# Rainbow Trees in Edge-Colored Complete Graphs and Block Decompositions of Almost Complete Graphs 

by

Katherine E. Perry

A dissertation submitted to the Graduate Faculty of<br>Auburn University<br>in partial fulfillment of the requirements for the Degree of<br>Doctor of Philosophy

Auburn, Alabama
May 7, 2017

Keywords: edge-coloring, complete graph, rainbow spanning tree, balanced sampling plan, two dimensions, contiguous

Copyright 2017 by Katherine E. Perry

Approved by
Chris Rodger, Chair, Don Logan Endowed Chair in Mathematics, Professor of Mathematics
Dean Hoffman, Professor of Mathematics
Peter Johnson, Professor of Mathematics
Jessica McDonald, Assistant Professor of Mathematics
Michel Smith, Professor of Mathematics


#### Abstract

This dissertation focuses on two problems, the first involving the existence of many edgedisjoint rainbow spanning trees in edge-colored complete graphs, and the second, creating a balanced sampling plan for a two-dimensional array, excluding contiguous units.

A spanning tree of a properly edge-colored complete graph, $K_{n}$, is rainbow provided that no two different edges in the tree bear the same color. In 1996, Brualdi and Hollingsworth conjectured that if $K_{2 m}$ is properly $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into $m$ rainbow spanning trees except when $m=2$. The existence of $\lfloor m /(500 \log (2 m))\rfloor$ mutually edge-disjoint spanning trees in the case that $m \geq 500,000$ was recently proved using probabilistic techniques. By means of an explicit, constructive approach, we construct $\lfloor\sqrt{6 m+9} / 3\rfloor$ mutually edge-disjoint rainbow spanning trees for any positive value of $m$. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees. It also improves upon the probabilistic result for all $m$ at most $5.7 \times 10^{7}$.

Balanced sampling plans excluding contiguous units (BSECs) were first introduced by Hedayat, Rao, and Stufken in 1988. The idea of generalizing this definition to two dimensions was first formalized by Bryant, Chang, Rodger, and Wei in 2002 where the case for block size 3 and $\lambda=1$ (the number of blocks each pair of points appears in together) was completely solved. These designs are useful for items arranged in a two-dimensional array where contiguous units provide similar information. In this dissertation, a complete solution for the existence of two-dimensional BSECs with block size 3 and $\lambda=3$ is provided.


## Acknowledgments

First, I would like to thank my adviser, Dr. Chris Rodger, for his never-failing support, direction, kindness, and patience. He always allowed me the space and time to figure things out for myself, turned me into the teacher that I am, and spent months searching for the perfect research problem ("Any design theory will be by accident!"). I knew within one week of his graph theory class my first semester that I wanted him to be my adviser and will forever be grateful he agreed.

I would also like to thank the members of my committee for their encouragement and suggestions throughout this process and for the following: Dr. Dean Hoffman for welcoming me into any room and opening his home each year for the Combinatorics party; Dr. Jessica McDonald for her wonderful advice and always encouraging me to apply to something every time I found myself in her office; Dr. Michel Smith for being on my committee simply because I asked; Dr. James Cross for his corrections and incredibly impressive memory of students from years past; and Dr. Pete Johnson for always attending my talks even when he's seen them before, taking me to the SAMSA-Masamu program in Africa, and welcoming me at Friday seminars.

Next, I would like to thank my friends who make up my Auburn Family. I am fortunate enough that there are too many people to list names, but y'all know who you are. The Auburn Family is real and I am honored to be a part of it.

I would also like to thank my Perry family: Georgia, Bob, Rick, Teddy, Sarah, Nydia, Miranda, and Penelope.

And finally, if the reader will permit me, I wish to dedicate this dissertation to my mother, Gail, who would love me with or without it.

## Table of Contents

Abstract ..... ii
Acknowledgments ..... iii
List of Figures ..... vi
List of Tables ..... vii
1 Introduction ..... 1
1.1 Rainbow Spanning Trees in Edge-Colored Complete Graphs ..... 1
1.2 Balanced Sampling Designs Excluding Contiguous Units ..... 3
2 Problem 1: The Number of Edge-Disjoint Rainbow Spanning Trees in Edge- Colored Complete Graphs ..... 7
2.1 Case 1 (C1): Edges in $T_{a}^{k}, 1 \leq a<i$ do not appear in $T_{i}^{k}$ ..... 16
2.1.1 Property (P1) for $v_{i} v_{i}^{\prime}$ ..... 18
2.1.2 Property (P2) for $v_{i} v_{i}^{\prime}$ ..... 18
2.1.3 Property (P3) for $v_{i} v_{i}^{\prime}$ ..... 18
2.1.4 Property (P1) for $r_{k} w_{i}$ ..... 19
2.1.5 Property (P2) for $r_{k} w_{i}$ ..... 19
2.1.6 Property (P3) for $r_{k} w_{i}$ ..... 19
2.1.7 Properties (P4), (P5), and (P6) ..... 20
2.2 Case $2(\mathrm{C} 2)$ : Edges in $T_{k}^{k}$ do not appear in $T_{i}^{k}$ ..... 20
2.2.1 Preliminary Result: $w_{i} \neq w_{k}$ ..... 22
2.2.2 Base Step: $i=1$ ..... 22
2.2.3 Property (P7) for $2 \leq i<k$ ..... 23
2.2.4 Properties (P8) and (P9) for $2 \leq i<k$ ..... 23
2.2.5 Property (P10) for $2 \leq i<k$ ..... 24
2.2.6 Property (P11) for $w_{k} w_{k}^{\prime}$ ..... 24
2.3 Case 3 (C3): Preventing cycles from appearing in $T_{k}^{k}$ ..... 26
2.3.1 Property (P12) ..... 26
2.3.2 Property (P13) ..... 27
3 Problem 2: Balanced Sampling Designs Excluding Contiguous Units: A Complete Solution for $\lambda=3$ ..... 29
3.1 Constructing 2-BSEC( $m, n, 3,3$ )'s ..... 29
3.2 The Main Result ..... 38
4 Other Directions ..... 40
4.1 Rainbow Trees ..... 40
4.2 Balanced Sampling Plans Excluding Contiguous Units ..... 41
Appendices ..... 44
A Edge-Disjoint Rainbow Spanning Trees in $K_{14}$ ..... 45
B The Remaining 2-BSEC( $m, n, 3,3$ ) ..... 52
B. 1 A 2-BSEC(17, 5, 3, 3) ..... 52
B. 2 A Hill Climbing Algorithm ..... 78

List of Figures

A. 1 A Proper Edge-Coloring of $K_{14}$ ..... 45
A. $2 T_{1}^{1}$ ..... 46
A. $3 T_{1}^{2}$ on the left with $T_{2}^{2}(1)$ on the right ..... 47
A. $4 T_{2}^{2}$ ..... 48
A. $5 T_{1}^{3}$ on the left with $T_{3}^{3}(1)$ on the right ..... 49
A. $6 T_{2}^{3}$ on the left with $T_{3}^{3}(2)$ on the right ..... 50
A. $7 T_{3}^{3}$ ..... 51

List of Tables

B. 1 A 2-BSEC $(17,5,3,3)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

## Chapter 1

## Introduction

This dissertation focuses on two problems, the first involving the existence of many edgedisjoint rainbow spanning trees in edge-colored complete graphs, and the second, creating a balanced sampling plan for a two-dimensional array, excluding contiguous units. Each problem will be introduced in turn in Chapter 1. Chapter 2 will focus on the first problem and the second problem will be the subject of Chapter 3. In Chapter 4 a discussion of open problems related to each is provided.

### 1.1 Rainbow Spanning Trees in Edge-Colored Complete Graphs

A spanning tree $T$ of a graph $G$ is an acyclic connected subgraph of $G$ for which $V(T)=$ $V(G)$. A proper $k$-edge-coloring of a graph $G$ is a mapping from $E(G)$ into a set of colors, $\{1,2, \ldots, k\}$, such that adjacent edges of $G$ receive distinct colors. Since all edge-colorings considered in this dissertation are proper, if $G$ has a proper $k$-edge-coloring, then $G$ is said to be $k$-edge-colored. The chromatic index $\chi^{\prime}(G)$ of a graph $G$ is the minimum number $k$ such that $G$ is $k$-edge-colorable. It is well known that $\chi^{\prime}\left(K_{2 m}\right)=2 m-1$ and thus, if $K_{2 m}$ is properly $(2 m-1)$-edge-colored, each color appears on exactly one edge at each vertex.

A subgraph in an edge-colored graph is said to be rainbow (sometimes called multicolored or poly-chromatic) if its edges receive distinct colors. It is not hard to see that with any $(2 m-1)$-edge-coloring of $K_{2 m}$, a rainbow spanning tree can be found by taking the spanning star, $S_{v}$, with any center $v \in V\left(K_{2 m}\right)$. Further, $K_{2 m}$ has $m(2 m-1)$ edges and it is well known that these edges can be partitioned into $m$ spanning trees. This led Brualdi and Hollingsworth [4] to make the following conjecture in 1996.

Conjecture $1.1([4])$. If $K_{2 m}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into $m$ rainbow spanning trees except when $m=2$.

Based on Brualdi and Hollingsworth's concept, Constantine [8] proposed two related conjectures in 2002.

Conjecture 1.2 ([8], Weak version). $K_{2 m}$ can be edge-colored with $2 m-1$ colors in such a way that the edges can be partitioned into $m$ isomorphic rainbow spanning trees except when $m=2$.

Conjecture 1.2 was proved to be true by Akbari, Alipour, Fu, and Lo in 2006 [1].

Conjecture 1.3 ([8], Strong version). If $K_{2 m}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into $m$ isomorphic rainbow spanning trees except when $m=2$.

Concerning Conjecture 1.1, in [4], Brualdi and Hollingsworth proved that there exist two edge-disjoint rainbow spanning trees for $m>2$, and in 2000, Krussel, Marshall, and Verrall [15] improved this result to three spanning trees. Recently, Carraher, Hartke, and Horn [6] showed that if $m$ is sufficiently large ( $m \geq 500,000$ ) then an edge-colored $K_{2 m}$ in which each color appears on at most $m$ edges contains at least $\left\lfloor\frac{m}{500 \log (2 m)}\right\rfloor$ edge-disjoint rainbow spanning trees.

Essentially, not much has been done on Conjecture 1.3. The best result so far is by Fu and Lo [10]. They proved that three isomorphic rainbow spanning trees exist in any ( $2 m-1$ )-edge-colored $K_{2 m}$ for each $m \geq 14$.

In this dissertation, we focus on Conjecture 1.1 by proving that in any $(2 m-1)$-edgecoloring of $K_{2 m}, m \geq 1$, there exist at least $\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees. Asymptotically, this is not as good as the bound in [6], but our result applies to all values of $m$ and it is better until $m$ is extremely large (over $5.7 \times 10^{7}$ ). Furthermore, instead of using the non-constructive probabilistic method to prove the result, as was used in [6], we derive our bound by means of an explicit, constructive approach. So, not only do we actually produce the rainbow trees, but also some structure of each rainbow spanning tree
is determined in the process. It should be noted that the current best constructive result (before ours) is the one in the paper by Krussel, Marshall, and Verrall [15] which produces just three rainbow spanning trees. Here is our main result.

Theorem 1.1. Let $K_{2 m}$ be a properly $(2 m-1)$-edge-colored graph. Then there exist $\Omega_{m}=$ $\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees, say $T_{1}, T_{2}, \ldots, T_{\Omega_{m}}$, with the following properties.
(i) Each tree has a designated distinct root.
(ii) The root of $T_{1}$ has degree $(2 m-1)-2\left(\Omega_{m}-1\right)$ in and has at least $(2 m-1)-4\left(\Omega_{m}-1\right)$ adjacent leaves.
(iii) For $2 \leq i \leq \Omega_{m}$, The root of $T_{i}$ has degree $(2 m-1)-i-2\left(\Omega_{m}-i\right)$ and has at least $(2 m-1)-2 i-4\left(\Omega_{m}-i\right)$ adjacent leaves.

The proof of this result is also of interest, involving three inductions being applied simultaneously.

It is worth mentioning here that the above conjectures will play important roles in certain applications if they are true. Notice that a rainbow spanning tree is orthogonal to the 1 -factorization of $K_{2 m}$ (induced by any ( $2 m-1$ )-edge-coloring). An application of parallelisms of complete designs to population genetics data can be found in [3]. Parallelisms are also useful in partitioning consecutive positive integers into sets of equal size with equal power sums [14]. In addition, the discussions of applying colored matchings and design parallelisms to parallel computing appeared in [11].

### 1.2 Balanced Sampling Designs Excluding Contiguous Units

Balanced sampling designs excluding contiguous units (BSECs) were first introduced by Hedayat, Rao, and Stufken in 1988 [13]. These designs can be used to more efficiently gather data in situations where the units near each other provide similar information. In this
instance, the $v$ units are named with elements of $\mathbb{Z}_{v}$ and are arranged in a one-dimensional array in which two units $i \leq j$ are said to be contiguous if and only if $|i-j|=1$ or $\{i, j\}=\{0, v-1\}$.

A one-dimensional k-sized balanced sampling plan excluding contiguous units of order $v$ and index $\lambda, 1-\operatorname{BSEC}(v, k, \lambda)$, is a pair $(X, B)$, where $X$ is a set of $v$ points, $\mathbb{Z}_{v}$, and $B$ is a collection of (not necessarily distinct) $k$-subsets of $X$ (called blocks), such that any two contiguous points do not appear together in any block, while any two noncontiguous points appear together in exactly $\lambda$ blocks. Constructions of 1-BSECs have been studied in multiple papers $[7,12,13,19]$. The following complete solution for the existence of 1-BSECs with block size 3 was found by Colbourn and Ling in 1998 [7].

Theorem 1.2. [7] A 1-BSEC $(v, 3, \lambda)$ exists if and only if either $v \geq 9$ and $\lambda(v-3) \equiv 0$ $(\bmod 6)$ or $v \in\{1,3\}$.

Although the idea of generalizing 1-BSECs to two dimensions was first suggested by Hedayat, Rao, and Stufken in 1988 [13], a formal definition was not given until the paper of Bryant, Chang, Rodger, and Wei in 2002 [5]. This was done by first generalizing the notion of contiguous.

Given a set of points $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ arranged in two dimensions, the 2-contiguous points to a point $(x, y)$ are $(x-1, y),(x+1, y),(x, y+1)$, and $(x, y-1)$, reducing sums mod $m$ and $\bmod n$ in the first and second coordinates respectively. We also note here that if $m$ or $n$ were allowed to be less than 3, then each point would not have four 2 -contiguous points. Thus, in this dissertation when considering this two-dimensional case, we assume that neither $m$ nor $n$ is smaller than 3 .

Bryant, Chang, Rodger, and Wei then used this definition of 2-contiguous to generalize 1-BSECs to two dimensions. They defined a $2-\operatorname{BSEC}(m, n, k, \lambda), m, n \geq 3$, to be a pair $(X, B)$ where $X=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $B$ is a collection of $k$-subsets of $X$ (called blocks) such that each pair of 2-contiguous points do not appear together in any block, while any other two points appear together in exactly $\lambda$ blocks. It is easy to see that a $2-\operatorname{BSEC}(m, n, k, \lambda)$ can
be thought of as a decomposition of $\lambda\left(K_{m n}-E(H)\right)$ into $K_{k}$ 's, where $H$ is a subgraph of $K_{m n}$ consisting of edges between 2-contiguous points and each edge in $K_{m n}$ has multiplicity $\lambda$.

When it causes no confusion to the reader, we will refer to 2 -contiguous points as simply being contiguous. We can also observe here that if we allowed $n$ to equal 1 then a $2-\operatorname{BSEC}(m, 1, k, \lambda)$ is equivalent to a $1-\operatorname{BSEC}(m, k, \lambda)$.

Our result considers constructions of 2-BSECs in the case where $\lambda=3$. Before we state our result, we first observe the following necessary conditions for the existence of a 2-BSEC.

Lemma 1.3. [5] If a $2-B S E C(m, n, k, \lambda)$ exists, then

1. $\lambda m n(m n-5) \equiv 0(\bmod k(k-1))$, and
2. $\lambda(m n-5) \equiv 0(\bmod k-1)$.

Proof. Condition (1) follows due to the fact that the number of noncontiguous pairs of points is $\frac{\lambda m n(m n-5)}{2}$ and this number must be divisible by the number of pairs of points in a block, namely $\frac{k(k-1)}{2}$. Condition (2) follows from the fact that for each fixed point $(x, y)$, there are $\lambda(m n-5)$ noncontiguous points to $(x, y)$, which must be divisible by the number of points in each block other than $(x, y)$, namely $(k-1)$.

The existence problem for a $2-\operatorname{BSEC}(m, n, 3,1)$ was completely solved by Bryant, Chang, Rodger, and Wei in 2002 [5].

Theorem 1.4. [5] There exists a $2-B S E C(m, n, 3,1)$ if and only if $m$ and $n$ are odd and

1. $m$ or $n \equiv 3(\bmod 6)$, or
2. $m \not \equiv n(\bmod 6)$.

Our result extends Theorem 1.4, solving the case where $\lambda=3$. Here is our main result.

Theorem 1.5. A 2-BSEC $(m, n, 3,3)$ exists if and only if $m$ and $n$ are odd.

It is worth mentioning here that our result was recommended by the referees for publication in the The Australasian Journal of Combinatorics, but shortly after our result was submitted, Wang, Feng, Zhang, and Xu submitted a result encompassing ours [9]. Their paper acknowledges our result in their concluding remarks.

Like 1-BSECs, 2-BSECs also have practical applications. These designs can be used to test small land plots at a dump site for chemical waste, where clearly contiguous plots will give similar information. They can also be used for finite population sampling. Since many species are social creatures, they tend to live in clusters instead of being spread throughout a region. Thus, sampling by excluding contiguous units is much more likely to provide a more accurate population estimate.

## Chapter 2

Problem 1: The Number of Edge-Disjoint Rainbow Spanning Trees in Edge-Colored Complete Graphs

In this chapter we will prove Theorem 1.1. For convenience, we restate it here.

Theorem 1.1. Let $K_{2 m}$ be a properly $(2 m-1)$-edge-colored graph. Then there exist $\Omega_{m}=$ $\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees, say $T_{1}, T_{2}, \ldots, T_{\Omega_{m}}$, with the following properties.
(i) Each tree has a designated distinct root.
(ii) The root of $T_{1}$ has degree $(2 m-1)-2\left(\Omega_{m}-1\right)$ and has at least $(2 m-1)-4\left(\Omega_{m}-1\right)$ adjacent leaves.
(iii) For $2 \leq i \leq \Omega_{m}$, The root of $T_{i}$ has degree $(2 m-1)-i-2\left(\Omega_{m}-i\right)$ in and has at least $(2 m-1)-2 i-4\left(\Omega_{m}-i\right)$ adjacent leaves.

Before we begin the proof, we note here that Appendix A contains an example of the algorithm used in our proof to construct the edge-disjoint rainbow spanning trees that might be of use to refer to while reading the following sections.

Proof. We will use induction on the number of trees to prove this result. We can assume $m \geq 5$ since for $1 \leq m \leq 4, \Omega_{m}=1$ and the spanning star, $S_{r}$, in which $r \in V\left(K_{2 m}\right)$ and $r$ is joined to every other vertex, is clearly a rainbow spanning tree of $K_{2 m}$. When the value of $m$ is clear, it will cause no confusion to simply refer to $\Omega_{m}$ as $\Omega$. It is worth noting that the following induction proof can be used as a recursive construction to create $\Omega$ rainbow edge-disjoint spanning trees, $T_{1}, T_{2}, \ldots, T_{\Omega}$.

For $1 \leq \psi \leq \Omega$ and rainbow edge-disjoint spanning trees, $T_{1}, T_{2}, \ldots, T_{\psi}$, let $f(\psi)$ be the proposition consisting of the three following degree and structure characteristics:

Each tree has a designated distinct root.

The root of $T_{1}$ has degree $(2 m-1)-2(\psi-1)$ and has at least $(2 m-1)-4(\psi-1)$ adjacent leaves.

For $2 \leq i \leq \psi$, The root of $T_{i}$ has degree $(2 m-1)-i-2(\psi-i)$ and has at least $(2 m-1)-2 i-4(\psi-i)$ adjacent leaves.

In particular, note here that by $(2.3)$, if $\psi>1$, then the root of $T_{2}$ has degree $(2 m-1)-$ $2-2(\psi-2)=(2 m-1)-2(\psi-1)$ and at least $(2 m-1)-4-4(\psi-2)=(2 m-1)-4(\psi-1)$ adjacent leaves, sharing these characteristics with $T_{1}$ (as stated in (2.2)).

It is useful in our construction to ensure that the rainbow edge-disjoint spanning trees have suitable characteristics that allow the properties (2.1), (2.2), and (2.3) to be established. Thus, the trees $T_{1}, T_{2}, \ldots, T_{\Omega}$ will eventually satisfy $f(\Omega)$.

We begin with some necessary notation. All vertices defined in what follows are in $V\left(K_{2 m}\right)$, the given edge-colored complete graph.

The proof proceeds inductively, producing a list of $j$ edge-disjoint rainbow spanning trees from a list of $j-1$ edge-disjoint rainbow spanning trees; so for $1 \leq i \leq j \leq \Omega$, let $T_{i}^{j}$ be the $i^{\text {th }}$ rainbow spanning tree of the $j^{\text {th }}$ induction step and let $r_{i}$ be the designated root of $T_{i}^{j}$. Notice that $r_{i}$ is independent of $j$.

Suppose $T$ is any spanning tree of the complete graph $K_{2 m}$ with root $r$ containing vertices $y, v, w$, and $v^{\prime}$, where $r y$ and $r v$ are distinct pendant edges in $T$ (so $y$ and $v$ are leaves of $T$ ).

Then define $T^{\prime}=T\left[r ; y, v ; w, v^{\prime}\right]$ to be the new graph formed from $T$ with edges $r y$ and $r v$ removed and edges $y w$ and $v v^{\prime}$ added. Formally, $T^{\prime}=T\left[r ; y, v ; w, v^{\prime}\right]=T-r y-r v+y w+v v^{\prime}$. We note here that $T^{\prime}$ is also a spanning tree of $K_{2 m}$ because $y$ and $v$ are leaves in $T$, and thus adding edges $y w$ and $v v^{\prime}$ does not create a cycle in $T^{\prime}$.

Our inductive strategy will be to assume we have $k-1$ (where $1<k \leq \Omega$ ) edge-disjoint rainbow spanning trees with suitable characteristics satisfying proposition $f(k-1)$ that yield properties (2.1), (2.2), and (2.3) with $\psi=k-1$. From those trees we will construct $k$ edge-disjoint rainbow spanning trees with suitable characteristics that allow properties (2.1), (2.2), and (2.3) to be eventually established when $\psi=k$, thus satisfying $f(k)$.

For this construction, given any $T_{i}^{j-1}$ with root $r_{i}$ and distinct pendant edges $r_{i} y_{i}^{j}$ and $r_{i} v_{i}^{j}$, we define $T_{i}^{j}$ in the following way:

$$
\begin{equation*}
T_{i}^{j}=T_{i}^{j-1}\left[r_{i} ; y_{i}^{j}, v_{i}^{j} ; w_{i}^{j}, v_{i}^{j^{\prime}}\right]=T_{i}^{j-1}-r_{i} y_{i}^{j}-r_{i} v_{i}^{j}+y_{i}^{j} w_{i}^{j}+v_{i}^{j} v_{i}^{j^{\prime}} \tag{2.4}
\end{equation*}
$$

The choice of the vertices defined in (2.4) will eventually be made precise, based on the discussion which follows.

