Definition 2 (measurable space) A space Ω and a σ− algebra A on Ω , (Ω,A) is a

measurable space.

Definition 3 (measure) Let (Ω,A) be a measurable space. A map µ : A → [0,∞] is a

measure iff

1. µ(Ø) = 0

2. If Ai
⋂
Aj = Ø for {An : n = 1, 2, ...} ⊂ A then µ(

⋃
i=1Ai) =

∑
i=1 µ(Ai)

The triple (Ω,A, µ) is called a measure space.

Example: Lebesgue measure Let

• Ω = <D,
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• A = B(<D)

• υ(A) =
∏D

k=1(aRk − aLk ) for rectangles A = {x ∈ <D : aLk < xk < aRk , k = 1, 2, ...D}

Note: Borel sets B is the smallest σ− algebra that contains all open sets.

Definition 4 (Probability space) A measure space (Ω,A,P) is a probability space if

P(Ω) = 1. In this case P is called a probability measure. P(A) = P(X ∈ A) for A ∈ A

4.2 Convergence Analysis of PSO

In this section we introduce our theorem and prove the convergence of PSO algorithm

to the optimizer under reasonable conditions.

Theorem 4.1 (Weerasinghe, Cao, 2017)

Let f(~a) be a continuous and bounded function from Θ ⊂ <D to <. Assume the following

two conditions,

(A1). ~a∗ is the minimizer of f on the domain Θ such that f(~a∗) = inf~a∈Θ f(~a)

(A2). ~a∗ is the unique minimizer, that means inf ~at∈Θ,‖~at−~a∗‖≥η f(~at) > f(~a∗).

Suppose further that r1,t+1 and r2,t+1 in (2.2) are chosen s.t. r1,t+1 6= r1,t+1 6= 0 simulta-

neously. Then, the particle swarm optimization algorithm converges a.s to the optimizer as

t→∞

To prove the above theorem we suggest and prove the following two lemmas.

Lemma 1 :

Under above conditions, { ~pbest
k

t } and { ~gbestt} converge to the optimizer a.s.

Proof :

According to our notation defined in chapter 2, { ~pbest
k

t } denotes kth particle's personal best

position at time t. First we consider convergence of kth particle's personal best value. From

27



here onwards for notational convenience let { ~pbest
k

t } be denoted by { ~pbestt}.

According to equation (2.4), {f( ~pbestt)} is a decreasing sequences and f(~a∗) > −∞. Thus

by Monotone Convergence Theorem in real analysis (for example, Principles of mathematical

analysis by Walter Rudin [44], page 55), limt→∞{f( ~pbestt)} exists and

lim
t→∞
{f( ~pbestt)} = inf

~pbestt∈Θ
{f( ~pbestt)} ≥ inf

~a∈Θ
{f(~a)} = f(~a∗) (4.1)

Let Sη = {~a : f(~a) < f(~a∗) + η} for any η > 0.

From update equation (2.4) it is clear that,

~pbestk /∈ Sη ⊆
⋂k
t=0

~pbestt /∈ Sη

Thus by probability theory, P[ ~pbestk /∈ Sη] ≤ P[
⋂k
t=0

~pbestt /∈ Sη]
(4.2)

and also from update equation (2.4) we have that,

~pbest0 ∈ Sη ⊆ ~pbestt ∈ Sη for all t ≥ 1.

Thus, P[ ~pbest0 ∈ Sη] ≤ P[ ~pbestt ∈ Sη] for all t ≥ 1.
(4.3)

From probability theory ,

P[ ~pbestk ∈ Sη] = 1− P[ ~pbestk /∈ Sη] (4.4)

From equation (4.2), we have
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P( ~pbestk ∈ Sη)

≥ 1− P(
k⋂
t=0

~pbestt /∈ Sη)

= 1− P( ~pbest0 /∈ Sη) ·
k∏
j=1

P[ ~pbestj /∈ Sη|
j−1⋂
t=0

~pbestt /∈ Sη] (4.5)

= 1− (1− P[ ~pbest0 ∈ Sη]) ·
k∏
j=1

(1− P[ ~pbestj ∈ Sη|
j−1⋂
t=0

~pbestt /∈ Sη]) (4.6)

Equation (4.5) follows from conditional probability formula.

