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 Abstract 

 

A CMOS neuron with 130-nm SiGe technology is presented in this paper to 

simulate the biological activities of synapses and neurons in human brains. Biological 

neuron behaviors are introduced in the beginning then comes with its model. A device 

with name memristor is introduced to simulate synapse of the neuron. The circuit design 

can be separated into 3 stages: Dendrite input stage, LIF (leaky integrate and fire) stage, 

synapse stage. The first stage is achieved by a V-I converter and an Axon-Hillock circuit 

is implemented to simulate LIF stage, the synapse stage is modeled by resistor-

memristor voltage divider based on STDP rule. The features of the whole neuron are 

based on the studies from neuroscience and mimicked by utilizing digital and analog 

circuits. The purpose of this paper is to give building blocks for future neural network 

applications. 
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Chapter 1 Introduction 

Artificial Neural Networks (ANN) are a computational approach, which is based 

on a large number of artificial neurons, to simulate the way that a biological brain solves 

problems with a huge cluster of axons that connect neurons. Each individual neuron has 

a function that treats the weighted summation of all input signals as output. There will 

be a threshold on each connection such that the output signal of the pre-neuron must 

exceed the threshold before it is transmitted to other neurons. These kinds of systems 

are self-trained instead of programmed, so it has a better performance in the certain area 

like computer vision, speech recognition, such tasks problems are really hard to solve 

by ordinary rule-based programming [1]. The structure of an artificial neural network 

is shown below: 

 

Figure 1.1 Structure of Neural Network. 

With one more step of the thought of neural network, if we stack more neurons 
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with proper connections, can we have a chip that acts as human brains or even ‘smarter’ 

than human brains? The answer is yes. In the year 2011, IBM presented their prototype 

of brain-inspired CPU with 256 neurons, 256*256 synapses, and 256 axons. The 

function of this CPU is still simple for it can only play games like Pong. 3 years later, 

they gave us a CPU with 1 million neurons, 256 million synapses, and the power 

consumption is only 70mW, which is 100 times faster and 10,000 times lesser power 

consumption in the experiment of real-time recognition of human, bicycles, buses and 

carts that are videotaped 30 frames per second in Stanford University with 80% of 

accuracy than a laptop [2]. It is still having some disadvantages. For example, it is not 

a classical Von-Neumann architecture CPU, to make it work correctly, there should be 

a new type of software language based on neural network, simple logic like 1 and 0 will 

not work correctly in this new architecture. So, its applications are restricted for most 

of the software in the world are based on Von-Neumann architecture. 

Now let’s focus on the building blocks of the ANN, which is a single neuron. To 

model the biological behavior of the neuron, we must know how the neurons work and 

what the electrical characteristics of the neuron is, then we may be able to model it.  

This thesis is organized as follows: Chapter 2 will explain the characteristics of 

the neurons and explain the mechanism of a neuron, then we give 3 different types of 

the neuron models with simulations from Matlab. After a brief discussion, a certain 

model will be chosen to implement the neuron; Chapter 3 will cover the synapse of the 

neuron, a basic device called memristor will be introduced to mimic the synapse; 

Chapter 4 will present the CMOS implementation of the 3 parts of a single neuron, 
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simulation from Cadence tool of these parts will be discussed; The goal of Chapter 5 is 

to give a brief discussion of the applications of artificial-neural-network and give a 

conclusion. 
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Chapter 2 Neuron Behavior and Models 

2.1 Introduction 

2.1.1 Basic function of Neurons and Membrane Potential 

A neuron is a cell with special functions. Although a neuron has all structures 

including cytoplasm, nucleus, ribosome and mitochondria like normal cells, its 

specialty is to deal with the signal through electrical and chemical processes. The 

foundation of this function is the difference of the potential between the inside and the 

outside of the membrane of the neuron. This potential is because of the different 

consistency of sodium ion and potassium ion. For example, the amount of potassium 

ion inside the membrane is 20 times larger than outside. This is because there is a K-

Na pump always transports potassium ions from outside to inside and sodium ions from 

inside to outside. Because of there is a difference concentration, ions are forced to move 

from high concentration part to low concentration part through ion tunnels. Finally, the 

potential caused by K-Na pump and the potential caused by concentration difference 

will cancel with each other to have a relatively steady state. The following figure shows 

the process: 
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Figure 2.1 Membrane Potential Schematic Diagram. 

 

2.1.2 Resting Potential, Active Potential, and Transportation Mechanism 

As we know from 2.1.1, there is a relatively steady potential difference between 

the inside and outside of the membrane, this is called resting potential. When the neuron 

is not stimulated, potassium ion channel is open, sodium ion channel is closed. The 

different concentration of the ions gives rise to a positive potential outside the 

membrane and a negative potential inside the membrane. When the neuron is stimulated, 

Sodium ion channel will be open. Remember that a number of sodium ions outside the 

membrane is much larger than inside, so the sodium ions will flock in within a short 

period from outside to inside which cause a positive potential inside the membrane and 

a negative one outside. This is called active potential.  It is also the main phenomenon 

indicates the neuron is stimulated. The mechanism for transportation the signal is this: 

When the neuron is stimulated, we know that the potential inside the membrane will be 

positive, another part of the synapse is still negative. The difference of the potential of 

the stimulated part and resting part will cause the current. When the current flows, the 



 

6 
 

positive potential inside the membrane will ‘travel’ with the current, in other words, the 

signal is transmitted. Full mechanism is shown in the picture below: 

 

Figure 2.2 Resting, Activation and Transportation Mechanism. 

