
Developing Single page application with best practices

by

Sumeet Wilkhu

A Thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 07, 2017

Keywords: Single page application, PCSE, schedule,
estimate, software process, PCSE Desk

Copyright 2017 by Sumeet Wilkhu

Approved by

David A. Umphress, Chair, Professor of Computer Science & Software Engineering
Cheryl Seals, Associate Professor of Computer Science & Software Engineering

Saad Biaz, Professor of Computer Science & Software Engineering

Abstract

 Browsers have been around since early 1990 and have been used for disseminating

information using HTML, CSS and Javascript. Initially, Javascript was used as client side

scripting language and its use was limited to data validation and manipulating HTML elements.

Over the past decade, browsers have evolved to an extent that native-like applications can be

developed using Javascript that resides completely on browsers. The support of browsers with

the underlying operating system and with the latest version of Javascript has lead to the

development of Javascript frameworks. These frameworks can be used to develop native-like

applications known as Single Page Applications (SPAs).

The objective of this thesis is to introduce SPAs and how they differ from traditional web

applications. The thesis examines different ways to develop an SPA and proposes a way to

develop an SPA using best practices.

ii

Acknowledgement

 I take this opportunity to thank all those who helped and guided me through this research.

I consider it an honor and privilege to convey my prodigious and everlasting thanks to my

advisory committee chair, Dr. David A. Umphress, Computer Science & Software Engineering

department, Auburn University for all the advice, guidance and support provided during this

journey of working through my thesis. I also want to express my deep sense of gratitude to Dr.

Cheryl Seals, Computer Science & Software Engineering department, Auburn University, and

Dr. Saad Biaz, Computer Science & Software Engineering department, Auburn University, for

their valuable advice and critique provided during the thesis work.

 With immense pleasure and satisfaction, I express my sincere thanks to all my family

members and friends for their kind help and feedback on the thesis work. I thank you all for your

cooperation and companionship provided during this journey.

iii

Table of Contents

Abstract ii

Acknowledgment . iii

Introduction . 1

 Problem Description. 1

 Overview. 1

 Objective of thesis . 2

 Work breakdown structure . 2

Previous Work . 4

 Traditional web application . 4

 Single page application .5

 Architecture of an SPA . 6

 AJAX for single page application 7

 Key concepts and components . 7

 Overview of AJAX for developing SPA . 9

 Problem with AJAX . 10

 AngularJS for developing SPA 11

 Building blocks for developing SPA .. 12

 AngularJS application life cycle .15

! iv

 Benefits of AngularJS for developing SPA .. 16

 Disadvantages of AngularJS for developing SPA 18

 Light weight process . 18

 PCSE for SPA development . .. 19

 Technologies for deployment of SPA 20

 Yeoman 20

 Grunt 21

 Bower 22

Solution . 23

 Process for developing an SPA 23

 Initial Setup of an SPA 24

 Software process for developing an SPA . 27

Solution validation . 35

 Development environment . 35

 Software process for developing PCSE Desk 35

 PCSE Desk features . 36

 Project overview 37

 Project Setup 38

 Planning 39

 Estimation . 40

! v

 Scheduling 41

 Dashboard . 42

 Timelog . 43

 Changelog . 44

 Development of PCSE Desk . 45

 Deployment of PCSE Desk . 54

Conclusion and Future work . 55

 Conclusion . 55

 Future work . 55

Bibliography . 57

Appendix 1 (Source code) . 58

Appendix 2 (PCSE artifacts) . 145

! vi

Developing Single page application with best practices

1. Introduction

1.1 Problem description:

 The browser has been a platform for viewing traditional web documents consisting of HTML,

CSS, and Javascript. Over the last decade, browsers such as Safari, Chrome, and Firefox etc. have

gained the ability to interact with the underlying OS and have been kept up to date with the latest

version of Javascript, changing the role of Javascript from being just a scripting language of the web

to a popular language for web application development. Javascript has evolved to the extent that

native-like applications, which are meant to be used on a particular platform or device, are achieved

using Javascript frameworks. Therefore, browser support for Javascript frameworks provides an

alternative for developers to create native-like applications for different OS.

 In contrast to a Javascript-based application, a native application running on different

operating systems has always been challenging to develop. A native application has to be cross-

platform compliant and requires a different set of technology stacks to be used for development and

bundling. The lack of standards causes more time and effort for developing a native application for

different OS.

 With this thesis, we present a way in which a Javascript-based architecture known as Single

Page Application (SPA), can be used to develop native-like applications for a browser. The thesis also

examines various ways to develop an SPA and the problems/benefits associated with them. It proposes

a set of practices that a developer should follow in order to develop an SPA by demonstrating how

PCSE Desk, an SPA that assists in effort estimation, was written.

1.2 Overview:

 Web applications have come a long way since their inception. A web application in the 1990’s

typically consisted of multiple static HTML pages. These web pages were sent from the server-side of

the application and loaded completely from scratch at the client-side. With time, as software and

hardware technology improved, loading partial views became possible, thus avoiding excessive

reloading of web pages and resources such as headers, footers, navigation, images and more. Still, a

lot of inconsistencies remained in terms of

!1

A. A clear and consistent design that takes partial views into consideration.

B. An application architecture with separation of concerns.

C. A standard for development technologies that does not require a pool of expertise in

multiple domains or languages.

D. A software process that supports the software development lifecycle and improves the

way web applications could be developed.

 With the proposed solution, the above mentioned problems are dealt with in detail and an

attempt has been made to guide a developer out of these problems. PCSE Desk, an SPA, was

developed to illustrate the idea behind this thesis and observations were made about the process to

validate an SPA development process. The development process enlightens a developer about SPAs

and lightweight processes. It also draws attention to the benefits of SPAs being used as a native

application.

1.3 Objectives of Thesis:

The objectives of this thesis are as follows:

1) To demystify an SPA and how it is different from traditional web applications.

2) To understand the benefits of using AngularJS for developing an SPA over other ways to develop

an SPA.

3) To illustrate an SPA development with a sample application.

1.4 Work Breakdown Structure:

Thesis chapters are broken down as follows:

1. Chapter 2 (Previous Work) provides an analysis of an SPA and various technologies used in

the development and deployment of an SPA.

2. Chapter 3 (Solution) presents the complete process for developing an SPA with best practices.

3. Chapter 4 (Solution Validation) explains the application process taken to develop the features

of PCSE Desk and describes the components, implementation, and deployment of the

application.

!2

4. Chapter 5 (Conclusion & Future Efforts) concludes the major lessons learned during the

development process of PCSE Desk and its significance for a developer. It also details some

features that could be beneficial for a developer when using PCSE Desk in future.

!3

2. Previous Work

2.1 Traditional Web Application:

 Traditionally, web applications have focussed on being 2-tier (client-server application), or 3-

tier (client-server with middleware/database) in their architecture. The major actors that have played

an important role have been categorized as either client-side or server-side. A web application

typically involves a marriage between a client and server where the client is usually responsible for

loading the static web page requested using HTTP Requests, and the server-side is responsible for

handling these HTTP Requests with an appropriate response. This response most often leads to

another static web page which requires all the resources to be fetched from server and loaded into the

browser. A traditional web application has a clear distinction between server and client. It always

assumes the client has fewest amount of responsibilities.

 Figure 2.1 illustrates the architecture of a traditional web application with presentation layer,

logic layer, and data layer.

Figure 2.1: 3-tier web application architecture, adapted from [Peacock 2000].

 These web applications became widely popular at the time when the devices to run them were

not powerful and the memory-heavy architecture of 2-tier or 3-tier applications made a negative

impact on the overall performance. Because they were the most popular means of accessing

information, their application architecture was clear and definitive: the client-side consisted of

HTML, CSS and Javascript, whereas, the server-side consisted of API logic and a database. At the

client end, these HTML web pages were loaded on a browser via an HTTP request. HTML was used

!4

for describing the structure and presentation of information fetched via an HTTP request, and its

decoration and standardization across multiple pages was taken care of via CSS. Javascript was used

for validating data, manipulating the HTML elements, and adding events to the HTML. With every

HTTP request made by the events in these web pages, a new web page was loaded in the browser and

all the resources were loaded from scratch once again. From a developer as well as user point of view,

that led to unnecessarily loading resources like CSS, Javascript and images repeatedly. While these

web requests were made, the browser had no significant role because the client could not perform any

action while the web page was loading. Web applications, when compared to their native application

counterparts, were much slower in performance and user interaction because of the page refresh that

was involved in the process of performing actions such as submitting forms, getting images, or data,

etc.

2.2 Single Page Application:

 A Single Page Application (SPA) is a web application that fits in a single HTML web page,

which acts as the shell for rest of the application’s web pages, and whose end user interactions are

implemented by using HTML, CSS and Javascript. Most of the development happens on the front-end

as opposed to traditional web applications that rely heavily on server side interactions to reload new

HTML web pages whenever the client changes context. An SPA keeps the business logic and the

required data in the front-end and works with the local storage of the browser. All the server side

interactions are limited and asynchronous in nature. These interactions are required for resource

retrieval from an API end point present in the server side of the application.

Figure 2.2: Single page application architecture, adapted from [Peacock 2000].

!5

2.2.1 Architecture of an SPA

 Generally, an SPA has a different architecture in comparison with traditional web application,

as illustrated in Figure 2.2. The browser acts as a "fat" client for an SPA, meaning it gets the HTML

webpage requested by the application along with the business logic and the required data to initialize

the application. Once an SPA is loaded, the first set of actions that are performed by the application is

loading the shell of the application, which involves fetching the HTML web page and all the relevant

Javascript and CSS files in the browser.

Figure 2.3: Front-end architecture for Single page application. [Takada 2012]

 Based on the application framework used for developing an SPA, the application fetches the

business logic and initializes the controllers which helps in fetching an HTML partial view: a reusable

HTML page which can be used as a child in multiple views, the remaining business logic, and the data

model to the browser. As illustrated in figure 2.3, the application framework is able to render an

HTML view using the template and the data model. An HTML view is a concept in SPA architecture

which allows data to be combined with the template to render a partial webpage. These partial

webpages are used to append the existing structure of the application in the front-end by manipulating

the existing DOM tree structure. [Takada 2012] The DOM manipulation helps in appending the partial

views to the already existing webpage in the browser asynchronously, bypassing the page refresh and

giving an impression of a native-like application.

 Unlike traditional web applications, the view and the model have a two-way binding which

means that any change made to the model is automatically reflected on the view and vice-versa. Based

!6

on the actions performed by the user in these views, the model evolves, causing different views to be

generated. The model always resides on the local storage of the browser and, when the user decides to

store data, the data is synchronized with the server-side using an API request. The most important job

of the server becomes to serve multiple clients, provide resources based on the API end point

requested by a client, and help the client to store the data in a non-volatile storage such as database.

 An SPA also gives the ability to handle and emit events from the DOM such as form

submission, single click of mouse, double click of mouse, mouse hover, etc. These events exist on the

DOM based on the requirement of application controllers. These events continuously redraw the

DOM tree structure and help navigate to a different section of the application by manipulating the

browser’s current URL. This manipulation in the URL of the application is known as routing. An SPA

usually consists of a configuration file which helps binding routes to its respective controllers. Hence,

routing in an SPA plays a vital role in keeping the application development in harmony with the

required features or components of the application. The routes in an SPA are always dynamically

generated, driven by the model and compartmentalize the application into modules. This

modularization advantages the application development process because it removes the cohesion

among the features or components and makes unit testing as well as end-to-end testing easy.

2.2.2 AJAX for Single Page Application

 AJAX, also known as Asynchronous Javascript and XML, is a technology of the web that

helps developing client rich web applications. It is based on the core components of HTTP, DOM, and

XMLHttpRequest.

2.2.2.1 Key concepts and components

1. HTTP

 "Hypertext Transfer Protocol (HTTP) is an application-level protocol used for creating

distributed, collaborative and hypertext and media information systems.” [Fielding 1999] It is also

used as a generic protocol for communication between user agent such as a browser and the systems

that are supported by internet such as FTP, SMTP etc., providing access to resources from various

applications on the Internet. [Fielding 1999]

!7

 Web applications use the HTTP protocol in order to set up a line of communication between a

client and the server. It allows the client to request access to resources available on the server using

different request methods such as GET, POST, PUT, DELETE, and more. The HTTP request is sent

from the browser to the server as a request message consisting of request-line, headers and an optional

message body. When the server receives the message, it interprets the request and responds with an

appropriate HTTP response. The HTTP response consists of the status-line along with an optional

message body.

 From a developers perspective, the request method is an important concept to be understood

as it allows the application to request resources on behalf of the client. A request method provides

different means of communication with the server to access the resource required at the client-end.

These methods are as follows: [Fielding 1999]

A. GET

 The GET method allows the application to request either a resource or a representation of

 resource using the Request-URI.

B. POST

 The POST method allows the HTTP request to enclose data in the message body and server

 handles the request using an application appropriate based on the Request-URI.

C. PUT

 The PUT method helps in storing the data enclosed in the message body of the Request-URI.

D. DELETE

 The DELETE method requests the server to delete a resource identified by the Request-URI.

2. DOM [Hors 2004]

 The Document Object Model (DOM) is a programming interface for HTML and XML

documents. It represents a map of nodes and objects connected in a logical sequence to form a

document such as HTML webpage. DOM defines a relationship between different elements of the

document in a parent-child relationship and provides different ways to use Javascript for accessing

and manipulating the document structure and its content.

!8

3. XMLHttpRequest

 XMLHttpRequest is an API that provides the capability at the client end to create an object

that helps in communication between a client and the server for accessing a resource even after the

web page gets completely loaded in the browser. While requesting the resource, the application

remains responsive. This allows the client to update the web page without reloading it and opens up

the possibility of developing an SPA using AJAX.

2.2.2.2 Overview of AJAX for developing SPA

 In order to develop an SPA, AJAX utilizes the mechanism of DOM manipulation in which

events on the HTML view lead to an asynchronous action to perform HTTP requests such as GET,

POST, PUT and DELETE and then, redraw the DOM tree based on the response generated from the

server-side. An event-like form submission usually leads to a page refresh because it involves GET or

POST operation. Usually, the operation involves storing/getting the data from server-side and

responding with a different web page. With AJAX, a developer adds the ability to handle the

submission event in the client-side logic and when the user performs the action to emit that event, an

appropriate action is performed asynchronously using an XMLHttpRequest object. This object

provides the ability to perform HTTP methods such as GET or POST on the server-side without

interrupting the client side. Once the operation is performed successfully, the DOM elements are

manipulated using Javascript code to append the information to the same view. This complete cycle of

operations takes place asynchronously without causing the web page to refresh.

 When developing an SPA using AJAX, a controller consists of the data model, business logic,

and DOM manipulation logic of the application. The DOM manipulation such as adding/removing/

accessing the elements, events and style in the existing DOM, requires both the HTML view and the

Javascript controller to be familiar with each other. For example, the data received from the server in

the controller is supposed to be attached with the DOM tree using a specific HTML div tag. When the

div tag is attached to the existing DOM, it successfully presents the data in the view. But, if another

HTML view with different requirement needs the same data to be attached with its DOM tree, such as

an unordered list, the controller has to either duplicate the function or logic to attach the data to

another view or create a new controller altogether to handle the requirement. The changes in HTML

view from a controller creates cohesion between controller and view, reducing the reusability of the

!9

controller. Hence, AJAX can lead to tight coupling among various components of the application such

as HTML and Javascript and make it hard to develop an SPA with a modular design.

2.2.2.3 Problems with AJAX

 AJAX can be used to develop an SPA but it lacks in certain issues that makes it hard to

develop an SPA. The major problems observed from a developer’s perspective are:

1. Increase in Complexity

 During the execution of an SPA, the DOM structure is modified many times and doing so

requires the manipulation to occur asynchronously. As the nature of the transaction is asynchronous

and the resources are acquired in the controller of the application, the controller itself becomes

responsible for appending or manipulating the view. In order to do that, the controller accesses the

HTML directives and edits or creates the DOM structure to be attached with the view. As the

application grows large, the application’s controller becomes complex. The complexity increases

because the developer adds more features in the existing application that require the controller and

view to be enhanced and modified. The enhancements and the modifications in the controller involve

more DOM manipulation added on top of existing controller to handle new events generated in the

view. As these changes are tied to the view, any change to the view would require the developer to

track changes in the controller as well.

2. Applications are hard to debug

 Applications developed using AJAX are not modular in design as the DOM manipulations in

the controller are dependent on the events generated in a specific HTML view. The tight coupling

between the controller and the view makes it hard to test and debug each of these individually.

3. Securing resources and protecting data

 Most browsers allow the inspection of a webpage in developers mode. In this mode, AJAX-

enabled application could be exposed to hackers or plagiarism, if written poorly. These services

should be restricted and the access should be available to only those intended.

!10

2.2.3 AngularJS for developing SPA

 AngularJS is a Javascript based framework used for developing dynamic web applications.

The framework helps developing MVC(Model-View-Controller) based SPA for client-side

development. Instead of using HTML as static web pages, the framework gives the developer the

ability to create reusable HTML directives and components which can be attached to the DOM

without page reload. [Koppaka 2016] The major contributors to its success are features such as

A. Data binding

 Data binding in a feature of AngularJS that provides communication of data between the

 model and the view. The communication is two-way and change to the data in model is

 automatically reflected in the view and vice versa. [Google 2010]

B. Dependency injection

 Dependency Injection allows the various components in AngularJS environment to be created

 and delegated based on their requirement in the application. For example, if a service only

 needs to executed when a certain controller is loaded, AngularJS automatically loads the

 service and delegates it to the controller. AngularJS has a system which controls the

 management of these components and the developer can inject various components such as

 service, directive etc. without caring about their interdependence. [Google 2010]

C. Dynamic routing

 Dynamic Routing in an AngularJS application is a module responsible for delegating requests

 on the basis of a URI to a controller which holds the functionality to perform an appropriate

 action. The URI is a combination of URL(Uniform Resource Locator) and URN(Uniform

 Resource Name). It is also able to capture the parameters passed in the URI to be delegated to

 the controller in use. The controller can use the URI for accessing resources from the server

 side based on the resource identifier or name and hence, routing is vital for SPA development.

D. Directives

 Directives are HTML markers which have the ability to add new behaviors to the existing

 DOM. AngularJS has an HTML compiler which parses the HTML and AngularJS directives

 in form of an element or an attributes. Once compiled, the associated behavior of the

 directives gets attached with the DOM. [Koppaka 2016]

!11

 AngularJS has a lot of built-in directives such as ngApp, ngBind, and ngController etc. These

 directives have their respective functionality in an AngularJS application as they provide

 ways to bind the data, the view and the controller together. Developers also have the ability

 to create their own directives much like controllers or other modules to add new reusable

 components that manipulate the DOM.

2.2.3.1 Building Blocks for developing SPA [Google 2010]

 AngularJS has many components that work in harmony with each other to add necessary

behavior in an SPA. It uses components such as directives, templates, repeaters, modules, controllers,

components, component router and more. This section discusses these components in details and

understand how they work together.

A. Templates

 A template is an HTML web page which consists of AngularJS directives and artifacts. A

template in AngularJS is a combination of directives, expressions, filters, and controls that combine

with HTML to form the view.

B. Expressions

 Expressions are AngularJS's way of incorporating Javascript-like code snippets into templates

by using {{expression}} syntax to produce an outcome such as data binding and function execution.

These are Javascript-like because unlike Javascript expression, the AngularJS expressions do not run

on the global window variable of the browser. Instead, AngularJS expressions are evaluated on a

$scope variable and do not have access to functionalities such as function declaration, control

statement like if-else, regular expressions, and more.

C. Repeaters

 A web application usually has to display items or collections of elements that users interact

with such as, list of products displayed in an e-commerce website, tweets listed on twitter, etc.

Repeaters in AngularJS provide a way to iterate over a collection or array of objects including all the

data types such as string, number, or custom objects. For example, AngularJS uses the ng-repeat

directive to loop over a collection and display it on the view without any user-defined DOM

manipulation.

!12

D. $scope

 $scope in AngularJS is the link between the controller and the HTML view. During the

template linking phase the directives set up $watch expressions on the scope. The $watch expression

allows the directives to be notified of property changes, which allow the directive to render the

updated value to the DOM.

 As AngularJS promotes separation of concerns, the $scope acts as the glue between the

controllers, directives, and DOM. Each of these components has a reference to its respective scope.

AngularJS also uses the idea of scope hierarchy in which multiple scopes can be created within an

AngularJS application even under the same controller. This gives the ability to add one behavior to the

parent attribute on the HTML view and another to its children attributes and elements. For example, if

the child scope consists of a name object with “ABC" as its value and its parent scope also has the

same object called name with “EFG" as its value, the child will hold “ABC”, as long as the object in

the child scope exists. In case the object is not available anymore or is removed from the scope, the

parent scope value would be used as a fallback, making the value of name "EFG".

E. Modules

 Modules in AngularJS are a form a container in which application components such as

controllers, services, directives, etc. reside. AngularJS does not have a main method to initialize the

application as traditional web applications do. It provides an angular.module() function which can

used to create, register, and call the modules in the application. It uses a declarative way to specify

the bootstrapping of the application which gives the developer flexibility in developing the user

interface and connecting the AngularJS components of the application. The major benefits of this

approach are

1. The declarative process is easier to develop and understand by the developer.

2. It is easier to utilize the modules as independent piece of software.

3. It makes unit testing and end-to-end testing easier by only using relevant modules.

F. Controllers

 AngularJS uses a controller as a Javascript function that has the point of entry into the web

application. When the developer attaches the ng-controller directive in the HTML template and the

!13

application starts bootstrapping, the AngularJS controller attaches the scope with the set of state and

behaviors in the AngularJS application. While developing an SPA, it is considered a good practice to

use the controller for developing business logic only. Controllers are not supposed to manipulate the

DOM directly and, rather, use directives or services for DOM manipulation, keeping the application

loosely coupled.

G. Components

 AngularJS components are treated as a special form of directive. They use a simpler form of

configuration suitable for component based application. Unlike directives, components use the

component() method of AngularJS to attain the functionality of directive and controller. It helps in

creating HTML elements which are independent and encapsulated. angular.module() is used in an

application for creating a component and the resultant component has the ability to attach a controller

which can be used for adding the data and the view to the $scope. With different components with

their respective data and view, AngularJS is able to generate a modular application. The major

benefits of using component-based architecture in AngularJS are

1. The ability to isolate the scopes of different components allowing the application to be

divided into meaningful chunks.

2. Easier to upgrade to subsequent versions of AngularJS.

3. Simple to configure and easier to use than an HTML Tag.

H. Services

 An AngularJS service is a shared piece of code that exists in a separate file for providing

regular access to a resource or a component and is added to the controllers using dependency

injection. These services are not provided to the controllers right away and are lazily instantiated,

meaning, the object created by the controllers for accessing the service is injected when needed and

during the bootstrapping of the application. These are also singleton objects which means only single

copy of the instance is created for the lifetime of the application. For example, $http is a service used

in AngularJS application for doing asynchronous communication with the server in order to retrieve

any resources utilizing the server-side API end points.

I. Routing and multiple views

 AngularJS uses angular-route, an built-in service provider that is used for the navigation of

the application. It uses either hash-bang or HTML5 pushState for routing the application and provides

!14

a way to navigate from one state to another. A route in an SPA consists of the path to a service along

with the route parameter. Each routing parameter can be fetched using $location.url from the browser

and used for retrieving the resources necessary to move to next state. For example, a location url can

be used to fetch resources of a particular entity such a user id of a person in a social networking

website can be used to retrieve a detailed profile view of that person.

J. Event Handlers

 In order to handle events within an SPA, AngularJS prefers to use special directives already

implemented for handling operation such as single click of mouse, double click of mouse and more.

These directives are used to add special behavior to the DOM elements and are detected by an

AngularJS application for executing the handler code. Developers can easily implement a directive to

handle specific events based on the application. AngularJS uses ng-click, ng-mousedown, and more to

perform event handling in the HTML view.

2.2.3.2 AngularJS application life cycle

 AngularJS applications are detected by the HTML compiler by traversing the DOM and

locating AngularJS based tags in the HTML templates. AngularJS promotes the idea of modularizing

the application where the business logic in the controllers is always separate from the HTML

templates and is bind together during AngularJS's application life cycle. The three major phases

involved in the life cycle are Bootstrap, Compilation, and Runtime data binding. [Google 2010]

 Bootstrapping, the first stage of application life cycle, begins when the SPA is initially loaded

in the browser. It initializes the Javascript driving the application. It tries to utilize jQuery, if present,

for running AngularJS framework. Otherwise, it uses an in-built jQLite, a compact version of jQuery

in the AngularJS framework that keeps even the deprecated function of jQuery. jQuery and jQlite

plays an important role in AngularJS because they bring in the library functions that were written with

best practices in mind and are used heavily in the AngularJS framework.