From probability theory, equation for computing a probability by conditioning on a random

variable is given by, P [A] =
∫
P [A|W = w]dµ(w) where µ denotes the distribution of W,

i.e., the probability measure defined by µ(H) = P [W ∈ H]

Using the above equation we have,

P [A|B] =
∫
P [A|B ∩ (W = w)]dµ(w) (4.7)

where µ denotes the conditional distribution of W given B, i.e., the probability measure

defined by µ(H) = P [W ∈ H|B]

Let Wm = wm denote

[(~a0, ~a1, ..., ~am), (~v0, ~v1, ..., ~vm), ( ~pbest0, ~pbest1, ..., ~pbestm)]

= [( ~̃a0, ~̃a1, ..., ~̃am), ( ~̃v0, ~̃v1, · · · , ~̃vm), (
~̃

pbest0,
~̃

pbest1, ...,
~̃

pbestm)]
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Using above equation (4.7), for any 0 < m ≤ k, we have

P[ ~pbestm ∈ Sη|
m−1⋂
t=0

~pbestt /∈ Sη]

=

∫
P[ ~pbestm ∈ Sη|

m−1⋂
t=0

~pbestt /∈ Sη
⋂

(Wm−1 = wm−1)] · dµ (4.8)

Here µ denotes the conditional distribution of

[(~a0, ~a1, ..., ~am−1), (~v0, ~v1, ..., ~vm−1), ( ~pbest0, ~pbest1, ..., ~pbestm−1)] given [( ~pbest0 /∈ Sη)∩( ~pbest1 /∈

Sη) · · · ( ~pbestm−1 /∈ Sη)]

i.e., the probability measure defined by

µ(H) = P [((~a0, ~a1, ..., ~am−1), (~v0, ~v1, ..., ~vm−1), ( ~pbest0, ~pbest1, ..., ~pbestm−1)) ∈ H|(( ~pbest0 /∈

Sη) ∩ ( ~pbest1 /∈ Sη) · · · ( ~pbestm−1 /∈ Sη))]

Let,

[
m−1⋂
t=0

~pbestt /∈ Sη ∩ (Wm−1 = wm−1)] = (Wm−1 = w̃m−1) (4.9)

Here w̃m−1 are the values for which ~pbest0 /∈ Sη , ~pbest1 /∈ Sη, · · · ~pbestm−1 /∈ Sη
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Equation (4.8) can be simplified to,

P[ ~pbestm ∈ Sη|
m−1⋂
t=0

~pbestt /∈ Sη]

=

∫
P[ ~pbestm ∈ Sη|

m−1⋂
t=0

~pbestt /∈ Sη
⋂

(Wm−1 = wm−1)] · dµ

=

∫
P[ ~pbestm ∈ Sη|Wm−1 = w̃m−1] · dµ (4.10)

=

∫
P[ ~pbestm ∈ Sη|(~am−1 = ~̃am−1, ~vm−1 = ~̃vm−1, ~pbestm−1 =

~̃
pbestm−1)] · dµ (4.11)

=

∫
P[~am ∈ Sη|(~am−1 = ~̃am−1, ~vm−1 = ~̃vm−1, ~pbestm−1 =

~̃
pbestm−1)] · dµ (4.12)

Equation (4.11) is obtained because according equation (2.4) selection of ~pbestm depends

only on ~pbestm−1 among the given values in Wm−1. The reason for last equality (equation

(4.12)) follows again from equation (2.4). It is given that ~pbestm−1 /∈ Sη. Thus the event

that ~pbestm ∈ Sη is same as the event ~am ∈ Sη.

P[~am ∈ Sη|(~am−1 = ~̃am−1, ~vm−1 = ~̃vm−1, ~pbestm−1 =
~̃

pbestm−1)] =

∫
Sη

p(x)υ(dx)

in the above equation, p(x) is the probability density function of (~am ∈ Sη|(~am−1, ~vm−1, ~pbestm−1))

and υ(·) denotes Lebesgue measure.

(~am ∈ Sη|(~am−1, ~vm−1, ~pbestm−1)) follows uniform distribution according to equations

(2.2) and (2.3). Thus, p(x) = 1∏D
j=1(ajmax−ajmin)

. Here ajmax and ajmin are maximum and min-

imum values in the search space in jth direction. Thus above equation can be simplified
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to,

P[~am ∈ Sη|(~am−1 = ~̃am−1, ~vm−1 = ~̃vm−1, ~pbestm−1 =
~̃

pbestm−1)]

= p(x)

∫
Sη

υ(dx)

=
υ(Sη)

υ(Θ)
= βη (4.13)

Recall that Θ denotes search space.

According to the definition of Sη , a∗ ∈ Sη and since f is continuous Sη is open. Sη is

non-empty open set. Hence by basic property in Lebesgue measure (For example [31], page

43, Property, 2.1.3) that every non- empty open set has strictly positive lebesgue measure,

we have that υ(Sη) > 0.

Then 0 < βη ≤ 1 for each η ≥ 0.

Equation (4.12) can be written as,

P[ ~pbestm ∈ Sη|
m−1⋂
t=0

~pbestt /∈ Sη] =

∫
βηdµ = βη

∫
dµ = βη

∫
fXdm = βη · 1 (4.14)

where fX denotes the probability density function. The last equality in equation (4.14) is

due to the fact that,
∫∞
−∞ fX(x)dx = 1 for a continuous random variable x.

