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Abstract

This dissertation focuses on two problems, the first involving the existence of many edge-

disjoint rainbow spanning trees in edge-colored complete graphs, and the second, creating a

balanced sampling plan for a two-dimensional array, excluding contiguous units.

A spanning tree of a properly edge-colored complete graph, Kn, is rainbow provided that

no two different edges in the tree bear the same color. In 1996, Brualdi and Hollingsworth

conjectured that if K2m is properly (2m − 1)-edge-colored, then the edges of K2m can

be partitioned into m rainbow spanning trees except when m = 2. The existence of

bm/(500 log(2m))c mutually edge-disjoint spanning trees in the case that m ≥ 500, 000

was recently proved using probabilistic techniques. By means of an explicit, constructive

approach, we construct b
√

6m+ 9/3c mutually edge-disjoint rainbow spanning trees for any

positive value of m. Not only are the rainbow trees produced, but also some structure of each

rainbow spanning tree is determined in the process. This improves upon best constructive

result to date in the literature which produces exactly three rainbow trees. It also improves

upon the probabilistic result for all m at most 5.7× 107.

Balanced sampling plans excluding contiguous units (BSECs) were first introduced by

Hedayat, Rao, and Stufken in 1988. The idea of generalizing this definition to two dimen-

sions was first formalized by Bryant, Chang, Rodger, and Wei in 2002 where the case for

block size 3 and λ = 1 (the number of blocks each pair of points appears in together) was

completely solved. These designs are useful for items arranged in a two-dimensional array

where contiguous units provide similar information. In this dissertation, a complete solution

for the existence of two-dimensional BSECs with block size 3 and λ = 3 is provided.
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Chapter 1

Introduction

This dissertation focuses on two problems, the first involving the existence of many edge-

disjoint rainbow spanning trees in edge-colored complete graphs, and the second, creating

a balanced sampling plan for a two-dimensional array, excluding contiguous units. Each

problem will be introduced in turn in Chapter 1. Chapter 2 will focus on the first problem

and the second problem will be the subject of Chapter 3. In Chapter 4 a discussion of open

problems related to each is provided.

1.1 Rainbow Spanning Trees in Edge-Colored Complete Graphs

A spanning tree T of a graph G is an acyclic connected subgraph of G for which V (T ) =

V (G). A proper k-edge-coloring of a graph G is a mapping from E(G) into a set of colors,

{1, 2, ..., k}, such that adjacent edges of G receive distinct colors. Since all edge-colorings

considered in this dissertation are proper, if G has a proper k-edge-coloring, then G is said

to be k-edge-colored. The chromatic index χ′(G) of a graph G is the minimum number k

such that G is k-edge-colorable. It is well known that χ′(K2m) = 2m− 1 and thus, if K2m is

properly (2m− 1)-edge-colored, each color appears on exactly one edge at each vertex.

A subgraph in an edge-colored graph is said to be rainbow (sometimes called multicol-

ored or poly-chromatic) if its edges receive distinct colors. It is not hard to see that with

any (2m − 1)-edge-coloring of K2m, a rainbow spanning tree can be found by taking the

spanning star, Sv, with any center v ∈ V (K2m). Further, K2m has m(2m − 1) edges and it

is well known that these edges can be partitioned into m spanning trees. This led Brualdi

and Hollingsworth [4] to make the following conjecture in 1996.
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Conjecture 1.1 ([4]). If K2m is (2m− 1)-edge-colored, then the edges of K2m can be parti-

tioned into m rainbow spanning trees except when m = 2.

Based on Brualdi and Hollingsworth’s concept, Constantine [8] proposed two related

conjectures in 2002.

Conjecture 1.2 ([8], Weak version). K2m can be edge-colored with 2m− 1 colors in such a

way that the edges can be partitioned into m isomorphic rainbow spanning trees except when

m = 2.

Conjecture 1.2 was proved to be true by Akbari, Alipour, Fu, and Lo in 2006 [1].

Conjecture 1.3 ([8], Strong version). If K2m is (2m − 1)-edge-colored, then the edges of

K2m can be partitioned into m isomorphic rainbow spanning trees except when m = 2.

Concerning Conjecture 1.1, in [4], Brualdi and Hollingsworth proved that there exist

two edge-disjoint rainbow spanning trees for m > 2, and in 2000, Krussel, Marshall, and

Verrall [15] improved this result to three spanning trees. Recently, Carraher, Hartke, and

Horn [6] showed that if m is sufficiently large (m ≥ 500, 000) then an edge-colored K2m

in which each color appears on at most m edges contains at least
⌊

m
500 log(2m)

⌋
edge-disjoint

rainbow spanning trees.

Essentially, not much has been done on Conjecture 1.3. The best result so far is by

Fu and Lo [10]. They proved that three isomorphic rainbow spanning trees exist in any

(2m− 1)-edge-colored K2m for each m ≥ 14.

In this dissertation, we focus on Conjecture 1.1 by proving that in any (2m − 1)-edge-

coloring ofK2m, m ≥ 1, there exist at least
⌊√

6m+9
3

⌋
mutually edge-disjoint rainbow spanning

trees. Asymptotically, this is not as good as the bound in [6], but our result applies to all

values of m and it is better until m is extremely large (over 5.7× 107). Furthermore, instead

of using the non-constructive probabilistic method to prove the result, as was used in [6],

we derive our bound by means of an explicit, constructive approach. So, not only do we

actually produce the rainbow trees, but also some structure of each rainbow spanning tree
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is determined in the process. It should be noted that the current best constructive result

(before ours) is the one in the paper by Krussel, Marshall, and Verrall [15] which produces

just three rainbow spanning trees. Here is our main result.

Theorem 1.1. Let K2m be a properly (2m− 1)-edge-colored graph. Then there exist Ωm =⌊√
6m+9

3

⌋
mutually edge-disjoint rainbow spanning trees, say T1, T2, . . . , TΩm, with the follow-

ing properties.

(i) Each tree has a designated distinct root.

(ii) The root of T1 has degree (2m−1)−2(Ωm−1) in and has at least (2m−1)−4(Ωm−1)

adjacent leaves.

(iii) For 2 ≤ i ≤ Ωm, The root of Ti has degree (2m − 1) − i − 2(Ωm − i) and has at least

(2m− 1)− 2i− 4(Ωm − i) adjacent leaves.

The proof of this result is also of interest, involving three inductions being applied

simultaneously.

It is worth mentioning here that the above conjectures will play important roles in

certain applications if they are true. Notice that a rainbow spanning tree is orthogonal

to the 1-factorization of K2m (induced by any (2m − 1)-edge-coloring). An application of

parallelisms of complete designs to population genetics data can be found in [3]. Parallelisms

are also useful in partitioning consecutive positive integers into sets of equal size with equal

power sums [14]. In addition, the discussions of applying colored matchings and design

parallelisms to parallel computing appeared in [11].

1.2 Balanced Sampling Designs Excluding Contiguous Units

Balanced sampling designs excluding contiguous units (BSECs) were first introduced

by Hedayat, Rao, and Stufken in 1988 [13]. These designs can be used to more efficiently

gather data in situations where the units near each other provide similar information. In this
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instance, the v units are named with elements of Zv and are arranged in a one-dimensional

array in which two units i ≤ j are said to be contiguous if and only if | i − j | = 1 or

{i, j} = {0, v − 1}.

A one-dimensional k-sized balanced sampling plan excluding contiguous units of order

v and index λ, 1-BSEC(v, k, λ), is a pair (X,B), where X is a set of v points, Zv, and

B is a collection of (not necessarily distinct) k-subsets of X (called blocks), such that any

two contiguous points do not appear together in any block, while any two noncontiguous

points appear together in exactly λ blocks. Constructions of 1-BSECs have been studied in

multiple papers [7, 12, 13, 19]. The following complete solution for the existence of 1-BSECs

with block size 3 was found by Colbourn and Ling in 1998 [7].

Theorem 1.2. [7] A 1-BSEC(v, 3, λ) exists if and only if either v ≥ 9 and λ(v − 3) ≡ 0

(mod 6) or v ∈ {1, 3}.

Although the idea of generalizing 1-BSECs to two dimensions was first suggested by

Hedayat, Rao, and Stufken in 1988 [13], a formal definition was not given until the paper of

Bryant, Chang, Rodger, and Wei in 2002 [5]. This was done by first generalizing the notion

of contiguous.

Given a set of points Zm × Zn arranged in two dimensions, the 2-contiguous points to

a point (x, y) are (x− 1, y), (x+ 1, y), (x, y + 1), and (x, y − 1), reducing sums mod m and

mod n in the first and second coordinates respectively. We also note here that if m or n were

allowed to be less than 3, then each point would not have four 2-contiguous points. Thus,

in this dissertation when considering this two-dimensional case, we assume that neither m

nor n is smaller than 3.

Bryant, Chang, Rodger, and Wei then used this definition of 2-contiguous to generalize

1-BSECs to two dimensions. They defined a 2-BSEC(m,n, k, λ), m,n ≥ 3, to be a pair

(X,B) where X = Zm×Zn and B is a collection of k-subsets of X (called blocks) such that

each pair of 2-contiguous points do not appear together in any block, while any other two

points appear together in exactly λ blocks. It is easy to see that a 2-BSEC(m,n, k, λ) can
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be thought of as a decomposition of λ(Kmn − E(H)) into Kk’s, where H is a subgraph of

Kmn consisting of edges between 2-contiguous points and each edge in Kmn has multiplicity

λ.

When it causes no confusion to the reader, we will refer to 2-contiguous points as

simply being contiguous. We can also observe here that if we allowed n to equal 1 then a

2-BSEC(m, 1, k, λ) is equivalent to a 1-BSEC(m, k, λ).

Our result considers constructions of 2-BSECs in the case where λ = 3. Before we state

our result, we first observe the following necessary conditions for the existence of a 2-BSEC.

Lemma 1.3. [5] If a 2-BSEC(m,n, k, λ) exists, then

1. λmn(mn− 5) ≡ 0 (mod k(k − 1)), and

2. λ(mn− 5) ≡ 0 (mod k − 1).

Proof. Condition (1) follows due to the fact that the number of noncontiguous pairs of points

is λmn(mn−5)
2

and this number must be divisible by the number of pairs of points in a block,

namely k(k−1)
2

. Condition (2) follows from the fact that for each fixed point (x, y), there are

λ(mn− 5) noncontiguous points to (x, y), which must be divisible by the number of points

in each block other than (x, y), namely (k − 1).

The existence problem for a 2-BSEC(m,n, 3, 1) was completely solved by Bryant, Chang,

Rodger, and Wei in 2002 [5].

Theorem 1.4. [5] There exists a 2-BSEC(m,n, 3, 1) if and only if m and n are odd and

1. m or n ≡ 3 (mod 6), or

2. m 6≡ n (mod 6).

Our result extends Theorem 1.4, solving the case where λ = 3. Here is our main result.

Theorem 1.5. A 2-BSEC(m,n, 3, 3) exists if and only if m and n are odd.

5



It is worth mentioning here that our result was recommended by the referees for pub-

lication in the The Australasian Journal of Combinatorics, but shortly after our result was

submitted, Wang, Feng, Zhang, and Xu submitted a result encompassing ours [9]. Their

paper acknowledges our result in their concluding remarks.

Like 1-BSECs, 2-BSECs also have practical applications. These designs can be used to

test small land plots at a dump site for chemical waste, where clearly contiguous plots will

give similar information. They can also be used for finite population sampling. Since many

species are social creatures, they tend to live in clusters instead of being spread throughout

a region. Thus, sampling by excluding contiguous units is much more likely to provide a

more accurate population estimate.
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Chapter 2

Problem 1: The Number of Edge-Disjoint Rainbow Spanning Trees in Edge-Colored

Complete Graphs

In this chapter we will prove Theorem 1.1. For convenience, we restate it here.

Theorem 1.1. Let K2m be a properly (2m − 1)-edge-colored graph. Then there exist Ωm =⌊√
6m+9

3

⌋
mutually edge-disjoint rainbow spanning trees, say T1, T2, . . . , TΩm, with the follow-

ing properties.

(i) Each tree has a designated distinct root.

(ii) The root of T1 has degree (2m− 1)− 2(Ωm − 1) and has at least (2m− 1)− 4(Ωm − 1)

adjacent leaves.

(iii) For 2 ≤ i ≤ Ωm, The root of Ti has degree (2m− 1)− i− 2(Ωm− i) in and has at least

(2m− 1)− 2i− 4(Ωm − i) adjacent leaves.

Before we begin the proof, we note here that Appendix A contains an example of the

algorithm used in our proof to construct the edge-disjoint rainbow spanning trees that might

be of use to refer to while reading the following sections.

Proof. We will use induction on the number of trees to prove this result. We can assume

m ≥ 5 since for 1 ≤ m ≤ 4, Ωm = 1 and the spanning star, Sr, in which r ∈ V (K2m) and r

is joined to every other vertex, is clearly a rainbow spanning tree of K2m. When the value

of m is clear, it will cause no confusion to simply refer to Ωm as Ω. It is worth noting that

the following induction proof can be used as a recursive construction to create Ω rainbow

edge-disjoint spanning trees, T1, T2, ..., TΩ.
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For 1 ≤ ψ ≤ Ω and rainbow edge-disjoint spanning trees, T1, T2, ..., Tψ, let f(ψ) be the

proposition consisting of the three following degree and structure characteristics:

Each tree has a designated distinct root. (2.1)

The root of T1 has degree (2m−1)−2(ψ−1) and has at least (2m−1)−4(ψ−1)

adjacent leaves.
(2.2)

For 2 ≤ i ≤ ψ, The root of Ti has degree (2m − 1) − i − 2(ψ − i) and has at

least (2m− 1)− 2i− 4(ψ − i) adjacent leaves.
(2.3)

In particular, note here that by (2.3), if ψ > 1, then the root of T2 has degree (2m−1)−

2−2(ψ−2) = (2m−1)−2(ψ−1) and at least (2m−1)−4−4(ψ−2) = (2m−1)−4(ψ−1)

adjacent leaves, sharing these characteristics with T1 (as stated in (2.2)).

It is useful in our construction to ensure that the rainbow edge-disjoint spanning trees

have suitable characteristics that allow the properties (2.1), (2.2), and (2.3) to be established.

Thus, the trees T1, T2, ..., TΩ will eventually satisfy f(Ω).

We begin with some necessary notation. All vertices defined in what follows are in

V (K2m), the given edge-colored complete graph.

The proof proceeds inductively, producing a list of j edge-disjoint rainbow spanning

trees from a list of j − 1 edge-disjoint rainbow spanning trees; so for 1 ≤ i ≤ j ≤ Ω, let T ji

be the ith rainbow spanning tree of the jth induction step and let ri be the designated root

of T ji . Notice that ri is independent of j.

Suppose T is any spanning tree of the complete graphK2m with root r containing vertices

y, v, w, and v′, where ry and rv are distinct pendant edges in T (so y and v are leaves of T ).

8



Then define T ′ = T [r; y, v;w, v′] to be the new graph formed from T with edges ry and rv

removed and edges yw and vv′ added. Formally, T ′ = T [r; y, v;w, v′] = T−ry−rv+yw+vv′.

We note here that T ′ is also a spanning tree of K2m because y and v are leaves in T , and

thus adding edges yw and vv′ does not create a cycle in T ′.

Our inductive strategy will be to assume we have k−1 (where 1 < k ≤ Ω) edge-disjoint

rainbow spanning trees with suitable characteristics satisfying proposition f(k − 1) that

yield properties (2.1), (2.2), and (2.3) with ψ = k − 1. From those trees we will construct k

edge-disjoint rainbow spanning trees with suitable characteristics that allow properties (2.1),

(2.2), and (2.3) to be eventually established when ψ = k, thus satisfying f(k).

For this construction, given any T j−1
i with root ri and distinct pendant edges riy

j
i and

riv
j
i , we define T ji in the following way:

T ji = T j−1
i [ri; y

j
i , v

j
i ;w

j
i , v

j′

i ] = T j−1
i − riyji − riv

j
i + yjiw

j
i + vji v

j′

i (2.4)

The choice of the vertices defined in (2.4) will eventually be made precise, based on the

discussion which follows.

When the value of j is clear, it will cause no confusion to refer to the vertices yji , v
j
i ;w

j
i , v

j′

i

by omitting the superscript and instead writing T ji = T j−1
i [ri; yi, vi;wi, v

′
i]. We now make

the following remarks about the definition of T ji above. Recall that for 1 ≤ i ≤ j ≤ Ω, ri is

independent of j, and thus is the root of both T j−1
i and T ji . The following is easily seen to

be true.

If ϕ is any proper edge-coloring of K2m and T j−1
i is a rainbow spanning tree of

K2m with root ri and distinct pendant edges riyi and rivi, then T ji as defined in

(2.4) is also a rainbow spanning tree of K2m if ϕ(riyi) = ϕ(viv
′
i) and ϕ(rivi) =

ϕ(yiwi).

(2.5)
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Next, for 1 ≤ i ≤ j ≤ Ω, let Lji = {x | xri is a pendant edge in T ji } (so x is a leaf

adjacent to ri in T ji ). Define

Lj =

j⋂
i=1

Lji . (2.6)

Notice that if x ∈ Lj, then for 1 ≤ i ≤ j, xri is a pendant edge in T ji .

We now begin our inductive proof with induction parameter k. Specifically we will

prove that for 1 ≤ k ≤ Ω there exist k edge-disjoint rainbow spanning trees, T k1 , T
k
2 , ..., T

k
k

satisfying f(k), which for convenience we explicitly state in terms of the inductive parameter

k:

1. Each tree T ki has a designated distinct root ri,

2. The root of T k1 has degree (2m − 1) − 2(k − 1) and has at least (2m − 1) − 4(k − 1)

adjacent leaves,

3. For 2 ≤ i ≤ k, the root of T ki has degree (2m − 1) − i − 2(k − i) and has at least

(2m− 1)− 2i− 4(k − i) adjacent leaves.

Base Step. The case k = 1 is seen to be true for all properly edge-colored complete

graphs, K2m, by letting r1 be any vertex in V (K2m) and defining T 1
1 = Sr1 , the spanning

star with root r1. It is also clear that Sr1 satisfies f(1) since r1 has degree 2m − 1 and has

2m− 1 adjacent leaves, as required in (2.2). Property (2.3) is vacuously true.

Induction Step. Suppose that ϕ is a proper edge-coloring of K2m and that for some k

with 1 < k ≤ Ω, K2m contains k−1 edge-disjoint rainbow spanning trees, T k−1
1 , T k−1

2 , ..., T k−1
k−1 ,

satisfying f(k − 1):

1. ri is the root of tree T k−1
i and ri 6= rc for 1 ≤ i, c < k, i 6= c,

2. dTk−1
1

(r1) = (2m−1)−2(k−2) and r1 is adjacent to at least (2m−1)−4(k−2) leaves

in T k−1
1 , and
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3. For 2 ≤ i ≤ k− 1, dTk−1
i

(ri) = (2m− 1)− i− 2(k− 1− i) and ri is adjacent to at least

(2m− 1)− 2i− 4(k − 1− i) leaves in T ki .

It thus remains to construct k edge-disjoint rainbow spanning trees satisfying f(k).

We note here that f(k − 1) and the definition of Lk−1 in (2.6) guarantee that a lower

bound for |Lk−1| can be obtained by starting with a set containing all 2m vertices, then re-

moving the k−1 roots of T k−1
1 , T k−2

2 , ..., T k−1
k−1 , the (at most 4(k−2)) vertices in V (T k−1

1 \{r1})

which are not leaves adjacent to r1, and for 2 ≤ i < k, the (at most 2i+ 4(k−1− i)) vertices

in V (T k−1
i \{ri}) which are not leaves adjacent to ri. Formally,

|Lk−1| ≥ 2m− (k − 1)− 4(k − 2)−
k−1∑
i=2

(2i+ 4(k − 1− i))

= 2m− (k − 1)− 4(k − 2)− (3k2 − 11k + 10)

= 2m− 3k2 + 6k − 1.