When the value of $j$ is clear, it will cause no confusion to refer to the vertices $y_{i}^{j}, v_{i}^{j} ; w_{i}^{j}, v_{i}^{j^{\prime}}$ by omitting the superscript and instead writing $T_{i}^{j}=T_{i}^{j-1}\left[r_{i} ; y_{i}, v_{i} ; w_{i}, v_{i}^{\prime}\right]$. We now make the following remarks about the definition of $T_{i}^{j}$ above. Recall that for $1 \leq i \leq j \leq \Omega, r_{i}$ is independent of $j$, and thus is the root of both $T_{i}^{j-1}$ and $T_{i}^{j}$. The following is easily seen to be true.

If $\varphi$ is any proper edge-coloring of $K_{2 m}$ and $T_{i}^{j-1}$ is a rainbow spanning tree of $K_{2 m}$ with root $r_{i}$ and distinct pendant edges $r_{i} y_{i}$ and $r_{i} v_{i}$, then $T_{i}^{j}$ as defined in (2.4) is also a rainbow spanning tree of $K_{2 m}$ if $\varphi\left(r_{i} y_{i}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)$ and $\varphi\left(r_{i} v_{i}\right)=$ $\varphi\left(y_{i} w_{i}\right)$.

Next, for $1 \leq i \leq j \leq \Omega$, let $L_{i}^{j}=\left\{x \mid x r_{i}\right.$ is a pendant edge in $\left.T_{i}^{j}\right\}$ (so $x$ is a leaf adjacent to $r_{i}$ in $T_{i}^{j}$ ). Define

$$
\begin{equation*}
L_{j}=\bigcap_{i=1}^{j} L_{i}^{j} . \tag{2.6}
\end{equation*}
$$

Notice that if $x \in L_{j}$, then for $1 \leq i \leq j, x r_{i}$ is a pendant edge in $T_{i}^{j}$.

We now begin our inductive proof with induction parameter $k$. Specifically we will prove that for $1 \leq k \leq \Omega$ there exist $k$ edge-disjoint rainbow spanning trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k}^{k}$ satisfying $f(k)$, which for convenience we explicitly state in terms of the inductive parameter $k$ :

1. Each tree $T_{i}^{k}$ has a designated distinct root $r_{i}$,
2. The root of $T_{1}^{k}$ has degree $(2 m-1)-2(k-1)$ and has at least $(2 m-1)-4(k-1)$ adjacent leaves,
3. For $2 \leq i \leq k$, the root of $T_{i}^{k}$ has degree $(2 m-1)-i-2(k-i)$ and has at least $(2 m-1)-2 i-4(k-i)$ adjacent leaves.

Base Step. The case $k=1$ is seen to be true for all properly edge-colored complete graphs, $K_{2 m}$, by letting $r_{1}$ be any vertex in $V\left(K_{2 m}\right)$ and defining $T_{1}^{1}=S_{r_{1}}$, the spanning star with root $r_{1}$. It is also clear that $S_{r_{1}}$ satisfies $f(1)$ since $r_{1}$ has degree $2 m-1$ and has $2 m-1$ adjacent leaves, as required in (2.2). Property (2.3) is vacuously true.

Induction Step. Suppose that $\varphi$ is a proper edge-coloring of $K_{2 m}$ and that for some $k$ with $1<k \leq \Omega, K_{2 m}$ contains $k-1$ edge-disjoint rainbow spanning trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$, satisfying $f(k-1)$ :

1. $r_{i}$ is the root of tree $T_{i}^{k-1}$ and $r_{i} \neq r_{c}$ for $1 \leq i, c<k, i \neq c$,
2. $d_{T_{1}^{k-1}}\left(r_{1}\right)=(2 m-1)-2(k-2)$ and $r_{1}$ is adjacent to at least $(2 m-1)-4(k-2)$ leaves in $T_{1}^{k-1}$, and
3. For $2 \leq i \leq k-1, d_{T_{i}^{k-1}}\left(r_{i}\right)=(2 m-1)-i-2(k-1-i)$ and $r_{i}$ is adjacent to at least $(2 m-1)-2 i-4(k-1-i)$ leaves in $T_{i}^{k}$.

It thus remains to construct $k$ edge-disjoint rainbow spanning trees satisfying $f(k)$.

We note here that $f(k-1)$ and the definition of $L_{k-1}$ in (2.6) guarantee that a lower bound for $\left|L_{k-1}\right|$ can be obtained by starting with a set containing all $2 m$ vertices, then removing the $k-1$ roots of $T_{1}^{k-1}, T_{2}^{k-2}, \ldots, T_{k-1}^{k-1}$, the (at most $\left.4(k-2)\right)$ vertices in $V\left(T_{1}^{k-1} \backslash\left\{r_{1}\right\}\right)$ which are not leaves adjacent to $r_{1}$, and for $2 \leq i<k$, the (at most $2 i+4(k-1-i)$ ) vertices in $V\left(T_{i}^{k-1} \backslash\left\{r_{i}\right\}\right)$ which are not leaves adjacent to $r_{i}$. Formally,

$$
\begin{align*}
\left|L_{k-1}\right| & \geq 2 m-(k-1)-4(k-2)-\sum_{i=2}^{k-1}(2 i+4(k-1-i)) \\
& =2 m-(k-1)-4(k-2)-\left(3 k^{2}-11 k+10\right)  \tag{2.7}\\
& =2 m-3 k^{2}+6 k-1
\end{align*}
$$

Knowing $\left|L_{k-1}\right|$ is useful because later we will show that if $\left|L_{k-1}\right| \geq 6 k-7$, then from $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ we can construct $k$ rainbow edge-disjoint spanning trees which satisfy proposition $f(k)$. As the reader might expect, it is from here that the bound on $\Omega$ is obtained: it actually follows that since $k \leq \Omega,\left|L_{k-1}\right| \geq 6 k-7$.

First select any two distinct vertices $r_{k}, w_{k}^{k} \in L_{k-1}$; since it will cause no confusion, we will write $w_{k}$ for $w_{k}^{k}$. Set $r_{k}$ equal to the root of the $k^{t h}$ tree, $T_{k}^{k}$. Later, $r_{k} w_{k}$ will be an edge removed from $T_{k}^{k}$. For now, the two special vertices $r_{k}$ and $w_{k}$ play a role in the construction of $T_{i}^{k}$ from $T_{i}^{k-1}$ for $1 \leq i<k$. For convenience, we explicitly state and observe the following

Since $r_{k}$ and $w_{k}$ are distinct vertices in $L_{k-1}$ (defined in (2.6)),
$r_{k}$ and $w_{k}$ are leaves adjacent to $r_{i}$ for $1 \leq i<k$.

For the sake of clarity, having selected $r_{k}$ and $w_{k}$, we now discuss how to construct the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ before returning to our discussion of the construction of $T_{k}^{k}$ (though in actuality $T_{k}^{k}$ is formed recursively as we are constructing $\left.T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}\right)$.

For $1 \leq i<k$, we will find suitable vertices $v_{i}^{k}, w_{i}^{k}$, and $v_{i}^{k^{\prime}}$, which for convenience we refer to as $v_{i}, w_{i}$, and $v_{i}^{\prime}$ respectively, and define $T_{i}^{k}$ in the following way:

$$
\begin{align*}
& T_{i}^{k}=T_{i}^{k-1}\left[r_{i} ; r_{k}, v_{i} ; w_{i}, v_{i}^{\prime}\right] \\
& \text { where } \varphi\left(r_{i} r_{k}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right) \text { and } \varphi\left(r_{i} v_{i}\right)=\varphi\left(r_{k} w_{i}\right) \tag{2.9}
\end{align*}
$$

It is clear by (2.5) that for $1 \leq i<k$, since $T_{i}^{k-1}$ is a rainbow spanning tree of $K_{2 m}$, if $v_{i}$ is chosen so that $v_{i} r_{i}$ is a pendant edge in $T_{i}^{k-1}$ with $v_{i} \neq r_{k}$, then $T_{i}^{k}$ is also a rainbow spanning tree of $K_{2 m}$ (recall from (2.8) that $r_{k} \in L_{k-1}$, so by (2.6) $r_{k} r_{i}$ is a pendant edge in $\left.T_{i}^{k-1}\right)$.

$$
\begin{aligned}
& \text { Further, since } r_{k}, w_{k} \in L_{k-1} \text {, it is clear from (2.9) that (1) } r_{k}, v_{i} \notin \\
& L_{k} \text {, and (2) all leaves adjacent to } r_{i} \text { in } T_{i}^{k} \text { are leaves adjacent to } \\
& r_{i} \text { in } T_{i}^{k-1} \text {. Therefore }\left|L_{k}\right|<\left|L_{k-1}\right| .
\end{aligned}
$$

Lastly, since the trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ satisfy $f(k-1)$, it can be seen that $T_{1}^{k}, T_{2}^{k}, \ldots$, $T_{k-1}^{k}$ satisfy $f(k)$, as the following shows.

First, clearly (2.1) is satisfied. Further, for $1 \leq i<k$, when $T_{i}^{k}$ is formed from $T_{i}^{k-1}$ (see (2.9)), it can easily be seen that the degree of $r_{i}$ is decreased by 2 and the number of leaves adjacent to $r_{i}$ is decreased by at most 4 .
(i.) $T_{1}^{k}$

By our induction hypothesis, we have that $d_{T_{1}^{k-1}}\left(r_{1}\right)=(2 m-1)-2(k-2)$ and that $r_{1}$ is adjacent to at least $(2 m-1)-4(k-2)$ leaves in $T_{1}^{k-1}$. From (2.9) we have that $d_{T_{1}^{k}}\left(r_{1}\right)=d_{T_{1}^{k-1}}\left(r_{1}\right)-2=(2 m-1)-2(k-2)-2=(2 m-1)-2(k-1)$ and that $r_{1}$ is adjacent to at least $(2 m-1)-4(k-2)-4=(2 m-1)-4(k-1)$ leaves in $T_{1}^{k}$. So $(2.2)$ of $f(k)$ is satisfied.
(ii.) $T_{i}^{k}, 2 \leq i<k$

By our induction hypothesis, we have that $d_{T_{i}^{k-1}}\left(r_{i}\right)=(2 m-1)-i-2(k-1-i)$ and that $r_{i}$ is adjacent to at least $(2 m-1)-2 i-4(k-1-i)$ leaves in $T_{i}^{k}$. From (2.9) we have that $d_{T_{i}^{k}}\left(r_{i}\right)=d_{T_{i}^{k-1}}\left(r_{i}\right)-2=(2 m-1)-i-2(k-1-i)-2=(2 m-1)-i-2(k-i)$ and that $r_{i}$ is adjacent to at least $(2 m-1)-2 i-4(k-1-i)-4=(2 m-1)-2 i-4(k-i)$ leaves in $T_{i}^{k}$. So (2.3) of $f(k)$ is satisfied except possibly when $i=k$.

Lastly, we can observe that once $v_{i}$ is selected, vertices $w_{i}$ and $v_{i}^{\prime}$ are determined by the required property from (2.9) that $\varphi\left(r_{i} r_{k}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)$ and $\varphi\left(r_{i} v_{i}\right)=\varphi\left(r_{k} w_{i}\right)$.

It remains to ensure that the trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$, are all edge-disjoint. This is also proved using the induction hypothesis that $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge-disjoint, which allows us to show that $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are all edge-disjoint.

Now, while forming the rainbow edge-disjoint spanning trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$, we simultaneously construct the $k^{t h}$ rainbow spanning tree, $T_{k}^{k}$, from a sequence of inductively defined graphs, $T_{k}^{k}(1), T_{k}^{k}(2), \ldots, T_{k}^{k}(k)=T_{k}^{k}$ where at the $i^{t h}$ induction step, the formation of $T_{k}^{k}(i)$ depends on the choice of $v_{i}$ used in the construction of $T_{i}^{k}$ : for $2 \leq i \leq k$ define

$$
\begin{equation*}
T_{k}^{k}(i)=S_{r_{k}}-r_{k} w_{1}-\ldots-r_{k} w_{i}+w_{1} w_{1}^{\prime}+\ldots+w_{i} w_{i}^{\prime}, \tag{2.11}
\end{equation*}
$$

where $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$ and $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$ for $2 \leq i \leq k$.

Note that for $1 \leq i \leq k-1$, the choice of $v_{i}$ determines $T_{k}^{k}(i)$; the formation of $T_{k}^{k}(k)$ is dictated by $T_{k}^{k}(k-1)$ since $w_{k}^{\prime}$ is determined by requiring that $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)$. It is worth explicitly stating that

$$
\begin{equation*}
T_{k}^{k}=T_{k}^{k}(k)=S_{r_{k}}-r_{k} w_{1}-\ldots-r_{k} w_{k}+w_{1} w_{1}^{\prime}+\ldots+w_{k} w_{k}^{\prime}, \tag{2.12}
\end{equation*}
$$

where $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$ and $\varphi\left(w_{c} w_{c}^{\prime}\right)=\varphi\left(r_{k} w_{c-1}\right)$ for $2 \leq c \leq k$

Observe that $T_{k}^{k}$ is a rainbow graph since each edge removed from $S_{r_{k}}$ is replaced by a corresponding edge of the same color. Also, one can easily see that: $T_{k}^{k}$ has $2 m-1$ edges;
$d_{T_{k}^{k}}\left(r_{k}\right)=(2 m-1)-k$ since $r_{k} \notin\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k}^{\prime}\right\}$; and $r_{k}$ has at least $(2 m-1)-2 k$ adjacent leaves. Therefore, condition (2.3) of $f(k)$ is satisfied. So it remains to show that $T_{k}^{k}$ is acyclic and contains no edges in the trees $T_{i}^{k}$ for $1 \leq i \leq k-1$.

Finally, we have noted previously, but restate here because of its importance,
For $1 \leq i<k$, once $v_{i}$ is chosen, $T_{i}^{k}$ and $T_{k}^{k}(i)$ are completely determined by the constructions described in (2.9) and (2.11) respectively.

Due to the fact highlighted above in (2.13), our strategy will be to select a suitable $v_{i}$ and construct $T_{i}^{k}$ from $T_{i}^{k-1}$, while simultaneously constructing $T_{k}^{k}(i)$ from $T_{k}^{k}(i-1)$. In doing so, we restrict the choices for each $v_{i}$ in order to achieve the following three properties:
(C1) The edges in $T_{a}^{k}, 1 \leq a<i$ do not appear in $T_{i}^{k}$,
(C2) The edges in $T_{k}^{k}$ do not appear in $T_{i}^{k}, 1 \leq i<k$, and
(C3) $T_{k}^{k}$ is acyclic

To that end, we let

$$
\begin{equation*}
L_{k-1}^{*}=L_{k-1} \backslash\left\{r_{k}, w_{k}\right\} \tag{2.14}
\end{equation*}
$$

and let $v_{i}$ be any vertex for which the following properties are satisfied (so by (2.13), this choice completes the formation of $T_{i}^{k}$ and $T_{k}^{k}(i)$ for $\left.1 \leq i<k\right)$ :
(R1) $v_{i} \in L_{k-1}^{*}$,
(R2) For $1 \leq c<k, c \neq i, \varphi\left(v_{i} r_{c}\right) \neq \varphi\left(r_{i} r_{k}\right)$,
(R3) For $1 \leq a<i, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{a} v_{a}\right)$,
(R4) For $i<b<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} r_{b}\right)$,
(R5) $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} w_{k}\right)$,
(R6) For $1 \leq a<i, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} w_{a}^{\prime}\right)$,
(R7) For $2 \leq i<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where $\alpha$ is the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$,
(R8) For $i=1$ and for $1 \leq c<k, \varphi\left(v_{1} r_{1}\right) \neq \varphi\left(r_{k} \alpha\right)$, for each vertex $\alpha$ incident with the edge of color $\varphi\left(r_{k} w_{k}\right)$ in $T_{c}^{k-1}$,
(R9) For $2 \leq i<k, 1 \leq a<i$, and for $i \leq b<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, for each vertex $\alpha$ incident with the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in $T_{a}^{k}$ and in $T_{b}^{k-1}$,
(R10) For $1 \leq i<k, \varphi\left(v_{i} w_{k}\right) \neq \varphi\left(r_{i} r_{k}\right)$,
(R11) For $1 \leq d \leq k-2, \varphi\left(v_{k-1} r_{k-1}\right) \neq \varphi\left(w_{k} r_{d}\right)$.

From the observation in (2.7), we know that $\left|L_{k-1}^{*}\right| \geq 2 m-3 k^{2}+6 k-3$.
An upper bound for the number of vertices eliminated through items (R2-R11) as candidates for $v_{i}$ is achieved when $i=k-1$. In this case, the number of vertices eliminated by $\mathrm{R} 2, \mathrm{R} 3, \ldots, \mathrm{R} 11$ is $(k-2),(k-2), 0,1,(k-2), 1,0,2(k-1), 1,(k-2)$ respectively, the sum of which is $6 k-7$. Now, since the induction hypothesis includes the condition $k \leq \Omega$, we can observe the following.

First, from $f(\Omega)$ and the definition of $L_{\Omega-1}$, we can follow the same steps as we did in (2.7) to see that $\left|L_{\Omega-1}\right| \geq 2 m-3 \Omega^{2}+6 \Omega-1$ and further, that $\left|L_{\Omega-1}^{*}\right| \geq 2 m-3 \Omega^{2}+6 \Omega-3$. Now, since by the induction hypothesis $k \leq \Omega$ and by (2.10) and (2.14) $\left|L_{i-1}^{*}\right|>\left|L_{i}^{*}\right|$ for $2 \leq i \leq k-1$, we have the following:

$$
\begin{align*}
\left|L_{k-1}^{*}\right| & \geq\left|L_{\Omega-1}^{*}\right| \\
& \geq 2 m-3 \Omega^{2}+6 \Omega-3 \\
& =2 m-3\left(\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor\right)^{2}+6\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor-3 \\
& \geq 2 m-(2 m+3)+2 \sqrt{6 m+9}-3 \\
& =2 \sqrt{6 m+9}-6  \tag{2.15}\\
& =\frac{6}{3} \sqrt{6 m+9}-6 \\
& \geq 6 \Omega-6 \\
& >6 \Omega-7 \\
& \geq 6 k-7
\end{align*}
$$

In summary, we have that $\left|L_{k-1}^{*}\right| \geq\left|L_{\Omega-1}^{*}\right|>6 \Omega-7 \geq 6 k-7$. Therefore, $\left|L_{k-1}^{*}\right|>6 k-7$, and so such a vertex $v_{i}$ meeting the restrictions in (R1-R11) exists. The following cases show that this choice of $v_{i}$ ensures that (C1), (C2), and (C3) hold.

### 2.1 Case 1 (C1): Edges in $T_{a}^{k}, 1 \leq a<i$ do not appear in $T_{i}^{k}$

First, by the induction hypothesis we know that the trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all rainbow edge-disjoint and spanning. Inductively, we also assume for some $i$ with $2 \leq i<k$ the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{i-1}^{k}$ are edge-disjoint rainbow spanning trees as well. By (2.9), regardless of the choice of $v_{i}$, the only edges in $T_{i}^{k}(1 \leq i<k)$ that are not in $T_{i}^{k-1}$ are $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$. Thus, if we can prove that the edges in $\left(E\left(T_{i}^{k-1}\right) \backslash\left\{r_{i} v_{i}, r_{i} r_{k}\right\}\right) \cup\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$ are not in $T_{a}^{k}$, $1 \leq a<i$, we will have shown that the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{i}^{k}$ are all edge-disjoint rainbow and spanning; so by induction, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are edge-disjoint rainbow spanning trees.

To that end, for the remainder of Case 1 suppose that $2 \leq i<k, 1 \leq a<i$, and $i<b<k$ and define the following sets of edges.

1. $E_{\text {old }}\left(T_{a}^{k}\right)=\left\{x y \mid x y \in E\left(T_{a}^{k-1}\right) \cap E\left(T_{a}^{k}\right)\right\}$
2. $E_{\text {new }}\left(T_{a}^{k}\right)=E\left(T_{a}^{k}\right) \backslash E\left(T_{a}^{k-1}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$
3. $E_{\text {old }}\left(T_{i}^{k}\right)=\left\{x y \mid x y \in E\left(T_{i}^{k-1}\right) \cap E\left(T_{i}^{k}\right)\right\}$
4. $E_{\text {new }}\left(T_{i}^{k}\right)=E\left(T_{i}^{k}\right) \backslash E\left(T_{i}^{k-1}\right)=\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$

Observe that by (2.9), $E_{\text {old }}\left(T_{a}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$ and $E\left(T_{a}^{k}\right)=E_{\text {old }}\left(T_{a}^{k}\right) \cup E_{\text {new }}\left(T_{a}^{k}\right)$. Similarly, $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{i}^{k}\right)=\emptyset$ and $E\left(T_{i}^{k}\right)=E_{\text {old }}\left(T_{i}^{k}\right) \cup E_{\text {new }}\left(T_{i}^{k}\right)$.

Since the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are formed sequentially, it is clearly necessary to prohibit edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ from appearing in $T_{a}^{k}$. It is also very useful to prohibit edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ from appearing in $T_{b}^{k-1}$.

Consequently, when $v_{i}$ was selected to satisfy (R1-R11) it was done in such a way that ensures the following six properties are satisfied:
(P1) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E_{\text {old }}\left(T_{a}^{k}\right)$,
(P2) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E_{\text {new }}\left(T_{a}^{k}\right)$,
(P3) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$,
(P4) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {old }}\left(T_{a}^{k}\right)=\emptyset$,
(P5) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$,
(P6) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E\left(T_{b}^{k-1}\right)=\emptyset$.

It is clear that if properties (P1-P6) are satisfied, then $T_{i}^{k}$ is edge-disjoint from the trees, $T_{a}^{k}$ and $T_{b}^{k-1}$. We consider edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ in turn for properties (P1-P3), then address properties (P4-P6).

### 2.1.1 Property (P1) for $v_{i} v_{i}^{\prime}$

Since $E_{\text {old }}\left(T_{a}^{k}\right) \subset E\left(T_{a}^{k-1}\right)$, we can prove $v_{i} v_{i}^{\prime}$ is not an edge in $E_{\text {old }}\left(T_{a}^{k}\right)$ by showing that $v_{i} v_{i}^{\prime} \notin E\left(T_{a}^{k-1}\right)$.

Recall from (R1) and (2.14) that because $v_{i} \in L_{k-1}^{*}, v_{i}$ is a leaf adjacent to the root $r_{c}$ in $T_{c}^{k-1}$, for $1 \leq c<k$. Therefore, to show that $v_{i} v_{i}^{\prime} \notin E\left(T_{a}^{k-1}\right)$, we need only prove that $v_{i}^{\prime} \neq r_{a}$. The following argument shows that (R2) guarantees this property.

Suppose to the contrary that $v_{i}^{\prime}=r_{a}$. Then $v_{i} v_{i}^{\prime}=v_{i} r_{a}$ and by (2.9), $\varphi\left(v_{i} r_{a}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)=$ $\varphi\left(r_{i} r_{k}\right)$, contradicting (R2). It follows that $v_{i}^{\prime} \neq r_{a}$ so $v_{i} v_{i}^{\prime} \notin E_{\text {old }}\left(T_{a}^{k}\right)$, as required.