1− P[ ~pbestm ∈ Sη|
m−1⋂
t=0

~pbestt /∈ Sη] = 1− βη (4.15)

At initial stage, ~pbest0 = ~a0. Thus, P( ~pbest0 ∈ Sη) = P(~a0 ∈ Sη). Initialization of ~a0

follows uniform distribution. Thus P( ~pbest0 ∈ Sη) =
∫

Sη
p(x)υ(dx) = υ(Sη)

υ(Θ)
= βη.

Let β = min{βη : η > 0}.

Now equation (4.6) simplifies to,
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P[ ~pbestk ∈ Sη] ≥ 1−
k∏
t=0

(1− β)

P[ ~pbestk ∈ Sη] ≥ 1− (1− β)k+1

lim
k→∞

P[ ~pbestk ∈ Sη] ≥ 1− lim
k→∞

(1− β)k+1 (4.16)

Since 0 < β ≤ 1, we have, 0 ≤ 1− β < 1. Thus, limk→∞(1− β)k+1 = 0.

lim
k→∞

P( ~pbestk ∈ Sη) ≥ 1 (4.17)

also P( ~pbestk ∈ Sη) ≤ 1 (4.18)

Thus, lim
k→∞

P( ~pbestk ∈ Sη) = 1 (4.19)

Then there exists t̂ such that for all t > t̂,

f( ~pbestt) < f(~a∗) + η with probability 1.

limt→∞ f( ~pbestt) ≤ f(~a∗) + η

From equation (4.1), f(~a∗) ≤ limt→∞ f( ~pbestt) ≤ f(~a∗) + η

0 ≤ limt→∞ f( ~pbestt)− f(~a∗) ≤ η

Thus, | limt→∞ f( ~pbestt)− f(~a∗)| ≤ η

Thus, limt→∞ f( ~pbestt) = f(~a∗)

f( ~pbestt) converges to f(~a∗) in probability.
(4.20)

Then by standard result in probability theory (e.g Probability Theory by Laha and

Rohatgi, proposition 1.3.4 [27]) there exists a subsequence of {f( ~pbestt)} which converges

almost surely to f(~a∗). We proved that the convergence of {f( ~pbestt)} to some limit and the

fact that the subsequence has to converge to the same limit as the full sequence , we have

{f( ~pbestt)} converges to f(~a∗) almost surely.
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We want to show that { ~pbestt} converge to ~a∗ with probability 1.

{ ~pbestt} is bounded. Thus there exists tnk such that { ~pbesttnk} converges to ~b for some

~b. Consider

f(~b) = f(limk→∞ ~pbesttnk ) = limk→∞ f( ~pbesttnk ) = f(~a∗) (4.21)

By uniqueness ~b = ~a∗

This is true for any sub-sub sequence. Thus, { ~pbestt} converge to ~a∗ almost surely.

By the similar argument, we can show { ~gbestt} converge to ~a∗ almost surely.

This completes the proof of lemma 1.

Lemma 2

If At+1 =

(1− c1r1,t+1 − c2r2,t+1) ω

−c1r1,t+1 − c2r2,t+1 ω

, Then ρ(At+1) < 1.

here r1,t+1 and r2,t+1 are uniformly distributed random numbers between 0 and 1, and

r1,t+1 6= r2,t+1 6= 0 simultaneously, w, c1 and c2 are positive constants and w < 1,

ρ(.) is the spectral radius of the matrix.

Proof:

The eigen values of the matrix can found by setting, det|A− λI| = 0. Thus,

det|A− λI| =

∣∣∣∣∣∣∣
1− c1r1,t+1 − c2r2,t+1 − λ ω

−c1r1,t+1 − c2r2,t+1 ω − λ

∣∣∣∣∣∣∣
λ2 − (1 + ω − c1r1,t+1 − c2r2,t+1)λ+ ω = 0

λ =
1+ω−c1r1,t+1−c2r2,t+1±

√
(c1r1,t+1+c2r2,t+1−1−ω)2−4ω

2
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Case I : (c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω = 0

λ =
1 + ω − c1r1,t+1 − c2r2,t+1

2

= ±
√
ω

|λ| < 1

Case II : (c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω > 0

λ = 1+ω−c1r1,t+1−c2r2,t+1

2
±
√

(c1r1,t+1+c2r2,t+1−1−ω)2−4ω

2

assume |λ| ≥ 1

then,

1 + ω − c1r1,t+1 − c2r2,t+1 ±
√

(c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω

2
≥ 1

1 + ω − c1r1,t+1 − c2r2,t+1 ±
√

(c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω ≥ 2

±
√

(c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω ≥ 1− ω + c1r1,t+1 + c2r2,t+1 > 0

(c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω ≥ (1− ω + c1r1,t+1 + c2r2,t+1)2

− 4(c1r1,t+1 + c2r2,t+1) ≥ 0

since r1,t+1 6= r2,t+1 6= 0 simultaneously, (c1r1,t+1 + c2r2,t+1) > 0. This gives a contradic-

tion.