(2.7)

Knowing |Lk−1| is useful because later we will show that if |Lk−1| ≥ 6k − 7, then from

T k−1
1 , T k−1

2 , ..., T k−1
k−1 we can construct k rainbow edge-disjoint spanning trees which satisfy

proposition f(k). As the reader might expect, it is from here that the bound on Ω is obtained:

it actually follows that since k ≤ Ω, |Lk−1| ≥ 6k − 7.

First select any two distinct vertices rk, w
k
k ∈ Lk−1; since it will cause no confusion, we

will write wk for wkk . Set rk equal to the root of the kth tree, T kk . Later, rkwk will be an edge

removed from T kk . For now, the two special vertices rk and wk play a role in the construction

of T ki from T k−1
i for 1 ≤ i < k. For convenience, we explicitly state and observe the following

Since rk and wk are distinct vertices in Lk−1 (defined in (2.6)),

rk and wk are leaves adjacent to ri for 1 ≤ i < k.
(2.8)
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For the sake of clarity, having selected rk and wk, we now discuss how to construct the

trees T k1 , T
k
2 , ..., T

k
k−1 before returning to our discussion of the construction of T kk (though in

actuality T kk is formed recursively as we are constructing T k1 , T
k
2 , ..., T

k
k−1).

For 1 ≤ i < k, we will find suitable vertices vki , w
k
i , and vk

′
i , which for convenience we

refer to as vi, wi, and v′i respectively, and define T ki in the following way:

T ki = T k−1
i [ri; rk, vi;wi, v

′
i]

where ϕ(rirk) = ϕ(viv
′
i) and ϕ(rivi) = ϕ(rkwi)

(2.9)

It is clear by (2.5) that for 1 ≤ i < k, since T k−1
i is a rainbow spanning tree of K2m, if

vi is chosen so that viri is a pendant edge in T k−1
i with vi 6= rk, then T ki is also a rainbow

spanning tree of K2m (recall from (2.8) that rk ∈ Lk−1, so by (2.6) rkri is a pendant edge in

T k−1
i ).

Further, since rk, wk ∈ Lk−1, it is clear from (2.9) that (1) rk, vi /∈

Lk, and (2) all leaves adjacent to ri in T ki are leaves adjacent to

ri in T k−1
i . Therefore |Lk| < |Lk−1|.

(2.10)

Lastly, since the trees T k−1
1 , T k−1

2 , ..., T k−1
k−1 satisfy f(k−1), it can be seen that T k1 , T

k
2 , ...,

T kk−1 satisfy f(k), as the following shows.

First, clearly (2.1) is satisfied. Further, for 1 ≤ i < k, when T ki is formed from T k−1
i

(see (2.9)), it can easily be seen that the degree of ri is decreased by 2 and the number of

leaves adjacent to ri is decreased by at most 4.

(i.) T k1

By our induction hypothesis, we have that dTk−1
1

(r1) = (2m − 1) − 2(k − 2) and that

r1 is adjacent to at least (2m− 1)− 4(k − 2) leaves in T k−1
1 . From (2.9) we have that

dTk
1
(r1) = dTk−1

1
(r1)− 2 = (2m− 1)− 2(k − 2)− 2 = (2m− 1)− 2(k − 1) and that r1

is adjacent to at least (2m− 1)− 4(k − 2)− 4 = (2m− 1)− 4(k − 1) leaves in T k1 . So

(2.2) of f(k) is satisfied.
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(ii.) T ki , 2 ≤ i < k

By our induction hypothesis, we have that dTk−1
i

(ri) = (2m− 1)− i− 2(k− 1− i) and

that ri is adjacent to at least (2m− 1)− 2i− 4(k − 1− i) leaves in T ki . From (2.9) we

have that dTk
i
(ri) = dTk−1

i
(ri)−2 = (2m−1)−i−2(k−1−i)−2 = (2m−1)−i−2(k−i)

and that ri is adjacent to at least (2m−1)−2i−4(k−1−i)−4 = (2m−1)−2i−4(k−i)

leaves in T ki . So (2.3) of f(k) is satisfied except possibly when i = k.

Lastly, we can observe that once vi is selected, vertices wi and v′i are determined by the

required property from (2.9) that ϕ(rirk) = ϕ(viv
′
i) and ϕ(rivi) = ϕ(rkwi).

It remains to ensure that the trees, T k1 , T
k
2 , ..., T

k
k−1, are all edge-disjoint. This is also

proved using the induction hypothesis that T k−1
1 , T k−1

2 , ..., T k−1
k−1 are all edge-disjoint, which

allows us to show that T k1 , T
k
2 , ..., T

k
k−1 are all edge-disjoint.

Now, while forming the rainbow edge-disjoint spanning trees, T k1 , T
k
2 , ..., T

k
k−1, we si-

multaneously construct the kth rainbow spanning tree, T kk , from a sequence of inductively

defined graphs, T kk (1), T kk (2), ..., T kk (k) = T kk where at the ith induction step, the formation

of T kk (i) depends on the choice of vi used in the construction of T ki : for 2 ≤ i ≤ k define

T kk (i) = Srk − rkw1 − ...− rkwi + w1w
′
1 + ...+ wiw

′
i,

where ϕ(w1w
′
1) = ϕ(rkwk) and ϕ(wiw

′
i) = ϕ(rkwi−1) for 2 ≤ i ≤ k.

(2.11)

Note that for 1 ≤ i ≤ k − 1, the choice of vi determines T kk (i); the formation of T kk (k)

is dictated by T kk (k − 1) since w′k is determined by requiring that ϕ(wkw
′
k) = ϕ(rkwk−1). It

is worth explicitly stating that

T kk = T kk (k) = Srk − rkw1 − ...− rkwk + w1w
′
1 + ...+ wkw

′
k,

where ϕ(w1w
′
1) = ϕ(rkwk) and ϕ(wcw

′
c) = ϕ(rkwc−1) for 2 ≤ c ≤ k

(2.12)

Observe that T kk is a rainbow graph since each edge removed from Srk is replaced by a

corresponding edge of the same color. Also, one can easily see that: T kk has 2m − 1 edges;
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dTk
k
(rk) = (2m−1)−k since rk /∈ {w′1, w′2, ..., w′k}; and rk has at least (2m−1)−2k adjacent

leaves. Therefore, condition (2.3) of f(k) is satisfied. So it remains to show that T kk is acyclic

and contains no edges in the trees T ki for 1 ≤ i ≤ k − 1.

Finally, we have noted previously, but restate here because of its importance,

For 1 ≤ i < k, once vi is chosen, T ki and T kk (i) are completely determined by

the constructions described in (2.9) and (2.11) respectively.
(2.13)

Due to the fact highlighted above in (2.13), our strategy will be to select a suitable vi

and construct T ki from T k−1
i , while simultaneously constructing T kk (i) from T kk (i − 1). In

doing so, we restrict the choices for each vi in order to achieve the following three properties:

(C1) The edges in T ka , 1 ≤ a < i do not appear in T ki ,

(C2) The edges in T kk do not appear in T ki , 1 ≤ i < k, and

(C3) T kk is acyclic

To that end, we let

L∗k−1 = Lk−1\{rk, wk} (2.14)

and let vi be any vertex for which the following properties are satisfied (so by (2.13), this

choice completes the formation of T ki and T kk (i) for 1 ≤ i < k):

(R1) vi ∈ L∗k−1,

(R2) For 1 ≤ c < k, c 6= i, ϕ(virc) 6= ϕ(rirk),

(R3) For 1 ≤ a < i, ϕ(viri) 6= ϕ(rava),

(R4) For i < b < k, ϕ(viri) 6= ϕ(rkrb),

(R5) ϕ(viri) 6= ϕ(rkwk),

(R6) For 1 ≤ a < i, ϕ(viri) 6= ϕ(rkw
′
a),
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(R7) For 2 ≤ i < k, ϕ(viri) 6= ϕ(rkα),

where α is the vertex such that ϕ(wkα) = ϕ(rkwi−1),

(R8) For i = 1 and for 1 ≤ c < k, ϕ(v1r1) 6= ϕ(rkα),

for each vertex α incident with the edge of color ϕ(rkwk) in T k−1
c ,

(R9) For 2 ≤ i < k, 1 ≤ a < i, and for i ≤ b < k, ϕ(viri) 6= ϕ(rkα),

for each vertex α incident with the edge of color ϕ(rkwi−1) in T ka and in T k−1
b ,

(R10) For 1 ≤ i < k, ϕ(viwk) 6= ϕ(rirk),

(R11) For 1 ≤ d ≤ k − 2, ϕ(vk−1rk−1) 6= ϕ(wkrd).

From the observation in (2.7), we know that
∣∣L∗k−1

∣∣ ≥ 2m− 3k2 + 6k − 3.

An upper bound for the number of vertices eliminated through items (R2 - R11) as

candidates for vi is achieved when i = k− 1. In this case, the number of vertices eliminated

by R2, R3, ..., R11 is (k − 2), (k − 2), 0, 1, (k − 2), 1, 0, 2(k − 1), 1, (k − 2) respectively, the

sum of which is 6k − 7. Now, since the induction hypothesis includes the condition k ≤ Ω,

we can observe the following.

First, from f(Ω) and the definition of LΩ−1, we can follow the same steps as we did in

(2.7) to see that |LΩ−1| ≥ 2m− 3Ω2 + 6Ω− 1 and further, that
∣∣L∗Ω−1

∣∣ ≥ 2m− 3Ω2 + 6Ω− 3.

Now, since by the induction hypothesis k ≤ Ω and by (2.10) and (2.14)
∣∣L∗i−1

∣∣ > |L∗i | for

2 ≤ i ≤ k − 1, we have the following:
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∣∣L∗k−1

∣∣ ≥ ∣∣L∗Ω−1

∣∣
≥ 2m− 3Ω2 + 6Ω− 3

= 2m− 3(

⌊√
6m+ 9

3

⌋
)2 + 6

⌊√
6m+ 9

3

⌋
− 3

≥ 2m− (2m+ 3) + 2
√

6m+ 9− 3

= 2
√

6m+ 9− 6

=
6

3

√
6m+ 9− 6

≥ 6Ω− 6

> 6Ω− 7

≥ 6k − 7.

(2.15)

In summary, we have that
∣∣L∗k−1

∣∣ ≥ ∣∣L∗Ω−1

∣∣ > 6Ω−7 ≥ 6k−7. Therefore,
∣∣L∗k−1

∣∣ > 6k−7,

and so such a vertex vi meeting the restrictions in (R1 - R11) exists. The following cases

show that this choice of vi ensures that (C1), (C2), and (C3) hold.

2.1 Case 1 (C1): Edges in T ka , 1 ≤ a < i do not appear in T ki

First, by the induction hypothesis we know that the trees T k−1
1 , T k−1

2 , ..., T k−1
k−1 are all

rainbow edge-disjoint and spanning. Inductively, we also assume for some i with 2 ≤ i < k

the trees T k1 , T
k
2 , ..., T

k
i−1 are edge-disjoint rainbow spanning trees as well. By (2.9), regardless

of the choice of vi, the only edges in T ki (1 ≤ i < k) that are not in T k−1
i are viv

′
i and rkwi.

Thus, if we can prove that the edges in (E(T k−1
i )\{rivi, rirk}) ∪ {viv′i, rkwi} are not in T ka ,

1 ≤ a < i, we will have shown that the trees T k1 , T
k
2 , ..., T

k
i are all edge-disjoint rainbow and

spanning; so by induction, T k1 , T
k
2 , ..., T

k
k−1 are edge-disjoint rainbow spanning trees.

To that end, for the remainder of Case 1 suppose that 2 ≤ i < k, 1 ≤ a < i, and

i < b < k and define the following sets of edges.
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1. Eold(T
k
a ) = {xy | xy ∈ E(T k−1

a ) ∩ E(T ka )}

2. Enew(T ka ) = E(T ka )\E(T k−1
a ) = {vav′a, rkwa}

3. Eold(T
k
i ) = {xy | xy ∈ E(T k−1

i ) ∩ E(T ki )}

4. Enew(T ki ) = E(T ki )\E(T k−1
i ) = {viv′i, rkwi}

Observe that by (2.9), Eold(T
k
a ) ∩ Enew(T ka ) = ∅ and E(T ka ) = Eold(T

k
a ) ∪ Enew(T ka ).

Similarly, Eold(T
k
i ) ∩ Enew(T ki ) = ∅ and E(T ki ) = Eold(T

k
i ) ∪ Enew(T ki ).

Since the trees T k1 , T
k
2 , ..., T

k
k−1 are formed sequentially, it is clearly necessary to prohibit

edges viv
′
i and rkwi from appearing in T ka . It is also very useful to prohibit edges viv

′
i and

rkwi from appearing in T k−1
b .

Consequently, when vi was selected to satisfy (R1 - R11) it was done in such a way that

ensures the following six properties are satisfied:

(P1) viv
′
i, rkwi /∈ Eold(T ka ),

(P2) viv
′
i, rkwi /∈ Enew(T ka ),

(P3) viv
′
i, rkwi /∈ E(T k−1

b ),

(P4) Eold(T
k
i ) ∩ Eold(T ka ) = ∅,

(P5) Eold(T
k
i ) ∩ Enew(T ka ) = ∅,

(P6) Eold(T
k
i ) ∩ E(T k−1

b ) = ∅.

It is clear that if properties (P1 - P6) are satisfied, then T ki is edge-disjoint from the

trees, T ka and T k−1
b . We consider edges viv

′
i and rkwi in turn for properties (P1 - P3), then

address properties (P4 - P6).
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2.1.1 Property (P1) for viv
′
i

Since Eold(T
k
a ) ⊂ E(T k−1

a ), we can prove viv
′
i is not an edge in Eold(T

k
a ) by showing that

viv
′
i /∈ E(T k−1

a ).

Recall from (R1) and (2.14) that because vi ∈ L∗k−1, vi is a leaf adjacent to the root rc

in T k−1
c , for 1 ≤ c < k. Therefore, to show that viv

′
i /∈ E(T k−1

a ), we need only prove that

v′i 6= ra. The following argument shows that (R2) guarantees this property.

Suppose to the contrary that v′i = ra. Then viv
′
i = vira and by (2.9), ϕ(vira) = ϕ(viv

′
i) =

ϕ(rirk), contradicting (R2). It follows that v′i 6= ra so viv
′
i /∈ Eold(T ka ), as required.

2.1.2 Property (P2) for viv
′
i

Recall that Enew(T ka ) = {vav′a, rkwa}. Thus, to prove that viv
′
i /∈ Enew(T ka ) for 1 ≤ a < i,

we need only show that viv
′
i 6= vav

′
a and viv

′
i 6= rkwa. We consider each in turn.

(i.) viv
′
i 6= vav

′
a

By (2.9), we have that ϕ(viv
′
i) = ϕ(rirk) and ϕ(vav

′
a) = ϕ(rark). But, by property (1)

of f(ψ) when ψ = k − 1 we know ri 6= ra and so ϕ(rirk) 6= ϕ(rark). It follows that

ϕ(viv
′
i) 6= ϕ(vav

′
a) and, therefore, viv

′
i 6= vav

′
a.

(ii.) viv
′
i 6= rkwa

Assume that viv
′
i = rkwa and recall from (2.14) that because vi ∈ L∗k−1, vi 6= rk.

Therefore, vi = wa. By (2.9), ϕ(viv
′
i) = ϕ(rkri), so since we are assuming that viv

′
i =

rkwa, clearly ϕ(rkri) = ϕ(rkwa) and so wa = ri = vi. But because vi ∈ L∗k−1, vi 6= ri

and this is a contradiction.

Combining the above two arguments, it is clear that viv
′
i /∈ Enew(T ka ), as required.

2.1.3 Property (P3) for viv
′
i

Recall from (2.14) that vi ∈ L∗k−1, so rbvi is a pendant edge with leaf vi in T k−1
b , for

i < b < k. Thus, viv
′
i would only be an edge in T k−1

b if v′i = rb. As in Section 2.1.1 above,
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(R2) prevents v′i from equalling rb by guaranteeing that ϕ(virb) 6= ϕ(rirk) and therefore,

viv
′
i /∈ E(T k−1

b ), as required.

2.1.4 Property (P1) for rkwi

Recall from (2.6) that rk ∈ Lk−1, so rkra is a pendant edge in T k−1
a with leaf rk.

Therefore, from (2.9) it is clear that rkra /∈ E(T ka ) since it is removed from T k−1
a in forming

T ka . So rk is not incident with any edges in Eold(T
k
a ) and thus, rkwi cannot be an edge in

Eold(T
k
a ), as required.

2.1.5 Property (P2) for rkwi

Recall that Enew(T ka ) = {vav′a, rkwa}. To show that rkwk /∈ Enew(T ka ), we prove that

rkwi 6= rkwa and rkwi 6= vav
′
a for 1 ≤ a < i. We consider each in turn.

(i.) rkwi 6= rkwa

To show that rkwi 6= rkwa, we need only show that wi 6= wa.

By (2.9) we have that ϕ(rkwi) = ϕ(rivi) and ϕ(rkwa) = ϕ(rava). So if rkwi = rkwa,

then ϕ(viri) = ϕ(rava), contradicting (R3). Therefore, rkwi 6= rkwa, as required.

(ii.) rkwi 6= vav
′
a

Assume that rkwi = vav
′
a. Recall from (2.14) that because va ∈ L∗k−1, va 6= rk.

Therefore, va = wi. By (2.9), ϕ(vav
′
a) = ϕ(rark), so since we are assuming that

rkwi = vav
′
a, then ϕ(rkwi) = ϕ(rkra) and it follows that ra = wi = va. But this is a

contradiction because va ∈ L∗k−1 so by (2.14), va 6= ra.

Combining the above two arguments, it is clear that rkwi /∈ Enew(T ka ), as required.

2.1.6 Property (P3) for rkwi

Recall that by (2.8), because rk was chosen to be in Lk−1, rk is a leaf adjacent to the

root of T k−1
b , i < b < k. Thus, to show rkwi /∈ E(T k−1

b ), we need only prove that wi 6= rb.
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By (2.9), we have that ϕ(rkwi) = ϕ(viri). So if wi = rb, then rkwi = rkrb and ϕ(viri) =

ϕ(rkrb), contradicting (R4). Therefore, rkwi /∈ E(T k−1
b ), as required.

2.1.7 Properties (P4), (P5), and (P6)

We consider each property, (P4), (P5), and (P6), in turn.

(i.) Property (P4)

By our induction hypothesis, the trees, T k−1
1 , T k−1

2 , ..., T k−1
k−1 are all edge disjoint. So

(P4) follows because Eold(T
k
i ) ⊂ E(T k−1

i ) and Eold(T
k
a ) ⊂ E(T k−1

a ).

(ii.) Property (P5)

Since a < i, from (P3) (replacing i with a), it follows that {vav′a, rkwa}∩E(T k−1
c ) = ∅,

for a < c < k. In particular, since i > a, it follows that Enew(T ka ) ∩E(T k−1
i ) = ∅. And

lastly, since Eold(T
k
i ) ⊂ E(T k−1

i ), we have that Eold(T
k
i ) ∩ Enew(T ka ) = ∅.

(iii.) Property (P6)

Again, by our induction hypothesis, the trees, T k−1
1 , T k−1

2 , ..., T k−1
k−1 are all edge-disjoint.

It follows that Eold(T
k
i ) ∩ E(T k−1

b ) = ∅ because Eold(T
k
i ) ⊂ E(T k−1

i ).

Therefore, properties (P4 - P6) hold for Eold(T
k
i ).

The above Sections 2.1.1 − 2.1.7 ensure that properties (P1 - P6) hold. As stated above,

since these six properties hold, the trees T k1 , T
k
2 , ..., T

k
k−1 are all edge-disjoint and further,

from (2.9), are also rainbow and spanning.