### 2.1.2 Property (P2) for $v_{i} v_{i}^{\prime}$

Recall that $E_{\text {new }}\left(T_{a}^{k}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$. Thus, to prove that $v_{i} v_{i}^{\prime} \notin E_{\text {new }}\left(T_{a}^{k}\right)$ for $1 \leq a<i$, we need only show that $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$ and $v_{i} v_{i}^{\prime} \neq r_{k} w_{a}$. We consider each in turn.
(i.) $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$

By (2.9), we have that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{i} r_{k}\right)$ and $\varphi\left(v_{a} v_{a}^{\prime}\right)=\varphi\left(r_{a} r_{k}\right)$. But, by property (1) of $f(\psi)$ when $\psi=k-1$ we know $r_{i} \neq r_{a}$ and so $\varphi\left(r_{i} r_{k}\right) \neq \varphi\left(r_{a} r_{k}\right)$. It follows that $\varphi\left(v_{i} v_{i}^{\prime}\right) \neq \varphi\left(v_{a} v_{a}^{\prime}\right)$ and, therefore, $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$.
(ii.) $v_{i} v_{i}^{\prime} \neq r_{k} w_{a}$

Assume that $v_{i} v_{i}^{\prime}=r_{k} w_{a}$ and recall from (2.14) that because $v_{i} \in L_{k-1}^{*}, v_{i} \neq r_{k}$. Therefore, $v_{i}=w_{a}$. By (2.9), $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{k} r_{i}\right)$, so since we are assuming that $v_{i} v_{i}^{\prime}=$ $r_{k} w_{a}$, clearly $\varphi\left(r_{k} r_{i}\right)=\varphi\left(r_{k} w_{a}\right)$ and so $w_{a}=r_{i}=v_{i}$. But because $v_{i} \in L_{k-1}^{*}, v_{i} \neq r_{i}$ and this is a contradiction.

Combining the above two arguments, it is clear that $v_{i} v_{i}^{\prime} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, as required.

### 2.1.3 Property (P3) for $v_{i} v_{i}^{\prime}$

Recall from (2.14) that $v_{i} \in L_{k-1}^{*}$, so $r_{b} v_{i}$ is a pendant edge with leaf $v_{i}$ in $T_{b}^{k-1}$, for $i<b<k$. Thus, $v_{i} v_{i}^{\prime}$ would only be an edge in $T_{b}^{k-1}$ if $v_{i}^{\prime}=r_{b}$. As in Section 2.1.1 above,
(R2) prevents $v_{i}^{\prime}$ from equalling $r_{b}$ by guaranteeing that $\varphi\left(v_{i} r_{b}\right) \neq \varphi\left(r_{i} r_{k}\right)$ and therefore, $v_{i} v_{i}^{\prime} \notin E\left(T_{b}^{k-1}\right)$, as required.

### 2.1.4 Property (P1) for $r_{k} w_{i}$

Recall from (2.6) that $r_{k} \in L_{k-1}$, so $r_{k} r_{a}$ is a pendant edge in $T_{a}^{k-1}$ with leaf $r_{k}$. Therefore, from (2.9) it is clear that $r_{k} r_{a} \notin E\left(T_{a}^{k}\right)$ since it is removed from $T_{a}^{k-1}$ in forming $T_{a}^{k}$. So $r_{k}$ is not incident with any edges in $E_{o l d}\left(T_{a}^{k}\right)$ and thus, $r_{k} w_{i}$ cannot be an edge in $E_{\text {old }}\left(T_{a}^{k}\right)$, as required.

### 2.1.5 Property (P2) for $r_{k} w_{i}$

Recall that $E_{\text {new }}\left(T_{a}^{k}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$. To show that $r_{k} w_{k} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, we prove that $r_{k} w_{i} \neq r_{k} w_{a}$ and $r_{k} w_{i} \neq v_{a} v_{a}^{\prime}$ for $1 \leq a<i$. We consider each in turn.
(i.) $r_{k} w_{i} \neq r_{k} w_{a}$

To show that $r_{k} w_{i} \neq r_{k} w_{a}$, we need only show that $w_{i} \neq w_{a}$.
By (2.9) we have that $\varphi\left(r_{k} w_{i}\right)=\varphi\left(r_{i} v_{i}\right)$ and $\varphi\left(r_{k} w_{a}\right)=\varphi\left(r_{a} v_{a}\right)$. So if $r_{k} w_{i}=r_{k} w_{a}$, then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{a} v_{a}\right)$, contradicting (R3). Therefore, $r_{k} w_{i} \neq r_{k} w_{a}$, as required.
(ii.) $r_{k} w_{i} \neq v_{a} v_{a}^{\prime}$

Assume that $r_{k} w_{i}=v_{a} v_{a}^{\prime}$. Recall from (2.14) that because $v_{a} \in L_{k-1}^{*}, v_{a} \neq r_{k}$. Therefore, $v_{a}=w_{i}$. By (2.9), $\varphi\left(v_{a} v_{a}^{\prime}\right)=\varphi\left(r_{a} r_{k}\right)$, so since we are assuming that $r_{k} w_{i}=v_{a} v_{a}^{\prime}$, then $\varphi\left(r_{k} w_{i}\right)=\varphi\left(r_{k} r_{a}\right)$ and it follows that $r_{a}=w_{i}=v_{a}$. But this is a contradiction because $v_{a} \in L_{k-1}^{*}$ so by (2.14), $v_{a} \neq r_{a}$.

Combining the above two arguments, it is clear that $r_{k} w_{i} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, as required.

### 2.1.6 Property (P3) for $r_{k} w_{i}$

Recall that by (2.8), because $r_{k}$ was chosen to be in $L_{k-1}, r_{k}$ is a leaf adjacent to the root of $T_{b}^{k-1}, i<b<k$. Thus, to show $r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$, we need only prove that $w_{i} \neq r_{b}$.

By (2.9), we have that $\varphi\left(r_{k} w_{i}\right)=\varphi\left(v_{i} r_{i}\right)$. So if $w_{i}=r_{b}$, then $r_{k} w_{i}=r_{k} r_{b}$ and $\varphi\left(v_{i} r_{i}\right)=$ $\varphi\left(r_{k} r_{b}\right)$, contradicting (R4). Therefore, $r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$, as required.

### 2.1.7 Properties (P4), (P5), and (P6)

We consider each property, (P4), (P5), and (P6), in turn.
(i.) Property (P4)

By our induction hypothesis, the trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge disjoint. So (P4) follows because $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$ and $E_{\text {old }}\left(T_{a}^{k}\right) \subset E\left(T_{a}^{k-1}\right)$.
(ii.) Property (P5)

Since $a<i$, from (P3) (replacing $i$ with $a$ ), it follows that $\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\} \cap E\left(T_{c}^{k-1}\right)=\emptyset$, for $a<c<k$. In particular, since $i>a$, it follows that $E_{\text {new }}\left(T_{a}^{k}\right) \cap E\left(T_{i}^{k-1}\right)=\emptyset$. And lastly, since $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$, we have that $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$.
(iii.) Property (P6)

Again, by our induction hypothesis, the trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge-disjoint. It follows that $E_{\text {old }}\left(T_{i}^{k}\right) \cap E\left(T_{b}^{k-1}\right)=\emptyset$ because $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$.

Therefore, properties (P4-P6) hold for $E_{\text {old }}\left(T_{i}^{k}\right)$.

The above Sections 2.1.1-2.1.7 ensure that properties (P1-P6) hold. As stated above, since these six properties hold, the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are all edge-disjoint and further, from (2.9), are also rainbow and spanning.

### 2.2 Case 2 (C2): Edges in $T_{k}^{k}$ do not appear in $T_{i}^{k}$

Recall from (2.11) that $T_{k}^{k}$ is defined by a sequence, $T_{k}^{k}(1), T_{k}^{k}(2), \ldots, T_{k}^{k}(k)$, and from (2.13) that at the $i^{\text {th }}$ induction step, $T_{k}^{k}(i)$ was determined by the choice of $v_{i}$. It is convenient to restate (2.11) and (2.12) here:

$$
T_{k}^{k}(i)=S_{r_{k}}-r_{k} w_{1}-\ldots-r_{k} w_{i}+w_{1} w_{1}^{\prime}+\ldots+w_{i} w_{i}^{\prime}
$$

where $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$ and $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$ for $2 \leq i \leq k$.

$$
T_{k}^{k}=S_{r_{k}}-r_{k} w_{1}-\ldots-r_{k} w_{k}+w_{1} w_{1}^{\prime}+\ldots+w_{k} w_{k}^{\prime},
$$

where $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$ and for $2 \leq c \leq k, \varphi\left(w_{c} w_{c}^{\prime}\right)=\varphi\left(r_{k} w_{c-1}\right)$,

For the remainder of Case 2, suppose that $1 \leq i<k, 1 \leq a<i$, and $i<b<k$.

In order to prevent edges in $T_{k}^{k}$ from also appearing in $T_{i}^{k}$, we will now show that $T_{i}^{k}$ has been constructed in such a way that $T_{k}^{k}(i)$ and $T_{k}^{k}$ satisfy the following properties:
(P7) $E\left(T_{k}^{k}(i)\right) \cap E\left(T_{a}^{k}\right)=\emptyset$
(P8) $E\left(T_{k}^{k}(i)\right) \cap E\left(T_{b}^{k-1}\right)=\left\{r_{k} r_{b}\right\}$
(P9) $E\left(T_{k}^{k}(i)\right) \cap E_{\text {old }}\left(T_{i}^{k}\right)=\emptyset$
$(\mathrm{P} 10) E\left(T_{k}^{k}(i)\right) \cap E_{\text {new }}\left(T_{i}^{k}\right)=\emptyset$
$(\mathrm{P} 11) w_{k} w_{k}^{\prime} \notin E\left(T_{i}^{k}\right)$

We note here that by (2.9), when $T_{b}^{k}$ was constructed from $T_{b}^{k-1}$, edge $r_{k} r_{b}$ was removed, so it does not appear in $T_{b}^{k}$. Therefore, it is not necessary to prevent $r_{k} r_{b}$ from being an edge in $T_{k}^{k}(i)$ nor $T_{k}^{k}$.

Proving the above five properties will be done inductively. We show in the base step that $T_{k}^{k}(1)$ satisfies properties ( $\left.\mathrm{P} 7-\mathrm{P} 10\right)$ with $i=1$, and then show that for $2 \leq i<k$, $T_{k}^{k}(i)$ satisfies the same four properties before finally proving property (P11).

The following preliminary result will be useful in proving properties (P7-P11).

### 2.2.1 Preliminary Result: $w_{i} \neq w_{k}$

Recall from (2.8) that $w_{k} \in L_{k-1}$ was selected with $r_{k}$ before any of the rainbow spanning trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ were revised. It will be useful to show that the vertices $w_{i} \in T_{i}^{k}$, $1 \leq i<k$, cannot equal $w_{k}$.

From (2.9), we have that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$. So if $w_{i}=w_{k}$, then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{k}\right)$ contradicting (R5). Therefore, $w_{i} \neq w_{k}$.

### 2.2.2 Base Step: $i=1$

Observe that for $2 \leq b<k, E\left(S_{r_{k}}\right) \cap E\left(T_{b}^{k-1}\right)=\left\{r_{k} r_{b}\right\}$ and $E\left(S_{r_{k}}\right) \cap E_{\text {old }}\left(T_{1}^{k}\right)=\emptyset$ since by (2.9), $r_{k} r_{1}$ is removed from $T_{1}^{k-1}$ when forming $T_{1}^{k}$. Further, it is clear from (2.11) that the only edge in $T_{k}^{k}(1)$ that is not in $S_{r_{k}}$ is $w_{1} w_{1}^{\prime}$.
(i.) (P7)

Since $i=1$, there do not exist any such trees $T_{a}^{k}$ since $1 \leq a<i$ and so property (P7) is vacuously true.
(ii.) (P8) and (P9)

First, recall that $E_{\text {old }}\left(T_{1}^{k}\right) \subset E\left(T_{1}^{k-1}\right)$. To establish properties (P8) and (P9), we show that $w_{1} w_{1}^{\prime} \notin E\left(T_{c}^{k-1}\right)$ for $1 \leq c<k$.

Suppose to the contrary that $w_{1} w_{1}^{\prime} \in E\left(T_{c}^{k-1}\right)$. Recall from (2.11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=$ $\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime} \in E\left(T_{c}^{k-1}\right)$, then $w_{1}$ is a vertex incident to the edge of color $\varphi\left(r_{k} w_{k}\right)$ in $T_{c}^{k-1}$. But this is impossible since from (2.9) we have that $\varphi\left(v_{1} r_{1}\right)=\varphi\left(r_{k} w_{1}\right)$ and from (R8) that $\varphi\left(v_{1} r_{1}\right) \neq \varphi\left(r_{k} \alpha\right)$, where $\alpha$ is a vertex incident to the edge of color $\varphi\left(r_{k} w_{k}\right)$ in $T_{c}^{k-1}$. Therefore, $w_{1} w_{1}^{\prime} \notin E\left(T_{c}^{k-1}\right)$ and $T_{k}^{k}(1)$ satisfies properties (P8) and (P9).
(iii.) (P10)

Recall that $E_{\text {new }}\left(T_{i}^{k}\right)=\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$. To establish (P10) for $T_{k}^{k}(1)$, we need only show that $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$ and $w_{1} w_{1}^{\prime} \neq r_{k} w_{1}$. We consider each in turn.
(a.) $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$

Recall from (2.9) that $\varphi\left(v_{1} v_{1}^{\prime}\right)=\varphi\left(r_{k} r_{1}\right)$ and from (2.11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime}=v_{1} v_{1}^{\prime}$, then $\varphi\left(r_{k} w_{k}\right)=\varphi\left(r_{k} r_{1}\right)$ and so $w_{k}=r_{1}$. But this is not possible because by (2.8) $w_{k} \in L_{k-1}$ and so $w_{k} \neq r_{1}$. Therefore, $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$.
(b.) $w_{1} w_{1}^{\prime} \neq r_{k} w_{1}$

Recall from (2.11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime}=r_{k} w_{1}$, then $\varphi\left(r_{k} w_{k}\right)=$ $\varphi\left(r_{k} w_{1}\right)$ and so $w_{k}=w_{1}$, contradicting the result in Section 2.2.1. Thus, $w_{1} w_{1}^{\prime} \neq$ $r_{k} w_{1}$.

Therefore, property (P10) holds for $T_{k}^{k}(1)$ and we have established our base step.

### 2.2.3 Property (P7) for $2 \leq i<k$

From (2.11), it is clear that the only edge in $T_{k}^{k}(i)$ that differs from $T_{k}^{k}(i-1)$ is $w_{i} w_{i}^{\prime}$. Therefore, since by induction we have that $T_{k}^{k}(i-1)$ satisfies (P7), in order to prove property (P7) is satisfied for $T_{k}^{k}(i)$, we need only show that $w_{i} w_{i}^{\prime}$ is not an edge in $T_{a}^{k}, 1 \leq a<i$.

To that end, suppose to the contrary that $w_{i} w_{i}^{\prime} \in E\left(T_{a}^{k}\right)$. Recall from (2.11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. So if $w_{i} w_{i}^{\prime} \in E\left(T_{a}^{k}\right)$, then $w_{i}$ is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in $T_{a}^{k}$. But this is impossible since from (2.9) we have that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$ and from (R9) that $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where $\alpha$ is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in $T_{a}^{k}$. Therefore, $w_{i} w_{i}^{\prime} \notin E\left(T_{a}^{k}\right)$ and $T_{k}^{k}(i)$ satisfies property (P7).

### 2.2.4 Properties (P8) and (P9) for $2 \leq i<k$

Observe again that $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$. As in Section 2.2.3, to prove properties (P8) and (P9) for $T_{k}^{k}(i)$, we can show that $w_{i} w_{i}^{\prime} \notin E\left(T_{d}^{k-1}\right), i \leq d<k$.

For $i \leq d<k$, property (R9), which guarantees $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where $\alpha$ is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in $T_{d}^{k-1}$, ensures $w_{i} w_{i}^{\prime} \notin E\left(T_{d}^{k-1}\right)$, thus ensuring that (P8) and (P9) hold for $T_{k}^{k}(i)$. The argument has been omitted here due to its similarity to the argument used above for (P7) in Section 2.2.3.

### 2.2.5 Property (P10) for $2 \leq i<k$

To prove (P10) for $T_{k}^{k}(i)$, we need only show that $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$ and $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$. We consider each in turn.
(i.) $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$

Recall from (2.9) that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{k} r_{i}\right)$ and from (2.11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. If $w_{i} w_{i}^{\prime}=v_{i} v_{i}^{\prime}$, then $\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(r_{k} r_{i}\right)$ and so $w_{i-1}=r_{i}$. But $r_{k} r_{i} \in E\left(T_{i}^{k-1}\right)$ and $r_{k} w_{i-1} \in E\left(T_{i-1}^{k}\right)$; so if $w_{i-1}=r_{i}$, this contradicts property (P3) in the $i-1^{\text {th }}$ induction step, which in particular (i.e. when $b=i$ ) ensures that $r_{k} w_{i-1} \notin E\left(T_{i}^{k-1}\right)$. Therefore, $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$, as required.
(ii.) $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$

Recall from (2.11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. If $w_{i} w_{i}^{\prime}=r_{k} w_{i}$, then $\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(r_{k} w_{i}\right)$ and so $w_{i-1}=w_{i}$. However, this is impossible by the result in Section 2.1.5 which, in particular, proved that $r_{k} w_{i} \neq r_{k} w_{a}$ for $1 \leq a<i$. Thus, $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$.

Therefore, property (P10) holds for $T_{k}^{k}(i)$, as required.

### 2.2.6 Property (P11) for $w_{k} w_{k}^{\prime}$

The above sections of Case 2 ensure that the rainbow spanning trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the rainbow spanning graph, $T_{k}^{k}(k-1)$ are all edge-disjoint. Thus, it remains to show that $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and $T_{k}^{k}$ are all edge-disjoint. As above, recall from (2.11) that the only edge in $T_{k}^{k}$ that differs from $T_{k}^{k}(k-1)$ is $w_{k} w_{k}^{\prime}$. Therefore, showing property ( P 11 ) holds will prove that $T_{1}^{k}, T_{2}^{k}, \ldots T_{k-1}^{k}$ and $T_{k}^{k}$ are edge-disjoint.

First, observe from (2.8) that since $w_{k} \in L_{k-1}, w_{k}$ is a leaf adjacent to the root $r_{i}$ in $T_{i}^{k-1}$ for $1 \leq i<k$. So if $w_{k} w_{k}^{\prime} \in E\left(T_{i}^{k}\right), w_{k} w_{k}^{\prime}=w_{i} r_{k}, v_{i} v_{i}^{\prime}$, or $w_{k} r_{i}$. We consider each in turn.
(i.) $w_{k} w_{k}^{\prime} \neq w_{i} r_{k}$

From (2.8) we know that $w_{k} \neq r_{k}$. So if $w_{k} w_{k}^{\prime}=w_{i} r_{k}$, then $w_{k}=w_{i}$, contradicting the preliminary result in Section 2.2.1. Therefore, $w_{k} w_{k}^{\prime} \neq w_{i} r_{k}$, as required.
(ii.) $w_{k} w_{k}^{\prime} \neq v_{i} v_{i}^{\prime}$

Recall from (2.14) that since $v_{i} \in L_{k-1}^{*}, v_{i} \neq w_{k}$. So if $w_{k} w_{k}^{\prime}=v_{i} v_{i}^{\prime}$, then $w_{k}=v_{i}^{\prime}$.
From (2.9) we know that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{i} r_{k}\right)$, so if $w_{k}=v_{i}^{\prime}$, then $\varphi\left(v_{i} w_{k}\right)=\varphi\left(r_{i} r_{k}\right)$, contradicting (R10). Therefore, $w_{k} w_{k}^{\prime} \neq v_{i} v_{i}^{\prime}$, as required.
(iii.) $w_{k} w_{k}^{\prime} \neq w_{k} r_{i}$

Recall from (2.11) that $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)$ and suppose that $w_{k} w_{k}^{\prime}=w_{k} r_{i}$. First observe that $i \neq k-1$ since $r_{k} w_{k-1} \in E\left(T_{k-1}^{k}\right)$ and we know from (2.8) and Section 2.2.1 that $w_{k} \neq r_{k}$ and $w_{k} \neq w_{k-1}$.

Now, for $1 \leq i \leq k-2$, if $w_{k} w_{k}^{\prime}=w_{k} r_{i}$ then $r_{i}=w_{k}^{\prime}$. But from (2.9) and (2.11) if $r_{i}=w_{k}^{\prime}$ then $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)=\varphi\left(v_{k-1} r_{k-1}\right)=\varphi\left(w_{k} r_{i}\right)$, contradicting (R11). Therefore, $w_{k} w_{k}^{\prime} \neq w_{k} r_{i}$, as required.

It follows that $w_{k} w_{k}^{\prime} \notin E\left(T_{i}^{k}\right), 1 \leq i<k$.

The above Sections 2.2.1-2.2.6 ensure that the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the graph $T_{k}^{k}$ are all edge-disjoint. Further, from (2.9) it is clear that $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are all rainbow spanning trees and from (2.12) that $T_{k}^{k}$ is a spanning rainbow graph (since for every leaf, $w_{c}, 1 \leq c \leq k$, which is adjacent to $r_{k}$ and for which $r_{k} w_{c}$ is removed from $T_{k}^{k}$, there exists $w_{c}^{\prime}$ such that the edge $w_{c} w_{c}^{\prime}$ is added to $T_{k}^{k}$ and edge $w_{d} w_{d}^{\prime}$ in $T_{k}^{k}$ such that $\varphi\left(w_{d} w_{d}^{\prime}\right)=\varphi\left(r_{k} w_{c}\right)$, where $d \equiv c+1 \bmod k$.)

### 2.3 Case 3 (C3): Preventing cycles from appearing in $T_{k}^{k}$

Properties (C1) and (C2) in the previous sections guarantee that the rainbow spanning trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the rainbow spanning graph $T_{k}^{k}$ are all edge-disjoint. Thus, it remains to prove that $T_{k}^{k}$ is acyclic and, therefore, a tree. This is proved inductively, showing that for $1 \leq i \leq k, T_{k}^{k}(i)$ is acyclic. Formally, we will show the following two properties:
(P12) $T_{k}^{k}(i)$ is acyclic for $1 \leq i<k$, and
(P13) $T_{k}^{k}$ is acyclic

We consider each in turn.

### 2.3.1 Property (P12)

Proving $T_{k}^{k}(i)$ is acyclic will also be done inductively. For our base step, we let $T_{k}^{k}(0)=$ $S_{r_{k}}$ and observe that this graph is clearly acyclic.

It is clear from (2.11) that for $1 \leq i<k, T_{k}^{k}(i)=T_{k}^{k}(i-1)-r_{k} w_{i}+w_{i} w_{i}^{\prime}$. Therefore, since by induction we have that $T_{k}^{k}(i-1)$ satisfies (P12), in order to prove $T_{k}^{k}(i)$ is acyclic, we need only show that adding $w_{i} w_{i}^{\prime}$ to $T_{k}^{k}(i-1)-r_{k} w_{i}$ does not create a cycle. Let $T_{k}^{k}(i-1)^{*}=T_{k}^{k}(i-1)-r_{k} w_{i}$.

Now, from (2.11) observe that all of the edges in $T_{k}^{k}(i-1)$ are of the form $r_{k} x, r_{k} w_{a}^{\prime}$, and $w_{a} w_{a}^{\prime}$, where $1 \leq a<i$ and $x \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{i-1} w_{a}, w_{a}^{\prime}\right\} \cup\left\{r_{k}\right\}\right)$. Thus, $w_{i} \in\left\{r_{k}, x, w_{a}, w_{a}^{\prime}\right\}$. We now show that $w_{i}=x$ and, further, that since $w_{i}=x, T_{k}^{k}(i)$ is acyclic. We consider each claim in turn.
(i.) $w_{i}=x$

First observe that $w_{i} \neq r_{k}$ since $r_{k} w_{i}$ is an edge in $T_{i}^{k}$. Also, $w_{i} \neq w_{a}$ (this property is established by (R3) and was discussed in Section 2.1.5). Lastly, recall from (2.9) that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$. So if $w_{i}=w_{a}^{\prime}$ then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{a}^{\prime}\right)$, contradicting (R6). Therefore, $w_{i} \neq w_{a}^{\prime}$ and it follows that $w_{i}=x$.
(ii.) $T_{k}^{k}(i)$ is acyclic

Observe that since $w_{i}=x, w_{i} \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{i-1} w_{a}, w_{a}^{\prime}\right\} \cup\left\{r_{k}\right\}\right)$ and $w_{i}$ is a leaf adjacent to $r_{k}$ in $T_{k}^{k}(i-1)$. Now, in order for $w_{i} w_{i}^{\prime}$ to create a cycle in $T_{k}^{k}(i)$, there would have to exist a path from $w_{i}$ to $w_{i}^{\prime}$ in $T_{k}^{k}(i-1)^{*}$. But, as we just observed, $w_{i}$ is a leaf in $T_{k}^{k}(i-1)$ and since $T_{k}^{k}(i-1)^{*}=T_{k}^{k}(i-1)-r_{k} w_{i}, w_{i}$ is an isolated vertex in $T_{k}^{k}(i-1)^{*}$ so it follows that no such path exists. Therefore, $T_{k}^{k}(i)$ is acyclic, as required.