 Once the initial application is successfully loaded, the root of the application is detected and

the application jumps into the second phase of the life cycle. In the second phase, the static DOM is

accessed by the application and is connected with the scope of the controller under the root level.

While doing so, the static DOM is traversed in the background to link the scope of the application

!15

controller with the AngularJS directives present in the HTML template. This linking results in a

dynamic view which is driven by the model.

 Finally, in the runtime phase, the application completes loading the application and loads

services when requested by the controller. The application in this phase, keeps itself in a runtime state

as long as the application is either open or the application is not reloaded. While in the runtime state,

the application keeps itself synchronized with the scope. Once the application is closed the scopes and

views of the application are destroyed with it.

2.2.3.3 Benefits of AngularJS for developing SPA[Mikowski 2013]

 The past several years have seen an improvement in the maturity of Javascript, HTML5, and

CSS3. Web 2.0 gives a passage to all these browsers to be omnipresent in most of the devices in the

world and be used as a platform that supports all the major applications. And, because of these

advancements, an SPA enjoys most of its benefits that are mentioned below:

1. Native-Like Application

 An SPA has the ability to revamp the structure of DOM tree and manipulate the model to be

incorporated with the view. This act of revamping or redrawing happens without a page refresh and

while the new views are generated. The current views remain responsive and user can perform action

while other events take place. This gives an impression of native-like application while using them.

2. Separation of Concerns

 Separation of Concerns is a software engineering principle regarding modular design. An SPA

decomposes the application into its respective units and makes each unit responsible for all of its

functionality. An SPA follows a MVC architecture in which the Model, the View and, the Controller

are kept as separate entities and are loosely coupled with each other. The model is the representation

of the data model fetched from the server side, views are the templates combined with data model to

generate meaningful front-end with the help of DOM, and controllers helps bring the business logic to

the front-end of the application and binds the application together. The loose coupling makes sure that

there are least amount of dependence on each other and breaks the application into meaningful units

which could be reused in other part of application.

!16

3. Responsive and Reliable

 An SPA controller is not just responsible for the data validation and scrubbing but also deals

heavily with the business logic implemented at the client end. The business logic resides in an SPA

controller, making interaction with the server-side minimalistic. This approach helps these

applications be responsive to user interaction. The interaction that takes place with the server-side is

also kept asynchronous in order to avoid any delay in response. The data model is stored in the

browser's storage and synchronized with the server when necessary.

4. Cross-Platform

 Browsers are the most effective way to interact with a web application. They do not require

special instructions to be executed on different operating systems and they do not require any pre-

requisites to be already installed on the system. Everything is bundled with an SPA and presented with

the help of browser already present.

5. Easy deployment

 The learning curve for deploying an SPA is minimal. Javascript is available in all the browsers

and hence, attaching the appropriate Javascript files with the application would make the application

executable on any browser. But, there are couple of techniques which helps making application

deployment seamless and secure. For example, minimizing the Javascript files to combine the

Javascript code from multiple sources into one huge file in order to reduce the execution time, writing

modules in IIFE (Immediately invoked function execution), a practice in Javascript that protects the

code by lexically scoping it inside an executable function block and more. These techniques help

building a secure and unexposed application and following them is considered good practice for

deployment.

6. Testing

 Modularization of an SPA also comes with an added advantage that these individual pieces of

application are written in such manner that they are loosely coupled and, hence, unit testing is easier

in comparison with traditional web application which binds data, view, and logic together. End-to-end

(E2E) testing frameworks are also mature enough to favor SPA as unit testing can only act as first line

!17

of defense. To correctly test the integration of components and features, these frameworks play a vital

role.

2.2.3.4 Disadvantages of AngularJS for developing SPA

1. Support for Javascript libraries

 A rich SPA is developed using AngularJS in conjunction with other Javascript libraries to

enhance the user experience. AngularJS makes it tough for a developer to directly use these libraries

and inject them along with other AngularJS services and components. In order to use these external

libraries, the developer has to explicitly create a custom service to make the library usable in

AngularJS environment.

2. Understanding AngularJS life cycle

 As a developer, it is hard to understand the concept of AngularJS life cycle and the role of

$scope and $watch variable in it. The $watch variable from the life cycle can be abused, if not used

properly in the controller of the application. For example, if a developer create multiple watchers in

the controller to handle events, the SPA performance can degrade significantly and also lead to

memory leaks.

2.3 Light-Weight process:

 Light weight development methodologies embrace practices that allow programmers to build

solutions more quickly and efficiently, with better responsiveness to changes in business

requirements. [Khan 2011] The flexibility and agility to adapt with changes due to circumstances and

business requirements makes them amenable for application development that involves factors such

as small team size, low cost and low risk, and change in technology or environment etc. [Subramanian

2011]

 A light weight software process encourages short and long term goals to be divided into an

iteration plan. This flexibility allows short term goals to be achieved within the iteration boundary and

opens a window of opportunity to discuss new requirements, if need be. These new requirements

become part of new iteration plan and set new goals for rest of the project. In the beginning of

development process, a lot of margin of error for planning and estimation is kept while following the

light weight methodology. During this phase, the inexperienced developer tend to plan poorly. But,

the idea of small iterations provides the developer with an opportunity to correct its mistakes. The

!18

emphasis is kept on improving the accuracy with time as the developer learns more about the project

and gives a chance to improve on the previously made mistakes.

Some of the benefits of using a light weight process are: [Khan 2011]

1. Rapid development due to short iterations and cost friendly.

2. Integration with other heavy or light weight processes.

3. Precise Metrics to measure performance such as Burndown, velocity etc.

4. Involves frequent demonstration to stakeholders for feedback.

2.4 Practitioner Centered Software Engineering (PCSE) for SPA development:

 PCSE is a framework for binding a light-weight software engineering process. [Umphress

2015] It is the most recent embodiment of a personal self-improvement process for software engineers

to control, manage and improve the act of developing applications. Using common industry practices,

PCSE describes the following activities/phases that are performed within the software development

process: Analysis, Architecture, Project plan, Iteration plan, Construction, Review, Refactor,

Integration, Post mortem and Code complete. Each of these activities is associated with a particular

artifact such as the Operational specification, Scenario-Component map, Iteration map, Conceptual

design, Size matrix, Time log, Change log, Iteration map, Burn-down chart, Calendar etc. The flow of

these activities is mentioned in Figure 2.4, providing an example of the lifecycle using PCSE.

Figure 2.4 An example of PCSE Life cycle

!19

 PCSE can be practiced when developing various types of applications. It is a flexible

framework that helps developer choose the activities to be performed based on the requirements of the

project. It promotes use of best practices that developers need such as Test Driven

Development(TDD). TDD goes hand in hand with SPA methodology. Single page architecture is

modular enough to perform TDD while following PCSE life cycle. The short iterations keep the

developer accountable for the deliverables and helps the developer keep track of their progress. The

progress in PCSE is determined on the ratio of the components planned to the components actually

built. If the progress gets stalled, PCSE gives the developer the ability to change the plan and re-

estimate the time and components by either adding hours each day planned earlier or add another

iteration for pending components by extending the deadline of the project. This amount of flexibility

is needed while developing an SPA as it does not hinder the developers creative instincts to explore

new ideas and focusses on the development of components by dividing them into tasks in an iteration

map. Each task within an iteration can be tested in an SPA architecture because of the modularity, thus

making the process more visible to the client.

2.5 Technologies for deployment of SPA

 Continuous integration is a development practice that requires developers to integrate code

into a shared repository several times in the project life cycle. Each check-in is verified by an

automated build system, allowing the developer to detect problems at early stage. [Voort 2017] By

integrating the application at the iteration boundary, developers can detect errors quickly and locate

them more easily. Major benefits of continuous development and integration are as follows:

A. Automate the testing and building process of application.

B. Increase in the test coverage by continuously committing the code in the production

repository.

C. Provide visibility to the developer(s) or across the teams. If the build is not successful, it helps

determining what went wrong.

 Therefore, selecting appropriate technologies for rapid and continuous development of an

SPA is pivotal for its success.

2.5.1 Yeoman

 Yoeman, a project scaffolding system which helps create projects for different ecosystems

such as Java, Ruby, and Node.js, allows for rapidly getting started on new projects as well as

!20

streamlining the maintenance of existing projects. Yeoman by itself does not make any decisions.

Every decision is made by generators, which are basically plugins in the Yeoman environment that

allows to create a workflow for the application development and deployment using templates

provided by Yeoman. [Yeoman 2017] These generators are easy to create and match the application

workflow. This workflow is a robust and opinionated client-side stack, comprising tools and

frameworks that can help developers quickly build rich and beautiful SPAs. These generators provide

everything needed to get started without any of the uncertainties associated with a manual setup.

Some of the benefits of using Yeoman are:

A. Rapidly create a new project.

B. Create new sections of a project, like a new controller with unit tests.

C. Create modules or packages.

D. Bootstrapping new services.

E. Enforcing standards, best practices and style guides.

 In order for Yeoman to get these benefits, the Yeoman ecosystem uses different Javascript-

based tools for streamlining various tasks written in the Yeoman script. These tools are discussed

below:

2.5.1.1 Grunt

 Grunt is a JavaScript-based task runner, a tool used to automatically perform frequently used

tasks such as minification, compilation, unit testing, linting, build process, etc. It uses a command-line

interface to run custom tasks defined in a file (known as a Gruntfile). Grunt has a large ecosystem and

already consist of reusable plugins developed by other developers with best practice in mind. These

plugins help in automation of all the effort required to perform repetitive tasks during SPA

development.

 Gruntfile is a template based approach to define the mechanism to perform tasks that are

repetitive in SPA development such as unit testing using Jasmine, generating "dist" folder for building

the production level application, compiling application and deploying on the production server and

automatic browser refresh in case components of SPA changes and more. The script allows to set files

and folders to be tracked constantly and perform a certain set of action needed to achieve the expected

outcome.

!21

 The initial configuration in Grunt allows the developer to add the project files and folders and

register them with required plugins for tracking any changes. For example, Grunt file in figure 2.5

demonstrates a script which runs at the runtime of the project execution during the development and

uses jshint, a plugin used in the code editor for syntax highlighting the errors in the Javascript code to

register various files to be tracked. Similarly, the watch section of the code allows the runner to

constantly look for changes of any form to these files. If the runner notices any change in them, it

triggers the appropriate action mentioned in the script.

Figure 2.5 Sample Gruntfile for a web application

2.5.1.1 Bower

 Bower is another package manager similar to NPM. It is optimized for front-end development

only. The ecosystem of Bower helps in installing and linking components such as HTML, CSS,

Javascript, fonts and images in an SPA. Bower does not concatenate or minify the code. Instead, it

installs the right versions of the packages needed by the project and also makes sure their

dependencies are in place as well. It uses a bower.json file for creating a package structure with the

dependencies based on the environment such as development and production.

 For example, If multiple packages used for the front-end development such as bootstrap and

angular-charts depends on jQuery, Bower will install the correct version of jQuery before installing

other packages. This is known as a flat dependency graph and it helps reducing the web page loading

time.

!22

3. Solution

 Despite the popularity of the web, a traditional web application often suffers from

responsiveness and interactivity in comparison with a native application. An SPA provides a means to

overcome this barrier and helps the user to have a native-like experience. As seen earlier, there are

different ways to develop an SPA and achieve the same goal in terms of the application usability. But,

the software architecture and the software process to develop them can vary hugely. This chapter

illustrates a way to develop an SPA using AngularJS with the best practices in software engineering.

3.1 Process for developing an SPA

 Assuming that the software specification is in place, the next step is to identify the software

process to be used for developing an application. In order to develop an SPA, a preference is given to

a light weight process as to facilitate a rapid development of the application. While developing an

SPA, a developer can focus on following the best practices and continuously integrate the existing

application with properly tested and reviewed changes.

 AngularJS promotes the idea of Behavioral Driven Development (BDD), which focusses on

how to implement a specific behavior in the application. [Google 2010] It easies the process of

converting user specification to code that must be written to satisfy them. Initially, a spec is written by

the developer for testing. The spec consists of the expected behaviors from the application and BDD

uses whole sentence for describing a spec, with a verb such as "Describe" or "Should" in the

beginning of it. The developer then write enough code to pass the test cases written in the spec. The

process of BDD inherits its traits from TDD and unit testing, and is similar to TDD with regards to the

writing test cases before developing the code to pass them. BDD uses verbose sentences to describe

the behavior in a spec, whereas, TDD allows short and descriptive unit test cases for testing.

 BDD goes hand in hand with TDD when developing spec from user stories for development

and testing. Therefore, a light weight process such as PCSE is suitable for developing an SPA. The

activities in PCSE supports the development of an application that has these requirements and also

promotes the idea of TDD as a practice for developing an application.

!23

3.1.1 Initial Setup of an SPA

 Dependency injection, separation of concerns, components and testing are an integral part of

AngularJS. These different practices helps the application to remain modular in design. An SPA

development requires these design patterns and concepts to be adopted in the development process

for modularization and the directory structure of the application plays an integral role. Therefore, the

directory structure needs to be understood carefully.

 When it comes to the directory structure of an SPA, all the components could very well exist

in a single Javascript file under one folder and the application would still initialize and run properly.

From an operating system point of view, running the Javascript code present in single file is preferred

over multiple files, as multiple files can slow down the process of executing the code because of the

fragmentation in files. But, from developers perspective, keeping the complete Javascript code in

single file would be disadvantageous in the following ways:

1. Code maintainability

 With a single file, there is a lack of logically compartmentalized application where every

 component is easily located and edited.

2. Debugging

 Debugging the code becomes challenging if the application is not modular in design. In order

 to locate the offending code, developer has to spend more time locating the appropriate

 section of code.

3. Testing

 With a tight coupling in the features present in the same file, it becomes difficult to perform

 unit testing without affecting other sections of the code.

4. Scalability

 With single file, introducing new features is difficult as there is one file to work with. Even

 the version control suffers, especially in a team setting where many developers are working

 on same piece of code.

 A logical division of the code is a good practice for developing an SPA. AngularJS tends to

agree with the practice of compartmentalization of code. But, it does not present any guidance as to

how an application should be structured. A small-scaled SPA can easily get away with any directory

structure, whereas, a large enterprise level SPA can suffer major consequences if it does not choose a

!24

scalable and maintainable directory structure. Therefore, it is highly important to pay attention to the

directory structure at the initial phase of the SPA development.

 Figure 3.1 shows one way to structure an SPA and draw the benefits of AngularJS during the

SPA development life cycle.

Figure 3.1 Overview of directory structure for an SPA

 The directory structure mentioned above presents a modular way to develop an SPA following

the best practices of AngularJS. It presents a structure suitable for a full stack application which

involves development of both the client and the server. The client folder breaks down the main

elements of client side development into its respective folder. The application structure consists of

various components as follows:

1. client/app

 Each component that directly relates to the feature development of an SPA is created under

the app folder. The name of the component becomes the folder name for that particular feature and

within each component exists the following files:

Figure 3.2 Example Directory structure for a Component

!25

F. <component>.js

 This file helps setting up the route for the main Javascript application present in the outer

 most scope of the client directory structure. It registers the controller used by the component

 and the route used in the application url relative path in order to access it.

G. <component>.controller.js

 This module is the main controller for the component which helps setting up the scope

 variable and performs the necessary data binding.

H. <component>.controller.spec.js

 AngularJS uses Jasmine, a Javascript framework to perform unit testing. There are many

 ways to perform unit testing but Jasmine follows the best practices from agile and light

 weight methodology. It helps developer focus on writing testing scenarios and provides

 functions to help with structuring tests and also making assertions.

I. <component>.html

 This file acts as the partial template which uses the controller to manipulate the DOM and

 attach behavior to SPA. The view is created as per the directives used in the template

 along with controller logic and data model associated with the $scope.

J. <component>.css

 This file helps decorate the view by attaching various behaviors on the HTML elements.

2. client/components

 This sub-directory is used for housing the components that are reusable by the SPA. It follows

the same structure as any other component or directive. For example, an SPA usually consists of a

header, a footer, and a navigation feature. These features are different components that are used

repeatedly in every view and placing them as a directive main components makes sense. Therefore,

these special component are placed in the reusable directory of the client.

3. client/assets

 The structure of the assets sub-directory depends upon the quantity of assets used in an SPA.

At production level, an asset-heavy application prefers to use content delivery network for faster

retrieval of assets such as images, fonts and icons. But, for the purpose of development, the assets

folder can be used to place all the application assets in folders such as fonts, images and icons.

!26

4. client/index.html

 The index HTML file is identified by the application as the shell of the application which

becomes the point of entry into an SPA when loaded in the browser. It consists of the relative path to

all the files necessary for an SPA and helps in bootstrapping the application with the help of

AngularJS framework. The loading begins when a user makes a request to the application root level

using the browser URL and an API request is made to the server. The server responds with the path to

the index.html file in the client, loading the initial view of the SPA and retrieving the business logic

and data model in the browser.

3.1.2 Software process for developing SPA

 A light weight software process such as PCSE can be used to develop an SPA that gives the

flexibility in choosing the activities to be performed during the lifecycle of the project. For further

discussion on the process, we suppose that the software process includes all the activities mentioned

in Figure 2.4 and discuss the role of these activities and their respective artifacts in developing an

SPA.

1. Analysis

 Analysis is the process of understanding the bigger picture of the project and identifying the

objectives of the project. Once the project is described in broad strokes, analysis helps break complex

ideas into smaller meaningful chunks. These pieces help break the application into multiple scenarios

and behaviors that are expected of an SPA. The scenarios are documented on the basis of the client’s

clarifications and discussions about the project. The developer identifies the features and the

components from these discussions and generates a number of scenarios that these features or

component are expected to perform. Figure 3.3 is an example artifact on how to document a scenario.

!27

Figure 3.3 Example Scenario for a component

2. Architecture

 In the architecture phase, the main objective is to assimilate the information gathered in the

analysis and identify the components and features and their functionality. During this phase, the

conceptual components from the analysis are divided into actual components using CRC (Class

Responsibility Collaborator) cards. These CRC cards form the basis for planning and estimation of the

project. The CRC cards are used in an SPA to identify components such as model, views, routes,

controllers and HTML shell. Below is an example of CRC card for views created in an SPA.

Figure 3.4 Example CRC cards for views

!28

Component: XCScore
Scenario 1
Objective: To explore how a cross-country score is created.
Spec Type: Interface
Tuple # Type Actor Description Example

1 Event Test
Component

Create a valid instance of
XCScore

myXCScore =
XCScore(rider=myRider)

2 Respon
se

Blackbox Return an instance of a cross-
country score associated with a
particular rider. It should be
initialized to indicate that the rider
has not completed the cross-
country round.

myXCScore is an instance
of XCScore

3. Project Plan

 The major objective of project planning is to estimate the overall effort required for the

complete project. PCSE uses historical data from other projects to produce an estimate which includes

the LOC (Lines Of Code) and time spent, in actual as well as planned projections. These planned and

actual projections help in generating a size matrix. A size matrix consists of different size ranges for

components based on the projects developed so far. It helps in determining the raw LOC for a new

component in an SPA and help identifying a planned proposal for effort, both in terms of planned

LOC and planned Ep (Effort or estimate time).

Figure 3.5 Example of Size Matrix

 For Example, assume that we have worked on projects previously and have the information

related to the LOC and effort from these. PCSE helps automatically computing the size matrix using

its predefined model of computation. An example of such matrix is given in Figure 3.4.

 This matrix can be used for generating LOC/method based on the CRC cards generated in the

architecture phase. The estimate requires the developer to identify the components being developed in

an SPA along with their relative size and method count and produce raw LOC based on the newly

created size matrix. For example, a controller in AngularJS contains number of functions along with

the constructor. If the developer identifies the number of functions along with its relative size, then the

size matrix can be used for estimation.

!29

Size Matrix (LOC/Method)
Low Mid High

VS 1 5 6
S 6 7 8
M 8 10 11
L 11 13 15

VL 15 18

Figure 3.6 Example of an estimate based on size Matrix

 Once the estimate occurs for the first iteration, the size matrix is not required anymore. At the

beginning of second iteration, the developer gets enough confidence in the previous estimate,

especially, after developing the actual components and uses the experience to either change the

estimate, if the project requires or keep it intact.

4. Iteration Plan

 An iteration plan is a fine-grained plan with a time-sequenced set of activities and tasks, with

assigned resources, containing task dependencies, for the iteration. It also involves the redesign and

implementation of a task from the specification list, and the analysis of the current version of the

system. It helps identify problems or faulty assumptions at periodic intervals.

PCSE has the following major goals during this phase:

1. Select/revise scenario set

 Every iteration, the developer select a set of scenarios to be implemented and modifies or

 adds new scenarios identified to incorporate in the project specification.

2. Set iteration goal

 Iteration goals that have to achieved before the current iteration ends and it includes following

 goals.

 1) A list of major classes or packages that must be completely implemented.

 2) A list of scenarios or use cases that must be completed by the end of the iteration.

 3) A list of risks that must be addressed by the end of the iteration.

 4) A list of changes that must be incorporated in the product (bug fixes, changes in

 requirements) etc.

!30

Estimated Actual

Existing Component New Methods

Components Base Component Deleted LOCModified LOC Added LOC Method Count Rel Size LOCr Method Count LOCa

ForecastedComponent01 Component60 3 9 21 3 M 60

ForecastedComponent02 3 S 21

ForecastedComponent03 2 M 20

ForecastedComponent04 2 M 20

ForecastedComponent05 4 L 52

ForecastedComponent06 1 VS 5

Totals 178 0

3. Schedule work

 The role of this artifact is to map the components from the architecture into an iteration map.

 The Iteration map consists of number of iterations identified as per the schedule and based on

 the amount of work. This map can be modified by either by adding more time in the schedule

 or adding more iteration, extending the project deadline.

 The developer can schedule and track the effort using the calendar, burn-down chart, and

 diary. The following table illustrates how each parts (methods) of a component are mapped to

 each iteration in the iteration map:

Figure 3.7 Example of an iteration map

 Figure 3.7 is an example of iteration map where a developer can plug the components such as

 controller, model, view etc. identified with CRC cards and mention the number of tasks that

 are planned for each iteration. The PCSE model of computation for effort computed

 previously gets divided per iteration and gives an idea to the developer to setup the calendar

 and revamp the iterations, if needed. Examples of the calendar are given below.

Figure 3.8 Example of a Calendar

 The calendar provides a way to plan each day in the iteration map by getting the planned

 available time as per the developer schedule and provides an estimated burn down for each

!31

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Component ProductionMockProductoinMockProductoin Mock Productoin Mock ProductoinMock
ForecastedComponent01 3 1 4
ForecastedComponent02 2 1 1 4
ForecastedComponent03 1 1 1 3
ForecastedComponent04 1 2 3
ForecastedComponent05 4 4
ForecastedComponent06 1 1

Number of tasks: 4 6 5 4 0Total tasks: 19
Ep per iteration: 114 171 142 114 0 Total Ep: 541

Date

Planned
Available
Minutes

Planned
Cumulat
ive
Minutes

Planned
Burndo
wn at
Start of
Day

Planned
Burndo
wn at
End of
Day

Planned
Velocity
at End
of Day

Cumulat
ive
Planned
Velocity Actual Available MinutesCumulative Actual MinutesActual Burndown at Start of DayActual Burndown at End of DayEarned Velocity at End of DayCumulative Earned Velocity

1/1/20
60

60 541 481 0 0 0

1/2/20
60

120 481 421
4

4 0 0

1/3/20
0

120 421 421 4 0 0

1/4/20
90

210 421 331 4 0 0

1/5/20
120

330 331 211
6

10 0 0

 day. By looking at the burn down at the end of each day, the developer can set up the

 iteration boundary based on the planned effort per iteration identified in iteration map.