2.2 Case 2 (C2): Edges in T kk do not appear in T ki

Recall from (2.11) that T kk is defined by a sequence, T kk (1), T kk (2), ..., T kk (k), and from

(2.13) that at the ith induction step, T kk (i) was determined by the choice of vi. It is conve-

nient to restate (2.11) and (2.12) here:
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T kk (i) = Srk − rkw1 − ...− rkwi + w1w
′
1 + ...+ wiw

′
i,

where ϕ(w1w
′
1) = ϕ(rkwk) and ϕ(wiw

′
i) = ϕ(rkwi−1) for 2 ≤ i ≤ k.

T kk = Srk − rkw1 − ...− rkwk + w1w
′
1 + ...+ wkw

′
k,

where ϕ(w1w
′
1) = ϕ(rkwk) and for 2 ≤ c ≤ k, ϕ(wcw

′
c) = ϕ(rkwc−1),

For the remainder of Case 2, suppose that 1 ≤ i < k, 1 ≤ a < i, and i < b < k.

In order to prevent edges in T kk from also appearing in T ki , we will now show that T ki

has been constructed in such a way that T kk (i) and T kk satisfy the following properties:

(P7) E(T kk (i)) ∩ E(T ka ) = ∅

(P8) E(T kk (i)) ∩ E(T k−1
b ) = {rkrb}

(P9) E(T kk (i)) ∩ Eold(T ki ) = ∅

(P10) E(T kk (i)) ∩ Enew(T ki ) = ∅

(P11) wkw
′
k /∈ E(T ki )

We note here that by (2.9), when T kb was constructed from T k−1
b , edge rkrb was removed,

so it does not appear in T kb . Therefore, it is not necessary to prevent rkrb from being an

edge in T kk (i) nor T kk .

Proving the above five properties will be done inductively. We show in the base step

that T kk (1) satisfies properties (P7 - P10) with i = 1, and then show that for 2 ≤ i < k,

T kk (i) satisfies the same four properties before finally proving property (P11).

The following preliminary result will be useful in proving properties (P7 - P11).
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2.2.1 Preliminary Result: wi 6= wk

Recall from (2.8) that wk ∈ Lk−1 was selected with rk before any of the rainbow spanning

trees T k−1
1 , T k−1

2 , ..., T k−1
k−1 were revised. It will be useful to show that the vertices wi ∈ T ki ,

1 ≤ i < k, cannot equal wk.

From (2.9), we have that ϕ(viri) = ϕ(rkwi). So if wi = wk, then ϕ(viri) = ϕ(rkwk)

contradicting (R5). Therefore, wi 6= wk.

2.2.2 Base Step: i = 1

Observe that for 2 ≤ b < k, E(Srk)∩E(T k−1
b ) = {rkrb} and E(Srk)∩Eold(T k1 ) = ∅ since

by (2.9), rkr1 is removed from T k−1
1 when forming T k1 . Further, it is clear from (2.11) that

the only edge in T kk (1) that is not in Srk is w1w
′
1.

(i.) (P7)

Since i = 1, there do not exist any such trees T ka since 1 ≤ a < i and so property (P7)

is vacuously true.

(ii.) (P8) and (P9)

First, recall that Eold(T
k
1 ) ⊂ E(T k−1

1 ). To establish properties (P8) and (P9), we show

that w1w
′
1 /∈ E(T k−1

c ) for 1 ≤ c < k.

Suppose to the contrary that w1w
′
1 ∈ E(T k−1

c ). Recall from (2.11) that ϕ(w1w
′
1) =

ϕ(rkwk). So if w1w
′
1 ∈ E(T k−1

c ), then w1 is a vertex incident to the edge of color ϕ(rkwk)

in T k−1
c . But this is impossible since from (2.9) we have that ϕ(v1r1) = ϕ(rkw1) and

from (R8) that ϕ(v1r1) 6= ϕ(rkα), where α is a vertex incident to the edge of color

ϕ(rkwk) in T k−1
c . Therefore, w1w

′
1 /∈ E(T k−1

c ) and T kk (1) satisfies properties (P8) and

(P9).

(iii.) (P10)
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Recall that Enew(T ki ) = {viv′i, rkwi}. To establish (P10) for T kk (1), we need only show

that w1w
′
1 6= v1v

′
1 and w1w

′
1 6= rkw1. We consider each in turn.

(a.) w1w
′
1 6= v1v

′
1

Recall from (2.9) that ϕ(v1v
′
1) = ϕ(rkr1) and from (2.11) that ϕ(w1w

′
1) = ϕ(rkwk).

So if w1w
′
1 = v1v

′
1, then ϕ(rkwk) = ϕ(rkr1) and so wk = r1. But this is not possible

because by (2.8) wk ∈ Lk−1 and so wk 6= r1. Therefore, w1w
′
1 6= v1v

′
1.

(b.) w1w
′
1 6= rkw1

Recall from (2.11) that ϕ(w1w
′
1) = ϕ(rkwk). So if w1w

′
1 = rkw1, then ϕ(rkwk) =

ϕ(rkw1) and so wk = w1, contradicting the result in Section 2.2.1. Thus, w1w
′
1 6=

rkw1.

Therefore, property (P10) holds for T kk (1) and we have established our base step.

2.2.3 Property (P7) for 2 ≤ i < k

From (2.11), it is clear that the only edge in T kk (i) that differs from T kk (i − 1) is wiw
′
i.

Therefore, since by induction we have that T kk (i−1) satisfies (P7), in order to prove property

(P7) is satisfied for T kk (i), we need only show that wiw
′
i is not an edge in T ka , 1 ≤ a < i.

To that end, suppose to the contrary that wiw
′
i ∈ E(T ka ). Recall from (2.11) that

ϕ(wiw
′
i) = ϕ(rkwi−1). So if wiw

′
i ∈ E(T ka ), then wi is a vertex incident to the edge of color

ϕ(rkwi−1) in T ka . But this is impossible since from (2.9) we have that ϕ(viri) = ϕ(rkwi) and

from (R9) that ϕ(viri) 6= ϕ(rkα), where α is a vertex incident to the edge of color ϕ(rkwi−1)

in T ka . Therefore, wiw
′
i /∈ E(T ka ) and T kk (i) satisfies property (P7).

2.2.4 Properties (P8) and (P9) for 2 ≤ i < k

Observe again that Eold(T
k
i ) ⊂ E(T k−1

i ). As in Section 2.2.3, to prove properties (P8)

and (P9) for T kk (i), we can show that wiw
′
i /∈ E(T k−1

d ), i ≤ d < k.
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For i ≤ d < k, property (R9), which guarantees ϕ(viri) 6= ϕ(rkα), where α is a vertex

incident to the edge of color ϕ(rkwi−1) in T k−1
d , ensures wiw

′
i /∈ E(T k−1

d ), thus ensuring that

(P8) and (P9) hold for T kk (i). The argument has been omitted here due to its similarity to

the argument used above for (P7) in Section 2.2.3.

2.2.5 Property (P10) for 2 ≤ i < k

To prove (P10) for T kk (i), we need only show that wiw
′
i 6= viv

′
i and wiw

′
i 6= rkwi. We

consider each in turn.

(i.) wiw
′
i 6= viv

′
i

Recall from (2.9) that ϕ(viv
′
i) = ϕ(rkri) and from (2.11) that ϕ(wiw

′
i) = ϕ(rkwi−1).

If wiw
′
i = viv

′
i, then ϕ(rkwi−1) = ϕ(rkri) and so wi−1 = ri. But rkri ∈ E(T k−1

i ) and

rkwi−1 ∈ E(T ki−1); so if wi−1 = ri, this contradicts property (P3) in the i−1th induction

step, which in particular (i.e. when b = i) ensures that rkwi−1 /∈ E(T k−1
i ). Therefore,

wiw
′
i 6= viv

′
i, as required.

(ii.) wiw
′
i 6= rkwi

Recall from (2.11) that ϕ(wiw
′
i) = ϕ(rkwi−1). If wiw

′
i = rkwi, then ϕ(rkwi−1) = ϕ(rkwi)

and so wi−1 = wi. However, this is impossible by the result in Section 2.1.5 which, in

particular, proved that rkwi 6= rkwa for 1 ≤ a < i. Thus, wiw
′
i 6= rkwi.

Therefore, property (P10) holds for T kk (i), as required.

2.2.6 Property (P11) for wkw
′
k

The above sections of Case 2 ensure that the rainbow spanning trees T k1 , T
k
2 , ..., T

k
k−1

and the rainbow spanning graph, T kk (k − 1) are all edge-disjoint. Thus, it remains to show

that T k1 , T
k
2 , ..., T

k
k−1 and T kk are all edge-disjoint. As above, recall from (2.11) that the only

edge in T kk that differs from T kk (k−1) is wkw
′
k. Therefore, showing property (P11) holds will

prove that T k1 , T
k
2 , ...T

k
k−1 and T kk are edge-disjoint.
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First, observe from (2.8) that since wk ∈ Lk−1, wk is a leaf adjacent to the root ri in

T k−1
i for 1 ≤ i < k. So if wkw

′
k ∈ E(T ki ), wkw

′
k = wirk, viv

′
i, or wkri. We consider each in

turn.

(i.) wkw
′
k 6= wirk

From (2.8) we know that wk 6= rk. So if wkw
′
k = wirk, then wk = wi, contradicting the

preliminary result in Section 2.2.1. Therefore, wkw
′
k 6= wirk, as required.

(ii.) wkw
′
k 6= viv

′
i

Recall from (2.14) that since vi ∈ L∗k−1, vi 6= wk. So if wkw
′
k = viv

′
i, then wk = v′i.

From (2.9) we know that ϕ(viv
′
i) = ϕ(rirk), so if wk = v′i, then ϕ(viwk) = ϕ(rirk),

contradicting (R10). Therefore, wkw
′
k 6= viv

′
i, as required.

(iii.) wkw
′
k 6= wkri

Recall from (2.11) that ϕ(wkw
′
k) = ϕ(rkwk−1) and suppose that wkw

′
k = wkri. First

observe that i 6= k − 1 since rkwk−1 ∈ E(T kk−1) and we know from (2.8) and Section

2.2.1 that wk 6= rk and wk 6= wk−1.

Now, for 1 ≤ i ≤ k − 2, if wkw
′
k = wkri then ri = w′k. But from (2.9) and (2.11) if

ri = w′k then ϕ(wkw
′
k) = ϕ(rkwk−1) = ϕ(vk−1rk−1) = ϕ(wkri), contradicting (R11).

Therefore, wkw
′
k 6= wkri, as required.

It follows that wkw
′
k /∈ E(T ki ), 1 ≤ i < k.

The above Sections 2.2.1 - 2.2.6 ensure that the trees T k1 , T
k
2 , ..., T

k
k−1 and the graph T kk are

all edge-disjoint. Further, from (2.9) it is clear that T k1 , T
k
2 , ..., T

k
k−1 are all rainbow spanning

trees and from (2.12) that T kk is a spanning rainbow graph (since for every leaf, wc, 1 ≤ c ≤ k,

which is adjacent to rk and for which rkwc is removed from T kk , there exists w′c such that

the edge wcw
′
c is added to T kk and edge wdw

′
d in T kk such that ϕ(wdw

′
d) = ϕ(rkwc), where

d ≡ c+ 1 mod k.)
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2.3 Case 3 (C3): Preventing cycles from appearing in T kk

Properties (C1) and (C2) in the previous sections guarantee that the rainbow spanning

trees T k1 , T
k
2 , ..., T

k
k−1 and the rainbow spanning graph T kk are all edge-disjoint. Thus, it

remains to prove that T kk is acyclic and, therefore, a tree. This is proved inductively, showing

that for 1 ≤ i ≤ k, T kk (i) is acyclic. Formally, we will show the following two properties:

(P12) T kk (i) is acyclic for 1 ≤ i < k, and

(P13) T kk is acyclic

We consider each in turn.

2.3.1 Property (P12)

Proving T kk (i) is acyclic will also be done inductively. For our base step, we let T kk (0) =

Srk and observe that this graph is clearly acyclic.

It is clear from (2.11) that for 1 ≤ i < k, T kk (i) = T kk (i − 1) − rkwi + wiw
′
i. Therefore,

since by induction we have that T kk (i− 1) satisfies (P12), in order to prove T kk (i) is acyclic,

we need only show that adding wiw
′
i to T kk (i − 1) − rkwi does not create a cycle. Let

T kk (i− 1)∗ = T kk (i− 1)− rkwi.

Now, from (2.11) observe that all of the edges in T kk (i−1) are of the form rkx, rkw
′
a, and

waw
′
a, where 1 ≤ a < i and x ∈ V (K2m)\({

i−1⋃
a=1

wa, w
′
a} ∪ {rk}). Thus, wi ∈ {rk, x, wa, w′a}.

We now show that wi = x and, further, that since wi = x, T kk (i) is acyclic. We consider each

claim in turn.

(i.) wi = x

First observe that wi 6= rk since rkwi is an edge in T ki . Also, wi 6= wa (this property

is established by (R3) and was discussed in Section 2.1.5). Lastly, recall from (2.9)

that ϕ(viri) = ϕ(rkwi). So if wi = w′a then ϕ(viri) = ϕ(rkw
′
a), contradicting (R6).

Therefore, wi 6= w′a and it follows that wi = x.
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(ii.) T kk (i) is acyclic

Observe that since wi = x, wi ∈ V (K2m)\({
i−1⋃
a=1

wa, w
′
a}∪{rk}) and wi is a leaf adjacent

to rk in T kk (i− 1). Now, in order for wiw
′
i to create a cycle in T kk (i), there would have

to exist a path from wi to w′i in T kk (i − 1)∗. But, as we just observed, wi is a leaf in

T kk (i− 1) and since T kk (i− 1)∗ = T kk (i− 1)− rkwi, wi is an isolated vertex in T kk (i− 1)∗

so it follows that no such path exists. Therefore, T kk (i) is acyclic, as required.

The above two arguments show that (P12) holds for T kk (i).

2.3.2 Property (P13)

In Section 2.3.1 above, we showed that T kk (i) is acyclic for 1 ≤ i < k. Recall from (2.11)

that T kk = T kk (k − 1) − rkwk−1 + wkw
′
l. Thus, in order to prove T kk is acyclic, we need only

show that adding wkw
′
k to T kk (k− 1)− rkwk does not create a cycle. As in Section 2.3.1, let

T kk (k − 1)∗ = T kk (k − 1)− rkwk.

Observe from (2.11) that all of the edges of T kk (k − 1) are of the form rkx, rkw
′
i and

waw
′
a, where 1 ≤ i < k and x ∈ V (K2m)\({

k−1⋃
a=1

wi, w
′
i} ∪ {rk}). Thus, wk ∈ {rk, x, wi, w′i}.

We claim that wk = x and, further, that since wk = x, T kk is acyclic. We consider each claim

in turn.

(i.) wk = x

Begin by observing that wk 6= rk (since by (2.8) wk and rk were chosen to be distinct

vertices) and, for 1 ≤ i < k, wk 6= wi (this property was established by (R5) and

discussed in Section 2.2.1). The following argument shows wk 6= w′i.

First, observe that wk 6= w′1 since ϕ(w1w
′
1) = ϕ(rkwk), so if wk = w′1 then w1 = rk,

which we know from (2.9) cannot be the case.

Now, for 2 ≤ i < k, let α ∈ V (K2m) be the vertex such that ϕ(wkα) = ϕ(rkwi−1)

and recall from (2.12) that ϕ(wiw
′
i) = ϕ(rkwi−1). Suppose that wk = w′i. Then since

ϕ(wkα) = ϕ(rkwi−1) = ϕ(wiw
′
i) = ϕ(wiwk), α must equal wi. But from (2.9), we have
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that ϕ(viri) = ϕ(rkwi), so if wi = α then ϕ(viri) = ϕ(rkα), contradicting (R7) which

ensures that ϕ(viri) 6= ϕ(rkα), where α is the vertex such that ϕ(wkα) = ϕ(rkwi−1).

Therefore, wk 6= w′i, 2 ≤ i < k.

Combining the above arguments, it is clear that wk = x.

(ii.) T kk is acyclic

Observe that since wk = x where x ∈ V (K2m)\({
k−1⋃
a=1

wi, w
′
i}∪{rk}), wk is a leaf adjacent

to rk in T kk (k− 1). In order for wkw
′
k to form a cycle in T kk , there would have to exist a

path from wk to w′k in T kk (k−1)∗. But because wk is a leaf adjacent to rk in T kk (k−1),

wk is an isolated vertex in T kk (k − 1)∗ since T kk (k − 1)∗ = T kk (k − 1)− rkwk. It follows

that no such path from wk to w′k exists in T kk (k − 1)∗ and, consequently, T kk must be

acyclic, as required.

It follows that T kk is acyclic, satisfying (P13).

The above Sections 2.3.1 and 2.3.2 show that properties (P12) and (P13) hold, thus com-

pleting the proof of the theorem.

It is worth mentioning here that Theorem 1.1 guarantees the existence of
⌊√

6m+9
3

⌋
mutually edge-disjoint rainbow spanning trees, but our algorithm can at times provide more

such trees. The interested reader can see such an example in Appendix A.
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Chapter 3

Problem 2: Balanced Sampling Designs Excluding Contiguous Units: A Complete Solution

for λ = 3

Recall from Chapter 1 that a 2-BSEC(m,n, k, λ), m,n ≥ 3, is a pair (X,B) where

X = Zm × Zn and B is a collection of k-subsets of X (called blocks) such that each pair of

2-contiguous points do not appear together in any block, while any other two points appear

together in exactly λ blocks.

As stated in Chapter 1, our result extends Theorem 1.4, solving the case where λ = 3.

For convenience, we restate it here.

Theorem 1.5. A 2-BSEC(m,n, 3, 3) exists if and only if m and n are odd.

Before proving our main result, we first prove a series of lemmas, demonstrating the ex-

istence of certain 2-BSEC(m,n, 3, λ)’s, before utilizing those lemmas in the proof of Theorem

1.5.

3.1 Constructing 2-BSEC(m,n, 3, 3)’s

First, we consider the case when m ≡ n ≡ 1 (mod 6).

We will use the following well known combinatorial designs (see [16], for example for the

results in this paragraph). A triple system, TS(n, λ), of order n and index λ is an ordered

pair (S, T ) where S is a finite set of n symbols and T is a collection of 3-element subsets of

S called triples, such that each pair of distinct elements in S occurs together in exactly λ

triples in T .

It is well known that there exists a TS(n, λ) if n ≡ 1 or 3 (mod 6) and λ = 1,

and if n is odd and λ = 3.
(3.1)
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A quasigroup of order n is a pair (Q, ◦), where Q is a set of size n and ◦ is a binary

operation on Q such that for every pair of elements a, b ∈ Q, the equations a ◦ x = b and

y ◦ a = b have unique solutions. A quasigroup is said to be idempotent if i ◦ i = i for

1 ≤ i ≤ n.

Idempotent quasigroups are well known to exist for all orders of n 6= 2. (3.2)

A symmetric idempotent quasigroup is an idempotent quasigroup with the added re-

striction that for every x, y ∈ Q, x ◦ y = y ◦ x.

Symmetric idempotent quasigroups are well known to exist for all odd n. (3.3)

We can use idempotent quasigroups and one-dimensional BSECs to construct a 2-

BSEC(m,n, 3, 3) when m ≡ n ≡ 1 (mod 6) and n,m ≥ 13 as Lemma 3.1 shows.

We note here that in all the constructions in this section, the vertex set is Zm × Zn,

which can be visualized as a two-dimensional array consisting of m columns and n levels. So

the point (i, j) occurs in column i on level j. And, since the points are elements of Zm×Zn,

any arithmetic operation on the first and second coordinates of any point are reduced modulo

m and n respectively. The pairs of points, (i1, j1) and (i2, j2) can naturally be described as

horizontal (j1 = j2), vertical (i1 = i2), or diagonal pairs (i1 6= i2 and j1 6= j2).

Lemma 3.1. If m ≡ 1 (mod 6) and n ≡ 1 (mod 6) with m,n ≥ 13 then there exists a

2-BSEC(m,n, 3, 3).

Proof. The blocks are defined as follows.