The above two arguments show that (P12) holds for $T_{k}^{k}(i)$.

### 2.3.2 Property (P13)

In Section 2.3.1 above, we showed that $T_{k}^{k}(i)$ is acyclic for $1 \leq i<k$. Recall from (2.11) that $T_{k}^{k}=T_{k}^{k}(k-1)-r_{k} w_{k-1}+w_{k} w_{l}^{\prime}$. Thus, in order to prove $T_{k}^{k}$ is acyclic, we need only show that adding $w_{k} w_{k}^{\prime}$ to $T_{k}^{k}(k-1)-r_{k} w_{k}$ does not create a cycle. As in Section 2.3.1, let $T_{k}^{k}(k-1)^{*}=T_{k}^{k}(k-1)-r_{k} w_{k}$.

Observe from (2.11) that all of the edges of $T_{k}^{k}(k-1)$ are of the form $r_{k} x, r_{k} w_{i}^{\prime}$ and $w_{a} w_{a}^{\prime}$, where $1 \leq i<k$ and $x \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{k-1} w_{i}, w_{i}^{\prime}\right\} \cup\left\{r_{k}\right\}\right)$. Thus, $w_{k} \in\left\{r_{k}, x, w_{i}, w_{i}^{\prime}\right\}$. We claim that $w_{k}=x$ and, further, that since $w_{k}=x, T_{k}^{k}$ is acyclic. We consider each claim in turn.

## (i.) $w_{k}=x$

Begin by observing that $w_{k} \neq r_{k}$ (since by (2.8) $w_{k}$ and $r_{k}$ were chosen to be distinct vertices) and, for $1 \leq i<k, w_{k} \neq w_{i}$ (this property was established by (R5) and discussed in Section 2.2.1). The following argument shows $w_{k} \neq w_{i}^{\prime}$.

First, observe that $w_{k} \neq w_{1}^{\prime}$ since $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$, so if $w_{k}=w_{1}^{\prime}$ then $w_{1}=r_{k}$, which we know from (2.9) cannot be the case.

Now, for $2 \leq i<k$, let $\alpha \in V\left(K_{2 m}\right)$ be the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$ and recall from (2.12) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. Suppose that $w_{k}=w_{i}^{\prime}$. Then since $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(w_{i} w_{k}\right), \alpha$ must equal $w_{i}$. But from (2.9), we have
that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$, so if $w_{i}=\alpha$ then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} \alpha\right)$, contradicting (R7) which ensures that $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where $\alpha$ is the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$. Therefore, $w_{k} \neq w_{i}^{\prime}, 2 \leq i<k$.

Combining the above arguments, it is clear that $w_{k}=x$.
(ii.) $T_{k}^{k}$ is acyclic

Observe that since $w_{k}=x$ where $x \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{k-1} w_{i}, w_{i}^{\prime}\right\} \cup\left\{r_{k}\right\}\right), w_{k}$ is a leaf adjacent to $r_{k}$ in $T_{k}^{k}(k-1)$. In order for $w_{k} w_{k}^{\prime}$ to form a cycle in $T_{k}^{k}$, there would have to exist a path from $w_{k}$ to $w_{k}^{\prime}$ in $T_{k}^{k}(k-1)^{*}$. But because $w_{k}$ is a leaf adjacent to $r_{k}$ in $T_{k}^{k}(k-1)$, $w_{k}$ is an isolated vertex in $T_{k}^{k}(k-1)^{*}$ since $T_{k}^{k}(k-1)^{*}=T_{k}^{k}(k-1)-r_{k} w_{k}$. It follows that no such path from $w_{k}$ to $w_{k}^{\prime}$ exists in $T_{k}^{k}(k-1)^{*}$ and, consequently, $T_{k}^{k}$ must be acyclic, as required.

It follows that $T_{k}^{k}$ is acyclic, satisfying (P13).

The above Sections 2.3.1 and 2.3.2 show that properties (P12) and (P13) hold, thus completing the proof of the theorem.

It is worth mentioning here that Theorem 1.1 guarantees the existence of $\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees, but our algorithm can at times provide more such trees. The interested reader can see such an example in Appendix A.

## Chapter 3

Problem 2: Balanced Sampling Designs Excluding Contiguous Units: A Complete Solution

$$
\text { for } \lambda=3
$$

Recall from Chapter 1 that a $2-\operatorname{BSEC}(m, n, k, \lambda), m, n \geq 3$, is a pair $(X, B)$ where $X=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and $B$ is a collection of $k$-subsets of $X$ (called blocks) such that each pair of 2-contiguous points do not appear together in any block, while any other two points appear together in exactly $\lambda$ blocks.

As stated in Chapter 1, our result extends Theorem 1.4, solving the case where $\lambda=3$. For convenience, we restate it here.

Theorem 1.5. A 2-BSEC $(m, n, 3,3)$ exists if and only if $m$ and $n$ are odd.

Before proving our main result, we first prove a series of lemmas, demonstrating the existence of certain 2-BSEC $(m, n, 3, \lambda)$ 's, before utilizing those lemmas in the proof of Theorem 1.5.

### 3.1 Constructing 2- $\operatorname{BSEC}(m, n, 3,3)$ 's

First, we consider the case when $m \equiv n \equiv 1(\bmod 6)$.
We will use the following well known combinatorial designs (see [16], for example for the results in this paragraph). A triple system, $\operatorname{TS}(n, \lambda)$, of order $n$ and index $\lambda$ is an ordered pair $(S, T)$ where $S$ is a finite set of $n$ symbols and $T$ is a collection of 3-element subsets of $S$ called triples, such that each pair of distinct elements in $S$ occurs together in exactly $\lambda$ triples in $T$.

It is well known that there exists a $\operatorname{TS}(n, \lambda)$ if $n \equiv 1$ or $3(\bmod 6)$ and $\lambda=1$, and if $n$ is odd and $\lambda=3$.

A quasigroup of order $n$ is a pair $(Q, \circ)$, where $Q$ is a set of size $n$ and $\circ$ is a binary operation on $Q$ such that for every pair of elements $a, b \in Q$, the equations $a \circ x=b$ and $y \circ a=b$ have unique solutions. A quasigroup is said to be idempotent if $i \circ i=i$ for $1 \leq i \leq n$.

Idempotent quasigroups are well known to exist for all orders of $n \neq 2$.

A symmetric idempotent quasigroup is an idempotent quasigroup with the added restriction that for every $x, y \in Q, x \circ y=y \circ x$.

Symmetric idempotent quasigroups are well known to exist for all odd $n$.

We can use idempotent quasigroups and one-dimensional BSECs to construct a 2 $\operatorname{BSEC}(m, n, 3,3)$ when $m \equiv n \equiv 1(\bmod 6)$ and $n, m \geq 13$ as Lemma 3.1 shows.

We note here that in all the constructions in this section, the vertex set is $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, which can be visualized as a two-dimensional array consisting of $m$ columns and $n$ levels. So the point $(i, j)$ occurs in column $i$ on level $j$. And, since the points are elements of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, any arithmetic operation on the first and second coordinates of any point are reduced modulo $m$ and $n$ respectively. The pairs of points, $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ can naturally be described as horizontal $\left(j_{1}=j_{2}\right)$, vertical $\left(i_{1}=i_{2}\right)$, or diagonal pairs $\left(i_{1} \neq i_{2}\right.$ and $\left.j_{1} \neq j_{2}\right)$.

Lemma 3.1. If $m \equiv 1(\bmod 6)$ and $n \equiv 1(\bmod 6)$ with $m, n \geq 13$ then there exists a $2-B S E C(m, n, 3,3)$.

Proof. The blocks are defined as follows.

1. For each $j \in \mathbb{Z}_{n}$, let $\left(\mathbb{Z}_{m} \times\{j\}, B_{i}\right) \in B$ be a $1-\operatorname{BSEC}(m, 3,3)$. This exists by Theorem 1.2. These blocks include each of the noncontiguous horizontal pairs of points three times.
2. For each $i \in \mathbb{Z}_{m}$, let $\left(\{i\} \times \mathbb{Z}_{n}, C_{j}\right) \in B$ be a $1-\operatorname{BSEC}(n, 3,3)$. This exists by Theorem 1.2. These blocks include each of the noncontiguous vertical pairs of points three times.
3. Let $\left(\mathbb{Z}_{m}, T\right)$ be a $\operatorname{TS}(m, 1)$ and let $\left(\mathbb{Z}_{n}, \circ\right)$ be an idempotent quasigroup. These exist by (3.1) and (3.2). For each $\{a, b, c\} \in T$, with $a<b<c$, and for each $r, s \in \mathbb{Z}_{n}$ with $r \neq s$, let $B$ contain three copies of the block $\{(a, r),(b, s),(c, r \circ s)\}$. These blocks include each of the diagonal pairs of points three times.

It follows that $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}, B\right)$ is the required 2- $\operatorname{BSEC}(m, n, 3,3)$.

In view of Lemma 3.1 , when $m \equiv n \equiv 1(\bmod 6)$ it remains to consider the case where $m \equiv 1(\bmod 6)$ and $n=7$. The construction in Lemma 3.2 requires much more care than the previous one. Instead of using only a $\mathrm{TS}(m, 1)$ and an idempotent quasigroup to create triples containing all of the diagonal pairs of points, in this construction (as well as the construction in Lemma 3.7) we adopt a different approach. Diagonal distances between points are tracked individually to check that each pair occurs together in three blocks. Formally, for each $x \in \mathbb{Z}_{m}$ and $y \in \mathbb{Z}_{n}$, the pair $\{(x, y),(x+d, y+i)\}$ is said to have diagonal distance $(d, i)$ if $d \in\left\{1,2, \ldots, \frac{m-1}{2}\right\}$ and $i \in\{1,2, \ldots n-1\}$. Similarly, the pair $\{(x, y),(x+d, y)\}$ if $d \leq \frac{m-1}{2}$ and the pair $\{(x, y),(x, y+d)\}$ if $d \leq \frac{n-1}{2}$ are said to have horizontal and vertical distance $d$ respectively.

Lemma 3.2. If $m \equiv 1(\bmod 6), m \geq 7$ and $n=7$, then there exists a $2-\operatorname{BSEC}(m, 7,3,3)$.

Proof. Let the set of points be $\mathbb{Z}_{m} \times \mathbb{Z}_{7}$, where $m \geq 7$. The set of blocks $B$ is defined by taking the union of the following four sets of blocks, $B_{1}, B_{2}, B_{3}$, and $B_{4}$.

1. For each $x \in \mathbb{Z}_{m}$ and each $y \in \mathbb{Z}_{7}$, let $\{(x, y),(x, y+2),(x, y+4)\} \in B_{1}$. Blocks in $B_{1}$ include all vertical pairs of points distance 2 apart twice and distance 3 apart once.
2. For each $x \in \mathbb{Z}_{m}$ and each $y \in \mathbb{Z}_{7}$, let $B_{2}$ contain the following three triples:
(a) $\left\{(x, y),(x, y+2)\left(x+\frac{m-1}{2}, y+4\right)\right\}$,
(b) $\left\{(x, y),(x, y+3)\left(x+\frac{m-1}{2}, y+1\right)\right\}$, and
(c) $\left\{(x, y),(x, y+3)\left(x+\frac{m-1}{2}, y+6\right)\right\}$.

Blocks in $B_{2}$ include the remaining vertical pairs of points (distance 2 apart once and distance 3 apart twice), as well as all the pairs of points with diagonal distance ( $\frac{m-1}{2}, i$ ) for all level differences $i \in\{1,2, \ldots, 6\}$ once (level differences 2 and 4 in (a), 1 and 5 in (b), and 3 and 6 in (c)).
3. For each $x \in \mathbb{Z}_{m}, y \in \mathbb{Z}_{7}$, for $2 \leq j \leq \frac{m-1}{2}$, and for $1 \leq k \leq 3$,
(a) If $j$ is odd then let $\left\{(x, y),(x+j, y),\left(x+\frac{m+j}{2}, y+k\right)\right\} \in B_{3}$, and
(b) If $j$ is even then let $\left\{(x, y),(x+j, y),\left(x+\frac{j}{2}, y+k\right)\right\} \in B_{3}$.

Blocks in $B_{3}$ include all horizontal distances three times and all the pairs of points with diagonal distance $(d, i)$ with $d<\frac{m-1}{2}$ and level differences $i \in\{1,2, \ldots, 6\}$ once.
4. Let $\left(\mathbb{Z}_{m}, T\right)$ be a $\operatorname{TS}(m, 1)$ and let $\left(\mathbb{Z}_{7}, \circ\right)$ be an idempotent quasigroup. These exist by (3.1) and (3.2). For each $\{a, b, c\} \in T$ with $a<b<c$, and for each $r, s \in \mathbb{Z}_{7}$ with $r \neq s$, let $B_{4}$ contain two copies of $\{(a, r),(b, s),(c, r \circ s)\}$.

Blocks in $B_{4}$ include all of the diagonal pairs of points twice.

It follows that $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}, B\right)$ is the required 2- $\operatorname{BSEC}(m, 7,3,3)$.

This completes the proof of the case when $n \equiv m \equiv 1(\bmod 6)$, so we now turn to the case when $m \equiv n \equiv 5(\bmod 6)$. If $m$ and $n$ are at least 11 then we can construct a 2- $\operatorname{BSEC}(m, n, 3,3)$ as follows.

Lemma 3.3. If $m \equiv n \equiv 5(\bmod 6)$ and $m, n \geq 11$, then there exists a $2-B S E C(m, n, 3,3)$.

Proof. Form the required 2-BSEC $(m, n, 3,3),\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}, B\right)$, as follows.

1. For each $j \in \mathbb{Z}_{n}$, let $\left(\mathbb{Z}_{m} \times\{j\}, B_{i}\right) \in B$ be a $1-\operatorname{BSEC}(m, 3,3)$. This exists by Theorem 1.2. These blocks include each of the noncontiguous horizontal pairs of points three times.
2. For each $i \in \mathbb{Z}_{m}$, let $\left(\{i\} \times \mathbb{Z}_{n}, C_{j}\right) \in B$ be a $1-\operatorname{BSEC}(n, 3,3)$. This exists by Theorem 1.2. These blocks include each of the noncontiguous vertical pairs of points three times.
3. Let $\left(\mathbb{Z}_{m}, T\right)$ be a $\mathrm{TS}(m, 3)$ and let $\left(\mathbb{Z}_{n}, \circ\right)$ be a symmetric idempotent quasigroup. These exist by (3.1) and (3.3). For each $\{a, b, c\} \in T$, with $a<b<c$, and for each $r, s \in \mathbb{Z}_{n}$ with $r \neq s$, let $B$ contain the triple $\{(a, r),(b, s),(c, r \circ s)\}$. These blocks include each of the diagonal pairs of points three times.

It follows that $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}, B\right)$ is the required 2- $\operatorname{BSEC}(m, n, 3,3)$.

In view of Lemma 3.3, it remains to consider the case where $m \equiv 5(\bmod 6)$ and $n=5$. First, we will consider the case where $n=5, m \equiv 5(\bmod 6)$, and $m \geq 23$. To do so, we will use Langford sequences, hooked Langford sequences, and extended Skolem sequences [2, 18].

A [hooked] Langford sequence of defect $\delta$ and length $\mu, \mathrm{L}(\mu, \delta)[\mathrm{HL}(\mu, \delta)]$ is a sequence $\left(l_{1}, l_{2}, \ldots, l_{2 \mu}\right)\left[\left(l_{1}, l_{2}, \ldots, l_{2 \mu+1}\right)\right]$ of $2 \mu[2 \mu+1]$ integers with the property that: for every $k \in$ $\{\delta, \delta+1, \ldots, \delta+\mu-1\}$, there exists a unique $i \in\{1, \ldots, 2 \mu\}$ such that $l_{i}=l_{i+k}=k$ [and $\left.l_{2 \mu}=0\right]$.

For example, $(4,2,3,2,4,3)$ is an $\mathrm{L}(3,2)$ and $(6,4,2,5,2,4,6,3,5,0,3)$ is an $\operatorname{HL}(5,2)$.

Theorem 3.4. [18] A Langford sequence of defect $\delta$ and length $\mu$ exists if and only if

1. $\mu \geq 2 \delta-1$ and
2. $\mu \equiv 0$ or $1(\bmod 4)$ for $\delta$ odd and $\mu \equiv 0$ or $3(\bmod 4)$ for $\delta$ even.

Theorem 3.5. [18] A hooked Langford sequence of defect $\delta$ and length $\mu$ exists if and only if

1. $\mu(\mu+1-2 \delta)+2 \geq 0$ and
2. $\mu \equiv 2$ or $3(\bmod 4)$ for $\delta$ odd and $\mu \equiv 1$ or $2(\bmod 4)$ for $\delta$ even.

Note that this implies that for any $\delta$, given large enough $\mu$, we can find either a Langford or a hooked Langford sequence.

An extended Skolem sequence of length $h, \operatorname{ES}(h, p)$, is a sequence $\left(s_{1}, s_{2}, \ldots, s_{2 h+1}\right)$ of $2 h+1$ integers such that for every $j \in\{1,2, \ldots, h\}$, there exists a unique $i \in\{1,2, \ldots, 2 h+1\}$ such that $s_{i}=s_{i+j}=j$ and a unique $p$ such that $s_{p}=0$.

For example, $(3,1,1,3,4,5,0,2,4,2,5)$ is an $\operatorname{ES}(5,7)$.
Note that an extended Skolem sequence with $s_{2 h}=0$ is a hooked Langford sequence of defect 1 and length $h$.

Theorem 3.6. [2] An extended Skolem sequence $E S(h, p)$ exists if and only if $p$ is odd and $h \equiv 0$ or $1(\bmod 4)$ or $p$ is even and $h \equiv 2$ or $3(\bmod 4)$.

Note that this implies that an extended Skolem sequence of order $h$ exists for all $h$.

Lemma 3.7. If $m \equiv 5(\bmod 6), m \geq 23$ and $n=5$, then there exists a $2-B S E C(m, 5,3,3)$.

Proof. The required 2- $\operatorname{BSEC}(m, 5,3,3),\left(\mathbb{Z}_{m} \times \mathbb{Z}_{5}, B\right)$, is defined as follows.

1. For $0 \leq x \leq m-1,0 \leq y \leq 4,2 \leq i \leq \frac{m-1}{2}$, and $1 \leq j \leq 2$, let
(a) $\left\{(x, y),(x+i, y),\left(x+\frac{i}{2}, y+j\right)\right\} \in B_{1}$ if $i$ is even,
(b) $\left\{(x, y),(x+i, y),\left(x+\frac{i+m}{2}, y+j\right)\right\} \in B_{1}$ if $i$ is odd,
(c) $\left\{(x, y),(x, y+2),\left(x+\frac{m-1}{2}, y+3\right)\right\} \in B_{1}$, and
(d) $\left\{(x, y),(x, y+2),\left(x+\frac{m-1}{2}, y+4\right)\right\} \in B_{1}$.

Blocks defined in (a) and (b) include each of the noncontiguous horizontal pairs of points twice and each of the pairs of points with diagonal distance $(d, i)$ with $d<\frac{m-1}{2}$ and level difference $i \in\{1,2,3,4\}$ once. Blocks defined in $(c)$ and $(d)$ include each of
the noncontiguous vertical pairs of points twice and each of the pairs of points with diagonal distance $\left(\frac{m-1}{2}, i\right)$ with level difference $i \in\{1,2,3,4\}$ once.
2. Let $\mu=\frac{\frac{m-1}{2}-2}{3}$.
(a) First, suppose $\mu \equiv 0$ or $3(\bmod 4)$ and let $L=\left(l_{1}, l_{2}, \ldots, l_{2 \mu}\right)$ be a Langford sequence $L(\mu, \delta=2)$, which exists by Theorem 3.4. For each $k \in\{2,3, \ldots, \mu+1\}$, if $l_{i}=l_{j}=k$ with $i<j$, then let $l_{k, 1}=i+\mu+\delta-1=i+\mu+1$ and let $l_{k, 2}=j+\mu+\delta-1=j+\mu+1$. Notice that $i$ and $j$ represent the positions of $k$ in the Langford sequence.

Then, for $0 \leq x \leq m-1,0 \leq y \leq 4$, and $2 \leq k \leq \mu+1$, let $b_{k}=\{(x, y),(x+$ $\left.\left.l_{k, 1}, y\right),\left(x+l_{k, 2}, y\right)\right\} \in B_{2}$. So, each $b_{k}$ in $B_{2}$ contains three pairs of points, their horizontal distances being $l_{k, 1}, l_{k, 2}$, and $\left|l_{k, 1}-l_{k, 2}\right|=k$.
(b) Now, suppose $\mu \equiv 1$ or $2(\bmod 4)$ and let $H L=\left(l_{1}, l_{2}, \ldots, l_{2 \mu+1}\right)$ be a hooked Langford sequence $H L(\mu, \delta=2)$, which exists by Theorem 3.5. For each $w \in$ $\{2,3, \ldots, \mu+1\}$, if $l_{u}=l_{v}=w$ with $u<v$, let $l_{w, 1}=u+\mu+\delta-1=u+\mu+1$ and $l_{w, 2}=v+\mu+\delta-1=v+\mu+1$.

Notice that $u$ and $v$ represent the positions of $w$ in the hooked Langford sequence. Then, for $0 \leq x \leq m-1,0 \leq y \leq 4$, and $2 \leq w \leq \mu+1$, let $b_{w}=\{(x, y),(x+$ $\left.\left.l_{w, 1}, y\right),\left(x+l_{w, 2}, y\right)\right\} \in B_{2}$. So each $b_{w}$ in $B_{2}$ contains three pairs of points, their horizontal distances being $l_{w, 1}, l_{w, 2}$, and $\left|l_{w, 1}-l_{w, 2}\right|=w$.

Blocks defined in (a) include each of the noncontiguous horizontal pairs of points once, except distance $d=\frac{m-1}{2}$. Blocks defined in (b) include each of the noncontiguous horizontal pairs of points once, except distance $d=\frac{m-1}{2}-1$.
3. Again, let $\mu=\frac{\frac{m-1}{2}-2}{3}$ and we will consider two cases depending on whether $\mu \equiv 0$ or $3(\bmod 4)$ or $\mu \equiv 1$ or $2(\bmod 4)$.
(a) If $\mu \equiv 0$ or $3(\bmod 4)$, then for $0 \leq x \leq m-1$ and $0 \leq y \leq 4$, let $B_{3}$ contain the blocks:
i. if $3 \mu+2$ is even:
A. $\left\{(x, y),(x+3 \mu+2, y),\left(x+\frac{3 \mu+2}{2}, y+2\right)\right\}$ and
B. $\left\{(x, y),(x, y+2),\left(x+\frac{3 \mu+2}{2}, y+1\right)\right\}$; or
ii. if $3 \mu+2$ is odd:
A. $\left\{(x, y),(x+3 \mu+2, y),\left(x+\frac{3 \mu+2+m}{2} y+2\right)\right\}$ and
B. $\left\{(x, y),(x, y+2),\left(x+\frac{m-(3 \mu+2)}{2}, y+1\right)\right\}$
(b) If $\mu \equiv 1$ or $2(\bmod 4)$, then for $0 \leq x \leq m-1$ and $0 \leq y \leq 4$, let $B_{3}$ contain the blocks:
i. if $3 \mu+1$ is even:
A. $\left\{(x, y),(x+3 \mu+1, y),\left(x+\frac{3 \mu+1}{2}, y+2\right)\right\}$ and
B. $\left\{(x, y),(x, y+2),\left(x+\frac{3 \mu+1}{2}, y+1\right)\right\}$; or
ii. if $3 \mu+1$ is odd:
A. $\left\{(x, y),(x+3 \mu+2, y),\left(x+\frac{3 \mu+2+m}{2}, y+2\right)\right\}$ and
B. $\left\{(x, y),(x, y+2),\left(x+\frac{m-3 \mu+1}{2}, y+1\right)\right\}$.