Thus |λ| < 1

Case III : (c1r1,t+1 + c2r2,t+1 − 1− ω)2 − 4ω < 0
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λ =
1 + ω − c1r1,t+1 − c2r2,t+1

2
±
√

4ω − (c1r1,t+1 + c2r2,t+1 − 1− ω)2

2
i

|λ|2 =
(1 + ω − c1r1,t+1 − c2r2,t+1)2 + 4ω − (c1r1,t+1 + c2r2,t+1 − 1− ω)2

4

= ω

|λ| =
√
ω < 1

In all three cases we have |λ| < 1. thus ρ(At+1) < 1.

This completes the proof of lemma 2.

Proof of Theorem:

Let ~a∗ be the minimizer of the objective function and let ~et = ~at − ~a∗. From lemma 1,

limt→∞ ~pbest
k

t = ~a∗ for each k = 1, 2, ...M a.s and

limt→∞ ~gbestt = ~a∗ a.s

Consider (2.2) ,

~vt+1 = w~vt + c1r1,t+1(~a∗ − ~at) + c2r2,t+1(~a∗ − ~at) + c1r1,t+1( ~pbestt − ~a∗) + c2r2,t+1( ~gbestt − ~a∗)

~vt+1 = w~vt − (c1r1,t+1 + c2r2,t+1)~et + c1r1,t+1( ~pbestt − ~a∗) + c2r2,t+1( ~gbestt − ~a∗).

(4.22)

From (2.3), we have

~et+1 = ~et + ~vt+1. (4.23)

Putting (4.22) and (4.23) together we have the system,
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1 −1

0 1


~et+1

~vt+1

 =

 1 0

−c1r1,t+1 − c2r2,t+1 ω


~et
~vt

+

 0

c1r1,t+1( ~pbestt − ~a∗) + c2r2,t+1( ~gbestt − ~a∗)

~et+1

~vt+1

 =

(1− c1r1,t+1 − c2r2,t+1) ω

−c1r1,t+1 − c2r2,t+1 ω


~et
~vt

+

c1r1,t+1( ~pbestt − ~a∗) + c2r2,t+1( ~gbestt − ~a∗)

c1r1,t+1( ~pbestt − ~a∗) + c2r2,t+1( ~gbestt − ~a∗)


we have, Xt+1 = At+1Xt + bt.

‖ ~Xt+1 ‖≤|‖ At+1 ‖|‖ ~Xt ‖ + ‖ ~bt ‖ (4.24)

Let |‖ At+1 ‖|= ρ(At+1). Denote ρ = max{ρ(At+1)}. By lemma 2, ρ < 1 .

‖ ~Xt+1 ‖ ≤ ρ ‖ ~Xt ‖ + ‖ ~bt ‖

≤ ρ(ρ ‖ ~Xt−1 ‖ + ‖ ~bt−1 ‖)+ ‖ ~bt ‖

= ρ2 ‖ ~Xt−1 ‖ +ρ ‖ ~bt−1 ‖ + ‖ ~bt ‖

≤ ρ3 ‖ ~Xt−2 ‖ +ρ2 ‖ ~bt−2 ‖ +ρ ‖ ~bt−1 ‖ + ‖ ~bt ‖
...

≤ ρt+1 ‖ ~X0 ‖ +
t∑
i=0

ρt−i ‖ ~bi ‖

Let ε > 0 be given. By lemma 1, limt→∞ ~pbestt = ~a∗ and limt→∞ ~gbestt = ~a∗

Then there exists N0 s.t. ‖ ~bt ‖≤ ε for all t ≥ N0
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‖ ~Xt+1 ‖ ≤ ρt+1 ‖ ~X0 ‖ +

N0∑
i=0

ρt−i ‖ ~bi ‖ +
t∑

i=N0+1

ρt−i ‖ ~bi ‖

≤ ρt+1 ‖ ~X0 ‖ +

N0∑
i=0

ρt−i ‖ ~bi ‖ +ε
t∑

i=N0+1

ρt−i

Let B = sup ‖ ~bt ‖ . Since {~bt} is convergent, B <∞. Thus we have,

‖ ~Xt+1 ‖ ≤ ρt+1 ‖ ~X0 ‖ +B

N0∑
i=0

ρt−i + ε
t∑

i=N0+1

ρt−i

≤ ρt+1 ‖ ~X0 ‖ +B
ρt−N0 − ρt+1

1− ρ
+ ε

1− ρt−N0

1− ρ

≤ ρt+1 ‖ ~X0 ‖ +B
ρt−N0 − ρt+1

1− ρ
+ ε

1

1− ρ

= ρt+1 ‖ ~X0 ‖ +B
ρt

(1− ρ)

(1− ρN0+1)

ρN0
+ ε

1

1− ρ

There exists N1 > N0 s.t. ρt (1−ρN0+1)

ρN0
< ε

B
for all t > N1.

There exists N2 s.t. ρt+1 < ε

(1−ρ)‖ ~X0‖
for all t > N2.