1. For each j ∈ Zn, let (Zm×{j}, Bi) ∈ B be a 1-BSEC(m, 3, 3). This exists by Theorem

1.2. These blocks include each of the noncontiguous horizontal pairs of points three

times.
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2. For each i ∈ Zm, let ({i} × Zn, Cj) ∈ B be a 1-BSEC(n, 3, 3). This exists by Theorem

1.2. These blocks include each of the noncontiguous vertical pairs of points three times.

3. Let (Zm, T ) be a TS(m, 1) and let (Zn, ◦) be an idempotent quasigroup. These exist

by (3.1) and (3.2). For each {a, b, c} ∈ T , with a < b < c, and for each r, s ∈ Zn with

r 6= s, let B contain three copies of the block {(a, r), (b, s), (c, r ◦ s)}. These blocks

include each of the diagonal pairs of points three times.

It follows that (Zm × Zn, B) is the required 2-BSEC(m,n, 3, 3).

In view of Lemma 3.1, when m ≡ n ≡ 1 (mod 6) it remains to consider the case where

m ≡ 1 (mod 6) and n = 7. The construction in Lemma 3.2 requires much more care than the

previous one. Instead of using only a TS(m, 1) and an idempotent quasigroup to create triples

containing all of the diagonal pairs of points, in this construction (as well as the construction

in Lemma 3.7) we adopt a different approach. Diagonal distances between points are tracked

individually to check that each pair occurs together in three blocks. Formally, for each

x ∈ Zm and y ∈ Zn, the pair {(x, y), (x+ d, y + i)} is said to have diagonal distance (d, i) if

d ∈ {1, 2, ..., m−1
2
} and i ∈ {1, 2, ...n − 1}. Similarly, the pair {(x, y), (x + d, y)} if d ≤ m−1

2

and the pair {(x, y), (x, y + d)} if d ≤ n−1
2

are said to have horizontal and vertical distance

d respectively.

Lemma 3.2. If m ≡ 1 (mod 6), m ≥ 7 and n = 7, then there exists a 2-BSEC(m, 7, 3, 3).

Proof. Let the set of points be Zm × Z7, where m ≥ 7. The set of blocks B is defined by

taking the union of the following four sets of blocks, B1, B2, B3, and B4.

1. For each x ∈ Zm and each y ∈ Z7, let {(x, y), (x, y + 2), (x, y + 4)} ∈ B1. Blocks in B1

include all vertical pairs of points distance 2 apart twice and distance 3 apart once.

2. For each x ∈ Zm and each y ∈ Z7, let B2 contain the following three triples:
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(a) {(x, y), (x, y + 2)(x+ m−1
2
, y + 4)},

(b) {(x, y), (x, y + 3)(x+ m−1
2
, y + 1)}, and

(c) {(x, y), (x, y + 3)(x+ m−1
2
, y + 6)}.

Blocks in B2 include the remaining vertical pairs of points (distance 2 apart once and

distance 3 apart twice), as well as all the pairs of points with diagonal distance (m−1
2
, i)

for all level differences i ∈ {1, 2, ..., 6} once (level differences 2 and 4 in (a), 1 and 5 in

(b), and 3 and 6 in (c)).

3. For each x ∈ Zm, y ∈ Z7, for 2 ≤ j ≤ m−1
2

, and for 1 ≤ k ≤ 3,

(a) If j is odd then let {(x, y), (x+ j, y), (x+ m+j
2
, y + k)} ∈ B3, and

(b) If j is even then let {(x, y), (x+ j, y), (x+ j
2
, y + k)} ∈ B3.

Blocks in B3 include all horizontal distances three times and all the pairs of points

with diagonal distance (d, i) with d < m−1
2

and level differences i ∈ {1, 2, ..., 6} once.

4. Let (Zm, T ) be a TS(m, 1) and let (Z7, ◦) be an idempotent quasigroup. These exist

by (3.1) and (3.2). For each {a, b, c} ∈ T with a < b < c, and for each r, s ∈ Z7 with

r 6= s, let B4 contain two copies of {(a, r), (b, s), (c, r ◦ s)}.

Blocks in B4 include all of the diagonal pairs of points twice.

It follows that (Zm × Zn, B) is the required 2-BSEC(m, 7, 3, 3).

This completes the proof of the case when n ≡ m ≡ 1 (mod 6), so we now turn to

the case when m ≡ n ≡ 5 (mod 6). If m and n are at least 11 then we can construct a

2-BSEC(m,n, 3, 3) as follows.

Lemma 3.3. If m ≡ n ≡ 5 (mod 6) and m,n ≥ 11, then there exists a 2-BSEC(m,n, 3, 3).

Proof. Form the required 2-BSEC(m,n, 3, 3), (Zm × Zn, B), as follows.
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1. For each j ∈ Zn, let (Zm×{j}, Bi) ∈ B be a 1-BSEC(m, 3, 3). This exists by Theorem

1.2. These blocks include each of the noncontiguous horizontal pairs of points three

times.

2. For each i ∈ Zm, let ({i} × Zn, Cj) ∈ B be a 1-BSEC(n, 3, 3). This exists by Theorem

1.2. These blocks include each of the noncontiguous vertical pairs of points three times.

3. Let (Zm, T ) be a TS(m, 3) and let (Zn, ◦) be a symmetric idempotent quasigroup.

These exist by (3.1) and (3.3). For each {a, b, c} ∈ T , with a < b < c, and for each

r, s ∈ Zn with r 6= s, let B contain the triple {(a, r), (b, s), (c, r ◦ s)}. These blocks

include each of the diagonal pairs of points three times.

It follows that (Zm × Zn, B) is the required 2-BSEC(m,n, 3, 3).

In view of Lemma 3.3, it remains to consider the case where m ≡ 5 (mod 6) and n = 5.

First, we will consider the case where n = 5, m ≡ 5 (mod 6), and m ≥ 23. To do so, we will

use Langford sequences, hooked Langford sequences, and extended Skolem sequences [2,18].

A [hooked] Langford sequence of defect δ and length µ, L(µ, δ) [HL(µ, δ)] is a sequence

(l1, l2, ..., l2µ) [(l1, l2, ..., l2µ+1)] of 2µ [2µ + 1] integers with the property that: for every k ∈

{δ, δ + 1, ..., δ + µ − 1}, there exists a unique i ∈ {1, ..., 2µ} such that li = li+k = k [and

l2µ = 0].

For example, (4, 2, 3, 2, 4, 3) is an L(3, 2) and (6, 4, 2, 5, 2, 4, 6, 3, 5, 0, 3) is an HL(5, 2).

Theorem 3.4. [18] A Langford sequence of defect δ and length µ exists if and only if

1. µ ≥ 2δ − 1 and

2. µ ≡ 0 or 1 (mod 4) for δ odd and µ ≡ 0 or 3 (mod 4) for δ even.

Theorem 3.5. [18] A hooked Langford sequence of defect δ and length µ exists if and only

if
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1. µ(µ+ 1− 2δ) + 2 ≥ 0 and

2. µ ≡ 2 or 3 (mod 4) for δ odd and µ ≡ 1 or 2 (mod 4) for δ even.

Note that this implies that for any δ, given large enough µ, we can find either a Langford

or a hooked Langford sequence.

An extended Skolem sequence of length h, ES(h, p), is a sequence (s1, s2, ..., s2h+1) of

2h+ 1 integers such that for every j ∈ {1, 2, ..., h}, there exists a unique i ∈ {1, 2, ..., 2h+ 1}

such that si = si+j = j and a unique p such that sp = 0.

For example, (3, 1, 1, 3, 4, 5, 0, 2, 4, 2, 5) is an ES(5, 7).

Note that an extended Skolem sequence with s2h = 0 is a hooked Langford sequence of

defect 1 and length h.

Theorem 3.6. [2] An extended Skolem sequence ES(h, p) exists if and only if p is odd and

h ≡ 0 or 1 (mod 4) or p is even and h ≡ 2 or 3 (mod 4).

Note that this implies that an extended Skolem sequence of order h exists for all h.

Lemma 3.7. If m ≡ 5 (mod 6), m ≥ 23 and n = 5, then there exists a 2-BSEC(m, 5, 3, 3).

Proof. The required 2-BSEC(m, 5, 3, 3), (Zm × Z5, B), is defined as follows.

1. For 0 ≤ x ≤ m− 1, 0 ≤ y ≤ 4, 2 ≤ i ≤ m−1
2

, and 1 ≤ j ≤ 2, let

(a) {(x, y), (x+ i, y), (x+ i
2
, y + j)} ∈ B1 if i is even,

(b) {(x, y), (x+ i, y), (x+ i+m
2
, y + j)} ∈ B1 if i is odd,

(c) {(x, y), (x, y + 2), (x+ m−1
2
, y + 3)} ∈ B1, and

(d) {(x, y), (x, y + 2), (x+ m−1
2
, y + 4)} ∈ B1.

Blocks defined in (a) and (b) include each of the noncontiguous horizontal pairs of

points twice and each of the pairs of points with diagonal distance (d, i) with d < m−1
2

and level difference i ∈ {1, 2, 3, 4} once. Blocks defined in (c) and (d) include each of
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the noncontiguous vertical pairs of points twice and each of the pairs of points with

diagonal distance (m−1
2
, i) with level difference i ∈ {1, 2, 3, 4} once.

2. Let µ =
m−1

2
−2

3
.

(a) First, suppose µ ≡ 0 or 3 (mod 4) and let L = (l1, l2, ..., l2µ) be a Langford

sequence L(µ, δ = 2), which exists by Theorem 3.4. For each k ∈ {2, 3, ..., µ+ 1},

if li = lj = k with i < j, then let lk,1 = i + µ + δ − 1 = i + µ + 1 and let

lk,2 = j + µ+ δ − 1 = j + µ+ 1. Notice that i and j represent the positions of k

in the Langford sequence.

Then, for 0 ≤ x ≤ m − 1, 0 ≤ y ≤ 4, and 2 ≤ k ≤ µ + 1, let bk = {(x, y), (x +

lk,1, y), (x + lk,2, y)} ∈ B2. So, each bk in B2 contains three pairs of points, their

horizontal distances being lk,1, lk,2, and |lk,1 − lk,2| = k.

(b) Now, suppose µ ≡ 1 or 2 (mod 4) and let HL = (l1, l2, ..., l2µ+1) be a hooked

Langford sequence HL(µ, δ = 2), which exists by Theorem 3.5. For each w ∈

{2, 3, ..., µ + 1}, if lu = lv = w with u < v, let lw,1 = u + µ + δ − 1 = u + µ + 1

and lw,2 = v + µ+ δ − 1 = v + µ+ 1.

Notice that u and v represent the positions of w in the hooked Langford sequence.

Then, for 0 ≤ x ≤ m − 1, 0 ≤ y ≤ 4, and 2 ≤ w ≤ µ + 1, let bw = {(x, y), (x +

lw,1, y), (x + lw,2, y)} ∈ B2. So each bw in B2 contains three pairs of points, their

horizontal distances being lw,1, lw,2, and |lw,1 − lw,2| = w.

Blocks defined in (a) include each of the noncontiguous horizontal pairs of points once,

except distance d = m−1
2

. Blocks defined in (b) include each of the noncontiguous

horizontal pairs of points once, except distance d = m−1
2
− 1.

3. Again, let µ =
m−1

2
−2

3
and we will consider two cases depending on whether µ ≡ 0 or

3 (mod 4) or µ ≡ 1 or 2 (mod 4).
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(a) If µ ≡ 0 or 3 (mod 4), then for 0 ≤ x ≤ m− 1 and 0 ≤ y ≤ 4, let B3 contain the

blocks:

i. if 3µ+ 2 is even:

A. {(x, y), (x+ 3µ+ 2, y), (x+ 3µ+2
2
, y + 2)} and

B. {(x, y), (x, y + 2), (x+ 3µ+2
2
, y + 1)}; or

ii. if 3µ+ 2 is odd:

A. {(x, y), (x+ 3µ+ 2, y), (x+ 3µ+2+m
2

y + 2)} and

B. {(x, y), (x, y + 2), (x+ m−(3µ+2)
2

, y + 1)}

(b) If µ ≡ 1 or 2 (mod 4), then for 0 ≤ x ≤ m− 1 and 0 ≤ y ≤ 4, let B3 contain the

blocks:

i. if 3µ+ 1 is even:

A. {(x, y), (x+ 3µ+ 1, y), (x+ 3µ+1
2
, y + 2)} and

B. {(x, y), (x, y + 2), (x+ 3µ+1
2
, y + 1)}; or

ii. if 3µ+ 1 is odd:

A. {(x, y), (x+ 3µ+ 2, y), (x+ 3µ+2+m
2

, y + 2)} and

B. {(x, y), (x, y + 2), (x+ m−3µ+1
2

, y + 1)}.

Blocks defined in (a) include each of the horizontal pairs of points with distance m−1
2

once, each of the noncontiguous vertical pairs of points once, and each of the pairs of

points with diagonal distance (m−1
4
, i) with level distance i ∈ {1, 2, 3, 4} twice. Blocks

defined in (b) include each of the horizontal pairs of points with distance m−1
2
−1 once,

each of the noncontiguous vertical pairs of points once, and each of the pairs of points

with diagonal distance (m+1
4
− 1, i) with level distance i ∈ {1, 2, 3, 4} twice.

4. Lastly, let h =
⌊
m−1

3

⌋
and p = m−1

2
− 1. Let ES = (s1, s2, ..., s2h+1) be an extended

Skolem sequence ES(h, p). Notice that h is odd since m ≡ 5 (mod 6). Furthermore,
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if h ≡ 1 (mod 4) then p is odd and if h ≡ 3 (mod 4) then p is even. Therefore by

Theorem 3.6 ES exists.

If si = si+j = j with i < i + j, let sj,1 = i + h and sj,2 = i + j + h. Notice that i and

i+ j represent the positions of j ∈ {1, 2, ..., h}.

Now, let (Z5, ◦) be an idempotent quasigroup, which exists by (3.2). For each q, r ∈ Z5

with q 6= r, let two copies of {(x, q), (x+ sj,1, r), (x+ sj,2, q ◦ r)} ∈ B4.

These blocks include each of the pairs of points with diagonal distance (d, i) with d <

m+1
4

or m−1
4
− 1, depending on whether µ ≡ 0, 3 (mod 4) or µ ≡ 1, 2 (mod 4) respectively,

and with level difference i ∈ {1, 2, 3, 4}.

Let B = B1∪B2∪B3∪B4. It follows that (Z5×Zm, B) is the required 2-BSEC(m, 5, 3, 3).

Lastly, we consider the following three cases where n = 5 and m = 5, 11, and 17.

Lemma 3.8. If n = 5 and m ∈ {5, 11, 17} then there exists a 2-BSEC(m, 5, 3, 3).

Proof. We consider each of the three values of m in turn.

1. m = n = 5.

For x ∈ Z5 and y ∈ Z5, let B contain one copy of the following:

{(x, y), (x+ 2, y), (x, y + 2)}, {(x, y), (x+ 2, y), (x+ 1, y + 1)},

{(x, y), (x+ 2, y), (x+ 2, y + 2)}, {(x, y), (x+ 1, y + 1), (x, y + 2)},

{(x, y), (x+ 1, y + 1), (x+ 3, y + 2)}, {(x, y), (x+ 3, y + 1), (x+ 2, y + 2)},

{(x, y), (x+ 1, y + 2), (x+ 2, y + 4)}, {(x, y), (x+ 4, y + 2), (x+ 3, y + 4)},

{(x, y), (x+ 1, y + 2), (x+ 3, y + 4)}, {(x, y), (x+ 3, y + 2), (x+ 2, y + 4)}.

Then (Z5 × Z5, B) is the required 2-BSEC(5, 5, 3, 3).
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2. m = 11, n = 5.

For each j ∈ Z5 let (Z11 × {j}, Bj) be a 1-BSEC(11, 3, 3).

For each x ∈ Z11 and y ∈ Z5 let B5 contain one copy of the following:

{(x, y), (x+ 2, y + 1), (x+ 5, y + 2)}, {(x, y), (x+ 2, y + 3), (x+ 9, y + 1)},

{(x, y), (x+ 1, y + 2), (x+ 7, y + 4)}, {(x, y), (x+ 2, y + 2), (x+ 5, y + 4)},

{(x, y), (x+ 2, y + 3), (x+ 8, y + 2)}, {(x, y), (x+ 4, y + 1), (x+ 5, y + 3)},

{(x, y), (x+ 2, y + 1), (x+ 8, y + 2)}, {(x, y), (x+ 7, y + 1), (x+ 4, y + 2)},

{(x, y), (x+ 9, y + 1), (x+ 3, y + 2)}, {(x, y), (x+ 5, y + 2), (x+ 1, y + 4)},

{(x, y), (x+ 2, y + 2), (x+ 8, y + 4)}, {(x, y), (x+ 4, y + 4), (x+ 7, y + 2)},

{(x, y), (x+ 4, y + 2), (x+ 7, y + 1)}, {(x, y), (x+ 3, y + 2), (x+ 5, y + 1)},

{(x, y), (x+ 3, y + 1), (x+ 9, y + 2)}, {(x, y), (x+ 2, y + 2), (x+ 7, y + 4)},

{(x, y), (x+ 1, y + 2), (x+ 2, y + 1)}, {(x, y), (x+ 7, y + 2), (x+ 10, y + 1)},

and three copies of:

{(x, y), (x, y + 2), (x+ 1, y + 3)}.

Then (Z11 × Z5,∪i∈Z6Bi) is the required 2-BSEC(11, 5, 3, 3).

3. n = 5, m = 17

This design was found using a hill climbing algorithm. Rather than listing all of the

triples here, the interested reader can see such a design in Appendix B.

This completes the proof of Lemma 3.8.

3.2 The Main Result

We are now ready to provide the following necessary and sufficient conditions for a

2-BSEC(m,n, 3, 3) to exist.
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Theorem 3.9. A 2-BSEC(m,n, 3, 3) exists if and only if m and n are odd.

Proof. The necessity follows from Lemma 1.3. To prove sufficiency, the necessary conditions

together with the symmetry of m and n, mean that the only cases that need to be considered

are:

1. m ≡ 1 (mod 6) and n ≡ 1, 3, 5 (mod 6),

2. m ≡ 3 (mod 6) and n ≡ 3 (mod 6), and

3. m ≡ 5 (mod 6) and n ≡ 1, 3, 5 (mod 6).

By Theorem 1.4, the existence of a 2-BSEC(n,m, 3, 1) is established for the following

cases:

1. m ≡ 1 (mod 6) and n ≡ 3, 5 (mod 6),

2. m ≡ 3 (mod 6) and n ≡ 3 (mod 6), and

3. m ≡ 5 (mod 6) and n ≡ 1, 3 (mod 6).

In each of the cases 1-3, the blocks in the 2-BSEC(m,n, 3, 1) can be repeated three times

to produce a 2-BSEC(m,n, 3, 3). Therefore, the only cases remaining to be considered are:

1. m ≡ 1 (mod 6) and n ≡ 1 (mod 6) and

2. m ≡ 5 (mod 6) and n ≡ 5 (mod 6).

We can assume that n ≤ m. The first case is settled in Lemma 3.2 if n = 7 and in

Lemma 3.1 otherwise. The second case is settled in Lemmas 3.7 and 3.8 if n = 5 and in

Lemma 3.3 otherwise, completing the proof of the theorem.

39



Chapter 4

Other Directions

Both of the problems discussed in this dissertation can be extended or expanded upon

in other directions. The following sections contain a discussion on a few ways to do this.

4.1 Rainbow Trees

In the introduction, we looked at three conjectures related to finding edge-disjoint rain-

bow spanning trees in properly edge-colored complete graphs: Conjectures 1.1, 1.2, and 1.3,

before focusing specifically on Conjecture 1.1 for the remainder of our discussion.

The first step in extending the research discussed in this dissertation would be to improve

the result obtained in Theorem 1.1, with the goal of fully proving Conjecture 1.1. There is

also significant room for improvement to the results obtained so far pertaining to Conjecture

1.3.