5. Construction

 Construction is the activity that involves implementing the high level design using a low-level

design, coding, and unit testing. As PCSE uses TDD for its development, an SPA utilizes the same

principle. The test cases are written based on the scenarios and then, code is written in order to pass

them. In the development of an SPA, the components are unit tested using Jasmine. Jasmine allows

the developer to describe test cases directly from the scenarios. Jasmine provides functions to help

with structuring user-defined tests and also making assertions. Jasmine uses the describe function to

group the tests together:

Figure 3.9 An example of test case using Jasmine framework

 AngularJS also provides the ngMock module which helps in mocking the test cases. This

module is also used to inject and mock the services for unit testing. For example, an $http service

used for asynchronous communication with the server to fetch a resource requires the server

availability. This goes against the idea of unit testing due to tight coupling. With this module, the test

cases can inject a mock service such as $httpBackend and add expected behavior with the service to

produce right output needed by the test case and continue writing the remaining test.

6. Review

 Reviewing helps in examining the test coverage for the recent iteration completed. If the test

coverage is not sufficient, bugs are discovered and are fixed using TDD approach of development.

Code review happens after every iteration and the bugs raised in the review are fixed in the next

iteration. PCSE uses review checklist for tracking the number of defects and its description. Figure

3.9 illustrates an example of code review.

!32

Figure 3.10 Code Review

 In the review phase, the number of defects that occurred in the project listed on the review list

is checked to see if it matches the historical defect count as seen in the above figure. If the defect

count matches the list, then the developer can confirm that new changes did not introduce a new

defect. The test code is checked for correctness and coverage.

7. Integration

 In order to integrate the existing application with the new changes, made in recently

completed iteration, a regression testing is performed. Regression testing makes sure that the

application functionality remains intact even after the integration. Jasmine is used for performing the

regression testing for developing an SPA. In case bugs are discovered, then they are removed using

TDD in the next iteration.

8. Post Mortem

 This is a brief phase that helps the developer to prepare for the next iteration. The activities

that are performed in this phase are:

A. Baseline the production code in version control on the local or remote server.

B. Baseline the test code in version control on the local or remote server.

C. Analyze the activities performed in the previous iteration and the correctness of them.

Understand things that went well and the major difficulties faced by the developer. If any

difficulty is face, then how to adapt the process in order to overcome it.

!33

D. Revisit the estimation and planning of the project. If things are on track, then nothing changes

in these artifacts. But, revamping the estimates and plans becomes necessary, if there is a

chance of derailing from the projected deadlines.

9. Code Complete

 Code completion marks the end of the project development. It includes a rigorous amount of

final testing and verification of production code. Once the application is verified to be correct,

deploying the application is the next step. An SPA deployment involves building the application for

production level and pushing it to the production server, if required. Building an SPA involves the

application code validation, compilation, transpiling, minification and uglification.

!34

4. Solution Validation

 This chapter illustrates the ideas presented thus far, by demonstrating a single page

application called “PCSE Desk". The SPA developed using PCSE and AngularJS, in the process of

validation, represents the web version of PCSE software. “PCSE Desk” is an SPA for developers who

intend to use PCSE as their software development process. The development of the application took

place with the students of Computer Science and Software Engineering department at Auburn

University in mind. The objective of this SPA is to help the students use their browser to access the

PCSE software and eliminate the requirement of Microsoft Excel. The PCSE software uses features

such as tables, lookup formulae, charts, drop downs and macros in Microsoft excel to provide its

intended functionality. But, there are certain difficulties faced by the students such as:

1. Microsoft Excel cannot be installed in all operating systems such as distributions of Linux.

2. PCSE spreadsheets use features which are incompatible with softwares that are alternatives to

Microsoft Excel such as OpenOffice.

4.1 Development Environment

 PCSE Desk and all its features were developed using AngularJS 1.5 within the Atom

development environment. Atom allows plugins to be installed that are useful for developing an SPA,

and allows a continuous development and integration for the project. Yeoman was used for project

scaffolding and modularization. Yeoman’s angular-fullstack generator was used for developing PCSE

Desk and its components.

 The server for the application was also developed to store the data locally in a non-volatile

database. The server was built using Node.js and express server framework, available in the Node.js

ecosystem. This API was used to provide various resources to the application. MongoDB was used as

the database.

4.2 Software process for developing PCSE Desk

 PCSE was used for developing PCSE Desk application by tailoring the activities that were

necessary for developing an SPA. The process for developing PCSE Desk is shown in Figure 4.1:

!35

Figure 4.1 PCSE Desk - PCSE life cycle

 These activities and the workflow were found suitable to develop PCSE Desk and its features

over a period of time. The life cycle was kept flexible enough to provide freedom to brainstorm new

ideas and continuously integrate changes in the project.

4.3 PCSE Desk features

 Although PCSE involves many activities and artifacts, the scope of this application was

restricted to only certain features and additional features were added to optimize and enhance the user

experience while using PCSE for development.

!36

4.3.1 Project Overview

 This feature of the application is the point of entry for the developer to interact with PCSE

Desk. It is responsible for viewing, creating, editing, searching, and deleting the projects. Once a

project is created, it can be used for interacting with the other activities of PCSE Desk that exist

within each project such as estimate, schedule, and setup of the project. PCSE requires a certain set of

activities to be performed in order to develop an application. This feature is the gateway to all the

other activities that help in performing the PCSE life cycle within each project scope.

Figure 4.2 PCSE Desk - Project Overview

 In order to add a new project, the developer can click on the add button on the view, given on

the top left corner, and submit the appropriate details in the popup modal. After validating and

verifying the information, a new project gets created and all the other PCSE Desk features are

exposed to the project. In order to perform any action in a project, the developer clicks on a particular

project name and the project opens, making sure all the necessary existing details of the project gets

loaded in the application.

!37

 Once these projects are created, the developer also has the ability to view a list of all existing

projects and delete them, if necessary. In order to retrieve a particular project from a long list, the

developer can search the project using the filter option available on the view.

4.3.2 Project Setup

 Project setup helps in setting up the configuration of the project currently in use by the

developer. This is the initial step before proceeding with other features within each project. This

feature makes sure that the project gets all the required artifacts before preceding to the next step. If

the developer does not provide these details, the application would not allow the proper access to

other features available to the project. The details necessary in this step are:

1. Start Date of the project

2. JSON configuration file that consists of:

1. MGI (Minimal Guiding Indicators)

2. MVP (Minimal Viable Process)

3. MEP (Minimal Effective Practices)

 In order to use this feature, the developer initially provides the starting date of the project. An

iteration for the project gets created automatically. The next step is to upload the JSON configuration

file which is available from the developer and provided by the client of the project. The client is

responsible for setting up this file and providing it to the developer to upload. This file is a large

JSON file created with a certain guidelines in mind which are as follows:

1. The JSON file needs to include MGI, MVP and MEP in a JSON structure.

2. The MVP object consists of all the activities from the PCSE life cycle and it needs to have the

coordinates for the flow chart created from these activities.

3. MGI needs to specify the details such as the cost, the schedule and the performance of the

project and MEP needs to detail the activities to be performed in the process of development.

!38

Figure 4.3 PCSE Desk - Project Setup

 To submit the JSON configuration file, the ability to upload this file is provided in the

application. As soon as the file is uploaded, the project gets prepared to be used. This file helps setting

up the expectations for the planned iterations of the project by providing a way to view the MGI, MEP

and MVP of the project. The MGI helps depicting the cost, schedule and performance of the project.

The MVP is used by developer to understand the flow of the software process in order to develop the

project. And, The MEP guides the developer to understand the minimum effective practices that have

to be performed while performing the MVP.

4.3.3 Planning

 This feature is a combination of estimation and scheduling which are integral for planning a

project using PCSE. Assuming the developer has the access to the CRC cards from the architecture of

the project, the developer can plan for coming up with an estimate for lines of code and effort for

every component to be built in the project and distribute the effort among the iterations planned for

the project. The planning consist of two sub features:

!39

1. Estimation

2. Scheduling

4.3.3.1 Estimation

 Estimation helps the developer determine the planned LOC and effort for the project as per

the components planned for development. In order to generate the estimate, the application collects

the historical data from previously completed projects and generates the size matrix. The size matrix

is then used for creating new components.

Figure 4.4 PCSE Desk - Project Estimate

 In order to create new components, the developer is provided with an add component button

on top left corner. By clicking it, the developer provides the necessary details such as component

name, method count and base component or relative size to create the component. The size matrix

compares the relative size of either the size provided by the user or relative size of base component

and computes the raw LOC for the new component. Based on the total components and their

respective raw LOC, the estimation feature is able to compute the planned LOC and effort for the

project. If the developer discovers new components, this feature can be to revisited to estimate after

!40

the iteration ends and change the estimate as per new requirements. If the estimate does not change

after the iteration ends, the same estimate is used for next iteration.

4.3.3.1 Scheduling

 Scheduling provides the developer with a way to divide the effort and tasks for every

component identified in the estimation among the planned iterations. The project set up to create one

iteration for the complete project. The developer is provided the ability to use the scheduling feature

to add new iterations as per the estimate. Scheduling gives the developer the ability to add/remove an

iteration in the iteration map. The iteration map provides a way to add and divide tasks in the

iterations added for the project and computes the total number of tasks per component, total number

of tasks per iteration and total effort required per iteration.

Figure 4.5 PCSE Desk - Project Schedule

 The other artifacts used for scheduling are the WBS, Calendar, and Backlog. Once the

iteration map is in place, the developer can view the cumulative effort and planned effort per iteration.

Using this information, the developer can use the calendar to provide the planned available minutes

and planned velocity at the end of each day.

!41

 By looking at the data provided in the calendar, the application computes the iteration

boundary for each iteration and estimates the burndown at the end of each day. This allows the

developer to understand the overall progress of the project.

 The WBS artifact provides a summarization of each iteration with the help of the data

available in calendar and other features such as the timelog and the estimate. The summary includes

the planned and actual values of the completion date per iteration, effort per iteration, and velocity per

iteration.

 Once the project construction finishes, the feature also allows the developer to provide the

actual values for both estimation and scheduling. This helps the developer understand the progress of

the project and helps improve the planning for the next iteration.

 The Backlog provides a way for the developer to understand the new burndown for the next

iteration. By looking at the planned tasks, completed tasks, and discovered tasks, the burndown for

the next iteration can be computed. This information can be used for changing the estimate for the

next iteration.

4.3.4 Dashboard

 The purpose of this feature is to provide a way to visually analyze the progress of the project

using a burndown chart. It provides the overall effort and the tasks left versus the remaining time,

helping the developer figure out the outstanding work to be finished before the expected deadline for

either each day, iteration and complete project.

 Figure 4.6 PCSE Desk - Project Dashboard

!42

4.3.5 Timelog

 The timelog is an important artifact for the developer to record the time spent on each activity

in the project life cycle. This feature uses the software process uploaded during the project set up for

generating the timelogs. Within each iteration, the developer can access the timelogs and manipulate

them. In order to create the timelog, the developer uses the flowchart provided automatically for each

iteration. The activities in the flowchart can be selected, as per the activity in progress and a time

counter begins computing the time spent on the current activity. Once the activity is finished, the

developer can stop the timer and a new timelog gets generated automatically. The developer has the

ability to view, edit, save, and delete the timelogs. The timelog records the date, start time, stop time,

activity performed, total time taken, interrupt and, comments.

 Figure 4.7 PCSE Desk - Project Timelog

!43

4.3.6 Changelog

 The changelog is an artifact which helps the developer track defects detected in the project.

The defect is recorded whenever the developer encounters an anomaly in the program. The developer

provides the necessary details to the changelog feature. The details include the type of defect, injected

in which activity, removed in which activity, time to fix the defect, injected in which iteration,

removed in which iteration, fix reference for providing a reference to an already existing defect, and a

brief description about the defect.

 Figure 4.7 PCSE Desk - Project Changelog

!44

4.4 Development of PCSE Desk

 PCSE Desk was developed using the process illustrated in figure 4.1. In order to understand

the development process completely, we need to understand the activities performed and artifacts

produced while using the PCSE for developing PCSE Desk. The activities performed in the

development process are as follows:

1. Analysis

 While doing analysis for PCSE Desk, we focused on identifying the features of the

application. We understood the requirements of the application and broke down the features into their

respective components. These components were used for understanding the application features at a

high-level and develop scenarios using user stories that would take place using these components. A

user story provides a means to write the expectations from the component in plain English text.

 Figure 4.8 PCSE Desk - User Story for Project overview

 Figure 4.8 illustrates some of the user stories identified during the initial phase of the first

iteration of the project. These user stories explain some of the scenarios of the project overview

feature that have to be satisfied by the application for its completion.

2. Architecture

 After a successful analysis, we recognized the components of the application, based on the

user stories gathered for the application. The user stories identified helped in determining the

!45

Story Set 1
Objective: To explore the functionality of Add Project component.

Story As a … I want to … So I can …
Story -1 user (anonymous/logged

in)
have the ability to add project
name and description

append a new project in the
existing list of projects in
system.

Story -2 user (anonymous/logged
in)

have the ability to edit the
project

Either change the project
name/description or delete
the project itself.

Story -3 user (anonymous/logged
in)

view all the existing projects choose either of them and do
the needful tasks within that
project scope.

Story -4 software component in
PCSEDesk

take the details from user
about the project

store them in the system and
enable proper services
required for a project.

components using CRC cards. The user stories were mapped onto their respective components to

determine the components that would form the complete feature.

Figure 4.9 CRC card of router for Project overview

Figure 4.10 CRC card of controller for project overview

Figure 4.11 CRC card of view for project overview

 Figure 4.9 to 4.11 illustrates some of the components identified in the first iteration for the

project overview feature. The major components required for building the features in AngularJS

corresponded with the components identified in the CRC cards. The one-to-one correspondence

between AngularJS and CRC cards helped making the process of architecture seamless.

We also kept the software process flexible enough to accommodate new features. If a new feature was

discovered during an iteration, we added it to the existing architecture and identified new user stories

for it.

!46

Component Name:Router – Add Project
Design Approach:
Parent Component:
Attributes (optional):
Component Type:
Collaborators: Controller – Add Project, View – Add Project
Operations: Responsible for routing to the proper path of main project page along with respective view.

Component Name:Controller – Add Project
Design Approach:
Parent Component:
Attributes (optional):
Component Type:
Collaborators: Model – Add Project, View – Add Project
Operations: Responsible for controlling the input data, applying validation and storing for further usage.

Component Name:View – Add Project
Design Approach:
Parent Component:
Attributes (optional):
Component Type:
Collaborators: Controller – Add Project, Model – Add Project
Operations: Responsible for generating a view which gives all the abilities covered in user stories.

3. Project Plan

 The project planning involved estimation which played an important role in the development

of the application. The objective of planning the project was to provide the overall effort required for

the complete project. All the application features were identified during the project planning.

In order to generate an estimate, a size matrix was required. But, due to the lack of historical data, we

made an educated guess for the size matrix and used it to develop an estimate for the first iteration. At

the end of the first iteration, we got confidence in the planned effort and planned lines of code for the

complete project.

Figure 4.12 PCSE Desk - Project estimation at iteration 2

 Figure 4.12 illustrates the estimate of the complete project at beginning of the second

iteration. We modified the existing estimate and corrected it based on the experience gained during the

first iteration.

4. Iteration plan

 An iteration plan is a fine-grained plan with a time-sequenced set of activities and tasks, with

assigned resources, containing task dependencies, for the iteration. We used iteration map for

!47

Estimated Actual
New Components Method CountRel Size LOCr Reuseable? Method Count LOCa Reusable?
Router – Add Project 1 S 3 Yes 1 6 Yes
Controller – Add Project 4 M 68 Yes 5 50 Yes
Model – Add Project 1 VL 552 Yes 1 1 Yes
View – Add Project 1 L 97 Yes 1 64 Yes
app.js 2 M 34 Yes 2 23 Yes
style.css 1 VL 552 Yes 1 200 Yes
index.html 1 L 97 Yes 1 43 Yes
Router – Dashboard 1 S 3 Yes
Controller – Dashboard 4 L 388 Yes
View – Dashboard 1 L 97 Yes
Router – TimeLog 1 S 3 Yes 1 3 Yes
Controller – TimeLog 4 M 68 Yes 8 88 Yes
View – TimeLog 1 M 17 Yes 1 101 Yes
Router – ChangeLog 1 S 3 Yes
Controller – ChangeLog 4 M 68 Yes
View – ChangeLog 1 M 17 Yes
Router – Burndown 1 S 3 Yes
Controller – Burndown 10 VL 5520 Yes
View – Burndown 1 VL 552 Yes

0
Totals 8142 8142 579 579

distributing the tasks based on the available time for each calendar day. The iterations were kept to

one week to give enough time for constructing the complete feature. We divided the tasks based on

the feature and its corresponding components in each iteration. The objective of dividing the tasks in

such way was to make sure that one feature would be completed in single iteration. If the feature

needed more time for completion, we pushed it to the next iteration by changing the iteration map and

accommodating it with other proposed tasks already present for the next iteration.

Figure 4.13 PCSE Desk - Project iteration map at the beginning of iteration 2

!48

Iteration01 Iteration02 Iteration03 Iteration04 Iteration05 Iteration06

New
Com
pone
nts

Router –
Add Project 1
Controller –
Add Project 5
Model –
Add Project 1
View – Add
Project 1
app.js 2
style.css 1
index.html 1
Router –
Dashboard 1
Controller –
Dashboard 4
View –
Dashboard 1
Router –
TimeLog 1
Controller –
TimeLog 4
View –
TimeLog 1
Router –
ChangeLog 1
Controller –
ChangeLog 2 1 1
View –
ChangeLog 1
Router –
Burndown 1
Controller –
Burndown 5 3 2
View –
Burndown 1

Number of tasks: 12 6 6 11 4 3
Effort: 514 257 257 471 171 129

 In order to adjust the change in iteration plan, we either added more time in the calendar for

the next iteration or added another iteration based on the backlog generated at the end of previous

iteration. Figure 4.13 illustrates the iteration map for PCSE desk at the beginning of iteration 2 based

on the available time per day and provides a projection for the completion of project at the end of

iteration 6.

5. Construction & Review

 At the initial stage, the project was set up with the directory structure similar to the illustration

in figure 3.1 and each feature of the SPA was constructed in the client folder. Figure 4.14 illustrates

the complete client directory structure at the end of the the project.

Figure 4.14 PCSE Desk - Directory structure

 In order to begin development of PCSE Desk, we started with development of the project

overview feature. It involved developing the index.html shell document to bootstrap the SPA. A shell

of AngularJS consists of a special directive called “ng-app”. The ng-app directive is usually attached

with the body tag of HTML to recognize an AngularJS application. Figure 4.14 illustrates a snippet of

shell document.

!49

Figure 4.15 PCSE Desk - Snippet of index.html

The “project" directory in figure 4.14 is the complete project overview feature. It consists of a router,

a controller, a css file, a view and a testing file.

 We used TDD for the construction of PCSE Desk and wrote all the necessary test cases based

on the user stories discovered in the analysis for the components involved in development of the

project overview feature. We used Jasmine, a Javascript framework for unit testing. When all the

possible test cases were covered in the test file, we start constructing the components in order to

complete the feature. The construction of an SPA component involves programming AngularJS based

template, controller and route.

Figure 4.16 PCSE Desk - project overview testing file

!50

 For example, in order to construct the project overview feature, the following components

were built after writing the test cases in “project.controller.spec.js” as illustrated in figure 4.16:

1. project.html

We constructed the template as if we were constructing a static web page. This helped in mocking the

user experience of the feature. Once the mock up was ready, we identified the template sections that

required data model or event handling and used various AngularJS components or concepts to

construct the application.

Figure 4.17 PCSE Desk - project overview template

For example, in figure 4.17, the modal was mocked initially without the awareness of AngularJS

directives and once the mock design was ready, the AngularJS directives such as ng-modal, ng-

disabled, etc. were added to bind the $scope which communicates with the data model present in the

controller.

2. project.controller.js

The controller in an SPA is responsible for handling the business logic and is continuously developed

along with the template to fulfill the feature requirement. While programming the controller and the

template, we continuously tested the functionality to pass the test cases written for the feature. Once

all the test cases were passed, we got enough confidence to mark the feature for completion. For

example, figure 4.18 presents a snippet of controller for project overview. It consist of the various

functions which are responsible for injecting the components, services and user-defined functions.

!51

Figure 4.18 PCSE Desk - project overview controller

3. project.js

The routing file in a component is responsible for injecting the component based on the URL

requested by the user of PCSE Desk. It allows the application to change from one state to another

using browser’s URL and helps binding the template and the controller associated with the location

specified in the URL.

Figure 4.19 PCSE Desk - project overview route

!52

After constructing these files to completion, we reviewed the test code for its coverage and made sure

that the feature was tested thoroughly. At this point, the feature was constructed completely.

When the user requests the application at the root level, the application automatically redirects the

user to the project overview feature. The routing also makes sure that the transition from one state to

another happens without page refresh.

All the other features were constructed in the same way and we made sure that we adhere to the best

practices of SPA development mentioned in chapter 3. With each feature with its own route, we made

sure that the application developed follows the single page architecture and gives an impression of a

native-like application.

4. Post mortem

 At the end of each iteration, we understood the difficulties faced during the current iteration

and prepared for the next iteration. If there was some backlog from previous iteration, then we

changed the next iteration plan and managed the backlog along with existing tasks to meet the project

deadlines. If during the construction, new features or components were discovered, then we discussed

about these features during the weekly meeting and added them to the plan for upcoming iterations.

4.5 Deployment of PCSE Desk

 In order to deploy the application, the application server had to be executed in the operating

system. The application's "dist" folder was prepared for distribution using the "grunt build" command

in the Atom development environment. Building was a one-time process for producing the final

application using the grunt task runner and once built, an SPA was available for distribution in the

“dist" folder. It was downloaded from a common repository for utilization.

 After installing these prerequisites and cloning the repository, PCSE Desk can be used with

any browser present on the operating system.

!53

Figure 4.8 Deployment of an SPA using grunt task runner

!54

5. Conclusion and Future work

5.1 Conclusion

 This study explored the best practices for developing SPAs. While examining different ways

to develop SPAs, AngularJS was found to be a suitable way in conjunction with a light weight

process. AngularJS encourages practices such as modularization, separation of concerns, dependency

injection, and BDD which helped in making SPAs easier to develop and deploy for utilization. These

practices also took advantage from the agility of the light weight process allowing the developer to

continuously integrate and deploy SPAs. Using a browser and its capability of using Javascript

allowed AngularJS to create an SPA which resides completely on the browser and only uses server for

synchronizing the data.

 In the present work an SPA, PCSE Desk was developed using AngularJS and PCSE. PCSE

Desk works on multiple clients using a browser and provides an experience of a native-like

application. As browser never reloads the page to navigate between different features of the SPA, it

requires relatively less amount of network and computing bandwidth as compared to traditional web

applications such as 3-tier and 2-tier web applications. It easily adapts to different form factors and its

performance is found to be consistent across different platforms. It is also observed that the artifacts

created by the end user remains synchronized while simultaneously using PCSE Desk from multiple

clients. In summary, it is concluded that the single page architecture can be used by the developer to

create superior applications in comparison to the architecture of traditional web applications.

5.2 Future Work

 Although the application, PCSE Desk, developed to demonstrate the best practices of

AngularJS is completed successfully, there are certain enhancements that can provide a developer

with a better experience. The following are some of these enhancements:

1. The scheduling feature in planning does not show the iteration boundary for the first iteration,

while using calendar. The page has to refreshed in order to view the changes. Implementing

the calendar with $watch variable of AngularJS can improve the behavior of the calendar.

2. The visualizations created in the dashboard feature can be enhanced by providing the

developers with the ability to manipulate the efforts and tasks in their respective

visualizations and view the effect of these changes on the project deadline. This can help

!55

developers get a better idea about the distribution of the tasks and effort, and they can make

wise decision about the project completion.

3. While using PCSE Desk, the developer can provide the path to the source code. This

information can be used for fetching the actual LOC written by the user for each component.

The enhancement of including source code directory of a project can be used for

automatically parsing the source code in order to fetch LOC and methods. This can be a great

enhancement and improve the overall experience of using PCSE Desk.

4. Also, the application can be enhanced to encompass every activity involved in PCSE. The

new features such as Analysis and Architecture can be developed in future and integrated with

the existing application to improve the user experience with PCSE Desk.

!56

References

[Fielding 1999] Fielding, R., Gettys J. and Mogul J. , Hypertext Transfer Protocol -- HTTP/1.1, June

1999

[Peacock 2000] Peacock, R. Distributed architecture technologies. IT Professional 2, 3, 2000.