 

2.1.3 Electrical Characteristics of Neuron 

From above discussion, it is important to know what is the action potential looks 

like? From the study of a giant nerve fiber, Dr. Alan Lloyd Hodgkin and Dr. Andrew 

Fielding Huxley describe the ionic basis of nerve conduction in 1955 [3]. The details 

of this model will be discussed later, I only show the result of their experiment which 

explains the electrical part of the action potential of the neuron. From figure 2.3, V-t 

curve of the stimulated neuron, we can see that when the neuron is stimulated and if the 

stimulation is strong enough to surpass a threshold, the neuron will generate a ‘spike’, 

then the voltage falls down even below the resting level, after 2ms, it will be in resting 

state again. 
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Figure 2.3 Approximate plot of the typical action potential. 

 

2.2 Models of the Neuron 

2.2.1 Hodgkin-Huxley Model 

In the year 1952, people do not quite understand the mechanism of the ion channel, 

they simply believe that an ion channel is nothing but when ion go through, it is similar 

to capacitor discharge, the relationship of voltage and current is non-linear. Not like 

other people thought, Hodgkin and Huxley noticed that both dynamic state and steady 

state exist inside the ion channel. How to describe such complex progress? Their 

smartness is that they refer the thought from thermodynamics. First of all, they assume 

the conductance of the ion channel depends on the ion concentration difference between 

the inside part of membrane and outside part of the membrane; If the assumption is true, 

in other words, there is a relationship between conductance and concentration, the 
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distribution of the ions should follow Boltzmann principle in thermodynamics. 

According to Boltzmann principle, the probability of an ion inside or outside the 

membrane can be described as: 

𝑃1

𝑃2
= exp(𝑓)                         (2.1) 

Because that P1 and P2 are the probabilities for the same ion, then we know: 

𝑃1 + 𝑃2 = 1                         (2.2) 

Then we have: 

𝑃1 = 1/(1 + exp⁡(𝑓))                    (2.3) 

Formula 2.3 is the steady state model of the ion channel. 

 

Figure 2.4 Electrical Model of the Membrane. 

Figure 2.4 shows the electrical model which represents the biophysical 

characteristics of cell membranes. The lipid bilayer is represented as a capacitance(Cm). 

Voltage -gated and leak ion channels are represented by nonlinear(gn) and linear(gL) 

conductance respectively. The electrochemical gradients driving the flow of ions are 

represented by batteries(E), ion pumps and exchangers are represented by the current 

source(Ip). 
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From the electrical model, we have: 

⁡𝐼 =  𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝑔𝑘̅̅ ̅𝑛

4(𝑉𝑚 − 𝑉𝑘) + 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3ℎ(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝑙̅(𝑉𝑚 − 𝑉𝑙)  (2.4) 

Where I is the current flows the membrane in a unit area. Other parameters are described 

below: 

𝑑𝑛

𝑑𝑡
=  𝛼𝑛(𝑉𝑚)(1 − 𝑛) −  𝛽𝑛(𝑉𝑚)𝑛                 (2.5) 

𝑑𝑚

𝑑𝑡
=  𝛼𝑚(𝑉𝑚)(1 − 𝑛) −  𝛽𝑚(𝑉𝑚)𝑚               (2.6) 

𝑑ℎ

𝑑𝑡
=  𝛼ℎ(𝑉𝑚)(1 − 𝑛) −  𝛽ℎ(𝑉𝑚)ℎ                 (2.7) 

In formula 2.5,2.6 and 2.7, 𝛼𝑖 (𝑜𝑢𝑡𝑠𝑖𝑑𝑒 → 𝑖𝑛𝑠𝑖𝑑𝑒), 𝛽𝑖(𝑖𝑛𝑠𝑖𝑑𝑒 → 𝑜𝑢𝑡𝑠𝑖𝑑𝑒) is the ith 

ion channel velocity, depend on voltage Vm and independent of time. 𝑔𝑛̅̅ ̅  is the 

maximum value of the conductance, n, m and h are parameters that related to the 

activation of the potassium ion channel, the activation of the sodium channel, the 

deactivation of the sodium channel. The solution for these differential equations gives 

the expressions that describe the channel. 

  

Figure 2.5 Simulation result from Matlab of HH model. 

2.2.2 Izhikevinch Model 

Hodgkin-Huxley model is the first neuron model that mimic the electrical behavior 
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of the neuron with accuracy, but it is too complex to implement with IC for its 

complexity of computation. Based on this model, Dr. Eugen M Izhikevich presented a 

new model to describe the behavior of neuron with more computational simplicity. The 

experimental result is quite good. His model can be described by the following formulas. 

𝑣̇ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼               (2.8) 

𝑢̇ = 𝑎(𝑏𝑣 − 𝑢)                             (2.9) 

If v >= 30mV, v = c, u = c+d                    (2.10) 

v: membrane potential;  

u: recover variable, take the place of the activation of potassium channel and 

deactivation of sodium channel; 

a: recover time variable of membrane potential; 

b: sensitivity that how parameter u was affected by v; 

c: recover voltage value after the stimulation of the neuron; 

d: reset value of parameter u after the stimulation of the neuron; 

With different values of parameters a, b, c and d, this model can simulate all known 

behaviors of the neuron. Figure 2.6 gives the result of the simulation. These results are 

the known behaviors of the neuron.  
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Figure 2.6 Different Behavior of Neurons. 