Another direction would be to look at the number of edge-disjoint rainbow spanning

trees or rainbow spanning uni-cyclic graphs (rainbow graphs with exactly one cycle) in a

properly edge-colored K2m−1. Since K2m−1 has (2m − 1)(m − 1) edges, we conjecture the

following.

Conjecture 4.1. If K2m−1 is (2m− 1)-edge-colored, then the edges of K2m−1 can be parti-

tioned into m− 1 rainbow spanning trees together with one near-perfect matching containing

the m− 1 edges of a single color class.

Conjecture 4.2. If K2m−1 is (2m − 1)-edge-colored, then the edges of K2m−1 can be par-

titioned into m− 1 rainbow spanning trees together with one near-perfect rainbow matching

containing m− 1 edges.
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Conjecture 4.3. If K2m−1 is (2m− 1)-edge-colored, then the edges of K2m−1 can be parti-

tioned into m− 1 rainbow spanning uni-cyclic graphs.

4.2 Balanced Sampling Plans Excluding Contiguous Units

As discussed in the introduction, significant work has been done considering balanced

sampling plans excluding contiguous units in one or two dimensions, but little to no work

has been done in three or more dimensions. To do so, we can generalize the definition of

2-contiguous points to n-contiguous in the following way.

Given a set of points Zm1 ×Zm2 × ...×Zmn arranged in n dimensions, the n-contiguous

points to a point (x1, x2, ..., xn) are the points (y1, y2, ..., yn) where for coordinate i, 1 ≤ i ≤ n,

yi = xi + 1 or yi = x− 1, reducing the sums mod mi, and for 1 ≤ j ≤ n, j 6= i, xj = yj.

We can also generalize balanced sampling plans excluding contiguous units to n dimen-

sions. Define an n-BSEC(m1,m2, ...,mn, k, λ) to be a pair (X,B) where X = Zm1 × Zm2 ×

... × Zmn and B is a collection of k-subsets of X (called blocks) such that each pair of n-

contiguous points do not appear together in any block, while any other two points appear

together in exactly λ blocks.

Armed with these definitions, we can now ask the question: for which values of m1,m2,

...,mn, k, and λ does an n-BSEC(m1,m2, ...,mn, k, λ) exist.
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Appendix A

Edge-Disjoint Rainbow Spanning Trees in K14

This appendix demonstrates the use of our algorithm on a properly edge-colored K14.

In this instance, m = 7 and Theorem 1.1 guarantees the existence of Ω7 =
⌊√

6∗7+9
3

⌋
= 2

edge-disjoint rainbow spanning trees. As mentioned in Chapter 2, our algorithm ensures

the existence of at least Ωm trees, but can at times generate more. The following example

constructs 3 mutually edge-disjoint rainbow spanning trees from K14 using our algorithm.

We begin with a given edge-coloring K14.

Figure A.1: A Proper Edge-Coloring of K14

Step 1: k = 1

r1 can be any vertex in V (K14). Let x1 = r1 and then T 1
1 = Sx1 .
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Figure A.2: T 1
1

Step 2: k = 2

Recall from (2.6) that we defined Lk−1 to be the set of all vertices that are leaves adjacent

to the root in the trees T k−1
i , 1 ≤ i < k. Thus, when k = 2, L1 = V (K14)\{x1}, which has

cardinality larger than 6 ∗ 2− 7 = 5, as required. We now select distinct vertices r2 and w2
2

from L1.

Let r2 = x5 and w2
2 = x4. Then L∗1 = V (K14)\{x1, x4, x5}.

Our next step is to determine v2
1. (R1) eliminates vertices x1, x4, and x5 as choices

for v2
1. Items (R2 - R11) additionally eliminate vertices x6, x7, and x9. Let v2

1 = x2. Then

v2′
1 = w2

1 = x14 and we can form T 2
1 from T 1

1 by having T 2
1 = T 1

1 −x1x5−x1x2 +x5x14 +x2x14.

Forming T 2
1 allows us to form T 2

2 (1) = Sx5 − x5x14 + x14x13 where the color of edge

x14x13 is red, like edge x5x4 and thus, w2′
1 = x13.
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Figure A.3: T 2
1 on the left with T 2

2 (1) on the right

T 2
2 (2) can then be formed from T 2

2 (1) by letting T 2
2 (2) = Sx5−x5x14−x5x4+x14x13+x4x8

where w2′
2 = x8.
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Figure A.4: T 2
2

Step 3: k = 3

At this point L2 = L1\{x2, x4, x5, x8, x13, x14} so |L2| = 7, which is not greater than the

6 ∗ 3 − 7 = 11 vertices necessary for our algorithm to guarantee a third tree. However, we

can still find suitable vertices r3 and w3
3 that allow for three edge-disjoint rainbow spanning

trees to be formed.

Let r3 = x9 and w3
3 = x11. Then L∗2 = {x3, x6, x7, x10, x12} and we can find suitable v3

1

and v3
2 in L∗2, as described below.

In addition to the restriction that v3
1 ∈ L∗2, items (R2 - R11) additionally eliminate

vertices x3 and x7 as candidates for v3
1. We thus let v3

1 = x6 and then w3
1 = x4, v3′

1 = x12,

and w3′
1 = x3, allowing us to form both T 3

1 = T 2
1 − x1x9 − x1x6 + x9x4 + x6x12 and T 3

3 (1) =

Sx9 − x9x4 + x4x5.
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Figure A.5: T 3
1 on the left with T 3

3 (1) on the right

Similarly, v3
2 ∈ L∗2 and items (R2 - R11) additionally eliminate vertex x10 as a candidate

for v3
2. So we can let v3

2 = x12 and then v3′
2 = w3

2 = x14 and w3′
2 = x3, allowing us to form

both T 3
2 = T 2

2 −x5x9−x5x12 +x9x14 +x12x14 and T 3
3 (2) = Sx9−x9x4−x9x14 +x4x5 +x14x3.
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Figure A.6: T 3
2 on the left with T 3

3 (2) on the right

Lastly, forming T 3
3 (2) determines w3′

3 , thus allowing us to form the third tree, T 3
3 =

Sx9 − x9x4 − x9x14 − x9x11 + x4x5 + x14x3 + x11x10.
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Figure A.7: T 3
3

At this point, L3 = {x7} and we cannot find distinct vertices r4 and w4
4 in L3 to possibly

create a fourth tree using our algorithm.
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Appendix B

The Remaining 2-BSEC(m,n, 3, 3)

For the remaining case of Lemma 3.8, a 2-BSEC(17, 5, 3, 3), we used a hill climbing

algorithm to find such a balanced sampling plan. The program was written in the Java

programming language and implemented in the jGRASP environment. We first created a

two-dimensional 85× 85 adjacency matrix and then placed 3 edges between non-contiguous

pairs of points. The adjacency matrix represents a two-dimensional array with 5 rows and

17 columns where the rows contain the numbers 0−16, 17−33, 34−50, 51−67, and 68−84.

This code was able to produce multiple 2-BSEC(17, 5, 3, 3)’s, one of which is included below

in Section B.1. The code is included in Section B.2.

B.1 A 2-BSEC(17, 5, 3, 3)

Table B.1: A 2-BSEC(17, 5, 3, 3)

A 2-BSEC(17, 5, 3, 3)

28, 30, 79 21, 40, 56 13, 19, 22 24, 68, 75 45, 60, 67

29, 52, 66 14, 37, 72 16, 42, 50 26, 68, 74 13, 15, 55

56, 58, 76 51, 78, 82 25, 77, 81 0, 15, 26 17, 45, 71

26, 52, 68 31, 44, 64 13, 63, 79 51, 56, 61 20, 23, 62

54, 72, 80 18, 47, 57 24, 36, 84 10, 58, 65 29, 34, 53

3, 30, 58 30, 56, 83 31, 71, 76 19, 47, 63 2, 14, 26

11, 21, 43 25, 46, 66 45, 64, 82 8, 11, 48 3, 41, 72

3, 62, 67 15, 18, 79 10, 44, 73 21, 48, 75 20, 67, 69
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1, 26, 45 1, 26, 39 6, 61, 83 20, 59, 81 28, 44, 62

11, 15, 50 17, 49, 78 18, 25, 65 44, 70, 79 8, 52, 78

0, 34, 44 27, 35, 59 7, 35, 61 32, 37, 66 4, 60, 65

17, 20, 43 58, 69, 71 32, 47, 67 10, 67, 82 19, 65, 81

43, 58, 70 29, 58, 62 18, 28, 38 2, 7, 44 18, 71, 84

2, 24, 30 4, 22, 35 8, 18, 54 7, 17, 47 17, 64, 72

1, 12, 47 11, 30, 65 30, 39, 58 22, 65, 67 6, 28, 31

15, 44, 73 41, 62, 78 21, 26, 80 0, 31, 75 31, 33, 66

13, 27, 45 37, 49, 75 28, 50, 51 19, 21, 73 12, 41, 61

7, 13, 51 54, 60, 68 3, 29, 55 8, 37, 72 45, 49, 68

1, 29, 41 27, 51, 82 6, 32, 79 2, 11, 62 1, 39, 63

34, 36, 80 20, 26, 64 58, 65, 77 14, 22, 55 14, 63, 78

12, 43, 72 0, 5, 55 9, 20, 66 16, 56, 68 35, 42, 77

7, 14, 36 15, 21, 71 17, 74, 77 33, 59, 63 0, 43, 63

45, 54, 81 5, 19, 25 31, 58, 79 20, 54, 63 50, 60, 70

17, 19, 24 12, 54, 61 8, 21, 66 33, 35, 37 27, 66, 72

18, 23, 69 32, 42, 52 30, 32, 68 23, 30, 38 23, 35, 54

11, 66, 68 36, 71, 79 30, 53, 55 14, 53, 69 24, 54, 81

29, 61, 73 21, 29, 50 30, 33, 44 35, 64, 82 31, 57, 67

24, 34, 52 22, 24, 68 45, 53, 73 7, 13, 21 20, 44, 48

12, 30, 79 8, 35, 54 25, 29, 82 3, 72, 75 12, 18, 67

6, 14, 81 4, 41, 78 14, 50, 75 23, 26, 49 35, 58, 82

33, 60, 71 1, 17, 75 5, 36, 41 20, 34, 73 10, 20, 62

26, 40, 79 5, 23, 57 2, 33, 68 27, 47, 49 48, 62, 66

20, 31, 75 9, 50, 60 35, 38, 81 58, 67, 73 68, 78, 83

30, 38, 70 25, 35, 80 1, 45, 79 4, 10, 33 6, 19, 77
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18, 52, 70 3, 19, 41 15, 27, 53 35, 67, 79 50, 59, 66

26, 51, 63 12, 15, 19 58, 72, 74 4, 71, 73 4, 6, 38

24, 36, 52 21, 24, 61 45, 61, 74 44, 58, 74 19, 21, 49

2, 9, 67 27, 32, 67 40, 49, 84 19, 46, 76 6, 25, 72

25, 50, 73 16, 32, 74 21, 42, 77 57, 61, 71 0, 45, 76

3, 45, 78 11, 21, 37 5, 50, 69 37, 40, 58 17, 65, 80

21, 29, 59 41, 49, 56 16, 21, 43 14, 35, 41 23, 34, 75

12, 59, 70 56, 59, 64 64, 78, 84 35, 44, 67 5, 12, 39

21, 24, 68 33, 75, 81 30, 37, 55 2, 28, 76 46, 60, 69

20, 57, 77 5, 44, 81 30, 35, 50 0, 30, 82 22, 46, 56

1, 32, 58 7, 42, 63 29, 41, 54 8, 46, 62 12, 35, 75

9, 19, 53 32, 62, 66 9, 52, 79 6, 25, 30 15, 19, 47

14, 46, 51 46, 53, 71 0, 39, 80 10, 41, 72 17, 40, 49

43, 50, 74 21, 53, 62 28, 31, 68 22, 69, 76 12, 34, 48

34, 72, 76 17, 32, 66 19, 37, 78 43, 67, 81 4, 37, 81

1, 60, 64 5, 17, 83 42, 65, 72 3, 42, 84 2, 27, 29

24, 57, 82 8, 74, 82 35, 49, 59 1, 8, 34 7, 53, 80

53, 63, 84 27, 42, 49 21, 33, 45 16, 60, 66 9, 51, 69

18, 30, 63 16, 22, 25 44, 69, 72 6, 27, 78 12, 45, 69

48, 63, 74 4, 24, 76 17, 41, 57 11, 30, 81 33, 48, 58

3, 35, 38 8, 43, 68 2, 31, 78 37, 58, 73 30, 36, 46

10, 16, 28 25, 28, 72 13, 75, 80 15, 33, 76 14, 55, 60

43, 53, 72 8, 60, 75 5, 45, 57 5, 15, 71 6, 17, 39

6, 63, 73 22, 79, 82 37, 56, 67 26, 71, 75 21, 67, 76

49, 79, 81 21, 52, 74 9, 49, 78 2, 42, 60 9, 44, 71

27, 43, 46 5, 48, 55 15, 22, 67 7, 26, 31 38, 59, 62
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27, 57, 81 19, 28, 49 21, 42, 48 20, 31, 46 17, 50, 71

39, 54, 64 12, 32, 44 34, 37, 78 38, 53, 57 5, 18, 27

1, 44, 75 1, 24, 43 8, 67, 75 19, 22, 46 1, 59, 67

27, 50, 83 48, 68, 77 21, 44, 60 51, 79, 83 18, 66, 73

65, 71, 76 41, 68, 78 0, 20, 56 12, 22, 25 6, 29, 78

24, 53, 78 43, 48, 78 16, 39, 64 15, 45, 51 20, 70, 76

9, 73, 81 28, 71, 76 12, 49, 58 16, 58, 73 31, 34, 49

59, 65, 84 0, 25, 35 29, 47, 84 55, 69, 76 33, 67, 76

1, 25, 83 19, 62, 74 46, 57, 64 7, 58, 67 6, 15, 57

42, 53, 74 1, 27, 61 4, 14, 77 13, 21, 49 4, 45, 73

41, 80, 82 10, 34, 84 0, 44, 60 11, 46, 61 68, 70, 73

4, 64, 75 15, 41, 74 13, 27, 80 39, 52, 83 4, 9, 40

14, 33, 71 12, 57, 69 19, 26, 72 10, 32, 47 10, 19, 32

0, 32, 55 29, 39, 48 41, 63, 70 26, 31, 53 21, 45, 69

6, 19, 47 24, 48, 75 7, 22, 40 9, 37, 42 68, 74, 80

44, 51, 78 10, 45, 77 34, 40, 79 23, 29, 56 22, 47, 66

30, 34, 41 3, 8, 50 33, 52, 60 12, 33, 72 29, 31, 42

2, 56, 65 25, 63, 78 20, 44, 65 38, 47, 50 43, 46, 61

11, 34, 70 0, 40, 54 40, 43, 52 38, 44, 53 15, 62, 75

26, 35, 83 30, 63, 78 13, 58, 60 33, 66, 75 57, 63, 66

0, 37, 42 27, 64, 84 6, 50, 77 13, 50, 71 18, 23, 41

33, 47, 77 38, 49, 68 5, 48, 61 22, 24, 42 19, 31, 38

28, 34, 65 25, 51, 58 30, 67, 69 9, 43, 55 46, 70, 81

24, 39, 83 6, 17, 44 58, 63, 71 0, 8, 58 41, 45, 72

23, 25, 68 40, 42, 61 22, 30, 48 4, 6, 39 6, 64, 83

20, 28, 50 15, 25, 27 12, 82, 84 22, 26, 74 26, 44, 66
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24, 42, 76 46, 59, 77 0, 2, 18 51, 71, 82 16, 64, 67

70, 82, 84 9, 57, 83 2, 48, 51 0, 25, 76 54, 74, 76

11, 42, 62 3, 49, 77 18, 20, 49 24, 61, 82 29, 55, 84

2, 22, 37 21, 28, 72 3, 47, 61 24, 58, 60 17, 21, 26

0, 35, 69 2, 61, 83 65, 72, 79 47, 52, 83 22, 45, 71

6, 9, 36 17, 38, 67 31, 52, 55 9, 49, 59 11, 26, 29

20, 65, 71 32, 36, 65 32, 44, 83 17, 44, 73 2, 48, 81

6, 14, 53 18, 55, 64 2, 41, 56 21, 36, 77 3, 45, 78

59, 72, 84 5, 50, 68 28, 49, 71 20, 29, 72 26, 59, 69

6, 31, 50 56, 81, 84 4, 41, 80 20, 53, 82 14, 18, 59

10, 14, 75 40, 63, 73 10, 33, 53 27, 32, 84 17, 35, 81

0, 61, 81 15, 30, 75 20, 43, 76 1, 32, 84 12, 47, 53

38, 40, 82 8, 70, 77 4, 71, 83 31, 49, 75 2, 8, 40

14, 72, 83 18, 52, 77 15, 29, 59 26, 48, 82 33, 73, 79

11, 25, 66 8, 22, 44 8, 44, 64 33, 53, 67 13, 15, 72

12, 73, 76 5, 9, 39 6, 37, 66 2, 9, 36 8, 42, 79

53, 66, 76 47, 62, 84 6, 30, 60 3, 65, 68 24, 35, 49

14, 20, 48 8, 31, 55 17, 41, 83 0, 10, 63 1, 70, 76

14, 20, 52 14, 23, 45 6, 22, 61 1, 50, 56 9, 18, 78

2, 22, 26 12, 24, 48 3, 23, 33 46, 56, 64 3, 7, 62

53, 64, 78 17, 30, 59 12, 45, 53 15, 18, 46 35, 56, 75

6, 10, 35 27, 35, 38 47, 50, 83 25, 37, 76 7, 30, 50

25, 39, 84 8, 31, 62 27, 50, 63 1, 60, 80 48, 59, 71

26, 41, 47 46, 49, 51 12, 50, 74 6, 11, 33 15, 28, 65

36, 45, 79 19, 61, 71 38, 58, 81 2, 45, 68 21, 46, 81

3, 62, 83 8, 10, 36 0, 61, 64 34, 62, 77 23, 74, 83
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6, 25, 40 33, 48, 63 58, 69, 80 13, 16, 53 33, 52, 62

15, 73, 80 7, 56, 78 20, 24, 47 3, 14, 16 37, 47, 57

2, 23, 37 23, 26, 50 13, 21, 66 26, 35, 76 2, 50, 84

10, 16, 37 14, 45, 58 14, 18, 51 4, 44, 75 8, 59, 73

28, 81, 83 39, 43, 67 21, 46, 74 20, 40, 55 6, 59, 80

6, 62, 72 25, 29, 44 11, 52, 55 42, 52, 64 19, 34, 55

15, 47, 76 28, 47, 69 13, 59, 62 6, 34, 76 4, 44, 50

1, 4, 54 12, 16, 74 16, 48, 74 8, 52, 84 21, 60, 84

8, 31, 39 7, 74, 81 25, 30, 80 5, 76, 84 0, 49, 60

21, 25, 53 8, 15, 37 47, 58, 71 24, 46, 76 27, 38, 63

30, 40, 61 37, 69, 80 40, 46, 75 25, 67, 83 22, 28, 33

7, 25, 71 26, 45, 50 25, 29, 70 18, 20, 64 22, 35, 68

3, 58, 68 21, 32, 75 1, 43, 45 8, 10, 23 4, 53, 77

14, 41, 79 11, 33, 35 44, 51, 80 44, 46, 84 19, 44, 75

27, 30, 67 34, 63, 75 10, 16, 17 19, 50, 78 21, 52, 59

51, 73, 76 22, 49, 69 11, 26, 84 56, 59, 83 4, 15, 70

15, 37, 82 27, 31, 41 9, 34, 48 56, 69, 76 7, 35, 39

12, 37, 49 20, 56, 79 21, 70, 78 0, 22, 34 52, 54, 67

0, 19, 84 25, 41, 73 6, 48, 71 35, 40, 47 33, 45, 63

7, 26, 30 18, 80, 83 9, 40, 67 34, 53, 77 28, 42, 57

2, 15, 38 0, 48, 70 24, 27, 64 0, 14, 22 11, 49, 72

0, 21, 30 45, 51, 55 43, 72, 81 16, 46, 80 20, 39, 58

24, 49, 57 34, 68, 82 5, 24, 66 18, 31, 81 40, 50, 63

9, 28, 51 16, 34, 73 7, 79, 82 25, 79, 84 45, 59, 70

3, 38, 47 36, 60, 70 5, 23, 27 1, 4, 22 4, 11, 73

26, 73, 80 27, 34, 60 3, 18, 76 16, 44, 65 19, 76, 80
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51, 54, 70 27, 56, 60 25, 48, 71 8, 51, 74 45, 58, 66