Let N3 = max{N1, N2}

Then for t > N3 ,

‖ ~Xt+1 ‖<‖ ~X0 ‖
ε

(1− ρ) ‖ ~X0 ‖
+

B

(1− ρ)

ε

B
+

ε

1− ρ

‖ ~Xt+1 ‖<
3

1− ρ
ε

Thus, limt→∞ ‖ ~Xt+1 ‖= 0. This implies limt→∞ ‖ ~et+1 ‖= 0 and ‖ ~vt+1 ‖= 0

Hence, limt→∞ ~et+1 = 0 and limt→∞ ~vt+1 = 0
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Thus,

limt→∞~at = ~a∗, a.s.

This completes the proof.
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Chapter 5

Numerical Results

5.1 Numerical Results for Two Dimensional Problems

For illustrative purposes, we have chosen two dimensional functions to show how parti-

cles evolve in the search space through time. Among common functions which are used for

testing optimization algorithms, we have chosen six functions which differ in their significant

physical properties and shapes. The first function is the Bohachevsky function (f1), which

is a bowl shaped function. The second is the Ackley function (f2), which is a multimodal

function and widely used for testing optimization algorithms. In its 2D form as shown in

Figure 5.4, it has a large hole at the center and has many local minima, thus many algorithms

tend to become trapped at local minima. The Matyas function (f3), has a flat surface. The

flatness of the function does not give the algorithm any information to direct the search

process towards the minima. The fourth is the Easom function (f4). In f4 , the area that

contains the global minima are very small, when compared to the whole search space. The

function value rapidly approaches zero away from (π, π), which is the minimizer. Fifth is

the Schaffer function (f5), whose global minimum is located very close to the local minima.

Finally, tripod function (f6), which is a semi-continuous function [6].

Particles are initialized using the optimal Halton sequence with base 2,3 which is a

randomized quasi-random sequence. Thus it guarantees the stochastic properties of the PSO

algorithm [53]. To implement the PSO algorithm, the values of the parameters {ω, c1, c2} are

needed. According to Ming Jiang et al [22], the suggested parameter tuple in the literature

is ω = 0.729, c1 = 2.8ω, c2 = 1.38ω, or ω = 0.729, c1 = c2 = 1.49, or ω = 0.6, c1 = c2 = 1.7.

Among these three, ω = 0.729, c1 = c2 = 1.49 is the most widely used parameter tuple, so

we choose that to perform our numerical results. We evaluate values for different numbers
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Figure 5.1: Bohachevsky Function

of particles (M) and iteration numbers (N) at random evaluations. Stopping criteria for the

algorithm is taken as the maximum number of iterations.

5.1.1 Bohachevsky Function

The Bohachevsky function for dimension 2 is denoted by,

f1 = a2
1 + 2a2

2 − 0.3cos(3πa1)− 0.4cos(4πa2) + 0.7 (5.1)

It is a bowl shaped function with a unique global minimum f(a∗) = 0 at a∗ = (0, 0).

The graph of the two dimensional function is shown in Figure 5.1. The function is evaluated

in [−100, 100]2 cube and the numerical results are shown in Table 5.1. Figure 5.2 shows the

evolution of particles for different number of iterations and figure 5.3 shows a closer look at

particle's position at final iteration.
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75 iterations
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Figure 5.3: A closer look of particles position at final iteration for Bohachevsky function for
75 particles
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M N Optimum
position

Optimum
value

error

50 50 (0.0019,-0.0009) 0.0001 0.0001
75 (0.8486e−5,−0.1157e−5) 0.0001e−5 0.0001e−5

75 50 (0.2495e−4,−0.3592e−4) 0.0005e−4 0.0005e−4

75 (−0.2062e−6,−0.4150e−6) 0.0000e−6 0.0000e−6

100 50 (0.5351e−3,0.0182e−3) 0.0041e−3 0.0041e−3

75 (0, 0) 0 0

Table 5.1: Results for Bohachevsky Function
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Figure 5.4: Ackley Function

5.1.2 Ackley Function

The Ackley function for dimension 2 is denoted by,

f2 = 20 + e− 20 exp

(
−0.2

√
a2

1 + a2
2

2

)
− exp

(
cos(2πa1) + cos(2πa2)

2

)
(5.2)

It has a unique global minimum f(a∗) = 0 at a∗ = (0, 0) and several local minima. The

graph of the two dimensional function is shown in Figure 5.4. The function is evaluated on

a [−35, 35]2 cube and the numerical results are shown in Table 5.2 .
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M N Optimum
position

Optimum
value

error

50 50 (−0.0755e−3, 0.2394e−3) 0.7116e−3 0.7116e−3

75 (0.0524e−3,−0.0612e−3) 0.2281e−3 0.2281e−3

75 50 (-0.0007,-0.0017) 0.0055 0.0055
75 (−0.0416e−3, 0.0108e−3) 0.1218e−3 0.1218e−3

100 50 (0.0412e−3,−0.2520e−3) 0.7239e−3 0.7239e−3

75 (0.0435e−3, 0.0270e−3) 0.1448e−3 0.1448e−3

Table 5.2: Results for Ackley Function
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Figure 5.5: Matyas Function

5.1.3 Matyas Function

The Matyas function is denoted by,

f3 = 0.26(a2
1 + a2

2)− 0.48a1a2. (5.3)

It is a plate shaped function. It has no local minima other than the global one f(a∗) = 0

at a∗ = (0, 0). The graph of the function is shown in Figure 5.5. The function is evaluated

in [−10, 10]2 cube and the numerical results are shown in Table 5.3 .