 

2.2.3 LIF Model  

LIF (Leaky Integrate and Fire) model is a basic simplification of Hodgkin-Huxley 

model. This model was presented by Louis Lapicque in 1907, a French neuroscientist. 

In the model, the neuron is treated as a node, the transmission inside the neuron is not 

in consideration. The formula describes the potential of the membrane is: 

𝜏𝑚
𝑑𝑢(𝑡)

𝑑𝑡
= −𝑢(𝑡) + 𝑅𝐼(𝑡)                   (2.11) 

Input current equals the summation of all currents at the same time, the voltage will 

leak to zero when there is no input current. There will be a spike generated by neuron 

when the membrane potential is large than the threshold voltage. We can know that if 

an action potential is generated at a point of the neuron, this potential will be transmitted 

to all other points, so we can calculate one point instead of all. The difference between 

Hodgkin-Huxley and LIF model is that LIF model treats the conductance of the 
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membrane as a whole constant, so the Hodgkin-Huxley model is simplified. Figure 2.7 

is the electrical model of LIF. 

 

Figure 2.7 LIF Model of Neuron. 

The circuit above can be described by: 

𝐶
𝑑𝑉𝑚

𝑑𝑡
= −

𝑉

𝑅
+ 𝐼𝑖𝑛𝑗                        (2.12) 

Iinj: Summation of all input currents; 

The solution for Vm(t) when Iinj is constant: 

𝑉𝑚(𝑡) = 𝑉𝑚(𝑡0)𝑒
−
𝑡−𝑡0
𝜏𝑚 + 𝑅𝑚𝐼𝑖𝑛𝑗 (1 − 𝑒

−
𝑡−𝑡0
𝜏𝑚 )         (2.13) 

When Vm surpasses the threshold, it will be set to Vm(t0), so when Iinj is constant, 

the spikes that generated by the neuron is periodical. Assume t = t(1), a spike is 

generated, we can find that: 

𝑢(𝑡) =  𝑅𝐼0 [1 − exp (−
𝑡−𝑡(1)

𝜏𝑚
)]               (2.14) 

As 𝑡 → ∞ , 𝑢(𝑡) = 𝑅𝐼0, there will be no spike when 𝑅𝐼0 < Vth. Now assume 

the second spike is generated at time t = t(2), we have: 

𝑉𝑡ℎ = 𝑅𝐼0[1 − exp⁡(−
𝑡(2)−𝑡(1)

𝜏𝑚
)]                (2.15) 

So the period of the spike when the input current is constant is: 

T = 𝑡(2) − 𝑡(1) = 𝜏𝑚𝐼𝑛(
𝑅𝐼0

𝑅𝐼0−𝑉𝑡ℎ
)               (2.16) 
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Where 𝜏𝑚 = 𝑅𝑚𝐶𝑚 is the time constant. 

Figure 2.8 shows the simulation results of LIF model in Matlab. 

 

Figure 2.8 LIF simulation result. 

From Figure 2.8 we notice that if there is no input, the neuron will be a leaky neuron 

with its voltage keep on decreasing. When we have some input pulses, the voltage will 

rise to the threshold and then reset to resting potential. Spikes drawn by hand are added 

when the spikes should be generated. When we have a constant input, the output will 

be periodical. When we have dense inputs, there is no output spike when the input is in 

the refractory period. These features are further discussed and simulated in Chapter 4. 

2.3 Comparison of different models 

LIF model treat membrane as a combination of resistor and capacitor, it treats 

multiple ion tunnels as a single resistor to simplify the Hodgkin-Huxley model. 

Izhikevich model is a dimensionality reduction of Hodgkin-Huxley model, there is not 

much difference between Izhikevich model and LIF model essentially. For LIF model, 
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when membrane voltage is larger than the threshold voltage, it immediately set to a 

constant. Izhikevich model treats the membrane voltage as: 

𝐶𝑣̇ = 𝑘(𝑣 − 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)(𝑣 − 𝑣𝑡ℎ) + 𝐼(𝑡)                  (2.17) 

This will cause the membrane potential rise very fast and approaches infinity. Figure 

2.9 shows the action potential curve of these two models. 

 

Figure 2.9 LIF spikes and Izhikevinch spikes. 

In fact, there are many other models like GIF by Hutcheon and Yarom, QIF and 

EIF by Ermentrout and Kopell, LIF with adaptation by Treves, IFB by Rinzel, these 

models are the variations of the introduced models above and most of them were built 

for neuroscience study [5], [6]. The figure below gives the performance of biological 

plausibility versus implementation cost [7].  
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Figure 2.10 Comparison of the neuro properties of neuron models. 

From the figure above, we can see that the LIF model is the simplest one to 

implement. I will choose LIF model as the implementation for the neuron for the 

consideration of power consumption and simplicity. A single neuron is not that smart 

until it is connected to each other to form a neural network, in other words, application 

for neural network may contain hundreds of thousands of neurons. If the neuron is too 

complicated, there will be much more difficult when we try to connect them together. 