8, 30, 35 49, 53, 55 5, 14, 84 47, 56, 62 23, 38, 82

47, 59, 73 18, 42, 79 55, 67, 73 13, 48, 61 0, 28, 56

32, 73, 77 16, 17, 75 28, 46, 50 22, 58, 72 10, 67, 68

38, 43, 79 6, 8, 53 14, 34, 37 51, 63, 76 15, 24, 45

25, 40, 74 14, 47, 70 18, 32, 72 53, 58, 62 14, 47, 74

20, 30, 46 54, 76, 79 38, 60, 71 36, 39, 45 4, 29, 53

1, 38, 63 10, 44, 68 11, 49, 70 5, 46, 49 3, 30, 77

4, 17, 46 33, 47, 54 8, 13, 42 27, 65, 71 1, 22, 72

11, 23, 34 7, 15, 29 23, 25, 57 7, 42, 56 4, 26, 29

4, 13, 49 37, 49, 64 8, 17, 83 8, 33, 49 7, 18, 25

28, 54, 74 2, 30, 43 51, 63, 71 40, 49, 62 23, 79, 84

4, 25, 51 22, 71, 80 23, 37, 41 3, 79, 82 46, 58, 68

31, 52, 63 4, 8, 26 29, 31, 44 27, 57, 73 23, 73, 84

9, 59, 64 4, 48, 79 13, 35, 64 37, 62, 75 35, 76, 84

3, 19, 54 61, 67, 77 4, 19, 60 6, 38, 58 22, 45, 53

6, 29, 71 14, 50, 76 13, 19, 24 29, 55, 59 5, 59, 75

25, 41, 51 23, 46, 60 35, 66, 72 4, 42, 68 4, 32, 52

57, 73, 79 8, 45, 66 37, 52, 77 3, 61, 64 23, 30, 72

1, 34, 71 2, 29, 47 28, 47, 75 6, 59, 72 8, 32, 60

0, 27, 74 6, 66, 79 39, 47, 60 18, 25, 36 10, 42, 55

36, 45, 61 21, 35, 66 12, 23, 31 4, 26, 34 30, 49, 55

4, 49, 74 9, 63, 72 10, 30, 54 0, 5, 72 2, 49, 63

23, 29, 81 24, 51, 53 21, 57, 80 5, 16, 60 9, 34, 57

4, 13, 80 18, 26, 33 34, 48, 69 45, 48, 83 35, 73, 83

38, 45, 64 11, 22, 57 3, 25, 70 9, 64, 75 6, 57, 60
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17, 29, 56 33, 36, 56 18, 43, 57 1, 17, 47 2, 45, 75

13, 36, 69 24, 32, 55 13, 18, 53 27, 39, 55 5, 50, 64

36, 43, 59 2, 10, 12 3, 9, 48 22, 63, 81 14, 40, 71

3, 14, 81 2, 23, 65 18, 29, 65 18, 40, 45 36, 58, 76

5, 38, 80 13, 57, 60 7, 41, 66 44, 50, 81 37, 52, 80

36, 50, 58 26, 50, 55 13, 22, 76 41, 53, 64 12, 18, 26

25, 32, 70 32, 63, 82 2, 39, 72 4, 16, 47 67, 74, 76

26, 33, 78 20, 41, 64 24, 40, 59 20, 36, 60 26, 32, 71

3, 39, 46 44, 46, 58 21, 65, 76 22, 25, 53 19, 33, 69

10, 19, 58 18, 45, 70 22, 30, 42 23, 30, 44 30, 78, 81

8, 43, 65 5, 57, 80 24, 52, 80 15, 42, 77 18, 58, 81

5, 47, 84 26, 44, 77 20, 49, 77 28, 77, 83 17, 39, 53

44, 49, 53 9, 43, 46 15, 45, 59 20, 50, 72 10, 69, 74

3, 64, 79 18, 60, 78 10, 15, 41 0, 8, 41 6, 16, 45

4, 8, 27 0, 9, 67 23, 53, 66 11, 13, 74 17, 20, 84

31, 74, 84 19, 59, 74 50, 51, 84 10, 17, 75 3, 10, 55

44, 46, 84 40, 69, 79 6, 31, 49 3, 6, 80 9, 54, 59

34, 53, 68 6, 21, 67 28, 53, 84 44, 52, 57 33, 52, 65

7, 17, 63 2, 38, 72 32, 43, 64 13, 25, 58 1, 7, 9

25, 40, 81 32, 50, 59 40, 44, 54 11, 39, 81 15, 20, 41

19, 38, 67 17, 22, 37 5, 20, 62 33, 59, 81 21, 33, 78

18, 48, 60 31, 42, 54 7, 21, 65 32, 37, 62 38, 58, 61

32, 43, 71 6, 48, 62 21, 49, 65 16, 30, 41 17, 28, 58

13, 23, 83 4, 28, 42 25, 52, 56 4, 56, 74 5, 43, 56

45, 55, 65 12, 31, 33 10, 46, 48 61, 69, 72 7, 13, 82

29, 63, 74 67, 70, 77 72, 77, 84 49, 52, 59 15, 73, 76
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31, 61, 76 7, 25, 78 0, 19, 45 37, 52, 76 8, 22, 57

5, 47, 68 35, 48, 54 8, 20, 69 31, 35, 73 4, 48, 79

14, 17, 44 44, 55, 83 24, 38, 65 23, 42, 46 35, 44, 77

9, 40, 71 37, 78, 84 30, 51, 62 38, 63, 65 2, 5, 59

19, 54, 60 15, 20, 25 3, 38, 75 16, 17, 82 46, 75, 84

8, 30, 45 55, 63, 77 0, 13, 32 24, 49, 54 50, 74, 80

0, 47, 54 0, 13, 37 47, 49, 76 11, 44, 51 46, 66, 77

5, 32, 40 10, 26, 46 31, 56, 68 5, 42, 71 9, 14, 27

37, 43, 84 20, 38, 81 49, 54, 69 3, 60, 69 19, 35, 55

9, 24, 72 53, 56, 71 22, 38, 74 30, 52, 65 22, 59, 77

6, 14, 69 54, 75, 84 12, 51, 56 42, 54, 78 38, 50, 73

1, 37, 41 16, 49, 55 0, 45, 47 30, 65, 83 17, 28, 30

50, 53, 55 7, 19, 65 13, 36, 44 36, 47, 52 31, 50, 83

7, 61, 69 11, 46, 72 62, 68, 72 9, 71, 82 2, 16, 29

8, 10, 51 13, 15, 49 33, 44, 69 6, 28, 58 10, 40, 76

14, 24, 60 29, 41, 51 7, 77, 81 8, 47, 51 30, 49, 51

16, 30, 61 31, 39, 43 0, 18, 23 29, 32, 37 18, 36, 40

52, 68, 83 29, 35, 45 14, 65, 74 16, 27, 78 26, 38, 65

6, 42, 61 17, 30, 76 10, 76, 81 56, 72, 84 5, 35, 55

28, 40, 42 1, 38, 60 17, 40, 59 13, 23, 63 12, 37, 63

42, 47, 60 30, 69, 83 22, 46, 56 6, 46, 55 9, 35, 65

24, 27, 56 35, 40, 58 17, 27, 52 3, 44, 83 6, 48, 63

3, 5, 70 57, 59, 69 26, 31, 67 52, 58, 60 75, 81, 83

18, 48, 56 19, 72, 74 7, 55, 66 25, 49, 75 22, 32, 74

0, 6, 70 12, 16, 58 56, 60, 78 48, 55, 77 2, 15, 36

33, 37, 70 42, 64, 69 16, 21, 63 46, 50, 80 58, 74, 83
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66, 69, 74 37, 57, 64 50, 64, 69 3, 13, 35 19, 35, 60

20, 70, 82 4, 16, 48 1, 19, 25 27, 41, 75 13, 51, 69

9, 13, 41 4, 34, 46 25, 48, 75 33, 34, 40 27, 54, 83

2, 59, 78 43, 68, 75 50, 51, 77 23, 41, 71 2, 20, 23

10, 31, 62 22, 52, 64 11, 69, 82 11, 18, 74 26, 70, 81

17, 57, 77 23, 48, 51 7, 22, 45 41, 48, 81 26, 39, 59

34, 47, 79 14, 18, 29 61, 69, 71 19, 25, 63 13, 37, 50

31, 40, 45 6, 13, 42 22, 34, 72 7, 14, 76 38, 69, 73

39, 75, 82 25, 55, 62 6, 65, 76 5, 23, 48 15, 55, 68

14, 21, 70 38, 59, 69 29, 47, 82 38, 52, 54 54, 58, 80

24, 37, 63 35, 50, 77 23, 36, 50 2, 47, 53 10, 50, 61

20, 34, 54 3, 5, 7 41, 43, 82 5, 40, 53 44, 53, 67

3, 34, 43 26, 57, 81 51, 55, 69 15, 40, 65 12, 36, 67

21, 25, 60 8, 26, 60 29, 42, 45 1, 36, 75 42, 47, 50

8, 27, 37 12, 55, 76 61, 67, 79 33, 34, 47 2, 32, 46

1, 55, 58 16, 23, 76 27, 33, 79 26, 48, 84 12, 15, 37

35, 60, 63 3, 22, 32 0, 2, 11 11, 48, 67 14, 19, 79

4, 67, 82 6, 9, 82 45, 55, 61 24, 29, 84 25, 54, 79

21, 29, 71 25, 27, 82 3, 34, 84 43, 62, 75 24, 70, 78

4, 71, 77 4, 12, 67 0, 7, 38 36, 63, 81 3, 25, 54

10, 44, 47 20, 23, 79 43, 51, 81 14, 42, 67 50, 52, 82

4, 30, 40 11, 31, 40 0, 7, 59 10, 19, 43 13, 77, 82

31, 41, 77 19, 62, 77 1, 11, 62 15, 40, 46 10, 49, 71

42, 44, 56 5, 36, 54 3, 15, 29 0, 9, 66 11, 58, 84

31, 46, 50 37, 56, 69 4, 20, 61 27, 45, 82 12, 34, 46

46, 54, 65 4, 65, 69 24, 62, 77 9, 21, 32 20, 52, 76
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9, 56, 72 21, 43, 54 41, 50, 65 5, 10, 30 17, 60, 63

11, 27, 33 9, 43, 66 3, 15, 52 16, 46, 69 13, 56, 67

2, 9, 73 2, 58, 79 0, 63, 65 22, 24, 70 5, 8, 19

12, 14, 66 38, 42, 44 40, 73, 83 7, 30, 32 17, 36, 51

55, 63, 79 37, 53, 65 25, 50, 64 16, 20, 27 16, 53, 61

14, 33, 54 4, 43, 76 13, 34, 43 10, 34, 62 13, 62, 69

5, 63, 76 9, 33, 80 36, 44, 56 4, 7, 17 41, 70, 83

1, 56, 81 49, 60, 69 57, 61, 84 33, 39, 42 1, 10, 21

30, 43, 67 16, 31, 40 15, 36, 66 59, 61, 77 46, 55, 57

34, 36, 76 8, 73, 75 9, 21, 23 65, 69, 84 59, 68, 72

24, 71, 84 11, 54, 82 21, 37, 73 3, 21, 81 54, 56, 83

11, 22, 38 29, 38, 57 60, 79, 81 9, 60, 74 50, 53, 56

24, 27, 77 18, 41, 73 8, 11, 55 1, 36, 51 12, 17, 35

31, 51, 77 12, 57, 71 47, 61, 77 10, 18, 32 25, 39, 61

31, 77, 82 3, 8, 36 3, 15, 63 0, 24, 42 13, 65, 68

9, 28, 53 5, 59, 65 7, 28, 80 41, 53, 76 2, 16, 59

22, 66, 82 13, 24, 67 8, 13, 38 24, 73, 81 16, 22, 65

46, 74, 78 9, 15, 69 28, 33, 41 35, 42, 63 5, 51, 75

5, 37, 61 2, 18, 46 7, 40, 68 49, 67, 80 6, 49, 67

1, 6, 51 54, 59, 61 38, 51, 64 56, 65, 77 50, 62, 76

16, 20, 57 9, 14, 19 54, 77, 83 2, 68, 73 59, 74, 84

51, 54, 60 1, 3, 24 3, 51, 65 21, 28, 82 20, 29, 68

13, 34, 70 13, 29, 43 23, 39, 77 37, 44, 63 0, 24, 74

39, 41, 74 12, 23, 59 22, 29, 40 9, 25, 46 37, 69, 75

26, 57, 63 11, 32, 50 16, 34, 41 17, 40, 62 22, 29, 78

33, 68, 75 8, 41, 67 31, 64, 72 6, 24, 46 4, 43, 83
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10, 22, 83 16, 71, 81 26, 45, 77 8, 29, 34 7, 69, 74

45, 74, 83 15, 17, 81 21, 32, 67 14, 57, 73 18, 55, 74

6, 28, 35 25, 28, 72 7, 43, 70 10, 36, 68 14, 35, 63

59, 65, 67 9, 27, 47 16, 23, 62 27, 51, 61 10, 24, 37

60, 62, 65 3, 9, 56 9, 42, 80 1, 11, 51 7, 34, 45

6, 16, 36 5, 12, 65 34, 42, 45 13, 42, 78 16, 18, 81

34, 37, 44 9, 19, 44 0, 38, 77 12, 40, 63 35, 43, 49

30, 54, 62 5, 21, 31 34, 38, 41 16, 25, 43 22, 27, 31

3, 47, 60 3, 34, 64 9, 50, 65 14, 40, 65 2, 35, 76

5, 39, 62 63, 75, 79 24, 47, 73 54, 68, 77 9, 15, 70

14, 51, 66 32, 38, 70 15, 78, 84 8, 29, 50 27, 34, 67

62, 67, 80 54, 57, 68 13, 19, 46 43, 56, 80 14, 36, 56

10, 25, 82 40, 66, 81 3, 37, 74 37, 65, 74 1, 15, 20

1, 29, 80 14, 21, 25 6, 65, 84 14, 39, 75 10, 26, 35

23, 43, 80 10, 23, 56 1, 50, 52 20, 58, 61 26, 56, 79

2, 18, 38 44, 47, 78 14, 26, 83 48, 50, 72 48, 77, 84

7, 36, 78 0, 2, 11 0, 6, 51 20, 26, 75 27, 30, 76

17, 48, 54 4, 25, 49 4, 45, 63 4, 30, 38 11, 23, 77

75, 77, 79 0, 44, 52 6, 17, 53 0, 23, 61 0, 5, 77

2, 41, 66 7, 56, 84 15, 28, 79 13, 34, 83 14, 60, 73

35, 51, 70 2, 55, 84 13, 39, 48 9, 11, 50 16, 32, 56

17, 24, 29 1, 52, 77 23, 49, 79 13, 45, 52 9, 38, 79

19, 23, 26 52, 67, 82 16, 34, 82 9, 31, 81 3, 52, 73

54, 56, 70 12, 43, 78 12, 33, 77 0, 26, 58 15, 24, 81

52, 63, 72 16, 44, 62 3, 12, 75 4, 24, 82 23, 67, 71

23, 28, 62 11, 31, 60 15, 38, 48 37, 40, 51 24, 58, 77
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27, 29, 69 2, 49, 82 19, 41, 52 51, 54, 64 38, 57, 72

2, 7, 21 31, 36, 59 19, 45, 70 0, 71, 74 29, 49, 60

10, 18, 63 27, 36, 49 40, 43, 65 17, 47, 81 26, 40, 48

43, 48, 83 62, 69, 81 0, 10, 15 9, 34, 81 19, 27, 68

16, 38, 49 48, 53, 59 3, 27, 80 38, 60, 62 48, 54, 73

51, 53, 72 13, 33, 44 4, 6, 70 28, 46, 77 36, 69, 80

14, 23, 37 20, 51, 83 28, 41, 74 3, 11, 59 4, 35, 45

23, 47, 54 63, 67, 83 26, 51, 66 12, 54, 62 0, 10, 29

11, 48, 60 47, 49, 57 28, 32, 61 2, 15, 63 32, 39, 81

17, 43, 77 9, 29, 76 15, 56, 82 11, 17, 76 24, 51, 71

28, 40, 68 16, 37, 39 34, 64, 79 7, 46, 73 1, 28, 65

17, 21, 24 11, 41, 69 9, 11, 74 23, 49, 63 9, 39, 49

11, 18, 61 6, 58, 63 6, 40, 82 10, 51, 56 0, 65, 79

38, 74, 84 42, 48, 67 10, 13, 57 11, 19, 43 28, 63, 84

52, 61, 63 18, 24, 28 15, 23, 81 30, 36, 74 2, 32, 51

13, 31, 73 42, 51, 72 19, 57, 84 22, 44, 64 5, 21, 74

1, 44, 66 5, 28, 54 6, 29, 69 3, 8, 69 38, 44, 48

37, 57, 67 28, 30, 84 20, 58, 83 5, 24, 33 15, 18, 79

40, 53, 77 66, 82, 84 36, 50, 78 1, 7, 67 21, 63, 81

32, 42, 81 25, 36, 57 11, 26, 71 3, 53, 74 19, 22, 48

46, 65, 81 8, 22, 77 5, 14, 62 7, 23, 70 15, 48, 64

7, 27, 73 2, 25, 74 0, 57, 79 11, 37, 71 68, 72, 82

8, 47, 62 9, 29, 52 24, 28, 57 60, 72, 81 33, 70, 80

21, 31, 61 19, 57, 81 18, 21, 36 3, 11, 18 17, 36, 66

9, 23, 35 4, 27, 46 22, 27, 79 64, 71, 78 7, 28, 80

22, 57, 70 0, 7, 64 1, 46, 72 10, 36, 65 58, 72, 80
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53, 75, 82 33, 61, 68 16, 54, 73 29, 81, 83 25, 44, 55

1, 77, 80 12, 39, 77 0, 8, 11 7, 32, 35 39, 41, 48

6, 9, 68 0, 37, 46 3, 11, 83 39, 55, 84 45, 59, 79

6, 13, 18 0, 48, 50 12, 28, 82 7, 12, 57 15, 26, 60

5, 52, 72 3, 44, 82 46, 71, 73 35, 47, 65 34, 45, 74

41, 49, 54 2, 24, 50 33, 76, 82 4, 20, 80 39, 42, 66

14, 28, 55 5, 29, 67 16, 47, 72 12, 30, 64 64, 70, 73

4, 18, 62 12, 62, 74 28, 39, 71 0, 3, 73 17, 66, 71

24, 65, 70 22, 55, 81 29, 38, 49 2, 69, 81 11, 59, 80

20, 38, 45 1, 23, 50 37, 46, 70 31, 76, 78 30, 37, 59

38, 70, 72 32, 42, 57 8, 19, 26 21, 47, 63 20, 28, 35

5, 37, 43 37, 50, 82 41, 55, 59 43, 48, 83 15, 54, 72

41, 44, 65 2, 80, 84 8, 12, 68 12, 58, 64 11, 14, 38

18, 43, 82 25, 41, 43 9, 41, 84 24, 50, 54 31, 55, 80

19, 54, 82 32, 57, 79 13, 38, 66 8, 40, 84 2, 55, 69

18, 33, 70 2, 54, 65 31, 45, 81 10, 48, 70 14, 35, 47

12, 42, 63 1, 48, 76 2, 35, 55 1, 28, 35 4, 14, 17

14, 29, 77 39, 42, 82 26, 36, 73 16, 19, 66 29, 60, 68

10, 59, 83 13, 40, 76 40, 45, 77 15, 71, 77 60, 80, 83

39, 53, 79 33, 65, 79 4, 54, 66 54, 56, 75 4, 7, 51

10, 35, 80 0, 43, 69 3, 50, 52 2, 5, 31 23, 28, 32

1, 20, 78 50, 61, 75 1, 6, 83 27, 55, 75 36, 55, 63

11, 46, 59 9, 16, 83 4, 23, 78 16, 19, 51 12, 28, 48

18, 21, 54 12, 42, 65 53, 56, 62 40, 54, 82 29, 45, 65

17, 52, 84 64, 68, 77 25, 57, 66 1, 30, 77 11, 44, 76

1, 32, 78 55, 68, 71 7, 55, 64 16, 31, 57 1, 10, 33
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63, 74, 77 21, 26, 82 23, 32, 59 16, 29, 75 9, 63, 82