[Hors 2004] Hors, Arnaud Le, Hégaret, Philippe Le, Document Object Model (DOM) Level 3 Core

Specification, version 1.0, W3C, April 2004

[Google 2010] AngularJS official documentation by Google, 2010

[Khan 2011] Khan, AI, Qurashi, RJ and Khan, UA A comprehensive study of commonly practiced

heavy and light weight software methodologies, arXiv, 2011

[Subramanian 2011] Subramanian, P. A PCSE (Practice Centered Software Engineering) tool for

Eclipse environment, Auburn University, 2011

[Takada 2012] Takada, Mikito Single page apps in depth, 2012

[Mikowski 2013] Mikowski, S. and Powell, J.C. Single page web applications, B and W, 2013.

[Umphress 2015] Software Process course notes, Fall 2015, By Dr. David A. Umphress, Computer

Science and Software Engineering Department, Auburn University.

[Koppaka 2016] Koppaka, Venkata and Addie, Scott, Single-page Application Frameworks in

Enterprise Software Development

[Voort 2017] Voort, Job van der, Benefits of Continuous Integration, DZone.com, 2017

[Yeoman 2017] Yeoman Official documentation for learning by Yeoman, 2017

!57

Appendix 1 (Source code)

index.html

<!doctype html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
<head>
 <meta charset="utf-8">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <base href="/">
 <title> PCSE Desk</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" type="text/css" href="bower_components/bootstrap/dist/css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css">
 <link rel="stylesheet" type="text/css" href="bower_components/font-awesome/css/font-awesome.css">
 <!-- Place favicon.ico and apple-touch-icon.png in the root directory -->
 <!-- build:css(client) app/vendor.css -->
 <!-- bower:css -->
 <link rel="stylesheet" href="bower_components/angular-material/angular-material.css" />
 <!-- endbower -->
 <!-- endbuild -->
 <!-- build:css({.tmp,client}) app/app.css -->
 <link rel="stylesheet" href="app/app.css">
 <!-- injector:css -->
 <link rel="stylesheet" href="app/app.css">
 <link rel="stylesheet" href="app/changeLog/changeLog.css">
 <link rel="stylesheet" href="app/dashBoard/dashBoard.css">
 <link rel="stylesheet" href="app/estimate/estimate.css">
 <link rel="stylesheet" href="app/project/project.css">
 <link rel="stylesheet" href="app/projectDetail/projectDetail.css">
 <link rel="stylesheet" href="app/schedule/schedule.css">
 <link rel="stylesheet" href="app/timeLog/timeLog.css">
 <link rel="stylesheet" href="components/footer/footer.css">
 <link rel="stylesheet" href="components/modal/modal.css">
 <!-- endinjector -->
 <!-- endbuild -->
</head>
<body ng-app="pcseappApp">
 <!--[if lt IE 7]>
 <p class="browserupgrade">You are using an outdated browser. Please upgrade your browser to improve your experience.</p>
 <![endif]-->

 <!-- Add your site or application content here -->

58

 <header></header>
 <div ui-view=""></div>
 <footer></footer>

 <!-- Google Analytics: change UA-XXXXX-X to be your site's ID -->
 <script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXX-X');
 ga('send', 'pageview');
 </script>
 <!--[if lt IE 9]>
 <script src="bower_components/es5-shim/es5-shim.js"></script>
 <script src="bower_components/json3/lib/json3.min.js"></script>
 <![endif]-->
 <!-- build:js({client,node_modules}) app/vendor.js -->
 <!-- bower:js -->
 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/angular/angular.js"></script>
 <script src="bower_components/bootstrap/dist/js/bootstrap.js"></script>
 <script src="bower_components/angular-resource/angular-resource.js"></script>
 <script src="bower_components/angular-cookies/angular-cookies.js"></script>
 <script src="bower_components/angular-sanitize/angular-sanitize.js"></script>
 <script src="bower_components/angular-bootstrap/ui-bootstrap-tpls.js"></script>
 <script src="bower_components/lodash/dist/lodash.compat.js"></script>
 <script src="bower_components/angular-socket-io/socket.js"></script>
 <script src="bower_components/angular-ui-router/release/angular-ui-router.js"></script>
 <script src="bower_components/ng-file-upload/ng-file-upload.js"></script>
 <script src="bower_components/angular-filter/dist/angular-filter.js"></script>
 <script src="bower_components/jquery-ui/jquery-ui.js"></script>
 <script src="bower_components/angular-animate/angular-animate.js"></script>
 <script src="bower_components/chart.js/dist/Chart.js"></script>
 <script src="bower_components/angular-chart.js/dist/angular-chart.js"></script>
 <script src="bower_components/angular-ui-sortable/sortable.js"></script>
 <script src="bower_components/angular-aria/angular-aria.js"></script>
 <script src="bower_components/angular-messages/angular-messages.js"></script>
 <script src="bower_components/angular-material/angular-material.js"></script>
 <!-- endbower -->
 <script src="socket.io-client/socket.io.js"></script>
 <!-- endbuild -->
 <script src="app/app.js"></script>
 <script src="app/goDiagram/go.js"></script>
 <!-- build:js({.tmp,client}) app/app.js -->
 <!-- injector:js -->
 <script src="components/util/util.module.js"></script>
 <script src="app/schedule/schedule.controller.js"></script>

59

 <script src="app/dashBoard/dashBoard.controller.js"></script>
 <script src="app/dashBoard/dashBoard.js"></script>
 <script src="app/estimate/estimate.controller.js"></script>
 <script src="app/estimate/estimate.js"></script>
 <script src="app/goDiagram/goDiagram.directive.js"></script>
 <script src="app/project/project.controller.js"></script>
 <script src="app/project/project.js"></script>
 <script src="app/projectDetail/projectDetail.controller.js"></script>
 <script src="app/projectDetail/projectDetail.js"></script>
 <script src="app/resizable/resizable.directive.js"></script>
 <script src="app/changeLog/changeLog.js"></script>
 <script src="app/schedule/schedule.js"></script>
 <script src="app/timeLog/timeLog.controller.js"></script>
 <script src="app/timeLog/timeLog.js"></script>
 <script src="components/footer/footer.directive.js"></script>
 <script src="components/header/header.directive.js"></script>
 <script src="components/modal/modal.service.js"></script>
 <script src="components/navbar/navbar.controller.js"></script>
 <script src="components/navbar/navbar.directive.js"></script>
 <script src="components/socket/socket.service.js"></script>
 <script src="app/changeLog/changeLog.controller.js"></script>
 <script src="components/util/util.service.js"></script>
 <script src="app/app.constant.js"></script>
 <!-- endinjector -->
 <!-- endbuild -->
 </body>
 </html>

app.js

'use strict';

angular.module('pcseappApp', [
 'pcseappApp.constants',
 'ngCookies',
 'ngResource',
 'ngAnimate',
 'ngSanitize',
 'btford.socket-io',
 'ui.router',
 'ui.bootstrap',
 'ngFileUpload',
 'angular.filter',
 'chart.js',
 'ui.sortable',
 'ngMaterial'
])
 .config(function($urlRouterProvider, $locationProvider) {

60

 $urlRouterProvider
 .otherwise('/');

 $locationProvider.html5Mode(true);
 });

app.css

/**
 * Bootstrap Fonts
 */

@font-face {
 font-family: 'Glyphicons Halflings';
 src: url('../bower_components/bootstrap/fonts/glyphicons-halflings-regular.eot');
 src: url('../bower_components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix')
format('embedded-opentype'),
 url('../bower_components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'),
 url('../bower_components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'),
 url('../bower_components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular')
format('svg');
}

/**
 *Font Awesome Fonts
 */

@font-face {
 font-family: 'FontAwesome';
 src: url('../bower_components/font-awesome/fonts/fontawesome-webfont.eot?v=4.1.0');
 src: url('../bower_components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.1.0')
format('embedded-opentype'),
 url('../bower_components/font-awesome/fonts/fontawesome-webfont.woff?v=4.1.0') format('woff'),
 url('../bower_components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.1.0') format('truetype'),
 url('../bower_components/font-awesome/fonts/fontawesome-webfont.svg?v=4.1.0#fontawesomeregular')
format('svg');
 font-weight: normal;
 font-style: normal;
}

/**
 * App-wide Styles
 */

.browserupgrade {
 margin: 0.2em 0;
 background: #ccc;
 color: #000;

61

 padding: 0.2em 0;
}

/* Toggle Styles */

 #wrapper {
 padding-left: 0;
 -webkit-transition: all 0.5s ease;
 -moz-transition: all 0.5s ease;
 -o-transition: all 0.5s ease;
 transition: all 0.5s ease;
 height: 100%;
}

div#timeLog{
cursor: pointer;
text-align: center;
border-left:1px solid white;

 border-right:1px solid white;
 border-top:1px solid white;
 border-bottom:1px solid white;
 border-radius: 50px;
 opacity: 0.65;
}

div#tasks{
cursor: pointer;
text-align: center;
border-left:1px solid white;

 border-right:1px solid white;
 border-top:1px solid white;
 border-bottom:1px solid white;
 border-radius: 50px;
}

div#tasks:hover{
border: 1px solid;

}

#wrapper.toggled {
 padding-left: 250px;
 height: 100%;
 overflow: visible;
}

#sidebar-wrapper {
 z-index: 1000;
 position: fixed;
 left: 250px;

62

 width: 0;
 height: 100%;
 margin-left: -250px;
 margin-top: 50px;
 overflow: hidden;
 background: #222;
 -webkit-transition: all 0.5s ease;
 -moz-transition: all 0.5s ease;
 -o-transition: all 0.5s ease;
 transition: all 0.5s ease;
}
#wrapper.toggled #sidebar-wrapper {
 width: 250px;
}

#page-content-wrapper {
 position: absolute;
 padding: 15px;
 width: 100%;
 overflow-x: visible;
 height: 100%;
}

#addButton {
border-radius: 50px;
width: 50px;
height: 50px;
font-size: 25px;

}

#addProject{
position: relative;
padding-bottom: 10px;

}
#filter input:focus {

outline:none;
border: 3px Solid #222;
box-shadow: 0 0 10px #222;

}
#filter input {

width:50%;
border-radius: 10px;
color: #222;
border: 2px Solid #222;

}
#folder {

padding-right: 20px;
}

63

textarea {
resize:vertical ;

}

#noProject {
color: grey;
display: block;
text-align: center;
z-index: -1;

}

#addProject button:focus {
outline:0;

}
.navbar-header a:focus {

outline:0;
}
.navbar {
 position: fixed;
 min-height: 50px;
 width: 100%;
 margin-bottom: 20px;
 border: 1px solid transparent;
 z-index: 1000;
}

#wrapper.toggled #page-content-wrapper {
 position: relative;
 margin-right: 0px;
 height: 100%;
}
.fixed-brand{
 width: 100%;
}
/* Sidebar Styles */

.sidebar-nav {
 position: absolute;
 top: 0;
 width: 250px;
 margin: 0;
 padding: 0;
 list-style: none;
 margin-top: 2px;
}

.sidebar-nav li {
 text-indent: 15px;
 line-height: 40px;

64

}

.sidebar-nav li a {
 display: block;
 text-decoration: none;
 color: #999999;
 cursor: pointer;
}

.sidebar-nav li a:hover {
 text-decoration: none;
 color: #fff;
 background: rgba(255,255,255,0.2);
 border-left: red 2px solid;
}

.sidebar-nav li a:active,

.sidebar-nav li a:focus {
 text-decoration: none;
 outline:0;
}

.sidebar-nav > .sidebar-brand {
 height: 65px;
 font-size: 18px;
 line-height: 60px;
}

.sidebar-nav > .sidebar-brand a {
 color: #999999;
}

.sidebar-nav > .sidebar-brand a:hover {
 color: #fff;
 background: none;
}
.no-margin{
 margin:0;
}

@media(min-width:480px) {
 #wrapper {
 padding-left: 250px;
 height: 100%;
 }
 .fixed-brand{
 width: 100%;
 }
 #wrapper.toggled {

65

 padding-left: 0;
 height: 100%;
 }

 #sidebar-wrapper {
 width: 250px;
 }

 #wrapper.toggled #sidebar-wrapper {
 width: 250px;
 }
 #wrapper.toggled-2 #sidebar-wrapper {
 width: 50px;
 }
 #wrapper.toggled-2 #sidebar-wrapper:hover {
 width: 250px;
 }

 #page-content-wrapper {
 padding: 20px;
 position: relative;
 height: 100%;
 -webkit-transition: all 0.5s ease;
 -moz-transition: all 0.5s ease;
 -o-transition: all 0.5s ease;
 transition: all 0.5s ease;
 }

 #wrapper.toggled #page-content-wrapper {
 position: relative;
 height: 100%;
 margin-right: 0;
 padding-left: 250px;
 }
 #wrapper.toggled-2 #page-content-wrapper {
 position: relative;
 height: 100%;
 margin-right: 0;
 margin-left: -200px;
 -webkit-transition: all 0.5s ease;
 -moz-transition: all 0.5s ease;
 -o-transition: all 0.5s ease;
 transition: all 0.5s ease;
 width: auto;

 }
 .container {
 padding-left: 200px;

66

 }
}
input.ng-invalid.ng-touched{

border: 2px solid Red;
}

#filter-label{
color: #222;

}

#projectRow{
border-left:1px solid white;

 border-right:1px solid white;
 border-top:1px solid white;
 border-bottom:1px solid white;
 border-radius: 50px;
}
#outer {

position: fixed;
/*margin: 0;*/
/*float: right;*/

 /*right: 0 !important;*/
 right: 0px;
 width: 0px;
 max-width: 500px;
 height: 100%;
 overflow: hidden;
}
#resizable {

z-index: 900;
position: absolute;
/*margin-right: -60px;*/

 /*right: 0px;*/
 /*width: 0px;*/
 float: right;
 height: 100%;
 overflow: hidden;
 padding-top:100px;
 background-color: rgb(193, 193, 193);
}

.container-fluid {
padding-top: 50px;

 padding-left: 50px;
}
.container {

padding-top: 50px;
}
#charts-wrapper {

67

 margin-left: 300px;
}

#Timer {
background: #333;

 color: #bbb;
 font-family: Menlo;
 text-align:center;
 font-size:30px;
 height: 100%;
 width: 180px;

border-radius: 20px;
}
#scrollable {

height: 400px;
overflow-y: scroll;

}
#Iteration {

margin-top: -25px;
}
.dropzone {
 height: 200px;
 border-width: 2px;
 margin-bottom: 20px;
}

.dropzone {
 color: #ccc;
 border-style: dashed;
 border-color: #ccc;
 line-height: 200px;
 text-align: center
}
.dropzone {
 color: #222;
 border-color: #222;
}

project.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('project', {
 url: '/',
 template: '<project></project>'

68

 });
 });

project.controller.js

'use strict';
(function(){

class ProjectComponent {
 constructor($http, $scope, socket, $state) {
 this.$http = $http;
 this.socket = socket;
 this.$scope = $scope;
 this.$state = $state;
 this.$scope.Projects = [];
 this.defaultValues = {
 name : '',
 desc : ''
 };
 $scope.$on('$destroy', function() {
 socket.unsyncUpdates('projects');
 });
 }

 $onInit() {
 this.$http.get('/api/projects').then(response => {
 this.$scope.Projects = response.data;
 this.socket.syncUpdates('projects', this.$scope.Projects);
 });
 }
 // Add a new project
 addProject(){

 var addProjectItem = {
 name: this.$scope.project.name,
 desc: this.$scope.project.desc
 };
 var req = angular.toJson(addProjectItem);
 this.$http.post('/api/projects', req).success(function(){
 console.log('Post Request sucessful');
 });
 this.reset();
 $('#myModal').modal('toggle');
 }
 reset(){
 this.$scope.projectForm.$setPristine();
 this.$scope.projectForm.$setUntouched();
 this.$scope.project = angular.copy(this.defaultValues);
 }

69

 deleteProject(project){
 this.$http.delete('/api/projects/'+ project._id).success(function(){
 console.log('Delete Request sucessful');
 });
 }

 projectAvailable(){
 return this.$scope.Projects.length > 0 ? true:false;
 }

 setSelectProject(project) {
 this.$state.go('projectDetail', {
 id: project._id
 });
 }
}

angular.module('pcseappApp')
 .component('project', {
 templateUrl: 'app/project/project.html',
 controller: ProjectComponent
 });

})();

project.html

<!-- Modal -->
<div class="modal fade" id="myModal" role="dialog">

<div class="modal-dialog">
<form name="projectForm" ng-submit="$ctrl.addProject()" novalidate>

 <!-- Modal content-->
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal">×</button>
 <h4 class="modal-title"> Add New Project</h4>
 </div>

 <div class="modal-body">
 <div class="form-group">
 <label>Project name</label>
 <input class="form-control" ng-model="project.name"
name="name" id="name" type="text" ng-required="true" placeholder="Enter a project Name"/>
 <div ng-show="projectForm.name.$invalid &&
projectForm.name.$touched">

70

 <small style="color: Red; display: block;">Enter a Valid
Project name</small>
 </div>
 </div>
 <div class="form-group">
 <label>Description</label>
 <textarea class="form-control" ng-model="project.desc"
id="desc" placeholder="Enter a project description"></textarea>
 </div>
 </div>
 <div class="modal-footer">

 <button class="btn btn-default" type="button" ng-click="$ctrl.reset()"
data-dismiss="modal">Cancel</button>

 <input class="btn btn-primary btn-create" ng-disabled="projectForm.
$invalid || adding" type="submit" value="Create"/>

</div>

 </div>
 </form>
 </div>
 </div>

<!-- Page Content -->
<div id="page-content-wrapper">

<div class="container-fluid">
<div id="addProject">

<div class="row">
<div class="col-sm-1">

<button id="addButton" type="button" class="btn btn-danger"
data-toggle="modal" data-target="#myModal" data-toggle="tooltip" data-placement="top" title="Add a
New Project">+</button>

</div>
<div class="col-sm-11">

<div id="filter" class="form-group">
<label id="filter-label" class="form-

group">Filter:</label>
 <input id="filter-input" class="form-group input-sm" ng-
model="search" type="text" placeholder="Enter a Project name">

</div>
</div>

</div>
</div>
<div class="row">
<div id="projectRow" ng-repeat="project in Projects | filter: search" ng-

show="$ctrl.projectAvailable()" class="col-sm-6 alert alert-success" role="alert">
<span id="folder" class="glyphicon glyphicon-folder-open" aria-

hidden="true">
{{project.name}}
<button type="button" class="close" ng-

71

click="$ctrl.deleteProject(project)">×</button>
</div>
</div>
<div ng-show="!$ctrl.projectAvailable()">

 <h1 id="noProject">No Projects Available.</h1>
 </div>

</div>
</div>

project.controller.spec.js

/* global describe, it, expect, inject, beforeEach */

(function(){

describe('A suite for PCSE', function() {
beforeEach(module('ngRoute'));
beforeEach(module('pcseDeskApp'));

it('contains spec with an expectation', function() {
 expect(true).toBe(true);
 });

it('has version to be 0.0.1', inject(function(version) {
 expect(version).toBe('0.0.1');
 }));

describe('A suite for Add Project component', function() {
var scope, projectCtrl, $httpBackend, fakeProjects;

beforeEach(inject(function(_$httpBackend_, $rootScope, $controller) {
$httpBackend = _$httpBackend_;
fakeProjects = [{name: 'Project Testing', desc: 'gdfgdfg'}];
$httpBackend.expectGET('Project').respond(fakeProjects);
scope = $rootScope.$new();
projectCtrl = $controller('projectController', {$scope: scope});

}));

describe('All specs for project Controller', function() {

it('Should get 1 fake project from data model', function() {
 expect(scope.Projects).toEqual([]);
 $httpBackend.flush();
 expect(scope.Projects).toEqual(fakeProjects);
 expect(scope.Projects.length).toEqual(1);
 });
it('Should add 1 fake project to the data model', function() {

scope.project = fakeProjects;
scope.projectForm = {

72

name : 'ds',
desc : 'sd'

};
scope.projectForm.$setPristine = function(){

return true;
};
scope.projectForm.$setUntouched = function(){

return true;
};
$httpBackend.flush();
scope.addProject();
expect(scope.Projects.length).toEqual(2);

 });
it('Should delete 1 fake project from the data model', function() {

$httpBackend.flush();
scope.deleteProject();
expect(scope.Projects.length).toEqual(0);

 });

it('Should not have any projects if data model is empty', function() {
scope.projectAvailable();
expect(scope.Projects.length).toEqual(0);

 });

});
describe('All specs from Project view', function() {

it('Should reset the form to have default values(empty name and
description)', function() {

var defaultValues = {
name : '',
desc : ''

};
scope.projectForm = {

name : 'ds',
desc : 'sd'

};
scope.projectForm.$setPristine = function(){

return true;
};
scope.projectForm.$setUntouched = function(){

return true;
};
scope.project = scope.projectForm;
scope.reset();

 expect(scope.project).toEqual(defaultValues);
 });

});

73

});

describe('A suite for Time Log component', function() {
var scope, scope1, timLogCtrl, projectCtrl, $httpBackend, fakeProject, $filter;

beforeEach(inject(function(_$httpBackend_, $rootScope, Scopes, $controller,
$filter) {

$httpBackend = _$httpBackend_;
scope = $rootScope.$new();
projectCtrl = $controller('projectController', {$scope: scope});
fakeProject = [{name: 'Project Testing', desc: 'gdfgdfg', timeLog:

[{"startTime":"2016\/04\/20
23:00","dateFormat":"04\/04\/2016","comments":"fghf","activity":"Analysis","interrupt":"55","stopTime"
:"2016\/04\/30 23:00"}]}];

scope.setSelectProject(fakeProject);
$httpBackend.expectPOST('TimeLog').respond(fakeProject);
scope1 = $rootScope.$new();
timLogCtrl = $controller('timeController', {$scope: scope1});
scope1.SelectProject = fakeProject;

}));

describe('All specs for time Controller', function() {

it('Should add 1 Time Log for a fake project from data model', function()
{

expect(scope1.SelectProject.timeLog).toBeUndefined();
scope1.addTimeLogs();

 expect(scope1.SelectProject.timeLog.length).toEqual(1);
 });
it('Should open 1 fake project to the data model', function() {

scope1.addTimeLogs();
scope1.openLog();
expect(scope1.SelectProject.timeLog.length).toEqual(1);
var today = new Date();
var dd = today.getDate();

 var mm = today.getMonth()+1; //January is 0!

 var yyyy = today.getFullYear();
 if(dd<10){
 dd='0'+dd
 }
 if(mm<10){
 mm='0'+mm
 }
 var today = dd+'/'+mm+'/'+yyyy;

expect(scope1.SelectProject.timeLog[0].dateFormat).toEqual(today);
 });
it('Should delete 1 fake time log from the data model', function() {

74

scope1.addTimeLogs();
scope1.deleteLog();
expect(scope1.SelectProject.timeLog.length).toEqual(0);

 });

});
});

});
}());

projectDetail.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('projectDetail', {
 url: '/project/:id',
 template: '<project-detail></project-detail>'
 });
 });

projectDetail.controller.js

'use strict';
(function(){

 class ProjectDetailComponent {
 constructor($http, $scope, socket, $stateParams, Upload) {
 this.$scope = $scope;
 this.$http = $http;
 this.socket = socket;
 this.$stateParams = $stateParams;
 this.Upload = Upload;
 this.$scope.Project = [];
 $scope.iterations = [];
 $scope.totalItems = $scope.iterations.length*10;
 $scope.currentPage = 1;
 $scope.maxSize = 8;
 $scope.itemsPerPage = 1;

 $scope.createModel = function(iteration) {
 //console.log(iteration.projectConfig);
 if(iteration.projectConfig.length > 0) {
 var config = JSON.parse(iteration.projectConfig);
 //console.log(config);

75

 $scope.model = new go.GraphLinksModel(
 config[0].nodeDataArray,
 config[0].linkDataArray);
 $scope.model.selectedNodeData = null;
 $scope.mgi = config[1];
 $scope.mep = config[2];
 $scope.isUploadedAfter = true;
 }
 else{
 $scope.isUploadedAfter = false;
 }
 }