Blocks defined in (a) include each of the horizontal pairs of points with distance $\frac{m-1}{2}$ once, each of the noncontiguous vertical pairs of points once, and each of the pairs of points with diagonal distance $\left(\frac{m-1}{4}, i\right)$ with level distance $i \in\{1,2,3,4\}$ twice. Blocks defined in $(b)$ include each of the horizontal pairs of points with distance $\frac{m-1}{2}-1$ once, each of the noncontiguous vertical pairs of points once, and each of the pairs of points with diagonal distance $\left(\frac{m+1}{4}-1, i\right)$ with level distance $i \in\{1,2,3,4\}$ twice.
4. Lastly, let $h=\left\lfloor\frac{m-1}{3}\right\rfloor$ and $p=\frac{m-1}{2}-1$. Let $E S=\left(s_{1}, s_{2}, \ldots, s_{2 h+1}\right)$ be an extended Skolem sequence $E S(h, p)$. Notice that $h$ is odd since $m \equiv 5(\bmod 6)$. Furthermore,
if $h \equiv 1(\bmod 4)$ then $p$ is odd and if $h \equiv 3(\bmod 4)$ then $p$ is even. Therefore by Theorem 3.6 ES exists.

If $s_{i}=s_{i+j}=j$ with $i<i+j$, let $s_{j, 1}=i+h$ and $s_{j, 2}=i+j+h$. Notice that $i$ and $i+j$ represent the positions of $j \in\{1,2, \ldots, h\}$.

Now, let $\left(\mathbb{Z}_{5}, \circ\right)$ be an idempotent quasigroup, which exists by (3.2). For each $q$, $r \in \mathbb{Z}_{5}$ with $q \neq r$, let two copies of $\left\{(x, q),\left(x+s_{j, 1}, r\right),\left(x+s_{j, 2}, q \circ r\right)\right\} \in B_{4}$.

These blocks include each of the pairs of points with diagonal distance $(d, i)$ with $d<$ $\frac{m+1}{4}$ or $\frac{m-1}{4}-1$, depending on whether $\mu \equiv 0,3(\bmod 4)$ or $\mu \equiv 1,2(\bmod 4)$ respectively, and with level difference $i \in\{1,2,3,4\}$.

Let $B=B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$. It follows that $\left(\mathbb{Z}_{5} \times \mathbb{Z}_{m}, B\right)$ is the required 2-BSEC $(m, 5,3,3)$.

Lastly, we consider the following three cases where $n=5$ and $m=5,11$, and 17 .

Lemma 3.8. If $n=5$ and $m \in\{5,11,17\}$ then there exists a $2-\operatorname{BSEC}(m, 5,3,3)$.

Proof. We consider each of the three values of $m$ in turn.

1. $m=n=5$.

For $x \in \mathbb{Z}_{5}$ and $y \in \mathbb{Z}_{5}$, let $B$ contain one copy of the following:

$$
\begin{aligned}
& \{(x, y),(x+2, y),(x, y+2)\},\{(x, y),(x+2, y),(x+1, y+1)\}, \\
& \{(x, y),(x+2, y),(x+2, y+2)\},\{(x, y),(x+1, y+1),(x, y+2)\}, \\
& \{(x, y),(x+1, y+1),(x+3, y+2)\},\{(x, y),(x+3, y+1),(x+2, y+2)\}, \\
& \{(x, y),(x+1, y+2),(x+2, y+4)\},\{(x, y),(x+4, y+2),(x+3, y+4)\}, \\
& \{(x, y),(x+1, y+2),(x+3, y+4)\},\{(x, y),(x+3, y+2),(x+2, y+4)\} .
\end{aligned}
$$

Then $\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}, B\right)$ is the required 2- $\operatorname{BSEC}(5,5,3,3)$.
2. $m=11, n=5$.

For each $j \in \mathbb{Z}_{5}$ let $\left(\mathbb{Z}_{11} \times\{j\}, B_{j}\right)$ be a $1-\operatorname{BSEC}(11,3,3)$.
For each $x \in \mathbb{Z}_{11}$ and $y \in \mathbb{Z}_{5}$ let $B_{5}$ contain one copy of the following:

$$
\begin{aligned}
& \{(x, y),(x+2, y+1),(x+5, y+2)\},\{(x, y),(x+2, y+3),(x+9, y+1)\} \\
& \{(x, y),(x+1, y+2),(x+7, y+4)\},\{(x, y),(x+2, y+2),(x+5, y+4)\} \\
& \{(x, y),(x+2, y+3),(x+8, y+2)\},\{(x, y),(x+4, y+1),(x+5, y+3)\} \\
& \{(x, y),(x+2, y+1),(x+8, y+2)\},\{(x, y),(x+7, y+1),(x+4, y+2)\} \\
& \{(x, y),(x+9, y+1),(x+3, y+2)\},\{(x, y),(x+5, y+2),(x+1, y+4)\} \\
& \{(x, y),(x+2, y+2),(x+8, y+4)\},\{(x, y),(x+4, y+4),(x+7, y+2)\} \\
& \{(x, y),(x+4, y+2),(x+7, y+1)\},\{(x, y),(x+3, y+2),(x+5, y+1)\} \\
& \{(x, y),(x+3, y+1),(x+9, y+2)\},\{(x, y),(x+2, y+2),(x+7, y+4)\}, \\
& \{(x, y),(x+1, y+2),(x+2, y+1)\},\{(x, y),(x+7, y+2),(x+10, y+1)\},
\end{aligned}
$$ and three copies of:

$\{(x, y),(x, y+2),(x+1, y+3)\}$.
Then $\left(\mathbb{Z}_{11} \times \mathbb{Z}_{5}, \cup_{i \in \mathbb{Z}_{6}} B_{i}\right)$ is the required 2- $\operatorname{BSEC}(11,5,3,3)$.
3. $n=5, m=17$

This design was found using a hill climbing algorithm. Rather than listing all of the triples here, the interested reader can see such a design in Appendix B.

This completes the proof of Lemma 3.8.

### 3.2 The Main Result

We are now ready to provide the following necessary and sufficient conditions for a 2- $\operatorname{BSEC}(m, n, 3,3)$ to exist.

Theorem 3.9. A 2-BSEC $(m, n, 3,3)$ exists if and only if $m$ and $n$ are odd.

Proof. The necessity follows from Lemma 1.3. To prove sufficiency, the necessary conditions together with the symmetry of $m$ and $n$, mean that the only cases that need to be considered are:

1. $m \equiv 1(\bmod 6)$ and $n \equiv 1,3,5(\bmod 6)$,
2. $m \equiv 3(\bmod 6)$ and $n \equiv 3(\bmod 6)$, and
3. $m \equiv 5(\bmod 6)$ and $n \equiv 1,3,5(\bmod 6)$.

By Theorem 1.4, the existence of a $2-\operatorname{BSEC}(n, m, 3,1)$ is established for the following cases:

1. $m \equiv 1(\bmod 6)$ and $n \equiv 3,5(\bmod 6)$,
2. $m \equiv 3(\bmod 6)$ and $n \equiv 3(\bmod 6)$, and
3. $m \equiv 5(\bmod 6)$ and $n \equiv 1,3(\bmod 6)$.

In each of the cases $1-3$, the blocks in the $2-\operatorname{BSEC}(m, n, 3,1)$ can be repeated three times to produce a 2 - $\operatorname{BSEC}(m, n, 3,3)$. Therefore, the only cases remaining to be considered are:

1. $m \equiv 1(\bmod 6)$ and $n \equiv 1(\bmod 6)$ and
2. $m \equiv 5(\bmod 6)$ and $n \equiv 5(\bmod 6)$.

We can assume that $n \leq m$. The first case is settled in Lemma 3.2 if $n=7$ and in Lemma 3.1 otherwise. The second case is settled in Lemmas 3.7 and 3.8 if $n=5$ and in Lemma 3.3 otherwise, completing the proof of the theorem.

## Chapter 4

## Other Directions

Both of the problems discussed in this dissertation can be extended or expanded upon in other directions. The following sections contain a discussion on a few ways to do this.

### 4.1 Rainbow Trees

In the introduction, we looked at three conjectures related to finding edge-disjoint rainbow spanning trees in properly edge-colored complete graphs: Conjectures 1.1, 1.2, and 1.3, before focusing specifically on Conjecture 1.1 for the remainder of our discussion.

The first step in extending the research discussed in this dissertation would be to improve the result obtained in Theorem 1.1, with the goal of fully proving Conjecture 1.1. There is also significant room for improvement to the results obtained so far pertaining to Conjecture 1.3.

Another direction would be to look at the number of edge-disjoint rainbow spanning trees or rainbow spanning uni-cyclic graphs (rainbow graphs with exactly one cycle) in a properly edge-colored $K_{2 m-1}$. Since $K_{2 m-1}$ has $(2 m-1)(m-1)$ edges, we conjecture the following.

Conjecture 4.1. If $K_{2 m-1}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m-1}$ can be partitioned into $m-1$ rainbow spanning trees together with one near-perfect matching containing the $m-1$ edges of a single color class.

Conjecture 4.2. If $K_{2 m-1}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m-1}$ can be partitioned into $m-1$ rainbow spanning trees together with one near-perfect rainbow matching containing $m-1$ edges.

Conjecture 4.3. If $K_{2 m-1}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m-1}$ can be partitioned into $m-1$ rainbow spanning uni-cyclic graphs.

### 4.2 Balanced Sampling Plans Excluding Contiguous Units

As discussed in the introduction, significant work has been done considering balanced sampling plans excluding contiguous units in one or two dimensions, but little to no work has been done in three or more dimensions. To do so, we can generalize the definition of 2 -contiguous points to $n$-contiguous in the following way.

Given a set of points $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \ldots \times \mathbb{Z}_{m_{n}}$ arranged in $n$ dimensions, the $n$-contiguous points to a point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are the points $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where for coordinate $i, 1 \leq i \leq n$, $y_{i}=x_{i}+1$ or $y_{i}=x-1$, reducing the sums $\bmod m_{i}$, and for $1 \leq j \leq n, j \neq i, x_{j}=y_{j}$.

We can also generalize balanced sampling plans excluding contiguous units to $n$ dimensions. Define an $n-\operatorname{BSEC}\left(m_{1}, m_{2}, \ldots, m_{n}, k, \lambda\right)$ to be a pair $(X, B)$ where $X=\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times$ $\ldots \times \mathbb{Z}_{m_{n}}$ and $B$ is a collection of $k$-subsets of $X$ (called blocks) such that each pair of $n$ contiguous points do not appear together in any block, while any other two points appear together in exactly $\lambda$ blocks.

Armed with these definitions, we can now ask the question: for which values of $m_{1}, m_{2}$, $\ldots, m_{n}, k$, and $\lambda$ does an $n-\operatorname{BSEC}\left(m_{1}, m_{2}, \ldots, m_{n}, k, \lambda\right)$ exist.

## References

[1] S. Akbari, A. Alipour, H.-L. Fu and Y.-H. Lo, Multicolored parallelism of isomorphic spanning trees, SIAM J. Discrete Math., 20(2006), No. 3, 564-567.
[2] C.A. Baker, Extended Skolem Sequences. Journal of Combinatorial Designs 1995, 3:5, 363-379.
[3] D. Banks, G. Constantine, A. Merriwether and R. LaFrance, Nonparametric inference on mtDNA mismatches, J. Nonparametre. Statist., 11(1999), 215-232.
[4] R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B, 68 (1996), No. 2, 310-313.
[5] Bryant, D., Chang, Y., Rodger, C.A., Wei, R. Two-Dimensional Balanced Sampling Plans Excluding Contiguous Units. Communications in Statistics - Theory and Methods 2002, 31:8, 1441-1455.
[6] J. Carraher, S. Hartke, and P. Horn, Edge-disjoint rainbow spanning trees in complete graphs, European J. Combin., 57(2016), 71-84.
[7] Colbourn, C.J., Ling, A.C.H. A Class of Partial Triple Systems with Applications in Survey Sampling. Commun. Statis. Theory Methods 1998, 27, 1009-1018.
[8] G. M. Constantine, Multicolored parallelisms of isomorphic spanning trees, Discrete Math. Theor. Comput. Sci., 5(2002), No. 1, 121-125.
[9] T. Feng, X. Wang, Y. Xu, J. Zhang, Two-dimensional balanced sampling plans avoiding adjacent units, Discrete Mathematics, 338(2015), No. 9, 1624-1642.
[10] H.-L. Fu and Y.-H. Lo, Multicolored isomorphic spanning trees in complete graphs, Ars Combin., 122(2015), 423-430.
[11] F. Harary, Parallel concepts in graph theory, Math. Comput. Modeling, 18(1993), 101105.
[12] Hedayat, A.S., Rao, C.R., Stufken, J. Designs in Survey Sampling Avoid Contiguous Units. Handbook of Statistics; Krishnaiah, P.R., Rao, C.R., Eds.; Elsevier Science Publishers B.V. 1988, Vol. 6, 575-583.
[13] Hedayat, A.S., Rao, C.R., Stufken, J. Sampling Plans Excluding Contiguous Units. J. Statis. Plann. Infer. 1988, 19, 159-170.
[14] M. Jacroux, On the construction of sets of integers with equal power sums, J. Number Theory, 52(1995), No. 1, 35-42.
[15] J. Krussel, S. Marshall and H. Verrall, Spanning Trees Orthogonal to One-Factorizations of $K_{2 n}$, Ars Combin., 57(2000), 77-82.
[16] Lindner, C.C., Rodger, C.A. Design Theory; CRC Press, 1997.
[17] See, K., Song, S.Y., Stufken J. On a Class of Partially Incomplete Block Designs with Applications in Survey Sampling. Comm. Statist. Theory Methods 1997, 26, 1-13.
[18] Simpson, J.E. Langford Sequences: Perfect and Hooked. Discrete Math 1983, 44, 97104.
[19] Stufken, J. Combinatorial and Statistical Aspects of Sampling Plans to Avoid the Selection of Adjacent Units. J. Comb. Inf. Sys. Science 1993, 18, 149-160.

Appendices

## Appendix A

## Edge-Disjoint Rainbow Spanning Trees in $K_{14}$

This appendix demonstrates the use of our algorithm on a properly edge-colored $K_{14}$. In this instance, $m=7$ and Theorem 1.1 guarantees the existence of $\Omega_{7}=\left\lfloor\frac{\sqrt{6 * 7+9}}{3}\right\rfloor=2$ edge-disjoint rainbow spanning trees. As mentioned in Chapter 2, our algorithm ensures the existence of at least $\Omega_{m}$ trees, but can at times generate more. The following example constructs 3 mutually edge-disjoint rainbow spanning trees from $K_{14}$ using our algorithm.

We begin with a given edge-coloring $K_{14}$.


Figure A.1: A Proper Edge-Coloring of $K_{14}$

Step 1: $k=1$
$r_{1}$ can be any vertex in $V\left(K_{14}\right)$. Let $x_{1}=r_{1}$ and then $T_{1}^{1}=S_{x_{1}}$.


Figure A.2: $T_{1}^{1}$

Step 2: $k=2$
Recall from (2.6) that we defined $L_{k-1}$ to be the set of all vertices that are leaves adjacent to the root in the trees $T_{i}^{k-1}, 1 \leq i<k$. Thus, when $k=2, L_{1}=V\left(K_{14}\right) \backslash\left\{x_{1}\right\}$, which has cardinality larger than $6 * 2-7=5$, as required. We now select distinct vertices $r_{2}$ and $w_{2}^{2}$ from $L_{1}$.

Let $r_{2}=x_{5}$ and $w_{2}^{2}=x_{4}$. Then $L_{1}^{*}=V\left(K_{14}\right) \backslash\left\{x_{1}, x_{4}, x_{5}\right\}$.
Our next step is to determine $v_{1}^{2}$. (R1) eliminates vertices $x_{1}, x_{4}$, and $x_{5}$ as choices for $v_{1}^{2}$. Items (R2-R11) additionally eliminate vertices $x_{6}, x_{7}$, and $x_{9}$. Let $v_{1}^{2}=x_{2}$. Then $v_{1}^{2^{\prime}}=w_{1}^{2}=x_{1} 4$ and we can form $T_{1}^{2}$ from $T_{1}^{1}$ by having $T_{1}^{2}=T_{1}^{1}-x_{1} x_{5}-x_{1} x_{2}+x_{5} x_{14}+x_{2} x_{14}$.

Forming $T_{1}^{2}$ allows us to form $T_{2}^{2}(1)=S_{x_{5}}-x_{5} x_{14}+x_{14} x_{13}$ where the color of edge $x_{14} x_{13}$ is red, like edge $x_{5} x_{4}$ and thus, $w_{1}^{2^{\prime}}=x_{13}$.


Figure A.3: $T_{1}^{2}$ on the left with $T_{2}^{2}(1)$ on the right
$T_{2}^{2}(2)$ can then be formed from $T_{2}^{2}(1)$ by letting $T_{2}^{2}(2)=S_{x_{5}}-x_{5} x_{14}-x_{5} x_{4}+x_{14} x_{13}+x_{4} x_{8}$ where $w_{2}^{2^{\prime}}=x_{8}$.


Figure A.4: $T_{2}^{2}$

Step 3: $k=3$
At this point $L_{2}=L_{1} \backslash\left\{x_{2}, x_{4}, x_{5}, x_{8}, x_{13}, x_{14}\right\}$ so $\left|L_{2}\right|=7$, which is not greater than the $6 * 3-7=11$ vertices necessary for our algorithm to guarantee a third tree. However, we can still find suitable vertices $r_{3}$ and $w_{3}^{3}$ that allow for three edge-disjoint rainbow spanning trees to be formed.

Let $r_{3}=x_{9}$ and $w_{3}^{3}=x_{11}$. Then $L_{2}^{*}=\left\{x_{3}, x_{6}, x_{7}, x_{10}, x_{12}\right\}$ and we can find suitable $v_{1}^{3}$ and $v_{2}^{3}$ in $L_{2}^{*}$, as described below.

In addition to the restriction that $v_{1}^{3} \in L_{2}^{*}$, items (R2-R11) additionally eliminate vertices $x_{3}$ and $x_{7}$ as candidates for $v_{1}^{3}$. We thus let $v_{1}^{3}=x_{6}$ and then $w_{1}^{3}=x_{4}, v_{1}^{3^{\prime}}=x_{12}$, and $w_{1}^{3^{\prime}}=x_{3}$, allowing us to form both $T_{1}^{3}=T_{1}^{2}-x_{1} x_{9}-x_{1} x_{6}+x_{9} x_{4}+x_{6} x_{12}$ and $T_{3}^{3}(1)=$ $S_{x_{9}}-x_{9} x_{4}+x_{4} x_{5}$.


Figure A.5: $T_{1}^{3}$ on the left with $T_{3}^{3}(1)$ on the right

Similarly, $v_{2}^{3} \in L_{2}^{*}$ and items (R2-R11) additionally eliminate vertex $x_{10}$ as a candidate for $v_{2}^{3}$. So we can let $v_{2}^{3}=x_{12}$ and then $v_{2}^{3^{\prime}}=w_{2}^{3}=x_{14}$ and $w_{2}^{3^{\prime}}=x_{3}$, allowing us to form both $T_{2}^{3}=T_{2}^{2}-x_{5} x_{9}-x_{5} x_{12}+x_{9} x_{14}+x_{12} x_{14}$ and $T_{3}^{3}(2)=S_{x_{9}}-x_{9} x_{4}-x_{9} x_{14}+x_{4} x_{5}+x_{14} x_{3}$.


Figure A.6: $T_{2}^{3}$ on the left with $T_{3}^{3}(2)$ on the right

Lastly, forming $T_{3}^{3}(2)$ determines $w_{3}^{3^{\prime}}$, thus allowing us to form the third tree, $T_{3}^{3}=$ $S_{x_{9}}-x_{9} x_{4}-x_{9} x_{14}-x_{9} x_{11}+x_{4} x_{5}+x_{14} x_{3}+x_{11} x_{10}$.


Figure A.7: $T_{3}^{3}$

At this point, $L_{3}=\left\{x_{7}\right\}$ and we cannot find distinct vertices $r_{4}$ and $w_{4}^{4}$ in $L_{3}$ to possibly create a fourth tree using our algorithm.

## Appendix B

The Remaining 2-BSEC $(m, n, 3,3)$

For the remaining case of Lemma 3.8, a $2-\operatorname{BSEC}(17,5,3,3)$, we used a hill climbing algorithm to find such a balanced sampling plan. The program was written in the Java programming language and implemented in the jGRASP environment. We first created a two-dimensional $85 \times 85$ adjacency matrix and then placed 3 edges between non-contiguous pairs of points. The adjacency matrix represents a two-dimensional array with 5 rows and 17 columns where the rows contain the numbers $0-16,17-33,34-50,51-67$, and $68-84$. This code was able to produce multiple 2-BSEC $(17,5,3,3)$ 's, one of which is included below in Section B.1. The code is included in Section B.2.