8, 19, 79 6, 12, 55 30, 71, 81 13, 31, 71 8, 18, 61

12, 53, 65 23, 28, 69 6, 19, 37 1, 17, 61 6, 22, 75

0, 39, 78 8, 14, 69 3, 22, 61 27, 37, 62 0, 12, 21

10, 13, 38 1, 6, 62 25, 27, 59 1, 57, 68 4, 36, 52

34, 52, 70 14, 16, 65 16, 19, 83 66, 74, 78 30, 33, 80

67, 74, 81 4, 61, 82 55, 62, 81 13, 26, 65 36, 39, 44

51, 65, 70 0, 80, 82 9, 44, 63 12, 41, 68 1, 53, 64

55, 77, 79 20, 28, 55 32, 53, 75 38, 45, 56 2, 45, 80

5, 18, 67 48, 78, 82 34, 52, 66 11, 31, 56 2, 12, 75

8, 14, 77 12, 27, 40 7, 40, 60 32, 50, 79 33, 43, 64

71, 75, 78 4, 69, 84 47, 59, 63 27, 39, 70 6, 43, 71

7, 26, 49 16, 27, 47 0, 14, 24 14, 28, 74 17, 56, 78

26, 52, 56 10, 26, 64 17, 31, 68 0, 12, 83 14, 39, 76

17, 22, 76 0, 32, 36 5, 44, 67 40, 44, 80 63, 69, 77

21, 55, 83 8, 50, 65 5, 11, 77 7, 36, 38 16, 71, 77

31, 36, 83 31, 63, 69 24, 31, 69 7, 29, 72 24, 26, 44

22, 62, 69 23, 70, 75 16, 35, 51 41, 75, 79 2, 39, 53

29, 53, 58 12, 19, 64 36, 57, 71 11, 20, 65 4, 9, 20

42, 73, 81 7, 47, 74 3, 26, 74 34, 38, 64 32, 41, 71

55, 58, 66 16, 28, 43 49, 80, 83 1, 76, 81 9, 32, 62

6, 24, 43 5, 28, 63 0, 76, 81 47, 56, 80 24, 38, 79

39, 58, 84 30, 57, 72 17, 42, 46 34, 67, 75 2, 10, 52

40, 44, 70 15, 30, 64 3, 31, 80 25, 48, 52 3, 63, 72

37, 70, 80 3, 13, 41 11, 64, 66 24, 30, 80 66, 78, 81

15, 34, 44 22, 43, 79 66, 68, 76 18, 71, 80 26, 30, 78
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1, 12, 73 33, 58, 82 29, 43, 62 31, 43, 57 1, 40, 72

62, 65, 70 19, 35, 70 11, 53, 63 15, 31, 47 23, 44, 74

19, 71, 83 38, 43, 77 2, 34, 67 19, 33, 37 27, 32, 40

1, 16, 35 25, 53, 69 12, 50, 70 4, 23, 52 17, 31, 38

14, 48, 50 22, 47, 67 26, 47, 82 27, 39, 69 16, 18, 77

4, 15, 57 7, 18, 50 39, 44, 63 5, 9, 24 56, 71, 82

12, 14, 84 17, 22, 84 11, 30, 57 55, 61, 79 6, 26, 73

59, 79, 83 30, 51, 79 0, 41, 52 41, 62, 81 4, 29, 34

23, 43, 47 11, 37, 68 27, 35, 75 36, 48, 80 13, 20, 54

3, 31, 42 31, 35, 70 5, 32, 65 11, 22, 52 36, 61, 72

6, 51, 80 44, 49, 72 23, 29, 54 8, 54, 81 45, 49, 63

18, 66, 80 6, 33, 73 57, 63, 76 11, 45, 84 6, 43, 59

36, 58, 78 1, 9, 30 9, 47, 74 64, 77, 80 21, 59, 75

15, 21, 78 40, 75, 83 7, 70, 83 57, 67, 68 12, 23, 51

8, 32, 65 3, 44, 77 18, 55, 68 14, 41, 81 4, 12, 50

17, 70, 79 17, 68, 80 30, 35, 84 41, 73, 84 0, 26, 42

11, 35, 56 41, 59, 61 20, 39, 45 11, 32, 56 19, 67, 69

45, 73, 75 8, 44, 80 28, 59, 64 22, 41, 54 29, 54, 64

25, 37, 77 23, 60, 73 30, 52, 70 0, 28, 53 12, 15, 26

5, 16, 63 3, 10, 58 2, 67, 80 9, 12, 62 39, 47, 52

0, 71, 73 36, 39, 46 14, 43, 54 5, 8, 81 41, 44, 57

9, 18, 76 37, 74, 79 7, 39, 46 26, 55, 58 38, 40, 46

33, 71, 84 6, 68, 82 36, 54, 75 38, 54, 74 15, 57, 75

22, 49, 81 52, 55, 73 3, 18, 69 46, 74, 79 15, 42, 69

3, 36, 57 19, 39, 51 62, 64, 73 21, 53, 61 32, 34, 78

45, 52, 67 39, 50, 54 29, 63, 70 22, 41, 60 5, 10, 14
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36, 74, 77 34, 54, 84 10, 42, 71 15, 40, 68 6, 45, 47

3, 29, 32 5, 10, 42 35, 46, 71 42, 46, 58 13, 47, 78

8, 17, 63 11, 20, 57 1, 39, 63 12, 18, 40 23, 68, 73

33, 36, 46 25, 43, 64 3, 57, 76 18, 53, 73 28, 44, 68

1, 30, 40 49, 64, 67 5, 15, 43 35, 74, 81 2, 69, 83

0, 29, 36 20, 61, 73 15, 38, 61 1, 12, 79 15, 21, 39

55, 65, 78 49, 53, 73 31, 53, 74 23, 64, 67 42, 47, 66

16, 40, 61 10, 21, 34 14, 23, 52 15, 25, 34 4, 23, 39

35, 39, 57 21, 28, 52 7, 66, 69 16, 54, 67 61, 63, 66

49, 58, 70 7, 16, 44 1, 15, 62 20, 44, 48 1, 13, 71

15, 52, 56 20, 22, 80 22, 33, 43 6, 45, 68 8, 15, 72

3, 40, 70 5, 29, 77 47, 61, 70 34, 54, 66 19, 21, 57

25, 38, 75 46, 49, 70 17, 45, 65 20, 51, 79 21, 40, 80

5, 45, 56 11, 51, 78 29, 36, 49 31, 47, 51 10, 63, 71

38, 73, 78 16, 57, 59 20, 45, 78 10, 21, 56 13, 46, 65

1, 5, 82 3, 27, 43 3, 14, 67 7, 16, 54 11, 21, 54

8, 13, 28 2, 60, 83 10, 15, 61 10, 66, 82 5, 17, 52

2, 17, 50 7, 62, 64 4, 59, 68 32, 60, 80 10, 66, 81

3, 21, 82 16, 69, 83 7, 10, 83 10, 39, 50 13, 17, 74

31, 61, 74 1, 21, 55 55, 73, 78 4, 41, 43 2, 12, 43

9, 30, 37 3, 17, 26 7, 19, 31 28, 40, 75 17, 25, 56

14, 25, 45 8, 17, 74 20, 27, 78 36, 42, 76 26, 40, 62

15, 48, 82 10, 39, 57 2, 22, 27 12, 19, 70 16, 40, 60

15, 53, 80 19, 24, 55 11, 42, 55 16, 45, 56 19, 28, 73

5, 20, 83 4, 18, 59 0, 62, 82 39, 51, 66 9, 12, 61

19, 40, 67 32, 59, 73 13, 18, 39 13, 20, 26 7, 47, 73
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9, 22, 52 29, 51, 74 26, 67, 72 55, 71, 75 29, 36, 66

28, 63, 70 34, 40, 74 0, 65, 75 49, 52, 84 18, 24, 37

41, 46, 75 22, 30, 73 14, 32, 61 27, 38, 41 31, 56, 82

0, 33, 43 38, 43, 80 16, 41, 50 1, 33, 82 13, 28, 32

45, 64, 76 48, 67, 72 32, 48, 58 67, 70, 74 29, 32, 39

34, 58, 61 0, 48, 51 7, 16, 79 9, 30, 45 34, 49, 56

0, 62, 83 12, 20, 66 28, 43, 61 21, 27, 58 19, 40, 64

18, 30, 74 72, 76, 79 19, 42, 50 4, 31, 78 46, 60, 82

7, 15, 49 22, 43, 58 19, 52, 76 25, 63, 65 16, 28, 70

6, 10, 12 5, 11, 53 16, 62, 78 17, 21, 64 2, 16, 52

4, 64, 74 45, 47, 75 0, 4, 19 24, 33, 55 9, 61, 75

0, 13, 54 53, 65, 83 29, 35, 57 58, 78, 83 2, 8, 71

3, 48, 66 2, 56, 63 3, 51, 65 28, 48, 52 14, 36, 43

2, 26, 57 3, 35, 66 10, 23, 45 10, 49, 72 1, 37, 81

18, 47, 69 0, 28, 39 26, 60, 78 17, 69, 82 22, 71, 78

3, 27, 51 26, 61, 84 38, 56, 77 34, 55, 80 26, 32, 54

14, 57, 61 29, 48, 60 45, 80, 84 8, 63, 68 30, 62, 72

26, 49, 62 23, 58, 82 8, 24, 33 60, 67, 75 4, 19, 39

33, 57, 83 0, 36, 49 56, 58, 65 5, 13, 17 29, 61, 65

4, 24, 62 15, 66, 84 9, 29, 68 54, 63, 84 6, 52, 64

19, 58, 79 27, 30, 45 29, 33, 57 13, 23, 35 5, 56, 71

20, 51, 73 9, 48, 84 24, 72, 79 19, 34, 56 21, 41, 51

10, 52, 57 13, 40, 72 32, 46, 68 22, 50, 58 9, 31, 35

27, 37, 53 22, 62, 68 2, 4, 61 30, 44, 84 2, 66, 77

18, 66, 78 24, 63, 67 13, 64, 70 8, 30, 49 2, 30, 32

11, 36, 72 33, 40, 51 56, 64, 66 2, 21, 34 1, 20, 31
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14, 27, 46 37, 50, 81 40, 47, 67 25, 37, 59 3, 16, 24

2, 47, 58 21, 27, 48 18, 49, 65 35, 37, 45 15, 63, 69

9, 20, 33 5, 8, 81 11, 25, 61 14, 24, 44 20, 63, 82

27, 52, 58 13, 67, 77 17, 29, 62 3, 31, 45 25, 36, 81

27, 48, 76 49, 61, 83 2, 54, 78 20, 32, 40 13, 26, 62

3, 33, 49 2, 7, 57 16, 24, 67 22, 53, 80 21, 27, 62

35, 60, 83 24, 32, 64 2, 62, 76 11, 24, 44 39, 72, 78

24, 35, 78 18, 42, 84 10, 51, 60 25, 35, 46 4, 22, 47

41, 46, 76 39, 73, 79 55, 71, 74 19, 71, 80 3, 55, 67

67, 78, 81 21, 47, 69 20, 24, 66 0, 46, 66 8, 16, 71

6, 34, 57 1, 8, 28 52, 59, 71 22, 51, 73 38, 52, 75

1, 36, 48 8, 12, 56 0, 59, 78 24, 32, 38 8, 32, 53

33, 56, 81 46, 62, 83 9, 54, 62 28, 36, 73 0, 35, 53

32, 72, 77 31, 80, 84 18, 61, 63 56, 59, 70 12, 44, 49

29, 39, 71 14, 25, 38 27, 53, 68 1, 46, 59 7, 53, 71

28, 54, 73 48, 55, 64 49, 52, 81 19, 65, 80 50, 66, 71

46, 69, 82 18, 45, 49 17, 54, 69 16, 70, 76 10, 14, 64

7, 12, 54 24, 65, 72 22, 50, 59 37, 60, 79 45, 54, 57

69, 72, 78 0, 72, 75 7, 9, 27 60, 64, 72 16, 42, 68

16, 46, 79 2, 61, 81 6, 39, 66 3, 28, 39 13, 16, 59

26, 33, 55 36, 38, 68 11, 13, 77 4, 37, 56 12, 60, 76

4, 28, 67 8, 21, 84 16, 26, 51 23, 61, 68 43, 69, 78

20, 35, 43 0, 14, 71 23, 60, 64 14, 42, 44 0, 27, 72

29, 50, 58 20, 55, 60 1, 11, 78 41, 49, 83 2, 10, 60

14, 30, 59 3, 24, 56 26, 53, 61 30, 36, 82 44, 55, 76

18, 39, 59 28, 37, 67 23, 51, 53 24, 35, 61 5, 49, 82
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3, 37, 66 30, 66, 73 21, 51, 55 32, 54, 63 7, 10, 54

11, 17, 23 34, 38, 80 49, 57, 78 24, 45, 80 50, 68, 70

19, 41, 77 11, 41, 80 17, 27, 42 49, 62, 76 43, 61, 84

4, 10, 59 0, 9, 46 3, 43, 73 44, 50, 78 42, 70, 73

18, 37, 71 28, 64, 80 19, 39, 61 39, 57, 76 8, 24, 79

1, 46, 52 24, 26, 39 1, 14, 83 0, 20, 33 15, 22, 51

53, 68, 83 17, 55, 70 31, 37, 41 4, 53, 60 4, 32, 57

36, 64, 69 35, 72, 78 17, 32, 45 13, 29, 33 6, 65, 75

35, 61, 80 3, 6, 26 10, 12, 45 57, 70, 72 14, 68, 80

1, 33, 66 2, 40, 73 8, 64, 83 1, 35, 84 20, 25, 32

2, 34, 36 18, 51, 57 7, 32, 83 5, 7, 41 29, 37, 82

11, 52, 75 22, 49, 61 0, 31, 34 7, 12, 72 0, 31, 70

40, 55, 59 1, 3, 49 27, 74, 80 17, 39, 60 17, 19, 51

6, 20, 75 8, 18, 24 43, 45, 52 35, 69, 71 48, 52, 74

8, 38, 82 5, 18, 68 12, 52, 82 28, 59, 78 5, 15, 61

17, 36, 70 41, 45, 71 33, 53, 83 8, 55, 70 2, 13, 79

4, 12, 56 43, 49, 73 0, 58, 67 8, 67, 73 51, 75, 81

2, 17, 43 39, 43, 73 17, 19, 69 11, 40, 47 12, 21, 69

23, 44, 66 23, 53, 57 1, 19, 59 34, 49, 71 28, 33, 61

13, 25, 61 27, 40, 66 58, 64, 68 17, 46, 68 5, 36, 79

12, 44, 71 18, 27, 42 28, 47, 81 18, 29, 76 1, 54, 61

1, 14, 54 5, 25, 38 64, 73, 83 11, 36, 41 2, 25, 64

44, 68, 76 13, 43, 45 7, 20, 68 32, 56, 60 39, 49, 76

21, 35, 50 32, 51, 77 5, 13, 64 9, 21, 45 24, 29, 66

4, 16, 55 41, 50, 63 44, 72, 82 43, 56, 74 10, 20, 30

4, 51, 84 0, 25, 73 0, 33, 49 3, 54, 76 12, 31, 38
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3, 30, 68 29, 63, 83 19, 23, 34 9, 38, 68 31, 39, 69

33, 38, 46 40, 71, 81 49, 64, 77 1, 13, 84 44, 56, 79

26, 28, 67 12, 17, 73 1, 49, 73 40, 60, 84 40, 55, 78

26, 42, 58 2, 6, 37 22, 36, 63 20, 30, 42 9, 14, 70

11, 36, 82 5, 28, 58 35, 37, 73 9, 16, 53 2, 66, 74

7, 27, 77 1, 41, 57 21, 79, 84 47, 70, 82 9, 13, 78

17, 61, 73 42, 62, 70 11, 24, 47 66, 76, 79 2, 25, 44

17, 23, 72 10, 70, 84 8, 29, 40 32, 76, 83 6, 12, 81

4, 63, 75 22, 75, 78 11, 63, 68 13, 22, 54 2, 20, 46

32, 39, 69 0, 51, 81 5, 34, 46 6, 13, 55 19, 28, 56

18, 31, 67 37, 47, 83 5, 37, 45 58, 66, 70 15, 31, 65

36, 62, 82 23, 31, 65 5, 79, 83 4, 35, 65 13, 16, 66

2, 5, 51 12, 38, 71 17, 35, 72 1, 8, 82 20, 22, 42

60, 67, 70 20, 63, 68 41, 55, 62 10, 22, 48 28, 43, 66

15, 19, 42 27, 50, 54 11, 15, 17 11, 13, 47 38, 46, 67

22, 33, 51 28, 34, 59 1, 15, 49 9, 11, 58 48, 57, 64

21, 35, 57 43, 47, 55 8, 33, 48 5, 38, 69 0, 50, 60

21, 42, 83 8, 64, 80 29, 69, 81 48, 53, 57 1, 42, 56

21, 39, 70 2, 13, 75 17, 48, 57 61, 65, 75 64, 68, 71

8, 23, 46 5, 12, 20 2, 41, 77 24, 59, 63 5, 21, 64

1, 25, 34 28, 57, 62 21, 33, 58 17, 26, 38 5, 70, 78

2, 27, 57 42, 75, 84 19, 42, 58 41, 59, 82 7, 20, 42

37, 45, 84 15, 35, 74 24, 34, 71 39, 60, 74 18, 58, 77

33, 46, 51 13, 59, 68 12, 77, 83 6, 18, 44 31, 44, 54

70, 75, 83 14, 28, 56 34, 60, 62 7, 19, 48 8, 23, 80

37, 76, 83 6, 18, 56 7, 38, 61 19, 62, 68 13, 46, 52
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16, 50, 55 12, 25, 52 22, 29, 77 25, 45, 54 2, 4, 58

