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Abstract

A CMOS neura with 136nm SiGe technologysi presented in this paper to
simulate the biological activities of synapses and neurons in human [Bialogjical
neuron behaviors are introduced in the begigithen comes with its modél.device
with name memristor is introduced to simulate synaptegemeuron. The circuiesign
can be separated into 3 stages: Dendrite input stage, LIF (leaky integrate and fire) stage,
synapse stage. The first stage is achieveahb/converter and an AxeHlillock circuit
is implemented to simulate LIF stage, thgnapse stage is modeled byists-
memristor voltage divider based on STDP rilee features of the whole neuron are
based a the studies from neuroscienaed mimicked by utilizing digital and analog
circuits. The purpose of this paper is to give diniy blocks for future neural network

applications.
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Chapter 1 Introduction

Artificial Neural Networks (ANN) are a computational approach, which is based
on a largenumberof artificial neurons, to simulate the way that a biological brain solves
problems with a huge cluster of axons that connect neurons. Each individual neuron has
a function that treatthe weighted summation of all input signals as output. There will
be a threshold on each connection such that the output signal of theuypo& must
exceed the threshold before it is transmitted to other neurons. Thes®kgydtems
are seHtrained instead of programmed, so it has a better performatiecirtain area
like computer vision, speech recognition, such tasks problemesalhghardto solve
by ordinary rulebasedorogramming [1] The structure of an artdfial neural network

is shown below:

Hidden

Input Cutput

Figure 1.1 Structure of Neural Network

With one more step of the thought of neural network, if we stack more neurons



with proper connectionsao we have a chip thatactdass man br ai ns or
than human tains? The answer is yes. In the year 2011, IBM presented their prototype
of braininspired CPU with 256 neurons, 256*256 synapsesl 256 axons. The
function of this CPU is still simple for it can only play games like Pong. 3 years later,
they gave us €PU with 1 million neurons, 256 million synapses, and the power
consumption is only 70mW, which is 100 times faster and 10,000 times lesser power
consumption in the experiment of reéahe recognition of human, bicycles, buses and
carts that are videotape3D frames per second in Stanford University with 80% of
accuracy than a laptdg]. It is still having some disadvantages. For example, it is not
a classical ¥n-Neumann architecture CPU, to make it work correctly, there should be
a new type of softwar@hguage based on neural network, simple logic like 1 and 0 will
not work correctly in this new architecture. So, its applications are restricted for most
of the software in the world are based on¥gumann architecture.

Now | et 6s f o c blecksofthe ANNewhiohus alsidgle meuron. To
model the biological behavior of the neuron, we must know how the neurons work and
what the electrical characteristics of the neuron is, then we may be able to model it.

This thesis is organized as followShapter 2 will explain the characteristics of
the neuronsnd explain the mechanism of a neuriienwe give 3 different types of
the neuron models with simulations from Matlab. After a brief discussion, a certain
model will be chosen to implement the ney Chapter 3 will cover the synapse of the
neuron, a basic device called memristor will be introduced to mimic the synapse,;

Chapter 4 will present the CMOS implementation of the 3 parts of a single neuron,

even



simulation from Cadence tool of these parts éldiscussed; The goal of Chapter 5 is
to give a brief discussion of the applications of artificialratnetwork and give a

conclusion.



Chapter 2 Neuron Behavior andModels

2.1 Introduction
2.1.1 Basidunction of Neurons and Membrane Potential

A neuron is a cell with special functions. Although a neuron has all structures
including cytoplasm, nucleus, ribosome and mitochondria like normal cells, its
specialty is to deal with the signal througtectrical and chemical processes. The
foundation of this function is the difference of the potential between the inside and the
outside of the membrane of the neuron. This potential is beacdube different
consistency of sodium ion and potassium eor example, the amount of potassium
ion inside the membrane is 20 times larger than outside. This is because there is a K
Na pump always transports potassium ions from outside to inside and sodium ions from
inside to outside. Because of there is a diffeeeconcentration, ions are forced to move
from high concentration part to low concentration part through ion tunnels. Finally, the
potential caused by #la pump and the potential caused by concentration difference
will cancel with each other to have aatilely steady state. The following figure shows

the process:
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Figure 2.1 Membrane Potential Schem&tiagram