## B. 1 A 2-BSEC( $17,5,3,3$ )

Table B.1: A 2-BSEC $(17,5,3,3)$

| A 2-BSEC(17,5,3,3) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $28,30,79$ | $21,40,56$ | $13,19,22$ | $24,68,75$ | $45,60,67$ |
| $29,52,66$ | $14,37,72$ | $16,42,50$ | $26,68,74$ | $13,15,55$ |
| $56,58,76$ | $51,78,82$ | $25,77,81$ | $0,15,26$ | $17,45,71$ |
| $26,52,68$ | $31,44,64$ | $13,63,79$ | $51,56,61$ | $20,23,62$ |
| $54,72,80$ | $18,47,57$ | $24,36,84$ | $10,58,65$ | $29,34,53$ |
| $3,30,58$ | $30,56,83$ | $31,71,76$ | $19,47,63$ | $2,14,26$ |
| $11,21,43$ | $25,46,66$ | $45,64,82$ | $8,11,48$ | $3,41,72$ |
| $3,62,67$ | $15,18,79$ | $10,44,73$ | $21,48,75$ | $20,67,69$ |


| 1, 26, 45 | 1, 26, 39 | 6, 61, 83 | 20, 59, 81 | 28, 44, 62 |
| :---: | :---: | :---: | :---: | :---: |
| 11, 15, 50 | 17, 49, 78 | 18, 25, 65 | 44, 70, 79 | 8, 52, 78 |
| 0, 34 | 27, | 7, | 32, | 4, 60, 65 |
| 17, 20, 43 | 58, 69, 71 | 32, 47, 67 | 10, 67, 82 | 19, 65, 81 |
| 43, 5 | 29, | 18 | 2 , | 18, 71, 84 |
| 2, 24, 30 | 4, 22, 35 | 8, 18, 54 | 7, 17, 47 | 17, 64, 72 |
|  | 11 | 30 | 22 |  |
| 15, 44, 73 | 41, 62, 78 | 21, 26, 80 | 0, 31, 75 | 31, 33, 66 |
| 13 | 37 | 28 | 19, 21, 73 | 12, 41, 61 |
| 7, 13 | 54, | 3, 29, 55 | 8, 37, 72 | 45, 49, 68 |
| 1, 29 | 27, 5 | 6, 32, 79 | 2, 11, 62 | 1, 39, 63 |
| 34, 3 | 20, 26, | 58, | 14, 22, | 14, 63, 78 |
| 12, 43 | 0, 5 | 9, 20, | 16, | 35, 42, 77 |
| 7, 14 | 15, | 17, 74, 77 | 33, 59, | 0, |
| 45, | 5 , | 31, | 20, | ) |
| 17, 19, 24 | 12, 54, | 8, 21, 66 | 33, 35, | 27, 66, 72 |
| 18, | 32, | 30, | 23, 30, | 23, 35, 54 |
| 11, 66, 68 | 36, 71, | 30, 53, 55 | 14, 53, | 24, 54, 81 |
| 29, 6 | 21, | 30, 3 | 35, 64, | 31, |
| 24, 34, 52 | 22, | 45, 53, 73 | 7, 13, 21 | 20, 44, 48 |
| 12, 30, 79 | 8, 35 | 25, 29, | 3, 72, 75 | 12, 18, 67 |
| 6, 14, 81 | 4, 41, 78 | 14, 50, 75 | 23, 26, 49 | 35, 58, 82 |
| 33, 60, | 1, 17, 7 | 5, 36, 41 | 20, 34, 73 | 10, 20, 62 |
| 26, 40, 79 | 5, 23, 57 | 2, 33, 68 | 27, 47, 49 | 48, 62, 66 |
| 20, 31, 75 | 9, 50, 60 | 35, 38, 81 | 58, 67, 73 | 68, 78, 83 |
| 30, 38, 70 | 25, 35, 80 | 1, 45, 79 | 4, 10, 33 | 6, 19, 77 |


| 18, 52, 70 | 3, 19, 41 | 15, 27, 53 | 35, 67, 79 | 50, 59, 66 |
| :---: | :---: | :---: | :---: | :---: |
| 26, 51, 63 | 12, 15, 19 | 58, 72, 74 | 4, 71, 73 | 4, 6, 38 |
| 24, 36, 52 | 21, 24, 61 | 45 | 44, 58, 74 | 19, 21, 49 |
| 2, 9 | 27, 3 | 40, 49, | 19, 46, 76 | 6, 25, 72 |
| 25, | 16 | 21 | 57 | 6 |
| 3, 45, 78 | 11, 21, 3 | 5, 5 | 37, 40, 58 | 17, 65, 80 |
| 21, | 41, | 16 | 14, 35, 41 |  |
| 12, 59, 70 | 56, 59, | 64, 78, | 35, 44, 67 | 5, 12, 39 |
| 21 | 33 | 30 | 2, 28, 76 | 46, 60, 69 |
| 20, 57, 7 | 5, | 30, | 0, 30, | 22, 46, 56 |
| 1, | 7 , | 29 | 8, 46, 62 | 12, 35, 75 |
| 9, 19, | 32, | 9, 52, 79 | 6,2 | , |
| 14, | 46, | 0, 39 | 10, 41, 72 |  |
| 43, | 21, 5 | 28, 31, | 22, 69, 76 | 12, 34, 48 |
| 34 |  | 19, 37, | 43, | 4, 37, 81 |
| 1,60,64 | 5, 17, | 42, 65, | 3, 42, | 2, 27, 29 |
| 24 | 8 , | 35, 49, | 1, 8, 34 | 80 |
| 53, | 27, 42, 49 | 21, 33, | 16, 60, 66 | 9, 51, 69 |
| 18, 3 | 16, 22, 2 | 44, 69, | 6, 27, | 12, 45 |
| 48, 63, 74 | 4, 24, 76 | 17, 41, | 11, 30, 81 | 33, 48, |
| 3, 3 | 8, 43 | 2, 31, 78 | 37, 58, 73 | 30, 36, |
| 10, 16, 28 | 25, 28, 72 | 13, 75, | 15, 33, 76 | 14, 55, 60 |
| 43, 53, 72 | 8, 60, | 5, 45, 5 | 5, 15, 71 | 6, 17, 39 |
| 6, 63, 73 | 22, 79, 82 | 37, 56, 67 | 26, 71, 75 | 21, 67, 76 |
| 49, 79, 81 | 21, 52, 74 | 9, 49, 78 | 2, 42, 60 | 9, 44, 71 |
| 27, 43, 46 | 5, 48, 55 | 15, 22, 67 | 7, 26, 31 | 38, 59, 62 |


| 27, 57, 81 | 19, 28, 49 | 21, 42, 48 | 20, 31, 46 | 17, 50, 71 |
| :---: | :---: | :---: | :---: | :---: |
| 39, 54 | 12, | 34, | 38, 53 | 7 |
|  | 1, |  | 19, 22, 46 | 1, 59, 67 |
| 27 | 48 | 21 | 51, 79, 83 | 73 |
| 65 | 41 | 0, | 12, 22, 25 | 6, 29, 78 |
| 24, | 43 | 16, |  | 20, 70, 76 |
| 9, | 28 | 12 | 16, 58, 73 |  |
| 59, 65 | 0, 2 | 29, | 55, 69, 76 | 33, 67, 76 |
| 1, | 19, 62, | 46 | 7, 58, |  |
| 42, 5 | 1, 27, | 4, 14, 77 | 13, 21, 49 | 4, 45, 73 |
| 41, | 10 | 0 , | 11, 46, 61 | 3 |
| 4, |  | 13, 27, 80 | 39, 52, 83 | , |
| 14, | 12 | 19, 26, 72 | 10, 32, 47 | 32 |
| 0, | 29 | 41 | 26 | 69 |
| 6 , | 24 | 7, | 9, 37, 42 | 0 |
| 44 | 10, 45 | 34, 40 | 23, 29, | 22, 47, 66 |
| 30 |  | 33, 52, 60 | 12, 33, 72 | 29, 31, 42 |
| 2, 5 | 25 | 20, | 38, 47, | 43 |
| 11, 34, | 0, | 40, 43, 52 | 38, | 15 |
| 26, 35 | 30, | 13, 58, | 33, 66, 75 | 57 |
| 0, 37, | 27, | 6, 50, 77 | 13, | 18 |
| 33, 47, 77 | 38, | 5, 48, | 22, 24, 42 | 19,31 |
| 28, 34, 65 | 25, 51, 5 | 30, 67, 69 | 9, 43, 55 | 46, 70, |
| 24, 39, 8 | $6,17,44$ | 58, 63, 71 | 0, 8, 58 | 41, 45, 72 |
| 23, 25, 68 | 40, 42, 61 | 22, 30, 48 | 4, 6, 39 | 6, 64, 83 |
| 20, 28, 50 | 15, 25, 27 | 12, 82, 84 | 22, 26, 74 | 26, 44, 66 |


| 24, 42, 76 | 46, 59, 77 | 0, 2, 18 | 51, 71, 82 | 16, 64, 67 |
| :---: | :---: | :---: | :---: | :---: |
| 70, 82 | 9, 5 | 2, 48, | 0 , | 76 |
| 11, | 3 , | 18 | 24, 61, 82 | 84 |
| 2, 2 | 21 | 3 , | 24, 58, 60 | 26 |
| 0 , |  | 65 | 3 |  |
| 6, 9 | 17 | 31 |  |  |
| 20 | 32 | 32 | 17, 44, 73 |  |
| 6, 1 | 18, | 2 , | 21, 36, 77 | 3, 45, 78 |
| 59 | 5, | 28 | 20, 29, 72 | 9 |
| 6,31 | 56 | 4 , | 20, 53, 82 | 14, 18, 59 |
| 10, | 40 | 10 | 27, 32, 84 |  |
| 0 , | 15 | 20, 43 | 4 | 12, 47, 53 |
| 38, | 8, | 4, 71, 83 | 31 | 2, 8, 40 |
| 14, 7 | 18, 52, | 15 | 26, 48, 82 | 79 |
| 11, | 8, | 8, | 33, |  |
| 12, | 5,9 | 6, | 2,9 | 9 |
| 53, |  | 6, | 3, 65, 68 | 9 |
| 14, 2 | 8, 31, | 17, 41, | 0, 10, | 1, 70, 76 |
| 14, 2 | 14 | 6, | 1, | 9, |
| 2, 22, 26 | 12, | 3, 2 | 46, | 3, 7, 6 |
| 53, 64, 78 | 17, 30, 5 | 12, 45, 53 | 15, 18, 46 | 35, 56, 75 |
| 6, 10, 3 | 27, | 47, 50, | 25, 37, 76 | 7, 30, |
| 25, 39, 8 | 8, 31, 62 | 27, 50, | 1, 60, 80 | 48, 59, 71 |
| 26, 41, 47 | 46, 49, 51 | 12, 50, 74 | $6,11,33$ | 15, 28, |
| 36, 45, 79 | 19, 61, 71 | 38, 58, 81 | $2,45,68$ | 21, 46, 81 |
| 3, 62, 83 | 8, 10, 36 | 0, 61, 64 | 34, 62, 77 | 23, 74, 83 |


| 6, 25, 40 | 33, 48, 63 | 58, 69, 80 | 13, 16, 53 | 33, 52, 62 |
| :---: | :---: | :---: | :---: | :---: |
| 15, 73, 80 | 7, 56, 78 | 20, 24, 47 | 3, 14, 16 | 37, 47, 57 |
| 2, 23, 37 | 23, 26, 50 | 13, 21, 66 | 26, 35, 76 | 2, 50, 84 |
| 10, 16, 37 | 14, 45, 58 | 14, 18, 51 | 4, 44, 75 | 8, 59, 73 |
| 28, 81, 83 | 39, 43, 67 | 21, 46, 74 | 20, 40, 55 | 6, 59, 80 |
| 6, 62, 72 | 25, 29, 44 | 11, 52, 55 | 42, 52, 64 | 19, 34, 55 |
| 15, 47, 76 | 28, 47, 69 | 13, 59, 62 | 6, 34, 76 | 4, 44, 50 |
| 1, 4, 54 | 12, 16, 74 | 16, 48, 74 | 8, 52, 84 | 21, 60, 84 |
| 8, 31, 39 | 7, 74, 81 | 25, 30, 80 | 5, 76, 84 | 0, 49, 60 |
| 21, 25, 53 | 8, 15, 37 | 47, 58, 71 | 24, 46, 76 | 27, 38, 63 |
| 30, 40, 61 | 37, 69, 80 | 40, 46, 75 | 25, 67, 83 | 22, 28, 33 |
| 7, 25, 71 | 26, 45, 50 | 25, 29, 70 | 18, 20, 64 | 22, 35, 68 |
| 3,58, 68 | 21, 32, 75 | 1, 43, 45 | 8, 10, 23 | 4, 53, 77 |
| 14, 41, 79 | 11, 33, 35 | 44, 51, 80 | 44, 46, 84 | 19, 44, 75 |
| 27, 30, 67 | 34, 63, 75 | 10, 16, 17 | 19, 50, 78 | 21, 52, 59 |
| 51, 73, 76 | 22, 49, 69 | 11, 26, 84 | 56, 59, 83 | 4, 15, 70 |
| 15, 37, 82 | 27, 31, 41 | 9, 34, 48 | 56, 69, 76 | 7, 35, 39 |
| 12, 37, 49 | 20, 56, 79 | 21, 70, 78 | 0, 22, 34 | 52, 54, 67 |
| 0, 19, 84 | 25, 41, 73 | 6, 48, 71 | 35, 40, 47 | 33, 45, 63 |
| 7, 26, 30 | 18, 80, 83 | 9, 40, 67 | 34, 53, 77 | 28, 42, 57 |
| 2, 15, 38 | 0, 48, 70 | 24, 27, 64 | 0, 14, 22 | 11, 49, 72 |
| 0, 21, 30 | 45, 51, 55 | 43, 72, 81 | 16, 46, 80 | 20, 39, 58 |
| 24, 49, 57 | 34, 68, 82 | 5, 24, 66 | 18, 31, 81 | 40, 50, 63 |
| 9, 28, 51 | 16, 34, 73 | 7, 79, 82 | 25, 79, 84 | 45, 59, 70 |
| 3, 38, 47 | 36, 60, 70 | 5, 23, 27 | 1, 4, 22 | 4,11, 73 |
| 26, 73, 80 | 27, 34, 60 | 3, 18, 76 | 16, 44, 65 | 19, 76, 80 |


| 51, 54, 70 | 27, 56, 60 | 25, 48, 71 | 8, 51, 74 | 45,58, 66 |
| :---: | :---: | :---: | :---: | :---: |
| 8, 30, 35 | 49, 53, 55 | 5, 14, 84 | 47, 56, 62 | 23, 38, 82 |
| 47, 59 | 18, | 55, 67, 73 | 13, | 0, 28, 56 |
| 32, 73, 77 | 16, 17, 75 | 28, 46, 50 | 22, 58, 72 | 10, 67, 68 |
| 38, | 6, | 14 | 51, 63, 76 | 5 |
| 25, | 14, 47, 70 | 18, 32, 72 | 53, 58, 62 | 14, 47, 74 |
| 20, | 54 | 38 | 36, | 4, 29, 53 |
| 1, 38, 63 | 10, 44, | 11, 49, 70 | 5, 46, 49 | 3, 30, 77 |
| 4, 1 | 33, | 8, | 27, 65, 71 | 2 |
| 11, 23, 3 | $7,15,29$ | 23, 25, | 7, 42, 56 | 4, 26, 29 |
| 4, 13 | 37 | 8, | 8, 33, 49 | 7, 18, |
| 28, 54, 7 | 2, 30, | 51, | 40, 49, 62 | 23, 79, 84 |
| 4 , | 22 | 23 | 3, 79, 82 | 46 |
| 31, 52, | 4, 8, 26 | 29, 31, 44 | 27, 57, 73 | 23, 73, 84 |
| 9, 5 | 4 , | 13, | 37, 62, 75 | 35, 76, 84 |
| 3, 19, 54 | 61, 67, 77 | 4, 19, 60 | 6, 38, 58 | 22, 45, 53 |
| 6, 29 | 14, | 13, | 29, | 5, 59, 75 |
| 25, 41, 5 | 23, 46, | 35, 66, 72 | 4, 42, 68 | 4, 32, 52 |
| 57, 73, 79 | 8 , | 37, 52, | 3, 61, | 23, 30, 72 |
| 1, 34, 71 | 2, 29, 47 | 28, 47, | 6, 59, 72 | 8, 32, 60 |
| 0, 27, 7 | 6, 6 | 39, 47, | 18, 25, | 10, 42, |
| 36, 45, 61 | 21, 35, 66 | 12, 23, 31 | 4, 26, 34 | 30, 49, |
| 4, 49, 74 | 9, 63, 72 | 10, 30, | 0, 5, 72 | 2, 49, 6 |
| 23, 29, 81 | 24, 51, 53 | 21, 57, 80 | 5, 16, 60 | 9, 34, 57 |
| 4, 13, 80 | 18, 26, 33 | 34, 48, 69 | 45, 48, 83 | 35, 73,83 |
| 38, 45, 64 | 11, 22, 57 | 3, 25, 70 | 9, 64, 75 | 6, 57, 60 |


| 17, 29, 56 | 33, 36, 56 | 18, 43, 57 | 1, 17, 47 | 2, 45, 75 |
| :---: | :---: | :---: | :---: | :---: |
| 13, | 24, | 13, | 27 | 64 |
| 36, |  | 3 , | 22, 63, 81 | 14, 40, 71 |
| 3, | 2, | 18 |  | 76 |
| 5, |  |  | 44, 50, 81 | 0 |
| 36 |  | 13 |  | 26 |
| 25, | 32 | 2, 39, 72 |  | 6 |
| 26, 3 | 20 | 24 | 20, 36, 60 | 26, 32, 71 |
| 3, | 44 | 21 | 22, 25, 53 | , |
| 10, |  | 22 | 23, 30, 44 | 30, 78, 81 |
| 8, | 5, | 2 | 15, 42, 77 | 81 |
|  |  |  | 28, 77, 83 |  |
| 44, 49, | 9 , | 15 | 20, 50, 72 | 4 |
| 3, 6 |  |  | 0, | 45 |
| 4, 8, 27 | 0, | 23 | 11, 13, 74 | 17, 20, 84 |
| 31 | 19, 59, 74 | 50, 51 | 10, 17, 75 | $3,10,55$ |
| 44, 46, | 40, 69, 79 | 6, | 3, 6, 80 | 9, 54, 59 |
| 34, 5 | 6, 21 | 28, 53, | 44, 52, 57 | 33, 52, 65 |
| 7, 17 | 2 , | 32, | 13, | 1, |
| 25, | 32, | 40, 4 | 11, 39, 81 | 15, 20, 41 |
| 19, 38, 67 | 17, 22, | 5, 20, | 33, 59, 81 | 21, 33, 78 |
| 18, 48, 60 | 31, 42, 5 | 7, 21, | 32, 37, 62 | 38, 58, 61 |
| 32, 43, 71 | 6, 48, | 21, 49, | 16, 30, 41 | 17, 28, 58 |
| 13, 23, 83 | 4, 28, 42 | 25, 52, 5 | 4, 56, 74 | 5, 43, 56 |
| 45, 55, 65 | 12, 31, 33 | 10, 46, | 61, 69, 72 | 7, 13, 82 |
| 29, 63, 74 | 67, 70, 77 | 72, 77, 84 | 49, 52, 59 | 15, 73, 76 |


| 31, 61, 76 | 7, 25, 78 | 0, 19, 45 | 37, 52, 76 | 8, 22, 57 |
| :---: | :---: | :---: | :---: | :---: |
| 5, 47, | 35, | 8, 20, | 31, 35, 73 | 4, 48, 79 |
| 14, 17, 44 | 44, 55, 83 | 24, 38, | 23, 42, 46 | 35, 44, 77 |
| 9, 40 |  | 30, | 38, | 2, |
| 19, | 15 | 3, 38, 75 | 16, 17, 82 | 8 |
| 8, 30 |  | 0, 1 | 24, 49, 54 | 50, 74, 80 |
| 0, 47, 5 | 0, | 47 | 11, 44, 51 | 7 |
| 5, 32, 40 | 10, 26, 46 | 31, 56, | 5, 42, 71 | 9, 14, 27 |
| 37 | 20 | 49 | 69 | 5 |
| 9, 24, 72 | 53, | 22, 38, | 30, 52, 65 | 22, 59, 77 |
| 6 , | 54 | 12 | 42 | 3 |
| 1, 37, | 16 | 0 , | 30, 65, 83 | 30 |
| 50, 53, | 7 , | 13 | 36 | 83 |
| 7, |  | 62, | 9, 71, 82 | 2, 16, 29 |
| 8, 10, 51 |  | 33, | 6, 28, | 10, 40, 76 |
| 14, 2 | 29, 4 | 7, 77, | 8, | 30, 49, 51 |
| 16, 3 | 31, 3 | 0, 18, 23 | 29, 32, 37 | 18, 36, 40 |
| 52, 6 | 29, | 14, | 16, 27, 78 | 26, 38, 65 |
| 6, 42, | 17, 3 | 10, | 56, 72, | 5, |
| 28, 40, 4 | 1, 38 | 17, 40, | 13, 23, 6 | 12, 37, 63 |
| 42, 47, 60 | 30, | 22, 46, | 6, 46, 55 | 9, 35, 65 |
| 24, 27, 5 | 35, 40, | 17, 27, | 3, 44, 83 | 6, 48, 63 |
| 3, 5, 70 | 57, 59, | 26, 31, 6 | 52, 58, 60 | 75, 81, 83 |
| 18, 48, 56 | 19, 72, 74 | 7, 55, 66 | 25, 49, 75 | 22, 32, 74 |
| 0, 6, 70 | 12, 16, 5 | 56, 60, 78 | 48, 55, 77 | 2, 15, 36 |
| 33, 37, 70 | 42, 64, 69 | 16, 21, 63 | 46, 50, 80 | 58, 74, 83 |


| 66, 69, 74 | 37, 57, 64 | 50, 64, 69 | 3, 13, 35 | 19, 35, 60 |
| :---: | :---: | :---: | :---: | :---: |
| 20, 70, 82 | 4, | 1, | 27 | 13, 51, 69 |
| 9, | 4, 34, 46 | 25 | 33, 34, 40 | 27, 54, 83 |
| 2, 5 | 43 | 50 | 23 | 3 |
| 10 | 22 | 11 | 4 |  |
| 17 | 23, | 7, |  |  |
| 34, 47, | 14, | 61 | 19, 25, 63 |  |
| 31, | 6, | 22, 34, | 7 , | 3 |
| 39, | 25, 55, | 6, 65, | 5, 23, 48 |  |
| 14, 21 | 38 | 29, 47, | 38, 52, 54 |  |
| 24, | 35 | 23 | 2, 47, 53 |  |
| 20, 3 |  |  | 5 , |  |
| 3, | 26 | 51 | 15, 40, 65 |  |
| 21 | 8 , | 29 | 1, | 42, 47, 50 |
|  | 12, | 61 | 33, 34, 47 |  |
| 1, 55, | 16, 23 | 27, | 26, 48, 84 |  |
| 35 | 3 , | 0, 2, 11 | 11, 48, 67 |  |
| 4, 67, | 6, 9, | 45, | 24, 29, 84 | 9 |
| 21, 29, 7 | 25, 2 | 3, 34, | 43, 62, 75 | 24 |
| 4, 71, | 4, 1 | 0, 7, 38 | 36, 63, | 3, 25, 54 |
| 10, 44, 4 | 20, 23, 79 | 43, 51, | 14, 42, 67 |  |
| 4, 30, 40 | 11, 31, 40 | 0, 7, 59 | 10, 19, 43 | 13, 77, 82 |
| 31, 41, 77 | 19, 62, 77 | 1, 11, 6 | 15, 40, 46 | 10, |
| 42, 44, 56 | 5, 36, 54 | 3, 15, 29 | 0, 9, 66 | 11, 5 |
| 31, 46, 50 | 37, 56, 69 | 4, 20, 61 | 27, 45, 82 | 12, 34, 46 |
| 46, 54, 65 | 4, 65, 69 | 24, 62, 77 | 9, 21, 32 | 20, 52, 76 |


| 9, 56, 72 | 21, 43, 54 | 41, 50, 65 | 5, 10, 30 | 17, 60, 63 |
| :---: | :---: | :---: | :---: | :---: |
| 11, 27, 33 | 9, 43, | 3, 15, 52 | 16, 46, 69 | 13, 56, 67 |
| 2, 9, 73 | 2, | 0 , | 22, 24, 70 | 5, 8, 19 |
| 12, 1 | 38, | 40, 73, | 7, 30, 32 | 17, 36, 51 |
| 55 | 37 | 25 | 16, 20, 27 | 16 |
| 14, 33 | 4, 4 | 13, | 10, 34, 62 | 13, 62, 69 |
| 5, | 9, | 36, 44, 56 | 4, 7, 17 | 41, 70, 83 |
| 1, 56, | 49, | 57, | 33, 39, 42 | 1, 10, 21 |
| 30 | 16 | 15, 36, 66 | 7 |  |
| 34, 3 | 8,73 | 9, 21, 23 | 65, 69, 84 | 59, 68, 72 |
| 24 |  | 21 | 3, 21, 81 | 83 |
| 11, 2 | 29 | 60, 7 | 9, | 50, 53, 56 |
| 24, | 18 | 8, | 1, | 12, 17, 35 |
| 31, 5 | 12, 57, 71 | 47 | 10, 18, 32 | 25, 39, 61 |
| 31, 7 | 3, | 3, | 0, 24, 42 | 13, |
| 9, 2 | 5, 59, | 7, 2 | 41, 53, 76 | 2, 16, 59 |
| 22, 66, | 13 | 8, 13, 38 | 24, 73, 81 | 16, |
| 46, 74, | 9, 15, | 28, 33, | 35, 42, 63 | 5, 51, 75 |
| 5, | 2, 18 | 7 , | 49, | 6, 49, |
| 1, 6 | 54, 59, | 38, 51, | 56, 65, 77 | 50, 62, 76 |
| 16, | 9, 14, 19 | 54, 77, | 2, 68, 73 | 59, 74, |
| 51, 54, 60 | 1, 3, 24 | 3, 51, 65 | 21, 28, 8 | 20, 29, 68 |
| 13, 34, 70 | 13, 29, | 23, 39, | 37, 44, 63 | 0, 24, 74 |
| 39, 41, 74 | 12, 23, 59 | 22, 29, 40 | 9, 25, 46 | 37, 69, 75 |
| 26, 57, 63 | 11, 32, 50 | 16, 34, 4 | 17, 40, 62 | 22, 29, 78 |
| 33, 68, 75 | 8, 41, 67 | 31, 64, 72 | 6, 24, 46 | 4, 43, 83 |