5, 31, 66 13, 27, 48 12, 25, 32 26, 38, 54 19, 29, 43

10, 70, 84 18, 44, 82 19, 23, 61 24, 39, 51 30, 64, 71

18, 44, 47 3, 23, 59 33, 41, 61 15, 23, 80 11, 35, 71

15, 23, 84 48, 76, 80 27, 33, 72 43, 54, 77 11, 16, 70

0, 4, 55 0, 3, 22 39, 49, 65 26, 36, 42 11, 27, 73

18, 52, 75 15, 34, 43 35, 44, 62 22, 31, 84 12, 20, 60

35, 42, 82 59, 75, 80 15, 30, 50 8, 27, 34 15, 39, 55

6, 24, 56 2, 33, 77 6, 67, 78 17, 50, 79 14, 22, 63

66, 75, 77 36, 47, 77 61, 66, 70 8, 16, 48 6, 8, 49

37, 48, 79 25, 33, 65 9, 13, 55 32, 41, 53 6, 8, 41

0, 6, 21 13, 32, 74 25, 39, 80 7, 18, 37 16, 31, 82

16, 26, 63 22, 36, 62 32, 55, 80 9, 51, 75 1, 66, 71

8, 36, 61 7, 43, 52 3, 53, 63 4, 11, 14 28, 36, 55

26, 41, 76 6, 22, 56 26, 70, 77 38, 42, 66 10, 52, 74

7, 15, 39 10, 24, 74 2, 17, 31 20, 36, 47 5, 7, 52

32, 68, 70 51, 61, 74 40, 74, 78 2, 28, 49 15, 54, 67

7, 50, 57 4, 18, 58 5, 29, 40 4, 37, 83 3, 7, 48

7, 52, 62 42, 72, 75 6, 77, 79 3, 5, 78 13, 47, 75

46, 52, 73 29, 31, 64 14, 66, 68 3, 10, 79 25, 33, 67

47, 51, 72 37, 61, 68 1, 29, 44 20, 27, 84 50, 57, 80

54, 57, 66 0, 27, 52 42, 49, 80 34, 69, 78 41, 65, 69

1, 57, 65 27, 61, 76 30, 69, 73 26, 69, 79 5, 13, 25

16, 25, 49 40, 52, 78 20, 52, 71 21, 68, 79 8, 42, 57

15, 33, 59 56, 69, 77 2, 6, 52 5, 51, 60 1, 9, 22

20, 59, 67 21, 23, 31 5, 53, 78 18, 26, 34 12, 32, 35
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0, 23, 64 17, 67, 78 9, 56, 80 0, 53, 59 9, 38, 76

40, 52, 72 44, 74, 79 10, 31, 59 18, 34, 39 17, 61, 67

34, 59, 81 43, 50, 62 19, 30, 82 17, 37, 48 16, 35, 69

21, 41, 44 54, 78, 80 0, 4, 30 13, 72, 83 10, 47, 80

54, 58, 69 25, 31, 47 39, 73, 77 19, 32, 78 37, 51, 59

23, 56, 58 15, 53, 60 15, 58, 78 15, 36, 54 4, 38, 62

5, 47, 76 14, 38, 78 66, 70, 80 16, 37, 72 43, 70, 75

36, 48, 70 53, 69, 79 10, 22, 54 20, 25, 47 2, 71, 79

5, 32, 46 10, 28, 38 8, 12, 78 45, 60, 66 1, 42, 53

37, 40, 48 1, 10, 31 27, 71, 79 6, 11, 15 8, 53, 58

9, 17, 54 4, 32, 63 8, 20, 59 1, 68, 79 1, 14, 27

19, 27, 63 42, 45, 83 41, 55, 60 23, 38, 78 6, 35, 41

10, 64, 76 33, 57, 83 18, 21, 72 10, 60, 79 12, 14, 46

12, 16, 38 33, 54, 72 19, 66, 75 19, 30, 56 37, 47, 58

7, 44, 71 13, 44, 57 22, 32, 75 0, 3, 56 7, 14, 84

46, 48, 80 57, 62, 70 25, 47, 71 14, 16, 80 2, 28, 82

12, 36, 51 25, 34, 56 3, 16, 36 23, 39, 65 2, 14, 64

15, 35, 58 38, 53, 76 11, 43, 63 4, 10, 81 45, 76, 82

56, 61, 66 18, 62, 84 10, 40, 69 9, 47, 65 39, 62, 80

15, 56, 74 3, 6, 40 14, 20, 32 47, 59, 71 8, 43, 47

36, 41, 67 2, 39, 54 30, 52, 71 47, 55, 81 12, 22, 36

5, 33, 35 26, 41, 46 26, 76, 83 30, 60, 66 14, 30, 34

6, 11, 60 12, 52, 60 7, 43, 58 38, 56, 66 10, 29, 67

12, 66, 84 34, 59, 82 3, 12, 21 35, 68, 79 29, 64, 74

16, 36, 64 6, 20, 70 3, 9, 25 26, 59, 66 9, 33, 64

42, 55, 83 25, 55, 67 2, 24, 64 9, 37, 39 27, 54, 65
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9, 57, 84 10, 28, 66 14, 52, 62 22, 41, 60 75, 78, 80

28, 44, 70 38, 51, 76 4, 11, 54 35, 48, 68 40, 77, 80

4, 31, 58 10, 73, 80 28, 48, 78 45, 67, 72 4, 50, 57

26, 37, 68 38, 41, 47 43, 51, 57 28, 60, 75 26, 32, 69

60, 63, 73 29, 70, 79 16, 72, 77 16, 52, 79 19, 32, 45

20, 33, 39 16, 23, 76 28, 31, 34 14, 17, 53 9, 18, 28

32, 73, 82 8, 72, 83 30, 46, 48 0, 40, 66 20, 24, 74

36, 65, 73 17, 20, 41 22, 28, 37 5, 35, 74 32, 43, 76

1, 16, 38 20, 67, 71 22, 73, 84 5, 69, 75 28, 36, 83

9, 42, 70 28, 60, 76 55, 70, 74 5, 42, 49 23, 47, 78

25, 28, 69 16, 32, 80 2, 6, 33 0, 41, 67 4, 25, 31

22, 26, 70 14, 32, 64 29, 78, 83 5, 33, 34 7, 53, 59

30, 48, 56 21, 36, 64 14, 49, 56 14, 57, 78 15, 46, 67

11, 39, 67 5, 16, 26 25, 59, 62 5, 11, 27 45, 48, 72

22, 44, 59 8, 56, 63 28, 46, 64 42, 61, 80 11, 64, 75

21, 30, 41 12, 79, 81 18, 34, 83 35, 62, 64 30, 53, 66

65, 78, 80 19, 29, 73 31, 63, 83 22, 34, 65 1, 70, 74

19, 31, 52 15, 28, 60 11, 25, 83 7, 28, 77 23, 42, 71

35, 39, 41 1, 5, 26 14, 26, 80 38, 42, 52 40, 48, 56

43, 63, 66 23, 52, 81 15, 22, 35 57, 62, 82 39, 47, 79

14, 29, 67 39, 65, 83 10, 43, 79 2, 14, 40 2, 20, 53

51, 57, 59 53, 60, 72 12, 26, 46 14, 39, 72 24, 50, 69

19, 44, 59 3, 12, 42 39, 62, 67 37, 42, 65 2, 21, 44

19, 72, 81 32, 47, 72 20, 36, 81 19, 38, 83 37, 61, 64

11, 16, 45 39, 68, 81 4, 9, 15 25, 62, 74 38, 48, 59

47, 56, 68 12, 34, 39 10, 69, 75 10, 18, 53 7, 51, 59
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25, 68, 78 53, 81, 84 7, 60, 82 1, 65, 67 6, 27, 81

26, 28, 37 10, 43, 55 30, 57, 60 51, 64, 84 1, 19, 64

12, 22, 55 25, 31, 79 27, 65, 68 6, 46, 54 67, 71, 83

11, 76, 78 0, 47, 80 0, 29, 79 35, 46, 78 43, 65, 74

11, 20, 80 4, 36, 55 21, 46, 83 27, 43, 69 26, 29, 37

49, 51, 58 10, 25, 77 31, 62, 65 17, 37, 55 12, 41, 47

24, 40, 69 50, 56, 61 29, 73, 75 1, 21, 58 24, 58, 62

50, 73, 82 18, 22, 82 20, 34, 74 27, 31, 70 3, 17, 59

9, 16, 58 31, 33, 60 12, 17, 27 57, 65, 77 11, 24, 75

6, 20, 50 23, 42, 75 20, 49, 74 42, 64, 79 11, 14, 19

18, 33, 38 17, 49, 79 36, 62, 71 9, 69, 73 23, 36, 72

6, 10, 41 13, 36, 84 14, 34, 42 9, 17, 58 32, 36, 38

15, 24, 31 46, 67, 79 6, 42, 54 31, 37, 51 62, 66, 73

45, 50, 81 4, 47, 66 26, 52, 54 41, 56, 70 10, 13, 29

13, 37, 60 6, 32, 54 21, 40, 51 3, 37, 60 24, 34, 83

8, 14, 58 15, 33, 62 10, 37, 77 41, 45, 69 4, 33, 40

32, 34, 81 3, 17, 28 27, 29, 56 1, 48, 53 22, 28, 38

26, 34, 61 33, 42, 73 32, 45, 48 19, 29, 75 41, 64, 66

65, 73, 78 4, 8, 28 6, 16, 52 7, 33, 41 21, 23, 76

29, 52, 80 76, 78, 82 43, 49, 84 20, 35, 53 16, 30, 42

9, 23, 45 13, 31, 73 11, 42, 67 32, 41, 84 39, 71, 74

19, 40, 53 1, 42, 74 7, 48, 81 30, 39, 61 24, 48, 73

13, 28, 51 15, 27, 70 5, 26, 30 26, 56, 72 2, 13, 82

55, 61, 82 32, 44, 52 11, 39, 45 22, 50, 66 8, 46, 61

3, 46, 53 7, 34, 63 73, 77, 82 13, 39, 52 36, 67, 68

25, 45, 50 34, 55, 57 1, 4, 7 24, 26, 28 33, 36, 74
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18, 50, 62 13, 61, 70 36, 40, 42 35, 40, 56 1, 16, 24

16, 20, 22 55, 57, 75 12, 24, 30 56, 63, 67 29, 51, 80

21, 56, 62 15, 43, 51 11, 16, 29 9, 12, 24 7, 11, 58

12, 28, 78 18, 22, 60 7, 10, 49 3, 33, 39 7, 34, 60

8, 45, 57 57, 75, 82 3, 28, 81 4, 64, 76 7, 9, 79

24, 36, 59 18, 30, 68 17, 32, 82 34, 42, 69 11, 32, 69

34, 61, 65 23, 55, 82 23, 33, 55 10, 39, 50 8, 20, 56

9, 31, 36 40, 64, 70 27, 62, 71 72, 80, 82 38, 40, 50

9, 32, 61 23, 36, 83 10, 61, 72 25, 33, 69 16, 18, 75

2, 4, 42 60, 74, 76 13, 50, 79 52, 61, 79 0, 57, 69

10, 46, 53 5, 34, 58 8, 15, 66 33, 42, 78 1, 31, 37

13, 17, 58 25, 60, 68 35, 43, 59 4, 44, 69 52, 61, 81

10, 65, 73 0, 38, 84 4, 33, 84 29, 48, 61 23, 58, 63

11, 40, 64 7, 11, 29 11, 19, 49 9, 25, 60 30, 33, 74

24, 46, 83 23, 27, 77 7, 72, 76 14, 21, 73 29, 35, 79

42, 53, 81 0, 62, 84 4, 13, 68 6, 69, 84 52, 57, 65

49, 74, 82 5, 54, 79 17, 23, 25 45, 51, 58 14, 33, 62

40, 58, 76 37, 39, 44 7, 37, 46 21, 50, 72 18, 32, 51

50, 53, 75 0, 57, 78 10, 24, 40 41, 52, 68 7, 37, 55

20, 29, 72 5, 70, 72 11, 38, 83 47, 55, 65 7, 23, 33

5, 19, 82 8, 16, 21 77, 81, 84 30, 39, 75 21, 39, 68

48, 62, 73 8, 39, 70 10, 17, 25 31, 54, 58 13, 41, 63

25, 30, 76 3, 19, 50 6, 15, 44 19, 30, 53 28, 41, 79

30, 34, 63 1, 3, 40 7, 23, 67 35, 51, 62 1, 27, 55

2, 8, 35 42, 68, 74 39, 64, 82 15, 50, 68 11, 34, 73

23, 48, 69 23, 55, 66 31, 60, 71 18, 43, 50 5, 66, 80
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22, 40, 83 9, 17, 55 1, 23, 70 14, 49, 68 17, 62, 80

26, 65, 81 0, 40, 50 33, 64, 74 7, 11, 65 6, 34, 47

31, 46, 72 1, 13, 73 19, 48, 68 8, 39, 59 7, 33, 45

6, 32, 76 48, 66, 69 38, 51, 83 5, 44, 60 15, 17, 64

44, 54, 59 46, 55, 82 34, 39, 68 50, 76, 84 18, 27, 83

10, 20, 38 31, 53, 79 2, 72, 74 43, 68, 71 13, 56, 76

1, 47, 68 32, 35, 48 15, 52, 58 23, 27, 74 36, 40, 43

24, 31, 43 18, 56, 75 37, 43, 53 46, 62, 78 4, 70, 81

25, 58, 84 18, 41, 48 32, 34, 58 0, 18, 20 5, 9, 41

14, 30, 43 59, 74, 82 36, 60, 84 7, 22, 31 13, 20, 40

42, 60, 82 17, 60, 65 19, 33, 84 6, 27, 36 26, 36, 75

13, 33, 56 21, 47, 79 35, 53, 67 12, 27, 59 17, 42, 51

20, 69, 77 42, 51, 62 21, 34, 77 16, 68, 81 1, 23, 43

61, 76, 80 24, 45, 60 26, 47, 53 6, 21, 30 1, 5, 74

3, 46, 57 14, 49, 61 30, 75, 77 11, 53, 81 9, 22, 83

8, 38, 71 0, 15, 77 19, 27, 66 21, 37, 71 2, 62, 71

7, 20, 84 27, 60, 81 16, 39, 78 27, 58, 64 18, 46, 54

29, 42, 76 14, 48, 58 4, 66, 79 7, 68, 76 6, 26, 64

28, 52, 66 43, 53, 82 34, 66, 72 14, 59, 79 12, 68, 81

3, 23, 32 5, 30, 58 29, 33, 38 31, 59, 66 0, 12, 83

8, 52, 78 18, 31, 72 2, 42, 48 4, 27, 36 30, 54, 70

44, 58, 81 18, 22, 64 6, 38, 84 3, 13, 84 13, 24, 53

B.2 A Hill Climbing Algorithm

import java.util.Random;
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import java.util.Arrays;

/**

* Hill climbing algorithm to find a specified

* triple system.

*

* @author Katherine Perry

* @version 01-27-2014

*/

public class FindTriplesJune2016 {

/**

* Uses a hill climbing algorithm on a given adjacency matrix

* to find a desired triple system, where each pair of non-

* contiguous points in a 2-dimensional array are in exactly

* 3 triples.

*

* @param args Command line arguments (not used).

*/

public static void main(String[] args) {

// creates variables including adjacency matrix and array to store triples

int[][] adjacencyMatrix = new int[85][85];

int[][] triples = new int [3400][3];

int tripleNum = 0;
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int total = 0;

String s = "\\";

String ss = s+s;

// Builds adjacency matrix: puts 3 edges between noncontiguous pairs of

// points and 0 edges between 2-contiguous pairs and eliminates loops

for (int row = 0; row < adjacencyMatrix.length; row++)

for (int col = 0; col < adjacencyMatrix[row].length; col++)

if (row == col) {

adjacencyMatrix[row][col] = 0;

}

else if (row == (col + 1)) {

adjacencyMatrix[row][col] = 0;

}

else if (row == (col - 1)) {

adjacencyMatrix[row][col] = 0;

}

else {

adjacencyMatrix[row][col] = 3;

adjacencyMatrix[row][(row + 17) % 85] = 0;

adjacencyMatrix[row][(row + 68) % 85] = 0;

}

//corrections

adjacencyMatrix[0][16] = 0;

adjacencyMatrix[16][0] = 0;

adjacencyMatrix[16][17] = 3;
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adjacencyMatrix[17][16] = 3;

adjacencyMatrix[17][33] = 0;

adjacencyMatrix[33][34] = 3;

adjacencyMatrix[33][17] = 0;

adjacencyMatrix[34][33] = 3;

adjacencyMatrix[34][50] = 0;

adjacencyMatrix[50][51] = 3;

adjacencyMatrix[50][34] = 0;

adjacencyMatrix[51][50] = 3;

adjacencyMatrix[51][67] = 0;

adjacencyMatrix[67][68] = 3;

adjacencyMatrix[67][51] = 0;

adjacencyMatrix[68][67] = 3;

adjacencyMatrix[68][84] = 0;

adjacencyMatrix[84][68] = 0;

//builds array to store triples. defaults all values to 0.

for (int row = 0; row < triples.length; row++)

for (int col = 0; col < triples[row].length; col++)

triples[row][col] = 0;

//Checks to see if every entry in the triples matrix has been

//filled. If it hasn’t, program continues hill climbing algorithm. If it

//If it has, program prints out set of triples.

while ((triples[3399][0] == 0) && (triples[3399][1] == 0)) {

// *** HILL CLIMBING ALGORITHM ****
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Random generator = new Random();

int v1, v2, v3;

v1 = generator.nextInt(85);

v2 = generator.nextInt(85);

v3 = generator.nextInt(85);

boolean replaced = false;

int specialTriple, numToReplace;

//Checks to see if edges between v1 and other two vertices still exist

//If they do, either the triple is added, or one triple is deleted and

//then the triple is added

if ((adjacencyMatrix[v1][v2] > 0) && (adjacencyMatrix[v1][v3] > 0)) {

//if all necessary edges exist, program adds triple to array of

triples

//and decreases each corresponding entry in adjacency matrix by 1.

if (adjacencyMatrix[v2][v3] > 0) {

//enters triple in array of triples

triples[tripleNum][0] = v1;

triples[tripleNum][1] = v2;

triples[tripleNum][2] = v3;

//adjusts adjacency matrix

adjacencyMatrix[v1][v2]--;

adjacencyMatrix[v1][v3]--;
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adjacencyMatrix[v2][v1]--;

adjacencyMatrix[v2][v3]--;

adjacencyMatrix[v3][v1]--;

adjacencyMatrix[v3][v2]--;

//increases number to enter next triple in

tripleNum++;

total++;

}

else {

//searches for first triple containing the edge between v2 and v3

//replaces that triple with v1, v2, v3.

for (int row = 0; row < tripleNum; row++)

if ((replaced == false) &&

((triples[row][0] == v2 && triples[row][1] == v3) ||

(triples[row][1] == v2 && triples[row][2] == v3) ||

(triples[row][0] == v3 && triples[row][1] == v2) ||

(triples[row][1] == v3 && triples[row][2] == v2) ||

(triples[row][0] == v2 && triples[row][2] == v3) ||

(triples[row][2] == v2 && triples[row][0] == v3))) {

specialTriple = row;

//finds third number in first triple containing the edge

//between v2 and v3.
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for (int colu = 0; colu < triples[row].length; colu++)

if (triples[specialTriple][colu] != v2 &&

triples[specialTriple][colu] != v3) {

numToReplace = triples[specialTriple][colu];

//replaces first triple with triple with edge between v2

and v3

triples[specialTriple][0] = v1;

triples[specialTriple][1] = v2;

triples[specialTriple][2] = v3;

//adjusts adjacency matrix

adjacencyMatrix[v1][v2]--;

adjacencyMatrix[v1][v3]--;

adjacencyMatrix[v2][v1]--;

adjacencyMatrix[v3][v1]--;

adjacencyMatrix[numToReplace][v2]++;

adjacencyMatrix[numToReplace][v3]++;

adjacencyMatrix[v2][numToReplace]++;

adjacencyMatrix[v3][numToReplace]++;

total++;

//ends if statement

replaced = true;

}
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}

}

}

}

//orders triples in triple matrix

for (int row = 0; row < triples.length; row++) {

Arrays.sort(triples[row]);

}

//print triples matrix

for (int row = 0; row < (triples.length - 4); row += 5) {

System.out.print(triples[row][0] + ",\t" + triples[row][1]

+ ",\t" + triples[row][2] + "& \t\t"

+ triples[row+1][0] + ",\t" + triples[row+1][1] + ",\t"

+ triples[row+1][2] + "& \t\t"

+ triples[row+2][0] + ",\t" + triples[row+2][1] + ",\t"

+ triples[row+2][2] + "& \t\t"

+ triples[row+3][0] + ",\t" + triples[row+3][1] + ",\t"

+ triples[row+3][2] + "& \t\t"

+ triples[row+4][0] + ",\t" + triples[row+4][1] + ",\t"

+ triples[row+4][2] + ss + "\t" + "\\hline" );
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System.out.println();

}

System.out.println("Total Number of Triple Tries = " + total);

}

}
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