44



M N Optimum
position

Optimum
value

error

50 50 (−0.0020,−0.0028) 0.0000 3.7663e−7

75 (−0.3105e−4,−0.1024e−4) 0.0000 1.2536e−10

75 50 (−0.3331e−3,−0.1974e−3) 0.0000e−3 7.4187e−9

75 (−0.2613e−4,−0.2422e−4) 0.0000e−4 2.6269e−11

100 50 (0.0022,0.0025) 0.0000 2.5717e−7

75 (0.7064e−5, 0.7474e−5) 0.0000e−5 2.1554e−12

Table 5.3: Results for Matyas Function

Figure 5.6: Easom Function

5.1.4 Easom Function

The Easom function is denoted by,

f4 = − cos(a1) cos(a2) exp[−(a1 − π)2 − (a2 − π)2] (5.4)

It has several local minima with a unique global minimum f(a∗) = −1 at a∗ = (π, π) .

It is unimodal, and the global minimum has a small area relative to the search space. The

graph of the function is shown in Figure 5.6. The function is evaluated in [−100, 100]2 cube

and the numerical results are shown in Table 5.4 .
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M N Optimum
position

Optimum
value

error

50 50 (3.1459,3.1404) -1.0000 2.9603e−5

75 (3.1416,3.1416) -1.0000 7.4437e−10

75 50 (3.1445 ,3.1395) -1.0000 1.9510e−5

75 ( 3.1416,3.1418) -1.0000 7.5945e−8

100 50 (3.1410, 3.1421) −1.0000 9.9443e−7

75 (3.1413, 3.1417) −1.0000 1.7289e−7

Table 5.4: Results for Easom Function
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Figure 5.7: Schaffer Function

5.1.5 Schaffer Function

The Schaffer function for dimension 2 is denoted by,

f5 = 0.5 +
sin2(

√
a2

1 + a2
2)− 0.5

(1 + 0.001(a2
1 + a2

2))2
(5.5)

It has a unique global minimum at f(a∗) = 0 at a∗ = (0, 0). The graph of the two

dimensional function is shown in Figure 5.7. The function is evaluated in [−100, 100]2 cube

and the numerical results are shown in Table 5.5 .
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M N Optimum
position

Optimum
value

error

50 50 (0.0125,−0.0191) 0.0005 5.2211e−4

75 (0.1965,−3.1324) 0.0097 0.0097
75 50 (0.0047,−0.0104) 0.0001 1.2998e−4

75 (−0.3847e−3,−0.0906e−3) 0.0002e−3 1.5638e−7

100 50 (0.0008, 0.0013) 0.0000 2.1825e−6

75 (−0.3570e−3, 0.7082e−3) 0.0006e−3 6.2965e−7

Table 5.5: Results for Schaffer Function

Figure 5.8: Tripod Function

5.1.6 Tripod Function

The Tripod function is denoted by,

f6 = p(a2)(1 + p(a1))+ | a1 + 50p(a2)(1− 2p(a1)) | + | a2 + 50(1− 2p(a2)) |

where p(s) =


1; s ≥ 0

0; s < 0

(5.6)

It is a semicontinuous function with a global minimum f(a∗) = 0 at a∗ = (0,−50). The

graph of the function is shown in Figure 5.6. The function is evaluated in [−100, 100]2 cube

and the numerical results are shown in Table 5.6 .
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M N Optimum
position

Optimum
value

error

50 50 (0.0000,−50.0017) 0.0017 0.0017
75 (−0.0000,−49.9999) 0.0002 1.5971e−4

75 50 (−0.0066,−50.0003) 0.0069 0.0069
75 (0.0002,−49.9992) 0.0009 9.2871e−4

100 50 (0.0040,−50.0010) 0.0050 0.0050
75 (0.0001,−50.0000) 0.0001 1.3751e−4

Table 5.6: Results for Tripod Function

5.2 Comparison of Convergence by Using Different Sequences for Initialization

We analyze the performance of PSO by initializing the particles with different sequences.

Particles are initialized using 1) the Halton sequence with base 3 for each direction , 2) the

optimal/ scrambled Halton sequence with base 3 for each direction and 3) dropping the

first 5000 points of optimal Halton sequence. Millie Pant et. al. [11] have used benchmark

problems to analyze the performance of PSO, if particles are initialized with a Van der

Corput sequence. We have chosen the same functions to compare the optimality of the

solution, which are summarized in Table 5.7. The optimum point of each function is at 0.