 $scope.pageChanged = function() {
 //console.log($scope.currentPage);
 $scope.createModel($scope.Project.iterations[$scope.currentPage-1]);
 }
 this.$scope.setupConfig = {};
 this.$scope.log = '';
 this.$scope.uploadFile;
 this.setupActive = 'active';
 this.$scope.isConfigured = false;
 this.$scope.isUploadedAfter = false;
 this.$scope.stringTitle = 'Setup Project Configuration';
 this.$scope.model = new go.GraphLinksModel();

 this.$scope.upload = function(files, iter) {
 if (iter && files && files.length) {
 for (var i = 0; i < files.length; i++) {
 var file = files[i];
 if(file) {
 Upload.base64DataUrl(file).then(response => {
 console.log(response);
 var str = response.toString().slice(29);
 while(str.charAt(str.length-1) === '='){
 str = str.slice(0, -1);
 }
 //console.log(str);
 $scope.uploadFile = JSON.parse(window.atob(str));
 //console.log($scope.uploadFile);
 //console.log($scope.Project.iterations[iter-1]);
 $scope.Project.iterations[iter-1].isUploaded = true;
 $scope.Project.iterations[iter-1].projectConfig = JSON.stringify($scope.uploadFile);
 var data = {
 iterations: $scope.Project.iterations
 };
 $http.put('/api/projects/'+$stateParams.id, data).then(response => {
 console.log(response);
 });

76

 });
 $scope.stringTitle = 'Upload File(s) - Setup Project Configuration';
 $scope.isUploadedAfter = true;
 }
 }
 }
 };
 $scope.$watch('files', function () {
 console.log($scope.setupConfig.noOfIteration);
 if($scope.iterToUpload && $scope.iterToUpload > 0 && $scope.iterToUpload <=
$scope.setupConfig.noOfIteration){
 $scope.upload([$scope.files], $scope.iterToUpload);
 }
 });
 }

 $onInit() {
 this.getData();
 }
 getData() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 console.log(this.$scope.Project);
 if(this.$scope.Project.Setup){
 //this.$scope.setupConfig.lengthOfIteration = this.$scope.Project.Setup.lengthOfIteration;
 console.log(new Date(this.$scope.Project.Setup.startProject));
 this.$scope.setupConfig.startProject = new Date(this.$scope.Project.Setup.startProject);
 //this.$scope.setupConfig.endProject = new Date(this.$scope.Project.Setup.endProject);
 this.$scope.setupConfig.noOfIteration = this.$scope.Project.Setup.noOfIteration;
 console.log(this.$scope.Project.iterations);
 this.$scope.iterations = this.$scope.Project.iterations;
 this.$scope.totalItems = this.$scope.iterations.length*10;
 this.$scope.createModel(this.$scope.iterations[0]);
 this.$scope.stringTitle = 'Upload File(s) - Setup Project Configuration';

 this.$scope.isConfigured = true;
 }
 });
 }
 saveConfig(numberOfIter) {
 var iter = [];
 console.log(this.$scope.setupConfig.startProject);
 // console.log(Date.parse("2016-01-10"));
 // var timeDiff = this.$scope.setupConfig.endProject - this.$scope.setupConfig.startProject;
 // var numberOfDays = Math.floor(timeDiff/(60*60*24*1000));
 // var numberOfIter = numberOfDays / this.$scope.setupConfig.lengthOfIteration;
 for(var i=0; i<numberOfIter; i++) {
 iter.push({
 projectConfig: '',

77

 isUploaded: false,
 timeLog: []
 });
 }
 var data = {
 Setup: {
 startProject: this.$scope.setupConfig.startProject,
 noOfIteration: numberOfIter
 },
 iterations: iter,
 changeLog: []
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 this.getData();
 this.$scope.isConfigured = true;
 }

 }

 angular.module('pcseappApp')
 .component('projectDetail', {
 templateUrl: 'app/projectDetail/projectDetail.html',
 controller: ProjectDetailComponent
 });

 })();

projectDetail.css

.drop-box {
 background: #F8F8F8;
 border: 5px dashed #DDD;
 width: auto;
 height: 100px;
 text-align: center;
 padding-top: 25px;
 margin: 10px;
}
.dragover {
 border: 5px dashed blue;
}

projectDetail.html

<navbar></navbar>

78

<div id="page-content-wrapper">
<div class="container">

<div class="row">
<div class="col-md-6">

<div class="panel panel-primary">
<div class="panel-heading">

Setup Configuration
</div>
<div class="panel-body">

<form name="SetupConfig" ng-
submit="$ctrl.saveConfig(1)">

<div class="form-group">
<label>Enter some details about the

project</label>
</div>
<div class="form-group">

<input class="form-control" ng-
model="setupConfig.startProject" type="date" ng-required="true" placeholder="Enter a start date for this
Project"/>

</div>
<!-- <div class="form-group">

<input class="form-control" ng-
model="setupConfig.endProject" type="date" ng-required="true" placeholder="Enter an end date for this
project"/>

</div> -->
<div class="form-group">

<label>Number of Iterations</label>
<input class="form-control" ng-

model="setupConfig.noOfIteration" type="text" ng-readonly="true" placeholder="Enter the number of
iterations"/>

</div>
<!-- <div class="form-group">

<div class="input-group">
<input class="form-control" ng-

model="setupConfig.lengthOfIteration" type="text" ng-required="true" placeholder="Enter the number
of days in each iteration"/>

<span class="input-group-
addon">days(s)

</div>
</div> -->

<div class="form-group">
<input class="btn btn-primary btn-

create" ng-disabled="SetupConfig.$invalid" type="submit" value="Save Configuration"/>
</div>

</form>
</div>
<div class="panel-footer">
</div>

79

</div>
</div>
<div ng-show="isConfigured" class="col-md-6">

<div class="panel panel-primary">
<div class="panel-heading">

{{stringTitle}}
</div>
<div class="panel-body">

<div class="form-group">
<input class="form-control" type="text" ng-

model="iterToUpload" ng-required="true" placeholder="Enter the iteration number to upload for."/>
</div>

<div ngf-drop ngf-select ng-model="files" class="drop-
box" ngf-change="readFile($files)"

ngf-drag-over-class="'dragover'" ngf-multiple="false"
ngf-allow-dir="false"

accept="application/json"
ngf-pattern="'application/json'">Drop JSON

configuration file here or click to upload</div>

<div ngf-no-file-drop>File Drag/Drop is not supported
for this browser</div>

</div>
<div class="panel-footer">
</div>

</div>
</div>

</div>
<div ng-show="isConfigured" class="panel-body">

<label>Choose the Iteration:</label>
<div><ul uib-pagination total-items="totalItems" ng-model="currentPage" max-

size="maxSize" ng-change="pageChanged()"></div>
</div>
<div ng-repeat="iteration in iterations.slice(((currentPage-1)*itemsPerPage),

((currentPage)*itemsPerPage))">
<div class="row">

<div ng-show="isUploadedAfter" class="col-md-12">
<div class="panel panel-primary">

<div class="panel-heading">
Minimal Viable Process

</div>
<div class="panel-body">

<go-diagram go-model="model"
style="width:100%; height:400px"></go-diagram>

</div>
<div class="panel-footer">
</div>

80

</div>
</div>

</div>
<!-- /.row -->
<div ng-show="isUploadedAfter" class="row">

<div class="col-md-6">
<div class="panel panel-primary">

<div class="panel-heading">
Minimal Guiding Indicators

</div>
<div class="panel-body">

<p><label>Cost:</label> {{mgi.cost}}</p>
<p><label>Schedule:</label>

{{mgi.schedule}}</p>
<label>Performance:</label>
<ul ng-repeat="(key, value) in

mgi.performance">
<label>{{key}}:</label>

{{value}}

</div>
<div class="panel-footer">
</div>

</div>
</div>
<div ng-show="isUploadedAfter" class="col-md-6">

<div class="panel panel-primary">
<div class="panel-heading">

Minimal Effective Practices
</div>
<div class="panel-body">

<div ng-repeat="(key, value) in mep">
<label>{{key}}:</label>

<li ng-repeat="items in
value">{{items}}

</div>

</div>
<div class="panel-footer">
</div>

</div>
</div>

</div>
</div>

</div>
</div>

timeLog.js

81

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('timeLog', {
 url: '/project/timeLog/:id',
 template: '<time-log></time-log>'
 });
 });

timeLog.controller.js

'use strict';
(function(){

 class TimeLogComponent {
 constructor($http, $scope, $state, $stateParams, $filter) {
 this.timeActive = 'active';
 this.$http = $http;
 this.$state = $state;
 this.$scope = $scope;
 this.$stateParams = $stateParams;
 this.$filter = $filter;
 this.$scope.model = new go.GraphLinksModel();
 this.$scope.visible = false;
 this.logView = true;
 this.$scope.indexedItems = [];

 $scope.iterations = [];
 $scope.totalItems = $scope.iterations.length*10;
 $scope.currentPage = 1;
 $scope.maxSize = 8;
 $scope.itemsPerPage = 1;
 $scope.pageChanged = function() {
 //console.log($scope.currentPage);
 $scope.initGoJs($scope.Project.iterations[$scope.currentPage-1]);
 document.getElementById('outer').style.width = '0px';
 }

 $scope.initGoJs = function(iter) {
 if(iter.projectConfig && iter.projectConfig.length >= 0){
 var config = JSON.parse(iter.projectConfig);
 $scope.model = new go.GraphLinksModel(
 config[0].nodeDataArray,
 config[0].linkDataArray);
 $scope.model.selectedNodeData = null;
 $scope.visible = true;

82

 }
 else{
 $scope.visible = false;
 }
 }

 }
 $onInit() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 this.$scope.iterations = this.$scope.Project.iterations;
 this.$scope.totalItems = this.$scope.iterations.length*10;
 if(this.$scope.iterations.length > 0){
 this.$scope.initGoJs(this.$scope.iterations[0]);
 }
 });
 }

 $onDestroy() {
 console.log('Destroying TimeLog Controller!!');
 }

 addTimeLogs(time, selActivity){
 if(this.$scope.Project.iterations[this.$scope.currentPage-1].hasOwnProperty('timeLog')){
 console.log('Yeah!!');
 }
 else{
 this.$scope.Project.iterations[this.$scope.currentPage-1].timeLog = [];
 console.log(this.$scope.Project);
 }
 this.$scope.date = this.$filter('date')(new Date(), "MM/dd/yyyy");
 var dateTime = new Date();
 var starting = this.$filter('date')(dateTime, "HH:mm:ss a");
 var stop = this.$filter('date')(new Date(dateTime.getTime() + 60000*Math.ceil(time)), "HH:mm:ss
a");
 var emptyLog = {
 dateFormat : this.$scope.date,
 timeTaken: Math.ceil(time),
 startTime: starting,
 stopTime: stop,
 activity: selActivity,
 interrupt:'',
 comments: ''
 };
 this.$scope.Project.iterations[this.$scope.currentPage-1].timeLog.push(emptyLog);
 console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].timeLog);

 }

83

 switchView(val){
 this.logView = val;
 console.log(this.logView);
 }

 projectLength(){
 return this.$scope.Project ? this.$scope.Project.iterations.length > 0 : false;
 }

 totalTimeTaken(iter){
 this.$scope.total = 0;
 for(var i=0; i<iter.timeLog.length; i++){
 this.$scope.total += (iter.timeLog[i].timeTaken - iter.timeLog[i].interrupt);
 }
 console.log("the total: "+this.$scope.total);
 return true;
 }

 timePerActivity(iter, activity){
 var total = 0;
 for(var i=0; i < iter.timeLog.length; i++){
 if(activity == iter.timeLog[i].activity){
 total += (iter.timeLog[i].timeTaken - iter.timeLog[i].interrupt);
 }
 }
 return total;
 }
 openLog(logs){
 console.log('The item clicked is: ');
 console.log(logs);
 this.$scope.selectedLog = logs;
 console.log(this.$scope.selectedLog);
 this.$scope.indexVal = this.$scope.Project.iterations[this.$scope.currentPage-
1].timeLog.indexOf(logs)+1;
 $("#outer").css('width', '500px');
 }
 deleteLog(){
 this.$scope.Project.iterations[this.$scope.currentPage-1].timeLog.splice(this.$scope.indexVal-1, 1);
 $("#outer").css('width', '0px');
 }

 checkIfNaN(){
 if(isNaN(this.$scope.selectedLog.interrupt) ||
 this.$scope.selectedLog.timeTaken < this.$scope.selectedLog.interrupt){
 this.$scope.selectedLog.interrupt = '';
 }
 }
 saveTimeLog() {

84

 console.log(this.$scope.Project);
 var data = {
 iterations: this.$scope.Project.iterations
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 }
 }

 angular.module('pcseappApp')
 .component('timeLog', {
 templateUrl: 'app/timeLog/timeLog.html',
 controller: TimeLogComponent
 });

 })();

timeLog.html

<navbar></navbar>

<div class="container-fluid">
 <div class="row">
 <div class="col-lg-10 col-md-10">
 <div id="page-content-wrapper">
 <div ng-repeat="iteration in iterations.slice(((currentPage-1)*itemsPerPage),
((currentPage)*itemsPerPage))">
 <div class="container" id="leftTimeLog">
 <div class="row">
 <div class="col-sm-4 alert alert-info" id="timeLog" ng-click="initGoJs(iteration)">
 Add Time Log
 </div>
 <div class="col-sm-4">
 <div class="row">
 <div class="col-sm-12">
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12">
 <label>Sort By</label>
 <div id="Iteration">
 <nav>
 <ul class="pagination">
 Time
 Activity

 </nav>
 </div>

85

 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-4">
 <div id="Timer">
 <div>
 00:<span id="min"
style="padding-left: 5px; padding-right: 5px;">00:<span id="demo" style="padding-left: 5px;
padding-right: 5px;">00
 </div>
 <div style="margin-top:-20px;">
 hrs<span
style="font-size: 15px; padding-left: 10px; padding-right: 10px;">min<span style="font-size:
15px; padding-left: 10px; padding-right: 10px;">sec
 </div>
 </div>
 <p id="demo1">Click the process button to start/stop the timer.</p>
 <go-diagram ng-show="visible" go-model="model" style="border:1px solid black;
width:100%; height:400px"></go-diagram>
 </div>
 <div ng-show="$ctrl.logView && $ctrl.projectLength() && $ctrl.totalTimeTaken(iteration)"
id="scrollable" class="col-md-4">
 <div align="center">Actual Time: {{total}} min(s)</div>
 <div ng-repeat="timeLogs in iteration.timeLog | orderBy: 'dateFormat' | orderBy: 'startTime'
track by $index">
 <div class="col-lg-12 alert alert-info" ng-click="$ctrl.openLog(timeLogs)" id="tasks">
 {{timeLogs.activity}} 0">for
{{timeLogs.comments}} took {{timeLogs.timeTaken - timeLogs.interrupt}}
min(s).
 </div>
 </div>
 </div>
 <div ng-show="!$ctrl.logView && $ctrl.projectLength()" id="scrollable" class="col-md-4">
 <!-- <div ng-repeat="timeLogs in SelectProject.timeLog | orderBy: 'activity' track by $index">
 <div class="col-sm-4 alert alert-info" ng-click="openLog($index)" id="tasks">
 {{timeLogs.activity}} - {{timeLogs.comments}}
 </div>
 </div> -->
 <div ng-repeat="(key, value) in iteration.timeLog | groupBy: 'activity'">
 <div align="center">{{value[0].activity}} : {{$ctrl.timePerActivity(iteration,
value[0].activity)}} min(s)</div>
 <div id="tasks" class="col-lg-12 alert alert-info" ng-click="$ctrl.openLog(Logs)" ng-
repeat="Logs in value">
 Duration: {{Logs.startTime}} - {{Logs.stopTime}} & time taken: {{Logs.timeTaken -
Logs.interrupt}} min(s).
 </div>
 </div>

86

 </div>
 </div>
 </div>
 </div>
 </div>
</div>
<div class="col-lg-2 col-md-2">
 <div id="outer">
 <div resizable id="resizable">
 <div class="container-fluid">
 <form name="selectedLog" ng-submit="$ctrl.saveTimeLog()">
 <div class="form-group">
 <label>Time Log - Item: {{ indexVal }}</label>
 </div>
 <div class="form-group">
 <input class="form-control" ng-model="selectedLog.dateFormat" type="text" ng-required="true"
placeholder="Enter a date for this log"/>
 </div>
 <div class="form-group">
 <input class="form-control" value="{{selectedLog.comments}}" ng-
model="selectedLog.comments" type="text" placeholder="Enter a comment about this log"/>
 </div>
 <div class="form-group">
 <input class="form-control" value="{{selectedLog.activity}}" ng-model="selectedLog.activity"
type="text" ng-required="true" placeholder="Enter a process activity for this log"/>
 </div>
 <div class="form-group">
 <input class="form-control" value="{{selectedLog.startTime | date: 'HH:mm:ss'}}" ng-
model="selectedLog.startTime" type="text" ng-required="true" placeholder="Enter a start time for this
log"/>
 </div>
 <div class="form-group">
 <input class="form-control" value="{{selectedLog.stopTime | date: 'HH:mm:ss'}}" ng-
model="selectedLog.stopTime" type="text" ng-required="true" placeholder="Enter a stop time for this
log"/>
 </div>
 <div class="form-group">
 <div class="input-group">
 <input class="form-control" value="{{selectedLog.timeTaken}}" ng-
model="selectedLog.timeTaken" type="text" ng-required="true" placeholder="Enter the time taken for
this log"/>
 min(s)
 </div>
 </div>
 <div class="form-group">
 <div class="input-group">
 <input class="form-control" value="{{selectedLog.interrupt}}" ng-change="$ctrl.checkIfNaN()"
ng-model="selectedLog.interrupt" type="text" placeholder="Enter the amount of interruption"/>
 min(s)

87

 </div>
 </div>
 <div class="form-group">
 <button class="btn btn-default" type="button" ng-click="$ctrl.deleteLog()">Delete this
Log</button>
 <input class="btn btn-primary btn-create" ng-disabled="timeLogForm.$invalid" type="submit"
value="Save Progress"/>
 </div>
 </form>
 </div>
 </div>
 </div>
</div>
</div>
<div class="container" id="leftTimeLog" ng-show="visible">
 <label>Choose the Iteration:</label>
 <div><ul uib-pagination total-items="totalItems" ng-model="currentPage" max-size="maxSize" ng-
change="pageChanged()"></div>
</div>
</div>

dashBoard.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('dashBoard', {
 url: '/project/dashBoard/:id',
 template: '<dash-board></dash-board>'
 });
 });

dashBoard.controller.js

'use strict';
(function(){

 class DashBoardComponent {
 constructor($http, $scope, $state, $stateParams, $filter) {
 this.$http = $http;
 this.dashActive = 'active';
 this.$state = $state;
 this.$scope = $scope;
 this.$stateParams = $stateParams;
 this.$filter = $filter;
 this.iterationEnd = 0;
 this.$scope.message = 'Dashboard';

88

 $scope.visible = true;
 $scope.iterations = [];
 $scope.totalItems = $scope.iterations.length*10;
 $scope.currentPage = 1;
 $scope.maxSize = 8;
 $scope.itemsPerPage = 1;
 $scope.pageChanged = function() {
 var iterationEnd = $scope.currentPage-1;
 var len = $scope.iterations[$scope.currentPage-1].schedule.calendar.length;
 var start = $scope.iterations[$scope.currentPage-
1].schedule.calendar[0].ActualBurnDownStartOfDay;
 var difference = start/len;
 var len1 = 0;
 var cumulativeVelocity = 0;
 var cumulativeEarnedVelocity = 0;
 $scope.labels = [];
 $scope.data = [
 [],
 []
];
 $scope.labels1 = [];
 $scope.data1 = [
 [],
 []
];
 $scope.iterations[$scope.currentPage-1].schedule.calendar.forEach(function(day, index) {
 if(new Date(day.date).getTime() == new Date($scope.iterations[$scope.currentPage-
1].schedule.wbs[iterationEnd].plannedCompletionDate).getTime()) {
 $scope.labels.push($filter('date')(day.date, "dd/MM/yyyy")+'(Iter '+(iterationEnd+1)+')');
 $scope.labels1.push($filter('date')(day.date, "dd/MM/yyyy")+'(Iter '+(iterationEnd+1)+')');
 iterationEnd++;
 }
 else {
 $scope.labels.push($filter('date')(day.date, "dd/MM/yyyy"));
 $scope.labels1.push($filter('date')(day.date, "dd/MM/yyyy"));
 }
 if(index == len-1) {
 $scope.data[0].push(0);
 }
 else{
 $scope.data[0].push(start);
 }
 if(index == 0) {
 $scope.data[1].push(day.ActualBurnDownStartOfDay);
 }
 else {
 $scope.data[1].push(day.ActualBurnDownEndOfDay);
 }
 start -= difference;

89

 len1 += 1;
 difference = start/(len-len1);
 cumulativeVelocity += day.PlannedVelocityEndOfDay;
 cumulativeEarnedVelocity += day.EarnedVelocityEndOfDay;

 });

 $scope.iterations[$scope.currentPage-1].schedule.calendar.forEach(function(day, index) {
 $scope.data1[0].push(cumulativeVelocity);
 $scope.data1[1].push(cumulativeEarnedVelocity);
 cumulativeVelocity -= day.PlannedVelocityEndOfDay;
 cumulativeEarnedVelocity -= day.EarnedVelocityEndOfDay;
 });

 $scope.series = ['Ideal BurnDown', 'Actual BurnDown'];
 $scope.series1 = ['Planned Tasks', 'Actual Tasks'];
 $scope.colors = ['#ff6384', '#45b7cd'];
 $scope.colors1 = ['#ff6384', '#45b7cd'];

 $scope.onClick = function (points, evt) {
 console.log(points, evt);
 };
 $scope.onClick1 = function (points, evt) {
 console.log(points, evt);
 };
 $scope.datasetOverride = [{ yAxisID: 'tasksDone', fill: false, borderDash: [8] }, { XAxisID:
'BurnDown', fill: false, steppedLine: true}, { yAxisID: 'tasksDone', fill: false, borderDash: [8] },
{ XAxisID: 'BurnDown', fill: false, steppedLine: true}];
 $scope.datasetOverride1 = [{ yAxisID: 'tasksDone', fill: false, borderDash: [8] }, { XAxisID:
'BurnDown', fill: false, steppedLine: true}, { yAxisID: 'tasksDone', fill: false, borderDash: [8] },
{ XAxisID: 'BurnDown', fill: false, steppedLine: true}];

 $scope.options = {
 title: {
 display: true,
 text: 'BurnDown Chart for Effort'
 },
 scales: {
 yAxes: [
 {
 id: 'tasksDone',
 type: 'linear',
 display: true,
 position: 'left'
 }
]
 }
 };
 $scope.options1 = {

90

 title: {
 display: true,
 text: 'BurnDown Chart for Tasks'
 },
 scales: {
 yAxes: [
 {
 id: 'tasksDone',
 type: 'linear',
 display: true,
 position: 'left'
 }
]
 }
 };
 }
 }

 $onInit() {
 this.getData();
 }

 getData() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 this.$scope.iterations = this.$scope.Project.iterations;
 this.$scope.totalItems = this.$scope.iterations.length*10;
 console.log(this.$scope.iterations[0].schedule.calendar);
 var len = this.$scope.iterations[0].schedule.calendar.length;
 var start = this.$scope.iterations[0].schedule.calendar[0].ActualBurnDownStartOfDay;
 var difference = start/len;
 var len1 = 0;
 var cumulativeVelocity = 0;
 var cumulativeEarnedVelocity = 0;
 this.$scope.labels = [];
 this.$scope.data = [
 [],
 []
];
 this.$scope.labels1 = [];
 this.$scope.data1 = [
 [],
 []
];
 this.$scope.iterations[0].schedule.calendar.forEach(function(day, index) {

 if(new Date(day.date).getTime() == new Date(this.
$scope.iterations[0].schedule.wbs[this.iterationEnd].plannedCompletionDate).getTime()) {
 this.$scope.labels.push(this.$filter('date')(day.date, "dd/MM/yyyy")+'(Iter '+

91

(this.iterationEnd+1)+')');
 this.$scope.labels1.push(this.$filter('date')(day.date, "dd/MM/yyyy")+'(Iter '+
(this.iterationEnd+1)+')');
 this.iterationEnd++;
 }
 else {
 this.$scope.labels.push(this.$filter('date')(day.date, "dd/MM/yyyy"));
 this.$scope.labels1.push(this.$filter('date')(day.date, "dd/MM/yyyy"));
 }

 if(index == len-1) {
 this.$scope.data[0].push(0);
 }
 else{
 this.$scope.data[0].push(start);
 }
 if(index == 0) {
 this.$scope.data[1].push(day.ActualBurnDownStartOfDay);
 }
 else {
 this.$scope.data[1].push(day.ActualBurnDownEndOfDay);
 }
 start -= difference;
 len1 += 1;
 difference = start/(len-len1);
 cumulativeVelocity += day.PlannedVelocityEndOfDay;
 cumulativeEarnedVelocity += day.EarnedVelocityEndOfDay;