What’s more, when the neurons are stacked, we must take the stability of the circuit 

into account. The fewer components we introduced into the circuit, the more stability 

we will have. Though the LIF model does not have so many biological features of a 

real neuron, it is still got the basic need for a neuron. A lot of studies based on this 

model indicate that this is an efficient way to achieve some simple functions to simulate 

the behaviors of a biological neuron. For the applications of our design, we will need 

only simple functions of the neuron, like when input surpasses the threshold, a spike 
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should be generated and the membrane voltage will go back to resting potential, or 

when input signals are applied during the refractory period, there should be no output 

spikes. Based on these considerations, LIF neuron will meet our requirement. 
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Chapter 3 Memristor- Artificial synapse 

  3.1 Introduction of memristor 

The memristor is a fundamental device like a resistor, capacitor, and inductor in 

circuits. This device was first proposed by Dr. Leon O. Chua,1971 [8], and was 

discovered by D. Strukov, G. Snider, G. Stewart, and R. Williams in 2008 [9]. The 

memristor is regarded as the fourth fundamental elements in circuits along with inductor, 

capacitor, and resistor for its properties. 

 

Figure 3.1 Circuit Elements and their relations 

From the figure above we know that the memristor connects the charge Q and flux 

φ together: 

𝑀(𝑞) = ⁡
𝑑𝜑

𝑑𝑞
                       (3.1) 
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If the charge Q is a function of time and flux φ is also a function of time, or 𝑞 =

𝑞(𝑡) and 𝜑 = 𝜑(𝑡), from the relations of charge and voltage, flux and current, we will 

have: 

𝑀(𝑞(𝑡)) = ⁡
dφ 𝑑𝑡⁄

𝑑𝑞 𝑑𝑡⁄
=⁡

𝑉(𝑡)

𝐼(𝑡)
                 (3.2) 

Equation 3.2 remind us that the memristor is a device that its resistance varies with the 

changes of its charge over time. This property can be used as synapse of the neuron in 

neural networks for different resistance can be treated as different weights of the neural 

network. 

 

3.2 Models of Memristor 

  3.2.1 SPICE Model 

  The model of the memristor from [9], is fabricated by a two-layer thin film of Ti𝑂2, 

sandwiched between the platinum contacts. One layer acts like a semiconductor for it 

is doped with oxygen vacancies. The undoped region is an isolator. The resistance of 

the whole device can be described as: 

𝑀(𝑤) = 𝑅𝑜𝑛
𝑤(𝑡)

𝐷
+ 𝑅𝑜𝑓𝑓(1 −

𝑤(𝑡)

𝐷
)              (3.3) 

W(t) is the width of the doped region, D is the total length of the Ti𝑂2, Ron and Roff 

are the device resistance when w(t) = 0 and w(t) = D. 
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Figure 3.2 Memristor Model 

The current and voltage relationship of the memristor can be defined by [10]: 

𝑣(𝑡) = 𝑅(𝑡)𝑖(𝑡) = ⁡
𝑑𝜑

𝑑𝑞
𝑖(𝑡)                  (3.4) 

From formula 3.3 and 3.4, the relation between voltage and current of the 

memristor is : 

𝑣(𝑡) = (𝑅𝑜𝑛
𝑤(𝑡)

𝐷
+ 𝑅𝑜𝑓𝑓 (1 −

𝑤(𝑡)

𝐷
)) 𝑖(𝑡)           (3.5) 

For Ti𝑂2 memristor, 
𝑤(𝑡)

𝐷
 is the state variable, the rate of change of the state variable 

is defined as : 

𝑑𝑤(𝑡)

𝑑𝑡
=⁡𝜇𝑉

𝑅𝑜𝑛

𝐷
𝑖(𝑡)                      (3.6) 

𝜇𝑉 is the dopant mobility. Now we have: 

𝑀 =⁡
𝑑𝜑

𝑑𝑞
= 𝑅𝑂𝐹𝐹 {[1 +

𝑤0

𝐷
(
𝑅𝑂𝑁
𝑅𝑂𝐹𝐹

− 1)] −
𝜇𝑣𝑅𝑂𝑁
𝐷2

(1 −
𝑅𝑂𝑁
𝑅𝑂𝐹𝐹

) 𝑞(𝑡)}⁡ 

≈ 𝑅𝑂𝐹𝐹{1 −
𝜇𝑣𝑅𝑂𝑁

𝐷2 𝑞(𝑡)}                               (3.7) 

We can see from equation 3.7 that the memristance M is a linear function of the charge 

q(t). From equation 3.7, we can also see the relationship between memristance and the 

device length D. The dynamic part of the memristance is proportional to charge q(t), 

and its coefficient is inversely proportional to device length. In other words, if D is a 
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big number, the whole memristance of the memristor is almost a constant, q(t) part is 

too small to measure. That’s the reason for we did not discover this device until 2008. 

Now we can build a device that has the electrical properties above. From [11], a 

spice model of memristor was given. Figure 3.3 give the circuit implementation of this 

model using ideal elements: 

 

Figure 3.3 Block diagram of Memristor Spice model and Implementation. 

The I-V curve of the above memristor is: 

 

Figure 3.4 I-V curve of the Memristor. 