In order to have a fair comparison , we have set number of particles to 20 and 40. Also we

have our comparison in the same ranges. ”Halton” denotes the result for initializing using

the Halton sequence with base 3, ”Scrambled H.” denotes the result for initializing using

the optimal Halton sequence with base 3 and ”Drop 5000” denotes result for initializing

after dropping the first 5000 points of the optimal Halton sequence with base 3. Since the

initialization of the particles follows a random behavior each test is executed 30 times and the

mean of the values is taken as the optimum value. The results are summarized in Tables 5.8-

5.11. Here M denotes the number of particles and D denotes the dimension of the function.

Millie Pant et. al. [11], have performed the algorithm for 1000, 1500 and 2000 iterations.

But since our value converges to the optimum point at 50 iterations, we performed the results

only for 50 iterations. Also we checked the convergence for high dimensions i.e 70 and 100.
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Objective function Range 1 Range 2

f1 =
∑D

i=1(x2
i − 10cos(2πxi) + 10) [−5.12, 5.12]D [−100, 100]D

f2 = 1
4000

∑D
i=1 x

2
i −

∑D
i=1 cos(

xi√
i+1

) + 1 [−600, 600]D[−1000, 1000]D

f3 =
∑D−1

i=1 (100(xi+1 − x2
i )

2 + (xi − 1)2) [−30, 30]D [−100, 100]D

f4 = 20 + e− 20exp(−0.2
√

1
D

∑D
i=1 x

2
i )− exp( 1

n

∑D
i=1 cos(2πxi)) [−32, 32]D [−100, 100]D

Table 5.7: Optimization test functions and its Ranges

M D R1:[-5.12, 5.12] R2:[-100, 100]
Halton Scrambled H. Drop 5000 Halton Scrambled H. Drop 5000

20 10 4.5031e-05 9.4292e-05 1.4199e-05 0.0183 0.0047 0.0093
20 6.0832e-05 1.7520e-04 9.1973e-06 0.0201 0.0047 0.0070
30 6.9443e-06 2.6703e-04 1.3455e-04 0.0199 0.0226 0.0153
50 5.7875e-04 5.5034e-05 1.5749e-05 0.6320 0.1052 0.0104
70 8.0016e-05 8.1385e-05 7.6740e-05 0.0084 0.0428 0.0163
100 3.7532e-04 5.7959e-05 1.8847e-04 0.1467 0.0216 0.0068

40 10 3.6110e-06 1.6048e-06 3.6206e-06 0.0040 0.0073 0.0051
20 6.9260e-05 4.3515e-05 8.5975e-06 0.0059 0.0028 0.0079
30 1.8150e-05 4.9339e-05 1.4129e-05 0.0058 0.0010 0.0240
50 6.1877e-06 1.6712e-05 2.3661e-05 0.0015 0.0564 0.0022
70 1.0746e-04 9.1970e-06 8.7913e-05 0.0032 0.0072 0.0044
100 1.3386e-04 3.1211e-04 2.5485e-05 0.0043 0.0150 0.0181

Table 5.8: Results of test function f1

Figures 5.7 - 5.10 show the convergence of global best value in the swarm for each function

at 100 dimensions evaluated with 40 particles, in the range 1, and the one on the right is

an enlarged view of the same graph showing the convergence for iteration number 25 to 50.

The Numerical results shows that for f1, f3 and f4 all three sequences provide similar results.

For f2 , optimal Halton and drop 5000 sequences provides better estimation than Halton

sequence when the range is expanded and the number of particles is less.
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M D R1:[-600, 600] R2:[-1000, 1000]
Halton Scrambled H. Drop 5000 Halton Scrambled H. Drop 5000

20 10 4.9462e-05 2.2319e-04 1.5571e-04 0.0014 7.6142e-04 1.6756e-04
20 2.9423e-04 3.2445e-04 1.6124e-04 0.0040 6.5461e-04 5.4820e-04
30 2.0535e-04 2.0806e-05 5.2344e-05 0.0016 8.8793e-04 2.1003e-04
50 1.5963e-04 1.7287e-04 2.0185e-04 0.0032 6.7706e-04 7.7382e-04
70 1.1883e-04 9.1621e-04 2.6643e-04 0.0018 9.9320e-05 0.0029
100 1.4924e-04 3.6559e-04 8.6489e-04 0.0010 3.5493e-04 0.0022