| 10, 22, 83 | 16, 71, 81 | 26, 45, 77 | 8, 29, 34 | 7, 69, 74 |
| :---: | :---: | :---: | :---: | :---: |
| 45, 74, 83 | 15, 17, 81 | 21, 32, 67 | 14, 57, 73 | 18, 55, 74 |
| 6, 28, 35 | 25, 28, 72 | 7, 43, 70 | 10, 36, 68 | 63 |
| 59, | 9, 2 | 16, | 27, 51, 61 | 10, 24, 37 |
| 60 | 3, 9, 56 | 9, 42, 80 | 1, 11, 51 | 7, 34, 45 |
| 6, 16, 36 | 5, | 34, | 13, 42, 78 | 16, 18, 81 |
| 34 | 9, | 0, 38, 77 | 3 | 35, 43, 49 |
| 30, 54, 62 | 5, 21, 31 | 34, 3 | 16, 25, 43 | 22, 27, 31 |
| 3 , | 3 , | 9, 50, 65 | 14, 40, 65 | 6 |
| 5, 39, 62 | 63, 75, 79 | 24, | 54, 68, 77 | 9, 15, 70 |
| 14, | 32 | 15 | 8, 29, 50 | 7 |
| 62 | 54 | 13 | 43, | 14, 36, 56 |
| 10, |  |  | 37, 65, 74 | 20 |
| 1, 29 | 14 | 6, | 14, 39, 75 | 10, 26, 35 |
| 23, 43 | 10 | 1, 50, | 20, 58, 61 | 26, 56, 79 |
| 2, 18 | 44, 47, 78 | 14, 26, | 48, 50, 72 | 48, 77, 84 |
| 7, 36, 78 | 0, 2 | 0, 6 | 20, 26, 75 | 27, 30, 76 |
| 17, 48, | 4, 25 | 4, 45, | 4, 30, 38 | 11, 23, 77 |
| 75, 77, 7 | 0 , | 6, 17, | 0, 23, | 5 |
| 2, 41, 66 | 7, 56 | 15, 28, 79 | 13, 34, 83 | 14, 60, 73 |
| 35, 51, 70 | 2, | 13, 39, | 9, 11, 50 | 16, 32, 56 |
| 17, 24, 29 | 1, 52, | 23, 49, 79 | 13, 45, 52 | 9, 38, 79 |
| 19, 23, 26 | 52, 67, | 16, 34, | 9, 31, 81 | 3, 52, 73 |
| 54, 56, 70 | 12, 43, 78 | 12, 33, 77 | 0, 26, 58 | 15, 24, 81 |
| 52, 63, 72 | 16, 44, 62 | 3, 12, 75 | 4, 24, 82 | 23, 67, 71 |
| 23, 28, 62 | 11, 31, 60 | 15, 38, 48 | 37, 40, 51 | 24, 58, 77 |


| 27, 29, 69 | 2, 49, 82 | 19, 41, 52 | 51, 54, 64 | 38, 57, 72 |
| :---: | :---: | :---: | :---: | :---: |
| 2, 7, 21 | 31, | 19 | 0, 71, 74 | 6 |
| 10, 18, 63 | 27, 36, 49 | 40, 4 | 17, 47, 81 | 26, 40, 48 |
| 43, | 62, | 0, | 9, 34, 8 | 19, 27, 68 |
| 16 | 48 | 3, | 38, 60, 62 | 3 |
| 51, 5 | 13, | 4, 6 | 28, 46, 77 | 36, 69, 80 |
| 14, 2 | 20 | 28 | 3, 11, 59 | 4, 35, 45 |
| 23, 47, | 63, | 26, | 12, 54, 62 | 0, 10, 29 |
| 11 | 47 | 28 | 3 | 32, 39, 81 |
| 17, 43 | 9, 29, 76 | 15, | 11, 17, 76 | 24, 51, 71 |
| 28, | 16 | 34 | 7, 46, 73 | 1, 28, 65 |
| 17, 21, | 11 | 9, 11, | 23, 49 | 9, 39, 49 |
| 11, |  | 6, 40, 82 | 10 | 9 |
| 38, 74, 8 | 42, | 10, 13, | 11, 19, | 28, 63, 84 |
| 52 |  | 15 | 30 |  |
| 13, 31, | 42, 51, 72 | 19, 57, | 22, 44, 6 | 5, 21, 74 |
| 1, | 5 , | 6, | 3, 8, 69 | 38, 44, 48 |
| 37, 57, | 28, 3 | 20, 58, | 5, 24, 33 | 15, 18, 79 |
| 40 | 66, | 36, 50, | 1, 7, 67 | 21, |
| 32, 42, | 25, 36, | 11, 26, | 3, 53, 74 | 19, 22, |
| 46, 65, 8 | 8, 22, 77 | 5, 14, 62 | 7, 23, 70 | 15, |
| 7, 27, 73 | 2, | 0, 57, 79 | 11, 37, 71 | 68, 72, |
| 8, 47, 6 | 9, 29, 52 | 24, 28, 5 | 60, 72, 81 | 33, 70, 80 |
| 21, 31, 61 | 19, 57, 81 | 18, 21, 3 | 3, 11, 18 | 17, 36, 66 |
| 9, 23, 35 | 4, 27, 46 | 22, 27, 79 | 64, 71, 78 | 7, 28, 80 |
| 22, 57, 70 | 0, 7, 64 | 1, 46, 72 | 10, 36, 65 | 58, 72, 80 |


| 53, 75, 82 | 33, 61, 68 | 16, 54, 73 | 29, 81, 83 | 25, 44, 55 |
| :---: | :---: | :---: | :---: | :---: |
| 1, 77 | 12, | 0, | 7, | 39 |
| 6, | 0, | 3 , | 39, | 45, 59, 79 |
| 6, 1 | 0, | 12 | 7, |  |
| 5 , | 3, 44, 82 | 46 | 35, 47, 65 |  |
| 41 | 2, 2 | 33, | 4, |  |
| 14 | 5 , | 2 | 4 |  |
| 4, 18 | 12 | 28, | 0, |  |
| 24 | 22 |  | 2, 69, 81 |  |
| 20, | 1, |  | 31, | 30, 37, 59 |
| 38 | 32 | 8, 19, 26 | 21, 47, 63 | 20, 28, 35 |
| 5, | 37 | 41, 55, 59 | 43, |  |
| 41 | 2 , | 8, 12, 68 | 12, |  |
| 18 | 25 | 9, | 24, | 31 |
|  | 32, | 13 | 8, |  |
| 18, 33, 70 | 2, | 31, | 10, 48, 70 | 14, 35, 47 |
| 12 | 1, | 2, 3 | 1, 28, | 4, 14, 17 |
| 14, 29, 77 | 39, 42, | 26, 36, 73 | 16, 19, | 29 |
| 10, | 13, 40, | 40, 45, 77 | 15, 71, | 60 |
| 39, 53, 79 | 33, | 4, 54 | 54, 56, | 4, 7, 51 |
| 10, 35, 80 | 0, 43, 6 | 3, 50, 5 | 2, 5, 31 | 23 |
| 1, 20, | 50, 61, | 1, 6, 83 | 27, | 36, 55, 63 |
| 11, 46, 59 | 9, 16, 8 | 4, 23, 78 | 16, 19, | 12, 28, |
| 18, 21, 54 | 12, 42, 6 | 53, 56, 62 | 40, 54, 82 | 29, 45, |
| 17, 52, 84 | 64, 68, 77 | 25, 57, 66 | 1, 30, 77 | 11, 44, 76 |
| 1, 32, 78 | 55, 68, 71 | 7, 55, 64 | 16, 31, 57 | 1, 10, 33 |


| 63, 74, 77 | 21, 26, 82 | 23, 32, 59 | 16, 29, 75 | 9, 63, 82 |
| :---: | :---: | :---: | :---: | :---: |
| 8, | 6, | 30 | 13 | 8, 18, 61 |
| 12 | 23 |  |  | 6, 22, 75 |
| 0, 39, 78 |  | 3, 22, 61 | 27, 37, 62 |  |
| 10 |  | 25, 27, 59 |  |  |
| 34, 5 |  | 16 | 66, 74, 78 |  |
|  |  | 55 | 13, 26, 65 |  |
| 51, | 0 , | 9, | 12, 41, 68 |  |
| 55, 77, | 20 | 32 | 6 |  |
|  |  | 34 | 11, 31, 56 |  |
| 8 , | 12 | 7, 40, 60 | 9 | 4 |
| 71 | 4, |  | 0 |  |
| 7 , | 16 | 0, 14, 24 | 14, 28, 74 |  |
| 26 | 10 | 17 | 0 , | 14, 39, 76 |
| 17, 2 |  |  | 40, 44, 80 |  |
| 21, 5 | 8, | 5, | 7, | 16, 71, 77 |
| 31, | 31, | 24 | 7, 29, 72 |  |
|  | 23, | 16 | 41, 75, 79 | 2, |
| 29, 5 | 12, | 36 | 11 | 4, 9, 20 |
| 42, | 7, 47, 7 | 3, 26, | 34, 38, | 32 |
| 55, 58, | 16, 28, 43 | 49, 80, | 1, 76, | 9, |
| 6, 24, | 5, | 0, 76, 81 | 47, 56, 80 | 24, |
| 39, 58, | 30, 57, 72 | 17, 42, 46 | 34, 67, 75 | 2, 10, 52 |
| 40, 44, 70 | 15, 30, 64 | 3, 31, 80 | 25, 48, 5 | 3, 63, 7 |
| 37, 70, 80 | 3, 13, 41 | 11, 64, 66 | 24, 30, 80 | 66, 78, 81 |
| 15,34, 44 | 22, 43, 79 | 66, 68, 76 | 18, 71, 80 | 26, 30, 78 |


| 1, 12, 73 | 33, 58, 82 | 29, 43, 62 | 31, 43, 57 | 1, 40, 72 |
| :---: | :---: | :---: | :---: | :---: |
| 62, 65, 70 | 19, 35, | 11, 53, 63 | 15, 31, 47 | 23, 44, 74 |
| 19, | 38, | 2, | 19, 33, 37 |  |
| 1, 1 | 25, | 12, | 4, | 38 |
| 14 | 22 |  | 27, 39, 69 |  |
| 4, 1 | 7, | 39, | 5, | 56, 71, 82 |
| 12 | 17 | 11, 30, 57 | 55, 61, 79 |  |
| 59, 79, | 30, 51, | 0, 41, 5 | 41, | 4, 29, 34 |
| 23 | 11 | 27, 35, 75 | 36, 48, 80 |  |
| 3, 3 | 31, | 5, | 11, 22, | 36, |
| 6 , | 44 | 23 | 8, 54, 81 |  |
| 18 | 6 , | 57 | 11 |  |
| 36, 5 | 1, 9 | 9, | 64, 77, | 21 |
| 15, 21, 78 | 40, | 7, | 57 | 12, |
| 8, | 3 , | 18 | 14, 41, | 4, 12, 50 |
| 17, 70, 79 | 17, | 30, 35, 84 | 41, 73, | 0, |
| 11, | 41 | 20, 39, 45 | 11, 32, |  |
| 45, 73 | 8, 44, | 28, 59, 64 | 22, 41, 54 | 29, |
| 25, 37, 77 | 23, | 30, 52, | 0, 28, | 12, 15, 26 |
| 5 , | 3, 10, 58 | 2, 67, 80 | 9, 12, 62 | 39, |
| 0, | 36, | 14, 43, | 5, 8, 81 | 44 |
| 9, 18, | 37, 74, 79 | 7, 39, 46 | 26 | 38, |
| 33, 7 | 6, 68, | 36, 54, 75 | 38, 54, 74 | 7, |
| 22, 49, 81 | 52, 55, 7 | 3, 18, 69 | 46, 74, 79 | 15, 42, |
| 3, 36, 57 | 19, 39, 51 | 62, 64, 73 | 21, 53, 61 | 32, 34, 78 |
| 45, 52, 67 | 39, 50, 54 | 29, 63, 70 | 22, 41, 60 | 5, 10, 14 |


| 36, 74, 77 | 34, 54, 84 | 10, 42, 71 | 15, 40, 68 | 6, 45, 47 |
| :---: | :---: | :---: | :---: | :---: |
| 3, 29, 32 | 5, 10, 42 | 35, 46, 7 | 42, 46, 58 | 13, 47, 78 |
| 8, 17, 63 | 11, 2 | 1, | 12, 18, 40 | 3 |
| 33, 36, 46 | 25, | 3, | 18, 53, 73 | 28, 44, 68 |
| 1, |  | 5, 15, 43 |  | 2, 69, 83 |
| 0, 29, 36 | 20, | 15 | 1, 12, 79 | 15, 21, 39 |
| 55 | 49 | 31 | 7 | 6 |
| 16, 40 | 10, 21, 34 | 14, 23, | 15, 25, 34 | 4, 23, 39 |
| 35 | 21 | 7, 66, 69 | 7 | 66 |
| 49, 5 | 7, | 1, 1 | 20, 44, 48 | 1, 13, 71 |
|  | 20 | 22 | 6, 45, 68 | 8, 15, 72 |
| 3, 40 | 5 , | 47 | 34, | 7 |
| 25, 38, 7 | 46, |  | 20, 51, 79 | 21, 40, 80 |
| 5, |  | 29, | 31 | 1 |
| 38, 73, 7 | 16 | 20, | 10, 21, | 13, 46, 65 |
| 1, 5, | 3, 2 | 3, 1 | 7, 16, 54 | 11, 21, 54 |
| 8, 13, 28 | 2, | 10 | 10, | 5, 17, |
| 2, 17, 50 | 7, 62, | 4, 59, | 32, 60, 80 | 10, 66, 81 |
| 3 , | 16 | 7, 10, | 10, 39, 50 | 13, 17, 74 |
| 31, 61, 74 | 1, | 55, 73, | 4, 41, 43 | 2, 12, 43 |
| 9, 30, 37 | 3 , | 7, 19, 3 | 28, 40, 75 | 17, 25, 56 |
| 14, 25, | 8, 17, 74 | 20, 27, 78 | 36, 42, 76 | 26, 40, 62 |
| 15, 48, 82 | 10, 39, | 2, 22, 27 | 12, 19, 70 | 16, 40, 60 |
| 15, 53, 80 | 19, 24, 55 | 11, 42, 55 | 16, 45, 56 | 19, 28, 73 |
| 5, 20, 83 | 4, 18, 59 | 0, 62, 82 | 39, 51, 6 | 9, 12, 61 |
| 19, 40, 67 | 32, 59, 73 | 13, 18, 39 | 13, 20, 26 | 7, 47, 73 |


| 9, 22, 52 | 29, 51, 74 | 26, 67, 72 | 55, 71, 75 | 29, 36, 66 |
| :---: | :---: | :---: | :---: | :---: |
| 28, 63, 70 | 34, 40, 74 | 0, 65, | 49, 52, 84 | 18, |
| 41, | 22, 30, 73 | 14 | 1 | 31, 56, 82 |
| 0, 33 | 38, | 16, | 1, | 13 |
| 45 | 48 | 32 | 67, 70, 74 |  |
| 34, 5 |  | 7, | 9, 3 | 34, |
| 0, 62, 83 | 12 | 28 | 21, 27, 58 |  |
| 18, 3 | 72, 76, 79 | 19, | 4, 31, |  |
|  |  | 19 | 25, 63, 65 |  |
| 6, |  | 16, | 17, 21, 64 |  |
| 4, | 45 | 0, 4, 19 | 2 |  |
| 0,1 | 53 | 29, | 58, |  |
| 3 , | 2, 5 | 3, 5 | 28, 48, 52 |  |
| 2, 2 |  | 10 | 10, 49, 72 | , 37 |
| 18 | 0 , | 26, | 17, 69, 82 | 22, 71, 78 |
| 3, 27, 51 | 26, | 38, | 34, 55, 80 | 26, 32, 54 |
| 14, 5 | 29, | 45, | 8, | 30, 62, 72 |
| 26, 49, 62 | 23, 58, | 8, 24, 33 | 60, 67, 75 | 4, 19, 3 |
| 33, 5 |  | 56 | 5, | 29, |
| 4, 24, 62 | 15, | 9, 29, 68 | 54, 63, 84 | 6 , |
| 19, 5 | 27, 30, 45 | 29, 33, | 13 | 5, 56, 71 |
| 20, 51, 7 | 9, 48, 84 | 24, 72, 79 | 19, 34, 56 | 21, |
| 10, 52, 5 | 13, 40, 72 | 32, 46, 68 | 22, 50, | 9, 31, |
| 27, 37, 53 | 22, 62, 68 | 2, 4, 61 | 30, 44, 84 | 2, 66, 7 |
| 18, 66, 78 | 24, 63, 67 | 13, 64, 70 | 8, 30, 49 | 2, 30, 32 |
| 11, 36, 72 | 33, 40, 51 | 56, 64, 66 | 2, 21, 34 | 1, 20, 31 |


| 14, 27, 46 | 37, 50, 81 | 40, 47, 67 | 25, 37, 59 | 3, 16, 24 |
| :---: | :---: | :---: | :---: | :---: |
| 2, 47, 58 | 21, 27, 48 | 18, 49, 65 | 35, 37, 45 | 15, 63, 69 |
| 9, | 5, | 11 | 14, 24, 44 | 82 |
| 27, 52, | 13, 67, 7 | 17, 29, 62 | 3, 31, 45 | 25, 36, 81 |
| 27, | 49, | 2, | 20, 32, 40 | 13, 26, 62 |
| 3, 33, 49 | 2, 7 | 16, 2 | 22, 53, 80 | 21, 27, 62 |
| 35, | 24, | 2, 62,76 | , | , |
| 24, 35 | 18, | 10, 51, 60 | 25, 35, 46 | 4, 22, 47 |
|  |  | 55 | 19, 71, 80 |  |
| 67, 7 | 21, | 20, 24, | 0, 46, | 71 |
|  | 1, |  | 3 | 5 |
| 1, 3 | 8, | 0, 59, 78 | 24, | 8, 32, 53 |
| 33 |  |  |  |  |
| 32, | 31, | 18, | 56, 59, 70 | 12, 4 , |
| 29, 3 | 14 | 27, 53, | 1, 46, | 53, |
| 28, 54 | 48, | 49, 52 | 19, 65, 80 | 50, 66, 71 |
| 46, 6 | 18 | 17, 54, 69 | 16, 70, 76 | 10, 14, 64 |
| 7, 12, 5 | 24, 65, 72 | 22, 50, 59 | 37, 60, 79 | 45, 54, 57 |
| 69, 72, 78 | 0, 72, | 7, 9, 27 | 60, 64, 72 | 16, |
| 16, 46, 79 | 2, 61, 81 | 6, 39, 66 | 3, 28, 39 | 13, 16, 59 |
| 26, 33, 55 | 36, 38, 68 | 11, 13, 7 | 4, 37, 5 | 12 |
| 4, 28 | 8, 21, 84 | 16, | 23, 61, 68 | 43, 69, 78 |
| 20, 35, 43 | 0, 14, 71 | 23, 60, 64 | 14, 42, | 0, 27, 72 |
| 29, 50, 58 | 20, 55, 60 | 1, 11, 78 | 41, 49, 83 | 2, 10, 60 |
| 14, 30, 59 | 3, 24, 56 | 26, 53, 61 | 30, 36, 82 | 44, 55, 76 |
| 18, 39, 59 | 28, 37, 67 | 23, 51, 53 | 24, 35, 61 | 5, 49, 82 |


| 3, 37, 66 | 30, 66, 73 | 21, 51, 55 | 32, 54, 63 | 7, 10, 54 |
| :---: | :---: | :---: | :---: | :---: |
| 11, 17, 23 | 34, 38, 80 | 49, 57, 78 | 24, 45, 80 | 50, 68, 70 |
| 19, | 11, 41, 80 | 17 | 49, 62, 76 | 43, 61, 84 |
| 4, 10 | 0, 9 | 3, | 44, 50, 78 | 42, 70, 73 |
| 18 | 28 | 19 | 39, 57, 76 | 9 |
| 1, 46 | 24, 26, 3 | 1, | 0, 20, 33 | 15, 22, 51 |
| 53, | 17 | 31, 37, 41 | 0 | 4, 32, 57 |
| 36, 6 | 35, 72, 78 | 17, | 13, 29, 33 | $6,65,75$ |
| 35 |  | 10, 12, 45 | 57, 70, 72 | 14, 68, 80 |
| 1, 33 | 2, 40 | 8, | 1, 35, 84 | 20, 25, 32 |
| 2, |  | 7, 32, 83 | 5, 7, 41 | 29, 37, 82 |
| 11, 5 | 22 | 0 , | 7 , | 0, 31, 70 |
| 40, |  | 27 | 17, 39, 60 | 51 |
| 6, 20, 75 |  | 43 | 35, 69, 71 | 48, 52, 74 |
| 8, | 5 , | 12, | 28, 59, 78 | 5, |
| 17, 36, 70 | 41, 45 | 33, 53, | 8, 55, 70 | 2, 13, 79 |
| 4, 12, 5 | 43, | 0 , | 8, 67, 73 | 51, |
| 2, 17, 43 | 39, | 17, 19, | 11, 40, 47 | 12, 21, 69 |
| 23, 44, 66 | 23, | 1, 19, | 34, 49, 71 | 28, |
| 13, 2 | 27, 40, | 58, 64, | 17, 46, 68 | 5, 36, 79 |
| 12, 44, 71 | 18, 27, 42 | 28, 47, | 18, 29, 76 | 1, 54, 61 |
| 1, 14, 54 | 5, 25, 38 | 64, 73, | 11, 36, 41 | 2, 25, |
| 44, 68, 7 | 13, 43, | 7, 20, | 32, 56, 60 | 39, 49, 76 |
| 21, 35, 50 | 32, 51, 77 | 5, 13, 64 | 9, 21, 45 | 24, 29, 66 |
| 4, 16, 55 | 41, 50, 63 | 44, 72, 82 | 43, 56, 74 | 10, 20, 30 |
| 4, 51, 84 | 0, 25, 73 | 0, 33, 49 | 3, 54, 76 | 12, 31, 38 |