Input: sinusoid wave with 1.2 Vpeak and frequency 1K 
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Runtime: 100ms 

We can see that the memristor is a non-linear device with its resistance varies with 

input. In other words, the resistance of the memristor can increase or decrease with 

different input. The following simulation gives this property which is the same property 

we utilize as the function of synapse in the circuit. 

 

Figure 3.5 Variance of the resistance(Increase). 

 

Figure 3.6 Variance of resistance(Decrease). 
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Table 3.1 Input information 

Figure 3.5 Input Figure 3.6 Input 

Square wave Va = 1.2V, Vb=0V, 

Freq=1K 

Pulse width: 250n 

Square wave Va = -1.2V, Vb=0V, 

Freq=1K 

Pulse width: 250n 

 

Figure 3.5 and Figure 3.6 shows that if there is a positive pulse at the positive port 

of the memristor, the resistance of the memristor will increase; if there is a negative one, 

the resistance will decrease. These properties are also referred to as LTP and LTD, 

which will be discussed in Chapter 4. We can use this property to update the weight of 

the neural network. There is also a problem within this model. The input could only be 

applied to the positive port of the device. A real memristor should be a two-port device 

with positive and negative input ports. 

3.2.2 TiO2 memristor emulator 

Because the fabrication of the memristor is difficult and the cost is really high, 

people would like to have emulators of the memristor for different applications. In [10], 

an emulator was presented for people to study and discuss. 

 

Figure 3.7 Concept of memristor and its equivalent circuit. 
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From Figure 3.7(a), we can see that the voltage at the input node of the circuit can 

be written as: 

𝑣𝑖𝑛 = 𝑅𝑠𝑖𝑖𝑛 + 𝑣𝑥                        (3.8) 

𝑖𝑖𝑛 is the input current, 𝑣𝑥 is the voltage at the positive node of the op-amp, 𝑅𝑠 is the 

resistance at the negative node. It is assumed that voltage 𝑣𝑥 is proportional to input 

current 𝑖𝑖𝑛, then we have: 

𝑣𝑖𝑛 = 𝑅𝑠𝑖𝑖𝑛 +𝑚𝑖𝑖𝑛 = (𝑅𝑠 +𝑚)𝑖𝑖𝑛               (3.9) 

From equation 3.9, it shows that the resistance of the whole circuit is 𝑅𝑠 +𝑚 , if we 

can control m as the integral of the input current, we have the memristor. 

 

Figure 3.8 Basic configuration of a memristor. 

From Figure 3.8, we have: 

𝑣𝑖𝑛 = (𝑅𝑠 +
𝑞𝐶

𝐶
× 𝑅𝑇)𝑖𝑖𝑛                     (3.10) 

We can see that vx at the positive node of the op-amp is generated by the 

production of the integration of input current and voltage vt. This will give the result 

that the circuit will act like a memristor. 
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Figure 3.9 Implementation of the memristor. 

Figure 3.9 is the implementation circuit based on figure 3.8. Two current mirrors 

were used to mirror the input current, then they were mixed together as the input of the 

positive node of the op-amp. From the circuit, we can see that this device is a one-port 

device. In our design, it should be a two-port device so that it can be connected to 

another device like a resistor. In paper [10], they claim that with certain connections, 

this memristor can be connected in series or in parallel, but we found that it doesn’t 

work even in cadence simulation. Though we have adjusted the parameters and made 

some changes in the original circuit to meet our demand, it is still not working quite 

well for we would like to build a resistor-memristor voltage divider with proper control 

to update the weight of the neural network by changing the resistance of the memristor. 

We also layout the schematic diagram of the memristor based on figure 3.9 for the 

analytical purpose and hope to have a circuit that mimics the memristor good enough 

for us to utilize. Figure 3.10 is the layout
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Figure 3.10 Layout of the memristor. 

Simulation result of the above circuit shows in figure 3.11. The input signal is a 

sinusoid waveform with amplitude 700mV and the input frequency is 10KHz. 

 

Figure 3.11 Simulation Result of the emulator. 

From Figure 3.11 we can see it is not a perfect memristor for its I-V curve is not that 

smooth. According to Dr. Chua’s statement, it is still a memristor. 
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3.2.3 Other models of memristor 

In this section, I will introduce several different types of models of the memristor, 

these models are written in Verilog-A and suitable for EDA tools. [12] 

a) Linear Ion Drift Model 

This model treats the memristor as two resistors connect in series, one 

represents the isolated region or the oxide region with high resistance, the other resistor 

represents the dopants region with low resistance. It is also assumed that the ions inside 

the device have equal average ion mobility. HP model is the representative memristor 

of this one. 

b) Nonlinear Ion Drift Model 

In this model, a non-linear dependence between the voltage and the internal 

state derivative is assumed. That is to say, the ion mobility is not a constant compare to 

the model above. 

c) Simmons Tunnel Barrier Model 

This model assumes the asymmetric and nonlinear switching because of the 

exponential dependence of the movement of the ions, or changes in the state variable.  

d) Threshold Adaptive(TEAM) Model 

The TEAM model assumes that there is a threshold of current and polynomial 

dependence between the derivative of the state drift and the memristor current. The 

relationship of input current and voltage can be adjusted to have a linear or exponential 

expression. 