40 10 1.1053e-05 2.0025e-05 8.0946e-06 3.4932e-04 2.4241e-04 4.9436e-05
20 2.8379e-05 1.3041e-05 4.0735e-05 1.3493e-04 7.8787e-05 1.0553e-04
30 2.9824e-04 5.4652e-04 7.1948e-04 6.9671e-05 5.0725e-05 8.3411e-04
50 1.6720e-04 5.3928e-05 8.3615e-05 7.7936e-04 1.1867e-04 9.9799e-05
70 3.1517e-04 3.2714e-05 3.6104e-05 5.2766e-04 4.2098e-04 1.4845e-04
100 1.5062e-04 5.5221e-05 9.3912e-05 1.4093e-04 6.6336e-04 3.1576e-04

Table 5.9: Results of test function f2

M D R1:[-30, 30] R2:[-100, 100]
Halton Scrambled H. Drop 5000 Halton Scrambled H. Drop 5000

20 10 0.0342 0.0038 0.0023 0.0951 0.0048 0.1557
20 0.0148 0.0011 0.0047 0.0090 0.1181 0.0222
30 0.0051 0.0036 0.0021 0.0157 0.0383 0.0076
50 0.0346 0.0013 4.2693e-04 0.0418 0.1161 0.0031
70 0.0034 0.0427 0.0025 0.0527 0.0941 0.0272
100 0.0018 0.0312 0.0087 0.1361 0.0305 0.2750

40 10 3.1437e-04 6.1063e-04 1.9113e-04 0.0134 0.0038 9.7550e-04
20 7.4913e-04 1.8756e-04 1.7657e-04 0.0263 0.0070 0.0057
30 7.2197e-04 1.2019e-04 3.9049e-04 0.0584 0.0077 0.0225
50 0.0049 7.9631e-04 2.1287e-04 0.0257 0.0030 0.0017
70 0.0031 6.0691e-04 0.0056 0.1823 0.0567 0.0495
100 0.0026 7.2791e-04 0.0032 0.0412 0.0539 0.0209

Table 5.10: Results of test function f3
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M D R1:[-32,32] R2:[-100, 100]
Halton Scrambled H. Drop 5000 Halton Scrambled H. Drop 5000

20 10 0.0014 0.0072 8.7490e-04 0.0035 0.0060 0.0194
20 0.0025 0.0026 8.0518e-04 0.0067 0.0028 0.0057
30 0.0021 9.5752e-04 0.0072 0.0044 0.0018 0.0039
50 0.0032 0.0022 0.00241 0.0186 0.0062 0.0041
70 0.0022 0.0017 0.0011 0.0028 0.0026 0.0062
100 0.0025 5.9831e-04 4.4743e-04 0.0033 0.0033 0.0019

40 10 0.0010 7.9967e-04 5.4900e-04 0.0018 8.6368e-04
20 7.4003e-04 5.0134e-04 3.8245e-04 0.0041 0.0025 0.0022
30 8.6885e-04 6.2990e-04 0.0015 6.2206e-04 0.0043 0.0018
50 8.8984e-04 0.0010 0.0011 0.0038 0.0016 0.0029
70 0.0016 5.4819e-04 4.3998e-04 0.0025 0.0025 0.0016
100 0.0015 7.1370e-04 6.2701e-04 0.0044 0.0012 7.1727e-04

Table 5.11: Results of test function f4

Figure 5.9: Convergence graph for function f1
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Figure 5.10: Convergence graph for function f2

Figure 5.11: Convergence graph for function f3
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Figure 5.12: Convergence graph for function f4
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Chapter 6

Concluding Remarks

In PSO, particles velocities are updated according to a random manner. Hence the

particle's positions are random vectors. So it is important to initialize particles using random

sequences. In this dissertation we showed the importance of using randomized quasi-random

sequences in initializing the particles. Optimal Halton sequence is one such sequence and we

used that sequence for numerical experiments.

From this analysis we conclude that, even though all three sequences provides similar

results, optimal Halton sequence and Drop 5000 sequences are better in initializing the swarm

due to their random behavior. Also it is clear that accuracy can be improved by increasing

the number of particles in the swarm, since it covers the search space more efficiently.

In PSO, Particle's velocity are updated according to a random manner. Hence the

particle's positions are random vectors. Thus convergence of particle's position should be

analyzed using stochastic process theory. In this dissertation we proved almost sure conver-

gence of PSO, under reasonable assumptions. Given a continuous and bounded objective

function with a unique global minimum, we can guarantee the convergence to the optimum

value almost surely.

Numerical results from section 5.1 show that particles converge to the optimum value.

Functions f1, f2, f3, f4 and f5 are continuous functions and f6 is a semi continuous function.

But it also converges to the optimum value. Thus by examining numerical results we can

argue that even if the function is semi-continuous near the optimum value it converges to

the optimum point.

We proved that convergence of PSO to optimum value as number of iterations goes

to infinity. This is inefficient as in the real world our number of iterations is finite. Thus,
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future work for this can be focus on to finding expected number of iterations needed so

that approximated optimizer falls within a D−dimensional ball of radius ε about the global

optimizer. Further, in future one can compare the rate of convergence when the particles

are initialize using, randomized quasi-random sequence, quasi-random sequence and random

sequence.
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