2.1.2 Resting Potential, Active Potentialand Transportation Mechanism

As we know from 2.1.1, there is a relatively steady potediffdrence between
the inside and outside of the membrane, this is called resting potential. When the neuron
is not stimulated, potassium ion channel is open, sodium ion channel is closed. The
different concentration of the ions g#veise to a positive pgential outside the
membrane and a negative potential inside the membrane. When the neuron is stimulated,
Sodium ion channel will be open. Remember graimberof sodium ions outside the
membrane is much larger than inside, so the sodium ions will fiftoekthin a short
period from outside to inside which cause a positive potential inside the membrane and
a negative one outside. This is called active potential. It is also the main phenomenon
indicates the neuron is stimulated. The mechanism for tra@asiparthe signal is this:
When the neuron is stimulated, we know that the potential inside the membrane will be
positive,anothermpart of the synapse is still negative. The difference of the potential of

the stimulated part and resting part will causeciiveent. When the current flows, the
5



positive potential inside the membrane wil|l

signal is transmitted. Full mechanism is shawthe picture below:

Resting State

Stimulated State

Transportation State

Figure 2.2 Resting, Activation and Transportation Medran

2.1.3 Electrical Characteristics of Neuron

From above discussion, it is important to know what is the action potential looks
like? From the study of a giant nerve fiber, Dr. Alan Lloyd Hodgkin and Dr. Andrew
Fielding Huxley describe the ionic basisr@rve conduction in 195[3]. The details
of this model will be discussed later, |1 only show the result of their experiment which
explairs the electrical part of the action potential of the neuron. From figure 2.3, V
curve of the stimulated neuron, wan see that when the neuron is stimulated and if the
stimulation is strong enough to surpass a
then the voltage falls down even below the resting level, after 2ms, it will be in resting

state again.
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Figure2.3 Approximate plot ofhetypical action potential

2.2 Models of the Neuron

2.2.1 HodgkinHuxley Model
Intheyear 1952, people do not quite understand the mechanismioh channel,

they simply believe that an ion channel is nothing but when ion go through, it is similar
to capacitor discharge, the relationship of voltage and current #ineam. Not like
other people thought, Hodgkin and Huxley noticed that both dynstaie and steady
state exist inside the ion channel. How to describe such complex progress? Their
smartness is that they refer the thought from thermodynamics. First of all, they assume
the conductance of the ion channel depends on the ion concendiiéemnce between
the inside part of membrane and outside part of the membrane; If the assumption is true,

in other words, there is a relationship between conductance and concentration, the



distribution of the ions should follovwBoltzmann principlein themodynamics.
According to Boltzmann principlethe probability of a ion inside or outside the
membrane can be described as:

— Agom (2.1)

Because that P1 and P2 are the probabilities for the same ion, then we know:

Op 0¢ p (2.2)
Then we have:
Op pfp Aom (2.3)

Formula 2.3 is the steady state model of the ion channel.

Ip
::C1 gnt_V gL 47
C g g :
En El
\'l ‘V’

Figure 2.4 Electrical Model of the Membrane
Figure 2.4 shows the electrical model which represents the biophysical
characteristics of cell membranes. The lipid bilayer is represented as a capacitance(Cm).
Voltage-gated and leak ion channels are represented by nonlinear(gn) and linear(gL)
conductane respectively. The electrochemical gradients driving the flow of ions are
represented by batteries(E), ion pumps and exchangers are represehtedulbient

source(lp).



From the electrical model, we have:
M 0 — M 0w w MM d QQw o NMw w (24

Wherel is the current flows the membranesinnit area. Other parameters are described

below:
— | w p & I wE (2.5)
— | w p & I wa (2.6)
— | o p & I ©7Q (2.7)

In formula 2.5,2.6 and 2.7, € 0 0 { Q0N WQQE | VOO O i OMEIth

ion channel velocity, depend on voltage Vm and independent of tiheis the
maximum value of the conductance, n, m and h are parameters that related to the
activation ofthe potassium ion channel, the activationtbé sodium channel, the
deactivation othe sodium channelThe solution for these differential equatsagives

the expressions that describe the channel.