Table 3.2 from[12] shows the characteristics of these models. 
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Table 3.2 The Characteristics of the memristor models 

Model Linear ion drift Nonlinear ion drift 

Simmons tunneling 

barrier TEAM 

State variable 

0≦w≦D 

 Doped region 

physical width                       

0≦w≦1 

Doped region 

normalized 

width 

 

 

Undoped region width 
 

 

 

Undoped region width 
 

Control mechanism 
Current 

controlled 
Voltage controlled  Current controlled Current controlled 

Current-voltage 

relationship and 

memristance deduction 

Explicit 

I-V relationship-

explicit 

Memristance 

deduction- 

ambiguous 

Ambiguous Explicit 

Matching memristive 

system definition 
Yes No No Yes 

Generic No No No Yes 

Accuracy comparing 

practical memristors 

Lowest 

accuracy 
Low accuracy Highest accuracy Sufficient accuracy 

Threshold exists No No Practically exists Yes 

 

After the simulation of these models, I found that none of these models would 

meet our frequency requirement. They can work well with the input frequency of a few 

hundred hertz, but if the frequency surpasses 1KHz, the I-V curve of these models looks 

like a line. In other words, these models work as a resistor in high frequency. We 

intended to use TiO2 emulator as our memristor, but the problem is it is a single port 

device, so it acts like a memristor when we see from the input port of the memristor. 

What’s more, the incremental memristor and decremented memristor has different 

configurations. In our design, we would like to have the memristor has both 

characteristics. As a result, the spice model was applied to our design. There are plenty 

of work to do here. First of all, these memristors are single port devices, which means 

that input signal can only be applied from one port of it. It will bring some problems 

𝑎𝑜𝑓𝑓 ≤ 𝑥 ≤ 𝑎𝑜𝑛 𝑥𝑜𝑛 ≤ 𝑥 ≤ 𝑥𝑜𝑓𝑓 
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like we have to provide both positive and negative power supplies for the circuit to 

simulate the increasing and decreasing resistance of the device in the circuit. What’s 

more, when the devices are connected in series or in parallel, one port device need to 

be modified to get everything works correctly. These problems are discussed in Chapter 

5 and treated as future work of the thesis. 
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Chapter 4 CMOS Implementation of Single Neuron 

A single biological neuron can be divided into 3 parts: dendrite, soma, and synapse. 

The function of the dendrite is that it can receive a signal from other neuron’s synapse 

and then transmit the signal to soma. Here I would like to indicate that one neuron 

contains many dendrites that connect to different synapses. Soma of the neuron acts 

like a comparator when it receives the signal (current) from the dendrite and if the signal 

is strong enough, in other words, surpass a certain threshold, it will generate a spike. 

This spike will be transmitted by synapse to other neuron’s dendrite. The trick here is 

the synapse is changed by this spike, either has a stronger connection or weaker 

connection to post-neuron. This is decided by the type of the spike. In other words, the 

weight of the neuron is changed. Before the implementation, a learning rule named 

STDP (Spiking timing-dependent plasticity) will be introduced. 

 

Figure 4.1 Block Diagram of Neuron. 
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4.1 STDP Learning Rule 

STDP (Spiking timing-dependent plasticity) is widely used in models of circuits-

level plasticity, development, and learning, it is a rule that determines the sign and 

magnitude of long-term potentiation (LTP) or depression (LTD) by different order and 

interval between pre-synaptic and post-synaptic spikes[13]. Here, LTP is known as the 

enhanced connection of the synapse, while LTD is the weaken connection. Guo-qiang 

Bi and Mu-ming Poo discover that when a pre-neuron spike is ahead of the post-neuron 

spike, LTP will occur and if the condition is the post before pre, LTD occurs. What’s 

more, the pre-spikes and post-spikes that generated at a very close time point will have 

more influence than those generated far away in the strength of synapse[14]. These 

features of the neuron are now known as spike timing dependent plasticity (STDP). It 

is also learned from [13] that a lot of species (more than 20) including insects and 

mammals have this feature. For a neural network, it is a good choice to apply STDP 

rule and it is also a simple one to implement. 

 

4.2 Dendrite Implementation 

From the discussions above, the dendrite stage of the neuron should have an 

aggregation input for one neuron contains lots of dendrites. In other words, dendrite 

stage should add all inputs together, and then transmit the whole signal to next stage.  

Several source followers are connected to implement the dendrite input stage of the 

neuron. Figure 4.2 shows the dendrite input implementation. We can see that it is 

nothing but a V-I converter. It just transforms the input voltage signal into current and 
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adds them together. The transconductance of the OTA can be tuned to mimic the 

connection of the dendrites and pre-neurons. For example, smaller transconductance 

can be treated as a minor stimulus from pre-neuron. Figure 4.3 from [15] gives a basic 

implementation of input circuits. 

 

Figure 4.2 Aggregation Input and Single OTA. 

Test bench and simulation result in Cadence tool of the above circuit with 130-nm 

technology are given in figure 4.3. There are 4 input signals with different delays to 

simulate the spikes that come to dendrite at different time points. We can see that as the 

number of input increases, the output of the dendrite increases that perform the 

summation property like a biological neuron performs. 



 

32 
 

 

Figure 4.3 Aggregation Input Simulation. 