| 3, 30, 68 | 29, 63, 83 | 19, 23, 34 | 9, 38, 68 | 31, 39, 69 |
| :---: | :---: | :---: | :---: | :---: |
| 33, 38, 46 | 40, 71, 81 | 49, 64, 77 | 1, 13, 84 | 44, 56, 79 |
| 26, 2 | 12, | 1, 49, | 40, | 40, 55, 78 |
| 26, 42, 58 | 2, 6, 37 | 22, 36, 63 | 20, 30, 42 | 9, 14, 70 |
| 11, | 5, | 35 | 9, | 2, 66, 74 |
| 7, 27, 77 | 1, 41, 57 | 21, 79, | 47, 70, 82 | 9, 13, 78 |
| 17, | 42 | 11 | 66, 76, 79 | 2, |
| 17, 23, 72 | 10, 70, 8 | 8, 29, 40 | 32, 76, 83 | $6,12,81$ |
| 4, 63 | 22, | 11, | 13, | 2, 20, 46 |
| 32, 39, 6 | 0, 51, 81 | 5, 34, 46 | $6,13,55$ | 19, 28, 56 |
| 18, | 37, | 5, | 58, 66, 70 | 15, 31, 65 |
| 36, 62 | 23, 31 | 5, 79, 83 | 4, 35, | 13, 16, 66 |
| 2, | 12 | 17 | 1, 8, 82 | 20, 22, 42 |
| 60, 67, 7 | 20, 6 | 41, 55, | 10, 22, 48 | 28, 43, 66 |
| 15, 19 | 27 | 11, 15 | 11, 13, 47 | 38, |
| 22, 33, 5 | 28, 34, 5 | 1, 15, 49 | 9, 11, 58 | 48, 57, 64 |
| 21, 3 | 43 | 8, | 8, | 0, 50, 60 |
| 21, 42, 8 | 8, 64, 80 | 29, 69, | 48, 53, 57 | 1, 42, 56 |
| 21, 39, 7 | 2, 13 | 17 | 61, 65, 75 | 64, 68, |
| 8, 23, | 5, 12, 20 | 2, 41, 77 | 24, 59, 63 | 5, 21, |
| 1, 25 | 28, 57, | 21, 33, | 17, 26, | 5, 70, 78 |
| 2, 27, 57 | 42, 75, 8 | 19, 42, 58 | 41, 59, 82 | 7, 20, |
| 37, 45, 8 | 15, 35, 7 | 24, 34, 71 | 39, 60, 74 | 18, 58, 77 |
| 33, 46, 51 | 13, 59, 68 | 12, 77, 83 | 6, 18, 44 | 31, 44, 54 |
| 70, 75, 83 | 14, 28, 56 | 34, 60, 62 | 7, 19, 48 | 8, 23, 80 |
| 37, 76, 83 | 6, 18, 56 | 7, 38, 61 | 19, 62, 68 | 13, 46, 52 |


| 16, 50, 55 | 12, 25, 52 | 22, 29, 77 | 25, 45, 54 | 2, 4, 58 |
| :---: | :---: | :---: | :---: | :---: |
| 5, 31, 66 | 13, 27, 48 | 12, 25, 32 | 26, 38, 54 | 19, 29, 43 |
| 10, | 18 | 19, | 24, 39, 51 | 1 |
| 18, 44, 47 | 3, 23, 59 | 33, 41, | 15, 23, 80 | 11, 35, 71 |
| 15, | 48 | 27 | 43 | 0 |
| 0, 4, 55 | 0, 3, 22 | 39, | 26, 36, 42 | 11, 27, 73 |
| 18, 5 | 15 | 35 | 22, 31, | 12, 20, 60 |
| 35, 42, 82 | 59, 75, | 15, 30, 50 | 8, 27, 34 | 15, 39, 55 |
| 6 , | 2, | 6, 67, 78 | 17, 50, 79 | 3 |
| 66, 75, 77 | 36, | 61, 6 | 8, 16, 48 | 6, 8, 49 |
| 37, 48 | 25, | 9, | 32 | 6, 8, 41 |
| 0, 6 | 13 | 25, | 7, 18, 37 | 82 |
| 16, | 22 | 32, 55, | 9, 51, 75 | 71 |
| 8, 36 | 7, 43 | 3, 53 | 4, 11, 14 | 28, 36, 55 |
| 26, 41, 76 | 6, 22, | 26, 70, | 38, 42, 66 | 10, 52, 74 |
| 7, 15, 39 | 10, 24, | 2, 17, 31 | 20, 36, 47 | 5, 7, |
| 32, 68, 70 | 51, 61, 74 | 40, 74, 7 | 2, 28, 49 | 15, 54, 67 |
| 7, 50, 57 | 4, 18, | 5, 29, 40 | 4, 37, 83 | 3, 7, 48 |
| 7, 52, | 42, | 6, 77, 79 | 3, 5, 78 | 13, 47, 75 |
| 46, 52, 73 | 29, 31, | 14, 66, 68 | 3, 10, 79 | 25, 33, 67 |
| 47, 51, 72 | 37, 61, 6 | 1, 29, | 20, 27, | 50, 57, 80 |
| 54, 57, | 0, 27, 52 | 42, 49, | 34, 69, 78 | 41, 65, 69 |
| 1,57, 6 | 27, 61, 7 | 30, 69, 73 | 26, 69, 79 | 5, 13, 25 |
| 16, 25, 49 | 40, 52, 78 | 20, 52, 71 | 21, 68, 79 | 8, 42, 57 |
| 15, 33, 59 | 56, 69, 77 | 2, 6, 52 | 5, 51, 60 | 1, 9, 22 |
| 20, 59, 67 | 21, 23, 31 | 5, 53, 78 | 18, 26, 34 | 12, 32, 35 |


| 0, 23, 64 | 17, 67, 78 | 9, 56, 80 | 0, 53, 59 | 9, 38, 76 |
| :---: | :---: | :---: | :---: | :---: |
| 40, 52, 72 | 44, 74, 79 | 10, 31, | 18, 34, 39 | 17, 61, 67 |
| 34 | 43 | 19 | 8 |  |
| 21, | 54, | 0 , | 13, 72, 83 |  |
| 54 | 25 | 39 | 19, 32, 78 |  |
| 23, 5 | 15, | 15, | 15, 36, 54 |  |
|  |  | 66 | 2 |  |
| 36, 4 | 53, 69, 79 | 10, 22, | 20, 25, 47 | 2, 71, 79 |
| 5, 32, 46 | 10 | 8, 12, 78 |  |  |
| 37 | 1, | 27 | 6, 11, 15 |  |
|  | 4, 32, 63 | 8, 20, 59 | 1, 68, 79 |  |
| 19, |  |  | 23 |  |
| 10, | 33, | 18 | 10, 60, 79 |  |
| 12 | 33 |  | 19, 30, 56 |  |
|  | 13 | 22, |  |  |
| 46, |  | 25, | 14, 16, 80 |  |
| 12, | 25 | 3 , | 23, 39, 65 |  |
| 15, | 38, | 11, 43, | 4, 10, 81 | 45 |
| 56 | 18 | 10, | 9, |  |
| 15, | 3, 6, 40 | 14, 20, 32 | 47, 59, 71 | 8 , |
| 36, 41 | 2, 39, | 30, 52, 71 | 47, 55, 81 | 12, 22, 36 |
| 5, 33, 35 | 26, 41, 46 | 26, 76, 8 | 30, 60, 66 | 14 |
| $6,11,6$ | 12, 52 | 7, 43, | 38, 56, 66 | 10, |
| 12, 66, 84 | 34, 59, 82 | $3,12,21$ | 35, 68, 79 | 29, 64, 7 |
| 16, 36, 64 | 6, 20, 70 | 3, 9, 25 | 26, 59, 66 | 9, 33, 64 |
| 42, 55, 83 | 25, 55, 67 | 2, 24, 64 | 9, 37, 39 | 27, 54, 65 |


| 9, 57, 84 | 10, 28, 66 | 14, 52, 62 | 22, 41, 60 | 75, 78, 80 |
| :---: | :---: | :---: | :---: | :---: |
| 28, 44, 70 | 38, 51, 76 | 4, 11, 54 | 35, 48, 68 | 40, 77, 80 |
| 4, 31, | 10, 73, 80 | 28 | 45, 67, 72 | 4, 50, 57 |
| 26, 37, | 38, 41, 47 | 43, 51 | 28, 60, 75 | 26, 32, 69 |
| 60 | 29 | 16, 72, 77 | 16 | , |
| 20, 3 | 16, 23, 76 | 28, | 14, 17, 53 | 9, 18, 28 |
| 32, | 8, | -30, 6 | 0, | 20, 24, 74 |
| 36, 6 | 17, 20, 41 | 22, 28, | 5, 35, 74 | 32, 43, 76 |
| 1, 16, 38 | 20 | 22 | 5, 69, 75 | 28, 36, 83 |
| 9, 4 | 28 | 55, 70, | 5, 42, 49 | 23, 47, 78 |
| 25 |  |  | 0, 41, 67 |  |
| 22, 2 | 14 | 29, | 5, 33, | 7, 53, 59 |
|  |  | 14, | 14, 57, 78 | 67 |
| 11, |  | 25, | 5, 11, 27 | 72 |
| 22, |  | 28, | 42, 61, 80 | 11, 64, 75 |
| 21, | 12, 79, | 18, 34, | 35, 62, 64 | 30, 53, 66 |
| 65 | 19 | 31, 63, | 22, 34, | 1, 70, |
| 19, | 15, 28, 6 | 11, | 7, 28, 77 | 23, 42, 71 |
| 35, 3 | 1, 5 | 14, 26, | 38, 42, 52 | 40, 48 |
| 43, | 23, | 15, | 57, 62, 82 | 39, 47, 79 |
| 14, 29, 67 | 39, | 10, 43, | 2, 14, 40 | 2, 20, 53 |
| 51, | 53, 60, 72 | 12, 26, | 14, 39, 72 | 24, 50, 69 |
| 19, 44, 59 | 3, 12, 42 | 39, 6 | 37, 42, | 2, 21, 44 |
| 19, 72, 81 | 32, 47, 72 | 20, 36, 81 | 19, 38, 83 | 37, 61, 64 |
| 11, 16, 45 | 39, 68, 81 | 4, 9, 15 | 25, 62, 74 | 38, 48, 59 |
| 47, 56, 68 | 12, 34, 39 | 10, 69, 75 | 10, 18, 53 | 7, 51, 59 |


| 25, 68, 78 | 53, 81, 84 | 7, 60, 82 | 1, 65, 67 | 6, 27, 81 |
| :---: | :---: | :---: | :---: | :---: |
| 26, 28, 37 | 10, 43, 55 | 30, 57, 60 | 51, 64, 84 | 1, 19, 64 |
| 12, | 25 | 27 | $6,46,54$ | 3 |
| 11, |  | 0, 29, 79 | 35, 46, 78 | 43, 65, 74 |
| 11, | 4, | 21 | , | , |
| 49, 5 | 10, 2 | 31, | 17, | 12, 41, 47 |
| 24 |  | 29 | 1, 21, 58 |  |
| 50, 73, 8 | 18, 22, | 20, 34, 74 | 27, 31, 70 | 3, 17, 59 |
|  | 31 | 12 |  | 5 |
| 6,20 | 23, | 20, 49, | 42, 64, 79 | 11, 14, 19 |
| 18, | 17 | 36 | 9, 69, 73 |  |
| 6, 10 | 13 | 14, | 9, 17 , | 8 |
| 15 |  |  | 31 |  |
| 45, |  | 26, 52, | 41, 56, 70 | 29 |
| 13 | 6 , | 21, 40, | 3, | 24, 34, 83 |
| 8, 14, 5 | 15, 33, | 10, 37, | 41, 45, 69 | 4, 33, 40 |
| 32, 34, | 3, 17, 28 | 27, 29, | 1, 48, | 22, 28 |
| 26, | 33, 42, 7 | 32, 45, | 19, 29, 75 | 41, |
| 65, 73, | 4, 8 | $6,16,5$ | 7, 33, | 21, 23, |
| 29,52, 80 | 76, 78, | 43, 49, | 20, 35, 53 | 16, 30, 42 |
| 9, 23, | 13, 31, | 11, 42, | 32, 41, | 39, 71, |
| 19, 40, | 1, 42, 74 | 7, 48, 81 | 30, 39, | 24, 48, |
| 13, 28, 51 | 15, 27, | 5, 26, 30 | 26,56, 72 | 2, 13, |
| 55, 61, 82 | 32, 44, 52 | 11, 39, 45 | 22, 50, 66 | 8, 46, 61 |
| 3, 46, 53 | 7, 34, 63 | 73, 77, 82 | 13, 39, 52 | 36, 67, 68 |
| 25, 45, 50 | 34, 55, 57 | 1, 4, 7 | 24, 26, 28 | 33, 36, 74 |


| 18, 50, 62 | 13, 61, 70 | 36, 40, 42 | 35, 40, 56 | 1, 16, 24 |
| :---: | :---: | :---: | :---: | :---: |
| 16, 20, 22 | 55, 57, 75 | 12, 24, | 56, 63, | 29, 51, 80 |
| 21, 56, 62 | 15, 43, 51 | 11, 16, 2 | 9, 12, 24 | 7, 11, 58 |
| 12, 28, | 18, | 7, | 3, 33, | 7, 34, 60 |
| 8 , | 57 | 3, 28, 81 | 6 | 9 |
| 24, 3 | 18, | 17 | 34, 42, 69 | 11, 32, 69 |
| 34, | 23 | 23 | 10, 39 | 56 |
| 9, 31, 36 | 40, | 27 | 72, 80, 82 | 38, 40, 50 |
| 9, | 23 | 10 | 9 | 16, 18, 75 |
| 2, 4, 42 | 60, 74, 76 | 13, 50, | 52, 61, 79 | 0, 57, 69 |
| 10 | 5 , | 8, 15, 66 | 33, 42, 78 | 1, 31, 37 |
| 13, 1 | 25 | 35, | 4, 44, 69 | 52, 61, 81 |
| 10, |  | 4, | 29, 48, 61 | 23, 58, 63 |
| 11, | 7 , | 11, | 9, 2 | 30, 33, 74 |
| 24, | 23, 27, 77 | 7 , | 14, 21, 73 | 29, 35, 79 |
| 42, 5 | 0 , | 4, 13, | 6 , | 52, 57, 65 |
| 49, 74, 8 | 5, 54, 79 | 17, | 45, 51, | 14, |
| 40, 5 | 37, 39, | 7, 37, 46 | 21, 50, 72 | 18, 32, 51 |
| 50, 53, | 0, 57, | 10, 24, | 41, | 7, 37 |
| 20, 29, 72 | 5, 70, 72 | 11, | 47, | 7, 23, 33 |
| 5, 19, 82 | 8, 16, 21 | 77, | 30, 39, 75 | 21, 39, |
| 48, 62, | 8, 39, 70 | 10, 17, | 31, 54, 58 | 13, 41, |
| 25, 30, 76 | 3, 19, 50 | 6, 15, | 19, 30, 53 | 28, 41, 79 |
| 30, 34, 63 | 1, 3, 40 | 7, 23, 67 | 35, 51, 6 | 1, 27, 55 |
| 2, 8, 35 | 42, 68, 74 | 39, 64, 82 | 15, 50, 68 | 11, 34, 73 |
| 23, 48, 69 | 23, 55, 66 | 31, 60, 71 | 18, 43, 50 | 5, 66, 80 |


| 22, 40, 83 | 9, 17, 55 | 1, 23, 70 | 14, 49, 68 | 17, 62, 80 |
| :---: | :---: | :---: | :---: | :---: |
| 26, 65, 81 | 0, 40, 50 | 33, 64, 74 | 7, 11, 65 | 6, 34, 47 |
| 31, 46, 72 | 1, 13, 73 | 19, 48, 68 | 8, 39, 59 | 7, 33, 45 |
| 6, 32, 76 | 48, 66, 69 | 38, 51, 83 | 5, 44, 60 | 15, 17, 64 |
| 44, 54, 59 | 46, 55, 82 | 34, 39, 68 | 50, 76, 84 | 18, 27, 83 |
| 10, 20, 38 | 31, 53, 79 | 2, 72, 74 | 43, 68, 71 | 13, 56, 76 |
| 1, 47, 68 | 32, 35, 48 | 15, 52, 58 | 23, 27, 74 | 36, 40, 43 |
| 24, 31, 43 | 18, 56, 75 | 37, 43, 53 | 46, 62, 78 | 4, 70, 81 |
| 25, 58, 84 | 18, 41, 48 | 32, 34, 58 | 0, 18, 20 | 5, 9, 41 |
| 14, 30, 43 | 59, 74, 82 | 36, 60, 84 | 7, 22, 31 | 13, 20, 40 |
| 42, 60, 82 | 17, 60, 65 | 19, 33, 84 | 6, 27, 36 | 26, 36, 75 |
| 13, 33, 56 | 21, 47, 79 | 35, 53, 67 | 12, 27, 59 | 17, 42, 51 |
| 20, 69, 77 | 42, 51, 62 | 21, 34, 77 | 16, 68, 81 | 1, 23, 43 |
| 61, 76, 80 | 24, 45, 60 | 26, 47, 53 | 6, 21, 30 | 1, 5, 74 |
| 3, 46, 57 | 14, 49, 61 | 30, 75, 77 | 11, 53, 81 | 9, 22, 83 |
| 8, 38, 71 | 0, 15, 77 | 19, 27, 66 | 21, 37, 71 | 2, 62, 71 |
| 7, 20, 84 | 27, 60, 81 | 16, 39, 78 | 27, 58, 64 | 18, 46, 54 |
| 29, 42, 76 | 14, 48, 58 | 4, 66, 79 | 7, 68, 76 | 6, 26, 64 |
| 28, 52, 66 | 43, 53, 82 | 34, 66, 72 | 14, 59, 79 | 12, 68, 81 |
| 3, 23, 32 | 5, 30, 58 | 29, 33, 38 | 31, 59, 66 | 0, 12, 83 |
| 8, 52, 78 | 18, 31, 72 | 2, 42, 48 | 4, 27, 36 | 30, 54, 70 |
| 44, 58, 81 | 18, 22, 64 | 6, 38, 84 | 3, 13, 84 | 13, 24, 53 |

## B. 2 A Hill Climbing Algorithm

```
import java.util.Arrays;
/**
* Hill climbing algorithm to find a specified
* triple system.
*
* @author Katherine Perry
* Qversion 01-27-2014
*/
public class FindTriplesJune2016 {
    /**
    * Uses a hill climbing algorithm on a given adjacency matrix
    * to find a desired triple system, where each pair of non-
    * contiguous points in a 2-dimensional array are in exactly
    * 3 triples.
    *
    * @param args Command line arguments (not used).
    */
    public static void main(String[] args) {
    // creates variables including adjacency matrix and array to store triples
        int[] [] adjacencyMatrix = new int[85] [85];
        int [] [] triples = new int [3400] [3];
        int tripleNum = 0;
```

```
    int total = 0;
    String s = "\\";
    String ss = s+s;
// Builds adjacency matrix: puts 3 edges between noncontiguous pairs of
// points and O edges between 2-contiguous pairs and eliminates loops
for (int row = 0; row < adjacencyMatrix.length; row++)
    for (int col = 0; col < adjacencyMatrix[row].length; col++)
        if (row == col) {
            adjacencyMatrix[row][col] = 0;
        }
        else if (row == (col + 1)) {
            adjacencyMatrix[row][col] = 0;
        }
        else if (row == (col - 1)) {
            adjacencyMatrix[row][col] = 0;
        }
        else {
            adjacencyMatrix[row][col] = 3;
            adjacencyMatrix[row][(row + 17) % 85] = 0;
            adjacencyMatrix[row][(row + 68) % 85] = 0;
        }
//corrections
adjacencyMatrix[0][16] = 0;
adjacencyMatrix[16][0] = 0;
adjacencyMatrix[16][17] = 3;
```

```
adjacencyMatrix[17][16] = 3;
adjacencyMatrix[17][33] = 0;
adjacencyMatrix[33][34] = 3;
adjacencyMatrix[33][17] = 0;
adjacencyMatrix[34][33] = 3;
adjacencyMatrix[34][50] = 0;
adjacencyMatrix[50][51] = 3;
adjacencyMatrix[50][34] = 0;
adjacencyMatrix[51][50] = 3;
adjacencyMatrix[51][67] = 0;
adjacencyMatrix[67] [68] = 3;
adjacencyMatrix[67][51] = 0;
adjacencyMatrix[68][67] = 3;
adjacencyMatrix[68] [84] = 0;
adjacencyMatrix[84] [68] = 0;
//builds array to store triples. defaults all values to 0.
for (int row = 0; row < triples.length; row++)
    for (int col = 0; col < triples[row].length; col++)
        triples[row] [col] = 0;
//Checks to see if every entry in the triples matrix has been
//filled. If it hasn't, program continues hill climbing algorithm. If it
//If it has, program prints out set of triples.
while ((triples[3399][0] == 0) && (triples[3399][1] == 0)) {
    // *** HILL CLIMBING ALGORITHM ****
```

```
Random generator = new Random();
int v1, v2, v3;
v1 = generator.nextInt(85);
v2 = generator.nextInt(85);
v3 = generator.nextInt(85);
boolean replaced = false;
int specialTriple, numToReplace;
//Checks to see if edges between v1 and other two vertices still exist
//If they do, either the triple is added, or one triple is deleted and
//then the triple is added
if ((adjacencyMatrix[v1][v2] > 0) && (adjacencyMatrix[v1][v3] > 0)) {
//if all necessary edges exist, program adds triple to array of
        triples
    //and decreases each corresponding entry in adjacency matrix by 1.
    if (adjacencyMatrix[v2][v3] > 0) {
        //enters triple in array of triples
        triples[tripleNum][0] = v1;
        triples[tripleNum][1] = v2;
        triples[tripleNum] [2] = v3;
        //adjusts adjacency matrix
        adjacencyMatrix[v1][v2]--;
        adjacencyMatrix[v1][v3]--;
```

```
    adjacencyMatrix[v2][v1]--;
    adjacencyMatrix[v2][v3]-- ;
    adjacencyMatrix[v3][v1]--;
    adjacencyMatrix[v3][v2]--;
    //increases number to enter next triple in
    tripleNum++;
    total++;
}
else {
//searches for first triple containing the edge between v2 and v3
//replaces that triple with v1, v2, v3.
    for (int row = 0; row < tripleNum; row++)
        if ((replaced == false) &&
                ((triples[row][0] == v2 && triples[row][1] == v3) ||
                (triples[row][1] == v2 && triples[row] [2] == v3) ||
                (triples[row] [0] == v3 && triples[row][1] == v2) ||
                (triples[row][1] == v3 && triples[row] [2] == v2) ||
                (triples[row] [0] == v2 && triples[row] [2] == v3) ||
                (triples[row] [2] == v2 && triples[row] [0] == v3))) {
                specialTriple = row;
            //finds third number in first triple containing the edge
            //between v2 and v3.
```

```
for (int colu = 0; colu < triples[row].length; colu++)
    if (triples[specialTriple][colu] != v2 &&
        triples[specialTriple][colu] != v3) {
        numToReplace = triples[specialTriple][colu];
        //replaces first triple with triple with edge between v2
        and v3
        triples[specialTriple][0] = v1;
        triples[specialTriple][1] = v2;
        triples[specialTriple][2] = v3;
        //adjusts adjacency matrix
        adjacencyMatrix[v1][v2]--;
        adjacencyMatrix[v1][v3]--;
        adjacencyMatrix[v2][v1]--;
        adjacencyMatrix[v3][v1]--;
        adjacencyMatrix[numToReplace][v2]++;
        adjacencyMatrix[numToReplace][v3]++;
        adjacencyMatrix[v2] [numToReplace]++;
        adjacencyMatrix[v3] [numToReplace]++;
        total++;
    //ends if statement
    replaced = true;
}
```

```
                }
            }
    }
}
//orders triples in triple matrix
for (int row = 0; row < triples.length; row++) {
    Arrays.sort(triples[row]);
}
    //print triples matrix
for (int row = 0; row < (triples.length - 4); row += 5) {
```

    System.out.print(triples[row] [0] + ",\t" + triples[row][1]
    + ",\t" + triples[row][2] + "\& \t\t"
    + triples[row+1][0] + ", \t" + triples[row+1][1] + ",\t"
    + triples[row+1][2] + "\& \t\t"
    + triples[row+2][0] + ", \t" + triples[row+2][1] + ", \t"
    + triples[row+2] [2] + "\& \t\t"
    + triples[row+3][0] + ", \t" + triples[row+3][1] + ",\t"
    + triples[row+3][2] + "\& \t\t"
    + triples[row+4][0] + ",\t" + triples[row+4][1] + ",\t"
    + triples[row+4][2] + ss + "\t" + "\\hline" );
    System.out.println(); \}

System.out.println("Total Number of Triple Tries $=$ " + total); \}
\}