 }, this);
 this.$scope.iterations[0].schedule.calendar.forEach(function(day, index) {
 this.$scope.data1[0].push(cumulativeVelocity);
 this.$scope.data1[1].push(cumulativeEarnedVelocity);
 cumulativeVelocity -= day.PlannedVelocityEndOfDay;
 cumulativeEarnedVelocity -= day.EarnedVelocityEndOfDay;
 }, this);

 this.$scope.series = ['Ideal BurnDown', 'Actual BurnDown'];
 this.$scope.series1 = ['Planned Tasks', 'Actual Tasks'];
 this.$scope.colors = ['#ff6384', '#45b7cd'];
 this.$scope.colors1 = ['#ff6384', '#45b7cd'];

 this.$scope.onClick = function (points, evt) {
 console.log(points, evt);
 };
 this.$scope.onClick1 = function (points, evt) {
 console.log(points, evt);
 };
 this.$scope.datasetOverride = [{ yAxisID: 'tasksDone', fill: false, borderDash: [8] }, { XAxisID:

92

'BurnDown', fill: false, steppedLine: true}, { yAxisID: 'tasksDone', fill: false, borderDash: [8] },
{ XAxisID: 'BurnDown', fill: false, steppedLine: true}];
 this.$scope.datasetOverride1 = [{ yAxisID: 'tasksDone', fill: false, borderDash: [8] }, { XAxisID:
'BurnDown', fill: false, steppedLine: true}, { yAxisID: 'tasksDone', fill: false, borderDash: [8] },
{ XAxisID: 'BurnDown', fill: false, steppedLine: true}];

 this.$scope.options = {
 title: {
 display: true,
 text: 'BurnDown Chart for Effort'
 },
 scales: {
 yAxes: [
 {
 id: 'tasksDone',
 type: 'linear',
 display: true,
 position: 'left'
 }
]
 }
 };
 this.$scope.options1 = {
 title: {
 display: true,
 text: 'BurnDown Chart for Tasks'
 },
 scales: {
 yAxes: [
 {
 id: 'tasksDone',
 type: 'linear',
 display: true,
 position: 'left'
 }
]
 }
 };
 });

 }

 }

 angular.module('pcseappApp')
 .component('dashBoard', {
 templateUrl: 'app/dashBoard/dashBoard.html',
 controller: DashBoardComponent
 });

93

})();

dashBoard.html

<navbar></navbar>
<div id="page-content-wrapper">

<div class="container" ng-show="visible">
 <label>Choose the Iteration:</label>
 <div><ul uib-pagination total-items="totalItems" ng-model="currentPage" max-size="maxSize" ng-
change="pageChanged()"></div>
 </div>

<div ng-repeat="iteration in iterations.slice(((currentPage-1)*itemsPerPage),
((currentPage)*itemsPerPage))">

<div class="container-fluid">
<div id="charts-wrapper">

<div class="row">
<div class="col-md-6">

<canvas id="line" class="chart chart-line" chart-
data="data"

chart-labels="labels" chart-series="series" chart-
options="options" chart-colors="colors"

chart-dataset-override="datasetOverride" chart-
click="onClick">

</canvas>
</div>
<div class="col-md-6">

<canvas id="line" class="chart chart-line" chart-
data="data1"

chart-labels="labels1" chart-series="series1" chart-
options="options1" chart-colors="colors1"

chart-dataset-override="datasetOverride1" chart-
click="onClick1">

</canvas>
</div>

</div>
</div>

</div>
</div>

</div>

changeLog.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('changeLog', {

94

 url: '/project/changeLog/:id',
 template: '<change-log></change-log>'
 });
 });

changeLog.controller.js

'use strict';
(function(){

class ChangeLogComponent {
 constructor($http, $scope, $state, $stateParams) {
 this.$http = $http;
 this.$state = $state;
 this.$scope = $scope;
 this.$stateParams = $stateParams;
 this.changeActive = 'active';
 this.$scope.message = 'Change Log';
 this.$scope.editSwitch = false;
 this.$scope.visible = false;
 this.$scope.removedIterOptions = [];
 this.defaultValues = {
 date: '',
 type: '',
 inject: '',
 remove: '',
 fixTime: '',
 fixReference: '0',
 desc: '',
 injectedIter: '',
 removedIter: ''
 };
 }
 $onInit() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 this.$scope.changeLog = this.$scope.Project.changeLog;
 if(this.$scope.changeLog.length > 0){
 this.$scope.currentLogNum = this.$scope.changeLog[this.$scope.changeLog.length-1].changeNum
+ 1;
 }
 else{
 this.$scope.currentLogNum = 1;
 }
 this.$scope.injectedIterOptions = new Array(this.$scope.Project.iterations.length);
 for(var i=0; i<this.$scope.injectedIterOptions.length; i++){
 this.$scope.injectedIterOptions[i] = i+1;
 }
 if(this.$scope.Project.hasOwnProperty('Setup')){

95

 this.$scope.visible = true;
 }
 this.$scope.change = angular.copy(this.defaultValues);
 });
 }
 // Add a new change log
 addChangeLog(){
 var addLog = {
 changeNum: this.$scope.currentLogNum,
 startDate: this.$scope.change.date,
 typeOfChange: this.$scope.change.type,
 injectIn: this.$scope.change.inject,
 removedIn: this.$scope.change.remove,
 fixTime: this.$scope.change.fixTime,
 fixReference: this.$scope.change.fixReference,
 desc: this.$scope.change.desc,
 injectedIter: this.$scope.change.injectedIter,
 removedIter: this.$scope.change.removedIter
 };
 this.$scope.Project.changeLog.push(addLog);
 var data = {
 changeLog: this.$scope.Project.changeLog
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 this.reset();
 $('#myModal').modal('toggle');
 this.$scope.currentLogNum++;
 }
 reset(){
 this.$scope.changeForm.$setPristine();
 this.$scope.changeForm.$setUntouched();
 this.$scope.change = angular.copy(this.defaultValues);
 this.$scope.removedIterOptions = [];
 }

 deleteChangeLog(log) {
 var indexVal = this.$scope.Project.changeLog.indexOf(log);
 console.log(indexVal);
 this.$scope.Project.changeLog.splice(indexVal, 1);
 var data = {
 changeLog: this.$scope.Project.changeLog
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 }

96

 editChangeLog(log) {
 this.$scope.editSwitch = !this.$scope.editSwitch;
 if(this.$scope.editSwitch){
 console.log(log);
 this.$scope.indexVal = this.$scope.Project.changeLog.indexOf(log);
 console.log(this.$scope.indexVal);
 var setValues = {
 changeNum: log.changeNum,
 startDate: log.startDate,
 typeOfChange: log.typeOfChange,
 injectIn: log.injectIn,
 removedIn: log.removedIn,
 fixTime: log.fixTime,
 fixReference: log.fixReference,
 desc: log.desc,
 injectedIter: log.injectedIter,
 removedIter: log.removedIter
 };
 this.$scope.changeVal = angular.copy(setValues);
 }
 else{
 console.log('save');
 this.$scope.Project.changeLog.splice(this.$scope.indexVal, 1, this.$scope.changeVal);
 var data = {
 changeLog: this.$scope.Project.changeLog
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 }
 }
 setRemovedOptions() {
 this.$scope.removedIterOptions = [];
 for(var i=this.$scope.change.injectedIter; i <= this.$scope.injectedIterOptions.length; i++){
 this.$scope.removedIterOptions.push(i);
 }
 }

}

angular.module('pcseappApp')
 .component('changeLog', {
 templateUrl: 'app/changeLog/changeLog.html',
 controller: ChangeLogComponent
 });

})();

changeLog.css

97

.list {
list-style: none outside none;
margin: 10px 0 30px;

}

.apps-container {
 margin: 10px 10px 0 0;
 padding: 5px;
 min-width:200px;
 min-height:50px;
}

.app {
padding: 5px 10px;
margin: 5px 0;
border: 2px solid #444;
background-color: grey;

 height: 50px;
font-size: 1.1em;
font-weight: bold;
text-align: center;
cursor: move;

}
#arrow-center {
 text-align: center;
 margin-top: 100px;
}

changeLog.html

<navbar></navbar>
<div id="page-content-wrapper" >

<!-- Modal -->
<div ng-show="visible">
<div class="modal fade" id="myModal" role="dialog">

<div class="modal-dialog">
<form name="changeForm" ng-submit="$ctrl.addChangeLog()" novalidate>

<!-- Modal content-->
<div class="modal-content">

<div class="modal-header">
<button type="button" class="close" data-

dismiss="modal">×</button>
<h4 class="modal-title"> Add New Change Log</h4>

</div>

<div class="modal-body">
<div class="row">

<div class="col-md-6">

98

<label>Date</label>
<input class="form-control" ng-

model="change.date" type="date" ng-required="true" placeholder="Enter a date"/>
</div>
<div class="col-md-6">

<label>Type of Change</label>
<select class="form-control" ng-

model="change.type" ng-required="true">
<option value="Requirement

Change">Requirement Change</option>
<option value="Requirement

Clarification">Requirement Clarification</option>
<option value="Product

Syntax">Product Syntax</option>
<option value="Product

Logic">Product Logic</option>
<option value="Product

Interface">Product Interface</option>
<option value="Product

Checking">Product Checking</option>
<option value="Test

Syntax">Test Syntax</option>
<option value="Test

Logic">Test Logic</option>
<option value="Test

Interface">Test Interface</option>
<option value="Test

Checking">Test Checking</option>
<option value="Bad

Smell">Bad Smell</option>
</select>

</div>
</div>

<div class="row">
<div class="col-md-6">

<label>Inject in</label>
<select class="form-control" ng-

model="change.inject" ng-required="true">
<option

value="Analysis">Analysis</option>
<option

value="Architecture">Architecture</option>
<option

value="Planning">Planning</option>
<option value="Integration

Planning">Integration Planning</option>
<option

value="Construction">Construction</option>

99

<option
value="Refactoring">Refactoring</option>

<option
value="Review">Review</option>

<option value="Integration
Testing">Integration Testing</option>

<option
value="Repatterning">Repatterning</option>

<option
value="Postmortem">Postmortem</option>

<option
value="Sandbox">Sandbox</option>

</select>
</div>
<div class="col-md-6">

<label>Removed in</label>
<select class="form-control" ng-

model="change.remove" ng-required="true">
<option

value="Analysis">Analysis</option>
<option

value="Architecture">Architecture</option>
<option

value="Planning">Planning</option>
<option value="Integration

Planning">Integration Planning</option>
<option

value="Construction">Construction</option>
<option

value="Refactoring">Refactoring</option>
<option

value="Review">Review</option>
<option value="Integration

Testing">Integration Testing</option>
<option

value="Repatterning">Repatterning</option>
<option

value="Postmortem">Postmortem</option>
<option

value="Sandbox">Sandbox</option>
</select>

</div>
</div>

<div class="row">
<div class="col-md-6">

<label>Inject iteration</label>
<select class="form-control" ng-

model="change.injectedIter" ng-required="true" ng-change="$ctrl.setRemovedOptions()">

100

<option ng-repeat="options in
injectedIterOptions" value="{{options}}">{{options}}</option>

</select>
</div>
<div class="col-md-6">

<label>Removed iteration</label>
<select class="form-control" ng-

model="change.removedIter" ng-required="true">
<option ng-repeat="options in

removedIterOptions" value="{{options}}">{{options}}</option>
</select>

</div>
</div>

<div class="row">
<div class="col-md-6">

<label>Fix time</label>
<input class="form-control" ng-

model="change.fixTime" type="text" ng-required="true" placeholder="Enter a fix time"/>
</div>
<div class="col-md-6">

<label>Fix Reference</label>
<select class="form-control" ng-

model="change.fixReference" ng-required="true">
<option ng-repeat="options in

changeLog" value="{{options.changeNum}}">{{options.changeNum}} - {{options.typeOfChange}} -
{{options.desc}}</option>

</select>
</div>

</div>
<div class="form-group">

<label>Description</label>
<textarea class="form-control" ng-

model="change.desc" ng-required="true" placeholder="Enter a change description"></textarea>
</div>

</div>
<div class="modal-footer">

<button class="btn btn-default" type="button" ng-
click="$ctrl.reset()" data-dismiss="modal">Cancel</button>

<input class="btn btn-primary btn-create" ng-
disabled="changeForm.$invalid" type="submit" value="Create"/>

</div>

</div>
</form>

</div>
</div>
<!-- End Modal -->

101

<div class="container-fluid">
<div id="addProject">

<div class="row">
<div class="col-sm-1">

<button id="addButton" type="button" class="btn btn-danger"
data-toggle="modal" data-target="#myModal" data-toggle="tooltip" data-placement="top" title="Add a
New ChangeLog">+</button>

</div>
<div class="col-sm-11">

<div id="filter" class="form-group">
<label id="filter-label" class="form-

group">Filter:</label>
<input id="filter-input" class="form-group input-sm"

ng-model="search" type="text" placeholder="Enter a Change Log name">
</div>

</div>
</div>

<md-content class="md-padding" layout-lg="column" layout="row">
<md-card ng-show="editSwitch">

<md-card-title>
<md-card-title-text>

Edit
Change Log - {{changeVal.changeNum}}

</md-card-title-text>
</md-card-title>
<md-card-content layout="row" layout-align="space-

between">
<md-list-item class="md-5-line" ng-

click="null">
<div class="row">

<div class="col-sm-2">
<h3>Type of

Change:</h3> <input class="form-control" type="text" ng-model=changeVal.typeOfChange></input>
</div>
<div class="col-sm-2">

<h3>Injected In:</h3>
<input class="form-control" type="text" ng-model=changeVal.injectIn></input>

</div>
<div class="col-sm-2">

<h3>Removed In:</h3>
<input class="form-control" type="text" ng-model=changeVal.removedIn></input>

</div>
<div class="col-sm-2">

<h3>Time to fix:</h3>
<input class="form-control" type="text" ng-model=changeVal.fixTime></input>

</div>
<div class="col-sm-2">

<h3>Injected
Iteration:</h3> <input class="form-control" type="text" ng-model=changeVal.injectedIter></input>

102

</div>
<div class="col-sm-2">

<h3>Removed
Iteration:</h3> <input class="form-control" type="text" ng-model=changeVal.removedIter></input>

</div>
<div class="col-sm-2">

<h3>Fix
Reference:</h3> <input class="form-control" type="text" ng-model=changeVal.fixReference></input>

</div>
<div class="col-sm-10">

<h3>Description:</h3>
<textarea class="form-control" ng-model=changeVal.desc>{{changeVal.desc}}</textarea>

</div>
</div>

</md-list-item>
</md-card-content>

</md-card>
<div ng-repeat="changeLogs in changeLog | filter: search">

<div flex-lg flex-gt-lg="50" layout="column">
<md-card>

<md-card-title>
<md-card-title-text>

<span class="md-
headline">Reference # {{changeLogs.changeNum}}

<span class="md-
subhead">Date of creation: {{changeLogs.startDate | date:'yyyy/MM/dd'}}

</md-card-title-text>
</md-card-title>
<md-card-content layout="row" layout-

align="space-between">
<md-list-item class="md-5-line"

ng-click="null">
<div class="row">

<div
class="col-sm-2">

<h3>Type of Change:</h3> <input class="form-control" ng-readonly="true" type="text"
value={{changeLogs.typeOfChange}}></input>

</div>
<div

class="col-sm-2">

<h3>Injected In:</h3> <input class="form-control" ng-readonly="true" type="text"
value={{changeLogs.injectIn}}></input>

</div>
<div

class="col-sm-2">

<h3>Removed In:</h3> <input class="form-control" ng-readonly="true" type="text"

103

value={{changeLogs.removedIn}}></input>
</div>
<div

class="col-sm-2">

<h3>Time to fix:</h3> <input class="form-control" type="text" ng-readonly="true"
value={{changeLogs.fixTime}}></input>

</div>
<div

class="col-sm-2">

<h3>Injected Iteration:</h3> <input class="form-control" type="text" ng-readonly="true"
value={{changeLogs.injectedIter}}></input>

</div>
<div

class="col-sm-2">

<h3>Removed Iteration:</h3> <input class="form-control" type="text" ng-readonly="true"
value={{changeLogs.removedIter}}></input>

</div>
<div

class="col-sm-2">

<h3>Fix Reference:</h3> <input class="form-control" type="text" ng-readonly="true"
value={{changeLogs.fixReference}}></input>

</div>
<div

class="col-sm-10">

<h3>Description:</h3> <textarea class="form-control" ng-
readonly="true">{{changeLogs.desc}}</textarea>

</div>
</div>

</md-list-item>

<md-card-actions
layout="column">

<md-button class="md-
icon-button" aria-label="Remove" ng-click="$ctrl.deleteChangeLog(changeLogs)">

<md-icon md-
svg-icon="../assets/images/Trash.svg"></md-icon>

</md-button>
<md-button class="md-

icon-button" aria-label="Edit" ng-click="$ctrl.editChangeLog(changeLogs)">
<md-icon md-

svg-icon="../assets/images/Edit_icon.svg"></md-icon>
</md-button>

</md-card-actions>
</md-card-content>

104

</md-card>
</div>

</div>
</md-content>

</div>
</div>

</div>

estimate.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('estimate', {
 url: '/project/estimate/:id',
 template: '<estimate></estimate>'
 });
 });

estimate.controller.js

'use strict';
(function(){

 class EstimateComponent {
 constructor($http, $scope, $state, $stateParams) {
 this.$http = $http;
 this.$state = $state;
 this.$scope = $scope;
 this.$stateParams = $stateParams;
 this.estimateActive = 'active';
 $scope.visible = true;
 this.$scope.sizeHide = false;
 this.$scope.historicalComponent = {};
 this.$scope.edit = true;

 $scope.iterations = [];
 $scope.totalItems = $scope.iterations.length*10;
 $scope.currentPage = 1;
 $scope.trackPages = [0, 1];
 $scope.maxSize = 8;
 $scope.itemsPerPage = 1;
 $scope.pageChanged = function() {
 $scope.trackPages = [$scope.trackPages[1], $scope.currentPage];
 console.log($scope.trackPages);
 if($scope.currentPage-1 > 0 && $scope.trackPages[0] < $scope.trackPages[1]) {

105

 if(this.Project.iterations[$scope.currentPage-1].estimate.hasOwnProperty('pLOC') &&
this.Project.iterations[$scope.currentPage-1].estimate.pLOC > 0) {
 console.log('No Need to copy');
 }
 else {
 console.log('copy');
 this.Project.iterations[$scope.currentPage-1].estimate = {
 pLOC: this.Project.iterations[$scope.currentPage-2].estimate.pLOC,
 pEffort: this.Project.iterations[$scope.currentPage-2].estimate.pEffort,
 aLOC: this.Project.iterations[$scope.currentPage-2].estimate.aLOC,
 aEffort: this.Project.iterations[$scope.currentPage-2].estimate.aEffort
 }
 this.Project.iterations[$scope.currentPage-1].estimate.newComponents = function() {
 var theCopy = [];
 var arr1 = $scope.Project.iterations[$scope.currentPage-2].estimate.newComponents;
 console.log(arr1);
 for (var i = 0, len = arr1.length; i < len; i++) {
 theCopy[i] = Object.assign({}, arr1[i]);
 }
 console.log(theCopy);
 return theCopy;
 }();
 }
 }
 };
 this.$scope.sortableOptions = {
 placeholder: "app",
 connectWith: ".apps-container"
 };
 this.defaultNewValues = {
 name: '',
 methods: '',
 size: '',
 rLOC: '',
 reusable: false
 };
 this.$scope.sumLOCRaw = 0;
 // Try to use mid 0-4
 this.$scope.sizeMatrix = {
 low: {
 VS:1,
 S: 6,
 M: 8,
 L: 11,
 VL: 15
 },
 mid: {
 VS: 5,
 S: 7,

106

 M: 10,
 L: 13,
 VL: 18
 },
 high: {
 VS: 6,
 S: 8,
 M: 11,
 L: 15,
 VL: 22
 }
 };
 }

 $onInit() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 this.$scope.iterations = this.$scope.Project.iterations;
 this.$scope.totalItems = this.$scope.iterations.length*10;
 });
 this.$http.get('/api/projects/').then(response => {
 this.$scope.allProjects = response.data;
 var ___id = this.$stateParams.id;
 var naturalLog = 0;
 var count = 0;
 var averageLog = 0;
 var sumOfSquares = 0;
 var sumLOCaLOCr = 0;
 var sumRawLOC = 0
 var std = 0;
 this.$scope.allProjects.forEach(function(project) {
 if(project._id !== ___id){
 if(project.iterations.length > 0) {
 var iteration = project.iterations[project.iterations.length-1];
 if(iteration.hasOwnProperty('estimate')){
 if(iteration.estimate.hasOwnProperty('newComponents')) {
 iteration.estimate.newComponents.forEach(function(component) {
 if(component.hasOwnProperty('actual_LOC') && component.actual_LOC > 0 &&
component.hasOwnProperty('actual_methods') && component.actual_methods > 0){
 var currentVal = component.actual_LOC/component.actual_methods;
 var currentLog = Math.log(currentVal);
 naturalLog += currentLog;
 count++;

 sumRawLOC += component.rLOC;
 }
 });
 }
 }

107

 }
 }
 });
 averageLog = naturalLog/count;
 console.log(averageLog);
 this.$scope.allProjects.forEach(function(project) {
 if(project._id !== ___id){
 if(project.iterations.length > 0) {
 var iteration = project.iterations[project.iterations.length-1];
 if(iteration.hasOwnProperty('estimate')){
 if(iteration.estimate.hasOwnProperty('newComponents')) {
 iteration.estimate.newComponents.forEach(function(component) {
 if(component.actual_LOC > 0){
 var currentVal = component.actual_LOC/component.actual_methods;
 var currentLog = Math.log(currentVal);
 sumOfSquares += Math.pow(currentLog - averageLog, 2);
 }
 });
 }
 }
 }
 }
 });
 std = Math.sqrt(sumOfSquares/count);
 console.log(std);
 if(isNaN(averageLog) || isNaN(std)){
 console.log('Aye');
 }
 else{
 this.$scope.sizeMatrix = {
 low: {
 VS:1,
 S: Math.round(Math.exp(averageLog - (3*std/2))),
 M: Math.round(Math.exp(averageLog - (std/2))),
 L: Math.round(Math.exp(averageLog + (std/2))),
 VL: Math.round(Math.exp(averageLog + (3*std/2)))
 },
 mid: {
 VS: Math.round(Math.exp(averageLog - (2*std))),
 S: Math.round(Math.exp(averageLog - std)),
 M: Math.round(Math.exp(averageLog)),
 L: Math.round(Math.exp(averageLog + std)),
 VL: Math.round(Math.exp(averageLog + (2*std)))
 },
 high: {
 VS: Math.round(Math.exp(averageLog - (3*std/2))),
 S: Math.round(Math.exp(averageLog - (std/2))),
 M: Math.round(Math.exp(averageLog + (std/2))),
 L: Math.round(Math.exp(averageLog + (3*std/2))),

108

 VL: 22
 }
 };
 }
 var sumALOC = 0;
 var sumEa = 0;
 var sumEaLOCa = 0;
 var sumAEffort = 0;
 var productivity = 0;
 var histComponents = [];
 this.$scope.allProjects.forEach(function(project) {
 if(project._id !== ___id){
 if(project.iterations.length > 0) {
 var iteration = project.iterations[project.iterations.length-1];
 if(iteration.hasOwnProperty('estimate')){
 if(iteration.estimate.aLOC > 0 && iteration.estimate.aEffort > 0){
 sumALOC += iteration.estimate.aLOC;
 sumEa += iteration.estimate.aEffort;
 sumAEffort += iteration.estimate.aEffort;
 iteration.estimate.newComponents.forEach(function(component) {
 histComponents.push({component: component.name, size: component.size, project:
project.name});
 });
 }
 }
 }
 }
 });
 productivity = sumALOC/sumAEffort;
 sumLOCaLOCr = sumALOC/sumRawLOC;
 sumEaLOCa = sumEa/sumALOC;
 console.log(productivity);
 console.log(sumLOCaLOCr);
 console.log(sumEaLOCa);

 this.$scope.sizeCalc = {
 productivity: productivity,
 sumLOCaLOCr: sumLOCaLOCr,
 sumEaLOCa: sumEaLOCa
 }
 //All components from other projects
 this.$scope.historicalComponents = histComponents;
 var sumRaw = 0;
 this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents.forEach(function(comp) {
 sumRaw+=comp.rLOC;
 });
 this.$scope.sumLOCRaw = sumRaw;
 if(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.hasOwnProperty('aLOC') &&