 

4.3 Soma Implementation 

The model for the neuron is LIF. From the discussion of Chapter 2, [16] and [17], 

an Axon Hillock circuit was designed to meet the requirement of soma: If the input is 

strong enough, there will be a spike generated and then transmitted to next neuron 

through the synapse. The original schematic diagram from [16] and the cadence 

implementation is shown in Figure 4.4 
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Figure 4.4 Axon-Hillock Circuit Implementation. 

In the beginning, 𝐶𝑚𝑒𝑚 which is the membrane capacitance, is charged by the input 

current 𝐼𝑖𝑛 , when the voltage of the membrane surpasses the threshold voltage (𝑉𝑡ℎ), 

𝑉𝑜𝑢𝑡 will go high and the reset transistor is turned on and a positive feedback path is 

formed through 𝐶𝑓𝑏. Because the reset transistor is on, 𝐶𝑚𝑒𝑚 will be discharged, then 

𝑉𝑜𝑢𝑡 will be low again and turn off the reset transistor waiting for next input from 

aggregation stage. The width of the spike can be tuned by input voltage 𝑉𝑝𝑤 and the 

firing rate of the circuit can be adjusted by different values of the ratio of 𝐶𝑚𝑒𝑚 and 

𝐶𝑓𝑏. Figure 4.5 is the simulation result of the LIF circuit.  

  

Figure 4.5 Simulation result of the Axon-Hillock Circuit. 
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  The circuit is tuned that every four pulses of the input will trigger one spike. We can 

also adjust the width of the input which will give rise to a different behavior of the 

circuit. Figure 4.6 shows another kind of output by adjusting the input signal. 

  

Figure 4.6 Axon-Hillock Simulation with Different Input. 

Table 4.1 Input Parameter of Figure 4.5 and Figure 4.6 

Parameter Figure 4.5 Figure 4.6 

Iin 1KHz with pulse width 

250ns 

1KHz with pulse width 2us 

Vth 400mV 400mV 

Vpw 150mV 150mV 

Vdd 1.2V 1.2V 

Vss -1.2V -1.2V 

The difference between Figure 4.5 and Figure 4.6 indicates that if there is a strong 

input signal from dendrite, the firing rate of the Axon-Hillock circuit is faster than the 

weak input. This is also a property of biological neurons. It is clear that the magnitude 

of the output has nothing to do with the input strength (pulse width in circuits), so the 

strength of received signal of the post-neuron only depends on the synapse. This is 

really useful for we don’t have to compensate the output signal based on the different 
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strength of the input signal. 

Figure 4.7 is another implementation and simulation of the soma from [24]. The 

advantage of this implementation is that it is simple and has certain functions like a 

biological neuron. As we see in the schematic diagram of the neuron, if the input current 

is strong enough, in other words, there is enough charge in capacitor C0 to turn on M0 

transistor, a pulse is generated. When the voltage at the output node goes high, Vgs of 

M0 will decrease, thus, M0 turns off. M1 and M2 work together as a current mirror, 

serve as a positive feedback path when M0 turns on. I tried square wave as input signal 

and found out that no matter how wide the width of pulse is, I can only get one output 

pulse. To mimic the biological behavior of the neuron, Axon-Hillock circuit is chosen.

      

Figure 4.7 Pulse-coupled Neuron 

4.4 Synapse Implementation 

As we discussed in 4.1, to update the weight and obey the STDP rule, a resistor-

memristor voltage divider with proper control is implemented. Figure 4.8 is the 

schematic diagram of update circuit. In Figure 4.8, we use 3 sets of transmission gates 

to update the weight of the synapse. According to STDP rule, if the pre-neuron spike is 

generated before the post-neuron, LTP should happen to strengthen the connection 
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between pre-neuron and post-neuron. If the condition reversed, in other words, pre-

neuron spike generated after post-neuron, LTD should happen to weaken the connection.  

 

Figure 4.8 Synapse Update Circuit. 

Here, 𝑉𝑝𝑟𝑒 represents the spike from pre-neuron, 𝑉𝑝 and 𝑉𝑑 represent the LTP 

and LTD signal respectively. If there is a signal from pre-neuron, 𝑉𝑓𝑖𝑟𝑒 sets to high that 

allows the pre-neuron signal pass transmission gates. We assume that 𝑉𝑝𝑟𝑒 is modified 

that it will not exceed the threshold voltage of the next neuron. Now we assume a pre 

before post condition to figure out how the weight is changed. In this condition, 𝑉𝑝𝑜𝑡 

is high and two transmission gates with control signal 𝑉𝑝𝑜𝑡 is open to let LTP signal 

𝑉𝑝 pass. Remember the discussion in Chapter 3.2.1, the resistance of the memristor will 

change depend on the input signal. Here we would like to enhance the connection, so 

the resistance should be smaller than before. In our model, the resistance of the 

memristor varies from 100Ohms to 10,000Ohms, and it is connected with a resistor 

with resistance 1000Ohms. If the initial resistance of the memristor is 4000Ohms and 
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the input voltage is 1V, the output voltage is 0.2V; after the training, the resistance of 

the memristor falls to 500Ohms, with the same input voltage, the output is 0.67V. The 

process of LTD is almost the same, the difference between LTP and LTD is the polarity 

of 𝑉𝑝 and 𝑉𝑑.  