Conductance for Potassium and Sodium lons in Neuron Ao Voltage over Time in Neuron
e Conductance for Potassium
15 == Conductance for Sodium 20
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o 25 —
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5 -80
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Figure 2.5 Simulation result from Matlab of HH madel

2.2.2 lzhikevinch Model

Hodgkin-Huxley model is the first neuron model that mimic the electrical behavior



of the neuron with accuracy, but it is t@omplex to implement with IC for its
complexity of computation. Based on this model, Dr. Eugen M Izhikevich presented a
new model to describe the behavior of neuron with more computational simplicity. The

experimental result is quite good. His model cadéseribed by the following formulas.

0 Tt w ptmo O (2.8)
6 MWL o (2.9)
If v>=30mV,v=c,u=c+d (2.10)

v: membrane potential,
u: recover variable, take the place of thdivation of potassium channel and
deactivation of sodium channel;
a: recover time variable of membrane potential,
b: sensitivity that how parameter u was affected by v;
c: recover voltage value after the stimulation of the neuron;
d: reset value of paranetu after the stimulation of the neuron;
With different values of paramesa, b, ¢ and d, this model can simulate all known
behaviors of the neuron. Figure 2.6 gives the result of the simulation. These results are

the known behaviors of the neuron.

10
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Figure 2.6 Different Behavior of Neurons

2.2.3 LIF Model

LIF (Leaky Integrate and Fire) model is a basic simplification of Hodgkirley
model. This model was presented by Louis Lapicque in 1907, a French neuroscientist.
In the modeltheneuron idreated as a node, the transmission inside the neuron is not
in consideration. The formula describes the potential of the membrane is:

T — 60 YO (2.12)

Input current equals the summation of all currenth@same ime, the voltage will
leak to zero when there is no input current. There will be a spike generated by neuron
when the membrane potential is large than the threshold voltage. We can know that if
an action potential is generated at a point of the neuramakbential will be transmitted

to all other points, so we can calculate one point instead of all. The difference between

Hodgkin-Huxley and LIF model is that LIF model treahe conductance of the
11



membrane as a whole constant, so the Hodikixley modelis simplified. Figure 2.7

is the electrical model of LIF.

linj C
Rm |=m

Figure 2.7 LIF Model of Neuran
The circuit above can be described by:
0— - 0 (2.12)
linj: Summation of all input currents;
The solution for Vm(t) whelinj is constant:
o woQ YO p Q (2.13)
When Vm surpagsthe threshold, it will beet to Vm(t0), so when linj isonstant,
the spikes that generated by neuron is periodical. Assume t = t(1), a spike is
generated, we can find that:
66 YOp Agb— (2.14)
As 00 Hb, 6 6 Y Othere will be no spike whety O 6 Q Elow assume
the second spike is generated at time t = t(2), we have:

O® YOp A@D

(2.15)
So the period of the spike when the input current is constant is:

T=0 o =108
12

(2.16)



Where t 'Y 0 isthe time constant.

Figure 2.8 shows the siration results of LIF model in siiab.
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Figure 2.8 LIF simulation result

From Figure 2.8 we notice thitthere is no input, the neuron will be a leaky neuron
with its voltage keep on decreasing. When we have some input pulses, the voltage will
rise tothethreshold and then reset to resting potential. Spikes drawn by hand are added
when the spikes should be generated. When we have a constant input, the output will
be periodical. When we have dense inputs, there is no output spike when the inputis in
therefractory period. These features are further discussed and simulated in Chapter 4.

2.3 Comparison of different models

LIF model treat membrane as a combination of resistor and capacitor, it treats
multiple ion tunnels as a single resistor to simplify thedgkinHuxley model.
Izhikevich model is a dimensionality reduction of Hodgkluxley model, there is not

much difference between Izhikevich model and LIF model essentially. For LIF model,
13



when membrane voltage is larger than the threshold voltage, itdiately set to a
constant. Izhikevich model treghe membrane voltage as:

60 QU U O U 00 (2.17)
This will cause the membrane potential rise very fast and approaches infinity. Figure
2.9 shows the action potealticurve of these two models.