109

(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC == 0 || this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC == null)) {
 var sumActual_LOC = 0;
 this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents.forEach(function(comp) {
 sumActual_LOC+=(comp.actual_LOC+(comp.hasOwnProperty('actual_mLOC')?
comp.actual_mLOC:0)+(comp.hasOwnProperty('actual_aLOC')?comp.actual_aLOC:0));
 });
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC = sumActual_LOC;
 }
 });
 }
 getTotalTime(iter) {
 var timeTaken = 0;
 var bool = true;
 this.$scope.Project.iterations.forEach(function(iteration) {
 if(bool) {
 iteration.timeLog.forEach(function(log) {
 timeTaken += parseInt(log.timeTaken);
 if(log.interrupt) {
 timeTaken -= parseInt(log.interrupt);
 }
 });
 if(iteration._id === iter._id){
 bool = false;
 iteration.estimate.aEffort = timeTaken;
 }
 }
 });
 }

 addNewComponent() {
 if(this.$scope.Project.iterations[this.$scope.currentPage-1].hasOwnProperty('estimate')){
 console.log('Yeah!!');
 }
 else{
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate = {
 newComponents: []
 };
 console.log(this.$scope.Project);
 }
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents.push(this.
$scope.newComponent);
 this.computeRawLOC(this.$scope.newComponent);
 console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate);
 var len = this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents.length;
 console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[len-
1].rLOC);

110

 //Change EP && LOCp
 if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[len-
1].rLOC) && isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].mLOC) && isNaN(this.$scope.Project.iterations[this.
$scope.currentPage-1].estimate.newComponents[len-1].aLOC)) {
 console.log('Nope');
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[len-
1].mLOC) && isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].aLOC)){
 this.$scope.sumLOCRaw += this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].rLOC;
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[len-
1].mLOC)) {
 this.$scope.sumLOCRaw += this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].rLOC + this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].aLOC;
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[len-
1].aLOC)){
 this.$scope.sumLOCRaw += this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].rLOC + this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].mLOC;
 }
 else {
 this.$scope.sumLOCRaw += this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].rLOC + this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].mLOC+ this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[len-1].aLOC;
 }
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.pLOC = Math.ceil(this.
$scope.sumLOCRaw*this.$scope.sizeCalc.sumLOCaLOCr);
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.pEffort = Math.ceil(this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.pLOC * this.$scope.sizeCalc.sumEaLOCa);
 console.log(this.$scope.sumLOCRaw);
 this.resetNew();
 $('#myModal2').modal('toggle');
 this.$scope.sizeHide = false;
 }

 resetNew(){
 this.$scope.newForm.$setPristine();
 this.$scope.newForm.$setUntouched();
 this.$scope.newComponent = angular.copy(this.defaultNewValues);
 this.$scope.sizeHide = false;
 }
 saveProgress() {
 console.log(this.$scope.Project.iterations);

111

 var data = {
 iterations: this.$scope.Project.iterations
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 console.log(response);
 });
 }
 deleteComponent(index) {
 this.$scope.sumLOCRaw -= (this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].rLOC+this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].aLOC+this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].mLOC);
 //Change EP && LOCp
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.pLOC = Math.ceil(this.
$scope.sumLOCRaw * this.$scope.sizeCalc.sumLOCaLOCr);
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.pEffort = Math.ceil(this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.pLOC * this.$scope.sizeCalc.sumEaLOCa);

 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents.splice(index, 1);
 console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate);
 }

 computeRawLOC(component) {
 component.rLOC = this.$scope.sizeMatrix.mid[component.size] * component.methods;
 }
 hideRelSize(Comp) {
 var base = JSON.parse(Comp);
 this.$scope.sizeHide = true;
 this.$scope.newComponent.baseComponent = base.component;
 this.$scope.newComponent.size = base.size;
 }
 submitActual(index) {
 console.log('here');
 if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_mLOC) && isNaN(this.$scope.Project.iterations[this.
$scope.currentPage-1].estimate.newComponents[index].actual_aLOC)){
 if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC)){
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC = this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC;
 }
 else {
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC += this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC;
 }
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_mLOC)) {
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC += this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.

112

$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_aLOC;
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_aLOC)){
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC += this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_mLOC;
 }
 else {
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC += this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_mLOC+
this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_aLOC;
 }
 console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC+' '+this.
$scope.currentPage);
 }
 changeEdit(index){
 this.$scope.edit = !this.$scope.edit;
 if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_LOC) && isNaN(this.$scope.Project.iterations[this.
$scope.currentPage-1].estimate.newComponents[index].actual_mLOC) && isNaN(this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_aLOC)) {
 console.log('Nope');
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_mLOC) && isNaN(this.$scope.Project.iterations[this.
$scope.currentPage-1].estimate.newComponents[index].actual_aLOC)){
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC -= this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC;
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_mLOC)) {
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC -= this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_aLOC;
 }
 else if(isNaN(this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents[index].actual_aLOC)){
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC -= this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_mLOC;
 }
 else {
 this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.aLOC -= this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_LOC + this.
$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_mLOC+
this.$scope.Project.iterations[this.$scope.currentPage-1].estimate.newComponents[index].actual_aLOC;
 }

113

 }

 checkIteration() {
 console.log(this.$scope.currentPage);
 return this.$scope.currentPage == 1 ? true:false;
 }

 }

 angular.module('pcseappApp')
 .component('estimate', {
 templateUrl: 'app/estimate/estimate.html',
 controller: EstimateComponent
 });

})();

estimate.css

th {
 text-align: center;
}
table {
 border-style: dashed;
}
.app {
 height: 100px;
}

estimate.html

<navbar></navbar>
<div id="page-content-wrapper">
 <div class="container" ng-show="visible">
 <label>Choose the Iteration:</label>
 <div><ul uib-pagination total-items="totalItems" ng-model="currentPage" max-size="maxSize" ng-
change="pageChanged()"></div>
 </div>
 <div ng-repeat="iteration in iterations.slice(((currentPage-1)*itemsPerPage),
((currentPage)*itemsPerPage))">
 <div class="container-fluid">

 <div class="row" ng-show="$ctrl.checkIteration()">
 <div class="col-md-4 col-lg-4">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Size Matrix (LOC/method)
 </div>
 <div class="panel-body">

114

 <table class="table table-bordered table-sm">
 <thead>
 <tr>
 <th>#</th>
 <th>Low</th>
 <th>Mid</th>
 <th>High</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">VS</th>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.low.VS" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.mid.VS" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.high.VS" type="text"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">S</th>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.low.S" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.mid.S" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.high.S" type="text"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">M</th>
 <td>

115

 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.low.M" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.mid.M" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.high.M" type="text"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">L</th>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.low.L" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.mid.L" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.high.L" type="text"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">VL</th>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.low.VL" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.mid.VL" type="text"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="sizeMatrix.high.VL" type="text"/>
 </div>

116

 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col-md-4 col-lg-4">
 <h1>
 <u>Component BackLog</u>
 </h1>
 </div>
 <div class="col-md-4 col-lg-4">
 <h1>
 <button class="btn btn-primary btn-create" type="button" ng-click="$ctrl.saveProgress()" data-
dismiss="modal">Save Progress</button>
 </h1>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12 col-lg-12">
 <button id="addButton" type="button" class="btn btn-danger" data-toggle="modal" data-
target="#myModal2" data-toggle="tooltip" data-placement="top" title="Add a New
Component">+</button>
 <div class="panel panel-primary">
 <div class="panel-heading">
 Estimated Components
 </div>
 <div class="panel-body">
 <table class="table table-bordered table-striped table-sm">
 <thead>
 <tr>
 <th colspan="2"></th>
 <th colspan="4">New Methods</th>
 <th colspan="4">Existing Component</th>
 </tr>
 </thead>
 <thead>
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Methods</th>
 <th>Size</th>
 <th>Raw LOC</th>
 <th>Reusable</th>
 <th>Base Component</th>

117

 <th>Deleted LOC</th>
 <th>Modified LOC</th>
 <th>Added LOC</th>
 </tr>
 </thead>
 <tbody ng-repeat="component in iteration.estimate.newComponents">
 <tr>
 <th scope="row">{{$index+1}}</th>
 <td><input class="form-control" ng-model="component.name" type="text" /></td>
 <td><input class="form-control" ng-model="component.methods" type="number" /></td>
 <td><input class="form-control" ng-model="component.size" type="text" /></td>
 <td><input class="form-control"
value="{{component.rLOC+component.mLOC+component.aLOC}}" type="number" /></td>
 <td><input class="form-control" ng-model="component.reusable"
value="{{(component.reusable) || "false"}}" type="checkbox" /></td>
 <td><input class="form-control" ng-model="component.baseComponent" type="text"
/></td>
 <td><input class="form-control" ng-model="component.dLOC" type="number" ng-readonly
= "true"/></td>
 <td><input class="form-control" ng-model="component.mLOC" type="number" ng-
readonly = "true"/></td>
 <td><input class="form-control" ng-model="component.aLOC" type="number" ng-readonly
= "true"/></td>
 <td><button class="btn btn-primary btn-create" type="button" ng-
click="$ctrl.deleteComponent($index)">X</button></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12 col-lg-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Actual Components
 </div>
 <div class="panel-body">
 <table class="table table-bordered table-striped table-sm">
 <thead>
 <tr>
 <th colspan="5">New Methods</th>
 <th colspan="4">Existing Component</th>
 </tr>
 </thead>
 <thead>
 <tr>
 <th>#</th>

118

 <th>Name</th>
 <th>Methods</th>
 <th>Actual LOC</th>
 <th>Reusable</th>
 <th>Base Component</th>
 <th>Deleted LOC</th>
 <th>Modified LOC</th>
 <th>Added LOC</th>
 </tr>
 </thead>
 <tbody ng-repeat="component in iteration.estimate.newComponents">
 <tr>
 <th scope="row">{{$index+1}}</th>
 <td><input class="form-control" ng-model="component.name" type="text" ng-
readonly="edit"/></td>
 <td><input class="form-control" ng-model="component.actual_methods" type="number"
ng-readonly="edit"/></td>
 <td><input class="form-control" ng-model="component.actual_LOC" type="number" ng-
readonly="edit" /></td>
 <td>
 <select class="form-control" ng-model="component.actual_reusable" ng-required="true"
ng-readonly="edit">
 <option value="true" ng-selected="component.actual_reusable == true">True</option>
 <option value="false" ng-selected="component.actual_reusable == false">False</option>
 </select>
 </td>
 <td><input class="form-control" ng-model="component.actual_baseComponent"
type="text" ng-readonly="edit"/></td>
 <td><input class="form-control" ng-model="component.actual_dLOC" type="number" ng-
readonly="edit"/></td>
 <td><input class="form-control" ng-model="component.actual_mLOC" type="number" ng-
readonly="edit"/></td>
 <td><input class="form-control" ng-model="component.actual_aLOC" type="number" ng-
readonly="edit"/></td>
 <td><button class="btn btn-primary btn-create" type="button" ng-
click="$ctrl.changeEdit($index)">Edit</button></td>
 <td><button class="btn btn-primary btn-create" type="button" ng-
click="$ctrl.submitActual($index)">Add</button></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col-md-6 col-lg-6">
 <div class="panel panel-primary">

119

 <div class="panel-heading">
 Size Estimate
 </div>
 <div class="panel-body">
 <table class="table">
 <thead>
 <tr>
 <th>#</th>
 <th>Planned</th>
 <th>Actual so far</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">LOC</th>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="iteration.estimate.pLOC" type="number" ng-
required="true" placeholder="Enter the Planned LOC"/>
 </div>
 </td>
 <td>
 <div class="form-group">
 <input class="form-control" ng-model="iteration.estimate.aLOC" type="number" ng-
required="true" placeholder="Enter the Actual LOC"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">Effort</th>
 <td>
 <div class="form-group">
 <div class="input-group">
 <input class="form-control" ng-model="iteration.estimate.pEffort" type="number" ng-
required="true" placeholder="Enter the Planned Effort (in min.)"/>
 min(s)
 </div>
 </div>
 </td>
 <td>
 <div class="form-group">
 <div class="input-group">
 <!-- value={{$ctrl.getTotalTime(iteration)}} ng-readonly="true"
-->{{$ctrl.getTotalTime(iteration)}}
 <input class="form-control" ng-model="iteration.estimate.aEffort" type="text" ng-
required="true" placeholder="Enter the Actual Effort"/>
 min(s)
 </div>
 </div>

120

 </div>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>

 <div class="col-md-6 col-lg-6" ng-show="$ctrl.checkIteration()">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Size & Effort Calculation
 </div>
 <div class="panel-body">
 <div class="row">
 <div class="col-sm-6 col-md-6 col-lg-6">
 <table class="table">
 <thead>
 <tr>
 <th>Size Calculation</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">LOCr</th>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="sumLOCRaw"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">sum(LOCa)/sum(LOCr)</th>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="sizeCalc.sumLOCaLOCr"/>
 </div>
 </td>
 </tr>
 <tr>
 <th scope="row">LOCp</th>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="iteration.estimate.pLOC"/>
 </div>
 </td>

121

 </tr>
 <tr>
 <th scope="row">Confidence</th>
 <td>
 <div class="form-group">
 <input class="form-control" type="text"/>
 </div>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 <div class="col-sm-6 col-md-6 col-lg-6">
 <table class="table">
 <thead>
 <tr>
 <th></th>
 <th>Effort Calculation</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="sizeCalc.productivity"/>
 </div>
 </td>
 <th scope="row">Productivity</th>
 </tr>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="sizeCalc.sumEaLOCa"/>
 </div>
 </td>
 <th scope="row">sum(Ea)/sum(LOCa)</th>
 </tr>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text" ng-model="iteration.estimate.pEffort"/>
 </div>
 </td>
 <th scope="row">Ep</th>
 </tr>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text"/>

122

 </div>
 </td>
 <th scope="row">LPI</th>
 </tr>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text"/>
 </div>
 </td>
 <th scope="row">UPI</th>
 </tr>
 <tr>
 <td>
 <div class="form-group">
 <input class="form-control" type="text"/>
 </div>
 </td>
 <th scope="row">Confidence</th>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
 </div>

 </div>

 </div>
</div>
</div>
<!-- Modal -->

<div class="modal fade" id="myModal2" role="dialog">
 <div class="modal-dialog">
 <form name="newForm" ng-submit="$ctrl.addNewComponent()" novalidate>
 <!-- Modal content-->
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal">×</button>
 <h4 class="modal-title">Add New Component</h4>
 </div>

 <div class="modal-body">
 <div class="row">
 <div class="col-md-12">
 <div class="form-group">

123

 <label>Component name</label>
 <input class="form-control" ng-model="newComponent.name" type="text" ng-required="true"
placeholder="Enter a Component Name"/>
 <div ng-show="newForm.name.$invalid && newForm.name.$touched">
 <small style="color: Red; display: block;">Enter a Valid Component name</small>
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-6">
 <div class="form-group">
 <label>Method Count</label>
 <input class="form-control" ng-model="newComponent.methods" type="number" ng-
required="true"/>
 </div>
 </div>
 <div class="col-md-6">
 <div class="form-group">
 <label>Base Component</label>
 <select class="form-control" ng-change="$ctrl.hideRelSize(historicalComponent)" ng-
model="historicalComponent" >
 <option ng-repeat="histComp in historicalComponents"
value="{{histComp}}">{{histComp.component+ ' from '+ histComp.project}}</option>
 </select>
 </div>
 </div>
 </div>
 <div class="row" ng-show="sizeHide">
 <div class="col-md-4">
 <div class="form-group">
 <label>Deleted LOC</label>
 <input class="form-control" ng-model="newComponent.dLOC" type="number"/>
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label>Modified LOC</label>
 <input class="form-control" ng-model="newComponent.mLOC" type="number"/>
 </div>
 </div>
 <div class="col-md-4">
 <div class="form-group">
 <label>Added LOC</label>
 <input class="form-control" ng-model="newComponent.aLOC" type="number"/>
 </div>
 </div>
 </div>
 <div class="row">

124

 <div class="col-md-6" ng-hide="sizeHide">
 <div class="form-group">
 <label>Relative Size</label>
 <select class="form-control" ng-model="newComponent.size" ng-required="true">
 <option value="VS">VS</option>
 <option value="S">S</option>
 <option value="M">M</option>
 <option value="L">L</option>
 <option value="VL">VL</option>
 </select>
 </div>
 </div>
 <div class="col-md-6">
 <div class="checkbox">
 <label><input type="checkbox" ng-model="newComponent.reusable">Reusable</label>
 </div>
 </div>
 </div>
 </div>
 <div class="modal-footer">
 <button class="btn btn-default" type="button" ng-click="$ctrl.resetNew()" data-
dismiss="modal">Cancel</button>
 <input class="btn btn-primary btn-create" ng-disabled="newForm.$invalid" type="submit"
value="Create"/>
 </div>

 </div>
 </form>
 </div>
</div>

schedule.js

'use strict';

angular.module('pcseappApp')
 .config(function ($stateProvider) {
 $stateProvider
 .state('schedule', {
 url: '/project/schedule/:id',
 template: '<schedule></schedule>'
 });
 });

schedule.controller.js

'use strict';
(function(){

125

class ScheduleComponent {
 constructor($http, $scope, $state, $stateParams) {
 this.$http = $http;
 this.$state = $state;
 this.$scope = $scope;
 this.$stateParams = $stateParams;
 this.scheduleActive = 'active';
 this.$scope.totalEp = 0;
 this.$scope.totalTasks = 0;
 this.$scope.remainingTasks = 0;
 this.$scope.actualMinPerTask = 0;
 this.$scope.iterationEndsValue = 0;

 $scope.visible = true;
 $scope.iterations = [];
 $scope.totalItems = $scope.iterations.length*10;
 $scope.currentPage = 1;
 $scope.maxSize = 8;
 $scope.itemsPerPage = 1;
 $scope.trackPages = [0, 1];
 $scope.pageChanged = function() {
 //console.log('page Changed');
 $scope.iterationEndsValue = $scope.currentPage-1;
 $scope.trackPages = [$scope.trackPages[1], $scope.currentPage];
 //console.log($scope.trackPages);
 if($scope.currentPage-1 > 0 && $scope.trackPages[0] < $scope.trackPages[1]) {
 //console.log(this.Project.iterations[$scope.currentPage-1].schedule);
 if($scope.iterations[$scope.currentPage-1].hasOwnProperty('schedule') &&
$scope.iterations[$scope.currentPage-1].schedule.hasOwnProperty('components') &&
$scope.iterations[$scope.currentPage-1].schedule.components.length > 0){
 //console.log('Already copied');
 $scope.iterations[$scope.currentPage-1].schedule.wbs.forEach(function(date) {
 date.plannedCompletionDate = new Date(date.plannedCompletionDate);
 date.ActualCompletionDate = new Date(date.ActualCompletionDate);
 });
 }
 else {
 for(var i=0; i<$scope.iterations[$scope.currentPage-1].estimate.newComponents.length; i++) {
 $scope.iterations[$scope.currentPage-1].schedule.components.push({
 name: $scope.iterations[$scope.currentPage-1].estimate.newComponents[i].name,
 backLog: {
 PlannedTaskCompleted: 0,
 UnplannedTaskCompleted: 0,
 AdditionaltaskDiscovered: 0
 },
 componentIterationMap: []
 });
 }
 //console.log($scope.iterations[$scope.currentPage-1].schedule.components);

126

 var len = $scope.iterations.length;
 $scope.iterations[$scope.currentPage-1].schedule.components.forEach(function(component) {
 var arr1 = [];
 for(var j=0; j<len; j++) {
 var obj = {
 production: 0,
 mock: 0
 };
 arr1.push(Object.assign({}, obj));
 }
 component.componentIterationMap = Object.assign([], arr1);
 });
 //console.log($scope.iterations[$scope.currentPage-1].schedule.components);
 }
 $scope.totalEp = $scope.iterations[$scope.currentPage-1].estimate.pEffort;
 }
 else {
 //console.log(this.Project.iterations[$scope.currentPage-1].schedule);
 $scope.totalEp = $scope.iterations[$scope.currentPage-1].estimate.pEffort;
 }

 for(var i=0; i<$scope.trackPages[0]-1; i++) {
 if($scope.currentPage != 1) {
 $scope.iterations[$scope.currentPage-1].schedule.components.forEach(function(component) {
 component.componentIterationMap[i].showIt = false;
 });
 }
 }
 for(var i=0; i<$scope.trackPages[1]-1; i++) {
 if($scope.currentPage != 1) {
 $scope.iterations[$scope.currentPage-1].schedule.components.forEach(function(component) {
 component.componentIterationMap[i].showIt = true;
 });
 }
 }
 }
 }
 $onDestroy() {
 this.saveProgress();
 }
 $onInit() {
 this.getData();
 }
 getData() {
 this.$http.get('/api/projects/'+this.$stateParams.id).then(response => {
 this.$scope.Project = response.data;
 this.$scope.iterations = this.$scope.Project.iterations;
 //console.log(this.$scope.iterations);
 this.$scope.totalItems = this.$scope.iterations.length*10;

127

 if(this.$scope.iterations[this.$scope.currentPage-1].hasOwnProperty('estimate') && this.
$scope.iterations[this.$scope.currentPage-1].estimate.hasOwnProperty('newComponents') && this.
$scope.iterations[this.$scope.currentPage-1].estimate.newComponents.length > 0) {
 if(this.$scope.iterations[this.$scope.currentPage-1].hasOwnProperty('schedule') && this.
$scope.iterations[this.$scope.currentPage-1].schedule.hasOwnProperty('components') && this.
$scope.iterations[this.$scope.currentPage-1].schedule.components.length > 0){
 //console.log('Already copied');
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs.forEach(function(date) {
 date.plannedCompletionDate = new Date(date.plannedCompletionDate);
 date.ActualCompletionDate = new Date(date.ActualCompletionDate);
 });
 }
 else {
 for(var i=0; i<this.$scope.iterations[this.$scope.currentPage-1].estimate.newComponents.length; i+
+) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.push({
 name: this.$scope.iterations[this.$scope.currentPage-1].estimate.newComponents[i].name,
 backLog: {
 PlannedTaskCompleted: 0,
 UnplannedTaskCompleted: 0,
 AdditionaltaskDiscovered: 0
 },
 componentIterationMap: []
 });
 }
 //console.log(this.$scope.iterations[this.$scope.currentPage-1].schedule.components);
 var len = this.$scope.iterations.length;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.components.forEach(function(component) {
 var arr1 = [];
 for(var j=0; j<len; j++) {
 var obj = {
 production: 0,
 mock: 0
 };
 arr1.push(Object.assign({}, obj));
 }
 component.componentIterationMap = Object.assign([], arr1);
 });
 //console.log(this.$scope.iterations[this.$scope.currentPage-1].schedule.components);
 }
 this.$scope.totalEp = this.$scope.iterations[this.$scope.currentPage-1].estimate.pEffort;
 }
 this.AssessIterationMap();
 });
 }
 AssessIterationMap() {
 var totalSum = 0;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.forEach(function(component) {

128

 var sum = 0;
 component.componentIterationMap.forEach(function(itermap) {
 sum += (itermap.production+itermap.mock);
 });
 var atleastMethods = 0;
 //console.log(this.$scope.iterations[this.$scope.currentPage-1].estimate.newComponents);
 this.$scope.iterations[this.$scope.currentPage-1].estimate.newComponents.forEach(function(comp) {
 if(comp.name == component.name) {
 atleastMethods = comp.methods;
 }
 });
 //console.log(atleastMethods);
 if(sum >= atleastMethods) {
 component.computeComponentSum = sum;
 component.error = false;
 }
 else {
 component.computeComponentSum = sum;
 component.error = true;
 }
 totalSum += component.computeComponentSum;
 }, this);

 this.$scope.totalTasks = totalSum;
 }
 computeIterationSumTasks(iteration) {
 var sum = 0;
 //console.log('heeeee');
 //console.log(this.$scope.iterations);
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.forEach(function(component) {
 //console.log(component);
 sum += component.componentIterationMap[iteration].production +
component.componentIterationMap[iteration].mock;
 });
 this.$scope.tasksValue = sum;
 return this.$scope.tasksValue;
 }
 computeIterationSumEp(iteration) {
 var sum = 0;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.forEach(function(component) {
 sum += component.componentIterationMap[iteration].production +
component.componentIterationMap[iteration].mock;
 });

 this.$scope.EpValue = this.$scope.totalTasks == 0 ? 0 : Math.ceil((this.$scope.totalEp/this.
$scope.totalTasks)*sum);
 this.computeIterationSumTasks(iteration);
 this.createWBS(iteration);
 return this.$scope.EpValue;