From the discussion above, the essential part of the update weight circuit is the 

control logic. The schematic diagram of the control logic shows in Figure 4.9[18]. The 

upper one is the logic when the pre-neuron signal arrives before the post-neuron signal, 

the bottom one is post before pre. Delay units are introduced for the training should 

happen during the refractory period of the input signal according to STDP rule. 

 

 

Figure 4.9 Control Logic of STDP. 
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The memristor should change its resistance only when pre-neuron pulse and post-

neuron pulse happens at almost the same time point. From Figure 4.9, we can see that 

the capacitor in the circuit serves as a memory. When there is an only pre-neuron pulse 

or post-neuron pulse, the capacitor is charged, in other words, it is working in ‘write’ 

mode. When pre-neuron and post-neuron pulse happens at the same time, the transistor 

is off and the capacitor is working in ‘read’ mode and give a training pulse for next 

stage of the process. Simulation result of the circuit above shows that for the upper part 

of Figure 4.9, a certain pulse will be generated if the pre-neuron pulse happens before 

the post-neuron. This pulse is also used for the control signal of the transmission gates 

and training pulse for the memristor. During this period (refractory period), V_fire will 

be low and no pulse from pre-neuron is introduced to the memristor. As it is shown in 

Figure 3.5 and Figure 3.6, the resistance of the memristor can be changed by applying 

different pulses. Figure 4.10 is the simulation of decremental training pulses generated 

by logic circuits. What’s more, this is the pulse that is transmitted as the input signal of 

the next neuron. 
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Figure 4.10 Training Signal Generation. 

We can see the result of the logic circuit is right for if pre-pulses happen before 

post pulses, Vp will be generated and for the post before pre case, Vd will be generated. 

Here we should indicate that the training process should only happen during the 

refractory period of the input signal according to STDP learning rule. In other words, 

we must build a delay unit to make it right. Back to Chapter 1 and Chapter 2, from 

Figure 2.3 we can see what is the refractory period is. In this period, no matter what is 

the strength of the input signal, There won’t be any spikes generated. The last part of 

Figure 2.8 also proves this property of the neuron. If we apply fast pulses during the 

refractory period, from Figure 2.8 we can see there won’t be any response from the 

model. So, if we try to modify the weight of synapse, it should happen during the 

refractory period of the neuron to make sure the updating process will not affect the 

response of the neuron. The definition of the refractory period can be described the time 

with no pulses applied to the input port of the neuron. In other words, it is the resting 

state of the neuron. In the design, as we discussed Vd and Vp should only be applied to 

memristor-resistor divider with the related transmission gate open, and the control 

signal should also be delayed. We can use the same Vp and Vd as the control signal of 

transmission gates. That’s why we need the delay unit. This unit is achieved by Verilog-
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A for its delay time is long(500μs) compared with another kind of delays. We intend to 

use RC delay cell or a series of the not gates but none of them works for such a long 

delay. There is another way to figure it out which is a clock can be applied to this circuit. 

For the delay, accuracy is not an important stuff to deal with. 
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Chapter 5 Conclusion 

At present, ANN has a lot of advantages compare to traditional computers in the 

certain area like pattern recognition [19] [20], motion control [21], target classification 

[22]. It has lower power consumptions and higher efficiency over traditional computers. 

In this thesis, a brief introduction of ANN was given and then neuron models were 

discussed in the beginning. Three different kinds of neuron models are given and the 

final choice of the model is LIF for its simple structure and it is the easiest one to stack. 

Then a basic device named memristor is discussed for its characteristics can be used as 

the synapse of the memristor. Several models of the memristor are introduced and the 

layout of one emulator is finished for the test. Then comes the implementation of 

different parts of the neuron. Dendrite input is achieved by a set of OTA, soma is 

implemented by Axon-Hillock circuit and synapses can be mimicked by memristor. 

Based on the study of neuroscience, for training neuron, STDP rule is introduced and a 

control logic is used to meet the requirement of STDP learning.  Compare with a real 

neuron, the CMOS neuron acts like a biological neuron and it is working much faster 

than human neurons (less than 100Hz). 

There is plenty work to do in future. First, a certain experiment can be done to 

check if the implementation of CMOS neuron has biological behaviors of the neuron. 

An associative learning experiment can do the work. Second, when the implementation 

is proved to have right behavior like biological neurons, a chip with stacked neurons 
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can be fabricated to have certain utilization like handwriting recognition or other simple 

functions. Then a processing unit can be built with massive neurons to finish more 

complicated tasks like pathfinding of smart cars, traffic administration like human 

beings. For the delay problem in Chapter 4, we can either increase the frequency of the 

input signal into gigahertz to apply a series of not gates as delay cell or a global clock 

can be introduced to modify the delay. The last and the most important work is that the 

memristor in this paper is an ideal one, though we have the emulator, it is still a one-

port device. As we mentioned in Chapter 3, a two-port memristor is in need. We can 

achieve this by duplicate the circuit and a comparator can tell whether the input is 

applied in positive port or the negative port of the device. When this decision is made, 

the input signal can have the right path to the circuit, give rise to a two-port memristor. 

The benefit of a two ports device is that the power supply of the whole circuit can be 

reduced from -1.2V and 1.2V to 0V and 1.2V. Consider the difficulty of fabrication and 

high cost of the memristor, there is still a long way to go for practical. 
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