LIF Izhikevinch

Spik
Spikesare " es:rj
drawn by ol
hand

threshold

resting

Input Input

Figure 2.9 LIF spikes and Izhikevinch spikes
In fact, there are many other models like GIF by Hutcheon and Yarom, QIF and
EIF by Ermentrout and Kopell, LIF with adaptation by Treves, IFB by Rinzel, these
models are theariations of the introduced models above and most of them were built
for neuroscience stud¥], [6]. The figure below gives the performance of biological

plausibility versus implementation cq#i.

14
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Figure 2.10 Comparison of the neuro properties afare models

From the figure above, we can see that the LIF model is the simplest one to
implement.| will choose LIF model as the implementation for the neuron for the
consideration of power consumption and simplickyingle neuron is not that smart
until it is connected to each other to form a neural network, in other words, application
for neural network may contalundreds of thousands of neurons. If the neuron is too
complicated, thre will be much more difficulivhen we try to connect them tobet.
What 6s mor e, when t he n e thestahilisy ofare @rcus t ac k e d
into account. The fewasomponents we introduced intioe circuit, the more stability
we will have. Though th&lF model does not have so mahiplogical features o&
real neuron, it is still got the basic need for a neuron. A lot of studies based on this
model indicate thahis is an efficient way to achieve some simple functions to simulate
the behaviors of a biological neurd¥or the applications of our designewill need
only simple functions of the neuron, like when input surpasses the threshold, a spike

15



should be generated and the membrane voltage will go back to resting potential, or
when input signals are applied duriting refractory period, there shoule mo output

spikes. Based on these considerations, LIF neuron will meet our requirement.

16



Chapter 3 Memristor- Artificial synapse

3.1 Introduction of memristor
The memristor is a fundamental device likeesistor, capacitprand inductor in
circuits. This device was first proposed by Dr. Leon O. Chua,1971 [8], and was
discovered by D. Strukov, G. Snider, G. Stewart, and R. Williams in E08he
memristor is regarded as theifth fundamental elements in circuits alonghwitductor,

capacitorand resistor for its properties.

- _do _
R ~dq "
W ! LIJ
| (charge) |- m|_||_|ur||_|‘ L (flw) )
\ / N

3 .
dqg =Cdv ~— {gég dep = Ldi
| .
AN Tdi 77 N\
|'f v x"»—_—«'f | "'|
\ (voltage) \ (current)
AN 4 A /

o -

Figure 3.1 Circuit Elements and their relations
From the figure above we know that the memristor connects the charge Q and flux
4 together:

I p— (3.1)
17



If the charge Q is a function of time and flix i s al so a,ofrpncti on

no ande ¢ 0, from the relations of charge and voltage, flux and current, we will
have:

0 Ao J‘— — (3.2)
Equation 3.2emind us that the memristor is a device that its resistance varies with the
changes of its charge over time. This property can be used as synapse of the neuron in

neural networks for different resistance can be treated as different weights of the neural

network.

3.2 Models of Memristor
3.2.1 SPICE Model
The model of the memristor from [9], is fabricated by a-tawger thin film of TD |,
sandwiched between the platinum contacts. One layer acis didwmiconductor for it
is doped with oxygen vacanciebhe undoped region is an isolator. The resistance of
the whole device can be described as:
00 YéE&e— YEPQ — (3.3)
W(t) is the width of the doped region, D is the total length of tlde , TRon and Roff

are the deviceesistance when w(t) = 0 and w(t) = D.

18
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Figure 3.2 Memristor Model
The current and voltage relationship of the memristor can be defined by [10]:
Do YO — (3.4)

From formula 3.3 and 3.4, the relation between voltagd current of the

memristor is :
0O Y —Y p — D@ (3.5)
For Ti memristor,— is the state variable, the rate of change of the state variable
is defined as :
— ' —® (3.6)

is the dopant mobility. Now we have:

Q- 0 Y cy Yo
Qn P 3 p o P 5 —No

Y
Y p —no (3.7)

We can see from equation 3.7 that thenmistance M is a linear function of the charge
g(t). From equation 3.7, we can also see the relationship between memristance and the
device length D. The dynamic part of the memristance is proportional to charge q(t),

and its coefficient is inversely progional to device length. In other words, if D is a
19



big number, the whole memristance of the memristor is almost a constant, q(t) part is

toosmalltoneasur e.