129

 }
 computeNextIteration(component) {
 //console.log(component);

 if(component.computeComponentSum >= component.backLog.PlannedTaskCompleted) {
 component.backLog.nextIter = component.computeComponentSum -
component.backLog.PlannedTaskCompleted + component.backLog.AdditionaltaskDiscovered;
 //console.log(component.backLog.nextIter);
 }
 else {
 component.backLog.nextIter = 'Error';
 }

 }
 addIteration() {
 ////console.log(this.$scope.Project);
 this.$scope.Project.Setup.noOfIteration++;
 this.$scope.Project.iterations.push({
 projectConfig: '',
 isUploaded: false,
 timeLog: [],
 schedule: {}
 });
 // Copy previous components
 ////console.log('copy');
 this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-1].estimate = {
 pLOC: this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-2].estimate.pLOC,
 pEffort: this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-2].estimate.pEffort,
 aLOC: this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-2].estimate.aLOC,
 aEffort: this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-2].estimate.aEffort
 }
 this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-1].estimate.newComponents =
function(project) {
 var theCopy = [];
 var arr1 = project.iterations[project.Setup.noOfIteration-2].estimate.newComponents;
 //console.log(arr1);
 for (var i = 0, len = arr1.length; i < len; i++) {
 theCopy[i] = Object.assign({}, arr1[i]);
 }
 //console.log(theCopy);
 return theCopy;
 }(this.$scope.Project);
 // setup last iteration, just added
 //console.log(this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-1].schedule);
 this.$scope.Project.iterations[this.$scope.Project.Setup.noOfIteration-1].schedule.components = [];
 this.$scope.iterations = this.$scope.Project.iterations;
 this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.components = [];
 for(var i=0; i<this.$scope.Project.iterations[this.$scope.currentPage-
1].estimate.newComponents.length; i++) {

130

 this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.components.push({
 name: this.$scope.iterations[this.$scope.currentPage-1].estimate.newComponents[i].name,
 backLog: {
 PlannedTaskCompleted: 0,
 UnplannedTaskCompleted: 0,
 AdditionaltaskDiscovered: 0
 },
 componentIterationMap: []
 });
 }

 //console.log(this.$scope.iterations[this.$scope.currentPage-1].schedule.components);
 var len = this.$scope.iterations.length;
 this.$scope.Project.iterations[this.$scope.currentPage-
1].schedule.components.forEach(function(component) {
 var arr1 = [];
 for(var j=0; j<len; j++) {
 var obj = {
 production: 0,
 mock: 0
 };
 arr1.push(Object.assign({}, obj));
 }
 component.componentIterationMap = Object.assign([], arr1);
 });
 var data = {
 Setup: this.$scope.Project.Setup,
 iterations: this.$scope.Project.iterations
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 //console.log(response);
 });
 this.$scope.totalItems = this.$scope.iterations.length*10;
 //this.getData();

 //Adding code for hiding
 for(var i=0; i<this.$scope.trackPages[0]-1; i++) {
 if(this.$scope.currentPage != 1) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.forEach(function(component)
{
 component.componentIterationMap[i].showIt = false;
 });
 }
 }
 for(var i=0; i<this.$scope.trackPages[1]-1; i++) {
 if(this.$scope.currentPage != 1) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.components.forEach(function(component)
{
 component.componentIterationMap[i].showIt = true;

131

 });
 }
 }
 }

 removeIteration() {
 if(this.$scope.Project.iterations.length > this.$scope.currentPage) {
 this.$scope.Project.Setup.noOfIteration--;
 this.$scope.Project.iterations.splice(this.$scope.Project.iterations.length-1, 1);
 this.$scope.Project.iterations[this.$scope.currentPage-
1].schedule.components.forEach(function(component) {
 component.componentIterationMap.splice(component.componentIterationMap.length-1, 1);
 });
 ////console.log(this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.wbs.length +' : '+
this.$scope.Project.iterations[this.$scope.currentPage-
1].schedule.components[0].componentIterationMap.length);
 if(this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.wbs.length > this.
$scope.Project.iterations[this.$scope.currentPage-
1].schedule.components[0].componentIterationMap.length) {
 ////console.log('hhhhhhhhhhhhhhhhhhhh');
 while(this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.wbs.length != this.
$scope.Project.iterations[this.$scope.currentPage-
1].schedule.components[0].componentIterationMap.length) {
 this.$scope.Project.iterations[this.$scope.currentPage-1].schedule.wbs.splice(this.
$scope.Project.iterations[this.$scope.currentPage-1].schedule.wbs.length-1, 1);
 }
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs = this.$scope.Project.iterations[this.
$scope.currentPage-1].schedule.wbs;
 }
 var data = {
 Setup: this.$scope.Project.Setup,
 iterations: this.$scope.Project.iterations
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 //console.log(response);
 });
 this.$scope.totalItems = this.$scope.iterations.length*10;
 }
 }

 saveProgress() {
 console.log(this.$scope.Project.iterations);
 var data = {
 iterations: this.$scope.Project.iterations
 };
 this.$http.put('/api/projects/'+this.$stateParams.id, data).then(response => {
 //console.log(response);
 });
 }

132

 createWBS(iter) {
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.components[0].componentIterationMap.forEach(function(iter){
 if(this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs.length < this.$scope.iterations[this.
$scope.currentPage-1].schedule.components[0].componentIterationMap.length) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs.push({
 plannedEffort: 0,
 cumulativeEffort: 0,
 plannedVelocity: 0,
 cumulativePlannedVelocity: 0,
 plannedCompletionDate: new Date(),
 ActualEffort: 0,
 cumulativeActualEffort: 0,
 EarnedVelocity: 0,
 cumulativeEarnedVelocity: 0,
 ActualCompletionDate: new Date()
 });
 }
 }, this);
 //console.log(iter);
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedEffort = this.
$scope.EpValue;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedVelocity = this.
$scope.tasksValue;
 if(iter == 0) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeEffort = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedEffort;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativePlannedVelocity =
this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedVelocity;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeActualEffort = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].ActualEffort;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeEarnedVelocity = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].EarnedVelocity;
 }
 else {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeEffort = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedEffort + this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter-1].cumulativeEffort;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativePlannedVelocity =
this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].plannedVelocity + this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter-1].cumulativePlannedVelocity;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeActualEffort = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].ActualEffort + this.$scope.iterations[this.
$scope.currentPage-1].schedule.wbs[iter-1].cumulativeActualEffort;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].cumulativeEarnedVelocity = this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].EarnedVelocity + this.
$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter-1].cumulativeEarnedVelocity;
 }

133

 var compareDate = new Date(this.$scope.iterations[this.$scope.currentPage-
1].schedule.wbs[iter].plannedCompletionDate);
 var bool = true;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.forEach(function(day) {
 if(bool & day.hasOwnProperty('IterationEndHere') && day.IterationEndHere == true) {
 var compDate = new Date(day.date);
 if(iter == 0 && compDate.getDate() == compareDate.getDate() && compDate.getDay() ==
compareDate.getDay() && compDate.getFullYear() == compareDate.getFullYear()) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].EarnedVelocity =
day.EarnedCumVelocityEndOfDay;
 bool = false;
 }
 if(iter > 0 && compDate.getDate() == compareDate.getDate() && compDate.getDay() ==
compareDate.getDay() && compDate.getFullYear() == compareDate.getFullYear()) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter].EarnedVelocity =
day.EarnedCumVelocityEndOfDay - this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[iter-
1].EarnedVelocity;
 bool = false;
 }
 }
 }, this);
 }
 getBackLogData() {
 var sum = 0;
 var sum1 = 0;
 this.$scope.actualMinPerTask = this.$scope.iterations[this.$scope.currentPage-
1].schedule.components.forEach(function(comp) {
 sum += comp.backLog.PlannedTaskCompleted+comp.backLog.UnplannedTaskCompleted;
 sum1 += comp.backLog.nextIter;
 });
 this.$scope.actualMinPerTask = this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[this.
$scope.currentPage-1].cumulativeActualEffort / sum;
 this.$scope.remainingTasks = sum1;

 }

 addCalendar() {
 if(this.$scope.iterationEndsValue < this.$scope.iterations[this.$scope.currentPage-
1].schedule.wbs.length) {

 if(this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.length == 0) {
 //console.log(this.$scope.Project.Setup.startProject);
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar = [];

 //copy previous
 if(this.$scope.currentPage-1 > 0) {
 for(var i=0; i<this.$scope.currentPage-1; i++) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[i].plannedCompletionDate = this.
$scope.iterations[this.$scope.currentPage-2].schedule.wbs[i].plannedCompletionDate

134

 }
 var first = new Date(this.$scope.iterations[this.$scope.currentPage-2].schedule.wbs[this.
$scope.currentPage-2].plannedCompletionDate).getTime()+24*60*60*1000;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.push({
 date: new Date(first).getTime(),
 plannedAvailableMinutes : 0,
 PlannedVelocityEndOfDay : 0,
 ActualAvailableMinutes : 0,
 ActualBurnDownStartOfDay : 0,
 ActualBurnDownEndOfDay : 0,
 EarnedVelocityEndOfDay : 0
 });
 }
 else {
 var first = new Date(this.$scope.Project.Setup.startProject);
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.push({
 date: first.getTime(),
 plannedAvailableMinutes : 0,
 PlannedVelocityEndOfDay : 0,
 ActualAvailableMinutes : 0,
 ActualBurnDownStartOfDay : 0,
 ActualBurnDownEndOfDay : 0,
 EarnedVelocityEndOfDay : 0
 });
 }

 }
 else {
 var len = this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.length;
 var nextDate = new Date(this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[len -
1].date).getTime()+24*60*60*1000;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.push({
 date: nextDate,
 plannedAvailableMinutes : 0,
 PlannedVelocityEndOfDay : 0,
 ActualAvailableMinutes : 0,
 ActualBurnDownStartOfDay : 0,
 ActualBurnDownEndOfDay : 0,
 EarnedVelocityEndOfDay : 0
 });
 }
 }
 }
 removeCalendar() {
 if(this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.length > 0) {
 if(this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar.length-1].IterationEndHere == true) {
 this.$scope.iterationEndsValue--;
 }

135

 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.splice(this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar.length-1, 1);
 }
 }

 plannedCumulativeMinutes(index) {
 if(index == 0) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedCumMinutes =
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedAvailableMinutes;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownStartOfDay =
this.$scope.totalEp;
 // this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownStartOfDay = this.$scope.totalEp;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownEndOfDay =
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownStartOfDay - this.
$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedAvailableMinutes;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay = this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownStartOfDay - this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualAvailableMinutes;
 if(this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay < 0) {
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay = 0;
 }
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].PlannedCumVelocityEndOfDay = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].PlannedVelocityEndOfDay;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualAvailableCumMinutes = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].ActualAvailableMinutes;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].EarnedCumVelocityEndOfDay = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].EarnedVelocityEndOfDay;
 }
 else {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedCumMinutes =
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedAvailableMinutes +
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index-1].plannedCumMinutes;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownStartOfDay =
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index-1].BurnDownEndOfDay;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownStartOfDay = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index-1].ActualBurnDownEndOfDay;
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownEndOfDay =
this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].BurnDownStartOfDay - this.
$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedAvailableMinutes;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay = this.$scope.iterations[this.$scope.currentPage-

136

1].schedule.calendar[index].ActualBurnDownStartOfDay - this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualAvailableMinutes;
 if(this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay < 0) {
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualBurnDownEndOfDay = 0;
 }
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].PlannedCumVelocityEndOfDay = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].PlannedVelocityEndOfDay + this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index-1].PlannedCumVelocityEndOfDay;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].ActualAvailableCumMinutes = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].ActualAvailableMinutes + this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index-1].ActualAvailableCumMinutes;
 this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].EarnedCumVelocityEndOfDay = this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index].EarnedVelocityEndOfDay + this.$scope.iterations[this.
$scope.currentPage-1].schedule.calendar[index-1].EarnedCumVelocityEndOfDay;
 }
 var compareDate = new Date(this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].date);
 if(index == this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar.length-1 && this.
$scope.iterationEndsValue > this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs.length-1 &&
this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[this.$scope.iterationEndsValue-
1].cumulativeEffort > this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].plannedCumMinutes) {
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEnd = '';
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEndHere = false;
 this.$scope.iterationEndsValue--;
 }
 var wb = this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[this.
$scope.iterationEndsValue];
 //wb.plannedCompletionDate = 0;

 if(wb && wb.hasOwnProperty('cumulativeEffort')) {
 var effortSoFar = wb.cumulativeEffort;
 if(effortSoFar <= this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].plannedCumMinutes) {
 wb.plannedCompletionDate = new Date(this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].date);
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEnd = 'text-
danger bg-danger';
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEndHere = true;
 this.$scope.iterationEndsValue++;
 }
 else if(effortSoFar > this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].plannedCumMinutes && this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].IterationEndHere == true) {

137

 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEnd = '';
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEndHere = false;
 this.$scope.iterationEndsValue--;
 }
 else if(effortSoFar > this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].plannedCumMinutes){
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEnd = '';
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].IterationEndHere = false;
 }
 }

 ('Itera'+this.$scope.iterationEndsValue);
 return this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].plannedCumMinutes;
 }

 getTotalTime(index) {
 var timeTaken = 0;
 var bool = true;
 this.$scope.Project.iterations.forEach(function(iteration, i) {
 iteration.timeLog.forEach(function(log) {
 if(i == index) {
 timeTaken += parseInt(log.timeTaken);
 if(log.interrupt) {
 timeTaken -= parseInt(log.interrupt);
 }
 this.$scope.iterations[this.$scope.currentPage-1].schedule.wbs[index].ActualEffort = timeTaken;
 bool = false;
 }
 }, this);
 }, this);
 return true;
 }

 getTimePerDay(iter, index) {
 // ////console.log(index);
 var timeTaken = 0;
 this.$scope.Project.iterations.forEach(function(iteration, i) {
 iteration.timeLog.forEach(function(log) {
 var logDate = new Date(Date.parse(log.dateFormat));
 var calendarDate = new Date(this.$scope.iterations[this.$scope.currentPage-
1].schedule.calendar[index].date);
 if(iter._id == iteration._id && logDate.getDate() == calendarDate.getDate() && logDate.getDay()
== calendarDate.getDay() && logDate.getFullYear() == calendarDate.getFullYear()) {
 timeTaken += parseInt(log.timeTaken);
 if(log.interrupt) {
 timeTaken -= parseInt(log.interrupt);
 }
 this.$scope.iterations[this.$scope.currentPage-1].schedule.calendar[index].ActualAvailableMinutes
= timeTaken;

138

 }
 }, this);
 }, this);
 return true;
 }

}

angular.module('pcseappApp')
 .component('schedule', {
 templateUrl: 'app/schedule/schedule.html',
 controller: ScheduleComponent
 });

})();

schedule.html

<navbar></navbar>
<div id="page-content-wrapper">
 <div class="container" ng-show="visible">
 <label>Choose the Iteration:</label>
 <div><ul uib-pagination total-items="totalItems" ng-model="currentPage" max-size="maxSize" ng-
change="pageChanged(); $ctrl.AssessIterationMap()"></div>
 <div class="row">
 <div class="col-md-4 col-lg-4">
 <h1>
 <button class="btn btn-primary btn-create" type="button" ng-click="$ctrl.saveProgress()" data-
dismiss="modal">Save Progress</button>
 </h1>
 </div>
 </div>
 </div>

 <div ng-repeat="iteration in iterations.slice(((currentPage-1)*itemsPerPage),
((currentPage)*itemsPerPage))">
 <div class="container-fluid">
 <div class="row">
 <button id="addButton" type="button" class="btn btn-danger" ng-click="$ctrl.addIteration()"
title="Add a New Iteration">+</button>
 <button id="addButton" type="button" class="btn btn-danger" ng-click="$ctrl.removeIteration()"
title="Remove last Iteration">-</button>
 <div class="col-md-12 col-lg-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Component-Iteration Map
 </div>
 <div class="panel-body">
 <table class="table table-bordered table-striped table-sm">

139

 <thead>
 <tr>
 <th colspan="2"></th>
 <th ng-hide="iteration.showIt" ng-repeat="iteration in
iteration.schedule.components[0].componentIterationMap" colspan="2">Iteration {{$index+1}}</th>
 </tr>
 </thead>
 <thead>
 <tr>
 <th>#</th>
 <th>Name</th>
 <th ng-hide="iteration.showIt" ng-repeat-start ="iteration in
iteration.schedule.components[0].componentIterationMap">Production</th>
 <th ng-hide="iteration.showIt" ng-repeat-end>Mock</th>
 </tr>
 </thead>
 <tbody ng-repeat="component in iteration.schedule.components">
 <tr>
 <th scope="row">{{$index+1}}</th>
 <td>{{component.name}}</td>

 <td ng-repeat-start="iterationMap in component.componentIterationMap" ng-
hide="iterationMap.showIt"><input ng-change="$ctrl.AssessIterationMap()" class="form-control"
type="number" ng-model="iterationMap.production"/></td>
 <td ng-repeat-end ng-hide="iterationMap.showIt"><input class="form-control"
type="number" ng-model="iterationMap.mock" ng-change="$ctrl.AssessIterationMap()"/></td>
 <td>{{component.computeComponentSum}}<span class="text-danger" ng-
show='component.error'> (Tasks < Methods)</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="2">Number of Tasks</th>
 <th ng-repeat-start ="iteration in iteration.schedule.components[0].componentIterationMap"
ng-hide="iteration.showIt"></th>
 <th ng-repeat-end ng-
hide="iteration.showIt">{{$ctrl.computeIterationSumTasks($index)}}</th>
 <th>Total Tasks = {{totalTasks}}</th>
 </tr>
 <tr>
 <th colspan="2">Ep per Iteration</th>
 <th ng-repeat-start ="iteration in iteration.schedule.components[0].componentIterationMap"
ng-hide="iteration.showIt"></th>
 <th ng-repeat-end ng-
hide="iteration.showIt">{{$ctrl.computeIterationSumEp($index)}}</th>
 <th>Total Ep = {{totalEp}}</th>
 </tr>
 </tfoot>
 </table>

140

 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12 col-lg-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 WBS
 </div>
 <div class="panel-body">
 <table class="table table-bordered table-striped table-sm">
 <thead>
 <tr>
 <th>Iteration</th>
 <th>Planned Effort(min)</th>
 <th>Cumulative Planned Effort</th>
 <th>Planned Velocity</th>
 <th>Cumulative Planned Velocity</th>
 <th>Planned Completion</th>
 <th>Actual Effort(min)</th>
 <th>Cumulative Actual Effort</th>
 <th>Earned Velocity</th>
 <th>Cumulative Earned Velocity</th>
 <th>Actual Completion</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="wbs in iteration.schedule.wbs">
 <th scope="row">{{$index+1}}</th>
 <td>{{wbs.plannedEffort}}</td>
 <td>{{wbs.cumulativeEffort}}</td>
 <td>{{wbs.plannedVelocity}}</td>
 <td>{{wbs.cumulativePlannedVelocity}}</td>
 <td><input class="form-control" type="date" ng-
model="wbs.plannedCompletionDate"/></td>
 <td><input class="form-control" type="number" ng-model="wbs.ActualEffort" ng-
if="$ctrl.getTotalTime($index)" /></td>
 <td>{{wbs.cumulativeActualEffort}}</td>
 <td><input class="form-control" type="number" ng-model="wbs.EarnedVelocity"/></td>
 <td>{{wbs.cumulativeEarnedVelocity}}</td>
 <td><input class="form-control" type="date" ng-
model="wbs.ActualCompletionDate"/></td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>

141

 </div>
 <div class="row">
 <button id="addButton" type="button" class="btn btn-danger" ng-click="$ctrl.addCalendar()"
title="Add a New Day">+</button>
 <button id="addButton" type="button" class="btn btn-danger" ng-click="$ctrl.removeCalendar()"
title="Remove last Day">-</button>
 <div class="col-md-12 col-lg-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Calender
 </div>
 <div class="panel-body">
 <table class="table table-bordered table-sm">
 <thead>
 <tr>
 <th>Date</th>
 <th>Planned Available minutes</th>
 <th>Planned Cumulative minutes</th>
 <th>BurnDown at start of Day</th>
 <th>BurnDown at end of Day</th>
 <th>Planned velocity at end of Day</th>
 <th>Cumulative Planned velocity</th>
 <th>Actual Available minutes</th>
 <th>Actual Cumulative minutes</th>
 <th>Actual BurnDown at start of Day</th>
 <th>Actual BurnDown at end of Day</th>
 <th>Earned velocity at end of Day</th>
 <th>Cumulative Earned velocity</th>
 </tr>
 </thead>
 <tbody ng-repeat="dayItem in iteration.schedule.calendar">
 <tr ng-class="dayItem.IterationEnd">
 <th scope="row">{{dayItem.date | date:'MM/dd/yyyy' }}</th>
 <td><input class="form-control" type="number" ng-
model="dayItem.plannedAvailableMinutes" ng-
change="$ctrl.plannedCumulativeMinutes($index)"/></td>
 <td>{{$ctrl.plannedCumulativeMinutes($index)}}</td>
 <td>{{dayItem.BurnDownStartOfDay}}</td>
 <td>{{dayItem.BurnDownEndOfDay}}</td>
 <td><input class="form-control" type="number" ng-
model="dayItem.PlannedVelocityEndOfDay" /></td>
 <td>{{dayItem.PlannedCumVelocityEndOfDay}}</td>
 <td><input class="form-control" type="number" ng-
model="dayItem.ActualAvailableMinutes" ng-if="$ctrl.getTimePerDay(iteration, $index)" /></td>
 <td>{{dayItem.ActualAvailableCumMinutes}}</td>
 <td><input class="form-control" type="number" ng-
model="dayItem.ActualBurnDownStartOfDay" /></td>
 <td><input class="form-control" type="number" ng-
model="dayItem.ActualBurnDownEndOfDay" /></td>

142

 <td><input class="form-control" type="number" ng-
model="dayItem.EarnedVelocityEndOfDay" /></td>
 <td>{{dayItem.EarnedCumVelocityEndOfDay}}</td>
 <td ng-show="dayItem.IterationEndHere">Iteration End Here</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-12 col-lg-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 Backlog (Hint: Click of rows to compute Tasks for next Iteration)
 </div>
 <div class="panel-body" ng-click="$ctrl.getBackLogData()">
 <table class="table table-bordered table-striped table-sm">
 <thead>
 <tr>
 <th>Component(s)</th>
 <th>Planned Tasks</th>
 <th>Planned Tasks Completed</th>
 <th>Unplanned Tasks Completed</th>
 <th>Additional Tasks discovered</th>
 <th>Tasks next iteration</th>
 </tr>
 </thead>
 <tbody ng-repeat="component in iteration.schedule.components" ng-
click="$ctrl.computeNextIteration(component)">
 <tr>
 <td>{{component.name}}</td>
 <td>{{component.computeComponentSum}}</td>
 <td><input class="form-control" type="number" ng-
change="$ctrl.computeNextIteration(component)" ng-
model="component.backLog.PlannedTaskCompleted"/></td>
 <td><input class="form-control" type="number" ng-
change="$ctrl.computeNextIteration(component)" ng-
model="component.backLog.UnplannedTaskCompleted"/></td>
 <td><input class="form-control" type="number" ng-
change="$ctrl.computeNextIteration(component)" ng-
model="component.backLog.AdditionaltaskDiscovered"/></td>
 <td>{{component.backLog.nextIter}}</td>
 </tr>
 </tbody>
 </table>
 <div class="row">
 <div class="col-md-4 col-lg-4">

143

 Actual minutes per tasks: {{actualMinPerTask}}
 </div>
 <div class="col-md-4 col-lg-4">
 Remaining tasks: {{remainingTasks}}
 </div>
 <div class="col-md-4 col-lg-4">
 New burndown: {{actualMinPerTask * remainingTasks}}
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

144

Appendix 2 (PCSE artifacts)

Iteration 01

145

146

147

148

149

150

151

152

153

Iteration 02

154

155

156

Iteration 03

157

158

159

Iteration 04

160

161

162

163

Iteration 05

164

165

166

167

Iteration 06

168

169

170

171

172

173

Iteration 07

174

175

176

177

Iteration 08

178

179

180

181