That 6s

t he

reason for

we

Now we can build a device thhas the electrical properties above. From [11], a

spice model of memristor was given. Figure 3.3 give the circuit implementation of this

model using ideal elements:

Figure 3.3 Block diagram of Memristor Spice model and Implementation
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The LV curve ofthe above memristor is:
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Figure 3.4 1V curve of the Memristor

Input: sinusoid wave with 1.2 Vpeak and frequency 1K
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Runtime: 100ms

We can see that the memristor is a+fioear device with its resistance varies with
input. In other words, the resistanocEthe memristor can increase or decrease with
different input. The following simulation gives this property which is the same property

we utilize as the function of synapse in the circuit.

Figure 3.5 Variance of the resistance(Increase)
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Figure 3.6Variance of resistance(Decrease)
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Table 3.1 Input information

Figure 3.5 Input Figure 3.6 Input

Square wave Va = 1.2V, Vb=0YSquare wave Va =-1.2V, Vb=0V,
Freq=1K Freq=1K

Pulse width: 250n Pulse width: 250n

Figure 3.5 and Figure 3.6 shows thahire is a positive pulse at the positive port
of the memristor, the resistance of the memristor will increase; if there is a negative one,
the resistance will decrease. These progeréire also referred to as LTP ddd,
which will be discussed in Chagt4. We can use this property to updatewkight of
the neural network. There is also a problem within this model.idput could only be
applied tathe positive port of the device. A real memristor should be apga device
with positive and negaterinput ports.

3.2.2 TiO2 memristor emulator

Because the fabrication of the memristor is difficult and the cost is really high,
people would like to have emulators of the memristor for different applications. In [10],

an emulator was presented for peoplstudy and discuss.
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Figure 3.7 Concept of memristor and its equivalent circuit
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From Figure 3.7(a), we can see that the voltage at the input node of the circuit can
be written as:
0 YQ 0 (3.8)

‘Q isthe input currentp s the voltage ahepositive node of the epmp, Y is the
resistance ahe negative node. It is assumed that voltageis proportional to input
current 'Q, then we have:

0 YQ aQ Y & Q (3.9)
From equation 3.9, it shows that the resistanabe#hole circuitis'Y & , if we

can control m as the integral of the input current, we have the memristor.
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Figure 3.8 Basic configuration afmemristor

From Figure 3.8we have:
0 Y — Y Q (3.10)
We can see that vx at the positive node of theamp is generated by the
production of the integration of input current and voltage vt. This will give the result

that the circuit will act like anemristor.
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Figure 3.9 Implementation of the memristor

Figure 3.9 is the implementation circuit based on figure 3.8. Two current mirrors
were used to mirror the input current, then they were mixed together as the input of the
positive node of the eamp.From the circuitwe can see that this device is a ot
device. In our design, it should be a tport device so that it can be connected to
arother device like a resistor. In paper [10], they claim that with certain connections,
this memristorcanbe onnected i n series or in paralle
work even in cadence simulation. Though we have adjusted the parameters and made
some changes in the original circuit to meet our demand, it is still not working quite
well for we would liketo build a resigir-memristor voltage divider with proper control
to update the weight of the neural network by changing the resistance of the memristor.
We also layout the schematitagramof the memristor based on figure 3.9 for the
analytical purposand hope to have a circuit that mimtbe memristor good enough

for us to utilize. Figure 3.10 is the layout.
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Figure 3.10 Layout of the memristor

Simulation result of the above cirt@hows in figure 3.11. The input signal is a

sinusoid waveform with amplitude 700mV and the input frequency is 10KHz.

Figure 3.11 Simulation Result of the emulator
From Figure 3.11 we can see it is not a penfieetnristor for its 4V curve is not that

smoothAccording to Dr. Chuadbés statement
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